

Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Intel® OpenSource HD Graphics
Programmer’s Reference Manual (PRM)
Volume 1 Part 1: Graphics Core (SandyBridge)

For the 2011 Intel Core Processor Family

May 2011

Revision 1.0

NOTICE:

This document contains information on products in the design phase of development, and Intel
reserves the right to add or remove product features at any time, with or without changes to this
open source documentation.

2 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Creative Commons License

You are free to Share — to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any
way that suggests that they endorse you or your use of the work).

No Derivative Works. You may not alter, transform, or build upon this work.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them.

The Sandy Bridge chipset family, Havendale/Auburndale chipset family, Intel® 965 Express Chipset
Family, Intel® G35 Express Chipset, and Intel® 965GMx Chipset Mobile Family Graphics Controller may
contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order. I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a
subset of the I2C bus/protocol and was developed by Intel.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips
Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2011, Intel Corporation. All rights reserved.

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 3

Contents
1. Introduction.. 6

1.1 Devices and Device Tag Definitions .. 7
1.2 Reserved Bits and Software Compatibility... 7
1.3 Terminology ... 8

2. Graphics Device Overview ... 16
2.1 Graphics Memory Controller Hub (GMCH).. 16
2.2 Graphics Processing Unit (GPU) ... 17

3. Graphics Processing Engine (GPE) .. 19
3.1 Introduction .. 19
3.2 Overview .. 19

3.2.1 Command Stream (CS) Unit .. 21
3.2.2 GPE Function IDs .. 22

3.3 Pipeline Selection... 23
3.4 URB Allocation ... 24
3.5 Constant URB Entries (CURBEs) .. 24
3.6 Memory Object Control State... 24

3.6.1 MEMORY_OBJECT_CONTROL_STATE ... 25
3.7 Memory Access Indirection.. 26

3.7.1 STATE_BASE_ADDRESS... 27
3.8 Instruction and State Prefetch.. 33

3.8.1 STATE_PREFETCH .. 34
3.9 System Thread Configuration .. 35

3.9.1 STATE_SIP.. 35
3.10 Command Ordering Rules.. 35

3.10.1 PIPELINE_SELECT ... 36
3.10.2 PIPE_CONTROL ... 36
3.10.3 URB-Related State-Setting Commands... 37
3.10.4 Common Pipeline State-Setting Commands ... 37
3.10.5 3D Pipeline-Specific State-Setting Commands.. 37
3.10.6 Media Pipeline-Specific State-Setting Commands .. 38
3.10.7 URB_FENCE (URB Fencing & Entry Allocation) ... 38
3.10.8 CONSTANT_BUFFER (CURBE Load).. 39
3.10.9 3DPRIMITIVE... 39
3.10.10 MEDIA_OBJECT.. 39

4. Video Codec Engine.. 40
4.1 Video Command Streamer (VCS).. 41

5. Graphics Command Formats... 43
5.1 Command Formats .. 43

5.1.1 Memory Interface Commands..44
5.1.2 2D Commands ... 44
5.1.3 3D/Media Commands .. 44
5.1.4 Video Codec Commands ... 44

5.2 Command Map... 47
5.2.1 Memory Interface Command Map.. 47
5.2.2 Video Codec Command Map... 52

6. Register Address Maps .. 56
6.1 Graphics Register Address Map .. 56

6.1.1 Memory and I/O Space Registers [DevSNB+]... 56

4 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

6.1.2 Graphics Register Memory Address Map [DevSNB] ... 57
6.2 VGA and Extended VGA Register Map ... 72

6.2.1 VGA and Extended VGA I/O and Memory Register Map .. 72
6.3 Indirect VGA and Extended VGA Register Indices.. 74

7. Memory Data Formats... 77
7.1 Memory Object Overview... 77

7.1.1 Memory Object Types .. 77
7.2 Channel Formats.. 78

7.2.1 Unsigned Normalized (UNORM).. 78
7.2.2 Gamma Conversion (SRGB).. 78
7.2.3 Signed Normalized (SNORM)..79
7.2.4 Unsigned Integer (UINT/USCALED).. 79
7.2.5 Signed Integer (SINT/SSCALED) .. 79
7.2.6 Floating Point (FLOAT) .. 79

7.3 Non-Video Surface Formats .. 83
7.3.1 Surface Format Naming ... 83
7.3.2 Intensity Formats.. 83
7.3.3 Luminance Formats ... 83
7.3.4 R1_UNORM (same as R1_UINT) and MONO8... 84
7.3.5 Palette Formats.. 85

7.4 Compressed Surface Formats ... 87
7.4.1 FXT Texture Formats ... 87
7.4.2 BC4 .. 100
7.4.3 BC5 .. 101

7.5 Video Pixel/Texel Formats ... 103
7.5.1 Packed Memory Organization.. 103
7.5.2 Planar Memory Organization ...105

7.6 Surface Memory Organizations ... 106
7.7 Graphics Translation Tables .. 106
7.8 Hardware Status Page... 107
7.9 Instruction Ring Buffers.. 107
7.10 Instruction Batch Buffers .. 107
7.11 Display, Overlay, Cursor Surfaces ... 107
7.12 2D Render Surfaces... 108
7.13 2D Monochrome Source .. 108
7.14 2D Color Pattern... 108
7.15 3D Color Buffer (Destination) Surfaces.. 108
7.16 3D Depth Buffer Surfaces .. 109
7.17 3D Separate Stencil Buffer Surfaces [DevILK+] .. 109
7.18 Surface Layout ... 110

7.18.1 Buffers .. 110
7.18.2 1D Surfaces.. 111
7.18.3 2D Surfaces.. 111
7.18.4 Cube Surfaces.. 115
7.18.5 3D Surfaces.. 116

7.19 Surface Padding Requirements ... 118
7.19.1 Sampling Engine Surfaces... 118
7.19.2 Render Target and Media Surfaces... 118
7.19.3 Register/State Context [DevSNB+] .. 119
7.19.4 The Per-Process Hardware Status Page... 120
7.19.5 Register/State Context ... 120
7.19.6 The Per-Process Hardware Status Page... 121
7.19.7 Overall Context Layout... 122

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 5

7.19.8 Register/State Context ... 122
7.19.9 Pipelined State Page.. 129
7.19.10 Ring Buffer ... 129
7.19.11 The Per-Process Hardware Status Page... 129

6 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

1. Introduction
The Intel® HD Graphics Open Source Programmer’s Reference Manual (PRM) describes the architectural
behavior and programming environment of the GEN chipset family. The Graphics Controller (GC)
contains an extensive set of registers and instructions for configuration, 2D, 3D, and Video systems. The
PRM describes the register, instruction, and memory interfaces and the device behaviors as controlled
and observed through those interfaces. The PRM also describes the registers and instructions, and
provides detailed bit/field descriptions.

The PRM is organized into four volumes:

PRM Volume 1: Graphics Core

This volume covers the overall Graphics Processing Unit (GPU), and not much detail on 3D, Media, or
the core subsystem. Topics include the command streamer, context switching, and memory access
(including tiling). Memory Data Formats can also be found here.

The volume also contains a chapter on the Graphics Processing Engine (GPE). The GPE is a collective
term for 3D, Media, the subsystem, and the parts of the memory interface that are used by these units.
Display, blitter, and their memory interfaces are not included in the GPE.

PRM Volume 2: 3D / Media

This volume includes description of the 3D and Media pipelines in detail. It contains details for all of the
“fixed functions,” including commands processed by the pipelines, fixed-function state structures, and a
definition of the inputs (payloads) and outputs of the threads spawned by these units.

This volume also covers the single Media Fixed Function, VLD. It describes how to initiate generic
threads using the thread spawner (TS). Generic threads will be used on the GEN family for the majority
of media functions. Programmable kernels handle the algorithms for media functions such as IDCT,
Motion Compensation, and Motion Estimation (used for encoding MPEG streams).

PRM Volume 3: Display Registers

Volume 3 describes the control registers for the display. These registers control the display, the overlay,
and VGA.

PRM Volume 4: Subsystem and Cores/ Shared Functions

The GEN subsystem contains the programmable cores, or Executable Units (EUs), and the “shared
functions” that are shared by more than one EU and perform I/O functions and complex math functions.

The shared functions consist of the sampler:

 Extended math unit

 Data port (the interface to memory for 3D and media)

 Unified Return Buffer (URB)

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 7

 The Message Gateway used by EU threads to signal each other

The EUs use messages to send data to and receive data from the subsystem; the messages are
described with the shared functions. The generic message ‘send EU instruction’ is described with the rest
of the instructions in the Instruction Set Architecture (ISA) chapters.

The latter part of this volume describes the GMHC core, or EU, and the associated instructions used to
program it. The instruction descriptions make up an Instruction Set Architecture, or ISA. The ISA
describes all of the instructions that the GEN core can execute, along with the registers that are used to
store local data.

1.1 Devices and Device Tag Definitions
Device “Tags,” used in various parts of this document as aliases for the device names, are listed in the
following table. Note that stepping information is sometimes appended to the device tag, e.g., [DevCTG-
A]. Information without any device tagging is applicable to all devices.

The table below lists the standard for defining all device and stepping tags:

Table 1-1 Supported Chipsets

Device
Abbreviation

Product
Name

Program Name SKU

TBD GT1

TBD GT2.0

TBD GT2.1
DevSNB

TBD

SandyBridge, aka DevSNB

GT2

NOTES:

1. Unless otherwise specified, the information in this document applies to all of the devices mentioned in Table
1-1. For information that does not apply to all devices, the Device Tag is used.

2. Throughout the PRM, references to “All” in a project field refters to all devices in Table 1-1.

3. Stepping information is sometimes appended to the device tag (e.g., [DevCTG-A]). Information without any
device tagging is applicable to all devices/steppings.

5. A shorthand is used to identify all devices/steppings prior to the device/stepping that the item pertains.
Notations and Conventions.

1.2 Reserved Bits and Software Compatibility

In many register, instruction, and memory layout descriptions, certain bits are marked as “Reserved”.
When bits are marked as reserved, it is essential for compatibility with future devices that the software
treat these bits as having a future, though unknown, effect. The behavior of reserved bits should be

8 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

regarded as undefined and unpredictable. Software should follow these guidelines in dealing with
reserved bits:

1. Do not depend on the states of any reserved bits when testing values of registers that contain
such bits.

2. Mask out the reserved bits before testing.

3. Do not depend on the states of any reserved bits when storing to an instruction or to a register.

4. When loading a register or formatting an instruction, always load the reserved bits with the values
indicated in the documentation (if any), or reload them with the values previously read from the
register.

1.3 Terminology

Term Abbr. Definition

3D Pipeline -- One of the two pipelines supported in the GPE. The 3D pipeline is a set of
fixed-function units arranged in a pipelined fashion, which process 3D-
related commands by spawning EU threads. Typically this processing
includes rendering primitives. See 3D Pipeline.

Adjacency -- One can consider a single line object as existing in a strip of connected
lines. The neighboring line objects are called “adjacent objects”, with the
non-shared endpoints called the “adjacent vertices.” The same concept can
be applied to a single triangle object, considering it as existing in a mesh of
connected triangles. Each triangle shares edges with three other adjacent
triangles, each defined by an non-shared adjacent vertex. Knowledge of
these adjacent objects/vertices is required by some object processing
algorithms (e.g., silhouette edge detection). See 3D Pipeline.

Application IP AIP Application Instruction Pointer. This is part of the control registers for
exception handling for a thread. Upon an exception, hardware moves the
current IP into this register and then jumps to SIP.

Architectural Register
File

ARF A collection of architecturally visible registers for a thread such as address
registers, accumulator, flags, notification registers, IP, null, etc. ARF should
not be mistaken as just the address registers.

Array of Cores -- Refers to a group of GEN EUs, which are physically organized in two or
more rows. The fact that the EUs are arranged in an array is (to a great
extent) transparent to CPU software or EU kernels.

Binding Table -- Memory-resident list of pointers to surface state blocks (also in memory).

Binding Table Pointer BTP Pointer to a binding table, specified as an offset from the Surface State
Base Address register.

Bypass Mode -- Mode where a given fixed function unit is disabled and forwards data down
the pipeline unchanged. Not supported by all FF units.

Byte B A numerical data type of 8 bits, B represents a signed byte integer.

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 9

Term Abbr. Definition

Child Thread A branch-node or a leaf-node thread that is created by another thread. It is a
kind of thread associated with the media fixed function pipeline. A child
thread is originated from a thread (the parent) executing on an EU and
forwarded to the Thread Dispatcher by the TS unit. A child thread may or
may not have child threads depending on whether it is a branch-node or a
leaf-node thread. All pre-allocated resources such as URB and scratch
memory for a child thread are managed by its parent thread.

Clip Space -- A 4-dimensional coordinate system within which a clipping frustum is
defined. Object positions are projected from Clip Space to NDC space via
“perspecitive divide” by the W coordinate, and then viewport mapped into
Screen Space

Clipper -- 3D fixed function unit that removes invisible portions of the drawing
sequence by discarding (culling) primitives or by “replacing” primitives with
one or more primitives that replicate only the visible portion of the original
primitive.

Color Calculator CC Part of the Data Port shared function, the color calculator performs fixed-
function pixel operations (e.g., blending) prior to writing a result pixel into
the render cache.

Command -- Directive fetched from a ring buffer in memory by the Command Streamer
and routed down a pipeline. Should not be confused with instructions which
are fetched by the instruction cache subsystem and executed on an EU.

Command Streamer CS or CSI Functional unit of the Graphics Processing Engine that fetches commands,
parses them and routes them to the appropriate pipeline.

Constant URB Entry CURBE A UE that contains “constant” data for use by various stages of the pipeline.

Control Register CR The read-write registers are used for thread mode control and exception
handling for a thread.

Data Port DP Shared function unit that performs a majority of the memory access types on
behalf of GEN programs. The Data Port contains the render cache and the
constant cache and performs all memory accesses requested by GEN
programs except those performed by the Sampler. See DataPort.

Degenerate Object -- Object that is invisible due to coincident vertices or because does not
intersect any sample points (usually due to being tiny or a very thin sliver).

Destination -- Describes an output or write operand.

Destination Size The number of data elements in the destination of a GEN SIMD instruction.

Destination Width The size of each of (possibly) many elements of the destination of a GEN
SIMD instruction.

Double Quad word
(DQword)

DQ A fundamental data type, DQ represents 16 bytes.

Double word (DWord) D or DW A fundamental data type, D or DW represents 4 bytes.

Drawing Rectangle -- A screen-space rectangle within which 3D primitives are rendered. An
objects screen-space positions are relative to the Drawing Rectangle origin.

End of Block EOB A 1-bit flag in the non-zero DCT coefficient data structure indicating the end
of an 8x8 block in a DCT coefficient data buffer.

End Of Thread EOT a message sideband signal on the Output message bus signifying that the
message requester thread is terminated. A thread must have at least one
SEND instruction with the EOT bit in the message descriptor field set in
order to properly terminate.

10 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Term Abbr. Definition

Exception -- Type of (normally rare) interruption to EU execution of a thread’s
instructions. An exception occurrence causes the EU thread to begin
executing the System Routine which is designed to handle exceptions.

Execution Channel --

Execution Size ExecSize Execution Size indicates the number of data elements processed by a GEN
SIMD instruction. It is one of the GEN instruction fields and can be changed
per instruction.

Execution Unit EU Execution Unit. An EU is a multi-threaded processor within the GEN multi-
processor system. Each EU is a fully-capable processor containing
instruction fetch and decode, register files, source operand swizzle and
SIMD ALU, etc. An EU is also referred to as a GEN Core.

Execution Unit
Identifier

EUID The 4-bit field within a thread state register (SR0) that identifies the row and
column location of the EU a thread is located. A thread can be uniquely
identified by the EUID and TID.

Execution Width ExecWidth The width of each of several data elements that may be processed by a
single GEN SIMD instruction.

Extended Math Unit EM A Shared Function that performs more complex math operations on behalf
of several EUs.

FF Unit -- A Fixed-Function Unit is the hardware component of a 3D Pipeline Stage.
A FF Unit typically has a unique FF ID associated with it.

Fixed Function FF Function of the pipeline that is performed by dedicated (vs. programmable)
hardware.

Fixed Function ID FFID Unique identifier for a fixed function unit.

FLT_MAX fmax The magnitude of the maximum representable single precision floating
number according to IEEE-754 standard. FLT_MAX has an exponent of
0xFE and a mantissa of all one’s.

Gateway GW See Message Gateway.

GEN Core Alternative name for an EU in the GEN multi-processor system.

General Register File GRF Large read/write register file shared by all the EUs for operand sources and
destinations. This is the most commonly used read-write register space
organized as an array of 256-bit registers for a thread.

General State Base
Address

-- The Graphics Address of a block of memory-resident “state data”, which
includes state blocks, scratch space, constant buffers and kernel programs.
The contents of this memory block are referenced via offsets from the
contents of the General State Base Address register. See Graphics
Processing Engine.

Geometry Shader GS Fixed-function unit that (if enabled) dispatches “geometry shader” threads
on its input primitives. Application-supplied geometry shaders normally
expand each input primitive into several output primitives in order to perform
3D modeling algorithms such as fur/fins.

Graphics Address The GPE virtual address of some memory-resident object. This virtual
address gets mapped by a GTT or PGTT to a physical memory address.
Note that many memory-resident objects are referenced not with Graphics
Addresses, but instead with offsets from a “base address register”.

Graphics Processing
Engine

GPE Collective name for the Subsystem, the 3D and Media pipelines, and the
Command Streamer.

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 11

Term Abbr. Definition

Guardband GB Region that may be clipped against to make sure objects do not exceed the
limitations of the renderer’s coordinate space.

Horizontal Stride HorzStride The distance in element-sized units between adjacent elements of a GEN
region-based GRF access.

Immediate floating
point vector

VF A numerical data type of 32 bits, an immediate floating point vector of type
VF contains 4 floating point elements with 8-bit each. The 8-bit floating point
element contains a sign field, a 3-bit exponent field and a 4-bit mantissa
field. It may be used to specify the type of an immediate operand in an
instruction.

Immediate integer
vector

V A numerical data type of 32 bits, an immediate integer vector of type V
contains 8 signed integer elements with 4-bit each. The 4-bit integer
element is in 2’s compliment form. It may be used to specify the type of an
immediate operand in an instruction.

Index Buffer IB Buffer in memory containing vertex indices.

In-loop Deblocking
Filter

ILDB The deblocking filter operation in the decoding loop. It is a stage after MC in
the video decoding pipe.

Instance In the context of the VF unit, an instance is one of a sequence of sets of
similar primitive data. Each set has identical vertex data but may have
unique instance data that differentiates it from other sets in the sequence.

Instruction -- Data in memory directing an EU operation. Instructions are fetched from
memory, stored in a cache and executed on one or more GEN cores. Not to
be confused with commands which are fetched and parsed by the command
streamer and dispatched down the 3D or Media pipeline.

Instruction Pointer IP The address (really an offset) of the instruction currently being fetched by an
EU. Each EU has its own IP.

Instruction Set
Architecture

ISA The GEN ISA describes the instructions supported by a GEN EU.

Instruction State
Cache

ISC On-chip memory that holds recently-used instructions and state variable
values.

Interface Descriptor -- Media analog of a State Descriptor.

Intermediate Z IZ Completion of the Z (depth) test at the front end of the Windower/Masker
unit when certain conditions are met (no alpha, no pixel-shader computed Z
values, etc.)

Inverse Discrete
Cosine Transform

IDCT the stage in the video decoding pipe between IQ and MC

Inverse Quantization IQ A stage in the video decoding pipe between IS and IDCT.

Inverse Scan IS A stage in the video decoding pipe between VLD and IQ. In this stage, a
sequence of none-zero DCT coefficients are converted into a block (e.g. an
8x8 block) of coefficients. VFE unit has fixed functions to support IS for
MPEG-2.

Jitter Just-in-time compiler.

Kernel -- A sequence of GEN instructions that is logically part of the driver or
generated by the jitter. Differentiated from a Shader which is an application
supplied program that is translated by the jitter to GEN instructions.

Least Significant Bit LSB

MathBox -- See Extended Math Unit

12 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Term Abbr. Definition

Media -- Term for operations that are normally performed by the Media pipeline.

Media Pipeline -- Fixed function stages dedicated to media and “generic” processing,
sometimes referred to as the generic pipeline.

Message -- Messages are data packages transmitted from a thread to another thread,
another shared function or another fixed function. Message passing is the
primary communication mechanism of GEN architecture.

Message Gateway -- Shared function that enables thread-to-thread message
communication/synchronization used solely by the Media pipeline.

Message Register
File

MRF Write-only registers used by EUs to assemble messages prior to sending
and as the operand of a send instruction.

Most Significant Bit MSB

Motion Compensation MC Part of the video decoding pipe.

Motion Picture Expert
Group

MPEG MPEG is the international standard body JTC1/SC29/WG11 under ISO/IEC
that has defined audio and video compression standards such as MPEG-1,
MPEG-2, and MPEG-4, etc.

Motion Vector Field
Selection

MVFS A four-bit field selecting reference fields for the motion vectors of the current
macroblock.

Multi Render Targets MRT Multiple independent surfaces that may be the target of a sequence of 3D or
Media commands that use the same surface state.

Normalized Device
Coordinates

NDC Clip Space Coordinates that have been divided by the Clip Space “W”
component.

Object -- A single triangle, line or point.

Open GL OGL A Graphics API specification associated with Linux.

Parent Thread -- A thread corresponding to a root-node or a branch-node in thread
generation hierarchy. A parent thread may be a root thread or a child thread
depending on its position in the thread generation hierarchy.

Pipeline Stage -- A abstracted element of the 3D pipeline, providing functions performed by a
combination of the corresponding hardware FF unit and the threads
spawned by that FF unit.

Pipelined State
Pointers

PSP Pointers to state blocks in memory that are passed down the pipeline.

Pixel Shader PS Shader that is supplied by the application, translated by the jitter and is
dispatched to the EU by the Windower (conceptually) once per pixel.

Point -- A drawing object characterized only by position coordinates and width.

Primitive -- Synonym for object: triangle, rectangle, line or point.

Primitive Topology -- A composite primitive such as a triangle strip, or line list. Also includes the
objects triangle, line and point as degenerate cases.

Provoking Vertex -- The vertex of a primitive topology from which vertex attributes that are
constant across the primitive are taken.

Quad Quad word
(QQword)

QQ A fundamental data type, QQ represents 32 bytes.

Quad Word (QWord) QW A fundamental data type, QW represents 8 bytes.

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 13

Term Abbr. Definition

Rasterization Conversion of an object represented by vertices into the set of pixels that
make up the object.

Region-based
addressing

-- Collective term for the register addressing modes available in the EU
instruction set that permit discontiguous register data to be fetched and
used as a single operand.

Render Cache RC Cache in which pixel color and depth information is written prior to being
written to memory, and where prior pixel destination attributes are read in
preparation for blending and Z test.

Render Target RT A destination surface in memory where render results are written.

Render Target Array
Index

-- Selector of which of several render targets the current operation is targeting.

Root Thread -- A root-node thread. A thread corresponds to a root-node in a thread
generation hierarchy. It is a kind of thread associated with the media fixed
function pipeline. A root thread is originated from the VFE unit and
forwarded to the Thread Dispatcher by the TS unit. A root thread may or
may not have child threads. A root thread may have scratch memory
managed by TS. A root thread with children has its URB resource managed
by the VFE.

Sampler -- Shared function that samples textures and reads data from buffers on behalf
of EU programs.

Scratch Space -- Memory allocated to the subsystem that is used by EU threads for data
storage that exceeds their register allocation, persistent storage, storage of
mask stack entries beyond the first 16, etc.

Shader -- A GEN program that is supplied by the application in an high level shader
language, and translated to GEN instructions by the jitter.

Shared Function SF Function unit that is shared by EUs. EUs send messages to shared
functions; they consume the data and may return a result. The Sampler,
Data Port and Extended Math unit are all shared functions.

Shared Function ID SFID Unique identifier used by kernels and shaders to target shared functions and
to identify their returned messages.

Single Instruction
Multiple Data

SIMD The term SIMD can be used to describe the kind of parallel processing
architecture that exploits data parallelism at instruction level. It can also be
used to describe the instructions in such architecture.

Source -- Describes an input or read operand

Spawn -- To initiate a thread for execution on an EU. Done by the thread spawner as
well as most FF units in the 3D pipeline.

Sprite Point -- Point object using full range texture coordinates. Points that are not sprite
points use the texture coordinates of the point’s center across the entire
point object.

State Descriptor -- Blocks in memory that describe the state associated with a particular FF,
including its associated kernel pointer, kernel resource allowances, and a
pointer to its surface state.

State Register SR The read-only registers containing the state information of the current
thread, including the EUID/TID, Dispatcher Mask, and System IP.

14 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Term Abbr. Definition

State Variable SV An individual state element that can be varied to change the way given
primitives are rendered or media objects processed. On GEN state
variables persist only in memory and are cached as needed by
rendering/processing operations except for a small amount of non-pipelined
state.

Stream Output -- A term for writing the output of a FF unit directly to a memory buffer instead
of, or in addition to, the output passing to the next FF unit in the pipeline.
Currently only supported for the Geometry Shader (GS) FF unit.

Sub-Register Subfield of a SIMD register. A SIMD register is an aligned fixed size register
for a register file or a register type. For example, a GRF register, r2, is 256-
bit wide, 256-bit aligned register. A sub-register, r2.3:d, is the fourth dword
of GRF register r2.

Subsystem -- The GEN name given to the resources shared by the FF units, including
shared functions and EUs.

Surface -- A rendering operand or destination, including textures, buffers, and render
targets.

Surface State -- State associated with a render surface including

Surface State Base
Pointer

-- Base address used when referencing binding table and surface state data.

Synchronized Root
Thread

-- A root thread that is dispatched by TS upon a ‘dispatch root thread’
message.

System IP SIP There is one global System IP register for all the threads. From a thread’s
point of view, this is a virtual read only register. Upon an exception,
hardware performs some bookkeeping and then jumps to SIP.

System Routine -- Sequence of GEN instructions that handles exceptions. SIP is programmed
to point to this routine, and all threads encountering an exception will call it.

Thread An instance of a kernel program executed on an EU. The life cycle for a
thread starts from the executing the first instruction after being dispatched
from Thread Dispatcher to an EU to the execution of the last instruction – a
send instruction with EOT that signals the thread termination. Threads in
GEN system may be independent from each other or communicate with
each other through Message Gateway share function.

Thread Dispatcher TD Functional unit that arbitrates thread initiation requests from Fixed Functions
units and instantiates the threads on EUs.

Thread Identifier TID The field within a thread state register (SR0) that identifies which thread
slots on an EU a thread occupies. A thread can be uniquely identified by the
EUID and TID.

Thread Payload Prior to a thread starting execution, some amount of data will be pre-loaded
in to the thread’s GRF (starting at r0). This data is typically a combination of
control information provided by the spawning entity (FF Unit) and data read
from the URB.

Thread Spawner TS The second and the last fixed function stage of the media pipeline that
initiates new threads on behalf of generic/media processing.

Topology See Primitive Topology.

Unified Return Buffer URB The on-chip memory managed/shared by GEN Fixed Functions in order for
a thread to return data that will be consumed either by a Fixed Function or
other threads.

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 15

Term Abbr. Definition

Unsigned Byte
integer

UB A numerical data type of 8 bits.

Unsigned Double
Word integer

UD A numerical data type of 32 bits. It may be used to specify the type of an
operand in an instruction.

Unsigned Word
integer

UW A numerical data type of 16 bits. It may be used to specify the type of an
operand in an instruction.

Unsynchronized Root
Thread

-- A root thread that is automatically dispatched by TS.

URB Dereference --

URB Entry UE URB Entry: A logical entity stored in the URB (such as a vertex), referenced
via a URB Handle.

URB Entry Allocation
Size

-- Number of URB entries allocated to a Fixed Function unit.

URB Fence Fence Virtual, movable boundaries between the URB regions owned by each FF
unit.

URB Handle -- A unique identifier for a URB entry that is passed down a pipeline.

URB Reference --

Variable Length
Decode

VLD The first stage of the video decoding pipe that consists mainly of bit-wide
operations. GEN supports hardware VLD acceleration in the VFE fixed
function stage.

Vertex Buffer VB Buffer in memory containing vertex attributes.

Vertex Cache VC Cache of Vertex URB Entry (VUE) handles tagged with vertex indices. See
the VS chapter for details on this cache.

Vertex Fetcher VF The first FF unit in the 3D pipeline responsible for fetching vertex data from
memory. Sometimes referred to as the Vertex Formatter.

Vertex Header -- Vertex data required for every vertex appearing at the beginning of a Vertex
URB Entry.

Vertex ID -- Unique ID for each vertex that can optionally be included in vertex attribute
data sent down the pipeline and used by kernel/shader threads.

Vertex Index -- Offset (in vertex-sized units) of a given vertex in a vertex buffer. Not unique
per vertex instance.

Vertex URB Entry VUE A URB entry that contains data for a specific vertex.

Vertical Stride VertStride The distance in element-sized units between 2 vertically-adjacent elements
of a GEN region-based GRF access.

Video Front End VFE The first fixed function in the GEN generic pipeline; performs fixed-function
media operations.

Viewport VP

Windower IZ WIZ Term for Windower/Masker that encapsulates its early (“intermediate”) depth
test function.

Windower/Masker WM Fixed function triangle/line rasterizer.

Word W A numerical data type of 16 bits, W represents a signed word integer.

16 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

2. Graphics Device Overview

2.1 Graphics Memory Controller Hub (GMCH)
The GMCH is a system memory controller with an integrated graphics device. The integrated graphics
device is sometimes referred to in this document as a Graphics Processing Unit (GPU). The GMCH
connects to the CPU, via a host bus, and to system memory via a memory bus. The GMCH also contains
some IO functionality to interface to an external graphics device and an IO controller. This document will
not contain any further references to external graphics devices or IO controllers.

The graphics core, or GPU, resides within the GMCH, which also contains the memory interface,
configuration registers, and other chipset functions. The GPU itself is comprised of the command
streamer (CS) or command parser, the Memory Interface or MI, the display interface, and (by far the
largest element of the GEN family GMCH) the 3D/Media engine. This latter piece is made up of the 3D
and media “fixed function” (FF) pipelines, and the GEN subsystem, which these pipelines use to run
“shaders” and kernels.

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 17

Figure 2-1. GMCH Block Diagram

Display
Device

B6674-01

Memory

Graphic
Processor

Unit
(GPU)

GMCH

CPU

Memory
Controller

IO
Interface

(Optional)
External
Graphic
Device

IO
Controller

2.2 Graphics Processing Unit (GPU)
The Graphics Processing Unit is controlled by the CPU through a direct interface of memory-mapped IO
registers, and indirectly by parsing commands that the CPU has placed in memory. The display interface
and blitter (block image transferrer) are controlled primarily by direct CPU register addresses, while the
3D and Media pipelines and the parallel Video Codec Engine (VCE) are controlled primarily through
instruction lists in memory.

The GEN subsystem contains an array of cores, or execution units, with a number of “shared functions”,
which receive and process messages at the request of programs running on the cores. The shared
functions perform critical tasks, such as sampling textures and updating the render target (usually the
frame buffer). The cores themselves are described by an instruction set architecture, or ISA.

18 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Figure 2-2. Block Diagram of the GPU

B6675-01

Display/
Overlay

Display
Device

Blitter

Memory Interface

3D

3D
Media
Sub-

System

GPU

Media VCE

GPE

CPU Register
Interface

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 19

3. Graphics Processing Engine (GPE)

3.1 Introduction
This chapter serves two purposes: It provides a high-level description of the Graphics Processing Engine
(GPE) of the Graphics Processing Unit (GPU). It also specifies the programming and behaviors of the
functions common to both pipelines (3D, Media) within the GPE. However, details specific to either
pipeline are not addressed here.

3.2 Overview
The Graphics Processing Engine (GPE) performs the bulk of the graphics processing provided by the
DevSNB GPU. It consists of the 3D and Media fixed-function pipelines, the Command Streamer (CS) unit
that feeds them, and the GEN Subsystem that provides the bulk of the computations required by the
pipelines.

20 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Figure 3-1. The Graphics Processing Engine

B6676-01

URB

Command
Streamer

3D

M
e
d

ia

Array of
Cores

Subsystem

Memory
Objects

Source
Surfaces

Destination
Surfaces

CC
Render
Cache

ITC*

Math

Sampler

* Inter-thread Communication

Vertex
Buffers

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 21

Figure 3-2. GPE Diagram Showing Fixed/Shared Functions

3.2.1 Command Stream (CS) Unit
The Command Stream (CS) unit manages the use of the 3D and Media pipelines; it performs switching
between pipelines and forwarding command streams to the currently active pipeline. It manages
allocation of the URB and helps support the Constant URB Entry (CURBE) function.

3D Pipeline

The 3D pipeline provides specialized 3D primitive processing functions. These functions are provided by
a pipeline of “fixed function” stages (units) and GEN threads spawned by these units. See 3D Pipeline
Overview.

B 6677-01

3 D

Pipeline

GPE

Memory

VF

VS

GS

CLIP

SF

WM

CS

GEN
Subsystem

Sampler

DataPort

MathBox

Gateway

Media
Pipeline

VFE

TS
URB

Command Stream
from MI Function

Commands

22 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Media Pipeline

The Media pipeline provides both specialized media-related processing functions and the ability to
perform more general (“generic”) functionality. These Media-specific functions are provided by a Video
Front End (VFE) unit. A Thread Spawner (TS) unit is utilized to spawn GEN threads requested by the
VFE unit, or as required when the pipeline is used for general processing. See Media Pipeline Overview.

Subsystem

The Subsystem is the collective name for the GEN programmable cores, the Shared Functions accessed
by them (including the Sampler, Extended Math Unit (“MathBox”), the DataPort, and the Inter-Thread
Communication (ITC) Gateway), and the Dispatcher that manages threads running on the cores.

3.2.1.1 Execution Units (EUs)

While the number of EU cores in the GEN subsystem is almost entirely transparent to the programming
model, there are a few areas where this parameter comes into play. The amount of scratch space
required is a function of (#EUs * #Threads/EU).

Device # of EUs #Threads/EU

SNB GT2 12 5

SNB GT1 6 4

3.2.2 GPE Function IDs
The following table lists the assigments (encodings) of the Shared Function and Fixed Function IDs used
within the GPE. A Shared Function is a valid target of a message initiated via a ‘send’ instruction. A
Fixed Function is an identifiable unit of the 3D or Media pipeline. Note that the Thread Spawner is both a
Shared Function and Fixed Function.

Note: The initial intention was to combine these two ID namespaces, so that (theoretically) an agent
(such as the Thread Spawner) that served both as a Shared Function and Fixed Function would have a
single, unique 4-bit ID encoding. However, this combination is not a requirement of the architecture.

Table 3-1. Function IDs

ID[3:0] SFID Shared Function FFID Fixed Function

0x0 SFID_NULL Null FFID_NULL Null

0x1 SFID_MATH Extended Math Reserved ---

0x2 SFID_SAMPLER Sampler Reserved ---

0x3 SFID_GATEWAY Message Gateway Reserved ---

0x4 -- -- Reserved --

0x5 -- -- Reserved --

0x6 SFID_URB URB Reserved ---

0x7 SFID_SPAWNER Thread Spawner FFID_SPAWNER Thread Spawner

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 23

ID[3:0] SFID Shared Function FFID Fixed Function

0x8 SFID_VME Video Motion Estimation FFID_VFE Video Front End

0xA Reserved -- Reserved --

0xB Reserved -- Reserved --

0xC Reserved --- FFID_GS Geometry Shader

0xD Reserved --- FFID_CLIP Clipper Unit

0xE Reserved --- Reserved --

0xF Reserved --- FFID_WM Windower/Masker Unit

3.3 Pipeline Selection
The PIPELINE_SELECT command is used to specify which GPE pipeline (3D or Media) is to be
considered the “current” active pipeline. Issuing 3D-pipeline-specific commands when the Media pipeline
is selected, or vice versa, is UNDEFINED.

This command causes the URB deallocation of the previously selected pipe. For example, switching from
the 3D pipe to the Media pipe (either within or between contexts) will cause the CS to send a
“Deallocating Flush” down the 3D pipe, and each 3D FF will start a URB deallocation sequence after the
current tasks are done. Then, the WM will de-reference the current Constant URB Entry, and all 3D URB
entries will be deallocated (after some north bus delay) , which allows the CS to set the URB fences for
the media pipe. The process relatively is the same for switching from Media to 3D pipes. The
deallocating flush goes down the Media pipe, causing each Media function to start a URB deallocation
sequence, and the WM will de-reference the current Constant URB entry and all media entries will be de-
allocated to allow the CS to set the 3D pipe.

Programming Restriction:

Software must ensure the current pipeline is flushed via an MI_FLUSH or PIPE_CONTROL prior to the
execution of PIPELINE_SELECT.

DWord Bit Description

31:29 Instruction Type = GFXPIPE = 3h

28:16 3D Instruction Opcode = PIPELINE_SELECT

GFXPIPE[28:27 = 1h, 26:24 = 1h, 23:16 = 04h] (Single DW, Non-pipelined)

15:2 Reserved: MBZ

0

1: 0 Pipeline Select

0: 3D pipeline is selected

1: Media pipeline is selected (Includes generic media workloads)

2: Reserved

3: Reserved

The Pipeline Select state is contained within the logical context.

24 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Implementation Note: Currently, this bit is only required for switching pipelines. The CS unit needs to
know which pipeline (if any) has an outstanding CURBE reference pending. A switch away from that
pipeline requires the CS unit to force any CURBE entries to be deallocated.

3.4 URB Allocation
Storage in the URB is divided among the various fixed functions in a programmable fashion using the
URB_FENCE command (see below).

Note for [DevSNB+]: URB management is performed for the 3D Pipeline only. Refer to the 3D Pipeline
chapter for details.

3.5 Constant URB Entries (CURBEs)
Note for [DevSNB+]: The push constant mechanism is now unit-specific. See the 3D Pipeline chapter
for details on push constants for VS, GS, and PS (WM).

3.6 Memory Object Control State
The memory object control state defines behavior of memory accesses beyond the graphics core,
including graphics data type that allows selective flushing of data from outer caches, and ability to control
cacheability in the outer caches.

This control uses several mechanisms. Control state for all memory accesses can be defined page by
page in the GTT entries. Memory objects that are defined by state per surface generally have additional
memory object control state in the state structure that defines the other surface attributes. Memory
objects without state defining them have memory object state control defined per class in the
STATE_BASE_ADDRESS command, with class divisions the same as the base addresses. Finally,
some memory objects only have the GTT entry mechanism for defining this control. The table below
enumerates the memory objects and location the the control state for each:

Memory Object Location of Control State

surfaces defined by SURFACE_STATE: sampling
engine surfaces, render targets, media surfaces, pull
constant buffers

SURFACE_STATE

depth, stencil, and hierarchical depth buffers corresponding state command that defined the
buffer attributes

stateless buffers accessed by data port STATE_BASE_ADDRESS

indirect state objects STATE_BASE_ADDRESS

kernel instructions STATE_BASE_ADDRESS

push constant buffers 3DSTATE_CONSTANT_(VS | GS | PS)

index buffers 3DSTATE_INDEX_BUFFER

vertex buffers 3DSTATE_VERTEX_BUFFERS

indirect media object STATE_BASE_ADDRESS

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 25

Memory Object Location of Control State

generic state prefetch GTT control only

ring/batch buffers GTT control only

context save buffers GTT control only

store dword GTT control only

3.6.1 MEMORY_OBJECT_CONTROL_STATE

Bit Description

3 Reserved

2 Graphics Data Type (GFDT)

This field contains the GFDT bit for this surface when writes occur. GFDT can also be
set by the GTT. The effective GFDT is the logical OR of this field with the GFDT from
the GTT entry. This field is ignored for reads.

The GFDT bit is stored in the LLC and selective cache flushing of lines with GFDT set is
supported. It is intended to be set on displayable data, which enables efficient flushing
of data to be displayed after rendering, since display engine does not snoop the
rendering caches. Note that MLC would need to be completely flushed as it does not
allow selective flushing.

Format = U1

1:0 Cacheability Control

This field controls cacheability in the mid-level cache (MLC) and last-level cache (LLC).

[DevSNB]: The MLC is not implemented on this product, thus data is effectively not
cached in the MLC regardless of the setting of this field.

Format = U2 enumerated type

00: use cacheability control bits from GTT entry

01: data is not cached in LLC

10: data is cached in LLC

11: Reserved

26 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

3.7 Memory Access Indirection
The GPE supports the indirection of certain graphics (GTT-mapped) memory accesses. This support
comes in the form of two base address state variables used in certain memory address computations with
the GPE.

The intent of this functionality is to support the dynamic relocation of certain driver-generated memory
structures after command buffers have been generated but prior to the their submittal for execution. For
example, as the driver builds the command stream it could append pipeline state descriptors, kernel
binaries, etc. to a general state buffer. References to the individual items would be inserting in the
command buffers as offsets from the base address of the state buffer. The state buffer could then be
freely relocated prior to command buffer execution, with the driver only needing to specify the final base
address of the state buffer. Two base addresses are provided to permit surface-related state (binding
tables, surface state tables) to be maintained in a state buffer separate from the general state buffer.

While the use of these base addresses is unconditional, the indirection can be effectively disabled by
setting the base addresses to zero. The following table lists the various GPE memory access paths and
which base address (if any) is relevant.

Table 3-2. Base Address Utilization

Base Address Used Memory Accesses

General State Base
Address

DataPort memory accesses resulting from ‘stateless’ DataPort
Read/Write requests. See DataPort for a definition of the ‘stateless’
form of requests.

Sampler reads of SAMPLER_STATE data and associated
SAMPLER_BORDER_COLOR_STATE.

Viewport states used by CLIP, SF, and WM/CC

COLOR_CALC_STATE, DEPTH_STENCIL_STATE, and
BLEND_STATE

Dynamic State Base
Address

Push Constants (depending on state of
INSTPM<CONSTANT_BUFFER Address Offset Disable>)

Normal EU instruction stream (non-system routine) Instruction Base Address

System routine EU instruction stream (starting address = SIP)

Sampler and DataPort reads of BINDING_TABLE_STATE, as
referenced by BT pointers passed via
3DSTATE_BINDING_TABLE_POINTERS

Surface State Base
Address

Sampler and DataPort reads of SURFACE_STATE data

Indirect Object Base
Address

MEDIA_OBJECT Indirect Data accessed by the CS unit .

CS unit reads from Ring Buffers, Batch Buffers

CS writes resulting from PIPE_CONTROL command

All VF unit memory accesses (Index Buffers, Vertex Buffers)

None

All Sampler Surface Memory Data accesses (texture fetch, etc.)

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 27

Base Address Used Memory Accesses

All DataPort memory accesses except ‘stateless’ DataPort Read/Write
requests (e.g., RT accesses.) See Data Port for a definition of the
‘stateless’ form of requests.

Memory reads resulting from STATE_PREFETCH commands

Any physical memory access by the device

GTT-mapped accesses not included above (i.e., default)

Push Constants (depeding on state of INSTPM<CONSTANT_BUFFER
Address Offset Disable>)

The following notation is used in the BSpec to distinguish between addresses and offsets:

Notation Definition

PhysicalAddress[n:m] Corresponding bits of a physical graphics memory byte address (not
mapped by a GTT)

GraphicsAddress[n:m] Corresponding bits of an absolute, virtual graphics memory byte address
(mapped by a GTT)

GeneralStateOffset[n:m] Corresponding bits of a relative byte offset added to the General State
Base Address value, the result of which is interpreted as a virtual graphics
memory byte address (mapped by a GTT)

DynamicStateOffset[n:m] Corresponding bits of a relative byte offset added to the Dynamic State
Base Address value, the result of which is interpreted as a virtual graphics
memory byte address (mapped by a GTT)

InstructionBaseOffset[n:m] Corresponding bits of a relative byte offset added to the Instruction Base
Address value, the result of which is interpreted as a virtual graphics
memory byte address (mapped by a GTT)

SurfaceStateOffset[n:m] Corresponding bits of a relative byte offset added to the Surface State
Base Address value, the result of which is interpreted as a virtual graphics
memory byte address (mapped by a GTT)

3.7.1 STATE_BASE_ADDRESS
The STATE_BASE_ADDRESS command sets the base pointers for subsequent state, instruction, and
media indirect object accesses by the GPE. (See Table 3-2. Base Address Utilization for details)

Programming Notes:

 The following commands must be reissued following any change to the base addresses:

o 3DSTATE_PIPELINE_POINTERS

o 3DSTATE_BINDING_TABLE_POINTERS

o MEDIA_STATE_POINTERS.

 Execution of this command causes a full pipeline flush, thus its use should be minimized for
higher performance.

28 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

3.7.1.1 STATE_BASE_ADDRESS [DevSNB]

STATE_BASE_ADDRESS
Project: [DevSNB+] Length Bias: 2
The STATE_BASE_ADDRESS command sets the base pointers for subsequent state, instruction, and
media indirect object accesses by the GPE. (See Table 3-2. Base Address Utilization for details)

Programming Notes:

 The following commands must be reissued following any change to the base addresses:

o 3DSTATE_CC_POINTERS

o 3DSTATE_BINDING_TABLE_POINTERS

o 3DSTATE_SAMPLER_STATE_POINTERS

o 3DSTATE_VIEWPORT_STATE_POINTERS

o MEDIA_STATE_POINTERS

 Execution of this command causes a full pipeline flush, thus its use should be minimized for higher
performance.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 0h GFXPIPE_COMMON Format: OpCode

26:24 3D Command Opcode

Default Value: 1h GFXPIPE_NONPIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 01h STATE_BASE_ADDRESS Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 8h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 29

STATE_BASE_ADDRESS
1 31:12 General State Base Address

Project: All

Format: GraphicsAddress[31:12]

Specifies the 4K-byte aligned base address for general state accesses. See Table 3-2 for
details on where this base address is used.

11:8 General State Memory Object Control State

Project: All

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for indirect state using the General State Base
Address, with the exception of the stateless data port accesses.

7:4 Stateless Data Port Access Memory Object Control State

Project: All

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for stateless data port accesses.

3 Stateless Data Port
Access Force Write
Thru

Project: All Format: U1

0: If the stateless data port access memory object control indicates L3 cachable the
accesses will be write back cacheable.

1: If the stateless data port access memory object control indicates L3 cachable the
accesses will be write thru cacheable.

2:1 Reserved Project: All Format: MBZ

0 General State Base Address Modify Enable

Project: All

Format: Enable

The other fields in this dword are updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated address All

1h Enable Modify the address All

2 31:12 Surface State Base Address

Project: All

Format: GraphicsAddress[31:12]

Specifies the 4K-byte aligned base address for binding table and surface state accesses.
See Table 3-2 for details on where this base address is used.

11:8 Surface State Memory Object Control State

Project: All

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for indirect state using the Surface State Base
Address.

7:1 Reserved Project: All Format: MBZ

30 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

STATE_BASE_ADDRESS
0 Surface State Base Address Modify Enable

Project: All

Format: Enable

The other fields in this dword are updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated address All

1h Enable Modify the address All

3 31:12 Dynamic State Base Address

Project: All

Format: GraphicsAddress[31:12]

Specifies the 4K-byte aligned base address for sampler and viewport state accesses. See
Table 3-2 for details on where this base address is used.

11:8 Dynamic State Memory Object Control State

Project: All

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for indirect state using the Dynamic State Base
Address. Push constants defined in 3DSTATE_CONSTANT_(VS | GS | PS) commands
do not use this control state, although they can use the corresponding base address. The
memory object control state for push constants is defined within the command.

7:1 Reserved Project: All Format: MBZ

0 Dynamic State Base Address Modify Enable

Project: All

Format: Enable

The other fields in this dword are updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated address All

1h Enable Modify the address All

4 31:12 Indirect Object Base Address

Project: All

Format: GraphicsAddress[31:12]

Specifies the 4K-byte aligned base address for indirect object load in MEDIA_OBJECT
command. See Table 3-2 for details on where this base address is used.

11:8 Indirect Object Memory Object Control State

Project: All

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for indirect objects using the Indirect Object
Base Address.

7:1 Reserved Project: All Format: MBZ

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 31

STATE_BASE_ADDRESS
0 Indirect Object Base Address Modify Enable

Project: All

Format: Enable

The other fields in this dword are updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated address All

1h Enable Modify the address All

5 31:12 Instruction Base Address

Project: All

Format: GraphicsAddress[31:12]

Specifies the 4K-byte aligned base address for all EU instruction accesses.

11:8 Instruction Memory Object Control State

Project: All

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for EU instructions using the Instruction Base
Address.

7:1 Reserved Project: All Format: MBZ

0 Instruction Base Address Modify Enable

Project: All

Format: Enable

The other fields in this dword are updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated address All

1h Enable Modify the address All

6 31:12 General State Access Upper Bound

Project: All

Format: GraphicsAddress[31:12]

Specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address for general
state accesses. This includes all accesses that are offset from General State Base
Address (see Table 3-2). Read accesses from this address and beyond will return
UNDEFINED values. Data port writes to this address and beyond will be “dropped on the
floor” (all data channels will be disabled so no writes occur). Setting this field to 0 will
cause this range check to be ignored.

If non-zero, this address must be greater than the General State Base Address.

11:1 Reserved Project: All Format: MBZ

32 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

STATE_BASE_ADDRESS
0 General State Access Upper Bound Modify Enable

Project: All

Format: Enable

The bound in this dword is updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated bound All

1h Enable Modify the bound All

7 31:12 Dynamic State Access Upper Bound

Project: All

Format: GraphicsAddress[31:12]

Specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address for dynamic
state accesses. This includes all accesses that are offset from Dynamic State Base
Address (see Table 3-2). Read accesses from this address and beyond will return
UNDEFINED values. Data port writes to this address and beyond will be “dropped on the
floor” (all data channels will be disabled so no writes occur). Setting this field to 0 will
cause this range check to be ignored.

If non-zero, this address must be greater than the Dynamic State Base Address.

11:1 Reserved Project: All Format: MBZ

0 Dynamic State Access Upper Bound Modify Enable

Project: All

Format: Enable

The bound in this dword is updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated bound All

1h Enable Modify the bound All

8 31:12 Indirect Object Access Upper Bound

Project: All

Format: GraphicsAddress[31:12]

This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address
access by an indirect object load in a MEDIA_OBJECT command. Indirect data accessed
at this address and beyond will appear to be 0. Setting this field to 0 will cause this range
check to be ignored.

If non-zero, this address must be greater than the Indirect Object Base Address.

Hardware ignores this field if indirect data is not present.

Setting this field to FFFFFh will cause this range check to be ignored.

11:1 Reserved Project: All Format: MBZ

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 33

STATE_BASE_ADDRESS
0 Indirect Object Access Upper Bound Modify Enable

Project: All

Format: Enable

The bound in this dword is updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated bound All

1h Enable Modify the bound All

9 31:12 Instruction Access Upper Bound

Project: All

Format: GraphicsAddress[31:12]

This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address
access by an EU instruction. Instruction data accessed at this address and beyond will
return UNDEFINED values. Setting this field to 0 will cause this range check to be ignored.

If non-zero, this address must be greater than the Instruction Base Address.

11:1 Reserved Project: All Format: MBZ

0 Instruction Access Upper Bound Modify Enable

Project: All

Format: Enable

The bound in this dword is updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated bound All

1h Enable Modify the bound All

3.8 Instruction and State Prefetch
The STATE_PREFETCH command is provided strictly as an optional mechanism to possibly enhance
pipeline performance by prefetching data into the GPE’s Instruction and State Cache (ISC).

34 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

3.8.1 STATE_PREFETCH

STATE_PREFETCH
Project: All Length Bias: 2

(This command is provided strictly for performance optimization opportunities, and likely requires some
experimentation to evaluate the overall impact of additional prefetching.)

The STATE_PREFETCH command causes the GPE to attempt to prefetch a sequence of 64-byte cache
lines into the GPE-internal cache (“L2 ISC”) used to access EU kernel instructions and fixed/shared function
indirect state data. While state descriptors, surface state, and sampler state are automatically prefetched by
the GPE, this command may be used to prefetch data not automatically prefetched, such as: 3D viewport
state; Media pipeline Interface Descriptors; EU kernel instructions.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 0h GFXPIPE_COMMON Format: OpCode

26:24 3D Command Opcode

Default Value: 0h GFXPIPE_PIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 03h STATE_PREFETCH Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:6 Prefetch Pointer

Project: All

Format: GraphicsAddress[31:6]

Specifies the 64-byte aligned address to start the prefetch from. This pointer is an absolute
virtual address, it is not relative to any base pointer.

5:3 Reserved Project: All Format: MBZ

2:0 Prefetch Count

Project: All

Format: U3 count of cache lines (minus one)

Range [0,7] indicating a count of [1,8]

Indicates the number of contiguous 64-byte cache lines that will be prefetched.

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 35

3.9 System Thread Configuration

3.9.1 STATE_SIP

STATE_SIP
Project: All Length Bias: 2
The STATE_SIP command specifies the starting instruction location of the System Routine that is shared by all threads
in execution.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 0h GFXPIPE_COMMON Format: OpCode

26:24 3D Command Opcode

Default Value: 1h GFXPIPE_NONPIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 02h STATE_SIP Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:4 System Instruction Pointer (SIP)

Project: All

Format: InstructionBaseOffset[31:4]

Specifies the instruction address of the system routine associated with the current context
as a 128-bit granular offset from the Instruction Base Address. SIP is shared by all
threads in execution. The address specifies the double quadword aligned instruction
location.

3:0 Reserved Project: All Format: MBZ

3.10 Command Ordering Rules
There are several restrictions regarding the ordering of commands issued to the GPE. This subsection
describes these restrictions along with some explanation of why they exist. Refer to the various
command descriptions for additional information.

The following flowchart illustrates an example ordering of commands which can be used to perform
activity within the GPE.

36 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

B6680-01

MEDIA_STATE_POINTERS3DSTATE_PIPELINE_POINTERS

URB_FENCEURB_FENCE

CONSTANT_BUFFERCONSTANT_BUFFER

MEDIA_OBJECT3DPRIMITIVE / 3DCONTROL

MI_FLUSH

PIPELINE_SELECT

CS_URB_STATE

Pipeline?
3D Media

Note: Common or Pipeline-
specific state-setting
commands can be issued
along any paths from this
point down

3.10.1 PIPELINE_SELECT
The previously-active pipeline needs to be flushed via the MI_FLUSH command immediately before
switching to a different pipeline via use of the PIPELINE_SELECT command. Refer to Section 0 for
details on the PIPELINE_SELECT command.

3.10.2 PIPE_CONTROL
The PIPE_CONTROL command does not require URB fencing/allocation to have been performed, nor
does it rely on any other pipeline state. It is intended to be used on both the 3D pipe and the Media pipe.
It has special optimizations to support the pipelining capability in the 3D pipe which do not apply to the
Media pipe.

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 37

3.10.3 URB-Related State-Setting Commands
Several commands are used (among other things) to set state variables used in URB entry allocation ---
specifically, the Number of URB Entries and the URB Entry Allocation Size state variables associated
with various pipeline units. These state variables must be set-up prior to the issuing of a URB_FENCE
command. (See the subsection on URB_FENCE below).

CS_URB_STATE (only) specifies these state variables for the common CS FF unit.
3DSTATE_PIPELINED_POINTERs sets the state variables for FF units in the 3D pipeline, and
MEDIA_STATE_POINTERS sets them for the Media pipeline. Depending on which pipeline is currently
active, only one of these commands needs to be used. Note that these commands can also be reissued
at a later time to change other state variables, though if a change is made to (a) any Number of URB
Entries and the URB Entry Allocation Size state variables or (b) the Maximum Number of Threads
state for the GS or CLIP FF units, a URB_FENCE command must follow.

3.10.4 Common Pipeline State-Setting Commands
The following commands are used to set state common to both the 3D and Media pipelines. This state is
comprised of CS FF unit state, non-pipelined global state (EU, etc.), and Sampler shared-function state.

 STATE_BASE_ADDRESS

 STATE_SIP

 3DSTATE_SAMPLER_PALETTE_LOAD

 3DSTATE_CHROMA_KEY

The state variables associated with these commands must be set appropriately prior to initiating activity
within a pipeline (i.e., 3DPRIMITIVE or MEDIA_OBJECT).

3.10.5 3D Pipeline-Specific State-Setting Commands
The following commands are used to set state specific to the 3D pipeline.

 3DSTATE_PIPELINED_POINTERS

 3DSTATE_BINDING_TABLE_POINTERS

 3DSTATE_VERTEX_BUFFERS

 3DSTATE_VERTEX_ELEMENTS

 3DSTATE_INDEX_BUFFERS

 3DSTATE_VF_STATISTICS

 3DSTATE_DRAWING_RECTANGLE

38 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

 3DSTATE_CONSTANT_COLOR

 3DSTATE_DEPTH_BUFFER

 3DSTATE_POLY_STIPPLE_OFFSET

 3DSTATE_POLY_STIPPLE_PATTERN

 3DSTATE_LINE_STIPPLE

 3DSTATE_GLOBAL_DEPTH_OFFSET

The state variables associated with these commands must be set appropriately prior to issuing
3DPRIMITIVE.

3.10.6 Media Pipeline-Specific State-Setting Commands
The following commands are used to set state specific to the Media pipeline.

 MEDIA_STATE_POINTERS

The state variables associated with this command must be set appropriately prior to issuing
MEDIA_OBJECT.

3.10.7 URB_FENCE (URB Fencing & Entry Allocation)
URB_FENCE command is used to initiate URB entry deallocation/allocation processes within pipeline FF
units. The URB_FENCE command is first processed by the CS FF unit, and is then directed down the
currently selected pipeline to the FF units comprising that pipeline.

As the FF units receive the URB_FENCE command, a URB entry deallocation/allocation process with be
initiated if (a) the FF unit is currently enabled (note that some cannot be disabled) and (b) the
ModifyEnable bit associated with that FF unit’s Fence value is set. If these conditions are met, the
deallocation of the FF unit’s currently-allocated URB entries (if any) commences. (Implementation Note:
For better performance, this deallocation proceeds in parallel with allocation of new handles).

Modifying the CS URB allocation via URB_FENCE invalidates any previous CURBE entries. Therefore
software must subsequently [re]issue a CONSTANT_BUFFER command before CURBE data can be
used in the pipeline.

The allocation of new handles (if any) for the FF unit then commences. The parameters used to perform
this allocation come from (a) the URB_FENCE Fence values, and (b) the relevant URB entry state
associated with the FF unit: specifically, the Number of URB Entries and the URB Entry Allocation
Size. For the CS unit, this state is programmed via CS_URB_STATE, while the other FF units receive
this state indirectly via PIPELINED_STATE_POINTERS or MEDIA_STATE_POINTERS commands.

Although a FF unit’s allocation process relies on it’s URB Fence as well as the relevant FF unit pipelined
state, only the URB_FENCE command initiates URB entry deallocation/allocation. This imposes the
following restriction: If a change is made to (a) the Number of URB Entries or URB Entry Allocation
Size state for a given FF unit or (b) the Maximum Number of Threads state for the GS or CLIP FF units,

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 39

a URB_FENCE command specifying a valid URB Fence state for that FF unit must be subsequently
issued – at some point prior to the next CONSTANT_BUFFER, 3DPRIMITIVE (if using the 3D pipeline)
or MEDIA_OBJECT (if using the Media pipeline). It is invalid to change Number of URB Entries or URB
Entry Allocation Size state for an enabled FF units without also issuing a subsequent URB_FENCE
command specifying a valid Fence valid for that FF unit.

It is valid to change a FF unit’s Fence value without specifying a change to its Number of URB Entries or
URB Entry Allocation Size state, though the values must be self-consistent.

3.10.8 CONSTANT_BUFFER (CURBE Load)
The CONSTANT_BUFFER command is used to load constant data into the CURBE URB entries owned
by the CS unit. In order to write into the URB, CS URB fencing and allocation must have been
established. Therefore, CONSTANT_BUFFER can only be issued after CS_URB_STATE and
URB_FENCE commands have been issued, and prior to any other pipeline processing (i.e.,
3DPRIMITIVE or MEDIA_OBJECT). See the definition of CONSTANT_BUFFER for more details.

Modifying the CS URB allocation via URB_FENCE invalidates any previous CURBE entries. Therefore
software must subsequently [re]issue a CONSTANT_BUFFER command before CURBE data can be
used in the pipeline.

3.10.9 3DPRIMITIVE
Before issuing a 3DPRIMITIVE command, all state (with the exception of MEDIA_STATE_POINTERS)
needs to be valid. Therefore the commands used to set this state need to have been issued at some
point prior to the issue of 3DPRIMITIVE.

3.10.10 MEDIA_OBJECT
Before issuing a MEDIA_OBJECT command, all state (with the exception of 3D-pipeline-specific state)
needs to be valid. Therefore the commands used to set this state need to have been issued at some
point prior to the issue of MEDIA_OBJECT.

40 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

4. Video Codec Engine
The parallel Video Codec Engine (VCE) is a fixed function video decoder and encoder engine. It is also
referred to as the multi-format codec (MFX) engine, as a unified fixed function pipeline is implemented to
support multiple video coding standards such as MPEG2, VC1 and AVC.

 VCS – VCE Command Streamer unit (also referred to as BCS)

 BSD – Bitstream Decoder unit

 VDS – Video Dispatcher unit

 VMC – Video Motion Compensation unit

 VIP – Video Intra Prediction unit

 VIT – Video Inverse Transform unit

 VLF – Video Loop Filter unit

 VFT – Video Forward Transform unit (encoder only)

 BSC – Bitstream Encoder unit (encoder only)

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 41

Figure 4-1. VCE Diagram

B6681-01

BSD

VCE

Memory

AVC

VC1

MPEG2

VDS

Command Stream
from MI Function

AES

VMC

VCS

AVCVIP

VIT

VFT

AVC

BSC

AVC

VLF

AVC/VC1

Device AVC
BSD

VC1
BSD

AVC
Dec

VC1
Dec

MPEG2
Dec

AVC
Enc

[DevSNB] No No Yes Yes Yes Yes

4.1 Video Command Streamer (VCS)
VCS (Video Command Streamer) unit is primarily served as the software programming interface between
the O/S driver and the MFD Engine. It is responsible for fetching, decoding, and dispatching of data
packets (Media Commands with the header DW removed) to the front end interface module of MFX
Engine.

Its logic functions include

 MMIO register programming interface

42 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

 DMA action for fetching of ring data from memory

 Management of the Head pointer for the Ring Buffer

 Decode of ring data and sending it to the appropriate destination; AVC, VC1 or MPEG2 engine

 Handling of user interrupts and ring context switch interrupt

 Flushing the MFX Engine

 Handle NOP

The register programming (RM) bus is a dword interface bus that is driven by the Gx Command Streamer.
The VCS unit will only claim memory mapped I/O cycles that are targeted to its range of 0x4000 to
0x4FFFF. The Gx and MFX Engines use semaphore to synchronize their operations.

Any interaction and control protocols between the VCS and Gx CS in IronLake will remain the same as in
Cantiga. But in Gesher, VCS will operate completely independent of the Gx CS.

The simple sequence of events is as follows: a ring (say PRB0) is programmed by a memory-mapped
register write cycle. The DMA inside VCS is kicked off. The DMA fetches commands from memory
based on the starting address and head pointer. The DMA requests cache lines from memory (one
cacheline CL at a time). There is guaranteed space in the DMA FIFO (16 CL deep) for data coming back
from memory. The DMA control logic has copies of the head pointer and the tail pointer. The DMA
increments the head pointer after making requests for ring commands. Once the DMA copy of the head
pointer becomes equal to the tail pointer, the DMA stops requesting.

The parser starts executing once the DMA FIFO has valid commands. All the commands have a header
dword packet. Based on the encoding in the header packet, the command may be targeted towards
AVC/VC1/MPEG2 engine or the command parser. After execution of every command, the actual head
pointer is updated. The ring is considered empty when the head pointer becomes equal to the tail
pointer.

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 43

5. Graphics Command Formats

5.1 Command Formats
This section describes the general format of the graphics device commands.

Graphics commands are defined with various formats. The first DWord of all commands is called the
header DWord. The header contains the only field common to all commands -- the client field that
determines the device unit that will process the command data. The Command Parser examines the
client field of each command to condition the further processing of the command and route the command
data accordingly.

Some GEN Devices include two Command Parsers, each controlling an independent processing engine.
These will be referred to in this document as the Render Command Parser (RCP) and the Video Codec
Command Parser (VCCP).

Valid client values for the Render Command Parser are:

Client # Client

0 Memory Interface (MI_xxx)

1 Miscellaneous

2 2D Rendering (xxx_BLT_xxx)

3 Graphics Pipeline (3D and Media)

4-7 Reserved

Valid client values for the Video Codec Command Parser are:

Client # Client

0 Memory Interface (MI_xxx)

1-2 Reserved

3 AVC and VC1 State and Object Commands

4-7 Reserved

Graphics commands vary in length, though are always multiples of DWords. The length of a command is
either:

 Implied by the client/opcode

 Fixed by the client/opcode yet included in a header field (so the Command Parser explicitly
knows how much data to copy/process)

 Variable, with a field in the header indicating the total length of the command

44 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Note that command sequences require QWord alignment and padding to QWord length to be placed in
Ring and Batch Buffers.

The following subsections provide a brief overview of the graphics commands by client type provides a
diagram of the formats of the header DWords for all commands. Following that is a list of command
mnemonics by client type.

5.1.1 Memory Interface Commands
Memory Interface (MI) commands are basically those commands which do not require processing by the
2D or 3D Rendering/Mapping engines. The functions performed by these commands include:

Control of the command stream (e.g., Batch Buffer commands, breakpoints, ARB On/Off, etc.)

Hardware synchronization (e.g., flush, wait-for-event)

Software synchronization (e.g., Store DWORD, report head)

Graphics buffer definition (e.g., Display buffer, Overlay buffer)

Miscellaneous functions

Refer to the Memory Interface Commands chapter for a description of these commands.

5.1.2 2D Commands
The 2D commands include various flavors of Blt operations, along with commands to set up Blt engine
state without actually performing a Blt. Most commands are of fixed length, though there are a few
commands that include a variable amount of "inline" data at the end of the command.

Refer to the 2D Commands chapter for a description of these commands.

5.1.3 3D/Media Commands
The 3D/Media commands are used to program the graphics pipelines for 3D or media operations.

Refer to the 3D chapter for a description of the 3D state and primitive commands and the Media chapter
for a description of the media-related state and object commands.

5.1.4 Video Codec Commands

5.1.4.1 MFX Commands [DevSNB+]

The MFX commands are used to program the multi-format codec engine attached to the Video Codec
Command Parser. See the MFD and MFC chapters for a description of these commands.

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 45

Table 5-1. RCP Command Header Format

Bits

TYPE 31:29 28:24 23 22 21:0

Memory

Interface

(MI)

000 Opcode

00h – NOP

0Xh – Single DWord Commands

1Xh – Two+ DWord Commands

2Xh – Store Data Commands

3Xh – Ring/Batch Buffer Cmds

 Identification No./DWord Count

Command Dependent Data

5:0 – DWord Count

5:0 – DWord Count

5:0 – DWord Count

Reserved 001 Opcode – 11111 23:19

Sub Opcode
00h – 01h

18:16

Re-
served

15:0

DWord Count

2D 010 Opcode Command Dependent Data

4:0 – DWord Count

TYPE 31:29 28:27 26:24 23:16 15:8 7:0

Common 011 00 Opcode – 000 Sub Opcode Data DWord
Count

Common (NP) 011 00 Opcode – 001 Sub Opcode Data DWord
Count

Reserved 011 00 Opcode – 010 – 111

Single Dword
Command

011 01 Opcode – 000 – 001 Sub Opcode N/A

Reserved 011 01 Opcode – 010 – 111

Media State 011 10 Opcode – 000 Sub Opcode Dword
Count

Media Object 011 10 Opcode – 001 – 010 Sub Opcode Dword Count

Reserved 011 10 Opcode – 011 – 111

3DState 011 11 Opcode – 000 Sub Opcode Data DWord
Count

3DState (NP) 011 11 Opcode – 001 Sub Opcode Data DWord
Count

PIPE_Control 011 11 Opcode – 010 Data DWord
Count

3DPrimitive 011 11 Opcode – 011 Data DWord
Count

Reserved 011 11 Opcode – 100 – 111

Reserved 1XX XX

NOTES:

1. The qualifier “NP” indicates that the state variable is non-pipelined and the render pipe is flushed
before such a state variable is updated. The other state variables are pipelined (default).

46 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Table 5-2. VCCP Command Header Format

Bits

TYPE 31:29 28:24 23 22 21:0

Memory

Interface

(MI)

000 Opcode

00h – NOP

0Xh – Single DWord Commands

1Xh – Reserved

2Xh – Store Data Commands

3Xh – Ring/Batch Buffer Cmds

 Identification No./DWord Count

Command Dependent Data

5:0 – DWord Count

5:0 – DWord Count

5:0 – DWord Count

TYPE 31:29 28:27 26:24 23:16 15:0

Reserved 011 00 XXX XX

MFX Single
DW

011 01 000 Opcode: 0h 0

Reserved 011 01 1XX

Reserved 011 10 0XX

AVC State 011 10 100 Opcode: 0h – 4h DWord Count

AVC Object 011 10 100 Opcode: 8h DWord Count

VC1 State 011 10 101 Opcode: 0h – 4h DWord Count

VC1 Object 011 10 101 Opcode: 8h DWord Count

Reserved 011 10 110

Reserved 011 10 110

Reserved 011 10 11X

Reserved 011 11 XXX

TYPE 31:29 28:27 26:24 23:21 20:16 15:0

MFX Common 011 10 000 000 subopcode DWord Count

Reserved 011 10 000 001-111 subopcode DWord Count

AVC Common 011 10 001 000 subopcode DWord Count

AVC Dec 011 10 001 001 subopcode DWord Count

AVC Enc 011 10 001 010 subopcode DWord Count

Reserved 011 10 001 011-111 subopcode DWord Count

Reserved (for
VC1 Common)

011 10 010 000 subopcode DWord Count

VC1 Dec 011 10 010 001 subopcode DWord Count

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 47

Bits

TYPE 31:29 28:24 23 22 21:0

Reserved (for
VC1 Enc)

011 10 010 010 subopcode DWord Count

Reserved 011 10 010 011-111 subopcode DWord Count

Reserved
(MPEG2
Common)

011 10 011
000 subopcode DWord Count

MPEG2 Dec 011 10 011 001 subopcode DWord Count

Reserved (for
MPEG2 Enc)

011 10 011 010 subopcode DWord Count

Reserved 011 10 011 011-111 subopcode DWord Count

Reserved 011 10 100-111 XXX

5.2 Command Map

This section provides a map of the graphics command opcodes.

5.2.1 Memory Interface Command Map
All the following commands are defined in Memory Interface Commands.

Table 5-3. Memory Interface Commands for RCP

Pipe Opcode
(28:23)

Command

Render Video
Blitter

[DevSNB+
]

1-DWord

00h MI_NOOP All All All

01h Reserved

02h MI_USER_INTERRUPT All All All

03h MI_WAIT_FOR_EVENT All All All

04h MI_FLUSH All [pre-
DevGT]

05h MI_ARB_CHECK All All All

06h Reserved

07h MI_REPORT_HEAD All All All

08h MI_ARB_ON_OFF All [DevSNB
+]

09h Reserved

0Ah MI_BATCH_BUFFER_END All All All

48 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Pipe Opcode
(28:23)

Command

Render Video
Blitter

[DevSNB+
]

0Bh MI_SUSPEND_FLUSH [DevSNB+]

0Ch Reserved

0Dh Reserved

0Eh Reserved

0Fh Reserved

2+ DWord

10h Reserved

11h MI_OVERLAY_FLIP

Reserved [DevCTG+]

[pre-
DevCTG]

12h MI_LOAD_SCAN_LINES_INCL

Reserved [DevSNB+]

[pre-
DevSNB]

13h MI_LOAD_SCAN_LINES_EXCL

Reserved [DevSNB+]

[pre-
DevSNB]

14h MI_DISPLAY_FLIP All

15h Reserved

16h MI_SEMAPHORE_MBOX [DevCTG+] [DevSNB
+]

[DevSNB+]

17h Reserved

18h MI_SET_CONTEXT All

19h Reserved

1Ah MI_MATH

1Bh-1Fh Reserved

Store Data

20h MI_STORE_DATA_IMM All All All

21h MI_STORE_DATA_INDEX All All All

22h MI_LOAD_REGISTER_IMM All All All

23h MI_UPDATE_GTT [DevCTG+] [DevSNB
+]

24h MI_STORE_REGISTER_MEM All All All

25h MI_PROBE [DevCTG]

[DevILK]

26h MI_FLUSH_DW

[DevILK] This is the opcode for
MI_REPORT_PERF_COUNT. It only applied to
Render pipe

 [DevSNB
+]

[DevSNB+]

27h MI_CLFLUSH [DevSNB+]

28h MI_REPORT_PERF_COUNT [DevSNB+]

29h Reserved

2Ah Reserved

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 49

Pipe Opcode
(28:23)

Command

Render Video
Blitter

[DevSNB+
]

2Bh Reserved

2Ch–2Fh Reserved

Ring/Batch Buffer

30h Reserved

31h MI_BATCH_BUFFER_START All All All

32h–35h Reserved

36h MI_CONDITIONAL_BATCH_BUFFER_END [DevSNB+] [DevSNB
+]

37h–3Fh Reserved

2D Command Map

All the following commands are defined in Blitter Instructions.

Opcode (28:22) Command

00h Reserved

01h XY_SETUP_BLT

02h Reserved

03h XY_SETUP_CLIP_BLT

04h–10h Reserved

11h XY_SETUP_MONO_PATTERN_SL_BLT

12h–23h Reserved

24h XY_PIXEL_BLT

25h XY_SCANLINES_BLT

26h XY_TEXT_BLT

23h–30h Reserved

31h XY_TEXT_IMMEDIATE_BLT

32h–3Fh Reserved

40h COLOR_BLT

41h–42h Reserved

43h SRC_COPY_BLT

44h–4Fh Reserved

50h XY_COLOR_BLT

51h XY_PAT_BLT

52h XY_MONO_PAT_BLT

53h XY_SRC_COPY_BLT

54h XY_MONO_SRC_COPY_BLT

55h XY_FULL_BLT

50 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Opcode (28:22) Command

56h XY_FULL_MONO_SRC_BLT

57h XY_FULL_MONO_PATTERN_BLT

58h XY_FULL_MONO_PATTERN_MONO_SRC_BLT

59h XY_MONO_PAT_FIXED_BLT

5Ah–70h Reserved

71h XY_MONO_SRC_COPY_IMMEDIATE_BLT

72h XY_PAT_BLT_IMMEDIATE

73h XY_SRC_COPY_CHROMA_BLT

74h XY_FULL_IMMEDIATE_PATTERN_BLT

75h XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT

76h XY_PAT_CHROMA_BLT

77h XY_PAT_CHROMA_BLT_IMMEDIATE

78h–7Fh Reserved

3D/Media Command Map

Pipeline
Type

(28:27)

Opcode Sub
Opcode

Command Definition
Chapter

3D State
(Pipelined)

Bits
26:24

Bits
23:16

3h 0h 00h 3DSTATE_PIPELINED_POINTERS [Pre-DevSNB] 3D Pipeline

3h 0h 01h 3DSTATE_BINDING_TABLE_POINTERS
[DevSNB]

3D Pipeline

3h 0h 02h 3DSTATE_SAMPLER_STATE_POINTERS
[DevSNB]

3D Pipeline

3h 0h 03h Reserved n/a

3h 0h 04h Reserved [DevSNB]

3h 0h 05h 3DSTATE_URB [DevSNB] 3D Pipeline

3h 0h 06h Reserved [DevSNB] n/a

3h 0h 07h Reserved [DevSNB] n/a

3h 0h 08h 3DSTATE_VERTEX_BUFFERS Vertex Fetch

3h 0h 09h 3DSTATE_VERTEX_ELEMENTS Vertex Fetch

3h 0h 0Ah 3DSTATE_INDEX_BUFFER Vertex Fetch

3h 0h 0Bh 3DSTATE_VF_STATISTICS Vertex Fetch

3h 0h 0Ch Reserved n/a

3h 0h 0Dh 3DSTATE_VIEWPORT_STATE_POINTERS
[DevSNB]

3D Pipeline

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 51

Pipeline
Type

(28:27)

Opcode Sub
Opcode

Command Definition
Chapter

3h 0h 0Eh 3DSTATE_CC_STATE_POINTERS [DevSNB] 3D Pipeline

3h 0h 0Fh 3DSTATE_SCISSOR_STATE_POINTERS
[DevSNB]

3D Pipeline

-- -- -- Reserved [DevSNB]

3h 0h 11h 3DSTATE_GS [DevSNB+] Geometry
Shader

3h 0h 12h 3DSTATE_CLIP [DevSNB+] Clipper

-- -- -- Reserved [DevSNB+]

3h 0h 14h 3DSTATE_WM [DevSNB+] Windower

3h -- -- Reserved [DevSNB+]

3h 0h 16h 3DSTATE_CONSTANT_GS [DevSNB+] Geometry
Shader

3h 0h 17h 3DSTATE_CONSTANT_PS [DevSNB+] Windower

3h 0h 18h 3DSTATE_SAMPLE_MASK [DevSNB+] Windower

3D State
(Non-

Pipelined)

Bits
26:24

Bits
23:16

3h 1h 00h 3DSTATE_DRAWING_RECTANGLE Strips & Fans

3h 1h 01h 3DSTATE_CONSTANT_COLOR [Pre-DevSNB] Color
Calculator

3h 1h 02h 3DSTATE_SAMPLER_PALETTE_LOAD0 Sampling
Engine

3h 1h 03h Reserved

3h 1h 04h 3DSTATE_CHROMA_KEY Sampling
Engine

3h 1h 05h 3DSTATE_DEPTH_BUFFER [DevSNB] Windower

3h 1h 06h 3DSTATE_POLY_STIPPLE_OFFSET Windower

3h 1h 07h 3DSTATE_POLY_STIPPLE_PATTERN Windower

3h 1h 08h 3DSTATE_LINE_STIPPLE Windower

3h 1h 09h 3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP
[Pre-DevSNB]

Windower

3h 1h 0Ah [DevCTG]: 3DSTATE_AA_LINE_PARAMS
[DevCTG+]

Windower

3h 1h 0Bh 3DSTATE_GS_SVB_INDEX [DevCTG+] Geometry
Shader

3h 1h 0Ch 3DSTATE_SAMPLER_PALETTE_LOAD1
[DevCTG-B+]

Sampling
Engine

52 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Pipeline
Type

(28:27)

Opcode Sub
Opcode

Command Definition
Chapter

3h 1h 0Dh 3DSTATE_MULTISAMPLE [DevSNB+] Windower

3h 1h 0Eh 3DSTATE_STENCIL_BUFFER [DevIL,DevSNB]

Reserved [Pre-DevILK]

Windower

3h 1h 0Fh 3DSTATE_HIER_DEPTH_BUFFER [DevILK,
DevSNB]

Reserved [Pre-DevILK]

Windower

3h 1h 10h 3DSTATE_CLEAR_PARAMS [DevIL, DevSNB] Windower

3h 1h 11h 3DSTATE_MONOFILTER_SIZE [DevILK+] Sampling
Engine

3h 1h 12h Reserved --

3h 1h 13h Reserved --

3h 1h 14h Reserved --

3h 1h 15h Reserved --

3h 1h 16h Reserved --

3h 1h
17h 3DSTATE_SO_DECL_LIST

HW
Streamout

3h 1h
18h 3DSTATE_SO_BUFFER

HW
Streamout

3h 1h 19h–FFh Reserved n/a

3D (Control) Bits
26:24

Bits
23:16

3h 2h 00h PIPE_CONTROL 3D Pipeline

3h 2h 01h–FFh Reserved n/a

3D
(Primitive)

Bits
26:24

Bits
23:16

3h 3h 00h 3DPRIMITIVE Vertex Fetch

3h 3h 01h–FFh Reserved n/a

3h 4h–7h 00h–FFh Reserved n/a

5.2.2 Video Codec Command Map

5.2.2.1 MFX Common Command Map [DevSNB+]

MFX state commands support direct state model and indirect state model. Recommended usage of
indirect state model is provided here (as a software usage guideline).

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 53

Pipeline
Type (28:27)

Opcode
(26:24)

Subop
A

(23:21)

Subop
B

(20:16)

Command Chapter Recomm
ended

Indirect
State

Pointer
Map

Interrup
table?

MFX
Common

(State)

2h 0h 0h 0h MFX_PIPE_MODE_SELECT MFX IMAGE n/a

2h 0h 0h 1h MFX_SURFACE_STATE MFX IMAGE n/a

2h 0h 0h 2h MFX_PIPE_BUF_ADDR_STATE MFX IMAGE n/a

2h 0h 0h 3h MFX_IND_OBJ_BASE_ADDR_STATE MFX IMAGE n/a

2h 0h 0h 4h MFX_BSP_BUF_BASE_ADDR_STATE MFX IMAGE n/a

2h 0h 0h 5h Reserved n/a n/a n/a

2h 0h 0h 6h MFX_ STATE_POINTER MFX IMAGE n/a

2h 0h 0h 7-8h Reserved n/a n/a n/a

MFX
Common
(Object)

2h 0h 1h 9h MFD_ IT_OBJECT MFX n/a Yes

2h 0h 0h 4-1Fh Reserved n/a n/a n/a

AVC
Common

(State)

2h 1h 0h 0h MFX_AVC_IMG_STATE MFX IMAGE n/a

2h 1h 0h 1h MFX_AVC_QM_STATE MFX IMAGE n/a

2h 1h 0h 2h MFX_AVC_DIRECTMODE_STATE MFX SLICE n/a

2h 1h 0h 3h MFX_AVC_SLICE_STATE MFX SLICE n/a

2h 1h 0h 4h MFX_AVC_REF_IDX_STATE MFX SLICE n/a

2h 1h 0h 5h MFX_AVC_WEIGHTOFFSET_STATE MFX SLICE n/a

2h 1h 0h 6-1Fh Reserved n/a n/a n/a

AVC Dec

2h 1h 1h 0-7h Reserved n/a n/a n/a

2h 1h 1h 8h MFD_AVC_BSD_OBJECT MFX n/a No

54 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Pipeline
Type (28:27)

Opcode
(26:24)

Subop
A

(23:21)

Subop
B

(20:16)

Command Chapter Recomm
ended

Indirect
State

Pointer
Map

Interrup
table?

2h 1h 1h 9-1Fh Reserved n/a n/a n/a

AVC Enc

2h 1h 2h 0-1h Reserved n/a n/a n/a

2h 1h 2h 2h MFC_AVC_FQM_STATE MFX IMAGE n/a

2h 1h 2h 3-7h Reserved n/a n/a n/a

2h 1h 2h 8h MFC_AVC_PAK_INSERT_OBJECT MFX n/a n/a

2h 1h 2h 9h MFC_AVC_PAK_OBJECT MFX n/a Yes

2h 1h 2h A-1Fh Reserved n/a n/a n/a

2h 1h 2h 0-1Fh Reserved n/a n/a n/a

VC1
Common

2h 2h 0h 0h MFX_VC1_PIC_STATE MFX IMAGE n/a

2h 2h 0h 1h MFX_VC1_PRED_PIPE_STATE MFX IMAGE n/a

2h 2h 0h 2h MFX_VC1_DIRECTMODE_STATE MFX SLICE n/a

2h 2h 0h 2-1Fh Reserved n/a n/a n/a

VC1 Dec

2h 2h 1h 0-7h Reserved n/a n/a n/a

2h 2h 1h 8h MFD_VC1_BSD_OBJECT MFX n/a Yes

2h 2h 1h 9-1Fh Reserved n/a n/a n/a

VC1 Enc

2h 2h 2h 0-1Fh Reserved n/a n/a n/a

MPEG2
Common

2h 3h 0h 0h MFX_MPEG2_PIC_STATE MFX IMAGE n/a

2h 3h 0h 1h MFX_MPEG2_QM_STATE MFX IMAGE n/a

2h 3h 0h 2-1Fh Reserved n/a n/a n/a

MPEG2 Dec

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 55

Pipeline
Type (28:27)

Opcode
(26:24)

Subop
A

(23:21)

Subop
B

(20:16)

Command Chapter Recomm
ended

Indirect
State

Pointer
Map

Interrup
table?

2h 3h 1h 1-7h Reserved n/a n/a n/a

2h 3h 1h 8h MFD_MPEG2_BSD_OBJECT MFX n/a Yes

2h 3h 1h 9-1Fh Reserved n/a n/a n/a

MPEG2 Enc

2h 3h 2h 0-1Fh Reserved n/a n/a n/a

The Rest

2h 4-5h, 7h x x Reserved n/a n/a n/a

56 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

6. Register Address Maps

6.1 Graphics Register Address Map
This chapter provides address maps of the graphics controllers I/O and memory-mapped registers.
Individual register bit field descriptions are provided in the following chapters. PCI configuration address
maps and register bit descriptions are provided in the following chapter.

6.1.1 Memory and I/O Space Registers [DevSNB+]
These are graphics MMIO ranges used for DevSNB. Note that this is only a subset of the complete
definition of the MMIO address space.

Range Start Range End Unit owner

00002000 00002FFF Render/Generic Media Engine

00004000 00004FFF Render/Generic Media Graphics Memory Arbiter

-- -- Reserved

-- -- Reserved

00012000 000123FF MFX Control Engine (Video Command Streamer)

00012400 00012FFF Media Units (VIN unit)

00014000 00014FFF MFX Memory Arbiter

00022000 00022FFF Blitter Engine

00024000 00024FFF Blitter Memory Arbiter

-- -- Reserved

00100000 00107FFF Fence Registers

00140000 0017FFFF MCHBAR (SA)

Note: 8800-88FF is a reserved range for DevSNB. IA accesses to this region has no impact however TAP
(backdoor) accesses to reserved range will result in hardware hang. Do not use.

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 57

6.1.2 Graphics Register Memory Address Map [DevSNB]
All graphics device registers are directly accessible via memory-mapped I/O and indirectly accessible via
the MMIO_INDEX and MMIO_DATA I/O registers. In addition, the VGA and Extended VGA registers are
I/O mapped.

Table 6-1. Memory-Mapped Registers

Address Offset Symbol Register Name Access

00000h00FFFh VGA and VGA Extended Registers

These registers are both memory and I/O
mapped and are listed in the following table.
Note that the I/O address and memory offset
address are the same value for each register.

Reserved (1000h1FFFh)

01000h01FFFh Reserved

Primary CS Instruction and Interrupt Control Registers (02000h02FFFh)

02000h0201Fh Reserved

02020h02023h PGTBL_CTL Page Table Control Register R/W

02024h02027h -- Reserved --

02028h–0202Bh EXCC Execute Condition Code Register R/W,RO

0202Ch–0202Fh Reserved

02030h–02033h PRB0_TAIL Primary Ring Buffer 0 Tail Register R/W

02034h–02037h PRB0_HEAD Primary Ring Buffer 0 Head Register R/W

02038h–0203Bh PRB0_STARTsted Primary Ring Buffer 0 Start Register R/W

0203Ch–0203Fh PRB0_CTL Primary Ring Buffer 0 Control Register R/W

02040h–0205Fh Reserved

02060h–02063h -- Reserved --

02064h–02067h -- Reserved --

02068h–0206Bh -- Reserved --

0206Ch–0206Fh -- Reserved --

02070h–02073h -- Reserved --

02074h–02077h -- Reserved --

02078h–0207Bh -- Reserved --

0207Ch–0207Fh -- Reserved --

02080h–02083h HWS_PGA Hardware Status Page Address Register R/W

02084h–02087h Reserved

58 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Table 6-1. Memory-Mapped Registers

Address Offset Symbol Register Name Access

02088h–0208Ch -- R/W

0208Dh–02093h Reserved

02094h–02097h NOPID NOP Identification Register RO

02098h0209Bh HWSTAM Hardware Status Mask Register R/W

0209Ch–0209Fh MI_MODE Mode Register for Software Interface R/W

020A0h020A3h IER Interrupt Enable Register R/W

020A4h020A7h IIR Interrupt Identity Register R/WC

020A8h020ABh IMR Interrupt Mask Register R/W

020ACh020AFh ISR Interrupt Status Register RO

020B0h020B3h EIR Error Identity Register R/WC

020B4h020B7h EMR Error Mask Register R/W

020B8h020BBh ESR Error Status Register RO

020BCh020BFh Reserved

020C0h–020C3h INSTPM Instruction Parser Mode Register
(SAVED/RESTORED)

R/W

020C4h–020C7h -- R/W

020C8h–020CBh -- R/W

020CCh–020DFh Reserved

-- R/W 020E0h020E3h

-- R/W

020E4h020E7h MI_ARB_STATE Memory Interface Arbitration State Register

(SAVED/RESTORED)

R/W

020E8h020FBh Reserved

020FCh–020FFh -- R/W

02100h–0210Fh Reserved

02110h–02113h BB_STATE Batch Buffer State Register

R/W

02114h–0211Fh Reserved

02120h–02123h -- Reserved

--

02124h02127h -- Reserved --

02128h–02133h Reserved

02134h–02137h UHPTR Pending Head Pointer Register R/W

02138h–0213Fh Reserved

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 59

Table 6-1. Memory-Mapped Registers

Address Offset Symbol Register Name Access

02140h–02147h BB_ADDR Batch Buffer Current Address RO

0214Ch–0216Fh Reserved

02170h–02177h GFX_FLSH_CNTL Graphics Flush Control R/W

02178h–0217Bh PR_CTR_CTL Render Watchdog Counter Control

R/W

0217Ch–0217Fh PR_CTR_THRSH Render Watchdog Counter Threshold

R/W

02180h02183h CCID0 Current Context ID 0 (assoc w/ PRB0) R/W

02184h0218Fh Reserved

02190h02193h PR_CTR Render Watchdog Counter

RO

02194h0219Fh Reserved

021A0h021A3h -- Reserved --

021A4h021A7h -- Reserved --

021A8h-021CFh Reserved

021D0h-021D3h -- Reserved --

021D4h-021FFh Reserved

02200h02303h -- Reserved --

02204h–02207h -- Reserved --

02208h–0220Bh -- Reserved --

0220Ch–0220Fh -- Reserved --

02210h–02213h -- Reserved --

02214h0230Fh Reserved

02310h-02317h IA_VERTICES_COUNT Reported Vertices Counter R/W

02318h-0231Fh IA_PRIMITVES_COUNT Reported Vertex Fetch Output Primitives Counter R/W

02320h-02327h -- Reserved --

02328h-0232Fh GS_INVOCATION_COUNT Reported Geometry Shader Thread Invocation
Counter

R/W

02330h-02337h GS_PRIMITIVES_COUNT Reported Geometry Shader Output Primitives
Counter

R/W

02338h-0233Fh CL_INVOCATION_COUNT Reported Clipper Thread Invocation Counter R/W

02340h-02347h CL_PRIMITIVES_COUNT Reported Clipper Output Primitives Counter R/W

60 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Table 6-1. Memory-Mapped Registers

Address Offset Symbol Register Name Access

02348h-0234Fh PS_INVOCATION_COUNT Reported Fragments Shaded Invocation Counter R/W

02350h-02357h PS_DEPTH_COUNT Reported Fragments Passing Depth Test
Counter

R/W

02358–0235Fh TIMESTAMP Reported Timestamp Count R/W

02360–02367h -- Reserved --

02368h0236Fh Reserved

02370h02377h -- R/W

02378h0237Fh -- R/W

02380h02387h R/W

02388h0244Fh Reserved

02450h02453h -- Reserved --

02454h0246Fh Reserved

02470h02473h -- Reserved --

02474h024FFh Reserved

FENCE & Per-Process GTT Control (03000h031FFh)

03000h-03007h FENCE[0] Graphics Memory Fence Table Register [0] R/W

… … …

0307Ch-0307Fh FENCE[15] Graphics Memory Fence Table Register [15] R/W

BCS Instruction and Interrupt Control Registers (04000h043FFh)

04000h04023h Reserved

04024h04027h -- Reserved --

04028h0402Fh Reserved

04030h–04033h BCS_RB_TAIL Ring Buffer Tail Register R/W

04034h–04037h BCS_RB_HEAD Ring Buffer Head Register R/W

04038h–0403Bh BCS_RB_START Ring Buffer Start Register R/W

0403Ch–0403Fh BCS_RB_CTL Ring Buffer Control Register R/W

04040h–04063h Reserved

04064h–04067h -- Reserved --

04068h–0406Bh Reserved

0406Ch–04073h Reserved

04074h–04077h Reserved

04078h–0407Bh Reserved

0407Ch–0407F — Reserved —

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 61

Table 6-1. Memory-Mapped Registers

Address Offset Symbol Register Name Access

04080h–04083h BCS_HWS_PGA Hardware Status Page Address R/W

04084h–04079 — Reserved —

04094h–04097h BCS_NOPID NOP Identification Register RO

04098h–0409Bh Reserved

0409Ch–0409Fh BCS_MI_MODE Mode Register for Software Interface R/W

040A0h–040BFh Reserved

040C0h–040C3h BCS_INSTPM Instruction Parser Mode Register R/W

040C4h–04133h Reserved

04134h–04137h BCS_UHPTR Pending Head Pointer Register R/W

04138h–0413Fh Reserved

04140h–04143h BCS_BB_STR Batch Buffer Start Register RO

04144h–0418Fh Reserved

04190h04193h BCS_RCCID Current Context ID RO

04194h04197h BCS_RNCID Next Context ID R/W

04198h–041CFh Reserved

041D0h-041D3h Reserved

041D4h–0438Fh Reserved

04390h–04393h Reserved

04394h–04397h Reserved

04398h–0439Fh Reserved

043A0h–043FFh Reserved

Reserved Registers (04400h044FFh)

MFC Status Registers (012400h012444h)

For [DevSNB+] only; Otherwise, this Range is Reserved.

 Reserved

12400h AVD Error flags AVD Internal Error flags RW

12404h AVD Error counter AVD Error Counter RW

12408h MFC_BITSTREAM_BYTE
COUNT_SLICE

Bitstream Output Byte Count Register per Slice RO

1240Ch MFC_BITSTREAM_SE_BI
TCOUNT_SLICE

Bitstream Output Bit Count for the last Syntax
Element Register

RO

12410h MFC_AVC_CABAC_INSE
RTION_COUNT

Bitstream Output CABAC Insertion Count Register RO

62 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Table 6-1. Memory-Mapped Registers

Address Offset Symbol Register Name Access

12414h MFC_AVC_MINSIZE_PAD
DING_COUNT

Bitstream Output Minimal Size Padding Count
Register

RO

12418h MFC_IMAGE_STATUS_M
ASK

Image Coding Status Mask Register RO

1241Ch MFC_IMAGE_STATUS_C
ONTROL

Image Coding Status Control Register RO

12420h MFC_BITSTREAM_BYTE
COUNT_FRAME

Total Bitstream Output Byte Count register per
Frame

RO

12424h MFC_BITSTREAM_SE_BI
TCOUNT_FRAME

Bitstream Output total Byte Count for syntax
eements (total byes of MB data from SEC per
frame)

RO

12428h MFC_AVC_CABAC_BIN_
COUNT_FRAME

Bitstream Output total bin count per frame RO

1242Ch Reserved

12430h Reserved

12434h Reserved

12438h Reserved

1243Ch Reserved

12440h Reserved

12444h Reserved

 Reserved

VSC Registers (05000h – 05FFFh)

05000h-05003h FMD Variance 0 for Stream 0

05004h-05007h FMD Variance 1 for Stream 0

05008h-0500Bh FMD Variance 2 for Stream 0

0500Ch-0500Fh FMD Variance 3 for Stream 0

05010h-05013h FMD Variance 4 for Stream 0

05014h-05017h FMD Variance 5 for Stream 0

05018h-0501Bh FMD Variance 6 for Stream 0

0501Ch-0501Fh FMD Variance 7 for Stream 0

05020h-05023h FMD Variance 8 for Stream 0

05024h-05027h FMD Variance 9 for Stream 0

05028h-0502Bh FMD Variance 10 for Stream 0

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 63

Table 6-1. Memory-Mapped Registers

Address Offset Symbol Register Name Access

0502Ch-0502Fh GNE Sum for Stream0

05030h-05033h Number of Valid GNE Blocks Strm0

05034h-05037h FMD Variance 0 for Stream 1

05038h-0503Bh FMD Variance 1 for Stream 1

0503Ch-0503Fh FMD Variance 2 for Stream 1

05040h-05043h FMD Variance 3 for Stream 1

05044h-05047h FMD Variance 4 for Stream 1

05048h-0504Bh FMD Variance 5 for Stream 1

0504Ch-0504Fh FMD Variance 6 for Stream 1

05050h-05053h FMD Variance 7 for Stream 1

05054h-05057h FMD Variance 8 for Stream 1

05058h-0505Bh FMD Variance 9 for Stream 1

0505Ch-0505Fh FMD Variance 10 for Stream 1

05060h-05063h GNE Sum for Stream 1

05064h-05067h Number of Valid GNE Blocks Strm1

05068h-0506Fh Reserved

VSC Registers

For [DevSNB+] only, otherwise reserved

05070h-05073h Ymax (bits 25:16]), Ymin (bits[9:0]), other bits zero

05074h-05077h Number of skin pixels (bits [20:0], other bits zero)

05078h-0507Fh Reserved

05080h-05081h ACE Histogram, bin 0

05082h-05083h ACE Histogram, bin 1

… ACE Histogram, bins 2 - 126

0517Eh-0517Fh ACE Histogram, bin 127

Clock Control and Power Management Registers (06000h06FFFh)

06000h06003h VGA0 VGA 0 Divisor R/W

06004h06007h VGA1 VGA 1 Divisor R/W

06008h0600Fh Reserved

06010h06013h VGA_PD VGA Post Divisor Select R/W

06014h06017h DPLLA_CTRL Display PLL A Control R/W

06018h0601Bh DPLLB_CTRL Display PLL B Control R/W

0601Ch0601Fh -- Reserved --

64 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Table 6-1. Memory-Mapped Registers

Address Offset Symbol Register Name Access

06020h06023h -- Reserved --

06024h0603Fh Reserved

06040h06043h FPA0 DPLL A Divisor 0 R/W

06044h06047h FPA1 DPLL A Divisor 1 R/W

06048h0604Bh FPB0 DPLL B Divisor 0 R/W

0604Ch0604Fh FPB1 DPLL B Divisor 1 R/W

06050h0606Bh Reserved

0606Ch–0606Fh -- Reserved --

06070h06103h Reserved

06104h06107h D_STATE D State Function Control R/W

06108h061FFh Reserved

06200h06203h DSPCLK_GATE_D Clock Gating Disable for Display Register R/W

06204h06207h RENCLK_GATE_D1 Clock Gating Disable for Render Register I R/W

06208h0620Bh RENDCLK_GATE_D2 Clock Gating Disable for Render Register II

0620Ch0620Fh VDECCLK_GATE_D Clock Gating Disable for Video Decode Register
([DevCTG] Only)

R/W

06210h–06213h -- R/W

06214h–06125h -- Reserved --

06216h06FFFh Reserved

Reserved Registers (07000h073FFh)

Reserved Registers (07400h088FFh)

Reserved Registers (08900h09FFFh)

Display Palette (0A000h0AFFFh)

0A000h0A3FFh DPALETTE_A Display Pipe A Palette R/W

0A400h0A7FFh Reserved

0A800h0ABFFh DPALETTE_B Display Pipe B Palette R/W

0AC00h0AFFFh Reserved

GFX MMIO – MCHBAR Aperture (10000h-13FFFh)

10000h-13FFFh MCHBAR Aperture R/W

Reserved (14000h2FFFFh)

14000h-2FFFFh Reserved

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 65

Table 6-1. Memory-Mapped Registers

Address Offset Symbol Register Name Access

Overlay Registers (30000h03FFFFh)
(For additional address offsets in the double-buffering scheme, see Overlay Chapter)

30000h30003h OVADD Overlay Register Update Address R/W

30004h30007h -- Reserved --

30008h3000Bh DOVSTA Display/Overlay Status RO

3000Ch3000Fh DOVSTAEX Display/Overlay Extended Status RO

30010h30013h OVR_GAMMA5 Overlay Gamma Correction [5] R/W

30014h30017h OVR_GAMMA4 Overlay Gamma Correction [4] R/W

30018h3001Bh OVR_GAMMA3 Overlay Gamma Correction [3] R/W

3001Ch3001Fh OVR_GAMMA2 Overlay Gamma Correction [2] R/W

30020h30023h OVR_GAMMA1 Overlay Gamma Correction [1] R/W

30024h30027h OVR_GAMMA0 Overlay Gamma Correction [0] R/W

30028h30057h — Reserved —

30058h3005Bh SYNCPH0 Overlay Flip Sync Lock Phase 0 RO

3005Ch3005Fh SYNCPH1 Overlay Flip Sync Lock Phase 1 RO

30060h30063h SYNCPH2 Overlay Flip Sync Lock Phase 2 RO

30064h30067h SYNCPH3 Overlay Flip Sync Lock Phase 3 RO

30068h300FFh — Reserved —

30100h–30103 OBUF_0Y Overlay Buffer 0 Y Pointer RO

30104h30107h OBUF_1Y Overlay Buffer 1 Y Pointer RO

30108h3010Bh OBUF_0U Overlay Buffer 0 U Pointer RO

3010Ch3010Fh OBUF_0V Overlay Buffer 0 V Pointer RO

30110h30113h OBUF_1U Overlay Buffer 1 U Pointer RO

30114h30117h OBUF_1V Overlay Buffer 1 V Pointer RO

30118h3011Bh OSTRIDE Overlay Stride RO

3011Ch3011Fh YRGB_VPH Y/RGB Vertical Phase RO

30120h30123h UV_VPH UV Vertical Phase RO

30124h30127h HORZ_PH Horizontal Phase RO

30128h3012Bh INIT_PHS Initial Phase RO

3012Ch3012Fh DWINPOS Destination Window Position RO

30130h30133h DWINSZ Destination Window Size RO

30134h30137h SWIDTH Source Width RO

30138h3013Bh SWIDTHSW Source Width in Swords RO

3013Ch3013Fh SHEIGHT Source Height RO

66 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Table 6-1. Memory-Mapped Registers

Address Offset Symbol Register Name Access

30140h30143h YRGBSCALE Y/RGB Scale Factor RO

30144h30147h UVSCALE U V Scale Factor RO

30148h3014Bh OVCLRC0 Overlay Color Correction 0 RO

3014Ch3014Fh OVCLRC1 Overlay Color Correction 1 RO

30150h30153h DCLRKV Destination Color Key Value RO

30154h30157h DCLRKM Destination Color Key Mask RO

30158h3015Bh SCHRKVH Source Chroma Key Value High RO

3015Ch3015Fh SCHRKVL Source Chroma Key Value Low RO

30160h30163h SCHRKEN Source Chroma Key Enable RO

30164h30167h OCONFIG Overlay Configuration RO

30168h3016Bh OCMD Overlay Command RO

3016Ch3016Fh Reserved

30170h30173h OSTART_0Y Overlay Surface Y 0 Base Address Register RO

30174h30177h OSTART _1Y Overlay Surface Y 1 Base Address Register RO

30178h3017Bh OSTART _0U Overlay Surface U 0 Base Address Register RO

3017Ch3017Fh OSTART _0V Overlay Surface V 0 Base Address Register RO

30180h30183h OSTART _1U Overlay Surface U 1 Base Address Register RO

30184h30187h OSTART _1V Overlay Surface V 1 Base Address Register RO

30188h3018Bh OTILEOFF_0Y Overlay Surface Y 0 Base Address Register RO

3018Ch3018Fh OTILEOFF _1Y Overlay Surface Y 1 Base Address Register RO

30190h30193h OTILEOFF _0U Overlay Surface U 0 Bae Address Register RO

30194h30197h OTILEOFF _0V Overlay Surface V 0 Base Address Register RO

30198h3019Bh OTILEOFF _1U Overlay Surface U 1 Base Address Register RO

3019Ch3019Fh OTILEOFF _1V Overlay Surface V 1 Base Address Register RO

301A0h301A3h Reserved

301A4h301A7h UVSCALEV UV Vertical Downscale Integer Register RO

301A8h302FFh Reserved

30300h303FFh Y_VCOEFS Overlay Y Vertical Filter Coefficients RO

30368h303FFh Reserved

30400h305FFh Y_HCOEFS Overlay Y Horizontal Filter Coefficient RO

304ACh305FFh Reserved

30600h306FFh UV_VCOEFS Overlay UV Vertical Filter Coefficients RO

30668h306FFh Reserved

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 67

Table 6-1. Memory-Mapped Registers

Address Offset Symbol Register Name Access

30700h307FFh UV_HCOEFS Overlay UV Horizontal Filter Coefficients RO

30768h3FFFFh Reserved

Reserved (40000h5FFFFh)

40000h–5FFFFh Reserved

Display Engine Pipeline Registers (60000h–6FFFFh)

Display Pipeline A

60000h–60003h HTOTAL_A Pipe A Horizontal Total R/W

60004h–60007h HBLANK_A Pipe A Horizontal Blank R/W

60008h–6000Bh HSYNC_A Pipe A Horizontal Sync R/W

6000Ch–6000Fh VTOTAL_A Pipe A Vertical Total R/W

60010h–60013h VBLANK_A Pipe A Vertical Blank R/W

60014h–60017h VSYNC_A Pipe A Vertical Sync R/W

60018h–6001Bh Reserved R/W

6001Ch–6001Fh PIPEASRC Pipe A Source Image Size R/W

60020h–60023h -- Reserved --

60024h–60027h Reserved

60028h–6002Bh VSYNCSHIFT_A Vertical Sync Shift Register A

6002Ch–6004Fh Reserved

60050h–60053h CRCCTRLREDA Pipe A CRC Red Control R/W

60054h–60057h CRCCTRLGREENA Pipe A CRC Green Control R/W

60058h–6005Bh CRCCTRLBLUEA Pipe A CRC Blue Control R/W

6005Ch–6005Fh CRCCTRLRESA Pipe A CRC Residual Control Register R/W

60060h–60063h CRCRESREDA Pipe A CRC Red Result RO

60064h–60067h CRCRESGREENA Pipe A CRC Green Result RO

60068h–6006Bh CRCRESBLUEA Pipe A CRC Blue Result RO

6006Ch-6006Fh CRCRESRESA Pipe A CRC Residual Result RO

60070h–60FFFh Reserved

Display Pipeline B

61000h–61003h HTOTAL_B Pipe B Horizontal Total R/W

61004h–61007h HBLANK_B Pipe B Horizontal Blank R/W

61008h–6100Bh HSYNC_B Pipe B Horizontal Sync R/W

6100Ch–6100Fh VTOTAL_B Pipe B Vertical Total R/W

68 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Table 6-1. Memory-Mapped Registers

Address Offset Symbol Register Name Access

61010h–61013h VBLANK_B Pipe B Vertical Blank R/W

61014h–61017h VSYNC_B Pipe B Vertical Sync R/W

61018h–6101Bh Reserved

6101Ch–6101Fh PIPEBSRC Pipe B Source Image Size R/W

61020h–61023h -- Reserved --

61024h–61027h Reserved

61028h–6102Bh VSYNCSHIFT_B Vertical Sync Shift Register B

6102Ch–6104Fh Reserved

61050h–61053h CRCCTRLREDB Pipe B CRC Red Control R/W

61054h–61057h CRCCTRLGREENB Pipe B CRC Green Control R/W

61058h–6105Bh CRCCTRLBLUEB Pipe B CRC Blue Control R/W

6105Ch–6105Fh CRCCTRLRESB Pipe B CRC Residual Control Register R/W

61060h–61063h CRCRESREDB Pipe B CRC Red Result RO

61064h–61067h CRCRESGREENB Pipe B CRC Green Result RO

61068h–6106Bh CRCRESBLUEB Pipe B CRC Blue Result RO

6106Ch–6106Fh CRCRESRESB Pipe B CRC Residual Result RO

61070h–610FFh Reserved

61100h–61103h ADPA Analog Display Port A Control R/W

61104h–6110Fh Reserved

61110h–61113h PORT_HOTPLU_EN Port HotPlug Enable R/W

61114h–61117h PORT_HOTPLU_STAT Port HotPlug Status R/W

61118h–61127h Reserved

61128h–6112Bh -- Reserved --

6112Ch–6112Fh Reserved

61130h–61133h -- Reserved --

61134h–61137h -- Reserved --

61138h–6113Bh -- Reserved --

6113Ch–6113Fh Reserved

61140h-61143h -- Reserved --

61144h–61147h -- Reserved --

61148h–6114Bh -- Reserved --

6114Ch–6114Fh -- Reserved --

61150h-61153h -- Reserved --

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 69

Table 6-1. Memory-Mapped Registers

Address Offset Symbol Register Name Access

61154h-6115Fh Reserved

61154h–61157h -- Reserved --

61158h–6115Bh -- Reserved --

6115Ch–6115Fh -- Reserved --

61160h-61163h -- Reserved --

61164h–61167h -- Reserved --

61168h–6116Bh -- Reserved --

6116Ch–6116Fh Reserved

61170h–61173h -- Reserved --

61174h–61177h Reserved

61178h–6117Bh -- Reserved --

6117Ch–61177h Reserved

Reserved Registers (61400h–61FFFh)

Reserved Registers (62000h–62FFFh)

Reserved Registers (68000h–6FFFFh)

Display and Cursor Control Registers (70000h–77FFFh)

Display Pipeline A Control

70000h–70003h PIPEA_DSL Pipe A Display Scan Line Count RO

70004h–70007h PIPEA_SLC Pipe A Display Scan Line Count Range
Compare

RO

70008h–7000Bh PIPEACONF Pipe A Configuration R/W

7000Ch–7000Fh Reserved

70010h–70013h PIPEAGCMAXRED Pipe A Gamma Correction Max Red R/W

70014h–70017h PIPEAGCMAXGRN Pipe A Gamma Correction Max Green R/W

70018h–7001Bh PIPEAGCMAXBLU Pipe A Gamma Correction Max Blue R/W

7001Ch–70023h Reserved

70024h–70027h PIPEASTAT Pipe A Display Status Select R/W

70028h–7002Fh Reserved

70030h–70033h DSPARB Display Arbitration Control R/W

70034h–70037h FW1 Display FIFO Watermark Control 1 R/W

70038h–7003Bh FW2 Display FIFO Watermark Control 2

7003Ch–7003Fh FW3 Display FIFO Watermark Control 3 R/W

70040h-70043h PIPEAFRAMEH Pipe A Frame Count High RO

70 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Table 6-1. Memory-Mapped Registers

Address Offset Symbol Register Name Access

70044h-70047h PIPEAFRAMEPIX Pipe A Frame Count Low and Pixel Count RO

70048h-7007Fh Reserved

Cursor A & B Registers

70080h–70083h CURACNTR Cursor A Control R/W

70084h–70087h CURABASE Cursor A Base Address R/W

70088h–7008Bh CURAPOS Cursor A Position R/W

7008Ch–7008Fh Reserved

70090h–7009Fh CURAPALET[0:3] Cursor A Palette 0:3 R/W

700A0h–700BFh Reserved

700C0h–700C3h CURBCNTR Cursor B Control R/W

700C4h–700C7h CURBBASE Cursor B Base Address R/W

700C8h–700CBh CURBPOS Cursor B Position R/W

700CCh–700CFh Reserved

700D0h–700DFh CURBPALET[0:3] Cursor B Palette 0:3 R/W

700E0h–7017Fh Reserved

Display A Control

70180h–70183h DSPACNTR Display A Plane Control R/W

70184h–70187h DSPALINOFF Display A Linear Offset Register R/W

70188h–7018Bh DSPASTRIDE Display A Stride R/W

7018Ch-7018Fh Reserved

70190h-70193h DSPARESV (RSVD) Display A Reserved R/W

70194h–70197h DSPAKEYVAL Sprite Color Key Value R/W

70198h–7019Bh DSPAKEYMSK Sprite Color Key Mask Value R/W

7019Ch–7019Fh DSPASURF Display A Surface Base Address Register R/W

701A0h-701A3h Reserved

701A4h–701A7h DSPATILEOFF Display A Tiled Offset Register R/W

701A8h-701FFh Reserved

70200h-70203h DSPAFLPQSTAT Flip Queue Status Register R/W

70204h–703FFh Reserved

VBIOS Software Flags 0-6

70400h-70403h -- Reserved --

70404h–7040Fh Reserved

70410h–7044Fh SWF[00:0F] Software Flag 00:0F R/W

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 71

Table 6-1. Memory-Mapped Registers

Address Offset Symbol Register Name Access

70450h–70FFFh Reserved

Display Pipeline B Control

71000h–71003h PIPEB_DSL Pipe B Display Scan Line Count RO

71004h–71007h PIPEB_SLC Pipe B Display Scan Line Range Compare RO

71008h–7100Bh PIPEBCONF Pipe B Configuration R/W

7100Ch–7100Fh Reserved

71010h–71013h PIPEBGCMAXRED Pipe B Gamma Correction Max Red R/W

71014h–71017h PIPEBGCMAXGRN Pipe B Gamma Correction Max Green R/W

71018h–7101Bh PIPEBGCMAXBLU Pipe B Gamma Correction Max Blue R/W

71024h–71027h PIPEBSTAT Pipe B Status R/W

71028h–7103Fh Reserved

71040h-71043h PIPEBFRAMEH Pipe B Frame Count High RO

71044h-71047h PIPEBFRAMEPIX Pipe B Frame Count Low and Pixel Count RO

71048h-7117Fh Reserved

Display B / Sprite Control

71180h–71183h DSPBCNTR Display B / Sprite Control R/W

71184h–71187h DSPBLINOFFSET Display B / Sprite Linear Offset R/W

71188h–7118Bh DSPBSTRIDE Display B / Sprite Stride R/W

7118Ch–71193h Reserved

71194h–71197h DSPBKEYVAL Display B / Sprite Color Key Value R/W

71198h–7119Bh DSPBKEYMSK Display B / Sprite Color Key Mask R/W

7119Ch–7119Fh DSPBSURF Display B Surface Base Address Register R/W

711A0h-711A3h Reserved

711A4h–711A7h DSPBTILEOFF Display B Tiled Offset Register R/W

711A8h-711FFh Reserved

 71200h-71203h DSPBFLPQSTAT Flip Queue Status Register R/W

71204h–713FFh Reserved

Video BIOS Registers

71400h–71403h VGACNTRL VGA Display Plane Control R/W

71404h–7140Fh Reserved

VBIOS Software Flags 10-1F

71410h–7144Fh SWF[10-1F] Software Flag 10 – 1F R/W

72 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Table 6-1. Memory-Mapped Registers

Address Offset Symbol Register Name Access

71450h–71FFFh Reserved

VBIOS Software Flags 30-32

72400h–72413h Reserved

72414h–72417h SWF[30] Software Flag 30 R/W

72418h–7241Bh SWF[31] Software Flag 31 R/W

7241Ch–7241Fh SWF[32] Software Flag 32 R/W

72420h–72FFFh Reserved

Performance Counters (73000h-73FFFh)

73000h–73003h PCSRC Performance Counter Source Register R/W

73004h–73007h PCSTAT Performance Counter Status Register RO

73008h–7317Fh — Reserved —

Reserved (74000h-7FFFFh)

74000h–7FFFFh — Reserved —

6.2 VGA and Extended VGA Register Map
For I/O locations, the value in the address column represents the register I/O address. For memory
mapped locations, this address is an offset from the base address programmed in the MMADR register.

6.2.1 VGA and Extended VGA I/O and Memory Register Map
Table 6-2. I/O and Memory Register Map

Address Register Name (Read) Register Name (Write)

2D Registers

3B0h–3B3h Reserved Reserved

3B4h VGA CRTC Index (CRX)
(monochrome)

VGA CRTC Index (CRX) (monochrome)

3B5h VGA CRTC Data (monochrome) VGA CRTC Data (monochrome)

3B6h–3B9h Reserved Reserved

3Bah VGA Status Register (ST01) VGA Feature Control Register (FCR)

3BBh–3BFh Reserved Reserved

3C0h VGA Attribute Controller Index (ARX) VGA Attribute Controller Index (ARX)/
VGA Attribute Controller Data
(alternating writes select ARX or write
ARxx Data)

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 73

Address Register Name (Read) Register Name (Write)

3C1h VGA Attribute Controller Data
(read ARxx data)

Reserved

3C2h VGA Feature Read Register (ST00) VGA Miscellaneous Output Register
(MSR)

3C3h Reserved Reserved

3C4h VGA Sequencer Index (SRX) VGA Sequencer Index (SRX)

3C5h VGA Sequencer Data (SRxx) VGA Sequencer Data (SRxx)

3C6h VGA Color Palette Mask (DACMASK) VGA Color Palette Mask (DACMASK)

3C7h VGA Color Palette State
(DACSTATE)

VGA Color Palette Read Mode Index
(DACRX)

3C8h VGA Color Palette Write Mode Index
(DACWX)

VGA Color Palette Write Mode Index
(DACWX)

3C9h VGA Color Palette Data (DACDATA) VGA Color Palette Data (DACDATA)

3CAh VGA Feature Control Register (FCR) Reserved

3CBh Reserved Reserved

3CCh VGA Miscellaneous Output Register
(MSR)

Reserved

3CDh Reserved Reserved

3CEh VGA Graphics Controller Index (GRX) VGA Graphics Controller Index (GRX)

3CFh VGA Graphics Controller Data (GRxx) VGA Graphics Controller Data (GRxx)

3D0h–3D1h Reserved Reserved

2D Registers

3D4h VGA CRTC Index (CRX) VGA CRTC Index (CRX)

3D5h VGA CRTC Data (CRxx) VGA CRTC Data (CRxx)

System Configuration Registers

3D6h GFX/2D Configurations Extensions
Index (XRX)

GFX/2D Configurations Extensions
Index (XRX)

3D7h GFX/2D Configurations Extensions
Data (XRxx)

GFX/2D Configurations Extensions
Data (XRxx)

2D Registers

3D8h–3D9h Reserved Reserved

3DAh VGA Status Register (ST01) VGA Feature Control Register (FCR)

3DBh–3DFh Reserved Reserved

74 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

6.3 Indirect VGA and Extended VGA Register Indices
The registers listed in this section are indirectly accessed by programming an index value into the
appropriate SRX, GRX, ARX, or CRX register. The index and data register address locations are listed in
the previous section.

Table 6-3. 2D Sequence Registers (3C4h / 3C5h)

Index Sym Description

00h SR00 Sequencer Reset

01h SR01 Clocking Mode

02h SR02 Plane / Map Mask

03h SR03 Character Font

04h SR04 Memory Mode

07h SR07 Horizontal Character Counter Reset

Table 6-4. 2D Graphics Controller Registers (3CEh / 3CFh)

Index Sym Register Name

00h GR00 Set / Reset

01h GR01 Enable Set / Reset

02h GR02 Color Compare

03h GR03 Data Rotate

04h GR04 Read Plane Select

05h GR05 Graphics Mode

06h GR06 Miscellaneous

07h GR07 Color Don’t Care

08h GR08 Bit Mask

10h GR10 Address Mapping

11h GR11 Page Selector

18h GR18 Software Flags

Table 6-5. 2D Attribute Controller Registers (3C0h / 3C1h)

Index Sym Register Name

00h AR00 Palette Register 0

01h AR01 Palette Register 1

02h AR02 Palette Register 2

03h AR03 Palette Register 3

04h AR04 Palette Register 4

05h AR05 Palette Register 5

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 75

Index Sym Register Name

06h AR06 Palette Register 6

07h AR07 Palette Register 7

08h AR08 Palette Register 8

09h AR09 Palette Register 9

0Ah AR0A Palette Register A

0Bh AR0B Palette Register B

0Ch AR0C Palette Register C

0Dh AR0D Palette Register D

0Eh AR0E Palette Register E

0Fh AR0F Palette Register F

10h AR10 Mode Control

11h AR11 Reserved

12h AR12 Memory Plane Enable

13h AR13 Horizontal Pixel Panning

14h AR14 Color Select

Table 6-6. 2D CRT Controller Registers (3B4h / 3D4h / 3B5h / 3D5h)

Index Sym Register Name

00h CR00 Horizontal Total

01h CR01 Horizontal Display Enable End

02h CR02 Horizontal Blanking Start

03h CR03 Horizontal Blanking End

04h CR04 Horizontal Sync Start

05h CR05 Horizontal Sync End

06h CR06 Vertical Total

07h CR07 Overflow

08h CR08 Preset Row Scan

09h CR09 Maximum Scan Line

0Ah CR0A Text Cursor Start

0Bh CR0B Text Cursor End

0Ch CR0C Start Address High

0Dh CR0D Start Address Low

0Eh CR0E Text Cursor Location High

0Fh CR0F Text Cursor Location Low

10h CR10 Vertical Sync Start

11h CR11 Vertical Sync End

76 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Index Sym Register Name

12h CR12 Vertical Display Enable End

13h CR13 Offset

14h CR14 Underline Location

15h CR15 Vertical Blanking Start

16h CR16 Vertical Blanking End

17h CR17 CRT Mode

18h CR18 Line Compare

22h CR22 Memory Read Latch Data

24h CR24 Reserved

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 77

7. Memory Data Formats
This chapter describes the attributes associated with the memory-resident data objects operated on by
the graphics pipeline. This includes object types, pixel formats, memory layouts, and rules/restrictions
placed on the dimensions, physical memory location, pitch, alignment, etc. with respect to the specific
operations performed on the objects.

7.1 Memory Object Overview
Any memory data accessed by the device is considered part of a memory object of some memory object
type.

7.1.1 Memory Object Types
The following table lists the various memory objects types and an indication of their role in the system.

Memory Object Type Role

Graphics Translation Table
(GTT)

Contains PTEs used to translate “graphics addresses” into
physical memory addresses.

Hardware Status Page Cached page of sysmem used to provide fast driver
synchronization.

Logical Context Buffer Memory areas used to store (save/restore) images of hardware
rendering contexts. Logical contexts are referenced via a pointer
to the corresponding Logical Context Buffer.

Ring Buffers Buffers used to transfer (DMA) instruction data to the device.
Primary means of controlling rendering operations.

Batch Buffers Buffers of instructions invoked indirectly from Ring Buffers.

State Descriptors Contains state information in a prescribed layout format to be
read by hardware. Many different state descriptor formats are
supported.

Vertex Buffers Buffers of 3D vertex data indirectly referenced through “indexed”
3D primitive instructions.

VGA Buffer

(Must be mapped UC on PCI)

Graphics memory buffer used to drive the display output while in
legacy VGA mode.

Display Surface Memory buffer used to display images on display devices.

Overlay Surface Memory buffer used to display overlaid images on display
devices.

Overlay Register, Filter
Coefficients

Buffer

Memory area used to provide double-buffer for Overlay register
and filter coefficient loading.

Cursor Surface Hardware cursor pattern in memory.

78 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Memory Object Type Role

2D Render Source Surface used as primary input to 2D rendering operations.

2D Render R-M-W Destination 2D rendering output surface that is read in order to be combined
in the rendering function. Destination surfaces that accessed via
this Read-Modify-Write mode have somewhat different
restrictions than Write-Only Destination surfaces.

2D Render Write-Only
Destination

2D rendering output surface that is written but not read by the 2D
rendering function. Destination surfaces that accessed via a
Write-Only mode have somewhat different restrictions than
Read-Modify-Write Destination surfaces.

2D Monochrome Source 1 bpp surfaces used as inputs to 2D rendering after being
converted to foreground/background colors.

2D Color Pattern 8x8 pixel array used to supply the “pattern” input to 2D rendering
functions.

DIB “Device Independent Bitmap” surface containing “logical” pixel
values that are converted (via LUTs) to physical colors.

3D Color Buffer Surface receiving color output of 3D rendering operations. May
also be accessed via R-M-W (aka blending). Also referred to as
a Render Target.

3D Depth Buffer Surface used to hold per-pixel depth and stencil values used in
3D rendering operations. Accessed via RMW.

3D Texture Map Color surface (or collection of surfaces) which provide texture
data in 3D rendering operations.

“Non-3D” Texture

Surface read by Texture Samplers, though not in normal 3D
rendering operations (e.g., in video color conversion functions).

Motion Comp Surfaces These are the Motion Comp reference pictures.

Motion Comp Correction Data
Buffer

This is Motion Comp intra-coded or inter-coded correction data.

7.2 Channel Formats

7.2.1 Unsigned Normalized (UNORM)
An unsigned normalized value with n bits is interpreted as a value between 0.0 and 1.0. The minimum
value (all 0’s) is interpreted as 0.0, the maximum value (all 1’s) is interpreted as 1.0. Values inbetween
are equally spaced. For example, a 2-bit UNORM value would have the four values 0, 1/3, 2/3, and 1.

If the incoming value is interpreted as an n-bit integer, the interpreted value can be calculated by dividing
the integer by 2n-1.

7.2.2 Gamma Conversion (SRGB)
Gamma conversion is only supported on UNORM formats. If this flag is included in the surface format
name, it indicates that a reverse gamma conversion is to be done after the source surface is read, and a
forward gamma conversion is to be done before the destination surface is written.

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 79

7.2.3 Signed Normalized (SNORM)
A signed normalized value with n bits is interpreted as a value between -1.0 and +1.0. If the incoming
value is interpreted as a 2’s-complement n-bit signed integer, the interpreted value can be calculated by
dividing the integer by 2n-1-1. Note that the most negative value of -2n-1 will result in a value slightly
smaller than -1.0. This value is clamped to -1.0, thus there are two representations of -1.0 in SNORM
format.

7.2.4 Unsigned Integer (UINT/USCALED)
The UINT and USCALED formats interpret the source as an unsigned integer value with n bits with a
range
of 0 to 2n-1.

The UINT formats copy the source value to the destination (zero-extending if required), keeping the value
as an integer.

The USCALED formats convert the integer into the corresponding floating point value (e.g., 0x03 --> 3.0f).
For 32-bit sources, the value is rounded to nearest even.

7.2.5 Signed Integer (SINT/SSCALED)
A signed integer value with n bits is interpreted as a 2’s complement integer with a range of -2n-1 to +2n-1-
1.

The SINT formats copy the source value to the destination (sign-extending if required), keeping the value
as an integer.

The SSCALED formats convert the integer into the corresponding floating point value (e.g., 0xFFFD --> -
3.0f). For 32-bit sources, the value is rounded to nearest even.

7.2.6 Floating Point (FLOAT)
Refer to IEEE Standard 754 for Binary Floating-Point Arithmetic. The IA-32 Intel (R) Architecture
Software Developer’s Manual also describes floating point data types (though GEN deviates slightly from
those behaviors).

7.2.6.1 32-bit Floating Point

Bit Description

31 Sign (s)

30:23 Exponent (e) Biased Exponent

22:0 Fraction (f) Does not include “hidden one”

The value of this data type is derived as:

 if e == 255 and f != 0, then v is NaN regardless of s

80 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

 if e == 255 and f == 0, then v = (-1)s*infinity (signed infinity)

 if 0 < e < 255, then v = (-1)s*2(e-127)*(1.f)

 if e == 0 and f != 0, then v = (-1)s*2(e-126)*(0.f) (denormalized numbers)

 if e == 0 and f == 0, then v = (-1)s*0 (signed zero)

7.2.6.2 64-bit Floating Point

Bit Description

63 Sign (s)

62:52 Exponent (e) Biased Exponent

51:0 Fraction (f) Does not include “hidden one”

The value of this data type is derived as:

 if e == b’11..11’ and f != 0, then v is NaN regardless of s

 if e == b’11..11’ and f == 0, then v = (-1)s*infinity (signed infinity)

 if 0 < e < b’11..11’, then v = (-1)s*2(e-1023)*(1.f)

 if e == 0 and f != 0, then v = (-1)s*2(e-1022)*(0.f) (denormalized numbers)

 if e == 0 and f == 0, then v = (-1)s*0 (signed zero)

7.2.6.3 16-bit Floating Point

Bit Description

15 Sign (s)

14:10 Exponent (e) Biased Exponent

9:0 Fraction (f) Does not include “hidden one”

The value of this data type is derived as:

 if e == 31 and f != 0, then v is NaN regardless of s

 if e == 31 and f == 0, then v = (-1)s*infinity (signed infinity)

 if 0 < e < 31, then v = (-1)s*2(e-15)*(1.f)

 if e == 0 and f != 0, then v = (-1)s*2(e-14)*(0.f) (denormalized numbers)

 if e == 0 and f == 0, then v = (-1)s*0 (signed zero)

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 81

The following table represents relationship between 32 bit and 16 bit floating point ranges:

flt32
exponent

Unbiased
exponent flt16

exponent flt16 fraction

 255

 254 127

 ...

 127+16 16 Infinity 31 1.1111111111

 127+15 15 Max exponent 30 1.xxxxxxxxxx

 127 0 15 1.xxxxxxxxxx

 113 -14 Min exponent 1 1.xxxxxxxxxx

 112 Denormalized 0 0.1xxxxxxxxx

 111 Denormalized 0 0.01xxxxxxxx

 110 Denormalized 0 0.001xxxxxxx

 109 Denormalized 0 0.0001xxxxxx

 108 Denormalized 0 0.00001xxxxx

 107 Denormalized 0 0.000001xxxx

 106 Denormalized 0 0.0000001xxx

 115 Denormalized 0 0.00000001xx

 114 Denormalized 0 0.000000001x

 113 Denormalized 0 0.0000000001

 112 Denormalized 0 0.0

 ...

 0 0 0.0

Conversion from the 32-bit floating point format to the 16-bit format should be done with round to nearest
even.

82 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

7.2.6.4 11-bit Floating Point

Bit Description

10:6 Exponent (e) Biased Exponent

5:0 Fraction (f) Does not include “hidden one”

The value of this data type is derived as:

 if e == 31 and f != 0 then v = NaN

 if e == 31 and f == 0 then v = +infinity

 if 0 < e < 31, then v = 2(e-15)*(1.f)

 if e == 0 and f != 0, then v = 2(e-14)*(0.f) (denormalized numbers)

 if e == 0 and f == 0, then v = 0 (zero)

7.2.6.5 10-bit Floating Point

Bit Description

9:5 Exponent (e) Biased Exponent

4:0 Fraction (f) Does not include “hidden one”

The value of this data type is derived as:

 if e == 31 and f != 0 then v = NaN

 if e == 31 and f == 0 then v = +infinity

 if 0 < e < 31, then v = 2(e-15)*(1.f)

 if e == 0 and f != 0, then v = 2(e-14)*(0.f) (denormalized numbers)

 if e == 0 and f == 0, then v = 0 (zero)

7.2.6.6 Shared Exponent

The R9G9B9E5_SHAREDEXP format contains three channels that share an exponent. The three
fractions assume an impled “0” rather than an implied “1” as in the other floating point formats. This
format does not support infinity and NaN values. There are no sign bits, only positive numbers and zero
can be represented. The value of each channel is determined as follows, where “f” is the fraction of the
corresponding channel, and “e” is the shared exponent.

v = (0.f)*2(e-15)

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 83

Bit Description

31:27 Exponent (e) Biased Exponent

26:18 Blue Fraction

17:9 Green Fraction

8:0 Red Fraction

7.3 Non-Video Surface Formats
This section describes the lowest-level organization of a surfaces containing discrete “pixel” oriented data
(e.g., discrete pixel (RGB,YUV) colors, subsampled video data, 3D depth/stencil buffer pixel formats,
bump map values etc. Many of these pixel formats are common to the various pixel-oriented memory
object types.

7.3.1 Surface Format Naming
Unless indicated otherwise, all pixels are stored in “little endian” byte order. I.e., pixel bits 7:0 are stored
in byte n, pixel bits 15:8 are stored in byte n+1, and so on. The format labels include color components
in little endian order (e.g., R8G8B8A8 format is physically stored as R, G, B, A).

The name of most of the surface formats specifies its format. Channels are listed in little endian order
(LSB channel on the left, MSB channel on the right), with the channel format specified following the
channels with that format. For example, R5G5_SNORM_B6_UNORM contains, from LSB to MSB, 5 bits
of red in SNORM format, 5 bits of green in SNORM format, and 6 bits of blue in UNORM format.

7.3.2 Intensity Formats
All surface formats containing “I” include an intensity value. When used as a source surface for the
sampling engine, the intensity value is replicated to all four channels (R,G,B,A) before being filtered.
Intensity surfaces are not supported as destinations.

7.3.3 Luminance Formats
All surface formats contaning “L” include a luminance value. When used as a source surface for the
sampling engine, the luminance value is replicated to the three color channels (R,G,B) before being
filtered. The alpha channel is provided either from another field or receives a default value. Luminance
surfaces are not supported as destinations.

84 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

7.3.4 R1_UNORM (same as R1_UINT) and MONO8
When used as a texel format, the R1_UNORM format contains 8 1-bit Intensity (I) values that are
replicated to all color channels. Note that T0 of byte 0 of a R1_UNORM-formatted texture corresponds
to Texel[0,0]. This is different from the format used for monochrome sources in the Blt engine.

7 6 5 4 3 2 1 0

T7 T6 T5 T4 T3 T2 T1 T0

Bit Description

T0 Texel 0

On texture reads, this (unsigned) 1-bit value is replicated to all color channels.

Format: U1

... ...

T7 Texel 7

On texture reads, this (unsigned) 1-bit value is replicated to all color channels.

Format: U1

MONO8 format is identical to R1_UNORM but has different semantics for filtering. MONO8 is the only
supported format for the MAPFILTER_MONO filter. See the Sampling Engine chapter.

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 85

7.3.5 Palette Formats

7.3.5.1 P4A4_UNORM

This surface format contains a 4-bit Alpha value (in the high nibble) and a 4-bit Palette Index value (in the
low nibble).

7 4 3 0

Alpha Palette Index

Bit Description

7:4 Alpha

Alpha value which will be replicated to both the high and low nibble of an 8-bit value, and then divided by
255 to yield a [0.0,1.0] Alpha value.

Format: U4

3:0 Palette Index

A 4-bit index which is used to lookup a 24-bit (RGB) value in the texture palette (loaded via
3DSTATE_SAMPLER_PALETTE_LOADx)

Format: U4

7.3.5.2 A4P4_UNORM

This surface format contains a 4-bit Alpha value (in the low nibble) and a 4-bit Color Index value (in the
high nibble).

7 4 3 0

Palette Index Alpha

Bit Description

7:4 Palette Index

A 4-bit color index which is used to lookup a 24-bit RGB value in the texture palette.

Format: U4

3:0 Alpha

Alpha value which will be replicated to both the high and low nibble of an 8-bit value, and then divided by
255 to yield a [0.0,1.0] alpha value.

Format: U4

86 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

7.3.5.3 P8A8_UNORM

This surface format contains an 8-bit Alpha value (in the high byte) and an 8-bit Palette Index value (in
the low byte).

15 8 7 0

Alpha Palette Index

Bit Description

7:4 Alpha

Alpha value which will be divided by 255 to yield a [0.0,1.0] Alpha value.

Format: U8

3:0 Palette Index

An 8-bit index which is used to lookup a 24-bit (RGB) value in the texture palette (loaded via
3DSTATE_SAMPLER_PALETTE_LOADx)

Format: U8

7.3.5.4 A8P8_UNORM

This surface format contains an 8-bit Alpha value (in the low byte) and an 8-bit Color Index value (in the
high byte).

15 8 7 0

Palette Index Alpha

Bit Description

15:8 Palette Index

An 8-bit color index which is used to lookup a 24-bit RGB value in the texture palette.

Format: U8

7:0 Alpha

Alpha value which will be divided by 255 to yield a [0.0,1.0] alpha value.

Format: U8

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 87

7.3.5.5 P8_UNORM

This surface format contains only an 8-bit Color Index value.

Bit Description

7:0 Palette Index

An 8-bit color index which is used to lookup a 32-bit ARGB value in the texture palette.

Format: U8

7.3.5.6 P2_UNORM

This surface format contains only a 2-bit Color Index value.

Bit Description

1:0 Palette Index

A 2-bit color index which is used to lookup a 32-bit ARGB value in the texture palette.

Format: U2

7.4 Compressed Surface Formats
This section contains information on the internal organization of compressed surface formats.

7.4.1 FXT Texture Formats
There are four different FXT1 compressed texture formats. Each of the formats compress two 4x4 texel
blocks into 128 bits. In each compression format, the 32 texels in the two 4x4 blocks are arranged
according to the following diagram:

Figure 7-1. FXT1 Encoded Blocks

B6682-01

t16 t17 t18 t19

t20 t21 t22 t23

t24 t25 t26 t27

t28 t29 t30 t31

t0 t1 t2 t3

t4 t5 t6 t7

t8 t9 t10 t11

t12 t13 t14 t15

88 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

7.4.1.1 Overview of FXT1 Formats

During the compression phase, the encoder selects one of the four formats for each block based on
which encoding scheme results in best overall visual quality. The following table lists the four different
modes and their encodings:

Table 7-1. FXT1 Format Summary

Bit
127

Bit
126

Bit
125

Block
Compression

Mode

Summary Description

0 0 X CC_HI 2 R5G5B5 colors supplied. Single LUT with 7 interpolated
color values and transparent black

0 1 0 CC_CHROMA 4 R5G5B5 colors used directly as 4-entry LUT.

0 1 1 CC_ALPHA 3 A5R5G5B5 colors supplied. LERP bit selects between 1
LUT with 3 discrete colors + transparent black and 2 LUTs
using interpolated values of Color 0,1 (t0-15) and Color 1,2
(t16-31).

1 x x CC_MIXED 4 R5G5B5 colors supplied, where Color0,1 LUT is used for
t0-t15, and Color2,3 LUT used for t16-31. Alpha bit selects
between LUTs with 4 interpolated colors or 3 interpolated
colors + transparent black.

7.4.1.2 FXT1 CC_HI Format

In the CC_HI encoding format, two base 15-bit R5G5B5 colors (Color 0, Color 1) are included in the
encoded block. These base colors are then expanded (using high-order bit replication) to 24-bit RGB
colors, and used to define an 8-entry lookup table of interpolated color values (the 8th entry is transparent
black). The encoded block contains a 3-bit index value per texel that is used to lookup a color from the
table.

7.4.1.2.1 CC_HI Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_HI block format:

Table 7-2. FXT CC_HI Block Encoding

Bit Description

127:126 Mode = ‘00’b (CC_HI)

125:121 Color 1 Red

120:116 Color 1 Green

115:111 Color 1 Blue

110:106 Color 0 Red

105:101 Color 0 Green

100:96 Color 0 Blue

95:93 Texel 31 Select

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 89

Bit Description

... ...

50:48 Texel 16 Select

47:45 Texel 15 Select

... ...

2:0 Texel 0 Select

7.4.1.2.2 CC_HI Block Decoding

The two base colors, Color 0 and Color 1 are converted from R5G5B5 to R8G8B8 by replicating the 3
MSBs into the 3 LSBs, as shown in the following table:

Table 7-3. FXT CC_HI Decoded Colors

Expanded Color
Bit

Expanded Channel
Bit

Encoded Block
Source Bit

Color 1 [23:19] Color 1 Red [7:3] [125:121]

Color 1 [18:16] Color 1 Red [2:0] [125:123]

Color 1 [15:11] Color 1 Green [7:3] [120:116]

Color 1 [10:08] Color 1 Green [2:0] [120:118]

Color 1 [07:03] Color 1 Blue [7:3] [115:111]

Color 1 [02:00] Color 1 Blue [2:0] [115:113]

Color 0 [23:19] Color 0 Red [7:3] [110:106]

Color 0 [18:16] Color 0 Red [2:0] [110:108]

Color 0 [15:11] Color 0 Green [7:3] [105:101]

Color 0 [10:08] Color 0 Green [2:0] [105:103]

Color 0 [07:03] Color 0 Blue [7:3] [100:96]

Color 0 [02:00] Color 0 Blue [2:0] [100:98]

These two 24-bit colors (Color 0, Color 1) are then used to create a table of seven interpolated colors
(with Alpha = 0FFh), along with an eight entry equal to RGBA = 0,0,0,0, as shown in the following table:

Table 7-4. FXT CC_HI Interpolated Color Table

Interpolated
Color

Color RGB Alpha

0 Color0.RGB 0FFh

1 (5 * Color0.RGB + 1 * Color1.RGB + 3) / 6 0FFh

2 (4 * Color0.RGB + 2 * Color1.RGB + 3) / 6 0FFh

3 (3 * Color0.RGB + 3 * Color1.RGB + 3) / 6 0FFh

4 (2 * Color0.RGB + 4 * Color1.RGB + 3) / 6 0FFh

5 (1 * Color0.RGB + 5 * Color1.RGB + 3) / 6 0FFh

90 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Interpolated
Color

Color RGB Alpha

6 Color1.RGB 0FFh

7 RGB = 0,0,0 0

This table is then used as an 8-entry Lookup Table, where each 3-bit Texel n Select field of the encoded
CC_HI block is used to index into a 32-bit A8R8G8B8 color from the table completing the decode of the
CC_HI block.

7.4.1.3 FXT1 CC_CHROMA Format

In the CC_CHROMA encoding format, four 15-bit R5B5G5 colors are included in the encoded block.
These colors are then expanded (using high-order bit replication) to form a 4-entry table of 24-bit RGB
colors. The encoded block contains a 2-bit index value per texel that is used to lookup a 24-bit RGB color
from the table. The Alpha component defaults to fully opaque (0FFh).

7.4.1.3.1 CC_CHROMA Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_CHROMA block format:

Table 7-5. FXT CC_CHROMA Block Encoding

Bit Description

127:125 Mode = ‘010’b (CC_CHROMA)

124 Unused

123:119 Color 3 Red

118:114 Color 3 Green

113:109 Color 3 Blue

108:104 Color 2 Red

103:99 Color 2 Green

98:94 Color 2 Blue

93:89 Color 1 Red

88:84 Color 1 Green

83:79 Color 1 Blue

78:74 Color 0 Red

73:69 Color 0 Green

68:64 Color 0 Blue

63:62 Texel 31 Select

...

33:32 Texel 16 Select

31:30 Texel 15 Select

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 91

Bit Description

...

1:0 Texel 0 Select

7.4.1.3.2 CC_CHROMA Block Decoding

The four colors (Color 0-3) are converted from R5G5B5 to R8G8B8 by replicating the 3 MSBs into the 3
LSBs, as shown in the following tables:

Table 7-6. FXT CC_CHROMA Decoded Colors

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 3 [23:17] Color 3 Red [7:3] [123:119]

Color 3 [18:16] Color 3 Red [2:0] [123:121]

Color 3 [15:11] Color 3 Green [7:3] [118:114]

Color 3 [10:08] Color 3 Green [2:0] [118:116]

Color 3 [07:03] Color 3 Blue [7:3] [113:109]

Color 3 [02:00] Color 3 Blue [2:0] [113:111]

Color 2 [23:17] Color 2 Red [7:3] [108:104]

Color 2 [18:16] Color 2 Red [2:0] [108:106]

Color 2 [15:11] Color 2 Green [7:3] [103:99]

Color 2 [10:08] Color 2 Green [2:0] [103:101]

Color 2 [07:03] Color 2 Blue [7:3] [98:94]

Color 2 [02:00] Color 2 Blue [2:0] [98:96]

Color 1 [23:17] Color 1 Red [7:3] [93:89]

Color 1 [18:16] Color 1 Red [2:0] [93:91]

Color 1 [15:11] Color 1 Green [7:3] [88:84]

Color 1 [10:08] Color 1 Green [2:0] [88:86]

Color 1 [07:03] Color 1 Blue [7:3] [83:79]

Color 1 [02:00] Color 1 Blue [2:0] [83:81]

Color 0 [23:17] Color 0 Red [7:3] [78:74]

Color 0 [18:16] Color 0 Red [2:0] [78:76]

Color 0 [15:11] Color 0 Green [7:3] [73:69]

Color 0 [10:08] Color 0 Green [2:0] [73:71]

Color 0 [07:03] Color 0 Blue [7:3] [68:64]

Color 0 [02:00] Color 0 Blue [2:0] [68:66]

This table is then used as a 4-entry Lookup Table, where each 2-bit Texel n Select field of the encoded
CC_CHROMA block is used to index into a 32-bit A8R8G8B8 color from the table (Alpha defaults to
0FFh) completing the decode of the CC_CHROMA block.

92 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Table 7-7. FXT CC_CHROMA Interpolated Color Table

Texel Select Color ARGB

0 Color0.ARGB

1 Color1.ARGB

2 Color2.ARGB

3 Color3.ARGB

7.4.1.4 FXT1 CC_MIXED Format

In the CC_MIXED encoding format, four 15-bit R5G5B5 colors are included in the encoded block: Color 0
and Color 1 are used for Texels 0-15, and Color 2 and Color 3 are used for Texels 16-31.

Each pair of colors are then expanded (using high-order bit replication) to form 4-entry tables of 24-bit
RGB colors. The encoded block contains a 2-bit index value per texel that is used to lookup a 24-bit RGB
color from the table. The Alpha component defaults to fully opaque (0FFh).

7.4.1.4.1 CC_MIXED Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_MIXED block format:

Table 7-8. FXT CC_MIXED Block Encoding

Bit Description

127 Mode = ‘1’b (CC_MIXED)

126 Color 3 Green [0]

125 Color 1 Green [0]

124 Alpha [0]

123:119 Color 3 Red

118:114 Color 3 Green

113:109 Color 3 Blue

108:104 Color 2 Red

103:99 Color 2 Green

98:94 Color 2 Blue

93:89 Color 1 Red

88:84 Color 1 Green

83:79 Color 1 Blue

78:74 Color 0 Red

73:69 Color 0 Green

68:64 Color 0 Blue

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 93

Bit Description

63:62 Texel 31 Select

... ...

33:32 Texel 16 Select

31:30 Texel 15 Select

... ...

1:0 Texel 0 Select

7.4.1.4.2 CC_MIXED Block Decoding

The decode of the CC_MIXED block is modified by Bit 124 (Alpha [0]) of the encoded block.

Alpha[0] = 0 Decoding

When Alpha[0] = 0 the four colors are encoded as 16-bit R5G6B5 values, with the Green LSB defined as
per the following table:

Table 7-9. FXT CC_MIXED (Alpha[0]=0) Decoded Colors

Encoded Color Bit Definition

Color 3 Green [0] Encoded Bit [126]

Color 2 Green [0] Encoded Bit [33] XOR Encoded Bit [126]

Color 1 Green [0] Encoded Bit [125]

Color 0 Green [0] Encoded Bit [1] XOR Encoded Bit [125]

The four colors (Color 0-3) are then converted from R5G5B6 to R8G8B8 by replicating the 3 MSBs into
the 3 LSBs, as shown in the following table:

Table 7-10. FXT CC_MIXED Decoded Colors (Alpha[0] = 0)

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 3 [23:17] Color 3 Red [7:3] [123:119]

Color 3 [18:16] Color 3 Red [2:0] [123:121]

Color 3 [15:11] Color 3 Green [7:3] [118:114]

Color 3 [10] Color 3 Green [2] [126]

Color 3 [09:08] Color 3 Green [1:0] [118:117]

Color 3 [07:03] Color 3 Blue [7:3] [113:109]

Color 3 [02:00] Color 3 Blue [2:0] [113:111]

Color 2 [23:17] Color 2 Red [7:3] [108:104]

Color 2 [18:16] Color 2 Red [2:0] [108:106]

Color 2 [15:11] Color 2 Green [7:3] [103:99]

Color 2 [10] Color 2 Green [2] [33] XOR [126]]

94 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 2 [09:08] Color 2 Green [1:0] [103:100]

Color 2 [07:03] Color 2 Blue [7:3] [98:94]

Color 2 [02:00] Color 2 Blue [2:0] [98:96]

Color 1 [23:17] Color 1 Red [7:3] [93:89]

Color 1 [18:16] Color 1 Red [2:0] [93:91]

Color 1 [15:11] Color 1 Green [7:3] [88:84]

Color 1 [10] Color 1 Green [2] [125]

Color 1 [09:08] Color 1 Green [1:0] [88:86]

Color 1 [07:03] Color 1 Blue [7:3] [83:79]

Color 1 [02:00] Color 1 Blue [2:0] [83:81]

Color 0 [23:17] Color 0 Red [7:3] [78:74]

Color 0 [18:16] Color 0 Red [2:0] [78:76]

Color 0 [15:11] Color 0 Green [7:3] [73:69]

Color 0 [10] Color 0 Green [2] [1] XOR [125]

Color 0 [09:08] Color 0 Green [1:0] [73:71]

Color 0 [07:03] Color 0 Blue [7:3] [68:64]

Color 0 [02:00] Color 0 Blue [2:0] [68:66]

The two sets of 24-bit colors (Color 0,1 and Color 2,3) are then used to create two tables of four
interpolated colors (with Alpha = 0FFh). The Color0,1 table is used as a lookup table for texel 0-15
indices, and the Color2,3 table used for texels 16-31 indices, as shown in the following figures:

Table 7-11. FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 0-15)

Texel 0-15
Select

Color RGB Alpha

0 Color0.RGB 0FFh

1 (2*Color0.RGB + Color1.RGB + 1) /3 0FFh

2 (Color0.RGB + 2*Color1.RGB + 1) /3 0FFh

3 Color1.RGB 0FFh

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 95

Table 7-12. FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 16-31)

Texel 16-31
Select

Color RGB Alpha

0 Color2.RGB 0FFh

1 (2/3) * Color2.RGB + (1/3) * Color3.RGB 0FFh

2 (1/3) * Color2.RGB + (2/3) * Color3.RGB 0FFh

3 Color3.RGB 0FFh

Alpha[0] = 1 Decoding

When Alpha[0] = 1, Color0 and Color2 are encoded as 15-bit R5G5B5 values. Color1 and Color3 are
encoded as RGB565 colors, with the Green LSB obtained as shown in the following table:

Table 7-13. FXT CC_MIXED (Alpha[0]=0) Decoded Colors

Encoded Color Bit Definition

Color 3 Green [0] Encoded Bit [126]

Color 1 Green [0] Encoded Bit [125]

All four colors are then expanded to 24-bit R8G8B8 colors by bit replication, as show in the following
diagram.

Table 7-14. FXT CC_MIXED Decoded Colors (Alpha[0] = 1)

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 3 [23:17] Color 3 Red [7:3] [123:119]

Color 3 [18:16] Color 3 Red [2:0] [123:121]

Color 3 [15:11] Color 3 Green [7:3] [118:114]

Color 3 [10] Color 3 Green [2] [126]

Color 3 [09:08] Color 3 Green [1:0] [118:117]

Color 3 [07:03] Color 3 Blue [7:3] [113:109]

Color 3 [02:00] Color 3 Blue [2:0] [113:111]

Color 2 [23:19] Color 2 Red [7:3] [108:104]

Color 2 [18:16] Color 2 Red [2:0] [108:106]

Color 2 [15:11] Color 2 Green [7:3] [103:99]

Color 2 [10:08] Color 2 Green [2:0] [103:101]

Color 2 [07:03] Color 2 Blue [7:3] [98:94]

Color 2 [02:00] Color 2 Blue [2:0] [98:96]

Color 1 [23:17] Color 1 Red [7:3] [93:89]

Color 1 [18:16] Color 1 Red [2:0] [93:91]

Color 1 [15:11] Color 1 Green [7:3] [88:84]

96 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 1 [10] Color 1 Green [2] [125]

Color 1 [09:08] Color 1 Green [1:0] [88:87]

Color 1 [07:03] Color 1 Blue [7:3] [83:79]

Color 1 [02:00] Color 1 Blue [2:0] [83:81]

Color 0 [23:19] Color 0 Red [7:3] [78:74]

Color 0 [18:16] Color 0 Red [2:0] [78:76]

Color 0 [15:11] Color 0 Green [7:3] [73:69]

Color 0 [10:08] Color 0 Green [2:0] [73:71]

Color 0 [07:03] Color 0 Blue [7:3] [68:64]

Color 0 [02:00] Color 0 Blue [2:0] [68:66]

The two sets of 24-bit colors (Color 0,1 and Color 2,3) are then used to create two tables of four colors.
The Color0,1 table is used as a lookup table for texel 0-15 indices, and the Color2,3 table used for texels
16-31 indices. The color at index 1 is the linear interpolation of the base colors, while the color at index 3
is defined as Black (0,0,0) with Alpha = 0, as shown in the following figures:

Table 7-15. FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 0-15)

Texel 0-15
Select

Color RGB Alpha

0 Color0.RGB 0FFh

1 (Color0.RGB + Color1.RGB) /2 0FFh

2 Color1.RGB 0FFh

3 Black (0,0,0) 0

Table 7-16. FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 16-31)

Texel 16-31
Select

Color RGB Alpha

0 Color2.RGB 0FFh

1 (Color2.RGB + Color3.RGB) /2 0FFh

2 Color3.RGB 0FFh

3 Black (0,0,0) 0

These tables are then used as a 4-entry Lookup Table, where each 2-bit Texel n Select field of the
encoded CC_MIXED block is used to index into the appropriate 32-bit A8R8G8B8 color from the table,
completing the decode of the CC_CMIXED block.

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 97

7.4.1.5 FXT1 CC_ALPHA Format

In the CC_ALPHA encoding format, three A5R5G5B5 colors are provided in the encoded block. A control
bit (LERP) is used to define the lookup table (or tables) used to dereference the 2-bit Texel Selects.

7.4.1.5.1 CC_ALPHA Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_ALPHA block format:

Table 7-17. FXT CC_ALPHA Block Encoding

Bit Description

127:125 Mode = ‘011’b (CC_ALPHA)

124 LERP

123:119 Color 2 Alpha

118:114 Color 1 Alpha

113:109 Color 0 Alpha

108:104 Color 2 Red

103:99 Color 2 Green

98:94 Color 2 Blue

93:89 Color 1 Red

88:84 Color 1 Green

83:79 Color 1 Blue

78:74 Color 0 Red

73:69 Color 0 Green

68:64 Color 0 Blue

63:62 Texel 31 Select

... ...

33:32 Texel 16 Select

31:30 Texel 15 Select

... ...

1:0 Texel 0 Select

98 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

7.4.1.5.2 CC_ALPHA Block Decoding

Each of the three colors (Color 0-2) are converted from A5R5G5B5 to A8R8G8B8 by replicating the 3
MSBs into the 3 LSBs, as shown in the following tables:

Table 7-18. FXT CC_ALPHA Decoded Colors

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 2 [31:27] Color 2 Alpha [7:3] [123:119]

Color 2 [26:24] Color 2 Alpha [2:0] [123:121]

Color 2 [23:17] Color 2 Red [7:3] [108:104]

Color 2 [18:16] Color 2 Red [2:0] [108:106]

Color 2 [15:11] Color 2 Green [7:3] [103:99]

Color 2 [10:08] Color 2 Green [2:0] [103:101]

Color 2 [07:03] Color 2 Blue [7:3] [98:94]

Color 2 [02:00] Color 2 Blue [2:0] [98:96]

Color 1 [31:27] Color 1 Alpha [7:3] [118:114]

Color 1 [26:24] Color 1 Alpha [2:0] [118:116]

Color 1 [23:17] Color 1 Red [7:3] [93:89]

Color 1 [18:16] Color 1 Red [2:0] [93:91]

Color 1 [15:11] Color 1 Green [7:3] [88:84]

Color 1 [10:08] Color 1 Green [2:0] [88:86]

Color 1 [07:03] Color 1 Blue [7:3] [83:79]

Color 1 [02:00] Color 1 Blue [2:0] [83:81]

Color 0 [31:27] Color 0 Alpha [7:3] [113:109]

Color 0 [26:24] Color 0 Alpha [2:0] [113:111]

Color 0 [23:17] Color 0 Red [7:3] [78:74]

Color 0 [18:16] Color 0 Red [2:0] [78:76]

Color 0 [15:11] Color 0 Green [7:3] [73:69]

Color 0 [10:08] Color 0 Green [2:0] [73:71]

Color 0 [07:03] Color 0 Blue [7:3] [68:64]

Color 0 [02:00] Color 0 Blue [2:0] [68:66]

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 99

LERP = 0 Decoding

When LERP = 0, a single 4-entry lookup table is formed using the three expanded colors, with the 4th
entry defined as transparent black (ARGB=0,0,0,0). Each 2-bit Texel n Select field of the encoded
CC_ALPHA block is used to index into a 32-bit A8R8G8B8 color from the table completing the decode of
the CC_ALPHA block.

Table 7-19. FXT CC_ALPHA Interpolated Color Table (LERP=0)

Texel Select Color Alpha

0 Color0.RGB Color0.Alpha

1 Color1.RGB Color1.Alpha

2 Color2.RGB Color2.Alpha

3 Black (RGB=0,0,0) 0

LERP = 1 Decoding

When LERP = 1, the three expanded colors are used to create two tables of four interpolated colors. The
Color0,1 table is used as a lookup table for texel 0-15 indices, and the Color1,2 table used for texels 16-
31 indices, as shown in the following figures:

Table 7-20. FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 0-15)

Texel 0-15
Select

Color ARGB

0 Color0.ARGB

1 (2*Color0.ARGB + Color1.ARGB + 1) /3

2 (Color0.ARGB + 2*Color1.ARGB + 1) /3

3 Color1.ARGB

Table 7-21. FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 16-31)

Texel 16-31
Select

Color ARGB

0 Color2.ARGB

1 (2*Color2.ARGB + Color1.ARGB + 1) /3

2 (Color2.ARGB + 2*Color1.ARGB + 1) /3

3 Color1.ARGB

100 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

7.4.2 BC4
These formats (BC4_UNORM and BC4_SNORM) compresses single-component UNORM or SNORM
data. An 8-byte compression block represents a 4x4 block of texels. The texels are labeled as
texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel.

The 8-byte compression block is laid out as follows:

Bit Description

7:0 red_0

15:8 red_1

18:16 texel[0][0] bit code

21:19 texel[0][1] bit code

24:22 texel[0][2] bit code

27:25 texel[0][3] bit code

30:28 texel[1][0] bit code

33:31 texel[1][1] bit code

36:34 texel[1][2] bit code

39:37 texel[1][3] bit code

42:40 texel[2][0] bit code

45:43 texel[2][1] bit code

48:46 texel[2][2] bit code

51:49 texel[2][3] bit code

54:52 texel[3][0] bit code

57:55 texel[3][1] bit code

60:58 texel[3][2] bit code

63:61 texel[3][3] bit code

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 101

There are two interpolation modes, chosen based on which reference color is larger. The first mode has
the two reference colors plus six equal-spaced interpolated colors between the reference colors, chosen
based on the three-bit code for that texel. The second mode has the two reference colors plus four
interpolated colors, chosen by six of the three-bit codes. The remaining two codes select min and max
values for the colors. The values of red_0 through red_7 are computed as follows:

red_0 = red_0; // bit code 000

red_1 = red_1; // bit code 001

if (red_0 > red_1)

{

red_2 = (6 * red_0 + 1 * red_1) / 7; // bit code 010

red_3 = (5 * red_0 + 2 * red_1) / 7; // bit code 011

red_4 = (4 * red_0 + 3 * red_1) / 7; // bit code 100

red_5 = (3 * red_0 + 4 * red_1) / 7; // bit code 101

red_6 = (2 * red_0 + 5 * red_1) / 7; // bit code 110

red_7 = (1 * red_0 + 6 * red_1) / 7; // bit code 111

}

else

{

 red_2 = (4 * red_0 + 1 * red_1) / 5; // bit code 010

 red_3 = (3 * red_0 + 2 * red_1) / 5; // bit code 011

 red_4 = (2 * red_0 + 3 * red_1) / 5; // bit code 100

 red_5 = (1 * red_0 + 4 * red_1) / 5; // bit code 101

 red_6 = UNORM ? 0.0 : -1.0; // bit code 110 (0 for UNORM, -1 for SNORM)

 red_7 = 1.0; // bit code 111

}

7.4.3 BC5
These formats (BC5_UNORM and BC5_SNORM) compresses dual-component UNORM or SNORM
data. A 16-byte compression block represents a 4x4 block of texels. The texels are labeled as
texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel.

The 16-byte compression block is laid out as follows:

102 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Bit Description

7:0 red_0

15:8 red_1

18:16 texel[0][0] red bit code

21:19 texel[0][1] red bit code

24:22 texel[0][2] red bit code

27:25 texel[0][3] red bit code

30:28 texel[1][0] red bit code

33:31 texel[1][1] red bit code

36:34 texel[1][2] red bit code

39:37 texel[1][3] red bit code

42:40 texel[2][0] red bit code

45:43 texel[2][1] red bit code

48:46 texel[2][2] red bit code

51:49 texel[2][3] red bit code

54:52 texel[3][0] red bit code

57:55 texel[3][1] red bit code

60:58 texel[3][2] red bit code

63:61 texel[3][3] red bit code

71:64 green_0

79:72 green_1

82:80 texel[0][0] green bit code

85:83 texel[0][1] green bit code

88:86 texel[0][2] green bit code

91:89 texel[0][3] green bit code

94:92 texel[1][0] green bit code

97:95 texel[1][1] green bit code

100:98 texel[1][2] green bit code

103:101 texel[1][3] green bit code

106:104 texel[2][0] green bit code

109:107 texel[2][1] green bit code

112:110 texel[2][2] green bit code

115:113 texel[2][3] green bit code

118:116 texel[3][0] green bit code

121:119 texel[3][1] green bit code

124:122 texel[3][2] green bit code

127:125 texel[3][3] green bit code

There are two interpolation modes, chosen based on which reference color is larger. The first mode has
the two reference colors plus six equal-spaced interpolated colors between the reference colors, chosen
based on the three-bit code for that texel. The second mode has the two reference colors plus four

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 103

interpolated colors, chosen by six of the three-bit codes. The remaining two codes select min and max
values for the colors. The values of red_0 through red_7 are computed as follows:

red_0 = red_0; // bit code 000

red_1 = red_1; // bit code 001

if (red_0 > red_1)

{

red_2 = (6 * red_0 + 1 * red_1) / 7; // bit code 010

red_3 = (5 * red_0 + 2 * red_1) / 7; // bit code 011

red_4 = (4 * red_0 + 3 * red_1) / 7; // bit code 100

red_5 = (3 * red_0 + 4 * red_1) / 7; // bit code 101

red_6 = (2 * red_0 + 5 * red_1) / 7; // bit code 110

red_7 = (1 * red_0 + 6 * red_1) / 7; // bit code 111

}

else

{

 red_2 = (4 * red_0 + 1 * red_1) / 5; // bit code 010

 red_3 = (3 * red_0 + 2 * red_1) / 5; // bit code 011

 red_4 = (2 * red_0 + 3 * red_1) / 5; // bit code 100

 red_5 = (1 * red_0 + 4 * red_1) / 5; // bit code 101

 red_6 = UNORM ? 0.0 : -1.0; // bit code 110 (0 for UNORM, -1 for SNORM)

 red_7 = 1.0; // bit code 111

}

The same calculations are done for green, using the corresponding reference colors and bit codes.

7.5 Video Pixel/Texel Formats
This section describes the “video” pixel/texel formats with respect to memory layout. See the Overlay
chapter for a description of how the Y, U, V components are sampled.

7.5.1 Packed Memory Organization
Color components are all 8 bits in size for YUV formats. For YUV 4:2:2 formats each DWord will contain
two pixels and only the byte order affects the memory organization.

The following four YUV 4:2:2 surface formats are supported, listed with alternate names:

104 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

 YCRCB_NORMAL (YUYV/YUY2)

 YCRCB_SWAPUVY (VYUY) (R8G8_B8G8_UNORM)

 YCRCB_SWAPUV (YVYU) (G8R8_G8B8_UNORM)

 YCRCB_SWAPY (UYVY)

The channels are mapped as follows:

Cr (V) Red

Y Green

Cb (U) Blue

Figure 7-2. Memory layout of packed YUV 4:2:2 formats

B6683-01

26 25 24 19 18 17 1631 30 29 28 23 22 21 20 11 10 9 8 3 2 1 015 14 13 12 7 6 5 4

V
Pixel N

Y
Pixel N+1

U
Pixel N

Y

YUV 4:2:2 (Normal)

27 26 25 24 19 18 17 1631 30 29 28 23 22 21 20 11 10 9 8 3 2 1 015 14 13 12 7 6 5 4

U
Pixel N

Y
Pixel N+1

V
Pixel N

Y

YUV 4:2:2 (UV Swap)

27 26 25 24 19 18 17 1631 30 29 28 23 22 21 20 11 10 9 8 3 2 1 015 14 13 12 7 6 5 4

Y
Pixel N+1

V
Pixel N

Y
Pixel N

U

YUV 4:2:2 (Y Swap)

27 26 25 24 19 18 17 1631 30 29 28 23 22 21 20 11 10 9 8 3 2 1 015 14 13 12 7 6 5 4

Y
Pixel N+1

U
Pixel N

Y
Pixel N

V

YUV 4:2:2 (UV/Y Swap)

27

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 105

7.5.2 Planar Memory Organization
Planar formats use what could be thought of as separate buffers for the three color components. Because
there is a separate stride for the Y and U/V data buffers, several memory footprints can be supported.

Note: There is no direct support for use of planar video surfaces as textures. The sampling engine can
be used to operate on each of the 8bpp buffers separately (via a single-channel 8-bit format such as
I8_UNORM). The U and V buffers can be written concurrently by using multiple render targets from the
pixel shader. The Y buffer must be written in a separate pass due to its different size.

The following figure shows two types of memory organization for the YUV 4:2:0 planar video data:

1. The memory organization of the common YV12 data, where all three planes are contiguous and
the strides of U and V components are half of that of the Y component.

2. An alternative memory structure that the addresses of the three planes are independent but
satisfy certain alignment restrictions.

Figure 7-3. YUV 4:2:0 Format Memory Organization

B6684-01

V

U

Width

H
eig

h
t

Y Pointer

V Pointer

U Pointer H
eig

h
t/2

H
eig

h
t/2

Width/2

(a)

U

V

Y

Width

H
eig

h
t

Y Pointer

U Pointer

V Pointer H
eig

h
t/2

H
eig

h
t/2

Width/2

(b)

106 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

The following figure shows memory organization of the planar YUV 4:1:0 format where the planes are
contiguous. The stride of the U and V planes is a quarter of that of the Y plane.

Figure 7-4. YUV 4:1:0 Format Memory Organization

B6685-01

Y

Width

H
eig

h
t

Y Pointer

U Pointer

V Pointer

Height/4

Width/4

Height/4

U

V

7.6 Surface Memory Organizations
See Memory Interface Functions chapter for a discussion of tiled vs. linear surface formats.

7.7 Graphics Translation Tables
The Graphics Translation Tables GTT (Graphics Translation Table, sometimes known as the global GTT)
and PPGTT (Per-Process Graphics Translation Table) are memory-resident page tables containing an
array of DWord Page Translation Entries (PTEs) used in mapping logical Graphics Memory addresses to
physical memory addresses, and sometimes snooped system memory “PCI” addresses.

The graphics translation tables must reside in (unsnooped) system memory.

The base address (MM offset) of the GTT and the PPGTT are programmed via the PGTBL_CTL and
PGTBL_CTL2 MI registers, respectively. The translation table base addresses must be 4KB aligned.
The GTT size can be either 128KB, 256KB or 512KB (mapping to 128MB, 256MB, and 512MB aperture
sizes respectively) and is physically contiguous. The global GTT should only be programmed via the
range defined by GTTADR. The PPGTT is programmed directly in memory. The per-process GTT
(PPGTT) size is controlled by the PGTBL_CTL2 register. The PPGTT can, in addition to the above sizes,
also be 64KB in size (corresponding to a 64MB aperture). Refer to the GTT Range chapter for a bit
definition of the PTE entries.

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 107

7.8 Hardware Status Page
The hardware status page is a naturally-aligned 4KB page residing in snooped system memory. This
page exists primarily to allow the device to report status via PCI master writes – thereby allowing the
driver to read/poll WB memory instead of UC reads of device registers or UC memory.

The address of this page is programmed via the HWS_PGA MI register. The definition of that register (in
Memory Interface Registers) includes a description of the layout of the Hardware Status Page.

7.9 Instruction Ring Buffers
Instruction ring buffers are the memory areas used to pass instructions to the device. Refer to the
Programming Interface chapter for a description of how these buffers are used to transport instructions.

The RINGBUF register sets (defined in Memory Interface Registers) are used to specify the ring buffer
memory areas. The ring buffer must start on a 4KB boundary and be allocated in linear memory. The
length of any one ring buffer is limited to 2MB.

Note that “indirect” 3D primitive instructions (those that access vertex buffers) must reside in the same
memory space as the vertex buffers.

7.10 Instruction Batch Buffers
Instruction batch buffers are contiguous streams of instructions referenced via an
MI_BATCH_BUFFER_START and related instructions (see Memory Interface Instructions, Programming
Interface). They are used to transport instructions external to ring buffers.

Note that batch buffers should not be mapped to snooped SM (PCI) addresses. The device will treat
these as MainMemory (MM) address, and therefore not snoop the CPU cache.

The batch buffer must be QWord aligned and a multiple of QWords in length. The ending address is the
address of the last valid QWord in the buffer. The length of any single batch buffer is “virtually unlimited”
(i.e., could theoretically be 4GB in length).

7.11 Display, Overlay, Cursor Surfaces
These surfaces are memory image buffers (planes) used to refresh a display device in non-VGA mode.
See the Display chapter for specifics on how these surfaces are defined/used.

108 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

7.12 2D Render Surfaces

These surfaces are used as general source and/or destination operands in 2D Blt operations.

Note that the device provides no coherency between 2D render surfaces and the texture cache – i.e., the
texture cache must be explicitly invalidated prior to the use of a texture that has been modified via the Blt
engine.

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used,
restrictions on their size, placement, etc.

7.13 2D Monochrome Source

These 1bpp surfaces are used as source operands to certain 2D Blt operations, where the Blt engine
expands the 1bpp source into the required color depth.

The device uses the texture cache to store monochrome sources. There is no mechanism to maintain
coherency between 2D render surfaces and (texture)-cached monochrome sources, software is required
to explicitly invalidate the texture cache before using a memory-based monochrome source that has been
modified via the Blt engine. (Here the assumption is that SW enforces memory-based monochrome
source surfaces as read-only surfaces).

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used,
restrictions on their size, placement, coherency rules, etc.

7.14 2D Color Pattern
Color pattern surfaces are used as special pattern operands in 2D Blt operations.

The device uses the texture cache to store color patterns. There is no mechanism to maintain coherency
between 2D render surfaces and (texture)-cached color patterns, software is required to explicitly
invalidate the texture cache before using a memory-based color pattern that has been modified via the Blt
engine. (Here the assumption is that SW enforces memory-based color pattern surfaces as read-only
surfaces).

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used,
restrictions on their size, placement, etc.

7.15 3D Color Buffer (Destination) Surfaces

3D Color buffer surfaces are used to hold per-pixel color values for use in the 3D pipeline. Note that the
3D pipeline always requires a Color buffer to be defined.

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 109

Refer to Non-Video Pixel/Texel Formats section in this chapter for details on the Color buffer pixel
formats. Refer to the 3D Instruction and 3D Rendering chapters for details on the usage of the Color
Buffer.

The Color buffer is defined as the BUFFERID_COLOR_BACK memory buffer via the
3DSTATE_BUFFER_INFO instruction. That buffer can be mapped to LM, SM (snooped or unsnooped)
and can be linear or tiled. When both the Depth and Color buffers are tiled, the respective Tile Walk
directions must match.

When a linear Color and a linear Depth buffers are used together:

1. They may have different pitches, though both pitches must be a multiple of 32 bytes.

2. They must be co-aligned with a 32-byte region.

7.16 3D Depth Buffer Surfaces
Depth buffer surfaces are used to hold per-pixel depth values and per-pixel stencil values for use in the
3D pipeline. Note that the 3D pipeline does not require a Depth buffer to be allocated, though a Depth
buffer is required to perform (non-trivial) Depth Test and Stencil Test operations.

The following table summarizes the possible formats of the Depth buffer. Refer to Depth Buffer Formats
section in this chapter for details on the pixel formats. Refer to the Windower and DataPort chapters for
details on the usage of the Depth Buffer.

Table 7-22. Depth Buffer Formats

DepthBufferFormat / DepthComponent bpp Description

D32_FLOAT_S8X24_UINT 64 32-bit floating point Z depth value in first DWord, 8-bit
stencil in lower byte of second DWord

D32_FLOAT 32 32-bit floating point Z depth value

D24_UNORM_S8_UINT 32 24-bit fixed point Z depth value in lower 3 bytes, 8-bit
stencil value in upper byte

D16_UNORM 16 16-bit fixed point Z depth value

The Depth buffer is specified via the 3DSTATE_DEPTH_BUFFER command. See the description of that
instruction in Windower for restrictions.

7.17 3D Separate Stencil Buffer Surfaces [DevILK+]
Separate Stencil buffer surfaces are used to hold per-pixel stencil values for use in the 3D pipeline. Note
that the 3D pipeline does not require a Stencil buffer to be allocated, though a Stencil buffer is required to
perform (non-trivial) Stencil Test operations.

The following table summarizes the possible formats of the Stencil buffer. Refer to Stencil Buffer Formats
section in this chapter for details on the pixel formats. Refer to the Windower chapters for details on the
usage of the Stencil Buffer.

110 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Table 7-23. Depth Buffer Formats

DepthBufferFormat / DepthComponent bpp Description

S8_UINT 8 8-bit stencil value in a byte

The Stencil buffer is specified via the 3DSTATE_STENCIL_BUFFER command. See the description of
that instruction in Windower for restrictions.

7.18 Surface Layout
This section describes the formats of surfaces and data within the surfaces.

7.18.1 Buffers
A buffer is an array of structures. Each structure contains up to 2048 bytes of elements. Each element is
a single surface format using one of the supported surface formats depending on how the surface is
being accessed. The surface pitch state for the surface specifies the size of each structure in bytes.

The buffer is stored in memory contiguously with each element in the structure packed together, and the
first element in the next structure immediately following the last element of the previous structure. Buffers
are supported only in linear memory.

B6686-01

a b c d e f0

1

2

3

15

Surface Pitch

B
u
ff
er

 S
iz

e

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 111

7.18.2 1D Surfaces
One-dimensional surfaces are identical to 2D surfaces with height of one. Arrays of 1D surfaces are also
supported. Please refer to the 2D Surfaces section for details on how these surfaces are stored.

7.18.3 2D Surfaces
Surfaces that comprise texture mip-maps are stored in a fixed “monolithic” format and referenced by a
single base address. The base map and associated mipmaps are located within a single rectangular area
of memory identified by the base address of the upper left corner and a pitch. The base address
references the upper left corner of the base map. The pitch must be specified at least as large as the
widest mip-map. In some cases it must be wider; see the section on Minimum Pitch below.

These surfaces may be overlapped in memory and must adhere to the following memory organization
rules:

 For non-compressed texture formats, each mipmap must start on an even row within the
monolithic rectangular area. For 1-texel-high mipmaps, this may require a row of padding below
the previous mipmap. This restriction does not apply to any compressed texture formats: i.e.,
each subsequent (lower-res) compressed mipmap is positioned directly below the previous
mipmap.

 Vertical alignment restrictions vary with memory tiling type: 1 DWord for linear, 16-byte (DQWord)
for tiled. (Note that tiled mipmaps are not required to start at the left edge of a tile row).

7.18.3.1 Computing MIP level sizes

Map width and height specify the size of the largest MIP level (LOD 0). Less detailed LOD level (i+1)
sizes are determined by dividing the width and height of the current (i) LOD level by 2 and truncating to
an integer (floor). This is equivalent to shifting the width/height by 1 bit to the right and discarding the bit
shifted off. The map height and width are clamped on the low side at 1.

In equations, the width and height of an LOD “L” can be expressed as:

 1:?0

1:?0

LheightLheightH

LwidthLwidthW

L

L

[DevSNB+]: If the surface is multisampled (4x), these values must be adjusted as follows before
proceeding:

4*)2/(

4*)2/(

LL

LL

HceilingH

WceilingW

112 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

7.18.3.2 Base Address for LOD Calculation

It is conceptually easier to think of the space that the map uses in Cartesian space (x, y), where x and y
are in units of texels, with the upper left corner of the base map at (0, 0). The final step is to convert from
Cartesian coordinates to linear addresses as documented at the bottom of this section.

It is useful to think of the concept of “stepping” when considering where the next MIP level will be stored
in rectangular memory space. We either step down or step right when moving to the next higher LOD.

 for MIPLAYOUT_RIGHT maps:
o step right when moving from LOD 0 to LOD 1
o step down for all of the other MIPs

 for MIPLAYOUT_BELOW maps:
o step down when moving from LOD 0 to LOD 1
o step right when moving from LOD 1 to LOD 2
o step down for all of the other MIPs

To account for the cache line alignment required, we define i and j as the width and height, respectively,
of an alignment unit. This alignment unit is defined below. We then define lower-case wL and hL as the
padded width and height of LOD “L” as follows:

j

H
ceiljh

i

W
ceiliw

L
L

L
L

*

*

Equations to compute the upper left corner of each MIP level are then as follows:

for MIPLAYOUT_RIGHT maps:

...

),(

),(

),(

)0,(

)0,0(

32104

2103

102

01

0

hhhwLOD

hhwLOD

hwLOD

wLOD

LOD

for MIPLAYOUT_BELOW maps:

...

),(

),(

),(

),0(

)0,0(

32014

2013

012

01

0

hhhwLOD

hhwLOD

hwLOD

hLOD

LOD

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 113

7.18.3.3 Minimum Pitch

For MIPLAYOUT_RIGHT maps, the minimum pitch must be calculated before choosing a fence to place
the map within. This is approximately equal to 1.5x the pitch required by the base map, with possible
adjustments made for cache line alignment. For MIPLAYOUT_BELOW and MIPLAYOUT_LEGACY
maps, the minimum pitch required is equal to that required by the base (LOD 0) map.

A safe but simple calculation of minimum pitch is equal to 2x the pitch required by the base map for
MIPLAYOUT_RIGHT maps. This ensures that enough pitch is available, and since it is restricted to
MIPLAYOUT_RIGHT maps, not much memory is wasted. It is up to the driver (hardware independent)
whether to use this simple determination of pitch or a more complex one.

7.18.3.4 Alignment Unit Size

The following table indicates the i and j values that should be used for each map format. Note that the
compressed formats are padded to a full compression cell.

Table 7-24. Alignment Units for Texture Maps

surface format alignment unit width “i” alignment unit height “j”

YUV 4:2:2 formats 4 * see below

BC1-5 4 4

FXT1 8 4

all other formats 4 * see below

* For these formats, the vertical alignment factor “j” is determined as follows:

 For [DevSNB+]:

o j = 4 for any depth buffer

o j = 2 for separate stencil buffer

o j = 4 for any render target surface is multisampled (4x)

o j = 4 for any render target surface with Surface Vertical Alignment = VALIGN_4

o j = 2 for any render target surface with Surface Vertical Alignment = VALIGN_2

o j = 2 for all other render target surface

o j = 2 for any sampling engine surface with Surface Vertical Alignment = VALIGN_2

o j = 4 for any sampling engine surface with Surface Vertical Alignment = VALIGN_4

7.18.3.5 Cartesian to Linear Address Conversion

A set of variables are defined in addition to the i and j defined above.

114 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

 b = bytes per texel of the native map format (0.5 for DXT1, FXT1, and 4-bit surface format, 2.0 for
YUV 4:2:2, others aligned to surface format)

 t = texel rows / memory row (4 for DXT1-5 and FXT1, 1 for all other formats)

 p = pitch in bytes (equal to pitch in dwords * 4)

 B = base address in bytes (address of texel 0,0 of the base map)

 x, y = cartestian coordinates from the above calculations in units of texels (assumed that x is
always a multiple of i and y is a multiple of j)

 A = linear address in bytes

xbt
t

yp
BA

This calculation gives the linear address in bytes for a given MIP level (taking into account L1 cache line
alignment requirements).

7.18.3.6 Compressed Mipmap Layout

Mipmaps of textures using compressed (DXTn, FXT) texel formats are also stored in a monolithic format.
The compressed mipmaps are stored in a similar fashion to uncompressed mipmaps, with each block of
source (uncompressed) texels represented by a 1 or 2 QWord compressed block. The compressed
blocks occupy the same logical positions as the texels they represent, where each row of compressed
blocks represent a 4-high row of uncompressed texels. The format of the blocks is preserved, i.e., there
is no “intermediate” format as required on some other devices.

The following exceptions apply to the layout of compressed (vs. uncompressed) mipmaps:

 Mipmaps are not required to start on even rows, therefore each successive mip level is located
on the texel row immediately below the last row of the previous mip level. Pad rows are neither
required nor allowed.

 The dimensions of the mip maps are first determined by applying the sizing algorithm presented
in Non-Power-of-Two Mipmaps above. Then, if necessary, they are padded out to compression
block boundaries.

7.18.3.7 Surface Arrays

7.18.3.7.1 For all surfaces other than separate stencil buffer

Both 1D and 2D surfaces can be specified as an array. The only difference in the surface state is the
presence of a depth value greater than one, indicating multiple array “slices”.

A value QPitch is defined which indicates the worst-case height for one slice in the texture array. This
QPitch is multiplied by the array index to and added to the vertical component of the address to determine
the vertical component of the address for that slice. Within the slice, the map is stored identically to a
MIPLAYOUT_BELOW 2D surface. MIPLAYOUT_BELOW is the only format supported by 1D non-arrays

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 115

and both 2D and 1D arrays, the programming of the MIP Map Layout Mode state variable is ignored when
using a TextureArray.

The following equation is used for surface formats other than compressed textures:

 jhhQPitch 1110

The input variables in this equation are defined in sections above.

The equation for compressed textures (BC* and FXT1 surface formats) follows:

4

1110 jhh
QPitch

[DevSNB] Errata: Sampler MSAA Qpitch will be 4 greater than the value calculated in
the equation above , for every other odd Surface Height starting from 1 i.e. 1,5,9,13

7.18.3.7.2 For separate stencil buffer [DevILK] to [DevSNB]

The separate stencil buffer does not support mip mapping, thus the storage for LODs other than LOD 0 is
not needed. The following QPitch equation applies only to the separate stencil buffer:

0hQPitch

7.18.4 Cube Surfaces
The 3D pipeline supports cubic environment maps, conceptually arranged as a cube surrounding the
origin of a 3D coordinate system aligned to the cube faces. These maps can be used to supply texel
(color/alpha) data of the environment in any direction from the enclosed origin, where the direction is
supplied as a 3D “vector” texture coordinate. These cube maps can also be mipmapped.

Each texture map level is represented as a group of six, square cube face texture surfaces. The faces
are identified by their relationship to the 3D texture coordinate system. The subsections below describe
the cube maps as described at the API as well as the memory layout dictated by the hardware.

7.18.4.1 Hardware Cube Map Layout

7.18.4.1.1 Hardware Cube Map layout [DevILK+]

The cube face textures are stored in the same way as 2D array surfaces are stored (see section 7.18.3
for details). For cube surfaces, the depth (array instances) is equal to 6. The array index “q” corresponds
to the face according to the following table:

“q” coordinate face

0 +x

116 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

1 -x

2 +y

3 -y

4 +z

5 -z

7.18.4.2 Restrictions

 The cube map memory layout is the same whether or not the cube map is mip-mapped, and whether
or not all six faces are “enabled”, though the memory backing disabled faces or non-supplied levels
can be used by software for other purposes.

 The cube map faces all share the same Surface Format.

7.18.4.3 Cube Arrays [DevSNB+]

Cube arrays are stored identically to 2D surface arrays. A group of 6 consecutive array elements makes
up a single cube map. A cube array with N array elements is stored identically to a 2D array with 6N
array elements.

7.18.5 3D Surfaces
Multiple texture map surfaces (and their respective mipmap chains) can be arranged into a structure
known as a Texture3D (volume) texture. A volume texture map consists of many planes of 2D texture
maps. See Sampler for a description of how volume textures are used.

Figure 7-5. Volume Texture Map

B6688-01

q

u

v

Plane=0

Plane=0
P=0

Mip 0 Mip 1 Mip 2

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 117

Note that the number of planes defined at each successive mip level is
halved. Volumetric texture maps are stored as follows. All of the LOD=0 q-
planes are stacked vertically, then below that, the LOD=1 q-planes are
stacked two-wide, then the LOD=2 q-planes are stacked four-wide below that,
and so on.

The width, height, and depth of LOD “L” are as follows:

 1:?0

1:?0

LheightLheightH

LwidthLwidthW

L

L

This is the same as for a regular texture. For volume textures we add:

 1:?0 LdepthLdepthDL

Cache-line aligned width and height are as follows, with i and j being a
function of the map format as shown in the Alignment Unit Size section.

j

H
ceiljh

i

W
ceiliw

L
L

L
L

*

*

Note that it is not necessary to cache-line align in the “depth” dimension (i.e.
lower case “d”).

The following equations for LODL,q give the base address Cartesian
coordinates for the map at LOD L and depth q.

...

)*)3(*
4

*
2

,)8%((

)*)2(*
2

,)4%((

)*)1(*,*)2%((

)*,0(

32
2

1
1

003,3

21
1

002,2

1001,1

0,0

hqh
D

ceilh
D

ceilhDwqLOD

hqh
D

ceilhDwqLOD

hqhDwqLOD

hqLOD

q

q

q

q

These values are then used as “base addresses” and the 2D MIP Map
equations are used to compute the location within each LOD/q map.

7.18.5.1 Minimum Pitch

The minimum pitch required to store the 3D map may in some cases be
greater than the minimum pitch required by the LOD=0 map. This is due to

q=0

q=1

q=3

q=2

q=4

q=5

q=6

q=7

LOD 0 (Mip 0)

LOD 1 (Mip 1)

q=0 q=1

q=0

LOD 2 (Mip 2)

q=0

q=2

q=1

q=3

LOD 3 (Mip 3)

118 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

cache line alignment requirements that may impact some of the MIP levels requiring additional spacing in
the horizontal direction.

7.19 Surface Padding Requirements

7.19.1 Sampling Engine Surfaces
The sampling engine accesses texels outside of the surface if they are contained in the same cache line
as texels that are within the surface. These texels will not participate in any calculation performed by the
sampling engine and will not affect the result of any sampling engine operation, however if these texels lie
outside of defined pages in the GTT, a GTT error will result when the cache line is accessed. In order to
avoid these GTT errors, “padding” at the bottom and right side of a sampling engine surface is sometimes
necessary.

It is possible that a cache line will straddle a page boundary if the base address or pitch is not aligned. All
pages included in the cache lines that are part of the surface must map to valid GTT entries to avoid
errors. To determine the necessary padding on the bottom and right side of the surface, refer to the table
in Section 7.18.3.4 for the i and j parameters for the surface format in use. The surface must then be
extended to the next multiple of the alignment unit size in each dimension, and all texels contained in this
extended surface must have valid GTT entries.

For example, suppose the surface size is 15 texels by 10 texels and the alignment parameters are i=4
and j=2. In this case, the extended surface would be 16 by 10. Note that these calculations are done in
texels, and must be converted to bytes based on the surface format being used to determine whether
additional pages need to be defined.

For buffers, which have no inherent “height,” padding requirements are different. A buffer must be
padded to the next multiple of 256 array elements, with an additional 16 bytes added beyond that to
account for the L1 cache line.

For cube surfaces, an additional two rows of padding are required at the bottom of the surface. This must
be ensured regardless of whether the surface is stored tiled or linear. This is due to the potential rotation
of cache line orientation from memory to cache.

For compressed textures (BC* and FXT1 surface formats), padding at the bottom of the surface is to an
even compressed row, which is equal to a multiple of 8 uncompressed texel rows. Thus, for padding
purposes, these surfaces behave as if j = 8 only for surface padding purposes. The value of 4 for j still
applies for mip level alignment and QPitch calculation.

For YUV, 96 bpt, and 48 bpt surface formats, additional padding is required. These surfaces require an
extra row plus 16 bytes of padding at the bottom in addition to the general padding requirements.

7.19.2 Render Target and Media Surfaces
The data port accesses data (pixels) outside of the surface if they are contained in the same cache
request as pixels that are within the surface. These pixels will not be returned by the requesting
message, however if these pixels lie outside of defined pages in the GTT, a GTT error will result when the
cache request is processed. In order to avoid these GTT errors, “padding” at the bottom of the surface is
sometimes necessary.

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 119

If the surface contains an odd number of rows of data, a final row below the surface must be allocated. If
the surface will be accessed in field mode (Vertical Stride = 1), enough additional rows below the surface
must be allocated to make the extended surface height (including the padding) a multiple of 4.

7.19.3 Register/State Context [DevSNB+]
 Valid Only When PPGTT Enabled

DW Range

D
W

 C
o

u
n

t

State Field

R
es

to
re

 I
n

h
ib

it
ed

P
P

G
T

T
 E

n
ab

le
d

P
P

G
T

T
 D

is
ab

le
d

P
o

w
er

 C
o

n
te

xt

S
et

 B
ef

o
re

 S
u

b
m

it
ti

n
g

C

o
n

te
xt

?

00h 1 Context Control R S/R X S/R Yes

01h 1 Ring Head Pointer Register R S/R X S/R Yes

02h 1 Ring Tail Pointer Register R R X S/R Yes

03h 1 Batch Buffer Current Head Register NR S/R X S/R No

04h 1 Batch Buffer State Register NR S/R X S/R No

05h 1 PPGTT Directory Cache Valid Register

(Software always populates via host)

R R X S/R Yes

06h 1 Reserved X X X S/R X

07h 1 PD Base Virtual Address Register R R X S/R Yes

08h 1 MFX_STATE_POINTER 0 NR S/R X S/R Yes

09h 1 MFX_STATE_POINTER 1 NR S/R X S/R Yes

0Ah 1 MFX_STATE_POINTER 2 NR S/R X S/R Yes

0Bh 1 MFX_STATE_POINTER 3 NR S/R X S/R Yes

0Ch 1 VCS_CNTR— Media Watchdog Counter Control NR S/R X S/R No

0Dh 1 VCS_THRSH— Media Watchdog Counter
Threshold

NR S/R X S/R No

0Eh 1 Current Context ID Register NR S/R X S/R No

0Fh 1 Reserved X X X S/R X

120 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

7.19.4 The Per-Process Hardware Status Page

The following table defines the layout of the Per-process Hardware Status Page:

DWord
Offset

Description

(3FFh –
020h)

These locations can be used for general purpose via the MI_STORE_DATA_INDEX or
MI_STORE_DATA_IMM instructions.

1F:5 Reserved.

4 Ring Head Pointer Storage: The contents of the Ring Buffer Head Pointer register (register DWord
1) are written to this location either as result of an MI_REPORT_HEAD instruction or as the result of
an “automatic report” (see RINGBUF registers).

3:0 Reserved.

This page is designed to be read by SW in order to glean additional details about a context beyond what
it can get from the context status.

Accesses to this page will automatically be treated as cacheable and snooped. It is therefore illegal to
locate this page in any region where snooping is illegal (such as in stolen memory).

7.19.5 Register/State Context
 Valid Only When PPGTT Enabled

DW Range

D
W

 C
o

u
n

t

State Field

R
en

d
er

 R
es

to
re

 I
n

h
ib

it
ed

P
P

G
T

T
 E

n
ab

le
d

P
P

G
T

T
 D

is
ab

le
d

P
o

w
er

 C
o

n
te

xt

S
et

 B
ef

o
re

 S
u

b
m

it
ti

n
g

C

o
n

te
xt

?

00h 1 Reserved NR X X X X

01h 1 Ring Head Pointer Register R S/R X S/R Yes

02h 1 Ring Tail Pointer Register R R X S/R Yes

03h 1 Reserved NR X X X X

04h 1 Reserved NR X X X X

05h 1 PPGTT Directory Cache Valid Register R R X X Yes

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 121

 Valid Only When PPGTT Enabled

DW Range

D
W

 C
o

u
n

t

State Field

R
en

d
er

 R
es

to
re

 I
n

h
ib

it
ed

P
P

G
T

T
 E

n
ab

le
d

P
P

G
T

T
 D

is
ab

le
d

P
o

w
er

 C
o

n
te

xt

S
et

 B
ef

o
re

 S
u

b
m

it
ti

n
g

C

o
n

te
xt

?

(Software always populates via host)

06h 1 BCS_SWCTRL Register NR S/R X S/R Yes

07h 1 PD Base Virtual Address Register R R X X Yes

08h 1 Reserved NR X X X X

09h 1 Reserved NR X X X X

0Ah 1 Reserved NR X X X X

0Bh 1 Reserved NR X X X X

0Ch 1 Reserved NR X X X X

0Dh 1 Reserved NR X X X X

0Eh 1 Reserved NR X X X X

0Fh 1 Reserved NR X X X X

7.19.6 The Per-Process Hardware Status Page

The following table defines the layout of the Per-process Hardware Status Page:

DWord
Offset

Description

(3FFh –
020h)

These locations can be used for general purpose via the MI_STORE_DATA_INDEX or
MI_STORE_DATA_IMM instructions.

1F:5 Reserved.

4 Ring Head Pointer Storage: The contents of the Ring Buffer Head Pointer register (register DWord
1) are written to this location either as result of an MI_REPORT_HEAD instruction or as the result of
an “automatic report” (see RINGBUF registers).

3:0 Reserved.

122 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

This page is designed to be read by SW in order to glean additional details about a context beyond what
it can get from the context status.

Accesses to this page will automatically be treated as cacheable and snooped. It is therefore illegal to
locate this page in any region where snooping is illegal (such as in stolen memory).

7.19.7 Overall Context Layout

7.19.7.1 Per-Process GTT Disabled

For this case, the entire context image consists of the Register/State Context, including the pipelined
state section.

7.19.7.2 Per-Process GTT Enabled [DevSNB+]

For [DevSNB+], when PPGTT is enabled, the Context Image for the rendering engine consists of 11 4K
pages:

Register/State Context

Probe List

Pipelined State (4 pages, 16KB)

Ring Buffer (4 Pages, 16KB)

Per-Process HW Status Page

The pipelined state is not saved as part of the Register/State Context in this mode, but instead goes into
a separate page.

7.19.8 Register/State Context

7.19.8.1 Register/State Context [DevSNB]

The Register/State Context breaks down into cachelines as follows:

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 123

CL # Description

0h Ring Registers and AS-Specific Pipe Context Data (AS Only)

Contains the only DWs required to be initialized in the image by SW

1h-2h Probe Valid Registers (AS Only)

3h-Ah Non-Pipelined 3D State Context Data

Bh-Dh Media Context

Eh Media PRT

10h-30h Sampler Palette Load (Extended Only)

31h-33h Poly Stipple Pattern (Extended Only)

34h-39h Image Enhancement

0h Pipelined 3D (Stored Here Only When PPGTT Disabled)

13h-1Fh Reserved

Ring Registers and Non-Pipelined Context Details:

 Valid Only When PPGTT Enabled

DW Range

D
W

 C
o

u
n

t

State Field

R
en

d
er

 R
es

to
re

In

h
ib

it
ed

P
P

G
T

T
 E

n
ab

le
d

P
P

G
T

T
 D

is
ab

le
d

P
o

w
er

 C
o

n
te

xt

S
et

 B
ef

o
re

 S
u

b
m

it
ti

n
g

C

o
n

te
xt

?

00h 1 Context Control R S/R X X Yes

01h 1 Ring Head Pointer Register R S/R X S/R Yes

02h 1 Ring Tail Pointer Register R R X S/R Yes

03h 1 Batch Buffer Current Head Register NR S/R X X No

04h 1 Batch Buffer State Register [DevSNB] NR NR S/R X X
[DevS
NB]
NR

No

05h 1 PPGTT Directory Cache Valid Register R R X X Yes

06h 1 Reserved (for PPGTT Directory Cache Valid
High)

NR X X X X

124 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

 Valid Only When PPGTT Enabled

DW Range

D
W

 C
o

u
n

t

State Field

R
en

d
er

 R
es

to
re

In

h
ib

it
ed

P
P

G
T

T
 E

n
ab

le
d

P
P

G
T

T
 D

is
ab

le
d

P
o

w
er

 C
o

n
te

xt

S
et

 B
ef

o
re

 S
u

b
m

it
ti

n
g

C

o
n

te
xt

?

07h 1 PD Base Virtual Address Register R R X X Yes

08h 1 Read Offset in Piipelined State Page and PAVP
flags ((8 CL aligned)

NR S/R X X No

09h 1 Committed Vertex Number NR S/R X X No

0Ah 1 Committed Instance ID NR S/R X X No

0Bh 1 Committed Primitive ID NR S/R X X No

0Ch 1 Super Span Count NR S/R X X No

0Dh 1 VDI Walker Data NR S/R X X No

0Eh 1 CCID Register NR X X X X

0Fh 1 Reserved NR X X X X

10h – 1Fh 16 Probe Valid Registers R S/R X X Yes

20h – 2Fh 16 Probe Valid Registers R S/R X X Yes

30h – 31h 2 IA_VERTICES_COUNT Register NR S/R S/R S/R No

32h – 33h 2 IA_PRIMITIVES_COUNT Register | | | | |

34h – 35h 2 VS_INVOCATION_COUNT Register V V V V V

36h – 37h 2 GS_INVOCATION_COUNT Register

38h – 39h 2 Num Primitives Written Register

3Ah – 3Bh 2 Primitive Storage Needed Register

3Ch 1 Streaming Vertex Buffer Index 0

3Dh 1 Streaming Vertex Buffer Index 1

3Eh 1 Streaming Vertex Buffer Index 2

3Fh 1 Streaming Vertex Buffer Index 3

40h – 41h 2 GS_PRIMITIVES_COUNT Register

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 125

 Valid Only When PPGTT Enabled

DW Range

D
W

 C
o

u
n

t

State Field

R
en

d
er

 R
es

to
re

In

h
ib

it
ed

P
P

G
T

T
 E

n
ab

le
d

P
P

G
T

T
 D

is
ab

le
d

P
o

w
er

 C
o

n
te

xt

S
et

 B
ef

o
re

 S
u

b
m

it
ti

n
g

C

o
n

te
xt

?

42h –43h 2 CL_INVOCATION_COUNT Register

44h – 45h 2 CL_PRIMITIVES_COUNT Register

46h – 47h 2 PS_INVOCATION_COUNT Register

48h – 49h 2 PS_DEPTH_COUNT Register

4Ah 1 CACHE_MODE_0 Register

4Bh 1 CACHE_MODE_1 Register

4Ch 1 Reserved

4Dh 1 INSTPM Register

4Eh 1 EXCC Register

4Fh 1 MI_MODE Register

50h 1 Max Streaming Vertex Buffer Index 0

51h 1 Max Streaming Vertex Buffer Index 1

52h 1 Max Streaming Vertex Buffer Index 2

53h 1 Max Streaming Vertex Buffer Index 3

54h 1 Render Watchdog Counter Control

55h 1 Render Watchdog Counter Threshold

56h 1 FBC RC Base Address

57h 1 Reserved

58h 1 RVSYNC Register

59h 1 RBSYNC Register

5Ah – 5Bh 2 GW Timestamp Delta Value

5Ch 1 TIMESTAMP Register (LSB)

126 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

 Valid Only When PPGTT Enabled

DW Range

D
W

 C
o

u
n

t

State Field

R
en

d
er

 R
es

to
re

In

h
ib

it
ed

P
P

G
T

T
 E

n
ab

le
d

P
P

G
T

T
 D

is
ab

le
d

P
o

w
er

 C
o

n
te

xt

S
et

 B
ef

o
re

 S
u

b
m

it
ti

n
g

C

o
n

te
xt

?

5Dh 1 VFE Debug Counter

5E 1 ARB_OFF_CTR Register

5Fh 1 ARB_OFF_THRSH Register

60h 1 PIPELINE_SELECT

61h – 6Ah 10 STATE_BASE_ADDRESS

6Bh – 6Fh 5 Reserved

70h – 71h 2 STATE_SIP

72h – 75h 4 3DSTATE_DRAWING_RECTANGLE

76h – 78h 3 3DSTATE_AA_LINE_PARAMS

79h – 7Fh 7 3DSTATE_DEPTH_BUFFER

80h – 84h 5 Reserved

85h – 86h 2 3DSTATE_POLY_STIPPLE_OFFSET

87h – 89h 3 3DSTATE_LINE_STIPPLE

8Ah – 8Fh 6 Reserved

90h – 92h 3 3DSTATE_HIER_DEPTH_BUFFER

93h – 95h 3 3DSTATE_STENCIL_BUFFER

96h – 97h 2 3DSTATE_CLEAR_PARAMS

98h – 99h 2 3DSTATE_MONOFILTER_SIZE

9Ah – 9Ch 3 3DSTATE_MULTISAMPLE

9Dh – 9Fh 3 Reserved

A0h – A3h 4 3DSTATE_CHROMA_KEY (0)

A4h – A7h 4 3DSTATE_CHROMA_KEY (1)

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 127

 Valid Only When PPGTT Enabled

DW Range

D
W

 C
o

u
n

t

State Field

R
en

d
er

 R
es

to
re

In

h
ib

it
ed

P
P

G
T

T
 E

n
ab

le
d

P
P

G
T

T
 D

is
ab

le
d

P
o

w
er

 C
o

n
te

xt

S
et

 B
ef

o
re

 S
u

b
m

it
ti

n
g

C

o
n

te
xt

?

A8h – ABh 4 3DSTATE_CHROMA_KEY (2)

ACh – AFh 4 3DSTATE_CHROMA_KEY (3)

B0h – B7h 8 MEDIA_VFE_STATE

B8h – BBh 4 MEDIA_CURBE_LOAD

BCh – BFh 4 MEDIA_INTERFACE_DESCRIPTOR_LOAD

C0h - DFh 32 GATEWAY_BARRIER

E0h – EFh 16 Media Object PRT Data

F0h – FFh 16 Reserved

100h – 200h 257 3DSTATE_SAMPLER_PALETTE_LOAD_0

201h – 206h 6 Reserved

207h – 307h 257 3DSTATE_SAMPLER_PALETTE_LOAD_1

308h – 30Fh 8 Reserved

310h – 330h 33 3DSTATE_POLY_STIPPLE_PATTERN

331h – 33Fh 15 Reserved

340h – 34Fh 16 FMD Registers (MMIO 5000h-503Fh)

350h – 359h 10 FMD Registers (MMIO 5040h-5067h)

35Ah – 35Bh 2 STD Ymin/Ymax/#skin pixels

(MMIO 5070h-5077h)

35Ch – 35Fh 4 Reserved

350h – 39Fh 64 ACE Histogram Registers (bins 0–127)

(MMIO 5080h-517Fh)

128 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

 Valid Only When PPGTT Enabled

DW Range

D
W

 C
o

u
n

t

State Field

R
en

d
er

 R
es

to
re

In

h
ib

it
ed

P
P

G
T

T
 E

n
ab

le
d

P
P

G
T

T
 D

is
ab

le
d

P
o

w
er

 C
o

n
te

xt

S
et

 B
ef

o
re

 S
u

b
m

it
ti

n
g

C

o
n

te
xt

?

0h – 2h 3 3DSTATE_INDEX_BUFFER

3h – 87h 133 3DSTATE_VERTEX_BUFFERS

88h – CCh 69 3DSTATE_VERTEX_ELEMENTS

CDh 1 3DSTATE_VF_STATISTICS

CEh – CFh 2 Reserved

D0h – D3h 4 3DSTATE_BINDING_TABLE_POINTERS

D4h – D6h 3 3DSTATE_URB

D7h – DAh 4 3DSTATE_CC_STATE_POINTERS

DBh – DEh 4 3DSTATE_SAMPLER_STATE_POINTERS

DFh – E2h 4 3DSTATE_VIEWPORT_STATE_POINTERS

E3h – E4h 2 3DSTATE_SCISSOR_STATE_POINTERS

E5h – EAh 6 3DSTATE_VS

EBh – F1h 7 3DSTATE_GS

F2h – F5h 4 3DSTATE_CLIP

F6h – 109h 20 3DSTATE_SF

10Ah – 112h 9 3DSTATE_WM

113h – 114h 2 3DSTATE_SAMPLE_MASK

115h – 119h 5 3DSTATE_CONSTANT_VS

11Ah – 11Eh 5 3DSTATE_CONSTANT_GS

11Fh – 123h 5 3DSTATE_CONSTANT_PS

124h – 1FFh 220 Reserved

Doc Ref #: IHD-OS-V1 Pt1 – 05 11 129

7.19.9 Pipelined State Page
This page is used a scratch area for the pipeline to store pipelined state that is not referenced indirectly.
Under no circumstances should SW read from or write to this page.

7.19.10 Ring Buffer
This page is used a scratch area for the pipeline to store ring buffer commands that need to be reissued.
Under no circumstances should SW read from or write to this page.

7.19.11 The Per-Process Hardware Status Page

The following table defines the layout of the Per-process Hardware Status Page:

DWord
Offset

Description

(3FFh –
020h)

These locations can be used for general purpose via the MI_STORE_DATA_INDEX or
MI_STORE_DATA_IMM instructions.

1F:1C Reserved.

1B Context Save Finished Timestamp

1A Context Restore Complete Timestamp

19 Pre-empt Request Received Timestamp

18 Last Switch Timestamp

17:12 Reserved.

11:10 Probe List Slot Fault Register (2 DWs)

F:5 Reserved.

4 Ring Head Pointer Storage: The contents of the Ring Buffer Head Pointer register (register DWord
1) are written to this location either as result of an MI_REPORT_HEAD instruction or as the result of
an “automatic report” (see RINGBUF registers).

3:0 Reserved.

This page is designed to be read by SW in order to glean additional details about a context beyond what
it can get from the context status.

Accesses to this page will automatically be treated as cacheable and snooped. It is therefore illegal to
locate this page in any region where snooping is illegal (such as in stolen memory).

130 Doc Ref #: IHD-OS-V1 Pt1 – 05 11

Revision History

Revision
Number

Description Revision Date

1.0 First 2011 OpenSource edition May 2011

§§

