Xlib - C Language X Interface

X Consortium Standard

James Gettys, Digital Equipment Corporation
Robert W. Scheifler, Massachusetts Institute of Technology
Chuck Adams
Tektronix, Inc.

Vania Joloboff
Open Software Foundation
Hideki Hiura
Sun Microsystems, Inc.

Bill McMahon
Hewlett-Packard Company
Ron Newman
Massachusetts Institute of Technology
Al Tabayoyon
Tektronix, Inc.

Glenn Widener
Tektronix, Inc.

Shigeru Yamada
Fujitsu OSSI

Xlib - C Language X Interface: X Consortium Standard

by James Gettys and Robert W. Scheifler
Chuck Adams

Tektronix, Inc.

Vania Joloboff

Open Software Foundation

Hideki Hiura

Sun Microsystems, Inc.

Bill McMahon

Hewlett-Packard Company

Ron Newman

Massachusetts Institute of Technology
Al Tabayoyon

Tektronix, Inc.

Glenn Widener

Tektronix, Inc.

Shigeru Yamada

Fujitsu OSSI

X Version 11, Release 7.7
Copyright © 1985, 1986, 1987, 1988, 1989, 1991, 1994, 1996, 2002 The Open Group

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of The Open Group shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from The Open Group.

Copyright © 1985, 1986, 1987, 1988, 1989, 1991 Digital Equipment Corporation

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appears in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the names of Digital and Tetronix not be used in in advertising
or publicity pertaining to distribution of the software without specific, written prior permission. Digital and Tetronix
make no representations about the suitability of the software described herein for any purpose. It is provided “as
is” without express or implied warranty.

TekHVC is a trademark of Tektronix, Inc.

Table of Contents

ACKNOWIEAGMENLES ..iivuniiiiiiiiiiie it e et e et e e et e e et e e et e aaaeeaeaeeeaannns X
1. Introduction to XDcciiiriiiiiiiiie e e e e e e aaa e 1
Overview of the X Window SySEemccccevviiiiieiiiiiiiiiinieeiee e e 1
EITTOTS ettt et e et et e et e et e eenans 3
Standard Header FilesSc.cviiiiiiiiiiiiiiie et eeae e e 3
Generic Values and TYPES ..c.ueviviieeiiiiniiiiineetiineeeiieeeeieeeiieeriieertieerrneessnneaennns 4
Naming and Argument Conventions within Xlibc......ccooiiiiin... 4
Programming Considerationscccccuueeiiiiieiiiiiieiiiiieeiee e eei e eeieeenanns 5
Character Sets and ENcCOAiNgScocvvueiiiiieiiiiiiiiiieieiee e e eeineeeieneesnneenes 5
Formatting Conventionsccooiiiiiiiiiiiiiiini et e e e e 6

2. Display FUNCLIONS ...iiniiiiii e e e e et e e e e eans 7
Opening the DISPIayccieueiiiiiiiiiiiieiii e e e et e e e e e aan e eeaanns 7
Obtaining Information about the Display, Image Formats, or Screens........... 8
|31y o] b= A\ K- Yoa o1 PPN 9

Image Format Functions and MacCrosccccevvvviiiirieiiiniiiineeiineeniinens 15

Screen Information MacCTOScveiviiiiiiiiiiiiiiii e 17
Generating a NoOperation Protocol Requestccoeevvveviiiiiiiiinieiiineevinnen, 20
Freeing Client-Created Datacccoceeueiiiiiiiiiiiniiiie e ee e eev e eeve e eeiaes 20
Closing the DISPIaycccuueeiiiiiiiiiiieieie e e e e e e e e eereeeeaanes 20
Using X Server Connection Close Operationsccceevevveeeivinrinnneeinnnennnnn. 21
Using Xlib with TRIreadscccccoeviiiiiiiiiiiiiiie e e e e eaes 22
Using Internal CONNECEIONSccivvuiiiiiiiiiiirieiiie e eri e eerieeeenieeeeaieeeees 23

3. WINdOW FUNCLIONS ..uuuiiiiiiiiiiiiiiiie et e et s e e e eaie e eea e s enanesenaneees 26
VISUAL TYPES cevniiiiiiiiiieiiiee et et e et e et et eteeeat e e eteneeatanaeettnserennsersnnsassnnaees 26
WiINdow AETIDULES ..ovveiiiiiiiie e e e e e e e eaa e 27
Background AttribULeccoveiiiiiiiiiineee e 30

Border AtTIDULE ..ooouuiiiiiiiie e 31

Gravity AtETiDULESiiiii e 31

Backing Store Attributeccoviiiiiiiiiiniiie e 32

Save UNAer Flag ..occvueiiiiiiiiiiiiiiie e et e etee e eeie e ea e e eae e aananeaes 33

Backing Planes and Backing Pixel Attributescccoovvvveviiiiniiiinnnnnnn, 33

Event Mask and Do Not Propagate Mask Attributesc.cccuvveeenen. 33
Override RedireCt FIagcccuvviiiiiiiiiiiiiiiie e eees e e e e e eae e 34
Colormap ALETIDULE .u.iieeiii e 34

CUrsor ALETIDULE ...oiiiiiiii e 34
Creating WINAOWScoiiiiiiiiiiiiiie ettt eere e e e e aa e e et e e ena e e eaaneeeees 34
Destroying WINAOWScivuiiiiiiiiiieeiiiie et eetieeeetieeeerie e e eaiseeaeeaeinsennneeeeannns 37
MapPIing WINAOWS ...ivvuiiiiieiiiieeiiiie et eeie e et e e et e e et e eetessearnsanteeseennesrsnnees 38
Unmapping WINAOWScouiiiiiieiiiiiieiinieiie et e etieeeri e eetieestieeeenneeesnneesnnnaaes 40
Configuring WINAOWSccvueiiiiiieiiiiieeis et eeie e et e e e e eaieeeeereeaenneeaaaneeannns 40
Changing Window Stacking OTAEerccccivvueriiiiiriiiieiiiin et e e enreeeanns 44
Changing Window AttriDULESccivviiiiiiiiiiiie e 47

4. Window Information FUNCLIONSccccvviiiiiiiiiiiiriiii e 51
Obtaining Window Informationccoeeviiiieiiiiiiiiiiin e 51
Translating Screen Coordinatesccceeevveeiiiiieiiiiieeeiireeeie e e eeieeenens 54
Properties and ALOMISccouiiiiiiiiii e 56
Obtaining and Changing Window Propertiesccccevviviiriiviineiiiinneinnnennnn. 59
SELECTIONS ..ttt ettt et e et e e 63

5. Pixmap and Cursor FUNCLIONScccouviiiiiiiiiiiiec e e 65
Creating and Freeing PiXmapsccoeciveriiiiiniiiiieiiiiieeeiieeeii e eerieeeenieeenaneeenees 65
Creating, Recoloring, and Freeing CUTSOTSccoevivvrieiinieiineeiieeeinnnennnns 66

iii

Xlib - C Language X Interface

6. Color Management FUNCEIONSooiviiiiiiiiiii e 70
(070] (o) S} wiath (o H 1§ o 1 SOOI PPP 71
(0701 o) s} i 11T £ TN 75

RGB Device String Specificationcccoooviiiiiiiiiiiiiii e 75
RGB Intensity String Specificationc.ccooeviiiiiiiiiin i, 76
Device-Independent String Specificationsc.ccoeevviiiiiiiiiiiiniineennn.n. 76
Color Conversion Contexts and Gamut Mappingcccoeeeeeeeveeiiieeineeeneennnnn. 77
Creating, Copying, and Destroying Colormapscccccceeevvueeineeiineeeneeinnennnnnns 77
Mapping Color Names t0 ValUescc.oivueiiiiiiiiiiiiiiceeeee e 79
Allocating and Freeing Color Cellscccovuiiiiiiiiiiiieiieeeeee e, 81
Modifying and Querying Colormap Cellscccooviiiiiiiiiiiiiiieeieee e 85
Color Conversion ContexXxt FUNCLIONSooviviiiiiiiiiiiiiiiiiincci e, 90
Getting and Setting the Color Conversion Context of a Colormap....... 90
Obtaining the Default Color Conversion Contextcccceeeevineiiinrnnnnns 91
Color Conversion ConteXt MaCIOSccceuuuviiiuniiiiiiieiiiieeiiieeeeiieeeeieeeennn 91
Modifying Attributes of a Color Conversion Contextc.ccceeevnneenns. 92
Creating and Freeing a Color Conversion Contextc.ccceevvnennnnee. 93
Converting between ColOT SPACEScceuvviiiiiiiiiieiieeie e ea e eaenas 94
Callback FUNCEIONS ..iuuuiiiiiiiiieieie ettt e e e e e 94
Prototype Gamut Compression Procedureccooeeeeevveeinneenneennnnnnnns 95
Supplied Gamut Compression Proceduresccoeeeveeeveeineeinneeennennnnns 96
Prototype White Point Adjustment Procedureccccovviiniinnnnnnnnnn. 97
Supplied White Point Adjustment Proceduresc.ccccoevvviiiniiinnennnnen. 98
Gamut Querying FUNCEIONSc.ciiiiiiiiiiiiie e e 99
Red, Green, and Blue QUETIEScuvuiiininiiiiiiii et enen 100
CIELQD QUETIES euininiiiiniie ettt ettt et e e et e e e aeteenenas 101
CIELUV QUETIES «ouininiiiiiiii ettt eenenes 103
TERHVC QUETIES cevienininiieieiie ettt ettt et et e e ae et eneananes 105
Color Management EXteNSIONSccccuviiiiiiiiiiiiiiii e 107
(070) (o) el o T- Yol 1 T 107
Adding Device-Independent Color SPacescccceeevveevnieinieieneiineennnnns 108
Querying Color Space Format and Prefixcc.ccoeiiiiiiiiiiiniiniinnnn.. 108
Creating Additional Color SPacCeSccevvueiiiiiiiiiiii e e e 108
Parse String Callbackccoouiiiiiiiiiiiiiii e 109
Color Specification Conversion Callbackccoevveiiiiiiiiiiiiiiinennns, 110
FUnCtion Sets ..o e 111
Adding FUunction Setsceiieiiiiiiiiiiie e 111
Creating Additional Function Setscccccoviiiiiiiiiiiiiiiieeeeeeee, 112

7. Graphics Context FUNCLIONSccovuiiiiiiiiiiiecie e eas 114
Manipulating Graphics Context/Stateccccoeviviiiiiiiiiiiiieiie e, 114
Using Graphics Context Convenience Routinescccccceeevviiiinieinneennnnnnn. 123

Setting the Foreground, Background, Function, or Plane Mask 124
Setting the Line Attributes and Dashesccccoviiviiiiiiiiiiiiincieeens 125
Setting the Fill Style and Fill Rulec.ccoiiiiiiiiiiiiiieeeeee e 126
Setting the Fill Tile and Stipplecooeveiiiiiiiiiieee e 127
Setting the Current FOntc.coooiiiiiiiiiii e 129
Setting the CLpP ReGION ...ccovniiiiiiiiiie e 129
Setting the Arc Mode, Subwindow Mode, and Graphics Exposure.... 131

8. Graphics FUNCLIONSc.uiiiiiiiiie e e e e e e aanas 132
(OA1=Y- N ok oo N oY= T SRR 132
(020] 03121 a Lo AN =Y 1 SRS 133
Drawing Points, Lines, Rectangles, and Arcsc.ccoevvviiiiiiiiniineiieeinnn, 135

Drawing Single and Multiple Pointsccocoviiiiiiiiieiiiiieeeeeeeen 136
Drawing Single and Multiple LiN€Sc.cccoeiiiiiiiiiniieeieeeieeee e, 137

iv

Xlib - C Language X Interface

Drawing Single and Multiple Rectanglesccccoeeviiiiiiiiiiiiiniinennnnnn. 138
Drawing Single and Multiple ATCScccoevviiiiiiiiieiiieeeeee e, 139
FillING ATEAS ovuiiiniiiiiiiii ettt e e et et et e e te et e et e et e e aae s e asenesanaeanns 141
Filling Single and Multiple Rectanglesccccooviiiiiiiiiiiiiiieiineins 141
Filling a Single POLygoncocouiiiiiiiiieiieieeeceee e e 142
Filling Single and Multiple ATCSc.oovieiiiieiiieeiieeie e eeve e e 143
FONE MEETICS euniiiiiiiiie ittt et e e et e et e eaaes 144
Loading and Freeing FONtScccoiviiiiiiiiiieeeeeee e 148
Obtaining and Freeing Font Names and Information 150
Computing Character String SizZesccoiveiiiiiiiiiiiiiiiieeeeeee e, 151
Computing Logical EXEentscccovviiiiiiiiiiiiiiie e 152
Querying Character String SiZesccoiiiiiiiiiiiiiiiiieeeeee e, 153
Drawing TeXE .ouuiiniiiiiiiiiiir e e e e e eans 155
Drawing ComplexX TeXtcc.iiiiiiiiiiiiii e e e 155
Drawing Text Characterscccceiiiiiiiiiiiiiiiie e e 157
Drawing Image Text Charactersc.ccoeeviiieiiiiiiiiiieiieeee e, 157
Transferring Images between Client and Serverccooeveveviiiiiiiiineennnns 159
9. Window and Session Manager FUunctionscccccoeiieiiiiiiiiiiiie e, 164
Changing the Parent of @ WIndowcccouoiiiiiiiiiiiiiieeee e 164
Controlling the Lifetime of @ Windowccoceviiiiiiiiiiiiiieeeeee e, 165
Managing Installed CoOlOTmapScevvuiiiiiiiineiiieeiieeie e eere e e eie e e e e eeenas 166
Setting and Retrieving the Font Search Pathc.ccoooiiiiiiin . 167
Grabbing the SEIVET ... e e 168
Killing CHENES ouuiieiiiiiiiee e e e et e et e e ae e e e et e et e eaeeeenaees 169
Controlling the SCTeeN SAVETcciiiiiiiiiiiiieiieee e e 169
Controlling HOSE ACCESS ...uiivniiiiiiieiie et e e e e et e e e e e eens 171
Adding, Getting, or Removing HOStScccivviiiiiiiiiiiiieeeeeeceee, 172
Changing, Enabling, or Disabling Access Controlc..cceeeunennnes 174

L0, EVEIES oiiiiiiiiiiie ettt ettt et et et et et e e e e e eaa s 176
7Y o I 01T PN 176
Event STTUCTUTESoiiiiiii et e e e 177
EVENET MASKS ..ottt aaas 179
Event Processing OVEIVIEWc..iiiiiiiiiiiiiieiieiiieeeee et et eee e e e eaaens 180
Keyboard and Pointer EVENtScooviiiiiiiiiiiieii e 182
Pointer Button EVENtSccoiiiiiiiiiiii e 183
Keyboard and Pointer EVEntsccccoeeiiiiiiiiiiiiiiiiciee e 183
Window Entry/EXit EVENLScoiviiiiiiiiiiiiieciiec et e e 187
Normal Entry/EXit EVENLS ...ccuoiiiiiiiiiiieieeeeeeeee e e 188
Grab and Ungrab Entry/Exit Eventsccccooeiiiiiiiiiiiiniiieeeee, 189
INPUEL FOCUS EVENES ..ovniiiiiiiiiiii et e e e e e 190
Normal Focus Events and Focus Events While Grabbed 191
Focus Events Generated by Grabscccoeiviiiiiiiiiiiiiniie e, 194

Key Map State Notification EvVentsccoceveiiiiiiiiiiiiiiice e, 194
EXPOSUTE EVEINES ..ouniiiiiiiie ettt e e e e eans 195
EXPOSE EVENLS ouiiiiiiii et 195
GraphicsExpose and NoExpose Eventsc..cooevveeiiiiiiiiiiiiiieeieeennns 196
Window State Change EVentsccoouiiiiiiiiiiiiiiie e 197
CirculateNotify EVENtScovviiiiiiiiiiiei e 198
ConfigureNotify EVENESccuviiiiiiiiiiiei e 198
CreateNoOtify EVENEScoovniiiiiiii e 200
DestroyNotify EVENES ...ccvuiiiiiiiiiec e 200
GravityNotify EVENtScocviiiiiiii e 201
MapNOtify EVENES ..o.iiiniiiiiii e 202
MappingNotify EVENEScccvniiiiiiiiiiieeee e 202

Xlib - C Language X Interface

ReparentNotify EVENtScovviiiiiiiiii e 203
UnmapNotify EVENES ...ovvniiiiiie e 204
VisibilityNotify EVENtSoiiiiiiiiii e 204
Structure Control EVENtsccooouiiiiiiiiiiiiii e 205
CirculateRequest EVENLScouiiiiiiiiiiiiiii e et eaas 206
ConfigureRequest EVENtSccoviiiiiiiiiiii e 206
MapRequest EVENES ...c.oiuiiiiiiiiiiie e 207
ResizeRequest EVENtS ...o..oiuiiiiiiiiii e 208
Colormap State Change EVENtSccooeiiiiiiiiiiiiie e 208
Client Communication EVENtSccovviiiiiiiiiiiiiiiiiiiii et 209
ClientMessage EVENS ...c..oiiiiiiiiiiiiie e 209
PropertyNotifyy EVENESccovniiiiiiieieee e 210
SelectionClear EVENTS ...ocoouviiiiiiiiiiie ittt 211
SelectionRequest EVENEScccviiiiiiiiiiiii et 211
SelectionNOtify EVENTS ..ccuiiviiiiiiiiie e 212

11. Event Handling FUNCLIONSccuiiiiiiiiiiiec e eas 214
Selecting EVENES ...couniiiiiiii e e e 214
Handling the Output Buffercoooiiiiiii e 215
Event Queue Managementcooviuiiiiiiiiiiiiieiie e e e 215
Manipulating the Event QUEUEcccouniiiiiiiiiiiiiie e 216
Returning the Next EVentccccoeiiiiiiiiiiiiiii e 216
Selecting Events Using a Predicate Procedurec.cccoevviiinnnnnnnns 217
Selecting Events Using a Window or Event Maskc.ccceevnniennnee. 218
Putting an Event Back into the QUeUEcooiiiiiiiiiiiiii e 220
Sending Events to Other Applicationscccceveiiiiiiiiiiiiieeee e, 221
Getting Pointer Motion HiSTOTYc.viviiiiiiiiiiiiiiiece e 222
Handling ProtoCol ETTOTSc..oiiuiiiiiiiieiie et e e e e et e e e aen s 223
Enabling or Disabling Synchronizationc.ccooevviiiiiiiiiniiiiiieeennnss 223
Using the Default Error Handlersccccooeiiiiiiiiiiiiiiiieeeee e, 224

12. Input Device FUNCLIONSivuiiiiiiiiiiiiie et e e 229
Pointer Grabbingcoiiiiiiiiiiiec e 229
Keyboard Grabbingcccoeiiiiiiiiiiiie et e e aenas 234
Resuming Event ProCesSingcccceiuiiiiiiiiiiiiiiie e 237
Moving the POINEETco.oiiiiiiee e e e 239
Controlling INPUL FOCUS ...cvuiiiiiiiiiiieie e eaa s 240
Manipulating the Keyboard and Pointer Settingscccceeviviiiiiiiinnnnn.s 241
Manipulating the Keyboard Encodingccoeeeuviiiiiiiiiiiiiiiiniiieeeeeieeeenes 246
13. Locales and Internationalized Text FUNCtionscccceeevuiiiiiinniiiinneennnnenn. 252
X Locale Managementcccueiieiiiiiiieeiieei e et e e et e e et e et e eanaeaenas 253
Locale and Modifier Dependenciesccceuueiiiiiieeiiieeiieeiieeee e e 254
Variable Argument LiStScciouiiiiiiiiiiiieee e 256
OUtPUL MELROAS ...eeiiiieee e e 256
Output Method OVEIVIEWcivuiiiiiiiieiiieciie et et ee e e e e e e e eens 257
Output Method FUnCtionscccooveiiiiiiiiiiee e, 257

X Output Method Valuescccooeviiiiiiiiiiiiiiece e 259
Output Context FUNCLIONSooviiiiiiiiiiiie e 261
Output Context ValUescooviiiiiiiiiii e 263
Creating and Freeing a Font Setccooiviiiiiiiiiiii e, 266
Obtaining Font Set MetriCS ...c.coeviiiiiiiiiiiiie e 270
Drawing Text Using Font Setscccooiiiiiiiiiiiiiiiiie e 275

|0 0] R ALY =Y W Lo Yo TR 278
Input Method OVETVIEWcovniiiiiiiieiiei e e e 278
Input Method Managementcoeeuiiiiiiiiieiiie e 286
Input Method FUNCLIONS ...ccuivvniiiiiieie e 288

vi

Xlib - C Language X Interface

Input Method ValUesccoouiiiiiiiiiiieie e 290
Input Context FUNCLIONSc.oiviiiiiiiiii e e 294
Input Context ValUEscoivniiiiiiiiii e 297
Input Method Callback SemantiCscceevveiiiiiiiiiiiiiei e, 308
Event Filteringccoiiiiiiiiiieie e e e e 317
Getting Keyboard INPULcooeiiiiiiiii e 317
Input Method Conventionscccccieiiieiiiiiiiieiie e e e 319
SEring CONSTANTS .ovniiniiiiii et e et e e e e e e e e aans 320
14. Inter-Client Communication FUnNctionscccceeeviiiiiiiiiiiiiniiiiinieiiin e, 322
Client to Window Manager Communicationcc.ccoeeveiiiiiiiiieineiinennnnne. 324
Manipulating Top-Level Windowsc.ccevveiiiiniiiieiiieeiieeeeeeeve e 324
Converting String LiSES ...ccviiiiiiiiii e 326
Setting and Reading Text Propertiesccccooviiiiiiiiiiieiiin e, 330
Setting and Reading the WM _NAME Propertycc.ccccevveeinniecinnennnnn. 331
Setting and Reading the WM _ICON NAME Propertyccccccevuunennen. 332
Setting and Reading the WM _HINTS Propertycccoeeeevveiiiineeeinnnen. 333
Setting and Reading the WM _NORMAL HINTS Property 335
Setting and Reading the WM CLASS Propertycccoeevevevieeineeennnnenn. 339
Setting and Reading the WM _TRANSIENT FOR Property 340
Setting and Reading the WM PROTOCOLS Propertycccoeeeevvunnees 341
Setting and Reading the WM _COLORMAP WINDOWS Property 342
Setting and Reading the WM _ICON _SIZE Propertycccoeeevvunreennn.. 343
Using Window Manager Convenience Functionsc.ccoceeueennnes 344
Client to Session Manager Communicationcc.ccceeevieiieiiiieiiieeiineennnenn. 346
Setting and Reading the WM _COMMAND Propertyccceeveevunneenn. 346
Setting and Reading the WM _CLIENT MACHINE Property 347
1=V Lo =N oo B OTe] (o] a1 0¥) oIS 348
Standard Colormap Properties and Atomsc.ccceevviiiiiiiiiinnennnnne. 350
Setting and Obtaining Standard Colormapsc.ccoeeeveeeviiiineeienennnnne. 351

15. Resource Manager FUNCLIONScoouviiiiiiiiiiiiiiii et eaaas 354
Resource File SYNtaxXcocoeiiiiiiiiiiiiicie e e e 355
Resource Manager Matching Rulesccooviiiiiiiiiiiiiniiec e 356
(018 =% < T 357
Creating and Storing Databasescccoeiiiiiiiiiiiiiiiie e 359
Merging Resource Databasescoccviiiiiiiiiiiiiiiii e 362
LoOKING UP RESOUICEScvuniiiiiiiiiiiieiiee e et ettt e e e e et e e e s e eaaas 363
Storing into a Resource Databaseccoceviiiiiiiiiiiiiiiii e 365
Enumerating Database ENtriesccccoeiiiiiiiiiiiiiiiii e 367
Parsing Command Line OPtionscceeviiiiiiiiiiiiiiiie e e e 368
16. Application Utility FUNCLIONS ...ccvuiiiniiiiiii e 371
Using Keyboard Utility FUNCLIONSccevvniiiiiiieiiieeec e 371
KeySym Classification MacCroscccevveeiiiiiiiiiiiieciieeee e 373
Using Latin-1 Keyboard Event Functionscccccoeviiiiiiiiiiiiiieiie e 374
Allocating Permanent SEtOTagecccoovvieiiiiiiiiiiiie e 375
Parsing the Window GeOmMEetIYc.coiviiiiiiiiiiiie e 375
Manipulating ReGIONS ...c.uoiiuiiiiiiiiie e 377
Creating, Copying, or Destroying Regionsccccoceeviviiiiiiiiiniinnennnnn. 377
Moving or Shrinking Regionscccceviiiiiiiiiiiiiiieeeee e, 378
Computing with Regionscccoiiiiiiiiiiiiiiii e 378
Determining if Regions Are Empty or Equalccccoveviiiiiiiiiniinnnn. 379
Locating a Point or a Rectangle in a Regionccoeevveiiiiiinieinnnnnnss 380
Using Cut BUTTETSiiiniiiii e e ea e 380
Determining the Appropriate Visual TYPe ..ccccvivvniiiiiiiiiiiieiiieeeee e 382
Manipulating IMageScceuiiiiiiieie e e e e e e e e 383

vii

Xlib - C Language X Interface

Manipulating Bitmapsoceuiiiiiiiii e 386
Using the ConteXt Managerc..oeiiiiiiiiieeie et e e e et e ea e e e eeens 389

A. Xlib Functions and Protocol ReEqQUESLEScccueiieiiiiiiiiiiiieeeee e, 391
B. X FONE CUTSOTS ..eiiiiiiiiiiieii ettt ettt et e e e et e ea s e e eeneeeneen 405
C. EXEEIISIONS ouniiiiiiiiiiiieiie ettt et ettt e e et e et et e et e et e e e e eaeeaaeees 406
Basic Protocol Support ROULINESccoiviiiiiiiiiiiieie e 406
HooKing into XIiD ...ocoiiiiiiiii e 407
Hooks into the Librarycccooiiiiiiiiii e 408

Hooks onto Xlib Data Structurescccccciviiiiiiiiiiiiiiiiiieeieeeiee e, 414

(] O 0= ol 11 1 s T E 415
Graphics BatChingccouiiiiiii e 416
Writing EXtension Stubscooiiiiiiiiii e 417
Requests, Replies, and Xproto.hc.cccoeiiiiiiiiiiiiiiieieee e, 417

Request FOTMALoouiiiiii et e e 417

Starting to Write a Stub Procedureccoovveiiiiiiiiiiiiiiineieeeee, 419

Locking Data StruCtUIreScceciiiniiiiiii e 420

Sending the Protocol Request and Argumentsccoeevvviiiieinnnnnnnns 420

Variable Length Argumentscoooviiiiiiiiiiiii e 421

| =Y o) =T 422
Synchronous CalliNgc.eeiiiiiiieiiieie e e e e e ee 424
Allocating and Deallocating MemOTryccccueevieiiiiiiiieeiieeieeeeeieeeen. 424
Portability Considerationscoocuiiiiiiiiiniiieie e 425

Deriving the Correct Extension Opcodeccocevueiieiiiiiiiiiiiinneiineennnnn. 425

D. Compatibility FUNCEIONScivniiiiiiiiiii et e e e e e 427
X Version 11 Compatibility FUNCtionscccccoeeiiiieiiiiiiiiiieeeeeeeeeeen 427
Setting Standard Propertiescocoeviiiiiieiiiiiiie e, 427

Setting and Getting Window Sizing Hintsc..cccooiiiiiiiiniiiieennns 428

Getting and Setting an XStandardColormap Structure 430

Parsing Window GEOMELTYcevvueiiiiiiiieiieiieeie et et e e e e eae e 431

Getting the X Environment Defaultsccooooviiiiiiiiiiiiniinn, 432

X Version 10 Compatibility FUnNctionsccccoeeiiieiiiiiiiiiiieeceeeeee e 432
Drawing and Filling Polygons and CUTIVESc.ccceevviiiniiinieiieiineennnns 432
Associating User Data with a Valueccoooooviiiiiiiiiiiee 435

[101 - oy 437
|30 [c: PSPPSR 450

viii

List of Tables

A.1. Protocol requests made by each Xlib functioncccoeviviiiiiiiiniiiinninnnn,
A.2. Xlib functions which use each Protocol Requestccccoeevvvneiiiiiiiiinnnnnnn.

ix

Acknowledgments

The design and implementation of the first 10 versions of X were primarily the work
of three individuals: Robert Scheifler of the MIT Laboratory for Computer Science
and Jim Gettys of Digital Equipment Corporation and Ron Newman of MIT, both at
MIT Project Athena. X version 11, however, is the result of the efforts of dozens of
individuals at almost as many locations and organizations. At the risk of offending
some of the players by exclusion, we would like to acknowledge some of the people
who deserve special credit and recognition for their work on Xlib. Our apologies to
anyone inadvertently overlooked.

Release 1

Our thanks does to Ron Newman (MIT Project Athena), who contributed substan-
tially to the design and implementation of the Version 11 Xlib interface.

Our thanks also goes to Ralph Swick (Project Athena and Digital) who kept it all
together for us during the early releases. He handled literally thousands of requests
from people everywhere and saved the sanity of at least one of us. His calm good
cheer was a foundation on which we could build.

Our thanks also goes to Todd Brunhoff (Tektronix) who was " loaned'" to Project
Athena at exactly the right moment to provide very capable and much-needed as-
sistance during the alpha and beta releases. He was responsible for the successful
integration of sources from multiple sites; we would not have had a release without
him.

Our thanks also goes to Al Mento and Al Wojtas of Digital's ULTRIX Documentation
Group. With good humor and cheer, they took a rough draft and made it an infinitely
better and more useful document. The work they have done will help many every-
where. We also would like to thank Hal Murray (Digital SRC) and Peter George (Dig-
ital VMS) who contributed much by proofreading the early drafts of this document.

Our thanks also goes to Jeff Dike (Digital UEG), Tom Benson, Jackie Granfield,
and Vince Orgovan (Digital VMS) who helped with the library utilities implementa-
tion; to Hania Gajewska (Digital UEG-WSL) who, along with Ellis Cohen (CMU and
Siemens), was instrumental in the semantic design of the window manager proper-
ties; and to Dave Rosenthal (Sun Microsystems) who also contributed to the proto-
col and provided the sample generic color frame buffer device-dependent code.

The alpha and beta test participants deserve special recognition and thanks as well.
It is significant that the bug reports (and many fixes) during alpha and beta test
came almost exclusively from just a few of the alpha testers, mostly hardware ven-
dors working on product implementations of X. The continued public contribution
of vendors and universities is certainly to the benefit of the entire X community.

Our special thanks must go to Sam Fuller, Vice-President of Corporate Research
at Digital, who has remained committed to the widest public availability of X and
who made it possible to greatly supplement MIT's resources with the Digital staff
in order to make version 11 a reality. Many of the people mentioned here are part
of the Western Software Laboratory (Digital UEG-WSL) of the ULTRIX Engineering
group and work for Smokey Wallace, who has been vital to the project's success.

Acknowledgments

Others not mentioned here worked on the toolkit and are acknowledged in the X
Toolkit documentation.

Of course, we must particularly thank Paul Asente, formerly of Stanford University
and now of Digital UEG-WSL, who wrote W, the predecessor to X, and Brian Reid,
formerly of Stanford University and now of Digital WRL, who had much to do with
W's design.

Finally, our thanks goes to MIT, Digital Equipment Corporation, and IBM for pro-
viding the environment where it could happen.

Release 4

Our thanks go to Jim Fulton (MIT X Consortium) for designing and specifying the
new Xlib functions for Inter-Client Communication Conventions (ICCCM) support.

We also thank Al Mento of Digital for his continued effort in maintaining this doc-
ument and Jim Fulton and Donna Converse (MIT X Consortium) for their much-ap-
preciated efforts in reviewing the changes.

Release 5

The principal authors of the Input Method facilities are Vania Joloboff (Open Soft-
ware Foundation) and Bill McMahon (Hewlett-Packard). The principal author of the
rest of the internationalization facilities is Glenn Widener (Tektronix). Our thanks
to them for keeping their sense of humor through a long and sometimes difficult
design process. Although the words and much of the design are due to them, many
others have contributed substantially to the design and implementation. Tom Mc-
Farland (HP) and Frank Rojas (IBM) deserve particular recognition for their contri-
butions. Other contributors were: Tim Anderson (Motorola), Alka Badshah (OSF),
Gabe Beged-Dov (HP), Chih-Chung Ko (III), Vera Cheng (III), Michael Collins (Dig-
ital), Walt Daniels (IBM), Noritoshi Demizu (OMRON), Keisuke Fukui (Fujitsu), Hi-
toshoi Fukumoto (Nihon Sun), Tim Greenwood (Digital), John Harvey (IBM), Hideki
Hiura (Sun), Fred Horman (AT&T), Norikazu Kaiya (Fujitsu), Yuji Kamata (IBM),
Yutaka Kataoka (Waseda University), Ranee Khubchandani (Sun), Akira Kon (NEC),
Hiroshi Kuribayashi (OMRON), Teruhiko Kurosaka (Sun), Seiji Kuwari (OMRON),
Sandra Martin (OSF), Narita Masahiko (Fujitsu), Masato Morisaki (NTT), Nelson
Ng (Sun), Takashi Nishimura (NTT America), Makato Nishino (IBM), Akira Ohsone
(Nihon Sun), Chris Peterson (MIT), Sam Shteingart (AT&T), Manish Sheth (AT&T),
Muneiyoshi Suzuki (NTT), Cori Mehring (Digital), Shoji Sugiyama (IBM), and Eiji
Tosa (IBM).

We are deeply indebted to Tatsuya Kato (NTT), Hiroshi Kuribayashi (OMRON), Sei-
ji Kuwari (OMRON), Muneiyoshi Suzuki (NTT), and Li Yuhong (OMRON) for pro-
ducing one of the first complete sample implementation of the internationalization
facilities, and Hiromu Inukai (Nihon Sun), Takashi Fujiwara (Fujitsu), Hideki Hiu-
ra (Sun), Yasuhiro Kawai (Oki Technosystems Laboratory), Kazunori Nishihara (Fu-
ji Xerox), Masaki Takeuchi (Sony), Katsuhisa Yano (Toshiba), Makoto Wakamatsu
(Sony Corporation) for producing the another complete sample implementation of
the internationalization facilities.

The principal authors (design and implementation) of the Xcms color management
facilities are Al Tabayoyon (Tektronix) and Chuck Adams (Tektronix). Joann Tay-

xi

Acknowledgments

lor (Tektronix), Bob Toole (Tektronix), and Keith Packard (MIT X Consortium) also
contributed significantly to the design. Others who contributed are: Harold Boll
(Kodak), Ken Bronstein (HP), Nancy Cam (SGI), Donna Converse (MIT X Consor-
tium), Elias Israel (ISC), Deron Johnson (Sun), Jim King (Adobe), Ricardo Motta
(HP), Chuck Peek (IBM), Wil Plouffe (IBM), Dave Sternlicht (MIT X Consortium),
Kumar Talluri (AT&T), and Richard Verberg (IBM).

We also once again thank Al Mento of Digital for his work in formatting and refor-
matting text for this manual, and for producing man pages. Thanks also to Clive
Feather (IXI) for proof-reading and finding a number of small errors.

Release 6

Stephen Gildea (X Consortium) authored the threads support. Ovais Ashraf (Sun)
and Greg Olsen (Sun) contributed substantially by testing the facilities and report-
ing bugs in a timely fashion.

The principal authors of the internationalization facilities, including Input and Out-
put Methods, are Hideki Hiura (SunSoft) and Shigeru Yamada (Fujitsu OSSI). Al-
though the words and much of the design are due to them, many others have con-
tributed substantially to the design and implementation. They are: Takashi Fuji-
wara (Fujitsu), Yoshio Horiuchi (IBM), Makoto Inada (Digital), Hiromu Inukai (Nihon
SunSoft), Song JaeKyung (KAIST), Franky Ling (Digital), Tom McFarland (HP), Hi-
royuki Miyamoto (Digital), Masahiko Narita (Fujitsu), Frank Rojas (IBM), Hidetoshi
Tajima (HP), Masaki Takeuchi (Sony), Makoto Wakamatsu (Sony), Masaki Wakao
(IBM), Katsuhisa Yano(Toshiba) and Jinsoo Yoon (KAIST).

The principal producers of the sample implementation of the internationalization
facilities are: Jeffrey Bloomfield (Fujitsu OSSI), Takashi Fujiwara (Fujitsu), Hideki
Hiura (SunSoft), Yoshio Horiuchi (IBM), Makoto Inada (Digital), Hiromu Inukai (Ni-
hon SunSoft), Song JaeKyung (KAIST), Riki Kawaguchi (Fujitsu), Franky Ling (Dig-
ital), Hiroyuki Miyamoto (Digital), Hidetoshi Tajima (HP), Toshimitsu Terazono (Fu-
jitsu), Makoto Wakamatsu (Sony), Masaki Wakao (IBM), Shigeru Yamada (Fujitsu
OSSI) and Katsuhisa Yano (Toshiba).

The coordinators of the integration, testing, and release of this implementation of
the internationalization facilities are Nobuyuki Tanaka (Sony) and Makoto Waka-
matsu (Sony).

Others who have contributed to the architectural design or testing of the sam-
ple implementation of the internationalization facilities are: Hector Chan (Digital),
Michael Kung (IBM), Joseph Kwok (Digital), Hiroyuki Machida (Sony), Nelson Ng
(SunSoft), Frank Rojas (IBM), Yoshiyuki Segawa (Fujitsu OSSI), Makiko Shimamura
(Fujitsu), Shoji Sugiyama (IBM), Lining Sun (SGI), Masaki Takeuchi (Sony), Jinsoo
Yoon (KAIST) and Akiyasu Zen (HP).

Jim Gettys
Cambridge Research Laboratory
Digital Equipment Corporation

Robert W. Scheifler
Laboratory for Computer Science
Massachusetts Institute of Technology

xii

Acknowledgments

Release 7

This document is made available to you in modern formats such as HTML and PDF
thanks to the efforts of Matt Dew, who converted the original troff sources to Doc-
Book/XML and edited them into shape; along with Gaetan Nadon and Alan Coop-
ersmith, who set up the formatting machinery in the 1ibX11 builds and performed
further editing of the DocBook markup.

xiii

Chapter 1. Introduction to Xlib

The X Window System is a network-transparent window system that was designed
at MIT. X display servers run on computers with either monochrome or color bitmap
display hardware. The server distributes user input to and accepts output requests
from various client programs located either on the same machine or elsewhere in
the network. Xlib is a C subroutine library that application programs (clients) use
to interface with the window system by means of a stream connection. Although a
client usually runs on the same machine as the X server it is talking to, this need
not be the case.

Xlib — C Language X Interface is a reference guide to the low-level C language
interface to the X Window System protocol. It is neither a tutorial nor a user’s guide
to programming the X Window System. Rather, it provides a detailed description
of each function in the library as well as a discussion of the related background
information. XIlib — C Language X Interface assumes a basic understanding of a
graphics window system and of the C programming language. Other higher-level
abstractions (for example, those provided by the toolkits for X) are built on top
of the Xlib library. For further information about these higher-level libraries, see
the appropriate toolkit documentation. The X Window System Protocol provides the
definitive word on the behavior of X. Although additional information appears here,
the protocol document is the ruling document.

To provide an introduction to X programming, this chapter discusses:
* Overview of the X Window System

* Errors

* Standard header files

* Generic values and types

* Naming and argument conventions within Xlib

* Programming considerations

* Character sets and encodings

* Formatting conventions

Overview of the X Window System

Some of the terms used in this book are unique to X, and other terms that are
common to other window systems have different meanings in X. You may find it
helpful to refer to the glossary, which is located at the end of the book.

The X Window System supports one or more screens containing overlapping win-
dows or subwindows. A screen is a physical monitor and hardware that can be
color, grayscale, or monochrome. There can be multiple screens for each display
or workstation. A single X server can provide display services for any number of
screens. A set of screens for a single user with one keyboard and one pointer (usu-
ally a mouse) is called a display.

Introduction to Xlib

All the windows in an X server are arranged in strict hierarchies. At the top of each
hierarchy is a root window, which covers each of the display screens. Each root
window is partially or completely covered by child windows. All windows, except for
root windows, have parents. There is usually at least one window for each applica-
tion program. Child windows may in turn have their own children. In this way, an
application program can create an arbitrarily deep tree on each screen. X provides
graphics, text, and raster operations for windows.

A child window can be larger than its parent. That is, part or all of the child window
can extend beyond the boundaries of the parent, but all output to a window is clipped
by its parent. If several children of a window have overlapping locations, one of the
children is considered to be on top of or raised over the others, thus obscuring them.
Output to areas covered by other windows is suppressed by the window system
unless the window has backing store. If a window is obscured by a second window,
the second window obscures only those ancestors of the second window that are
also ancestors of the first window.

A window has a border zero or more pixels in width, which can be any pattern
(pixmap) or solid color you like. A window usually but not always has a background
pattern, which will be repainted by the window system when uncovered. Child win-
dows obscure their parents, and graphic operations in the parent window usually
are clipped by the children.

Each window and pixmap has its own coordinate system. The coordinate system has
the X axis horizontal and the Y axis vertical with the origin [0, 0] at the upper-left
corner. Coordinates are integral, in terms of pixels, and coincide with pixel centers.
For a window, the origin is inside the border at the inside, upper-left corner.

X does not guarantee to preserve the contents of windows. When part or all of a
window is hidden and then brought back onto the screen, its contents may be lost.
The server then sends the client program an Expose event to notify it that part or
all of the window needs to be repainted. Programs must be prepared to regenerate
the contents of windows on demand.

X also provides off-screen storage of graphics objects, called pixmaps. Single
plane (depth 1) pixmaps are sometimes referred to as bitmaps. Pixmaps can be used
in most graphics functions interchangeably with windows and are used in various
graphics operations to define patterns or tiles. Windows and pixmaps together are
referred to as drawables.

Most of the functions in Xlib just add requests to an output buffer. These requests
later execute asynchronously on the X server. Functions that return values of infor-
mation stored in the server do not return (that is, they block) until an explicit reply
is received or an error occurs. You can provide an error handler, which will be called
when the error is reported.

If a client does not want a request to execute asynchronously, it can follow the
request with a call to XSync, which blocks until all previously buffered asynchronous
events have been sent and acted on. As an important side effect, the output buffer in
Xlib is always flushed by a call to any function that returns a value from the server
or waits for input.

Many Xlib functions will return an integer resource ID, which allows you to
refer to objects stored on the X server. These can be of type Window, Font, Pixmap,
Colormap, Cursor, and GContext, as defined in the file <X11/ X. h>. These resources

Introduction to Xlib

are created by requests and are destroyed (or freed) by requests or when connec-
tions are closed. Most of these resources are potentially sharable between appli-
cations, and in fact, windows are manipulated explicitly by window manager pro-
grams. Fonts and cursors are shared automatically across multiple screens. Fonts
are loaded and unloaded as needed and are shared by multiple clients. Fonts are
often cached in the server. Xlib provides no support for sharing graphics contexts
between applications.

Client programs are informed of events. Events may either be side effects of a
request (for example, restacking windows generates Expose events) or complete-
ly asynchronous (for example, from the keyboard). A client program asks to be in-
formed of events. Because other applications can send events to your application,
programs must be prepared to handle (or ignore) events of all types.

Input events (for example, a key pressed or the pointer moved) arrive asynchronous-
ly from the server and are queued until they are requested by an explicit call (for
example, XNext Event or XW ndowEvent). In addition, some library functions (for ex-
ample, XRai seW ndow) generate Expose and ConfigureRequest events. These events
also arrive asynchronously, but the client may wish to explicitly wait for them by
calling XSync after calling a function that can cause the server to generate events.

Errors

Some functions return Status, an integer error indication. If the function fails, it
returns a zero. If the function returns a status of zero, it has not updated the return
arguments. Because C does not provide multiple return values, many functions
must return their results by writing into client-passed storage. By default, errors are
handled either by a standard library function or by one that you provide. Functions
that return pointers to strings return NULL pointers if the string does not exist.

The X server reports protocol errors at the time that it detects them. If more than
one error could be generated for a given request, the server can report any of them.

Because Xlib usually does not transmit requests to the server immediately (that is,
it buffers them), errors can be reported much later than they actually occur. For
debugging purposes, however, Xlib provides a mechanism for forcing synchronous
behavior (see section 11.8.1). When synchronization is enabled, errors are reported
as they are generated.

When Xlib detects an error, it calls an error handler, which your program can pro-
vide. If you do not provide an error handler, the error is printed, and your program
terminates.

Standard Header Files

The following include files are part of the Xlib standard:
<X11/ Xl'i b. h>

<X11/ X. h>

<X11/ Xcns. h>

<X11/ Xutil . h>

<X11/ Xr esour ce. h>

<X11/ Xat om h>

<X11/cursorfont. h>

Introduction to Xlib

<X11/ keysym h>

<X11/ Xli bi nt. h>

<X11/ Xpr ot 0. h>

<X11/ Xprotostr. h>

<X11/ X10. h>

Generic Values and Types

The following symbols are defined by Xlib and used throughout the manual:

Xlib defines the type Bool and the Boolean values True and False.
None is the universal null resource ID or atom.
The type XID is used for generic resource IDs.

The type XPointer is defined to be char* and is used as a generic opaque pointer
to data.

Naming and Argument Conventions within Xlib

Xlib follows a number of conventions for the naming and syntax of the functions.
Given that you remember what information the function requires, these conventions
are intended to make the syntax of the functions more predictable.

The major naming conventions are:

To differentiate the X symbols from the other symbols, the library uses mixed case
for external symbols. It leaves lowercase for variables and all uppercase for user
macros, as per existing convention.

All X1ib functions begin with a capital X.
The beginnings of all function names and symbols are capitalized.

All user-visible data structures begin with a capital X. More generally, anything
that a user might dereference begins with a capital X.

Macros and other symbols do not begin with a capital X. To distinguish them from
all user symbols, each word in the macro is capitalized.

All elements of or variables in a data structure are in lowercase. Compound words,
where needed, are constructed with underscores ().

The display argument, where used, is always first in the argument list.

All resource objects, where used, occur at the beginning of the argument list im-
mediately after the display argument.

When a graphics context is present together with another type of resource (most
commonly, a drawable), the graphics context occurs in the argument list after the
other resource. Drawables outrank all other resources.

Source arguments always precede4he destination arguments in the argument list.

The x argument always precedes the y argument in the argument list.

Introduction to Xlib

¢ The width argument always precedes the height argument in the argument list.

* Where the x, y, width, and height arguments are used together, the x and y argu-
ments always precede the width and height arguments.

* Where a mask is accompanied with a structure, the mask always precedes the
pointer to the structure in the argument list.

Programming Considerations

The major programming considerations are:

* Coordinates and sizes in X are actually 16-bit quantities. This decision was made
to minimize the bandwidth required for a given level of performance. Coordinates
usually are declared as an int in the interface. Values larger than 16 bits are
truncated silently. Sizes (width and height) are declared as unsigned quantities.

» Keyboards are the greatest variable between different manufacturers' worksta-
tions. If you want your program to be portable, you should be particularly conser-
vative here.

* Many display systems have limited amounts of off-screen memory. If you can, you
should minimize use of pixmaps and backing store.

* The user should have control of his screen real estate. Therefore, you should write
your applications to react to window management rather than presume control
of the entire screen. What you do inside of your top-level window, however, is up
to your application. For further information, see chapter 14 and the Inter-Client
Communication Conventions Manual.

Character Sets and Encodings

Some of the Xlib functions make reference to specific character sets and character
encodings. The following are the most common:

X Portable Character Set A basic set of 97 characters, which are assumed to
exist in all locales supported by Xlib. This set contains
the following characters:

a..zA..Z 0.9 "#$%&'()*+,-./:;<=>?@[\]"_"{|}~ <space>, <tab>

This set is the left/lower half of the graphic character
set of ISO8859-1 plus space, tab, and newline. It is
also the set of graphic characters in 7-bit ASCII plus
the same three control characters. The actual encod-
ing of these characters on the host is system depen-

dent.
Host Portable Character The encoding of the X Portable Character Set on the
Encoding host. The encoding itself is not defined by this stan-

dard, but the encoding must be the same in all locales
supported by Xlib on the host. If a string is said to be
in the Host Portable Character Encoding, then it on-

Introduction to Xlib

Latin-1

Latin Portable Character
Encoding

STRING Encoding

POSIX Portable Filename
Character Set

ly contains characters from the X Portable Character
Set, in the host encoding.

The coded character set defined by the ISO8859-1
standard.

The encoding of the X Portable Character Set using
the Latin-1 codepoints plus ASCII control characters.
If a string is said to be in the Latin Portable Character
Encoding, then it only contains characters from the
X Portable Character Set, not all of Latin-1.

Latin-1, plus tab and newline.

The set of 65 characters, which can be used in nam-
ing files on a POSIX-compliant host, that are correct-
ly processed in all locales. The set is:

a.zA..Z0.9. -

Formatting Conventions

Xlib — C Language X Interface uses the following conventions:

* Global symbols are printed in t hi s speci al font. These can be either function

names, symbols defined in include files, or structure names. When declared and
defined, function arguments are printed in italics. In the explanatory text that
follows, they usually are printed in regular type.

Each function is introduced by a general discussion that distinguishes it from oth-
er functions. The function declaration itself follows, and each argument is specifi-
cally explained. Although ANSI C function prototype syntax is not used, Xlib head-
er files normally declare functions using function prototypes in ANSI C environ-
ments. General discussion of the function, if any is required, follows the argu-
ments. Where applicable, the last paragraph of the explanation lists the possible
Xlib error codes that the function can generate. For a complete discussion of the
Xlib error codes, see section 11.8.2.

To eliminate any ambiguity between those arguments that you pass and those that
a function returns to you, the explanations for all arguments that you pass start
with the word specifies or, in the case of multiple arguments, the word specify.
The explanations for all arguments that are returned to you start with the word
returns or, in the case of multiple arguments, the word return. The explanations
for all arguments that you can pass and are returned start with the words specifies
and returns.

* Any pointer to a structure that is used to return a value is designated as such by
the return suffix as part of its name. All other pointers passed to these functions
are used for reading only. A few arguments use pointers to structures that are
used for both input and output and are indicated by using the in out suffix.

Chapter 2. Display Functions

Before your program can use a display, you must establish a connection to the X
server. Once you have established a connection, you then can use the Xlib macros
and functions discussed in this chapter to return information about the display. This
chapter discusses how to:

* Open (connect to) the display

¢ Obtain information about the display, image formats, or screens
* Generate a NoOper at i on protocol request

» Free client-created data

* Close (disconnect from) a display

* Use X Server connection close operations

* Use Xlib with threads

¢ Use internal connections
Opening the Display
To open a connection to the X server that controls a display, use XQpenDi spl ay.

Di spl ay *XOpenDi spl ay(di spl ay_nane) ;

display name Specifies the hardware display name, which de-
termines the display and communications domain
to be used. On a POSIX-conformant system, if the
display name is NULL, it defaults to the value of the
DISPLAY environment variable.

The encoding and interpretation of the display name are implementation-depen-
dent. Strings in the Host Portable Character Encoding are supported; support for
other characters is implementation-dependent. On POSIX-conformant systems, the
display name or DISPLAY environment variable can be a string in the format:

pr ot ocol / host nane: nunber . scr een_nunber

protocol Specifies a protocol family or an alias for a protocol
family. Supported protocol families are implementa-
tion dependent. The protocol entry is optional. If pro-
tocol is not specified, the / separating protocol and
hostname must also not be specified.

hostname Specifies the name of the host machine on which the
display is physically attached. You follow the host-
name with either a single colon (:) or a double colon

(:2).

Display Functions

number Specifies the number of the display server on that
host machine. You may optionally follow this display
number with a period (.). A single CPU can have more
than one display. Multiple displays are usually num-
bered starting with zero.

screen_number Specifies the screen to be used on that server. Mul-
tiple screens can be controlled by a single X serv-
er. The screen number sets an internal variable that
can be accessed by using the Def aul t Scr een macro
or the XDef aul t Scr een function if you are using lan-
guages other than C (see section 2.2.1).

For example, the following would specify screen 1 of display 0 on the machine named
" “dual-headed":

dual - headed: 0. 1

The XOpenDi spl ay function returns a Display structure that serves as the connec-
tion to the X server and that contains all the information about that X server.
XOpenDi spl ay connects your application to the X server through TCP or DECnet
communications protocols, or through some local inter-process communication pro-
tocol. If the protocol is specified as "tcp", "inet", or "inet6", or if no protocol is
specified and the hostname is a host machine name and a single colon (:) separates
the hostname and display number, XOpenDi spl ay connects using TCP streams. (If
the protocol is specified as "inet", TCP over IPv4 is used. If the protocol is specified
as "inet6", TCP over IPv6 is used. Otherwise, the implementation determines which
IP version is used.) If the hostname and protocol are both not specified, Xlib uses
whatever it believes is the fastest transport. If the hostname is a host machine name
and a double colon (::) separates the hostname and display number, XOpenDi spl ay
connects using DECnet. A single X server can support any or all of these transport
mechanisms simultaneously. A particular Xlib implementation can support many
more of these transport mechanisms.

If successful, XOpenDi spl ay returns a pointer to a Display structure, which is de-
fined in <X11/ Xl i b. h>. If XOpenDi spl ay does not succeed, it returns NULL. After
a successful call to XOpenDi spl ay, all of the screens in the display can be used by
the client. The screen number specified in the display name argument is returned
by the Def aul t Scr een macro (or the XDef aul t Scr een function). You can access ele-
ments of the Display and Screen structures only by using the information macros or
functions. For information about using macros and functions to obtain information
from the Display structure, see section 2.2.1.

X servers may implement various types of access control mechanisms (see section
9.8).

Obtaining Information about the Display, Image
Formats, or Screens

The Xlib library provides a number of useful macros and corresponding functions
that return data from the Display structure. The macros are used for C program-
ming, and their corresponding function equivalents are for other language bindings.
This section discusses the:

Display Functions

* Display macros
* Image format functions and macros
* Screen information macros

All other members of the Display structure (that is, those for which no macros are
defined) are private to Xlib and must not be used. Applications must never directly
modify or inspect these private members of the Display structure. The XDi spl ay-
W dt h, XDi spl ayHei ght, XDi spl ayCel | s, XDi spl ayPl anes, XDi spl ayW dt hMM and
XDi spl ayHei ght MM functions in the next sections are misnamed. These functions
really should be named Screenwhatever and XScreenwhatever, not Displaywhatev-
er or XDisplaywhatever. Our apologies for the resulting confusion.

Display Macros

Applications should not directly modify any part of the Display and Screen struc-
tures. The members should be considered read-only, although they may change as
the result of other operations on the display.

The following lists the C language macros, their corresponding function equivalents
that are for other language bindings, and what data both can return.

AllPlanes()
XAllPlanes()

Both return a value with all bits set to 1 suitable for use in a plane argument to
a procedure.

Both Bl ackPi xel and Whi t ePi xel can be used in implementing a monochrome ap-
plication. These pixel values are for permanently allocated entries in the default col-
ormap. The actual RGB (red, green, and blue) values are settable on some screens
and, in any case, may not actually be black or white. The names are intended to
convey the expected relative intensity of the colors.

BlackPixel(display, screen_number)

unsi gned | ong XBl ackPi xel (*di splay, screen_nunber);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
server.

Both return the black pixel value for the specified screen.

WhitePixel(display, screen_number)

unsi gned | ong XWhitePixel (*di splay, screen_nunber);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
server.

Display Functions

Both return the white pixel value for the specified screen.

ConnectionNumber(display)
i nt XConnecti onNumber (*di spl ay) ;
display Specifies the connection to the X server.
Both return a connection number for the specified display. On a POSIX-conformant
system, this is the file descriptor of the connection.
DefaultColormap(display, screen_number)

Col or map XDef aul t Col or map(*di spl ay, screen_nunber);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
server.

Both return the default colormap ID for allocation on the specified screen. Most
routine allocations of color should be made out of this colormap.

DefaultDepth(display, screen_number)

i nt XDef aul t Dept h(*di splay, screen_nunber);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
server.

Both return the depth (number of planes) of the default root window for the spec-
ified screen. Other depths may also be supported on this screen (see XMat chVi su-
al I nf 0).

To determine the number of depths that are available on a given screen, use XLi st -
Dept hs.

DefaultGC(display, screen_number)

CGC XDefaul t &C(*di splay, screen_nunber, *count_return);

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host
server.

count return Returns the number of (Cn.

The XLi st Dept hs function returns the array of depths that are available on the spec-
ified screen. If the specified screen number is valid and sufficient memory for the
array can be allocated, XLi st Dept hs sets count return to the number of available
depths. Otherwise, it does not set count return and returns NULL. To release the
memory allocated for the array of depths, use .

10

Display Functions

DefaultGC(display, screen_number)

GC XDef aul t GC(*di spl ay, screen_nunber);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
Server.

Both return the default graphics context for the root window of the specified
screen. This GC is created for the convenience of simple applications and contains
the default GC components with the foreground and background pixel values ini-
tialized to the black and white pixels for the screen, respectively. You can modify
its contents freely because it is not used in any Xlib function. This GC should never
be freed.

DefaultRootWindow(display)
W ndow XDef aul t Root W ndow(*di spl ay) ;
display Specifies the connection to the X server.

Both return the root window for the default screen.

DefaultScreenOfDisplay(display)
Screen *XDef aul t ScreenOf Di spl ay(*di spl ay) ;
display Specifies the connection to the X server.

Both return a pointer to the default screen.

ScreenOfDisplay(display, screen_number)

Screen *XScreenO Di spl ay(*display, screen_nunber);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
Server.

Both return a pointer to the indicated screen.

DefaultScreen(display)
i nt XDefaultScreen(*display);
display Specifies the connection to the X server.

Both return the default screen number referenced by the XOpenDi spl ay function.
This macro or function should be used to retrieve the screen number in applications
that will use only a single screen.

DefaultVisual(display, screen_number)

11

Display Functions

Vi sual *XDefaul tVisual (*di splay, screen_nunber);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
server.

Both return the default visual type for the specified screen. For further information
about visual types, see section 3.1.

DisplayCells(display, screen_number)

int XDisplayCells(*display, screen_nunber);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
server.

Both return the number of entries in the default colormap.

DisplayPlanes(display, screen_number)

i nt XDi spl ayPl anes(*di spl ay, screen_nunber);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
server.

Both return the depth of the root window of the specified screen. For an explanation
of depth, see the glossary.
DisplayString(display)
char *XDi splayString(*display);
display Specifies the connection to the X server.

Both return the string that was passed to XOpenDi spl ay when the current display
was opened. On POSIX-conformant systems, if the passed string was NULL, these
return the value of the DISPLAY environment variable when the current display was
opened. These are useful to applications that invoke the f or k system call and want
to open a new connection to the same display from the child process as well as for
printing error messages.

LastKnownRequestProcessed(display)
unsi gned | ong XLast KnownRequest Processed(*di spl ay);

display Specifies the connection to the X server.

The XExt endedMaxRequest Si ze function returns zero if the specified display
does not support an extended-length protocol encoding; otherwise, it returns the

12

Display Functions

maximum request size (in 4-byte units) supported by the server using the ex-
tended-length encoding. The Xlib functions XDr awLi nes, XDr awAr cs, XFi | | Pol y-
gon, XChangePr operty, XSet Cl i pRect angl es, and XSet Regi on will use the extend-
ed-length encoding as necessary, if supported by the server. Use of the extend-
ed-length encoding in other Xlib functions (for example, XDr awPoi nt s, XDr awRec-
tangl es, XDr awSegnents, XFi | | Arcs, XFi | | Rect angl es, XPut | mage) is permitted
but not required; an Xlib implementation may choose to split the data across mul-
tiple smaller requests instead.

LastKnownRequestProcessed(display)
unsi gned | ong XLast KnownRequest Processed(*di spl ay);

display Specifies the connection to the X server.

The XMaxRequest Si ze function returns the maximum request size (in 4-byte units)
supported by the server without using an extended-length protocol encoding. Sin-
gle protocol requests to the server can be no larger than this size unless an ex-
tended-length protocol encoding is supported by the server. The protocol guaran-
tees the size to be no smaller than 4096 units (16384 bytes). Xlib automatically
breaks data up into multiple protocol requests as necessary for the following func-
tions: XDr awPoi nt s, XDr awRect angl es, XDr awSegnent s, XFi | | Arcs, XFi | | Rect an-
gl es, and XPut | nage.

LastKnownRequestProcessed(display)

unsi gned | ong XLast KnownRequest Processed(*di spl ay);

display Specifies the connection to the X server.

Both extract the full serial number of the last request known by Xlib to have been
processed by the X server. Xlib automatically sets this number when replies, events,
and errors are received.

NextRequest(display)
unsi gned | ong XNext Request(*di spl ay);
display Specifies the connection to the X server.

Both extract the full serial number that is to be used for the next request. Serial
numbers are maintained separately for each display connection.
ProtocolVersion(display)

i nt XProtocol Version(*display);
display Specifies the connection to the X server.
Both return the major version number (11) of the X protocol associated with the

connected display.

ProtocolRevision(display)

13

Display Functions

i nt XProtocol Revi sion(*di spl ay);
display Specifies the connection to the X server.

Both return the minor protocol revision number of the X server.

QLength(display)
i nt XQ.engt h(*displ ay);
display Specifies the connection to the X server.

Both return the length of the event queue for the connected display. Note that there
may be more events that have not been read into the queue yet (see XEvent sQueued).
RootWindow(display, screen_number)

W ndow XRoot W ndow(*di splay, screen_nunber);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
server.

Both return the root window. These are useful with functions that need a drawable
of a particular screen and for creating top-level windows.
ScreenCount(display)
i nt XScreenCount (*di spl ay);
display Specifies the connection to the X server.

Both return the number of available screens.

ServerVendor(display)
char *XServerVendor (*di spl ay);
display Specifies the connection to the X server.

Both return a pointer to a null-terminated string that provides some identification
of the owner of the X server implementation. If the data returned by the server is
in the Latin Portable Character Encoding, then the string is in the Host Portable
Character Encoding. Otherwise, the contents of the string are implementation-de-
pendent.

VendorRelease(display)
i nt XVendor Rel ease(*di spl ay);

display Specifies the connection to the X server.

Both return a number related to a vendor's release of the X server.

14

Display Functions

Image Format Functions and Macros

Applications are required to present data to the X server in a format that the server
demands. To help simplify applications, most of the work required to convert the
data is provided by Xlib (see sections 8.7 and 16.8).

The XPixmapFormatValues structure provides an interface to the pixmap format
information that is returned at the time of a connection setup. It contains:

typedef struct {
i nt depth;
int bits_per_pixel;
i nt scanline_pad;
} XPi xmapFor mat Val ues;

To obtain the pixmap format information for a given display, use XLi st Pi xmapFor -
mat s.

ImageByteOrder(display)

i nt Xl mageByteOrder(*display, *count_return);

display Specifies the connection to the X server.
count return Returns the number of (Cn.

The XLi st Pi xmapFor mat s function returns an array of XPixmapFormatValues struc-
tures that describe the types of Z format images supported by the specified display.
If insufficient memory is available, XLi st Pi xmapFor mat s returns NULL. To free the
allocated storage for the XPixmapFormatValues structures, use .

The following lists the C language macros, their corresponding function equivalents
that are for other language bindings, and what data they both return for the speci-
fied server and screen. These are often used by toolkits as well as by simple appli-
cations.

ImageByteOrder(display)

i nt Xl mageByteOrder(*display);

display Specifies the connection to the X server.

Both specify the required byte order for images for each scanline unit in XY format
(bitmap) or for each pixel value in Z format. The macro or function can return either
LSBFirst or MSBFirst.

BitmapUnit(display)
int XBi tmapUnit(*display);

display Specifies the connection to the X server.

15

Display Functions

Both return the size of a bitmap's scanline unit in bits. The scanline is calculated

in multiples of this value.

BitmapBitOrder(display)

i nt XBi tmapBit Order(*display);

display Specifies the connection to the X server.

Within each bitmap unit, the left-most bit in the bitmap as displayed on the screen is
either the least significant or most significant bit in the unit. This macro or function
can return LSBFirst or MSBFirst.

BitmapPad(display)
i nt XBi t mapPad(*di spl ay);
display Specifies the connection to the X server.
Each scanline must be padded to a multiple of bits returned by this macro or
function.
DisplayHeight(display, screen_number)

i nt XDi spl ayHei ght (*di spl ay, screen_nunber);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
Server.

Both return an integer that describes the height of the screen in pixels.

DisplayHeightMM (display, screen_number)

i nt XDi spl ayHei ght MM *di spl ay, screen_nunber);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
server.

Both return the height of the specified screen in millimeters.

DisplayWidth(display, screen_number)

int XDi splayWdth(*display, screen_nunber);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
server.

Both return the width of the screen in pixels.

16

Display Functions

DisplayWidthMM(display, screen_number)

i nt XDi spl ayWdthMM *display, screen_nunber);

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host
server.

Both return the width of the specified screen in millimeters.

Screen Information Macros

The following lists the C language macros, their corresponding function equivalents
that are for other language bindings, and what data they both can return. These
macros or functions all take a pointer to the appropriate screen structure.
BlackPixelOfScreen(screen)

unsi gned | ong XBl ackPi xel OF Scr een(*screen);

screen Specifies the appropriate Screen structure.

Both return the black pixel value of the specified screen.

WhitePixelOfScreen(screen)
unsi gned | ong XWhitePi xel OF Screen(*screen);
screen Specifies the appropriate Screen structure.

Both return the white pixel value of the specified screen.

CellsOfScreen(screen)
i nt XCel |l sOF Screen(*screen);
screen Specifies the appropriate Screen structure.
Both return the number of colormap cells in the default colormap of the specified
screen.
DefaultColormapOfScreen(screen)
Col or map XDef aul t Col or mapOF Screen(*screen);
screen Specifies the appropriate Screen structure.

Both return the default colormap of the specified screen.

DefaultDepthOfScreen(screen)

i nt XDef aul t Dept hOf Screen(*screen);

17

Display Functions

screen Specifies the appropriate Screen structure.

Both return the depth of the root window.

DefaultGCOfScreen(screen)
GC XDef aul t GCOf Screen(*screen);
screen Specifies the appropriate Screen structure.

Both return a default graphics context (GC) of the specified screen, which has the
same depth as the root window of the screen. The GC must never be freed.
DefaultVisualOfScreen(screen)

Vi sual *XDef aul t Vi sual Of Screen(*screen);
screen Specifies the appropriate Screen structure.

Both return the default visual of the specified screen. For information on visual

types, see section 3.1.

DoesBackingStore(screen)

i nt XDoesBacki ngSt ore(*screen);

screen Specifies the appropriate Screen structure.

Both return a value indicating whether the screen supports backing stores. The
value returned can be one of WhenMapped, NotUseful, or Always (see section 3.2.4).
DoesSaveUnders(screen)

Bool XDoesSaveUnders(*screen);
screen Specifies the appropriate Screen structure.

Both return a Boolean value indicating whether the screen supports save unders.
If True, the screen supports save unders. If False, the screen does not support save
unders (see section 3.2.5).

DisplayOfScreen(screen)
Di spl ay *XDi spl ayOf Screen(*screen);
screen Specifies the appropriate Screen structure.

Both return the display of the specified screen.

EventMaskOfScreen(screen)

| ong XEvent MaskOf Screen(*screen);

18

Display Functions

screen Specifies the appropriate Screen structure.

The XScr eenNunber O Scr een function returns the screen index number of the spec-
ified screen.

EventMaskOfScreen(screen)

| ong XEvent MaskOf Screen(*screen);

screen Specifies the appropriate Screen structure.

Both return the event mask of the root window for the specified screen at connec-
tion setup time.

WidthOfScreen(screen)
i nt XWdthOf Screen(*screen);
screen Specifies the appropriate Screen structure.

Both return the width of the specified screen in pixels.

HeightOfScreen(screen)
i nt XHei ght Of Screen(*screen);
screen Specifies the appropriate Screen structure.

Both return the height of the specified screen in pixels.

WidthMMOfScreen(screen)
i nt XW dt hMMOF Screen(*screen);
screen Specifies the appropriate Screen structure.

Both return the width of the specified screen in millimeters.

HeightMMOfScreen(screen)
i nt XHei ght MM Screen(*screen);
screen Specifies the appropriate Screen structure.

Both return the height of the specified screen in millimeters.

MaxCmapsOfScreen(screen)
i nt XMaxCmapsOf Screen(*screen);
screen Specifies the appropriate Screen structure.

Both return the maximum number of installed colormaps supported by the speci-
fied screen (see section 9.3).

19

Display Functions

MinCmapsOfScreen(screen)
int XM nCmapsOf Screen(*screen);
screen Specifies the appropriate Screen structure.
Both return the minimum number of installed colormaps supported by the specified
screen (see section 9.3).
PlanesOfScreen(screen)
i nt XPl anesOf Screen(*screen);
screen Specifies the appropriate Screen structure.

Both return the depth of the root window.

RootWindowOfScreen(screen)
W ndow XRoot W ndowOf Screen(*screen);
screen Specifies the appropriate Screen structure.

Both return the root window of the specified screen.

Generating a NoOperation Protocol Request

To execute a NoOper at i on protocol request, use XNoQp.
XNoOp(*di spl ay);
display Specifies the connection to the X server.

The XNoOp function sends a NoQper at i on protocol request to the X server, thereby
exercising the connection.

Freeing Client-Created Data

To free in-memory data that was created by an Xlib function, use .
XFree(*data);
data Specifies the data that is to be freed.

The function is a general-purpose Xlib routine that frees the specified data. You
must use it to free any objects that were allocated by Xlib, unless an alternate func-
tion is explicitly specified for the object. A NULL pointer cannot be passed to this
function.

Closing the Display

To close a display or disconnect from the X server, use X oseDi spl ay.

20

Display Functions

XC oseDi spl ay(*displ ay);
display Specifies the connection to the X server.

The XC oseDi spl ay function closes the connection to the X server for the display
specified in the Display structure and destroys all windows, resource IDs (Window,
Font, Pixmap, Colormap, Cursor, and GContext), or other resources that the client
has created on this display, unless the close-down mode of the resource has been
changed (see). Therefore, these windows, resource IDs, and other resources should
never be referenced again or an error will be generated. Before exiting, you should
call Xd oseDi spl ay explicitly so that any pending errors are reported as XCl oseDi s-
pl ay performs a final XSync operation.

Xd oseDi spl ay can generate a BadGC error.

Xlib provides a function to permit the resources owned by a client to survive after
the client's connection is closed. To change a client's close-down mode, use .

XSet G oseDownhMbde(*di splay, close_node);
display Specifies the connection to the X server.

close_mode Specifies the client close-down mode. You can pass De-
stroyAll, RetainPermanent, or RetainTemporary.

The defines what will happen to the client's resources at connection close. A con-
nection starts in DestroyAll mode. For information on what happens to the client's
resources when the close_mode argument is RetainPermanent or RetainTemporary,
see section 2.6.

can generate a BadValue error.

Using X Server Connection Close Operations

When the X server's connection to a client is closed either by an explicit call to
XCl oseDi spl ay or by a process that exits, the X server performs the following au-
tomatic operations:

It disowns all selections owned by the client (see XSet Sel ect i onOaner).

« It performs an XUngr abPoi nt er and XUngr abKeyboar d if the client has actively
grabbed the pointer or the keyboard.

* It performs an XUngr abSer ver if the client has grabbed the server.
It releases all passive grabs made by the client.

* It marks all resources (including colormap entries) allocated by the client either
as permanent or temporary, depending on whether the close-down mode is Re-
tainPermanent or RetainTemporary. However, this does not prevent other client
applications from explicitly destroying the resources (see).

When the close-down mode is DestroyAll, the X server destroys all of a client's re-
sources as follows:

21

Display Functions

* It examines each window in the client's save-set to determine if it is an inferior
(subwindow) of a window created by the client. (The save-set is a list of other
clients' windows that are referred to as save-set windows.) If so, the X server
reparents the save-set window to the closest ancestor so that the save-set win-
dow is not an inferior of a window created by the client. The reparenting leaves
unchanged the absolute coordinates (with respect to the root window) of the up-
per-left outer corner of the save-set window.

It performs a MapW ndowrequest on the save-set window if the save-set window is
unmapped. The X server does this even if the save-set window was not an inferior
of a window created by the client.

It destroys all windows created by the client.

It performs the appropriate free request on each nonwindow resource created
by the client in the server (for example, Font, Pixmap, Cursor, Colormap, and
GContext).

* It frees all colors and colormap entries allocated by a client application.

Additional processing occurs when the last connection to the X server closes. An X
server goes through a cycle of having no connections and having some connections.
When the last connection to the X server closes as a result of a connection closing
with the close mode of DestroyAll, the X server does the following:

» It resets its state as if it had just been started. The X server begins by destroying
all lingering resources from clients that have terminated in RetainPermanent or
RetainTemporary mode.

It deletes all but the predefined atom identifiers.
It deletes all properties on all root windows (see section 4.3).

* It resets all device maps and attributes (for example, key click, bell volume, and
acceleration) as well as the access control list.

¢ It restores the standard root tiles and cursors.
It restores the default font path.
* It restores the input focus to state PointerRoot.

However, the X server does not reset if you close a connection with a close-down
mode set to RetainPermanent or RetainTemporary.

Using Xlib with Threads

On systems that have threads, support may be provided to permit multiple threads
to use Xlib concurrently.

To initialize support for concurrent threads, use Xl ni t Thr eads.
Status XInitThreads();

The Xl ni t Thr eads function initializes Xlib support for concurrent threads. This
function must be the first Xlib function a multi-threaded program calls, and it must

22

Display Functions

complete before any other Xlib call is made. This function returns a nonzero status
if initialization was successful; otherwise, it returns zero. On systems that do not
support threads, this function always returns zero.

It is only necessary to call this function if multiple threads might use Xlib concur-
rently. If all calls to Xlib functions are protected by some other access mechanism
(for example, a mutual exclusion lock in a toolkit or through explicit client pro-
gramming), Xlib thread initialization is not required. It is recommended that sin-
gle-threaded programs not call this function.

To lock a display across several Xlib calls, use XLockDi spl ay.
XLockDi spl ay(*di spl ay);
display Specifies the connection to the X server.

The XLockDi spl ay function locks out all other threads from using the specified dis-
play. Other threads attempting to use the display will block until the display is un-
locked by this thread. Nested calls to XLockDi spl ay work correctly; the display
will not actually be unlocked until has been called the same number of times as
XLockDi spl ay. This function has no effect unless Xlib was successfully initialized
for threads using Xl ni t Thr eads.

To unlock a display, use .
XUnl ockDi spl ay(*di spl ay);
display Specifies the connection to the X server.

The function allows other threads to use the specified display again. Any threads
that have blocked on the display are allowed to continue. Nested locking works cor-
rectly; if XLockDi spl ay has been called multiple times by a thread, then must be
called an equal number of times before the display is actually unlocked. This func-
tion has no effect unless Xlib was successfully initialized for threads using Xl ni t -
Thr eads.

Using Internal Connections

In addition to the connection to the X server, an Xlib implementation may require
connections to other kinds of servers (for example, to input method servers as de-
scribed in chapter 13). Toolkits and clients that use multiple displays, or that use
displays in combination with other inputs, need to obtain these additional connec-
tions to correctly block until input is available and need to process that input when
it is available. Simple clients that use a single display and block for input in an Xlib
event function do not need to use these facilities.

To track internal connections for a display, use .

type voi d XConnectionWatchProc(*display, «client _data, fd, opening,
*wat ch_dat a) ;

St at us XAddConnecti onWat ch(*di splay, procedure, client_data);
display Specifies the connection to the X server.

procedure Specifies the procedure to be called.

23

Display Functions

client data Specifies the additional client data.

The function registers a procedure to be called each time Xlib opens or closes an
internal connection for the specified display. The procedure is passed the display,
the specified client data, the file descriptor for the connection, a Boolean indicating
whether the connection is being opened or closed, and a pointer to a location for
private watch data. If opening is True, the procedure can store a pointer to private
data in the location pointed to by watch data; when the procedure is later called for
this same connection and opening is False, the location pointed to by watch data
will hold this same private data pointer.

This function can be called at any time after a display is opened. If internal connec-
tions already exist, the registered procedure will immediately be called for each
of them, before returns. returns a nonzero status if the procedure is successfully
registered; otherwise, it returns zero.

The registered procedure should not call any Xlib functions. If the procedure di-
rectly or indirectly causes the state of internal connections or watch procedures to
change, the result is not defined. If Xlib has been initialized for threads, the proce-
dure is called with the display locked and the result of a call by the procedure to
any Xlib function that locks the display is not defined unless the executing thread
has externally locked the display using XLockDi spl ay.

To stop tracking internal connections for a display, use XRemoveConnect i onWat ch.

0

St at us XRenoveConnecti onWat ch(*display, procedure, client_data);

display Specifies the connection to the X server.
procedure Specifies the procedure to be called.
client data Specifies the additional client data.

The XRenpveConnect i onWat ch function removes a previously registered connection
watch procedure. The client data must match the client data used when the proce-
dure was initially registered.

To process input on an internal connection, use XPr ocessl nt er nal Connecti on.
0

voi d XProcessl nternal Connection(*display, fd);

display Specifies the connection to the X server.

fd Specifies the file descriptor.

The XPr ocessl nt er nal Connect i on function processes input available on an inter-
nal connection. This function should be called for an internal connection only after
an operating system facility (for example, sel ect or pol |) has indicated that input
is available; otherwise, the effect is not defined.

To obtain all of the current internal connections for a display, use Xl nt er nal Con-
necti onNunbers.

24

Display Functions

0

Status Xl nt ernal Connecti onNunbers(*display, fd, count_return);

display Specifies the connection to the X server.
fd return Returns the file descriptors.
count _return Returns the number of (Cn.

The Xl nt er nal Connect i onNunber s function returns a list of the file descriptors for
all internal connections currently open for the specified display. When the allocated
list is no longer needed, free it by using . This functions returns a nonzero status if
the list is successfully allocated; otherwise, it returns zero.

25

Chapter 3. Window Functions
Visual Types

On some display hardware, it may be possible to deal with color resources in more
than one way. For example, you may be able to deal with a screen of either 12-bit
depth with arbitrary mapping of pixel to color (pseudo-color) or 24-bit depth with 8
bits of the pixel dedicated to each of red, green, and blue. These different ways of
dealing with the visual aspects of the screen are called visuals. For each screen of
the display, there may be a list of valid visual types supported at different depths of
the screen. Because default windows and visual types are defined for each screen,
most simple applications need not deal with this complexity. Xlib provides macros
and functions that return the default root window, the default depth of the default
root window, and the default visual type (see sections 2.2.1 and 16.7).

Xlib uses an opaque Visual structure that contains information about the possi-
ble color mapping. The visual utility functions (see section 16.7) use an XVisu-
allnfo structure to return this information to an application. The members of this
structure pertinent to this discussion are class, red mask, green mask, blue mask,
bits per rgb, and colormap size. The class member specifies one of the possible vi-
sual classes of the screen and can be StaticGray, StaticColor, TrueColor, GrayS-
cale, PseudoColor, or DirectColor.

The following concepts may serve to make the explanation of visual types clearer.
The screen can be color or grayscale, can have a colormap that is writable or read-
only, and can also have a colormap whose indices are decomposed into separate
RGB pieces, provided one is not on a grayscale screen. This leads to the following
diagram:

Col or Gray- Scal e
R O R'W RO RW
Undeconposed Static Pseudo Static Gay
Col or map Col or Col or G ay Scal e
Decomnposed True Direct
Col or map Col or Col or

Conceptually, as each pixel is read out of video memory for display on the screen,
it goes through a look-up stage by indexing into a colormap. Colormaps can be
manipulated arbitrarily on some hardware, in limited ways on other hardware, and
not at all on other hardware. The visual types affect the colormap and the RGB
values in the following ways:

* For PseudoColor, a pixel value indexes a colormap to produce independent RGB
values, and the RGB values can be changed dynamically.

* GrayScale is treated the same way as PseudoColor except that the primary that
drives the screen is undefined. Thus, the client should always store the same value
for red, green, and blue in the colormaps.

26

Window Functions

* For DirectColor, a pixel value is decomposed into separate RGB subfields, and
each subfield separately indexes the colormap for the corresponding value. The
RGB values can be changed dynamically.

* TrueColor is treated the same way as DirectColor except that the colormap has
predefined, read-only RGB values. These RGB values are server dependent but
provide linear or near-linear ramps in each primary.

» StaticColor is treated the same way as PseudoColor except that the colormap has
predefined, read-only, server-dependent RGB values.

¢ StaticGray is treated the same way as StaticColor except that the RGB values are
equal for any single pixel value, thus resulting in shades of gray. StaticGray with
a two-entry colormap can be thought of as monochrome.

The red mask, green mask, and blue mask members are only defined for Direct-
Color and TrueColor. Each has one contiguous set of bits with no intersections. The
bits per rgb member specifies the log base 2 of the number of distinct color values
(individually) of red, green, and blue. Actual RGB values are unsigned 16-bit num-
bers. The colormap size member defines the number of available colormap entries
in a newly created colormap. For DirectColor and TrueColor, this is the size of an
individual pixel subfield.

To obtain the visual ID from a Visual, use XVi sual | DFr onVi sual .
Vi sual I D XVi sual | DFr onVi sual (vi sual) ;
visual Specifies the visual type.

The XVi sual | DFr onVi sual function returns the visual ID for the specified visual
type.

Window Attributes

All InputOutput windows have a border width of zero or more pixels, an optional
background, an event suppression mask (which suppresses propagation of events
from children), and a property list (see section 4.3). The window border and back-
ground can be a solid color or a pattern, called a tile. All windows except the root
have a parent and are clipped by their parent. If a window is stacked on top of an-
other window, it obscures that other window for the purpose of input. If a window
has a background (almost all do), it obscures the other window for purposes of out-
put. Attempts to output to the obscured area do nothing, and no input events (for
example, pointer motion) are generated for the obscured area.

Windows also have associated property lists (see section 4.3).

Both InputOutput and InputOnly windows have the following common attributes,
which are the only attributes of an InputOnly window:

* win-gravity
¢ event-mask

* do-not-propagate-mask

27

Window Functions

e override-redirect
e cursor

If you specify any other attributes for an InputOnly window, a BadMatch error re-
sults.

InputOnly windows are used for controlling input events in situations where In-
putOutput windows are unnecessary. InputOnly windows are invisible; can only be
used to control such things as cursors, input event generation, and grabbing; and
cannot be used in any graphics requests. Note that InputOnly windows cannot have
InputOutput windows as inferiors.

Windows have borders of a programmable width and pattern as well as a back-
ground pattern or tile. Pixel values can be used for solid colors. The background
and border pixmaps can be destroyed immediately after creating the window if no
further explicit references to them are to be made. The pattern can either be rela-
tive to the parent or absolute. If ParentRelative, the parent's background is used.

When windows are first created, they are not visible (not mapped) on the screen. Any
output to a window that is not visible on the screen and that does not have backing
store will be discarded. An application may wish to create a window long before it
is mapped to the screen. When a window is eventually mapped to the screen (using
XMapW ndow), the X server generates an Expose event for the window if backing
store has not been maintained.

A window manager can override your choice of size, border width, and position
for a top-level window. Your program must be prepared to use the actual size and
position of the top window. It is not acceptable for a client application to resize
itself unless in direct response to a human command to do so. Instead, either your
program should use the space given to it, or if the space is too small for any useful
work, your program might ask the user to resize the window. The border of your
top-level window is considered fair game for window managers.

To set an attribute of a window, set the appropriate member of the XSetWindowAt-
tributes structure and OR in the corresponding value bitmask in your subsequent
calls to XCr eat eW ndowand XChangeW ndowAt t r i but es, or use one of the other con-
venience functions that set the appropriate attribute. The symbols for the value
mask bits and the XSetWindowAttributes structure are:

/* Window attribute value mask bits */

/* Wndow attribute value mask bits */

#def i ne CvBackPi xmap (1L<<0)
#def i ne CwBackPi xel (1L<<1)
#def i ne CWBor der Pi xmap (1L<<2)
#def i ne CWBor der Pi xel (1L<<3)
#def i ne CWBitGavity (1L<<4)
#def i ne CWN nG avity (1L<<5)
#def i ne CWBacki ngSt or e (1L<<6)
#def i ne CwBacki ngPl anes (1L<<7)
#def i ne CWBacki ngPi xel (1L<<8)
#def i ne CWoverri deRedi rect (1L<<9)
#def i ne CWsaveUnder (1L<<10)
#def i ne CWEvent Mask (1L<<11)

28

Window Functions

#def i ne CWbont Pr opagat e (1L<<12)
#def i ne CWCol or map (1L<<13)
#def i ne CWCur sor (1L<<14)

/* Val ues */

typedef struct {
Pi xmap background_pi xnap
unsi gned | ong background_pi xel
Pi xmap bor der _pi xmap;
unsi gned | ong border _pi xel
int bit_gravity;
int win_gravity;
i nt backi ng_store; /*
unsi gned | ong backi ng_pl anes;
unsi gned | ong backi ng_pi xel
save_under;
| ong event _mask;
| ong do_not propagat e_mask;
override_redirect;
Col ormap col or map;
cursor;

Bool

Bool

Cur sor

Par ent Rel ative */
/* background pixel */
/* border of the w ndow or
/* border pixel value */
/* one of bit gravity values */
/* one of the wi ndow gravity val ues */
Not Useful , WhenMapped, Al ways */
/* planes to be preserved if possible */
/* value to use in restoring planes */
/* should bits under be saved? (popups) */
/* set of events that should be saved */
/* set of events that shoul d not
/* bool ean value for override_redirect */
/* color map to be associated with w ndow */
/* cursor to be displayed (or None) */

/* background, None, or

CopyFr onPar ent */

} XSet W ndowAtt ri but es;

The following lists the defaults for each window attribute and indicates whether the
attribute is applicable to InputOutput and InputOnly windows:

Attribute Default InputOutput InputOnly
background-pixmap None Yes No
background-pixel = Undefined Yes No
border-pixmap CopyFromParent Yes No
border-pixel Undefined Yes No
bit-gravity ForgetGravity Yes No
win-gravity NorthWestGravity Yes Yes
backing-store NotUseful Yes No
backing-planes All ones Yes No
backing-pixel Zero Yes No
save-under False Yes No
event-mask empty set Yes Yes
do-not-propa- empty set Yes Yes
gate-mask

override-redirect False Yes Yes
colormap CopyFromParent Yes No
cursor None Yes Yes

29

propagate */

Window Functions

Background Attribute

Only InputOutput windows can have a background. You can set the background of
an InputOutput window by using a pixel or a pixmap.

The background-pixmap attribute of a window specifies the pixmap to be used for
a window's background. This pixmap can be of any size, although some sizes may
be faster than others. The background-pixel attribute of a window specifies a pixel
value used to paint a window's background in a single color.

You can set the background-pixmap to a pixmap, None (default), or ParentRelative.
You can set the background-pixel of a window to any pixel value (no default). If you
specify a background-pixel, it overrides either the default background-pixmap or
any value you may have set in the background-pixmap. A pixmap of an undefined size
that is filled with the background-pixel is used for the background. Range checking
is not performed on the background pixel; it simply is truncated to the appropriate
number of bits.

If you set the background-pixmap, it overrides the default. The background-pixmap
and the window must have the same depth, or a BadMatch error results. If you set
background-pixmap to None, the window has no defined background. If you set the
background-pixmap to ParentRelative:

* The parent window's background-pixmap is used. The child window, however,
must have the same depth as its parent, or a BadMatch error results.

* If the parent window has a background-pixmap of None, the window also has a
background-pixmap of None.

* A copy of the parent window's background-pixmap is not made. The parent's back-
ground-pixmap is examined each time the child window's background-pixmap is
required.

» The background tile origin always aligns with the parent window's background
tile origin. If the background-pixmap is not ParentRelative, the background tile
origin is the child window's origin.

Setting a new background, whether by setting background-pixmap or back-
ground-pixel, overrides any previous background. The background-pixmap can be
freed immediately if no further explicit reference is made to it (the X server will
keep a copy to use when needed). If you later draw into the pixmap used for the
background, what happens is undefined because the X implementation is free to
make a copy of the pixmap or to use the same pixmap.

When no valid contents are available for regions of a window and either the regions
are visible or the server is maintaining backing store, the server automatically tiles
the regions with the window's background unless the window has a background of
None. If the background is None, the previous screen contents from other windows
of the same depth as the window are simply left in place as long as the contents come
from the parent of the window or an inferior of the parent. Otherwise, the initial
contents of the exposed regions are undefined. Expose events are then generated
for the regions, even if the background-pixmap is None (see section 10.9).

30

Window Functions

Border Attribute

Only InputOutput windows can have a border. You can set the border of an InputOut-
put window by using a pixel or a pixmap.

The border-pixmap attribute of a window specifies the pixmap to be used for a
window's border. The border-pixel attribute of a window specifies a pixmap of unde-
fined size filled with that pixel be used for a window's border. Range checking is not
performed on the background pixel; it simply is truncated to the appropriate num-
ber of bits. The border tile origin is always the same as the background tile origin.

You can also set the border-pixmap to a pixmap of any size (some may be faster
than others) or to CopyFromParent (default). You can set the border-pixel to any
pixel value (no default).

If you set a border-pixmap, it overrides the default. The border-pixmap and the
window must have the same depth, or a BadMatch error results. If you set the bor-
der-pixmap to CopyFromParent, the parent window's border-pixmap is copied. Sub-
sequent changes to the parent window's border attribute do not affect the child
window. However, the child window must have the same depth as the parent win-
dow, or a BadMatch error results.

The border-pixmap can be freed immediately if no further explicit reference is made
to it. If you later draw into the pixmap used for the border, what happens is unde-
fined because the X implementation is free either to make a copy of the pixmap or
to use the same pixmap. If you specify a border-pixel, it overrides either the default
border-pixmap or any value you may have set in the border-pixmap. All pixels in the
window's border will be set to the border-pixel. Setting a new border, whether by
setting border-pixel or by setting border-pixmap, overrides any previous border.

Output to a window is always clipped to the inside of the window. Therefore, graph-
ics operations never affect the window border.

Gravity Attributes

The bit gravity of a window defines which region of the window should be retained
when an InputOutput window is resized. The default value for the bit-gravity at-
tribute is ForgetGravity. The window gravity of a window allows you to define how
the InputOutput or InputOnly window should be repositioned if its parent is resized.
The default value for the win-gravity attribute is NorthWestGravity.

If the inside width or height of a window is not changed and if the window is moved
or its border is changed, then the contents of the window are not lost but move with
the window. Changing the inside width or height of the window causes its contents
to be moved or lost (depending on the bit-gravity of the window) and causes children
to be reconfigured (depending on their win-gravity). For a change of width and
height, the (x, y) pairs are defined:

31

Window Functions

Gravity Direction Coordinates
NorthWestGravity (0, 0)
NorthGravity (Width/2, 0)
NorthEastGravity (Width, 0)
WestGravity (0, Height/2)
CenterGravity (Width/2, Height/2)
EastGravity (Width, Height/2)
SouthWestGravity (0, Height)
SouthGravity (Width/2, Height)
SouthEastGravity (Width, Height)

When a window with one of these bit-gravity values is resized, the corresponding
pair defines the change in position of each pixel in the window. When a window with
one of these win-gravities has its parent window resized, the corresponding pair
defines the change in position of the window within the parent. When a window is
so repositioned, a GravityNotify event is generated (see section 10.10.5).

A bit-gravity of StaticGravity indicates that the contents or origin should not move
relative to the origin of the root window. If the change in size of the window is
coupled with a change in position (x, y), then for bit-gravity the change in position of
each pixel is (—x, —y), and for win-gravity the change in position of a child when its
parent is so resized is (—x, —y). Note that StaticGravity still only takes effect when
the width or height of the window is changed, not when the window is moved.

A bit-gravity of ForgetGravity indicates that the window's contents are always dis-
carded after a size change, even if a backing store or save under has been request-
ed. The window is tiled with its background and zero or more Expose events are
generated. If no background is defined, the existing screen contents are not altered.
Some X servers may also ignore the specified bit-gravity and always generate Ex-
pose events.

The contents and borders of inferiors are not affected by their parent's bit-gravity.
A server is permitted to ignore the specified bit-gravity and use Forget instead.

A win-gravity of UnmapGravity is like NorthWestGravity (the window is not moved),
except the child is also unmapped when the parent is resized, and an UnmapNotify
event is generated.

Backing Store Attribute

Some implementations of the X server may choose to maintain the contents of In-
putOutput windows. If the X server maintains the contents of a window, the off-
screen saved pixels are known as backing store. The backing store advises the X
server on what to do with the contents of a window. The backing-store attribute can
be set to NotUseful (default), WhenMapped, or Always.

A backing-store attribute of NotUseful advises the X server that maintaining con-
tents is unnecessary, although some X implementations may still choose to maintain
contents and, therefore, not generate Expose events. A backing-store attribute of
WhenMapped advises the X server that maintaining contents of obscured regions
when the window is mapped would be beneficial. In this case, the server may gen-

32

Window Functions

erate an Expose event when the window is created. A backing-store attribute of
Always advises the X server that maintaining contents even when the window is
unmapped would be beneficial. Even if the window is larger than its parent, this is
a request to the X server to maintain complete contents, not just the region within
the parent window boundaries. While the X server maintains the window's contents,
Expose events normally are not generated, but the X server may stop maintaining
contents at any time.

When the contents of obscured regions of a window are being maintained, regions
obscured by noninferior windows are included in the destination of graphics re-
quests (and source, when the window is the source). However, regions obscured by
inferior windows are not included.

Save Under Flag

Some server implementations may preserve contents of InputOutput windows under
other InputOutput windows. This is not the same as preserving the contents of a
window for you. You may get better visual appeal if transient windows (for example,
pop-up menus) request that the system preserve the screen contents under them,
so the temporarily obscured applications do not have to repaint.

You can set the save-under flag to True or False (default). If save-under is True,
the X server is advised that, when this window is mapped, saving the contents of
windows it obscures would be beneficial.

Backing Planes and Backing Pixel Attributes

You can set backing planes to indicate (with bits set to 1) which bit planes of an
InputOutput window hold dynamic data that must be preserved in backing store
and during save unders. The default value for the backing-planes attribute is all
bits set to 1. You can set backing pixel to specify what bits to use in planes not
covered by backing planes. The default value for the backing-pixel attribute is all
bits set to 0. The X server is free to save only the specified bit planes in the backing
store or the save under and is free to regenerate the remaining planes with the
specified pixel value. Any extraneous bits in these values (that is, those bits beyond
the specified depth of the window) may be simply ignored. If you request backing
store or save unders, you should use these members to minimize the amount of off-
screen memory required to store your window.

Event Mask and Do Not Propagate Mask Attributes

The event mask defines which events the client is interested in for this InputOutput
or InputOnly window (or, for some event types, inferiors of this window). The event
mask is the bitwise inclusive OR of zero or more of the valid event mask bits. You
can specify that no maskable events are reported by setting NoEventMask (default).

The do-not-propagate-mask attribute defines which events should not be propa-
gated to ancestor windows when no client has the event type selected in this In-
putOutput or InputOnly window. The do-not-propagate-mask is the bitwise inclusive
OR of zero or more of the following masks: KeyPress, KeyRelease, ButtonPress,
ButtonRelease, PointerMotion, ButtonlMotion, Button2Motion, Button3Motion,
Button4Motion, Button5Motion, and ButtonMotion. You can specify that all events
are propagated by setting NoEventMask (default).

33

Window Functions

Override Redirect Flag

To control window placement or to add decoration, a window manager often needs
to intercept (redirect) any map or configure request. Pop-up windows, however,
often need to be mapped without a window manager getting in the way. To control
whether an InputOutput or InputOnly window is to ignore these structure control
facilities, use the override-redirect flag.

The override-redirect flag specifies whether map and configure requests on this
window should override a SubstructureRedirectMask on the parent. You can set the
override-redirect flag to True or False (default). Window managers use this infor-
mation to avoid tampering with pop-up windows (see also chapter 14).

Colormap Attribute

The colormap attribute specifies which colormap best reflects the true colors of the
InputOutput window. The colormap must have the same visual type as the window,
or a BadMatch error results. X servers capable of supporting multiple hardware
colormaps can use this information, and window managers can use it for calls to
Xl nst al | Col or map. You can set the colormap attribute to a colormap or to Copy-
FromParent (default).

If you set the colormap to CopyFromParent, the parent window's colormap is copied
and used by its child. However, the child window must have the same visual type
as the parent, or a BadMatch error results. The parent window must not have a
colormap of None, or a BadMatch error results. The colormap is copied by sharing
the colormap object between the child and parent, not by making a complete copy
of the colormap contents. Subsequent changes to the parent window's colormap
attribute do not affect the child window.

Cursor Attribute

The cursor attribute specifies which cursor is to be used when the pointer is in
the InputOutput or InputOnly window. You can set the cursor to a cursor or None
(default).

If you set the cursor to None, the parent's cursor is used when the pointer is in the
InputOutput or InputOnly window, and any change in the parent's cursor will cause
an immediate change in the displayed cursor. By calling XFr eeCur sor, the cursor
can be freed immediately as long as no further explicit reference to it is made.

Creating Windows

Xlib provides basic ways for creating windows, and toolkits often supply higher-lev-
el functions specifically for creating and placing top-level windows, which are dis-
cussed in the appropriate toolkit documentation. If you do not use a toolkit, howev-
er, you must provide some standard information or hints for the window manager
by using the Xlib inter-client communication functions (see chapter 14).

If you use Xlib to create your own top-level windows (direct children of the root
window), you must observe the following rules so that all applications interact rea-
sonably across the different styles of window management:

34

Window Functions

* You must never fight with the window manager for the size or placement of your
top-level window.

* You must be able to deal with whatever size window you get, even if this means
that your application just prints a message like " Please make me bigger" in its
window.

* You should only attempt to resize or move top-level windows in direct response to
a user request. If a request to change the size of a top-level window fails, you must
be prepared to live with what you get. You are free to resize or move the children
of top-level windows as necessary. (Toolkits often have facilities for automatic
relayout.)

« If you do not use a toolkit that automatically sets standard window properties,
you should set these properties for top-level windows before mapping them.

For further information, see chapter 14 and the Inter-Client Communication Con-
ventions Manual.

XCr eat eW ndow is the more general function that allows you to set specific window
attributes when you create a window. XCr eat eSi npl eW ndow creates a window that
inherits its attributes from its parent window.

The X server acts as if InputOnly windows do not exist for the purposes of graphics
requests, exposure processing, and VisibilityNotify events. An InputOnly window
cannot be used as a drawable (that is, as a source or destination for graphics re-
quests). InputOnly and InputOutput windows act identically in other respects (prop-
erties, grabs, input control, and so on). Extension packages can define other classes
of windows.

To create an unmapped window and set its window attributes, use XCr eat eW ndow.

W ndow XCr eat eW ndow(*di spl ay, parent, v, hei ght, bor der _wi dt h,

depth, class, *visual, valuemask, *attributes);
display Specifies the connection to the X server.
parent Specifies the parent window. borders and are relative

to the inside of the parent window's borders

X

vy Specify the x and y coordinates(Xy. and do not include
the created window's borders

width

height Specify the width and height(Wh. The dimensions
must be nonzero, or a BadValue error results.

border width Specifies the width of the created window's border
in pixels.

depth Specifies the window's depth. A depth of Copy-
FromParent means the depth is taken from the par-
ent.

35

Window Functions

class Specifies the created window's class. You can pass
InputOutput, InputOnly, or CopyFromParent. A class
of CopyFromParent means the class is taken from the
parent.

visual Specifies the visual type. A visual of CopyFromParent
means the visual type is taken from the parent.

valuemask Specifies which window attributes are defined in the
attributes argument. This mask is the bitwise inclu-
sive OR of the valid attribute mask bits. If valuemask
is zero, the attributes are ignored and are not refer-
enced.

attributes Specifies the structure from which the values (as
specified by the value mask) are to be taken. The val-
ue mask should have the appropriate bits set to indi-
cate which attributes have been set in the structure.

The XCr eat eW ndowfunction creates an unmapped subwindow for a specified parent
window, returns the window ID of the created window, and causes the X server to
generate a CreateNotify event. The created window is placed on top in the stacking
order with respect to siblings.

The coordinate system has the X axis horizontal and the Y axis vertical with the
origin [0, O] at the upper-left corner. Coordinates are integral, in terms of pixels,
and coincide with pixel centers. Each window and pixmap has its own coordinate
system. For a window, the origin is inside the border at the inside, upper-left corner.

The border width for an InputOnly window must be zero, or a BadMatch error re-
sults. For class InputOutput, the visual type and depth must be a combination sup-
ported for the screen, or a BadMatch error results. The depth need not be the same
as the parent, but the parent must not be a window of class InputOnly, or a Bad-
Match error results. For an InputOnly window, the depth must be zero, and the vi-
sual must be one supported by the screen. If either condition is not met, a BadMatch
error results. The parent window, however, may have any depth and class. If you
specify any invalid window attribute for a window, a BadMatch error results.

The created window is not yet displayed (mapped) on the user's display. To display
the window, call XMapW ndow. The new window initially uses the same cursor as its
parent. A new cursor can be defined for the new window by calling XDef i neCur sor .

The window will not be visible on the screen unless it and all of its ancestors are
mapped and it is not obscured by any of its ancestors.

XCr eat eW ndow can generate BadAlloc, BadColor, BadCursor, BadMatch, Bad-
Pixmap, BadValue, and BadWindow errors.

To create an unmapped InputOutput subwindow of a given parent window, use
XCr eat eSi npl eW ndow.

W ndow XCreat eSi npl eWndow *di spl ay, par ent, Y, hei ght,
border_wi dth, border, background);

display Specifies the connection to the X server.

parent Specifies the parent window. and are relative to the

inside of the parent window's borders

36

Window Functions

X

y Specify the x and y coordinates(Xy. and do not include
the created window's borders

width

height Specify the width and height(Wh. The dimensions
must be nonzero, or a BadValue error results.

border width Specifies the width of the created window's border
in pixels.

border Specifies the border pixel value of the window.

background Specifies the background pixel value of the window.

The XCr eat eSi npl eW ndow function creates an unmapped InputOutput subwindow
for a specified parent window, returns the window ID of the created window, and
causes the X server to generate a CreateNotify event. The created window is placed
on top in the stacking order with respect to siblings. Any part of the window that
extends outside its parent window is clipped. The border width for an InputOnly
window must be zero, or a BadMatch error results. XCr eat eSi npl eW ndow inher-
its its depth, class, and visual from its parent. All other window attributes, except
background and border, have their default values.

XCr eat eSi npl eW ndow can generate BadAlloc, BadMatch, BadValue, and BadWin-
dow errors.

Destroying Windows

Xlib provides functions that you can use to destroy a window or destroy all subwin-
dows of a window.

To destroy a window and all of its subwindows, use XDest r oyW ndow.
XDest royW ndow(*di splay, w;

display Specifies the connection to the X server.

w Specifies the window.

The XDest r oyW ndow function destroys the specified window as well as all of its
subwindows and causes the X server to generate a DestroyNotify event for each
window. The window should never be referenced again. If the window specified by
the w argument is mapped, it is unmapped automatically. The ordering of the De-
stroyNotify events is such that for any given window being destroyed, DestroyNotify
is generated on any inferiors of the window before being generated on the window
itself. The ordering among siblings and across subhierarchies is not otherwise con-
strained. If the window you specified is a root window, no windows are destroyed.
Destroying a mapped window will generate Expose events on other windows that
were obscured by the window being destroyed.

XDest r oyW ndow can generate a BadWindow error.

To destroy all subwindows of a specified window, use XDest r oy Subwi ndows.

37

Window Functions

XDest r oySubwi ndows(*di splay, w;
display Specifies the connection to the X server.
w Specifies the window.

The XDest r oySubwi ndows function destroys all inferior windows of the specified
window, in bottom-to-top stacking order. It causes the X server to generate a De-
stroyNotify event for each window. If any mapped subwindows were actually de-
stroyed, XDest r oySubwi ndows causes the X server to generate Expose events on the
specified window. This is much more efficient than deleting many windows one at a
time because much of the work need be performed only once for all of the windows,
rather than for each window. The subwindows should never be referenced again.

XDest r oySubwi ndows can generate a BadWindow error.

Mapping Windows

A window is considered mapped if an XMapW ndow call has been made on it. It may
not be visible on the screen for one of the following reasons:

¢ It is obscured by another opaque window.
¢ One of its ancestors is not mapped.
It is entirely clipped by an ancestor.

Expose events are generated for the window when part or all of it becomes visible
on the screen. A client receives the Expose events only if it has asked for them.
Windows retain their position in the stacking order when they are unmapped.

A window manager may want to control the placement of subwindows. If Substruc-
tureRedirectMask has been selected by a window manager on a parent window
(usually a root window), a map request initiated by other clients on a child window
is not performed, and the window manager is sent a MapRequest event. However,
if the override-redirect flag on the child had been set to True (usually only on pop-
up menus), the map request is performed.

A tiling window manager might decide to reposition and resize other clients' win-
dows and then decide to map the window to its final location. A window manager
that wants to provide decoration might reparent the child into a frame first. For
further information, see sections 3.2.8 and 10.10. Only a single client at a time can
select for SubstructureRedirectMask.

Similarly, a single client can select for ResizeRedirectMask on a parent window.
Then, any attempt to resize the window by another client is suppressed, and the
client receives a ResizeRequest event.

To map a given window, use XMapW ndow.
XMapW ndow(*di splay, w;
display Specifies the connection to the X server.

w Specifies the window.

38

Window Functions

The XMapW ndow function maps the window and all of its subwindows that have had
map requests. Mapping a window that has an unmapped ancestor does not display
the window but marks it as eligible for display when the ancestor becomes mapped.
Such a window is called unviewable. When all its ancestors are mapped, the window
becomes viewable and will be visible on the screen if it is not obscured by another
window. This function has no effect if the window is already mapped.

If the override-redirect of the window is False and if some other client has selected
SubstructureRedirectMask on the parent window, then the X server generates a
MapRequest event, and the XMapW ndow function does not map the window. Other-
wise, the window is mapped, and the X server generates a MapNotify event.

If the window becomes viewable and no earlier contents for it are remembered, the
X server tiles the window with its background. If the window's background is unde-
fined, the existing screen contents are not altered, and the X server generates zero
or more Expose events. If backing-store was maintained while the window was un-
mapped, no Expose events are generated. If backing-store will now be maintained,
a full-window exposure is always generated. Otherwise, only visible regions may be
reported. Similar tiling and exposure take place for any newly viewable inferiors.

If the window is an InputOutput window, XMapW ndow generates Expose events on

each InputOutput window that it causes to be displayed. If the client maps and
paints the window and if the client begins processing events, the window is painted
twice. To avoid this, first ask for Expose events and then map the window, so the
client processes input events as usual. The event list will include Expose for each
window that has appeared on the screen. The client's normal response to an Expose
event should be to repaint the window. This method usually leads to simpler pro-
grams and to proper interaction with window managers.

XMapW ndow can generate a BadWindow error.

To map and raise a window, use XMapRai sed.

XMapRai sed(*display, w;

display Specifies the connection to the X server.
w Specifies the window.

The XMapRai sed function essentially is similar to XMapW ndow in that it maps the
window and all of its subwindows that have had map requests. However, it also
raises the specified window to the top of the stack. For additional information, see
XMapW ndow.

XMapRai sed can generate multiple BadWindow errors.

To map all subwindows for a specified window, use XMapSubwi ndows.
XMapSubwi ndows(*di splay, w);

display Specifies the connection to the X server.

w Specifies the window.

The XMapSubwi ndows function maps all subwindows for a specified window in top-
to-bottom stacking order. The X server generates Expose events on each newly dis-
played window. This may be much more efficient than mapping many windows one

39

Window Functions

at a time because the server needs to perform much of the work only once, for all
of the windows, rather than for each window.

XMapSubwi ndows can generate a BadWindow error.

Unmapping Windows

Xlib provides functions that you can use to unmap a window or all subwindows.
To unmap a window, use XUnmapW ndow.

XUnmapW ndow(*di splay, w;

display Specifies the connection to the X server.

w Specifies the window.

The XUnmapW ndow function unmaps the specified window and causes the X server
to generate an UnmapNotify event. If the specified window is already unmapped,
XUnmapW ndowhas no effect. Normal exposure processing on formerly obscured win-
dows is performed. Any child window will no longer be visible until another map
call is made on the parent. In other words, the subwindows are still mapped but are
not visible until the parent is mapped. Unmapping a window will generate Expose
events on windows that were formerly obscured by it.

XUnmapW ndow can generate a BadWindow error.

To unmap all subwindows for a specified window, use XUnmapSubwi ndows.
XUnmapSubwi ndows(*di splay, w);

display Specifies the connection to the X server.

w Specifies the window.

The XUnmapSubwi ndows function unmaps all subwindows for the specified window
in bottom-to-top stacking order. It causes the X server to generate an UnmapNotify
event on each subwindow and Expose events on formerly obscured windows. Using
this function is much more efficient than unmapping multiple windows one at a
time because the server needs to perform much of the work only once, for all of the
windows, rather than for each window.

XUnmapSubwi ndows can generate a BadWindow error.

Configuring Windows

Xlib provides functions that you can use to move a window, resize a window, move
and resize a window, or change a window's border width. To change one of these
parameters, set the appropriate member of the XWindowChanges structure and
OR in the corresponding value mask in subsequent calls to XConf i gur eW ndow. The
symbols for the value mask bits and the XWindowChanges structure are:

/* Configure wi ndow val ue mask bits */

40

Window Functions

#def i ne CWK (1<<0)
#def i ne cwy (1<<1)
#defi ne CWN dt h (1<<2)
#def i ne CWHei ght (1<<3)
#def i ne CWBor der W dt h (1<<4)
#def i ne CWsi bl i ng (1<<b)
#def i ne CW5t ackMbde (1<<6)

/* Val ues */

t ypedef struct {
int x, vy;
i nt width, height;
i nt border_wi dth;
W ndow si bl i ng;
i nt stack_ node;

} XW ndowChanges;

The x and y members are used to set the window's x and y coordinates, which are
relative to the parent's origin and indicate the position of the upper-left outer corner
of the window. The width and height members are used to set the inside size of the
window, not including the border, and must be nonzero, or a BadValue error results.
Attempts to configure a root window have no effect.

The border width member is used to set the width of the border in pixels. Note that
setting just the border width leaves the outer-left corner of the window in a fixed
position but moves the absolute position of the window's origin. If you attempt to
set the border-width attribute of an InputOnly window nonzero, a BadMatch error
results.

The sibling member is used to set the sibling window for stacking operations. The
stack mode member is used to set how the window is to be restacked and can be
set to Above, Below, Toplf, BottomIf, or Opposite.

If the override-redirect flag of the window is False and if some other client has se-
lected SubstructureRedirectMask on the parent, the X server generates a Config-
ureRequest event, and no further processing is performed. Otherwise, if some oth-
er client has selected ResizeRedirectMask on the window and the inside width or
height of the window is being changed, a ResizeRequest event is generated, and the
current inside width and height are used instead. Note that the override-redirect
flag of the window has no effect on ResizeRedirectMask and that SubstructureRedi-
rectMask on the parent has precedence over ResizeRedirectMask on the window.

When the geometry of the window is changed as specified, the window is restacked
among siblings, and a ConfigureNotify event is generated if the state of the window
actually changes. GravityNotify events are generated after ConfigureNotify events.
If the inside width or height of the window has actually changed, children of the
window are affected as specified.

If a window's size actually changes, the window's subwindows move according to
their window gravity. Depending on the window's bit gravity, the contents of the
window also may be moved (see section 3.2.3).

41

Window Functions

If regions of the window were obscured but now are not, exposure processing is
performed on these formerly obscured windows, including the window itself and
its inferiors. As a result of increasing the width or height, exposure processing is
also performed on any new regions of the window and any regions where window
contents are lost.

The restack check (specifically, the computation for BottomlIf, TopIf, and Opposite)
is performed with respect to the window's final size and position (as controlled by
the other arguments of the request), not its initial position. If a sibling is specified
without a stack mode, a BadMatch error results.

If a sibling and a stack mode are specified, the window is restacked as follows:

Above The window is placed just above the sibling.

Below The window is placed just below the sibling.

Toplf If the sibling occludes the window, the window is placed at
the top of the stack.

BottomlIf If the window occludes the sibling, the window is placed at
the bottom of the stack.

Opposite If the sibling occludes the window, the window is placed at

the top of the stack. If the window occludes the sibling, the
window is placed at the bottom of the stack.

If a stack mode is specified but no sibling is specified, the window is restacked as
follows:

Above The window is placed at the top of the stack.

Below The window is placed at the bottom of the stack.

Toplf If any sibling occludes the window, the window is placed at
the top of the stack.

BottomlIf If the window occludes any sibling, the window is placed at
the bottom of the stack.

Opposite If any sibling occludes the window, the window is placed at

the top of the stack. If the window occludes any sibling, the
window is placed at the bottom of the stack.

Attempts to configure a root window have no effect.
To configure a window's size, location, stacking, or border, use XConf i gur eW ndow.

XConfi gureW ndow(*display, w value_nmask, *val ues);

display Specifies the connection to the X server.
w Specifies the window (Wi.
value mask Specifies which values are to be set using information in

the values structure. This mask is the bitwise inclusive
OR of the valid configure window values bits.

values Specifies the XWindowChanges structure.

42

Window Functions

The XConf i gur eW ndow function uses the values specified in the XWindowChanges
structure to reconfigure a window's size, position, border, and stacking order. Values
not specified are taken from the existing geometry of the window.

If a sibling is specified without a stack mode or if the window is not actually a sib-
ling, a BadMatch error results. Note that the computations for BottomlIf, Toplf, and
Opposite are performed with respect to the window's final geometry (as controlled
by the other arguments passed to XConf i gur eW ndow), not its initial geometry. Any
backing store contents of the window, its inferiors, and other newly visible windows
are either discarded or changed to reflect the current screen contents (depending
on the implementation).

XConf i gur eW ndow can generate BadMatch, BadValue, and BadWindow errors.
To move a window without changing its size, use XMoveW ndow.

XMoveW ndow(*display, w, vy);

display Specifies the connection to the X server.

w Specifies the window (Wi. of the window's border or the
window itself if it has no border

X
v Specify the x and y coordinates(Xy.

The XMoveW ndow function moves the specified window to the specified x and y co-
ordinates, but it does not change the window's size, raise the window, or change the
mapping state of the window. Moving a mapped window may or may not lose the
window's contents depending on if the window is obscured by nonchildren and if no
backing store exists. If the contents of the window are lost, the X server generates
Expose events. Moving a mapped window generates Expose events on any formerly
obscured windows.

If the override-redirect flag of the window is False and some other client has se-
lected SubstructureRedirectMask on the parent, the X server generates a Config-
ureRequest event, and no further processing is performed. Otherwise, the window
is moved.

XMoveW ndow can generate a BadWindow error.

To change a window's size without changing the upper-left coordinate, use XRe-
si zeW ndow.

XResi zeW ndow(*di splay, w, height);

display Specifies the connection to the X server.

w Specifies the window. after the call completes
width

height Specify the width and height(Wh.

The XResi zeW ndowfunction changes the inside dimensions of the specified window,
not including its borders. This function does not change the window's upper-left
coordinate or the origin and does not restack the window. Changing the size of a

43

Window Functions

mapped window may lose its contents and generate Expose events. If a mapped
window is made smaller, changing its size generates Expose events on windows that
the mapped window formerly obscured.

If the override-redirect flag of the window is False and some other client has se-
lected SubstructureRedirectMask on the parent, the X server generates a Config-
ureRequest event, and no further processing is performed. If either width or height
is zero, a BadValue error results.

XResi zeW ndow can generate BadValue and BadWindow errors.
To change the size and location of a window, use XMoveResi zeW ndow.

XMoveResi zeW ndow(*display, w, vy, height);

display Specifies the connection to the X server.
w Specifies the window (Wi.

X

y Specify the x and y coordinates(Xy.
width

height Specify the width and height(Wh.

The XMbveResi zeW ndow function changes the size and location of the specified win-
dow without raising it. Moving and resizing a mapped window may generate an
Expose event on the window. Depending on the new size and location parameters,
moving and resizing a window may generate Expose events on windows that the
window formerly obscured.

If the override-redirect flag of the window is False and some other client has se-
lected SubstructureRedirectMask on the parent, the X server generates a Config-
ureRequest event, and no further processing is performed. Otherwise, the window
size and location are changed.

XMoveResi zeW ndow can generate BadValue and BadWindow errors.
To change the border width of a given window, use XSet W ndowBor der W dt h.

XSet W ndowBor der Wdt h(*display, w, wdth);

display Specifies the connection to the X server.
w Specifies the window.
width Specifies the width of the window border.

The XSet W ndowBor der W dt h function sets the specified window's border width to
the specified width.

XSet W ndowBor der W dt h can generate a BadWindow error.

Changing Window Stacking Order

44

Window Functions

Xlib provides functions that you can use to raise, lower, circulate, or restack win-
dows.

To raise a window so that no sibling window obscures it, use XRai seW ndow.
XRai seW ndow(*di splay, w;

display Specifies the connection to the X server.

w Specifies the window.

The XRai seW ndow function raises the specified window to the top of the stack so
that no sibling window obscures it. If the windows are regarded as overlapping
sheets of paper stacked on a desk, then raising a window is analogous to moving the
sheet to the top of the stack but leaving its x and y location on the desk constant.
Raising a mapped window may generate Expose events for the window and any
mapped subwindows that were formerly obscured.

If the override-redirect attribute of the window is False and some other client has
selected SubstructureRedirectMask on the parent, the X server generates a Config-
ureRequest event, and no processing is performed. Otherwise, the window is raised.

XRai seW ndow can generate a BadWindow error.

To lower a window so that it does not obscure any sibling windows, use XLower -
W ndow.

XLower W ndow(*di splay, w;
display Specifies the connection to the X server.
w Specifies the window.

The XLower W ndow function lowers the specified window to the bottom of the stack
so that it does not obscure any sibling windows. If the windows are regarded as
overlapping sheets of paper stacked on a desk, then lowering a window is analogous
to moving the sheet to the bottom of the stack but leaving its x and y location on
the desk constant. Lowering a mapped window will generate Expose events on any
windows it formerly obscured.

If the override-redirect attribute of the window is False and some other client has
selected SubstructureRedirectMask on the parent, the X server generates a Config-
ureRequest event, and no processing is performed. Otherwise, the window is low-
ered to the bottom of the stack.

XLower W ndow can generate a BadWindow error.
To circulate a subwindow up or down, use XGi r cul at eSubwi ndows.

XCi r cul at eSubwi ndows(*di splay, w, direction);

display Specifies the connection to the X server.

w Specifies the window.

direction Specifies the direction (up or down) that you want to cir-
culate the window. You can pass RaiseLowest or Lower-
Highest.

45

Window Functions

The XCi r cul at eSubwi ndows function circulates children of the specified window in
the specified direction. If you specify RaiseLowest, XCi r cul at eSubwi ndows raises
the lowest mapped child (if any) that is occluded by another child to the top of
the stack. If you specify LowerHighest, XCi r cul at eSubwi ndows lowers the highest
mapped child (if any) that occludes another child to the bottom of the stack. Expo-
sure processing is then performed on formerly obscured windows. If some other
client has selected SubstructureRedirectMask on the window, the X server gener-
ates a CirculateRequest event, and no further processing is performed. If a child is
actually restacked, the X server generates a CirculateNotify event.

XCi r cul at eSubwi ndows can generate BadValue and BadWindow errors.

To raise the lowest mapped child of a window that is partially or completely occluded
by another child, use XGi r cul at eSubwi ndows Up.

XCi rcul at eSubwi ndowsUp(*di splay, w);
display Specifies the connection to the X server.
w Specifies the window.

The XGCi r cul at eSubwi ndowsUp function raises the lowest mapped child of the spec-
ified window that is partially or completely occluded by another child. Completely
unobscured children are not affected. This is a convenience function equivalent to
XGi r cul at eSubwi ndows with Raisel.owest specified.

XCi r cul at eSubwi ndowsUp can generate a BadWindow error.

To lower the highest mapped child of a window that partially or completely occludes
another child, use XGCi r cul at eSubwi ndowsDown.

XCi r cul at eSubwi ndowsDown(*di splay, w);
display Specifies the connection to the X server.
w Specifies the window.

The XCi r cul at eSubwi ndowsDown function lowers the highest mapped child of the
specified window that partially or completely occludes another child. Completely
unobscured children are not affected. This is a convenience function equivalent to
XCi r cul at eSubwi ndows with LowerHighest specified.

XCi r cul at eSubwi ndowsDown can generate a BadWindow error.
To restack a set of windows from top to bottom, use XRest ackW ndows.

XRest ackW ndows(*di splay, w ndows[], nw ndows);

display Specifies the connection to the X server.

windows Specifies an array containing the windows to be
restacked.

nwindows Specifies the number of windows to be restacked.

The XRest ackW ndows function restacks the windows in the order specified, from
top to bottom. The stacking order of the first window in the windows array is unaf-

46

Window Functions

fected, but the other windows in the array are stacked underneath the first window,
in the order of the array. The stacking order of the other windows is not affected.
For each window in the window array that is not a child of the specified window,
a BadMatch error results.

If the override-redirect attribute of a window is False and some other client has
selected SubstructureRedirectMask on the parent, the X server generates Config-
ureRequest events for each window whose override-redirect flag is not set, and no
further processing is performed. Otherwise, the windows will be restacked in top-
to-bottom order.

XRest ackW ndows can generate a BadWindow error.

Changing Window Attributes

Xlib provides functions that you can use to set window attributes. XChangeW n-
dowAt t ri but es is the more general function that allows you to set one or more win-
dow attributes provided by the XSetWindowAttributes structure. The other func-
tions described in this section allow you to set one specific window attribute, such
as a window's background.

To change one or more attributes for a given window, use XChangeW ndowAt t ri b-
ut es.

XChangeW ndowAttri butes(*display, w valuenmask, *attributes);

display Specifies the connection to the X server.
w Specifies the window.
valuemask Specifies which window attributes are defined in the

attributes argument. This mask is the bitwise inclusive
OR of the valid attribute mask bits. If valuemask is ze-
ro, the attributes are ignored and are not referenced.
The values and restrictions are the same as for XCr e-
at eW ndow.

attributes Specifies the structure from which the values (as speci-
fied by the value mask) are to be taken. The value mask
should have the appropriate bits set to indicate which
attributes have been set in the structure (see section
3.2).

Depending on the valuemask, the XChangeW ndowAt t r i but es function uses the win-
dow attributes in the XSetWindowAttributes structure to change the specified win-
dow attributes. Changing the background does not cause the window contents to be
changed. To repaint the window and its background, use XC ear W ndow. Setting the
border or changing the background such that the border tile origin changes causes
the border to be repainted. Changing the background of a root window to None
or ParentRelative restores the default background pixmap. Changing the border of
a root window to CopyFromParent restores the default border pixmap. Changing
the win-gravity does not affect the current position of the window. Changing the
backing-store of an obscured window to WhenMapped or Always, or changing the

47

Window Functions

backing-planes, backing-pixel, or save-under of a mapped window may have no im-
mediate effect. Changing the colormap of a window (that is, defining a new map,
not changing the contents of the existing map) generates a ColormapNotify event.
Changing the colormap of a visible window may have no immediate effect on the
screen because the map may not be installed (see Xl nst al | Col or map). Changing
the cursor of a root window to None restores the default cursor. Whenever possible,
you are encouraged to share colormaps.

Multiple clients can select input on the same window. Their event masks are main-
tained separately. When an event is generated, it is reported to all interested clients.
However, only one client at a time can select for SubstructureRedirectMask, Resiz-
eRedirectMask, and ButtonPressMask. If a client attempts to select any of these
event masks and some other client has already selected one, a BadAccess error re-
sults. There is only one do-not-propagate-mask for a window, not one per client.

XChangeW ndowAt t ri but es can generate BadAccess, BadColor, BadCursor, Bad-
Match, BadPixmap, BadValue, and BadWindow errors.

To set the background of a window to a given pixel, use XSet W ndowBackgr ound.

XSet W ndowBackground(*di splay, w, background_pixel);

display Specifies the connection to the X server.

w Specifies the window.

background pixel Specifies the pixel that is to be used for the back-
ground.

The XSet W ndowBackgr ound function sets the background of the window to the spec-
ified pixel value. Changing the background does not cause the window contents to
be changed. XSet W ndowBackgr ound uses a pixmap of undefined size filled with the
pixel value you passed. If you try to change the background of an InputOnly window,
a BadMatch error results.

XSet W ndowBackgr ound can generate BadMatch and BadWindow errors.
To set the background of a window to a given pixmap, use XSet W ndowBackgr ound-
Pi xmap.

XSet W ndowBackgr oundPi xmap(*di splay, w, background_ pi xmap);

display Specifies the connection to the X server.

w Specifies the window.

background pixmap Specifies the background pixmap, ParentRelative, or
None.

The XSet W ndowBackgr oundPi xmap function sets the background pixmap of the
window to the specified pixmap. The background pixmap can immediately be freed
if no further explicit references to it are to be made. If ParentRelative is specified,
the background pixmap of the window's parent is used, or on the root window, the
default background is restored. If you try to change the background of an InputOnly
window, a BadMatch error results. If the background is set to None, the window
has no defined background.

48

Window Functions

XSet W ndowBackgr oundPi xmap can generate BadMatch, BadPixmap, and BadWin-
dow errors. XSet W ndowBackground and XSet W ndowBackgr oundPi xmap do not
change the current contents of the window.

To change and repaint a window's border to a given pixel, use XSet W ndowBor der .

XSet W ndowBor der (*di spl ay, w, border_pixel);

display Specifies the connection to the X server.
w Specifies the window.
border pixel Specifies the entry in the colormap.

The XSet W ndowBor der function sets the border of the window to the pixel value
you specify. If you attempt to perform this on an InputOnly window, a BadMatch
error results.

XSet W ndowBor der can generate BadMatch and BadWindow errors.

To change and repaint the border tile of a given window, use XSet W ndowBor der -
Pi xmap.

XSet W ndowBor der Pi xmap(*di splay, w, border_pixmap);

display Specifies the connection to the X server.
w Specifies the window.
border pixmap Specifies the border pixmap or CopyFromParent.

The XSet W ndowBor der Pi xmap function sets the border pixmap of the window to
the pixmap you specify. The border pixmap can be freed immediately if no further
explicit references to it are to be made. If you specify CopyFromParent, a copy of
the parent window's border pixmap is used. If you attempt to perform this on an
InputOnly window, a BadMatch error results.

XSet W ndowBor der Pi xmap can generate BadMatch, BadPixmap, and BadWindow er-
rors.

To set the colormap of a given window, use XSet W ndowCol or nap.

XSet W ndowCol or map(*display, w, col ornap);

display Specifies the connection to the X server.
w Specifies the window.
colormap Specifies the colormap.

The XSet W ndowCol or map function sets the specified colormap of the specified win-
dow. The colormap must have the same visual type as the window, or a BadMatch
error results.

XSet W ndowCol or map can generate BadColor, BadMatch, and BadWindow errors.

To define which cursor will be used in a window, use XDef i neCur sor .

49

Window Functions

XDef i neCursor(*display, w, cursor);

display Specifies the connection to the X server.
w Specifies the window.
cursor Specifies the cursor that is to be displayed or None.

If a cursor is set, it will be used when the pointer is in the window. If the cursor is
None, it is equivalent to XUndef i neCur sor .

XDef i neCur sor can generate BadCursor and BadWindow errors.
To undefine the cursor in a given window, use XUndef i neCur sor .
XUndef i neCursor(*display, w;

display Specifies the connection to the X server.
w Specifies the window.

The XUndef i neCur sor function undoes the effect of a previous XDef i neCur sor for
this window. When the pointer is in the window, the parent's cursor will now be
used. On the root window, the default cursor is restored.

XUndef i neCur sor can generate a BadWindow error.

50

Chapter 4. Window Information
Functions

After you connect the display to the X server and create a window, you can use the
Xlib window information functions to:

¢ Obtain information about a window

» Translate screen coordinates

¢ Manipulate property lists

* Obtain and change window properties

* Manipulate selections

Obtaining Window Information

Xlib provides functions that you can use to obtain information about the window
tree, the window's current attributes, the window's current geometry, or the current
pointer coordinates. Because they are most frequently used by window managers,
these functions all return a status to indicate whether the window still exists.

To obtain the parent, a list of children, and number of children for a given window,
use XQueryTree.

Status XQueryTree(*display, w, *root _return, *parent _return,
**children_return, *nchildren_return);

display Specifies the connection to the X server. you want to
obtain

w Specifies the window (Wi.

root_return Returns the root window.

parent return Returns the parent window.

children_return Returns the list of children.

nchildren_return Returns the number of children.

The XQuer yTr ee function returns the root ID, the parent window ID, a pointer to
the list of children windows (NULL when there are no children), and the number
of children in the list for the specified window. The children are listed in current
stacking order, from bottom-most (first) to top-most (last). XQuer yTr ee returns zero
if it fails and nonzero if it succeeds. To free a non-NULL children list when it is no
longer needed, use .

XQuer yTr ee can generate a BadWindow error.

To obtain the current attributes of a given window, use XGet W ndowAt t ri but es.

51

Window Informa-

tion Functions

St at us XGet W ndowAt t ri but es(*di spl ay,

display

w

window _attributes return

w, *wi ndow attributes_return);

Specifies the connection to the X server.

Specifies the window (Wi.

Returns the specified window's attributes in the

XWindowAttributes structure.

The XGet W ndowAt t ri but es function returns the current attributes for the specified

window to an XWindowAttributes structure.

typedef struct {

int x, vy;

i nt width, height;

i nt border_wi dth;

i nt dept h;

Vi sual *visual;

W ndow r oot ;

int class;

int bit_gravity;

int win_gravity;

i nt backi ng_store;

unsi gned | ong backi ng_pl anes;
unsi gned | ong backi ng_pi xel ;
Bool save_under;

Col ormap col or map;

Bool map_install ed;

int map_state;

| ong all _event nasks;

| ong your_event _mask;

| ong do_not _propagat e_mask;
Bool override_redirect;
Screen *screen;

} XW ndowAt tri butes;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

| ocati on of wi ndow */

wi dt h and hei ght of w ndow */

border width of w ndow */

dept h of wi ndow */

t he associ ated visual structure */
root of screen containing wi ndow */

I nput Qut put, | nput Onl y*/

one of the bit gravity values */

one of the wi ndow gravity val ues */
Not Useful , WhenMapped, Al ways */

pl anes to be preserved if possible */
val ue to be used when restoring planes */

bool ean, should bits under be saved? */
color map to be associated with w ndow */
bool ean, is color map currently installed*/
| sUnmapped, |sUnvi ewabl e, IsViewable */

set of events all people have interest in*/
ny event mask */

set of events that should not propagate */

bool ean val ue for override-redirect */
back pointer to correct screen */

The x and y members are set to the upper-left outer corner relative to the parent
window's origin. The width and height members are set to the inside size of the
window, not including the border. The border width member is set to the window's
border width in pixels. The depth member is set to the depth of the window (that
is, bits per pixel for the object). The visual member is a pointer to the screen's
associated Visual structure. The root member is set to the root window of the screen
containing the window. The class member is set to the window's class and can be
either InputOutput or InputOnly.

The bit gravity member is set to the window's bit gravity and can be one of the
following:

ForgetGravity
NorthWestGravity

EastGravity
SouthWestGravity

52

Window Informa-
tion Functions

NorthGravity SouthGravity
NorthEastGravity SouthEastGravity
WestGravity StaticGravity

The win_gravity member is set to the window's window gravity and can be one of
the following:

UnmapGravity SouthWestGravity
NorthWestGravity SouthGravity
NorthGravity SouthEastGravity
NorthEastGravity StaticGravity
WestGravity CenterGravity
EastGravity

For additional information on gravity, see section 3.2.3.

The backing store member is set to indicate how the X server should maintain
the contents of a window and can be WhenMapped, Always, or NotUseful. The
backing planes member is set to indicate (with bits set to 1) which bit planes of the
window hold dynamic data that must be preserved in backing stores and during
save unders. The backing pixel member is set to indicate what values to use for
planes not set in backing planes.

The save under member is set to True or False. The colormap member is set to
the colormap for the specified window and can be a colormap ID or None. The
map installed member is set to indicate whether the colormap is currently installed
and can be True or False. The map state member is set to indicate the state of
the window and can be IsUnmapped, IsUnviewable, or IsViewable. IsUnviewable is
used if the window is mapped but some ancestor is unmapped.

The all event masks member is set to the bitwise inclusive OR of all event masks
selected on the window by all clients. The your event mask member is set to
the bitwise inclusive OR of all event masks selected by the querying client. The
do not propagate mask member is set to the bitwise inclusive OR of the set of
events that should not propagate.

The override redirect member is set to indicate whether this window overrides
structure control facilities and can be True or False. Window manager clients should
ignore the window if this member is True.

The screen member is set to a screen pointer that gives you a back pointer to the
correct screen. This makes it easier to obtain the screen information without having
to loop over the root window fields to see which field matches.

XGet W ndowAt t ri but es can generate BadDrawable and BadWindow errors.

To obtain the current geometry of a given drawable, use XGet Geonetry.

Status XGet Geonetry(*displ ay, d, *root _return, *y return,
*hei ght _return, *border_width return, *depth_return);

display Specifies the connection to the X server.

d Specifies the drawable(Dr.

root return Returns the root window.

53

Window Informa-
tion Functions

X_return

y return Return the x and y coordinates that define the lo-
cation of the drawable. For a window, these coordi-
nates specify the upper-left outer corner relative to
its parent's origin. For pixmaps, these coordinates
are always zero.

width_return

height return Return the drawable's dimensions (width and
height). For a window, these dimensions specify the
inside size, not including the border.

border width _return Returns the border width in pixels. If the drawable is
a pixmap, it returns zero.

depth _return Returns the depth of the drawable (bits per pixel for
the object).

The XGet Geonet ry function returns the root window and the current geometry of
the drawable. The geometry of the drawable includes the x and y coordinates, width
and height, border width, and depth. These are described in the argument list. It is
legal to pass to this function a window whose class is InputOnly.

XGet Geonet ry can generate a BadDrawable error.

Translating Screen Coordinates

Applications sometimes need to perform a coordinate transformation from the co-
ordinate space of one window to another window or need to determine which win-
dow the pointing device is in. XTr ansl at eCoor di nat es and XQuer yPoi nt er fulfill
these needs (and avoid any race conditions) by asking the X server to perform these
operations.

To translate a coordinate in one window to the coordinate space of another window,
use XTr ansl at eCoor di nat es.

Bool XTransl at eCoordi nates(*display, dest_w, src_y, *dest_y return,
*child_ return);

display Specifies the connection to the X server.

src w Specifies the source window.

dest w Specifies the destination window.

Src X

src y gpecify the x and y coordinates within the source win-
ow.

dest x_return

dest y return Return the x and y coordinates within the destination
window.

54

Window Informa-
tion Functions

child return Returns the child if the coordinates are contained in
a mapped child of the destination window.

If XTr ansl at eCoor di nat es returns True, it takes the src _x and src_y coordinates rel-
ative to the source window's origin and returns these coordinates to dest x return
and dest y return relative to the destination window's origin. If XTr ansl at eCoor -

di nat es returns False, src_w and dest_w are on different screens, and dest_x return
and dest y return are zero. If the coordinates are contained in a mapped child of
dest_w, that child is returned to child return. Otherwise, child return is set to None.

XTr ansl at eCoor di nat es can generate a BadWindow error.

To obtain the screen coordinates of the pointer or to determine the pointer coordi-
nates relative to a specified window, use XQuer yPoi nt er .

Bool XQueryPointer(*display, W, *chil d_return, *root _y return,
*Wn_y return, *mask return);

display Specifies the connection to the X server.

w Specifies the window.

root return Returns the root window (Ro.

child return Returns the child window that the pointer is located
in, if any.

root x_return

root_y return Return the pointer coordinates relative to the root
window's origin.

win_x_return

win_y return Return the pointer coordinates relative to the speci-
fied window.

mask_return Returns the current state of the modifier keys and
pointer buttons.

The XQuer yPoi nt er function returns the root window the pointer is logically on
and the pointer coordinates relative to the root window's origin. If XQuer yPoi nt -
er returns False, the pointer is not on the same screen as the specified window,
and XQuer yPoi nt er returns None to child return and zero to win x return and
win y return. If XQuer yPoi nt er returns True, the pointer coordinates returned to
win x return and win y return are relative to the origin of the specified window.
In this case, XQuer yPoi nt er returns the child that contains the pointer, if any, or
else None to child return.

XQuer yPoi nt er returns the current logical state of the keyboard buttons and the
modifier keys in mask return. It sets mask return to the bitwise inclusive OR of one
or more of the button or modifier key bitmasks to match the current state of the
mouse buttons and the modifier keys.

Note that the logical state of a device (as seen through Xlib) may lag the physical
state if device event processing is frozen (see section 12.1).

XQuer yPoi nt er can generate a BadWindow error.

55

Window Informa-
tion Functions

Properties and Atoms

A property is a collection of named, typed data. The window system has a set of
predefined properties (for example, the name of a window, size hints, and so on),
and users can define any other arbitrary information and associate it with windows.
Each property has a name, which is an ISO Latin-1 string. For each named proper-
ty, a unique identifier (atom) is associated with it. A property also has a type, for
example, string or integer. These types are also indicated using atoms, so arbitrary
new types can be defined. Data of only one type may be associated with a single
property name. Clients can store and retrieve properties associated with windows.
For efficiency reasons, an atom is used rather than a character string. Xl nt er nAt om
can be used to obtain the atom for property names.

A property is also stored in one of several possible formats. The X server can store
the information as 8-bit quantities, 16-bit quantities, or 32-bit quantities. This per-
mits the X server to present the data in the byte order that the client expects. If
you define further properties of complex type, you must encode and decode them
yourself. These functions must be carefully written if they are to be portable. For
further information about how to write a library extension, see appendix C. The
type of a property is defined by an atom, which allows for arbitrary extension in
this type scheme.

Certain property names are predefined in the server for commonly used functions.
The atoms for these properties are defined in <X11/ Xat om h>. To avoid name
clashes with user symbols, the #def i ne name for each atom has the XA prefix. For
an explanation of the functions that let you get and set much of the information
stored in these predefined properties, see chapter 14.

The core protocol imposes no semantics on these property names, but semantics are
specified in other X Consortium standards, such as the Inter-Client Communication
Conventions Manual and the X Logical Font Description Conventions.

You can use properties to communicate other information between applications. The
functions described in this section let you define new properties and get the unique
atom IDs in your applications.

Although any particular atom can have some client interpretation within each of the
name spaces, atoms occur in five distinct name spaces within the protocol:

* Selections

* Property names
* Property types
* Font properties

* Type of a ClientMessage event (none are built into the X server)

The built-in selection property names are:
PRIMARY SECONDARY

The built-in property names are:

56

Window Informa-
tion Functions

CUT BUFFERO
CUT BUFFERI

CUT BUFFER2

CUT BUFFER3

CUT BUFFER4

CUT BUFFER5

CUT BUFFER6

CUT BUFFER7
RGB_BEST MAP
RGB_BLUE_MAP
RGB_DEFAULT MAP
RGB_GRAY MAP
RGB_GREEN MAP
RGB_RED MAP

The built-in property types are:

ARC

ATOM
BITMAP
CARDINAL
COLORMAP
CURSOR
DRAWABLE
FONT
INTEGER

The built-in font property names are:

MIN SPACE

NORM SPACE

MAX SPACE

END SPACE
SUPERSCRIPT X
SUPERSCRIPT Y
SUBSCRIPT X
SUBSCRIPT Y
UNDERLINE POSITION
UNDERLINE THICKNESS
FONT NAME

FULL NAME

RESOURCE_MANAGER
WM_CLASS

WM _CLIENT MACHINE
WM_COLORMAP WINDOWS
WM_COMMAND
WM_HINTS

WM _ICON NAME

WM _ICON_SIZE

WM _NAME

WM_NORMAL HINTS
WM_PROTOCOLS
WM_STATE

WM _TRANSIENT FOR
WM_ZOOM HINTS

PIXMAP
POINT
RGB_COLOR MAP
RECTANGLE
STRING
VISUALID
WINDOW
WM_HINTS
WM_SIZE_HINTS

STRIKEOUT DESCENT
STRIKEOUT ASCENT
ITALIC ANGLE

X HEIGHT

QUAD WIDTH
WEIGHT

POINT SIZE
RESOLUTION
COPYRIGHT

NOTICE

FAMILY NAME

CAP HEIGHT

For further information about font properties, see section 8.5.

To return an atom for a given name, use Xl nt er nAt om

At om Xl nternAt om(*di spl ay,
display

atom_name

*at om _nane,

only if_exists);

Specifies the connection to the X server.

Specifies the name associated with the atom you

want returned.

only if exists

Specifies a Boolean value that indicates whether the

atom must be created.

57

Window Informa-
tion Functions

The Xl nt er nAt omfunction returns the atom identifier associated with the specified
atom name string. If only if exists is False, the atom is created if it does not ex-
ist. Therefore, XI nt er nAt omcan return None. If the atom name is not in the Host
Portable Character Encoding, the result is implementation-dependent. Uppercase
and lowercase matter; the strings *~ "thing', " "Thing", and " "thinG" all designate dif-
ferent atoms. The atom will remain defined even after the client's connection closes.
It will become undefined only when the last connection to the X server closes.

Xl nt er nAt omcan generate BadAlloc and BadValue errors.
To return atoms for an array of names, use Xl nt er nAt ons.

Status Xl nternAtons(*display, **names, count, only_ if_exists,
*atonms_return);

display Specifies the connection to the X server.

names Specifies the array of atom names.

count Specifies the number of (Cn.

only if exists Specifies a Boolean value that indicates whether the

atom must be created.
atoms_return Returns the atoms.

The XI nt er nAt ons function returns the atom identifiers associated with the speci-
fied names. The atoms are stored in the atoms return array supplied by the caller.
Calling this function is equivalent to calling Xl nt er nAt omfor each of the names in
turn with the specified value of only if exists, but this function minimizes the num-
ber of round-trip protocol exchanges between the client and the X server.

This function returns a nonzero status if atoms are returned for all of the names;
otherwise, it returns zero.

Xl nt er nAt ons can generate BadAlloc and BadValue errors.
To return a name for a given atom identifier, use XGet At oniNane.

char *XGet At omNanme(*di splay, atom;

display Specifies the connection to the X server.
atom Specifies the atom for the property name you want re-
turned.

The XGet At omNane function returns the name associated with the specified atom. If
the data returned by the serverisin the Latin Portable Character Encoding, then the
returned string is in the Host Portable Character Encoding. Otherwise, the result
is implementation-dependent. To free the resulting string, call .

XCGet At omNane can generate a BadAtom error.
To return the names for an array of atom identifiers, use XGet At omNanes.
St at us XCGet At omNanes(*di splay, *atonms, count, **panes_return);

display Specifies the connection to the X server.

58

Window Informa-
tion Functions

atoms Specifies the array of atoms.
count Specifies the number of (Cn.
names _return Returns the atom names.

The XGet At omNanes function returns the names associated with the specified atoms.
The names are stored in the names return array supplied by the caller. Calling this
function is equivalent to calling XGet At onNane for each of the atoms in turn, but
this function minimizes the number of round-trip protocol exchanges between the
client and the X server.

This function returns a nonzero status if names are returned for all of the atoms;
otherwise, it returns zero.

XCGet At omNanes can generate a BadAtom error.

Obtaining and Changing Window Properties

You can attach a property list to every window. Each property has a name, a type,
and a value (see section 4.3). The value is an array of 8-bit, 16-bit, or 32-bit quanti-
ties, whose interpretation is left to the clients. The type char is used to represent
8-bit quantities, the type short is used to represent 16-bit quantities, and the type
long is used to represent 32-bit quantities.

Xlib provides functions that you can use to obtain, change, update, or interchange
window properties. In addition, Xlib provides other utility functions for inter-client
communication (see chapter 14).

To obtain the type, format, and value of a property of a given window, use XGet W n-

dowPr operty.

int XGet W ndowProperty(display, W, property, | ong_of f set,
| ong_I engt h, del et e, req_type, actual type_return,
actual _format_return, nitens_return, bytes_after_return,

prop_return);

display Specifies the connection to the X server.

w Specifies the window (Wi.

property Specifies the property name.

long offset Specifies the offset in the specified property (in 32-

bit quantities) where the data is to be retrieved.

long length Specifies the length in 32-bit multiples of the data to
be retrieved.

delete Specifies a Boolean value that determines whether
the property is deleted.

req type Specifies the atom identifier associated with the
property type or AnyPropertyType.

actual type return Returns the atom identifier that defines the actual
type of the property.

59

Window Informa-
tion Functions

actual format return Returns the actual format of the property.

nitems_return Returns the actual number of 8-bit, 16-bit, or 32-bit
items stored in the prop return data.

bytes after return Returns the number of bytes remaining to be read in
the property if a partial read was performed.

prop _return Returns the data in the specified format.

The XGet W ndowPr oper t y function returns the actual type of the property; the actual
format of the property; the number of 8-bit, 16-bit, or 32-bit items transferred; the
number of bytes remaining to be read in the property; and a pointer to the data
actually returned. XGet W ndowPr operty sets the return arguments as follows:

» If the specified property does not exist for the specified window, XGet W n-
dowProperty returns None to actual type return and the value zero to
actual format return and bytes after return. The nitems return argument is
empty. In this case, the delete argument is ignored.

 If the specified property exists but its type does not match the specified type,
XGet W ndowPr oper t y returns the actual property type to actual type return, the
actual property format (never zero) to actual format return, and the property
length in bytes (even if the actual format returnis 16 or 32) to bytes after return.
It also ignores the delete argument. The nitems return argument is empty.

» If the specified property exists and either you assign AnyPropertyType to the
req type argument or the specified type matches the actual property type,
XGet W ndowPr oper t y returns the actual property type to actual type return and
the actual property format (never zero) to actual format return. It also returns a
value to bytes after return and nitems return, by defining the following values:

¢ N = actual length of the stored property in bytes (even if the format is 16 or 32)
I =4*long offset T =N-1IL = MINIMUM(T, 4 *long length) A=N-(I+ L)

* The returned value starts at byte index I in the property (indexing from zero),
and its length in bytes is L. If the value for long offset causes L to be negative,
a BadValue error results. The value of bytes after return is A, giving the number
of trailing unread bytes in the stored property.

If the returned format is 8, the returned data is represented as a char array. If the
returned format is 16, the returned data is represented as a short array and should
be cast to that type to obtain the elements. If the returned format is 32, the returned
data is represented as a long array and should be cast to that type to obtain the
elements.

XGet W ndowPr operty always allocates one extra byte in prop return (even if the
property is zero length) and sets it to zero so that simple properties consisting of
characters do not have to be copied into yet another string before use.

If delete is True and bytes after return is zero, XGet W ndowPr operty deletes the
property from the window and generates a PropertyNotify event on the window.

The function returns Success if it executes successfully. To free the resulting data,
use .

XCGet W ndowPr oper ty can generate BadAtom, BadValue, and BadWindow errors.

60

Window Informa-
tion Functions

To obtain a given window's property list, use XLi st Properti es.

At om *XLi st Properties(*display, w *numprop_return);

display Specifies the connection to the X server.
w Specifies the window (Wi.
num_prop_return Returns the length of the properties array.

The XLi st Properti es function returns a pointer to an array of atom properties that
are defined for the specified window or returns NULL if no properties were found.
To free the memory allocated by this function, use .

XLi st Properties can generate a BadWindow error.
To change a property of a given window, use XChangePr operty.

XChangeProperty(*display, w, type, fornmat, node, *data, nelenents);

display Specifies the connection to the X server.

w Specifies the window (Wi.

property Specifies the property name.

type Specifies the type of the property. The X server does not

interpret the type but simply passes it back to an appli-
cation that later calls XGet W ndowPr operty.

format Specifies whether the data should be viewed as a list of 8-
bit, 16-bit, or 32-bit quantities. Possible values are 8, 16,
and 32. This information allows the X server to correct-
ly perform byte-swap operations as necessary. If the for-
mat is 16-bit or 32-bit, you must explicitly cast your data
pointer to an (unsigned char *) in the call to XChange-
Property.

mode Specifies the mode of the operation. You can pass Prop-
ModeReplace, PropModePrepend, or PropModeAppend.

data Specifies the property data.
nelements Specifies the number of elements of the specified data
format.

The XChangeProperty function alters the property for the specified window and
causes the X server to generate a PropertyNotify event on that window. XChange-
Property performs the following:

* If mode is PropModeReplace, XChangePr operty discards the previous property
value and stores the new data.

¢ If mode is PropModePrepend or PropModeAppend, XChangePr oper ty inserts the
specified data before the beginning of the existing data or onto the end of the
existing data, respectively. The type and format must match the existing property

61

Window Informa-
tion Functions

value, or a BadMatch error results. If the property is undefined, it is treated as
defined with the correct type and format with zero-length data.

If the specified format is 8, the property data must be a char array. If the specified
format is 16, the property data must be a short array. If the specified format is 32,
the property data must be a long array.

The lifetime of a property is not tied to the storing client. Properties remain until
explicitly deleted, until the window is destroyed, or until the server resets. For a
discussion of what happens when the connection to the X server is closed, see sec-
tion 2.6. The maximum size of a property is server dependent and can vary dynam-
ically depending on the amount of memory the server has available. (If there is in-
sufficient space, a BadAlloc error results.)

XChangePr operty can generate BadAlloc, BadAtom, BadMatch, BadValue, and Bad-
Window errors.

To rotate a window's property list, use XRot at eW ndowPr operti es.

XRot at eW ndowPr operties(*display, w, properties[], numprop, npo-
sitions);

display Specifies the connection to the X server.

w Specifies the window.

properties Specifies the array of properties that are to be rotated.
num_prop Specifies the length of the properties array.

npositions Specifies the rotation amount.

The XRot at eW ndowPr operti es function allows you to rotate properties on a win-
dow and causes the X server to generate PropertyNotify events. If the property
names in the properties array are viewed as being numbered starting from zero and
if there are num prop property names in the list, then the value associated with
property name I becomes the value associated with property name (I + npositions)
mod N for all I from zero to N — 1. The effect is to rotate the states by npositions
places around the virtual ring of property names (right for positive npositions, left
for negative npositions). If npositions mod N is nonzero, the X server generates a
PropertyNotify event for each property in the order that they are listed in the array.
If an atom occurs more than once in the list or no property with that name is defined
for the window, a BadMatch error results. If a BadAtom or BadMatch error results,
no properties are changed.

XRot at eW ndowPr operti es can generate BadAtom, BadMatch, and BadWindow er-
rors.

To delete a property on a given window, use XDel et ePr operty.

XDel et eProperty(*display, w, property);

display Specifies the connection to the X server.
w Specifies the window (Wi.
property Specifies the property name.

62

Window Informa-
tion Functions

The XDel et eProperty function deletes the specified property only if the property
was defined on the specified window and causes the X server to generate a Proper-
tyNotify event on the window unless the property does not exist.

XDel et eProperty can generate BadAtom and BadWindow errors.

Selections

Selections are one method used by applications to exchange data. By using the
property mechanism, applications can exchange data of arbitrary types and can
negotiate the type of the data. A selection can be thought of as an indirect property
with a dynamic type. That is, rather than having the property stored in the X server,
the property is maintained by some client (the owner). A selection is global in nature
(considered to belong to the user but be maintained by clients) rather than being
private to a particular window subhierarchy or a particular set of clients.

Xlib provides functions that you can use to set, get, or request conversion of selec-
tions. This allows applications to implement the notion of current selection, which
requires that notification be sent to applications when they no longer own the se-
lection. Applications that support selection often highlight the current selection and
so must be informed when another application has acquired the selection so that
they can unhighlight the selection.

When a client asks for the contents of a selection, it specifies a selection target
type. This target type can be used to control the transmitted representation of the
contents. For example, if the selection is " the last thing the user clicked on'" and
that is currently an image, then the target type might specify whether the contents
of the image should be sent in XY format or Z format.

The target type can also be used to control the class of contents transmitted, for
example, asking for the "“looks" (fonts, line spacing, indentation, and so forth) of a
paragraph selection, not the text of the paragraph. The target type can also be used
for other purposes. The protocol does not constrain the semantics.

To set the selection owner, use XSet Sel ecti onOaner .

XSet Sel ecti onOwner(*display, selection, owner, tine);

display Specifies the connection to the X server.
selection Specifies the selection atom.
owner Specifies the owner of the specified selection atom. You

can pass a window or None.

time Specifies the time. You can pass either a timestamp or
CurrentTime.

The XSet Sel ecti onOwner function changes the owner and last-change time for the
specified selection and has no effect if the specified time is earlier than the current
last-change time of the specified selection or is later than the current X server time.
Otherwise, the last-change time is set to the specified time, with CurrentTime re-
placed by the current server time. If the owner window is specified as None, then
the owner of the selection becomes None (that is, no owner). Otherwise, the owner
of the selection becomes the client executing the request.

63

Window Informa-
tion Functions

If the new owner (whether a client or None) is not the same as the current owner
of the selection and the current owner is not None, the current owner is sent a
SelectionClear event. If the client that is the owner of a selection is later terminated
(that is, its connection is closed) or if the owner window it has specified in the
request is later destroyed, the owner of the selection automatically reverts to None,
but the last-change time is not affected. The selection atom is uninterpreted by
the X server. XGet Sel ecti onOwner returns the owner window, which is reported in
SelectionRequest and SelectionClear events. Selections are global to the X server.

XSet Sel ecti onOwner can generate BadAtom and BadWindow errors.
To return the selection owner, use XGet Sel ecti onOaner .

W ndow XGCet Sel ecti onOwner (*di splay, selection);

display Specifies the connection to the X server.
selection Specifies the selection atom (Se.

The XGet Sel ecti onOwner function returns the window ID associated with the win-
dow that currently owns the specified selection. If no selection was specified, the
function returns the constant None. If None is returned, there is no owner for the
selection.

XGet Sel ecti onOawner can generate a BadAtom error.
To request conversion of a selection, use XConvert Sel ecti on.

XConvert Sel ection(*display, target, property, requestor, tine);

display Specifies the connection to the X server.

selection Specifies the selection atom.

target Specifies the target atom.

property Specifies the property name. You also can pass None.

requestor Specifies the requestor.

time Specifies the time. You can pass either a timestamp or
CurrentTime.

XConvert Sel ect i on requests that the specified selection be converted to the spec-
ified target type:

 If the specified selection has an owner, the X server sends a SelectionRequest
event to that owner.

* If no owner for the specified selection exists, the X server generates a Selection-
Notify event to the requestor with property None.

The arguments are passed on unchanged in either of the events. There are two
predefined selection atoms: PRIMARY and SECONDARY.

XConvert Sel ecti on can generate BadAtom and BadWindow errors.

64

Chapter 5. Pixmap and Cursor
Functions

Creating and Freeing Pixmaps

Pixmaps can only be used on the screen on which they were created. Pixmaps are
off-screen resources that are used for various operations, such as defining cursors
as tiling patterns or as the source for certain raster operations. Most graphics re-
quests can operate either on a window or on a pixmap. A bitmap is a single bit-
plane pixmap.

To create a pixmap of a given size, use XCr eat ePi xnmap.

Pi xmap XCreat ePi xmap(*di splay, d, height, depth);

display Specifies the connection to the X server.

d Specifies which screen the pixmap is created on.
width

height Specify the width and height(Wh.

depth Specifies the depth of the pixmap.

The XCr eat ePi xmap function creates a pixmap of the width, height, and depth you
specified and returns a pixmap ID that identifies it. It is valid to pass an InputOnly
window to the drawable argument. The width and height arguments must be nonze-
ro, or a BadValue error results. The depth argument must be one of the depths sup-
ported by the screen of the specified drawable, or a BadValue error results.

The server uses the specified drawable to determine on which screen to create the
pixmap. The pixmap can be used only on this screen and only with other drawables
of the same depth (see XCopyPl ane for an exception to this rule). The initial contents
of the pixmap are undefined.

XCr eat ePi xmap can generate BadAlloc, BadDrawable, and BadValue errors.

To free all storage associated with a specified pixmap, use XFr eePi xnmap.

XFreePi xmap(*display, pixmap);

display Specifies the connection to the X server.

pixmap Specifies the pixmap.

The XFr eePi xmap function first deletes the association between the pixmap ID and
the pixmap. Then, the X server frees the pixmap storage when there are no refer-

ences to it. The pixmap should never be referenced again.

XFr eePi xmap can generate a BadPixmap error.

65

Pixmap and Cursor Functions

Creating, Recoloring, and Freeing Cursors

Each window can have a different cursor defined for it. Whenever the pointer is in
a visible window, it is set to the cursor defined for that window. If no cursor was
defined for that window, the cursor is the one defined for the parent window.

From X's perspective, a cursor consists of a cursor source, mask, colors, and a
hotspot. The mask pixmap determines the shape of the cursor and must be a depth
of one. The source pixmap must have a depth of one, and the colors determine the
colors of the source. The hotspot defines the point on the cursor that is reported
when a pointer event occurs. There may be limitations imposed by the hardware
on cursors as to size and whether a mask is implemented. XQuer yBest Cur sor can
be used to find out what sizes are possible. There is a standard font for creating
cursors, but Xlib provides functions that you can use to create cursors from an ar-
bitrary font or from bitmaps.

To create a cursor from the standard cursor font, use XCr eat eFont Cur sor .
#include <X11/cursorfont.h>

Cur sor XCreat eFont Cursor(*display, shape);

display Specifies the connection to the X server.

shape Specifies the shape of the cursor.

X provides a set of standard cursor shapes in a special font named cursor. Applica-
tions are encouraged to use this interface for their cursors because the font can
be customized for the individual display type. The shape argument specifies which
glyph of the standard fonts to use.

The hotspot comes from the information stored in the cursor font. The initial colors
of a cursor are a black foreground and a white background (see XRecol or Cur sor).
For further information about cursor shapes, see appendix B.

XCr eat eFont Cur sor can generate BadAlloc and BadValue errors.

To create a cursor from font glyphs, use XCr eat ed yphCur sor.

Cur sor XCr eat ed yphCur sor (*di spl ay, mask_font, mask_char,

*foreground_col or, *background_col or);

display Specifies the connection to the X server.

source font Specifies the font for the source glyph.

mask_font Specifies the font for the mask glyph or None.

source char Specifies the character glyph for the source.

mask_char Specifies the glyph character for the mask.

foreground color Specifies the RGB values for the foreground of the
source.

background color Specifies the RGB values for the background of the
source.

66

Pixmap and Cursor Functions

The XCr eat ed yphCur sor function is similar to XCr eat ePi xmapCur sor except that
the source and mask bitmaps are obtained from the specified font glyphs. The
source char must be a defined glyph in source font, or a BadValue error results.
If mask font is given, mask char must be a defined glyph in mask font, or a Bad-
Value error results. The mask font and character are optional. The origins of the
source char and mask char (if defined) glyphs are positioned coincidently and de-
fine the hotspot. The source char and mask char need not have the same bounding
box metrics, and there is no restriction on the placement of the hotspot relative to
the bounding boxes. If no mask char is given, all pixels of the source are displayed.
You can free the fonts immediately by calling XFr eeFont if no further explicit refer-
ences to them are to be made.

For 2-byte matrix fonts, the 16-bit value should be formed with the bytel member
in the most significant byte and the byte2 member in the least significant byte.

XCr eat ed yphCur sor can generate BadAlloc, BadFont, and BadValue errors.
To create a cursor from two bitmaps, use XCr eat ePi xmapCur sor .

Cur sor XCr eat ePi xmapCur sor (*di spl ay, source, mask,
*foreground_col or, *background color, vy);

display Specifies the connection to the X server.

source Specifies the shape of the source cursor.

mask Specifies the cursor's source bits to be displayed or
None.

foreground color Specifies the RGB values for the foreground of the
source.

background color Specifies the RGB values for the background of the
source.

X

v Specify the x and y coordinates(Xy.

The XCr eat ePi xmapCur sor function creates a cursor and returns the cursor ID as-
sociated with it. The foreground and background RGB values must be specified us-
ing foreground color and background color, even if the X server only has a Stat-
icGray or GrayScale screen. The foreground color is used for the pixels set to 1 in
the source, and the background color is used for the pixels set to 0. Both source
and mask, if specified, must have depth one (or a BadMatch error results) but can
have any root. The mask argument defines the shape of the cursor. The pixels set
to 1 in the mask define which source pixels are displayed, and the pixels set to 0
define which pixels are ignored. If no mask is given, all pixels of the source are
displayed. The mask, if present, must be the same size as the pixmap defined by the
source argument, or a BadMatch error results. The hotspot must be a point within
the source, or a BadMatch error results.

The components of the cursor can be transformed arbitrarily to meet display limi-
tations. The pixmaps can be freed immediately if no further explicit references to
them are to be made. Subsequent drawing in the source or mask pixmap has an
undefined effect on the cursor. The X server might or might not make a copy of the
pixmap.

67

Pixmap and Cursor Functions

XCr eat ePi xmapCur sor can generate BadAlloc and BadPixmap errors.
To determine useful cursor sizes, use XQuer yBest Cur sor .

St at us XQueryBest Cursor(*display, d, height, *height_return);

display Specifies the connection to the X server.
d Specifies the drawable(Dr.

width

height Specify the width and height(Wh.

width_return

height return Return the best width and height that is closest to
the specified width and height.

Some displays allow larger cursors than other displays. The XQueryBest Cur sor
function provides a way to find out what size cursors are actually possible on the
display. It returns the largest size that can be displayed. Applications should be
prepared to use smaller cursors on displays that cannot support large ones.

XQuer yBest Cur sor can generate a BadDrawable error.
To change the color of a given cursor, use XRecol or Cur sor .

XRecol or Cursor(*di splay, cursor, *background color);

display Specifies the connection to the X server.

cursor Specifies the cursor.

foreground color Specifies the RGB values for the foreground of the
source.

background color Specifies the RGB values for the background of the
source.

The XRecol or Cur sor function changes the color of the specified cursor, and if the
cursor is being displayed on a screen, the change is visible immediately. The pixel
members of the XColor structures are ignored; only the RGB values are used.

XRecol or Cur sor can generate a BadCursor error.

To free (destroy) a given cursor, use XFr eeCur sor .

XFreeCursor(*di splay, cursor);

display Specifies the connection to the X server.
cursor Specifies the cursor.

The XFreeCur sor function deletes the association between the cursor resource ID
and the specified cursor. The cursor storage is freed when no other resource refer-
ences it. The specified cursor ID should not be referred to again.

68

Pixmap and Cursor Functions

XFr eeCur sor can generate a BadCursor error.

69

Chapter 6. Color Management
Functions

Each X window always has an associated colormap that provides a level of indirec-
tion between pixel values and colors displayed on the screen. Xlib provides func-
tions that you can use to manipulate a colormap. The X protocol defines colors using
values in the RGB color space. The RGB color space is device dependent; rendering
an RGB value on differing output devices typically results in different colors. Xlib
also provides a means for clients to specify color using device-independent color
spaces for consistent results across devices. Xlib supports device-independent col-
or spaces derivable from the CIE XYZ color space. This includes the CIE XYZ, xyY,
L*u*v¥, and L*a*b* color spaces as well as the TekHVC color space.

This chapter discusses how to:

* Create, copy, and destroy a colormap
* Specify colors by name or value

» Allocate, modify, and free color cells
* Read entries in a colormap

e Convert between color spaces

* Control aspects of color conversion

* Query the color gamut of a screen

¢ Add new color spaces

All functions, types, and symbols in this chapter with the prefix " Xcms" are defined
in <X11/ Xcns. h>. The remaining functions and types are defined in <X11/ Xl i b. h>.

Functions in this chapter manipulate the representation of color on the screen. For
each possible value that a pixel can take in a window, there is a color cell in the
colormap. For example, if a window is 4 bits deep, pixel values 0 through 15 are
defined. A colormap is a collection of color cells. A color cell consists of a triple
of red, green, and blue (RGB) values. The hardware imposes limits on the number
of significant bits in these values. As each pixel is read out of display memory, the
pixel is looked up in a colormap. The RGB value of the cell determines what color
is displayed on the screen. On a grayscale display with a black-and-white monitor,
the values are combined to determine the brightness on the screen.

Typically, an application allocates color cells or sets of color cells to obtain the de-
sired colors. The client can allocate read-only cells. In which case, the pixel values
for these colors can be shared among multiple applications, and the RGB value of
the cell cannot be changed. If the client allocates read/write cells, they are exclu-
sively owned by the client, and the color associated with the pixel value can be
changed at will. Cells must be allocated (and, if read/write, initialized with an RGB
value) by a client to obtain desired colors. The use of pixel value for an unallocated
cell results in an undefined color.

70

Color Management Functions

Because colormaps are associated with windows, X supports displays with multiple
colormaps and, indeed, different types of colormaps. If there are insufficient col-
ormap resources in the display, some windows will display in their true colors, and
others will display with incorrect colors. A window manager usually controls which
windows are displayed in their true colors if more than one colormap is required for
the color resources the applications are using. At any time, there is a set of installed
colormaps for a screen. Windows using one of the installed colormaps display with
true colors, and windows using other colormaps generally display with incorrect
colors. You can control the set of installed colormaps by using XI nst al | Col or map
and XUni nst al | Col or map.

Colormaps are local to a particular screen. Screens always have a default colormap,
and programs typically allocate cells out of this colormap. Generally, you should
not write applications that monopolize color resources. Although some hardware
supports multiple colormaps installed at one time, many of the hardware displays
built today support only a single installed colormap, so the primitives are written to
encourage sharing of colormap entries between applications.

The Def aul t Col or map macro returns the default colormap. The Def aul t Vi sual
macro returns the default visual type for the specified screen. Possible visual types
are StaticGray, GrayScale, StaticColor, PseudoColor, TrueColor, or DirectColor (see
section 3.1).

Color Structures

Functions that operate only on RGB color space values use an XColor structure,
which contains:

typedef struct {
unsi gned | ong pixel; /* pixel value */
unsi gned short red, green, blue; /* rgb val ues */
char flags; /* DoRed, DoG een, DoBlue */
char pad;
} XCol or;

The red, green, and blue values are always in the range 0 to 65535 inclusive, inde-
pendent of the number of bits actually used in the display hardware. The server
scales these values down to the range used by the hardware. Black is represented
by (0,0,0), and white is represented by (65535,65535,65535). In some functions,
the flags member controls which of the red, green, and blue members is used and
can be the inclusive OR of zero or more of DoRed, DoGreen, and DoBlue.

Functions that operate on all color space values use an XcmsColor structure. This
structure contains a union of substructures, each supporting color specification en-
coding for a particular color space. Like the XColor structure, the XcmsColor struc-
ture contains pixel and color specification information (the spec member in the Xcm-
sColor structure).

71

Color Management Functions

t ypedef unsi gned | ong XcnsCol or For mat ; /* Col or Specification Fornat

typedef struct {
uni on {
XcmsRGB RGB;
XcnmsR@BI RGBI ;
XcnsCl EXYZ Cl EXYZ;
XcmsCl EuvY Cl EuvY;
XcmsCl ExyY Cl ExyY;
XcnsCl ELab Cl ELab;
XcmsCl ELuv Cl ELuv;
Xcns TekHVC TekHVC,
XcnsPad Pad;
} spec;
unsi gned | ong pi xel ;
XcnsCol or For mat f or mat ;
} XcnsCol or; /* Xcms Col or Structure */

Because the color specification can be encoded for the various color spaces, encod-
ing for the spec member is identified by the format member, which is of type Xcm-
sColorFormat. The following macros define standard formats.

#def i ne XcnsUndef i nedFor mat 0x00000000

#def i ne Xcns Cl EXYZFor mat 0x00000001 /* CIE XYZ */

#def i ne Xcns Cl EuvYFor mat 0x00000002 /* CIE u'v'Y */
#def i ne XcnsCl Exy YFor mat 0x00000003 /* CIE xyY */

#def i ne XcnsCl ELabFor mat 0x00000004 /* CIE L*a*b* */
#def i ne XcnsCl ELuvFor mat 0x00000005 /* CIE L*u*v* */
#def i ne Xcns Tek HVCFor mat 0x00000006 /* TekHVC */

#def i ne Xcns RGFor mat 0x80000000 /* RGB Device */
#def i ne XcmsRGBI For mat 0x80000001 /* RGB Intensity */

Formats for device-independent color spaces are distinguishable from those for de-
vice-dependent spaces by the 32nd bit. If this bit is set, it indicates that the color
specification is in a device-dependent form; otherwise, it is in a device-independent
form. If the 31st bit is set, this indicates that the color space has been added to
Xlib at run time (see section 6.12.4). The format value for a color space added at
run time may be different each time the program is executed. If references to such
a color space must be made outside the client (for example, storing a color speci-
fication in a file), then reference should be made by color space string prefix (see
XcnsFor mat O Pref i x and XcnsPr ef i xOF For mat).

Data types that describe the color specification encoding for the various color
spaces are defined as follows:

t ypedef doubl e XcnsFl oat ;

typedef struct {
unsi gned short red; /* 0x0000 to Oxffff */

72

*/

Color Management Functions

unsi gned short green; /* 0x0000 to Oxffff */
unsi gned short blue; /* 0x0000 to Oxffff */
} XcnmsRGB; [/* RGB Device */

typedef struct {

XcnsFloat red; /* 0.0 to 1.0 */
XcmsFl oat green; /* 0.0 to 1.0 */
XcnsFl oat blue; /* 0.0 to 1.0 */
} XcmsRGBi; /* REB Intensity */

typedef struct {

XcnsFl oat X;

XcnsFloat Y; /* 0.0 to 1.0 */
XcnsFl oat Z;

} XcmsCl EXYZ; [* CIE XYZ */

typedef struct {

XcmsFl oat u_prime; /* 0.0 to ~0.6 */
XcmsFloat v_prime; /* 0.0 to ~0.6 */
XcnsFloat Y; /* 0.0 to 1.0 */

} XcnsCl EuvY; [/* CIE U V'Y */

typedef struct {

XcmsFloat x; /* 0.0 to ~. 75 */
XcmsFloat y; /* 0.0 to ~.85 */
XcmsFloat Y; /* 0.0 to 1.0 */
} XcnsCl ExyY; [* CIE xyY */

typedef struct {
XcnmsFloat L_star; /* 0.0 to 100.0 */

73

Color Management Functions

XcnsFl oat a_star;
XcnsFl oat b_star;
} XcnsCl ELab; /* CIE L*a*b* */

typedef struct {

XcmsFloat L_star; /* 0.0 to 100.0 */
XcmsFl oat u_star;

XcmsFl oat v_star;

} XcnsCl ELuv; [/* CIE L*u*v* */

typedef struct {

XcmsFloat H /* 0.0 to 360.0 */
XcmsFloat V; /* 0.0 to 100.0 */
XcmsFloat C; /* 0.0 to 100.0 */
} XcnsTekHVC, [* TekHVC */

typedef struct {
XcmsFl oat pado;
XcmsFl oat padil;
XcmsFl oat pad?;
XcmsFl oat pad3;
} XcnmsPad; /* four doubles */

The device-dependent formats provided allow color specification in:
* RGB Intensity (XcmsRGBi)

* Red, green, and blue linear intensity values, floating-point values from 0.0 to 1.0,
where 1.0 indicates full intensity, 0.5 half intensity, and so on.

¢ RGB Device (XcmsRGB)

* Red, green, and blue values appropriate for the specified output device. XcmsRGB
values are of type unsigned short, scaled from 0 to 65535 inclusive, and are in-
terchangeable with the red, green, and blue values in an XColor structure.

It is important to note that RGB Intensity values are not gamma corrected values.
In contrast, RGB Device values generated as a result of converting color specifica-
tions are always gamma corrected, and RGB Device values acquired as a result of
querying a colormap or passed in by the client are assumed by Xlib to be gamma
corrected. The term RGB value in this manual always refers to an RGB Device value.

74

Color Management Functions

Color Strings

Xlib provides a mechanism for using string names for colors. A color string may ei-
ther contain an abstract color name or a numerical color specification. Color strings
are case-insensitive.

Color strings are used in the following functions:

e XAl | ocNamedCol or

* XcnsAl | ocNamedCol or

e XLookupCol or

e XcnsLookupCol or

XPar seCol or
¢ XSt or eNanmedCol or

Xlib supports the use of abstract color names, for example, red or blue. A value
for this abstract name is obtained by searching one or more color name databases.
Xlib first searches zero or more client-side databases; the number, location, and
content of these databases is implementation-dependent and might depend on the
current locale. If the name is not found, Xlib then looks for the color in the X server's
database. If the color name is not in the Host Portable Character Encoding, the
result is implementation-dependent.

A numerical color specification consists of a color space name and a set of values
in the following syntax:

<col or _space_nane>: <val ue>/ .../ <val ue>

The following are examples of valid color strings.

"Cl EXYZ: 0. 3227/ 0. 28133/ 0. 2493"

"RGBi : 1.0/ 0.0/0.0"

"rgh: 00/ ff/00"

"Cl ELuv: 50. 0/0.0/0.0"

The syntax and semantics of numerical specifications are given for each standard
color space in the following sections.

RGB Device String Specification

An RGB Device specification is identified by the prefix " "rgb:'" and conforms to the
following syntax:

rgb: <red>/ <gr een>/ <bl ue>

<red>, <green>, <blue> := h | hh | hhh | hhhh

75

Color Management Functions

h := single hexadecimal digits (case insignificant)

Note that h indicates the value scaled in 4 bits, hh the value scaled in 8 bits, hhh
the value scaled in 12 bits, and hhhh the value scaled in 16 bits, respectively.

Typical examples are the strings " "rgb:ea/75/52" and " "rgb:ccc/320/320", but mixed
numbers of hexadecimal digit strings (" "rgb:ff/a5/0" and " rgb:ccc/32/0") are also
allowed.

For backward compatibility, an older syntax for RGB Device is supported, but its
continued use is not encouraged. The syntax is an initial sharp sign character fol-
lowed by a numeric specification, in one of the following formats:

#RGB (4 bits each)

#RRGGBB (8 bhits each)
#RRRGGGBBB (12 bits each)
#RRRRGGGEBBBB (16 bits each)

The R, G, and B represent single hexadecimal digits. When fewer than 16 bits each
are specified, they represent the most significant bits of the value (unlike the " “rgb:"
syntax, in which values are scaled). For example, the string "~ #3a7" is the same
as = #3000a0007000".

RGB Intensity String Specification

An RGB intensity specification is identified by the prefix " rgbi:" and conforms to
the following syntax:

r gbi : <red>/ <gr een>/ <bl ue>

Note that red, green, and blue are floating-point values between 0.0 and 1.0, inclu-
sive. The input format for these values is an optional sign, a string of numbers pos-
sibly containing a decimal point, and an optional exponent field containing an E or
e followed by a possibly signed integer string.

Device-Independent String Specifications

The standard device-independent string specifications have the following syntax:

Cl EXYZ: <X>/ <Y>/ <Z>
Cl EuvY: <u>/ <v>/ <Y>
Cl ExyY: <x>/ <y>/ <Y>
Cl ELab: <L>/ <a>/
Cl ELuv: <L>/ <u>/ <v>
TekHVC. <H>/ <V>/ <C

All ofthevalues (C,H,V, X, Y, Z, a, b, u, v, y, X) are floating-point values. The syntax for
these values is an optional plus or minus sign, a string of digits possibly containing a
decimal point, and an optional exponent field consisting of an " "E" or " "e" followed
by an optional plus or minus followed by a string of digits.

76

Color Management Functions

Color Conversion Contexts and Gamut Map-
ping

When Xlib converts device-independent color specifications into device-dependent
specifications and vice versa, it uses knowledge about the color limitations of the
screen hardware. This information, typically called the device profile, is available
in a Color Conversion Context (CCC).

Because a specified color may be outside the color gamut of the target screen and
the white point associated with the color specification may differ from the white
point inherent to the screen, Xlib applies gamut mapping when it encounters certain
conditions:

* Gamut compression occurs when conversion of device-independent color specifi-
cations to device-dependent color specifications results in a color out of the target
screen's gamut.

¢ White adjustment occurs when the inherent white point of the screen differs from
the white point assumed by the client.

Gamut handling methods are stored as callbacks in the CCC, which in turn are used
by the color space conversion routines. Client data is also stored in the CCC for each
callback. The CCC also contains the white point the client assumes to be associated
with color specifications (that is, the Client White Point). The client can specify
the gamut handling callbacks and client data as well as the Client White Point. Xlib
does not preclude the X client from performing other forms of gamut handling (for
example, gamut expansion); however, Xlib does not provide direct support for gamut
handling other than white adjustment and gamut compression.

Associated with each colormap is an initial CCC transparently generated by Xlib.
Therefore, when you specify a colormap as an argument to an Xlib function, you are
indirectly specifying a CCC. There is a default CCC associated with each screen.
Newly created CCCs inherit attributes from the default CCC, so the default CCC
attributes can be modified to affect new CCCs.

Xcms functions in which gamut mapping can occur return Status and have specific
status values defined for them, as follows:

¢ XcmsFailure indicates that the function failed.

» XcmsSuccess indicates that the function succeeded. In addition, if the function
performed any color conversion, the colors did not need to be compressed.

* XcmsSuccessWithCompression indicates the function performed color conversion
and at least one of the colors needed to be compressed. The gamut compression
method is determined by the gamut compression procedure in the CCC that is
specified directly as a function argument or in the CCC indirectly specified by
means of the colormap argument.

Creating, Copying, and Destroying Colormaps

To create a colormap for a screen, use XCr eat eCol or map.

77

Color Management Functions

Col ormap XCreateCol ormap(*display, w *visual, alloc);

display Specifies the connection to the X server.

w Specifies the window (Wi.

visual Specifies a visual type supported on the screen. If the visual
type is not one supported by the screen, a BadMatch error
results.

alloc Specifies the colormap entries to be allocated. You can pass

AllocNone or AllocAll.

The XCr eat eCol or map function creates a colormap of the specified visual type for
the screen on which the specified window resides and returns the colormap ID asso-
ciated with it. Note that the specified window is only used to determine the screen.

The initial values of the colormap entries are undefined for the visual classes GrayS-
cale, PseudoColor, and DirectColor. For StaticGray, StaticColor, and TrueColor, the
entries have defined values, but those values are specific to the visual and are not
defined by X. For StaticGray, StaticColor, and TrueColor, alloc must be AllocNone,
or a BadMatch error results. For the other visual classes, if alloc is AllocNone, the
colormap initially has no allocated entries, and clients can allocate them. For infor-
mation about the visual types, see section 3.1.

If alloc is AllocAll, the entire colormap is allocated writable. The initial values of
all allocated entries are undefined. For GrayScale and PseudoColor, the effect is
as if an XAl | ocCol or Cel | s call returned all pixel values from zero to N - 1, where
N is the colormap entries value in the specified visual. For DirectColor, the effect
is as if an XAl | ocCol or Pl anes call returned a pixel value of zero and red mask,
green_mask, and blue mask values containing the same bits as the corresponding
masks in the specified visual. However, in all cases, none of these entries can be
freed by using XFr eeCol or s.

XCr eat eCol or nap can generate BadAlloc, BadMatch, BadValue, and BadWindow er-
rors.

To create a new colormap when the allocation out of a previously shared colormap
has failed because of resource exhaustion, use XCopyCol or mapAndFr ee.

Col or map XCopyCol or mapAndFree(*di splay, col ormap);
display Specifies the connection to the X server.
colormap Specifies the colormap.

The XCopyCol or mapAndFr ee function creates a colormap of the same visual type
and for the same screen as the specified colormap and returns the new colormap
ID. It also moves all of the client's existing allocation from the specified colormap
to the new colormap with their color values intact and their read-only or writable
characteristics intact and frees those entries in the specified colormap. Color values
in other entries in the new colormap are undefined. If the specified colormap was
created by the client with alloc set to AllocAll, the new colormap is also created
with AllocAll, all color values for all entries are copied from the specified colormap,
and then all entries in the specified colormap are freed. If the specified colormap
was not created by the client with AllocAll, the allocations to be moved are all those

78

Color Management Functions

pixels and planes that have been allocated by the client using XAl | ocCol or, XAl -
| ocNanedCol or, XAl | ocCol or Cel I s, or XAl | ocCol or Pl anes and that have not been
freed since they were allocated.

XCopyCol or mapAndFr ee can generate BadAlloc and BadColor errors.
To destroy a colormap, use XFr eeCol or map.

XFreeCol ormap(*di splay, colormap);

display Specifies the connection to the X server.
colormap Specifies the colormap (Cm.

The XFr eeCol or map function deletes the association between the colormap resource
ID and the colormap and frees the colormap storage. However, this function has no
effect on the default colormap for a screen. If the specified colormap is an installed
map for a screen, it is uninstalled (see XUni nst al | Col or map). If the specified col-
ormap is defined as the colormap for a window (by XCr eat eW ndow, XSet W ndowCol -
or map, or XChangeW ndowAt t ri but es), XFr eeCol or map changes the colormap asso-
ciated with the window to None and generates a ColormapNotify event. X does not
define the colors displayed for a window with a colormap of None.

XFr eeCol or map can generate a BadColor error.

Mapping Color Names to Values

To map a color name to an RGB value, use XLookupCol or.

St at us XLookupCaol or (*di spl ay, col or map, *col or _nane,
*screen_def _return);

display Specifies the connection to the X server.
colormap Specifies the colormap.
color name Specifies the color name string (for example, red)

whose color definition structure you want returned.

exact def return Returns the exact RGB values.
screen_def return Returns the closest RGB values provided by the hard-
ware.

The XLookupCol or function looks up the string name of a color with respect to the
screen associated with the specified colormap. It returns both the exact color val-
ues and the closest values provided by the screen with respect to the visual type
of the specified colormap. If the color name is not in the Host Portable Character
Encoding, the result is implementation-dependent. Use of uppercase or lowercase
does not matter. XLookupCol or returns nonzero if the name is resolved; otherwise,
it returns zero.

XLookupCol or can generate a BadColor error.
To map a color name to the exact RGB value, use XPar seCol or .

St at us XParseCol or (*di splay, colormap, *spec, *exact_def_return);

79

Color Management Functions

display Specifies the connection to the X server.

colormap Specifies the colormap.

spec Specifies the color name string; case is ignored.
exact _def return Returns the exact color value for later use and sets

the DoRed, DoGreen, and DoBlue flags.

The XPar seCol or function looks up the string name of a color with respect to the
screen associated with the specified colormap. It returns the exact color value. If
the color name is not in the Host Portable Character Encoding, the result is imple-
mentation-dependent. Use of uppercase or lowercase does not matter. XPar seCol or
returns nonzero if the name is resolved; otherwise, it returns zero.

XPar seCol or can generate a BadColor error.
To map a color name to a value in an arbitrary color space, use XcnsLookupCol or .

Status XcnsLookupCol or (*di spl ay, col or map, *col or_string,
*col or_screen_return, result_format);

display Specifies the connection to the X server.

colormap Specifies the colormap.

color string Specifies the color string(St.

color _exact return Returns the color specification parsed from the color

string or parsed from the corresponding string found
in a color-name database.

color _screen_return Returns the color that can be reproduced on the
screen.
result format Specifies the color format for the returned

color specifications (color screen return and
color exact return arguments). If the format is Xcm-
sUndefinedFormat and the color string contains a
numerical color specification, the specification is re-
turned in the format used in that numerical color
specification. If the format is XcmsUndefinedFormat
and the color string contains a color name, the spec-
ification is returned in the format used to store the
color in the database.

The XcnsLookupCol or function looks up the string name of a color with respect
to the screen associated with the specified colormap. It returns both the exact col-
or values and the closest values provided by the screen with respect to the visual
type of the specified colormap. The values are returned in the format specified by
result format. If the color name is not in the Host Portable Character Encoding,
the result is implementation-dependent. Use of uppercase or lowercase does not
matter. XcnmsLookupCol or returns XcmsSuccess or XcmsSuccessWithCompression
if the name is resolved; otherwise, it returns XcmsFailure. If XcmsSuccessWithCom-
pression is returned, the color specification returned in color screen return is the
result of gamut compression.

80

Color Management Functions

Allocating and Freeing Color Cells

There are two ways of allocating color cells: explicitly as read-only entries, one
pixel value at a time, or read/write, where you can allocate a number of color cells
and planes simultaneously. A read-only cell has its RGB value set by the server.
Read/write cells do not have defined colors initially; functions described in the next
section must be used to store values into them. Although it is possible for any client
to store values into a read/write cell allocated by another client, read/write cells
normally should be considered private to the client that allocated them.

Read-only colormap cells are shared among clients. The server counts each alloca-
tion and freeing of the cell by clients. When the last client frees a shared cell, the
cell is finally deallocated. If a single client allocates the same read-only cell multiple
times, the server counts each such allocation, not just the first one.

To allocate a read-only color cell with an RGB value, use XAl | ocCol or .

Status XAl |l ocCol or(*display, colormap, *screen_in_out);

display Specifies the connection to the X server.

colormap Specifies the colormap.

screen_in_out Specifies and returns the values actually used in the
colormap.

The XAl | ocCol or function allocates a read-only colormap entry corresponding to
the closest RGB value supported by the hardware. XAl | ocCol or returns the pixel
value of the color closest to the specified RGB elements supported by the hardware
and returns the RGB value actually used. The corresponding colormap cell is read-
only. In addition, XAl | ocCol or returns nonzero if it succeeded or zero if it failed.
Multiple clients that request the same effective RGB value can be assigned the same
read-only entry, thus allowing entries to be shared. When the last client deallocates
a shared cell, it is deallocated. XAl | ocCol or does not use or affect the flags in the
XColor structure.

XAl | ocCol or can generate a BadColor error. delim %%

To allocate a read-only color cell with a color in arbitrary format, use XcnsAl | oc-
Col or.

Status XcnsAl | ocCol or (*di spl ay, col or map, *col or _i n_out,
result_format);

display Specifies the connection to the X server.
colormap Specifies the colormap.
color in out Specifies the color to allocate and returns the pixel

and color that is actually used in the colormap.

result format Specifies the color format for the returned color
specification.

The XcnsAl | ocCol or function is similar to XAl | ocCol or except the color can be
specified in any format. The XcnsAl | ocCol or function ultimately calls XAl | ocCol or

81

Color Management Functions

to allocate a read-only color cell (colormap entry) with the specified color. XcnsAl -
| ocCol or first converts the color specified to an RGB value and then passes this
to XAl | ocCol or. XcnsAl | ocCol or returns the pixel value of the color cell and the
color specification actually allocated. This returned color specification is the result
of converting the RGB value returned by XAl | ocCol or into the format specified with
the result format argument. If there is no interest in a returned color specification,
unnecessary computation can be bypassed if result format is set to XcmsRGBFor-
mat. The corresponding colormap cell is read-only. If this routine returns XcmsFail-
ure, the color in out color specification is left unchanged.

XcnsAl | ocCol or can generate a BadColor error.

To allocate a read-only color cell using a color name and return the closest color
supported by the hardware in RGB format, use XAl | ocNanedCol or .

Status XAl | ocNanedCol or (*di spl ay, col or map, *col or _nane,
*exact _def _return);

display Specifies the connection to the X server.
colormap Specifies the colormap.
color name Specifies the color name string (for example, red)

whose color definition structure you want returned.

screen_def return Returns the closest RGB values provided by the hard-
ware.
exact _def return Returns the exact RGB values.

The XAl | ocNanmedCol or function looks up the named color with respect to the screen
that is associated with the specified colormap. It returns both the exact database
definition and the closest color supported by the screen. The allocated color cell
is read-only. The pixel value is returned in screen def return. If the color name
is not in the Host Portable Character Encoding, the result is implementation-de-
pendent. Use of uppercase or lowercase does not matter. If screen def return and
exact def return point to the same structure, the pixel field will be set correctly,
but the color values are undefined. XAl | ocNamedCol or returns nonzero if a cell is
allocated; otherwise, it returns zero.

XAl | ocNanmedCol or can generate a BadColor error.

To allocate a read-only color cell using a color name and return the closest color
supported by the hardware in an arbitrary format, use XcnsAl | ocNanedCol or .

Status XcnsAl |l ocNanmedCol or (*di spl ay, col or map, *col or_string,
*col or_screen_return, *color_exact_return, result_format);

display Specifies the connection to the X server.

colormap Specifies the colormap.

color string Specifies the color string(St.

color screen return Returns the pixel value of the color cell and color

specification that actually is stored for that cell.

82

Color Management Functions

color _exact return Returns the color specification parsed from the color
string or parsed from the corresponding string found
in a color-name database.

result format Specifies the color format for the returned
color specifications (color screen return and
color exact return arguments). If the format is Xcm-
sUndefinedFormat and the color string contains a
numerical color specification, the specification is re-
turned in the format used in that numerical color
specification. If the format is XcmsUndefinedFormat
and the color string contains a color name, the spec-
ification is returned in the format used to store the
color in the database.

The XcnsAl | ocNanedCol or function is similar to XAl | ocNanedCol or except that the
color returned can be in any format specified. This function ultimately calls XAl -
| ocCol or to allocate a read-only color cell with the color specified by a color string.
The color string is parsed into an XcmsColor structure (see XcnsLookupCol or), con-
verted to an RGB value, and finally passed to XAl | ocCol or . If the color name is not
in the Host Portable Character Encoding, the result is implementation-dependent.
Use of uppercase or lowercase does not matter.

This function returns both the color specification as a result of parsing (exact speci-
fication) and the actual color specification stored (screen specification). This screen
specification is the result of converting the RGB value returned by XAl | ocCol or
into the format specified in result format. If there is no interest in a returned color
specification, unnecessary computation can be bypassed if result format is set to
XcmsRGBFormat. If color screen return and color exact return point to the same
structure, the pixel field will be set correctly, but the color values are undefined.

XcnsAl | ocNanmedCol or can generate a BadColor error.

To allocate read/write color cell and color plane combinations for a PseudoColor
model, use XAl | ocCol or Cel | s.

St at us XAl | ocCol or Cel | s(*di spl ay, col or map, contig,
pl ane_masks return[], nplanes, pixels return[], npixels);

display Specifies the connection to the X server.

colormap Specifies the colormap.

contig Specifies a Boolean value that indicates whether the

planes must be contiguous.
plane _mask_return Returns an array of plane masks.

nplanes Specifies the number of plane masks that are to be
returned in the plane masks array.

pixels return Returns an array of pixel values.

npixels Specifies the number of pixel values that are to be
returned in the pixels return array.

83

Color Management Functions

The XAl | ocCol or Cel | s function allocates read/write color cells. The number of col-
ors must be positive and the number of planes nonnegative, or a BadValue error
results. If ncolors and nplanes are requested, then ncolors pixels and nplane plane
masks are returned. No mask will have any bits set to 1 in common with any other
mask or with any of the pixels. By ORing together each pixel with zero or more

masks, ncolors x 2"P9"®8 distinct pixels can be produced. All of these are allocated
writable by the request. For GrayScale or PseudoColor, each mask has exactly one
bit set to 1. For DirectColor, each has exactly three bits set to 1. If contig is True
and if all masks are ORed together, a single contiguous set of bits set to 1 will be
formed for GrayScale or PseudoColor and three contiguous sets of bits set to 1 (one
within each pixel subfield) for DirectColor. The RGB values of the allocated entries
are undefined. XAl | ocCol or Cel | s returns nonzero if it succeeded or zero if it failed.

XAl | ocCol or Cel | s can generate BadColor and BadValue errors.

To allocate read/write color resources for a DirectColor model, use XAl | ocCol or -
Pl anes.

St at us XAl | ocCol or Pl anes(*di spl ay, col or map, contig,
pi xel s_return[], ncolors, nblues, *bmask return);

display Specifies the connection to the X server.
colormap Specifies the colormap.
contig Specifies a Boolean value that indicates whether the

planes must be contiguous.

pixels return Returns an array of pixel values. XAl | ocCol or Pl anes
returns the pixel values in this array.

ncolors Specifies the number of pixel values that are to be
returned in the pixels return array.

nreds
ngreens

nblues Specify the number of red, green, and blue planes.
The value you pass must be nonnegative.

rmask_return
gmask_return
bmask_return Return bit masks for the red, green, and blue planes.

The specified ncolors must be positive; and nreds, ngreens, and nblues must be non-
negative, or a BadValue error results. If ncolors colors, nreds reds, ngreens greens,
and nblues blues are requested, ncolors pixels are returned; and the masks have
nreds, ngreens, and nblues bits set to 1, respectively. If contig is True, each mask
will have a contiguous set of bits set to 1. No mask will have any bits set to 1 in
common with any other mask or with any of the pixels. For DirectColor, each mask
will lie within the corresponding pixel subfield. By ORing together subsets of masks

with each pixel value, ncolors x 2(redstngreens+nblues) giciinct pixel values can be
produced. All of these are allocated by the request. However, in the colormap, there

84

Color Management Functions

nreds ngreens

are only ncolors x 2 independent red entries, ncolors x 2 independent

green entries, and ncolors x 2™ independent blue entries. This is true even for
PseudoColor. When the colormap entry of a pixel value is changed (using XSt or e-
Col ors, XSt or eCol or, or XSt or eNanedCol or), the pixel is decomposed according to
the masks, and the corresponding independent entries are updated. XAl | ocCol or -
Pl anes returns nonzero if it succeeded or zero if it failed.

XAl | ocCol or Pl anes can generate BadColor and BadValue errors.
To free colormap cells, use XFr eeCol ors.

XFreeCol ors(*di splay, colormap, pixels[], npixels, planes);

display Specifies the connection to the X server.
colormap Specifies the colormap.

pixels Specifies an array of pixel values (Pi.
npixels Specifies the number of pixels.

planes Specifies the planes you want to free.

The XFr eeCol or s function frees the cells represented by pixels whose values are in
the pixels array. The planes argument should not have any bits set to 1 in common
with any of the pixels. The set of all pixels is produced by ORing together subsets
of the planes argument with the pixels. The request frees all of these pixels that
were allocated by the client (using XAl | ocCol or, XAl | ocNanedCol or, XAl | ocCol -
or Cel | s, and XAl | ocCol or Pl anes). Note that freeing an individual pixel obtained
from XAl | ocCol or Pl anes may not actually allow it to be reused until all of its relat-
ed pixels are also freed. Similarly, a read-only entry is not actually freed until it has
been freed by all clients, and if a client allocates the same read-only entry multiple
times, it must free the entry that many times before the entry is actually freed.

All specified pixels that are allocated by the client in the colormap are freed, even
if one or more pixels produce an error. If a specified pixel is not a valid index into
the colormap, a BadValue error results. If a specified pixel is not allocated by the
client (that is, is unallocated or is only allocated by another client) or if the colormap
was created with all entries writable (by passing AllocAll to XCr eat eCol or map), a
BadAccess error results. If more than one pixel is in error, the one that gets reported
is arbitrary.

XFr eeCol or s can generate BadAccess, BadColor, and BadValue errors.

Modifying and Querying Colormap Cells
To store an RGB value in a single colormap cell, use XSt or eCol or .

XSt oreCol or (*di splay, colormap, *color);

display Specifies the connection to the X server.
colormap Specifies the colormap.
color Specifies the pixel and RGB values.

85

Color Management Functions

The XSt or eCol or function changes the colormap entry of the pixel value specified in
the pixel member of the XColor structure. You specified this value in the pixel mem-
ber of the XColor structure. This pixel value must be a read/write cell and a valid
index into the colormap. If a specified pixel is not a valid index into the colormap, a
BadValue error results. XSt or eCol or also changes the red, green, and/or blue col-
or components. You specify which color components are to be changed by setting
DoRed, DoGreen, and/or DoBlue in the flags member of the XColor structure. If the
colormap is an installed map for its screen, the changes are visible immediately.

XSt or eCol or can generate BadAccess, BadColor, and BadValue errors.
To store multiple RGB values in multiple colormap cells, use XSt or eCol or s.

XSt or eCol ors(*display, colormap, color[], ncolors);

display Specifies the connection to the X server.

colormap Specifies the colormap.

color Specifies an array of color definition structures to be
stored.

ncolors Specifies the number of XColor structures in the color de-

finition array.

The XSt or eCol or s function changes the colormap entries of the pixel values spec-
ified in the pixel members of the XColor structures. You specify which color com-
ponents are to be changed by setting DoRed, DoGreen, and/or DoBlue in the flags
member of the XColor structures. If the colormap is an installed map for its screen,
the changes are visible immediately. XSt or eCol or s changes the specified pixels if
they are allocated writable in the colormap by any client, even if one or more pix-
els generates an error. If a specified pixel is not a valid index into the colormap, a
BadValue error results. If a specified pixel either is unallocated or is allocated read-
only, a BadAccess error results. If more than one pixel is in error, the one that gets
reported is arbitrary.

XSt or eCol or s can generate BadAccess, BadColor, and BadValue errors.
To store a color of arbitrary format in a single colormap cell, use XcnsSt or eCol or .

Status XcnsStoreCol or(*display, colormap, *color);

display Specifies the connection to the X server.

colormap Specifies the colormap.

color Specifies the color cell and the color to store. Values spec-
ified in this XcmsColor structure remain unchanged on
return.

The XcnsSt or eCol or function converts the color specified in the XcmsColor struc-
ture into RGB values. It then uses this RGB specification in an XColor structure,
whose three flags (DoRed, DoGreen, and DoBlue) are set, in a call to XSt or eCol or
to change the color cell specified by the pixel member of the XcmsColor structure.
This pixel value must be a valid index for the specified colormap, and the color cell
specified by the pixel value must be a read/write cell. If the pixel value is not a valid

86

Color Management Functions

index, a BadValue error results. If the color cell is unallocated or is allocated read-
only, a BadAccess error results. If the colormap is an installed map for its screen,
the changes are visible immediately.

Note that XSt or eCol or has no return value; therefore, an XcmsSuccess return value
from this function indicates that the conversion to RGB succeeded and the call to
XSt or eCol or was made. To obtain the actual color stored, use XcnsQuer yCol or . Be-
cause of the screen's hardware limitations or gamut compression, the color stored
in the colormap may not be identical to the color specified.

Xcns St or eCol or can generate BadAccess, BadColor, and BadValue errors.

To store multiple colors of arbitrary format in multiple colormap cells, use XcnsS-
toreCol ors.

Status XcnsStoreCol ors(*di spl ay, col or map, colors[], ncol ors,
conpression_flags_return[]);

display Specifies the connection to the X server.
colormap Specifies the colormap.
colors Specifies the color specification array of XcmsColor

structures, each specifying a color cell and the color
to store in that cell. Values specified in the array re-
main unchanged upon return.

ncolors Specifies the number of XcmsColor structures in the
color-specification array.

compression flags return Returns an array of Boolean values indicating com-
pression status. If a non-NULL pointer is supplied,
each element of the array is set to True if the corre-
sponding color was compressed and False otherwise.
Pass NULL if the compression status is not useful.

The XcnsSt or eCol or s function converts the colors specified in the array of Xcms-
Color structures into RGB values and then uses these RGB specifications in XColor
structures, whose three flags (DoRed, DoGreen, and DoBlue) are set, in a call to
XSt or eCol or s to change the color cells specified by the pixel member of the corre-
sponding XcmsColor structure. Each pixel value must be a valid index for the spec-
ified colormap, and the color cell specified by each pixel value must be a read/write
cell. If a pixel value is not a valid index, a BadValue error results. If a color cell is
unallocated or is allocated read-only, a BadAccess error results. If more than one
pixel is in error, the one that gets reported is arbitrary. If the colormap is an installed
map for its screen, the changes are visible immediately.

Note that XSt or eCol ors has no return value; therefore, an XcmsSuccess return
value from this function indicates that conversions to RGB succeeded and the call
to XSt or eCol or s was made. To obtain the actual colors stored, use XcnsQuer yCol -
or s. Because of the screen's hardware limitations or gamut compression, the colors
stored in the colormap may not be identical to the colors specified.

Xcns St or eCol or s can generate BadAccess, BadColor, and BadValue errors.

To store a color specified by name in a single colormap cell, use XSt or eNanedCol or .

87

Color Management Functions

XSt or eNanmedCol or (*di splay, colormap, *color, pixel, flags);
display Specifies the connection to the X server.

colormap Specifies the colormap.

color Specifies the color name string (for example, red).

pixel Specifies the entry in the colormap.

flags Specifies which red, green, and blue components are set.

The XSt or eNanedCol or function looks up the named color with respect to the screen
associated with the colormap and stores the result in the specified colormap. The
pixel argument determines the entry in the colormap. The flags argument deter-
mines which of the red, green, and blue components are set. You can set this mem-
ber to the bitwise inclusive OR of the bits DoRed, DoGreen, and DoBlue. If the col-
or name is not in the Host Portable Character Encoding, the result is implementa-
tion-dependent. Use of uppercase or lowercase does not matter. If the specified pix-
el is not a valid index into the colormap, a BadValue error results. If the specified
pixel either is unallocated or is allocated read-only, a BadAccess error results.

XSt or eNanedCol or can generate BadAccess, BadColor, BadName, and BadValue er-
rors.

The XQuer yCol or and XQuer yCol or s functions take pixel values in the pixel member
of XColor structures and store in the structures the RGB values for those pixels from
the specified colormap. The values returned for an unallocated entry are undefined.
These functions also set the flags member in the XColor structure to all three colors.
If a pixel is not a valid index into the specified colormap, a BadValue error results.
If more than one pixel is in error, the one that gets reported is arbitrary.

To query the RGB value of a single colormap cell, use XQuer yCol or.

XQueryCol or(*di splay, colormap, *def_in_out);

display Specifies the connection to the X server.
colormap Specifies the colormap.
def in out Specifies and returns the RGB values for the pixel spec-

ified in the structure.

The XQuer yCol or function returns the current RGB value for the pixel in the XColor
structure and sets the DoRed, DoGreen, and DoBlue flags.

XQuer yCol or can generate BadColor and BadValue errors.

To query the RGB values of multiple colormap cells, use XQuer yCol or s.

XQueryCol ors(*display, colormap, defs_in_out[], ncolors);

display Specifies the connection to the X server.

colormap Specifies the colormap.

defs in out Specifies and returns an array of color definition struc-

tures for the pixel specified in the structure.

88

Color Management Functions

ncolors Specifies the number of XColor structures in the color
definition array.

The XQuer yCol ors function returns the RGB value for each pixel in each XColor
structure and sets the DoRed, DoGreen, and DoBlue flags in each structure.

XQuer yCol or s can generate BadColor and BadValue errors.

To query the color of a single colormap cell in an arbitrary format, use XcnsQuer y-
Col or.

Status XcrsQuer yCol or (*di spl ay, col or map, *col or _i n_out,
result format);

display Specifies the connection to the X server.
colormap Specifies the colormap.
color in_out Specifies the pixel member that indicates the color

cell to query. The color specification stored for the
color cell is returned in this XcmsColor structure.

result format Specifies the color format for the returned color
specification.

The XcnsQuer yCol or function obtains the RGB value for the pixel value in the pixel
member of the specified XcmsColor structure and then converts the value to the
target format as specified by the result format argument. If the pixel is not a valid
index in the specified colormap, a BadValue error results.

XcmsQuer yCol or can generate BadColor and BadValue errors.

To query the color of multiple colormap cells in an arbitrary format, use XcnsQuer y-
Col ors.

St at us XcnsQuer yCol ors(*di splay, colormap, colors_in_out[], ncolors,
result format);

display Specifies the connection to the X server.
colormap Specifies the colormap.
colors_in out Specifies an array of XcmsColor structures, each pix-

el member indicating the color cell to query. The col-
or specifications for the color cells are returned in
these structures.

ncolors Specifies the number of XcmsColor structures in the
color-specification array.

result format Specifies the color format for the returned color
specification.

The XcnsQuer yCol or s function obtains the RGB values for pixel values in the pixel
members of XcmsColor structures and then converts the values to the target format
as specified by the result format argument. If a pixel is not a valid index into the
specified colormap, a BadValue error results. If more than one pixel is in error, the
one that gets reported is arbitrary.

89

Color Management Functions

XcmsQuer yCol or s can generate BadColor and BadValue errors.

Color Conversion Context Functions

This section describes functions to create, modify, and query Color Conversion Con-
texts (CCCs).

Associated with each colormap is an initial CCC transparently generated by Xlib.

Therefore, when you specify a colormap as an argument to a function, you are
indirectly specifying a CCC. The CCC attributes that can be modified by the X
client are:

e Client White Point
¢ Gamut compression procedure and client data
¢ White point adjustment procedure and client data

The initial values for these attributes are implementation specific. The CCC attrib-
utes for subsequently created CCCs can be defined by changing the CCC attributes
of the default CCC. There is a default CCC associated with each screen.

Getting and Setting the Color Conversion Context of a
Colormap

To obtain the CCC associated with a colormap, use Xcns CCCOf Col or nap.
XcnsCCC Xcns CCCOf Col or map(*di splay, col ornap);

display Specifies the connection to the X server.
colormap Specifies the colormap.

The Xcms CCCOF Col or map function returns the CCC associated with the specified col-
ormap. Once obtained, the CCC attributes can be queried or modified. Unless the
CCC associated with the specified colormap is changed with XcnsSet CCCOf Col -
or map, this CCC is used when the specified colormap is used as an argument to
color functions.

To change the CCC associated with a colormap, use XcnsSet CCCOf Col or map.

Xcms CCC XcmsSet CCCOf Col or map(*di splay, colormap, ccc);

display Specifies the connection to the X server.
colormap Specifies the colormap.
ccc Specifies the CCC.

The Xcs Set CCCOf Col or map function changes the CCC associated with the specified
colormap. It returns the CCC previously associated with the colormap. If they are
not used again in the application, CCCs should be freed by calling XcnsFr eeCCC.
Several colormaps may share the same CCC without restriction; this includes the
CCCs generated by Xlib with each colormap. Xlib, however, creates a new CCC with
each new colormap.

90

Color Management Functions

Obtaining the Default Color Conversion Context

You can change the default CCC attributes for subsequently created CCCs by chang-
ing the CCC attributes of the default CCC. A default CCC is associated with each
screen.

To obtain the default CCC for a screen, use XcnsDef aul t CCC.

Xcms CCC XcnsDef aul t CCC(*di spl ay, screen_numnber);

display Specifies the connection to the X server.
screen _number Specifies the appropriate screen number on the host
server.

The XcrsDef aul t CCC function returns the default CCC for the specified screen. Its
visual is the default visual of the screen. Its initial gamut compression and white
point adjustment procedures as well as the associated client data are implementa-
tion specific.

Color Conversion Context Macros

Applications should not directly modify any part of the XcmsCCC. The following lists
the C language macros, their corresponding function equivalents for other language
bindings, and what data they both can return.

Di spl ayOf CCC(ccc);

Di splay *XcnsDi spl ayOF CCC(ccc) ;

ccc Specifies the CCC.

Both return the display associated with the specified CCC.
Vi sual OF CCC(ccc);

Vi sual *XcnsVi sual OF CCC(ccc);

ccc Specifies the CCC.

Both return the visual associated with the specified CCC.
Scr eenNumber OF CCC(ccc) ;

i nt XcnsScreenNunber OF CCC(ccc) ;

ccc Specifies the CCC.

Both return the number of the screen associated with the specified CCC.
Scr eenWhi t ePoi nt OfF CCC(ccc);

XcmsCol or XcneScr eenWi t ePoi nt OF CCC(ccc) ;

ccc Specifies the CCC.

91

Color Management Functions

Both return the white point of the screen associated with the specified CCC.
d i ent Whi t ePoi nt OF CCC(ccc);

XcnsCol or *Xcrsd i ent Whi t ePoi nt OF CCC(ccc);

ccc Specifies the CCC.

Both return the Client White Point of the specified CCC.

Modifying Attributes of a Color Conversion Context

To set the Client White Point in the CCC, use XcnsSet Wi t ePoi nt .
St at us XcnsSet Whi t ePoi nt (ccc, *color);

ccc Specifies the CCC.

color Specifies the new Client White Point.

The XcnsSet Wi t ePoi nt function changes the Client White Point in the specified
CCC. Note that the pixel member is ignored and that the color specification is left
unchanged upon return. The format for the new white point must be XcmsCIEXYZ-
Format, XcmsCIEuvYFormat, XcmsCIExyYFormat, or XcmsUndefinedFormat. If the
color argument is NULL, this function sets the format component of the Client White
Point specification to XcmsUndefinedFormat, indicating that the Client White Point
is assumed to be the same as the Screen White Point.

This function returns nonzero status if the format for the new white point is valid;
otherwise, it returns zero.

To set the gamut compression procedure and corresponding client data in a speci-
fied CCC, use XcnsSet Conpr essi onProc.

XcnsConpr essi onProc XcnsSet Conpr essi onProc(ccc, conpr essi on_pr oc,
client _data);

ccc Specifies the CCC.

compression_proc Specifies the gamut compression procedure that is
to be applied when a color lies outside the screen's
color gamut. If NULL is specified and a function us-
ing this CCC must convert a color specification to a
device-dependent format and encounters a color that
lies outside the screen's color gamut, that function
will return XcmsFailure.

client data Specifies client data for gamut compression proce-
dure or NULL.

The XcnsSet Conpr essi onPr oc function first sets the gamut compression procedure
and client data in the specified CCC with the newly specified procedure and client
data and then returns the old procedure.

To set the white point adjustment procedure and corresponding client data in a
specified CCC, use XcnsSet Wi t eAdj ust Proc.

92

Color Management Functions

XcrmsWhi t eAdj ust Proc XcnsSet Whi t eAdj ust Proc(ccec, whi t e_adj ust _pr oc,
client_data);

ccc Specifies the CCC.
white adjust proc Specifies the white point adjustment procedure.
client data Specifies client data for white point adjustment pro-

cedure or NULL.

The XcnsSet Whi t eAdj ust Pr oc function first sets the white point adjustment proce-
dure and client data in the specified CCC with the newly specified procedure and
client data and then returns the old procedure.

Creating and Freeing a Color Conversion Context

You can explicitly create a CCC within your application by calling XcnsCr eat eCCC.
These created CCCs can then be used by those functions that explicitly call for a
CCC argument. Old CCCs that will not be used by the application should be freed
using XcnsFr eeCCC.

To create a CCC, use XcnsCr eat eCCC.

XcmsCCC XcnsCr eat e CCC(*di spl ay, screen_nunber, *vi sual ,
*client_white_point, conpr essi on_pr oc, conpressi on_client_data,
white_adjust _proc, white_adjust_client_data);

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host
server.

visual Specifies the visual type.

client_ white_point Specifies the Client White Point. If NULL is specified,

the Client White Point is to be assumed to be the
same as the Screen White Point. Note that the pixel
member is ignored.

compression_proc Specifies the gamut compression procedure that is
to be applied when a color lies outside the screen's
color gamut. If NULL is specified and a function us-
ing this CCC must convert a color specification to a
device-dependent format and encounters a color that
lies outside the screen's color gamut, that function
will return XcmsFailure.

compression_client _data Specifies client data for use by the gamut compres-
sion procedure or NULL.

white adjust proc Specifies the white adjustment procedure that is to
be applied when the Client White Point differs from
the Screen White Point. NULL indicates that no white
point adjustment is desired.

white adjust_client data Specifies client data for use with the white point ad-
justment procedure or NULL.

93

Color Management Functions

The XcnsCr eat eCCC function creates a CCC for the specified display, screen, and
visual.

To free a CCC, use XcnsFr eeCCC.
voi d XcrmsFreeCCC(ccc);
ccc Specifies the CCC.

The XcrsFr eeCCC function frees the memory used for the specified CCC. Note that
default CCCs and those currently associated with colormaps are ignored.

Converting between Color Spaces

To convert an array of color specifications in arbitrary color formats to a single
destination format, use XcnsConvert Col ors.

St at us XcnsConvert Col or s(ccc, colors_in_out[], ncol ors,
target format, conpression flags return[]);

ccc Specifies the CCC. If conversion is between de-
vice-independent color spaces only (for example,
TekHVC to CIELuv), the CCC is necessary only to
specify the Client White Point.

colors in out Specifies an array of color specifications. Pixel mem-
bers are ignored and remain unchanged upon return.

ncolors Specifies the number of XcmsColor structures in the
color-specification array.

target format Specifies the target color specification format.

compression flags return Returns an array of Boolean values indicating com-
pression status. If a non-NULL pointer is supplied,
each element of the array is set to True if the corre-
sponding color was compressed and False otherwise.
Pass NULL if the compression status is not useful.

The XcnmsConvert Col or s function converts the color specifications in the specified
array of XcmsColor structures from their current format to a single target format,
using the specified CCC. When the return value is XcmsFailure, the contents of the
color specification array are left unchanged.

The array may contain a mixture of color specification formats (for example, 3
CIE XYZ, 2 CIE Luv, and so on). When the array contains both device-independent
and device-dependent color specifications and the target format argument speci-
fies a device-dependent format (for example, XcmsRGBiFormat, XcmsRGBFormat),
all specifications are converted to CIE XYZ format and then to the target device-de-
pendent format.

Callback Functions

This section describes the gamut compression and white point adjustment call-
backs.

94

Color Management Functions

The gamut compression procedure specified in the CCC is called when an attempt
to convert a color specification from XcmsCIEXYZ to a device-dependent format
(typically XcmsRGBi) results in a color that lies outside the screen's color gamut. If
the gamut compression procedure requires client data, this data is passed via the
gamut compression client data in the CCC.

During color specification conversion between device-independent and device-de-
pendent color spaces, if a white point adjustment procedure is specified in the CCC,
it is triggered when the Client White Point and Screen White Point differ. If required,
the client data is obtained from the CCC.

Prototype Gamut Compression Procedure

The gamut compression callback interface must adhere to the following:

typedef Status(*XcnmsConpressionProc)(ccc, colors_in_out[], ncolors,
i ndex, conpression_flags return[]);

ccc Specifies the CCC.

colors_in_out Specifies an array of color specifications. Pixel mem-
bers should be ignored and must remain unchanged
upon return.

ncolors Specifies the number of XcmsColor structures in the
color-specification array.

index Specifies the index into the array of XcmsColor struc-
tures for the encountered color specification that lies
outside the screen's color gamut. Valid values are 0
(for the first element) to ncolors - 1.

compression_flags return Returns an array of Boolean values for indicating
compression status. If a non-NULL pointer is sup-
plied and a color at a given index is compressed, then
True should be stored at the corresponding index in
this array; otherwise, the array should not be modi-
fied.

When implementing a gamut compression procedure, consider the following rules
and assumptions:

¢ The gamut compression procedure can attempt to compress one or multiple spec-
ifications at a time.

* When called, elements 0 to index - 1 in the color specification array can be as-
sumed to fall within the screen's color gamut. In addition, these color specifica-
tions are already in some device-dependent format (typically XcmsRGBi). If any
modifications are made to these color specifications, they must be in their initial
device-dependent format upon return.

* When called, the element in the color specification array specified by the index ar-
gument contains the color specification outside the screen's color gamut encoun-
tered by the calling routine. In addition, this color specification can be assumed to
be in XcmsCIEXYZ. Upon return, this color specification must be in XcmsCIEXYZ.

95

Color Management Functions

When called, elements from index to ncolors - 1 in the color specification array
may or may not fall within the screen's color gamut. In addition, these color spec-
ifications can be assumed to be in XcmsCIEXYZ. If any modifications are made to
these color specifications, they must be in XcmsCIEXYZ upon return.

The color specifications passed to the gamut compression procedure have already
been adjusted to the Screen White Point. This means that at this point the color
specification's white point is the Screen White Point.

If the gamut compression procedure uses a device-independent color space not
initially accessible for use in the color management system, use XcnsAddCol or S-
pace to ensure that it is added.

Supplied Gamut Compression Procedures

The following equations are useful in describing gamut compression functions: de-

lim %%

%l ELab~Psychonetri c~Chroma ~=~ sqrt(a_star sup 2 ~+~ b_star sup 2)%
%l ELab~Psychonetri c~Hue ~=~ tan sup -1 left [b_star over a_star right
%l ELuv~Psychonetri c~Chroma ~=~ sqrt(u_star sup 2 ~+~ v_star sup 2)%
%l ELuv~Psychonetri c~Hue ~=~ tan sup -1 left [v_star over u_star right

The gamut compression callback procedures provided by Xlib are as follows:

XcmsCl ELabd i pL

This brings the encountered out-of-gamut color specification into the screen's col-
or gamut by reducing or increasing CIE metric lightness (L*) in the CIE L*a*b*
color space until the color is within the gamut. If the Psychometric Chroma of
the color specification is beyond maximum for the Psychometric Hue Angle, then
while maintaining the same Psychometric Hue Angle, the color will be clipped to
the CIE L*a*b* coordinates of maximum Psychometric Chroma. See XcnsCl ELab-
Quer yMaxC. No client data is necessary.

XcnsCl ELabd i pab

This brings the encountered out-of-gamut color specification into the screen's col-
or gamut by reducing Psychometric Chroma, while maintaining Psychometric Hue
Angle, until the color is within the gamut. No client data is necessary.

XcnsCl ELabd i pLab

This brings the encountered out-of-gamut color specification into the screen's col-
or gamut by replacing it with CIE L*a*b* coordinates that fall within the color
gamut while maintaining the original Psychometric Hue Angle and whose vector
to the original coordinates is the shortest attainable. No client data is necessary.

XcnsCl ELuvd i pL

This brings the encountered out-of-gamut color specification into the screen's col-
or gamut by reducing or increasing CIE metric lightness (L*) in the CIE L*u*v*

96

1%

1%

Color Management Functions

color space until the color is within the gamut. If the Psychometric Chroma of
the color specification is beyond maximum for the Psychometric Hue Angle, then,
while maintaining the same Psychometric Hue Angle, the color will be clipped to
the CIE L*u*v* coordinates of maximum Psychometric Chroma. See XcnsCl ELu-
vQuer yMaxC. No client data is necessary.

e XcnsCl ELuvd i puv

» This brings the encountered out-of-gamut color specification into the screen's col-
or gamut by reducing Psychometric Chroma, while maintaining Psychometric Hue
Angle, until the color is within the gamut. No client data is necessary.

e XcnsCl ELuvd i pLuv

» This brings the encountered out-of-gamut color specification into the screen's col-
or gamut by replacing it with CIE L*u*v* coordinates that fall within the color
gamut while maintaining the original Psychometric Hue Angle and whose vector
to the original coordinates is the shortest attainable. No client data is necessary.

* XcnsTekHVCO i pV

» This brings the encountered out-of-gamut color specification into the screen's col-
or gamut by reducing or increasing the Value dimension in the TekHVC color
space until the color is within the gamut. If Chroma of the color specification is
beyond maximum for the particular Hue, then, while maintaining the same Hue,
the color will be clipped to the Value and Chroma coordinates that represent max-
imum Chroma for that particular Hue. No client data is necessary.

e XcnsTekHVCd i pC

» This brings the encountered out-of-gamut color specification into the screen's col-
or gamut by reducing the Chroma dimension in the TekHVC color space until the
color is within the gamut. No client data is necessary.

e XcnmsTekHVCd i pVC

» This brings the encountered out-of-gamut color specification into the screen's col-
or gamut by replacing it with TekHVC coordinates that fall within the color gamut
while maintaining the original Hue and whose vector to the original coordinates
is the shortest attainable. No client data is necessary.

Prototype White Point Adjustment Procedure

The white point adjustment procedure interface must adhere to the following:

typedef Status (*XcnsWhiteAdjustProc)(ccc, *initial _white_point,
*target _white_point, target _format, colors_in_out[], ncol ors,
conpression_flags_return[]);

ccc Specifies the CCC.

initial white point Specifies the initial white point.

target white point Specifies the target white point.

target format Specifies the target color specification format.

97

Color Management Functions

colors in out Specifies an array of color specifications. Pixel mem-
bers should be ignored and must remain unchanged
upon return.

ncolors Specifies the number of XcmsColor structures in the
color-specification array.

compression_flags return Returns an array of Boolean values for indicating
compression status. If a non-NULL pointer is sup-
plied and a color at a given index is compressed, then
True should be stored at the corresponding index in
this array; otherwise, the array should not be modi-
fied.

Supplied White Point Adjustment Procedures

White point adjustment procedures provided by Xlib are as follows:
e XcnsCl ELabWhi t eShi ft Col ors

e This uses the CIE L*a*b* color space for adjusting the chromatic character of
colors to compensate for the chromatic differences between the source and des-
tination white points. This procedure simply converts the color specifications to
XcmsCIELab using the source white point and then converts to the target speci-
fication format using the destination's white point. No client data is necessary.

e XcrrsCl ELuvWhi t eShi ft Col ors

e This uses the CIE L*u*v* color space for adjusting the chromatic character of
colors to compensate for the chromatic differences between the source and des-
tination white points. This procedure simply converts the color specifications to
XcmsCIELuv using the source white point and then converts to the target speci-
fication format using the destination's white point. No client data is necessary.

e XcnmsTekHVCWhi t eShi ft Col ors

¢ This uses the TekHVC color space for adjusting the chromatic character of col-
ors to compensate for the chromatic differences between the source and destina-
tion white points. This procedure simply converts the color specifications to Xcm-
sTekHVC using the source white point and then converts to the target specifica-
tion format using the destination's white point. An advantage of this procedure
over those previously described is an attempt to minimize hue shift. No client data
is necessary.

From an implementation point of view, these white point adjustment procedures
convert the color specifications to a device-independent but white-point-dependent
color space (for example, CIE L*u*v*, CIE L*a*b*, TekHVC) using one white point
and then converting those specifications to the target color space using another
white point. In other words, the specification goes in the color space with one white
point but comes out with another white point, resulting in a chromatic shift based on
the chromatic displacement between the initial white point and target white point.
The CIE color spaces that are assumed to be white-point-independent are CIE u'v'y,
CIE XYZ, and CIE xyY. When developing a custom white point adjustment procedure
that uses a device-independent color space not initially accessible for use in the
color management system, use XcnsAddCol or Space to ensure that it is added.

98

Color Management Functions

As an example, if the CCC specifies a white point adjustment procedure and if the
Client White Point and Screen White Point differ, the XcnsAl | ocCol or function will
use the white point adjustment procedure twice:

* Once to convert to XcmsRGB

* A second time to convert from XcmsRGB

For example, assume the specification is in XcmsCIEuvY and the adjustment proce-
dure is XcnsCl ELuvWi t eShi ft Col or s. During conversion to XcmsRGB, the call to
XcnsAl | ocCol or results in the following series of color specification conversions:

* From XcmsCIEuvY to XcmsCIELuv using the Client White Point

e From XcmsCIELuv to XcmsCIEuvY using the Screen White Point

¢ From XcmsCIEuvY to XcmsCIEXYZ (CIE u'v'Y and XYZ are white-point-indepen-
dent color spaces)

¢ From XcmsCIEXYZ to XcmsRGBIi
e From XcmsRGBi to XcmsRGB

The resulting RGB specification is passed to XAl | ocCol or, and the RGB specification
returned by XAl | ocCol or is converted back to XcmsCIEuvY by reversing the color
conversion sequence.

Gamut Querying Functions

This section describes the gamut querying functions that Xlib provides. These func-
tions allow the client to query the boundary of the screen's color gamut in terms of
the CIE L*a*b*, CIE L*u*v*, and TekHVC color spaces. Functions are also provided
that allow you to query the color specification of:

White (full-intensity red, green, and blue)

Red (full-intensity red while green and blue are zero)

Green (full-intensity green while red and blue are zero)

Blue (full-intensity blue while red and green are zero)

¢ Black (zero-intensity red, green, and blue)

The white point associated with color specifications passed to and returned from
these gamut querying functions is assumed to be the Screen White Point. This is
a reasonable assumption, because the client is trying to query the screen's color
gamut.

The following naming convention is used for the Max and Min functions:

Xcms<col or _space>Quer yMax<di nensi ons>

Xcms<col or _space>Quer yM n<di nmensi ons>

99

Color Management Functions

The <dimensions> consists of a letter or letters that identify the dimensions of the
color space that are not fixed. For example, Xcnms TekHVCQuer yMaxC is given a fixed
Hue and Value for which maximum Chroma is found.

Red, Green, and Blue Queries

To obtain the color specification for black (zero-intensity red, green, and blue), use
XcnmsQuer yBl ack.

Status XcnsQueryBl ack(ccc, target format, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

target format Specifies the target color specification format.

color return Returns the color specification in the specified tar-

get format for (Cs. The white point associated with
the returned color specification is the Screen White
Point. The value returned in the pixel member is un-
defined.

The XcnsQuer yBl ack function returns the color specification in the specified target
format for zero-intensity red, green, and blue.

To obtain the color specification for blue (full-intensity blue while red and green are
zero), use XcnsQuer yBl ue.

Status XcnsQueryBlue(ccc, target _format, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

target format Specifies the target color specification format.

color return Returns the color specification in the specified tar-

get format for (Cs. The white point associated with
the returned color specification is the Screen White
Point. The value returned in the pixel member is un-
defined.

The XcnsQuer yBl ue function returns the color specification in the specified target
format for full-intensity blue while red and green are zero.

To obtain the color specification for green (full-intensity green while red and blue
are zero), use XcrsQuer yGr een.

Status XcnsQueryGreen(ccc, target format, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

target format Specifies the target color specification format.

color return Returns the color specification in the specified tar-

get format for (Cs. The white point associated with

100

Color Management Functions

the returned color specification is the Screen White
Point. The value returned in the pixel member is un-
defined.

The XcnmsQuer yGr een function returns the color specification in the specified target
format for full-intensity green while red and blue are zero.

To obtain the color specification for red (full-intensity red while green and blue are
zero), use XcnsQuer yRed.

Status XcnsQueryRed(ccc, target format, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

target format Specifies the target color specification format.

color return Returns the color specification in the specified tar-

get format for (Cs. The white point associated with
the returned color specification is the Screen White
Point. The value returned in the pixel member is un-
defined.

The XcnsQuer yRed function returns the color specification in the specified target
format for full-intensity red while green and blue are zero.

To obtain the color specification for white (full-intensity red, green, and blue), use
XcnmsQuer yWhi t e.

Status XcnsQueryWhite(ccc, target format, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

target format Specifies the target color specification format.

color return Returns the color specification in the specified tar-

get format for (Cs. The white point associated with
the returned color specification is the Screen White
Point. The value returned in the pixel member is un-
defined.

The XcnmsQuer yWi t e function returns the color specification in the specified target
format for full-intensity red, green, and blue.

CIELab Queries

The following equations are useful in describing the CIELab query functions: delim

%%
%l ELab~Psychonetri c~Chroma ~=~ sqgrt(a_star sup 2 ~+~ b_star sup 2)%
%l ELab~Psychonetri c~Hue ~=~ tan sup -1 left [b_star over a_star right 1%

101

Color Management Functions

To obtain the CIE L*a*b* coordinates of maximum Psychometric Chroma for a given
Psychometric Hue Angle and CIE metric lightness (L*), use XcnsCl ELabQuer yMaxC.

Status XcnsCl ELabQuer yMaxC(ccc, hue_angle, L_star, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue angle Specifies the hue angle (in degrees) at which to find
(Ha.

L star Specifies the lightness (L*) at which to find (Ls.

color return Returns the CIE L*a*b* coordinates of (Lc dis-

playable by the screen for the given (IC. The white
point associated with the returned color specification
is the Screen White Point. The value returned in the
pixel member is undefined.

The XcnsCl ELabQuer yMaxC function, given a hue angle and lightness, finds the point
of maximum chroma displayable by the screen. It returns this point in CIE L*a*b*
coordinates.

To obtain the CIE L*a*b* coordinates of maximum CIE metric lightness (L*) for a
given Psychometric Hue Angle and Psychometric Chroma, use XcnsCl ELabQuery-
MaxL.

Status XcnsCl ELabQueryMaxL(ccc, hue_angle, chroma, *color _return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue angle Specifies the hue angle (in degrees) at which to find
(Ha.

chroma Specifies the chroma at which to find (Ch.

color return Returns the CIE L*a*b* coordinates of (Lc dis-

playable by the screen for the given (1C. The white
point associated with the returned color specification
is the Screen White Point. The value returned in the
pixel member is undefined.

The XcnsCl ELabQuer yMaxL function, given a hue angle and chroma, finds the point
in CIE L*a*b* color space of maximum lightness (L*) displayable by the screen. It
returns this point in CIE L*a*b* coordinates. An XcmsFailure return value usually
indicates that the given chroma is beyond maximum for the given hue angle.

To obtain the CIE L*a*b* coordinates of maximum Psychometric Chroma for a given
Psychometric Hue Angle, use XcnsCl ELabQuer yMaxLC.

St at us XcnsCl ELabQuer yMaxLC(ccc, hue_angle, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue angle Specifies the hue angle (in degrees) at which to find
(Ha.

102

Color Management Functions

color return Returns the CIE L*a*b* coordinates of (Lc dis-
playable by the screen for the given (1C. The white
point associated with the returned color specification
is the Screen White Point. The value returned in the
pixel member is undefined.

The XcnsCl ELabQuer yMaxLC function, given a hue angle, finds the point of maximum
chroma displayable by the screen. It returns this point in CIE L*a*b* coordinates.

To obtain the CIE L*a*b* coordinates of minimum CIE metric lightness (L*) for a giv-
en Psychometric Hue Angle and Psychometric Chroma, use XcnsCl ELabQuer yM nL.

Status XcnsCl ELabQueryM nL(ccc, hue_angle, chroma, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue angle Specifies the hue angle (in degrees) at which to find
(Ha.

chroma Specifies the chroma at which to find (Ch.

color return Returns the CIE L*a*b* coordinates of (Lc dis-

playable by the screen for the given (1C. The white
point associated with the returned color specification
is the Screen White Point. The value returned in the
pixel member is undefined.

The XcnsCl ELabQuer yM nL function, given a hue angle and chroma, finds the point
of minimum lightness (L*) displayable by the screen. It returns this point in CIE

L*a*b* coordinates. An XcmsFailure return value usually indicates that the given
chroma is beyond maximum for the given hue angle.

CIELuv Queries

The following equations are useful in describing the CIELuv query functions: delim

%%
%l ELuv~Psychonetri c~Chroma ~=~ sqrt(u_star sup 2 ~+~ v_star sup 2)%
%l ELuv~Psychonetric~Hue ~=~ tan sup -1 left [v_star over u_star right 1%

To obtain the CIE L*u*v* coordinates of maximum Psychometric Chroma for a given
Psychometric Hue Angle and CIE metric lightness (L*), use XcnsCl ELuvQuer yMaxC.

Status XcnsCl ELuvQuer yMaxC(ccc, hue_angle, L_star, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue angle Specifies the hue angle (in degrees) at which to find
(Ha.

103

Color Management Functions

L star Specifies the lightness (L*) at which to find (Ls.

color return Returns the CIE L*u*v* coordinates of (Lc dis-
playable by the screen for the given (IC. The white
point associated with the returned color specification
is the Screen White Point. The value returned in the
pixel member is undefined.

The XcnsCl ELuvQuer yMaxC function, given a hue angle and lightness, finds the point
of maximum chroma displayable by the screen. It returns this point in CIE L*u*v*
coordinates.

To obtain the CIE L*u*v* coordinates of maximum CIE metric lightness (L*) for a
given Psychometric Hue Angle and Psychometric Chroma, use XcnsCl ELuvQuery-
MaxL.

Status XcnsCl ELuvQueryMaxL(ccc, hue_angle, chroma, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue angle Specifies the hue angle (in degrees) at which to find
(Ha.

L star Specifies the lightness (L*) at which to find (Ls.

color return Returns the CIE L*u*v* coordinates of (Lc dis-

playable by the screen for the given (1C. The white
point associated with the returned color specification
is the Screen White Point. The value returned in the
pixel member is undefined.

The XcnsCl ELuvQuer yMaxL function, given a hue angle and chroma, finds the point
in CIE L*u*v* color space of maximum lightness (L*) displayable by the screen. It
returns this point in CIE L*u*v* coordinates. An XcmsFailure return value usually
indicates that the given chroma is beyond maximum for the given hue angle.

To obtain the CIE L*u*v* coordinates of maximum Psychometric Chroma for a given
Psychometric Hue Angle, use XcnsCl ELuvQuer yMaxLC.

Status XcnsCl ELuvQuer yMaxLC(ccc, hue_angle, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue angle Specifies the hue angle (in degrees) at which to find
(Ha.

color return Returns the CIE L*u*v* coordinates of (Lc dis-

playable by the screen for the given (1C. The white
point associated with the returned color specification
is the Screen White Point. The value returned in the
pixel member is undefined.

The XcnsCl ELuvQuer yMaxLC function, given a hue angle, finds the point of maximum
chroma displayable by the screen. It returns this point in CIE L*u*v* coordinates.

104

Color Management Functions

To obtain the CIE L*u*v* coordinates of minimum CIE metric lightness (L*) for a giv-
en Psychometric Hue Angle and Psychometric Chroma, use XcnsCl ELuvQuer yM nL.

Status XcnsCl ELuvQueryM nL(ccc, hue_angle, chroma, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue angle Specifies the hue angle (in degrees) at which to find
(Ha.

chroma Specifies the chroma at which to find (Ch.

color return Returns the CIE L*u*v* coordinates of (Lc dis-

playable by the screen for the given (1C. The white
point associated with the returned color specification
is the Screen White Point. The value returned in the
pixel member is undefined.

The XcnsCl ELuvQuer yM nL function, given a hue angle and chroma, finds the point
of minimum lightness (L*) displayable by the screen. It returns this point in CIE
L*u*v* coordinates. An XcmsFailure return value usually indicates that the given
chroma is beyond maximum for the given hue angle.

TekHVC Queries

To obtain the maximum Chroma for a given Hue and Value, use Xcnms TekHVCQuer y-
MaxC.

St at us XcnmsTekHVCQuer yMaxC(ccc, hue, value, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue Specifies the Hue (Hu.

value Specifies the Value in which to find the (Va.

color return Returns the (Lc at which the (1C was found. The white

point associated with the returned color specification
is the Screen White Point. The value returned in the
pixel member is undefined.

The XcnsTekHVCQuer yMaxC function, given a Hue and Value, determines the maxi-
mum Chroma in TekHVC color space displayable by the screen. It returns the max-
imum Chroma along with the actual Hue and Value at which the maximum Chroma
was found.

To obtain the maximum Value for a given Hue and Chroma, use Xcns TekHVCQuer y-
MaxV.

St at us XcnsTekHVCQuer yMaxV(ccc, hue, chroma, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue Specifies the Hue (Hu.

105

Color Management Functions

chroma Specifies the chroma at which to find (Ch.

color return Returns the (Lc at which the (1C was found. The white
point associated with the returned color specification
is the Screen White Point. The value returned in the
pixel member is undefined.

The Xcns TekHVCQuer yMaxV function, given a Hue and Chroma, determines the max-
imum Value in TekHVC color space displayable by the screen. It returns the maxi-
mum Value and the actual Hue and Chroma at which the maximum Value was found.

To obtain the maximum Chroma and Value at which it is reached for a specified
Hue, use Xcns TekHVCQuer yMaxVC.

St at us XcnsTekHVCQuer yMaxVC(ccc, hue, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue Specifies the Hue (Hu. XcmsTekHVC for the maxi-
mum Chroma, the Value at which \ that maximum
Chroma is reached, and the actual Hue

color return Returns the (Lc at which the (1C was found. The white
point associated with the returned color specification
is the Screen White Point. The value returned in the
pixel member is undefined.

The Xcnms TekHVCQuer yMaxVC function, given a Hue, determines the maximum Chro-
ma in TekHVC color space displayable by the screen and the Value at which that
maximum Chroma is reached. It returns the maximum Chroma, the Value at which
that maximum Chroma is reached, and the actual Hue for which the maximum Chro-
ma was found.

To obtain a specified number of TekHVC specifications such that they contain max-
imum Values for a specified Hue and the Chroma at which the maximum Values are
reached, use Xcns TekHVCQuer yMaxVSanpl es.

St at us XcnsTekHVCQuer yMaxVSanpl es(ccc, hue, colors_return[], nsam
pl es);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue Specifies the Hue (Hu.
nsamples Specifies the number of samples.
colors return Returns nsamples of color specifications in Xcm-

sTekHVC such that the Chroma is the maximum at-
tainable for the Value and Hue. The white point as-
sociated with the returned color specification is the
Screen White Point. The value returned in the pixel
member is undefined.

The XcnsTekHVCQuer yMaxVSanpl es returns nsamples of maximum Value, the Chro-
ma at which that maximum Value is reached, and the actual Hue for which the max-

106

Color Management Functions

imum Chroma was found. These sample points may then be used to plot the maxi-
mum Value/Chroma boundary of the screen's color gamut for the specified Hue in
TekHVC color space.

To obtain the minimum Value for a given Hue and Chroma, use XcnsTekHVC
QueryM nV.

St at us XcnsTekHVCQueryM nV(ccc, hue, chroma, *color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue Specifies the Hue (Hu.

value Specifies the Value in which to find the (Va.

color return Returns the (Lc at which the (1C was found. The white

point associated with the returned color specification
is the Screen White Point. The value returned in the
pixel member is undefined.

The Xcms TekHVCQuer yM nV function, given a Hue and Chroma, determines the min-
imum Value in TekHVC color space displayable by the screen. It returns the mini-
mum Value and the actual Hue and Chroma at which the minimum Value was found.

Color Management Extensions

The Xlib color management facilities can be extended in two ways:
* Device-Independent Color Spaces

* Device-independent color spaces that are derivable to CIE XYZ space can be
added using the XcnmsAddCol or Space function.

¢ Color Characterization Function Set

¢ A Color Characterization Function Set consists of device-dependent color spaces
and their functions that convert between these color spaces and the CIE XYZ color
space, bundled together for a specific class of output devices. A function set can
be added using the XcnmsAddFunct i onSet function.

Color Spaces

The CIE XYZ color space serves as the hub for all conversions between device-inde-
pendent and device-dependent color spaces. Therefore, the knowledge to convert
an XcmsColor structure to and from CIE XYZ format is associated with each color
space. For example, conversion from CIE L*u*v* to RGB requires the knowledge to
convert from CIE L*u*v* to CIE XYZ and from CIE XYZ to RGB. This knowledge is
stored as an array of functions that, when applied in series, will convert the Xcm-
sColor structure to or from CIE XYZ format. This color specification conversion
mechanism facilitates the addition of color spaces.

Of course, when converting between only device-independent color spaces or only
device-dependent color spaces, shortcuts are taken whenever possible. For exam-
ple, conversion from TekHVC to CIE L*u*v* is performed by intermediate conver-

107

Color Management Functions

sion to CIE u*v*Y and then to CIE L*u*v*, thus bypassing conversion between CIE
uw*v*Y and CIE XYZ.

Adding Device-Independent Color Spaces

To add a device-independent color space, use XcnsAddCol or Space.
St at us XcnsAddCol or Space(*col or _space);
color space Specifies the device-independent color space to add.

The XcrsAddCol or Space function makes a device-independent color space (actual-
ly an XcmsColorSpace structure) accessible by the color management system. Be-
cause format values for unregistered color spaces are assigned at run time, they
should be treated as private to the client. If references to an unregistered color
space must be made outside the client (for example, storing color specifications in
a file using the unregistered color space), then reference should be made by color
space prefix (see XcnsFor mat O Pr ef i x and XcnsPr ef i xOF For nat).

If the XcmsColorSpace structure is already accessible in the color management
system, XcnsAddCol or Space returns XcmsSuccess.

Note that added XcmsColorSpaces must be retained for reference by Xlib.

Querying Color Space Format and Prefix

To obtain the format associated with the color space associated with a specified
color string prefix, use XcnsFor mat Of Pref i x.

XcmsCol or Format XcnsFor mat Of Prefi x(*prefix);
prefix Specifies the string that contains the color space prefix.

The XcnsFor mat O Pr ef i x function returns the format for the specified color space
prefix (for example, the string *“CIEXYZ"). The prefix is case-insensitive. If the col-
or space is not accessible in the color management system, XcnsFor mat Of Pr ef i x
returns XcmsUndefinedFormat.

To obtain the color string prefix associated with the color space specified by a color
format, use XcnsPref i xOf For mat .

char *XcnsPrefixOf Format (format);
format Specifies the color specification format.

The XcnsPr ef i xOF For mat function returns the string prefix associated with the col-
or specification encoding specified by the format argument. Otherwise, if no encod-
ing is found, it returns NULL. The returned string must be treated as read-only.

Creating Additional Color Spaces

Color space specific information necessary for color space conversion and color
string parsing is stored in an XcmsColorSpace structure. Therefore, a new structure
containing this information is required for each additional color space. In the case of
device-independent color spaces, a handle to this new structure (that is, by means

108

Color Management Functions

of a global variable) is usually made accessible to the client program for use with
the XcnsAddCol or Space function.

If a new XcmsColorSpace structure specifies a color space not registered with the
X Consortium, they should be treated as private to the client because format val-
ues for unregistered color spaces are assigned at run time. If references to an un-
registered color space must be made outside the client (for example, storing color
specifications in a file using the unregistered color space), then reference should be
made by color space prefix (see XcnsFor mat O Pref i x and XcnsPr ef i xOF For mat).

t ypedef (*XcnsConversionProc)();
t ypedef XcmsConver si onProc *XcnsFuncLi stPtr;
/* A NULL terminated |ist of function pointers*/

typedef struct _XcmsCol or Space {
char *prefix;
XcmsCol or Format f or nat ;
XcmsPar seStri ngProc parseString;
XcnmsFunclLi st Ptr to_Cl EXYZ;
XcnmsFuncLi st Ptr from Cl EXYZ;
int inverse_flag;

} XcnsCol or Space;

The prefix member specifies the prefix that indicates a color string is in this color
space's string format. For example, the strings " ciexyz' or " " CIEXYZ'" for CIE XYZ,
and " ‘rgb" or *'RGB" for RGB. The prefix is case insensitive. The format member
specifies the color specification format. Formats for unregistered color spaces are
assigned at run time. The parseString member contains a pointer to the function
that can parse a color string into an XcmsColor structure. This function returns
an integer (int): nonzero if it succeeded and zero otherwise. The to CIEXYZ and
from CIEXYZ members contain pointers, each to a NULL terminated list of function
pointers. When the list of functions is executed in series, it will convert the color
specified in an XcmsColor structure from/to the current color space format to/from
the CIE XYZ format. Each function returns an integer (int): nonzero if it succeeded
and zero otherwise. The white point to be associated with the colors is specified ex-
plicitly, even though white points can be found in the CCC. The inverse flag member,
if nonzero, specifies that for each function listed in to CIEXYZ, its inverse function
can be found in from CIEXYZ such that:

Gven: n = nunber of functions in each |ist

for each i, such that 0 <= i <n
fromCEXYZ[n - i - 1] is the inverse of to CIEXYZi].

This allows Xlib to use the shortest conversion path, thus bypassing CIE XYZ if
possible (for example, TekHVC to CIE L*u*v*).

Parse String Callback

The callback in the XcmsColorSpace structure for parsing a color string for the
particular color space must adhere to the following software interface specification:

109

Color Management Functions

Status XcnsParseStringProc(*color_string, *color_return);

color string Specifies the color string to parse.
color return Returns the color specification in the color space's
format.

Color Specification Conversion Callback

Callback functions in the XcmsColorSpace structure for converting a color specifi-
cation between device-independent spaces must adhere to the following software
interface specification:

St atus ConversionProc(ccc, *white point, *colors_in_out, ncolors);
ccc Specifies the CCC.

white point Specifies the white point associated with color spec-
ifications. The pixel member should be ignored, and
the entire structure remain unchanged upon return.

colors_in out Specifies an array of color specifications. Pixel mem-
bers should be ignored and must remain unchanged
upon return.

ncolors Specifies the number of XcmsColor structures in the
color-specification array.

Callback functions in the XcmsColorSpace structure for converting a color specifi-
cation to or from a device-dependent space must adhere to the following software
interface specification:

St at us Conver si onPr oc(ccec, *col ors_in_out, ncol ors,
conpression_flags_return[]);

ccc Specifies the CCC.

colors_in out Specifies an array of color specifications. Pixel mem-
bers should be ignored and must remain unchanged
upon return.

ncolors Specifies the number of XcmsColor structures in the
color-specification array.

compression_flags return Returns an array of Boolean values for indicating
compression status. If a non-NULL pointer is sup-
plied and a color at a given index is compressed, then
True should be stored at the corresponding index in
this array; otherwise, the array should not be modi-
fied.

Conversion functions are available globally for use by other color spaces. The con-
version functions provided by Xlib are:

110

Color Management Functions

Function Converts from Converts to

XcnsCl ELabToCl EXYZ XcmsCIELabFormat XcmsCIEXYZFormat
XcnsCl ELuvToCl EuvY XcmsCIELuvFormat XcmsCIEuvYFormat
XcmsCl EXYZToCl ELab XcmsCIEXYZFormat XcmsCIELabFormat
XcmsCl EXYZToCl EuvY XcmsCIEXYZFormat XcmsCIEuvYFormat
Xcns Cl EXYZToCl ExyY XcmsCIEXYZFormat XcmsCIExyYFormat
Xcns Cl EXYZToRGBI XcmsCIEXYZFormat XcmsRGBiFormat
XcnsCl EuvYToCl ELuv XcmsCIEuvYFormat XcmsCIELabFormat
XcnsCl EuvYToCl EXYZ XcmsCIEuvYFormat XcmsCIEXYZFormat
XcnsCl EuvYToTekHVC XcmsCIEuvYFormat XcmsTekHVCFormat
XcnsCl ExyYToCl EXYZ XcmsCIExyYFormat XcmsCIEXYZFormat
Xcns RCBTORGBI XcmsRGBFormat XcmsRGBiFormat
XcnmsRGBiI ToCl EXYZ XcmsRGBiFormat XcmsCIEXYZFormat
Xcns RGBi ToRGB XcmsRGBiFormat XcmsRGBFormat
Xcns TekHVCToCl EuvY XcmsTekHVCFormat XcmsCIEuvYFormat

Function Sets

Functions to convert between device-dependent color spaces and CIE XYZ may dif-
fer for different classes of output devices (for example, color versus gray monitors).
Therefore, the notion of a Color Characterization Function Set has been developed.
A function set consists of device-dependent color spaces and the functions that con-
vert color specifications between these device-dependent color spaces and the CIE
XYZ color space appropriate for a particular class of output devices. The function
set also contains a function that reads color characterization data off root window
properties. It is this characterization data that will differ between devices within a
class of output devices. For details about how color characterization data is stored
in root window properties, see the section on Device Color Characterization in the
Inter-Client Communication Conventions Manual. The LINEAR RGB function set is
provided by Xlib and will support most color monitors. Function sets may require
data that differs from those needed for the LINEAR RGB function set. In that case,
its corresponding data may be stored on different root window properties.

Adding Function Sets

To add a function set, use XcnsAddFunct i onSet .
St at us XcnsAddFunctionSet (*function_set);

function_set Specifies the function set to add.

The XcnsAddFuncti onSet function adds a function set to the color management
system. If the function set uses device-dependent XcmsColorSpace structures not
accessible in the color management system, XcnmsAddFunct i onSet adds them. If an
added XcmsColorSpace structure is for a device-dependent color space not regis-
tered with the X Consortium, they should be treated as private to the client because
format values for unregistered color spaces are assigned at run time. If references
to an unregistered color space must be made outside the client (for example, stor-
ing color specifications in a file using the unregistered color space), then reference

111

Color Management Functions

should be made by color space prefix (see XcnsFor mat O Pr ef i x and XcnsPr ef i xCf -
For mat).

Additional function sets should be added before any calls to other Xlib routines are
made. If not, the XcmsPerScrnlnfo member of a previously created XcmsCCC does
not have the opportunity to initialize with the added function set.

Creating Additional Function Sets

The creation of additional function sets should be required only when an output
device does not conform to existing function sets or when additional device-depen-
dent color spaces are necessary. A function set consists primarily of a collection
of device-dependent XcmsColorSpace structures and a means to read and store
a screen's color characterization data. This data is stored in an XcmsFunctionSet
structure. A handle to this structure (that is, by means of global variable) is usually
made accessible to the client program for use with XcnsAddFuncti onSet .

If a function set uses new device-dependent XcmsColorSpace structures, they will
be transparently processed into the color management system. Function sets can
share an XcmsColorSpace structure for a device-dependent color space. In addi-
tion, multiple XcmsColorSpace structures are allowed for a device-dependent color
space; however, a function set can reference only one of them. These XcmsColorS-
pace structures will differ in the functions to convert to and from CIE XYZ, thus
tailored for the specific function set.

typedef struct _XcnsFunctionSet {
XcnsCol or Space **DDCol or Spaces;
XcnsScreenl nitProc screenlnitProc;
XcrsScr eenFr eeProc screenFreeProc;
} XcnsFuncti onSet ;

The DDColorSpaces member is a pointer to a NULL terminated list of pointers to
XcmsColorSpace structures for the device-dependent color spaces that are support-
ed by the function set. The screenlnitProc member is set to the callback proce-
dure (see the following interface specification) that initializes the XcmsPerScrnInfo
structure for a particular screen.

The screen initialization callback must adhere to the following software interface
specification:

typedef Status (*XcnsScreenlnitProc)(*display, screen_nunber,
*screen_info);

display Specifies the connection to the X server.

screen _number Specifies the appropriate screen number on the host
server.

screen_info Specifies the XcmsPerScrninfo structure, which con-

tains the per screen information.

The screen initialization callback in the XcmsFunctionSet structure fetches the col-
or characterization data (device profile) for the specified screen, typically off prop-

112

Color Management Functions

erties on the screen's root window. It then initializes the specified XcmsPerScrnInfo
structure. If successful, the procedure fills in the XcmsPerScrnlnfo structure as
follows:

* It sets the screenData member to the address of the created device profile data
structure (contents known only by the function set).

¢ [t next sets the screenWhitePoint member.

¢ It next sets the functionSet member to the address of the XcmsFunctionSet struc-
ture.

* It then sets the state member to XcmsInitSuccess and finally returns XcmsSuc-
cess.

If unsuccessful, the procedure sets the state member to XcmsInitFailure and returns
XcmsFailure.

The XcmsPerScrnlnfo structure contains:

typedef struct _XcnsPerScrnlnfo {
XcnsCol or screenWi t ePoi nt;

XPoi nter functionSet;

XPoi nter screenDat a;

unsi gned char state;

char pad[3];

} XcnsPer Scrnl nf o;

The screenWhitePoint member specifies the white point inherent to the screen. The
functionSet member specifies the appropriate function set. The screenData member
specifies the device profile. The state member is set to one of the following:

* XcmsInitNone indicates initialization has not been previously attempted.
* XcmslnitFailure indicates initialization has been previously attempted but failed.

¢ XcmslInitSuccess indicates initialization has been previously attempted and suc-
ceeded.

The screen free callback must adhere to the following software interface specifica-
tion:

typedef void (*XcnsScreenFreeProc)(screenbData);
screenData Specifies the data to be freed.

This function is called to free the screenData stored in an XcmsPerScrnInfo struc-
ture.

113

Chapter 7. Graphics Context Functions

A number of resources are used when performing graphics operations in X. Most
information about performing graphics (for example, foreground color, background
color, line style, and so on) is stored in resources called graphics contexts (GCs).
Most graphics operations (see chapter 8) take a GC as an argument. Although in
theory the X protocol permits sharing of GCs between applications, it is expected
that applications will use their own GCs when performing operations. Sharing of
GCs is highly discouraged because the library may cache GC state.

Graphics operations can be performed to either windows or pixmaps, which collec-
tively are called drawables. Each drawable exists on a single screen. A GC is created
for a specific screen and drawable depth and can only be used with drawables of
matching screen and depth.

This chapter discusses how to:
* Manipulate graphics context/state

* Use graphics context convenience functions

Manipulating Graphics Context/State

Most attributes of graphics operations are stored in GCs. These include line width,
line style, plane mask, foreground, background, tile, stipple, clipping region, end
style, join style, and so on. Graphics operations (for example, drawing lines) use
these values to determine the actual drawing operation. Extensions to X may add
additional components to GCs. The contents of a GC are private to Xlib.

Xlib implements a write-back cache for all elements of a GC that are not resource
IDs to allow Xlib to implement the transparent coalescing of changes to GCs. For
example, a call to XSet For egr ound of a GC followed by a call to XSet Li neAttri but es
results in only a single-change GC protocol request to the server. GCs are neither
expected nor encouraged to be shared between client applications, so this write-
back caching should present no problems. Applications cannot share GCs without
external synchronization. Therefore, sharing GCs between applications is highly
discouraged.

To set an attribute of a GC, set the appropriate member of the XGCValues structure
and OR in the corresponding value bitmask in your subsequent calls to XCr eat eGC.
The symbols for the value mask bits and the XGCValues structure are:

/* GC attribute value mask bits */

#defi ne CGCFuncti on (1L<<0)
#defi ne CCPl aneMask (1L<<1)
#defi ne GCFor egr ound (1L<<2)
#defi ne GCBackgr ound (1L<<3)
#defi ne CCLi neW dt h (1L<<4)
#defi ne CCLi neStyl e (1L<<b)
#defi ne CCCapStyl e (1L<<6)
#defi ne CCJoi nStyl e (1L<<7)

114

Graphics Context Functions

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne CCFill Style

ne CCFi | | Rul e

ne CCTil e

ne CCSti ppl e

ne CCTil eSti pXOrigin
ne CCTil eSti pYOrigin
ne GCFont

ne GCSubwi ndowibde
ne GCG aphi csExposur es
ne CCA i pXOrigin

ne CCA i pYOrigin

ne GCA i pMask

ne CChashO f set

ne GCDashLi st

ne GCAr cMode

/* Val ues */

t ypedef struct {

int function;

unsi gned | ong pl ane_nask;
unsi gned | ong foreground;
unsi gned | ong backgr ound;
int line_wdth;

int [ine_style;

int cap_style;

int join_style;

int fill_style;

int fill _rule;

i nt arc_node;

Pi xmap tile;

Pi xmap sti ppl e;

int ts_x_origin;

int ts_y origin

Font font;

i nt subwi ndow_node;

Bool graphi cs_exposures;
int clip_x_origin;

int clip_y_origin;

Pi xmap cli p_nask;

i nt dash_of fset;

char dashes;

} XGCVal ues;

The default GC values are:

(1L<<8)

(1L<<9)

(1L<<10)
(1L<<11)
(1L<<12)
(1L<<13)
(1L<<14)
(1L<<15)
(1L<<16)
(1L<<17)
(1L<<18)
(1L<<19)
(1L<<20)
(1L<<21)
(1L<<22)

/* logical operation */

/* plane mask */

/* foreground pixel */

/* background pixel */

/[* line width (in pixels) */

/* LineSolid, LineOnOffDash, LineDoublebDash */
/* CapNot Last, CapButt, CapRound, CapProjecting
[* JoinMter, JoinRound, JoinBevel */

/* FillSolid, FillTiled, FillStippled Fill Opaqu
/* EvenOddRul e, W ndi ngRul e */

/* ArcChord, ArcPieSlice */

[* tile pixmap for tiling operations */

/* stipple 1 plane pixmap for stippling */

/* offset for tile or stipple operations */

/* default text font for text operations */
/[* dipByChildren, Includelnferiors */

/* bool ean, shoul d exposures be generated */
[* origin for clipping */

/* bitmap clipping; other calls for rects */
/* patterned/ dashed line information */

Component Default
function GXcopy
plane mask All ones
foreground 0

115

Graphics Context Functions

Component Default

background 1

line width 0

line style LineSolid

cap_style CapButt

join_ style JoinMiter

fill style FillSolid

fill rule EvenOddRule

arc_mode ArcPieSlice

tile Pixmap of unspecified size filled with
foreground pixel
(that is, client specified pixel if any, else
0)
(subsequent changes to foreground do
not affect this pixmap)

stipple Pixmap of unspecified size filled with
ones

ts_x origin 0

ts y origin 0

font <implementation dependent>

subwindow mode ClipByChildren

graphics exposures True

clip x origin 0

clip y origin 0

clip mask None

dash offset 0

dashes 4 (that is, the list [4, 4])

Note that foreground and background are not set to any values likely to be useful

in a window.

The function attributes of a GC are used when you update a section of a drawable
(the destination) with bits from somewhere else (the source). The function in a GC
defines how the new destination bits are to be computed from the source bits and
the old destination bits. GXcopy is typically the most useful because it will work
on a color display, but special applications may use other functions, particularly in
concert with particular planes of a color display. The 16 GC functions, defined in

<X11/ X. h>, are:

Function Name Value Operation
GXclear 0x0 0

GXand 0x1 src AND dst
GXandReverse 0x2 src AND NOT dst
GXcopy 0x3 src

116

Graphics Context Functions

Function Name Value Operation
GXandInverted 0x4 (NOT src) AND dst
GXnoop 0x5 dst

GXxor 0x6 src XOR dst

GXor 0x7 src OR dst

GXnor 0x8 (NOT src) AND (NOT dst)
GXequiv 0x9 (NOT src) XOR dst
GXinvert Oxa NOT dst

GXorReverse 0xb src OR (NOT dst)
GXcopylnverted Oxc NOT src

GXorlInverted 0xd (NOT src) OR dst
GXnand Oxe (NOT src) OR (NOT dst)
GXset Oxf 1

Many graphics operations depend on either pixel values or planes in a GC. The
planes attribute is of type long, and it specifies which planes of the destination are
to be modified, one bit per plane. A monochrome display has only one plane and will
be the least significant bit of the word. As planes are added to the display hardware,
they will occupy more significant bits in the plane mask.

In graphics operations, given a source and destination pixel, the result is computed
bitwise on corresponding bits of the pixels. That is, a Boolean operation is performed
in each bit plane. The plane mask restricts the operation to a subset of planes. A
macro constant AllPlanes can be used to refer to all planes of the screen simultane-
ously. The result is computed by the following:

((src FUNC dst) AND pl ane-mask) OR (dst AND (NOT pl ane- mask))

Range checking is not performed on the values for foreground, background, or
plane mask. They are simply truncated to the appropriate number of bits. The line-
width is measured in pixels and either can be greater than or equal to one (wide
line) or can be the special value zero (thin line).

Wide lines are drawn centered on the path described by the graphics request. Un-
less otherwise specified by the join-style or cap-style, the bounding box of a wide
line with endpoints [x1, y1], [x2, y2] and width w is a rectangle with vertices at the
following real coordinates:

[x1-(wsn/2), yl+(wrcs/2)], [x1+(wsn/2), yl-(wcs/2)],
[x2-(wFsn/ 2), y2+(wrcs/2)], [x2+(wsn/2), y2-(wcs/2)]

Here sn is the sine of the angle of the line, and cs is the cosine of the angle of the
line. A pixel is part of the line and so is drawn if the center of the pixel is fully inside
the bounding box (which is viewed as having infinitely thin edges). If the center
of the pixel is exactly on the bounding box, it is part of the line if and only if the
interior is immediately to its right (x increasing direction). Pixels with centers on a
horizontal edge are a special case and are part of the line if and only if the interior

117

Graphics Context Functions

or the boundary is immediately below (y increasing direction) and the interior or
the boundary is immediately to the right (x increasing direction).

Thin lines (zero line-width) are one-pixel-wide lines drawn using an unspecified,
device-dependent algorithm. There are only two constraints on this algorithm.

e If aline is drawn unclipped from [x1,y1] to [x2,y2] and if another line is drawn un-
clipped from [x1+dx,yl+dy] to [x2+dx,y2+dyl, a point [x,y] is touched by draw-
ing the first line if and only if the point [x+dx,y+dy] is touched by drawing the
second line.

* The effective set of points comprising a line cannot be affected by clipping. That
is, a point is touched in a clipped line if and only if the point lies inside the clipping
region and the point would be touched by the line when drawn unclipped.

A wide line drawn from [x1,y1] to [x2,y2] always draws the same pixels as a wide
line drawn from [x2,y2] to [x1,y1], not counting cap-style and join-style. It is recom-
mended that this property be true for thin lines, but this is not required. A line-width
of zero may differ from a line-width of one in which pixels are drawn. This permits
the use of many manufacturers' line drawing hardware, which may run many times
faster than the more precisely specified wide lines.

In general, drawing a thin line will be faster than drawing a wide line of width one.
However, because of their different drawing algorithms, thin lines may not mix well
aesthetically with wide lines. If it is desirable to obtain precise and uniform results
across all displays, a client should always use a line-width of one rather than a line-
width of zero.

The line-style defines which sections of a line are drawn:
LineSolid The full path of the line is drawn.

LineDoubleDash The full path of the line is drawn, but the even dashes are filled
differently from the odd dashes (see fill-style) with CapButt style
used where even and odd dashes meet.

LineOnOffDash Only the even dashes are drawn, and cap-style applies to all in-
ternal ends of the individual dashes, except CapNotLast is treat-
ed as CapButt.

The cap-style defines how the endpoints of a path are drawn:

CapNotLast This is equivalent to CapButt except that for a line-width of zero
the final endpoint is not drawn.

CapButt The line is square at the endpoint (perpendicular to the slope of
the line) with no projection beyond.

CapRound The line has a circular arc with the diameter equal to the line-
width, centered on the endpoint. (This is equivalent to CapButt for
line-width of zero).

CapProjecting The line is square at the end, but the path continues beyond the
endpoint for a distance equal to half the line-width. (This is equiv-
alent to CapButt for line-width of zero).

118

Graphics Context Functions

The join-style defines how corners are drawn for wide lines:

JoinMiter The outer edges of two lines extend to meet at an angle. However, if
the angle is less than 11 degrees, then a JoinBevel join-style is used
instead.

JoinRound The corner is a circular arc with the diameter equal to the line-width,
centered on the joinpoint.

JoinBevel The corner has CapButt endpoint styles with the triangular notch filled.

For a line with coincident endpoints (x1=x2, yl1=y2), when the cap-style is applied
to both endpoints, the semantics depends on the line-width and the cap-style:

CapNotLast thin The results are device dependent, but the de-
sired effect is that nothing is drawn.

CapButt thin The results are device dependent, but the de-
sired effect is that a single pixel is drawn.

CapRound thin The results are the same as for CapButt /thin.

CapProjecting thin The results are the same as for CapButt /thin.

CapButt wide Nothing is drawn.

CapRound wide The closed path is a circle, centered at the end-
point, and with the diameter equal to the line-
width.

CapProjecting wide The closed path is a square, aligned with the

coordinate axes, centered at the endpoint, and
with the sides equal to the line-width.

For a line with coincident endpoints (x1=x2, yl1=y2), when the join-style is applied
at one or both endpoints, the effect is as if the line was removed from the overall
path. However, if the total path consists of or is reduced to a single point joined with
itself, the effect is the same as when the cap-style is applied at both endpoints.

The tile/stipple represents an infinite two-dimensional plane, with the tile/stipple
replicated in all dimensions. When that plane is superimposed on the drawable for
use in a graphics operation, the upper-left corner of some instance of the tile/stipple
is at the coordinates within the drawable specified by the tile/stipple origin. The tile/
stipple and clip origins are interpreted relative to the origin of whatever destination
drawable is specified in a graphics request. The tile pixmap must have the same root
and depth as the GC, or a BadMatch error results. The stipple pixmap must have
depth one and must have the same root as the GC, or a BadMatch error results. For
stipple operations where the fill-style is FillStippled but not FillOpaqueStippled, the
stipple pattern is tiled in a single plane and acts as an additional clip mask to be
ANDed with the clip-mask. Although some sizes may be faster to use than others,
any size pixmap can be used for tiling or stippling.

The fill-style defines the contents of the source for line, text, and fill requests. For
all text and fill requests (for example, XDr awText , XDr awText 16, XFi | | Rect angl e,
XFi | | Pol ygon, and XFi | | Arc); for line requests with line-style LineSolid (for ex-
ample, XDr awLi ne, XDr awSegnent s, XDr awRect angl e, XDr awAr c¢); and for the even
dashes for line requests with line-style LineOnOffDash or LineDoubleDash, the fol-
lowing apply:

119

Graphics Context Functions

FillSolid Foreground
FillTiled Tile
FillOpaqueStippled A tile with the same width and height as stipple, but

with background everywhere stipple has a zero and
with foreground everywhere stipple has a one

FillStippled Foreground masked by stipple

When drawing lines with line-style LineDoubleDash, the odd dashes are controlled
by the fill-style in the following manner:

FillSolid Background

FillTiled Same as for even dashes
FillOpaqueStippled Same as for even dashes
FillStippled Background masked by stipple

Storing a pixmap in a GC might or might not result in a copy being made. If the
pixmap is later used as the destination for a graphics request, the change might or
might not be reflected in the GC. If the pixmap is used simultaneously in a graphics
request both as a destination and as a tile or stipple, the results are undefined.

For optimum performance, you should draw as much as possible with the same GC
(without changing its components). The costs of changing GC components relative
to using different GCs depend on the display hardware and the server implementa-
tion. It is quite likely that some amount of GC information will be cached in display
hardware and that such hardware can only cache a small number of GCs.

The dashes value is actually a simplified form of the more general patterns that
can be set with XSet Dashes. Specifying a value of N is equivalent to specifying the
two-element list [N, N] in XSet Dashes. The value must be nonzero, or a BadValue
error results.

The clip-mask restricts writes to the destination drawable. If the clip-mask is set to
a pixmap, it must have depth one and have the same root as the GC, or a BadMatch
error results. If clip-mask is set to None, the pixels are always drawn regardless of
the clip origin. The clip-mask also can be set by calling the XSet Cl i pRect angl es or
XSet Regi on functions. Only pixels where the clip-mask has a bit set to 1 are drawn.
Pixels are not drawn outside the area covered by the clip-mask or where the clip-
mask has a bit set to 0. The clip-mask affects all graphics requests. The clip-mask
does not clip sources. The clip-mask origin is interpreted relative to the origin of
whatever destination drawable is specified in a graphics request.

You can set the subwindow-mode to ClipByChildren or Includelnferiors. For ClipBy-
Children, both source and destination windows are additionally clipped by all view-
able InputOutput children. For Includelnferiors, neither source nor destination win-
dow is clipped by inferiors. This will result in including subwindow contents in the
source and drawing through subwindow boundaries of the destination. The use of
Includelnferiors on a window of one depth with mapped inferiors of differing depth
is not illegal, but the semantics are undefined by the core protocol.

The fill-rule defines what pixels are inside (drawn) for paths given in XFi | | Pol ygon
requests and can be set to EvenOddRule or WindingRule. For EvenOddRule, a point
is inside if an infinite ray with the point as origin crosses the path an odd number

120

Graphics Context Functions

of times. For WindingRule, a point is inside if an infinite ray with the point as origin
crosses an unequal number of clockwise and counterclockwise directed path seg-
ments. A clockwise directed path segment is one that crosses the ray from left to
right as observed from the point. A counterclockwise segment is one that crosses
the ray from right to left as observed from the point. The case where a directed line
segment is coincident with the ray is uninteresting because you can simply choose
a different ray that is not coincident with a segment.

For both EvenOddRule and WindingRule, a point is infinitely small, and the path is
an infinitely thin line. A pixel is inside if the center point of the pixel is inside and the
center point is not on the boundary. If the center point is on the boundary, the pixel
is inside if and only if the polygon interior is immediately to its right (x increasing
direction). Pixels with centers on a horizontal edge are a special case and are inside
if and only if the polygon interior is immediately below (y increasing direction).

The arc-mode controls filling in the XFi | | Ar cs function and can be set to ArcPieSlice
or ArcChord. For ArcPieSlice, the arcs are pie-slice filled. For ArcChord, the arcs
are chord filled.

The graphics-exposure flag controls GraphicsExpose event generation for XCopy-
Ar ea and XCopyPl ane requests (and any similar requests defined by extensions).

To create a new GC that is usable on a given screen with a depth of drawable, use
XCr eat eGC.

GC XCreateGC(*display, d, valuenmask, values);

display Specifies the connection to the X server.
d Specifies the drawable.
valuemask Specifies which components in the GC are to be (Vm.

This argument is the bitwise inclusive OR of zero or more
of the valid GC component mask bits.

values Specifies any values as specified by the valuemask.
The XCr eat eGC function creates a graphics context and returns a GC. The GC can be
used with any destination drawable having the same root and depth as the specified

drawable. Use with other drawables results in a BadMatch error.

XCr eat eGC can generate BadAlloc, BadDrawable, BadFont, BadMatch, BadPixmap,
and BadValue errors.

To copy components from a source GC to a destination GC, use XCopyGC.

XCopyGC(*display, dest, valuenask);

display Specifies the connection to the X server.
src Specifies the components of the source GC.
valuemask Specifies which components in the GC are to be (Vm.

This argument is the bitwise inclusive OR of zero or more
of the valid GC component mask bits.

121

Graphics Context Functions

dest Specifies the destination GC.

The XCopyGC function copies the specified components from the source GC to the
destination GC. The source and destination GCs must have the same root and depth,
or a BadMatch error results. The valuemask specifies which component to copy, as
for XCr eat eGC.

XCopyGC can generate BadAlloc, BadGC, and BadMatch errors.
To change the components in a given GC, use XChangeGC.

XChangeGC(*display, gc, valuemask, *values);

display Specifies the connection to the X server.
gc Specifies the GC.
valuemask Specifies which components in the GC are to be (Vm.

This argument is the bitwise inclusive OR of zero or more
of the valid GC component mask bits.

values Specifies any values as specified by the valuemask.

The XChangeGC function changes the components specified by valuemask for the
specified GC. The values argument contains the values to be set. The values and
restrictions are the same as for XCr eat eGC. Changing the clip-mask overrides any
previous XSet d i pRect angl es request on the context. Changing the dash-offset or
dash-list overrides any previous XSet Dashes request on the context. The order in
which components are verified and altered is server dependent. If an error is gen-
erated, a subset of the components may have been altered.

XChangeGC can generate BadAlloc, BadFont, BadGC, BadMatch, BadPixmap, and
BadValue errors.

To obtain components of a given GC, use XGet GCVal ues.

St at us XGet GCVal ues(*di splay, gc, valuemask, *values_return);

display Specifies the connection to the X server.
gc Specifies the GC.
valuemask Specifies which components in the GC are to be (Vm.

This argument is the bitwise inclusive OR of zero or
more of the valid GC component mask bits.

values return Returns the GC values in the specified XGCValues
structure.

The XGet GCval ues function returns the components specified by valuemask for
the specified GC. If the valuemask contains a valid set of GC mask bits (GCFunc-
tion, GCPlaneMask, GCForeground, GCBackground, GCLineWidth, GCLineStyle,
GCCapStyle, GCJoinStyle, GCFillStyle, GCFillRule, GCTile, GCStipple, GCTileStipX-
Origin, GCTileStipYOrigin, GCFont, GCSubwindowMode, GCGraphicsExposures,
GCClipXOrigin, GCClipYOrigin, GCDashOffset, or GCArcMode) and no error occurs,
XGet GCVal ues sets the requested components in values_return and returns a nonze-

122

Graphics Context Functions

ro status. Otherwise, it returns a zero status. Note that the clip-mask and dash-
list (represented by the GCClipMask and GCDashList bits, respectively, in the val-
uemask) cannot be requested. Also note that an invalid resource ID (with one or
more of the three most significant bits set to 1) will be returned for GCFont, GCTile,
and GCStipple if the component has never been explicitly set by the client.

To free a given GC, use XFr eeGC.

XFreeGC(*display, gc);

display Specifies the connection to the X server.

gc Specifies the GC.

The XFr eeGCfunction destroys the specified GC as well as all the associated storage.
XFr eeGC can generate a BadGC error.

To obtain the GContext resource ID for a given GC, use XGCont ext Fr on3C.

GCont ext XGCont ext FromGC(gc);

gc Specifies the GC (Gc.

Xlib usually defers sending changes to the components of a GC to the server until a
graphics function is actually called with that GC. This permits batching of compo-
nent changes into a single server request. In some circumstances, however, it may
be necessary for the client to explicitly force sending the changes to the server. An
example might be when a protocol extension uses the GC indirectly, in such a way
that the extension interface cannot know what GC will be used. To force sending
GC component changes, use XFl ushGC.

voi d XFl ushGC(*display, gc);

display Specifies the connection to the X server.

gc Specifies the GC.

Using Graphics Context Convenience Routines

This section discusses how to set the:
» Foreground, background, plane mask, or function components

¢ Line attributes and dashes components

Fill style and fill rule components

Fill tile and stipple components
e Font component
* Clip region component

* Arc mode, subwindow mode, and graphics exposure components

123

Graphics Context Functions

Setting the Foreground, Background, Function, or Plane
Mask

To set the foreground, background, plane mask, and function components for a giv-
en GC, use XSet St at e.

XSet State(*display, gc, background, function, plane_mask);

display Specifies the connection to the X server.

gc Specifies the GC.

foreground Specifies the foreground you want to set for the speci-
fied GC.

background Specifies the background you want to set for the spec-
ified GC.

function Specifies the function you want to set for the specified
GC.

plane _mask Specifies the plane mask.

XSet St at e can generate BadAlloc, BadGC, and BadValue errors.
To set the foreground of a given GC, use XSet For egr ound.

XSet For eground(*di splay, gc, foreground);

display Specifies the connection to the X server.

gc Specifies the GC.

foreground Specifies the foreground you want to set for the speci-
fied GC.

XSet For egr ound can generate BadAlloc and BadGC errors.
To set the background of a given GC, use XSet Backgr ound.

XSet Background(*di splay, gc, background);

display Specifies the connection to the X server.

gc Specifies the GC.

background Specifies the background you want to set for the spec-
ified GC.

XSet Backgr ound can generate BadAlloc and BadGC errors.
To set the display function in a given GC, use XSet Functi on.
XSet Function(*display, gc, function);

display Specifies the connection to the X server.

124

Graphics Context Functions

gc Specifies the GC.

function Specifies the function you want to set for the specified GC.
XSet Functi on can generate BadAlloc, BadGC, and BadValue errors.

To set the plane mask of a given GC, use XSet Pl aneMask.

XSet Pl aneMask(*di splay, gc, plane_nask);

display Specifies the connection to the X server.
gc Specifies the GC.
plane _mask Specifies the plane mask.

XSet Pl aneMask can generate BadAlloc and BadGC errors.

Setting the Line Attributes and Dashes

To set the line drawing components of a given GC, use XSet Li neAttri but es.

XSetLineAttributes(*display, gc, line_width, line_style, cap_style,

join_style);

display Specifies the connection to the X server.

gc Specifies the GC.

line_ width Specifies the line-width you want to set for the specified
GC.

line style Specifies the line-style you want to set for the specified
GC. You can pass LineSolid, LineOnOffDash, or Line-
DoubleDash.

cap style Specifies the line-style and cap-style you want to set for

the specified GC. You can pass CapNotLast, CapButt,
CapRound, or CapProjecting.

join_style Specifies the line join-style you want to set for the spec-
ified GC. You can pass JoinMiter, JoinRound, or JoinBev-
el.

XSet Li neAt t ri but es can generate BadAlloc, BadGC, and BadValue errors.

To set the dash-offset and dash-list for dashed line styles of a given GC, use XSet -
Dashes.

XSet Dashes(*display, gc, dash_offset, dash_list[], n);

display Specifies the connection to the X server.
gc Specifies the GC.
dash_offset Specifies the phase of the pattern for the dashed line-

style you want to set for the specified GC.

125

Graphics Context Functions

dash_list Specifies the dash-list for the dashed line-style you
want to set for the specified GC.

n Specifies the number of elements in dash list.

The XSet Dashes function sets the dash-offset and dash-list attributes for dashed
line styles in the specified GC. There must be at least one element in the specified
dash list, or a BadValue error results. The initial and alternating elements (second,
fourth, and so on) of the dash list are the even dashes, and the others are the odd
dashes. Each element specifies a dash length in pixels. All of the elements must be
nonzero, or a BadValue error results. Specifying an odd-length list is equivalent to
specifying the same list concatenated with itself to produce an even-length list.

The dash-offset defines the phase of the pattern, specifying how many pixels into the
dash-list the pattern should actually begin in any single graphics request. Dashing
is continuous through path elements combined with a join-style but is reset to the
dash-offset between each sequence of joined lines.

The unit of measure for dashes is the same for the ordinary coordinate system.
Ideally, a dash length is measured along the slope of the line, but implementations
are only required to match this ideal for horizontal and vertical lines. Failing the
ideal semantics, it is suggested that the length be measured along the major axis
of the line. The major axis is defined as the x axis for lines drawn at an angle of
between —45 and +45 degrees or between 135 and 225 degrees from the x axis.
For all other lines, the major axis is the y axis.

XSet Dashes can generate BadAlloc, BadGC, and BadValue errors.

Setting the Fill Style and Fill Rule

To set the fill-style of a given GC, use XSet Fi |l | Styl e.

XSetFillsStyle(*display, gc, fill _style);

display Specifies the connection to the X server.

gc Specifies the GC.

fill style Specifies the fill-style you want to set for the specified
GC. You can pass FillSolid, FillTiled, FillStippled, or Fil-
10paqueStippled.

XSet Fi | | Styl e can generate BadAlloc, BadGC, and BadValue errors.
To set the fill-rule of a given GC, use XSet Fi | | Rul e.

XSetFill Rule(*display, gc, fill_rule);

display Specifies the connection to the X server.
gc Specifies the GC.
fill rule Specifies the fill-rule you want to set for the specified

GC. You can pass EvenOddRule or WindingRule.

XSet Fi | | Rul e can generate BadAlloc, BadGC, and BadValue errors.

126

Graphics Context Functions

Setting the Fill Tile and Stipple

Some displays have hardware support for tiling or stippling with patterns of specific
sizes. Tiling and stippling operations that restrict themselves to those specific sizes
run much faster than such operations with arbitrary size patterns. Xlib provides
functions that you can use to determine the best size, tile, or stipple for the display
as well as to set the tile or stipple shape and the tile or stipple origin.

To obtain the best size of a tile, stipple, or cursor, use XQuer yBest Si ze.

Status XQueryBest Size(*display, cl ass, whi ch_screen, hei ght
*hei ght _return);

display Specifies the connection to the X server.

class Specifies the class that you are interested in. You can

pass TileShape, CursorShape, or StippleShape.

which_screen Specifies any drawable on the screen.
width
height Specify the width and height.

width_return

height return Return the width and height of the object best sup-
ported by the display hardware.

The XQuer yBest Si ze function returns the best or closest size to the specified size.
For CursorShape, this is the largest size that can be fully displayed on the screen
specified by which screen. For TileShape, this is the size that can be tiled fastest.
For StippleShape, this is the size that can be stippled fastest. For CursorShape, the
drawable indicates the desired screen. For TileShape and StippleShape, the draw-
able indicates the screen and possibly the window class and depth. An InputOnly
window cannot be used as the drawable for TileShape or StippleShape, or a Bad-
Match error results.

XQuer yBest Si ze can generate BadDrawable, BadMatch, and BadValue errors.

To obtain the best fill tile shape, use XQuer yBest Ti | e.

St at us XQueryBest Ti | e(*di spl ay, whi ch_scr een, hei ght,
*hei ght _return);

display Specifies the connection to the X server.
which_screen Specifies any drawable on the screen.

width

height Specify the width and height.

width_return

height return Return the width and height of the object best sup-
ported by the display hardware.

127

Graphics Context Functions

The XQuer yBest Ti | e function returns the best or closest size, that is, the size that
can be tiled fastest on the screen specified by which screen. The drawable indicates
the screen and possibly the window class and depth. If an InputOnly window is used
as the drawable, a BadMatch error results.

XQuer yBest Ti | e can generate BadDrawable and BadMatch errors.

To obtain the best stipple shape, use XQuer yBest Sti ppl e.

Status XQueryBest Sti ppl e(*di spl ay, whi ch_scr een, hei ght,
*hei ght _return);

display Specifies the connection to the X server.
which_screen Specifies any drawable on the screen.

width

height Specify the width and height.

width_return

height return Return the width and height of the object best sup-
ported by the display hardware.

The XQuer yBest Sti ppl e function returns the best or closest size, that is, the size
that can be stippled fastest on the screen specified by which screen. The drawable
indicates the screen and possibly the window class and depth. If an InputOnly win-
dow is used as the drawable, a BadMatch error results.

XQuer yBest Sti ppl e can generate BadDrawable and BadMatch errors.
To set the fill tile of a given GC, use XSet Ti | e.

XSetTile(*display, gc, tile);

display Specifies the connection to the X server.
gc Specifies the GC.
tile Specifies the fill tile you want to set for the specified GC.

The tile and GC must have the same depth, or a BadMatch error results.
XSet Ti | e can generate BadAlloc, BadGC, BadMatch, and BadPixmap errors.
To set the stipple of a given GC, use XSet Sti ppl e.

XSet Sti pple(*display, gc, stipple);

display Specifies the connection to the X server.
gc Specifies the GC.
stipple Specifies the stipple you want to set for the specified GC.

The stipple must have a depth of one, or a BadMatch error results.

XSet St i ppl e can generate BadAlloc, BadGC, BadMatch, and BadPixmap errors.

128

Graphics Context Functions

To set the tile or stipple origin of a given GC, use XSet TSOri gi n.

XSet TSOrigin(*display, gc, ts_y origin);

display Specifies the connection to the X server.

gc Specifies the GC.

ts x origin

ts y origin Sp_ec_:ify the x and y coordinates of the tile and stipple
origin.

When graphics requests call for tiling or stippling, the parent's origin will be in-
terpreted relative to whatever destination drawable is specified in the graphics re-
quest.

XSet TSOri gi n can generate BadAlloc and BadGC errors.

Setting the Current Font

To set the current font of a given GC, use XSet Font .

XSet Font (*di splay, gc, font);

display Specifies the connection to the X server.
gc Specifies the GC.
font Specifies the font.

XSet Font can generate BadAlloc, BadFont, and BadGC errors.

Setting the Clip Region

Xlib provides functions that you can use to set the clip-origin and the clip-mask or
set the clip-mask to a list of rectangles.

To set the clip-origin of a given GC, use XSet d i pOri gi n.
XSetdipOrigin(*display, gc, clip_y_origin);

display Specifies the connection to the X server.
gc Specifies the GC.

clip x origin

clip_y origin Specify the x and y coordinates of the clip-mask ori-
gin.

The clip-mask origin is interpreted relative to the origin of whatever destination
drawable is specified in the graphics request.

XSet d i pOri gi n can generate BadAlloc and BadGC errors.

To set the clip-mask of a given GC to the specified pixmap, use XSet C i pMask.

129

Graphics Context Functions

XSet C i pMask(*di splay, gc, pixmp);

display Specifies the connection to the X server.
gc Specifies the GC.
pixmap Specifies the pixmap or None.

If the clip-mask is set to None, the pixels are always drawn (regardless of the clip-
origin).

XSet d i pMask can generate BadAlloc, BadGC, BadMatch, and BadPixmap errors.

To set the clip-mask of a given GC to the specified list of rectangles, use XSet -
C i pRect angl es.

XSet O i pRect angl es(*display, gc, clip_y origin, rectangles[], n,
ordering);

display Specifies the connection to the X server.

gc Specifies the GC.

clip x origin

clip_y origin Specify the x and y coordinates of the clip-mask ori-
gin.

rectangles Specifies an array of rectangles that define the clip-
mask.

n Specifies the number of rectangles.

ordering Specifies the ordering relations on the rectan-
gles. You can pass Unsorted, YSorted, YXSorted, or
YXBanded.

The XSet i pRect angl es function changes the clip-mask in the specified GC to the
specified list of rectangles and sets the clip origin. The output is clipped to remain
contained within the rectangles. The clip-origin is interpreted relative to the ori-
gin of whatever destination drawable is specified in a graphics request. The rec-
tangle coordinates are interpreted relative to the clip-origin. The rectangles should
be nonintersecting, or the graphics results will be undefined. Note that the list of
rectangles can be empty, which effectively disables output. This is the opposite of
passing None as the clip-mask in XCr eat eGC, XChangeGC, and XSet C i pMask.

If known by the client, ordering relations on the rectangles can be specified with the
ordering argument. This may provide faster operation by the server. If an incorrect
ordering is specified, the X server may generate a BadMatch error, but it is not re-
quired to do so. If no error is generated, the graphics results are undefined. Unsort-
ed means the rectangles are in arbitrary order. YSorted means that the rectangles
are nondecreasing in their Y origin. YXSorted additionally constrains YSorted order
in that all rectangles with an equal Y origin are nondecreasing in their X origin.
YXBanded additionally constrains YXSorted by requiring that, for every possible Y
scanline, all rectangles that include that scanline have an identical Y origins and
Y extents.

130

Graphics Context Functions

XSet d i pRect angl es can generate BadAlloc, BadGC, BadMatch, and BadValue er-
rors.

Xlib provides a set of basic functions for performing region arithmetic. For informa-
tion about these functions, see section 16.5.

Setting the Arc Mode, Subwindow Mode, and Graphics
Exposure
To set the arc mode of a given GC, use XSet Ar chMbde.

XSet ArcMode(*di splay, gc, arc_node);

display Specifies the connection to the X server.

gc Specifies the GC.

arc_mode Specifies the arc mode. You can pass ArcChord or Ar-
cPieSlice.

XSet Ar cMbde can generate BadAlloc, BadGC, and BadValue errors.
To set the subwindow mode of a given GC, use XSet Subwi ndowivbde.

XSet Subwi ndowvbde(*di splay, gc, subw ndow node);

display Specifies the connection to the X server.
gc Specifies the GC.
subwindow_mode Specifies the subwindow mode. You can pass ClipBy-

Children or Includelnferiors.
XSet Subwi ndowVbde can generate BadAlloc, BadGC, and BadValue errors.
To set the graphics-exposures flag of a given GC, use XSet G aphi csExposur es.

XSet Gr aphi csExposures(*display, gc, graphics_exposures);

display Specifies the connection to the X server.
gc Specifies the GC.
graphics _exposures Specifies a Boolean value that indicates whether you

want GraphicsExpose and NoExpose events to be re-
ported when calling XCopyAr ea and XCopyPl ane with
this GC.

XSet Gr aphi csExposur es can generate BadAlloc, BadGC, and BadValue errors.

131

Chapter 8. Graphics Functions

Once you have established a connection to a display, you can use the Xlib graphics
functions to:

* Clear and copy areas

* Draw points, lines, rectangles, and arcs

* Fill areas

* Manipulate fonts

* Draw text

» Transfer images between clients and the server

If the same drawable and GC is used for each call, Xlib batches back-to-back calls to
XDrawPoint, XDrawLine, XDrawRectangle, XFillArc, and XFillRectangle. Note that
this reduces the total number of requests sent to the server.

Clearing Areas

Xlib provides functions that you can use to clear an area or the entire window. Be-
cause pixmaps do not have defined backgrounds, they cannot be filled by using the
functions described in this section. Instead, to accomplish an analogous operation
on a pixmap, you should use XFi | | Rect angl e, which sets the pixmap to a known
value.

To clear a rectangular area of a given window, use XCl ear Ar ea.
XCl ear Area(*display, w, vy, height, exposures);
display Specifies the connection to the X server.

w Specifies the window. and specify the upper-left corner
of the rectangle

X

v Specify the x and y coordinates(Xy.

width

height Specify the width and height(Wh.

exposures Specifies a Boolean value that indicates if Expose events

are to be generated.

The XCl ear Ar ea function paints a rectangular area in the specified window accord-
ing to the specified dimensions with the window's background pixel or pixmap. The
subwindow-mode effectively is ClipByChildren. If width is zero, it is replaced with
the current width of the window minus x. If height is zero, it is replaced with the
current height of the window minus y. If the window has a defined background tile,

132

Graphics Functions

the rectangle clipped by any children is filled with this tile. If the window has back-
ground None, the contents of the window are not changed. In either case, if expo-
sures is True, one or more Expose events are generated for regions of the rectangle
that are either visible or are being retained in a backing store. If you specify a win-
dow whose class is InputOnly, a BadMatch error results.

XCl ear Ar ea can generate BadMatch, BadValue, and BadWindow errors.
To clear the entire area in a given window, use Xd ear W ndow.

XCl ear W ndow(*di splay, w;

display Specifies the connection to the X server.

w Specifies the window.

The XC ear W ndow function clears the entire area in the specified window and is
equivalent to XCl ear Ar ea (display, w, 0, 0, 0, 0, False). If the window has a defined
background tile, the rectangle is tiled with a plane-mask of all ones and GXcopy
function. If the window has background None, the contents of the window are not
changed. If you specify a window whose class is InputOnly, a BadMatch error re-
sults.

XCd ear W ndow can generate BadMatch and BadWindow errors.

Copying Areas

Xlib provides functions that you can use to copy an area or a bit plane.
To copy an area between drawables of the same root and depth, use XCopyAr ea.

XCopyArea(*display, dest, gc, src_y, height, dest_y);

display Specifies the connection to the X server.

src

dest Specify the source and destination rectangles to be com-
bined.

gc Specifies the GC.

Src X

src y Specify the x and y coordinates, which are relative to the

origin of the source rectangle and specify its upper-left cor-
ner. and destination rectangles

width

height Specify the width and height(Wh. and specify its upper-left
corner

dest x

dest y Specify the x and y coordinates(Dx.

133

Graphics Functions

The XCopyAr ea function combines the specified rectangle of src with the specified
rectangle of dest. The drawables must have the same root and depth, or a BadMatch
error results.

If regions of the source rectangle are obscured and have not been retained in back-
ing store or if regions outside the boundaries of the source drawable are specified,
those regions are not copied. Instead, the following occurs on all corresponding
destination regions that are either visible or are retained in backing store. If the
destination is a window with a background other than None, corresponding regions
of the destination are tiled with that background (with plane-mask of all ones and
GXcopy function). Regardless of tiling or whether the destination is a window or
a pixmap, if graphics-exposures is True, then GraphicsExpose events for all corre-
sponding destination regions are generated. If graphics-exposures is True but no
GraphicsExpose events are generated, a NoExpose event is generated. Note that
by default graphics-exposures is True in new GCs.

This function uses these GC components: function, plane-mask, subwindow-mode,
graphics-exposures, clip-x-origin, clip-y-origin, and clip-mask.

XCopyAr ea can generate BadDrawable, BadGC, and BadMatch errors.
To copy a single bit plane of a given drawable, use XCopyPI ane.

XCopyPl ane(*display, dest, gc, src.y, height, dest_y, plane);

display Specifies the connection to the X server.

src

dest Specify the source and destination rectangles to be com-
bined.

gc Specifies the GC.

STC_X

src y Specify the x and y coordinates, which are relative to the
origin of the source rectangle and specify its upper-left cor-
ner.

width

height Specify the width and height(Wh. and specify its upper-left
corner

dest x

dest y Specify the x and y coordinates(Dx.

plane Specifies the bit plane. You must set exactly one bit to 1.

The XCopyPl ane function uses a single bit plane of the specified source rectangle
combined with the specified GC to modify the specified rectangle of dest. The draw-
ables must have the same root but need not have the same depth. If the drawables
do not have the same root, a BadMatch error results. If plane does not have exactly
one bit set to 1 and the value of plane is not less than %2 sup n%, where n is the
depth of src, a BadValue error results.

134

Graphics Functions

Effectively, XCopyPl ane forms a pixmap of the same depth as the rectangle of dest
and with a size specified by the source region. It uses the foreground/background
pixels in the GC (foreground everywhere the bit plane in src contains a bit set to 1,
background everywhere the bit plane in src contains a bit set to 0) and the equiv-
alent of a CopyAr ea protocol request is performed with all the same exposure se-
mantics. This can also be thought of as using the specified region of the source bit
plane as a stipple with a fill-style of FillOpaqueStippled for filling a rectangular area
of the destination.

This function uses these GC components: function, plane-mask, foreground, back-
ground, subwindow-mode, graphics-exposures, clip-x-origin, clip-y-origin, and clip-
mask.

XCopyPI ane can generate BadDrawable, BadGC, BadMatch, and BadValue errors.

Drawing Points, Lines, Rectangles, and Arcs

Xlib provides functions that you can use to draw:
* A single point or multiple points

* A single line or multiple lines

* A single rectangle or multiple rectangles

* A single arc or multiple arcs

Some of the functions described in the following sections use these structures:

typedef struct {
short x1, yl, x2, y2;
} XSegnent;

typedef struct {
short x, v;
} XPoint;

typedef struct {
short x, v;
unsi gned short wi dth, height;

135

Graphics Functions

} XRect angl e;

typedef struct {

short x, v;

unsi gned short wi dth, height;

short anglel, angle2; /* Degrees * 64 */
} XArc;

All x and y members are signed integers. The width and height members are 16-bit

unsigned integers. You should be careful not to generate coordinates and sizes out
of the 16-bit ranges, because the protocol only has 16-bit fields for these values.

Drawing Single and Multiple Points

To draw a single point in a given drawable, use XDr awPoi nt .

XDr awPoi nt (*di splay, d, gc, Vy);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

X

vy Specify the x and y coordinates where you want the point
drawn.

To draw multiple points in a given drawable, use XDr awPoi nt s.

XDr awPoi nts(*display, d, gc, *points, npoints, node);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

points Specifies an array of points.

npoints Specifies the number of points in the array.

mode Specifies the coordinate mode. You can pass CoordMode-

Origin or CoordModePrevious.

The XDr awPoi nt function uses the foreground pixel and function components of the
GC to draw a single point into the specified drawable; XDr awPoi nt s draws multiple
points this way. CoordModeOrigin treats all coordinates as relative to the origin, and

136

Graphics Functions

CoordModePrevious treats all coordinates after the first as relative to the previous
point. XDr awPoi nt s draws the points in the order listed in the array.

Both functions use these GC components: function, plane-mask, foreground, sub-
window-mode, clip-x-origin, clip-y-origin, and clip-mask.

XDr awPoi nt can generate BadDrawable, BadGC, and BadMatch errors. XDr aw
Poi nt s can generate BadDrawable, BadGC, BadMatch, and BadValue errors.

Drawing Single and Multiple Lines

To draw a single line between two points in a given drawable, use XDr awLi ne.

XDrawLi ne(*display, d, gc, Vy2);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x1

yl

x2

y2 Specify the points (x1, y1) and (x2, y2) to be connected.

To draw multiple lines in a given drawable, use XDr awLi nes.

XDrawLi nes(*display, d, gc, *points, npoints, node);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

points Specifies an array of points.

npoints Specifies the number of points in the array.

mode Specifies the coordinate mode. You can pass CoordMode-

Origin or CoordModePrevious.
To draw multiple, unconnected lines in a given drawable, use XDr awSegnent s.

XDr awSegrent s(*display, d, gc, *segnments, nsegnents);

display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.

137

Graphics Functions

segments Specifies an array of segments.
nsegments Specifies the number of segments in the array.

The XDr awLi ne function uses the components of the specified GC to draw a line
between the specified set of points (x1, y1) and (x2, y2). It does not perform joining
at coincident endpoints. For any given line, XDr awLi ne does not draw a pixel more
than once. If lines intersect, the intersecting pixels are drawn multiple times.

The XDr awLi nes function uses the components of the specified GC to draw npoints-1
lines between each pair of points (point[i], point[i+1]) in the array of XPoint struc-
tures. It draws the lines in the order listed in the array. The lines join correctly at
all intermediate points, and if the first and last points coincide, the first and last
lines also join correctly. For any given line, XDr awLi nes does not draw a pixel more
than once. If thin (zero line-width) lines intersect, the intersecting pixels are drawn
multiple times. If wide lines intersect, the intersecting pixels are drawn only once,
as though the entire Pol yLi ne protocol request were a single, filled shape. Coord-
ModeOrigin treats all coordinates as relative to the origin, and CoordModePrevious
treats all coordinates after the first as relative to the previous point.

The XDr awSegnent s function draws multiple, unconnected lines. For each segment,
XDr awSegnent s draws a line between (x1, y1) and (x2, y2). It draws the lines in the
order listed in the array of XSegment structures and does not perform joining at
coincident endpoints. For any given line, XDr awSegnent s does not draw a pixel more
than once. If lines intersect, the intersecting pixels are drawn multiple times.

All three functions use these GC components: function, plane-mask, line-width,
line-style, cap-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-
mask. The XDr awLi nes function also uses the join-style GC component. All three

functions also use these GC mode-dependent components: foreground, background,
tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, and dash-list.

XDr awLi ne, XDr awLi nes, and XDr awSegnent s can generate BadDrawable, BadGC,
and BadMatch errors. XDr awLi nes also can generate BadValue errors.

Drawing Single and Multiple Rectangles

To draw the outline of a single rectangle in a given drawable, use XDr awRect angl e.

XDr awRect angl e(*display, d, gc, vy, height);

display Specifies the connection to the X server.
d Specifies the drawable.

gc Specifies the GC.

X

y Specify the x and y coordinates(Xy.
width

height Specify the width and height(Wh.

138

Graphics Functions

To draw the outline of multiple rectangles in a given drawable, use XDr awRect an-
gl es.

XDr awRect angl es(*display, d, gc, rectangles[], nrectangles);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

rectangles Specifies an array of rectangles.

nrectangles Specifies the number of rectangles in the array.

The XDr anRect angl e and XDr awRect angl es functions draw the outlines of the spec-
ified rectangle or rectangles as if a five-point Pol yLi ne protocol request were spec-
ified for each rectangle:

e [x,y] [x+width,y] [x+width,y+height] [x,y+height] [x,y]

For the specified rectangle or rectangles, these functions do not draw a pixel more
than once. XDr awRect angl es draws the rectangles in the order listed in the array.
If rectangles intersect, the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, line-width, line-
style, cap-style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin,
and clip-mask. They also use these GC mode-dependent components: foreground,
background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, and
dash-list.

XDr awRect angl e and XDr awRect angl es can generate BadDrawable, BadGC, and
BadMatch errors.

Drawing Single and Multiple Arcs

To draw a single arc in a given drawable, use XDr awAr c.

XDrawArc(*display, d, gc, vy, height, angle2);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC. and specify the upper-left corner of the
bounding rectangle

X

Y Specify the x and y coordinates(Xy.

width

height Specify the width and height(Wh.

139

Graphics Functions

anglel Specifies the start of the arc relative to the three-o'clock
position from the center, in units of degrees * 64.

angle2 Specifies the path and extent of the arc relative to the start
of the arc, in units of degrees * 64.

To draw multiple arcs in a given drawable, use XDr awAr cs.

XDrawArcs(*display, d, gc, *arcs, narcs);

display Specifies the connection to the X server.
d Specifies the drawable.

gc Specifies the GC.

arcs Specifies an array of arcs.

narcs Specifies the number of arcs in the array.

delim %% XDr awAr ¢ draws a single circular or elliptical arc, and XDr awAr cs draws
multiple circular or elliptical arcs. Each arc is specified by a rectangle and two an-
gles. The center of the circle or ellipse is the center of the rectangle, and the major
and minor axes are specified by the width and height. Positive angles indicate coun-
terclockwise motion, and negative angles indicate clockwise motion. If the magni-
tude of angle2 is greater than 360 degrees, XDr awAr ¢ or XDr awAr cs truncates it to
360 degrees.

For an arc specified as %[~x, ~y, ~width , ~height, ~anglel, ~angle2]%, the origin
of the major and minor axes is at % [x +~ {width over 2} , ~y +~ {height over
2} 1%, and the infinitely thin path describing the entire circle or ellipse intersects
the horizontal axis at % [x, ~y +~ {height over 2} 1% and % [x +7 width , ~y
+”~ { height over 2 }] % and intersects the vertical axis at % [x +~ { width over
2},~y1% and % [x +~ { width over 2 }, ~y +” height]%. These coordinates
can be fractional and so are not truncated to discrete coordinates. The path should
be defined by the ideal mathematical path. For a wide line with line-width lw, the
bounding outlines for filling are given by the two infinitely thin paths consisting of
all points whose perpendicular distance from the path of the circle/ellipse is equal to
Iw/2 (which may be a fractional value). The cap-style and join-style are applied the
same as for a line corresponding to the tangent of the circle/ellipse at the endpoint.

For an arc specified as % [~x, ~y, ~width, ~height, ~anglel, ~angle2 1%, the angles
must be specified in the effectively skewed coordinate system of the ellipse (for a
circle, the angles and coordinate systems are identical). The relationship between
these angles and angles expressed in the normal coordinate system of the screen
(as measured with a protractor) is as follows:

% roman "skewed-angle" ~ = ~ atan left (tan (roman "normal -angle")
* width over height right) +* adjust%

The skewed-angle and normal-angle are expressed in radians (rather than in de-
grees scaled by 64) in the range % [0, ~2 pi]% and where atan returns a value in
the range % [- pi over 2, ~pi over 2] % and adjust is:

140

Graphics Functions

%0 % for normal-angle in the range %[O, ~pi over 2 |%
%pi % for normal-angle in the range %[pi over 2, ~{3 pi} over 2 1%
9% pi % for normal-angle in the range %[{3 pi} over 2, ~2 pi]|%

For any given arc, XDr awAr ¢ and XDr awAr cs do not draw a pixel more than once.
If two arcs join correctly and if the line-width is greater than zero and the arcs
intersect, XDr awAr ¢ and XDr awAr cs do not draw a pixel more than once. Otherwise,
the intersecting pixels of intersecting arcs are drawn multiple times. Specifying an
arc with one endpoint and a clockwise extent draws the same pixels as specifying
the other endpoint and an equivalent counterclockwise extent, except as it affects
joins.

If the last point in one arc coincides with the first point in the following arc, the two
arcs will join correctly. If the first point in the first arc coincides with the last point
in the last arc, the two arcs will join correctly. By specifying one axis to be zero, a
horizontal or vertical line can be drawn. Angles are computed based solely on the
coordinate system and ignore the aspect ratio.

Both functions use these GC components: function, plane-mask, line-width, line-
style, cap-style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin,
and clip-mask. They also use these GC mode-dependent components: foreground,
background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, and
dash-list.

XDr awAr ¢ and XDr awAr cs can generate BadDrawable, BadGC, and BadMatch errors.

Filling Areas

Xlib provides functions that you can use to fill:
* A single rectangle or multiple rectangles
* A single polygon

* A single arc or multiple arcs

Filling Single and Multiple Rectangles

To fill a single rectangular area in a given drawable, use XFi | | Rect angl e.

XFill Rectangl e(*display, d, gc, vy, height);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC. and specify the upper-left corner of the
rectangle

X

y Specify the x and y coordinates(Xy.

141

Graphics Functions

width
height Specify the width and height(Wh.
To fill multiple rectangular areas in a given drawable, use XFi | | Rect angl es.

XFill Rectangl es(*display, d, gc, *rectangles, nrectangles);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

rectangles Specifies an array of rectangles.

nrectangles Specifies the number of rectangles in the array.

The XFi | | Rect angl e and XFi | | Rect angl es functions fill the specified rectangle or
rectangles as if a four-point Fi I | Pol ygon protocol request were specified for each
rectangle:

[x,y] [x+width,y] [x+w dth,y+height] [x,y+height]

Each function uses the x and y coordinates, width and height dimensions, and GC
you specify.

XFi | | Rect angl es fills the rectangles in the order listed in the array. For any given
rectangle, XFi | | Rect angl e and XFi | | Rect angl es do not draw a pixel more than
once. If rectangles intersect, the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style, subwin-
dow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC mode-
dependent components: foreground, background, tile, stipple, tile-stipple-x-origin,
and tile-stipple-y-origin.

XFi || Rectangl e and XFi | | Rect angl es can generate BadDrawable, BadGC, and
BadMatch errors.

Filling a Single Polygon

To fill a polygon area in a given drawable, use XFi | | Pol ygon.

XFi || Pol ygon(*display, d, gc, *points, npoints, shape, node);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

points Specifies an array of points.

npoints Specifies the number of points in the array.

shape Specifies a shape that helps the server to improve perfor-

mance. You can pass Complex, Convex, or Nonconvex.

142

Graphics Functions

mode Specifies the coordinate mode. You can pass CoordMode-
Origin or CoordModePrevious.

XFi | | Pol ygon fills the region closed by the specified path. The path is closed auto-
matically if the last point in the list does not coincide with the first point. XFi | | Pol y-
gon does not draw a pixel of the region more than once. CoordModeOrigin treats all
coordinates as relative to the origin, and CoordModePrevious treats all coordinates
after the first as relative to the previous point.

Depending on the specified shape, the following occurs:

 If shape is Complex, the path may self-intersect. Note that contiguous coincident
points in the path are not treated as self-intersection.

« If shape is Convex, for every pair of points inside the polygon, the line segment
connecting them does not intersect the path. If known by the client, specifying
Convex can improve performance. If you specify Convex for a path that is not
convex, the graphics results are undefined.

» If shape is Nonconvex, the path does not self-intersect, but the shape is not wholly
convex. If known by the client, specifying Nonconvex instead of Complex may
improve performance. If you specify Nonconvex for a self-intersecting path, the
graphics results are undefined.

The fill-rule of the GC controls the filling behavior of self-intersecting polygons.

This function uses these GC components: function, plane-mask, fill-style, fill-rule,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. It also uses these GC
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, and tile-stipple-y-origin.

XFi | | Pol ygon can generate BadDrawable, BadGC, BadMatch, and BadValue errors.
Filling Single and Multiple Arcs

To fill a single arc in a given drawable, use XFi | | Arc.

XFill Arc(*display, d, gc, vy, height, angle2);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC. and specify the upper-left corner of the
bounding rectangle

X

Y Specify the x and y coordinates(Xy.

width

height Specify the width and height(Wh.

anglel Specifies the start of the arc relative to the three-o'clock

position from the center, in units of degrees * 64.

143

Graphics Functions

angle2 Specifies the path and extent of the arc relative to the start
of the arc, in units of degrees * 64.

To fill multiple arcs in a given drawable, use XFi | | Arcs.

XFill Arcs(*display, d, gc, *arcs, narcs);

display Specifies the connection to the X server.
d Specifies the drawable.

gc Specifies the GC.

arcs Specifies an array of arcs.

narcs Specifies the number of arcs in the array.

For each arc, XFi || Arc or XFi || Arcs fills the region closed by the infinitely thin
path described by the specified arc and, depending on the arc-mode specified in
the GC, one or two line segments. For ArcChord, the single line segment joining
the endpoints of the arc is used. For ArcPieSlice, the two line segments joining the
endpoints of the arc with the center point are used. XFi | | Ar cs fills the arcs in the
order listed in the array. For any given arc, XFi | | Arc and XFi | | Arcs do not draw a
pixel more than once. If regions intersect, the intersecting pixels are drawn multiple
times.

Both functions use these GC components: function, plane-mask, fill-style, arc-mode,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, and tile-stipple-y-origin.

XFi |l Arc and XFi | | Arcs can generate BadDrawable, BadGC, and BadMatch errors.

Font Metrics

A font is a graphical description of a set of characters that are used to increase
efficiency whenever a set of small, similar sized patterns are repeatedly used.

This section discusses how to:

* Load and free fonts

* Obtain and free font names

* Compute character string sizes
* Compute logical extents

* Query character string sizes

The X server loads fonts whenever a program requests a new font. The server can
cache fonts for quick lookup. Fonts are global across all screens in a server. Several
levels are possible when dealing with fonts. Most applications simply use XLoad-
Quer yFont to load a font and query the font metrics.

Characters in fonts are regarded as masks. Except for image text requests, the only
pixels modified are those in which bits are set to 1 in the character. This means that

144

Graphics Functions

it makes sense to draw text using stipples or tiles (for example, many menus gray-
out unusable entries).

The XFontStruct structure contains all of the information for the font and consists of
the font-specific information as well as a pointer to an array of XCharStruct struc-
tures for the characters contained in the font. The XFontStruct, XFontProp, and
XCharStruct structures contain:

t ypedef struct {

short | bearing; /* originto |eft edge of raster */
short rbearing; /* origin to right edge of raster */
short wi dth; /* advance to next char's origin */
short ascent; /* baseline to top edge of raster */
short descent; /* baseline to bottom edge of raster */
unsi gned short attributes; /* per char flags (not predefined) */

} XChar Struct;

t ypedef struct {

At om nane;

unsi gned | ong card32;
} XFont Prop;

typedef struct ({ /* normal 16 bit characters are two bytes */
unsi gned char bytel;
unsi gned char byt e2;

} XChar 2b;

typedef struct {

XExt Dat a *ext _dat a; /* hook for extension to hang data */

Font fid; /* Font id for this font */

unsi gned direction; /* hint about the direction font is painted
unsi gned m n_char_or_byte2; /* first character */

unsi gned max_char _or_byte2; /* last character */

unsi gned m n_bytel,; /[* first row that exists */

unsi gned max_bytel; /* last row that exists */

Bool all _chars_exi st; /* flag if all characters have nonzero size

145

Graphics Functions

unsi gned default_char; /* char to print for undefined character */
int n_properties; /* how many properties there are */

XFont Prop *properties; /* pointer to array of additional propertie
XChar St ruct m n_bounds; /* m ni mum bounds over all existing char */
XChar St ruct max_bounds; /* maxi mum bounds over all existing char */
XChar Struct *per_char; /* first_char to last_char information */

i nt ascent; /* | ogical extent above baseline for spacin
i nt descent; /* | ogical descent bel ow baseline for spac

} XFont Struct;

X supports single byte/character, two bytes/character matrix, and 16-bit character
text operations. Note that any of these forms can be used with a font, but a single
byte/character text request can only specify a single byte (that is, the first row of
a 2-byte font). You should view 2-byte fonts as a two-dimensional matrix of defined
characters: bytel specifies the range of defined rows and byte2 defines the range
of defined columns of the font. Single byte/character fonts have one row defined,
and the byte2 range specified in the structure defines a range of characters.

The bounding box of a character is defined by the XCharStruct of that character.
When characters are absent from a font, the default char is used. When fonts have
all characters of the same size, only the information in the XFontStruct min and
max bounds are used.

The members of the XFontStruct have the following semantics:

* The direction member can be either FontLeftToRight or FontRightToLeft. It is just
a hint as to whether most XCharStruct elements have a positive (FontLeftToRight)
or a negative (FontRightToLeft) character width metric. The core protocol defines
no support for vertical text.

e If the min bytel and max bytel members are both zero, min char or byte2 spec-
ifies the linear character index corresponding to the first element of the per char
array, and max_char or byte2 specifies the linear character index of the last el-
ement.

e If either min bytel or max bytel are nonzero, both min char or byte2 and
max _char or byte2 are less than 256, and the 2-byte character index values cor-
responding to the per char array element N (counting from 0) are:

* bytel = N/D + min bytel byte2 = N\\D + min char or byte2
* where:

* D = max char or byte2 - min char or byte2 + 1 / = integer division \\ = integer
modulus

 If the per char pointer is NULL, all glyphs between the first and last character
indexes inclusive have the same information, as given by both min bounds and
max_bounds.

» Ifall chars existis True, all characters in the per char array have nonzero bound-
ing boxes.

» The default char member specifies the character that will be used when an unde-
fined or nonexistent character is printed. The default char is a 16-bit character
(not a 2-byte character). For a font using 2-byte matrix format, the default char

146

Graphics Functions

has bytel in the most-significant byte and byte2 in the least significant byte. If the
default char itself specifies an undefined or nonexistent character, no printing is
performed for an undefined or nonexistent character.

* The min bounds and max bounds members contain the most extreme values of
each individual XCharStruct component over all elements of this array (and ig-
nore nonexistent characters). The bounding box of the font (the smallest rectan-
gle enclosing the shape obtained by superimposing all of the characters at the
same origin [x,y]) has its upper-left coordinate at:

[x + m n_bounds. | bearing, y - max_bounds. ascent]

e Its width is:

max_bounds. rbearing - m n_bounds. | bearing

¢ Its height is:

max_bounds. ascent + max_bounds. descent

* The ascent member is the logical extent of the font above the baseline that is used
for determining line spacing. Specific characters may extend beyond this.

¢ The descent member is the logical extent of the font at or below the baseline that
is used for determining line spacing. Specific characters may extend beyond this.

« If the baseline is at Y-coordinate y, the logical extent of the font is inclusive be-
tween the Y-coordinate values (y - font.ascent) and (y + font.descent - 1). Typically,
the minimum interline spacing between rows of text is given by ascent + descent.

For a character origin at [x,y], the bounding box of a character (that is, the smallest
rectangle that encloses the character's shape) described in terms of XCharStruct
components is a rectangle with its upper-left corner at:

[x + I bearing, y - ascent]

Its width is:

rbearing - |bearing

Its height is:

ascent + descent

The origin for the next character is defined to be:

[Xx + width, y]

The lbearing member defines the extent of the left edge of the character ink from the
origin. The rbearing member defines the extent of the right edge of the character

147

Graphics Functions

ink from the origin. The ascent member defines the extent of the top edge of the
character ink from the origin. The descent member defines the extent of the bottom
edge of the character ink from the origin. The width member defines the logical
width of the character.

Note that the baseline (the y position of the character origin) is logically viewed as
being the scanline just below nondescending characters. When descent is zero, only
pixels with Y-coordinates less than y are drawn, and the origin is logically viewed
as being coincident with the left edge of a nonkerned character. When lbearing is
zero, no pixels with X-coordinate less than x are drawn. Any of the XCharStruct
metric members could be negative. If the width is negative, the next character will
be placed to the left of the current origin.

The X protocol does not define the interpretation of the attributes member in the
XCharStruct structure. A nonexistent character is represented with all members of
its XCharStruct set to zero.

A font is not guaranteed to have any properties. The interpretation of the property
value (for example, long or unsigned long) must be derived from a priori knowledge
of the property. A basic set of font properties is specified in the X Consortium stan-
dard X Logical Font Description Conventions.

Loading and Freeing Fonts

Xlib provides functions that you can use to load fonts, get font information, unload
fonts, and free font information. A few font functions use a GContext resource ID
or a font ID interchangeably.

To load a given font, use XLoadFont .

Font XLoadFont (*display, *nane);

display Specifies the connection to the X server.
name Specifies the name of the font, which is a null-terminated
string.

The XLoadFont function loads the specified font and returns its associated font ID.
If the font name is not in the Host Portable Character Encoding, the result is im-
plementation-dependent. Use of uppercase or lowercase does not matter. When the
characters **?'" and " *" are used in a font name, a pattern match is performed and
any matching font is used. In the pattern, the " ?' character will match any single
character, and the " " *" character will match any number of characters. A structured
format for font names is specified in the X Consortium standard X Logical Font De-
scription Conventions. If XLoadFont was unsuccessful at loading the specified font,
a BadName error results. Fonts are not associated with a particular screen and can
be stored as a component of any GC. When the font is no longer needed, call XUn-
| oadFont .

XLoadFont can generate BadAlloc and BadName errors.
To return information about an available font, use XQuer yFont .
XFont Struct *XQueryFont (*display, font_ID);

display Specifies the connection to the X server.

148

Graphics Functions

font ID Specifies the font ID or the GContext ID.

The XQuer yFont function returns a pointer to the XFontStruct structure, which con-
tains information associated with the font. You can query a font or the font stored in
a GC. The font ID stored in the XFontStruct structure will be the GContext ID, and
you need to be careful when using this ID in other functions (see XGCont ext Fr omGC).
If the font does not exist, XQuer yFont returns NULL. To free this data, use XFr ee-
Font | nf 0.

To perform a XLoadFont and XQuer yFont in a single operation, use XLoadQuer yFont .

XFont Struct *XLoadQueryFont (*di splay, *nane);

display Specifies the connection to the X server.
name Specifies the name of the font, which is a null-terminated
string.

The XLoadQuer yFont function provides the most common way for accessing a font.
XLoadQuer yFont both opens (loads) the specified font and returns a pointer to the
appropriate XFontStruct structure. If the font name is not in the Host Portable Char-
acter Encoding, the result is implementation-dependent. If the font does not exist,
XLoadQuer yFont returns NULL.

XLoadQuer yFont can generate a BadAlloc error.

To unload the font and free the storage used by the font structure that was allocated
by XQuer yFont or XLoadQuer yFont, use XFr eeFont .

XFreeFont (*display, *font_struct);
display Specifies the connection to the X server.
font struct Specifies the storage associated with the font.

The XFr eeFont function deletes the association between the font resource ID and
the specified font and frees the XFontStruct structure. The font itself will be freed
when no other resource references it. The data and the font should not be referenced
again.

XFr eeFont can generate a BadFont error.
To return a given font property, use XGet Font Property.

Bool XGet FontProperty(*font_struct, atom *value return);

font struct Specifies the storage associated with the font.

atom Specifies the atom for the property name you want
returned.

value return Returns the value of the font property.

Given the atom for that property, the XGet Font Pr operty function returns the value
of the specified font property. XGet Font Pr oper ty also returns False if the property
was not defined or True if it was defined. A set of predefined atoms exists for font
properties, which can be found in <X11/ Xat om h>. This set contains the standard

149

Graphics Functions

properties associated with a font. Although it is not guaranteed, it is likely that the
predefined font properties will be present.

To unload a font that was loaded by XLoadFont , use XUnl oadFont .
XUnl oadFont (*di splay, font);

display Specifies the connection to the X server.
font Specifies the font.

The XUnl oadFont function deletes the association between the font resource ID and
the specified font. The font itself will be freed when no other resource references
it. The font should not be referenced again.

XUnl oadFont can generate a BadFont error.

Obtaining and Freeing Font Names and Information

You obtain font names and information by matching a wildcard specification when
querying a font type for a list of available sizes and so on.

To return a list of the available font names, use XLi st Font s.

char ** XLi st Font s(*di spl ay, *pattern, maxnanes,
*actual _count_return);

display Specifies the connection to the X server.

pattern Specifies the null-terminated pattern string that can
contain wildcard characters.

maxnames Specifies the maximum number of names to be re-
turned.
actual count return Returns the actual number of font names.

The XLi st Font s function returns an array of available font names (as controlled by
the font search path; see XSet Font Pat h) that match the string you passed to the
pattern argument. The pattern string can contain any characters, but each asterisk
(*) is a wildcard for any number of characters, and each question mark (?) is a wild-
card for a single character. If the pattern string is not in the Host Portable Character
Encoding, the result is implementation-dependent. Use of uppercase or lowercase
does not matter. Each returned string is null-terminated. If the data returned by the
server is in the Latin Portable Character Encoding, then the returned strings are in
the Host Portable Character Encoding. Otherwise, the result is implementation-de-
pendent. If there are no matching font names, XLi st Font s returns NULL. The client
should call XFr eeFont Nanmes when finished with the result to free the memory.

To free a font name array, use XFr eeFont Nanes.
XFreeFont Narmes(*list[]);
list Specifies the array of strings you want to free.

The XFr eeFont Nanes function frees the array and strings returned by XLi st Font s
or XLi st Font sW t hl nf o.

150

Graphics Functions

To obtain the names and information about available fonts, use XLi st Font sW't h-
| nf 0.

char ** XLi st Font sW t hl nf o(*di spl ay, *pattern, maxnanes,
*count _return, **info_return);

display Specifies the connection to the X server.

pattern Specifies the null-terminated pattern string that can
contain wildcard characters.

maxnames Specifies the maximum number of names to be re-
turned.

count return Returns the actual number of matched font names.

info_return Returns the font information.

The XLi st Font sW t hl nf o function returns a list of font names that match the spec-
ified pattern and their associated font information. The list of names is limited to
size specified by maxnames. The information returned for each font is identical to
what XLoadQuer yFont would return except that the per-character metrics are not
returned. The pattern string can contain any characters, but each asterisk (*) is a
wildcard for any number of characters, and each question mark (?) is a wildcard
for a single character. If the pattern string is not in the Host Portable Character
Encoding, the result is implementation-dependent. Use of uppercase or lowercase
does not matter. Each returned string is null-terminated. If the data returned by the
server is in the Latin Portable Character Encoding, then the returned strings are in
the Host Portable Character Encoding. Otherwise, the result is implementation-de-
pendent. If there are no matching font names, XLi st Font sW t hl nf o returns NULL.

To free only the allocated name array, the client should call XFr eeFont Nanes. To
free both the name array and the font information array or to free just the font
information array, the client should call XFr eeFont | nf o.

To free font structures and font names, use XFr eeFont | nf o.

XFreeFont I nfo(**nanes, *free_info, actual_count);

names Specifies the list of font names.
free info Specifies the font information.
actual count Specifies the actual number of font names.

The XFr eeFont | nf o function frees a font structure or an array of font structures and
optionally an array of font names. If NULL is passed for names, no font names are
freed. If a font structure for an open font (returned by XLoadQuer yFont) is passed,
the structure is freed, but the font is not closed; use XUnl oadFont to close the font.

Computing Character String Sizes

Xlib provides functions that you can use to compute the width, the logical extents,
and the server information about 8-bit and 2-byte text strings. The width is com-
puted by adding the character widths of all the characters. It does not matter if

151

Graphics Functions

the font is an 8-bit or 2-byte font. These functions return the sum of the character
metrics in pixels.

To determine the width of an 8-bit character string, use XText W dt h.

int XTextWdth(*font_struct, *string, count);

font struct Specifies the font used for the width computation.
string Specifies the character string.
count Specifies the character count in the specified string.

To determine the width of a 2-byte character string, use XText W dt h16.

int XTextWdthl6(*font_struct, *string, count);

font struct Specifies the font used for the width computation.
string Specifies the character string.
count Specifies the character count in the specified string.

Computing Logical Extents

To compute the bounding box of an 8-bit character string in a given font, use XTex-
t Extents.

XText Extents(*font_struct, *string, nchars, *direction_return,
*font _descent _return, *overall return);

font struct Specifies the XFontStruct structure.

string Specifies the character string.

nchars Specifies the number of characters in the character
string.

direction_return Returns the value of the direction hint (FontLeft-

ToRight or FontRightToLeft).

font _ascent return Returns the font ascent.

font descent return Returns the font descent.

overall return Returns the overall size in the specified XCharStruct
structure.

To compute the bounding box of a 2-byte character string in a given font, use XTex-
t Ext ent s16.

XText Ext ent s16(*font_struct, *string, nchars, *direction_return,
*font _descent _return, *overall _return);

font struct Specifies the XFontStruct structure.

152

Graphics Functions

string Specifies the character string.

nchars Specifies the number of characters in the character
string.

direction_return Returns the value of the direction hint (FontLeft-

ToRight or FontRightToLeft).

font_ascent return Returns the font ascent.

font descent return Returns the font descent.

overall return Returns the overall size in the specified XCharStruct
structure.

The XText Ext ents and XText Ext ent s16 functions perform the size computation
locally and, thereby, avoid the round-trip overhead of XQueryText Extents and
XQuer yText Ext ent s16. Both functions return an XCharStruct structure, whose
members are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of all characters in
the string. The descent member is set to the maximum of the descent metrics. The
width member is set to the sum of the character-width metrics of all characters in
the string. For each character in the string, let W be the sum of the character-width
metrics of all characters preceding it in the string. Let L be the left-side-bearing
metric of the character plus W. Let R be the right-side-bearing metric of the char-
acter plus W. The lbearing member is set to the minimum L of all characters in the
string. The rbearing member is set to the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each
XChar2b structure is interpreted as a 16-bit number with bytel as the most signif-
icant byte. If the font has no defined default character, undefined characters in the
string are taken to have all zero metrics.

Querying Character String Sizes

To query the server for the bounding box of an 8-bit character string in a given font,
use XQuer yText Ext ent s.

XQuer yText Ext ent s(*di spl ay, font I D, *string, nchars,

*direction_return, *font_descent_return, *overall _return);

display Specifies the connection to the X server.

font ID Specifies either the font ID or the GContext ID that
contains the font.

string Specifies the character string.

nchars Specifies the number of characters in the character
string.

direction_return Returns the value of the direction hint (FontLeft-

ToRight or FontRightToLeft).

font_ascent return Returns the font ascent.

153

Graphics Functions

font descent return Returns the font descent.
overall return Returns the overall size in the specified XCharStruct
structure.

To query the server for the bounding box of a 2-byte character string in a given font,
use XQuer yText Ext ent s16.

XQueryText Extents16(*di spl ay, font I D, *string, nchars,

*direction return, *font_descent _return, *overall _return);

display Specifies the connection to the X server.

font ID Specifies either the font ID or the GContext ID that
contains the font.

string Specifies the character string.

nchars Specifies the number of characters in the character
string.

direction_return Returns the value of the direction hint (FontLeft-

ToRight or FontRightToLeft).

font_ascent return Returns the font ascent.

font descent _return Returns the font descent.

overall return Returns the overall size in the specified XCharStruct
structure.

The XQuer yText Ext ent s and XQuer yText Ext ent s16 functions return the bounding
box of the specified 8-bit and 16-bit character string in the specified font or the
font contained in the specified GC. These functions query the X server and, there-
fore, suffer the round-trip overhead that is avoided by XText Ext ent s and XText Ex-
t ent s16. Both functions return a XCharStruct structure, whose members are set to
the values as follows.

The ascent member is set to the maximum of the ascent metrics of all characters in
the string. The descent member is set to the maximum of the descent metrics. The
width member is set to the sum of the character-width metrics of all characters in
the string. For each character in the string, let W be the sum of the character-width
metrics of all characters preceding it in the string. Let L be the left-side-bearing
metric of the character plus W. Let R be the right-side-bearing metric of the char-
acter plus W. The lbearing member is set to the minimum L of all characters in the
string. The rbearing member is set to the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each
XChar2b structure is interpreted as a 16-bit number with bytel as the most signif-
icant byte. If the font has no defined default character, undefined characters in the
string are taken to have all zero metrics.

Characters with all zero metrics are ignored. If the font has no defined default char,
the undefined characters in the string are also ignored.

XQuer yText Ext ent s and XQuer yText Ext ent s16 can generate BadFont and BadGC
errors.

154

Graphics Functions

Drawing Text

This section discusses how to draw:
¢ Complex text

» Text characters

* Image text characters

The fundamental text functions XDr awText and XDr awText 16 use the following struc-
tures:

t ypedef struct {

char *chars; /* pointer to string */

i nt nchars; /* nunber of characters */

int delta; /* delta between strings */

Font font; /* Font to print it in, None don't change */
} XTextltem

typedef struct {

XChar 2b *chars; /* pointer to two-byte characters */

i nt nchars; /* nunber of characters */

int delta; /* delta between strings */

Font font; /* font to print it in, None don't change */

} XTextlteml6;

If the font member is not None, the font is changed before printing and also is stored
in the GC. If an error was generated during text drawing, the previous items may
have been drawn. The baseline of the characters are drawn starting at the x and y
coordinates that you pass in the text drawing functions.

For example, consider the background rectangle drawn by XDr awl mageStri ng. If
you want the upper-left corner of the background rectangle to be at pixel coordinate
(x,y), pass the (x,y + ascent) as the baseline origin coordinates to the text functions.
The ascent is the font ascent, as given in the XFontStruct structure. If you want the
lower-left corner of the background rectangle to be at pixel coordinate (x,y), pass
the (x,y - descent + 1) as the baseline origin coordinates to the text functions. The
descent is the font descent, as given in the XFontStruct structure.

Drawing Complex Text

To draw 8-bit characters in a given drawable, use XDr awText .

155

Graphics Functions

XDr awText (*display, d, gc, vy, *items, nitens);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC. and define the origin of the first character
X

Y Specify the x and y coordinates(Xy.

items Specifies an array of text items.

nitems Specifies the number of text items in the array.

To draw 2-byte characters in a given drawable, use XDr awText 16.

XDr awText 16(*display, d, gc, vy, *items, nitems);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC. and define the origin of the first character
X

Y Specify the x and y coordinates(Xy.

items Specifies an array of text items.

nitems Specifies the number of text items in the array.

The XDr awText 16 function is similar to XDr awText except that it uses 2-byte or 16-bit
characters. Both functions allow complex spacing and font shifts between counted
strings.

Each text item is processed in turn. A font member other than None in an item
causes the font to be stored in the GC and used for subsequent text. A text element
delta specifies an additional change in the position along the x axis before the string
is drawn. The delta is always added to the character origin and is not dependent
on any characteristics of the font. Each character image, as defined by the font in
the GC, is treated as an additional mask for a fill operation on the drawable. The
drawable is modified only where the font character has a bit set to 1. If a text item
generates a BadFont error, the previous text items may have been drawn.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each
XChar2b structure is interpreted as a 16-bit number with bytel as the most signif-
icant byte.

Both functions use these GC components: function, plane-mask, fill-style, font, sub-
window-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, and tile-stipple-y-origin.

XDr awText and XDr awText 16 can generate BadDrawable, BadFont, BadGC, and Bad-
Match errors.

156

Graphics Functions

Drawing Text Characters

To draw 8-bit characters in a given drawable, use XDr awSt ri ng.

XDrawstring(*display, d, gc, X, Yy, *string, length);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC. and define the origin of the first character
X

Y Specify the x and y coordinates(Xy.

string Specifies the character string.

length Specifies the number of characters in the string argument.

To draw 2-byte characters in a given drawable, use XDr awSt ri ng16.

XDrawstringl6(*display, d, gc, vy, *string, Ilength);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC. and define the origin of the first character
X

y Specify the x and y coordinates(Xy.

string Specifies the character string.

length Specifies the number of characters in the string argument.

Each character image, as defined by the font in the GC, is treated as an additional
mask for a fill operation on the drawable. The drawable is modified only where the
font character has a bit set to 1. For fonts defined with 2-byte matrix indexing and
used with XDr awSt ri ng16, each byte is used as a byte2 with a bytel of zero.

Both functions use these GC components: function, plane-mask, fill-style, font, sub-
window-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, and tile-stipple-y-origin.

XDrawStri ng and XDrawStri nglé can generate BadDrawable, BadGC, and Bad-
Match errors.

Drawing Image Text Characters

Some applications, in particular terminal emulators, need to print image text in
which both the foreground and background bits of each character are painted. This
prevents annoying flicker on many displays.

157

Graphics Functions

To draw 8-bit image text characters in a given drawable, use XDr awl mageStri ng.

XDr awl mageString(*display, d, gc, vy, *string, length);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC. and define the origin of the first character
X

vy Specify the x and y coordinates(Xy.

string Specifies the character string.

length Specifies the number of characters in the string argument.

To draw 2-byte image text characters in a given drawable, use XDr aw mageSt ri ngl6.

XDr awl mageStri ngl6(*display, d, gc, vy, *string, length);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC. and define the origin of the first character
X

vy Specify the x and y coordinates(Xy.

string Specifies the character string.

length Specifies the number of characters in the string argument.

The XDr awl nageSt ri ngl6 function is similar to XDr awl mageSt ri ng except that it
uses 2-byte or 16-bit characters. Both functions also use both the foreground and
background pixels of the GC in the destination.

The effect is first to fill a destination rectangle with the background pixel defined in
the GC and then to paint the text with the foreground pixel. The upper-left corner
of the filled rectangle is at:

[x, y - font-ascent]

The width is:

overal | -wi dth

The height is:

font-ascent + font-descent

The overall-width, font-ascent, and font-descent are as would be returned by
XQuer yText Ext ent s using gc and string. The function and fill-style defined in the

158

Graphics Functions

GC are ignored for these functions. The effective function is GXcopy, and the effec-
tive fill-style is FillSolid.

For fonts defined with 2-byte matrix indexing and used with XDr awl mageStri ng,
each byte is used as a byte2 with a bytel of zero.

Both functions use these GC components: plane-mask, foreground, background,
font, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.

XDr awl mageStri ng and XDr aw nageSt ri ngl6é can generate BadDrawable, BadGC,
and BadMatch errors.

Transferring Images between Client and Server

Xlib provides functions that you can use to transfer images between a client and the
server. Because the server may require diverse data formats, Xlib provides an im-
age object that fully describes the data in memory and that provides for basic oper-
ations on that data. You should reference the data through the image object rather
than referencing the data directly. However, some implementations of the Xlib li-
brary may efficiently deal with frequently used data formats by replacing functions
in the procedure vector with special case functions. Supported operations include
destroying the image, getting a pixel, storing a pixel, extracting a subimage of an
image, and adding a constant to an image (see section 16.8).

All the image manipulation functions discussed in this section make use of the XI-
mage structure, which describes an image as it exists in the client's memory.

typedef struct _Xl mage {

i nt width, height; /* size of image */

i nt xoffset; /* nunber of pixels offset in X direction */
int format; [* XYBi t map, XYPi xmap, ZPixmap */

char *dat a; /* pointer to inmage data */

i nt byte_order; /* data byte order, LSBFirst, MSBFirst */
int bitmap_unit; /* quant. of scanline 8, 16, 32 */

int bitmap_bit_order; /* LSBFirst, MSBFirst */

i nt bitmp_pad; /* 8, 16, 32 either XY or ZPixmap */

i nt dept h; /* depth of image */

int bytes_per_line; /* accelerator to next scanline */

int bits_per_pixel; /* bits per pixel (ZPixmap) */

unsi gned | ong red_nask; /* bits in z arrangement */

unsi gned | ong green_nask;
unsi gned | ong bl ue_mask;

XPoi nt er obdat a; /* hook for the object routines to hang on */
struct funcs { /* image mani pul ation routines */

struct _Xlmage *(*create_image)();

i nt (*destroy_i mage) ();

unsi gned | ong (*get _pixel)();

i nt (*put _pixel)();

159

Graphics Functions

struct _Xlmage *(*sub_image)();
i nt (*add_pi xel) ();
P
} Xl mage;

To initialize the image manipulation routines of an image structure, use Xl ni t | mage.
Status Xl nitlmage(*image);
ximage Specifies the image.

The Xl ni tl mage function initializes the internal image manipulation routines of
an image structure, based on the values of the various structure members. All
fields other than the manipulation routines must already be initialized. If the
bytes per line member is zero, Xl ni t | nage will assume the image data is contigu-
ous in memory and set the bytes per line member to an appropriate value based on
the other members; otherwise, the value of bytes per line is not changed. All of the
manipulation routines are initialized to functions that other Xlib image manipulation
functions need to operate on the type of image specified by the rest of the structure.

This function must be called for any image constructed by the client before passing
it to any other Xlib function. Image structures created or returned by Xlib do not
need to be initialized in this fashion.

This function returns a nonzero status if initialization of the structure is successful.
It returns zero if it detected some error or inconsistency in the structure, in which
case the image is not changed.

To combine an image with a rectangle of a drawable on the display, use XPut | mage.

XPut | mage(*display, d, gc, *immge, src_y, dest_y, height);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

image Specifies the image you want combined with the rectangle.
src_x Specifies the offset in X from the left edge of the image

defined by the XImage structure.

srcy Specifies the offset in Y from the top edge of the image
defined by the XImage structure. and are the coordinates
of the subimage

dest x

dest y Specify the x and y coordinates(Dx.
width

height Specify the width and height(Wh.

The XPut | mage function combines an image with a rectangle of the specified draw-
able. The section of the image defined by the src_x, src_y, width, and height argu-

160

Graphics Functions

ments is drawn on the specified part of the drawable. If XYBitmap format is used,
the depth of the image must be one, or a BadMatch error results. The foreground
pixel in the GC defines the source for the one bits in the image, and the background
pixel defines the source for the zero bits. For XYPixmap and ZPixmap, the depth of
the image must match the depth of the drawable, or a BadMatch error results.

If the characteristics of the image (for example, byte order and bitmap unit) dif-
fer from what the server requires, XPut | mage automatically makes the appropriate
conversions.

This function uses these GC components: function, plane-mask, subwindow-mode,
clip-x-origin, clip-y-origin, and clip-mask. It also uses these GC mode-dependent
components: foreground and background.

XPut | mage can generate BadDrawable, BadGC, BadMatch, and BadValue errors.

To return the contents of a rectangle in a given drawable on the display, use XGet | -
mage. This function specifically supports rudimentary screen dumps.

Xl mage *XGetlmage(*display, d, vy, height, plane_nmask, formt);
display Specifies the connection to the X server.

d Specifies the drawable. and define the upper-left corner
of the rectangle

X
v Specify the x and y coordinates(Xy.

width

height Specify the width and height(Wh.

plane_mask Specifies the plane mask.

format Specifies the format for the image. You can pass XYP-

ixmap or ZPixmap.

The XGet | mage function returns a pointer to an XImage structure. This structure
provides you with the contents of the specified rectangle of the drawable in the
format you specify. If the format argument is XYPixmap, the image contains only the
bit planes you passed to the plane mask argument. If the plane mask argument only
requests a subset of the planes of the display, the depth of the returned image will
be the number of planes requested. If the format argument is ZPixmap, XGet | mage
returns as zero the bits in all planes not specified in the plane mask argument.
The function performs no range checking on the values in plane mask and ignores
extraneous bits.

XCGet | mage returns the depth of the image to the depth member of the XImage struc-
ture. The depth of the image is as specified when the drawable was created, except
when getting a subset of the planes in XYPixmap format, when the depth is given
by the number of bits set to 1 in plane mask.

If the drawable is a pixmap, the given rectangle must be wholly contained within the
pixmap, or a BadMatch error results. If the drawable is a window, the window must
be viewable, and it must be the case that if there were no inferiors or overlapping

161

Graphics Functions

windows, the specified rectangle of the window would be fully visible on the screen
and wholly contained within the outside edges of the window, or a BadMatch error
results. Note that the borders of the window can be included and read with this
request. If the window has backing-store, the backing-store contents are returned
for regions of the window that are obscured by noninferior windows. If the window
does not have backing-store, the returned contents of such obscured regions are
undefined. The returned contents of visible regions of inferiors of a different depth
than the specified window's depth are also undefined. The pointer cursor image
is not included in the returned contents. If a problem occurs, XGet | mage returns
NULL.

XGet | mage can generate BadDrawable, BadMatch, and BadValue errors.

To copy the contents of a rectangle on the display to a location within a preexisting
image structure, use XGet Subl mage.

Xl mage *XGet Subl mage(*display, d, vy, height, plane _mask, fornat,

*dest _i mage,

display Specifies the connection to the X server.

d Specifies the drawable. and define the upper-left corner
of the rectangle

X

Y Specify the x and y coordinates(Xy.

width

height Specify the width and height(Wh.

plane _mask

Specifies the plane mask.

format Specifies the format for the image. You can pass XYP-
ixmap or ZPixmap.

dest image Specifies the destination image. specify its upper-left
corner, and determine where the subimage \ is placed
in the destination image

dest x

dest y Specify the x and y coordinates(Dx.

The XCGet Subl mage function updates dest image with the specified subimage in the
same manner as XGet | mage. If the format argument is XYPixmap, the image contains
only the bit planes you passed to the plane mask argument. If the format argument
is ZPixmap, XGet Subl mage returns as zero the bits in all planes not specified in the
plane mask argument. The function performs no range checking on the values in
plane mask and ignores extraneous bits. As a convenience, XGet Subl mage returns
a pointer to the same XImage structure specified by dest image.

The depth of the destination XImage structure must be the same as that of the
drawable. If the specified subimage does not fit at the specified location on the des-
tination image, the right and bottom edges are clipped. If the drawable is a pixmap,
the given rectangle must be wholly contained within the pixmap, or a BadMatch

162

Graphics Functions

error results. If the drawable is a window, the window must be viewable, and it must
be the case that if there were no inferiors or overlapping windows, the specified
rectangle of the window would be fully visible on the screen and wholly contained
within the outside edges of the window, or a BadMatch error results. If the window
has backing-store, then the backing-store contents are returned for regions of the
window that are obscured by noninferior windows. If the window does not have
backing-store, the returned contents of such obscured regions are undefined. The
returned contents of visible regions of inferiors of a different depth than the speci-
fied window's depth are also undefined. If a problem occurs, XGet Subl mage returns
NULL.

XGet Subl mage can generate BadDrawable, BadGC, BadMatch, and BadValue errors.

163

Chapter 9. Window and Session
Manager Functions

Although it is difficult to categorize functions as exclusively for an application, a
window manager, or a session manager, the functions in this chapter are most of-
ten used by window managers and session managers. It is not expected that these
functions will be used by most application programs. Xlib provides management
functions to:

* Change the parent of a window

* Control the lifetime of a window

* Manage installed colormaps

¢ Set and retrieve the font search path
* Grab the server

* Kill a client

* Control the screen saver

e Control host access

Changing the Parent of a Window

To change a window's parent to another window on the same screen, use XRepar -
ent W ndow. There is no way to move a window between screens.

XRepar ent W ndow(*di splay, w, parent, vy);

display Specifies the connection to the X server.
w Specifies the window.

parent Specifies the parent window.

X

y Specify the x and y coordinates(Xy.

If the specified window is mapped, XRepar ent W ndow automatically performs an
UnmapW ndowrequest on it, removes it from its current position in the hierarchy, and
inserts it as the child of the specified parent. The window is placed in the stacking
order on top with respect to sibling windows.

After reparenting the specified window, XRepar ent W ndow causes the X server to
generate a ReparentNotify event. The override redirect member returned in this
event is set to the window's corresponding attribute. Window manager clients usu-
ally should ignore this window if this member is set to True. Finally, if the specified
window was originally mapped, the X server automatically performs a MapW ndow
request on it.

164

Window and Session
Manager Functions

The X server performs normal exposure processing on formerly obscured windows.
The X server might not generate Expose events for regions from the initial Unmap-
W ndow request that are immediately obscured by the final MapW ndow request. A
BadMatch error results if:

* The new parent window is not on the same screen as the old parent window.

* The new parent window is the specified window or an inferior of the specified
window.

* The new parent is InputOnly, and the window is not.

» The specified window has a ParentRelative background, and the new parent win-
dow is not the same depth as the specified window.

XRepar ent W ndow can generate BadMatch and BadWindow errors.

Controlling the Lifetime of a Window

The save-set of a client is a list of other clients' windows that, if they are inferiors of
one of the client's windows at connection close, should not be destroyed and should
be remapped if they are unmapped. For further information about close-connection
processing, see section 2.6. To allow an application's window to survive when a win-
dow manager that has reparented a window fails, Xlib provides the save-set func-
tions that you can use to control the longevity of subwindows that are normally de-
stroyed when the parent is destroyed. For example, a window manager that wants
to add decoration to a window by adding a frame might reparent an application's
window. When the frame is destroyed, the application's window should not be de-
stroyed but be returned to its previous place in the window hierarchy.

The X server automatically removes windows from the save-set when they are de-
stroyed.

To add or remove a window from the client's save-set, use XChangeSaveSet .

XChangeSaveSet (*di splay, w, change_node);

display Specifies the connection to the X server.

w Specifies the window (Wi.

change mode Specifies the mode. You can pass SetModelnsert or
SetModeDelete.

Depending on the specified mode, XChangeSaveSet either inserts or deletes the
specified window from the client's save-set. The specified window must have been
created by some other client, or a BadMatch error results.

XChangeSaveSet can generate BadMatch, BadValue, and BadWindow errors.
To add a window to the client's save-set, use XAddToSaveSet .
XAddToSaveSet (*di splay, WwW;

display Specifies the connection to the X server.

w Specifies the window (Wi.

165

Window and Session
Manager Functions

The XAddToSaveSet function adds the specified window to the client's save-set. The
specified window must have been created by some other client, or a BadMatch error
results.

XAddToSaveSet can generate BadMatch and BadWindow errors.

To remove a window from the client's save-set, use XRenoveFr onSaveSet .
XRenmoveFr onSaveSet (*di splay, w);

display Specifies the connection to the X server.

w Specifies the window (Wi.

The XRenoveFr onBaveSet function removes the specified window from the client's
save-set. The specified window must have been created by some other client, or a
BadMatch error results.

XRenoveFr onSaveSet can generate BadMatch and BadWindow errors.

Managing Installed Colormaps

The X server maintains a list of installed colormaps. Windows using these colormaps
are guaranteed to display with correct colors; windows using other colormaps may
or may not display with correct colors. Xlib provides functions that you can use to
install a colormap, uninstall a colormap, and obtain a list of installed colormaps.

At any time, there is a subset of the installed maps that is viewed as an ordered list
and is called the required list. The length of the required list is at most M, where
M is the minimum number of installed colormaps specified for the screen in the
connection setup. The required list is maintained as follows. When a colormap is
specified to XI nst al | Col or map, it is added to the head of the list; the list is truncated
at the tail, if necessary, to keep its length to at most M. When a colormap is specified
to XUni nst al | Col or map and it is in the required list, it is removed from the list. A
colormap is not added to the required list when it is implicitly installed by the X
server, and the X server cannot implicitly uninstall a colormap that is in the required
list.

To install a colormap, use Xl nst al | Col or map.

Xl nstal | Col ormap(*di splay, colormap);

display Specifies the connection to the X server.
colormap Specifies the colormap.

The Xl nst al | Col or map function installs the specified colormap for its associated
screen. All windows associated with this colormap immediately display with true
colors. You associated the windows with this colormap when you created them
by calling XCr eat eW ndow, XCr eat eSi npl eW ndow, XChangeW ndowAt tri butes, or
XSet W ndowCol or nap.

If the specified colormap is not already an installed colormap, the X server generates
a ColormapNotify event on each window that has that colormap. In addition, for
every other colormap that is installed as a result of a call to Xl nst al | Col or map, the
X server generates a ColormapNotify event on each window that has that colormap.

166

Window and Session
Manager Functions

Xl nst al | Col or map can generate a BadColor error.

To uninstall a colormap, use XuUni nst al | Col or map.

XUni nst al | Col or map(*di splay, col ormap);

display Specifies the connection to the X server.
colormap Specifies the colormap.

The XuUni nstal | Col or map function removes the specified colormap from the re-
quired list for its screen. As a result, the specified colormap might be uninstalled,
and the X server might implicitly install or uninstall additional colormaps. Which
colormaps get installed or uninstalled is server dependent except that the required
list must remain installed.

If the specified colormap becomes uninstalled, the X server generates a Colormap-
Notify event on each window that has that colormap. In addition, for every other
colormap that is installed or uninstalled as a result of a call to XUni nst al | Col or map,
the X server generates a ColormapNotify event on each window that has that col-
ormap.

XUni nst al | Col or map can generate a BadColor error.

To obtain a list of the currently installed colormaps for a given screen, use XLi st | n-
st al | edCol or maps.

Col ormap *XLi stlnstall edCol ormaps(*display, w, *numreturn);

display Specifies the connection to the X server.
w Specifies the window (Wi.
num_return Returns the number of currently installed colormaps.

The XLi st | nst al | edCol or maps function returns a list of the currently installed col-
ormaps for the screen of the specified window. The order of the colormaps in the list
is not significant and is no explicit indication of the required list. When the allocated
list is no longer needed, free it by using .

XLi st | nst al | edCol or maps can generate a BadWindow error.

Setting and Retrieving the Font Search Path

The set of fonts available from a server depends on a font search path. Xlib provides
functions to set and retrieve the search path for a server.

To set the font search path, use XSet Font Pat h.
XSet Font Pat h(*di splay, **directories, ndirs);
display Specifies the connection to the X server.

directories Specifies the directory path used to look for a font.
Setting the path to the empty list restores the default
path defined for the X server.

167

Window and Session
Manager Functions

ndirs Specifies the number of directories in the path.

The XSet Font Pat h function defines the directory search path for font lookup. There
is only one search path per X server, not one per client. The encoding and interpre-
tation of the strings are implementation-dependent, but typically they specify direc-
tories or font servers to be searched in the order listed. An X server is permitted to
cache font information internally; for example, it might cache an entire font from a
file and not check on subsequent opens of that font to see if the underlying font file
has changed. However, when the font path is changed, the X server is guaranteed
to flush all cached information about fonts for which there currently are no explicit
resource IDs allocated. The meaning of an error from this request is implementa-
tion-dependent.

XSet Font Pat h can generate a BadValue error.

To get the current font search path, use XGet Font Pat h.

char **XGet Font Pat h(*di splay, *npaths_return);

display Specifies the connection to the X server.

npaths return Returns the number of strings in the font path array.

The XGet Font Pat h function allocates and returns an array of strings containing the
search path. The contents of these strings are implementation-dependent and are
not intended to be interpreted by client applications. When it is no longer needed,
the data in the font path should be freed by using XFr eeFont Pat h.

To free data returned by XGet Font Pat h, use XFr eeFont Pat h.
XFreeFont Pat h(**list);
list Specifies the array of strings you want to free.

The XFr eeFont Pat h function frees the data allocated by XGet Font Pat h.

Grabbing the Server

Xlib provides functions that you can use to grab and ungrab the server. These func-
tions can be used to control processing of output on other connections by the win-
dow system server. While the server is grabbed, no processing of requests or close
downs on any other connection will occur. A client closing its connection automat-
ically ungrabs the server. Although grabbing the server is highly discouraged, it
is sometimes necessary.

To grab the server, use XGr abSer ver.
XG abServer (*displ ay);
display Specifies the connection to the X server.

The XGr abSer ver function disables processing of requests and close downs on all
other connections than the one this request arrived on. You should not grab the X
server any more than is absolutely necessary.

To ungrab the server, use XUngr abSer ver.

168

Window and Session
Manager Functions

XUngr abServer (*di spl ay) ;
display Specifies the connection to the X server.

The XUngr abSer ver function restarts processing of requests and close downs on
other connections. You should avoid grabbing the X server as much as possible.

Killing Clients

Xlib provides a function to cause the connection to a client to be closed and its
resources to be destroyed. To destroy a client, use XKi | | C i ent .

XKilldient(*display, resource);
display Specifies the connection to the X server.

resource Specifies any resource associated with the client that you
want to destroy or AllTemporary.

The XKi | | d i ent function forces a close down of the client that created the resource
if a valid resource is specified. If the client has already terminated in either Retain-
Permanent or RetainTemporary mode, all of the client's resources are destroyed.
If AllTemporary is specified, the resources of all clients that have terminated in
RetainTemporary are destroyed (see section 2.5). This permits implementation of
window manager facilities that aid debugging. A client can set its close-down mode
to RetainTemporary. If the client then crashes, its windows would not be destroyed.
The programmer can then inspect the application's window tree and use the win-
dow manager to destroy the zombie windows.

XKi | I dient can generate a BadValue error.

Controlling the Screen Saver

Xlib provides functions that you can use to set or reset the mode of the screen saver,
to force or activate the screen saver, or to obtain the current screen saver values.

To set the screen saver mode, use XSet Scr eenSaver .

XSet Scr eenSaver (*di spl ay, i nterval, pr ef er bl anki ng,
al | ow_exposures);

display Specifies the connection to the X server.

timeout Specifies the timeout, in seconds, until the screen
saver turns on.

interval Specifies the interval, in seconds, between screen
saver alterations.

prefer blanking Specifies how to enable screen blanking. You can
pass DontPreferBlanking, PreferBlanking, or De-
faultBlanking.

allow _exposures Specifies the screen save control values. You can pass
DontAllowExposures, AllowExposures, or DefaultEx-
posures.

169

Window and Session
Manager Functions

Timeout and interval are specified in seconds. A timeout of 0 disables the screen
saver (but an activated screen saver is not deactivated), and a timeout of —1 restores
the default. Other negative values generate a BadValue error. If the timeout value
is nonzero, XSet Scr eenSaver enables the screen saver. An interval of 0 disables
the random-pattern motion. If no input from devices (keyboard, mouse, and so on)
is generated for the specified number of timeout seconds once the screen saver is
enabled, the screen saver is activated.

For each screen, if blanking is preferred and the hardware supports video blanking,
the screen simply goes blank. Otherwise, if either exposures are allowed or the
screen can be regenerated without sending Expose events to clients, the screen
is tiled with the root window background tile randomly re-origined each interval
seconds. Otherwise, the screens' state do not change, and the screen saver is not
activated. The screen saver is deactivated, and all screen states are restored at the
next keyboard or pointer input or at the next call to XFor ceScr eenSaver with mode
ScreenSaverReset.

If the server-dependent screen saver method supports periodic change, the interval
argument serves as a hint about how long the change period should be, and zero
hints that no periodic change should be made. Examples of ways to change the
screen include scrambling the colormap periodically, moving an icon image around
the screen periodically, or tiling the screen with the root window background tile,
randomly re-origined periodically.

XSet Scr eenSaver can generate a BadValue error.

To force the screen saver on or off, use XFor ceScr eenSaver .
XFor ceScreenSaver (*di spl ay, node);

display Specifies the connection to the X server.

mode Specifies the mode that is to be applied. You can pass
ScreenSaverActive or ScreenSaverReset.

If the specified mode is ScreenSaverActive and the screen saver currently is deac-
tivated, XFor ceScr eenSaver activates the screen saver even if the screen saver had
been disabled with a timeout of zero. If the specified mode is ScreenSaverReset and
the screen saver currently is enabled, XFor ceScr eenSaver deactivates the screen
saver if it was activated, and the activation timer is reset to its initial state (as if
device input had been received).

XFor ceScr eenSaver can generate a BadValue error.

To activate the screen saver, use XAct i vat eScr eenSaver .

XAct i vat eScr eenSaver (*di spl ay) ;

display Specifies the connection to the X server.
To reset the screen saver, use XReset Scr eenSaver .

XReset ScreenSaver (*di spl ay) ;

display Specifies the connection to the X server.

To get the current screen saver values, use XGet Scr eenSaver .

170

Window and Session
Manager Functions

XGet ScreenSaver (*di splay, *interval _return, *prefer_blanking return,
*al | ow_exposures_return);

display Specifies the connection to the X server.

timeout return Returns the timeout, in seconds, until the screen
saver turns on.

interval return Returns the interval between screen saver invoca-
tions.

prefer blanking return Returns the current screen blanking preference
(DontPreferBlanking, PreferBlanking, or Default-
Blanking).

allow_exposures_return Returns the current screen save control value (Don-
tAllowExposures, AllowExposures, or DefaultExpo-
sures).

Controlling Host Access

This section discusses how to:
* Add, get, or remove hosts from the access control list
* Change, enable, or disable access

X does not provide any protection on a per-window basis. If you find out the re-
source ID of a resource, you can manipulate it. To provide some minimal level of
protection, however, connections are permitted only from machines you trust. This
is adequate on single-user workstations but obviously breaks down on timesharing
machines. Although provisions exist in the X protocol for proper connection authen-
tication, the lack of a standard authentication server leaves host-level access con-
trol as the only common mechanism.

The initial set of hosts allowed to open connections typically consists of:
* The host the window system is running on.

* On POSIX-conformant systems, each host listed in the / et c/ X?. host s file. The ?
indicates the number of the display. This file should consist of host names sepa-
rated by newlines. DECnet nodes must terminate in :: to distinguish them from
Internet hosts.

If a host is not in the access control list when the access control mechanism is
enabled and if the host attempts to establish a connection, the server refuses the
connection. To change the access list, the client must reside on the same host as
the server and/or must have been granted permission in the initial authorization at
connection setup.

Servers also can implement other access control policies in addition to or in place
of this host access facility. For further information about other access control im-
plementations, see X Window System Protocol.

171

Window and Session
Manager Functions

Adding, Getting, or Removing Hosts

Xlib provides functions that you can use to add, get, or remove hosts from the access
control list. All the host access control functions use the XHostAddress structure,
which contains:

typedef struct {

int famly; /* for exanple Famlylnternet */
int |length; /* length of address, in bytes */
char *address; /* pointer to where to find the address */

} XHost Addr ess;

The family member specifies which protocol address family to use (for example,
TCP/IP or DECnet) and can be FamilyInternet, FamilyInternet6, FamilyServerInter-
preted, FamilyDECnet, or FamilyChaos. The length member specifies the length of
the address in bytes. The address member specifies a pointer to the address.

For TCP/IP, the address should be in network byte order. For IP version 4 addresses,
the family should be FamilyInternet and the length should be 4 bytes. For IP version
6 addresses, the family should be FamilyInternet6 and the length should be 16 bytes.

For the DECnet family, the server performs no automatic swapping on the address
bytes. A Phase IV address is 2 bytes long. The first byte contains the least significant
8 bits of the node number. The second byte contains the most significant 2 bits of
the node number in the least significant 2 bits of the byte and the area in the most
significant 6 bits of the byte.

For the ServerInterpreted family, the length is ignored and the address member is
a pointer to a XServerInterpretedAddress structure, which contains:

t ypedef struct {

i nt typel ength; /* length of type string, in bytes */

i nt val uel engt h; /* length of value string, in bytes */

char *type; /* pointer to where to find the type string */
char *val ue; /[* pointer to where to find the address */

} XServerlnterpretedAddress;

The type and value members point to strings representing the type and value of the
server interpreted entry. These strings may not be NULL-terminated so care should
be used when accessing them. The typelength and valuelength members specify the
length in byte of the type and value strings.

To add a single host, use XAddHost .

XAddHost (*di splay, *host);

172

Window and Session
Manager Functions

display Specifies the connection to the X server.
host Specifies the host that is to be (Ho.

The XAddHost function adds the specified host to the access control list for that
display. The server must be on the same host as the client issuing the command,
or a BadAccess error results.

XAddHost can generate BadAccess and BadValue errors.
To add multiple hosts at one time, use XAddHost s.

XAddHost s(*di splay, *hosts, num hosts);

display Specifies the connection to the X server.
hosts Specifies each host that is to be (Ho.
num_hosts Specifies the number of hosts.

The XAddHost s function adds each specified host to the access control list for that
display. The server must be on the same host as the client issuing the command,
or a BadAccess error results.

XAddHost s can generate BadAccess and BadValue errors.

To obtain a host list, use XLi st Host s.

XHost Addr ess *XLi st Host s(*di splay, *nhosts _return, *state_return);
display Specifies the connection to the X server.

nhosts return Returns the number of hosts currently in the access
control list.

state return Returns the state of the access control.

The XLi st Host s function returns the current access control list as well as whether
the use of the list at connection setup was enabled or disabled. XLi st Host s allows a
program to find out what machines can make connections. It also returns a pointer
to a list of host structures that were allocated by the function. When no longer
needed, this memory should be freed by calling .

To remove a single host, use XRenbveHost .

XRenmoveHost (*di splay, *host);

display Specifies the connection to the X server.
host Specifies the host that is to be (Ho.

The XRenpbveHost function removes the specified host from the access control list
for that display. The server must be on the same host as the client process, or a
BadAccess error results. If you remove your machine from the access list, you can
no longer connect to that server, and this operation cannot be reversed unless you
reset the server.

XRenpveHost can generate BadAccess and BadValue errors.

173

Window and Session
Manager Functions

To remove multiple hosts at one time, use XRenoveHost s.

XRenmoveHost s(*di splay, *hosts, numhosts);

display Specifies the connection to the X server.
hosts Specifies each host that is to be (Ho.
num_hosts Specifies the number of hosts.

The XRenpveHost s function removes each specified host from the access control list
for that display. The X server must be on the same host as the client process, or a
BadAccess error results. If you remove your machine from the access list, you can
no longer connect to that server, and this operation cannot be reversed unless you
reset the server.

XRenpveHost s can generate BadAccess and BadValue errors.

Changing, Enabling, or Disabling Access Control

Xlib provides functions that you can use to enable, disable, or change access control.

For these functions to execute successfully, the client application must reside on
the same host as the X server and/or have been given permission in the initial au-
thorization at connection setup.

To change access control, use XSet AccessCont rol .

XSet AccessControl (*di splay, node);

display Specifies the connection to the X server.
mode Specifies the mode. You can pass EnableAccess or Dis-
ableAccess.

The XSet AccessCont rol function either enables or disables the use of the access
control list at each connection setup.

XSet AccessCont rol can generate BadAccess and BadValue errors.
To enable access control, use XEnabl eAccessContr ol .

XEnabl eAccessControl (*di spl ay);

display Specifies the connection to the X server.

The XEnabl eAccessCont rol function enables the use of the access control list at
each connection setup.

XEnabl eAccessCont rol can generate a BadAccess error.
To disable access control, use XDi sabl eAccessControl .
XDi sabl eAccessControl (*di spl ay) ;

display Specifies the connection to the X server.

174

Window and Session
Manager Functions

The XDi sabl eAccessCont rol function disables the use of the access control list at
each connection setup.

XDi sabl eAccessCont rol can generate a BadAccess error.

175

Chapter 10. Events

A client application communicates with the X server through the connection you
establish with the XOpenDisplay function. A client application sends requests to
the X server over this connection. These requests are made by the Xlib functions
that are called in the client application. Many Xlib functions cause the X server to
generate events, and the user’s typing or moving the pointer can generate events
asynchronously. The X server returns events to the client on the same connection.

This chapter discusses the following topics associated with events:
* Event types

* Event structures

* Event masks

* Event processing

Functions for handling events are dealt with in the next chapter.

Event Types

An event is data generated asynchronously by the X server as a result of some
device activity or as side effects of a request sent by an Xlib function. Device-related
events propagate from the source window to ancestor windows until some client
application has selected that event type or until the event is explicitly discarded.
The X server generally sends an event to a client application only if the client has
specifically asked to be informed of that event type, typically by setting the event-
mask attribute of the window. The mask can also be set when you create a window
or by changing the window's event-mask. You can also mask out events that would
propagate to ancestor windows by manipulating the do-not-propagate mask of the
window's attributes. However, MappingNotify events are always sent to all clients.

An event type describes a specific event generated by the X server. For each event
type, a corresponding constant name is defined in <X11/ X. h>, which is used when
referring to an event type. The following table lists the event category and its asso-
ciated event type or types. The processing associated with these events is discussed
in section 10.5.

176

Events

Event Catego- Event Type
ry

Keyboard KeyPress, KeyRelease
events

Pointer events ButtonPress, ButtonRelease, MotionNotify

Window cross- EnterNotify, LeaveNotify
ing events

Input focus Focusln, FocusOut
events

Keymap state = KeymapNotify
notification
event

Exposure Expose, GraphicsExpose, NoExpose

events

Structure con- CirculateRequest, ConfigureRequest, MapRequest, Resiz-
trol events eRequest

Window state CirculateNotify, ConfigureNotify, CreateNotify, DestroyNotify,
notification GravityNotify, MapNotify, MappingNotify, ReparentNotify, Un-

events mapNotify, VisibilityNotify
Colormap state ColormapNotify
notification

event

Client commu- ClientMessage, PropertyNotify, SelectionClear, SelectionNotify,
nication events SelectionRequest

Event Structures

For each event type, a corresponding structure is declared in <X11/ Xl'i b. h>. All
the event structures have the following common members:

typedef struct {

i nt type;
unsi gned | ong serial; /* # of last request processed by server */
Bool send_event; /* true if this canme froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */
W ndow wi ndow;
} XAnyEvent;

The type member is set to the event type constant name that uniquely identifies it.
For example, when the X server reports a GraphicsExpose event to a client appli-
cation, it sends an XGraphicsExposeEvent structure with the type member set to
GraphicsExpose. The display member is set to a pointer to the display the event was
read on. The send event member is set to True if the event came from a SendEvent
protocol request. The serial member is set from the serial number reported in the

177

Events

protocol but expanded from the 16-bit least-significant bits to a full 32-bit value.
The window member is set to the window that is most useful to toolkit dispatchers.

The X server can send events at any time in the input stream. Xlib stores any events
received while waiting for a reply in an event queue for later use. Xlib also provides
functions that allow you to check events in the event queue (see section 11.3).

In addition to the individual structures declared for each event type, the XEvent
structure is a union of the individual structures declared for each event type. De-
pending on the type, you should access members of each event by using the XEvent
union.

typedef union _XEvent ({

i nt type; /* must not be changed */
XAnyEvent xany;
XKeyEvent xkey;
XBut t onEvent xbut t on;
XMbt i onEvent xnoti on;
XCr ossi ngEvent XCr 0ssi ng;
XFocusChangeEvent xf ocus;
XExposeEvent Xexpose,
XG aphi csExposeEvent xgr aphi csexpose,;
XNoExposeEvent Xnoexpose,
XVi sibilityEvent xvisibility;
XCr eat eW ndowEvent xcreat ew ndow;
XDest r oyW ndowEvent xdest r oywi ndow,
XUnmapEvent xunmap;
XMapEvent xmap;
XMapRequest Event Xmapr equest ;
XRepar ent Event Xreparent;
XConf i gur eEvent xconfi gure;
XGavi t yEvent xgravity;
XResi zeRequest Event Xresi zer equest ;
XConf i gur eRequest Event xconfi gurerequest;
XCi r cul at eEvent xci rcul at e;
XCi r cul at eRequest Event xci rcul at er equest ;
XPr opert yEvent Xproperty,;
XSel ecti onCl ear Event xsel ecti oncl ear;
XSel ecti onRequest Event xsel ecti onrequest;
XSel ecti onEvent xsel ecti on;
XCol or mapEvent xcol or map;
Xd i ent MessageEvent xclient;
XMappi ngEvent Xmappi ng;
XError Event Xerror;
XKeymapEvent xkeymap;
| ong pad[24] ;

} XEvent;

An XEvent structure's first entry always is the type member, which is set to the
event type. The second member always is the serial number of the protocol request

178

Events

that generated the event. The third member always is send event, which is a Bool
that indicates if the event was sent by a different client. The fourth member always
is a display, which is the display that the event was read from. Except for keymap
events, the fifth member always is a window, which has been carefully selected to
be useful to toolkit dispatchers. To avoid breaking toolkits, the order of these first
five entries is not to change. Most events also contain a time member, which is the
time at which an event occurred. In addition, a pointer to the generic event must
be cast before it is used to access any other information in the structure.

Event Masks

Clients select event reporting of most events relative to a window. To do this, pass an
event mask to an Xlib event-handling function that takes an event mask argument.
The bits of the event mask are defined in <X11/ X. h>. Each bit in the event mask
maps to an event mask name, which describes the event or events you want the X
server to return to a client application.

Unless the client has specifically asked for them, most events are not reported
to clients when they are generated. Unless the client suppresses them by setting
graphics-exposures in the GC to False, GraphicsExpose and NoExpose are report-
ed by default as a result of XCopyPl ane and XCopyAr ea. SelectionClear, Selection-
Request, SelectionNotify, or ClientMessage cannot be masked. Selection-related
events are only sent to clients cooperating with selections (see section 4.5). When
the keyboard or pointer mapping is changed, MappingNotify is always sent to
clients.

The following table lists the event mask constants you can pass to the event mask
argument and the circumstances in which you would want to specify the event mask:

Event Mask Circumstances

NoEventMask No events wanted

KeyPressMask Keyboard down events wanted
KeyReleaseMask Keyboard up events wanted
ButtonPressMask Pointer button down events wanted
ButtonReleaseMask Pointer button up events wanted
EnterWindowMask Pointer window entry events wanted
LeaveWindowMask Pointer window leave events wanted
PointerMotionMask Pointer motion events wanted
PointerMotionHint- Pointer motion hints wanted

Mask

Button1MotionMask Pointer motion while button 1 down
Button2MotionMask Pointer motion while button 2 down
Button3MotionMask Pointer motion while button 3 down
Button4dMotionMask Pointer motion while button 4 down
Button5MotionMask Pointer motion while button 5 down
ButtonMotionMask Pointer motion while any button down
KeymapStateMask Keyboard state wanted at window entry and focus in
ExposureMask Any exposure wanted

179

Events

Event Mask Circumstances

VisibilityChangeMask Any change in visibility wanted
StructureNotifyMask Any change in window structure wanted
ResizeRedirectMask Redirect resize of this window
SubstructureNotify- Substructure notification wanted

Mask

SubstructureRedirect- Redirect structure requests on children
Mask

FocusChangeMask Any change in input focus wanted

PropertyChangeMask Any change in property wanted
ColormapChangeMask Any change in colormap wanted

OwnerGrabButton- Automatic grabs should activate with owner events set to
Mask True

Event Processing Overview

The event reported to a client application during event processing depends on which
event masks you provide as the event-mask attribute for a window. For some event
masks, there is a one-to-one correspondence between the event mask constant and
the event type constant. For example, if you pass the event mask ButtonPressMask,
the X server sends back only ButtonPress events. Most events contain a time mem-
ber, which is the time at which an event occurred.

In other cases, one event mask constant can map to several event type constants. For
example, if you pass the event mask SubstructureNotifyMask, the X server can send
back CirculateNotify, ConfigureNotify, CreateNotify, DestroyNotify, GravityNotify,
MapNotify, ReparentNotify, or UnmapNotify events.

In another case, two event masks can map to one event type. For example, if you
pass either PointerMotionMask or ButtonMotionMask, the X server sends back a
MotionNotify event.

The following table lists the event mask, its associated event type or types, and the
structure name associated with the event type. Some of these structures actually
are typedefs to a generic structure that is shared between two event types. Note
that N.A. appears in columns for which the information is not applicable.

Event Mask Event Type Structure Generic Struc-
ture

ButtonMotionMask MotionNotify XPointerMovedEvent XMotionEvent

Button1MotionMask
Button2MotionMask
Button3MotionMask
Button4MotionMask

Button5MotionMask

180

Events

Event Mask Event Type Structure Generic Struc-
ture
ButtonPressMask ButtonPress XButtonPressedE- XButtonEvent
vent
ButtonReleaseMask ButtonRelease XButtonReleasedE- XButtonEvent
vent
ColormapChange- ColormapNotify XColormapEvent
Mask
EnterWindowMask EnterNotify XEnterWindowEvent XCrossingEvent
LeaveWindowMask LeaveNotify XLeaveWindowEvent XCrossingEvent
ExposureMask Expose XExposeEvent
GCGraphicsExpo- GraphicsExpose XGraphicsEx-
sures in GC poseEvent
NoExpose XNoExposeEvent
FocusChangeMask Focusln XFocusInEvent XFo-
cusChangeEvent
FocusOut XFocusOutEvent XFo-
cusChangeEvent
KeymapStateMask KeymapNotify XKeymapEvent
KeyPressMask KeyPress XKeyPressedEvent = XKeyEvent
KeyReleaseMask KeyRelease XKeyReleasedEvent XKeyEvent
OwnerGrabButton- N.A. N.A.
Mask
PointerMotionMask MotionNotify XPointerMovedEvent XMotionEvent
PointerMotionHint- N.A. N.A.
Mask
PropertyChangeMask PropertyNotify XPropertyEvent
ResizeRedirectMask ResizeRequest XResiz-
eRequestEvent
StructureNotifyMask CirculateNotify = XCirculateEvent
ConfigureNotify XConfigureEvent
DestroyNotify XDestroyWindow-
Event
GravityNotify XGravityEvent
MapNotify XMapEvent
ReparentNotify = XReparentEvent
UnmapNotify XUnmapEvent
SubstructureNotify- CirculateNotify = XCirculateEvent
Mask ConfigureNotify XConfigureEvent
CreateNotify XCreateWindow-
Event
DestroyNotify XDestroyWindow-
Event

181

Events

Event Mask Event Type Structure Generic Struc-
ture

GravityNotify XGravityEvent
MapNotify XMapEvent
ReparentNotify = XReparentEvent
UnmapNotify XUnmapEvent

SubstructureRedi- CirculateRequest XCircu-
rectMask lateRequestEvent
Configur- XConfigur-
eRequest eRequestEvent
MapRequest XMapRequestEvent
N.A. ClientMessage XClientMes-
sageEvent
N.A. MappingNotify = XMappingEvent
N.A. SelectionClear XSelection-
ClearEvent
N.A. SelectionNotify = XSelectionEvent
N.A. SelectionRequest XSelectionRe-
questEvent

VisibilityChangeMask VisibilityNotify XVisibilityEvent

The sections that follow describe the processing that occurs when you select the
different event masks. The sections are organized according to these processing
categories:

* Keyboard and pointer events

* Window crossing events

¢ Input focus events

» Keymap state notification events

* Exposure events

* Window state notification events

e Structure control events

* Colormap state notification events

¢ Client communication events

Keyboard and Pointer Events

This section discusses:
¢ Pointer button events

* Keyboard and pointer events

182

Events

Pointer Button Events

The following describes the event processing that occurs when a pointer button
press is processed with the pointer in some window w and when no active pointer
grab is in progress.

The X server searches the ancestors of w from the root down, looking for a passive
grab to activate. If no matching passive grab on the button exists, the X server
automatically starts an active grab for the client receiving the event and sets the
last-pointer-grab time to the current server time. The effect is essentially equivalent
to an XGr abBut t on with these client passed arguments:

Argument Value
w The event window
event _mask The client's selected pointer events on the event window

pointer mode GrabModeAsync
keyboard mode GrabModeAsync

owner events True, if the client has selected OwnerGrabButtonMask on the
event window, otherwise False

confine_to None
cursor None

The active grab is automatically terminated when the logical state of the pointer has
all buttons released. Clients can modify the active grab by calling XUngr abPoi nt er
and XChangeAct i vePoi nt er G- ab.

Keyboard and Pointer Events

This section discusses the processing that occurs for the keyboard events Key-
Press and KeyRelease and the pointer events ButtonPress, ButtonRelease, and Mo-
tionNotify. For information about the keyboard event-handling utilities, see chapter
11.

The X server reports KeyPress or KeyRelease events to clients wanting information
about keys that logically change state. Note that these events are generated for
all keys, even those mapped to modifier bits. The X server reports ButtonPress
or ButtonRelease events to clients wanting information about buttons that logically
change state.

The X server reports MotionNotify events to clients wanting information about
when the pointer logically moves. The X server generates this event whenever the
pointer is moved and the pointer motion begins and ends in the window. The gran-
ularity of MotionNotify events is not guaranteed, but a client that selects this event
type is guaranteed to receive at least one event when the pointer moves and then
rests.

The generation of the logical changes lags the physical changes if device event
processing is frozen.

To receive KeyPress, KeyRelease, ButtonPress, and ButtonRelease events, set Key-
PressMask, KeyReleaseMask, ButtonPressMask, and ButtonReleaseMask bits in the
event-mask attribute of the window.

183

Events

To receive MotionNotify events, set one or more of the following event masks bits
in the event-mask attribute of the window.

¢ ButtonlMotionMask - Button5MotionMask

* The client application receives MotionNotify events only when one or more of the
specified buttons is pressed.

¢ ButtonMotionMask

» The client application receives MotionNotify events only when at least one button
is pressed.

¢ PointerMotionMask

» The client application receives MotionNotify events independent of the state of
the pointer buttons.

e PointerMotionHintMask

» If PointerMotionHintMask is selected in combination with one or more of the
above masks, the X server is free to send only one MotionNotify event (with the
is_hint member of the XPointerMovedEvent structure set to NotifyHint) to the
client for the event window, until either the key or button state changes, the point-
er leaves the event window, or the client calls XQuer yPoi nt er or . The server still
may send MotionNotify events without is_hint set to NotifyHint.

The source of the event is the viewable window that the pointer is in. The window
used by the X server to report these events depends on the window's position in the
window hierarchy and whether any intervening window prohibits the generation of
these events. Starting with the source window, the X server searches up the window
hierarchy until it locates the first window specified by a client as having an interest
in these events. If one of the intervening windows has its do-not-propagate-mask set
to prohibit generation of the event type, the events of those types will be suppressed.
Clients can modify the actual window used for reporting by performing active grabs
and, in the case of keyboard events, by using the focus window.

The structures for these event types contain:

typedef struct {

i nt type; /* ButtonPress or ButtonRel ease */

unsi gned long serial; /* # of last request processed by server */
Bool send_event; /[* true if this came froma SendEvent request
Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow; /* “Tevent'' windowit is reported relative t
W ndow root; /* root wi ndow that the event occurred on */
W ndow subwi ndow; [* child wi ndow */

Ti me tinme; [* mlliseconds */

i nt X, VY; /* pointer x, y coordinates in event w ndow *
i nt Xx_root, y root; [/* coordinates relative to root */

unsi gned i nt st at e; /* key or button mask */

unsi gned i nt butt on; [* detail */

Bool same_screen; /* sane screen flag */

} XButtonEvent;
t ypedef XButtonEvent XButtonPressedEvent;
t ypedef XButtonEvent XButtonRel easedEvent;

184

Events

typedef struct {

i nt type; /* KeyPress or KeyRel ease */

unsi gned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came froma SendEvent request
Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow; /* ““event'' windowit is reported relative t
W ndow root; /* root wi ndow that the event occurred on */
W ndow subwi ndow; /* child wi ndow */

Ti me time; /[* mlliseconds */

i nt X, Y; /* pointer x, y coordinates in event w ndow *
i nt Xx_root, y root; [/* coordinates relative to root */

unsi gned i nt st at e; /* key or button mask */

unsi gned i nt keycode; [* detail */

Bool same_screen; /* sane screen flag */

} XKeyEvent;
typedef XKeyEvent
typedef XKeyEvent

XKeyPr essedEvent ;
XKeyRel easedEvent ;

typedef struct {

i nt type; /* MotionNotify */

unsi gned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came froma SendEvent reque
Di spl ay *di spl ay; /* Display the event was read from*/

W ndow Wi ndow, /* " “event'' window reported relative to */
W ndow root; /* root window that the event occurred on *
W ndow subwi ndow; /* child wi ndow */

Ti me tine; /[* mlliseconds */

i nt X, VY; /* pointer x, y coordinates in event w ndow
i nt Xx_root, y_root; /* coordinates relative to root

unsi gned i nt state; /* key or button mask */

char is_hint; [* detail */

Bool same_screen; /* sanme screen flag */

} XMotionEvent;
t ypedef XMoti onEvent XPoi nterMovedEvent;

These structures have the following common members: window, root, subwindow,
time, X, y, x_root, y root, state, and same screen. The window member is set to the
window on which the event was generated and is referred to as the event window.
As long as the conditions previously discussed are met, this is the window used by
the X server to report the event. The root member is set to the source window's root
window. The x root and y root members are set to the pointer's coordinates relative
to the root window's origin at the time of the event.

The same screen member is set to indicate whether the event window is on the
same screen as the root window and can be either True or False. If True, the event
and root windows are on the same screen. If False, the event and root windows are
not on the same screen.

If the source window is an inferior of the event window, the subwindow member of
the structure is set to the child of the event window that is the source window or
the child of the event window that is an ancestor of the source window. Otherwise,
the X server sets the subwindow member to None. The time member is set to the
time when the event was generated and is expressed in milliseconds.

185

Events

If the event window is on the same screen as the root window, the x and y members
are set to the coordinates relative to the event window's origin. Otherwise, these
members are set to zero.

The state member is set to indicate the logical state of the pointer buttons
and modifier keys just prior to the event, which is the bitwise inclusive OR of
one or more of the button or modifier key masks: Button1Mask, Button2Mask,
Button3Mask, Button4dMask, Button5Mask, ShiftMask, LockMask, ControlMask,
Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, and Mod5Mask.

Each of these structures also has a member that indicates the detail. For the XKey-
PressedEvent and XKeyReleasedEvent structures, this member is called a keycode.
It is set to a number that represents a physical key on the keyboard. The keycode is
an arbitrary representation for any key on the keyboard (see sections 12.7 and 16.1).

For the XButtonPressedEvent and XButtonReleasedEvent structures, this member
is called button. It represents the pointer button that changed state and can be the
Buttonl, Button2, Button3, Button4, or Buttonb value. For the XPointerMovedEvent
structure, this member is called is_hint. It can be set to NotifyNormal or NotifyHint.

Some of the symbols mentioned in this section have fixed values, as follows:

Symbol Value
Button1MotionMask(1L<<8)
Button2MotionMask(1L<<9)
Button3MotionMask(1L<<10)
Button4MotionMask(1L<<11)
Button5MotionMask (1L<<12)

Button1Mask (1<<8)
Button2Mask (1<<9)
Button3Mask (1<<10)
Button4Mask (1<<11)
Button5Mask (1<<12)
ShiftMask (1<<0)
LockMask (1<<1)
ControlMask (1<<2)
Mod1Mask (1<<3)
Mod2Mask (1<<4)
Mod3Mask (1<<b)
Mod4Mask (1<<6)
Mod5Mask (1<<7)
Buttonl 1
Button2 2
Button3 3
Button4 4
Buttonb 5

186

Events

Window Entry/Exit Events

This section describes the processing that occurs for the window crossing events

EnterNotify and LeaveNotify.

If a pointer motion or a window hierarchy change

causes the pointer to be in a different window than before, the X server reports
EnterNotify or LeaveNotify events to clients who have selected for these events. All
EnterNotify and LeaveNotify events caused by a hierarchy change are generated
after any hierarchy event (UnmapNotify, MapNotify, ConfigureNotify, GravityNotify,
CirculateNotify) caused by that change; however, the X protocol does not constrain
the ordering of EnterNotify and LeaveNotify events with respect to FocusOut, Vis-

ibilityNotify, and Expose events.

This contrasts with MotionNotify events, which are also generated when the pointer
moves but only when the pointer motion begins and ends in a single window. An
EnterNotify or LeaveNotify event also can be generated when some client applica-
tion calls XGr abPoi nt er and XUngr abPoi nt er .

To receive EnterNotify or LeaveNotify events, set the EnterWindowMask or
LeaveWindowMask bits of the event-mask attribute of the window.

The structure for these event types contains:

typedef struct {

i nt type; /*
unsi gned | ong seri al ; /*
Bool send_event; /*
Di spl ay *di spl ay; /*
W ndow wi ndow, /*
W ndow r oot ; /*
W ndow subwi ndow, /*
Ti me time; /*
i nt X, VY; /*
i nt X_root, y root; /*
i nt node; /*
i nt detail;
/*
* NotifyAncestor,
* NotifyNonlinear,
*/
Bool sane_screen; /*
Bool focus; /*
unsigned int state; /*

} XCrossingEvent;

EnterNotify or LeaveNotify */

of last request processed by server */
true if this came froma SendEvent request *
Di splay the event was read from */
“Tevent'' window reported relative to */
root wi ndow that the event occurred on */
child wi ndow */

mlliseconds */

poi nter x, y coordinates in event w ndow */
coordi nates relative to root */

Noti fyNormal, NotifyGab, NotifyUngrab */

Noti fyVirtual, Notifylnferior,
Not i f yNonl i near Vi rt ual

sanme screen flag */
bool ean focus */

key or button mask */

t ypedef XCrossi ngEvent XEnt er W ndowEvent ;
t ypedef XCrossingEvent XLeaveW ndowEvent;

The window member is set to the window on which the EnterNotify or LeaveNotify
event was generated and is referred to as the event window. This is the window
used by the X server to report the event, and is relative to the root window on which
the event occurred. The root member is set to the root window of the screen on

which the event occurred.

187

Events

For a LeaveNotify event, if a child of the event window contains the initial position of
the pointer, the subwindow component is set to that child. Otherwise, the X server
sets the subwindow member to None. For an EnterNotify event, if a child of the
event window contains the final pointer position, the subwindow component is set
to that child or None.

The time member is set to the time when the event was generated and is expressed
in milliseconds. The x and y members are set to the coordinates of the pointer posi-
tion in the event window. This position is always the pointer's final position, not its
initial position. If the event window is on the same screen as the root window, x and
y are the pointer coordinates relative to the event window's origin. Otherwise, x and
y are set to zero. The x root and y root members are set to the pointer's coordinates
relative to the root window's origin at the time of the event.

The same screen member is set to indicate whether the event window is on the
same screen as the root window and can be either True or False. If True, the event
and root windows are on the same screen. If False, the event and root windows are
not on the same screen.

The focus member is set to indicate whether the event window is the focus window
or an inferior of the focus window. The X server can set this member to either True
or False. If True, the event window is the focus window or an inferior of the focus
window. If False, the event window is not the focus window or an inferior of the
focus window.

The state member is set to indicate the state of the pointer buttons and modifi-
er keys just prior to the event. The X server can set this member to the bitwise
inclusive OR of one or more of the button or modifier key masks: Button1Mask,
Button2Mask, Button3Mask, Button4Mask, Button5Mask, ShiftMask, LockMask,
ControlMask, Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, Mod5Mask.

The mode member is set to indicate whether the events are normal events, pseu-
do-motion events when a grab activates, or pseudo-motion events when a grab de-
activates. The X server can set this member to NotifyNormal, NotifyGrab, or Noti-
fyUngrab.

The detail member is set to indicate the notify detail and can be NotifyAncestor,
NotifyVirtual, NotifyInferior, NotifyNonlinear, or NotifyNonlinearVirtual.

Normal Entry/Exit Events

EnterNotify and LeaveNotify events are generated when the pointer moves from one
window to another window. Normal events are identified by XEnterWindowEvent
or XLeaveWindowEvent structures whose mode member is set to NotifyNormal.

* When the pointer moves from window A to window B and A is an inferior of B,
the X server does the following:

e It generates a LeaveNotify event on window A, with the detail member of the
XLeaveWindowEvent structure set to NotifyAncestor.

* It generates a LeaveNotify event on each window between window A and window
B, exclusive, with the detail member of each XLeaveWindowEvent structure set
to NotifyVirtual.

188

Events

* It generates an EnterNotify event on window B, with the detail member of the
XEnterWindowEvent structure set to NotifyInferior.

* When the pointer moves from window A to window B and B is an inferior of A,
the X server does the following:

e It generates a LeaveNotify event on window A, with the detail member of the
XLeaveWindowEvent structure set to NotifyInferior.

* It generates an EnterNotify event on each window between window A and window
B, exclusive, with the detail member of each XEnterWindowEvent structure set
to NotifyVirtual.

» It generates an EnterNotify event on window B, with the detail member of the
XEnterWindowEvent structure set to NotifyAncestor.

* When the pointer moves from window A to window B and window C is their least
common ancestor, the X server does the following:

* It generates a LeaveNotify event on window A, with the detail member of the
XLeaveWindowEvent structure set to NotifyNonlinear.

* It generates a LeaveNotify event on each window between window A and window
C, exclusive, with the detail member of each XLeaveWindowEvent structure set
to NotifyNonlinearVirtual.

* It generates an EnterNotify event on each window between window C and window
B, exclusive, with the detail member of each XEnterWindowEvent structure set
to NotifyNonlinearVirtual.

» It generates an EnterNotify event on window B, with the detail member of the
XEnterWindowEvent structure set to NotifyNonlinear.

* When the pointer moves from window A to window B on different screens, the X
server does the following:

* It generates a LeaveNotify event on window A, with the detail member of the
XLeaveWindowEvent structure set to NotifyNonlinear.

* If window A is not a root window, it generates a LeaveNotify event on each window
above window A up to and including its root, with the detail member of each
XLeaveWindowEvent structure set to NotifyNonlinearVirtual.

» If window B is not a root window, it generates an EnterNotify event on each win-
dow from window B's root down to but not including window B, with the detail
member of each XEnterWindowEvent structure set to NotifyNonlinearVirtual.

» It generates an EnterNotify event on window B, with the detail member of the
XEnterWindowEvent structure set to NotifyNonlinear.

Grab and Ungrab Entry/Exit Events

Pseudo-motion mode EnterNotify and LeaveNotify events are generated when a
pointer grab activates or deactivates. Events in which the pointer grab activates are
identified by XEnterWindowEvent or XLeaveWindowEvent structures whose mode

189

Events

member is set to NotifyGrab. Events in which the pointer grab deactivates are iden-
tified by XEnterWindowEvent or XLeaveWindowEvent structures whose mode mem-
ber is set to NotifyUngrab (see XG abPoi nt er).

* When a pointer grab activates after any initial warp into a confine to window and
before generating any actual ButtonPress event that activates the grab, G is the
grab _window for the grab, and P is the window the pointer is in, the X server does
the following:

* It generates EnterNotify and LeaveNotify events (see section 10.6.1) with the
mode members of the XEnterWindowEvent and XLeaveWindowEvent structures
set to NotifyGrab. These events are generated as if the pointer were to suddenly
warp from its current position in P to some position in G. However, the pointer
does not warp, and the X server uses the pointer position as both the initial and
final positions for the events.

* When a pointer grab deactivates after generating any actual ButtonRelease event
that deactivates the grab, G is the grab window for the grab, and P is the window
the pointer is in, the X server does the following:

¢ It generates EnterNotify and LeaveNotify events (see section 10.6.1) with the
mode members of the XEnterWindowEvent and XLeaveWindowEvent structures
set to NotifyUngrab. These events are generated as if the pointer were to suddenly
warp from some position in G to its current position in P. However, the pointer
does not warp, and the X server uses the current pointer position as both the
initial and final positions for the events.

Input Focus Events

This section describes the processing that occurs for the input focus events FocusIn
and FocusOut. The X server can report Focusin or FocusOut events to clients
wanting information about when the input focus changes. The keyboard is always
attached to some window (typically, the root window or a top-level window), which is
called the focus window. The focus window and the position of the pointer determine
the window that receives keyboard input. Clients may need to know when the input
focus changes to control highlighting of areas on the screen.

To receive FocusIn or FocusOut events, set the FocusChangeMask bit in the event-
mask attribute of the window.

The structure for these event types contains:

typedef struct {

i nt type; /* Focusln or FocusQut */

unsi gned | ong serial; /* # of last request processed by server */

Bool send_event; /* true if this came froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow, /* w ndow of event */

i nt node; /* NotifyNormal, NotifyGab, NotifyUngrab */

i nt detail;

/*

190

Events

* NotifyAncestor, NotifyVirtual, Notifylnferior,
* NotifyNonlinear, NotifyNonlinearVirtual, NotifyPointer,
* NotifyPoi nter Root, NotifyDetail None
*/
} XFocusChangeEvent;
t ypedef XFocusChangeEvent XFocusl nEvent;
t ypedef XFocusChangeEvent XFocusQut Event;

The window member is set to the window on which the FocusIn or FocusOut event
was generated. This is the window used by the X server to report the event. The
mode member is set to indicate whether the focus events are normal focus events,
focus events while grabbed, focus events when a grab activates, or focus events
when a grab deactivates. The X server can set the mode member to NotifyNormal,
NotifyWhileGrabbed, NotifyGrab, or NotifyUngrab.

All FocusOut events caused by a window unmap are generated after any Unmap-
Notify event; however, the X protocol does not constrain the ordering of FocusOut
events with respect to generated EnterNotify, LeaveNotify, VisibilityNotify, and Ex-
pose events.

Depending on the event mode, the detail member is set to indicate the notify de-
tail and can be NotifyAncestor, NotifyVirtual, NotifyInferior, NotifyNonlinear, Noti-
fyNonlinearVirtual, NotifyPointer, NotifyPointerRoot, or NotifyDetailNone.

Normal Focus Events and Focus Events While Grabbed

Normal focus events are identified by XFocusInEvent or XFocusOutEvent structures
whose mode member is set to NotifyNormal. Focus events while grabbed are identi-
fied by XFocusInEvent or XFocusOutEvent structures whose mode member is set to
NotifyWhileGrabbed. The X server processes normal focus and focus events while
grabbed according to the following:

* When the focus moves from window A to window B, A is an inferior of B, and the
pointer is in window P, the X server does the following:

* It generates a FocusOut event on window A, with the detail member of the XFo-
cusOutEvent structure set to NotifyAncestor.

* It generates a FocusOut event on each window between window A and window
B, exclusive, with the detail member of each XFocusOutEvent structure set to
NotifyVirtual.

* It generates a Focusln event on window B, with the detail member of the XFocu-
sOutEvent structure set to NotifyInferior.

» If window P is an inferior of window B but window P is not window A or an inferi-
or or ancestor of window A, it generates a FocusIn event on each window below
window B, down to and including window P, with the detail member of each XFo-
cuslnEvent structure set to NotifyPointer.

* When the focus moves from window A to window B, B is an inferior of A, and the
pointer is in window P, the X server does the following:

e If window P is an inferior of window A but P is not an inferior of window B or an
ancestor of B, it generates a FocusOut event on each window from window P up

191

Events

to but not including window A, with the detail member of each XFocusOutEvent
structure set to NotifyPointer.

It generates a FocusOut event on window A, with the detail member of the XFo-
cusOutEvent structure set to NotifyInferior.

It generates a FocusIn event on each window between window A and window B,
exclusive, with the detail member of each XFocusInEvent structure set to Noti-
fyVirtual.

It generates a FocusIn event on window B, with the detail member of the XFo-
cusInEvent structure set to NotifyAncestor.

When the focus moves from window A to window B, window C is their least com-
mon ancestor, and the pointer is in window P, the X server does the following:

If window P is an inferior of window A, it generates a FocusOut event on each
window from window P up to but not including window A, with the detail member
of the XFocusOutEvent structure set to NotifyPointer.

It generates a FocusOut event on window A, with the detail member of the XFo-
cusOutEvent structure set to NotifyNonlinear.

It generates a FocusOut event on each window between window A and window
C, exclusive, with the detail member of each XFocusOutEvent structure set to
NotifyNonlinearVirtual.

It generates a FocusIn event on each window between C and B, exclusive, with the
detail member of each XFocusInEvent structure set to NotifyNonlinearVirtual.

It generates a Focusln event on window B, with the detail member of the XFo-
cusInEvent structure set to NotifyNonlinear.

If window P is an inferior of window B, it generates a FocusIn event on each
window below window B down to and including window P, with the detail member
of the XFocusInEvent structure set to NotifyPointer.

When the focus moves from window A to window B on different screens and the
pointer is in window P, the X server does the following:

If window P is an inferior of window A, it generates a FocusOut event on each
window from window P up to but not including window A, with the detail member
of each XFocusOutEvent structure set to NotifyPointer.

It generates a FocusOut event on window A, with the detail member of the XFo-
cusOutEvent structure set to NotifyNonlinear.

If window A is not a root window, it generates a FocusOut event on each window
above window A up to and including its root, with the detail member of each
XFocusOutEvent structure set to NotifyNonlinearVirtual.

If window B is not a root window, it generates a FocusIn event on each window
from window B's root down to but not including window B, with the detail member
of each XFocusInEvent structure set to NotifyNonlinearVirtual.

It generates a Focusln event on window B, with the detail member of each XFo-
cusInEvent structure set to NotifyNonlinear.

192

Events

If window P is an inferior of window B, it generates a FocusIn event on each
window below window B down to and including window P, with the detail member
of each XFocusInEvent structure set to NotifyPointer.

When the focus moves from window A to PointerRoot (events sent to the window
under the pointer) or None (discard), and the pointer is in window P, the X server
does the following:

If window P is an inferior of window A, it generates a FocusOut event on each
window from window P up to but not including window A, with the detail member
of each XFocusOutEvent structure set to NotifyPointer.

It generates a FocusOut event on window A, with the detail member of the XFo-
cusOutEvent structure set to NotifyNonlinear.

If window A is not a root window, it generates a FocusOut event on each window
above window A up to and including its root, with the detail member of each
XFocusOutEvent structure set to NotifyNonlinearVirtual.

It generates a FocusIn event on the root window of all screens, with the detail
member of each XFocusInEvent structure set to NotifyPointerRoot (or NotifyDe-
tailNone).

If the new focus is PointerRoot, it generates a FocusIn event on each window from
window P's root down to and including window P, with the detail member of each
XFocusInEvent structure set to NotifyPointer.

When the focus moves from PointerRoot (events sent to the window under the
pointer) or None to window A, and the pointer is in window P, the X server does
the following:

If the old focus is PointerRoot, it generates a FocusOut event on each window
from window P up to and including window P's root, with the detail member of
each XFocusOutEvent structure set to NotifyPointer.

It generates a FocusOut event on all root windows, with the detail member of each
XFocusOutEvent structure set to NotifyPointerRoot (or NotifyDetailNone).

If window A is not a root window, it generates a FocusIn event on each window
from window A's root down to but not including window A, with the detail member
of each XFocusInEvent structure set to NotifyNonlinearVirtual.

It generates a FocusIn event on window A, with the detail member of the XFo-
cusInEvent structure set to NotifyNonlinear.

If window P is an inferior of window A, it generates a FocusIn event on each
window below window A down to and including window P, with the detail member
of each XFocusInEvent structure set to NotifyPointer.

When the focus moves from PointerRoot (events sent to the window under the
pointer) to None (or vice versa), and the pointer is in window P, the X server does
the following:

If the old focus is PointerRoot, it generates a FocusOut event on each window
from window P up to and including window P's root, with the detail member of
each XFocusOutEvent structure set to NotifyPointer.

193

Events

* It generates a FocusOut event on all root windows, with the detail member of each
XFocusOutEvent structure set to either NotifyPointerRoot or NotifyDetailNone.

» It generates a FocusIn event on all root windows, with the detail member of each
XFocusInEvent structure set to NotifyDetailNone or NotifyPointerRoot.

» If the new focus is PointerRoot, it generates a FocusIn event on each window from
window P's root down to and including window P, with the detail member of each
XFocusInEvent structure set to NotifyPointer.

Focus Events Generated by Grabs

Focus events in which the keyboard grab activates are identified by XFocusInEvent
or XFocusOutEvent structures whose mode member is set to NotifyGrab. Focus
events in which the keyboard grab deactivates are identified by XFocusInEvent
or XFocusOutEvent structures whose mode member is set to NotifyUngrab (see
XGr abKeyboar d).

* When a keyboard grab activates before generating any actual KeyPress event that
activates the grab, G is the grab_window, and F is the current focus, the X server
does the following:

* It generates FocusIn and FocusOut events, with the mode members of the XFo-
cuslnEvent and XFocusOutEvent structures set to NotifyGrab. These events are
generated as if the focus were to change from F to G.

*« When a keyboard grab deactivates after generating any actual KeyRelease event
that deactivates the grab, G is the grab window, and F is the current focus, the
X server does the following:

* It generates FocusIn and FocusOut events, with the mode members of the XFo-
cuslnEvent and XFocusOutEvent structures set to NotifyUngrab. These events
are generated as if the focus were to change from G to F.

Key Map State Notification Events

The X server can report KeymapNotify events to clients that want information
about changes in their keyboard state.

To receive KeymapNotify events, set the KeymapStateMask bit in the event-mask
attribute of the window. The X server generates this event immediately after every
EnterNotify and FocusIn event.

The structure for this event type contains:

/* generated on Enter Wndow and Focusln when KeynapState sel ected */
typedef struct {
i nt type; /* KeymapNotify */
unsi gned | ong serial; /* # of last request processed by server */

194

Events

Bool send_event; /* true if this came froma SendEvent request
Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow,

char key_ vector[32];

} XKeynmapEvent;

The window member is not used but is present to aid some toolkits. The key vector
member is set to the bit vector of the keyboard. Each bit set to 1 indicates that the
corresponding key is currently pressed. The vector is represented as 32 bytes. Byte
N (from 0) contains the bits for keys 8N to 8N + 7 with the least significant bit in
the byte representing key 8N.

Exposure Events

The X protocol does not guarantee to preserve the contents of window regions when
the windows are obscured or reconfigured. Some implementations may preserve
the contents of windows. Other implementations are free to destroy the contents of
windows when exposed. X expects client applications to assume the responsibility
for restoring the contents of an exposed window region. (An exposed window region
describes a formerly obscured window whose region becomes visible.) Therefore,
the X server sends Expose events describing the window and the region of the win-
dow that has been exposed. A naive client application usually redraws the entire
window. A more sophisticated client application redraws only the exposed region.

Expose Events

The X server can report Expose events to clients wanting information about when
the contents of window regions have been lost. The circumstances in which the X
server generates Expose events are not as definite as those for other events. How-
ever, the X server never generates Expose events on windows whose class you spec-
ified as InputOnly. The X server can generate Expose events when no valid contents
are available for regions of a window and either the regions are visible, the regions
are viewable and the server is (perhaps newly) maintaining backing store on the
window, or the window is not viewable but the server is (perhaps newly) honoring
the window's backing-store attribute of Always or WhenMapped. The regions de-
compose into an (arbitrary) set of rectangles, and an Expose event is generated for
each rectangle. For any given window, the X server guarantees to report contigu-
ously all of the regions exposed by some action that causes Expose events, such as
raising a window.

To receive Expose events, set the ExposureMask bit in the event-mask attribute of
the window.

The structure for this event type contains:

typedef struct {
i nt type; /* Expose */
unsi gned | ong serial; /* # of last request processed by server */

195

Events

Bool send_event; /[* true if this came froma SendEvent request *
Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow,

i nt X, Y;

i nt wi dt h, hei ght;

i nt count ; /* if nonzero, at |east this many nore */

} XExposeEvent;

The window member is set to the exposed (damaged) window. The x and y members
are set to the coordinates relative to the window's origin and indicate the upper-left
corner of the rectangle. The width and height members are set to the size (extent)
of the rectangle. The count member is set to the number of Expose events that are
to follow. If count is zero, no more Expose events follow for this window. However, if
count is nonzero, at least that number of Expose events (and possibly more) follow
for this window. Simple applications that do not want to optimize redisplay by dis-
tinguishing between subareas of its window can just ignore all Expose events with
nonzero counts and perform full redisplays on events with zero counts.

GraphicsExpose and NoExpose Events

The X server can report GraphicsExpose events to clients wanting information
about when a destination region could not be computed during certain graphics
requests: XCopyAr ea or XCopyPl ane. The X server generates this event whenever a
destination region could not be computed because of an obscured or out-of-bounds
source region. In addition, the X server guarantees to report contiguously all of
the regions exposed by some graphics request (for example, copying an area of a
drawable to a destination drawable).

The X server generates a NoExpose event whenever a graphics request that might
produce a GraphicsExpose event does not produce any. In other words, the client is
really asking for a GraphicsExpose event but instead receives a NoExpose event.

To receive GraphicsExpose or NoExpose events, you must first set the graphics-ex-
posure attribute of the graphics context to True. You also can set the graphics-ex-
pose attribute when creating a graphics context using XCr eat eGCor by calling XSet -
Graphi csExposures.

The structures for these event types contain:

typedef struct {

i nt type; /* Graphi csExpose */

unsi gned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came froma SendEvent request
Di spl ay *di spl ay; /* Display the event was read from */

Dr awabl e dr awabl e;

i nt X, VY;

i nt wi dt h, hei ght;

i nt count ; /* if nonzero, at |east this many nore */

i nt maj or _code; /* core is CopyArea or CopyPl ane */

196

Events

i nt m nor _code; /* not defined in the core */
} XG aphi csExposeEvent ;

typedef struct {

i nt type; /* NoExpose */

unsi gned | ong serial; /* # of last request processed by server */

Bool send_event; /[* true if this cane froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */

Dr awabl e dr awabl e;

i nt maj or _code; /* core is CopyArea or CopyPl ane */

i nt m nor _code; /* not defined in the core */

} XNoExposeEvent;

Both structures have these common members: drawable, major code, and
minor code. The drawable member is set to the drawable of the destination region
on which the graphics request was to be performed. The major code member is
set to the graphics request initiated by the client and can be either X CopyArea
or X CopyPlane. If it is X CopyArea, a call to XCopyAr ea initiated the request. If
it is X CopyPlane, a call to XCopyPl ane initiated the request. These constants are
defined in <X11/ Xprot 0. h>. The minor code member, like the major code mem-
ber, indicates which graphics request was initiated by the client. However, the
minor code member is not defined by the core X protocol and will be zero in these
cases, although it may be used by an extension.

The XGraphicsExposeEvent structure has these additional members: x, y, width,
height, and count. The x and y members are set to the coordinates relative to the
drawable's origin and indicate the upper-left corner of the rectangle. The width and
height members are set to the size (extent) of the rectangle. The count member
is set to the number of GraphicsExpose events to follow. If count is zero, no more
GraphicsExpose events follow for this window. However, if count is nonzero, at least
that number of GraphicsExpose events (and possibly more) are to follow for this
window.

Window State Change Events

The following sections discuss:
* CirculateNotify events

* ConfigureNotify events

* CreateNotify events

* DestroyNotify events

* GravityNotify events

* MapNotify events

* MappingNotify events

197

Events

* ReparentNotify events
* UnmapNotify events

* VisibilityNotify events

CirculateNotify Events

The X server can report CirculateNotify events to clients wanting information about
when a window changes its position in the stack. The X server generates this event
type whenever a window is actually restacked as a result of a client application
calling XCi r cul at eSubwi ndows, XCi r cul at eSubwi ndowsUp, or XGi r cul at eSubwi n-
dows Down.

To receive CirculateNotify events, set the StructureNotifyMask bit in the event-
mask attribute of the window or the SubstructureNotifyMask bit in the event-mask
attribute of the parent window (in which case, circulating any child generates an
event).

The structure for this event type contains:

typedef struct {

int type; /* Circul ateNotify */

unsi gned | ong serial; /* # of last request processed by server */
Bool send_event; /* true if this cane froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */

W ndow event ;

W ndow wi ndow;

i nt place; /* PlaceOnTop, PlaceOnBottom */
} XGircul at eEvent ;

The event member is set either to the restacked window or to its parent, depending
on whether StructureNotify or SubstructureNotify was selected. The window
member is set to the window that was restacked. The place member is set to the
window's position after the restack occurs and is either PlaceOnTop or PlaceOnBot-
tom. If it is PlaceOnTop, the window is now on top of all siblings. If it is PlaceOn-
Bottom, the window is now below all siblings.

ConfigureNotify Events

The X server can report ConfigureNotify events to clients wanting information
about actual changes to a window's state, such as size, position, border, and stack-
ing order. The X server generates this event type whenever one of the following
configure window requests made by a client application actually completes:

* A window's size, position, border, and/or stacking order is reconfigured by calling
XConf i gur eW ndow.

* The window's position in the stacking order is changed by calling XLower W ndow,
XRai seW ndow, or XRest ackW ndows.

198

Events

¢ A window is moved by calling XMoveW ndow.
* A window's size is changed by calling XResi zeW ndow.
* A window's size and location is changed by calling XMbveResi zeW ndow.

* A window is mapped and its position in the stacking order is changed by calling
XMapRai sed.

* A window's border width is changed by calling XSet W ndowBor der W dt h.
To receive ConfigureNotify events, set the StructureNotifyMask bit in the event-
mask attribute of the window or the SubstructureNotifyMask bit in the event-mask

attribute of the parent window (in which case, configuring any child generates an
event).

The structure for this event type contains:

typedef struct {

i nt type; /* ConfigureNotify */

unsi gned | ong serial; /* # of last request processed by server */
Bool send_event; /* true if this came froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */

W ndow event;

W ndow wi ndow,

i nt X, VY;

i nt wi dt h, hei ght;

i nt bor der _wi dt h;

W ndow above;

Bool override_redirect;

} XConfi gureEvent;

The event member is set either to the reconfigured window or to its parent, de-
pending on whether StructureNotify or SubstructureNotify was selected. The
window member is set to the window whose size, position, border, and/or stacking
order was changed.

The x and y members are set to the coordinates relative to the parent window's
origin and indicate the position of the upper-left outside corner of the window. The
width and height members are set to the inside size of the window, not including
the border. The border width member is set to the width of the window's border,
in pixels.

The above member is set to the sibling window and is used for stacking operations.
If the X server sets this member to None, the window whose state was changed is
on the bottom of the stack with respect to sibling windows. However, if this member
is set to a sibling window, the window whose state was changed is placed on top
of this sibling window.

The override redirect member is set to the override-redirect attribute of the
window. Window manager clients normally should ignore this window if the
override redirect member is True.

199

Events

CreateNotify Events

The X server can report CreateNotify events to clients wanting information about
creation of windows. The X server generates this event whenever a client applica-
tion creates a window by calling XCr eat eW ndow or XCr eat eSi npl eW ndow.

To receive CreateNotify events, set the SubstructureNotifyMask bit in the event-
mask attribute of the window. Creating any children then generates an event.

The structure for the event type contains:

typedef struct {

i nt type; /* CreateNotify */

unsi gned | ong serial; /* # of last request processed by server */
Bool send_event; /* true if this came froma SendEvent reque
Di spl ay *di spl ay; /* Display the event was read from */

W ndow par ent ; /* parent of the w ndow */

W ndow wi ndow, /* window id of window created */

i nt X, VY; /* wi ndow | ocation */

i nt wi dt h, hei ght; /* size of w ndow */

i nt bor der _wi dt h; /* border width */

Bool override_redirect; /* creation should be overridden */

} XCreat eW ndowEvent ;

The parent member is set to the created window's parent. The window member
specifies the created window. The x and y members are set to the created window's
coordinates relative to the parent window's origin and indicate the position of the
upper-left outside corner of the created window. The width and height members are
set to the inside size of the created window (not including the border) and are al-
ways nonzero. The border width member is set to the width of the created window's
border, in pixels. The override redirect member is set to the override-redirect at-
tribute of the window. Window manager clients normally should ignore this window
if the override redirect member is True.

DestroyNotify Events

The X server can report DestroyNotify events to clients wanting information about
which windows are destroyed. The X server generates this event whenever a client
application destroys a window by calling XDest r oyW ndow or XDest r oy Subwi ndows.

The ordering of the DestroyNotify events is such that for any given window, De-
stroyNotify is generated on all inferiors of the window before being generated on
the window itself. The X protocol does not constrain the ordering among siblings
and across subhierarchies.

To receive DestroyNotify events, set the StructureNotifyMask bit in the event-mask
attribute of the window or the SubstructureNotifyMask bit in the event-mask at-
tribute of the parent window (in which case, destroying any child generates an
event).

200

Events

The structure for this event type contains:

typedef struct {

i nt type; /* DestroyNotify */

unsi gned | ong serial; /* # of last request processed by server */

Bool send_event; /* true if this came froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */

W ndow event;

W ndow wi ndow,

} XDest royW ndowEvent ;

The event member is set either to the destroyed window or to its parent, depending
on whether StructureNotify or SubstructureNotify was selected. The window
member is set to the window that is destroyed.

GravityNotify Events

The X server can report GravityNotify events to clients wanting information about
when a window is moved because of a change in the size of its parent. The X server
generates this event whenever a client application actually moves a child window
as a result of resizing its parent by calling XConf i gur eW ndow, XMoveResi zeW ndow,
or XResi zeW ndow.

To receive GravityNotify events, set the StructureNotifyMask bit in the event-mask
attribute of the window or the SubstructureNotifyMask bit in the event-mask at-
tribute of the parent window (in which case, any child that is moved because its
parent has been resized generates an event).

The structure for this event type contains:

typedef struct {

i nt type; /* GravityNotify */

unsi gned | ong serial; /* # of last request processed by server */

Bool send_event; /* true if this came froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */

W ndow event;

W ndow wi ndow,

i nt X, Y

} XGavityEvent;

The event member is set either to the window that was moved or to its parent,
depending on whether St ruct ur eNot i fy or Subst ruct ureNot i fy was selected. The
window member is set to the child window that was moved. The x and y members
are set to the coordinates relative to the new parent window's origin and indicate
the position of the upper-left outside corner of the window.

201

Events

MapNotify Events

The X server can report MapNotify events to clients wanting information about
which windows are mapped. The X server generates this event type whenever a
client application changes the window's state from unmapped to mapped by calling
XMapW ndow, XMapRai sed, XMapSubwi ndows, XRepar ent W ndow, or as a result of save-
set processing.

To receive MapNotify events, set the StructureNotifyMask bit in the event-mask at-
tribute of the window or the SubstructureNotifyMask bit in the event-mask attribute
of the parent window (in which case, mapping any child generates an event).

The structure for this event type contains:

typedef struct {

i nt type; /* MapNotify */
unsi gned | ong serial; /* # of last request processed by server
Bool send_event; /[* true if this came froma SendEvent re
Di spl ay *di spl ay; /* Display the event was read from?*/
W ndow event;
W ndow wi ndow,
Bool override_redirect; /* boolean, is override set... */
} XMapEvent;

The event member is set either to the window that was mapped or to its parent,
depending on whether St ruct ur eNot i fy or Subst ruct ur eNot i fy was selected. The
window member is set to the window that was mapped. The override redirect mem-
ber is set to the override-redirect attribute of the window. Window manager clients
normally should ignore this window if the override-redirect attribute is True, be-
cause these events usually are generated from pop-ups, which override structure
control.

MappingNotify Events

The X server reports MappingNotify events to all clients. There is no mechanism to
express disinterest in this event. The X server generates this event type whenever
a client application successfully calls:

* XSet Mbdi fi er Mappi ng to indicate which KeyCodes are to be used as modifiers
* XChangeKeyboar dMappi ng to change the keyboard mapping
* XSet Poi nt er Mappi ng to set the pointer mapping

The structure for this event type contains:

202

Events

typedef struct {

i nt type; /* Mappi ngNotify */

unsi gned | ong serial; /* # of last request processed by server */

Bool send_event; /[* true if this came froma SendEvent request *

Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow, /* unused */

i nt request; /* one of Mappi nghbodi fier, Mappi ngKeyboard,
Mappi ngPoi nter */

i nt first_keycode; [/* first keycode */

i nt count ; /* defines range of change w. first_keycode*/

} XMappi ngEvent ;

The request member is set to indicate the kind of mapping change that occurred
and can be MappingModifier, MappingKeyboard, or MappingPointer. If it is Map-
pingModifier, the modifier mapping was changed. If it is MappingKeyboard, the
keyboard mapping was changed. If it is MappingPointer, the pointer button map-
ping was changed. The first keycode and count members are set only if the request
member was set to MappingKeyboard. The number in first keycode represents the
first number in the range of the altered mapping, and count represents the number
of keycodes altered.

To update the client application's knowledge of the keyboard, you should call XRe-
f reshKeyboar dMappi ng.

ReparentNotify Events

The X server can report ReparentNotify events to clients wanting information about
changing a window's parent. The X server generates this event whenever a client
application calls XRepar ent W ndow and the window is actually reparented.

To receive ReparentNotify events, set the StructureNotifyMask bit in the event-
mask attribute of the window or the SubstructureNotifyMask bit in the event-mask
attribute of either the old or the new parent window (in which case, reparenting
any child generates an event).

The structure for this event type contains:

typedef struct {

i nt type; /* ReparentNotify */

unsi gned | ong serial; /* # of last request processed by server */

Bool send_event; /* true if this came froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */

W ndow event;

W ndow wi ndow,

W ndow par ent ;

i nt X, VY;

Bool override_redirect;

} XReparent Event ;

203

Events

The event member is set either to the reparented window or to the old or the new
parent, depending on whether StructureNotify or SubstructureNotify was se-
lected. The window member is set to the window that was reparented. The parent
member is set to the new parent window. The x and y members are set to the re-
parented window's coordinates relative to the new parent window's origin and de-
fine the upper-left outer corner of the reparented window. The override redirect
member is set to the override-redirect attribute of the window specified by the win-
dow member. Window manager clients normally should ignore this window if the
override redirect member is True.

UnmapNotify Events

The X server can report UnmapNotify events to clients wanting information about
which windows are unmapped. The X server generates this event type whenever a
client application changes the window's state from mapped to unmapped.

To receive UnmapNotify events, set the StructureNotifyMask bit in the event-mask
attribute of the window or the SubstructureNotifyMask bit in the event-mask at-
tribute of the parent window (in which case, unmapping any child window gener-
ates an event).

The structure for this event type contains:

typedef struct {

i nt type; /* UnmapNotify */

unsi gned | ong serial; /* # of last request processed by server */

Bool send_event; /* true if this came froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */

W ndow event;

W ndow wi ndow,

Bool from configure;

} XUnnmapEvent ;

The event member is set either to the unmapped window or to its parent, depend-
ing on whether Struct ureNoti fy or Substruct ureNoti fy was selected. This is the
window used by the X server to report the event. The window member is set to the
window that was unmapped. The from configure member is set to True if the event
was generated as a result of a resizing of the window's parent when the window
itself had a win_gravity of UnmapGravity.

VisibilityNotify Events

The X server can report VisibilityNotify events to clients wanting any change in the
visibility of the specified window. A region of a window is visible if someone looking
at the screen can actually see it. The X server generates this event whenever the
visibility changes state. However, this event is never generated for windows whose
class is InputOnly.

All VisibilityNotify events caused by a hierarchy change are generated after any
hierarchy event (UnmapNotify, MapNotify, ConfigureNotify, GravityNotify, Circu-

204

Events

lateNotify) caused by that change. Any VisibilityNotify event on a given window is
generated before any Expose events on that window, but it is not required that all
VisibilityNotify events on all windows be generated before all Expose events on all
windows. The X protocol does not constrain the ordering of VisibilityNotify events
with respect to FocusOut, EnterNotify, and LeaveNotify events.

To receive VisibilityNotify events, set the VisibilityChangeMask bit in the event-
mask attribute of the window.

The structure for this event type contains:

typedef struct {

i nt type; /* VisibilityNotify */

unsi gned | ong serial; /* # of last request processed by server */

Bool send_event; /* true if this came froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow,

i nt state;

} XVisibilityEvent;

The window member is set to the window whose visibility state changes. The state
member is set to the state of the window's visibility and can be VisibilityUnobscured,
VisibilityPartiallyObscured, or VisibilityFullyObscured. The X server ignores all of
a window's subwindows when determining the visibility state of the window and
processes VisibilityNotify events according to the following:

* When the window changes state from partially obscured, fully obscured, or not
viewable to viewable and completely unobscured, the X server generates the
event with the state member of the XVisibilityEvent structure set to Visibili-
tyUnobscured.

* When the window changes state from viewable and completely unobscured or not
viewable to viewable and partially obscured, the X server generates the event
with the state member of the XVisibilityEvent structure set to VisibilityPartially-
Obscured.

* When the window changes state from viewable and completely unobscured, view-
able and partially obscured, or not viewable to viewable and fully obscured, the
X server generates the event with the state member of the XVisibilityEvent struc-
ture set to VisibilityFullyObscured.

Structure Control Events

This section discusses:
¢ CirculateRequest events
* ConfigureRequest events

* MapRequest events

205

Events

* ResizeRequest events

CirculateRequest Events

The X server can report CirculateRequest events to clients wanting information
about when another client initiates a circulate window request on a specified win-
dow. The X server generates this event type whenever a client initiates a circulate
window request on a window and a subwindow actually needs to be restacked. The
client initiates a circulate window request on the window by calling XC r cul at eSub-
wi ndows, XCi r cul at eSubwi ndowsUp, or XCi r cul at eSubwi ndows Down.

To receive CirculateRequest events, set the SubstructureRedirectMask in the event-
mask attribute of the window. Then, in the future, the circulate window request
for the specified window is not executed, and thus, any subwindow's position in
the stack is not changed. For example, suppose a client application calls XCi r cu-
| at eSubwi ndowsUp to raise a subwindow to the top of the stack. If you had select-
ed SubstructureRedirectMask on the window, the X server reports to you a Circu-
lateRequest event and does not raise the subwindow to the top of the stack.

The structure for this event type contains:

typedef struct {

i nt type; /* Circul at eRequest */

unsi gned | ong serial; /* # of last request processed by server */

Bool send_event; /* true if this came froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */

W ndow par ent ;

W ndow wi ndow;

i nt place; /* PlaceOnTop, PlaceOnBottom */

} XGircul at eRequest Event ;

The parent member is set to the parent window. The window member is set to the
subwindow to be restacked. The place member is set to what the new position in
the stacking order should be and is either PlaceOnTop or PlaceOnBottom. If it is
PlaceOnTop, the subwindow should be on top of all siblings. If it is PlaceOnBottom,
the subwindow should be below all siblings.

ConfigureRequest Events

The X server can report ConfigureRequest events to clients wanting information
about when a different client initiates a configure window request on any child
of a specified window. The configure window request attempts to reconfigure a
window's size, position, border, and stacking order. The X server generates this
event whenever a different client initiates a configure window request on a window
by calling XConf i gur eW ndow, XLower W ndow, XRai seW ndow, XMapRai sed, XMoveRe-
si zeW ndow, XMbveW ndow, XResi zeW ndow, XRest ackW ndows, or XSet W ndowBor -
der W dt h.

To receive ConfigureRequest events, set the SubstructureRedirectMask bit in the
event-mask attribute of the window. ConfigureRequest events are generated when

206

Events

a Conf i gur eW ndow protocol request is issued on a child window by another client.
For example, suppose a client application calls XLower W ndow to lower a window. If
you had selected SubstructureRedirectMask on the parent window and if the over-
ride-redirect attribute of the window is set to False, the X server reports a Config-
ureRequest event to you and does not lower the specified window.

The structure for this event type contains:

t ypedef struct {

i nt type; /* ConfigureRequest */

unsi gned | ong serial; /* # of last request processed by server */
Bool send_event; /* true if this came froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */

W ndow par ent;

W ndow wi ndow,

i nt X, Y;

i nt wi dt h, height;

i nt border _wi dt h;

W ndow above;

i nt detail; /* Above, Below, Toplf, Bottom f, Opposite */

unsi gned | ong val ue_nask;
} XConfi gur eRequest Event ;

The parent member is set to the parent window. The window member is set to the
window whose size, position, border width, and/or stacking order is to be reconfig-
ured. The value mask member indicates which components were specified in the
Conf i gur eW ndow protocol request. The corresponding values are reported as giv-
en in the request. The remaining values are filled in from the current geometry of
the window, except in the case of above (sibling) and detail (stack-mode), which are
reported as None and Above, respectively, if they are not given in the request.

MapRequest Events

The X server can report MapRequest events to clients wanting information about
a different client's desire to map windows. A window is considered mapped when
a map window request completes. The X server generates this event whenever a
different client initiates a map window request on an unmapped window whose
override redirect member is set to False. Clients initiate map window requests by
calling XMapW ndow, XMapRai sed, or XMapSubwi ndows.

To receive MapRequest events, set the SubstructureRedirectMask bit in the event-
mask attribute of the window. This means another client's attempts to map a child
window by calling one of the map window request functions is intercepted, and
you are sent a MapRequest instead. For example, suppose a client application calls
XMapW ndow to map a window. If you (usually a window manager) had selected Sub-
structureRedirectMask on the parent window and if the override-redirect attribute
of the window is set to False, the X server reports a MapRequest event to you and
does not map the specified window. Thus, this event gives your window manager
client the ability to control the placement of subwindows.

207

Events

The structure for this event type contains:

typedef struct {

i nt type; /* MapRequest */

unsi gned | ong serial; /* # of last request processed by server */

Bool send_event; /* true if this came froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */

W ndow par ent ;

W ndow wi ndow,

} XMapRequest Event ;

The parent member is set to the parent window. The window member is set to the
window to be mapped.

ResizeRequest Events

The X server can report ResizeRequest events to clients wanting information about
another client's attempts to change the size of a window. The X server generates
this event whenever some other client attempts to change the size of the specified
window by calling XConf i gur eW ndow, XResi zeW ndow, or XMoveResi zeW ndow.

To receive ResizeRequest events, set the ResizeRedirect bit in the event-mask at-
tribute of the window. Any attempts to change the size by other clients are then
redirected.

The structure for this event type contains:

typedef struct {

i nt type; /* Resi zeRequest */

unsi gned | ong serial; /* # of last request processed by server */

Bool send_event; /* true if this came froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow,

i nt wi dt h, height;

} XResi zeRequest Event ;

The window member is set to the window whose size another client attempted to
change. The width and height members are set to the inside size of the window,
excluding the border.

Colormap State Change Events

The X server can report ColormapNotify events to clients wanting information
about when the colormap changes and when a colormap is installed or uninstalled.
The X server generates this event type whenever a client application:

208

Events

* Changes the colormap member of the XSetWindowAttributes structure by calling
XChangeW ndowAt t ri but es, XFr eeCol or map, or XSet W ndowCol or map

* Installs or uninstalls the colormap by calling XI nst al | Col or map or XUni nstal | -
Col or map

To receive ColormapNotify events, set the ColormapChangeMask bit in the event-
mask attribute of the window.

The structure for this event type contains:

typedef struct {

i nt type; /* Col ormapNotify */

unsi gned | ong serial; /* # of last request processed by server */
Bool send_event; /* true if this cane froma SendEvent request
Di spl ay *di spl ay; /* Display the event was read from*/

W ndow wi ndow,

Col or map col or map; /* colormap or None */

Bool new,

i nt st at e; /* Col ormapl nstal |l ed, Col ormapUninstalled */

} XCol or mapEvent;

The window member is set to the window whose associated colormap is changed,
installed, or uninstalled. For a colormap that is changed, installed, or uninstalled,
the colormap member is set to the colormap associated with the window. For a col-
ormap that is changed by a call to XFr eeCol or map, the colormap member is set to
None. The new member is set to indicate whether the colormap for the specified
window was changed or installed or uninstalled and can be True or False. If it is
True, the colormap was changed. If it is False, the colormap was installed or unin-
stalled. The state member is always set to indicate whether the colormap is installed
or uninstalled and can be ColormapInstalled or ColormapUninstalled.

Client Communication Events

This section discusses:
* ClientMessage events
* PropertyNotify events

¢ SelectionClear events

SelectionNotify events

SelectionRequest events

ClientMessage Events

The X server generates ClientMessage events only when a client calls the function
XSendEvent .

209

Events

The structure for this event type contains:

typedef struct {

i nt type; /* dient Message */
unsi gned | ong serial; /* # of last request processed by server */
Bool send_event; /* true if this came froma SendEvent request *
Di spl ay *di spl ay; /* Display the event was read from */
W ndow wi ndow;
At om nmessage_t ype;
i nt format;
uni on {

char b[20];

short s[10];

long 1[5];

} data;

} Xdient MessageEvent;

The message type member is set to an atom that indicates how the data should
be interpreted by the receiving client. The format member is set to 8, 16, or 32
and specifies whether the data should be viewed as a list of bytes, shorts, or longs.
The data member is a union that contains the members b, s, and 1. The b, s, and
1 members represent data of twenty 8-bit values, ten 16-bit values, and five 32-
bit values. Particular message types might not make use of all these values. The X
server places no interpretation on the values in the window, message type, or data
members.

PropertyNotify Events

The X server can report PropertyNotify events to clients wanting information about
property changes for a specified window.

To receive PropertyNotify events, set the PropertyChangeMask bit in the event-
mask attribute of the window.

The structure for this event type contains:

typedef struct {

i nt type; /* PropertyNotify */

unsi gned | ong serial; /* # of last request processed by server */

Bool send_event; /* true if this came froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow,

At om at om

Time tine;

int state; /* PropertyNewval ue or PropertyDelete */

210

Events

} XPropertyEvent;

The window member is set to the window whose associated property was changed.
The atom member is set to the property's atom and indicates which property was
changed or desired. The time member is set to the server time when the prop-
erty was changed. The state member is set to indicate whether the property was
changed to a new value or deleted and can be PropertyNewValue or PropertyDelete.
The state member is set to PropertyNewValue when a property of the window is
changed using XChangePr operty or XRot at eW ndowPr operti es (even when adding
zero-length data using XChangePr operty) and when replacing all or part of a prop-
erty with identical data using XChangePr operty or XRot at eW ndowPr operti es. The
state member is set to PropertyDelete when a property of the window is deleted
using XDel et eProperty or, if the delete argument is True, XGet W ndowPr operty.

SelectionClear Events

The X server reports SelectionClear events to the client losing ownership of a se-
lection. The X server generates this event type when another client asserts owner-
ship of the selection by calling XSet Sel ecti onOaner .

The structure for this event type contains:

typedef struct {

i nt type; /* Sel ectionC ear */

unsi gned | ong serial; /* # of last request processed by server */

Bool send_event; /* true if this came froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow,

At om sel ection;

Ti me time;

} XSel ecti onCl ear Event ;

The selection member is set to the selection atom. The time member is set to the
last change time recorded for the selection. The window member is the window that
was specified by the current owner (the owner losing the selection) in its XSet S-
el ecti onOwner call.

SelectionRequest Events

The X server reports SelectionRequest events to the owner of a selection. The X
server generates this event whenever a client requests a selection conversion by
calling XConvert Sel ecti on for the owned selection.

The structure for this event type contains:

211

Events

typedef struct {

i nt type; /* Sel ecti onRequest */

unsi gned | ong serial; /* # of last request processed by server */

Bool send_event; /* true if this came froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */

W ndow owner ;

W ndow requestor;

At om sel ection;

At om target;

At om property,;

Ti me time;

} XSel ecti onRequest Event ;

The owner member is set to the window that was specified by the current owner in
its XSet Sel ect i onOaner call. The requestor member is set to the window requesting
the selection. The selection member is set to the atom that names the selection. For
example, PRIMARY is used to indicate the primary selection. The target member
is set to the atom that indicates the type the selection is desired in. The property
member can be a property name or None. The time member is set to the timestamp
or CurrentTime value from the Convert Sel ecti on request.

The owner should convert the selection based on the specified target type and send
a SelectionNotify event back to the requestor. A complete specification for using
selections is given in the X Consortium standard Inter-Client Communication Con-
ventions Manual.

SelectionNotify Events

This event is generated by the X server in response to a Conver t Sel ect i on protocol
request when there is no owner for the selection. When there is an owner, it should
be generated by the owner of the selection by using XSendEvent . The owner of a
selection should send this event to a requestor when a selection has been converted
and stored as a property or when a selection conversion could not be performed
(which is indicated by setting the property member to None).

If None is specified as the property in the Convert Sel ecti on protocol request, the
owner should choose a property name, store the result as that property on the re-
questor window, and then send a SelectionNotify giving that actual property name.

The structure for this event type contains:

typedef struct {

i nt type; /* Sel ectionNotify */

unsi gned | ong serial; /* # of last request processed by server */

Bool send_event; /* true if this came froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */

W ndow requestor;

At om sel ection;

At om target;

At om property; /* atom or None */

212

Events

Ti me time;
} XSel ectionEvent;

The requestor member is set to the window associated with the requestor of the
selection. The selection member is set to the atom that indicates the selection. For
example, PRIMARY is used for the primary selection. The target member is set to the
atom that indicates the converted type. For example, PIXMAP is used for a pixmap.
The property member is set to the atom that indicates which property the result
was stored on. If the conversion failed, the property member is set to None. The
time member is set to the time the conversion took place and can be a timestamp
or CurrentTime.

213

Chapter 11. Event Handling Functions

This chapter discusses the Xlib functions you can use to:

¢ Select events

Handle the output buffer and the event queue
¢ Select events from the event queue
* Send and get events

* Handle protocol errors

Note

Some toolkits use their own event-handling functions and do not allow you
to interchange these event-handling functions with those in Xlib. For further
information, see the documentation supplied with the toolkit.

Most applications simply are event loops: they wait for an event, decide what to
do with it, execute some amount of code that results in changes to the display, and
then wait for the next event.

Selecting Events

There are two ways to select the events you want reported to your client application.
One way is to set the event mask member of the XSetWindowAttributes structure
when you call XCr eat eW ndow and XChangeW ndowAt t ri but es. Another way is to
use XSel ect | nput .

XSel ect I nput (*di splay, w, event_nask);

display Specifies the connection to the X server.
w Specifies the window (Wi.
event_mask Specifies the event mask.

The XSel ect | nput function requests that the X server report the events associat-
ed with the specified event mask. Initially, X will not report any of these events.
Events are reported relative to a window. If a window is not interested in a device
event, it usually propagates to the closest ancestor that is interested, unless the
do_not propagate mask prohibits it.

Setting the event-mask attribute of a window overrides any previous call for the
same window but not for other clients. Multiple clients can select for the same
events on the same window with the following restrictions:

e Multiple clients can select events on the same window because their event masks
are disjoint. When the X server generates an event, it reports it to all interested
clients.

* Only one client at a time can select CirculateRequest, ConfigureRequest, or
MapRequest events, which are associated with the event mask SubstructureRedi-
rectMask.

214

Event Handling Functions

* Only one client at a time can select a ResizeRequest event, which is associated
with the event mask ResizeRedirectMask.

* Only one client at a time can select a ButtonPress event, which is associated with
the event mask ButtonPressMask.

The server reports the event to all interested clients.

XSel ect | nput can generate a BadWindow error.

Handling the Output Buffer

The output buffer is an area used by Xlib to store requests. The functions described
in this section flush the output buffer if the function would block or not return an
event. That is, all requests residing in the output buffer that have not yet been sent
are transmitted to the X server. These functions differ in the additional tasks they
might perform.

To flush the output buffer, use XFl ush.
XFlush(*di spl ay);
display Specifies the connection to the X server.

The XFI ush function flushes the output buffer. Most client applications need not use
this function because the output buffer is automatically flushed as needed by calls
to XPendi ng, XNext Event , and XW ndowEvent . Events generated by the server may
be enqueued into the library's event queue.

To flush the output buffer and then wait until all requests have been processed, use

XSync.
XSync(*display, discard);
display Specifies the connection to the X server.

discard Specifies a Boolean value that indicates whether XSync dis-
cards all events on the event queue.

The XSync function flushes the output buffer and then waits until all requests have
been received and processed by the X server. Any errors generated must be handled
by the error handler. For each protocol error received by Xlib, XSync calls the client
application's error handling routine (see section 11.8.2). Any events generated by
the server are enqueued into the library's event queue.

Finally, if you passed False, XSync does not discard the events in the queue. If you
passed True, XSync discards all events in the queue, including those events that
were on the queue before XSync was called. Client applications seldom need to call
XSync.

Event Queue Management

Xlib maintains an event queue. However, the operating system also may be buffering
data in its network connection that is not yet read into the event queue.

To check the number of events in the event queue, use XEvent sQueued.

215

Event Handling Functions

i nt XBEvent sQueued(*display, node);
display Specifies the connection to the X server.

mode Specifies the mode. You can pass QueuedAlready,
QueuedAfterFlush, or QueuedAfterReading.

If mode is QueuedAlready, XEvent sQueued returns the number of events already in
the event queue (and never performs a system call). If mode is QueuedAfterFlush,
XEvent sQueued returns the number of events already in the queue if the number
is nonzero. If there are no events in the queue, XEvent sQueued flushes the output
buffer, attempts to read more events out of the application's connection, and returns
the number read. If mode is QueuedAfterReading, XEvent sQueued returns the num-
ber of events already in the queue if the number is nonzero. If there are no events
in the queue, XEvent sQueued attempts to read more events out of the application's
connection without flushing the output buffer and returns the number read.

XEvent sQueued always returns immediately without I/O if there are events already
in the queue. XEvent sQueued with mode QueuedAfterFlush is identical in behavior
to XPendi ng. XEvent sQueued with mode QueuedAlready is identical to the XQ.engt h
function.

To return the number of events that are pending, use XPendi ng.
i nt XPendi ng(*displ ay);
display Specifies the connection to the X server.

The XPendi ng function returns the number of events that have been received from
the X server but have not been removed from the event queue. XPendi ng is identical
to XEvent sQueued with the mode QueuedAfterFlush specified.

Manipulating the Event Queue

Xlib provides functions that let you manipulate the event queue. This section dis-
cusses how to:

¢ Obtain events, in order, and remove them from the queue
* Peek at events in the queue without removing them

* Obtain events that match the event mask or the arbitrary predicate procedures
that you provide

Returning the Next Event

To get the next event and remove it from the queue, use XNext Event .
XNext Event (*di splay, *event_return);

display Specifies the connection to the X server.
event return Returns the next event in the queue.

The XNext Event function copies the first event from the event queue into the spec-
ified XEvent structure and then removes it from the queue. If the event queue is
empty, XNext Event flushes the output buffer and blocks until an event is received.

216

Event Handling Functions

To peek at the event queue, use XPeekEvent .

XPeekEvent (*display, *event_return);

display Specifies the connection to the X server.
event return Returns a copy of the matched event's associated
structure.

The XPeekEvent function returns the first event from the event queue, but it does
not remove the event from the queue. If the queue is empty, XPeekEvent flushes the
output buffer and blocks until an event is received. It then copies the event into the
client-supplied XEvent structure without removing it from the event queue.

Selecting Events Using a Predicate Procedure

Each of the functions discussed in this section requires you to pass a predicate
procedure that determines if an event matches what you want. Your predicate pro-
cedure must decide if the event is useful without calling any Xlib functions. If the
predicate directly or indirectly causes the state of the event queue to change, the
result is not defined. If Xlib has been initialized for threads, the predicate is called
with the display locked and the result of a call by the predicate to any Xlib function
that locks the display is not defined unless the caller has first called XLockDi spl ay.

The predicate procedure and its associated arguments are:

Bool (*display, *event, arg);

display Specifies the connection to the X server.
event Specifies the XEvent structure.
arg Specifies the argument passed in from the Xl fEvent,

XCheckl f Event, or XPeekl f Event function.

The predicate procedure is called once for each event in the queue until it finds a
match. After finding a match, the predicate procedure must return True. If it did
not find a match, it must return False.

To check the event queue for a matching event and, if found, remove the event from
the queue, use Xl f Event .

Xl fEvent (*display, *event_return, (*predicate)(), arg);

display Specifies the connection to the X server.

event return Returns the matched event's associated structure.

predicate Specifies the procedure that is to be called to deter-
mine if the next event in the queue matches what you
want.

arg Specifies the user-supplied argument that will be

passed to the predicate procedure.

The XI f Event function completes only when the specified predicate procedure re-
turns True for an event, which indicates an event in the queue matches. Xl f Event

217

Event Handling Functions

flushes the output bufferif it blocks waiting for additional events. XlI f Event removes
the matching event from the queue and copies the structure into the client-supplied
XEvent structure.

To check the even