

G45: Volume 1b: Graphics Core

Intel® 965G Express Chipset Family,
Intel® G35 Express Chipset
Graphics Controller

Programmer’s Reference Manual (PRM)

January 2009
Revision 1.0a
Document Number: 321392-001

mlfoster
Text Box
Technical queries: ilg@linux.intel.comwww.intellinuxgraphics.org

You are free:

to Share — to copy, distribute,display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any
way that suggests that they endorse you or your use of the work).

No Derivative Works. You may not alter, transform, or build upon this work.

You are not obligated to provide Intel with comments or suggestions regarding this document.
However, should you provide Intel with comments or suggestions for the modification, correction,
improvement, or enhancement of: 9a) this document; or (b) Intel products, which may embody
this document, you grant to Intel a non-exclusive, irrevocable, worldwide, royalty-free license,
with the right to sublicense Intel’s licensees and customers, under Recipient intellectual property
rights, to use and disclose such comments and suggestions in any manner Intel chooses and to
display, perform, copy, make, have made, use, sell, and otherwise dispose of Intel’s and its
sublicensee’s products embodying such comments and suggestions in any manner and via any
media Intel chooses, without reference to the source.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these
for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® 965 Express Chipset Family and Intel® G35 Express Chipset may contain design defects or errors known as errata which may cause
the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed by Intel.
Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips
Corporation.

Intel and the Intel are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2008, Intel Corporation. All rights reserved.

Contents
1 Memory Interface Commands for Rendering Engine 10
1.1 Introduction...10
1.2 MI_ARB_CHECK ...10
1.3 MI_ARB_ON_OFF ([DevCTG] Only)..11
1.4 MI_BATCH_BUFFER_END ...12
1.5 MI_BATCH_BUFFER_START..12

1.5.1 Command Access of Privileged Memory [DevCTG] Only.................15
1.5.2 Privileged Commands [DevCTG] Only ...16

1.6 MI_DISPLAY_FLIP...17
1.7 MI_FLUSH ...24
1.8 MI_LOAD_REGISTER_IMM ...26
1.9 MI_LOAD_SCAN_LINES_EXCL ..27
1.10 MI_LOAD_SCAN_LINES_INCL...28
1.11 MI_NOOP ..30
1.12 MI_OVERLAY_FLIP ..31

1.12.1 Turning the Overlay Off ..33
1.12.2 Valid Overlay Flip Sequences...34

1.13 Surface Probing [DevCTG] ...34
1.13.1 MI_PROBE [DevCTG] ...34
1.13.2 MI_UNPROBE [DevCGT] ...35

1.14 MI_REPORT_HEAD..36
1.15 MI_SET_CONTEXT ..37
1.16 MI_STORE_DATA_IMM ..40
1.17 MI_STORE_DATA_INDEX ...43
1.18 MI_STORE_REGISTER_MEM ...45
1.19 MI_UPDATE_GTT ([DevCTG]) ...47
1.20 MI_USER_INTERRUPT ...48
1.21 MI_WAIT_FOR_EVENT...49
2 Memory Interface Commands for Video Codec Engine [DevCTG+] 54
2.1 Introduction...54
2.2 MI_ARB_CHECK ...54
2.3 MI_BATCH_BUFFER_END ...55
2.4 MI_BATCH_BUFFER_START..55
2.5 MI_FLUSH ...56
2.6 MI_LOAD_REGISTER_IMM ...57
2.7 MI_NOOP ..58
2.8 MI_REPORT_HEAD..59
2.9 MI_STORE_DATA_IMM ..60
2.10 MI_STORE_DATA_INDEX ...61
2.11 MI_USER_INTERRUPT ...62
2.12 MI_WAIT_FOR_EVENT...63
2.13 Summary of Commands ..64
3 Memory Interface Commands for Blitter Engine 65
3.1 Introduction...65
3.2 MI_LOAD_REGISTER_IMM ...65

 G45: Volume 1b: Graphics Core

 5

3.3 MI_NOOP..67
3.4 MI_ SEMAPHORE_MBOX..68
3.5 MI_STORE_DATA_IMM..70
3.6 MI_STORE_DATA_INDEX...72
3.7 MI_USER_INTERRUPT ...73
3.8 MI_WAIT_FOR_EVENT ..74
4 Graphics Memory Interface Functions 75
4.1 Introduction ..75
4.2 Graphics Memory Clients ...75
4.3 Graphics Memory Addressing Overview ...76

4.3.1 Graphics Address Path ...76
4.4 Graphics Memory Address Spaces...78
4.5 Address Tiling Function ...78

4.5.1 Linear vs. Tiled Storage..78
4.5.2 Tile Formats ...81
4.5.3 Tiling Algorithm ..83
4.5.4 Tiling Support ...84
4.5.5 Per-Stream Tile Format Support ..88

4.6 Logical Memory Mapping ...88
4.6.1 Logical Memory Space Mappings..89

4.7 Physical Graphics Memory ...93
4.7.1 Physical Graphics Address Types ...93
4.7.2 Main Memory..94

5 Device Programming Environment 96
5.1 Programming Model..96
5.2 Graphics Device Register Programming ...96
5.3 Graphics Device Command Streams..97

5.3.1 Command Use ..97
5.3.2 Command Transport Overview ..97
5.3.3 Command Parser...98
5.3.4 The Ring Buffer...98
5.3.5 Batch Buffers.. 102
5.3.6 Indirect Data .. 102
5.3.7 Command Arbitration... 103
5.3.8 Graphics Engine Synchronization ... 105
5.3.9 Graphics Memory Coherency... 107
5.3.10 Graphics Cache Coherency ... 107

* -- Includes MI_FLUSH, Engine switch, and Context switch. 109
5.3.11 Command Synchronization ... 109

5.4 Hardware Status .. 111
5.4.1 Hardware-Detected Errors (Master Error bit) 111
5.4.2 Thermal Sensor Event.. 111
5.4.3 Sync Status.. 111
5.4.4 Display Plane A, B, (Sprite A, Sprite B [DevCTG] Only) Flip Pending112
5.4.5 Overlay Flip Pending .. 112
5.4.6 Display Pipe A,B VBLANK.. 112
5.4.7 User Interrupt .. 112
5.4.8 PIPE_CONTROL Notify Interrupt .. 112

5.5 Hardware Status Writes .. 112
5.6 Interrupts ... 113
5.7 Errors... 113

 G45: Volume 1b: Graphics Core

6

5.7.1 Error Reporting ...114
5.7.2 Page Table Errors ..115
5.7.3 Clearing Errors ..115

5.8 Rendering Context Management ...116
5.8.1 Multiple Logical Rendering Contexts ...116

5.9 Reset State..119
6 Frame Buffer Compression [DevCL only] 120
6.1 Overview...120
6.2 Programming Interface..120

6.2.1 FBC unit programming interface ..120
6.2.2 Programming interface from Display Engine...............................122

6.3 Operating Modes ..123
6.3.1 RLE-FBC Function Modes ..123
6.3.2 Compression Modes ...124

6.4 Usage Restrictions ..124
6.5 Power Management Interface ...125
6.6 Memory Data Structures..126

6.6.1 RLE Pixel Runs ..126
6.6.2 RLE Pixel Run Sets...126
6.6.3 RLE-Compressed Line...126
6.6.4 RLE Compressed Frame and Line Length Buffers127

6.7 Tuning Parameters..127
6.7.1 Stride ..127
6.7.2 Interval..128
6.7.3 FBC Modification Counter ..128

6.8 Implementation (DEBUG) ..128
6.8.1 Tag Array ...128
6.8.2 Compressor ..129
6.8.3 Decompressor...131
6.8.4 Frame Buffer Write Detector..131
6.8.5 Coherency ..132

7 Frame Buffer Compression [DevCTG] 133
7.1 DPFC Programming Interface ...133

7.1.1 FBC2 supported feature and limitation133
7.1.2 FBC2 usage model and restriction on persistent and non-persistent mode 134

7.2 DPFC Control Registers (03200h–033FFh) ..136
7.2.1 DPFC_CB_BASE – DPFC Compressed Buffer Base Address136
7.2.2 DPFC_CONTROL— DPFC Control ..137
7.2.3 DPFC_RECOMP_CTL — DPFC ReComp Control139
7.2.4 DPFC_STATUS — DPFC Status ...140
7.2.5 DPFC_STATUS_2 — DPFC Status 2...140
7.2.6 DPFC_CPU_Fence_Offset — Y Offset CPU Fence Base to Display Buffer Base 141
7.2.7 PFC_SLB_DAT—DPFC SLB Data ...142
7.2.8 DPFC_DEBUG_STATUS—DPFC Debug Status143
7.2.9 DPFC_EXTRA—DPFC Extra Control Bits144

8 BLT Engine 145
8.1 Introduction...145
8.2 Classical BLT Engine Functional Description ..145

8.2.1 Basic BLT Functional Considerations ...147
8.2.2 Basic Graphics Data Considerations..157
8.2.3 BLT Programming Examples ..163

 G45: Volume 1b: Graphics Core

 7

8.3 BLT Instruction Overview .. 168
8.4 BLT Engine State.. 168
8.5 Cacheable Memory Support ... 169
8.6 Device Cache Coherency: Render and Texture Caches 170
8.7 BLT Engine Instructions... 170

8.7.1 Blt Programming Restrictions .. 170
8.8 Fill/Move Instructions.. 170

8.8.1 COLOR_BLT (Fill) .. 171
8.8.2 SRC_COPY_BLT (Move).. 172

8.9 2D (X,Y) BLT Instructions .. 173
8.9.1 XY_SETUP_BLT ... 174
8.9.2 XY_SETUP_MONO_PATTERN_SL_BLT 176
8.9.3 XY_SETUP_CLIP_ BLT .. 177
8.9.4 XY_PIXEL_BLT .. 178
8.9.5 XY_SCANLINES_BLT .. 179
8.9.6 XY_TEXT_BLT ... 180
8.9.7 XY_TEXT_IMMEDIATE_BLT ... 181
8.9.8 XY_COLOR_BLT .. 182
8.9.9 XY_PAT_BLT... 183
8.9.10 XY_PAT_CHROMA_BLT... 184
8.9.11 XY_PAT_BLT_IMMEDIATE ... 186
8.9.12 XY_PAT_CHROMA_BLT_IMMEDIATE ... 188
8.9.13 XY_MONO_PAT_BLT .. 190
8.9.14 XY_MONO_PAT_FIXED_BLT .. 192
8.9.15 XY_SRC_COPY_BLT ... 197
8.9.16 XY_SRC_COPY_CHROMA_BLT ... 199
8.9.17 XY_MONO_SRC_COPY_BLT... 201
8.9.18 XY_MONO_SRC_COPY_ IMMEDIATE_BLT 203
8.9.19 XY_FULL_BLT ... 205
8.9.20 XY_FULL_IMMEDIATE_PATTERN_BLT 207
8.9.21 XY_FULL_MONO_SRC_BLT.. 209
8.9.22 XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT...................... 211
8.9.23 XY_FULL_MONO_PATTERN_BLT... 213
8.9.24 XY_FULL_MONO_PATTERN_MONO_SRC_BLT 216

8.10 BLT Engine Instruction Field Definitions ... 218
8.10.1 BR00—BLT Opcode & Control .. 218
8.10.2 BR01—Setup BLT Raster OP, Control, and Destination Offset 221
8.10.3 BR05—Setup Expansion Background Color 224
8.10.4 BR06—Setup Expansion Foreground Color 225
8.10.5 BR07—Setup Color Pattern Address ... 226
8.10.6 BR09—Destination Address... 227
8.10.7 BR11—BLT Source Pitch (Offset) ... 228
8.10.8 BR12—Source Address... 229
8.10.9 BR13—BLT Raster OP, Control, and Destination Pitch.................. 229
8.10.10 BR14—Destination Width & Height... 231
8.10.11 BR15—Color Pattern Address .. 233
8.10.12 BR16—Pattern Expansion Background & Solid Pattern Color 234
8.10.13 BR17—Pattern Expansion Foreground Color............................... 234
8.10.14 BR18—Source Expansion Background, and Destination Color 235
8.10.15 BR19—Source Expansion Foreground Color 235

 G45: Volume 1b: Graphics Core

8

Figures

Figure 4-1. Graphics Memory Paths...77
Figure 4-2. Rectangular Memory Operand Parameters ..79
Figure 4-3. Linear Surface Layout ..79
Figure 4-4. Memory Tile Dimensions ...80
Figure 4-5. Tiled Surface Layout..81
Figure 4-6. Y-Major Tile Layout ...82
Figure 4-7. Tiled Surface Placement ...86
Figure 4-8. Global and Render GTT Mapping...90
Figure 4-9. GTT Re-mapping to Handle Differing Pitches92
Figure 4-10. Logical-to-Physical Graphics Memory Mapping92
Figure 4-11. Memory Interfaces ..93
Figure 4-12. Memory Pages backing Color and Depth Buffers.................................95
Figure 5-1. Graphics Controller Command Interface ...98
Figure 5-2. Ring Buffer...99
Figure 5-3. Batch Buffer Chaining ..102
Figure 6-1. 32bpp Pixel Run..126
Figure 6-2. 16bpp Pixel Run...126
Figure 6-3. Pixel Run Set..126
Figure 6-4. RLE-Compression Buffers ..127
Figure 8-1. Block Diagram and Data Paths of the BLT Engine146
Figure 8-2. Block Diagram and Data Paths of the BLT Engine152
Figure 8-3. Source Corruption in BLT with Overlapping Source and Destination Locations

 154
Figure 8-4. Correctly Performed BLT with Overlapping Source and Destination Locations

 155
Figure 8-5. Suggested Starting Points for Possible Source and Destination Overlap Situations

 156
Figure 8-6. Representation of On-Screen Single 6-Pixel Line in the Frame Buffer157
Figure 8-7. Representation of On-Screen 6x4 Array of Pixels in the Frame Buffer....158
Figure 8-8. Pattern Data -- Always an 8x8 Array of Pixels...................................160
Figure 8-9. 8bpp Pattern Data -- Occupies 64 Bytes (8 quadwords)160
Figure 8-10. 16bpp Pattern Data -- Occupies 128 Bytes (16 quadwords)161
Figure 8-11. 32bpp Pattern Data -- Occupies 256 Bytes (32 quadwords)161
Figure 8-12. On-Screen Destination for Example Pattern Fill BLT163
Figure 8-13. Pattern Data for Example Pattern Fill BLT..164
Figure 8-14. Results of Example Pattern Fill BLT ..165
Figure 8-15. On-Screen Destination for Example Character Drawing BLT166
Figure 8-16. Source Data in System Memory for Example Character Drawing BLT...166
Figure 8-17. Results of Example Character Drawing BLT168

 G45: Volume 1b: Graphics Core

 9

Tables

Table 4-1. Graphics Memory Clients...75
Table 4-2. Graphics Memory Address Types ..78
Table 4-3. X-Major Tile Layout ...82
Table 4-4. Physical Memory Address Types ...93
Table 5-1. Ring Buffer Characteristics .. 100
Table 5-2. Graphics Memory Coherency ... 107
Table 5-3. Page Table Error Types .. 115
Table 8-1. Bit-Wise Operations and 8-Bit Codes (00-3F) 148
Table 8-2. Bit-Wise Operations and 8-bit Codes (40 - 7F) 149
Table 8-3. Bit-Wise Operations and 8-bit Codes (80 - BF) 150
Table 8-4. Bit-Wise Operations and 8-bit Codes (C0 - FF) 151

Revision History

Documen
t

Number

Revision
Number

Description Revision Date

24513 1.0a Initial release. January 2008

321392-
001

2.0a Cantiga Release January 2009

§§

1 Memory Interface Commands for
Rendering Engine
1.1 Introduction

This chapter describes the formats of the “Memory Interface” commands, including brief descriptions of
their use. The functions performed by these commands are discussed fully in the Memory Interface
Functions Device Programming Environment chapter.

This chapter describes MI Commands for the original graphics processing engine. The term “for Rendering
Engine” in the title has been added to differentiate this chapter from a similar one describing the MI
commands for the Media Decode Engine.

The commands detailed in this chapter are used across products within the GenX family. However, slight
changes may be present in some commands (i.e., for features added or removed), or some commands
may be removed entirely. Refer to the Preface chapter for product specific summary.
1.2 MI_ARB_CHECK

MI_ARB_CHECK
Project: All Length Bias: 1

The MI_ARB_CHECK instruction is used to check the ring buffer double buffered head
pointer (register UHPTR). This instruction can be used to pre-empt the current execution of
the ring buffer. Note that the valid bit in the updated head pointer register needs to be set for
the command streamer to be pre-empted.
Programming Note:

• The current head pointer is loaded with the updated head pointer register independent of
the location of the updated head

• If the current head pointer and the updated head pointer register are equal, hardware will
automatically reset the valid bit corresponding to the UHPTR

• This instruction can be placed only in a ring buffer, never in a batch buffer.
• For pre-emption, the wrap count in the ring buffer head register is no longer maintained

by hardware. The hardware updates the wrap count to the value in the UHPTR register.
DWord Bit Description

0 31:2
9

Command Type
Default
Value:

0
h

MI_COMMAND Form
at:

OpCod
e

28:2
3

MI Command Opcode
Default
Value:

0
5
h

MI_ARB_CHECK Form
at:

OpCod
e

22:0 Reserv

ed
Proj
ect:

A
ll

Format: MBZ

 G45: Volume 1b: Graphics Core

 11

1.3 MI_ARB_ON_OFF ([DevCTG] Only)

MI_ARB_ON_OFF
Project: CTG+ Length Bias: 1

The MI_ARB_ON_OFF instruction is used to disable/enable context switching. This instruction
can be used to prevent submission of a new run list from interrupting a command sequence.
Note that context switching will remain disabled until re-enabled through use of this
command. This command will also prevent a switch in the case of waiting on events, running
out of commands or a surface probe fault. These will effectively hang the device if allowed to
occur while arbitration is off (context switching is disabled.)

This command should always be used as an off-on pair with the sequence of instructions to
be protected from context switch between MI_ARB_OFF and MI_ARB_ON. Software must
use this arbitration control with caution since it has the potential to increase the response
time of the Render Engine to pre-emption requests.

This is a privileged command; it will not be effective (will be converted to a no-op) if
executed from within a non-secure batch buffer. This command can only be issued when
Per-Process Virtual Address Space and context queuing is set; if the bit is set it will be
converted to NOOP.

DWord Bit Description

0 31:2
9

Command Type
Default
Value:

0h MI_COMMAND Form
at:

OpCode

28:2
3

MI Command Opcode
Default
Value:

08h MI_ARB_ON_OFF Form
at:

OpCode

22:1 Reserve

d
Project
:

All Forma
t:

MBZ

0 Arbitration Enable
Format: Enable
This field enables or disables context switches due to pre-emption (a
new context
 queuing).

Value Name
0h Disabled

1h Enabled

 G45: Volume 1b: Graphics Core

12

1.4 MI_BATCH_BUFFER_END

MI_BATCH_BUFFER_END
Project: All Length Bias: 1

The MI_BATCH_BUFFER_END command is used to terminate the execution of commands
stored in a batch buffer initiated using a MI_BATCH_BUFFER_START command.

DWord Bit Description

0 31:2
9

Command Type
Default
Value:

0h MI_COMMAN
D

Forma
t:

OpCode

28:2
3

MI Command Opcode
Defa
ult
Value
:

0A
h

MI_
BATCH_BUFFER_E
ND

Form
at:

OpCode

22:0 Reser

ved
Pro
ject
:

Al
l

Forma
t:

MBZ

1.5 MI_BATCH_BUFFER_START

MI_BATCH_BUFFER_START
Project: All Length Bias: 2

The MI_BATCH_BUFFER_START command is used to initiate the execution of commands
stored in a batch buffer. For restrictions on the location of batch buffers, see Batch Buffers in
the Device Programming Interface chapter of MI Functions.
The batch buffer can be specified as secure or non-secure, determining the operations
considered valid when initiated from within the buffer and any attached (chained) batch
buffers. See Batch Buffer Protection in the Device Programming Interface chapter of MI
Functions.
Programming Notes:

• Batch buffers referenced with physical addresses must not extend beyond the end of the
starting physical page (can’t span physical pages). However, a batch buffer initiated using
a physical address can chain to another buffer in another physical page.

• A batch buffer initiated with this command must end either with a
MI_BATCH_BUFFER_END command or by chaining to another batch buffer with an
MI_BATCH_BUFFER_START command.

• For virtual batch buffers, it is essential that the address location beyond the current page
be populated inside the GTT. HW performs over-fetch of the command addresses and any
over-fetch requires a valid TLB entry. A single extra page beyond the batch buffer is
sufficient.

DWord Bit Description

0 31:29 Command Type
Default
Value:

0h MI_COMMA
ND

Format: OpCode

 G45: Volume 1b: Graphics Core

 13

MI_BATCH_BUFFER_START
28:23 MI Command Opcode

Default
Value:

3
1
h

MI_BATCH
BUFFER
START

Fo
rm
at:

OpCode

22:12 Reser

ved
Proj
ect:

All For
mat:

MBZ

11 Reser
ved

Proj
ect:

All Format: M
BZ

10:9 Command Arbitration Control
This field controls where command arbitration can occur during
the batch buffer.

Val
ue

Name Description Project

0h Arbitrate
only at
chain
points

Legacy Mode.
Overridden by
MI_ARB_ON_OFF = Off

All

1h Arbitrate
between
comman
ds

Arbitration can occur
between any pair of
commands, or during
execution of a primitive
command. Overridden by
MI_ARB_ON_OFF = Off

All

2h Reserved All
3h No

Arbitratio
n

The Batch Buffer
execution cannot be pre-
empted until control
returns to the initiating
ring. I.e., command
arbitration does not occur
during or between batch
buffer chains. This
avoids software from
having to place
MI_ARB_ON_OFF
packets around batch
buffers to prevent
interruption.

All

8 Reser

ved
Proj
ect:

All For
mat:

MBZ

Although Buffer Security Indicator is implemented, there
is no usage model for it and it need not be validated.

 G45: Volume 1b: Graphics Core

14

MI_BATCH_BUFFER_START
7 Memory Space Select

Project: All
Specifies memory space associated with the Buffer Start
Address.

Va
lu
e

Name Description Project

0h Physic
al
Memor
y

Physical Main (unsnooped)
Memory. The 4 bits of the Batch
Buffer Start Address
Extension are prefixed to bits
31:6 of Buffer Start Address to
specify an address within
physical main memory. In this
mode the hardware must not
fetch data beyond a 4KB
boundary.

All

1h Graphi
cs
Memor
y

(GTT-mapped) Bits 31:2 of a
graphics memory address. The
GGTT is used to translate this
address.

All

Programming Notes Project
Batch buffers referenced with physical addresses
must not extend beyond the end of the starting
physical page (can’t span physical pages).
However, a batch buffer initiated using a physical
address can chain to another buffer in another
physical page.

All

Batch buffers can chain between (but cannot
span) memory spaces.

All

6 Reser
ved

Proj
ect:

All For
mat:

MBZ

5:0 DWord Length
Default Value: 0h Excludes DWord (0,1)
Format: =n Total - Bias

1 31:6 Batch Buffer Start Address
Project: All
Address: SelectableAddress(Memory Space

Select)[31:6]
Surface
Type:

BatchBuffer

This field specifies Bits 31:6 of the starting address of the 64B
aligned batch buffer.
The address space used depends on Memory Space Select
(see above).

 G45: Volume 1b: Graphics Core

 15

MI_BATCH_BUFFER_START
5:4 Reser

ved
Proj
ect:

All For
mat:

MBZ

3:0 Batch Buffer Start Address Extension

Project: All
Address: PhysicalAddressExtension[35:32]
This field specifies bits 35:32 of the starting address of the
64B-aligned physical batch buffer. This field must be zero for
non-physical Batch Buffers.

1.5.1 Command Access of Privileged Memory [DevCTG] Only

Memory space mapped through the global GTT is considered “privileged” memory. Commands that have
the capability of accessing both privileged and unprivileged (PPGTT space) memory will contain a bit that,
if set, will attempt a “privileged” access through the GGTT rather than an unprivileged access through the
context-local PPGTT.

“User mode” command buffers should not be able to access privileged memory under any circumstances.
These command buffers will be issued by the kernel mode driver with the batch buffer’s Buffer Security
Indicator set to “non-secure”. Commands in such a batch buffer are not allowed to access privileged
memory. The commands in these buffers are supplied by the user mode driver and will not be validated
by the kernel mode driver. For a batch buffer marked as non-secure if Per-Process Virtual Address
Space and Run List Enable is set, the command buffer fetches are generated using the PPGTT space.

“Kernel mode” command buffers are allowed to access privileged memory. The batch buffers Buffer
Security indicator is set to “secure” in this case. In some of the commands that access memory in a
secure batch buffer, a bit is provided in the command to steer the access to Per process or Global virtual
space. Secure batch buffers are executed from the global GTT.

Commands in ring buffers and commands in batch buffers that are marked as secure (by the kernel mode
driver) are allowed to access both privileged and unprivileged memory and may choose on a command-
by-command basis.

Command Address Allowed Access

MI_BATCH_BUFFER_START* Command Address Selectable
MI_DISPLAY_FLIP Display Buffer Base GGTT Only
MI_STORE_DATA_IMM* Storage Address Selectable
MI_STORE_DATA_INDEX** Storage Offset Selectable**
MI_STORE_REGISTER_MEM Storage Address Selectable
MI_SEMAPHORE_MBOX Semaphore Address Selectable

*Command has a GGTT/PPGTT selector added to it vs. previous GenX family products.

**Added bit allows offset to apply to global HW Status Page or PP HW Status Page found in context image.

 G45: Volume 1b: Graphics Core

16

1.5.2 Privileged Commands [DevCTG] Only

A subset of the commands are privileged. These commands may be issued only from a secure batch
buffer or directly from a ring. If one of these commands is parsed in a non-secure batch buffer, an error
is flagged and the command is dropped. For commands that generates a write, the hardware will complete
the transaction but the byte enables are turned off. Batch buffers from the User mode driver are passed
directly to the kernel mode driver which does not validate them but issues them with the Security
Indicator set to ‘non-secure’ to protect the system from an attack using these privileged commands.

Privileged Command Function in non-privileged batch
buffers

MI_ARB_ON_OFF Command is ignored by the
hardware

MI_LOAD_REGISTER_IMM Byte enables are turned off

MI_UPDATE_GTT Byte enabled are turned off

MI_STORE_DATA_IMM Command is translated using the
Per process GTT if Per-Process
Virtual Address Space and Run List
Enable is set

MI_STORE_DATA_INDEX Command is translated using the
Per process hardware status
page if Per-Process Virtual Address
Space and Run List Enable is set

MI_STORE_REGISTER_MEM Command is translated and
completed with byte enables
turned off

MI_DISPLAY_FLIP Command is ignored by the
hardware

Command privilege applies the same way in single-context scheduler mode. Parsing one of the
commands in the table above from a non-secure batch buffer will flag an error and convert the command
to a NOOP.

 G45: Volume 1b: Graphics Core

 17

1.6 MI_DISPLAY_FLIP

MI_DISPLAY_FLIP
Project: All Length Bias:

The MI_DISPLAY_FLIP command is used to request a specific display plane to switch (flip)
to display a new buffer. The buffer is specified with a starting address and pitch. The tiled
attribute of the buffer start address is programmed as part of the packet.
The operation this command performs is also known as a “display flip request” operation –
in that the flip operation itself will occur at some point in the future. This command
specifies when the flip operation is to occur: either synchronously with vertical retrace to
avoid tearing artifacts (possibly on a future frame), or asynchronously (as soon as possible)
to minimize rendering stalls at the cost of tearing artifacts.
Programming Notes:

1. Prior to a display flip operation being requested, software must ensure that the
new display buffer is coherent in memory. This will typically require
MI_DISPLAY_FLIP to be included in a PIPE_CONTROL command to flush pending
rendering operations and any pending write buffers/caches, although the use of
an MI_FLUSH command will also suffice albeit with greater performance penalty.
(Note that completion of the MI_FLUSH command does not guarantee that
previous outstanding flip operations have completed).

2. This command simply requests a display flip operation -- command execution
then continues normally. There is no guarantee that the flip (even if
asynchronous) will occur prior to subsequent commands being executed. (Note
that completion of the MI_FLUSH command does not guarantee that outstanding
flip operations have completed). The MI_WAIT_FOR_EVENT command can be
used to provide this synchronization – by pausing command execution until a
pending flip has actually completed. This synchronization can also be performed
by use of the Display Flip Pending hardware status. See Display Flip
Synchronization in the Device Programming Interface chapter of MI Functions.

3. After a display flip operation is requested, software is responsible for initiating any
required synchronization with subsequent buffer clear or rendering operations.
For multi-buffering (e.g., double buffering) operations, this will typically require
updating SURFACE_STATE or the binding table to change the rendering (back)
buffer. In addition, prior to any subsequent clear or rendering operations,
software must typically ensure that the new rendering buffer is not actively being
displayed. Again, the MI_WAIT_FOR_EVENT command or Display Flip Pending
hardware status can be used to provide this synchronization. See Display Flip
Synchronization in the Device Programming Interface chapter of MI Functions.

4. The display buffer command uses the X and Y offset for the tiled buffers from the
Display Interface registers. Software is allowed to change the offset via the MMIO
interface irrespective of the flip commands enqueued in the command stream. For
tiled buffers, the display subsystem uses the X and Y offset in generation of the
final request to memory. The offset is always updated on the next vblank for both
Synchronous and Asynch Flips. It is not necessary to have a flip enqueued to
update the X and Y offset

5. The display buffer command uses the linear dword offset for the linear buffers
from the Display Interface registers. Software is allowed to change the offset via
the MMIO interface irrespective of the flip commands enqueued in the command
stream. For linear buffers, the display subsystem uses the dword offset in

 G45: Volume 1b: Graphics Core

18

MI_DISPLAY_FLIP
generation of the final request to memory.

• For synchronous flips the offset is updated on the next vblank. It is not
necessary to have a sync flip enqueued to update the dword offset.

• Linear memory does not support asynchronous flips

6. DWord 3 (panel fitter flip) must not be sent with asynchronous flips. It is only
allowed to be sent with synchronous flips.

DWord Bit Description

0 31:29 Command Type
Default
Value:

0
h

MI_COMMAND For
mat
:

OpCod
e

28:23 MI Command Opcode

Default
Value:

1
4
h

MI_DISPLAY_FLIP For
mat
:

OpCod
e

 G45: Volume 1b: Graphics Core

 19

MI_DISPLAY_FLIP
22 Asynchronous Flip

Project: All
Format: Boolean
This field specifies whether the flip operation should be
performed asynchronously to vertical retrace.
If FALSE, the flip will occur during the vertical blanking
interval – thus avoiding any tearing artifacts.
If TRUE, the flip will occur “as soon as possible” – and
may exhibit tearing artifacts

Val
ue

Name Description Proje
ct

0h Asynchrono
us Flip

 All

1h Synchronou
s Flip

 All

Programming Notes Proje

ct
• This command must not be used to perform

an Asynchronous Flip to the same address
as specified in the previously executed
Asynchronous Flip, or the device operation is
UNDEFINED.

• The Display Buffer Pitch and Tile
parameter fields are ignored for
asynchronous flips (i.e., the new buffer must
have the same pitch/tile format as the
previous buffer).

• Supported on X-Tiled Frame buffers only.
• For Asynch Flips the Buffers used must be

32KB aligned.
• The display stride must be >=8KB when

doing Asynch Flips together with 180 display
rotation.

• The display stride must be power of 2 when
doing Asynch Flips.

• Supported on Display Planes A and B only
• Not supported via the flip queue (if this bit is

set, Flip Queue Select must be 0)

All

 G45: Volume 1b: Graphics Core

20

MI_DISPLAY_FLIP
21:20 Display (Plane) Select

Project: All
Format: U2
This field selects which display plane is to perform the flip operation.

Val
ue

Name Description Proje
ct

0h Display
Plane A

 All

1h Display
Plane A

 All

2h Display
Plane C

 All

3h Display
Sprite A

 Reser
ved

3h Reserve
d

 All

3h Display
Sprite B

 Reser
ved

19:6 Reser
ved

Proj
ect:

All For
mat
:

MBZ

5:0 DWord Length

Default
Value:

0h Excludes DWord (0,1)

Format: =n Total Length -
2

1 31:3
0

Rese
rved

Proj
ect:

All For
mat
:

MBZ

 G45: Volume 1b: Graphics Core

 21

MI_DISPLAY_FLIP
29 Flip Queue Select

Project: All
This field selects whether this flip is placed in the flip
queue or is a standard (legacy) flip request.

Val
ue

Name Description Proj
ect

0h Standar
d Flip

Use standard (legacy)
synchronous or
asynchronous flipping

All

1h Enqueu
e Flip

Enqueue Flip (see Display
Functions for a description of
the Flip Queue)

All

Programming Notes Proj

ect
Performing a legacy synchronous or
asynchronous flip will drop any outstanding flips
in the flip queue as well as any previous
synchronous flip that has not yet completed.

All

28:1

5
Rese
rved

Proj
ect:

All For
mat
:

MBZ

14:3 Display Buffer Pitch

Project: All
Default
Value:

0h DefaultVaueDesc

Format: U12 Quad Words
For Synchronous or Queued Flips only, this field
specifies the QWord pitch of the new display buffer.
For Asynchronous Flips, this parameter is ignored. All
the flips in a flip chain should maintain the same pitch
as programmed with the last synchronous flip or direct
thru mmio.

2:0 Rese
rved

Pro
ject
:

All For
mat
:

MBZ

 G45: Volume 1b: Graphics Core

22

MI_DISPLAY_FLIP
2 31:1

2
Display Buffer Base Address
Project: All
Address: GraphicsAddress[31:12]
This field specifies Bits 31:12 of the Graphics Address of
the new display buffer. The display buffer must be pixel
aligned within the Graphics Address space. (Refer to the
Display Address Start Address Register description in the
Display Registers chapter).

Programming Notes

• The Display buffer must reside completely in Main
Memory

• This address is always translated via the global
(rather than per-process) GTT

11:1 Reser
ved

Proj
ect:

All For
mat:

MBZ

0 Tile Parameter

Project: All
Default
Value:

0h DefaultVaueDesc

Address: GraphicsAddress[31:0]
For Asynchronous Flips, this parameter is ignored. All the
flips in a flip chain should maintain the same tile
parameter as programmed with the last synchronous flip
or direct thru mmio.
For Synchronous Flips, tile parameter can change for
different flips in the flip chain

Val
ue

Name Description Projec
t

0h Linear For Syncronous Flips Only All
1h Tiled X All

3 31 Enable
Panel
Fitter

Proj
ect:

All For
mat
:

Enable

Enables the panel fitter on the pipe attached to the plane
selected for this flip.

30 Panel Fitter Select
Project: All

Val
ue

Name Description Proje
ct

0h 7x5 Select 7x5 capable panel
fitter

All

1h 3x3 Select 3x3 capable panel
fitter

All

 G45: Volume 1b: Graphics Core

 23

MI_DISPLAY_FLIP
29:2

8
Reser
ved

Proj
ect:

All For
mat:

MBZ

27:1

6
Pipe Horizontal Source
Image Size

Pro
ject
:

All Form
at:

U32

This 12-bit field specifies Horizontal source image size up
to 4096. This determines the size of the image created
by the display planes sent to the blender. The value
programmed should be the source image size minus one.
This field obeys all the rules of the Horizontal Source
Image Size registers.
The pipe affected will be the pipe attached to the plane
selected for this flip.

15:1
2

Reserv
ed

Proje
ct:

All Form
at:

MBZ

11:0 Pipe Vertical Source
Image ReSize

Pro
ject
:

All Form
at:

U32

This 12-bit field specifies the new vertical source image
size up to 4096 lines. This determines the size of the
image created by the display planes sent to the blender.
The value programmed should be the source image size
minus one.
 This field obeys all the rules of the Vertical Source Image
Size registers.
The pipe affected will be the pipe attached to the plane
selected for this flip.

 G45: Volume 1b: Graphics Core

24

1.7 MI_FLUSH

MI_FLUSH
Project: All Length Bias: 1

The MI_FLUSH command is used to perform an internal “flush” operation. The parser pauses on
an internal flush until all drawing engines have completed any pending operations and the read
caches are invalidated including the texture cache accessed via the Sampler or the data port. In
addition, this command can also be used to:

1. Flush any dirty data in the Render Cache to memory. This is done by default, however this
can be inhibited.

2. Invalidate the state and command cache.
Usage note: After this command is completed and followed by a Store DWord-type command, CPU
access to graphics memory will be coherent (assuming the Render Cache flush is not inhibited).

DWord Bit Description

0 31:29 Command Type
Default
Value:

0
h

MI_COMMAND Form
at:

OpCode

28:23 MI Command Opcode

Default
Value:

04
h

MI_FLUSH Form
at:

OpCode

22:6 Reserve
d

Proje
ct:

All Form
at:

MBZ

5:4 Reserve
d

Proje
ct:

All Form
at:

MBZ

3 Global Snapshot Count Reset Proje
ct:

All Form
at:

Boo
lean

If set, the snapshot registers defined for the GenX debug
capability are reset after the flush completes. The Statistics
Counters are also reset; SW should never set this bit during
normal operation since the Statistics Counters are intended
to be free running.

Programming Notes Projec

t
PS_DEPTH_COUNT and TIMESTAMP are not reset by
MI_FLUSH with this bit set. TIMESTAMP and
PS_DEPTH_COUNT can be reset by writing 0 to them

All

Valu
e

Name Description Projec
t

0h Don’t
Reset

Do not reset the snapshot counts or
Statistics Counters.

All

1h Reset Reset the snapshot count in GenX
for all the units and reset the
Statistics Counters except as noted
above.

All

 G45: Volume 1b: Graphics Core

 25

MI_FLUSH
2 Render Cache Flush Inhibit Proje

ct:
All Form

at:
Boolea
n

If set, the Render Cache is not flushed as part of the processing of this
command.

Valu
e

Name Description Project

0h Flush Flush the Render Cache All
1h Don’t Flush Do not flush the Render Cache All

1 State/Instruction Cache
Invalidate

Proje
ct:

All Form
at:

Boolean

If set, Invalidates the State and Instruction Cache

Valu
e

Name Description Project

0h Don’t
Invalidate

Leave State/Instruction Cache
unaffected

All

1h Invalidate Invalidate State/Instruction Cache All
0 Reserv

ed
Proje
ct:

All Form
at:

MBZ

 G45: Volume 1b: Graphics Core

26

1.8 MI_LOAD_REGISTER_IMM

MI_LOAD_REGISTER_IMM
Project: All Length Bias: 2

The MI_LOAD_REGISTER_IMM command requests a write of up to a DWord constant supplied in
the command to the specified Register Offset (i.e., offset into Memory-Mapped Register Range).
The register is loaded before the next command is executed.
Programming Notes:
The behavior of this command is controlled by Dword 3, Bit 8 (Disable Register Access) of the
RINGBUF register. If this command is disallowed then the command stream converts it to a NOOP.
If this command is executed from a BB then the behavior of this command is controlled by Dword 0,
Bit 8 (Security Indicator) of the BATCH_BUFFER_START Command. If the batch buffer is insecure
then the command stream converts this command to a NOOP. Note that the corresponding ring
buffer must allow a register update for this command to execute.

DWord Bit Description

0 31:29 Command Type
Default
Value:

0h MI_COMMAND Format
:

OpCode

28:23 MI Command Opcode
Default
Value:

22
h

MI_ Format: OpCode

22:12 Reserv
ed

Proje
ct:

All Form
at:

MBZ

11:8 Byte Write Disables
Format: Enable[4] Bit 8 corresponds to Data

DWord [7:0]

Range Must specify a valid register write operation

This field specifies which bytes of the Data DWord are not to be
written to the DWord offset specified in Register Offset.

7:6 Reserv
ed

Proje
ct:

All Form
at:

MBZ

5:0 DWord Length

Default Value: 1h Excludes DWord (0,1)

Format: =n Total Length - 2
1 31:2 Register Offset

Format: U30
Address: MmioAddress[31:2]
This field specifies bits [31:2] of the offset into the Memory
Mapped Register Range (i.e., this field specifies a DWord offset).

1:0 Reserv
ed

Proje
ct:

All Form
at:

MBZ

 G45: Volume 1b: Graphics Core

 27

MI_LOAD_REGISTER_IMM
2 31:0 Data DWord

Mask: Bytes Write Disables
Format: U32
This field specifies the DWord value to be written to the
targeted location.

1.9 MI_LOAD_SCAN_LINES_EXCL

MI_LOAD_SCAN_LINES_EXCL
Project: All Length Bias: 2

The MI_LOAD_SCAN_LINES_EXCL command is used to initialize the Scan Line Window
registers for a specific Display Pipe. If the display refresh is outside this window the Display
Engine asserts a signal that is used by the command parser to process the
WAIT_FOR_EVENT command (i.e., the parser will wait while outside). This command
overrides the Scan Line Window defined by any previous MI_LOAD_SCAN_LINES_INCL or
MI_LOAD_SCAN_LINES_EXCL commands targeting the specific display pipe.
Note: The two scan-line numbers are inclusive. If programmed to the same values, that
single line defines the region in question.
Always place an even number of MI_LOAD_SCAN_LINES_EXCL/INCL at a time into the
ring buffer. If only a single MI_LOAD_SCAN_LINES_EXCL/INCL is desired, just add a
second identical MI_LOAD_SCAN_LINES_EXCL/INCL command.

DWor
d

Bit Description

0 31:29 Command Type
Default
Value:

0
h

MI_COMMAND For
mat:

OpCode

28:23 MI Command Opcode

Default
Value:

1
3
h

MI_LOAD_SCAN_LINES_
EXCL

For
mat:

OpCode

22 Reser

ved
Proj
ect:

All For
mat:

MBZ

21:20 Display Pipe Select
Project: All
Format: U2
This field selects which Display Engine (pipe) this command is
targeting.

Val
ue

Name Description Proje
ct

0h Display
Pipe A

 All

1h Display
Pipe B

 All

 G45: Volume 1b: Graphics Core

28

MI_LOAD_SCAN_LINES_EXCL
19:6 Reserv

ed
Proje
ct:

All Form
at:

MBZ

5:0 DWord Length
Default Value: 0h Excludes DWord (0,1)
Format: =n Total Length - 2

1 31:1
6

Start Scan Line Number
Project: All
Format: U1

6
In scan lines, where scan line 0 is the
first line of the display frame.

Range [0,Display Buffer height in lines-1]
This field specifies the starting scan line number of the Scan
Line Window.

31:1
6

End Scan Line Number
Project: All
Format: U1

6
In scan lines, where scan line 0 is the
first line of the display frame.

Range [0,Display Buffer height in lines-1]
This field specifies the ending scan line number of the Scan Line
Window.

1.10 MI_LOAD_SCAN_LINES_INCL

MI_LOAD_SCAN_LINES_INCL
Project: All Length Bias: 2

The MI_LOAD_SCAN_LINES_INCL command is used to initialize the Scan Line Window
registers for a specific Display Engine. If the display refresh is within this window the
Display Engine asserts a signal that is used by the command parser to process the
WAIT_FOR_EVENT command (i.e., the parser will wait while inside of the window). This
command overrides the Scan Line Window defined by any previous
MI_LOAD_SCAN_LINES_INCL or MI_LOAD_SCAN_LINES_EXCL commands targeting the
specific display.
Always place an even number of MI_LOAD_SCAN_LINES_EXCL/INCL at a time into the ring
buffer. If only a single MI_LOAD_SCAN_LINES_EXCL/INCL is desired, just add a second
identical

DWord Bit Description

0 31:2
9

Command Type
Default
Value:

0
h

MI_COMMAND Form
at:

OpCode

28:2
3

MI Command Opcode
Default
Value:

12
h

MI_LOAD_SCAN_LINES
_INCL

Form
at:

OpCode

22 Reserv
ed

Proje
ct:

All Form
at:

MBZ

 G45: Volume 1b: Graphics Core

 29

MI_LOAD_SCAN_LINES_INCL
21:2

0
Display Pipe Select
Project: All

Format: U2
This field selects which Display Engine (pipe) this command is
targeting.

Valu
e

Name Description Project

0h Display
Pipe A

 All

1h Display
Pipe B

 All

19:6 Reserv
ed

Proje
ct:

All Form
at:

MBZ

5:0 DWord Length

Default Value: 0h Excludes DWord (0,1)
Format: =n Total Length -

2
1 31:1

6
Start Scan Line Number
Project: All
Format: U1

6
In scan lines, where scan line 0 is the first
line of the display frame.

Range [0,Display Buffer height in lines-1]
This field specifies the starting scan line number of the Scan Line
Window.

31:1
6

End Scan Line Number
Project: All
Format: U1

6
In scan lines, where scan line 0 is the first
line of the display frame.

Range [0,Display Buffer height in lines-1]
This field specifies the ending scan line number of the Scan Line
Window.

 G45: Volume 1b: Graphics Core

30

1.11 MI_NOOP

MI_NOOP
Project: All Length Bias: 1

The MI_NOOP command basically performs a “no operation” in the command stream and is typically
used to pad the command stream (e.g., in order to pad out a batch buffer to a QWord boundary).
However, there is one minor (optional) function this command can perform – a 22-bit value can be
loaded into the MI NOPID register. This provides a general-purpose command stream tagging
("breadcrumb") mechanism (e.g., to provide sequencing information for a subsequent breakpoint
interrupt).
Performance Note: The process time to execute a NOP command is min of 6 clock cycles. One
example usage of the improved NOP throughput is for some multi-pass media application whereas
some unwanted media object commands are replaced by MI_NOOP without repacking the commands
in a batch buffer.

DWord Bit Description

0 31:29 Command Type
Default
Value:

0h MI_COMMAND Form
at:

OpCode

28:23 MI Command Opcode

Default
Value:

0h MI_NOOP Form
at:

OpCode

22 Identification Number Register Write Enable

Project: All
Format: Enable
This field enables the value in the Identification Number field to be written
into the MI NOPID register. If disabled, that register is unmodified –
making this command an effective “no operation” function.

Valu
e

Name Description Project

0h Disable Do not write the NOP_ID register. All

1h Enable Write the NOP_ID register. All

31:0 Identification Number Proje
ct:

All Form
at:

U22

This field contains a 22-bit number which can be written to the MI
NOPID register.

 G45: Volume 1b: Graphics Core

 31

1.12 MI_OVERLAY_FLIP

MI_OVERLAY_FLIP
Project: All Length Bias: 2

The MI_OVERLAY_FLIP command is used to specify memory buffers that will
(optionally) be used during the next Vertical Blank period to update the specified Overlay
control register set and Overlay filter coefficients (respectively). The update of the
Overlay registers is referred to as an “Overlay Flip”, making this command an “Overlay
Flip Request”.
Programming Notes:

1. Prior to an overlay flip operation being requested, software must ensure that
the memory buffer used to update the overlay registers is coherent (i.e., there
are no outstanding buffered writes to that memory buffer).

2. Prior to an overlay flip operation being requested, software must ensure that
the new overlay buffer is coherent in memory. This will typically require the
use of an MI_FLUSH command to flush pending rendering operations and any
pending write buffers/caches.

3. This command simply requests an overlay flip operation -- command execution
then continues normally. There is no mechanism to prevent a new flip request
from overriding any outstanding flip request. (Note that completion of the
MI_FLUSH command does not guarantee that outstanding flip operations have
completed). The MI_WAIT_FOR_EVENT command can be used to provide this
synchronization – by pausing command execution until a pending overlay flip
has actually completed or that the display refresh has proceeded past a specific
scan line window. This synchronization can also be performed by use of the
Overlay Flip Pending hardware status. See Overlay Flip Synchronization in the
Device Programming Interface chapter of MI Functions.

4. After an overlay flip operation is requested, software is responsible for initiating
any required synchronization with subsequent buffer clear or rendering
operations targeting the previous (“flipped-from”) overlay buffer.

5. Registers and Coefficients are located in Main memory.

 G45: Volume 1b: Graphics Core

32

MI_OVERLAY_FLIP
DWord Bit Description

0 31:2
9

Command Type
Default
Value:

0
h

MI_COMMAND For
mat:

OpCod
e

28:2
3

MI Command Opcode
Default
Value:

1
1
h

MI_OVERLAY_FLIP For
mat:

OpCod
e

22:2

1
Mode Flags
Project: All
Format: U2

Val
ue

Name Description Project

00b Flip
Continue

Do not flush or change the state
of the Render Cache or Overlay.

All

01b Flip On Flush Render Cache, drawing
pipeline and then set render
cache in overlay Mode before
executing the Flip. The Flip
turns on the overlay engine. This
Render Cache flush is not
applicable in a Mobile Gfx
controller which has an
independent overlay data buffer.

All

10b Flip Off Flush Render Cache, drawing
pipeline and then clear Overlay
Mode and turn off the overlay
engine. Do not update registers
and coefficients from memory.
This Render Cache flush is
required because overlay shares
the render cache in desktop
graphics controllers. This bit is
generally not applicable in a
Mobile graphics controller which
has an independent overlay data
buffer.

All

11b Reserved All
20:6 Rese

rved
Pro
ject
:

All For
mat
:

MBZ

5:0 DWord Length

Default
Value:

0h Excludes DWord (0,1)

Format: =n Total
Length - 2

 G45: Volume 1b: Graphics Core

 33

MI_OVERLAY_FLIP
1 31:12 Register and Coefficient Update Address

Project: All
Address: GlobalGraphicsAddress[31:12]
Surface
Type:

U32

This field specifies the memory buffer used to update
the overlay registers and Coefficients. The Overlay
Update Address Register specifies a Global GTT
address used by the Overlay at the next VBLANK
event to start requesting overlay control register and
Coefficient data from memory. Software should
ensure that the Global GTT address is page-
aligned, so that the entire overlay control registers
and coefficients are within one 4K page.

11:1 Rese
rved

Pro
ject
:

All For
mat
:

MBZ

0 Overlay Filter Coefficient Register Update Flag

(OFC_UPDATE)
Project: All
This field indicates if hardware should load overlay
filter coefficients from memory.
Turning overlay off without loading the Overlay Filter
Coefficient registers via MI_OVERLAY_FLIP can
lead to a hang.

Val
ue

Name Description Proje
ct

0h Don’t
Update

Do not update overlay filter
coefficients.

All

1h Update Hardware loads the
overlay filter coefficients
from memory to on-chip
registers.

All

1.12.1 Turning the Overlay Off

The Overlay Engine is turned off by issuing an MI_OVERLAY_FLIP with the Mode Flags set to ‘10’b (aka
“Flip Off), thereby flushing and reconfiguring the internal caches and putting the Overlay Engine into a
low-power state. Software must ensure that the subsequent Overlay Flip has occurred at the next
associated VBlank, typically by use of the Overlay Flip Pending Wait Enable bit of the
MI_WAIT_FOR_EVENT command. In addition, the Display Pipe to which the overlay is attached must
continue running until the sequence completes, or device operation is UNDEFINED.

In order to completely shutdown the Overlay Engine, and additional step is required before the use of the
“Flip Off” sequence (as described above). The Overlay Enable (OV_ENBL) bit of the Overlay Command
(OCOMD) Register must be cleared via a normal Overlay Register load accomplished via issuance of an
MI_OVERLAY_FLIP with Mode Flags = ‘00’b (aka Flip Continue). This operation will effectively turn off the
display of the overlay. Note that a wait-for-overlay-VBlank must be used to ensure this Flip Continue has

 G45: Volume 1b: Graphics Core

34

completed. The subsequent Flip-Off sequence (above) will reconfigure the cache for non-overlay
operation and gracefully power down the Overlay Engine.

1.12.2 Valid Overlay Flip Sequences

The only architecturally valid Overlay Flip sequence is shown below:

FlipOn

some number of FlipContinues

FlipOff

For example, multiple FlipOn commands (without intervening FlipOff commands) are invalid; multiple
FlipOff commands (without intervening FlipOn commands) are invalid; FlipContinue without a preceding
FlipOn is invalid.

1.13 Surface Probing [DevCTG]

1.13.1 MI_PROBE [DevCTG]

MI_PROBE
Project: CTG+ Length Bias: 2

The probe command is inserted into a ring or batch buffer in order to validate the
base address(es) of a surface(s) required by subsequent commands. When parsed,
the probe command will do a “test” access of the surface base address to see if it is
valid. The probe will also be written to the specified slot of a memory-based probe
list such that it can be re-validated if the current context is switched out and then
switched back in. If the test access encounters an invalid page table entry, it said
to “fault”. Faulting probes will trigger the current context to be switched.

A probe command containing multiple probes will process all of them regardless of which
ones fault. If any probe faulted and the pipeline is busy, the next command (unless it is a
probe or unprobe command) will stall until the pipeline drains. Once the pipeline is empty,
the pending probes will be written to the probe list with the faulted probes ndicated and a
context switch will occur.

Note that surfaces accessed through the global GTT need not be validated. It is assumed
that Global GTT pages will not be invalidated while a context is switched out. Probe and
unprobe are not privileged commands. The probe command can be used to insert only 512
probes in one command. Note that the total number of probes allowed in the system is
1024.

DWord Bit Description

0 31:2
9

Command Type
Default
Value:

0h MI_COMMAND Form
at:

OpCode

 G45: Volume 1b: Graphics Core

 35

MI_PROBE
28:2

3
MI Command Opcode
Default
Value:

25h MI_PROBE Form
at:

OpCode

22:1
0

Reserv
ed

Projec
t:

All Forma
t:

MBZ

9:0 DWord Length
Default Value: 0h Excludes DWord (0,1)
Format: =n Total Length - 2

1..n 31:1
2

Surface Page Base Address
Project: All
Address: PerProcessGraphicsVirtualAddress[31:12]
Surface Type: U32

Range 0..2^32-1
The Per Process Address to validate.

11:1
0

Reserv
ed

Proje
ct:

All Form
at:

MBZ

9:0 Slot Number
Project: All

Format: ProbeSlotIndex
Range [0,1023]
The index into the probe list where this probe will be stored.

1.13.2 MI_UNPROBE [DevCGT]

MI_UNPROBE
Project: CTG+ Length Bias: 1

There are 2 ways to remove probes. SW may issue a new probe to the same slot as an existing
probe (presumably with a new surface base address), and the old probe will be replaced with the
new, effectively deleting the old probe. If it has no new probe to place in the slot, SW may issue
the unprobe command to remove probes by invaliding probe slots.

The unprobe command is used to remove probes from the probe list. No Surface Address is
provided; the specified slot is simply marked invalid. The Unprobe command does not affect the
probe list in memory; it only clears probe Slot Valid bits in the Probe List Slot Valid Registers
(see Memory Interface Registers).

 G45: Volume 1b: Graphics Core

36

MI_UNPROBE
DWord Bit Description

 31: 029 Command Type
Default
Value:

0h MI_COMMAND Form
at:

OpCode

28:23 MI Command Opcode

Default
Value:

06h MI_UNPROBE Forma
t:

OpCode

22:10 Reserv

ed
Projec
t:

All Form
at:

MBZ

9:0 Slot Number
Project: All
Format: ProbeSlotIndex
Range [0,1023]
The probe list index of the probe to be removed.

1.14 MI_REPORT_HEAD

MI_REPORT_HEAD
Project: All Length Bias: 1

The MI_REPORT_HEAD command causes the Head Pointer value of the active ring buffer to be
written to a cacheable (snooped) system memory location.
The location written is relative to the address programmed in the Hardware Status Page Address
Register.
Programming Notes:
This command must not be executed from a Batch Buffer (Refer to the description of the HSW_PGA
register).

DWord Bit Description

0 31:29 Command Type
Default
Value:

0h MI_COMMAND Format
:

OpCode

28:23 MI Command Opcode

Default
Value:

07h MI_REPORT_HEAD Format
:

OpCode

22:0 Reserved Project

:
All Format

:
MBZ

 G45: Volume 1b: Graphics Core

 37

1.15 MI_SET_CONTEXT

MI_SET_CONTEXT
Project: All Length Bias: 2

The MI_SET_CONTEXT command is used to specify the logical context associated with the
hardware context. A logical context is an area in memory used to store hardware context
information, and the context is referenced via a 2KB-aligned pointer. If the (new) logical context is
different (i.e., at a different memory address), the device will proceed to save the current HW
context values to the current logical context address, and then restore (load) the new logical
context by reading the context from the new address and loading it into the hardware context
state. If the logical context address specified in this command matches the current logical context
address, this command is effectively treated as a NOP.
This command also includes some controls over the context save/restore process.

• The Force Restore bit can be used to refresh the on-chip device state from the same memory
address if the indirect state buffers have been modified.

• The Restore Inhibit bit can be used to prevent the new context from being loaded at all. This
must be used to prevent an uninitialized context from being loaded. Once software has
initialized a context (by setting all state variables to initial values via commands), the context
can then be stored and restored normally.

• This command needs to be always followed by a single MI_NOOP instruction to workaround a
GenX silicon issue.

DWord Bit Description

0 31:29 Command Type
Default
Value:

0h MI_COMMAND Form
at:

OpCode

28:23 MI Command Opcode
Default
Value:

18h MI_SET_CONTEXT Form
at:

OpCode

22:6 Reserve

d
Project
:

All Forma
t:

MBZ

5:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

1 31:1
1

Logical Context Address
Project: All
Address: PhysicalAddress[31:11]
Surface Type: Logical Context
This field contains the 2KB-aligned physical address of the
Logical Context that is to be loaded into the hardware context.
If this address is equal to the CCID register associated with the
current ring, no load will occur. Prior to loading this new
context, the device will save the existing context as required.
After the context switch operation completes, this address will
be loaded into the associated CCID register.

 G45: Volume 1b: Graphics Core

38

MI_SET_CONTEXT
10 Reser

ved
Proj
ect:

All For
mat:

MBZ

9 Reserved: MBZ
8 Memory Space Select

Project: All
BitFieldDesc

Val
ue

Nam
e

Description Project

0h Physi
cal
Mem
ory

Physical Main (unsnooped)
Memory. The 4 bits of
Physical Start Address
Extension are prefixed to bits
31:11 to specify a 2KB
aligned address within
physical main memory. In this
mode the hardware must not
fetch data beyond a 4KB
boundary.

All

1h Globa
l
Grap
hics
Mem
ory

Global Graphics (GTT-
mapped) Memory. Bits 31:11
of a graphics memory
address. The GTT whose
address is contained in the
PGTBL_CTL register is used
to translate this address.

All

7:4 Logical Context Address Extension

Project: All
Address: PhysicalAddressExtension[35:32]
Surface Type: Logical Context
This field specified Bits 35:32 of the starting address of the
2KB-aligned physical logical context address. This field must
be zero for global gtt context address.

3 Extended State Save
Enable

Proj
ect:

All Forma
t:

U32

If set, the extended state identified in the Logical Context Data
section of the Memory Data Formats chapter is saved as part of
switching away from this logical context. This bit will be stored
in the associated CCID register to control the context save
operation when switching away from this context (as part of a
subsequent MI_SET_CONTEXT command).

 G45: Volume 1b: Graphics Core

 39

MI_SET_CONTEXT
2 Extended State

Restore Enable
Proj
ect:

All For
mat
:

U32

If set, the extended state identified in the Logical Context Data
section of the Memory Data Formats chapter is loaded (or
restored) as part of switching to this logical context. This
method can be used to restore things such as filter coefficients
using the indirect state restore followed by a restore of the
extended logical context data. This bit affects the switch (if
required) to the context specified in Logical Context Address.
This bit will also be stored in the associated CCID register to
control a subsequent context save operation when switching to
this context (as part of a subsequent ring buffer switch).

1 Force
Restore

Proj
ect:

All For
mat:

U32

When switching to this logical context a comparison between
Logical Context Address and the contests of the CCID register
is performed. Normally, matching addresses prevent a
context restore from occurring; however, when this bit is set a
context restore is forced to occur. This bit cannot be set with
Restore Inhibit.
Note: This bit is not saved in the associated CCID register.
It only affects the processing of this command.

0 Restore
Inhibit

Proj
ect:

All For
mat:

U32

If set, the restore of the HW context from the logical context
specified by Logical Context Address is inhibited (i.e., the
existing HW context values are maintained). This bit must be
used to prevent the loading of an uninitialized logical context.
If clear, the context switch proceeds normally. This bit cannot
be set with Force Restore.
Note: This bit is not saved in the associated CCID register.
It only affects the processing of this command.

 G45: Volume 1b: Graphics Core

40

1.16 MI_STORE_DATA_IMM

MI_STORE_DATA_IMM
Project: All Length Bias: 2

The MI_STORE_DATA_IMM command requests a write of the QWord constant supplied in the
packet to the specified Memory Address. As the write targets a System Memory Address, the write
operation is coherent with the CPU cache (i.e., the processor cache is snooped).
Programming Notes:

• This command should not be used within a “non-secure” batch buffer to access per-process
virtual space. Doing so will cause the command parser to perform the write with byte enables
turned off. This command can be used within ring buffers and/or “secure” batch buffers.

• This command can be used for general software synchronization through variables in
cacheable memory (i.e., where software does not need to poll un-cached memory or device
registers).

• This command simply initiates the write operation with command execution proceeding
normally. Although the write operation is guaranteed to complete “eventually”, there is no
mechanism to synchronize command execution with the completion (or even initiation) of these
operations.

DWord Bit Description

0 31:29 Command Type
Default
Value:

0
h

MI_COMMAND Form
at:

OpCode

28:23 MI Command Opcode
Default
Value:

20
h

MI_STORE_DATA_IMM Form
at:

OpCode

22 Memory Address Type
Project: All

Valu
e

Name Description Project

0h Physical
Address

 All

1h Graphics
Address

Hardware will translate this
address using the operating
GTT. The GTT (global or per-
process) used for the
translation will be the same
GTT used to access the
buffer executing this
command.

All

 G45: Volume 1b: Graphics Core

 41

MI_STORE_DATA_IMM
21 BitFieldName

Project: All
This bit will be ignored and treated as if clear when executing from a
non-privileged batch buffer. It is allowed for this bit to be clear when
executing this command from a privileged (secure) batch buffer.

Valu
e

Name Description Project

0h Per
Process
Graphics
Address

 All

1h Global
Graphics
Address

This command will use the
global GTT to translate the
Address and this command must
be executing from a privileged
(secure) batch buffer.

All

Programming Notes
Notes

20:6 Reserv

ed
Proje
ct:

All Form
at:

MBZ

5:0 DWord Length
Default Value: 2h Excludes DWord (0,1) =

2 for DWord, 3 for QWord
Format: =n Total Length - 2

1 31:4 Reser
ved

Proj
ect:

All For
mat:

MBZ

3:0 Physical Start Address Extension

Project: All

Address: PhysicalAddressExtension[35:32]
Surface Type: U64
This field specifies bits 35:32 of the physical address where the
data will be stored. This field must be zero for a virtual address.

 G45: Volume 1b: Graphics Core

42

MI_STORE_DATA_IMM
2 31:2 Address

Project: All
Address: SelectableAddress(Memory Address Type) [31:2]
Surface Type: U32(2)
This field specifies Bits 31:2 of the Address where the DWord will
be stored. As the store address must be DWord-aligned, Bits 1:0 of
that address MBZ. This address must be 8B aligned for a store
“QW” command.
Format = U30, Range = valid System Memory Address (not
mapped by GTT) if Physical
Format = Bits[31:2] of a Graphics Memory Address If Virtual

1:0 Reserv
ed

Proje
ct:

All Form
at:

MBZ

3 31:0 Data DWord 0 Proje
ct:

All Form
at:

U32

This field specifies the DWord value to be written to the targeted
location.
For a QWord write this DWord is the lower DWord of the QWord to
be reported (DW 0).

4 31:0 Data DWord 1 Proje
ct:

All Form
at:

U32

This field specifies the upper DWord value to be written to the
targeted QWord location (DW 1).

 G45: Volume 1b: Graphics Core

 43

1.17 MI_STORE_DATA_INDEX

MI_STORE_DATA_INDEX
Project: All Length Bias: 2

• The MI_STORE_DATA_INDEX command requests a write of the data constant supplied in the
packet to the specified offset from the System Address defined by the Hardware Status Page
Address Register. As the write targets a System Address, the write operation is coherent with the
CPU cache (i.e., the processor cache is snooped).

• Programming Notes:
• Use of this command with an invalid or uninitialized value in the Hardware Status Page Address

Register is UNDEFINED.
• This command can be used for general software synchronization through variables in cacheable

memory (i.e., where software does not need to poll uncached memory or device registers).
• This command simply initiates the write operation with command execution proceeding normally.

Although the write operation is guaranteed to complete “eventually”, there is no mechanism to
synchronize command execution with the completion (or even initiation) of these operations.

DWord Bit Description

0 31:29 Command Type
Default
Value:

0h MI_COMMAND Form
at:

OpCode

28:23 MI Command Opcode
Default
Value:

21h MI_STORE_DATA_INDEX Form
at:

OpCode

22:21 Reserv
ed

Proje
ct:

All Form
at:

MBZ

20:6 Reserv

ed
Proje
ct:

All Form
at:

MBZ

5:0 DWord Length
Default Value: 1h Excludes DWord (0,1)

= 1 for DWord, 2 for QWord
Format: =n Total Length - 2

 G45: Volume 1b: Graphics Core

44

MI_STORE_DATA_INDEX
1 31:12 Reserv

ed
Proje
ct:

All Form
at:

MBZ

11:2 Offset

Project: All
Format: U10 zero-based DWord offset into the HW

status page.
Address: HardwareStatusPageOffset[11:2]
Surface Type: U32
Range [16, 1023]
This field specifies the offset (into the hardware status page) to which
the data will be written. Note that the first few DWords of this status
page are reserved for special-purpose data storage – targeting these
reserved locations via this command is UNDEFINED.

1:0 Reserv
ed

Proje
ct:

All Form
at:

MBZ

2 31:0 Data

DWord 0
Proj
ect:

All For
mat:

U32

This field specifies the DWord value to be written to the targeted location.
For a QWord write this DWord is the lower DWord of the QWord to be
reported (DW 0).

3 31:0 Data DWord

1
Proj
ect:

All For
mat:

U32

This field specifies the upper DWord value to be written to the targeted
QWord location (DW 1).

 G45: Volume 1b: Graphics Core

 45

1.18 MI_STORE_REGISTER_MEM

MI_STORE_REGISTER_MEM
Project: All Length Bias: 2

The MI_STORE_REGISTER_MEM command requests a register read from a specified memory
mapped register location in the device and store of that DWord to memory. The register address is
specified along with the command to perform the read.
Programming Notes:

• The command temporarily halts command execution.
• The memory address for the write is snooped on the host bus.
• This command should not be used within a “non-secure” batch buffer to access per-process virtual

space. Doing so will cause the command parser to perform the write with byte enables turned off.
This command can be used within ring buffers and/or “secure” batch buffers.

• This command will cause undefined data to be written to memory if given register addresses for
the PGTBL_CTL_0 or FENCE registers

DWord Bit Description

0 31:29 Command Type
Default
Value:

0h MI_COMMAND Form
at:

OpCode

28:23 MI Command Opcode

Default
Value:

24
h

MI_STORE_REGISTER_MEM Form
at:

OpCode

22 Reserv
ed

Proje
ct:

DevBW-
A,B

Form
at:

MBZ

22 Memory Address Type

Project: All, except DevBW-A,B

Value Name Description Project
0h Physical

Address
 All

1h Graphics
Address

Hardware will translate this address
using the operating GTT. The GTT
(global or per-process) used for the
translation will be the same GTT
used to access the buffer executing
this command.

All

21:6 Reserve

d
Projec
t:

All Forma
t:

MBZ

5:0 DWord Length
Default Value: 1h Excludes DWord (0,1)
Format: =n Total Length - 2

 G45: Volume 1b: Graphics Core

46

MI_STORE_REGISTER_MEM
1 31:28 Physical Start Address Extension

Project: All

Address: PhysicalAddressExtension[35:32]
Surface Type: MMIO Register
This field specifies bits 35:32 of the starting address of the physical
address.

27:19 Reserv
ed

Project: All Format: MBZ

18:1 Register Address

Project: All
Address: MMIO Address[18:2]
Surface Type: MMIO Register
This field specifies Bits 18:2 of the Register offset the DWord will be read
from. As the register address must be DWord-aligned, Bits 1:0 of that
address MBZ.

Programming Notes Project
Storing a VGA register is not permitted and will store an
UNDEFINED value.

All

The values of PGTBL_CTL0 or any of the FENCE
registers cannot be stored to memory; UNDEFINED
values will be written to memory if the addresses of
these registers are specified.

All

1 Reserv

ed
Proje
ct:

All Form
at:

MBZ

0 Reser
ved

Proj
ect:

All For
mat:

MBZ

2 31:2 Memory Address
Project: All
Address: SelectableAddress(Memory Address Type)[31:2]
Surface Type: MMIO Register
This field specifies the address of the memory location where the register
value specified in the DWord above will be written. The address specifies
the DWord location of the data.
If Memory Address Type = 0, Range = Physical_Address [31:2]
If Memory Address Type = 1, Range = GraphicsMemoryAddress[31:2]

1:0 Reserv
ed

Proje
ct:

All Form
at:

MBZ

 G45: Volume 1b: Graphics Core

 47

1.19 MI_UPDATE_GTT ([DevCTG])

MI_UPDATE_GTT
Project: DevCTG+ Length Bias: 2

[DevBW] and [DevCL]: This is not a legal command.

The MI_UPDATE_GTT command is used to update GTT page table entries in a coherent manner and at a
predictable place in the command flow.

On [DevCTG] this command can be used to update PPGTT page table entries, but only for the currently
executing context. It cannot be used when servicing a (PPGTT) page fault since the command parser
cannot be relied upon to parse and complete the command until the fault is cleared.

An MI_FLUSH should be placed before this command, since work associated with preceding commands
that are still in the pipeline may be referencing GTT entries that will be changed by its execution. The
flush will also invalidate TLBs and read caches that may become invalid as a result of the changed GTT
entries. MI_FLUSH is not required if it can be guaranteed that the pipeline is free of any work that relies
on changing GTT entries (such as MI_UPDATE_GTT contained in a paging DMA buffer that is doing only
update/mapping activities and no rendering).

This is a privileged command. This command will be converted to a no-op and an error flagged if it is
executed from within a non-secure batch buffer.

DWord Bit Description

0 31:29 Command Type
Default
Value:

0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode
Default
Value:

23h MI_UPDATE_GTT Format: OpCode

22 Reserved Project: Pre-
DevCT
G

Format: MBZ

22 Entry Type

Project: CTG+
Format: Graphics Space Select
Select whether to update Global GTT or Per-Process GTT

Value Name Description Proje

ct
0h GGTT GGTT Page Table Entry Update All
1h PPGTT PPGTT Page Table Entry Update All

Programming Notes Proje

ct
When the Per-Process Virtual Address Space and Context
queuing Enable bit in GFX_MODE is clear, the only valid value for
this field is 0, indicating a GGTT page table entry update. Setting this
bit results in UNDEFINED behavior.

All

 G45: Volume 1b: Graphics Core

48

MI_UPDATE_GTT
21:6 Reserved Project: All Format: MBZ
5:0 DWord Length

Default Value: 0h Excludes DWord (0,1)
Format: =n Total Length - 2

1 31:12 Entry Address
Project: All
Address: GraphicsAddress[31:12]
For PPGTT updates ([DevCTG] only), bits [31:22] specify the directory entry
pointing to the page table to be modified. Bits [21:12] specify the (first) page table
entry to be updated. A single MI_UPDATE_GTT command may not modify
entries in more than one page table (i.e., the Entry Address and the last address
to be modified as calculated by adding the entry address and the Dword Length
must be on the same 4K page.)
For GGTT updates, this field simply holds the DW offset of the first table entry to
be modified. Note that one or more of the upper bits may need to be 0, i.e., for a
2G aperture, bit 31 MBZ.

11:0 Reserved Project: All Format: MBZ
2..n 31:0 Entry Data

Project: All
Format: PPGTT Table Entry
This Dword becomes the new page table entry. See PPGTT Table Entries
(PTEs) in Memory Interface Registers.

1.20 MI_USER_INTERRUPT

MI_USER_INTERRUPT
Project: All Length Bias: 1

The MI_USER_INTERRUPT command is used to generate a User Interrupt condition. The parser will
continue parsing after processing this command. See User Interrupt.

DWord Bit Description

0 31:29 Command Type
Default
Value:

0h MI_COMMAND Forma
t:

OpCode

28:23 MI Command Opcode
Default
Value:

02
h

MI_USER_INTERRUPT Forma
t:

OpCode

22:0 Reserve
d

Projec
t:

All Forma
t:

MBZ

 G45: Volume 1b: Graphics Core

 49

1.21 MI_WAIT_FOR_EVENT

MI_WAIT_FOR_EVENT
Project: All Length Bias: 1

The MI_WAIT_FOR_EVENT command is used to pause command stream processing until a specific event
occurs or while a specific condition exists. See Wait Events/Conditions, Device Programming Interface in
MI Functions. Only one event/condition can be specified -- specifying multiple events is UNDEFINED.
The effect of the wait operation depends on the source of the command. If executed from a batch buffer,
the parser will halt (and suspend command arbitration) until the event/condition occurs. If executed from a
ring buffer, further processing of that ring will be suspended, although command arbitration (from other
rings) will continue. Note that if a specified condition does not exist (the condition code is inactive) at the
time the parser executes this command, the parser proceeds, treating this command as a no-operation.
If execution of this command from a primary ring buffer causes a wait to occur, the active ring buffer will
effectively give up the remainder of its time slice (required in order to enable arbitration from other primary
ring buffers).

DWord Bit Description

0 31:29 Command Type
Default
Value:

0h MI_COMMAND Form
at:

OpCode

28:23 MI Command Opcode
Default
Value:

03
h

MI_WAIT_FOR_EVENT Form
at:

OpCode

22:19 Reserv
ed

Proje
ct:

All Form
at:

MBZ

18 Display Pipe B Start of V Blank
Wait Enable

Proje
ct:

All Form
at:

Enable

This field enables a wait until the start of next Display Pipe B “Vertical Blank”
event occurs. This event is defined as the start of the next Display B Vertical
blank period. Note that this can cause a wait for up to a frame. See Start of
Vertical Blank Event in the Device Programming Interface chapter of MI
Functions.

Errata Description Project

BWT01
3

MBZ DevBW

 G45: Volume 1b: Graphics Core

50

MI_WAIT_FOR_EVENT
17 Display Pipe A Start of V

Blank Wait Enable
Projec
t:

All Form
at:

Enable

This field enables a wait until the start of next Display Pipe A “Vertical Blank”
event occurs. This event is defined as the start of the next Display A Vertical
blank period. Note that this can cause a wait for up to a frame. See Start of
Vertical Blank Event in the Device Programming Interface chapter of MI
Functions.

Programming Notes Project

Notes All

Errata Description Project
BWT01
3

MBZ DevBW

16 Overlay Flip Pending Wait
Enable

Project
:

All Forma
t:

Enabl
e

This field enables a wait for the duration of an Overlay “Flip Pending”
condition. If a flip request is pending, the parser will wait until the flip
operation has completed (i.e., the new overlay address has been loaded
into the corresponding overlay registers). See Overlay Flip Pending
Condition in the Device Programming Interface chapter of MI Functions.

16 isplay Sprite B Flip Pending Wait
Enable

Project: CTG+ ormat: nable

his field enables a wait for the duration of a Display Sprite B “Flip Pending”
condition. If a flip request is pending, the parser will wait until the flip operation has
completed (i.e., the new front buffer address has now been loaded into the active
front buffer registers). See Display Flip Pending Condition in the Device
Programming Interface chapter of MI Functions.

15 Reserve
d

Project
:

All Forma
t:

MBZ

14 Display Pipe B H Blank Wait
Enable

Project: All Format
:

Enable

This field enables a wait until the start of next Display Pipe B “Horizontal Blank”
event occurs. This event is defined as the start of the next Display B Horizontal
blank period. Note that this can cause a wait for up to a line. See Horizontal
Blank Event in the Device Programming Interface chapter of MI Functions.

13 Display Pipe A H Blank Wait Enable Projec
t:

All Form
at:

En
ab
le

This field enables a wait until the start of next Display Pipe A
“Horizontal Blank” event occurs. This event is defined as the start
of the next Display A Horizontal blank period. Note that this can
cause a wait for up to a line. See Horizontal Blank Event in the
Device Programming Interface chapter of MI Functions.

 G45: Volume 1b: Graphics Core

 51

MI_WAIT_FOR_EVENT
12:9 Condition Code Wait Select

Project: All
This field enables a wait for the duration that the corresponding condition
code is active. These enable select one of 15 condition codes in the
EXCC register, that cause the parser to wait until that condition-code in
the EXCC is cleared.

Valu
e

Name Description Project

0h Not
Enabled

Condition Code Wait not enabled All

1h-
5h

Enabled Condition Code select enabled;
selects one of 5 codes, 0 – 4

All

6h-
15h

Reserved All

Programming Notes Project

Note that not all condition codes are implemented. The
parser operation is UNDEFINED if an unimplemented
condition code is selected by this field. The description of the
EXCC register (Memory Interface Registers) lists the codes
that are implemented.

All

8 Display Plane C Flip Pending

Wait Enable
Projec
t:

All Form
at:

Enabl
e

This field enables a wait for the duration of a Display Plane C “Flip
Pending” condition. If a flip request is pending, the parser will wait until
the flip operation has completed (i.e., the new front buffer address has
now been loaded into the active front buffer registers). See Display Flip
Pending Condition in the Device Programming Interface chapter of MI
Functions.

7 Display Pipe B Vertical Blank Wait
Enable

Projec
t:

All Form
at:

Enabl
e

This field enables a wait until the next Display Pipe B “Vertical Blank”
event occurs. This event is defined as the start of the next Display Pipe B
vertical blank period. Note that this can cause a wait for up to an entire
refresh period. See Vertical Blank Event (See Programming Interface).

Programming Notes Project

Prior to using the MI_WAIT_FOR_EVENT command to wait
on Display Pipe A/B VBlank events, the corresponding
Vertical Blank Interrupt Enable (bit 17) of the corresponding
PIPEASTAT (70024h) or PIPEBSTAT (71024h) register must
be set. Note that this does not require an actual VBlank
interrupt to be enabled.

All

 G45: Volume 1b: Graphics Core

52

MI_WAIT_FOR_EVENT
6 Display Plane B Flip Pending Wait

Enable
Projec
t:

All Form
at:

Enabl
e

This field enables a wait for the duration of a Display Plane B “Flip
Pending” condition. If a flip request is pending, the parser will wait until
the flip operation has completed (i.e., the new front buffer address has
now been loaded into the active front buffer registers). See Display Flip
Pending Condition (in the Device Programming Interface chapter of MI
Functions.

5 Display Pipe B Scan Line Window
Wait Enable

Project
:

Al
l

Form
at:

Enabl
e

This field enables a wait while a Display B “In Scan Line Window”
condition exists. This condition is defined as the period of time the
Display B refresh is inside the scan line window as specified by a
previous MI_LOAD_SCAN_LINES_INCL or
MI_LOAD_SCAN_LINES_EXCL command. If the Display B refresh is
outside this window, or a window has not been specified, the parser
proceeds, treating this command as a no-op. If the Display B refresh is
currently inside this window, the parser will wait until the refresh exits the
window. See Scan Line Window Condition in the Device Programming
Interface chapter of MI Functions.

4 Frame Buffer Compression Idle
Wait Enable

Proje
ct:

All Forma
t:

Enabl
e

This field enables a wait while the Frame Buffer compressor is busy. The
ring that this command got executed from is removed from arbitration for
the wait period and is inserted into arbitration as soon as the frame buffer
compressor is idle.

3 Display Pipe A Vertical Blank Wait

Enable
Proje
ct:

All Form
at:

Enabl
e

This field enables a wait until the next Display Pipe A “Vertical Blank”
event occurs. This event is defined as the start of the next Display A
vertical blank period. Note that this can cause a wait for up to an entire
refresh period. See Vertical Blank Event in the Device Programming
Interface chapter of MI Functions.

Programming Notes Projec

t
Prior to using the MI_WAIT_FOR_EVENT command to wait on
Display Pipe A/B VBlank events, the corresponding Vertical
Blank Interrupt Enable (bit 17) of the corresponding
PIPEASTAT (70024h) or PIPEBSTAT (71024h) register must
be set. Note that this does not require an actual VBlank
interrupt to be enabled.

All

2 Display Plane A Flip Pending Wait

Enable
Projec
t:

All Form
at:

Enabl
e

This field enables a wait for the duration of a Display Plane A “Flip
Pending” condition. If a flip request is pending, the parser will wait until
the flip operation has completed (i.e., the new front buffer address has
now been loaded into the active front buffer registers). See Display Flip
Pending Condition in the Device Programming Interface chapter of MI
Functions.

 G45: Volume 1b: Graphics Core

 53

MI_WAIT_FOR_EVENT
1 Display Pipe A Scan Line

Window Wait Enable
Project: All Format: Ena

ble
This field enables a wait while a Display Pipe A “In Scan Line
Window” condition exists. This condition is defined as the period
of time the Display A refresh is inside the scan line window as
specified by a previous MI_INCLUSIVE_SCAN_WINDOW or
MI_EXCLUSIVE_SCAN_WINDOW command. If the Display A
refresh is outside this window, or a window has not been specified,
the parser proceeds, treating this command as a no-op. If the
Display A refresh is currently inside this window, the parser will
wait until the refresh exits the window. See Scan Line Window
Condition in the Device Programming Interface chapter of MI
Functions.

0 Reserv
ed

Proje
ct:

All Format
:

MBZ

§§

2 Memory Interface Commands for
Video Codec Engine [DevCTG+]
2.1 Introduction

This chapter describes the formats of the “Memory Interface” commands, including
brief descriptions of their use. The functions performed by these commands are
discussed fully in the Memory Interface Functions Device Programming Environment
chapter.

This chapter describes MI Commands for the Video Codec Engine. Note that these
commands are not applicable to [DevBW] and [DevCL] (these devices do not have
a parallel Video Codec Engine).

The commands detailed in this chapter are used across the later products within the
GenX family. However, slight changes may be present in some commands (i.e., for
features added or removed), or some commands may be removed entirely. Refer
to the Preface chapter for details.
2.2 MI_ARB_CHECK

The MI_ARB_CHECK instruction is used to check the ring buffer next context ID register (RNCID) or
the UHPTR register, depending on whether PPGTT/Runlists are enabled. This instruction can be
used to pre-empt the current execution of the ring buffer. Note that the valid bit in the RNCID
register or the UHPTR register needs to be set for the command streamer to be pre-empted.

Programming Note:

• This instruction can be placed only in a ring buffer, never in a batch buffer.

The instruction format is:

DWord Bits Description

31:29 Instruction Type = MI_INSTRUCTION = 0h

28:23 MI Instruction Opcode = MI_ARB_CHECK = 05h

0

22:0 Reserved: MBZ

 G45: Volume 1b: Graphics Core

 55

2.3 MI_BATCH_BUFFER_END

The MI_BATCH_BUFFER_END command is used to terminate the execution of commands stored in a
batch buffer initiated using a MI_BATCH_BUFFER_START command.

The MI_BATCH_BUFFER_END command format follows:

DWord Bits Description

31:29 Command Type = MI_COMMAND = 0h

28:23 MI Command Opcode = MI_BATCH_BUFFER_END = 0Ah

0

22:0 Reserved: MBZ

2.4 MI_BATCH_BUFFER_START

The MI_BATCH_BUFFER_START command is used to initiate the execution of commands stored in a
batch buffer. For restrictions on the location of batch buffers, see Batch Buffers in the Device
Programming Interface chapter of MI Functions.

The batch buffer can be specified as secure or non-secure, determining the operations considered
valid when initiated from within the buffer and any attached (chained) batch buffers. See Batch
Buffer Protection in the Device Programming Interface chapter of MI Functions.

The MI_BATCH_BUFFER_START command format follows:

DWord Bits Description

0 31:29 Command Type = MI_COMMAND = 0h

 28:23 MI Command Opcode = MI_BATCH_BUFFER_START = 31h

 22:9 Reserved: MBZ

 8 Buffer Security Indicator: When this command is executed
directly from a ring buffer, this field is used to specify the associated
batch buffer as a secure or non-secure buffer. Certain operations
(e.g., MI_STORE_DATA_IMM commands) are prohibited within
non-secure buffers. See Batch Buffer Protection in the Device
Programming Interface chapter of MI Functions. When this
command is executed from within a batch buffer (i.e., is a “chained”
batch buffer command), this field is IGNORED and the next buffer
in the chain inherits the initial buffer’s security characteristics.
If this bit is set, this batch buffer is non-secure and cannot execute
privileged commands nor access privileged (GGTT) memory. It will
be accessed via the PPGTT. If clear, this batch buffer is secure
and will be accessed via the GGTT. Note that
MI_STORE_DATA_IMM to non-privileged memory (via the PPGTT)
is allowed in a non-secure batch buffer.
Format = MI_BufferSecurityType
1 = MIBUFFER_NONSECURE
0 = MIBUFFER_SECURE

 G45: Volume 1b: Graphics Core

56

DWord Bits Description

7:6 Reserved: MBZ

0 DWord Length (Excludes D-Word 0,1) = 0
31:2 Buffer Start Address: This field specifies Bits 31:2 of the starting

address of the 64B aligned batch buffer (Bits 1:0 of that address
MBZ).
 Programming Notes:
• A batch buffer initiated with this command must end either with

a MI_BATCH_BUFFER_END command or by chaining to
another batch buffer with an MI_BATCH_BUFFER_START
command.

• [DevCTG]: the selection of PPGTT vs. GGTT for the batch
buffer is determined by the Buffer Security Indicator (bit 8).

Format = Graphics Virtual Address[31:2]

1

1:0 Reserved: MBZ

(MI_DISPLAY_FLIP DELETED)

2.5 MI_FLUSH

Project: All Length Bias: 1

The MI_FLUSH command is used to perform an internal “flush” operation. The parser pauses
on an internal flush until all media decode engines have completed any pending operations
and any read caches are invalidated.

Usage note: After this command is completed and followed by a Store DWord-type
command, CPU access to graphics memory will be coherent.

DWord Bit Description

0 31:2
9

Command Type
Default
Value:

0h MI_COMMAND For
mat:

OpCod
e

28:2
3

MI Command Opcode
Default
Value:

04
h

MI_FLUSH For
mat:

OpCod
e

22:9 Reser
ved

Proj
ect:

All For
mat:

MBZ

8:7 Reser
ved

Proj
ect:

Pre-
Dev
CTG

For
mat:

MBZ

6 Reser

ved
Proj
ect:

Pre-
Dev
CTG

For
mat:

MBZ

5:0 Reser

ved
Proj
ect:

All For
mat:

MBZ

 G45: Volume 1b: Graphics Core

 57

2.6 MI_LOAD_REGISTER_IMM

The MI_LOAD_REGISTER_IMM command requests a write of up to a DWord constant supplied in the
command to the specified Register Offset (i.e., offset into Memory-Mapped Register Range). The
register is loaded before the next command is executed.

Programming Notes:
• The behavior of this command is controlled by Dword 3, Bit 8 (Disable Register Access) of

the RINGBUF register. If this command is disallowed then the command stream converts it to
a NOOP.

• If this command is executed from a batch buffer then the behavior of this command is
controlled by Dword 0, Bit 8 (Security Indicator) of the BATCH_BUFFER_START Command.
If the batch buffer is non-secure then the command stream converts this command to a
NOOP.

The MI_LOAD_REGISTER_IMM command format is:

DWord Bit Description

31:29 Command Type = MI_COMMAND = 0h
28:23 MI Command Opcode = MI_LOAD_REGISTER_IMM =

22h

22:12 Reserved: MBZ

11:8 Byte Write Disables: This field specifies which bytes of
the Data DWord are not to be written to the DWord offset
specified in Register Offset.
Format = Enable[4] (bit 8 corresponds to Data DWord
[7:0]).
Range = Must specify a valid register write operation.

7:6 Reserved: MBZ

0

5:0 DWord Length (Excludes DWord 0,1) = 1.
31:23 Reserved: MBZ
22:2 Register Offset: This field specifies bits [22:2] of the offset

into the Memory Mapped Register Range (i.e., this field
specifies a DWord offset).
Format = U30.

1

1:0 Reserved: MBZ
2 31:0 Data DWord.: This field specifies the DWord value to be

written to the targeted location.
Format = U32.

 G45: Volume 1b: Graphics Core

58

2.7 MI_NOOP

The MI_NOOP command basically performs a “no operation” in the command stream and is typically
used to pad the command stream (e.g., in order to pad out a batch buffer to a QWord boundary).
However, there is one minor (optional) function this command can perform – a 22-bit value can be
loaded into the MI NOPID register. This provides a general-purpose command stream tagging
("breadcrumb") mechanism (e.g., to provide sequencing information for a subsequent breakpoint
interrupt).

The MI_NOOP command format is:

DWord Bit Description

31:29 Command Type = MI_COMMAND = 0h

28:23 MI Command Opcode = MI_NOOP = 00h

22 Identification Number Register Write Enable: This field enables the value in the
Identification Number field to be written into the MI NOPID register. If disabled, that
register is unmodified – making this command an effective “no operation” function.
Format = Enable.
1 = Write the NOP_ID register.
0 = Do not write the NOP_ID register.

0

21:0 Identification Number: This field contains a 22-bit number which can be written to
the MI NOPID register.
Format = U22.

 G45: Volume 1b: Graphics Core

 59

2.8 MI_REPORT_HEAD

The MI_REPORT_HEAD command causes the Head Pointer value of the ring buffer to be written to a
cacheable (snooped) system memory location.

[DevBW], [DevCL]:

[DevCTG] when the Per-Process Virtual Address Space and Run List Enable bit is reset:

The location written is relative to the address programmed in the Hardware Status Page Address
Register.

Programming Notes:

• This command must not be executed from a Batch Buffer (Refer to the description of the
HWS_PGA register).

[DevCTG]: When the Per-Process Virtual Address Space and Run List Enable is set, the head
pointer will be reported to the PP HW Status Page.

The format of the MI_REPORT_HEAD command is:

DWord Bit Description

31:29 Command Type = MI_COMMAND = 0h

28:23 MI Command Opcode = MI_REPORT_HEAD = 07h

0

22:0 Reserved: MBZ

 G45: Volume 1b: Graphics Core

60

2.9 MI_STORE_DATA_IMM
The MI_STORE_DATA_IMM command requests a write of the QWord or DWord constant supplied in
the packet to the specified Memory Address. As the write targets a System Memory Address, the
write operation is coherent with the CPU cache (i.e., the processor cache is snooped).

Programming Notes:

This command should not be used within a “non-secure” batch buffer except on
[DevCTG] to access per-process virtual space. Doing so will cause the command
parser to perform the write with byte enables turned off. This command can be
used within ring buffers and/or “secure” batch buffers. If used within a non-secure
batch buffer on [DevCTG], Use Global GTT must be clear.

This command can be used for general software synchronization through variables
in cacheable memory (i.e., where software does not need to poll un-cached
memory or device registers).

This command simply initiates the write operation with command execution
proceeding normally. Although the write operation is guaranteed to complete
“eventually”, there is no mechanism to synchronize command execution with the
completion (or even initiation) of these operations.

The MI_STORE_DATA_IMM command format is:

DWord Bit Description

31:2
9

Command Type = MI_COMMAND = 0h

28:2
3

MI Command Opcode = MI_STORE_DATA_IMM = 20h

22 [DevCTG] Use Global GTT. If set, this command will use the global
GTT to translate the Address and this command must be executing from
a privileged (secure) batch buffer. If clear, the PPGTT will be used. This
bit will be ignored and treated as if clear when executing from a non-
privileged batch buffer. It is allowed for this bit to be clear when
executing this command from a privileged (secure) batch buffer.

22:6 Reserved: MBZ

0

5:0 DWord Length (Excludes DWord 0,1) = 3 for QWord, 2 for DWord

1 31:0 Reserved: MBZ
31:2 Address: This field specifies Bits 31:2 of the Address where the DWord

will be stored. As the store address must be DWord-aligned, Bits 1:0 of
that address MBZ. This address must be 8B aligned for a store “QW”
command.
Format = Bits[31:2] of a Graphics Virtual Address

2

1:0 Reserved: MBZ

 G45: Volume 1b: Graphics Core

 61

DWord Bit Description

3 31:0 Data DWord 0: This field specifies the DWord value to be written to the
targeted location.
For a QWord write this DWord is the lower DWord of the QWord to be
reported (DW 0).
Format = U32

4 31:0
Data Word 1: This field specifies the upper DWord value to be written to
the targeted QWord location (DW 1).
Format = U32

2.10 MI_STORE_DATA_INDEX

The MI_STORE_DATA_INDEX command requests a write of the data constant supplied in the packet to
the specified offset from the System Address defined by the Hardware Status Page Address Register.
As the write targets a System Address, the write operation is coherent with the CPU cache (i.e., the
processor cache is snooped).

Programming Notes:
• Use of this command with an invalid or uninitialized value in the Hardware Status Page

Address Register is UNDEFINED.
• This command can be used for general software synchronization through variables in

cacheable memory (i.e., where software does not need to poll uncached memory or device
registers).

• This command simply initiates the write operation with command execution proceeding
normally. Although the write operation is guaranteed to complete “eventually”, there is no
mechanism to synchronize command execution with the completion (or even initiation) of
these operations.

The MI_STORE_DATA_INDEX command format is:

DWord Bit Description

31:29 Command Type = MI_COMMAND = 0h
28:23 MI Command Opcode = MI_STORE_DATA_INDEX = 21h

22 Reserved: MBZ
21 [DevCTG] Only: Use Per-Process Hardware Status Page. If this bit is

set, this command will index into the per-process hardware status page
at offset 20K from the LRCA. If clear, the Global Hardware Status Page
will be indexed. This bit will be ignored and treated as set if this
command is executed from within a non-secure batch buffer, or if the
Per-Process Virtual Address Space and context queuing Enable bit
is reset.
All other devices: Reserved: MBZ.

20:6 Reserved: MBZ

0

5:0 DWord Length (Excludes DWord 0,1) = 2 for QWord

1 31:12 Reserved: MBZ

 G45: Volume 1b: Graphics Core

62

11:2 Offset: This field specifies the offset (into the hardware status page) to
which the data will be written. Note that the first few DWords of this
status page are reserved for special-purpose data storage – targeting
these reserved locations via this command is UNDEFINED.
For a QWord write, the offset is valid down to bit 3 only.
Format = U10 zero-based DWord offset into the HW status page.
Range = [16, 1023].

1:0 Reserved: MBZ
2 31:0 Data DWord 0: This field specifies the DWord value to be written to the

targeted location.
[For a QWord write this DWord is the lower DWord of the QWord to be
reported (DW 0).
Format = U32

3 31:0 Data Word 1: This field specifies the upper DWord value to be written to
the targeted QWord location (DW 1).
Format = U32

2.11 MI_USER_INTERRUPT

The MI_USER_INTERRUPT command is used to generate a User Interrupt condition. The parser will
continue parsing after processing this command. See User Interrupt.

DWord Bit Description

31:29 Command Type = MI_COMMAND = 0h

28:23 MI Command Opcode = MI_USER_INTERRUPT = 02h

0

22:0 Reserved: MBZ

 G45: Volume 1b: Graphics Core

 63

2.12 MI_WAIT_FOR_EVENT

MI_WAIT_FOR_EVENT
Project: All Length Bias: 1

The MI_WAIT_FOR_EVENT command is used to pause command stream processing until a
specific event occurs or while a specific condition exists. See Wait Events/Conditions, Device
Programming Interface in MI Functions. Only one event/condition can be specified --
specifying multiple events is UNDEFINED.

The effect of the wait operation depends on the source of the command. If executed from a
batch buffer, the parser will halt (and suspend command arbitration) until the
event/condition occurs. If executed from a ring buffer, further processing of that ring will be
suspended, although command arbitration (from other rings) will continue. Note that if a
specified condition does not exist (the condition code is inactive) at the time the parser
executes this command, the parser proceeds, treating this command as a no-operation.

If execution of this command from a primary ring buffer causes a wait to occur, the active
ring buffer will effectively give up the remainder of its time slice (required in order to enable
arbitration from other primary ring buffers).

DWord Bit Description

0 31:2
9

Command Type
Default
Value:

0h MI_COMMAND For
mat:

OpCod
e

28:2
3

MI Command Opcode
Default
Value:

03
h

MI_WAIT_FOR_EVEN
T

For
mat:

OpCod
e

22:2 Reser
ved

Proj
ect:

All For
mat:

MBZ

1 Reserved

0 Reserved

 G45: Volume 1b: Graphics Core

64

2.13 Summary of Commands

Starting with [DevCTG], GenX products will have a 2nd command streamer (CS) dedicated to Video
Codec Engine (VCE). This command streamer is a subset of the primary CS. The MI Commands that
it can parse and decode are listed in the table below. Any other MI command or any command
intended for the primary graphics pipeline will cause a parse error. The VCE CS can parse commands
specific to the VCE fixed function units themselves. See the MFX chapter for the list of commands.

Command Valid in Stream

MI_ARB_CHECK Both
MI_ARB_ON_OFF [DevCTG] Only Primary CS Only
MI_BATCH_BUFFER_END Both
MI_BATCH_BUFFER_START Both
MI_FLUSH Both
MI_LOAD_REGISTER_IMM Both
MI_NOOP Both
MI_REPORT_HEAD Both
MI_SEMAPHORE_MBOX Only Both
MI_STORE_REGISTER_MEM Primary CS only for DevCTG
MI_STORE_DATA_IMM Both
MI_STORE_DATA_INDEX Both
MI_USER_INTERRUPT Both

3 Memory Interface Commands for
Blitter Engine
3.1 Introduction

This chapter describes the formats of the “Memory Interface” commands, including brief descriptions of their
use. The functions performed by these commands are discussed fully in the Memory Interface Functions
Device Programming Environment chapter.

This chapter describes MI Commands for the blitter graphics processing engine. The term “for Blitter Engine”
in the title has been added to differentiate this chapter from a similar one describing the MI commands for the
Media Decode Engine and the Rendering Engine.

The commands detailed in this chapter are used across products within the GenX family. However, slight
changes may be present in some commands (i.e., for features added or removed), or some commands may
be removed entirely. Refer to the Preface chapter for product specific summary.

3.2 MI_LOAD_REGISTER_IMM

MI_LOAD_REGISTER_IMM
Project: All Length Bias: 2

The MI_LOAD_REGISTER_IMM command requests a write of up to a DWord constant supplied
in the command to the specified Register Offset (i.e., offset into Memory-Mapped Register
Range). The register is loaded before the next command is executed.
Programming Notes:
The behavior of this command is controlled by Dword 3, Bit 8 (Disable Register Access) of the
RINGBUF register. If this command is disallowed then the command stream converts it to a
NOOP.
If this command is executed from a BB then the behavior of this command is controlled by
Dword 0, Bit 8 (Security Indicator) of the BATCH_BUFFER_START Command. If the batch
buffer is insecure then the command stream converts this command to a NOOP. Note that
the corresponding ring buffer must allow a register update for this command to execute.

DWord Bit Description

0 31:29 Command Type
Default
Value:

0
h

MI_COMMAND For
mat:

OpCode

28:23 MI Command Opcode
Default
Value:

h MI_ Form
at:

OpCode

22:12 Reserv
ed

Proje
ct:

All Form
at:

MBZ

 G45: Volume 1b: Graphics Core

66

MI_LOAD_REGISTER_IMM
11:8 Byte Write Disables

Format: Enable[4] Bit 8 corresponds to Data
DWord [7:0]

Range Must specify a valid register write operation
This field specifies which bytes of the Data DWord are not to be
written to the DWord offset specified in Register Offset.

7:6 Reser
ved

Proj
ect:

All For
mat:

MBZ

5:0 DWord Length
Default Value: 1h Excludes DWord (0,1)

Format: =n Total Length -
2

1 31:2 Register Offset
Format: U30
Address: MmioAddress[31:2]
This field specifies bits [31:2] of the offset into the Memory
Mapped Register Range (i.e., this field specifies a DWord offset).

1:0 Reser

ved
Proj
ect:

All For
mat:

MBZ

2 31:0 Data DWord
Mask: Bytes Write Disables
Format: U32
This field specifies the DWord value to be written to the targeted
location.

 G45: Volume 1b: Graphics Core

 67

3.3 MI_NOOP

MI_NOOP
Project: All Length Bias: 1

The MI_NOOP command basically performs a “no operation” in the command stream and is
typically used to pad the command stream (e.g., in order to pad out a batch buffer to a QWord
boundary). However, there is one minor (optional) function this command can perform – a 22-bit
value can be loaded into the MI NOPID register. This provides a general-purpose command
stream tagging ("breadcrumb") mechanism (e.g., to provide sequencing information for a
subsequent breakpoint interrupt).

DWord Bit Description

0 31:2
9

Command Type
Default
Value:

0
h

MI_COMMAND For
mat:

OpCod
e

28:2
3

MI Command Opcode
Default
Value:

0
h

MI_NOOP For
mat:

OpCod
e

22 Identification Number Register Write Enable
Project: All
Format: Enable
This field enables the value in the Identification Number field
to be written into the MI NOPID register. If disabled, that
register is unmodified – making this command an effective “no
operation” function.

Val
ue

Name Description Projec
t

0h Disable Do not write the NOP_ID
register.

All

1h Enable Write the NOP_ID register. All

31:0 Identification
Number

Proj
ect:

All Form
at:

U22

This field contains a 22-bit number which can be written to the
MI NOPID register.

 G45: Volume 1b: Graphics Core

68

3.4 MI_ SEMAPHORE_MBOX

MI_SEMAPHORE_MBOX
Project: CTG+ Length Bias: 2

This command is provided as alternative to MI_SEMAPHORE to provide mailbox-type
semaphores where there is no update of the semaphore by the checking process (the
consumer). Single-bit compare-and-update semantics are also provided. In either case,
atomic access of semaphores need not be guaranteed by hardware as with the previous
command. This command should eventually supersede the previous command.

Synchronization between contexts (especially between contexts running on 2 different engines)
is provided by the MI_SEMAPHORE_MBOX command. Note that contexts attempting to
synchronize in this fashion must be able to access a common memory location. This means the
contexts must share the same virtual address space (have the same page directory), must have
a common physical page mapped into both of their respective address spaces or the semaphore
commands must be executing from a secure batch buffer or directly from a ring with the Use
Global GTT bit set such that they are “privileged” and will use the (always shared) global GTT.

MI_SEMAPHORE with the Update Semaphore bit set (and the Compare Semaphore bit clear)
implements the Signal command, while the Wait command is indicated by Compare
Semaphore being set. Note that Wait can cause a context switch. Signal increments
unconditionally.

DWord Bit Description

0 31:29 Command Type
Default
Value:

0h MI_COMMAND Forma
t:

OpCode

28:23 MI Command Opcode
Default
Value:

16h MI_SEMAPHORE_MBOX Forma
t:

OpCode

22 Use Global
GTT

Projec
t:

All Forma
t:

U32

If set, this command will use the global GTT to translate the Semaphore
Address and this command must be executing from a privileged (secure)
batch buffer. If clear, the PPGTT will be used to translate the Semaphore
Address.
This bit will be ignored (and treated as if clear) if this command is
executed from a non-privileged batch buffer. It is allowed for this bit
to be clear when executing this command from a privileged (secure)
batch buffer or directly from a ring buffer.

21 Update
Semaphore

Projec
t:

All Forma
t:

U32

If set, the value from the Semaphore Data Dword is written to memory. If
Compare Semaphore is also set, the semaphore is not updated if the
semaphore comparison fails.
If clear, the data at Semaphore Address is not changed.

 G45: Volume 1b: Graphics Core

 69

MI_SEMAPHORE_MBOX
20 Compare

Semaphore
Proje
ct:

All Forma
t:

U32

If set, the value from the Semaphore Data Dword is compared to the
value from the Semaphore Address in memory. If the value at
Semaphore Address is greater than or equal to the Semaphore Data
Dword, execution is continued from the current command buffer.
If clear, no comparison takes place. Update Semaphore must be
set in this case.

19:6 Reserve
d

Projec
t:

All Forma
t:

MBZ

5:0 DWord Length
Default Value: 0h Excludes DWord (0,1)
Format: =n Total Length - 2

1 31:0 Semaphore Data
Dword

Proje
ct:

All Forma
t:

U32

Data dword to compare/update memory. The Data dword is
supplied by software to control execution of the command buffer.
If the compare is enabled and the data at Semaphore Address is
greater than this dword, the execution of the command buffer
continues. If Update Semaphore is set, the Data dword is
constrained to be either 0 or 1. If both the compare and the
update fields are set, the Data dword is constrained to be a 0.

1 31:2 PointerBitFieldName
Project: All
Address: GraphicsVirtualAddress[31:2]
Surface Type: Semaphore
Graphics Memory Address of the 32 bit value for the semaphore.

1:0 Reserv
ed

Projec
t:

All Form
at:

MBZ

 G45: Volume 1b: Graphics Core

70

3.5 MI_STORE_DATA_IMM

MI_STORE_DATA_IMM
Project: All Length Bias: 2

The MI_STORE_DATA_IMM command requests a write of the QWord constant supplied in the
packet to the specified Memory Address. As the write targets a System Memory Address, the
write operation is coherent with the CPU cache (i.e., the processor cache is snooped).
Programming Notes:

• This command can be used for general software synchronization through variables in
cacheable memory (i.e., where software does not need to poll un-cached memory or device
registers). However, the cacheable nature of the transaction is determined by the setting of
the “mapping type” in the GTT entry.

• This command simply initiates the write operation with command execution proceeding
normally. Although the write operation is guaranteed to complete “eventually”, there is no
mechanism to synchronize command execution with the completion (or even initiation) of
these operations. All writes to memory generated using this command are expected to finish
in order.

DWord Bit Description

0 31:2
9

Command Type
Default
Value:

0h MI_COMMAND Form
at:

OpCode

28:2
3

MI Command Opcode
Default
Value:

20h MI_STORE_DATA_IMM Form
at:

OpCode

22 Memory Address Type
Project: All

Val
ue

Name Description Project

0h Reserved Physical address All

1h Reserved Virtual address. Hardware
will translate this address
using the GTT. The GTT
(global or per-process)
used for the translation will
be the same GTT used to
access the buffer executing
this instruction translate this
address using the GTT. The
GTT (global or per-process)
used for the translation will
be the same GTT used to
access the buffer executing
this instruction.

All

21:6 Reser

ved
Proj
ect:

All For
mat:

MBZ

 G45: Volume 1b: Graphics Core

 71

MI_STORE_DATA_IMM
5:0 DWord Length

Default Value: 2h Excludes DWord (0,1) =
2 for DWord, 3 for QWord

Format: =n Total Length - 2
1 31:0 Reserv

ed
Proje
ct:

All Form
at:

MBZ

2 31:0 Reserv
ed

Proje
ct:

All Form
at:

MBZ

3 31:0 Data DWord 0 Proje
ct:

All Form
at:

U32

This field specifies the DWord value to be written to the targeted
location.
For a QWord write this DWord is the lower DWord of the QWord to be
reported (DW 0).

4 31:0 Data DWord 1 Proje
ct:

All Form
at:

U32

This field specifies the upper DWord value to be written to the targeted
QWord location (DW 1).

 G45: Volume 1b: Graphics Core

72

3.6 MI_STORE_DATA_INDEX

MI_STORE_DATA_INDEX
Project: All Length Bias: 2

The MI_STORE_DATA_INDEX command requests a write of the data constant supplied in the
packet to the specified offset from the System Address defined by the Hardware Status Page
Address Register. As the write targets a System Address, the write operation is coherent with the
CPU cache (i.e., the processor cache is snooped).
Programming Notes:

• Use of this command with an invalid or uninitialized value in the Hardware Status Page
Address Register is UNDEFINED.

• This command can be used for general software synchronization through variables in
cacheable memory (i.e., where software does not need to poll uncached memory or device
registers).

• This command simply initiates the write operation with command execution proceeding
normally. Although the write operation is guaranteed to complete “eventually”, there is no
mechanism to synchronize command execution with the completion (or even initiation) of
these operations.

DWord Bit Description

0 31:2
9

Command Type
Default
Value:

0
h

MI_COMMAND Forma
t:

OpCode

28:2
3

MI Command Opcode
Default
Value:

2
1
h

MI_STORE_DATA_IND
EX

Forma
t:

OpCod
e

22 Reserve

d
Projec
t:

All Form
at:

Setting this bit will cause this command to offset in the Surface
Probe List instead of the hardware status page. This is intended
to be used internally only (it is UNDEFINED to set this bit in a
command in a ring or batch buffer.)

21:6 Reserv
ed

Proje
ct:

All Form
at:

MBZ

5:0 DWord Length
Default Value: 1h Excludes DWord (0,1)

= 1 for DWord, 2 for QWord

Format: =n Total Length - 2
1 31:1

2
Reser
ved

Proj
ect:

All For
mat:

MBZ

 G45: Volume 1b: Graphics Core

 73

MI_STORE_DATA_INDEX
11:2 Offset

Project: All
Format: U10 zero-based DWord offset into the HW

status page.
Address: HardwareStatusPageOffset[11:2]
Surface Type: U32
Range [16, 1023]
This field specifies the offset (into the hardware status page) to which
the data will be written. Note that the first few DWords of this status
page are reserved for special-purpose data storage – targeting these
reserved locations via this command is UNDEFINED.

1:0 Reser
ved

Project
:

All Format: MBZ

2 31:0 Data DWord 0 Projec

t:
All Form

at:
U32

This field specifies the DWord value to be written to the targeted location.
For a QWord write this DWord is the lower DWord of the QWord to be
reported (DW 0).

3 31:0 Data DWord

1
Proje
ct:

All Form
at:

U32

This field specifies the upper DWord value to be written to the
targeted QWord location (DW 1).

3.7 MI_USER_INTERRUPT

MI_USER_INTERRUPT
Project: All Length Bias: 1

The MI_USER_INTERRUPT command is used to generate a User Interrupt condition. The parser will
continue parsing after processing this command. See User Interrupt.

DWord Bit Description

0 31:29 Command Type
Default
Value:

0h MI_COMMAND Form
at:

OpCode

28:23 MI Command Opcode

Default
Value:

02h MI_USER_INTERRUPT Form
at:

OpCode

22:0 Reserv

ed
Proje
ct:

All Form
at:

MBZ

 G45: Volume 1b: Graphics Core

74

3.8 MI_WAIT_FOR_EVENT

MI_WAIT_FOR_EVENT
Project: All Length Bias: 1

The MI_WAIT_FOR_EVENT command is used to pause command stream processing
until a specific event occurs or while a specific condition exists. See Wait
Events/Conditions, Device Programming Interface in MI Functions. Only one
event/condition can be specified -- specifying multiple events is UNDEFINED.
The effect of the wait operation depends on the source of the command. If executed
from a batch buffer, the parser will halt (and suspend command arbitration) until the
event/condition occurs. If executed from a ring buffer, further processing of that ring
will be suspended, although command arbitration (from other rings) will continue.
Note that if a specified condition does not exist (the condition code is inactive) at the
time the parser executes this command, the parser proceeds, treating this command
as a no-operation.
If execution of this command from a primary ring buffer causes a wait to occur, the
active ring buffer will effectively give up the remainder of its time slice (required in
order to enable arbitration from other primary ring buffers).

DWord Bit Description

0 31:2
9

Command Type
Default
Value:

0
h

MI_COMMAND For
mat:

OpCod
e

28:2
3

MI Command Opcode
Default
Value:

0
3
h

MI_WAIT_FOR_EVENT For
mat:

OpCod
e

22:0 Reser

ved
Proj
ect:

All For
mat:

MBZ

§§

4 Graphics Memory Interface Functions
4.1 Introduction

The major role of an integrated graphics device’s Memory Interface (MI) function is to provide various client
functions access to “graphics” memory used to store commands, surfaces, and other information used by the
graphics device. This chapter describes the basic mechanisms and paths by which graphics memory is
accessed.

Information not presented in this chapter includes:

Microarchitectural and implementation-dependent features (e.g., internal buffering, caching and arbitration
policies).

MI functions and paths specific to the operation of external (discrete) devices attached via external
connections.

MI functions essentially unrelated to the operation of the internal graphics devices, e.g., traditional “chipset
functions” (refer to the device’s C-Spec for this information).

4.2 Graphics Memory Clients

The MI function provides memory access functionality to a number of external and internal graphics memory
clients, as described in Error! Reference source not found..

Table 4-1. Graphics Memory Clients

MI Client Access Modes

Host Processor Read/Write of Graphics Operands located in Main Memory.
Graphics Memory is accessed using Device 2 Graphics
Memory Range Addresses

External PEG
Graphics Device

Write-Only of Graphics Operands located in Main Memory via
the Graphics Aperture. (This client is not described in this
chapter).

Peer PCI Device Write-Only of Graphics Operands located in Main Memory.
Graphics Memory is accessed using Device 2 Graphics
Memory Range Addresses (i.e., mapped by GTT). Note that
DMI access to Graphics registers is not supported.

Snooped
Read/Write
(internal)

Internally-generated snooped reads/writes.

Command Stream
(internal)

DMA Read of graphics commands and related graphics data.

Vertex Stream
(internal)

DMA Read of indexed vertex data from Vertex Buffers by the
3D Vertex Fetch (VF) Fixed Function.

Instruction/State
Cache (internal)

Read of pipelined 3D rendering state used by the 3D/Media
Functions and instructions executed by the EUs.

 G45: Volume 1b: Graphics Core

76

MI Client Access Modes

Render Cache
(internal)

Read/Write of graphics data operated upon by the graphics
rendering engines (Blt, 3D, MPEG, etc.) Read of render
surface state.

Sampler Cache
(internal)

Read of texture (and other sampled surface) data stored in
graphics memory.

Display/Overlay
Engines (internal)

Read of display, overlay, cursor and VGA data.

4.3 Graphics Memory Addressing Overview

The Memory Interface function provides access to graphics memory (GM) clients. It accepts memory
addresses of various types, performs a number of optional operations along address paths, and eventually
performs reads and writes of graphics memory data using the resultant addresses. The remainder of this
subsection will provide an overview of the graphics memory clients and address operations.

4.3.1 Graphics Address Path

Error! Reference source not found. shows the internal graphics memory address path, connection points,
and optional operations performed on addresses. Externally-supplied addresses are normalized to zero-based
Graphics Memory (GM) addresses (GM_Address). If the GM address is determined to be a tiled address (based
on inclusion in a fenced region or via explicit surface parameters), address tiling is performed. At this point
the address is considered a Logical Memory address, and is translated into a Physical Memory address via the
GTT and associated TLBs. The physical memory location is then accessed.

CPU accesses to graphics memory are not snooped on the front side bus post GTT translation. Hence pages
that are mapped cacheable in the GTT will not be coherent with the CPU cache if accessed through graphics
memory aperture. Also, such accesses may have side effects in the hardware.

 G45: Volume 1b: Graphics Core

 77

Figure 4-1. Graphics Memory Paths

Address Tiling
Logic

Tiled Address
Determination Surface

Parameters

Logical Memory
Mapping TLBs

Graphics
Memory
Address

(0-based)

Graphics Memory -capable
Internal Functions/

Caches

CPU / Ext. Gfx
Device

Device 2 PCI
Graphics

Memory Range

Main
Memory

GM Range Offset
Removal

Snoop
Logic

Physical Address-based
Internal

Functions

PTE
Fetch

Fence
Registers

Logical
Memory
Address

(0-based)

Physical
Memory
Address

Graphics Addr Paths

GTT

The remainder of this chapter describes the basic features of the graphics memory address pipeline, namely
Address Tiling, Logical Address Mapping, and Physical Memory types and allocation considerations.

 G45: Volume 1b: Graphics Core

78

4.4 Graphics Memory Address Spaces

Table 4-2 lists the five supported Graphics Memory Address Spaces. Note that the Graphics Memory Range
Removal function is automatically performed to transform system addresses to internal, zero-based Graphics
Addresses.

Table 4-2. Graphics Memory Address Types

Address Type Description Range

Dev2_GM_Addres
s

Address range allocated via the Device 2
(integrated graphics device) GMADR
register. The processor and other peer (DMI)
devices utilize this address space to
read/write graphics data that resides in Main
Memory. This address is internally converted
to a GM_Address.

Some 64MB,
128MB, 256MB or
512MB address
range normally
above TOM

GM_Address Zero-based logical Graphics Address,
utilized by internal device functions to
access GTT-mapped graphics operands.
GM_Addresses are typically passed in
commands and contained in state to specify
operand location.

[0, 64MB-1],
[0, 128MB-1],
[0, 256MB-1] or
[0, 512MB-1]

PGM_Address Zero-based logical Per-Process Graphics
Address, utilized by internal device functions
to access render GTT (PPGTT) mapped
graphics operands. Memory in this space is
not accessible by the processor and other
peer (DMI) devices unless aliased to a
GM_Address.

[0, 64MB-1],
[0,128MB-1],
[0,256MB-1],
[0,512MB-1] or
[0, 1GB – 1]

4.5 Address Tiling Function

When dealing with memory operands (e.g., graphics surfaces) that are inherently rectangular in nature,
certain functions within the graphics device support the storage/access of the operands using alternative
(tiled) memory formats in order to increase performance. This section describes these memory storage
formats, why/when they should be used, and the behavioral mechanisms within the device to support them.

4.5.1 Linear vs. Tiled Storage

Regardless of the memory storage format, “rectangular” memory operands have a specific width and height,
and are considered as residing within an enclosing rectangular region whose width is considered the pitch of
the region and surfaces contained within. Surfaces stored within an enclosing region must have widths less
than or equal to the region pitch (indeed the enclosing region may coincide exactly with the surface). Figure
4-2 shows these parameters.

 G45: Volume 1b: Graphics Core

 79

Figure 4-2. Rectangular Memory Operand Parameters

Surface

Surface Start Address

W idth

H
eight

P itch

Enclosing Region

Region Start Address

Rect Mem Operand

The simplest storage format is the linear format (see Figure 4-3), where each row of the operand is stored in
sequentially increasing memory locations. If the surface width is less than the enclosing region’s pitch, there
will be additional memory storage between rows to accommodate the region’s pitch. The pitch of the enclosing
region determines the distance (in the memory address space) between vertically-adjacent operand elements
(e.g., pixels, texels).

Figure 4-3. Linear Surface Layout

Surface

Increasing
Linear

Memory
Addresses

Pitch

Enclosing Region

Linar Surface

The linear format is best suited for 1-dimensional row-sequential access patterns (e.g., a display surface
where each scanline is read sequentially). Here the fact that one object element may reside in a different
memory page than its vertically-adjacent neighbors is not significant; all that matters is that horizontally-
adjacent elements are stored contiguously. However, when a device function needs to access a 2D subregion
within an operand (e.g., a read or write of a 4x4 pixel span by the 3D renderer, a read of a 2x2 texel block for
bilinear filtering), having vertically-adjacent elements fall within different memory pages is to be avoided, as

 G45: Volume 1b: Graphics Core

80

the page crossings required to complete the access typically incur increased memory latencies (and therefore
lower performance).

One solution to this problem is to divide the enclosing region into an array of smaller rectangular regions,
called memory tiles. Surface elements falling within a given tile will all be stored in the same physical memory
page, thus eliminating page-crossing penalties for 2D subregion accesses within a tile and thereby increasing
performance.

Tiles have a fixed 4KB size and are aligned to physical DRAM page boundaries. They are either 8 rows high by
512 bytes wide or 32 rows high by 128 bytes wide (see Figure 4-4). Note that the dimensions of tiles are
irrespective of the data contained within – e.g., a tile can hold twice as many 16-bit pixels (256 pixels/row x 8
rows = 2K pixels) than 32-bit pixels (128 pixels/row x 8 rows = 1K pixels).

Figure 4-4. Memory Tile Dimensions

Tile = 4K Bytes

512 Bytes

8 R
ow

s

X Tile Dimensions

Tile = 4K
Bytes

128 Bytes

32 R
ow

s

Y Tile Dimensions

The pitch of a tiled enclosing region must be an integral number of tile widths. The 4KB tiles within a tiled
region are stored sequentially in memory in row-major order.

Figure 4-5 shows an example of a tiled surface located within a tiled region with a pitch of 8 tile widths (512
bytes * 8 = 4KB). Note that it is the enclosing region that is divided into tiles – the surface is not necessarily
aligned or dimensioned to tile boundaries.

 G45: Volume 1b: Graphics Core

 81

Figure 4-5. Tiled Surface Layout

Tile 0

Tiled Region

Tile 1 Tile 2 Tile 3 Tile 4 Tile 5 Tile 6 Tile 7

Tile 8 Tile 9 Tile 10 Tile 11 Tile 12 Tile 13 Tile 14 Tile 15

Tile 16 Tile 17 Tile 18 Tile 19 Tile 20 Tile 21 Tile 22 Tile 23

Tile 24 Tile 25 Tile 26 Tile 27 Tile 28 Tile 29 Tile 30 Tile 31

Tile 32 Tile 33 Tile 34 Tile 35 Tile 36 Tile 37 Tile 38 Tile 39

Tile 40 Tile 41 Tile 42 Tile 43 Tile 44 Tile 45 Tile 46 Tile 47

Tile 48 Tile 49 Tile 50 Tile 51 Tile 52 Tile 53 Tile 54 Tile 55

Tile 56 Tile 57 Tile 58 Tile 59 Tile 60 Tile 61 Tile 62 Tile 63

Tiled Surface

Pitch = 8 tiles = 8 * 512B = 4KB

4KB Page

Tiled Surf Layout

4.5.2 Tile Formats

The device supports both X-Major (row-major) and Y-Major (column major) storage of tile data units, as
shown in the following figures. A 4KB tile is subdivided into an 8-high by 32-wide array of 16-byte OWords for
X-Major Tiles (X Tiles for short), and 32-high by 8-wide array of OWords for Y-Major Tiles (Y Tiles). The
selection of tile direction only impacts the internal organization of tile data, and does not affect how surfaces
map onto tiles. Note that the diagrams are not to scale – the first format defines the contents of an 8-high by
512-byte wide tile, and the 2nd a 32-high by 128-byte wide tile. The storage of tile data units in X-Major or
Y-Major fashion is sometimes refer to as the walk of the tiling.

 G45: Volume 1b: Graphics Core

82

Table 4-3. X-Major Tile Layout

OW
0 1 2 29 30 31

X-Major Tile
32 16B OWord Columns

8 R
ow

s

...

... ...
...

32 33 34

224 225 226

61 62 63

254 255

X-Major Tile

OWOW

OWOWOWOWOW

OW OWOWOWOWOW

OW OWOW OW

253

Note that an X-major tiled region with a tile pitch of 1 tile is actually stored in a linear fashion.

Figure 4-6. Y-Major Tile Layout

OW
0

OW
32

OW
192

OW
224

Y-Major Tile
8 16B OWord Columns

32 R
ow

s

... ...

OW
1

OW
33

OW
31

OW
63

193 225

223 255

OW OW

OW OW

YMajorTileInt

...

...

 G45: Volume 1b: Graphics Core

 83

4.5.3 Tiling Algorithm

The following pseudocode describes the algorithm for translating a tiled memory surface in graphics memory
to an address in logical space.

Inputs: LinearAddress(offset into regular or LT aperture in terms of bytes),

Pitch(in terms of tiles),

 WalkY (1 for Y and 0 for X)

Static Parameters: TileH (Height of tile, 8 for X and 32 for Y),

TileW (Width of Tile in bytes, 512 for X and 128 for Y)

TileSize = TileH * TileW;

RowSize = Pitch * TileSize;

If (Fenced) {

LinearAddress = LinearAddress – FenceBaseAddress
LinearAddrInTileW = LinearAddress div TileW;
Xoffset_inTile = LinearAddress mod TileW;
Y = LinearAddrInTileW div Pitch;
X = LinearAddrInTileW mod Pitch + Xoffset_inTile;

}

// Internal graphics clients that access tiled memory already have the X, Y

// coordinates and can start here
YOff_Within_Tile = Y mod TileH;
XOff_Within_Tile = X mod TileW;

TileNumber_InY = Y div TileH;
TileNumber_InX = X div TileW;

TiledOffsetY = RowSize * TileNumber_InY + TileSize * TileNumber_InX + TileH *

XOff_Within_Tile + YOff_Within_Tile * 16 + (XOff_Within_Tile mod 16);

TiledOffsetX = RowSize * TileNumber_InY + TileSize * TileNumber_InX + TileW *

YOff_Within_Tile + XOff_Within_Tile;

TiledOffset = WalkY? TiledOffsetY : TiledOffsetX;

TiledAddress = Tiled? (BaseAddress + TiledOffset): (BaseAddress + Y*LinearPitch + X);
}

The Y-Major tile formats have the characteristic that a surface element in an even row is located in the same
aligned 64-byte cacheline as the surface element immediately below it (in the odd row). This spatial locality
can be exploited to increase performance when reading 2x2 texel squares for bilinear texture filtering, or
reading and writing aligned 4x4 pixel spans from the 3D Render pipeline.

On the other hand, the X-Major tile format has the characteristic that horizontally-adjacent elements are
stored in sequential memory addresses. This spatial locality is advantageous when the surface is scanned in
row-major order for operations like display refresh. For this reason, the Display and Overlay memory streams
only support linear or X-Major tiled surfaces (Y-Major tiling is not supported by these functions). This has the

 G45: Volume 1b: Graphics Core

84

side effect that 2D- or 3D-rendered surfaces must be stored in linear or X-Major tiled formats if they are to be
displayed. Non-displayed surfaces, e.g., “rendered textures”, can also be stored in Y-Major order.

4.5.4 Tiling Support

The rearrangement of the surface elements in memory must be accounted for in device functions operating
upon tiled surfaces. (Note that not all device functions that access memory support tiled formats). This
requires either the modification of an element’s linear memory address or an alternate formula to convert an
element’s X,Y coordinates into a tiled memory address.

However, before tiled-address generation can take place, some mechanism must be used to determine
whether the surface elements accessed fall in a linear or tiled region of memory, and if tiled, what the tile
region pitch is, and whether the tiled region uses X-Major or Y-Major format. There are two mechanisms by
which this detection takes place: (a) an implicit method by detecting that the pre-tiled (linear) address falls
within a “fenced” tiled region, or (b) by an explicit specification of tiling parameters for surface operands (i.e.,
parameters included in surface-defining instructions).

The following table identifies the tiling-detection mechanisms that are supported by the various memory
streams.

Access Path Tiling-Detection Mechanisms Supported

Processor access through the Graphics
Memory Aperture

Fenced Regions

3D Render (Color/Depth Buffer access) Explicit Surface Parameters
Sampled Surfaces Explicit Surface Parameters
Blt operands Explicit Surface Parameters
Display and Overlay Surfaces Explicit Surface Parameters

4.5.4.1 Tiled (Fenced) Regions

The only mechanism to support the access of surfaces in tiled format by the host or external graphics client is
to place them within “fenced” tiled regions within Graphics Memory. A fenced region is a block of Graphics
Memory specified using one of the sixteen FENCE device registers. (See Memory Interface Registers for
details). Surfaces contained within a fenced region are considered tiled from an external access point of view.
Note that fences cannot be used to untile surfaces in the PGM_Address space since external devices cannot
access PGM_Address space. Even if these surfaces (or any surfaces accessed by an internal graphics client)
fall within a region covered by an enabled fence register, that enable will be effectively masked during the
internal graphics client access. Only the explicit surface parameters described in the next section can be used
to tile surfaces being accessed by the internal graphics clients.

Each FENCE register (if its Fence Valid bit is set) defines a Graphics Memory region ranging from 4KB to the
aperture size. The region is considered rectangular, with a pitch in tile widths from 1 tile width (128B or 512B)
to 256 tile X widths (256 * 512B = 128KB) and 1024 tile Y widths (1024 * 128B = 128KB). Note that fenced
regions must not overlap, or operation is UNDEFINED.

Also included in the FENCE register is a Tile Walk field that specifies which tile format applies to the fenced
region.

 G45: Volume 1b: Graphics Core

 85

4.5.4.2 Tiled Surface Parameters

Internal device functions require explicit specification of surface tiling parameters via information passed in
commands and state. This capability is provided to limit the reliance on the fixed number of fence regions.

The following table lists the surface tiling parameters that can be specified for 3D Render surfaces (Color
Buffer, Depth Buffer, Textures, etc.) via SURFACE_STATE.

Surface Parameter Description

Tiled Surface If ENABLED, the surface is stored in a tiled format. If
DISABLED, the surface is stored in a linear format.

Tile Walk If Tiled Surface is ENABLED, this parameter specifies whether
the tiled surface is stored in Y-Major or X-Major tile format.

Base Address Additional restrictions apply to the base address of a Tiled
Surface vs. that of a linear surface.

Pitch Pitch of the surface. Note that, if the surface is tiled, this pitch
must be a multiple of the tile width.

4.5.4.3 Tiled Surface Restrictions

Additional restrictions apply to the Base Address and Pitch of a surface that is tiled. In addition, restrictions
for tiling via SURFACE_STATE are subtly different from those for tiling via fence regions. The most restricted
surfaces are those that will be accessed both by the host (via fence) and by internal device functions. An
example of such a surface is a tiled texture that is initialized by the CPU and then sampled by the device.

The tiling algorithm for internal device functions is different from that of fence regions. Internal device
functions always specify tiling in terms of a surface. The surface must have a base address, and this base
address is not subject to the tiling algorithm. Only offsets from the base address (as calculated by X, Y
addressing within the surface) are transformed through tiling. The base address of the surface must
therefore be 4KB-aligned. This forces the 4KB tiles of the tiling algorithm to exactly align with 4KB device
pages once the tiling algorithm has been applied to the offset. The width of a surface must be less than or
equal to the surface pitch. There are additional considerations for surfaces that are also accessed by the host
(via a fence region).

Fence regions have no base address per se. Host linear addresses that fall in a fence region are translated in
their entirety by the tiling algorithm. It is as if the surface being tiled by the fence region has a base address
in graphics memory equal to the fence base address, and all accesses of the surfaces are (possibly quite
large) offsets from the fence base address. Fence regions have a virtual “left edge” aligned with the fence
base address, and a “right edge” that results from adding the fence pitch to the “left edge”. Surfaces in the
fence region must not straddle these boundaries.

Base addresses of surfaces that are to be accessed both by an internal graphics client and by the host have
the tightest restrictions. In order for the surface to be accessed without GTT re-mapping, the surface base
address (as set in SURFACE_STATE) must be a “Tile Row Start Address” (TRSA). The first address in each tile
row of the fence region is a Tile Row Start Address. The first TRSA is the fence base address. Each TRSA can
be generated by adding an integral multiple of the row size to the fence base address. The row size is simply
the fence pitch in tiles multiplied by 4KB (the size of a tile.)

 G45: Volume 1b: Graphics Core

86

Figure 4-7. Tiled Surface Placement

Til
eTile

Tile

Til
eTile

Tile

Til
eTile

Tile
Til
eTile

Tile

Til
eTile

Tile

Til
eTile

Tile

32B SW =
2 16B OWs

Pitch

Tiled Surface Placement

Linear (pre-tiled) Addresses Increase

Tile Placement Rules

Tiled
Surface

Tiled
Surface

Requires
Remapping for

Access by
Host and Gfx

Directly
Accessible

by Host and
Gfx (if

Surface Pitch
= Fence
Pitch)

Surface Base
Address = Tile
Start Address

Surface Base
Address =
Tile Row

Start Address

Fence Region
“Left Edge”

Fence
Region
“Right
Edge”Fence Base

Address

The pitch in SURFACE_STATE must be set equal to the pitch of the fence that will be used by the host to
access the surface if the same GTT mapping will be used for each access. If the pitches differ, a different GTT
mapping must be used to eliminate the “extra” tiles (4KB memory pages) that exist in the excess rows at the
right side of the larger pitch. Obviously no part of the surface that will be accessed can lie in pages that exist
only in one mapping but not the other. The new GTT mapping can be done manually by SW between the time
the host writes the surface and the device reads it, or it can be accomplished by arranging for the client to use
a different GTT than the host (the PPGTT -- see Logical Memory Mapping below).

 G45: Volume 1b: Graphics Core

 87

The width of the surface (as set in SURFACE_STATE) must be less than or equal to both the surface pitch and
the fence pitch in any scenario where a surface will be accessed by both the host and an internal graphics
client. Changing the GTT mapping will not help if this restriction is violated.

Surface Access Base Address Pitch Width Tile “Walk”

Host only No restriction Integral multiple of
tile size <= 128KB

Must be <= Fence
Pitch

No restriction

Client only 4KB-aligned Integral multiple of
tile size <= 256KB

Must be <=
Surface Pitch

Restrictions
imposed by the
client (see Per-

Stream Tile
Format Support)

Host and
Client, No GTT

Remapping

Must be TRSA Fence Pitch =
Surface Pitch =

integral multiple of
tile size <= 256KB

Width <= Pitch Surface Walk
must meet client

restriction,
Fence Walk =
Surface Walk

Host and
Client, GTT
Remapping

4KB-aligned
for client (will
be tile-aligned

for host)

Both must be
Integral multiple of
tile size <=128KB,

but not necessarily
the same

Width <=
Min(Surface
Pitch, Fence

Pitch)

Surface Walk
must meet client

restriction, Fence
Walk = Surface

Walk

 G45: Volume 1b: Graphics Core

88

4.5.5 Per-Stream Tile Format Support

MI Client Tile Formats Supported

CPU
Read/Write

All

Display/Overlay Y-Major not supported.
X-Major required for Async Flips

Blt Linear and X-Major only
No Y-Major support

3D Sampler All Combinations of TileY, TileX and Linear are supported. TileY is
the fastest, Linear is the slowest.

3D Color,Depth

Rendering Mode
Color-vs-Depth bpp

Buffer Tiling Supported

Classical

Same Bpp

Both Linear
Both TileX
Both TileY

Linear & TileX
Linear & TileY
TileX & TileY

Classical

Mixed Bpp

Both Linear
Both TileX
Both TileY

Linear & TileX
Linear & TileY
TileX & TileY

NOTE: 128BPE Format Color buffer (render target) MUST be
either TileX or Linear.

4.6 Logical Memory Mapping

In order to provide a contiguous address space for graphics operands (surfaces, etc.) yet allow this address
space to be mapped onto possibly discontiguous physical memory pages, the internal graphics device supports
a Logical Memory Space. A global Graphics Translation Table (GTT) is provided to map zero-based (and post-
tiled) Logical Memory Addresses into a set of 4KB physical memory pages. (This mapping is also used for
external PEG devices.)

There is another logical mapping function available local to each graphics process; this works identically to the
global GTT with some additional restrictions. The base address for this per-process GTT (PPGTT) is
determined by the PGTBL_CTL2 register. This register is saved and restored with ring context, thus providing
each graphics context with its own local translation table and protected memory space (see Rendering Context
Management later in this chapter).

The GTT and PPGTT are arrays of 4-byte Page Table Entries (PTEs) physically located in Main Memory. The
GTT and PPGTT are comprised of a number of locked (non-swappable) physically-contiguous 4KB memory
pages, with a maximum size (each) of 128 4KB pages (128K DWords map 128K*4KB = 512MB max) for
Global GTT, and up to 512 4KB pages for PPGTT, for total up to 2GB max. GTT and PPGTT base addresses
must be 4KB-aligned.

 G45: Volume 1b: Graphics Core

 89

Note that the PTEs within the global GTT must be written only through GTTADDR (see the Device #2 Config
registers for a description of this range), as the MI function needs to snoop PTE updates in order to invalidate
TLBs, which cache PTEs. The PGTBL_CTL register also contains a Page Table Enable bit used to enable/disable
Logical Memory mapping. With the exception of processor Read, Cursor and VGA clients, access to graphics
memory is not permitted when the Page Table Enable bit is clear (i.e., disabled). The PGTBL_ER debug
register provides information pertaining to HW-detected errors in the Logical Memory Mapping function (e.g.,
invalid PTEs, invalid mappings, etc.).

The PPGTT base address is also 4KB aligned, but it is programmed directly in physical memory space rather
than through an alias mechanism like GTTADDR. Note that not all clients may use the PPGTT; only the global
GTT is available for processor accesses as well as graphics accesses from display engines (including overlay
and cursor). Any per-process access that occurs while the PPGTT is disabled (via a bit in PGTBL_CTL2) will
default to a translation via the global GTT.

4.6.1 Logical Memory Space Mappings

Each valid PTE maps a 4KB page of Logical Memory to an independent 4KB page of:

• MM: Main Memory (unsnooped), or

• SM: System Memory (snooped, therefore coherent with the processor cache, must not be accessed
through the Dev2_GM_Address range by the CPU)

PTEs marked as invalid have no backing physical memory, and therefore the corresponding Logical Memory
Address pages must not be accessed in normal operation.

 G45: Volume 1b: Graphics Core

90

Figure 4-8. Global and Render GTT Mapping

Physical system
memory allocated to gfx

Physical
Address space

Per-Process
Graphics Virtual
Address Space

Global Graphics
Aperture

(Over top of
memory)

Top of Memory (TOM)

Per Process Translation

(divided in 4KB pages)

(divided in 4KB pages)

Gfx System Memory
Translation

Allocation

Gfx Device

CPU

MIFTranslationDiagram

Allocation

 G45: Volume 1b: Graphics Core

 91

The following table lists the memory space mappings valid for each MI client:

MI Client Logical Memory
Space Mappings

Supported

xGTT Usage

External Clients

Host Processor MM GTT only

External PEG Device None n/a

Snooped Read/Write None n/a

Internal GPU Clients

Render Command Ring
Buffers

MM GTT/PGTT, selected by
PGTBL_STR2<2>

Render Command Batch
Buffers

MM GTT/PGTT, selected by
PGTBL_STR2<5>

Indirect State Buffers MM GTT/PGTT, selected by
PGTBL_STR2<4>

CURBE Constant Data MM Same xGTT used to fetch the
CONSTANT_BUFFER command.

Media Object Indirect Data MM Same xGTT used to fetch the
MEDIA_OBJECT command.

Vertex Fetch Data MM, SM GTT/PGTT, selected by
PGTBL_STR2<3>

Sampler Cache (RO) MM, SM GTT/PGTT, selected by
PGTBL_STR2<1>

DataPort Render Cache (R/W) MM, SM GTT/PGTT, selected by
PGTBL_STR2<0>

Depth Buffer Cache (R/W) MM GTT/PGTT, selected by
PGTBL_STR2<0>

Blit Engine MM, SM GTT/PGTT, selected by
PGTBL_STR2<0>

MI_STORE_DATA_IMM
Destination (if virtual
addressed)

MM, SM Same xGTT used to fetch the
command.

PIPE_CONTROL Write
Destination

MM, SM GTT/PGTT, selected by the
command

Display/Overlay Engines
(internal)

MM GTT only

Usage Note: Since the CPU cannot directly access memory pages mapped through a Graphics Process’ local
GTT (PPGTT), these pages must also be mapped though the global GTT (at least temporarily) in order for the
CPU to initialize graphics data for a Graphics Process.

The PPGTT mechanism can be used by a client to access a surface with a pitch that is smaller than that of the
fence region used by the host to initialize the surface, without having to physically move the data in memory.

 G45: Volume 1b: Graphics Core

92

Figure 4-9. GTT Re-mapping to Handle Differing Pitches

Refer to the “Graphics Translation Table (GTT) Range (GTTADR) & PTE Description“ in Memory Interface
Registers for details on PTE formats and programming information. Refer to the Memory Data Formats
chapter for device-specific details/restrictions regarding the placement/storage of the various data objects
used by the graphics device.

Figure 4-10. Logical-to-Physical Graphics Memory Mapping

Logical Page Number Offset into 4KB Page

GTT/
PGTT TLB

Physical Page Number36-bit Addressing
Extension Offset into 4KB Page

012 1131

012 11313235

Physical Memory Address

Logical Memory Address

Graphics Mem Mapping

 G45: Volume 1b: Graphics Core

 93

4.7 Physical Graphics Memory

The integrated graphics device satisfies all of its memory requirements using portions of main system
memory. The integrated graphics device operates without any dedicated local memory, in a lower-cost
configuration typically (though not necessarily officially) known as Unified Graphics Memory (UMA).

Figure 4-11 shows how the Main Memory is interfaced to the device.

Figure 4-11. Memory Interfaces

Integrated
Graphics
Device

Processor

Main
Memory

Processor
Side Bus

PEG Port DMI

Cache

CPU Cache
Snoops

MIF UMA Mem Int

4.7.1 Physical Graphics Address Types

Error! Reference source not found. lists the various physical address types supported by the integrated
graphics device. Physical Graphics Addresses are either generated by Logical Memory mappings or are directly
specified by graphics device functions. These physical addresses are not subject to tiling or GTT re-mappings.

Table 4-4. Physical Memory Address Types

Address Type Description Range

MM_Address Main Memory Address. Offset into physical,
unsnooped Main Memory.

[0,TopOfMemory-
1]

SM_Address System Memory Address. Accesses are
snooped in processor cache, allowing shared
graphics/ processor access to (locked)
cacheable memory data.

[0,4GB]

 G45: Volume 1b: Graphics Core

94

4.7.2 Main Memory
The integrated graphics device is capable of using 4KB pages of physical main (system) memory for graphics
functions. Some of this main memory can be “stolen” from the top of system memory during initialization
(e.g., for a VGA buffer). However, most graphics operands are dynamically allocated to satisfy application
demands. To this end the graphics driver will frequently need to allocate locked-down (i.e., non-swappable)
physical system memory pages – typically from a cacheable non-paged pool. The locked pages required to
back large surfaces are typically non-contiguous. Therefore a means to support “logically-contiguous” surfaces
backed by discontiguous physical pages is required. The Graphics Translation Table (GTT) that was described
in previous sections provides the means.

4.7.2.1 Optimizing Main Memory Allocation

This section includes information for software developers on how to allocate SDRAM Main Memory (SM) for
optimal performance in certain configurations. The general idea is that these memories are divided into some
number of page types, and careful arrangement of page types both within and between surfaces (e.g.,
between color and depth surfaces) will result in fewer page crossings and therefore yield somewhat higher
performance.

The algorithm for allocating physical SDRAM Main Memory pages to logical graphics surfaces is somewhat
complicated by (1) permutations of memory device technologies (which determine page sizes and therefore
the number of pages per device row), (2) memory device row population options, and (3) limitations on the
allocation of physical memory (as imposed by the OS).

However, the theory to optimize allocation by limiting page crossing penalties is simple: (a) switching
between open pages is optimal (again, the pages do not need to be sequential), (b) switching between
memory device rows does not in itself incur a penalty, and (c) switching between pages within a particular
bank of a row incurs a page miss and should therefore be avoided.

4.7.2.2 Application of the Theory (Page Coloring)

This section provides some scenarios of how Main Memory page allocation can be optimized.

4.7.2.2.1 3D Color and Depth Buffers

Here we want to minimize the impact of page crossings (a) between corresponding pages (1-4 tiles) in the
Color and Depth buffers, and (b) when moving from a page to a neighboring page within a Color or Depth
buffer. Therefore corresponding pages in the Color and Depth Buffers, and adjacent pages within a Color or
Depth Buffer should be mapped to different page types (where a page’s “type” or “color” refers to the row and
bank it’s in).

 G45: Volume 1b: Graphics Core

 95

Figure 4-12. Memory Pages backing Color and Depth Buffers

 Color Buffer

Page
Type 0

Page
Type 1

Page
Type 0

Page
Type 1

Page
Type 2

Page
Type 3

Page
Type 2

Page
Type 3...

Page
Type 0

Page
Type 1

Page
Type 0

Page
Type 1

Page
Type 2

Page
Type 3

Page
Type 2

Page
Type 3

...
...

...
...

...

Depth Buffer

Page
Type 3

Page
Type 2

Page
Type 3

Page
Type 2

Page
Type 1

Page
Type 0

Page
Type 1

Page
Type 0...

...

...

...

Page
Type 3

Page
Type 2

Page
Type 3

Page
Type 2

Page
Type 1

Page
Type 0

Page
Type 1

Page
Type 0

...
...

...
...

...

For higher performance, the Color and Depth Buffers could be allocated from different memory device rows.

4.7.2.2.2 Media/Video

The Y surfaces can be allocated using 4 page types in a similar fashion to the Color Buffer diagram above.
The U and V surfaces would split the same 4 page types as used in the Y surface.

§§

5 Device Programming Environment
The graphics device contains an extensive set of registers and commands (also referred to as “commands” or
“packets”) for controlling 2D, 3D, video I/O, and other operations. This chapter describes the programming
environment and software interface to these registers/commands. The registers and commands themselves
are described elsewhere in this document.

5.1 Programming Model
The graphics device is programmed via the following three basic mechanisms:

POST-Time Programming of Configuration Registers

These registers are the graphics device registers residing in PCI space. A majority of these registers are
programmed once during POST of the video device. Configuration registers are not covered in this section.
For details on accessing the graphics device’s configuration space see the EDS.

Direct (Physical I/O and/or Memory-Mapped I/O) Access of Graphics Registers

Various graphics functions can only be controlled via direct register access. In addition, direct register access
is required to initiate the (asynchronous) execution of graphics command streams. This programming
mechanism is “direct” and synchronous with software execution on the CPU.

Command Stream DMA (via the Command Ring Buffer and Batch Buffers)

This programming mechanism utilizes the indirect and asynchronous execution of graphics command streams
to control certain graphics functions, e.g., all 2D, 3D drawing operations. Software writes commands into a
command buffer (either a Ring Buffer or Batch Buffer) and informs the graphics device (using the Direct
method above) that the commands are ready for execution. The graphics device’s Command Parser (CP) will
then, or at some point in the future, read the commands from the buffer via DMA and execute them.

5.2 Graphics Device Register Programming
The graphics device registers (except for the Configuration registers) are memory mapped. The base address
of this 512 KB memory block is programmed in the MMADR Configuration register. For a detailed description
of the register map and register categories, refer to the Register Maps chapter.

Programming Note:

Software must only access GR06, MSR0, MSR1, and Paging registers (see Register Maps) via Physical I/O,
never via Memory Mapped I/O.

 G45: Volume 1b: Graphics Core

 97

5.3 Graphics Device Command Streams

This section describes how command streams can be used to initiate and control graphics device operations.

5.3.1 Command Use

Memory-resident commands are used to control drawing engines and other graphics device functional units:

• Memory Interface (MI) Commands. The MI commands can be used to control and synchronize the
command stream as well as perform various auxiliary functions (e.g., perform display/overlay flips,
etc.)

• 2D Commands (BLT). These commands are used to perform various 2D (Blt) operations.

• 3D Commands. 3D commands are used to program the 3D pipeline state and perform 3D
rendering operations. There are also a number of 3D commands that can be used to accelerate 2D
and video operations, e.g., “StretchBlt” operations, 2D line drawing, etc.

• Video (MPEG) Decode Commands. A set of commands are supported to perform video decode
acceleration including Motion Compensation operations via the Sampling Engine of the 3D pipeline.

5.3.2 Command Transport Overview

Commands are not written directly to the graphics device – instead they are placed in memory by software
and later read via DMA by the graphics device’s Command Parser (CP) within the Memory Interface function.
The primary mechanism used to transport commands is through the use of a Ring Buffer.

An additional, indirect mechanism for command transport is through the use of Batch Buffers initiated from
the Ring buffer.

The Command Parser uses a set of rules to determine the order in which commands are executed. Following
sections in this chapter provide descriptions of the Ring Buffer, Batch Buffers, and Command Parser arbitration
rules.

 G45: Volume 1b: Graphics Core

98

5.3.3 Command Parser

The graphics device’s Command Parser (CP) is responsible for:

• Detecting the presence of commands (within the Ring Buffer).
• Reading commands from the Ring Buffer and Batch Buffers via DMA. This includes support of the

automatic head report function.
• Parsing the common "Command Type" (destination) field of commands.
• Execution of Memory Interface commands that control CP functionality, provide synchronization

functions, and provide display and overlay flips as well as other miscellaneous control functions.
• Redirection of 2D, 3D and Media commands to the appropriate destination (as qualified by the

INSTPM register) while enforcing drawing engine concurrency and coherency rules.
• Performing the “Sync Flush” mechanism
• Enforcing the Batch Buffer protection mechanism

Figure 5-1 is a high-level diagram of the graphics device command interface.

Figure 5-1. Graphics Controller Command Interface

DMA
FIFO

Command
Parser

3D Commands (3D state,
3D Primitives, Media)

2D Commands

MIF Ring Parsing

3D/Media
Engine

BLT
Engine

Command access and decoding

Primary Ring Buffers
(Graphics Memory)

Command

Batch Buff Strt

Batch Buffers

Command

- Parser Control
 (e.g., Batch Buffer Commands,
 NOP, Flush)

- Memory Interface Control
 (e.g., Store Data to memory)

- Display/Overlay Control
 (e.g., Front Buffer, Scan

 Lines, Overlay Flip)

Memory Interface Commands

Display
Engine

Overlay
Engine

DMA

5.3.4 The Ring Buffer
The ring buffer is defined by a set of Ring Buffer registers and a memory area that is used to hold the actual
commands. The Ring Buffer registers (described in full below) define the start and length of the memory
area, and include two “offsets” (head and tail) into the memory area. Software uses the Tail Offset to inform
the CP of the presence of valid commands that must be executed. The Head Offset is incremented by the CP
as those commands are parsed and executed. The list of commands can wrap from the bottom of the buffer
back to the top. Also included in the Ring Buffer registers are control fields that enable the ring and allow the
head pointer to be reported to cacheable memory for more efficient flow control algorithms.

 G45: Volume 1b: Graphics Core

 99

Figure 5-2. Ring Buffer

Buffer
Length

Starting Address

Ring Buffer

Valid
Instructions

Head
Offset

Tail
Offset

Graphics Memory

Ring_Buf

5.3.4.1 The Ring Buffer (RB)

Ring Buffer support:

Batch Buffer initiation

Indirect Data (operand access)

5.3.4.2 Ring Buffer Registers

A Ring Buffer is defined by a set of 4 Ring Buffer registers. Before a Ring Buffer can be used for command
transport, software needs to program these registers. The fields contained within these registers are as
follows:

Ring Buffer Valid: This bit controls whether the Ring Buffer is included in the command arbitration
process. Software must program all other Ring Buffer parameters before enabling a Ring Buffer.
Although a Ring Buffer can be enabled in the non-empty state, it must not be disabled unless it is empty.
Attempting to disable a Ring Buffer in the non-empty state is UNDEFINED. Enabling or disabling a Ring
Buffer does not of itself change any other Ring Buffer register fields.

Start Address: This field points to a contiguous, 4KB-aligned, linear (i.e., must not be tiled), mapped
graphics memory region which provides the actual command buffer area. Writing the Start Address has
the side effect of clearing the Head Offset and Head Wrap Count fields.

Buffer Length: The size of the buffer, in 4KB increments, up to 2MB.
Head Offset: This is the DWord offset (from Start Address) of the next command that the CP will parse

(i.e., it points one DWord past the last command parsed). The CP will update this field as commands are
parsed – the CP typically continues parsing new commands before the previous command operations
complete. (Note that, if commands are pending execution, the CP will likely have prefetched commands
past the Head Offset). As the graphics device does not "reset" the Head Offset when a Ring Buffer is
enabled, software must program the Head Offset field before enabling the Ring Buffer. Software can
enable a Ring Buffer with any legal values for Head/Tail (i.e., can enable the Ring Buffer in an non-empty
state). It is anticipated, but not required, that software enable The Ring Buffer with Head and Tail Offsets
of 0. Once the Head Offset reaches the QWord specified by the Tail Offset (i.e., the offsets are equal), the
CP considers the Ring Buffer "empty".

Head Wrap Count: This field is incremented by the CP every time the Head Offset wraps back to the start
of the buffer. As it is included in the DWord written in the "report head" process, software can use this

 G45: Volume 1b: Graphics Core

100

field to track CP progress as if the Ring Buffer had a "virtual" length of 2048 times the size of the actual
physical buffer (up to 4GB).

Tail Offset: This is the offset (from Start Address) of the next QWord of command data that software will
request to be executed (i.e., it points one DWord past the last command DWord submitted for execution).
The Tail Offset can only point to an command boundary – submitting partial commands is UNDEFINED. As
the Tail Offset is a QWord offset, this requires software to submit commands in multiples of QWords (both
DWords of the last QWord submitted must contain valid command data). Software may therefore need to
insert a “pad” command to meet this restriction. After writing commands into the Ring Buffer, software
updates the Tail Offset field in order to submit the commands for execution (by setting it to the QWord
offset past the last command). The commands submitted can wrap from the end of the buffer back to the
top, in which case the Tail Offset written will be less than the previous value. As the “empty” condition is
defined as “Head Offset == Tail Offset”, the largest amount of data that can be submitted at any one time
is one QWord less than the Ring Buffer length.

IN USE Semaphore Bit: This bit (included in the Tail Pointer register) is used to provide a HW semaphore
that SW can use to manage access to the individual The Ring Buffer. See the Ring Buffer Semaphore
section below.

Automatic Report Head Enable: Software can request to have the hardware Head Pointer register
contents written ("reported") to snooped system memory on a periodic basis. Auto-reports can be
programmed to occur whenever the Head Offset crosses either a 64KB or 128KB boundary. (Note
therefore that a Ring Buffer must be at least 64KB in length for the auto-report mechanism to be useful).
The complete Head Pointer register will be stored at a Ring Buffer-specific DWord offset into the "hardware
status page" (defined by the HWSTAM register). The auto-report mechanism is desirable as software
needs to use the Head Offset to determine the amount of free space in the Ring Buffer -- and having the
Head Pointer periodically reported to system memory provides a fairly up-to-date Head Offset value
automatically (i.e., without having to explicitly store a Head Pointer value via the MI_REPORT_HEAD
command).

Table 5-1. Ring Buffer Characteristics

Characteristic Description

Alignment 4 KB page aligned.
Max Size 2 MB
Length Programmable in numbers of 4 KB pages.
Start Pointer Programmable 4KB page-aligned address of the buffer
Head pointer Hardware maintained DWord Offset into the ring buffer. Commands

can wrap.
Programmable to initially set up ring.

Tail pointer Programmable QWord Offset into the ring buffer – indicating the
next QWord where software can insert new commands.

5.3.4.3 Ring Buffer Placement

Ring Buffer memory buffers are defined via a Graphics Address and must physically reside in
(uncached) Main Memory. There is no support for The Ring Buffer in cacheable system
memory.

5.3.4.4 Ring Buffer Initialization

Before initializing a Ring Buffer, software must first allocate the desired number of 4KB pages
for use as buffer space. Then the Ring Buffer registers associated with the Ring Buffer can be
programmed. Once the Ring Buffer Valid bit is set, the Ring Buffer will be considered for

 G45: Volume 1b: Graphics Core

 101

command arbitration, and the Head and Tail Offsets will either indicate an empty Ring Buffer
(i.e., Head Offset == Tail Offset), or will define some amount of command data to be executed.

5.3.4.5 Ring Buffer Use

Software can write new commands into the "free space" of the Ring Buffer, starting at the Tail
Offset QWord and up to the QWord prior to the QWord indicated by the Head Offset. Note that
this "free space" may wrap from the end of the Ring Buffer back to the start (hence the “ring” in
the name).

While the “free space” wrap may allow commands to be wrapped around the end of the Ring
Buffer, the wrap should only occur between commands. Padding (with NOP) may be required to
follow this restriction.

Software is required to use some mechanism to track command parsing progress in order to
determine the "free space" in the Ring Buffer. This can be accomplished in one of the following
ways:

1. A direct read (poll) of the Head Pointer register. This gives the most accurate indication
but is expensive due to the uncached read.

2. The automatic reporting of the Head Pointer register in the Hardware Status Page. This
has low impact as no uncached reads or command overhead is involved. However, given
the 64KB/128KB granularity of auto-reports, this mechanism only works well on fairly
large The Ring Buffer.

3. The explicit reporting of the Head Pointer register via the MI_REPORT_HEAD command.
This allows for flexible and more accurate reporting but comes at the cost of command
bandwidth and execution time, in addition to the software overhead to determine how
often to report the head.

4. Some other "implicit" means by which software can determine how far the CP has
progressed in retiring commands from a Ring Buffer. This could include the use of "Store
DWORD" commands to write sequencing data to system memory. This has similar
characteristics to using the MI_REPORT_HEAD mechanism.

Once the commands have been written and, if necessary, padded out to a QWord, software can
write the Tail Pointer register to submit the new commands for execution. The uncached write
of the Tail Pointer register will ensure that any pending command writes are flushed from the
processor.

If the Ring Buffer Head Pointer and the Tail Pointer are on the same cacheline, the Head Pointer
must not be greater than the Tail Pointer.

5.3.4.6 Ring Buffer Semaphore

When the Ring Buffer Mutex Enable (RBME) bit if the INSTPM MI register is clear, all Tail Pointer IN USE
bits are disabled (read as zero, writes ignored). When RBME is enabled, the IN USE bit acts as a Ring Buffer
semaphore. If the Tail Pointer is read, and IN USE is clear, it is immediately set after the read. Subsequent
Tail Pointer reads will return a set IN USE bit, until IN USE is cleared by a Tail Pointer write.

This allows SW to maintain exclusive ring access through the following protocol: A SW agent needing exclusive
ring access must read the Tail Pointer before accessing the Ring Buffer: if the IN USE bit is clear, the agent
gains access to the Ring Buffer; if the IN USE bit is set, the agent has to wait for access to the Ring Buffer (as
some other agent has control). The mechanism to inform pending agents upon release of the IN USE
semaphore is unspecified (i.e., left up to software).

 G45: Volume 1b: Graphics Core

102

5.3.5 Batch Buffers
The graphics device provides for the execution of command sequences external to the Ring buffer. These
sequences are called "Batch Buffers", and are initiated through the use of various Batch Buffer commands
described below. When a Batch Buffer command is executed, a batch buffer sequence is initiated, where the
graphics device fetches and executes the commands sequentially via DMA from the batch buffer memory.

5.3.5.1 Batch Buffer Chaining

What happens when the end of the Batch Buffer is reached depends on the final command in the buffer.
Normally, when a Batch Buffer is initiated from a Ring Buffer, the completion of the Batch Buffer will cause
control to pass back to the Ring Buffer at the command following the initiating Batch Buffer command.

However, the final command of a Batch Buffer can be another Batch Buffer-initiating command
(MI_BATCH_BUFFER_START). In this case control will pass to the new Batch Buffer. This process, called
chaining, can continue indefinitely, terminating with a Batch Buffer that does not chain to another Batch Buffer
(ends with MI_BATCH_BUFFER_END) – at which point control will return to the Ring Buffer.

Figure 5-3. Batch Buffer Chaining

Buffer
Chaining

From Ring Buffer

Return to Ring Buffer

Command

Batch Buffer Start

Buffer
Chaining

Command

Command

Batch Buffer End

Command

Command

Batch Buffer Start

Command

MIF Batch Chain

5.3.5.2 Ending Batch Buffers

The end of the Batch Buffer is determined as the buffer is being executed: either by (a) an
MI_BATCH_BUFFER_END command, or (b) a “chaining” MI_BATCH_BUFFER_START command. There is no
explicit limit on the size of a Batch Buffer that uses GTT-mapped memory. Batch buffers in physical space
cannot exceed one physical page (4KB).

5.3.6 Indirect Data
In addition to Ring Buffer and Batch Buffers, the MI supports the access of indirect data for some specific
command types. (Normal read/write access to surfaces isn’t considered indirect access for this discussion).

5.3.6.1 Logical Contexts

Logical Contexts, indirectly referenced via the MI_SET_CONTEXT command, must reside in (unsnooped) Main
Memory.

 G45: Volume 1b: Graphics Core

 103

5.3.7 Command Arbitration

The command parser employs a set of rules to arbitrate among these command stream sources. This section
describes these rules and discusses the reasoning behind the algorithm.

5.3.7.1 Arbitration Policies and Rationale

The Ring buffer (RB) is considered the primary mechanism by which drivers will pass commands to the
graphics device.

The insertion of command sequences into the Ring Buffer must be a "synchronous" operation, i.e., software
must guarantee mutually exclusive access to the Ring Buffer among contending sources (drivers). This
ensures that one driver does not corrupt another driver's partially-completed command stream. There is
currently no support for unsynchronized multi-threaded insertion of commands into ring buffer.

Another requirement for asynchronous command generation arises from competing (and asynchronous)
drivers (e.g., "user-mode" driver libraries). In this case, the desire is to allow these entities to construct
command sequences in an asynchronous fashion, via batch buffers. Synchronization is then only required to
"dispatch" the batch buffers via insertion of Batch Buffer commands inserted into the Ring Buffer.

Software retains some control over this arbitration process. The MI_ARB_ON_OFF command disables all other
sources of command arbitration until re-enabled by a subsequent MI_ARB_ON_OFF command from the same
command stream. This can be used to define uninterruptible "critical sections" in an command stream (e.g.,
where some device operation needs to be protected from interruption). Disabling arbitration from a batch
buffer without re-enabling before the batch is complete is UNDEFINED.

Batch Buffers can be (a) interruptible at command boundaries, (b) interruptible only at chain points, or (c)
non-interruptible. See MI_BATCH_BUFFER_START in Memory Interface Commands for programming details.

5.3.7.2 Wait Commands

The MI_WAIT_EVENT command is provided to allow command streams to be held pending until an
asynchronous event occurs or condition exists. An event is defined as occurring at a specific point in time
(e.g., the leading edge of a signal, etc.) while a condition is defined as a finite period of time. A wait on an
event will (for all intents and purposes) take some non-zero period of time before the subsequent command
can be executed. A wait on a condition is effectively a noop if the condition exists when the MI_WAIT_EVENT
command is executed.

A Wait in the Ring Buffer or batch buffer will cause the CP to treat the Ring Buffer as if it were empty until the
specific event/condition occurs. This will temporarily stall the Ring Buffer.

While the Ring Buffer is waiting, the RB Wait bit of the corresponding RBn_CTL register will be set. Software
can cancel the wait by clearing this bit (along with setting the RB Wait Write Enable bit). This will terminate
the wait condition and the Ring Buffer will be re-enabled. This sequence can be included when software is
required to flush all pending device operations and pending Ring Buffer waits cannot be tolerated.

5.3.7.3 Wait Events/Conditions

This section describes the wait events and conditions supported by the MI_WAIT_EVENT command. Only one
event or condition can be specified in an MI_WAIT_EVENT, though different command streams can be
simultaneously waiting on different events.

 G45: Volume 1b: Graphics Core

104

5.3.7.3.1 Display Pipe A,B Vertical Blank Event

The Vertical Blank event is defined as “shortly after” the leading edge of the next display VBLANK period of
the corresponding display pipe. The delay from the leading edge is provided to allow for internal device
operations to complete (including the update of display and overlay status bits, and the update of overlay
registers).

5.3.7.3.2 Display Pipe A,B Horizontal Blank Event

The Horizontal Blank event is defined as “shortly after” the leading edge of the next display HBLANK period of
the corresponding display pipe.

5.3.7.3.3 Display Plane A, B, C , Flip Pending Condition

The Display Flip Pending condition is defined as the period starting with the execution of a “flip”
(MI_DISPLAY_BUFFER_INFO) command and ending with the completion of that flip request.
Note that the MI_DISPLAY_BUFFER_INFO command can specify whether the flip should be
synchronized to vertical refresh or completed “as soon as possible” (likely some number of
horizontal refresh cycles later).

5.3.7.3.4 Overlay Flip Pending Condition

The Overlay Flip Pending condition is similar to the Display Flip Pending condition, with the
exception that overlay flips are only performed synchronously with display refresh.

5.3.7.3.5 Display Pipe A,B Scan Line Window Conditions

The graphics device supports two conditions relating to the progress of refresh within a
particular display stream. A “Scan Line Window” is defined as the period of time between the
refresh of two specific display scan lines. The MI_WAIT_ON_EVENT command can be used to
pause an command stream while a particular display refresh is inside or outside the Scan Line
Window. (Actually, the MI_WAIT_EVENT command only supports waiting on the Scan Line
Window condition, and the MI_LOAD_SCAN_LINES_INCL or MI_LOAD_SCAN_LINES_EXCL are
used to define an “inclusive” or “exclusive” window).

If no Scan Line Window has been defined for the particular display stream, the MI_WAIT_EVENT
specifying the Scan Line Window event will never introduce a wait.

5.3.7.3.6 Semaphore Wait Condition

One of the 8 defined condition codes contained within the Execute Condition Code (EXCC)
Register can be selected as the source of a wait condition. While the selected condition code
bit is set, the initiating command stream will be removed from arbitration (i.e., paused).
Arbitration of that command stream will resume once the condition code bit is clear. If the
selected condition code is clear when the WAIT_ON_EVENT is executed, the command is
effectively ignored.

5.3.7.4 Command Arbitration Points

The CP performs arbitration for command execution at the following points:

• Upon execution of an MI_ARB_CHECK command

• When the ring buffer becomes empty

 G45: Volume 1b: Graphics Core

 105

5.3.7.5 Command Arbitration Rules

At an arbitration point, the CP will switch to the new head pointer contained in
the UHPTR register if it is valid. Otherwise it will idle if empty, or continue
execution in the current command flow if it arbitrated due to an
MI_ARB_CHECK command.

5.3.7.6 Batch Buffer Protection

The CP employs a protection mechanism to help prevent random writes to system memory from occurring as
a result of the execution of a batch buffer generated by a “non-secure” agent (e.g., client-mode library).
Commands executed directly from a ring buffer, along with batch buffers initiated from a ring buffer and
marked as “secure”, will not be subject to this protection mechanism as it is assumed they can only be
generated by “secure” driver components.

This protection mechanism is enabled via a field in a Batch Buffer command that indicates whether the
associated batch buffer is “secure” or “non-secure”. When the CP processes a non-secure batch buffer from
the ring buffer it does not allow any MI_STORE_DATA_IMM commands that reference physical addresses, as
that would allow the non-secure source to perform writes to any random DWord in the system. (Note that
graphics engines will only write to graphics memory ranges, which by definition are virtual memory ranges
mapped into physical memory pages by trusted driver components using the GTT/TGTT hardware). Placing an
MI_STORE_DATA in a non-secure batch buffer will instead cause a Command Error. The CP will store the
header of the command, the origin of the command, and an error code. In addition, such a Command Error
can generate an interrupt or a hardware write to system memory (if these actions are enabled and unmasked
in the IER and IMR registers respectively.) At this point the CP can be reactivated only by a full reset.

The security indication field of Batch Buffer instructions placed in batch buffers (i.e., “chaining” batch buffers)
is ignored and the chained batch buffer will therefore inherit the security indication of the first Batch Buffer in
the chain (i.e. the batch buffer that was initiated by an MI_BATCH_BUFFER_START command in the Ring
Buffer).

5.3.8 Graphics Engine Synchronization

This table lists the cases where engine synchronization is required, and whether software needs to ensure
synchronization with an explicit MI_FLUSH command or whether the device performs an implicit (automatic)
flush instead. Note that a pipeline flush can be performed without flushing the render cache, but not vice
versa.

Event Implicit Flush or Requires Explicit
Flush?

PIPELINE_SELECT Requires explicit pipeline flush
Any Non-pipelined State Command Device implicitly stalls the command

until the pipeline has drained
sufficiently to allow the state update
to be performed without corrupting
work-in-progress

MI_SET_CONTEXT Device performs implicit flush
MI_DISPLAY_BUFFER_INFO
(“display flip”)

Requires explicit render cache flush

MI_OVERLAY_FLIP Requires explicit render cache flush

 G45: Volume 1b: Graphics Core

106

Event Implicit Flush or Requires Explicit
Flush?

3D color destination buffer (render target)
used as texture (i.e., “rendered texture”)

Requires explicit render cache flush

MEDIA_STATE_POINTERS Requires explicit pipeline flush
MEDIA_OBJECT Requires explicit pipeline flush
Media: Previous Destination Used as Source Requires explicit render cache flush

 G45: Volume 1b: Graphics Core

 107

5.3.9 Graphics Memory Coherency
Table 5-2. Graphics Memory Coherency lists the various types of graphics memory coherency provided by the
device, specifically where the CPU writes to a 64B cacheline, and the device then accesses that same
cacheline. Note that the coherency policy depends on the address type (GM or MM) involved in the accesses.

Table 5-2. Graphics Memory Coherency

CPU Access Subsequent
Device Access

Example
Operand

Coherency

Write GM Read GM TBD
Write MM Read MM Batch

Buffer
TBD

Write GM Write GM Device ensures coherency following
every Ring Buffer Tail Pointer write.
(This can be made optional via a bit in
the Tail Pointer data).

Write MM Write MM TBD
“assumed to exclusive byte” ?

Write GM Read MM Device ensures coherency following
every Ring Buffer Tail Pointer write.
(This can be made optional via a bit in
the Tail Pointer data).

5.3.10 Graphics Cache Coherency
There are several caches employed within the graphics device implementation. This section describes the
impact of these caches on the programming model (i.e., if/when does software need to be concerned).

5.3.10.1 Rendering Cache

The rendering (frame buffer) cache is used by the blit and 3D rendering engines and caches portions of the
frame buffer color and depth buffers. This cache is guaranteed to be flushed under the following conditions
(note that the implementation may flush the cache under additional, implementation-specific conditions):

• Execution of an MI_FLUSH command with the Render Flush Cache Inhibit bit clear

• Execution of a PIPE_CONTROL instruction with the Write Cache Flush Enable bit set (Depth Stall
must be clear).

• A SyncFlush handshake operation

• A change of rendering engines (e.g., going from 2D to 3D, 3D to 2D, etc.)

• Logical Context switch (via MI_SET_CONTEXT) The render cache must be explicitly flushed using
one of these mechanisms under certain conditions. See Graphics Engine Synchronization above.

5.3.10.2 Sampler Cache

The read-only sampler cache is used to cache texels and other data read by the Sampling
Engine in the 3D pipeline. This cache can be enabled or disabled via the Texture L2 Disable
bit of the Cache_Mode_0 register (see Memory Interface Registers). Note that, although there
may be more than one level of sampler cache within the implementation, the sampler cache is
exposed as a single entity at the programming interface.

 G45: Volume 1b: Graphics Core

108

The sampler cache is guaranteed to be invalidated under the following conditions (note that the
implementation may invalidate the cache under additional, implementation-specific conditions):

• Execution of an MI_FLUSH command with the Map Cache Invalidate bit set

• Execution of PIPE_CONTROL with the Depth Stall Enable bit clear.

• A SyncFlush handshake operation

The sampler cache must be invalidated prior to reallocation of physical texture memory (i.e.,
software must guarantee that stale texture data is invalidated before reusing physical texture
memory for a new or modified texture).

5.3.10.3 Instruction/State Cache

The read-only ISC is used to cache pipelined state and EU instructions read in from memory. It
also functions as a prefetch cache by reading in additional state information and instructions
beyond those immediately requested in order to decrease latency and improve performance. As
with the sampler cache, there may be more than one level of ISC within the implementation.
The ISC is exposed as a single entity at the programming interface.

The instruction/state cache is guaranteed to be invalidated under the following conditions (note
that the implementation may invalidate the cache under additional, implementation-specific
conditions):

• Execution of an MI_FLUSH command with the State/Instruction Cache Invalidate
bit set

• Execution of PIPE_CONTROL with the Instruction/State Cache Flush Enable bit set.

• A SyncFlush handshake operation

The instruction/state cache must be invalidated prior to reallocation of physical state/instruction
memory (i.e., software must guarantee that stale state/instruction data is invalidated before
reusing physical state/instruction memory for new or modified state or instructions).

 G45: Volume 1b: Graphics Core

 109

5.3.10.4 Vertex Cache

The vertex cache consists of 2 sub-caches: one that caches vertex buffer data based on address, and another
that caches (possibly shaded) vertex attribute data based on index (see the Vertex Fetch chapter for vertex
index details). The latter cache is always invalidated between primitive topologies.

Both vertex caches are guaranteed to be invalidated under the following conditions (note that the
implementation may invalidate the cache under additional, implementation-specific conditions):

• Execution of an MI_FLUSH command

• Execution of a PIPE_CONTROL command

• A SyncFlush handshake operation

• Logical Context switch (via MI_SET_CONTEXT)

5.3.10.5 GTT TLBs

The following table summarizes when the various TLBs are invalidated.

TLB Normal Invalidation
Mechanism

Display Refreshed on Vsync

Overlay Refreshed on Vsync

Render/Blit Internal Flush*

Host Through a Page Table PTE
write

Sampler Cache Internal Flush*

Command
Stream

Through a Page Table PTE
write

* -- Includes MI_FLUSH, Engine switch, and Context switch.

5.3.11 Command Synchronization

This section describes the hardware mechanisms that can be used by software to provide synchronization with
command stream parsing and execution.

The key point here is distinguishing between command parsing and retirement – in that, for most commands,
there is some finite delay between the parsing of a command and the retirement (coherent completion) of the
operation it specifies.

Interrogation of the Ring Buffer Head Pointer only gives an indication of the progress of command parsing.
This information is required to discern the availability of command data within the Ring Buffer or Batch
Buffers. If the Head Pointer indicates the command data has been parsed, those locations can be reused;
otherwise the commands must be considered still pending parsing and left alone.

Given the CP rules for command execution, it is possible to use the indication of command parsing progress to
infer the retirement status of parsed commands. The only indication of instruction retirement available from
instruction parsing is that parsing of an MI instruction implies retirement of previous MI instructions with the
following exceptions:

 G45: Volume 1b: Graphics Core

110

• The parsing of a Memory Interface (MI) command implies that all previously-parsed MI commands
have completed, with the following exceptions:

o Display and Overlay Flip commands: Only the submission of the flip request is
guaranteed. The flip operation will occur some time later. Mechanisms to detect the
actual completion of a flip operation are described below.

o “Store-Data” type commands: Only the submission of the store operation is guaranteed.
The write result will be complete (coherent) some time later (this is practically a finite
period but there is no guaranteed latency).

o Batch Buffer commands: There is no guarantee that the operations performed by the
batch buffer have completed.

Other than the cases described above, additional measures must be taken to discern the progress of
command retirement. These measures are described in the following subsections.

5.3.11.1 MI_FLUSH

The MI_FLUSH command pauses further command parsing until all drawing engines become idle and any
internal rendering cache is flushed and invalidated. All previous rendering commands can therefore be
considered retired.

This flush operation is considered complete once command parsing proceeds to the next command. Software
can, for example, follow an MI_FLUSH command with an MI_STORE_DATA_IMM or MI_STORE_DATA_INDEX
command – where the completion of the store operation implies that the flush operation has completed.
(Note that if the last DWord in a ring buffer is an MI_FLUSH instruction, there is no way by simply looking at
the Ring Buffer registers to determine whether the flush operation is complete or still pending.)

The successful completion of an MI_FLUSH command does not guarantee that all previous operations have
completed. Operations that may still be pending include:

• Store Data type commands (MI_STORE_DATA_IMM, MI_STORE_DATA_INDEX, MI_REPORT_HEAD)

• Display or Overlay Flip operations

See section 5.3.10.2 for more information on when the sampler cache should be invalidated.

5.3.11.2 Sync Flush

Inserting MI_FLUSH commands, while effective at determining or forcing the retirement of previous rendering
commands, may negatively impact performance if not absolutely required. For example, if the knowledge of
rendering command retirement is not known a priori, it is likely undesirable to insert MI_FLUSH commands at
intervals in the command stream. However, it may not be acceptable to insert an MI_FLUSH command (and
wait for its completion) at the point that rendering command retirement is required – as there may be a large
number of commands pending in ring/batch buffers at that point and flushing the entire device (including
waiting for completion of pending commands that have not yet been parsed) may be prohibitive. There is a
mechanism, however, where command stream synchronization can be performed on demand, without
requiring earlier submitted commands and batch buffers to complete – it is called the “Sync Flush”
mechanism.

Here’s how it works:

• Software must (preferably at driver initialization time) unmask the Sync Status bit in the Hardware
Status Mask Register (HWSTAM). This should be done unconditionally (at least whenever HW status
writes are enabled), as any bandwidth increase due to Sync Status-initiated writes is negligible.

 G45: Volume 1b: Graphics Core

 111

• At the point that synchronization is required, software must guarantee that command parsing has
progressed past the point of interest in the command stream (i.e., past the last command whose
retirement is required). Note that this step is required in any scheme.

• Software then reads the location where the Interrupt Status is reported in the Hardware Status Page
(DWord offset 0) and saves that DWord in a temporary variable.

• Software then sets the Sync Enable bit of the Command Parser Mode Register (INSTPM) via an
uncached write.

• The Command Parser will detect the Sync Enable bit set before it proceeds to the very next
command (or immediately if the CP is idle). It will then perform an internal flush operation. This
flush is identical to that performed by an MI_FLUSH command with all flush types enabled.

• Once this flush operation is complete, the CP will clear the Sync Enable bit of the INSTPM register
and then toggle the Sync Status bit of the ISR register. This will initiate a write of the ISR register
contents (with the toggled Sync Status) to DWord 0 of the Hardware Status page (as part the
normal hardware status write mechanism).

• Software, following the write of the INSTPM register, should periodically poll the Hardware Status
location. By comparing the current versus saved value of the Sync Status bit, software can then
detect when the flush operation is complete. Note that the latency of this operation is typically
small, as it will be initiated either immediately or at least before the next command is parsed
(regardless of arbitration conditions).

5.4 Hardware Status

The graphics device supports a number of internal hardware status bits which can be used to detect and
monitor hardware status conditions via polling or interrupts. This section will describe each hardware status
bit. The following section describes the hardware status reporting (polling) mechanism. The mechanism to
allow these status bits to generate interrupts is described in the Interrupts section. Note that the hardware
status bits are actually reported in the Interrupt Status Register, so “hardware status” and “interrupt status”
are used interchangeably here (though many hardware status bits won’t necessarily ever be used to generate
interrupts).

The following subsections describe the various hardware (interrupt) status bits, as defined in the Interrupt
Status Register.

5.4.1 Hardware-Detected Errors (Master Error bit)

This interrupt status bit is generated whenever an “unmasked” hardware-detected error status is detected.
See Errors.

5.4.2 Thermal Sensor Event

This interrupt status bit is generated by “thermal events” detected by the Thermal Sensor logic. The bit
corresponding to this event in the HWSTAM register must always be masked (i.e., set to ‘1’) so that thermal
sensor events do not generate HW status DWord writes. See Hardware Status Writes.

5.4.3 Sync Status

This bit should only be used as described in Sync Flush, and should not be used to generate interrupts (i.e.,
the corresponding interrupt should not be enabled in the IER).

 G45: Volume 1b: Graphics Core

112

5.4.4 Display Plane A, B, (Sprite A, Sprite B [DevCTG] Only) Flip
Pending

These bits are used to report the status of “flip” operations on the corresponding Display Plane. Display Flip
operations are requested via the MI_DISPLAY_BUFFER_INFO command. When that command is executed, the
corresponding Display Flip Pending status in the ISR register will be set to ‘1’ indicating that a display flip has
been requested but has not yet been performed. (Requesting a flip operation when one is already pending is
UNDEFINED). This indicates that a flip is “pending”. At the appropriate time during the next vertical blank
period (for that display stream), the flip operation will be performed (i.e., the display will switch to refreshing
from the new display buffer). This causes the Display Flip Pending status to reset to ‘0’. When this occurs,
and the Display Flip Pending status bit is unmasked by the Interrupt Mask Register (IMR), the Display Flip
Pending status bit of the Interrupt Identity Register (IIR) is set. Note that this setting of an interrupt identity
bit on the falling edge of the status bit is contrary to the general definition of interrupt status bits.

5.4.5 Overlay Flip Pending

This bit is similar to the Display Flip Pending bits. It is set to ‘1’ when the MI_OVERLAY_FLIP command is
executed. It is cleared to ‘0’ after the overlay registers are read from memory during the next vertical
blanking period.

5.4.6 Display Pipe A,B VBLANK

These bits are set on the leading edge of the selected Display Pipe’s VBLANK signal.

5.4.7 User Interrupt

This bit is set in response to the execution of an MI_USER_INTERRUPT command. The Command Parser will
continue parsing after processing that command. If a user interrupt is currently outstanding (set in the ISR)
this packet has no effect.

Programming Note: User interrupts can be used to notify software of the progress of instruction parsing
past the MI_USER_INTERRUPT instruction. In particular, user interrupts can be inserted into the command
stream but effectively disabled for “normal operation” via the IMR and HWSTAM registers. Whenever software
requires the notification afforded by the user interrupts, it can unmask this bit.

5.4.8 PIPE_CONTROL Notify Interrupt

This bit is set when a PIPE_CONTROL command with the Notify Enable bit set reaches the end of the pipeline
and all required cache flushes have occurred.

5.5 Hardware Status Writes

The graphics device supports the writing of the hardware status (ISR) bits into memory for optimized access
from software. Software can select which (if any) status bits will trigger the write of the ISR contents to
memory using the Hardware Status Mask (HWSTAM) register. Writing a ‘0’ to a defined bit position in the
HWSTAM register will cause any change (0 1 or 1 0) in the corresponding ISR bit to trigger the write. The
complete ISR contents will be written to DWord offset 0 of the hardware status page, located at the address
programmed via the Hardware Status Page Address Register (HWS_PGA).

 G45: Volume 1b: Graphics Core

 113

5.6 Interrupts

The graphics device supports the generation of an interrupt. This interrupt can be raised in response to one
or more internal interrupt status conditions. Which interrupt status conditions are allowed to raise an
interrupt is programmed via the Interrupt Mask Register (IMR) and Interrupt Enable Register (IER). The IMR
is used to selectively “unmask” hardware status bits as to allow them to be reported in the Interrupt Identity
Register (IIR). The IER holds a set of interrupt enable bits corresponding to each bit of the IIR – setting bits
in the IER will allow interrupts to be generated by the corresponding bits in the IIR.

5.7 Errors

The graphics device supports the hardware detection of a number of operational and debug-only errors.
Operational errors occur out of the immediate control of driver software and must be anticipated and tolerated
to the extent required by the relevant APIs. Software must therefore support the detection and proper
handling of all relevant operational errors. The (more numerous) debug-only errors are just that – detected
to facilitate initial system debug but not intended to be tolerated during normal system operation. In many
cases, debug-only errors are not recoverable. They require the use of debug registers to detect and diagnose.

 G45: Volume 1b: Graphics Core

114

5.7.1 Error Reporting

Regardless of the error classification, all errors funnel through the Master Error bit of the Interrupt Control
Registers. This bit can be used to raise a device interrupt or trigger a hardware status write operation.
(Needless to say it can also be polled directly, though this is clearly discouraged). Refer to Interrupt Control
Registers in the Memory Interface Registers chapter for more information.

There are three registers dedicated to control, detect, and clear hardware error status conditions in a similar
fashion to the Interrupt Control Registers. All three error registers share a common error status bit definition.

The Error Status Register (ESR) holds the actual error status bits (each of which may be the logical OR of
“source” error bits in various functional registers). The Error Mask Register (EMR) is used to select which
error status bit(s) are reported in the Error Identity Register (EIR). The EIR holds the “persistent” values of
the unmasked error status bits, and is also used to clear error status conditions. Any bits set in the EIR will
raise the Master Error interrupt status condition.

The error conditions corresponding to the error status bits include:

• Page Table Error (Debug only) – This is a summary of a number of possible errors associated
with the mapping function of the GTT. See Table 5-3 for more information.

• Display or Overlay Underrun (Debug only) – This error is raised when a FIFO underrun condition
is detected in the display or overlay isochronous streams. See the description of the
Display/Overlay Status Register in the Display Registers chapter.

• Command Error (Debug Only) – This is a summary of a number of command data errors detected
by the Command Parser. See Command Errors below for more information.

 G45: Volume 1b: Graphics Core

 115

5.7.2 Page Table Errors

The following tables describe the various sources and types of Page Table Errors. Refer to the description of
the PGTBL_ERR register in Memory Interface Registers for more details.

Table 5-3. Page Table Error Types

Error Description Streams

Invalid GTT
PTE

In the process of mapping an address, the MI
encountered a GTT PTE that was marked “Invalid”.
This would be the result of a programming error.

All (See
Error!

Reference
source not

found.)
Invalid TLB
Miss

An unexpected TLB miss (detected at GTT request
time) was encountered (e.g., during
Display/Overlay/Sprite access).

Display,
Overlay

Invalid PTE
Data

Mapping to the physical page specified in the PTE is
not permitted (e.g., a page in PAM, SMM or over the
top of memory, etc.). This is the result of a
programming error.

Host

Invalid Tiling A tiling parameter was found inconsistent with the
current operation. This includes the use of Y-Major
tiling in the Render/Display/Overlay streams. This is
the result of a programming error. This is detected
during GTT request.

Blt, Display,
Overlay

Note that Page Table Errors cannot be cleared. A device reset is required.

5.7.3 Clearing Errors

For operational errors, software is responsible for taking the proper steps to recover from the error and then
clearing the error indication. The actions required to recover from operational errors may be discussed in the
various functional areas (not here). See the Hardware-detected Error Bit Definitions in Memory Interface
Registers for more details. This subsection describes the actions required to clear the error indication.

In order to clear operational errors, software is responsible for clearing the error condition from the source,
working back to the Master Error bit. Typically this will entail the following sequence.

• First the primary source of the error must be cleared. This requires clearing the functional
register(s) containing the source error indication.

• Next, clear the particular error status bit by writing a ‘1’ to the appropriate bit of the Error Identity
Register (EIR). This will clear the error status bit in the Error Status Register (ESR). If multiple
errors are present, all error status bits should be cleared simultaneously.

• Next, clear the Master Error interrupt status bit by writing a ‘1’ to the Master Error bit of the
Interrupt Identity Register (IIR).

Note: Page Table Errors cannot be cleared.

 G45: Volume 1b: Graphics Core

116

5.8 Rendering Context Management

The graphics device operation (rendering, etc.) is controlled via the settings of numerous hardware state
variables. These state variables are divided into global state and context state.

There is only one copy of global state variables, and changing the settings of these variables requires explicit
programming of the state variables. Examples of global state include:

• MI registers (HWSTAM, Ring Buffer, etc.) with the exception of those listed in the next paragraph
(i.e, registers listed there are saved/restored)

• Configuration registers

• Display programming registers

On the other hand, context state is associated with a specific context, where switching to that context causes
that context’s state to be restored. While the associated context is active, the state variables and registers
can be programmed via the command stream. Examples of context state include the
PIPELINE_STATE_POINTERS command and most non-pipelined state. The following MI registers are
considered part of context state and thus saved/restored with context:

• INSTPM

• CACHE_MODE_0

• CACHE_MODE_1

• MI_ARB_STATE

• 3D Pipeline Statistics Registers

The graphics device supports both a hardware context and logical contexts. The multiple logical context
support provides robust rendering context support by swapping contexts to/from memory.

5.8.1 Multiple Logical Rendering Contexts

The graphics device supports multiple logical rendering contexts stored in Main Memory. Logical rendering
contexts are referenced via a 2KB-aligned Logical Context Address.

The maximum size of a logical context entry (which is information required by the driver to allocate contexts)
is currently 2K bytes. For forward compatibility, the maximum size of a logical context entry should be
supplied to the drivers via a VBIOS mechanism as opposed to being hardcoded in the driver.

The actual size of a logical rendering context is the amount of data stored/restored during a context switch
and is measured in 64B cache lines. There is a debug mechanism that allows software/BIOS to program the
actual size of the logical rendering context via the CXT_SIZE register. Note that this register will default to
the correct value, so software should not have to modify it.

 G45: Volume 1b: Graphics Core

 117

The format of the logical rendering context in memory is considered device-dependent; software
must not attempt to modify the contents of a logical rendering context directly. This restriction is
motivated by forward compatibility concerns because the location and definition of fields may
change between implementations.

5.8.1.1 Current Context IDs

The ring buffer has an associated Current Context ID (CCID) register. The CCID includes a Logical Pipeline
Context Address (LPCA).

The CCID for a ring buffer is set during the processing of the new MI_SET_CONTEXT command from that ring.
The MI_SET_CONTEXT command provides a new CCID value (LPCA) to be loaded into the CCID register for
the associated ring buffer. The MI_SET_CONTEXT command also contains a Restore Inhibit bit used to
optionally inhibit the restoration (loading) of the new rendering context. This bit must be used during context
initialization to avoid the loading of uninitialized (garbage) context data from memory. Failure to do so leads
to UNDEFINED operation.

The initial values of the CCIDs are UNDEFINED. The first time a valid CCID is set from a ring buffer, the
normal context save operation will be suppressed, as the previous CCID is invalid.

5.8.1.2 Intra-Ring Context Switch

Within a specific ring buffer, a new logical rendering context is specified via the MI_SET_CONTEXT command.
Note that MI_SET_CONTEXT commands are permitted only within a ring buffer (not within a batch buffer).

As part of the execution of the MI_SET_CONTEXT command from within a ring buffer, the Logical Pipeline
Context Address fields of the CCID register and MI_SET_CONTEXT command are compared. If they differ (or
the CCID register is uninitialized), a rendering context switch operation will be performed, which includes:

1. If the CCID contents are valid, a context save operation will be performed. The contents of the HW
context will be saved in memory starting at the Logical Pipeline Context Address specified in the CCID.

2. If the Restore Inhibit command field is not set, a context restore operation will be performed. Here the
logical context values are read starting from the Logical Pipeline Context Address field of the command
and used to set the internal HW context.

3. The relevant contents of the command will be loaded into the appropriate CCID register. (This occurs
irrespective of the LPCA comparison result). At this point, the ring buffer has switched to using the
new logical rendering context.

 G45: Volume 1b: Graphics Core

118

5.8.1.3 Logical Rendering Context Creation and Initialization

5.8.1.3.1 Rendering Context Creation Rules

1. Software only knows the size of the logical rendering context (2KB), for allocation purposes.
2. Given (1), software does not know the format of the context, and therefore is not allowed to write any

portion of a logical rendering context. Software can, however, copy/move entire logical context
blocks.

3. Given (2), software must never restore (load) a logical rendering context from memory that has not
been previously stored by HW. I.e., software must never attempt to initialize a context itself and then
cause it to be loaded. Breaking this rule causes UNDEFINED operation (as in the hang seen in BDG
validation).

4. Initialization software must write all HW context variables with legal values before the first rendering
context can be saved (this must be done before you can perform any rendering anyways). Given this,
and the obvious rule that software must never program illegal state values, guarantees that the HW
context will forever remain valid (and therefore be available to store into a logical rendering context).
Note that software-visible context variables include 3D state, Blt register state, etc.

5.8.1.3.2 Context Initialization

Logical Rendering Contexts can be initialized (in memory) by software in the following way:

1. Issue an MI_SET_CONTEXT command w/ the Restore Inhibit bit set and the about-to-be-initialized
logical pipeline context address. This will save the current rendering context and then change the
LPCA to the new context (without loading it).

2. Use state commands to modify the context as desired.
3. Issue another MI_SET_CONTEXT command specifying some other LPCA (e.g., the previous one). This

will cause the new context to be stored (initialized) in memory

5.8.1.4 Context Save

A context save will occur anytime all of the following apply:

• A rendering context switch occurs as a result of the execution of MI_SET_CONTEXT

• The CCID of the current context (CCID register of current ring) and the new CCID (the CCID register
of the newly selected ring or the new CCID in the MI_SET_CONTEXT command) differ OR an
MI_SET_CONTEXT with the “Force Restore” bit set initiated the context switch

• The current CCID is valid (has been previously set)

The current rendering context will be written out to memory starting at the LPCA in the format described by
Logical Context Layout in Memory Data Formats. Note that this includes a limited number of Memory
Interface Registers whose values are saved by embedding them in an MI_LOAD_REGISTER_IMM command
that is written out to memory.

The Optional Extended Context will also be written if the Extended Save Enable bit is set in the current CCID
register. Context saves DO NOT modify pipelined state stored in memory.

 G45: Volume 1b: Graphics Core

 119

5.9 Reset State

This section describes the state of the programming interface following a hardware reset. Refer to the
individual register definitions for details on reset (default) settings.

• The settings of the hardware context state variables are UNDEFINED. Software must program all
state variables prior to their use in rendering.

• The ring buffer is disabled.

• All interrupts and error status bits are “masked” (disabled). All interrupts are disabled via IER.
There will be no HW activity to cause any hardware/interrupt status bits to be set.

• The Hardware Status Page is located at 1FFFF000h (though HW status writes are effectively
disabled)

• All FENCE registers are INVALID

• The GTT is disabled (accesses other than CPU reads, cursor and VGA reads will generate an error).

• All INSTDONE bits are set (“DONE”).

• The NOPID register is 0.

• All command groupings are enabled (via INSTPM)

6 Frame Buffer Compression [DevCL
only]
6.1 Overview

The Run-Length Encoded Frame Buffer Compression (RLE-FBC) function is a mechanism to reduce display
refresh memory traffic. By reducing memory reads required for display refresh, power consumption is
reduced (thus extending battery life for mobile systems).

The conditions under which the RLE-FBC is most effective are:

• Display images that are well suited to RLE compression. Good examples are text windows, slide
shows, etc. Poor examples are 3D games - rich in textured and smooth-shaded objects.

• Screens that are fairly static. Good examples are screens with significant portions of the
background showing, 2D apps (reading mail, etc.), CPU benchmarks, etc., or conditions when the
CPU is idle. Poor examples are full-screen 3D games and benchmarks that flip the display image at
or near display refresh rates.

Note that this compression function is different from, and mutually exclusive with, Discard Alpha Frame Buffer
Compression – which is effective for 32bpp 3D environments.

The RLE-FBC function is comprised of three subfunctions:

• A Compressor that attempts to compress the display buffer as a background task.

• A Decompressor in the Display engine that uses compressed lines for display refresh, if available.

• A Frame Buffer Write Detector that snoops writes to the uncompressed frame buffer and
invalidates the corresponding compressed lines.

The RLE-FBC Compressor periodically compresses lines of Display Plane A (an uncompressed display source
image) using run-length encoding and stores the results into a pre-allocated compressed frame buffer. During
subsequent display refreshes, the Display engine Decompressor attempts to refresh Display A from the
compressed frame buffer. Lines that were not compressed or lines that were modified since the last
compression – as detected by the Frame Buffer Write Detector – are displayed from the uncompressed
buffer.

6.2 Programming Interface

6.2.1 FBC unit programming interface

The following table summarizes the register programming interface to the RLE-FBC function. Refer to the
Memory Interface Registers chapter for details on the individual registers provided in the programming
interface.

 G45: Volume 1b: Graphics Core

 121

Register Field(s) Description

FBC_CFB_BASE Compressed Frame Buffer
Address

Specifies the location of the
compressed frame buffer

FBC_LL_BASE Compressed Line Length
Buffer Address

Specifies the location of the
compressed line length buffer

FBC_CONTROL Enable Turns the RLE-FBC function
on/off

 Mode Select Specifies Single or Periodic
compression mode

 Interval Specifies time period (in display
refreshes) used in periodic
mode

 Stop Compressing on
Modification (DEBUG)

Specifies that the compression
pass should be aborted if a line
is modified during compression.

 Uncompressible Enable Enable Uncompressible state for
the tag RAM. if ENABLE
compressor will mark the
uncompressible scan line to
prevent future compressing
attempt

 Compressed Frame Buffer
Stride

Specifies the stride (pitch) of the
compressed frame buffer 64-
byte unit

 Fence Number Specifies the FENCE register
associated with the
uncompressed source frame
buffer

FBC_CONTROL2
 FBC Cx state mode Specifies FBC behavior when

PM signals CPU goes to Cx
(non C0)

 CPU Fence Enable If ENABLE the display buffer is
existed within CPU fence

 Display Plane Select Select Plane A or B for Frame
Buffer Compression

FBC_YFENCE_DISP Fence Display Buffer Y
offset

Y offset from the CPU fence to
the Display Buffer base

FBC_MOD_CTR FBC modification Counter
for Recompression

Recompress the Display Buffer
only after the programmed
number of modifications to the
display buffer

FBC_COMMAND Compression Request Used to request compression
passes in Single compression
mode

FBC_STATUS Compressing (RO) Status indicating if the
compressor is running.

 G45: Volume 1b: Graphics Core

122

Register Field(s) Description

 Compressed (RO, R/W for
DEBUG)

Status indicating if the
compressed frame buffer is
available for display

 Any Modified (RO, R/W for
DEBUG)

Indicates whether any lines of
the uncompressed frame buffer
have been modified since the
last compression pass.

 Current Line Compressing
(RO)

Indicates the progress of the
compressor

FBC_TAG[0..N] Tag[i+0..i+48]
 (DEBUG)

Status indication for each pair of
display lines.

6.2.2 Programming interface from Display Engine

The following table summarizes the indirect register programming interface to the RLE-FBC function from
Display Engine. These registers are programmed in Display Engine for Display function, but they are passed to
FBC unit to use for Frame Buffer Compression operation. Depend on how FBC_CONTROL2< Display Plane
Select> is set Display Plane A or B registers are passed to FBC unit. Refer to the Memory Interface Registers
chapter for details on the individual registers provided in the programming interface.

FBC used these registers when reading uncompressed frame buffer and building a compressed buffer that is
identical to uncompressed buffer of Display Plane A or B.

Register Field(s) Description

DSPA(B)CNTR Display A(B) Source Pixel
Format

4-bit source Pixel format- FBC
can only works with 16-bit or 32-
bit Source pixel format that
organize in 8-bit chunk (not
10:10:10:2 format)

DSPA(B)STRIDE Display A (B) Stride

This value is used to determine
the line to line increment for the
display. FBC can work with non-
power-of-two stride from 2KB to
16KB with increment of 512bytes

DSPA(B)SURF Display A (B) Surface Base
Address

This address specifies the
surface base address. When the
surface is tiled, panning is
specified using (x, y) offsets in the
DSPA (B) TILEOFF register. This
address must be 4K aligned.

DSPA(B)LINOFF Plane Start Y-Position These 12 bits specify the vertical
position in lines of the beginning
of the active display plane relative
to the display surface.

 G45: Volume 1b: Graphics Core

 123

Register Field(s) Description

 Plane Start X-Position These 12 bits specify the
horizontal offset in pixels of the
beginning of the active display
plane relative to the display
surface.

HTOTAL(B) Pipe A (B) Horizontal
Active Display Pixels

This 12-bit field provides
Horizontal Active Display
resolutions up to 4096 pixels.
Note that the first horizontal
active display pixel is considered
pixel number 0. The value
programmed should be the
(active pixels/line – 1).

VTOTAL(B) Pipe A (B)Vertical Active
Display Lines

This 12-bit field provides vertical
active display resolutions up to
4096 lines. It should be
programmed with the desired
number of lines minus one.

6.3 Operating Modes

6.3.1 RLE-FBC Function Modes

The RLE-FBC function (compression and decompression) is enabled or disabled via the Enable bit of the
FBC_CONTROL register.

In order to request the disabling of the function software must set Enable to DISABLED. The function does
not subsequently become disabled until the Compressing status bit of FBC_STATUS is clear. Software must
ensure that the function is in fact disabled (via interrogation of the Compressing status bit) before re-
enabling the RLE-FBC function and under the following conditions:

• Prior to changing the contents of the FBC_CFB_BASE or FBC_LL_BASE registers

• Prior to changing the contents of the following fields of the FBC_CONTROL register:
o Mode Select
o Interval
o Stop Compressing on Modification
o Uncompressible Enable
o Compressed Frame Buffer Stride
o Fence Number

• Prior to changing the contents of the following fields of the FBC_CONTROL2 register:
o FBC Cx state mode
o CPU fence Enable
o Frame Buffer Compression Display Plane Select A/B

• Prior to changing the contents of the FBC_Fence_Display_Y_Offset register:

• Prior to changing the contents of the following fields of the FBC_MOD_CTR register:
o FBC_mod_ctr
o FBC_mod_ctr_valid

• Prior to changing the display mode of the source frame buffer (Display Plane A) including display
pixel format, dimensions, and pitch (stride).

• Prior to entering/use of any modes listed under Restrictions below

 G45: Volume 1b: Graphics Core

124

Modification of DEBUG-mode controls is implementation dependent.

6.3.2 Compression Modes

The RLE-FBC compressor is capable of operating in one of two modes, Single or Periodic Compression, as
specified by the Mode Select field of the FBC_CONTROL register.

6.3.2.1 Single Compression Mode

In this mode software can request a single compression pass via the Compression Request bit of the
FBC_COMMAND register. The compression results will be used until another compression is requested or the
RLE-FBC function is disabled. Note that subsequent modifications to the uncompressed frame buffer will
invalidate corresponding compressed lines – diminishing the benefits of the function.

Single compression mode is preferred when software has knowledge that significant portions of the frame
buffer lines will remain static for a period of time – where memory bandwidth would not be wasted further
recompressing the static frame buffer data.

6.3.2.2 Periodic Compression Mode

In Periodic mode, recompression is attempted at a programmed rate in units of display refreshes. The time
period is programmed via the Interval field of the FBC_CONTROL register. The RLE-FBC compressor will not
initiate a periodic compression if there have been no modifications to the source frame buffer since the last
compression.

This mode is preferred when software expects significant portions of the frame buffer line to be written on a
frequent basis (or at least cannot guarantee that this will not occur). The time period can be adjusted
according to the refresh rate and/or frequency and extent of (expected) frame buffer modifications.

If Uncompressible Enable is set to ENABLED the compressor will mark a tag line uncompressible if both scan
lines of a tag line are uncompressible so compressor won’t attempt to compress these scan lines again in
subsequent compression run unless these lines are modified by CPU or RC.

If FBC_mod_ctr_valid is SET the compressor will only attempt to recompress if the number of tag lines were
modified since last compression run is greater or equal the value of FBC_mod_ctr.

6.4 Usage Restrictions

RLE Frame Buffer compression must not be enabled unless the following conditions are met:

1. If Display A is selected DSPACNTR—Display A Plane Control Register[Pixel Multiply] = No line
duplication and Display A Plane Control Register[Horizontal Pixel Multiply] = 1x

2. If Display B is selected DSPBCNTR—Display B Plane Control Register[Pixel Multiply] = No line
duplication and Display B Plane Control Register[Horizontal Pixel Multiply] = 1x

3. Panning of Selected Display Plane is permitted. If FBC is enabled and a compressed buffer is available
when a panning event happened FBC will invalidate the current compressed buffer and recompress if
necessary using the current FBC control parameters. If new uncompressed buffer required a new set
of FBC control parameters then RLE-FBC must be first disabled.

4. Sync flips of Selected Display Plane are permitted. If FBC is enabled and a compressed buffer is
available when sync flips event happened FBC will invalidate the current compressed buffer and
recompress if necessary using the current FBC control parameters. If new uncompressed buffer
required a new set of FBC control parameters then RLE-FBC must be first disabled

 G45: Volume 1b: Graphics Core

 125

5. The display pixel format is 15-bit, 16-bit or 32-bit xRGB_8888 mode (as the alpha channel is removed
as part of the compression).

6. Discard Alpha Frame Buffer Compression is DISABLED.

7. The uncompressed frame buffer is tiled with pitch from 2KB to 16KB in step of 0.5KB

8. The Line Width (in pixels) of the uncompressed frame buffer is a multiple of 8 in the range [640,
2048].

9. Number of lines of the uncompressed frame buffer is a multiple of 2 in the range [480, 1536].

10. Dual-wide display is not active.

11. If the pipe A is selected (i.e., DSPACNTR—Display A Plane Control Register [Display Pipe A Select] =
Select Pipe A), then Pipe A Configuration Register [Interlaced modes] must be in Progressive mode.

12. If the pipe B is selected (i.e., DSPBCNTR—Display B Plane Control Register [Display Pipe B Select] =
Select Pipe B), then Pipe B Configuration Register [Interlaced modes] must be in Progressive mode.

13. Compressed Frame Buffer Stride in bytes is equal or smaller than Uncompressed Frame Buffer Stride
in bytes to prevent unintended buffer expansion in 16bpp frame.

14. Both Regular and SR display watermarks for 16bpp must equal 32bpp as calculated

15. Compressed Frame Buffer and Line Length buffers must reside entirely in stolen memory segment.
This restriction is added so RLE-FBC can be enabled with LT. If hardware tried to access compressed
buffer or line length buffer outside of stolen memory FBC unit will be invalidate compressed buffers
and makes unavailable to DISPLAY.

16. Display 180 degree rotation using GenX hardware is turned off. This feature is not compatible with
FBC scanline addressing. Software rotation can be enabled at the same time with FBC.

17. Async Flips are not permitted. FBC must be disabled when async flips are in use.

6.5 Power Management Interface

At the system level the amount of saving power of Frame Buffer Compression may be offset by power
consumed by other units including CPU and memory subsystem when waiting for Frame Buffer Compression
complete its pass. Device-specific power management modes need to add in to basic Frame Buffer
Compression operation.

For [DevCL], different Cx state modes are used to provide a tuning mechanism between CPU low-power states
(or Cx state) and FBC operation. Power Management Unit will signal to FBC that CPU is in low power state and
wait for FBC to signal back that FBC is idle and no longer accessing external memory. Power Management unit
then can implement global power saving scheme like putting external memory in self-refresh or clock gating
FBC and/or other related units.

In DevCL, Cx state mode are specified as following:

• FBC_CONTROL2<Cx state mode>=IMMEDIATE IDLENESS. FBC blocks its requests to memory
(read and write) and waits for all read returns to complete before asserting FBC-idle (default)

• FBC_CONTROL2<Cx state mode>=NORMAL IDLENESS. FBC finishes current compression pass
before asserting FBC-idle

• FBC_CONTROL2<Cx state mode>=SCANLINE IDLENESS FBC completes the current line/line pair
and skips remaining lines and makes the compressed buffer available for display before asserting
FBC-idle.

 G45: Volume 1b: Graphics Core

126

• FBC_CONTROL2<Cx state mode>=IMMEDIATE DEBUG IDLENESS. FBC asserting FBC-idle
immediately, more memory transactions may be still underway. This allows PM to find the fastest
path to go to lower power state regardless of FBC operation.

6.6 Memory Data Structures

6.6.1 RLE Pixel Runs

A compressed line contains one or more pixel runs of identical pixel values. A pixel run is stored as a DWord
containing (1) an RGB pixel value and (2) a run length that specifies the number of times (minus one) that the
pixel value is to be replicated.

For 32bpp pixel formats, the run length is encoded in Bits 31:24 of the run Dword. This permits run lengths
of 1 to 256 pixels. Any alpha value stored in Bits 31:24 is discarded. The remaining 24-bit RGB pixel value is
left in place (in Bits 23:0).

Figure 6-1. 32bpp Pixel Run

31 24 23 16 15 08 07 00

Run
Length

Red Green Blue

For 16bpp pixel formats, the run length is encoded in Bits 26:16 of the run Dword. This permits run lengths
of 1 to 2048 pixels. The 16-bit RGB pixel value is stored in Bits 15:0 (for 15bpp formats, Bit 15 is Reserved).

Figure 6-2. 16bpp Pixel Run

31 27 26 16 15 00

Reserved Run
Length

Pixel Value

6.6.2 RLE Pixel Run Sets

The RLE-FBC function groups 8 consecutive pixel runs into 32-byte (Sword) pixel run sets. This matches the
granularity used to read the compressed frame buffer.

Figure 6-3. Pixel Run Set

Dword 0 Dword 1 Dword 2 Dword 3 ... Dword 7

Run 0 Run 1 Run 2 Run 3 ... Run 7

6.6.3 RLE-Compressed Line

An RLE-compressed line is comprised of a horizontal series of pixel run sets corresponding to a scan line in the
uncompressed frame buffer.

Note that there is no encoding for “unused” Dwords in the last pixel run set. During display the Display
engine will end the decompression of pixel runs when the number of decompressed pixels per line is satisfied.

 G45: Volume 1b: Graphics Core

 127

6.6.4 RLE Compressed Frame and Line Length Buffers

The RLE-compressed frame buffer and the Compressed Line Length Buffer must be in locked, fixed,
contiguous, and uncacheable physical memory.

The RLE-Compressed Frame Buffer is a 4KB-aligned rectangular array of pixel run sets residing in physically
contiguous memory (it is not mapped by the GTT). The physical address of the buffer is programmed via the
FBC_CFB_BASE register.

The stride (width) of the buffer in Swords (run sets) is programmed via the Compressed Frame Buffer
Stride field of the FBC_CONTROL register.

Different lines will typically compress to a different number of Pixel Runs. In order to record how many
Swords needs to be fetched from the RLE-Compressed Frame Buffer, a Compressed Line Length Buffer is
used. The Compressed Line Length Buffer is a (1536+32)-byte, 4KB-aligned list in physically contiguous
memory (it is not mapped by the GTT). The physical address of the buffer is programmed via the
FBC_LL_BASE register. Each byte in the buffer specifies the number of Swords (minus one) valid for the
corresponding line in the RLE-Compressed Frame Buffer.

Figure 6-4. RLE-Compression Buffers

Run Set Run Set Run Set Run Set

SW 0 SW 1 SW 2 SW T-1

Run Set Run Set Run Set Run Set

Run Set Run Set Run Set Run Set

Run Set Run Set Run Set Run Set

Run Set Run Set Run Set Run Set

Run Set Run Set Run Set Run Set

Line 0

Line 1

Line 2

Line 3

Line N-2

Line N-1

... ...

...

...

Stride (in 64-byte unit)

SWs

Compressed Frame Buffer Line Length Buffer

SWs

SWs

SWs

SWs

SWs

alignment
padding

The byte in the Compressed Line Length Buffer that corresponds to Line 0 of the Compressed Frame Buffer is
offset according to the alignment of the uncompressed display buffer. The Compressor and Decompressor
both use the 6 least significant bit of y offset from Display Base as starting offset for line 0.

6.7 Tuning Parameters

6.7.1 Stride

The Compressed Frame Buffer Stride field of the FBC_CONTROL register specifies the distance (in 64-byte
unit) between consecutive lines in the compressed frame buffer. If a source line cannot be compressed to fit
within a compressed line, it will remain uncompressed.

 G45: Volume 1b: Graphics Core

128

The maximum compression ratio can be achieved by setting the compressed frame buffer stride to correspond
with the uncompressed frame buffer line length. The stride can be set to a smaller number if there is not
enough memory available for the compressed frame buffer.

6.7.2 Interval

As previously mentioned, the interval with which periodic compression passes are attempted can be adjusted
as desired (e.g., as a function of refresh rate and/or expected frequency/extent of frame buffer modifications.
The interval is programmed via the Interval field of the FBC_CONTROL register.

6.7.3 FBC Modification Counter

As previously mentioned, the FBC modification Counter can be used to reduce the number of recompression
attempts if the number of modification since last attempt is small. At Interval expiry compressor will compare
the number of accumulated tag line modifications (tag line modification counter) with the value of
FBC_mod_ctr if the latter is larger the compressor will be back to sleep and tag line modification counter will
continue counting.

6.8 Implementation (DEBUG)

This section describes the implementation of RLE_FBC function. Information in this section is not required for
operational drivers – it is only required for debug activities.

6.8.1 Tag Array

A tag associated with every two sequential lines and indicates the current status of the lines. The tag states
are defined as follows:

Tag
Encoding

Definition Description

‘00’ Modified At least one of the lines of the pair has been modified since
the last compression pass, or a compression pass has not
been made since (a) the source buffer address has
changed, (b) RLE-FBC has been enabled, or (c) Reset

‘01’ Uncompressed One of the lines has not been compressed successfully.

‘10’ Uncompressible Both of the lines are uncompressible (compressed length is
larger than compressed stride)

‘11’ Compressed Both of the lines are compressed

If the first line of the uncompressed source frame buffer is in an odd address, the first tag entry is associated
with only one line, the first line; the second entry is associated with the second and third frame buffer line and
so on. The last line will be also alone in this case.

6.8.1.1 Transitions

The following table describes the valid transitions of the Tag value. All tags start at the Modified state upon
reset.

 G45: Volume 1b: Graphics Core

 129

From To Conditions

Modified Uncompressed Unconditionally at the start of a compression
pass.

Uncompressed Modified One of the lines is modified, or the source
frame buffer base address was changed, or
when compression becomes enabled.

Uncompressed Compressed Both lines were successfully compressed.
Uncompressed Uncompressibl

e
Both lines were unsuccessfully compressed in
the previous pass

Compressed Modified Line was modified, or the source frame buffer
base address was changed, or when
compression becomes enabled.

Uncompressible Modified Line was modified, or the source frame buffer
base address was changed, or when
compression becomes enabled.

6.8.2 Compressor

The compressor will compress only if the display is on.

START:
if (Display Plane)
 return
on (Start of Display Vblank)
 Sample the FBC address and configuration registers
 if (Mode == Periodic)
 Interval counter = interval counter-- % Interval

 if ((Mode == Periodic AND Interval == 0) OR Compression Request) AND
 Display is ON AND
 (At least one line pair is Modified) AND
 (!Compressing) AND
 (Local cache and write posting buffers are empty) AND
 (Display buffer is tiled)
 goto COMPRESSION
 else goto START

COMPRESSION:
 {
 Change Modified to Uncompressed // One cycle
 Set FBC_CONTROL<Compressing>
 Reset FBC_CONTROL<Compressed>
 Reset FBC_CONTROL<Modified>

 for (each and every Uncompressed line pair)
 {

/* By first marking and then compressing we guarantee that modification to this
line will be marked as Modified and will not be overridden when compression is
completed */

 Mark the pair as Compressed
 Compress first line
 if (Stride exceeded)
 Mark pair as Uncompressed
 else
 Write the compressed line length to the line-length buffer
 Compress second line
 if (Stride exceeded)
 Mark pair as Uncompressed

 G45: Volume 1b: Graphics Core

130

 else
 Write the compressed line length to the
line-length buffer
 Mark pair as Compressed
 Set FBC_CONTROL<Compressed>
 } // end for each uncompressed line pair
 Reset the “Compression in progress” bit
 Set Compressed-buffer-avail bit
 } // end compression

// If we succeeded to compress or not
if (Mode == Periodic)
 Reset the interval-counter
goto START

 G45: Volume 1b: Graphics Core

 131

6.8.3 Decompressor

When the display streamer gets the first line request it checks for the following condition:

FBC_CONTROL<Enable> is set

FBC_CONTROL<Compressing> is clear (compression not in progress)

FBC_CONTROL<Compressed> is set (a compression pass has completed)

If any of these conditions are not met, only the uncompressed source buffer will be used for refresh.

If all these conditions are met, the Decompressor will, for every line:

• If the line marked as Compressed the display streamer will read the compressed line length from
the compressed line length buffer, and then read the compressed line data according to this length.
If the line is not marked as Compressed, the display streamer reads the line from the
uncompressed frame buffer. In both cases the pixel data is posted to the display FIFO.

• If the line is Compressed the Decompressor reads Dwords from the FIFO and sends on the pixel
data multiple times according to the run length, 1 – 256 in 32-bit mode and 1 – 2048 in 16-bit
modes. The Decompressor keeps track of the number of pixels and stops when it reaches the line
width (in pixels) and discards any remaining Dwords.

6.8.4 Frame Buffer Write Detector

The Frame Buffer Write Detector snoops all frame buffers writes from the CPU and render engines, and marks
the modified line pairs as Modified.

• If Display buffer is a subset of the render buffer and cpu path is enabled via a fence, where the
fence is a superset of the render buffer then frame buffers lines might be modified by both cpu write
and render cache write.

• If Display buffer is a subset of render buffer and fence cpu path is disable then frame buffers might
be modified by render cache line only.

• If CPU path is disabled and Render and Display are independent buffers then no modified should be
happened.

In order to detect CPU write the following FBC registers need to be programmed before the FBC is enabled:

• FBC_CONTROL2 <CPU Fence Enable> is set.

• FBC_CONTROL <Fence Number> set to match the fence that render target and Frame Buffer
reside in.

• FBC_YFENCE_DISP is set to the distance from fence base address to DSPA(B)SURF

Chipset unit passes CPU writes that are within Graphic Aperture to FBC. FBC write detector decode the line
number and marked affected line as modified.

There are no register programming needed for render cache write monitor. Render cache unit pass each write
to its cache to FBC. If Render Target Address match with DSPA (B) SURF, and the render cache line has the
same offset with active display then the affected line pair is marked as Modified.

All lines will be marked as modified whenever:

 G45: Volume 1b: Graphics Core

132

• The uncompressed source Frame Buffer base address changes (this is only permitted to happen as a
result of a direct register write – flips of Selected Display Plane are not allowed when RLE-FBC is
enabled)

• RLE-FBC is enabled

• Reset

If the FBC_CONTROL<Stop Compressing on Modification> (DEBUG) bit is set, and a source frame buffer
write is detected during a compression pass, the compression is aborted and the current line pair is marked as
Modified. Compression will be reattempted at the next periodic compression or when the next single
compression pass is requested.

6.8.5 Coherency

The display coherency is kept by keeping the following rules:

• The compressed frame buffer is not displayed during compression.

• The Compressor will only compress lines that are marked as Uncompressed.

• Lines state changes from Modified to Uncompressed can only when there are no display reads or
pending display writes. This is achieved by waiting for Vblank start and then starting the
compression only if the render cache is empty.

• Marking a line as Modified takes precedence over the (simultaneous) transition from Modified to
Uncompressed.

• Before a line pair is compressed, the tag is changed from Uncompressed to Compressed. This
will guarantee that if a line is modified while being compressed it will transition to the Modified
state.

• Compressor frame buffer reads push CPU writes to memory.

• At the end of each compression path FBC issues dummy reads to push Compressed Buffer writes to
memory.

7 Frame Buffer Compression
[DevCTG]
This chapter contains the register descriptions for the Cantiga Frame Buffer Compression (also known as
Display Plane Frame Compressor or DPFC) portion of integrated graphics devices.

These registers do vary by device within the family of devices, so special attention needs to be paid to which
devices use which registers and register fields. Different devices within the family may add, modify, or
delete registers or register fields relative to another device in the same family based on the supported
functions of that device.

The following table contains the break down of the register information contained within this chapter:

Address Offset Register Name

3200 DPFC Compressed Buffer Address
3204 Reserved for future use
3208 DPFC Control
320C DPFC ReComp Control
3210 DPFC Status
3214 DPFC Status 2 (Reserved)
3218 DPFC CPU Fence Offset
321C DPFC SLB DATA
3220 DPFC Debug Status
3224 DPFC Extra Control
3300-33C3 Reserved for future use

Also of interest to Display Plane Frame Compressor is the Display FIFO Watermark Control 2 Register
0x70038 in the Display Registers chapter.

7.1 DPFC Programming Interface

7.1.1 FBC2 supported feature and limitation
• Supports up to 2K lines and 4K pixels
• Supports only xtiled memory surface format
• Supports interlaced and rotation mode
• Does not support pixel multiply mode
• Can only be enabled when output is to a local panel at the native resolution
• Does not support asynchronous flips
• Can not be enabled together with video sprite on the same display pipe

 G45: Volume 1b: Graphics Core

134

• FBC2 stride is calculated as (The stride of the Primary Plane FBC2 is assigned to) / (FBC2
compression ratio). The stolen memory needed for compressed frame buffer must be greater or
equal to (FBC2 stride * active display height size).

• Supports 16-bpp and 32-bpp format. The supported format with the supported compression ratio is
summarized in the following table.

Pixel format/
Compression
Ratio 16bpp 32bpp

1 Not Supported Supported

½ Supported Supported

¼ Supported Supported

7.1.2 FBC2 usage model and restriction on persistent and non-
persistent mode

7.1.2.1 General Restrictions

• FBC2 can only track modifications onto one buffer, which is either front buffer or back buffer.
• Persistent and non persistent mode and associated functions can not be changed while FBC2 is

enabled
• Async flips will cause the entire frame to be recompressed (Nuke).

7.1.2.2 Non Persistent Mode

• Supports recompression on front buffer modification
• All flips will cause a nuke
• Does not track back buffer modification
• The following mode setting is used in non persistent mode, applies to both RC and HT modifications.

Non-Persistent Mode Settings

Persistent mode Set to disable

MMIO SYNC Flip Nuke disable Set to 0 to enable nuke

CS SYNC Flip Nuke disable Set to 0 to enable nuke

 G45: Volume 1b: Graphics Core

 135

7.1.2.3 Persistent Mode

• Back buffer modifications have to be contiguous and followed by flip
o Once the flip happens, no further modifications to that buffer are tracked

• FBC2 only tracks back buffer in persistent mode and recompress the modified lines after flip.
• Nuke on CS Sync flip and MMIO Sync Flip can be disabled. The Mode setting can only be changed

when FBC2 is disabled.
• The following mode setting is used in persistent mode, applies to both RC and HT modifications.

Persistent Mode Settings

Persistent mode Set to enable

MMIO SYNC Flip Nuke disable 0: enable Nuke 1: disable nuke

CS SYNC Flip Nuke disable 0: enable Nuke 1: disable nuke

HT Modification Tracking bit Write 1 when CPU fence is set.

• In order to do the HT back buffer modify in persistent mode, SW needs to follow the following steps:

1. Set the fence to back buffer.
2. Write 1 to the HT modification tracking bit.
3. CPU modifies the back buffer.
4. Flip to the back buffer. (Any flip).
5. Repeat step 1~4.

Note:
1. Fence Enable/Fence number/HT modification tracking bit can be changed on the flight when

FBC2 is enabled.
2. SW writes to 1 to the HT modification tracking bit will set the HW modification in progress. HW

will clear the modification in progress by flips. SW does not need to clear this bit.

 G45: Volume 1b: Graphics Core

136

7.2 DPFC Control Registers (03200h–033FFh)

7.2.1 DPFC_CB_BASE – DPFC Compressed Buffer Base Address
Memory Offset Address: 03200h–03203h
Default: 0000 0000h
Attributes: Read/Write
Size: 32 bits

The contents of this register can not be changed while compression is enabled.

Bit Description

31:28 Reserved: Write as zero

27:12 Compressed Frame Buffer Offset Address:
This register specifies offset of the Compressed Frame Buffer from the
base of stolen memory.
The buffer must be 4K byte aligned.

11:0 Reserved: Write as zero

 G45: Volume 1b: Graphics Core

 137

7.2.2 DPFC_CONTROL— DPFC Control
Memory Offset Address: 03208h–0320Bh
Default: 00000000h
Attributes: Read/Write
Size: 32 bits

The contents of this register can not be changed except bit 31 while compression is enabled.

Bit Description

31 Enable Frame Buffer Compression:
This bit is used to globally enable DPFC function at the next Vertical Blank start.
0: Disable frame buffer compression.
1: Enable frame buffer compression.

30 Plane Select:
0: Plane A
1: Plane B

29 CPU Fence Enable:
0: Display Buffer is not in a CPU fence. No modifications are allowed from CPU to the
Display Buffer.
1: Display Buffer exists in a CPU fence.

28 Reserved: Write as zero
27 CS SYNC FLIP NUKE Disable:

Setting this bit will disable the command streamer SYNC Flips from resetting the DPFC.
0: Enable the CS SYNC Flip Nuke.
1: Disable the CS SYNC Flip Nuke.

26 [DevCTG-B] MMIO SYNC FLIP Nuke Disable:
Setting this bit will disable the MMIO Sync Flip from resetting the DPFC.
0: Enable the MMIO Sync Flip Nuke.
1: Disable the MMIO Sync Flip Nuke.
[DevCTG-A] Reserved

25 Persistent Mode:
0: Non Persistent Mode.
1: Persistent Mode. Enable the invalid modify qualify from CS.

24:16 Compression Control (Test mode):
Setting the bits in this register disables certain compression capabilities.
Bit 8: Run length with 1 nibble
Bit 7: Run length with 2 nibble
Bit 6: Mono Palette
Bit 5: Historical Palette
Bit 4: Delta 6
Bit 3: Delta 5
Bit 2: Delta 4
Bit 1: Delta 3
Bit 0: Delta 2

 G45: Volume 1b: Graphics Core

138

15 SLB Initialization Flush Disable Control (Test mode):
Setting this bit will disable the SLB flush mechanism for the first frame DPFC is on.
0: Enable the SLB initialization flush. (normal operation)
1: Disable SLB initialization flush.

14:11 Reserved: Write as zero

10 Compression SR Mode:
0: SR gates compressed data write back. (default)
1: Compressed data write back gates SR.

9 Last Pixel SR Mode Exit Disable:
Setting this bit will disable exit SR mode immediately for write back on the last pixel of the
frame.
0: Exit SR mode at the last pixel of the frame for compressed data write back.
1: SR mode gates write back at the last pixel of the frame.

8 Reserved: Write as zero
7:6 Compression Limit:

This register sets a minimum limit on compression. It is also used to determine the size of
the compressed buffer.
00: 1:1 compression, compressed buffer is the same size as the uncompressed buffer.
01: 2:1 compression, compressed buffer is one half the size of the uncompressed buffer.
10: 4:1 compression, compressed buffer is one quarter the size of the uncompressed
buffer.
11: Reserved.

Pixel Format Compression Ratio

16 bpp 32 bpp

1 Not Supported Supported (CFB=FB)

½ Supported (CFB=FB) Supported (CFB=1/2 FB)

¼ Supported (CFB=1/2FB) Supported (CFB=1/4 FB)
FB = Frame Buffer Size
CFB = Compressed Frame Buffer Size

5:4 Write Back Watermark:
Compressed data write back engine waits for this amount of data (per segment) to be
ready before writing the data out to memory. Compression SR mode must be a 1, or SR
disabled for this to take effect.
00: 4 cache lines
01: 8 cache lines
1X: Reserved

3:0 CPU Fence Number:
This field specifies the CPU visible FENCE number corresponding to the placement of the
uncompressed frame buffer.

 G45: Volume 1b: Graphics Core

 139

7.2.3 DPFC_RECOMP_CTL — DPFC ReComp Control
Memory Offset Address: 0320Ch–0320Fh
Default: 0000 0000h
Attributes: Read/Write
Size: 32 bits

Bit Description

31:28 Reserved: Write as zero
27 Enable ReComp Stall:

0: Disabled
1: Enabled

26:16 ReComp Stall Invalidation Watermark:
If this many or more invalidations occur in one frame, stop compression until the
number falls below watermark, then start the recomp timer.

15:6 Reserved: Write as zero
5:0 ReCompression Timer Count:

After invalidations fall below watermark, wait this many frames before restarting
the compressor.
A 0 means restart compression on the following frame.

 G45: Volume 1b: Graphics Core

140

7.2.4 DPFC_STATUS — DPFC Status
Memory Offset Address: 03210h–03213h
Default: 0000 0000h
Attributes: Read Only
Size: 32 bits

Bit Description

31:27 Reserved: Read as zero
26:16 Invalidated Segment Count:

Updated each vblank, this field indicates the number of segments that have
been invalidated for the previous frame.

15:11 Reserved: Read as zero
10:0 Compressed Segment Count:

Updated each vblank, this field indicates the number of segments that were
fetched from the compressed frame buffer for the previous frame.

7.2.5 DPFC_STATUS_2 — DPFC Status 2
Memory Offset Address: 03214h–03217h
Default: 0000 0000h
Attributes: Read Only
Size: 32 bits

Bit Description

31:27 Reserved: Read as zero
26:16 TBD1 Count:

Updated each vblank, this field indicates something I want to count

15:11 Reserved: Read as zero
10:0 TBD2 Count:

Updated each vblank, this field indicates something else I want to count or
maybe a threshold I don’t know yet. it might generate an interrupt or cause
your computer to turn green

 G45: Volume 1b: Graphics Core

 141

7.2.6 DPFC_CPU_Fence_Offset — Y Offset CPU Fence Base to Display
Buffer Base

Memory Offset Address: 03218h–0321Bh
Default: 0000 0000h
Attributes: Read/Write
Size: 32 bits

The contents of this register can not be changed while compression is enabled.

CPU Fence

RT
Display Buffer

Active Display

Ydispoffset

Yfence_rt = Yfence disp

LC
modify

CPU
modify

Yhtmodifyoffset
Yrtmodifyoffset

Display_base[31:12] = RT base[31:12]

 G45: Volume 1b: Graphics Core

142

Bit Description

31:22 Reserved: Write as zero

21:0 Yfence_disp:
Y offset from the CPU fence to the Display Buffer base.

7.2.7 PFC_SLB_DAT—DPFC SLB Data
Memory Offset Address: 0321Ch–0321Fh
Default: 0000 0000h
Normal Access: Read/Write
Size: 32 bits

This register is used to read out the internal SLB data based on the line number. When writing to this
register, the SLB pointer will move back to line 0. The SLB pointer is incremented by 2 lines for every read.
The line number starts from 0. This is a test mode register.

Bit Descriptions

31:26 Reserved: Write as zero
25:16 SLB data for odd line numbers: SLB Line 1, 3, 5, ...

15:10 Reserved: Write as zero
9:0 SLB data for even line numbers: SLB Line 0, 2, 4, ...

 G45: Volume 1b: Graphics Core

 143

7.2.8 DPFC_DEBUG_STATUS—DPFC Debug Status
Memory Offset Address: 03220h–03223h
Default: 0000 0000h
Normal Access: Read/Write
Size: 32 bits

This register is used for debug purposes. Once detecting the error conditions specified below, the
corresponding status register bit will be set. Write 1 to these register bits to clear the error bit set.

Bit Descriptions

31:7 Reserved: Write as zero
6 Recompression Stall Watermark Trip:

Modify exceeds watermark programmed in DPFC_RECOMP_CTL Register.

5 RC Modify CAM Overflow
4 HT Modify CAM Overflow
3 Compressed Tag Underrun:

Underrun for streamer put the compressed tag to the decompressor. Need to
adjust the register 70038h display FIFO watermark control 2 register.

2 Pipe Underrun:
DPFC assigned pipe underrun.

1 Dummy read on vblank not returned on framestart:
Dummy read issued on vblank not returned on the frame start.
RC/HT modify before the vblank has not been flushed into memory yet.

0 Compressed write back data FIFO not empty on framestart:
On the framestart, the compressed data FIFO is not empty.
Compressed data is not able to be fully written back from the last pixel on the
previous frame to the framestart of this frame.

 G45: Volume 1b: Graphics Core

144

7.2.9 DPFC_EXTRA—DPFC Extra Control Bits
Memory Offset Address: 03224h–03227h
Default: 0000 0000h
Normal Access: Read/Write
Size: 32 bits

Bit Descriptions

31 [DevCTG-B] DPFC HT Modify Tracking Bit:
Write 1 to this register when CPU fence number is set.
[DevCTG-A] Reserved

30:0 Reserved

8 BLT Engine
8.1 Introduction

2D Rendering can be divided into 2 categories: classical BLTs, described here, and 3D BLTs. 3D BLTs are
operations which can take advantage of the 3D drawing engine’s functionality and access patterns.

Functions such as Alpha BLTs, arithmetic (bilinear) stretch BLTs, rotations, transposing pixel maps, color
space conversion, and DIBs are all considered 3D BLTs and are covered in the 3D rendering section. DIBs can
be thought of as an indexed texture which uses the texture palette for performing the data translation. All
drawing engines have swappable context. The same hardware can be used by multiple driver threads where
the current state of the hardware is saved to memory and the appropriate state is loaded from memory on
thread switches.

All operands for both 3D and classical BLTs can be in graphics aperture or cacheable system memory. Some
operands can be immediates which are sent through the command stream. Immediate operands are:
patterns, monochrome sources, DIB palettes, and DIB source operands. All non-monochrome operands which
are not tiled have a stride granularity of a double-word (4 bytes).

The classical BLT commands support both linear addressing and X, Y coordinates with and without clipping. All
X1 and Y1 destination and clipping coordinates are inclusive, while X2 and Y2 are exclusive. Currently, only
destination coordinates can be negative. The source and clipping coordinates must be positive. If clipping is
disabled, but a negative destination coordinate is specified, the negative coordinate is clipped to 0. Linear
address BLT commands must supply a non-zero height and width. If either height or width = 0, then no
accesses occur.

8.2 Classical BLT Engine Functional Description

The graphics controller provides a hardware-based BLT engine to off load the work of moving blocks of
graphics data from the host CPU. Although the BLT engine is often used simply to copy a block of graphics
data from the source to the destination, it also has the ability to perform more complex functions. The BLT
engine is capable of receiving three different blocks of graphics data as input as shown in the figure below.
The source data may exist in the frame buffer or the Graphics aperture. The pattern data always represents
an 8x8 block of pixels that can be located in the frame buffer, Graphics aperture, or passed through a
command packet. The pattern data must be located in linear memory.. The data already residing at the
destination may also be used as an input. The destination data can also be located in the frame buffer or
graphics aperture.

 G45: Volume 1b: Graphics Core

146

Figure 8-1. Block Diagram and Data Paths of the BLT Engine

128 bit ROP
(8 to 1 Mux)

Src or Dst
Transparency

Range
Comparison

128 bit Reg

Color Pattern
Scan Line
32 bytes = 4
Q

128 bit Reg

128 bit Reg

Mono SRC
& Pattern
Expansion

Logic

Texture L2 Cache (128 bits)

128 bit Reg

Src/Dst (C/Z)
Render Cache

Mono Source: memory based
&Immediate (512 byte

Color Patterns: memory based
&Immediate (256 byte Max =

) 128 bit Reg

128 bit Reg

128 bit Reg

128 bit Reg

128 bit Reg

Destination
Registers

Color
Source

Registers

128 to 128 bit
Byte
G Rotator

Almador Family
Classical BLT

Data Path

128 bit Reg

128 bit 2 to 1
Mux

Color Patterns
Pass thru

Expansion Logic

Color Sources,
Color Patterns,

Expanded
Mono Sources

Mono Patterns
are rotated through
h dRotation Logic

to the Dst

128 bit Reg

Src/Dst (C/Z)
Render Cache

Mono Sources
Mono Patterns

expanded to a bit per
depending on DST
and rotated to the

Salignment for

The BLT engine may use any combination of these three different blocks of graphics data as operands, in both
bit-wise logical operations to generate the actual data to be written to the destination, and in per-pixel write-
masking to control the writing of data to the destination. It is intended that the BLT engine will perform these
bit-wise and per-pixel operations on color graphics data that is at the same color depth that the rest of the
graphics system has been set. However, if either the source or pattern data is monochrome, the BLT engine
has the ability to put either block of graphics data through a process called “color expansion” that converts
monochrome graphics data to color. Since the destination is often a location in the on-screen portion of the
frame buffer, it is assumed that any data already at the destination will be of the appropriate color depth.

 G45: Volume 1b: Graphics Core

 147

8.2.1 Basic BLT Functional Considerations

8.2.1.1 Color Depth Configuration and Color Expansion

The graphics system and BLT engine can be configured for color depths of 8, 16, and 32 bits per pixel.

The configuration of the BLT engine for a given color depth dictates the number of bytes of graphics data that
the BLT engine will read and write for each pixel while performing a BLT operation. It is assumed that any
graphics data already residing at the destination which is used as an input is already at the color depth to
which the BLT engine is configured. Similarly, it is assumed that any source or pattern data used as an input
has this same color depth, unless one or both is monochrome. If either the source or pattern data is
monochrome, the BLT engine performs a process called “color expansion” to convert such monochrome data
to color at the color depth to which the BLT engine has been set.

During “color expansion” the individual bits of monochrome source or pattern data that correspond to
individual pixels are converted into 1, 2, or 4 bytes (which ever is appropriate for the color depth to which the
BLT engine has been set). If a given bit of monochrome source or pattern data carries a value of 1, then the
byte(s) of color data resulting from the conversion process are set to carry the value of a specified foreground
color. If a given bit of monochrome source or pattern data carries a value of 0, the resulting byte(s) are set to
the value of a specified background color or not written if transparency is selected.

The BLT engine is set to a default configuration color depth of 8, 16, or 32 bits per pixel through BLT
command packets. Whether the source and pattern data are color or monochrome must be specified using
command packets. Foreground and background colors for the color expansion of both monochrome source and
pattern data are also specified through the command packets. The source foreground and background colors
used in the color expansion of monochrome source data are specified independently of those used for the
color expansion of monochrome pattern data.

8.2.1.2 Graphics Data Size Limitations

The BLT engine is capable of transferring very large quantities of graphics data. Any graphics data read from
and written to the destination is permitted to represent a number of pixels that occupies up to 65,536 scan
lines and up to 32,768 bytes per scan line at the destination. The maximum number of pixels that may be
represented per scan line’s worth of graphics data depends on the color depth.

Any source data used as an input must represent the same number of pixels as is represented by any data
read from or written to the destination, and it must be organized so as to occupy the same number of scan
lines and pixels per scan line.

The actual number of scan lines and bytes per scan line required to accommodate data read from or written to
the destination are set in the destination width & height registers or using X and Y coordinates within the
command packets. These two values are essential in the programming of the BLT engine, because the engine
uses these two values to determine when a given BLT operation has been completed.

8.2.1.3 Bit-Wise Operations

The BLT engine can perform any one of 256 possible bit-wise operations using various combinations of the
three previously described blocks of graphics data that the BLT engine can receive as input. These 256
possible bit-wise operations are designed to be compatible with the manner in which raster operations are
specified in the standard BLT parameter without translation.

The choice of bit-wise operation selects which of the three inputs will be used, as well as the particular logical
operation to be performed on corresponding bits from each of the selected inputs. The BLT engine
automatically foregoes reading any form of graphics data that has not been specified as an input by the choice

 G45: Volume 1b: Graphics Core

148

of bit-wise operation. An 8-bit code written to the raster operation field of the command packets chooses the
bit-wise operation. The following table lists the available bit-wise operations and their corresponding 8-bit
codes.

Table 8-1. Bit-Wise Operations and 8-Bit Codes (00-3F)

Code Value Written to Bits at Destination Code Value Written to Bits at
Destination

00 writes all 0’s 20 D and (P and (notS))
01 not(D or (P or S))) 21 not(S or(D xor P))
02 D and (not(P or S)) 22 D and (notS)
03 not(P or S) 23 not(S or (P and (notD)))
04 S and (not(D or P)) 24 (S xor P) and (D xor S)
05 not(D or P) 25 not(P xor (D and (not(S

and P))))
06 not(P or (not(D xor S))) 26 S xor (D or (P and S))
07 not(P or (D and S)) 27 S xor (D or (not(P xor S

)))
08 S and (D and (notP)) 28 D and (P xor S)
09 not(P or (D xor S)) 29 not(P xor (S xor (D or (

P and S))))
0A D and (notP) 2A D and (not(P and S))
0B not(P or (S and (notD))) 2B not(S xor ((S xor P) and

(P xor D)))
0C S and (notP) 2C S xor (P and (D or S))
0D not(P or (D and (notS))) 2D P xor (S or (notD))
0E not(P or (not(D or S))) 2E P xor (S or (D xor P))
0F notP 2F not(P and (S or (notD)))
10 P and (not(D or S)) 30 P and (notS)
11 not(D or S) 31 not(S or (D and (notP)))
12 not(S or (not(D xor P))) 32 S xor (D or (P or S))
13 not(S or (D and P)) 33 notS
14 not(D or (not(P xor S))) 34 S xor (P or (D and S))
15 not(D or (P and S)) 35 S xor (P or (not(D xor S

)))
16 P xor (S xor (D and (not(P and S

))))
 36 S xor (D or P)

17 not(S xor ((S xor P) and (D xor S
)))

 37 not(S and (D or P))

18 (S xor P) and (P xor D) 38 P xor (S and (D or P))
19 not(S xor (D and (not(P and S)))) 39 S xor (P or (notD))
1A P xor (D or (S and P)) 3A S xor (P or (D xor S))
1B not(S xor (D and (P xor S))) 3B not(S and (P or (notD)))
1C P xor (S or (D and P)) 3C P xor S
1D not(D xor (S and (P xor D))) 3D S xor (P or (not(D or S

)))
1E P xor (D or S) 3E S xor (P or (D and (notS

)))
1F not(P and (D or S)) 3F not(P and S)

Notes: S = Source Data
P = Pattern Data
D = Data Already Existing at the Destination

 G45: Volume 1b: Graphics Core

 149

Table 8-2. Bit-Wise Operations and 8-bit Codes (40 - 7F)

Code Value Written to Bits at Destination Code Value Written to Bits at
Destination

40 P and (S and (notD)) 60 P and (D xor S)
41 not(D or (P xor S)) 61 not(D xor (S xor (P or (

D and S))))
42 (S xor D) and (P xor D) 62 D xor (S and (P or D))
43 not(S xor (P and (not(D and S)))) 63 S xor (D or (notP))
44 S and (notD) 64 S xor (D and (P or S))
45 not(D or (P and (notS))) 65 D xor (S or (notP))
46 D xor (S or (P and D)) 66 D xor S
47 not(P xor (S and (D xor P))) 67 S xor (D or (not(P or S

)))
48 S and (D xor P) 68 not(D xor (S xor (P or (

not(D or S)))))
49 not(P xor (D xor (S or (P and D)))) 69 not(P xor (D xor S))
4A D xor (P and (S or D)) 6A D xor (P and S)
4B P xor (D or (notS)) 6B not(P xor (S xor (D and

(P or S))))
4C S and (not(D and P)) 6C S xor (D and P)
4D not(S xor ((S xor P) or (D xor S))) 6D not(P xor (D xor (S and

(P or D))))
4E P xor (D or (S xor P)) 6E S xor (D and (P or (

notS)))
4F not(P and (D or (notS))) 6F not(P and (not(D xor S

)))
50 P and (notD) 70 P and (not(D and S))
51 not(D or (S and (notP))) 71 not(S xor ((S xor D) and

(P xor D)))
52 D xor (P or (S and D)) 72 S xor (D or (P xor S))
53 not(S xor (P and (D xor S))) 73 not(S and (D or (notP

)))
54 not(D or (not(P or S))) 74 D xor (S or (P xor D))
55 notD 75 not(D and (S or (notP

)))
56 D xor (P or S) 76 S xor (D or (P and (

notS)))
57 not(D and (P or S)) 77 not(D and S)
58 P xor (D and (S or P)) 78 P xor (D and S)
59 D xor (P or (notS)) 79 not(D xor (S xor (P and

(D or S))))
5A D xor P 7A D xor (P and (S or (

notD)))
5B D xor (P or (not(S or D))) 7B not(S and (not(D xor P

)))
5C D xor (P or (S xor D)) 7C S xor (P and (D or (

notS)))
5D not(D and (P or (notS))) 7D not(D and (not(P xor S

)))
5E D xor (P or (S and (notD))) 7E (S xor P) or (D xor S)
5F not(D and P) 7F not(D and (P and S))
Notes: S = Source Data

P = Pattern Data
D = Data Already Existing at the Destination

 G45: Volume 1b: Graphics Core

150

Table 8-3. Bit-Wise Operations and 8-bit Codes (80 - BF)

Code Value Written to Bits at Destination Code Value Written to Bits at
Destination

80 D and (P and S) A0 D and P
81 not((S xor P) or (D xor S)) A1 not(P xor (D or (S and (notP))))
82 D and (not(P xor S)) A2 D and (P or (notS))
83 not(S xor (P and (D or (notS)))) A3 not(D xor (P or (S xor D)))
84 S and (not(D xor P)) A4 not(P xor (D or (not(S or P))))
85 not(P xor (D and (S or (notP)))) A5 not(P xor D)
86 D xor (S xor (P and (D or S))) A6 D xor (S and (notP))
87 not(P xor (D and S)) A7 not(P xor (D and (S or P)))
88 D and S A8 D and (P or S)
89 not(S xor (D or (P and (notS)))) A9 not(D xor (P or S))
8A D and (S or (notP)) AA D
8B not(D xor (S or (P xor D))) AB D or (not(P or S))
8C S and (D or (notP)) AC S xor (P and (D xor S))
8D not(S xor (D or (P xor S))) AD not(D xor (P or (S and D)))
8E S xor ((S xor D) and (P xor D)) AE D or (S and (notP))
8F not(P and (not(D and S))) AF D or (notP)
90 P and (not(D xor S)) B0 P and (D or (notS))
91 not(S xor (D and (P or (notS)))) B1 not(P xor (D or (S xor P)))
92 D xor (P xor (S and (D or P))) B2 S xor ((S xor P) or (D xor S))
93 not(S xor (P and D)) B3 not(S and (not(D and P)))
94 P xor (S xor (D and (P or S))) B4 P xor (S and (notD))
95 not(D xor (P and S)) B5 not(D xor (P and (S or D)))
96 D xor (P xor S) B6 D xor (P xor (S or (D and P)))
97 P xor (S xor (D or (not(P or S)))) B7 not(S and (D xor P))
98 not(S xor (D or (not(P or S)))) B8 P xor (S and (D xor P))
99 not(D xor S) B9 not(D xor (S or (P and D)))
9A D xor (P and (notS)) BA D or (P and (notS))
9B not(S xor (D and (P or S))) BB D or (notS)
9C S xor (P and (notD)) BC S xor (P and (not(D and S)))
9D not(D xor (S and (P or D))) BD not((S xor D) and (P xor D))
9E D xor (S xor (P or (D and S))) BE D or (P xor S)
9F not(P and (D xor S)) BF D or (not(P and S))

Notes: S = Source Data
P = Pattern Data
D = Data Already Existing at the Destination

 G45: Volume 1b: Graphics Core

 151

Table 8-4. Bit-Wise Operations and 8-bit Codes (C0 - FF)

Code Value Written to Bits at Destination Code Value Written to Bits at
Destination

C0 P and S E0 P and (D or S)
C1 not(S xor (P or (D and (notS)))) E1 not(P xor (D or S))
C2 not(S xor (P or (not(D or S)))) E2 D xor (S and (P xor D))
C3 not(P xor S) E3 not(P xor (S or (D and

P)))
C4 S and (P or (notD)) E4 S xor (D and (P xor S))
C5 not(S xor (P or (D xor S))) E5 not(P xor (D or (S and

P)))
C6 S xor (D and (notP)) E6 S xor (D and (not(P

and S)))
C7 not(P xor (S and (D or P))) E7 not((S xor P) and (P

xor D))
C8 S and (D or P) E8 S xor ((S xor P) and (D

xor S))
C9 not(S xor (P or D)) E9 not(D xor (S xor (P and

(not(D and S)))))
CA D xor (P and (S xor D)) EA D or (P and S)
CB not(S xor (P or (D and S))) EB D or (not(P xor S))
CC S EC S or (D and P)
CD S or (not(D or P)) ED S or (not(D xor P))
CE S or (D and (notP)) EE D or S
CF S or (notP) EF S or (D or (notP))
D0 P and (S or (notD)) F0 P
D1 not(P xor (S or (D xor P))) F1 P or (not(D or S))
D2 P xor (D and (notS)) F2 P or (D and (notS))
D3 not(S xor (P and (D or S))) F3 P or (notS)
D4 S xor ((S xor P) and (P xor D)) F4 P or (S and (notD))
D5 not(D and (not(P and S))) F5 P or (notD)
D6 P xor (S xor (D or (P and S))) F6 P or (D xor S)
D7 not(D and (P xor S)) F7 P or (not(D and S))
D8 P xor (D and (S xor P)) F8 P or (D and S)
D9 not(S xor (D or (P and S))) F9 P or (not(D xor S))
DA D xor (P and (not(S and D))) FA D or P
DB not((S xor P) and (D xor S)) FB D or (P or (notS))
DC S or (P and (notD)) FC P or S
DD S or (notD) FD P or (S or (notD))
DE S or (D xor P) FE D or (P or S)
DF S or (not(D and P)) FF writes all 1’s

Notes: S = Source Data
P = Pattern Data
D = Data Already Existing at the Destination

 G45: Volume 1b: Graphics Core

152

8.2.1.4 Per-Pixel Write-Masking Operations

The BLT engine is able to perform per-pixel write-masking with various data sources used as pixel masks to
constrain which pixels at the destination are to be written to by the BLT engine. As shown in the figure below,
either monochrome source or monochrome pattern data may be used as pixel masks. Color pattern data
cannot be used. Another available pixel mask is derived by comparing a particular color range per color
channel to either the color already specified for a given pixel at the destination or source.

Figure 8-2. Block Diagram and Data Paths of the BLT Engine

128 bit ROP
(8 to 1 Mux)

Src or Dst
Transparency

Range
Comparison

128 bit Reg

Color Pattern
Scan Line Storage
32 bytes = 4 QWs

128 bit Reg

128 bit Reg

Mono SRC
& Pattern

Expansion
Logic

Texture L2 Cache (128 bits)

128 bit Reg

Src/Dst (C/Z)
Render Cache

Mono Source:memory based &
Immediate (512 byte Max)
Color Patterns:memory based &
Immediate (256 byte Max = 32bpp)

128 bit Reg

128 bit Reg

128 bit Reg

128 bit Reg

128 bit Reg

Destination
Registers

Color
Source

Registers

128 to 128 bit
Byte Granularity

Rotator

Almador Family
Classical BLT

Data Path

128 bit Reg

128 bit 2 to 1
Mux

Color Patterns
Pass thru

Expansion Logic

Color Sources,
Color Patterns,

Expanded
Mono Sources and

Mono Patterns
are rotated through shared

Rotation Logic
to the Dst alignment

128 bit Reg

Src/Dst (C/Z)
Render Cache

Mono Sources and
Mono Patterns are

expanded to a bit per byte
depending on DST bpp
and rotated to the DST

alignment for transparency

The command packets can specify the monochrome source or the monochrome pattern data as a pixel mask.
When this feature is used, the bits that carry a value of 0 cause the bytes of the corresponding pixel at the
destination to not be written to by the BLT engine, thereby preserving whatever data was originally carried
within those bytes. This feature can be used in writing characters to the display, while also preserving the pre-
existing backgrounds behind those characters. When both operands are in the transparent mode, the logical
AND of the 2 operands are used for the write enables per pixel.

 G45: Volume 1b: Graphics Core

 153

The 3-bit field, destination transparency mode, within the command packets can select per-pixel write-
masking with a mask based on the results of color comparisons. The monochrome source background and
foreground are range compared with either the bytes for the pixels at the destination or the source operand.
This operation is described in the BLT command packet and register descriptions.

8.2.1.5 When the Source and Destination Locations Overlap

It is possible to have BLT operations in which the locations of the source and destination data overlap. This
frequently occurs in BLT operations where a user is shifting the position of a graphical item on the display by
only a few pixels. In these situations, the BLT engine must be programmed so that destination data is not
written into destination locations that overlap with source locations before the source data at those locations
has been read. Otherwise, the source data will become corrupted. The XY commands determine whether there
is an overlap and perform the accesses in the proper direction to avoid data corruption.

The following figure shows how the source data can be corrupted when a rectangular block is copied from a
source location to an overlapping destination location. The BLT engine typically reads from the source location
and writes to the destination location starting with the left-most pixel in the top-most line of both, as shown in
step (a). As shown in step (b), corruption of the source data has already started with the copying of the top-
most line in step (a) — part of the source that originally contained lighter-colored pixels has now been
overwritten with darker-colored pixels. More source data corruption occurs as steps (b) through (d) are
performed. At step (e), another line of the source data is read, but the two right-most pixels of this line are in
the region where the source and destination locations overlap, and where the source has already been
overwritten as a result of the copying of the top-most line in step (a). Starting in step (f), darker-colored
pixels can be seen in the destination where lighter-colored pixels should be. This errant effect occurs
repeatedly throughout the remaining steps in this BLT operation. As more lines are copied from the source
location to the destination location, it becomes clear that the end result is not what was originally intended.

 G45: Volume 1b: Graphics Core

154

Figure 8-3. Source Corruption in BLT with Overlapping Source and Destination Locations

(i)

Source

Destination

(a)

Source

Destination

b_blt2.vsd

(e)

(b)

(c)

(d)

(f)

(g)

(h)

The BLT engine can alter the order in which source data is read and destination data is written when
necessary to avoid source data corruption problems when the source and destination locations overlap. The
command packets provide the ability to change the point at which the BLT engine begins reading and writing
data from the upper left-hand corner (the usual starting point) to one of the other three corners. The BLT
engine may be set to read data from the source and write it to the destination starting at any of the four
corners of the panel.

The XY command packets perform the necessary comparisons and start at the proper corner of each operand
which avoids data corruption.

 G45: Volume 1b: Graphics Core

 155

Figure 8-4. Correctly Performed BLT with Overlapping Source and Destination Locations

(i)

Source

Destination

(a)

Source

Destination

b_blt3.vsd

(e)

(b)

(c)

(d)

(f)

(g)

(h)

 G45: Volume 1b: Graphics Core

156

The following figure illustrates how this feature of the BLT engine can be used to perform the same BLT
operation as was illustrated in the figure above, while avoiding the corruption of source data. As shown in the
figure below, the BLT engine reads the source data and writes the data to the destination starting with the
right-most pixel of the bottom-most line. By doing this, no pixel existing where the source and destination
locations overlap will ever be written to before it is read from by the BLT engine. By the time the BLT
operation has reached step (e) where two pixels existing where the source and destination locations overlap
are about to be over written, the source data for those two pixels has already been read.

Figure 8-5. Suggested Starting Points for Possible Source and Destination Overlap Situations

b_blt4.vsd

Destination Source

Destination Source

OR

DestinationSource

DestinationSource

OR

Destination Destination

Source Source

OR

Source

Destination

Source

Destination

Destination Destination

Source Source

OR

Source

Destination

Source

Destination

The figure above shows the recommended lines and pixels to be used as starting points in each of 8 possible
ways in which the source and destination locations may overlap. In general, the starting point should be
within the area in which the source and destination overlap.

 G45: Volume 1b: Graphics Core

 157

8.2.2 Basic Graphics Data Considerations

8.2.2.1 Contiguous vs. Discontinuous Graphics Data

Graphics data stored in memory, particularly in the frame buffer of a graphics system, has organizational
characteristics that often distinguish it from other varieties of data. The main distinctive feature is the
tendency for graphics data to be organized in a discontinuous block of graphics data made up of multiple sub-
blocks of bytes, instead of a single contiguous block of bytes.

Figure 8-6. Representation of On-Screen Single 6-Pixel Line in the Frame Buffer

Note: Drawing is not to scale

28100h

256, 256 261, 256

256th Scan Line

(0, 0)

(0, 479) (639, 479)

(639, 0)

270F8h

28108h

63 32 31 0

b_blt5.vsd

The figure above shows an example of contiguous graphics data — a horizontal line made up of six adjacent
pixels within a single scan line on a display with a resolution of 640x480. Presuming that the graphics system
driving this display has been set to 8 bits per pixel and that the frame buffer’s starting address of 0h
corresponds to the upper left-most pixel of this display, then the six pixels that make this horizontal line
starting at coordinates (256, 256) occupies the six bytes starting at frame buffer address 28100h, and ending
at address 28105h.

In this case, there is only one scan line’s worth of graphics data in this single horizontal line, so the block of
graphics data for all six of these pixels exists as a single, contiguous block comprised of only these six bytes.
The starting address and the number of bytes are the only pieces of information that a BLT engine would
require to read this block of data.

The simplicity of the above example of a single horizontal line contrasts sharply to the example of
discontinuous graphics data depicted in the figure below. The simple six-pixel line of the figure above is now
accompanied by three more six-pixel lines placed on subsequent scan lines, resulting in the 6x4 block of pixels
shown.

 G45: Volume 1b: Graphics Core

158

Figure 8-7. Representation of On-Screen 6x4 Array of Pixels in the Frame Buffer

Note: Drawing is not to scale

(0, 0)

(0, 479) (639, 479)

(639, 0)

b_blt6.vsd

256th Scan Line

257th Scan Line

258th Scan Line

259th Scan Line

256, 256 261, 256

256, 259 261, 259

63 32 31 0

28100h
270F8h

28108h

28100h
270F8h

28108h

28100h
270F8h

28108h

28100h
270F8h

28108h

Since there are other pixels on each of the scan lines on which this 6x4 block exists that are not part of this
6x4 block, what appears to be a single 6x4 block of pixels on the display must be represented by a
discontinuous block of graphics data made up of 4 separate sub-blocks of six bytes apiece in the frame buffer
at addresses 28100h, 28380h, 28600h, and 28880h. This situation makes the task of reading what appears to
be a simple 6x4 block of pixels more complex. However, there are two characteristics of this 6x4 block of
pixels that help simplify the task of specifying the locations of all 24 bytes of this discontinuous block of
graphics data: all four of the sub-blocks are of the same length, and the four sub-blocks are separated from
each other at equal intervals.

The BLT engine is designed to make use of these characteristics of graphics data to simplify the programming
required to handle discontinuous blocks of graphics data. For such a situation, the BLT engine requires only
four pieces of information: the starting address of the first sub-block, the length of a sub-block, the offset (in
bytes), pitch, of the starting address of each subsequent sub-block, and the quantity of sub-blocks.

8.2.2.2 Source Data

The source data may exist in the frame buffer or elsewhere in the graphics aperture where the BLT engine
may read it directly, or it may be provided to the BLT engine by the host CPU through the command packets.
The block of source graphics data may be either contiguous or discontinuous, and may be either in color (with
a color depth that matches that to which the BLT engine has been set) or monochrome.

The source select bit in the command packets specifies whether the source data exists in the frame buffer or
is provided through the command packets. Monochrome source data is always specified as being supplied
through an immediate command packet.

If the color source data resides within the frame buffer or elsewhere in the graphics aperture, then the Source
Address Register, specified in the command packets is used to specify the address of the source.

 G45: Volume 1b: Graphics Core

 159

In cases where the host CPU provides the source data, it does so by writing the source data to ring buffer
directly after the BLT command that requires the data or uses an IMMEDIATE_INDIRECT_BLT command
packet which has a size and pointer to the operand in Graphics aperture.

The block of bytes sent by the host CPU through the command packets must be quadword-aligned and the
source data contained within the block of bytes must also be aligned.

To accommodate discontinuous source data, the source and destination pitch registers can be used to specify
the offset in bytes from the beginning of one scan line’s worth source data to the next. Otherwise, if the
source data is contiguous, then an offset equal to the length of a scan line’s worth of source data should be
specified.

8.2.2.3 Monochrome Source Data

The opcode of the command packet specifies whether the source data is color or monochrome. Since
monochrome graphics data only uses one bit per pixel, each byte of monochrome source data typically carries
data for 8 pixels which hinders the use of byte-oriented parameters when specifying the location and size of
valid source data. Some additional parameters must be specified to ensure the proper reading and use of
monochrome source data by the BLT engine. The BLT engine also provides additional options for the
manipulation of monochrome source data versus color source data.

The various bit-wise logical operations and per-pixel write-masking operations were designed to work with
color data. In order to use monochrome data, the BLT engine converts it into color through a process called
color expansion, which takes place as a BLT operation is performed. In color expansion the single bits of
monochrome source data are converted into one, two, or four bytes (depending on the color depth) of color
data that are set to carry value corresponding to either the foreground or background color that have been
specified for use in this conversion process. If a given bit of monochrome source data carries a value of 1,
then the byte(s) of color data resulting from the conversion process will be set to carry the value of the
foreground color. If a given bit of monochrome source data carries a value of 0, then the resulting byte(s) will
be set to the value of the background color. The foreground and background colors used in the color
expansion of monochrome source data can be set in the source expansion foreground color register and the
source expansion background color register.

The BLT Engine requires that the bit alignment of each scan line’s worth of monochrome source data be
specified. Each scan line’s worth of monochrome source data is word aligned but can actually start on any bit
boundary of the first byte. Monochrome text is special cased and it is bit or byte packed, where in bit packed
there are no invalid pixels (bits) between scan lines. There is a 3 bit field which indicates the starting pixel
position within the first byte for each scan line, Mono Source Start.

The BLT engine also provides various clipping options for use with specific BLT commands (BLT_TEXT) with a
monochrome source. Clipping is supported through: Clip rectangle Y addresses or coordinates and X
coordinates along with scan line starting and ending addresses (with Y addresses) along with X starting and
ending coordinates.

The maximum immediate source size is 128 bytes.

8.2.2.4 Pattern Data

The color pattern data must exist within the frame buffer or Graphics aperture where the BLT engine may read
it directly or it can be sent through the command stream. The pattern data must be located in linear memory.
Monochrome pattern data is supplied by the command packet when it is to be used. As shown in figure below,
the block of pattern graphics data always represents a block of 8x8 pixels. The bits or bytes of a block of
pattern data may be organized in the frame buffer memory in only one of three ways, depending upon its
color depth which may be 8, 16, or 32 bits per pixel (whichever matches the color depth to which the BLT
engine has been set), or monochrome.

 G45: Volume 1b: Graphics Core

160

The maximum color pattern size is 256 bytes.

Figure 8-8. Pattern Data -- Always an 8x8 Array of Pixels

b_blt7.vsd

Pixel (0, 0)

Pixel (0, 7)

Pixel (7, 0)

Pixel (7, 7)

b_blt8.vsd

0

Pixel
(0, 7)

Pixel
(7, 7)

Pixel
(0, 0)

Pixel
(7, 0)

63 57 56 48 47 40 39 24 2332 31 16 15 8 7

The Pattern Address Register is used to specify the address of the color pattern data at which the block of
pattern data begins. The three least significant bits of the address written to this register are ignored, because
the address must be in terms of quadwords. This is because the pattern must always be located on an address
boundary equal to its size. Monochrome patterns take up 8 bytes, or a single quadword of space, and are
loaded through the command packet that uses it. Similarly, color patterns with color depths of 8, 16, and 32
bits per pixel must start on 64-byte, 128-byte and 256-byte boundaries, respectively. The next 3 figures show
how monochrome, 8bpp, 16bpp, and 32bpp pattern data , respectively, is organized in memory.

Figure 8-9. 8bpp Pattern Data -- Occupies 64 Bytes (8 quadwords)

b_blt9.vsd

0

Pixel (0, 7)

Pixel (7, 7)

Pixel (0, 0)

Pixel (7, 0)

63 57 56 48 47 40 39 24 2332 31 16 15 8 7

00h

28h

08h

10h

18h

20h

30h

38h

 G45: Volume 1b: Graphics Core

 161

Figure 8-10. 16bpp Pattern Data -- Occupies 128 Bytes (16 quadwords)

b_blt10.vsd

0

Pixel (7, 0)

Pixel (7, 7)

Pixel (0, 0)

Pixel (0, 7)

63 48 47 32 31 16 15

00h

70h

08h

68h

78h

Figure 8-11. 32bpp Pattern Data -- Occupies 256 Bytes (32 quadwords)

b_blt10.vsd

0

Pixel (3, 0)

Pixel (7, 7)

Pixel (0, 0)

Pixel (4, 7)

63 48 47 32 31 16 15

00h

70h

08h

68h

78h

The opcode of the command packet specifies whether the pattern data is color or monochrome. The various
bit-wise logical operations and per-pixel write-masking operations were designed to work with color data. In
order to use monochrome pattern data, the BLT engine is designed to convert it into color through a process
called “color expansion” which takes place as a BLT operation is performed. In color expansion, the single bits
of monochrome pattern data are converted into one, two, or four bytes (depending on the color depth) of
color data that are set to carry values corresponding to either the foreground or background color that have
been specified for use in this process. The foreground color is used for pixels corresponding to a bit of
monochrome pattern data that carry the value of 1, while the background color is used where the
corresponding bit of monochrome pattern data carries the value of 0. The foreground and background colors
used in the color expansion of monochrome pattern data can be set in the Pattern Expansion Foreground Color
Register and Pattern Expansion Background Color Register.

8.2.2.5 Destination Data

There are actually two different types of “destination data”: the graphics data already residing at the location
that is designated as the destination, and the data that is to be written into that very same location as a result
of a BLT operation.

The location designated as the destination must be within the frame buffer or Graphics aperture where the
BLT engine can read from it and write to it directly. The blocks of destination data to be read from and written
to the destination may be either contiguous or discontinuous. All data written to the destination will have the
color depth to which the BLT engine has been set. It is presumed that any data already existing at the
destination which will be read by the BLT engine will also be of this same color depth — the BLT engine neither
reads nor writes monochrome destination data.

 G45: Volume 1b: Graphics Core

162

The Destination Address Register is used to specify the address of the destination.

To accommodate discontinuous destination data, the Source and Destination Pitch Registers can be used to
specify the offset in bytes from the beginning of one scan line’s worth of destination data to the next.
Otherwise, if the destination data is contiguous, then an offset equal to the length of a scan line’s worth of
destination data should be specified.

 G45: Volume 1b: Graphics Core

 163

8.2.3 BLT Programming Examples

8.2.3.1 Pattern Fill — A Very Simple BLT

In this example, a rectangular area on the screen is to be filled with a color pattern stored as pattern data in
off-screen memory. The screen has a resolution of 1024x768 and the graphics system has been set to a color
depth of 8 bits per pixel.

Figure 8-12. On-Screen Destination for Example Pattern Fill BLT

b_blt20.vsd

Scan Lines 128 Through 191

Rectangular
Area to be Filled

(Destination)

128, 128

Note: Drawing is not to scale

(0, 0)

(0, 767)

(1023, 0)

(1023, 767)

191, 128

128, 191 191, 191

63 0 128, 128

20080h
20088h
20090h
20098h
200A0h
200A8h
200B0h
200B8h

On
128th
Scan
Line

(191, 128)

(128, 191)

2FC80h
2FC88h
2FC90h
2FC98h
2FCA0h
2FCA8h
2FCB0h
2FCB8h

On
191th
Scan
Line

(191, 191)

As shown in the figure above, the rectangular area to be filled has its upper left-hand corner at coordinates
(128, 128) and its lower right-hand corner at coordinates (191, 191). These coordinates define a rectangle
covering 64 scan lines, each scan line’s worth of which is 64 pixels in length — in other words, an array of
64x64 pixels. Presuming that the pixel at coordinates (0, 0) corresponds to the byte at address 00h in the
frame buffer memory, the pixel at (128, 128) corresponds to the byte at address 20080h.

 G45: Volume 1b: Graphics Core

164

Figure 8-13. Pattern Data for Example Pattern Fill BLT

b_blt22.vsd

63 0

100000h
100008h
100010h
100018h
100020h
100028h
100030h
100038h

(0, 0)

(0, 7)

(7, 0)

(7, 7)

Pattern Data
(0, 0)(7, 0)

(0, 7)(7, 7)

As shown in figure above, the pattern data occupies 64 bytes starting at address 100000h. As always, the
pattern data represents an 8x8 array of pixels.

The BLT command packet is used to select the features to be used in this BLT operation, and must be
programmed carefully. The vertical alignment field should be set to 0 to select the top-most horizontal row of
the pattern as the starting row used in drawing the pattern starting with the top-most scan line covered by
the destination. The pattern data is in color with a color depth of 8 bits per pixel, so the dynamic color enable
should be asserted with the dynamic color depth field should be set to 0. Since this BLT operation does not
use per-pixel write-masking (destination transparency mode), this field should be set to 0. Finally, the raster
operation field should be programmed with the 8-bit value of F0h to select the bit-wise logical operation in
which a simple copy of the pattern data to the destination takes place. Selecting this bit-wise operation in
which no source data is used as an input causes the BLT engine to automatically forego either reading source
data from the frame buffer.

The Destination Pitch Register must be programmed with number of bytes in the interval from the start of one
scan line’s worth of destination data to the next. Since the color depth is 8 bits per pixel and the horizontal
resolution of the display is 1024, the value to be programmed into these bits is 400h, which is equal to the
decimal value of 1024.

Bits [31:3] of the Pattern Address Register must be programmed with the address of the pattern data.

Similarly, bits [31:0] of the Destination Address Register must be programmed with the byte address at the
destination that will be written to first. In this case, the address is 20080h, which corresponds to the byte
representing the pixel at coordinates (128, 128).

This BLT operation does not use the values in the Source Address Register or the Source Expansion
Background or Foreground Color Registers.

The Destination Width and Height Registers (or the Destination X and Y Coordinates) must be programmed
with values that describe to the BLT engine the 64x64 pixel size of the destination location. The height should
be set to carry the value of 40h, indicating that the destination location covers 64 scan lines. The width should
be set to carry the value of 40h, indicating that each scan line’s worth of destination data occupies 64 bytes.
All of this information is written to the ring buffer using the PAT_BLT (or XY_PAT_BLT) command packet.

 G45: Volume 1b: Graphics Core

 165

Figure 8-14. Results of Example Pattern Fill BLT

b_blt21.vsd

Scan Lines 128 Through 191

128, 128

Note: Drawing is not to scale

(0, 0)

(0, 767)

(1023, 0)

(1023, 767)

191, 128

63 0128, 128

20080h
20088h
20090h
20098h
200A0h
200A8h
200B0h
200B8h

On
128th
Scan
Line

(191, 128)

(128, 191)

2FC80h
2FC88h
2FC90h
2FC98h
2FCA0h
2FCA8h
2FCB0h
2FCB8h

On
191th
Scan
Line

(191, 191)

128, 191 191, 191

The figure above shows the end result of performing this BLT operation. The 8x8 pattern has been repeatedly
copied (“tiled”) into the entire 64x64 area at the destination.

 G45: Volume 1b: Graphics Core

166

8.2.3.2 Drawing Characters Using a Font Stored in System Memory

In this example BLT operation, a lowercase letter “f” is to be drawn in black on a display with a gray
background. The resolution of the display is 1024x768, and the graphics system has been set to a color depth
of 8 bits per pixel.

Figure 8-15. On-Screen Destination for Example Character Drawing BLT

63

b_blt12.vsd

0
128, 128

20080h
 (128th Scan Lin

20480h
 (129th Scan Lin

20880h
 (130th Scan Lin

20C80h
 (131th Scan Lin

21080h
 (132nd Scan Lin

21480h
 (133rd Scan Lin

21880h
 (134th Scan Lin

21C80h
 (135th Scan Lin

Scan Lines 128 Through 135

Destination

(135, 135)

128, 128

Note: Drawing is not to scale

(0, 0)

(0, 767)

(1023, 0)

(1023, 767)

135, 135

The figure above shows the display on which this letter “f” is to be drawn. As shown in this figure, the entire
display has been filled with a gray color. The letter “f” is to be drawn into an 8x8 region on the display with
the upper left-hand corner at the coordinates (128, 128).

Figure 8-16. Source Data in System Memory for Example Character Drawing BLT

b_blt13.vsd

063 57 56 48 47 40 39 24 2332 31 16 15 8 7

Pixel (0, 0)

Pixel (0, 7)

Pixel (7, 0)

Pixel (7, 7)

00000000 00010000 00010000 00111100 00010000 00010000 00001100 00000000

(0, 7) (7, 7) (7, 0) (0, 0)

Source Data

The figure above shows both the 8x8 pattern making up the letter “f” and how it is represented somewhere in
the host’s system memory — the actual address in system memory is not important. The letter “f” is
represented in system memory by a block of monochrome graphics data that occupies 8 bytes. Each byte
carries the 8 bits needed to represent the 8 pixels in each scan line’s worth of this graphics data. This type of
pattern is often used to store character fonts in system memory.

 G45: Volume 1b: Graphics Core

 167

During this BLT operation, the host CPU will read this representation of the letter “f” from system memory,
and write it to the BLT engine by performing memory writes to the ring buffer as an immediate monochrome
BLT operand following the BLT_TEXT command. The BLT engine will receive this data through the command
stream and use it as the source data for this BLT operation. The BLT engine will be set to the same color
depth as the graphics system ⎯ 8 bits per pixel, in this case. Since the source data in this BLT operation is
monochrome, color expansion must be used to convert it to an 8 bpp color depth. To ensure that the gray
background behind this letter “f” is preserved, per-pixel write masking will be performed, using the
monochrome source data as the pixel mask.

The BLT Setup and Text_immediate command packets are used to select the features to be used in this BLT
operation. Only the fields required by these two command packets must be programmed carefully. The BLT
engine ignores all other registers and fields. The source select field in the Text_immediate command must be
set to 1, to indicate that the source data is provided by the host CPU through the command packet. Finally,
the raster operation field should be programmed with the 8-bit value CCh to select the bit-wise logical
operation that simply copies the source data to the destination. Selecting this bit-wise operation in which no
pattern data is used as an input, causes the BLT engine to automatically forego reading pattern data from the
frame buffer.

The Setup Pattern/Source Expansion Foreground Color Register to specify the color with which the letter “f”
will be drawn. There is no Source address. All scan lines of the glyph are bit packed and the clipping is
controlled by the ClipRect registers from the SETUP_BLT command and the Destination Y1, Y2, X1, and X2
registers in the TEXT_BLT command. Only the pixels that are within (inclusive comparisons) the clip rectangle
are written to the destination surface.

The Destination Pitch Register must be programmed with a value equal to the number of bytes in the interval
between the first bytes of each adjacent scan line’s worth of destination data. Since the color depth is 8 bits
per pixel and the horizontal resolution of the display is 1024 pixels, the value to be programmed into these
bits is 400h, which is equal to the decimal value of 1024. Since the source data used in this BLT operation is
monochrome, the BLT engine will not use a byte-oriented pitch value for the source data.

Since the source data is monochrome, color expansion is required to convert it to color with a color depth of 8
bits per pixel. Since the Setup Pattern/Source Expansion Foreground Color Register is selected to specify the
foreground color of black to be used in drawing the letter “f”, this register must be programmed with the value
for that color. With the graphics system set for a color depth of 8 bits per pixel, the actual colors are specified
in the RAMDAC palette, and the 8 bits stored in the frame buffer for each pixel actually specify the index used
to select a color from that palette. This example assumes that the color specified at index 00h in the palette is
black, and therefore bits [7:0] of this register should be set to 00h to select black as the foreground color. The
BLT engine ignores bits [31:8] of this register because the selected color depth is 8 bits per pixel. Even
though the color expansion being performed on the source data normally requires that both the foreground
and background colors be specified, the value used to specify the background color is not important in this
example. Per-pixel write-masking is being performed with the monochrome source data as the pixel mask,
which means that none of the pixels in the source data that will be converted to the background color will ever
be written to the destination. Since these pixels will never be seen, the value programmed into the
Pattern/Source Expansion Background Color Register to specify a background color is not important.

The Destination Width and Height Registers are not used. The Y1, Y2, X1, and X2 are used to describe to the
BLT engine the 8x8 pixel size of the destination location. The Destination Y1 and Y2 address (or coordinate)
registers must be programmed with the starting and ending scan line address (or Y coordinates) of the
destination data. This address is specified as an offset from the start of the frame buffer of the scan line at the
destination that will be written to first. The destination X1 and X2 registers must be programmed with the
starting and ending pixel offsets from the beginning of the scan line.

This BLT operation does not use the values in the Pattern Address Register, the Source Expansion Background
Color Register, or the Source Expansion Foreground Color Register.

 G45: Volume 1b: Graphics Core

168

Figure 8-17. Results of Example Character Drawing BLT

63

b_blt12.vsd

0
128, 128

20080h
 (128th Scan Lin

20480h
 (129th Scan Lin

20880h
 (130th Scan Lin

20C80h
 (131th Scan Lin

21080h
 (132nd Scan Lin

21480h
 (133rd Scan Lin

21880h
 (134th Scan Lin

21C80h
 (135th Scan Lin

Scan Lines 128 Through 135

Destination

135, 135

128, 128

Note: Drawing is not to scale

(0, 0)

(0, 767)

(1023, 0)

(1023, 767)

135, 135

The preceding shows the end result of performing this BLT operation. Only the pixels that form part of the
actual letter “f” have been drawn into the 8x8 destination location on the display, leaving the other pixels
within the destination with their original gray color.

8.3 BLT Instruction Overview

This chapter defines the instructions used to control the 2D (BLT) rendering function.

The instructions detailed in this chapter are used across devices. However, slight changes may be present in
some instructions (i.e., for features added or removed), or some instructions may be removed entirely. Refer
to the Device Dependencies chapter for summary information regarding device-specific
behaviors/interfaces/features.

The XY instructions offload the drivers by providing X and Y coordinates and taking care of the access
directions for overlapping BLTs without fields specified by the driver.

Color pixel sizes supported are 8, 16, and 32 bits per pixel (bpp). All pixels are naturally aligned.

8.4 BLT Engine State

Most of the BLT instructions are state-free, which means that all states required to execute the command is
within the instruction. If clipping is not used, then there is no shared state for many of the BLT instructions.
This allows the BLT Engine to be shared by many drivers with minimal synchronization between the drivers.

Instructions which share state are:

All instructions that are X,Y commands and use the Clipping Rectangle by asserting the Clip Enable field

 G45: Volume 1b: Graphics Core

 169

All XY_Setup Commands (XY_SETUP_BLT and XY_SETUP_MONO_PATTERN_SL_BLT) load the shared state
for the following commands:
XY_PIXEL_BLT (Negative Stride (=Pitch) Not Allowed)
XY_SCANLINES_BLT
XY_TEXT_BLT (Negative Stride (=Pitch) Not Allowed)
XY_TEXT_IMMEDIATE_BLT (Negative Stride (=Pitch) Not Allowed)

State registers that are saved & restored in the Logical Context:

BR1+ Setup Control (Solid Pattern Select, Clipping Enable, Mono Source Transparency Mode, Mono
Pattern Transparency Mode, Color Depth[1:0], Raster Operation[7:0], & Destination
Pitch[15:0]) + 32bpp Channel Mask[1:0], Mono / Color Pattern

BR05 Setup Background Color
BR06 Setup Foreground Color
BR07 Setup Pattern Base Address
BR09 Setup Destination Base Address
BR20 DW0 for a Monochrome Pattern
BR21 DW1 for a Monochrome Pattern
BR24 ClipRectY1’X1
BR25 ClipRectY2’X2

8.5 Cacheable Memory Support

The BLT Engine can be used to transfer data between cacheable (“system”) memory and uncached (“main”, or
“UC”) graphics memory using the BLT instructions. The GTT must be properly programmed to map memory
pages as cacheable or UC. Only linear-mapped (not tiled) surfaces can be mapped as cacheable.

Transfers between cacheable sources and cacheable destinations are not supported. Patterns and
monochrome sources cannot be located in cacheable memory.

Cacheable write operands do not snoop the processor’s cache nor update memory until evicted from the
render cache. Cacheable read or write operands are not snooped (nor invalidated) from either internal cache
by external (processor, hublink,…) accesses.

 G45: Volume 1b: Graphics Core

170

8.6 Device Cache Coherency: Render and Texture Caches

Software must initiate cache flushes to enforce coherency between the render and texture caches, i.e., both
the render and texture caches must be flushed before a BLT destination surface can be reused as a texture
source. Color sources and destinations use the render cache, while patterns and monochrome sources use the
texture cache.

8.7 BLT Engine Instructions

The Instruction Target field is used as an opcode by the BLT Engine state machine to qualify the control bits
that are relevant for executing the instruction. The descriptions for each DWord and bit field are contained in
the BLT Engine Instruction Field Definition section. Each DWord field is described as a register, but none of
these registers can be written of read through a memory mapped location – they are internal state only.

8.7.1 Blt Programming Restrictions
Overlapping Source/Destination BLTs: The following condition must be avoided when programming

the Blt engine: Linear surfaces with a cache line in scan line Y for the source stream overlapping with a
cache line in scan line Y-1 for the dest stream (=> non-aligned surface pitches). The cache coherency
rules combined with the Blitter data consumption rules result in UNDEFINED operation. (Note that this
restriction will likely follow forward to future products due to architectural complexities.) There are two
suggested software workarounds:
• In order to perform coherent overlapping Blts, (a) the Source and Destination Base Address registers

must hold the same value (without alignment restriction), and (b) the Source and Destination Pitch
registers (BR11,BR13) must both be a multiple of 64 bytes.

• If (a) isn’t possible, do overlapping source copy BLTs as two blits, using a separate intermediate
surface.

All reserved fields must be programmed to 0s.

When using monosource or text data (bit/byte/word aligned): do not program pixel widths greater than
32,745 pixels.

8.8 Fill/Move Instructions

These instructions use linear addresses with width and height. BLT clipping is not supported.

 G45: Volume 1b: Graphics Core

 171

8.8.1 COLOR_BLT (Fill)

COLOR_BLT is the simplest BLT operation. It performs a color fill to the destination (with a possible ROP). The
only operand is the destination operand which is written dependent on the raster operation. The solid pattern
color is stored in the pattern background register.

This instruction is optimized to run at the maximum memory write bandwidth.

The typical Raster operation code = F0 which performs a copy of the pattern background register to the
destination.

DWord Bit Description

0 =
BR00

31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode) : 40h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB
channels)

 19:05 Reserved. Note no tiling specification allowed for this non-XY blit
command. Only linear blits are allowed.

 04:00 DWord Length: 03h

1 =
BR13

31:26 Reserved.

 25:24 Color Depth:
00 = 8 bit color.
01 = 16 bit color (656).
10 = 16 bit color (1555).
11 = 32 bit color

 23:16 Raster Operation:
 15:00 Destination Pitch (signed): Destination pitch in bytes (Same as before).

2 =
BR14

31:16 Destination Height (in scan lines):

 15:00 Destination Width (in bytes):
3 =
BR09

31:00 Destination Address: Address of the first byte to be written

4 =
BR16

31:00 Solid Pattern Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

 G45: Volume 1b: Graphics Core

172

8.8.2 SRC_COPY_BLT (Move)

This BLT instruction performs a color source copy where the only operands involved is a color source and
destination of the same bit width.

The source and destination operands may overlap. The command must indicate the horizontal and vertical
directions: either forward or backwards to avoid data corruption. The X direction (horizontal) field applies to
both the destination and source operands. The source and destination pitches (stride) are signed.

DWord Bit Description

0 =
BR00

31:29 Client: 02h – 2D Processor

 28:22 Instruction Target (Opcode) : 43h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB
channels)

 19:05 Reserved. Note no tiling specification allowed for this non-XY blit
command. Only linear blits are allowed.

 04:00 Dword Length: 04h

1 =
BR13

31 Reserved.

 30 X Direction (1 = written from right to left (decrementing = backwards); 0
= incrementing)

 29:26 Reserved.
 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:
 15:00 Destination Pitch (signed): Destination pitch in bytes (Same as before).

2 =
BR14

31:16 Destination Height (in scan lines):

 15:00 Destination Width (in bytes):
3 =
BR09

31:00 Destination Address: Address of the first byte to be written

 31:14 Reserved.
4 =
BR11

15:00 Source Pitch: (double word aligned and signed)

5 =
BR12

31:00 Source Address: Address of the first byte to be read.

 G45: Volume 1b: Graphics Core

 173

8.9 2D (X,Y) BLT Instructions

Most BLT instructions (prefixed with “XY_”) use 2D X,Y coordinate specifications vs. lower-level linear
addresses. These instructions also support simple 2D clipping against a clip rectangle.

The top and left Clipping coordinates are inclusive. The bottom and right coordinates are exclusive. The BLT
Engine performs a trivial reject for all CLIP BLT instructions before performing any accesses.

Negative destination and source coordinates are supported. In the case of negative source coordinates, the
destination X1 and Y1 are modified by the absolute value of the negative source coordinate before the
destination clip checking and final drawing coordinates are calculated. The absolute value of the source
negative coordinate is added to the corresponding destination coordinate. The BLT engine clipping also checks
for (DX2 [or = DX1) or (DY2 [or = DY1) after this calculation and if true, then the BLT is totally rejected.

D(X1 Y1)

C(X2 Y2)

DBA
(DX=0,DY=0)

SBA
(SX=0,SY=0)

S(X1 Y1)

Dest. PitchSource Pitch

Source Surface

Destination Surface

Some Equalities & Inequali ties for Source Clipping:

Src. TD = Dst. TD (Top discard in SL)
Src LD = LD (Left Discard in Pixels)
Src Height = Dst. Height in SL
Src Width = Dst. Width in Pixels

Note: Src. Pitch is not equal to Dst. Pitch

Src. TD

Src. LD Src. Width

Src. Height

Lower SL

Upper SL
C(X1 Y1)

Dst. WidthLD

Dst. TD

Dst. Height

D(X2 Y2)

Left Pixel

Right Pixel

Destination, Source and Clipping Surface Parameters

DX1, DY1, CX1, and CY1 are inclusive, while DX2, DY2, CX2, and CY2 are exclusive.

Destination pixel address = (Destination Base Address + (Destination Y coordinate * Destination pitch) +
(Destination X coordinate * bytes per pixel)).

Source pixel address = (Source Base Address + (Source Y coordinate * Source pitch) + (Source X coordinate
* bytes per pixel)).

 G45: Volume 1b: Graphics Core

174

Since there is 1 set of Clip Rectangle registers, the Interrupt Ring BLT commands either MUST NEVER enable
clipping with these command and never use the XY_Pixel_BLT, XY_Scanline_BLT, nor XY_Text_BLT commands
or it must use context switching. The Interrupt rings can also use the non-clipped, linear address commands
specified before this section.

The base addresses plus the X and Y coordinates determine if there is an overlap between the source and
destination operands. If the base addresses of the source and destination are the same and the Source X1 is
less than Destination X1, then the BLT Engine performs the accesses in the X-backwards access pattern.
There is no need to look for an actual overlap. If the base addresses are the same and Source Y1 is less than
Destination Y1, then the scan line accesses are performed backwards.

b_blt4.vsd

Destination Source

Destination Source

OR

DestinationSource

DestinationSource

OR

Destination Destination

Source Source

OR

Source

Destinati

Source

Destination

Destination Destination

Source Source

OR

Source

Destination

Source

Destination

8.9.1 XY_SETUP_BLT
This setup instruction supplies common setup information including clipping coordinates used by the XY
commands: XY_PIXEL_BLT, XY_SCANLINE_BLT, XY_TEXT_BLT, and XY_TEXT_BLT_IMMEDIATE.

These are the only instructions that require that state be saved between instructions other than the Clipping
parameters. There are 5 dedicated registers to contain the state for these 3 instructions. All other BLTs use a
temporary version of these. The 5 double word registers are: DW1 (Setup Control), DW6 (Setup Foreground
color), DW5 (Setup Background color), DW7 (Setup Pattern address), and DW4 (Setup Destination Base
Address).

 G45: Volume 1b: Graphics Core

 175

DWord Bit Description

0 =
BR00

31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 01h
 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB

channels)
 19:12 Reserved.
 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)
1 = Tiling enabled (Tile-X only)

 10:
08

Reserved

 07:00 Dword Length: 06h
1 =
BR01

31 Reserved.

 30 Clipping Enable: (1 = enabled; 0 = disabled)
 29 Mono Source Transparency Mode: (1 = transparency enabled; 0 = use

background)
 28:26 Reserved.
 25:24 Color Depth: All

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:
 15:00 Destination Pitch in DWords: [15:00] 2’s complement (Negative Pitch

Not allowed for Pixel nor Text)
For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte granularity
and can be upto 128Kbytes (or 32KDwords).

2 =
BR24

31:16 ClipRect Y1 Coordinate (Top): (30:16 = 15 bit positive number)

 15:00 ClipRect X1 Coordinate (Left): (14:00 = 15 bit positive number)
3 =
BR25

31:16 ClipRect Y2 Coordinate (Bottom): (30:16 = 15 bit positive number)

 15:00 ClipRect X2 Coordinate (Right): (14:00 = 15 bit positive number)
4 =
BR09

31:00 Setup Destination Base Address: (base address of the destination
surface: X=0, Y=0)
When Tiling is enabled (Bit_11 enabled), this address is limited to
4Kbytes.

5 =
BR05

31:00 Setup Background Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0] All

6 =
BR06

31:00 Setup Foreground Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]
(SLB & TB only)

7 =
BR07

31:00 Setup Pattern Base Address for Color Pattern: (26:06 are
implemented) (SLB only)
(Note no NPO2 change here). The pattern data must be located in linear
memory.

 G45: Volume 1b: Graphics Core

176

8.9.2 XY_SETUP_MONO_PATTERN_SL_BLT
This setup instruction supplies common setup information including clipping coordinates used exclusively with
the following instruction: XY_SCANLINE_BLT (SLB) - 1 scan line of monochrome pattern and destination are
the only operands allowed.

DWord Bit Description

0 =
BR00

31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 11h
 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB

channels)
 19:12 Reserved.
 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)
1 = Tiling enabled (Tile-X only)

 10:
08

Reserved

 07:00 Dword Length: 07h
1 =
BR01

31 Solid Pattern Select: (1 = solid pattern; 0 = no solid pattern) - (SLB &
Pixel only)

 30 Clipping Enable: (1 = enabled; 0 = disabled)
 29 Reserved.
 28 Mono Pattern Transparency Mode: (1 = transparency enabled; 0 =

use background)
 27:26 Reserved.
 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:
 15:00 Destination Pitch in DWords: [15:00] 2’s complement (Negative Pitch

Not allowed for Pixel nor Text)
For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte granularity
and can be upto 128Kbytes (or 32KDwords).

2 =
BR24

31:16 ClipRect Y1 Coordinate (Top): (30:16 = 15 bit positive number)

 15:00 ClipRect X1 Coordinate (Left): (14:00 = 15 bit positive number)
3 =
BR25

31:16 ClipRect Y2 Coordinate (Bottom): (30:16 = 15 bit positive number)

 15:00 ClipRect X2 Coordinate (Right): (14:00 = 15 bit positive number)
4 =
BR09

31:00 Setup Destination Base Address: (base address of the destination
surface: X=0, Y=0)
When Tiling is enabled (Bit_11 enabled), this address is limited to
4Kbytes.

5 =
BR05

31:00 Setup Background Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

 G45: Volume 1b: Graphics Core

 177

DWord Bit Description

6 =
BR06

31:00 Setup Foreground Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

7 =
BR20

31:00 DW0 (least significant) for a Monochrome Pattern:

8 =
BR21

31:00 DW1 (most significant) for a Monochrome Pattern:

8.9.3 XY_SETUP_CLIP_ BLT
This command is used to only change the clip coordinate registers. These are the same clipping registers as
the Setup clipping registers above.

DWord Bit Description

0 = BR00 31:29 Client: 02h - 2D Processor
 28:22 Instruction Target (Opcode): 03h
 21:12 Reserved.
 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)
1 = Tiling enabled (Tile-X only)

 10: 08 Reserved
 07:00 Dword Length: 01h
1 = BR24 31:16 ClipRect Y1 Coordinate (Top): (30:16 = 15 bit positive number)
 15:00 ClipRect X1 Coordinate (Left): (14:00 = 15 bit positive number)
2 = BR25 31:16 ClipRect Y2 Coordinate (Bottom): (30:16 = 15 bit positive number)
 15:00 ClipRect X2 Coordinate (Right): (14:00 = 15 bit positive number)

 G45: Volume 1b: Graphics Core

178

8.9.4 XY_PIXEL_BLT

The Destination X coordinate and Destination Y coordinate is compared with the ClipRect registers. If it is
within all 4 comparisons, then the pixel supplied in the XY_SETUP_BLT instruction is written with the raster
operation to (Destination Y Address + (Destination Y coordinate * Destination pitch) + (Destination X
coordinate * bytes per pixel)).

ROP field must specify pattern or fill with 0’s or 1’s. There is no source operand.

Negative Stride (= Pitch) specified in the Setup command is Not Allowed

DWord Bit Description

0 =
BR00

31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 24h
 21:12 Reserved.
 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)
1 = Tiling enabled (Tile-X only)

 10:
08

Reserved

 07:00 Dword Length : 00h
1 =
BR22

31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

 G45: Volume 1b: Graphics Core

 179

8.9.5 XY_SCANLINES_BLT

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the
ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative
to the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate +
horizontal seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed)
modulo 8.

Solid pattern should use the XY_SETUP_MONO_PATTERN_SL_BLT instruction.

ROP field must specify pattern or fill with 0’s or 1’s. There is no source operand.

DWord Bit Description

0 =
BR00

31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 25h

 21:15 Reserved.
 14:12 Pattern Horizontal Seed: (pixel of the scan line to start on

corresponding to DST X=0)

 11 Tiling Enable:
0 = Tiling Disabled (Linear blit)
1 = Tiling enabled (Tile-X only)

 10:08 Pattern Vertical Seed: (scan line of the 8x8 pattern to start on
corresponding to DST Y=0)

 07:00 Dword Length: 01h

1 =
BR22

31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

2 =
BR23

31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed number)

 G45: Volume 1b: Graphics Core

180

8.9.6 XY_TEXT_BLT

All source scan lines and pixels that fall within the ClipRect Y and X coordinates are written. The source
address corresponds to Destination X1 and Y1 coordinate.

Text is either bit or byte packed. Bit packed means that the next scan line starts 1 pixel after the end of the
current scan line with no bit padding. Byte packed means that the next scan line starts on the first bit of the
next byte boundary after the last bit of the current line.

Source expansion color registers are always in the SETUP_BLT.

Negative Stride (= Pitch) is NOT ALLOWED.

DWord Bit Description

0 = BR00 31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 26h

 21:17 Reserved.
 16 Bit (0) / Byte (1) packed: Byte packed is for the NT driver

 15:12 Reserved.
 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)
1 = Tiling enabled (Tile-X only)

 10: 08 Reserved
 07:00 Dword Length: 02h

1 = BR22 31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

2 = BR23 31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed
number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed
number)

3 = BR12 31:00 Source Address: (address of the first byte on scan line
corresponding to Dst X1,Y1)
(Note no NPO2 change here)

 G45: Volume 1b: Graphics Core

 181

8.9.7 XY_TEXT_IMMEDIATE_BLT

This instruction allows the Driver to send data through the instruction stream that eliminates the read latency
of reading a source from memory. If an operand is in system cacheable memory and either small or only
accessed once, it can be copied directly to the instruction stream versus to graphics accessible memory.

The IMMEDIATE_BLT data MUST transfer an even number of doublewords. The BLT engine will hang if it does
not get an even number of doublewords.

All source scan lines and pixels that fall within the ClipRect X and Y coordinates are written. The source data
corresponds to Destination X1 and Y1 coordinate.

Source expansion color registers are always in the SETUP_BLT.

NEGATIVE STRIDE (= PITCH) IS NOT ALLOWED.

DWord Bit Description

0 = BR00 31:29 Client: 02h – 2D Processor

 28:22 Instruction Target (Opcode): 31h

 21:17 Reserved.
 16 Bit (0) / Byte (1) packed: Byte packed is for the NT driver

 15:12 Reserved.
 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)
1 = Tiling enabled (Tile-X only)

 10: 08 Reserved
 07:00 Dword Length : 01+ DWL = (Number of Immediate double words)h

1 = BR22 31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

2 = BR23 31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed
number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed
number)

3 31:00 Immediate Data DW 0:
4 31:00 Immediate Data DW 1:
5 thru
DWL+3

S Immediate Data DWs 2 through DWORD_LENGTH (DWL):

 G45: Volume 1b: Graphics Core

182

8.9.8 XY_COLOR_BLT

COLOR_BLT is the simplest BLT operation. It performs a color fill to the destination (with a
possible ROP). The only operand is the destination operand which is written dependent on the
raster operation. The solid pattern color is stored in the pattern background register.

This instruction is optimized to run at the maximum memory write bandwidth.

The typical (and fastest) Raster operation code = F0 which performs a copy of the pattern
background register to the destination.

DWord Bit Description

0 =
BR00

31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 50h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write
RGB channels)

 19:12 Reserved.
 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)
1 = Tiling enabled (Tile-X only)

 10:
08

Reserved

 07:00 Dword Length: 04h

1 =
BR13

31 Reserved.

 30 Clipping Enable: (1 = enabled; 0 = disabled)

 29:26 Reserved.
 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:
 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte
granularity and can be upto 128Kbytes (or 32KDwords).

2 =
BR22

31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed
number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed
number)

3 =
BR23

31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed
number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed
number)

 G45: Volume 1b: Graphics Core

 183

DWord Bit Description

4 =
BR09

31:00 Destination Base Address: (base address of the destination
surface: X=0, Y=0)
When Tiling is enabled (Bit_11 enabled), this address is limited
to 4Kbytes.

5 =
BR16

31:00 Solid Pattern Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

8.9.9 XY_PAT_BLT
PAT_BLT is used when there is no source and the color pattern is not trivial (is not a solid color only).

If clipping is enabled, all scan lines and pixels that fall within the ClipRect Y and X coordinates are written.
Only pixels within the ClipRectX coordinates and the Destination X coordinates are written using the raster
operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative
to the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate +
horizontal seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed)
modulo 8.

DWord Bit Description

0 =
BR00

31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 51h
 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB

channels)
 19:15 Reserved.
 14:12 Pattern Horizontal Seed (pixel of the scan line to start on

corresponding to DST X=0)
 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)
1 = Tiling enabled (Tile-X only)

 10:08 Pattern Vertical Seed: (Starting Scan line of the 8x8 pattern
corresponding to DST Y=0)

 07:00 Dword Length: 04h
1 =
BR13

31 Reserved.

 30 Clipping Enable: (1 = enabled; 0 = disabled)
 29:26 Reserved.
 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:

 G45: Volume 1b: Graphics Core

184

DWord Bit Description

 15:00 Destination Pitch in DWords: [15:00] 2’s complement
For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte
granularity and can be upto 128Kbytes (or 32KDwords).

2 =
BR22

31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)
3 =
BR23

31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed
number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed
number)

4 =
BR09

31:00 Destination Base Address: (base address of the destination
surface: X=0, Y=0)
When Tiling is enabled (Bit_11 enabled), this address is limited to
4Kbytes.

5 =
BR15

31:00 Pattern Base Address: (28:06 are implemented) (Note no NPO2
change here). The pattern data must be located in linear memory.

8.9.10 XY_PAT_CHROMA_BLT
PAT_BLT is used when there is no source and the color pattern is not trivial (is not a solid color only).

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the
ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative
to the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate +
horizontal seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed)
modulo 8.

DWord Bit Description

0 =
BR00

31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 76h
 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB

channels)
 19:17 Transparency Range Mode: (chroma-key) – Dst Chroma-key modes

ONLY (SRC ILLEGAL)
 16:15 Reserved.
 14:12 Pattern Horizontal Seed (pixel of the scan line to start on

corresponding to DST X=0)
 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)
1 = Tiling enabled (Tile-X only)

 10:08 Pattern Vertical Seed: (Starting Scan line of the 8x8 pattern
corresponding to DST Y=0)

 07:00 Dword Length: 06h
1 =
BR13

31 Reserved.

 30 Clipping Enable: (1 = enabled; 0 = disabled)
 29:26 Reserved.

 G45: Volume 1b: Graphics Core

 185

DWord Bit Description

 25:24 Color Depth:
00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:
 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte granularity
and can be upto 128Kbytes (or 32KDwords).

2 =
BR22

31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)
3 =
BR23

31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed
number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed number)
4 =
BR09

31:00 Destination Base Address: (base address of the destination surface:
X=0, Y=0)
When Tiling is enabled (Bit_11 enabled), this address is limited to
4Kbytes.

5 =
BR15

31:00 Pattern Base Address: (26:06 are used, other bits are ignored) (Note
no NPO2 change here). The pattern data must be located in linear
memory.

6 =
BR18

31:00 Transparency Color Low: (Chroma-key Low = Pixel Greater or
Equal)

7 =
BR19

31:00 Transparency Color High: (Chroma-key High = Pixel Less or Equal)

 G45: Volume 1b: Graphics Core

186

8.9.11 XY_PAT_BLT_IMMEDIATE
PAT_BLT_IMMEDIATE is used when there is no source and the color pattern is not trivial (is not a solid color
only) and the pattern is pulled through the command stream. The immediate data sizes are 64 bytes (16
DWs), 128 bytes (32 DWs), or 256 (64DWs) for 8, 16, and 32 bpp color patterns.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the
ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative
to the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate +
horizontal seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed)
modulo 8.

DWord Bit Description

0 =
BR00

31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 72h
 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB

channels)
 19:15 Reserved.
 14:12 Pattern Horizontal Seed (pixel of the scan line to start on

corresponding to DST X=0)
 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)
1 = Tiling enabled (Tile-X only)

 10:08 Pattern Vertical Seed: (starting scan line of the 8x8 pattern
corresponding to DST Y=0)

 07:00 Dword Length: 03+ DWL = (Number of Immediate double)h
1 =
BR13

31 Reserved

 30 Clipping Enable: (1 = enabled; 0 = disabled)
 29:26 Reserved.
 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:
 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte
granularity and can be upto 128Kbytes (or 32KDwords).

2 =
BR22

31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)
3 =
BR23

31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed
number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed
number)

 G45: Volume 1b: Graphics Core

 187

DWord Bit Description

4 =
BR09

31:00 Destination Base Address: (base address of the destination
surface: X=0, Y=0)
When Tiling is enabled (Bit_11 enabled), this address is limited to
4Kbytes.

5 31:00 Immediate Data DW 0:
6 31:00 Immediate Data DW 1:
7 thru
DWL+3

S Immediate Data DWs 2 through DWORD_LENGTH (DWL):

 G45: Volume 1b: Graphics Core

188

8.9.12 XY_PAT_CHROMA_BLT_IMMEDIATE
PAT_BLT_IMMEDIATE is used when there is no source and the color pattern is not trivial (is not a solid color
only) and the pattern is pulled through the command stream. The immediate data sizes are 64 bytes (16
DWs), 128 bytes (32 DWs), or 256 (64DWs) for 8, 16, and 32 bpp color patterns.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the
ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative
to the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate +
horizontal seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed)
modulo 8.

DWord Bit Description

0 = BR00 31:2
9

Client: 02h - 2D Processor

 28:2
2

Instruction Target (Opcode): 77h

 21:2
0

32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB
channels)

 19:1
7

Transparency Range Mode: (chroma-key) – Dst Chroma-key modes
ONLY (SRC ILLEGAL)

 16:1
5

Reserved.

 14:1
2

Pattern Horizontal Seed (pixel of the scan line to start on
corresponding to DST X=0)

 11 Tiling Enable:
0 = Tiling Disabled (Linear blit)
1 = Tiling enabled (Tile-X only)

 10:0
8

Pattern Vertical Seed: (starting scan line of the 8x8 pattern
corresponding to DST Y=0)

 07:0
0

Dword Length: 05+ DWL = (Number of Immediate double)h

1 = BR13 31 Reserved.
 30 Clipping Enable (1 = enabled; 0 = disabled)
 29:2

6
Reserved.

 25:2
4

Color Depth:
00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:1
6

Raster Operation:

 15:0
0

Destination Pitch in DWords: [15:00] 2’s complement
For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte granularity
and can be upto 128Kbytes (or 32KDwords).

2 = BR22 31:1
6

Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:0
0

Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

3 = BR23 31:1
6

Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed number)

 G45: Volume 1b: Graphics Core

 189

DWord Bit Description

 15:0
0

Destination X2 Coordinate (Right): (15:00 = 16 bit signed number)

4 = BR09 31:0
0

Destination Base Address: (base address of the destination surface:
X=0, Y=0)
When Tiling is enabled (Bit_11 enabled), this address is limited to
4Kbytes.

5 = BR18 31:0
0

Transparency Color Low: (Chroma-key Low = Pixel Greater or Equal)

6 = BR19 31:0
0

Transparency Color High: (Chroma-key High = Pixel Less or Equal)

7 31:0
0

Immediate Data DW 0:

8 31:0
0

Immediate Data DW 1:

9 thru
DWL+3

S Immediate Data DWs 2 through DWORD_LENGTH (DWL):

 G45: Volume 1b: Graphics Core

190

8.9.13 XY_MONO_PAT_BLT
MONO_PAT_BLT is used when we have no source and the monochrome pattern is not trivial (is not a solid
color only). The monochrome pattern is loaded from the instruction stream.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the
ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative
to the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate +
horizontal seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed)
modulo 8.

The monochrome pattern transparency mode indicates whether to use the pattern background color or de-
assert the write enables when the bit in the pattern is 0. When the pattern bit is 1, then the pattern
foreground color is used in the ROP operation.

DWord Bit Description

0 =
BR00

31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode) : 52h
 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB

channels)
 19:15 Reserved.
 14:12 Pattern Horizontal Seed: (pixel of the scan line to start on

corresponding to DST X=0)
 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)
1 = Tiling enabled (Tile-X only)

 10:08 Pattern Vertical Seed: (starting scan line of the 8x8 pattern
corresponding to DST Y=0)

 07:00 Dword Length: 07h
1 =
BR13

31 Reserved.

 30 Clipping Enable (1 = enabled; 0 = disabled)
 29 Reserved.
 28 Mono Pattern Transparency Mode: (1 = transparency enabled; 0 =

use background)
 27:26 Reserved.
 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:
 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte
granularity and can be upto 128Kbytes (or 32KDwords).

 G45: Volume 1b: Graphics Core

 191

DWord Bit Description

2 =
BR22

31:16 Destination Y1 Coordinate (Top): 31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)
3 =
BR23

31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed
number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed number)
4 =
BR09

31:00 Destination Base Address: (base address of the destination
surface: X=0, Y=0)
When Tiling is enabled (Bit_11 enabled), this address is limited to
4Kbytes.

5 =
BR16

31:00 Pattern Background Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit =
[31:0]

6 =
BR17

31:00 Pattern Foreground Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit =
[31:0]

7 =
BR20

31:00 Pattern Data 0: (least significant DW)

8 =
BR21

31:00 Pattern Data 1: (most significant DW)

 G45: Volume 1b: Graphics Core

192

8.9.14 XY_MONO_PAT_FIXED_BLT
MONO_PAT_FIXED_BLT is used when we have no source and the monochrome pattern is not trivial (is not a
solid color only). The monochrome pattern is one of 10 fixed patterns described below. The pattern seeds can
still be used with the fixed patterns, creating even more fixed patterns. This eliminates 2 doublewords
compared to the XY_MONO_PAT_BLT command packet.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the
ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative
to the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate +
horizontal seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed)
modulo 8.

The monochrome pattern transparency mode indicates whether to use the pattern background color or de-
assert the write enables when the bit in the pattern is 0. When the pattern bit is 1, then the pattern
foreground color is used in the ROP operation.

DWord Bit Description

0 =
BR00

31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 59h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB
channels)

 19 Reserved.
 18:15 Fixed Pattern:

0000 HS_HORIZONTAL
0001 HS_VERTICAL
0010 HS_FDIAGONAL
0011 HS_BDIAGONAL
0100 HS_CROSS
0101 HS_DIAGCROSS
0110 Reserved
0111 Reserved
1000 Screen Door
1001 SD Wide
1010 Walking Bit (one)
1011 Walking Zero
1100 Reserved
1101 Reserved
1110 Reserved

 14:12 Pattern Horizontal Seed: (pixel of the scan line to start on
corresponding to DST X=0)

 11 Tiling Enable:
0 = Tiling Disabled (Linear blit)
1 = Tiling enabled (Tile-X only)

 10:08 Pattern Vertical Seed: (starting scan line of the 8x8 pattern
corresponding to DST Y=0)

 07:00 Dword Length: 05h

 G45: Volume 1b: Graphics Core

 193

DWord Bit Description

1 =
BR13

31 Reserved.

 30 Clipping Enable (1 = enabled; 0 = disabled)

 29 Reserved.
 28 Mono Pattern Transparency Mode: (1 = transparency enabled; 0

= use background)

 27 Bit Mask Enable: (1 = use bit mask register for bit writes; 0 =
disabled)

 27:26 Reserved.
 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:
 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte
granularity and can be upto 128Kbytes (or 32KDwords).

2 =
BR22

31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

3 =
BR23

31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed
number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed
number)

4 =
BR09

31:00 Destination Base Address: (base address of the destination
surface: X=0, Y=0)
When Tiling is enabled (Bit_11 enabled), this address is limited to
4Kbytes.

5 =
BR16

31:00 Pattern Background Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit =
[31:0]

6 =
BR17

31:00 Pattern Foreground Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit =
[31:0]

 G45: Volume 1b: Graphics Core

194

8.9.14.1 Monochrome Pattern Memory Format

The monochrome pattern is made of 8 bytes that correspond to the 8 pixels per scan line and 8 scan lines.
Byte 0 corresponds to scan line 0, byte 1 corresponds to scan line 1,…, and byte 7 corresponds to scan line 7.
The bits within each byte are transposed. Pixel 0 is bit 7, pixel 1 is bit 6,…, pixel 7 is bit 0. The diagram below
illustrates the byte and bit relationship to the pixels of the pattern.

Pixel (0, 0)

Pixel (0, 7)

Pixel (7, 0)

Pixel (7, 7)

Pixel
(0, 7)

Pixel
(7, 7)

Pixel
(0, 0)

63 57 56 48 47 40 39 24 2332 31 16 15 8 7

 G45: Volume 1b: Graphics Core

 195

8.9.14.2 HS_HORIZONTAL 0
Bit 7 0
0,0 7,0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

8.9.14.3 HS_VERTICAL 1

Bit 7 0
0,0 7,0

0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0

8.9.14.4 HS_FDIAGONAL 2

Bit 7 0
0,0 7,0

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

8.9.14.5 HS_BDIAGONAL 3

Bit 7 0
0,0 7,0

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

 G45: Volume 1b: Graphics Core

196

8.9.14.6 HS_CROSS 4

Bit 7 0
0,0 7,0

0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
1 1 1 1 1 1 1 1
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0

8.9.14.7 HS_DIAGCROSS 5

Bit 7 0
0,0 7,0

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1

8.9.14.8 Screen Door 8

Bit 7 0
0,0 7,0

0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0

8.9.14.9 SD Wide 9

Bit 7 0
0,0 7,0

1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1

 G45: Volume 1b: Graphics Core

 197

8.9.14.10 Walking Bit (One) A

Bit 7 0
0,0 7,0

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

8.9.14.11 Walking Zero B

Bit 7 0
0,0 7,0

0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0
0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0

8.9.15 XY_SRC_COPY_BLT
This BLT instruction performs a color source copy where the only operands involved is a color source and
destination of the same bit width.

The source and destination operands may overlap, which means that the X and Y directions can be either
forward or backwards. The BLT Engine takes care of all situations. The base addresses plus the X and Y
coordinates determine if there is an overlap between the source and destination operands. If the base
addresses of the source and destination are the same and the Source X1 is less than Destination X1, then the
BLT Engine performs the accesses in the X-backwards access pattern. There is no need to look for an actual
overlap. If the base addresses are the same and Source Y1 is less than Destination Y1, then the scan line
accesses start at Destination Y2 with the corresponding source scan line and the strides are subtracted for
every scan line access.

The ROP value chosen must involve source and no pattern data in the ROP operation.

DWord Bit Description

0 =
BR00

31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 53h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB channels)
 19:16 Reserved.
 15 Src Tiling Enable:

0 = Tiling Disabled (Linear)
1 = Tiling enabled (Tile-X only)

 G45: Volume 1b: Graphics Core

198

DWord Bit Description

 14:12 Reserved
 11 Dest Tiling Enable:

0 = Tiling Disabled (Linear)
1 = Tiling enabled (Tile-X only)

 10: 8 Reserved
 7:0 Dword Length: 06h

1 =
BR13

31 Reserved.

 30 Clipping Enable: (1 = enabled; 0 = disabled)

 29:26 Reserved.
 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:
 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled Dest (bit 11 enabled) this ptich is of 512Byte granularity and
can be up to 128Kbytes (or 32KDwords).

2 =
BR22

31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

3 =
BR23

31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed number)

4 =
BR09

31:00 Destination Base Address: (base address of the destination surface: X=0,
Y=0)
When Dest Tiling is enabled (Bit 11 enabled), this address is limited to
4Kbytes.

5 =
BR26

31:16 Source Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Source X1 Coordinate (Left): (15:00 = 16 bit signed number)

 31:16 Reserved
6 =
BR11

15:00 Source Pitch (double word aligned) and in DWords: [15:00] 2’s
complement.
For Tiled Src (bit 15 enabled) this ptich is of 512Byte granularity and can be
upto 128Kbytes (or 32KDwords).

7 =
BR12

31:00 Source Base Address: (base address of the source surface: X=0, Y=0)
When Src Tiling is enabled (Bit 15 enabled), this address is limited to 4Kbytes.

 G45: Volume 1b: Graphics Core

 199

8.9.16 XY_SRC_COPY_CHROMA_BLT
This BLT instruction performs a color source copy with chroma-keying where the only operands involved is a
color source and destination of the same bit width.

The source and destination operands may overlap, which means that the X and Y directions can be either
forward or backwards. The BLT Engine takes care of all situations. The base addresses plus the X and Y
coordinates determine if there is an overlap between the source and destination operands. If the base
addresses of the source and destination are the same and the Source X1 is less than Destination X1, then the
BLT Engine performs the accesses in the X-backwards access pattern. There is no need to look for an actual
overlap. If the base addresses are the same and Source Y1 is less than Destination Y1, then the scan line
accesses start at Destination Y2 with the corresponding source scan line and the strides are subtracted for
every scan line access.

The ROP value chosen must involve source and no pattern data in the ROP operation.

DWord Bit Description

0 =
BR00

31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 73h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write
RGB channels)

 19:17 Transparency Range Mode: (chroma-key)

 16 Reserved
 15 Src Tiling Enable:

0 = Tiling Disabled (Linear)
1 = Tiling enabled (Tile-X only)

 14:12 Reserved
 11 Dest Tiling Enable:

0 = Tiling Disabled (Linear)
1 = Tiling enabled (Tile-X only)

 10:
08

Reserved

 07:00 Dword Length: 08h

1 =
BR13

31 Reserved.

 30 Clipping Enable: (1 = enabled; 0 = disabled)

 29:26 Reserved.
 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:

 G45: Volume 1b: Graphics Core

200

DWord Bit Description

 15:00 Destination Pitch in DWords: [15:00] 2’s complement
For Tiled Dest (bit 11 enabled) this ptich is of 512Byte granularity
and can be upto 128Kbytes (or 32KDwords).

2 =
BR22

31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed
number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed
number)

3 =
BR23

31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed
number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed
number)

4 =
BR09

31:00 Destination Base Address: (base address of the destination
surface: X=0, Y=0)
When Dest Tiling is enabled (Bit 11 enabled), this address is
limited to 4Kbytes.

5 =
BR26

31:16 Source Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Source X1 Coordinate (Left): (15:00 = 16 bit signed number)

 31:16 Reserved.
6 =
BR11

15:00 Source Pitch (double word aligned) and in DWords: [15:00]
2’s complement.
For Tiled Src (bit 15 enabled) this ptich is of 512Byte granularity
and can be upto 128Kbytes (or 32KDwords).

7 =
BR12

31:00 Source Base Address: (base address of the source surface:
X=0, Y=0)
When Src Tiling is enabled (Bit 15 enabled), this address is
limited to 4Kbytes.

8 =
BR18

31:00 Transparency Color Low: (Chroma-key Low = Pixel Greater or
Equal)

9 =
BR19

31:00 Transparency Color High: (Chroma-key High = Pixel Less or
Equal)

 G45: Volume 1b: Graphics Core

 201

8.9.17 XY_MONO_SRC_COPY_BLT
This BLT instruction performs a monochrome source copy where the only operands involved is a monochrome
source and destination. The source and destination operands cannot overlap therefore the X and Y directions
are always forward.

All non-text monochrome sources are word aligned. At the end of a scan line of monochrome source, all bits
until the next word boundary are ignored. The monochrome source data bit position field [2:0] indicates the
bit position within the first byte of the scan line that should be used as the first source pixel which corresponds
to the destination X1 coordinate.

The monochrome source transparency mode indicates whether to use the source background color or de-
assert the write enables when the bit in the source is 0. When the source bit is 1, then the source foreground
color is used in the ROP operation. The ROP value chosen must involve source and no pattern data in the ROP
operation.
Negative Stride (= Pitch) is NOT ALLOWED.

DWord Bit Description

0 =
BR00

31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 54h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB
channels)

 19:17 Monochrome source data bit position of the first pixel within a
byte per scan line.

 16:12 Reserved.
 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)
1 = Tiling enabled (Tile-X only)

 10:
08

Reserved

 07:00 Doubleword Length: 06h

1 =
BR13

31 Reserved.

 30 Clipping Enable: (1 = enabled; 0 = disabled)

 29 Mono Source Transparency Mode: (1 = transparency enabled; 0 =
use background)

 28:26 Reserved.
 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:

 G45: Volume 1b: Graphics Core

202

DWord Bit Description

 15:00 Destination Pitch in DWords: [15:00] 2’s complement
For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte
granularity and can be upto 128Kbytes (or 32KDwords).

2 =
BR22

31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

3 =
BR23

31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed
number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed number)

4 =
BR09

31:00 Destination Base Address: (base address of the destination
surface: X=0, Y=0)
When Tiling is enabled (Bit_11 enabled), this address is limited to
4Kbytes.

5 =
BR12

31:00 Source Address: (address corresponding to DST X1,Y1) (Note no
NPO2 change here)

6 =
BR18

31:00 Source Background Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit =
[31:0]

7 =
BR19

31:00 Source Foreground Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit =
[31:0]

 G45: Volume 1b: Graphics Core

 203

8.9.18 XY_MONO_SRC_COPY_ IMMEDIATE_BLT
This instruction allows the Driver to send monochrome data through the instruction stream, eliminating the
read latency of the source during command execution.

The IMMEDIATE_BLT data MUST transfer an even number of doublewords and the exact number of
quadwords.

All non-text monochrome sources are word aligned. At the end of a scan line of monochrome source, all bits
until the next word boundary are ignored. The Monochrome source data bit position field [2:0] indicates the
bit position within the first byte of the scan line that should be used as the first source pixel which corresponds
to the destination X1 coordinate.

The monochrome source transparency mode indicates whether to use the source background color or de-
assert the write enables when the bit in the source is 0. When the source bit is 1, then the source foreground
color is used in the ROP operation. The ROP value chosen must involve source and no pattern data in the ROP
operation.

The monochrome source data supplied corresponds to the Destination X1 and Y1 coordinates.

Negative Stride (= Pitch) is NOT ALLOWED.

DWord Bit Description

0 =
BR00

31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 71h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB
channels)

 19:17 Monochrome source data bit position of the first pixel within a
byte per scan line.

 16:12 Reserved.
 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)
1 = Tiling enabled (Tile-X only)

 10:
08

Reserved

 07:00 Dword Length: 05+ DWL = (Number of Immediate double words)h

1 =
BR13

31 Reserved.

 30 Clipping Enable: (1 = enabled; 0 = disabled)

 29 Mono Source Transparency Mode: (1 = transparency enabled; 0
= use background)

 28:26 Reserved.
 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 G45: Volume 1b: Graphics Core

204

DWord Bit Description

 23:16 Raster Operation:
 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte
granularity and can be upto 128Kbytes (or 32KDwords).

2 =
BR22

31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

3 =
BR23

31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed
number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed
number)

4 =
BR09

31:00 Destination Base Address: (base address of the destination
surface: X=0, Y=0)
When Tiling is enabled (Bit_11 enabled), this address is limited to
4Kbytes.

5 =
BR18

31:00 Source Background Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit =
[31:0]

6 =
BR19

31:00 Source Foreground Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit =
[31:0]

7 31:00 Immediate Data DW 0:
8 31:00 Immediate Data DW 1:
9 thru
DWL+4

S Immediate Data DWs 2 through DWORD_LENGTH (DWL):

 G45: Volume 1b: Graphics Core

 205

8.9.19 XY_FULL_BLT
The full BLT is the most comprehensive BLT instruction. It provides the ability to specify all 3 operands:
destination, source, and pattern. The source and pattern operands are the same bit width as the destination
operand.

The source and destination operands may overlap, which means that the X and Y directions can be either
forward or backwards. The BLT Engine takes care of all situations. The base addresses plus the X and Y
coordinates determine if there is an overlap between the source and destination operands. If the base
addresses of the source and destination are the same and the Source X1 is less than Destination X1, then the
BLT Engine performs the accesses in the X-backwards access pattern. There is no need to look for an actual
overlap. If the base addresses are the same and Source Y1 is less than Destination Y1, then the scan line
accesses start at Destination Y2 with the corresponding source scan line and the strides are subtracted for
every scan line access.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the
ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative
to the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate +
horizontal seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed)
modulo 8.

DWord Bit Description

0 =
BR00

31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 55h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB
channels)

 19:16 Reserved.
 15 Src Tiling Enable:

0 = Tiling Disabled (Linear)
1 = Tiling enabled (Tile-X only)

 14:12 Pattern Horizontal Seed (pixel of the scan line to start on
corresponding to DST X=0)

 11 Dest Tiling Enable:
0 = Tiling Disabled (Linear blit)
1 = Tiling enabled (Tile-X only)

 10:08 Pattern Vertical Seed: (starting scan line of the 8x8 pattern
corresponding to DST Y=0)

 07:00 Doubleword Length: 07h

1 =
BR13

31 Reserved.

 30 Clipping Enable: (1 = enabled; 0 = disabled)

 29:26 Reserved.

 G45: Volume 1b: Graphics Core

206

DWord Bit Description

 25:24 Color Depth:
00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:
 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled Dest (bit 11 enabled) this ptich is of 512Byte granularity
and can be upto 128Kbytes (or 32KDwords).

2 =
BR22

31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed
number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed
number)

3 =
BR23

31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed
number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed
number)

4 =
BR09

31:00 Destination Base Address: (base address of the destination
surface: X=0, Y=0)
When Dest Tiling is enabled (Bit 11 enabled), this address is
limited to 4Kbytes.

 31:16 Reserved.
5 =
BR11

15:00 Source Pitch (double word aligned and signed) and in
DWords: [15:00] 2’s complement.
For Tiled Src (bit 15 enabled) this ptich is of 512Byte granularity
and can be upto 128Kbytes (or 32KDwords).

6 =
BR26

31:16 Source Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Source X1 Coordinate (Left): (15:00 = 16 bit signed number)

7 =
BR12

31:00 Source Base Address: (base address of the source surface: X=0,
Y=0)
When Src Tiling is enabled (Bit 15 enabled), this address is limited
to 4Kbytes.

8 =
BR15

31:00 Pattern Base Address: (28:06 are implemented) (Note no NPO2
change here). The pattern data must be located in linear memory.

 G45: Volume 1b: Graphics Core

 207

8.9.20 XY_FULL_IMMEDIATE_PATTERN_BLT
The full BLT is the most comprehensive BLT instruction. It provides the ability to specify all 3 operands:
destination, source, and pattern. The source and immediate pattern operands are the same bit width as the
destination operand. The immediate data sizes are 64 bytes (16 DWs), 128 bytes (32 DWs), or 256 (64 DWs)
for 8, 16, and 32 bpp color patterns.

The source and destination operands may overlap, which means that the X and Y directions can be either
forward or backwards. The BLT Engine takes care of all situations. The base addresses plus the X and Y
coordinates determine if there is an overlap between the source and destination operands. If the base
addresses of the source and destination are the same and the Source X1 is less than Destination X1, then the
BLT Engine performs the accesses in the X-backwards access pattern. There is no need to look for an actual
overlap. If the base addresses are the same and Source Y1 is less than Destination Y1, then the scan line
accesses start at Destination Y2 with the corresponding source scan line and the strides are subtracted for
every scan line access.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the
ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative
to the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate +
horizontal seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed)
modulo 8.

DWord Bit Description

0 =
BR00

31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 74h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB
channels)

 19:16 Reserved.
 15 Src Tiling Enable:

0 = Tiling Disabled (Linear)
1 = Tiling enabled (Tile-X only)

 14:12 Pattern Horizontal Seed: (pixel of the scan line to start on
corresponding to DST X=0)

 11 Dest Tiling Enable:
0 = Tiling Disabled (Linear)
1 = Tiling enabled (Tile-X only)

 10:8 Pattern Vertical Seed: (starting scan line of the 8x8 pattern
corresponding to DST Y=0)

 7:0 Doubleword Length: 06+ DWL = (Number of Immediate double
words)h

1 =
BR13

31 Reserved.

 30 Clipping Enable: (1 = enabled; 0 = disabled)

 29:26 Reserved.

 G45: Volume 1b: Graphics Core

208

DWord Bit Description

 25:24 Color Depth:
00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:
 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled Dest (bit 11 enabled) this ptich is of 512Byte granularity
and can be upto 128Kbytes (or 32KDwords).

2 =
BR22

31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

3 =
BR23

31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed
number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed
number)

4 =
BR09

31:00 Destination Base Address: (base address of the destination
surface: X=0, Y=0)
When Dest Tiling is enabled (Bit 11 enabled), this address is limited
to 4Kbytes.

 31:16 Reserved.
5 =
BR11

15:00 Source Pitch (double word aligned and signed) and in DWords:
[15:00] 2’s complement.
For Tiled Src (bit 15 enabled) this ptich is of 512Byte granularity and
can be upto 128Kbytes (or 32KDwords).

6 =
BR26

31:16 Source Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Source X1 Coordinate (Left): (15:00 = 16 bit signed number)

7 =
BR12

31:00 Source Base Address: (base address of the source surface: X=0,
Y=0)
When Src Tiling is enabled (Bit 15 enabled), this address is limited to
4Kbytes.

8 31:00 Immediate Data DW 0:
9 31:00 Immediate Data DW 1:
A thru
DWL+4

S Immediate Data DWs 2 through DWORD_LENGTH (DWL):

 G45: Volume 1b: Graphics Core

 209

8.9.21 XY_FULL_MONO_SRC_BLT
The full BLT is the most comprehensive BLT instruction. It provides the ability to specify all 3 operands:
destination, source, and pattern. The source operand is monochrome and the pattern operand is the same bit
width as the destination.

The monochrome source transparency mode indicates whether to use the source background color or de-
assert the write enables when the bit in the source is 0. When the source bit is 1, then the source foreground
color is used in the ROP operation.

All non-text and non-immediate monochrome sources are word aligned. At the end of a scan line the
monochrome source, the remaining bits until the next word boundary are ignored. The Monochrome source
data bit position field [2:0] indicates which bit position within the first byte should be used as the first source
pixel which corresponds to the Destination X1 coordinate.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the
ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative
to the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate +
horizontal seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed)
modulo 8.

Negative Stride (= Pitch) is NOT ALLOWED

DWord Bit Description

0 =
BR00

31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 56h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB
channels)

 19:17 Monochrome source data bit position of the first pixel within a
byte per scan line.

 16:15 Reserved.
 14:12 Pattern Horizontal Seed: (pixel of the scan line to start on

corresponding to DST X=0)

 11 Tiling Enable:
0 = Tiling Disabled (Linear blit)
1 = Tiling enabled (Tile-X only)

 10:08 Pattern Vertical Seed: (starting address of the 8x8 pattern
corresponding to DST Y=0)

 07:00 Doubleword Length : 07h

1 =
BR13

31 Reserved.

 30 Clipping Enable: (1 = enabled; 0 = disabled)

 29 Mono Source Transparency Mode: (1 = transparency enabled; 0
= use background)

 G45: Volume 1b: Graphics Core

210

DWord Bit Description

 28:27 Reserved.
 26 Reserved.
 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster operation:
 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte
granularity and can be upto 128Kbytes (or 32KDwords).

2 =
BR22

31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed
number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed
number)

3 =
BR23

31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed
number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed
number)

4 =
BR09

31:00 Destination Base Address: (base address of the destination
surface: X=0, Y=0)
When Tiling is enabled (Bit_11 enabled), this address is limited to
4Kbytes.

5 =
BR12

31:00 Mono Source Address: (address corresponds to DST X1, Y1)
(Note no NPO2 change here)

6 =
BR18

31:00 Source Background Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit =
[31:0]

7 =
BR19

31:00 Source Foreground Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit =
[31:0]

8 =
BR15

31:00 Pattern Base Address: (28:06 are implemented) (Note no NPO2
change here). The pattern data must be located in linear memory.

 G45: Volume 1b: Graphics Core

 211

8.9.22 XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT

The full BLT is the most comprehensive BLT instruction. It provides the ability to specify all 3 operands:
destination, source, and pattern. The source operand is a monochrome and the immediate pattern operand is
the same bit width as the destination. The immediate data sizes are 64 bytes (16 DWs), 128 bytes (32 DWs),
or 256 (64DWs) for 8, 16, and 32 bpp color patterns.

The monochrome source transparency mode indicates whether to use the source background color or de-
assert the write enables when the bit in the source is 0. When the source bit is 1, then the source foreground
color is used in the ROP operation.

All non-text monochrome sources are word aligned. At the end of a scan line the monochrome source, the
remaining bits until the next word boundary are ignored. The Monochrome source data bit position field [2:0]
indicates which bit position within the first byte should be used as the first source pixel which corresponds to
the destination X1 coordinate.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the
ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative
to the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate +
horizontal seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed)
modulo 8.

Negative Stride (= Pitch) is NOT ALLOWED.

DWord Bit Description

0 =
BR00

31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 75h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB
channels)

 19:17 Monochrome source data bit position of the first pixel within a
byte per scan line.

 16:15 Reserved.
 14:12 Pattern Horizontal Seed: (pixel of the scan line to start on

corresponding to DST X=0)

 11 Tiling Enable:
0 = Tiling Disabled (Linear blit)
1 = Tiling enabled (Tile-X only)

 10:08 Pattern Vertical Seed: (starting address of the 8x8 pattern
corresponding to DST Y=0)

 07:00 Doubleword Length : 06+ DWL = (Number of Immediate double
words)h

1 =
BR13

31 Reserved.

 30 Clipping Enable: (1 = enabled; 0 = disabled)

 G45: Volume 1b: Graphics Core

212

DWord Bit Description

 29 Mono Source Transparency Mode: (1 = transparency enabled; 0
= use background)

 28:26 Reserved.
 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster operation:
 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte
granularity and can be upto 128Kbytes (or 32KDwords).

2 =
BR22

31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed
number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed
number)

3 =
BR23

31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed
number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed
number)

4 =
BR09

31:00 Destination Base Address: (base address of the destination
surface: X=0, Y=0)
When Tiling is enabled (Bit_11 enabled), this address is limited to
4Kbytes.

5 =
BR12

31:00 Mono Source Address: (address corresponds to DST X1, Y1)
(Note no NPO2 change here)

6 =
BR18

31:00 Source Background Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit =
[31:0]

7 =
BR19

31:00 Source Foreground Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit =
[31:0]

8 31:00 Immediate Data DW 0:
9 31:00 Immediate Data DW 1:
A thru
DWL+4

S Immediate Data DWs 2 through DWORD_LENGTH (DWL):

 G45: Volume 1b: Graphics Core

 213

8.9.23 XY_FULL_MONO_PATTERN_BLT

The full BLT is the most comprehensive BLT instruction. It provides the ability to specify all 3 operands:
destination, source, and pattern. The pattern operand is monochrome and the source operand is the same bit
width as the destination operand.

The source and destination operands may overlap, which means that the X and Y directions can be either
forward or backwards. The BLT Engine takes care of all situations. The base addresses plus the X and Y
coordinates determine if there is an overlap between the source and destination operands. If the base
addresses of the source and destination are the same and the Source X1 is less than Destination X1, then the
BLT Engine performs the accesses in the X-backwards access pattern. There is no need to look for an actual
overlap. If the base addresses are the same and Source Y1 is less than Destination Y1, then the scan line
accesses start at Destination Y2 with the corresponding source scan line and the strides are subtracted for
every scan line access.

The monochrome pattern transparency mode indicates whether to use the pattern background color or de-
assert the write enables when the bit in the source is 0. When the source bit is 1, then the pattern foreground
color is used in the ROP operation.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the
ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative
to the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate +
horizontal seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed)
modulo 8.

Setting both Solid Pattern Select =1 & Mono Pattern Transparency = 1 is mutually exclusive. The device
implementation results in NO PIXELs DRAWN.

DWord Bit Description

0 =
BR00

31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 57h
 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB

channels)
 19:16 Reserved.
 15 Src Tiling Enable:

0 = Tiling Disabled (Linear)
1 = Tiling enabled (Tile-X only)

 14:12 Pattern Horizontal Seed: (pixel of the scan line to start on
corresponding to DST X=0)

 11 Dest Tiling Enable:
0 = Tiling Disabled (Linear)
1 = Tiling enabled (Tile-X only)

 10:08 Pattern Vertical Seed: (starting scan line of the 8x8 pattern
corresponding to DST Y=0)

 07:00 Dword Length : 0Ah
1 =
BR13

31 Solid Pattern Select: (1 = solid pattern; 0 = no solid pattern)

 G45: Volume 1b: Graphics Core

214

DWord Bit Description

 30 Clipping Enable: (1 = enabled; 0 = disabled)
 29 Reserved.
 28:27 Mono Pattern Transparency Mode: (1 = transparency enabled; 0

= use background)
 26 Reserved.
 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color
10 = 16 bit color (1555)
11 = 32 bit color (565)

 23:16 Raster Operation:

 15:00 Destination Pitch in DWords: [15:00] 2’s complement
For Tiled Dest (bit 11 enabled) this ptich is of 512Byte granularity
and can be upto 128Kbytes (or 32KDwords).

2 =
BR22

31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)
3 =
BR23

31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed
number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed
number)

4 =
BR09

31:00 Destination Base Address: (base address of the destination
surface: X=0, Y=0)
When Dest Tiling is enabled (Bit 11 enabled), this address is limited
to 4Kbytes.

 31:16 Reserved.
5 =
BR11

15:00 Source Pitch (double word aligned and signed) and in DWords:
[15:00] 2’s complement.
For Tiled Src (bit 15 enabled) this ptich is of 512Byte granularity and
can be upto 128Kbytes (or 32KDwords).

6 =
BR26

31:16 Source Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Source X1 Coordinate (Left): (15:00 = 16 bit signed number)
7 =
BR12

31:00 Source Base Address: (base address of the source surface: X=0,
Y=0)
When Src Tiling is enabled (Bit 15 enabled), this address is limited
to 4Kbytes.

 8 =
BR16

31:00 Pattern Background Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit =
[31:0]

9 =
BR17

31:00 Pattern Foreground Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit =
[31:0]

A =
BR20

31:00 Pattern Data 0: (least significant DW)

 G45: Volume 1b: Graphics Core

 215

DWord Bit Description

B =
BR21

31:00 Pattern Data 1: (most significant DW)

 G45: Volume 1b: Graphics Core

216

8.9.24 XY_FULL_MONO_PATTERN_MONO_SRC_BLT

The full BLT provides the ability to specify all 3 operands: destination, source, and pattern. The pattern and
source operands are monochrome.

The monochrome source transparency mode indicates whether to use the source background color or de-
assert the write enables when the bit in the source is 0. When the source bit is 1, then the source foreground
color is used in the ROP operation.

All non-text monochrome sources are word aligned. At the end of a scan line the monochrome source, the
remaining bits until the next word boundary are ignored. The Monochrome source data bit position field [2:0]
indicates which bit position within the first byte should be used as the first source pixel which corresponds to
the destination X1 coordinate.

The monochrome pattern transparency mode indicates whether to use the pattern background color or de-
assert the write enables when the bit in the pattern is 0. When the source bit is 1, then the pattern foreground
color is used in the ROP operation. The monochrome source transparency mode works identical to the pattern
transparency mode.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written. Only pixels within the
ClipRectX coordinates and the Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical). The alignment is relative
to the destination coordinates. The pixel of the pattern used / scan line is the (destination X coordinate +
horizontal seed) modulo 8. The scan line of the pattern used is the (destination Y coordinate + vertical seed)
modulo 8.

Setting both Solid Pattern Select =1 & Mono Pattern Transparency = 1 is mutually exclusive. The device
implementation results in NO PIXELs DRAWN.

Negative Stride (= Pitch) is NOT ALLOWED.

DWord Bit Description

0 =
BR00

31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 58h

 21:20 32 bpp byte mask: (21 = 1 = write alpha channel; 20 = 1 = write
RGB channels)

 19:17 Monochrome source data bit position of the first pixel within
a byte per scan line.

 16:15 Reserved.
 14:12 Pattern Horizontal Seed: (pixel of the scan line to start on

corresponding to DST X = 0)

 11 Tiling Enable:
0 = Tiling Disabled (Linear blit)
1 = Tiling enabled (Tile-X only)

 10:08 Pattern Vertical Seed: (starting scan line of the 8x8 pattern
corresponding to DST Y = 0)

 07:00 Doubleword Length : 0Ah

 G45: Volume 1b: Graphics Core

 217

DWord Bit Description

1 =
BR13

31 Solid Pattern Select: (1 = solid pattern; 0 = no solid pattern)

 30 Clipping Enable (1 = enabled; 0 = disabled)

 29 Mono Source Transparency Mode: (1 = transparency
enabled; 0 = use background)

 28 Mono Pattern Transparency Mode: (1 = transparency
enabled; 0 = use background)

 27:26 Reserved.
 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:
 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte
granularity and can be upto 128Kbytes (or 32KDwords).

2 =
BR22

31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed
number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed
number)

3 =
BR23

31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed
number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed
number)

4 =
BR09

31:00 Destination Base Address: (base address of the destination
surface: X=0, Y=0)
When Tiling is enabled (Bit_11 enabled), this address is limited
to 4Kbytes.

5 =
BR12

31:00 Source Address: (address corresponding to Dst X1,Y1) (Note
no NPO2 change here)

6 =
BR18

31:00 Source Background Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit =
[31:0]

7 =
BR19

31:00 Source Foreground Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit =
[31:0]

8 =
BR16

31:00 Pattern Background Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit =
[31:0]

9 =
BR17

31:00 Pattern Foreground Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit =
[31:0]

A
=BR20

31:00 Pattern Data 0: (least significant DW)

B
=BR21

31:00 Pattern Data 1: (most significant DW)

 G45: Volume 1b: Graphics Core

218

8.10 BLT Engine Instruction Field Definitions

This section describes the BLT Engine instruction fields. These descriptions are in the format of register
descriptions. These registers are internal and are not readable. Some of these registers are state that is saved
and restored for supporting separate software threads.

8.10.1 BR00—BLT Opcode & Control
Memory Offset Address: none
Default: 0000 0000
Attributes: not accessible

BR00 is the last executed instruction DWord 0. Bits [22:5] are written by every DW0 of every instruction. Bits
[31:30] and [4:0] are status bits. Bits [28:27] are written from the DW0 [15:14] of a Setup instruction and
Bit 29 is written with a 1 when ever a Setup instruction is written. Bit 29 is a decode of the Setup instruction
Opcode.

31 30 29 28 24

Rsvd Clip
Inst

Setup
Mono

Pattern

Instruction Target (Opcode)

23 22 21 20 19 17 16

Instruction Target
(Opcode)

32 bpp byte mask Monochrome Source Start Bit (0) /
Byte (1)
Packed

15 14 12 11 10 8

Rsvd Pattern Horizontal Seed Tiling
Enable

Transparency Range Mode

7 5 4 3 2 1 0

PatternVertical Seed DST
RMW

Color
Source

Mono
Source

Color
Pattern

Mono
Pattern

 G45: Volume 1b: Graphics Core

 219

Bit Descriptions

31 BLT Engine Busy. This bit indicates whether the BLT Engine is busy (1) or idle (0).
This bit is replicated in the SETUP BLT Opcode & Control register.
1 = Busy
0 = Idle

30 Setup Instruction Instruction. The current instruction performs clipping (1).

29 Setup Monochrome Pattern. This bit is decoded from the Setup instruction opcode
to identify whether a color (0) or monochrome (1) pattern is used with the
SCANLINE_BLT instruction.
1 = Monochrome
0 = Color

28:2
2

Instruction Target (Opcode). This is the contents of the Instruction Target field
from the last BLT instruction. This field is used by the BLT Engine state machine to
identify the BLT instruction it is to perform. The opcode specifies whether the source
and pattern operands are color or monochrome.

21:2
0

32 bpp byte mask: 21 = 1 = write alpha channel [31:24]; 20 = 1 = write RGB
channels [23:00]. This field is only used for 32bpp.

19:1
7

Monochrome Source Start. This field indicates the starting monochrome pixel bit
position within a byte per scan line of the source operand. The monochrome source
is word aligned which means that at the end of the scan line all bits should be
discarded until the next word boundary.

16 Bit/Byte Packed. Byte packed is for the NT driver
0 = Bit
1 = Byte

15 Src Tiling Enable:
0 = Tiling Disabled (Linear)
1 = Tiling enabled (Tile-X only)

14:1
2

Horizontal Pattern Seed. This field indicates the pattern pixel position which
corresponds to X = 0.

11 Dest Tiling Enable:
0 = Tiling Disabled (Linear blit)
1 = Tiling enabled (Tile-X only)
When set to '1', this means that Blitter is executing in Tiled-X mode. If '0' it means
that Blitter is in Linear mode. Blitter never executes in Tiled-Y mode. On reset, this
bit will be '0'. This definition applies to only X,Y Blits. Non-XY blits (COLOR_BLT,
SRC_COPY_BLT), will support only linear mode and will not support tiling and for
them this bit will remain reserved.

 G45: Volume 1b: Graphics Core

220

Bit Descriptions

10:8 Transparency Range Mode. These bits control whether or not the byte(s) at the
destination corresponding to a given pixel will be conditionally written, and what
those conditions are. This feature can make it possible to perform various masking
functions in order to selectively write or preserve graphics data already at the
destination.
XX0 = No color transparency mode enabled. This causes normal operation with

regard to writing data to the destination.
001 = [Source color transparency] The Transparency Color Low: (Pixel Greater

or Equal) (source background register) and the Transparency Color High:
(Pixel Less or Equal) (source foreground register) are compared to the source
pixels. The range comparisons are done on each component (R,G,B) and
then logically ANDed. If the source pixel components are not within the range
defined by the Transparency Color registers, then the byte(s) at the
destination corresponding to the current pixel are written with the result of the
bit-wise operation.

011 = [Source and Alpha color transparency] The Transparency Color Low:
(Pixel Greater or Equal) (source background register) and the Transparency
Color High: (Pixel Less or Equal) (source foreground register) are compared
to the source pixels. The range comparisons are done on each component
(A,R,G,B) and then logically ANDed. If the source pixel components are not
within the range defined by the Transparency Color registers, then the byte(s)
at the destination corresponding to the current pixel are written with the result
of the bit-wise operation.

101 = [Destination and Alpha color transparency] The Transparency Color
Low: (Pixel Greater or Equal) (source background register) and the
Transparency Color High: (Pixel Less or Equal) (source foreground register)
are compared to the destination pixels. The range comparisons are done on
each component (A,R,G,B) and then logically ANDed. If the destination pixels
are within the range, then the byte(s) at the destination corresponding to the
current pixel are written with the result of the bit-wise operation.

111 = [Destination color transparency] The Transparency Color Low: (Pixel
Greater or Equal) (source background register) and the Transparency Color
High: (Pixel Less or Equal) (source foreground register) are compared to the
destination pixels. The range comparisons are done on each component
(R,G,B) and then logically ANDed. If the destination pixels are within the
range, then the byte(s) at the destination corresponding to the current pixel
are written with the result of the bit-wise operation.

7:5 Pattern Vertical Seed. This field specifies the pattern scan line which corresponds
to Y=0.

4 Destination Read Modify Write. This bit is decoded from the last instruction’s
opcode field and Destination Transparency Mode to identify whether a Destination
read is needed.

3 Color Source. This bit is decoded from the last instructions opcode field to identify
whether a color (1) source is used.

2 Monochrome Source. This bit is decoded from the last instructions opcode field to
identify whether a monochrome (1) source is used.

1 Color Pattern. This bit is decoded from the last instructions opcode field to identify
whether a color (1) pattern is used.

0 Monochrome Pattern. This bit is decoded from the last instructions opcode field to
identify whether a monochrome (1) pattern is used.

 G45: Volume 1b: Graphics Core

 221

8.10.2 BR01—Setup BLT Raster OP, Control, and Destination Offset
Memory Offset Address: none
Default: 0000 xxxx
Attributes: State accessible

BR01 contains the contents of the last Setup instruction DWord 1. It is identical to the BLT Raster OP, Control,
and Destination Offset definition, but it is used with the following instructions: PIXEL_BLT, SCANLINE_BLT,
and TEXT_BLT.

31 30 29 28 27 26 25 24

Solid
Pattern

Clipping
Enable

Mono Src
Trans

Mono Pat
Trans

32 bpp byte mask Color Depth

23 16

Raster Operation

15 0

Destination Pitch (Offset)

 G45: Volume 1b: Graphics Core

222

Bit Descriptions

31 Solid Pattern Select. This bit applies only when the pattern data is monochrome.
This bit determines whether or not the BLT Engine actually performs read
operations from the frame buffer in order to load the pattern data. Use of this
feature to prevent these read operations can increase BLT Engine performance, if
use of the pattern data is indeed not necessary. The BLT Engine is configured to
accept either monochrome or color pattern data via the opcode field.
0 = This causes normal operation with regard to the use of the pattern data. The

BLT Engine proceeds with the process of reading the pattern data, and the
pattern data is used as the pattern operand for all bit-wise operations.

1 = The BLT Engine forgoes the process of reading the pattern data, the
presumption is made that all of the bits of the pattern data are set to 0, and
the pattern operand for all bit-wise operations is forced to the background
color specified in the Color Expansion Background Color Register.

30 Clipping Enabled: 1 = Enabled; 0 = Disabled

29 Monochrome Source Transparency Mode. This bit applies only when the
source data is in monochrome. This bit determines whether or not the byte(s) at
the destination corresponding to the pixel to which a given bit of the source data
also corresponds will actually be written if that source data bit has the value of 0.
This feature can make it possible to use the source as a transparency mask. The
BLT Engine is configured to accepted either monochrome or color source data via
the opcode field.
0 = This causes normal operation with regard to the use of the source data.

Wherever a bit in the source data has the value of 0, the color specified in the
background color register is used as the source operand in the bit-wise
operation for the pixel corresponding to the source data bit, and the bytes at
the destination corresponding to that pixel are written with the result.

1 = Wherever a bit in the source data has the value of 0, the byte(s) at the
destination corresponding to the pixel to which the source data bit also
corresponds are simply not written, and the data at those byte(s) at the
destination are allowed to remain unchanged.

28 Monochrome Pattern Transparency Mode. This bit applies only when the
pattern data is monochrome. This bit determines whether or not the byte(s) at the
destination corresponding to the pixel to which a given bit of the pattern data also
corresponds will actually be written if that pattern data bit has the value of 1. This
feature can make it possible to use the pattern as a transparency mask. The BLT
Engine is configured to accepted either monochrome or color pattern data via the
opcode field.
0 = This causes normal operation with regard to the use of the pattern data.

Wherever a bit in the pattern data has the value of 0, the color specified in the
background color register is used as the pattern operand in the bit-wise
operation for the pixel corresponding to the pattern data bit, and the bytes at
the destination corresponding to that pixel are written with the result.

1 = Wherever a bit in the pattern data has the value of 0, the byte(s) at the
destination corresponding to the pixel to which the pattern data bit also
corresponds are simply not written, and the data at those byte(s) at the
destination are allowed to remain unchanged.

27:2
6

32 bpp byte mask. 21 = 1 = write alpha channel [31:24]; 20 = 1 = write RGB
channels [23:00]. This field is only used for 32bpp.

 G45: Volume 1b: Graphics Core

 223

Bit Descriptions

25:2
4

Color Depth.
00 = 8 Bit Color Depth
01 = 16 Bit Color Depth
10 = 16 Bit Color Depth
11 = 32 Bit Color Depth

23:1
6

Raster Operation Select. These 8 bits are used to select which one of 256
possible raster operations is to be performed by the BLT Engine. The 8-bit
values, and their corresponding raster operations, are intended to correspond to
the 256 possible raster operations specified for graphics device drivers in the
Windows* environment. The opcode field must indicate a monochrome source if
ROP = F0.

15:0 Destination Pitch (Offset).
For non-XY Blits, the signed 16bit field allows for specifying upto + 32Kbytes
signed pitches in bytes (same as before).
For X, Y Blits with tiled (X) surfaces, the pitch for Destination will be 512Byte
aligned and should be programmable upto + 128Kbytes. In this case, this 16bit
signed pitch field is used to specify upto + 32KDWords. For X, Y blits with
nontiled surfaces (linear surfaces), this 16bit field can be programmed to byte
specification of upto + 32Kbytes (same as before).
These 16 bits store the signed memory address offset value by which the
destination address originally specified in the Destination Address Register is
incremented or decremented as each scan line’s worth of destination data is
written into the frame buffer by the BLT Engine, so that the destination address
will point to the next memory address to which the next scan line’s worth of
destination data is to be written.
If the intended destination of a BLT operation is within on-screen frame buffer
memory, this offset is normally set so that each subsequent scan line’s worth of
destination data lines up vertically with the destination data in the scan line,
above. However, if the intended destination of a BLT operation is within off-
screen memory, this offset can be set so that each subsequent scan line’s worth
of destination data is stored at a location immediately after the location where the
destination data for the last scan line ended, in order to create a single contiguous
block of bytes of destination data at the destination.

 G45: Volume 1b: Graphics Core

224

8.10.3 BR05—Setup Expansion Background Color
Memory Offset Address: none
Default: None
Attributes: State accessible

31 0

Setup Expansion Background Color Bits [31:0]

Bit Descriptions

31:0 Setup Expansion Background Color Bits [31:0]. These bits provide the one,
two, or four bytes worth of color data that select the background color to be used
in the color expansion of monochrome pattern or source data for either the
SCANLINE_BLT or TEXT_BLT instructions. BR05 is also used as the solid
pattern for the PIXEL_BLT instruction.
Whether one, two, or three bytes worth of color data is needed depends upon
the color depth to which the BLT Engine has been set. For a color depth of
32bpp, 16bpp and 8bpp, bits [31:0], [15:0] and [7:0], respectively, are used.

 G45: Volume 1b: Graphics Core

 225

8.10.4 BR06—Setup Expansion Foreground Color
Memory Offset Address: none
Default: None
Attributes: State accessible

31 0

Setup Expansion Foreground Color Bits [31:0]

Bit Descriptions

31:24 Reserved.
31:0 Setup Expansion Foreground Color Bits [31:0]. These bits provide the one, two,

or four bytes worth of color data that select the foreground color to be used in the
color expansion of monochrome pattern or source data for either the
SCANLINE_BLT or TEXT_BLT instructions.
Whether one, two, or three bytes worth of color data is needed depends upon the
color depth to which the BLT Engine has been set. For a color depth of 32bpp,
16bpp and 8bpp, bits [31:0], [15:0] and [7:0], respectively, are used.

 G45: Volume 1b: Graphics Core

226

8.10.5 BR07—Setup Color Pattern Address
Memory Offset Address: none
Default: None
Attributes: State accessible

31 29 28 16

Reserved Setup Color Pattern Address Bits [28:16]

15 6 5 0

Setup Color Pattern Address Bits [15:6] Reserved

Bit Descriptions

31:2
9

Reserved. The maximum GC graphics address is 512 MBs.

28:6 Pattern Address. These 23 bits specify the starting address of the color pattern from the
SETUP_BLT instruction. This register works identically to the Pattern Address register, but this
version is only used with the SCANLINE_BLT instruction execution. The pattern data must be
located in linear memory.
The pattern data must be located on a pattern-size boundary. The pattern is always of 8x8
pixels, and therefore, its size is dependent upon its pixel depth. The pixel depth may be 8, 16, or
32 bits per pixel if the pattern is in color (the pixel depth of a color pattern must match the pixel
depth to which the graphics system has been set). Monochrome patterns require 8 bytes and
are supplied through the instruction. Color patterns of 8, 16, and 32 bits per pixel color depth
must start on 64-byte, 128-byte and 256-byte boundaries, respectively.

5:0 Reserved. These bits always return 0 when read.

 G45: Volume 1b: Graphics Core

 227

8.10.6 BR09—Destination Address
Memory Offset Address: None
Default: None
Attributes: State accessible

31 29 28 0

Reserved Destination and Destination Y1 and Y Address Bits [28:0]

Bit Descriptions

31:2
9

Reserved.

28:0 Destination Address Bits. When tiling is enabled for XY-blits, this base address should be
limited to 4KB. Otherwise for XY blits, there is no restriction and it is same as before.
These 29 bits specify the starting pixel address of the destination data. This register is also
the working destination address register and changes as the BLT Engine performs the
accesses.
Used as the scan line address (Destination Y Address & Destination Y1 Address) for BLT
instructions: PIXEL_BLT, SCANLINE_BLT, and TEXT_BLT. In this case the address points
to the first pixel in a scan line and is compared with the ClipRect Y1 & Y2 address registers
to determine whether the scan line should be written or not. The Destination Y1 address is
the top scan line to be written for text.
Note that for non-XY blits (COLOR_BLT, SRC_COPY_BLT), this address points to the first
byte to be written.
This register is always the last register written for a BLT drawing instruction. Writing BR09
starts the BLT engine execution.
Note:
Some instructions affect only one scan line (requiring only one coordinate); other instructions
affect multiple scan lines and need both coordinates.

 G45: Volume 1b: Graphics Core

228

8.10.7 BR11—BLT Source Pitch (Offset)
Memory Offset Address: None
Default: None
Attributes: Not accessible

31 16 15 0

BLT Engine Status - TBS Source Pitch (Offset)

Bit Descriptions

31:16 BLT Engine Status. This field is used to read back important debug status. It will be specified
in the future.

15:0 Source Pitch (Offset)
For non-XY Blits with color source operand (SRC_COPY_BLT), the signed 16bit field allows
for specifying upto + 32Kbytes signed pitch in bytes (same as before).
For X, Y Blits with tiled (X) surfaces, the pitch for Color Source will be 512Byte aligned and
should be programmable upto + 128Kbytes. In this case, this 16bit signed pitch field is used to
specify upto + 32KDWords. For X, Y blits with nontiled color source surfaces (linear
surfaces), this 16bit field can be programmed to byte specification of upto + 32Kbytes (same
as before).
When the color source data is located within the frame buffer or AGP aperture, these signed
16 bits store the memory address offset (pitch) value by which the source address originally
specified in the Source Address Register is incremented or decremented as each scan line’s
worth of source data is read from the frame buffer by the BLT Engine, so that the source
address will point to the next memory address from which the next scan line’s worth of source
data is to be read.
Note that if the intended source of a BLT operation is within on-screen frame buffer memory,
this offset is normally set to accommodate the fact that each subsequent scan line’s worth of
source data lines up vertically with the source data in the scan line, above. However, if the
intended source of a BLT operation is within off-screen memory, this offset can be set to
accommodate a situation in which the source data exists as a single contiguous block of bytes
where in each subsequent scan line’s worth of source data is stored at a location immediately
after the location where the source data for the last scan line ended.

 G45: Volume 1b: Graphics Core

 229

8.10.8 BR12—Source Address
Memory Offset Address: None
Default: None
Attributes: Not accessible

31 29 28 0

Reserved Source Address Bits [28:0]

Bit Descriptions

31:29 Reserved. The maximum GC Graphics address is 512 MBs.

28:0 Source Address Bits [28:0]. When tiling is enabled for XY-blits with Color
source surfaces, this base address should be limited to 4KB. Otherwise for
XY blits, there is no restriction and it is same as before, including for
monosource and text blits.
Note that for non-XY blit with Color Source (SRC_COPY_BLT), this address
points to the first byte to be read.
These 29 bits are used to specify the starting pixel address of the color
source data. The lower 3 bits are used to indicate the position of the first
valid byte within the first Quadword of the source data.

8.10.9 BR13—BLT Raster OP, Control, and Destination Pitch
Memory Offset Address: None
Default: 0000 xxxx
Attributes: Not accessible

31 30 29 28 27 26 25 24

Solid
Pattern

Clipping
Enable

Mono Src
Trans

Mono Pat
Trans

32 bpp byte mask Color Depth

23 16

Raster Operation

15 0

Destination Pitch (Offset)

 G45: Volume 1b: Graphics Core

230

Bit Descriptions

31 Solid Pattern Select. This bit applies only when the pattern data is monochrome.
This bit determines whether or not the BLT Engine actually performs read operations
from the frame buffer in order to load the pattern data. Use of this feature to prevent
these read operations can increase BLT Engine performance, if use of the pattern
data is indeed not necessary. The BLT Engine is configured to accept either
monochrome or color pattern data via the opcode field.
0 = This causes normal operation with regard to the use of the pattern data. The BLT

Engine proceeds with the process of reading the pattern data, and the pattern data
is used as the pattern operand for all bit-wise operations.

1 = The BLT Engine forgoes the process of reading the pattern data, the presumption
is made that all of the bits of the pattern data are set to 0, and the pattern operand
for all bit-wise operations is forced to the background color specified in the Color
Expansion Background Color Register.

30 Clipping Enabled: 1 = Enabled; 0 = Disabled

29 Monochrome Source Transparency Mode. This bit applies only when the source
data is in monochrome. This bit determines whether or not the byte(s) at the
destination corresponding to the pixel to which a given bit of the source data also
corresponds will actually be written if that source data bit has the value of 0. This
feature can make it possible to use the source as a transparency mask. The BLT
Engine is configured to accepted either monochrome or color source data via the
opcode field.
0 = This causes normal operation with regard to the use of the source data. Wherever

a bit in the source data has the value of 0, the color specified in the background
color register is used as the source operand in the bit-wise operation for the pixel
corresponding to the source data bit, and the bytes at the destination
corresponding to that pixel are written with the result.

1 = Where a bit in the source data has the value of 0, the byte(s) at the destination
corresponding to the pixel to which the source data bit also corresponds are
simply not written, and the data at those byte(s) at the destination are allowed to
remain unchanged.

28 Monochrome Pattern Transparency Mode. This bit applies only when the pattern
data is monochrome. This bit determines whether or not the byte(s) at the destination
corresponding to the pixel to which a given bit of the pattern data also corresponds will
actually be written if that pattern data bit has the value of 1. This feature can make it
possible to use the pattern as a transparency mask. The BLT Engine is configured to
accepted either monochrome or color pattern data via the opcode in the Opcode and
Control register.
0 = This causes normal operation with regard to the use of the pattern data. Where a

bit in the pattern data has the value of 0, the color specified in the background
color register is used as the pattern operand in the bit-wise operation for the pixel
corresponding to the pattern data bit, and the bytes at the destination
corresponding to that pixel are written with the result.

1= Wherever a bit in the pattern data has the value of 0, the byte(s) at the destination
corresponding to the pixel to which the pattern data bit also corresponds are
simply not written, and the data at those byte(s) at the destination are allowed to
remain unchanged.

25:24 Color Depth.
00 = 8 Bit Color Depth
01 = 16 Bit Color Depth
10 = 24 Bit Color Depth
11 = Reserved

 G45: Volume 1b: Graphics Core

 231

Bit Descriptions

23:16 Raster Operation Select. These 8 bits are used to select which one of 256 possible
raster operations is to be performed by the BLT Engine. The 8-bit values, and their
corresponding raster operations, are intended to correspond to the 256 possible raster
operations specified for graphics device drivers in the Windows* environment. The
opcode must indicate a monochrome source operand if ROP = F0.

15:0 Destination Pitch (Offset). These 16 bits store the signed memory address offset
value by which the destination address originally specified in the Destination Address
Register is incremented or decremented as each scan line’s worth of destination data
is written into the frame buffer by the BLT Engine, so that the destination address will
point to the next memory address to which the next scan line’s worth of destination
data is to be written.
If the intended destination of a BLT operation is within on-screen frame buffer
memory, this offset is normally set so that each subsequent scan line’s worth of
destination data lines up vertically with the destination data in the scan line, above.
However, if the intended destination of a BLT operation is within off-screen memory,
this offset can be set so that each subsequent scan line’s worth of destination data is
stored at a location immediately after the location where the destination data for the
last scan line ended, in order to create a single contiguous block of bytes of
destination data at the destination.

8.10.10 BR14—Destination Width & Height
Memory Offset Address: None
Default: None
Attributes: Not accessible

BR14 contains the values for the height and width of the data to be BLT. If these values are not correct, such
that the BLT Engine is either expecting data it does not receive or receives data it did not expect, the system
can hang.

31 29 28 16

Reserved Destination Height

15 13 12 0

Reserved Destination Byte Width

 G45: Volume 1b: Graphics Core

232

Bit Descriptions

31:29 Reserved.
28:16 Destination Height. These 13 bits specify the height of the destination data in terms of the

number of scan lines. This is a working register.

15:13 Reserved.
12:0 Destination Byte Width. These 13 bits specify the width of the destination data in terms of the

number of bytes per scan line. The number of pixels per scan line into which this value
translates depends upon the color depth to which the graphics system has been set.

 G45: Volume 1b: Graphics Core

 233

8.10.11 BR15—Color Pattern Address
Memory Offset Address: None
Default: None
Attributes: Not accessible

31 29 28 16

Reserved Color Pattern Address Bits [28:16]

15 6 5 0

Color Pattern Address Bits [15:6] Reserved

.

Bit Descriptions

31:2
9

Reserved. The maximum GC graphics address is 512 MBs.

28:6 Color Pattern Address. There is no change to the Color Pattern address
specification due to Non-Power-of-2 change. It remains the same as before. The
pattern data must be located in linear memory.
These 23 bits specify the starting address of the pattern.
The pattern data must be located on a pattern-size boundary. The pattern is
always of 8x8 pixels, and therefore, its size is dependent upon its pixel depth. The
pixel depth may be 8, 16, or 32 bits per pixel if the pattern is in color (the pixel
depth of a color pattern must match the pixel depth to which the graphics system
has been set). Monochrome patterns require 8 bytes and are applied through the
instruction. Color patterns of 8, 16, and 32 bits per pixel color depth must start on
64-byte, 128-byte and 256-byte boundaries, respectively.

5:0 Reserved. These bits always return 0 when read.

 G45: Volume 1b: Graphics Core

234

8.10.12 BR16—Pattern Expansion Background & Solid Pattern Color
Memory Offset Address: 40040h
Default: None
Attributes: RO; DWord accessible

31 0

Pattern Expansion Background Color Bits [31:0]

.

Bit Descriptions

31:0 Pattern Expansion Background Color Bits [31:0]. These bits provide the one,
two, or four bytes worth of color data that select the background color to be used
in the color expansion of monochrome pattern data during BLT operations.
Whether one, two, or four bytes worth of color data is needed depends upon the
color depth to which the BLT Engine has been set. For a color depth of 32bpp,
16bpp and 8bpp, bits [31:0], [15:0] and [7:0], respectively, are used.

8.10.13 BR17—Pattern Expansion Foreground Color
Memory Offset Address: None
Default: None
Attributes: Not accessible

31 0

Pattern Expansion Foreground Color Bits [31:0]

Bit Descriptions

31:0 Pattern Expansion Foreground Color Bits [31:0]. These bits provide the one,
two, or four bytes worth of color data that select the foreground color to be used
in the color expansion of monochrome pattern data during BLT operations.
Whether one, two, or four bytes worth of color data is needed depends upon the
color depth to which the BLT Engine has been set. For a color depth of 32bpp,
16bpp and 8bpp, bits [31:0], [15:0] and [7:0], respectively, are used.

 G45: Volume 1b: Graphics Core

 235

8.10.14 BR18—Source Expansion Background, and Destination Color
Memory Offset Address: None
Default: None
Attributes: Not accessible

31 0

Source Expansion Background Color Bits [31:0]

Bit Descriptions

31:0 Source Expansion Background Color Bits [31:0]. These bits provide the one,
two, or four bytes worth of color data that select the background color to be used
in the color expansion of monochrome source data during BLT operations.
This register is also used to support destination transparency mode and Solid
color fill.
Whether one, two, three, or four bytes worth of color data is needed depends upon
the color depth to which the BLT Engine has been set. For a color depth of 32bpp,
16bpp and 8bpp, bits [31:0], [15:0] and [7:0], respectively, are used.

8.10.15 BR19—Source Expansion Foreground Color
Memory Offset Address: None
Default: None
Attributes: Not accessible

31 0

Pattern Expansion Foreground Color Bits [31:0]

Bit Descriptions

31:0 Pattern/Source Expansion Foreground Color Bits [31:0]. These bits provide
the one, two, or four bytes worth of color data that select the foreground color to
be used in the color expansion of monochrome source data during BLT
operations.
Whether one, two, or four bytes worth of color data is needed depends upon the
color depth to which the BLT Engine has been set. For a color depth of 32bpp,
16bpp and 8bpp, bits [31:0], [15:0] and [7:0], respectively, are used.

	*:

