

Doc Ref #: IHD-OS-V1 Pt3 – 05 11

Intel® OpenSource HD Graphics
Programmer’s Reference Manual (PRM)
Volume 1 Part 3: Graphics Core – Memory Interface
and Commands for the Render Engine (SandyBridge)

For the 2011 Intel Core Processor Family

May 2011

Revision 1.0

NOTICE:

This document contains information on products in the design phase of development, and Intel
reserves the right to add or remove product features at any time, with or without changes to this
open source documentation.

2 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

Creative Commons License

You are free to Share — to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any
way that suggests that they endorse you or your use of the work).

No Derivative Works. You may not alter, transform, or build upon this work.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them.

The SandyBridge chipset family, Havendale/Auburndale chipset family, Intel® 965 Express Chipset
Family, Intel® G35 Express Chipset, and Intel® 965GMx Chipset Mobile Family Graphics Controller may
contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order. I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a
subset of the I2C bus/protocol and was developed by Intel®.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips
Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2011, Intel Corporation. All rights reserved.

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 3

Contents
1. Render Engine Command Streamer.. 4

1.1 Registers in Render Engine ... 4
1.1.1 Introduction... 4
1.1.2 Virtual Memory Control .. 6
1.1.3 Probe List Registers... 9
1.1.4 Context Save Registers ... 11
1.1.5 Mode and Misc Ctrl Registers .. 13
1.1.6 RINGBUF — Ring Buffer Registers ... 39
1.1.7 Watchdog Timer Registers... 46
1.1.8 Interrupt Control Registers ... 48
1.1.9 Logical Context Support... 56
1.1.10 Pipelines Statistics Counter Registers ... 68
1.1.11 Performance Statistics Registers ... 75

1.2 Memory Interface Commands for Rendering Engine .. 95
1.2.1 Introduction... 95
1.2.2 Software Synchronization Commands... 95
1.2.3 MI_ARB_CHECK ... 96
1.2.4 MI_ARB_ON_OFF ... 97
1.2.5 MI_BATCH_BUFFER_END... 98
1.2.6 MI_CONDITIONAL_BATCH_BUFFER_END .. 98
1.2.7 MI_BATCH_BUFFER_START... 100
1.2.8 MI_CLFLUSH... 103
1.2.9 MI_DISPLAY_FLIP .. 105
1.2.10 MI_FLUSH.. 109
1.2.11 MI_LOAD_REGISTER_IMM.. 111
1.2.12 MI_NOOP... 113
1.2.13 Surface Probing.. 114
1.2.14 MI_REPORT_HEAD .. 114
1.2.15 MI_SEMAPHORE_MBOX.. 115
1.2.16 MI_SET_CONTEXT ...117
1.2.17 MI_STORE_DATA_IMM .. 120
1.2.18 MI_STORE_DATA_INDEX .. 121
1.2.19 MI_STORE_REGISTER_MEM.. 123
1.2.20 MI_SUSPEND_FLUSH .. 125
1.2.21 MI_UPDATE_GTT ... 126
1.2.22 MI_USER_INTERRUPT... 127
1.2.23 MI_WAIT_FOR_EVENT... 128

4 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1. Render Engine Command Streamer
[DevSNB-D2] On hard boot, the command streamer must be programmed as follows to work-around a
known issue that affects power management. This is expected to be done in BIOS

1) Disable CSunit level clock gating

2) Reset Render pipe

1.1 Registers in Render Engine

1.1.1 Introduction
This chapter describes the memory-mapped registers associated with the Memory Interface, including
brief descriptions of their use. The functions performed by some of these registers are discussed in more
detail in the Memory Interface Functions, Memory Interface Instructions, and Programming Environment
chapters.

The registers detailed in this chapter are used across the GEN6 family of products and are extentions to
previous projects. However, slight changes may be present in some registers (i.e., for features added or
removed), or some registers may be removed entirely. These changes are clearly marked within this
chapter.

1.1.1.1 ARB_MODE – Arbiter Mode Control Register [DevSNB]

ARB_MODE – Arbiter Mode Control Register
Register Type: MMIO_CS
Address Offset: 4030h
Project: DevSNB+
Default Value: 00000000h
Access: R/W
Size (in bits): 32
Trusted Type: 1

Bit Description

31:16 Mask bits Project: DevSN
B+

Format: U16

Mask bits act as write enables for the bits in the lower bits of this register

15:9 Reserved Project: All Format: MBZ

8 Reserved

7:6 Reserved Project: All Format:

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 5

ARB_MODE – Arbiter Mode Control Register
5:4 Address Swizzling for

Tiled-Surfaces
Project: All Format: U1

This register location is updated via GFX Driver prior to enabling DRAM accesses. Driver needs to
obtain the need for memory address swizzling via DRAM configuration registers and set the following
bits (in Display Engine and Render/Media access streams)

Value Name Description Project

00 No address Swizzling No address Swizzling DevSNB+

01 Address bit[6] needs
to be swizzled for tiled
surfaces

Address bit[6] needs
to be swizzled for tiled
surfaces

DevSNB+

10 Reserved DevSNB+

11 Reserved DevSNB+
3:0 Reserved

1.1.1.2 ARB_WR_GAC_GAM3 – GAC_GAM WR Arbitration Register 3

ARB_WR_GAC_GAM3
Register Type: MMIO_CS
Address Offset: 43FCh
Pwrject: DevSNB+
Default Value: 00000000h
Access: R/W
Size (in bits): 32
Trusted Type: 1

Bit Description

31:28 Reserved

27 Priority for entry 7
26:24 Goto field for entry 7 when request vector is 11.
23:21 Goto field for entry 7 when request vector is 10.
20:18 Goto field for entry 7 when request vector is 01.
17:15 Goto field for entry 7 when request vector is 00.
14:13 Reserved

12 Priority for entry 6
11:9 Goto field for entry 6 when request vector is 11.

8:6 Goto field for entry 6 when request vector is 10.
5:3 Goto field for entry 6 when request vector is 01.
2:0 Goto field for entry 6 when request vector is 00.

6 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.2 Virtual Memory Control

1.1.2.1 HWS_PGA — Hardware Status Page Address Register

HWS_PGA — Hardware Status Page Address Register
Register
Type:

MMIO_CS

Address
Offset:

4080h

Project: All
Default
Value:

UUUU0000h

Access: R/W
Size (in
bits):

32

Trusted
Type:

1

This register is used to program the 4 KB-aligned System Memory address of the Hardware Status
Page used to report hardware status into (typically cacheable) System Memory. [DevSNB] This
address in this register is translated using the Global GTT in memory. The mapping type of the GTT
entry determines the snoop nature of the transaction to memory.

Bit Description

31:12 Address

Project: All

Security: None

Address: GraphicsAddress[31:12]

This field is used by SW to specify Bits 31:12 of the 4 KB-aligned System Memory
address of the 4 KB page known as the “Hardware Status Page”. The Global GTT is
used to map this page from the graphics virtual address to physical address

Programming Notes

If the Per-Process Virtual Address Space is set, HW requires that the status page is
programmed to allow for the context switch status to be reported

11:0 Reserved Project: All Format: MBZ

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 7

The following table defines the layout of the Hardware Status Page:

DWord
Offset

Description

0 Interrupt Status Register Storage: The content of the ISR register is written to this
location whenever an “unmasked” bit of the ISR (as determined by the HWSTAM
register) changes state.

3:1 Reserved. Must not be used.

4 Ring Head Pointer Storage: The contents of the Ring Buffer Head Pointer register
(register DWord 1) are written to this location either as result of an
MI_REPORT_HEAD instruction or as the result of an “automatic report” (see
RINGBUF registers).

Fh:5h Reserved. Must not be used.

10h-1Bh Context Status DWords.

1Ch-1Eh Reserved. Must not be used.

1Fh Last Written Status Offset.

20h-3FFh These locations can be used for general purpose via the MI_STORE_DATA_INDEX or
MI_STORE_DATA_IMM instructions.

1.1.2.2 PP_DIR_BASE – Page Directory Base Register

PP_DIR_BASE – Page Directory Base Register
Register
Type:

MMIO_CS

Address
Offset:

{DevSNB]
Write offset: 0x2228
Read offset: 0x2518

Project: All
Default
Value:

0000 0000h

Access: R/W
Size (in bits): 32
This register contains the offset into the GGTT where the (current context’s) PPGTT page directory
begins. This register is restored with context. The Page Directory Base Address is set by SW only
by modifying the value of this register in the context image such that the new value is restored the
next time the context runs. A write via MMIO to this register triggers the render pipe to fetch all PDs.

Programming Note: The MBC Driver Boot Enable bit in MBCTL register must be set before this
register is written to upon boot up (including S3 exit)

Bit Description

8 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

PP_DIR_BASE – Page Directory Base Register
30:16 Page Directory Base Offset

Project: All

Default Value: 0h

Format: U15

Range [0,GGTT Size in cachelines - 1]

Contains the cacheline (64-byte) offset into the GGTT where the page directory begins.

15:1 Reserved Project: All Format: MBZ
0 PD Load Busy Project: DevS

NB+
Format
:

Valid

This is a read-only field that indicates if the page directories are currently being
fetched and loaded.

1.1.2.3 PP_DCLV – PPGTT Directory Cacheline Valid Register

PP_DCLV – PPGTT Directory Cacheline Valid Register
Register Type: MMIO_CS
Address
Offset:

2220h

Project: All
Default Value: 0h
Access: {DevSNB] Write only. Cannot read via MMIO
Size (in bits): 64

This register controls update of the on-chip PPGTT Directory Cache during a context restore. Bits that are set will
trigger the load of the corresponding 16 directory entry group. This register is restored with context (prior to
restoring the on-chip directory cache itself). This register is also restored when switching to a context whose
LRCA matches the current CCID if the Force PD Restore bit is set in the context descriptor.

The context image of this register must be updated and maintained by SW; SW should not normally need to read
this register.

This register can also effectively be used to limit the size of a processes’ virtual address space. Any access by a
process that requires a PD entry in a set that is not enabled in this register will cause a fatal error, and no fetch of
the PD entry will be attempted

Bit Description

63:32 Reserved Project: All Format: MBZ

31:0 PPGTT Directory Cache
Restore [1..32] 16 entries

Project: All Format: Array:Enable

If set, the [1st..32nd] 16 entries of the directory cache are considered valid and will be brought in
on context restore. If clear, these entries are considered invalid and fetch of these entries will not
be attempted.

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 9

1.1.3 Probe List Registers
Surface probing is a procedure performed at the beginning of a rendering sequence (command buffer) to
verify that all required surfaces in a process’ virtual address space are actually present in physical
memory prior to beginning the sequence. A different process can then be switched to and run while the
required surfaces are being brought into memory (by SW). The register work in concert with the probe
commands (see Memory Interface Commands for Rendering) to provide this interface. “Slots” are the
designated places in a processes’ context image where probes (surface base addresses) are stored. The
stored probes are used by SW to determine which surfaces a context requires, and are also used by HW
to re-validate that surfaces are resident upon a context restore.

See MI_PROBE in Memory Interface Commands for Rendering for more details.

Note these register should only be used when Surface Fault Enable bit is set in GFX_MODE.

1.1.3.1 PRBL_SF – Probe List Slot Fault Register

PRBL_SF – Probe List Slot Fault Register
Register Type: MMIO_CS
Address
Offset:

2680h {DevSNB]

Project: All
Default Value: 0000 0000h
Access: RO
Size (in bits): 64
This register contains the fault bits for the probe slots, one bit for each cacheline of the 1024 probe slot memory
area. It cannot be directly written by SW. The image of this register in the per-process HW status page can be
read after a context switch (due to surface fault) to determine which cachelines of the probe list contain faulting
probes. This register is saved with context. It is not restored but recomputed while re-validating the probe list
on a context restore.

Bit Description

63:0 Slot Fault Line 63:0 Project: All Format: Array:Enable

If set, indicates that the corresponding probe list cacheline (in memory) contains a probe that has
faulted.

This interface is used to signal page faults that occur during access of per-process virtual graphics
memory. A fault of this nature will stall the 3D/Media pipeline behind the fault, and all new TLB requests
from anywhere in the pipeline will be stalled. Faults are recorded in a fault log consisting of 32 fault slots.
Page faults are non-recoverable events and will cause hardware to hang.

10 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.3.2 PP_PFIR – PPGTT Page Fault Indication Register

PP_PFIR – PPGTT Page Fault Indication Register
Register Type: MMIO_CS
Address Offset: 4510h
Project: All
Default Value: 0000 0000h
Access: R/WC
Size (in bits): 32
This register contains the flags for page faults. All bits should be cleared at once by writing FFFFFFFFh to this
register once all faults have been serviced. No additional bits of this register will become set (signaling additional
faults) between the time the page fault interrupt has been sent to the host and the time the host clears the Fault In
Service bit indicating it is done servicing faults

Bit Description

31:0 Page Fault [31:0] Project: All Format: Array:Flag

Fault indicator for page fault log index [31:0]. When set, this flag indicates that a page fault is
outstanding. The invalid page address that was accessed can be read from fault entry [31:0]. SW
should clear this bit by writing a ‘1’ to it to indicate to HW that the fault has been serviced (the page
has been mapped and should now be valid).

1.1.3.3 PP_PFD[0:31] – PPGTT Page Fault Data Registers

PP_PFD[0:31] – PPGTT Page Fault Data Registers

Register Type: MMIO_CS
Address Offset: 4580h
Project: All
Security: None
Default Value: 0000 6820h
Access: RO
Size (in bits): 32

The GTT Page Fault Log entries can be read from these registers.

4580h-4583h: Fault Entry 0
…
45FCh-45FFh: Fault Entry 31

Bit Description

31:12 Fault Entry Page Address

Project: All

Address: GraphicsAddress[31:12]

This RO field contains the faulting page address for this Fault Log entry. This field will contain a valid
fault address only if the bit in the GTT Page Fault Indication Register corresponding with the address
offset of this entry is set.

11:0 Reserved Project: All Format: MBZ

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 11

1.1.4 Context Save Registers

1.1.4.1 BB_PREEMPT_ADDR—Batch Buffer Head Pointer Preemption Register

BB_PREEMPT_ADDR—Batch Buffer Head Pointer
Preemption Register

Register
Type:

MMIO_CS

Address
Offset:

2148h

Project: All

Default
Value:

0000 0000h

Access: RO

Size (in
bits):

32

This register contains the current DWord-aligned Graphics Memory Address MI_ARB_CHECK in a
batch buffer where the UHPTR register was valid. The value of the pointer below will be the
address of the MI_ARB_CHECK that caused the head pointer to move.

This register is invalid if the previous preemption due to an MI_ARB_CHECK executed in the ring.

Programming Restriction:
This register should NEVER be programmed by driver, this is for HW internal use only.

Bit Description

31:2 Batch Buffer
Head Pointer

Project: All Format: GraphicsAddress[31:2]

This field specifies the DWord-aligned Graphics Memory Address MI_ARB_CHECK
in a batch buffer where the UHPTR register was valid.

1:0 Reserved Project: All Format: MBZ

12 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.4.2 BB_START_ADDR—Batch Buffer Start Head Pointer Register

BB_START_ADDR—Batch Buffer Start Head Pointer Register
Register Type: MMIO_CS
Address
Offset:

2150h

Project: All
Default Value: 0000 0000 0000 0000h
Access: RO
Size (in bits): 32

This register contains the address specified in the last MI_START_BATCH_BUFFER command.

Programming Restriction:
This register should NEVER be programmed by driver, this is for HW internal use only.

Bit Description

31:2 Batch Buffer Start
Head Pointer

Project: All Format: GraphicsAddress[31:2]

This field specifies the DWord-aligned Graphics Memory Address where the last initiated Batch
Buffer starting address.

1:0 Reserved Project: All Format: MBZ

1.1.4.3 BB_OFFSET—Batch Buffer Address Difference Register

BB_ADDR_DIFF—Batch Address Difference Register
Register Type: MMIO_CS
Address Offset: 2154h
Project: All
Default Value: 0000 0000 0000 0000h
Access: RO
Size (in bits): 32

This register contains the difference between the start of the last batch and where the last initiated
Batch Buffer is currently fetching commands.

Programming Restriction:
This register should NEVER be programmed by driver, this is for HW internal use only.

Bit Description

31:2 Batch Buffer
Address Difference

Project: All Format: GraphicsAddress[31:2]

This field specifies the DWord-aligned difference between the starting address of the batch
buffer and where the last initiated Batch Buffer is currently fetching commands.

1:0 Reserved Project: All Format: MBZ

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 13

1.1.5 Mode and Misc Ctrl Registers

1.1.5.1 MI_MODE — Mode Register for Software Interface

MI_MODE — Mode Register for Software Interface
Register Type: MMIO_CS
Address Offset: 209Ch
Project: All
Default Value: 00000000h
Access: R/W
Size (in bits): 32
The MI_MODE register contains information that controls software interface aspects of the Memory
Interface function.

Bit Description

31:16 Masks

Format: Mask[15:0]

A “1” in a bit in this field allows the modification of the corresponding bit in Bits 15:0

15 Suspend Flush

Project: DevSNB

Default Value: 0h DefaultVaueDesc

Format: U1 FormatDesc

Value Name Description Project

0h No Delay HW will not delay flush, this bit will get
cleared by MI_SUSPEND_FLUSH as
well

All

1h Delay Flush HW will delay the flush because of sync
flush or VTD regimes until reset, this bit
will get set by MI_SUSPEND_FLUSH as
well

All

Programming Notes Project

This should only be written to from the ring using
MI_SUSPEND_FLUSH. It is considered undefined if written by
software through MMIO

All

14 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

MI_MODE — Mode Register for Software Interface
14 Async Flip Performance mode

Project: All

Default Value: 0h

Format: U1

[DevSNB] This bit must be set to ‘1’

Value Name Description Project

0h Performance
mode enabled

The stall of the flip event is in the windower All

1h Performance
mode disabled

The stall of the flip event is in the command
stream

All

13 Flush Performance mode

Project: All

Default Value: 0h

Format: U1

Value Name Description Project

0h run fast
restore

No NonPipelined SV flush. All

1h run slow
legacy restore

With NonPipelined SV flush. All

12 MI_FLUSH Enable

Project: DevSNB

Default Value: 0h DefaultVaueDesc

Format: Enable

PIPE_CONTROL is a superset of MI_FLUSH. Since MI_FLUSH is redundant, it will be
removed in future projects beyond GT. By default, it is disabled

Value Name Description Project

0h Disable If an MI_FLUSH is parsed with this bit
disabled, the parser will stall and the
parser error bit will be set in the ESR
creating an interrupt

DevSNB

1h Enable If an MI_FLUSH is parsed with this bit
enabled, the parser will execute the
legacy command according to the bspec

DevSNB

11 Invalidate UHPTR enable Project: All Format: Enable

If bit set H/W clears the valid bit of UHPTR (2134h, bit 0) when current active head pointer is
equal to UHPTR.

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 15

MI_MODE — Mode Register for Software Interface
10 Reserved Project: All Format: MBZ

9 Rings Idle

Project: All

Default Value: 0h

Format: U1

Read Only Status bit

Value Name Description Project

0h Not Idle Parser not Idle or Ring Arbiter not Idle. All

1h Idle Parser Idle and Ring Arbiter Idle. All

Programming Notes Project

Writes to this bit are not allowed. All

8 Stop Rings

Project: All

Default Value: 0h

Format: U1

Value Name Description Project

0h Normal Operation. All

1h Parser is turned off and Ring arbitration is turned
off.

All

Programming Notes Project

Software must set this bit to force the Rings and Command Parser to Idle.
Software must read a “1” in Ring Idle bit after setting this bit to ensure that the
hardware is idle.

All

Software must clear this bit for Rings to resume normal operation. All

7 Vertex Shader Cache Mode

Project: All

Default Value: 0h

Format: U1

Value Name Description Project

0h Non-LRA Non-LRA mode of allocation. Vertex shader cache
is allocated on the basis of the reference count of
individual vertices

All

1h LRA LRA mode of allocation. Used for validation
purposes.

All

16 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

MI_MODE — Mode Register for Software Interface
6 Vertex Shader Timer Dispatch Enable

Project: All

Default Value: 0h

Format: Enable

Value Name Description Project

0h Disable Disable the timer for dispatch of single vertices
from the vertex shader. Vertex shader will try to
collect 2 vertices before a dispatch

All

1h Enable Enable the timer for dispatch of single vertices.
Dispatch a single vertex shader thread after the
timer expires.

All

Programming Notes Project

To avoid deadlock conditions in hardware this bit needs to be set for normal
operation.

All

5 Reserved Project: All Format: MBZ

4 Enable Software Element Configuration

Project: DevSNB+

Default Value: 0h

Format: Enable

Value Name Description Project

0h Disable Hardware will choose how to pass elements down
the quad pipe of the Vertex Fetch

DevSN
B

1h Enable Software will be able to choose which
configuration to pass elements down the Vertex
Fetch pipeline. See the
3D_VERTEX_ELEMENTS command in the
3D_pipeline chapter for more details.

DevSN
B

3:1 Reserved Project: All Format: MBZ

Read/Write

0 Mask IIR disable Project: All Format: Disable

Mask IIR disable. Nominally the Interrupt controller masks interrupts in the IIR register if an
interrupt acknowledge from the 3gio interface is pending. Setting this bit to a “1” allows
interrupts to be visible to the interrupt controller while an interrupt acknowledge is pending.

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 17

1.1.5.2 GFX_MODE – Graphics Mode Register

GFX_MODE
Register Type: MMIO
Address
Offset:

2520h {DevSNB]

Project: All
Default Value: 00000800h {DevSNB]

Access: R/W
Size (in bits): 32
Trusted Type: 1

This register contains a control bit for the PPGTT functions. This register is not saved/restored with
context. This register is not reset with single-engine GFX reset; it is only reset by a global graphics
reset (all engines including display).

Bit Description

31:16 Mask Bits

Format: Mask[15:0]

Must be set to modify corresponding bit in Bits 15:0. (All implemented bits)

15 Reserved

14 Reserved Project: All Format: MBZ

13 Flush TLB
invalidation Mode

Project: All Format: U1

This field controls the invalidation if the TLB cache inside the hardware. When enabled
this bit limits the invalidation of the TLB only to batch buffer boundaries or to pipe_control
commands which have the TLB invalidation bit set. If disabled, the TLB caches are
flushed for every full flush of the pipeline.

[DevSNB A] This bit must be ‘0’

Value Name Description Project

0h Disabled when ‘0’, the TLB caches are flushed for
every full flush of the pipeline.

{DevSNB]

1h Enabled when ‘1’ only send TLB inv on batch buffer
boundaries or when PIPE_CONTROL w/
TLB inv bit is set

{DevSNB]

12 Surface Fault
Enable

Project: All Format: U1

When set, surface and page fault will be handled in HW. It is undefined to use MI_PROBE
and MI_UNPROBE if this bit is clear

0: surface/page fault handling disabled (default)

18 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

GFX_MODE
11 Replay Mode

Project: All

Default Value: 1h midtriangle

Mask: MMIO(0x2000)#16

Format: U1 Context Switch
Granularity

This field controls the granularity of the replay mechanism when coming back into a
previously preempted context.

Value Name Description Project

0h mid-triangle
preemption

Super span Level. Pipeline is not
flushed. This implies commands parsed
are executed speculatively and may not
complete before a context switch.

All

1h mid-cmdbuffer
preemption

Drawcall Level. Pipeline is flushed
before switching to the next context.
Commands parsed are commited to
completing before a context switch

All

Programming Notes

 A fixed function pipe flush is required before modifying this field

Unless pre-emption at a mid-triangle is required the bit must be set.

10 Reserved

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 19

GFX_MODE
9 Per-Process GTT Enable

Project: All

Default Value: 0h Disabled

Format: Enabled Per-Process GTT
Enable

Value Name Description Project

0h PPGTT
Disable

When clear, the Global GTT will be
used to translate memory access from
designated commands and for
commands that select the PPGTT as
their translation space in single-context
scheduling mode.

All

1h PPGTT
Enable

When set, the PPGTT will be used to
translate memory access from
designated commands and for
commands that select the PPGTT as
their translation space. The PD Offset
and PD Cacheline Valid registers must
be set in all pipes (blitter, MFX, render)
before any workload is submitted to
hardware. This mode enables support
for big pages (32k)

All

Programming Notes:

 [DevSNB A/B {W/A}]: If RC6 is enabled and PPGTT mode is used, software
must program the CTX_WA_PTR (0x2058) on boot for power context. Inside
the work-around batch memory, there must be several
MI_LOAD_REGISTER_IMM (LRI) commands to reload the PD Offset.

o LRI address = 0x02228, data = Render PD base addr (statically
defined)

o LRI address = 0x12228, data = MFX PD base addr (statically defined)

o LRI address = 0x22228, data = Blitter PD base addr (statically
defined)

 [DevSNB] PPGTT memory writes by MI_* (such as MI_STORE_DATA_IMM)
and PIPE_CONTROL are not supported.

8 Reserved Project:

7:0 Reserved Project: All Format: MBZ

20 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.5.3 GT_MODE – GT Mode Register [DevSNB+]

GT_MODE – GT Mode Register
Register Type: MMIO_CS[DevSNB]

Address Offset: 20D0h[DevSNB]

Project: DevSNB+
Default Value: 00000000h
Access: R/W
Size (in bits): 32
Trusted Type: 1
This Register is used to control the 6EU and 12EU configuration for SNB.
Write 0x01FF01FF to this register enables the 6EU mode.
[DevSNB A] Software must perform a read-modify-write sequence to update register after initial value is written. Also,
every write must have value [31:16] = 0xFFFF

Bit Description

31:16 Mask Bits

Format: Mask[15:0]

Must be set to modify corresponding bit in Bits 15:0. (All implemented bits)

15 Reserved

14:11 Reserved :

14:13 Reserved

14:13 Reserved Project: Format: MBZ

12:11 Reserved

10 Reserved

9 WIZ Hashing Mode High Bit

Project: DevSNB-B+

Default Value: 1h

Format: U1

This field adds additional hashing modes in combination with the WIZ Hashing Mode field. The Value
column in the table below refers to this field (high bit) and the WIZ Hashing Mode field (low bit).

This field is don’t care if the Hashing Disable bit is set.

Value Name Description Project

0h 8x8 Checkerboard hashing DevSNB-B+

1h 8x4 Checkerboard hashing DevSNB-B+

2h 16x4 Checkerboard hashing DevSNB-B+

3h Reserved

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 21

GT_MODE – GT Mode Register
8 Full Rate Sampler Disable

Project: DevSNB

Default Value: 0h

Format: Enable

This field configures the sampler rate.

Value Name Description Project

0h Disable Full rate sampler DevSNB

1h Enable Half rate sampler DevSNB

7 WIZ Hashing Mode

Project: DevSNB+

Default Value: 0h

Format: U1

This field configures the Hashing mode in Windower. For [DevSNB-B+], the WIZ Hashing Mode High
Bit field is combined with this field to enable additional modes.

This field is don’t care if the Hashing Disable bit is set.

Value Name Description Project

0h 16x4 Checkerboard hashing DevSNB

1h 8x4 Checkerboard hashing DevSNB

6 Reserved

5 TD Four Row Dispatch Disable

Project: DevSNB

Default Value: 0h

Format: Enable

This field configures the number of rows TD dispatchs thread into.

Value Name Description Project

0h Disable TD dispatchs to all 4 rows DevSNB

1h Enable TD dispatchs to only row0 and row1 DevSNB

4 Full Size URB Disable

Project: DevSNB

Default Value: 0h

Format: Enable

This field configures the size of the URB.

Value Name Description Project

0h Enable Full size URB DevSNB

1h Disable Half size URB DevSNB

22 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

GT_MODE – GT Mode Register
3 Full Size SF FIFO Disable

Project: DevSNB

Default Value: 0h

Format: Enable

This field configures the size of the FIFO between SF and PSD.

Value Name Description Project

0h Enable Full size SF FIFO DevSNB

1h Disable Half size SF FIFO DevSNB

2 Reserved Project: All Format: MBZ

1 VS Quad Thread Dispatch Disable

Project: DevSNB

Default Value: 0h

Format: Enable

This field configures the number of dispatch ports in VS unit.

Value Name Description Project

0h Enable Quad thread dispatch enabled for VS DevSNB

1h Disable Quad thread dispatch disabled for VS DevSNB

0 Reserved

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 23

1.1.5.4 Cache_Mode_0— Cache Mode Register 0

Cache_Mode_0— Cache Mode Register 0
Register
Type:

MMIO_CS[DevSNB]

Address
Offset:

2120h [DevSNB]

Project: All
Default
Value:

0000 6820h [DevSNB]

Access: R/W
Size (in
bits):

32

This register is used to control the operation of the Render and Sampler L2 Caches. All reserved bits
are implemented as read/write.

Before changing the value of this register, GFX pipeline must be idle i.e. full flush is required

This Register is saved and restored as part of Context.

Bit Description

31:16 Masks

Format: Mask[15:0]

A “1” in a bit in this field allows the modification of the corresponding bit in Bits 15:0.

15 Sampler L2 Disable

Project: All

Default Value: 0h

Format: Disable

Value Name Description Project

0h Sampler L2 Cache Enabled. All

1h Sampler L2 Cache Disabled all accesses are treated
as misses.

All

Errata Description Project

BWT012 Setting this bit is UNDEFINED. DevBW-A,B

14:10 Reserved Project: All Format: MBZ

24 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

Cache_Mode_0— Cache Mode Register 0
9 Sampler L2 TLB Prefetch Enable

Project: All

Default Value: 0h

Format: Enable

Value Name Description Project

0h TLB Prefetch Disabled All

1h TLB Prefetch Enabled All

8 Reserved

7:6 Sampler L2 Request Arbitration

Project: All

Default Value: 0h

Format: U2

Value Name Description Project

00 Round Robin All

01 Fetch are Highest Priority All

10 Constants are Highest Priority All

11 Reserved All

5 STC Eviction Policy Project: All Format: Disable

If this bit is set, STCunit will have LRA as replacement policy. The default value i.e. (when this
bit is reset) indicates that non-LRA eviction policy. This bit must be reset. LRA replacement
policy is not supported.

4 RCC Eviction Policy Project: [DevSNB+] Format: Disable

If this bit is set, RCCunit will have LRA as replacement policy. The default value i.e. (when this
bit is reset) indicates that non-LRA eviction policy. This bit must be reset. LRA replacement
policy is not supported.

3 Reserved

2 Reserved Project: Format: MBZ

2 Reserved

1 Disable clock gating
in the pixel backend

Project: All Format: Disable

MCL related clock gating is disabled in the pixel backend.

Before setting this bit to 1, the instruction/state caches must be invalidated. [DevSNB:{WKA}]

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 25

Cache_Mode_0— Cache Mode Register 0
0 Render Cache Operational Flush Enable

Project: [All]

Default Value: 0h

Format: Enable

Value Name Description Project

0h Disable Operational Flush Disabled (recommended for
performance when not rendering to the front buffer)

All

1h Enable Operational Flush Enabled (required when rendering
to the front buffer)

All

Errata Description Project

 This bit must be 0. Operational Flushes
are not supported in [DevSNB].
SW must flush the render target after front
buffer rendering.

[DevSNB]

1.1.5.5 Cache_Mode_1— Cache Mode Register 1

Cache_Mode_1— Cache Mode Register 1
Register Type: MMIO_CS [DevSNB]

Address Offset: 2124h [DevSNB]

Project: All

Default Value: 0000 0180h

Access: Read/32 bit Write

Size (in bits): 32
Before changing the value of this register, GFX pipeline must be idle i.e. full flush is required.

This Register is saved and restored as part of Context.

Bit Description

31:16 Mask Bits for 15:0

Format: Mask[15:0]

Must be set to modify corresponding data bit. Reads to this field returns zero.
15 Reserved Project: All Format: MBZ

26 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

Cache_Mode_1— Cache Mode Register 1
14 Reserved

13 Reserved

12 HIZ Eviction Policy

Project: All

Default Value: 0h

Format: U1

If this bit is set, Hizunit will have LRA as replacement policy. The default value i.e.
(when this bit is reset) indicates the non-LRA eviction policy. For performance
reasons, this bit must be reset.

Value Name Description Project

0h Non-LRA eviction Policy All

1 LRA eviction Policy All

11 DAP Instruction and State Cache Invalidate

Project: All

Default Value: 0h

Format: U1

When this field is set, DAP instruction and state caches (level 1 and level 2) are
invalidated.

Value Name Description Project

0h Normal Cache operation. All

1 Reserved All

10 Instruction Level 1 Cache and In-Flight Queue Disable

Project: All

Default Value: 0h

Format: Disable

Value Name Description Project

0h Cache is enabled. All

1h Reserved All

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 27

Cache_Mode_1— Cache Mode Register 1
9 Instruction and State Level 2 Cache Fill Buffers Disable

Project: All

Default Value: 0h

Format: Disable

Value Name Description Project

0h Fill Buffers are enabled. All

1h Reserved All

8:7 Sampler Cache Set XOR selection

Project: All

Default Value: 3h

Format: U2

These bits have an impact only when the Sampler cache is configured in 16 way set
associative mode. If the cache is being used for immediate data or for blitter data these
bits have no effect.

Value Name Description Project

00 Default
value

Default behavior to calculate set address, no
XOR.

All

01 Scheme 1 New_set_mask[3:0] = Tiled_address[16:13]

New_set[3:0] <= New_set_mask[3:0] ^
Old_set[3:0]

Rationale: These bits can distinguish among 16
different equivalent classes of virtual pages.
These bits also represent the lsb for tile rows
ranging from a pitch of 1 tile to 16 tiles.

All

10 Scheme 2 New_set_mask[3] = Tiled_address[17] ^
Tiled_address[16]

New_set_mask[2] = Tiled_address[16] ^
Tiled_address[15]

New_set_mask[1] = Tiled_address[15] ^
Tiled_address[14

New_set_mask[0] = Tiled_address[14] ^
Tiled_address[13]

New_set[3:0] <= New_set_mask[3:0] ^
Old_set[3:0]

Rationale: More bits on each XOR can give
better statistical uniformity on sets and since two
lsbs are taken for each tile row size, it reduces
the chance of aliasing on sets.

All

11 Scheme 3 New_set_mask[3] = Tiled_address[22] ^ All

28 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

Cache_Mode_1— Cache Mode Register 1
Tiled_address[21] ^ Tiled_address[20] ^
Tiled_address[19]

New_set_mask[2] = Tiled_address[18] ^
Tiled_address[17] ^ Tiled_address[16]

New_set_mask[1] = Tiled_address[15] ^
Tiled_address[14]
New_set_mask[0] = Tiled_address[13]

New_set[3:0] <= New_set_mask[3:0] ^
Old_set[3:0]

Rationale: More bits on each XOR can give
better statistical uniformity on sets and since
each XOR has different bits, it reduces the
chance of aliasing on sets even more.

6:5 Reserved Project: DevSNB Format:

4 Data Cache Disable

Project: All

Default Value: 0h

Format: Disable

Value Name Description Project

0h Cache is enable All

1h Reserved All

3 Depth Read Hit Write-Only Optimization Disable

Project: DevSNB

Default Value: 0h

Format: Disable

Value Name Description Project

0h Read Hit Write-only optimization is enabled in
the Depth cache (RCZ).

DevSNB+

1h Read Hit Write-only optimization is disabled in
the Depth cache (RCZ).

DevSNB+

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 29

Cache_Mode_1— Cache Mode Register 1
2 Depth Cache LRA Hunt Feature Disable

Project: DevSNB

Default Value: 0h

Format: Disable

Value Name Description Project

0h LRA Hunt eviction policy is enabled for Depth
Cache (RCZ).

DevSNB+

1h LRA Hunt eviction policy is disabled. In this
case, strict LRA eviction policy is used in
Depth Cache(RCZ).

DevSNB+

1 Instruction and State Level 2 Cache Disable

Project: All

Default Value: 0h

Format: Disable

ISC cache must be invalidated before toggling this bit.

Value Name Description Project

0h Cache is enabled. All

1h Reserved All

0 Instruction Level 1 Cache Disable

Project: All

Default Value: 0h

Format: Disable

Value Name Description Project

0h Cache is enabled. All

1h Reserved All

30 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.5.6 INSTPM—Instruction Parser Mode Register

INSTPM—Instruction Parser Mode Register
Register Type: MMIO_CS
Address Offset: 20C0h
Project: All
Default Value: 00006000h
Access: R/W
Size (in bits): 32
Trusted Type: 1

The INSTPM register is used to control the operation of the Instruction Parser. Certain classes of
instructions can be disabled (ignored) – often useful for detecting performance bottlenecks. Also,
“Synchronizing Flush” operations can be initiated – useful for ensuring the completion (vs. only parsing)
of rendering instructions.

Programming Notes:

 If an instruction type is disabled, the parser will read those instructions but not process them.

 Error checking will be performed even if the instruction is ignored.

 All Reserved bits are implemented.

 This Register is saved and restored as part of Context.

Bit Description

31:16 Mask Bits

Format: Mask[15:0]

Masks: These bits serve as write enables for bits 15:0. If this register is written with any of these
bits clear the corresponding bit in the field 15:0 will not be modified. Reading these bits always
returns 0s.

15 Reserved Project: All Format: MBZ

14:13 Reserved

12 Reserved

11 CLFLUSH Toggle Project: DevSN
B+

Format: U1

This bit changes polarity each time the MI_CLFLUSH command completes.

10 Reserved Project: All Format: MBZ

9 TLB Invalidate Project: DevSNB+ Format: U1

If set, this bit allows the command stream engine to invalidate the 3D render TLBs. This bit is valid
only with the Sync flush enable.

Note: GFX soft resets do not invalidate TLBs, it is upto GFX driver to explicitly invalidate
TLBs post reset.

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 31

INSTPM—Instruction Parser Mode Register
8 Memory Sync Enable Project: DevSNB+ Format: U1

If set, this bit allows the command stream engine to write out the data from the local caches to
memory. This bit is valid only with the Sync flush enable

7 Force Sync Command
Ordering

Projec
t:

DevSNB+ Format: Enable

By default, driver/OS synchronization commands (MI_STORE_DATA_IMM, for instance) can
execute out of order with respect to 3D state and 3D primitive commands. When set, this bit forces
ordering of these command. See section 3.2.2 for a list of these commands

6 CONSTANT_BUFFER Address
Offset Disable

Project: All Format: U1

When this bit is clear, the 3DSTATE_CONSTANT_* Buffers’ Starting Address is used as a
DynamicStateOffset. I.e., it serves as an offset from the Dynamic State Base Address
[DevSNB+]. Accesses will be subject to Dynamic State bounds checking.

When this bit is set, the 3DSTATE_CONSTANT_* Buffers’ Starting Address is used as a true
GraphicsAddress (not an offset). No bounds checking will be performed during access.

Format = Disable

5 Sync Flush Enable Project: All Format: U1

This field is used to request a Sync Flush operation. The device will automatically clear this
bit before completing the operation. See Sync Flush (Programming Environment).

Programming Note:

 The command parser must be stopped prior to issuing this command by setting the Stop
Rings bit in register MI_MODE. Only after observing Rings Idle set in MI_MODE can a
Sync Flush be issued by setting this bit. Once this bit becomes clear again, indicating
flush complete, the command parser is re-enabled by clearing Stop Rings.

 Sync flush in multi-context scheduling mode can be used only if there is one context in
hardware and no new contexts can be scheduled till sync flush is complete.

 Software is expected to follow restriction above or not use Sync flush in multi-context
scheduling mode

Format = Enable (cleared by HW)

DevSNB{WA: D2}: If 0x21d0[7] = ‘1’, the following work-around is needed

Write 0x2054[31:0] = 0x000FFFF <-- Set the idle counter to max value

Write 0x2700[31:0] = 0x00000000 <-- Wake up CS (but don't do anything)

Poll 0x22AC[3:0] = 0 <-- Guarantees render pipe is awake

Write 0x2050[31:0] = 0x00010001 <-- disable sequence

VT-d request(Sync Flush) <-- Normal VT-d cycles(Replace with Sync Flush
Steps)

Write 0x2054[31:0] = <old value> <-- Set to value before flow began
Write 0x2050[31:0] = 0x00010000 <-- Enable sequence (to enter RC6)

4 Reserved Project: All

32 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

INSTPM—Instruction Parser Mode Register
3 Media Instruction Disable Project: All Format: U1

This bit instructs the Renderer instruction parser to parse and error-check Media instructions,
but not execute them.

Format = Disable

2 3D Rendering Instruction Disable Project: All Format: U1

This bit instructs the Renderer instruction parser to parse and error-check 3D Rendering
instructions, but not execute them. This bit must always be set by software if 3D State
Instruction Disable is set. Setting this bit without setting 3D State Instruction Disable is
allowed.

Format = Disable

1 3D State Instruction Disable Project: All Format: U1

This bit instructs the Renderer instruction parser to parse and error-check 3D State
instructions, but not execute them. This bit should not be set unless 3D Rendering
Instruction Disable (bit 2) is also set.

Format = Disable

0 Texture Palette Load Instruction
Disable

Project: All Format: U1

This bit instructs the Renderer instruction parser to parse and error-check Texture Palette
Load instructions, but not execute them.

Format = Disable

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 33

1.1.5.7 EXCC—Execute Condition Code Register

EXCC—Execute Condition Code Register
Register Type: MMIO_CS
Address
Offset:

2028h

Project: All
Default Value: 00000000h
Access: R/W,RO
Size (in bits): 32
Trusted Type: 1

This register contains user defined and hardware generated conditions that are used by
MI_WAIT_FOR_EVENT commands. An MI_WAIT_FOR_EVENT instruction excludes the
executing ring from arbitration if the selected event evaluates to a “1”, while instruction is
discarded if the condition evaluates to a “0”. Once excluded a ring is enabled into arbitration
when the selected condition evaluates to a “0”.
This register also contains control for the invalidation of indirect state pointers on context
restore.

Bit Description

31:16 Mask Bits

Format: Mask[15:0]

These bits serves as a write enable for bits 15:0. If this register is written with any of
these bits clear the corresponding bit in the field 15:0 will not be modified.

Reading these bits always returns 0s.

15:12 Reserved Project: All Format: MBZ

11 Pending Indirect State Dirty Bit Projec
t:

All Forma
t:

U32

This field keeps track of whether or not an indirect state pointer command has been
parsed in the current context. Clears either on a context save or explicitly through a
flush command

10:7 Pending Indirect State
Counter

Project: All Forma
t:

U32

This field keeps track of the maximum number of indirect state pointers pending in the
system. When the register is saved/restored, it saves either a value of 1 or 0.

This field is Read-Only

6:5 Reserved Project: All Format: MBZ

4:0 User Defined Condition Codes

The software may signal a Stream Semaphore by setting the Mask bit and Signal Bit
together to match the bit field specified in a WAIT_FOR_EVENT (Semaphore).

34 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.5.8 FBC RT BASE ADDRESS REGISTER

FBC_RT_BASE_ADDR_REGISTER
Register Type: MMIO

Address Offset: 2128h {DevSNB]

Project: All

Default Value: --

Access: Read/32 bit Write

Size (in bits): 32
This Register is saved and restored as part of Context.

Bit Description

31:12 4KB aligned Base Address as mapped in the PPGTT (in the multi-context scheduling mode)
OR in the GGTT (in the single-context scheduling mode) For the render target. This register
must be programmed in either multi-context scheduling or single-context scheduling mode.
This base address must be the one that is either front buffer or the back-buffer (a flip target). It
can be only programmed once per context. It must be programmed before any draw call
binding that render target base address.

Format: Base Address[31:12]

Must be set to modify corresponding data bit. Reads to this field returns zero.

11:2 Reserved Project: All Format: MBZ

1 FBC Front Buffer Target

Project: All

Default Value: 0h

Format: Enable

Value Name Description Project

0h FBC is targeting the Back Buffer for compression.
This buffer can be cached in the MLC/LLC, so a
GFDT flush is required before FBC can begin
compression.

All

1h FBC is targeting the Font Buffer for compression.
This buffer cannot be cached in the MLC/LLC.
FBC compression can begin after any RC flush.

All

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 35

FBC_RT_BASE_ADDR_REGISTER
0 PPGTT Render Target Base Address Valid for FBC

Project: All

Security: None

Access: None

Exists If: Always

Default Value: 0h DefaultVaueDesc

Mask: MMIO(0x2000)#16

Format: Enable FormatDesc

Address: GraphicsAddress[31:0]

Surface Type: U32

Range 0..2^32-1

BitFieldDesc

Value Name Description Project

0h Base address in this register [31:12] is
not valid and therefore FBC will not get
any modifications from rendering.

1h Base address in this register [31:12] is
valid and HW needs to compare the
current render target base address with
this base address to provide
modifications to FBC.

1.1.5.9 RVSYNC – Render/Video Semaphore Sync Register

RVSYNC – Render/Video Semaphore Sync Register
Register Type: MMIO_CS
Address
Offset:

2040h

Project: All
Default Value: 00000000h
Access: R/W
Size (in bits): 32
Trusted Type: 1

This register is written by VCS, read by CS.

Bit Description

31:0 Semaphore Data

Semaphore data for synchronization between render engine and video codec engine.

36 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.5.10 RBSYNC – Render/Blitter Semaphore Sync Register

RBSYNC – Render/Blitter Semaphore Sync Register
Register Type: MMIO_CS
Address
Offset:

2044h

Project: All
Default Value: 00000000h
Access: R/W
Size (in bits): 32
Trusted Type: 1

This register is written by BCS, read by CS.

Bit Description

31:0 Semaphore Data

Semaphore data for synchronization between render engine and blitter engine.

1.1.5.11 SEMA_REG—Semaphore General Sync Registers

SEMA_REG—Semaphore General Sync Registers
Register Type: MMIO_CS

Address
Offset:

2680-26FFh

Project: All

Default Value: 0h

Access: R/W

Size (in bits): 32 registers x 32b

This register contains the semaphore value to be compared with the value specifed in the
MI_SEMAPHORE_MBOX command. The register value in the command will be compared with the
MMIO offset specifed in the table below:

Register
Number

MMIO
Offset

0 0x2680

1 0x2684

2 0x2688

3 0x268C

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 37

SEMA_REG—Semaphore General Sync Registers

4 0x2690

5 0x2694

6 0x2698

7 0x269C

8 0x26A0

9 0x26A4

10 0x26A8

11 0x26AC

12 0x26B0

13 0x26B4

14 0x26B8

15 0x26BC

16 0x26C0

17 0x26C4

18 0x26C8

19 0x26CC

20 0x26D0

21 0x26D4

22 0x26D8

23 0x26DC

38 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

SEMA_REG—Semaphore General Sync Registers

24 0x26E0

25 0x26E4

26 0x26E8

27 0x26EC

28 0x26F0

29 0x26F4

30 0x26F8

31 0x26FC

Bit Description

31:0 Semaphore Data

Semaphore data for synchronization between render engine and video codec engine.

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 39

1.1.6 RINGBUF — Ring Buffer Registers
See the “Device Programming Environment” chapter for detailed information on these registers

1.1.6.1 RING_BUFFER_TAIL

RING_BUFFER_TAIL
Register Type: MMIO_CS
Address
Offset:

2030h

Project: All
Default Value: 00000000h
Access: R/W
Size (in bits): 32

These registers are used to define and operate the “ring buffer” mechanism which can be used to pass
instructions to the command interface. The buffer itself is located in a physical memory region. The
ring buffer is defined by a 4 Dword register set that includes starting address, length, head offset, tail
offset, and control information. Refer to the Programming Interface chapter for a detailed description
of the parameters specified in this ring buffer register set, restrictions on the placement of ring buffer
memory, arbitration rules, and in how the ring buffer can be used to pass instructions.

Ring Buffer Tail Offsets must be properly programmed before ring is enabled. A Ring Buffer can be
enabled when empty.

Bit Description

31:21 Reserved Project: All Format: MBZ

20:3 Tail Offset

Project: All

Format: U18 QWord Offset

This field is written by software to specify where the valid instructions placed in the ring buffer
end. The value written points to the QWord past the last valid QWord of instructions. In other
words, it can be defined as the next QWord that software will write instructions into. Software
must write subsequent instructions to QWords following the Tail Offset, possibly wrapping around
to the top of the buffer (i.e., software can’t skip around within the buffer). Note that all DWords
prior to the location indicated by the Tail Offset must contain valid instruction data – which may
require instruction padding by software. See Head Offset for more information.

2:0 Reserved Project: All Format: MBZ

40 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.6.2 RING_BUFFER_HEAD

RING_BUFFER_HEAD
Register
Type:

MMIO_CS

Address
Offset:

2034h

Project: All
Default
Value:

00000000h

Access: R/W
Size (in
bits):

32

These registers are used to define and operate the “ring buffer” mechanism which can be used to
pass instructions to the command interface. The buffer itself is located in a physical memory
region. The ring buffer is defined by a 4 Dword register set that includes starting address, length,
head offset, tail offset, and control information. Refer to the Programming Interface chapter for a
detailed description of the parameters specified in this ring buffer register set, restrictions on the
placement of ring buffer memory, arbitration rules, and in how the ring buffer can be used to pass
instructions.

Ring Buffer Head Offsets must be properly programmed before ring is enabled. A Ring Buffer
can be enabled when empty.

Bit Description

31:21 Wrap Count

Project: All

Default Value: 0h

Format: U11 count of ring buffer
wraps

This field is incremented by 1 whenever the Head Offset wraps from the end of the
buffer back to the start (i.e., whenever it wraps back to 0). Appending this field to the
Head Offset field effectively creates a virtual 4GB Head “Pointer” which can be used
as a tag associated with instructions placed in a ring buffer. The Wrap Count itself will
wrap to 0 upon overflow.

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 41

RING_BUFFER_HEAD
20:2 Head Offset

Project: All

Format: U19 DWord Offset

This field indicates the offset of the next instruction DWord to be parsed.
Software will initialize this field to select the first DWord to be parsed once
the RB is enabled. (Writing the Head Offset while the RB is enabled is
UNDEFINED). Subsequently, the device will increment this offset as it
executes instructions – until it reaches the QWord specified by the Tail
Offset. At this point the ring buffer is considered “empty”.

Programming Notes Project

A RB can be enabled empty or containing some number of valid
instructions.

All

1 Reserved Project: All Format: MBZ

0 Wait for Condition Indicator Project: All Format: Enabled

This is a read only value used to indicate whether or not the command streamer is currently
waiting for a conditional code to be cleared from 0x2028

42 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.6.3 RING_BUFFER_START

RING_BUFFER_START
Register Type: MMIO_CS
Address
Offset:

2038h

Project: All
Default Value: 00000000h
Access: R/W
Size (in bits): 32

These registers are used to define and operate the “ring buffer” mechanism which can be used to pass
instructions to the command interface. The buffer itself is located in a physical memory region. The
ring buffer is defined by a 4 Dword register set that includes starting address, length, head offset, tail
offset, and control information. Refer to the Programming Interface chapter for a detailed description
of the parameters specified in this ring buffer register set, restrictions on the placement of ring buffer
memory, arbitration rules, and in how the ring buffer can be used to pass instructions.

Bit Description

31:12 Starting Address

Project: All

Address: GraphicsAddress[31:12]

Surface Type: RingBuffer

This field specifies Bits 31:12 of the 4KB-aligned starting Graphics Address of the ring
buffer. Address bits 31 down to 29 must be zero.

All ring buffer pages must map to Main Memory (uncached) pages.

Ring Buffer addresses are always translated through the global GTT.

11:0 Reserved Project: All Format: MBZ

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 43

1.1.6.4 RING_BUFFER_CONTROL

RING_BUFFER_CONTROL
Register Type: MMIO_CS
Address Offset: 203Ch
Project: All
Default Value: 00000000h
Access: R/W
Size (in bits): 32

These registers are used to define and operate the “ring buffer” mechanism which can be used to pass
instructions to the command interface. The buffer itself is located in a physical memory region. The
ring buffer is defined by a 4 Dword register set that includes starting address, length, head offset, tail
offset, and control information. Refer to the Programming Interface chapter for a detailed description
of the parameters specified in this ring buffer register set, restrictions on the placement of ring buffer
memory, arbitration rules, and in how the ring buffer can be used to pass instructions.

Bit Description

31:21 Reserved Project: All Format: MBZ

20:12 Buffer Length

Project: All

Format: U9 Count of 4 KB pages

Range 0..1FF

This field is written by SW to specify the length of the ring buffer in 4 KB Pages.

Range = [0 = 1 page = 4 KB, 1FFh = 512 pages = 2 MB]

11 RB Wait Project: All Format: Boolean

Indicates that this ring has executed a WAIT_FOR_EVENT instruction and is currently
waiting. Software can write a “1” to clear this bit, write of “0” has no effect. When the RB is
waiting for an event and this bit is cleared, the wait will be terminated and the RB will be
returned to arbitration.

10 Semaphore Wait Project: DevSN
B+

Format: U32

Indicates that this ring has executed a MI_SEMAPHORE_MBOX instruction with register
compare and is currently waiting. Software can write a “1” to clear this bit, write of “0” has
no effect. When the RB is waiting for the compare to meet and this bit is cleared, the wait
will be terminated and the RB will be returned to arbitration.

9:3 Reserved Project: All Format: MBZ

44 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

RING_BUFFER_CONTROL
2:1 Automatic Report Head Pointer

Project: All

This field is written by software to control the automatic “reporting” (write) of this ring buffer’s
“Head Pointer” register (register DWord 1) to the corresponding location within the Hardware
Status Page. Automatic reporting can either be disabled or enabled at 4KB, 64KB or 128KB
boundaries within the ring buffer.

Value Name Description Project

0h MI_AUTOREPORT_OFF Automatic reporting disabled All

1h MI_AUTOREPORT_64KB

MI_AUTOREPORT_4KB

Report every 16 pages (64KB)

When the Per-Process Virtual Address
Space bit is set, the ring buffer reports
every 4KB

All

2h Reserved Reserved All

3h MI_AUTOREPORT_128KB Report every 32 pages (128KB) All

Programming Notes Project

When the Per-Process Virtual Address Space bit is set and automatic head
reporting is desired, this field must be set to option 1 since the ring buffer will be
only 16KB in size. The head pointer will be reported to the head pointer location in
the PP HW Status Page when it passes each 4KB page boundary. When the
above-mentioned bit is reset, reporting will behave just as on the prior devices (as
documented above), and option 1 will report on 64KB boundary.

All

0 Ring Buffer Enable Project: All Format: Enable

This field is used to enable or disable this ring buffer. It can be enabled or disabled regardless of
whether there are valid instructions pending. If disabled and the ring head equals ring tail, all
state currently loaded in hardware is considered invalid.

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 45

1.1.6.5 UHPTR — Pending Head Pointer Register

UHPTR — Pending Head Pointer Register
Register Type: MMIO_CS
Address
Offset:

2134h

Project: All
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

Bit Description

31:3 Head Pointer Address

Project: All

Default Value: 0h

Address: GraphicsAddress[31:3]

This register represents the GFX address offset where execution should continue in the ring
buffer following execution of an MI_ARB_CHECK command.

2:1 Reserved Project: All Format: MBZ

0 Head Pointer Valid

Project: All

Default Value: 0h

Format: U1

This bit is set by the software to request a pre-emption. It is reset by hardware when an
MI_ARB_CHECK command is parsed by the command streamer. The hardware uses the
head pointer programmed in this register at the time the reset is generated.

Value Name Description Project

0h No valid updated head pointer register, resume
execution at the current location in the ring buffer

All

1h Indicates that there is an updated head pointer
programmed in this register

All

46 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.7 Watchdog Timer Registers
These 2 registers together implement a watchdog timer. Writing ones to the control register enables the
counter, and writing zeroes disables the counter. The 2nd register is programmed with a threshold value
which, when reached, signals an interrupt then resets the counter to 0. Program the threshold value
before enabling the counter or extremely frequent interrupts may result.

Note that the counter itself is not observable. It increments with the main render clock.

1.1.7.1 PR_CTR_CTL—Render Watchdog Counter Control

PR_CTR_CTL—Render Watchdog Counter Control
Register Type: MMIO_CS
Address
Offset:

2178h

Project: All
Default Value: 0000 0001h
Access: R/W
Size (in bits): 32

Bit Description

31 Count Select Project: [DevSNB] Format: select

0 – Use the timestamp to increment the watchdog count (every 640ns)

1 – Use the fixed function clock (csclk) to increment the watchdog count

30:0 Counter logic op Project: All Format: U32

This field specifies the action to be taken by the clock counter to generate interrupts. Writing 0
into this register causes a core render clock counter to be kicked off.

Writing 1 into this register causes a core render clock counter to be stopped and reset to 0.

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 47

1.1.7.2 PR_CTR_THRSH—Render Watchdog Counter Threshold

PR_CTR_THRSH—Render Watchdog Counter Threshold
Register Type: MMIO_CS

Address
Offset:

217Ch

Project: All

Default Value: 0014 5855h

Access: R/W

Size (in bits): 32

Bit Description

31:0 Counter logic Threshold Project: All Format: U32

This field specifies the threshold that the hardware checks against for the value of the render
clock counter before generating an interrupt. The counter in hardware generates an interrupt
when the threshold is reached, rolls over and starts counting again. The interrupt generated is
the “Media Hang Notify” interrupt since this watchdog timer is intended primarily to remedy VLD
hangs on the main pipeline.

1.1.7.3 PR_CTR—Render Watchdog Counter

PR_CTR—Render Watchdog Counter
Register Type: MMIO_CS
Address
Offset:

2190h

Project: All
Default Value: 0000 0000h
Access: RO
Size (in bits): 32

Bit Description

31:0 Counter Value Project: All Format: U32

This register reflects the render watchdog counter value itself. It cannot be written to.

48 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.8 Interrupt Control Registers
The Interrupt Control Registers described below all share the same bit definition. The bit definition is as
follows:

Table 1-1. Bit Definition for Interrupt Control Registers

Bit Description

31:10 Reserved. MBZ These bits may be assigned to interrupts on future products/steppings.

9 Performance Monitoring Buffer Half-Full Interrupt: For internal trigger (timer based) based
reporting, if the report buffer crosses half full limit, this interrupt is generated.

8 Context Switch Interrupt: Set when a context switch has just occurred. Per-Process Virtual
Address Space bit needs to be set for this interrupt to occur.

7 Page Fault: This bit is set whenever there is a pending PPGTT (page or directory) fault.

6 Timeout Counter Expired: Set when the render pipe timeout counter (0x02190) has reached the
timeout thresh-hold value (0x0217c).

5 L3 Parity Error: When this bit is set, L3 cache controller is indicating that it has encountered an
parity error while checking the data.

4 PIPE_CONTROL Notify Interrupt: The Pipe Control packet (Fences) specified in 3D pipeline
document may optionally generate an Interrupt. The Store QW associated with a fence is
completed ahead of the interrupt.

3 Render Command Parser Master Error: When this status bit is set, it indicates that the
hardware has detected an error. It is set by the device upon an error condition and cleared by a
CPU write of a one to the appropriate bit contained in the Error ID register followed by a write of a
one to this bit in the IIR. Further information on the source of the error comes from the “Error
Status Register” which along with the “Error Mask Register” determine which error conditions will
cause the error status bit to be set and the interrupt to occur.

Page Table Error: Indicates a page table error.

Instruction Parser Error: The Renderer Instruction Parser encounters an error while parsing an
instruction.

2 Sync Status: This bit is set in the Hardware Status Page DW offset 0 when the Instruction Parser
completes a flush with the sync enable bit active in the INSTPM register. The toggle event will
happen after the render engine is flushed. The HW Status DWord write resulting from this toggle
will cause the CPU’s view of graphics memory to be coherent as well (flush and invalidate the
render cache). It is the driver’s responsibility to clear this bit before the next sync flush
with HWSP write enabled

1 Reserved

0 Render Command Parser User Interrupt: This status bit is set when an
MI_USER_INTERRUPT instruction is executed on the Render Command Parser. Note that
instruction execution is not halted and proceeds normally. A mechanism such as an
MI_STORE_DATA instruction is required to associate a particular meaning to a user interrupt.

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 49

The following table specifies the settings of interrupt bits stored upon a “Hardware Status Write” due to
ISR changes:

Bit Interrupt Bit ISR bit Reporting via Hardware Status Write
(when unmasked via HWSTAM)

9 Performance Monitoring Buffer Half-Full
Interrupt

Set when event occurs, cleared when event
cleared

8 Context Switch Interrupt: Set when a
context switch has just occurred.

Not supported to be unmasked

7 Page Fault: This bit is set whenever there
is a pending PPGTT (page or directory)
fault.

Set when event occurs, cleared when event
cleared

6 Reserved

5 Reserved

4 PIPE_CONTROL packet - Notify Enable 0

3 Master Error Set when error occurs, cleared when error cleared

2 Sync Status Toggled every SyncFlush Event

1 Reserved

0 User Interrupt 0

50 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.8.1 HWSTAM — Hardware Status Mask Register

Hardware Status Mask Register

Register Type: MMIO_CS

Address
Offset:

2098h

Project: All

Default Value: FFFF FFFFh

Access: R/W, RO

Size (in bits): 32

Trusted Type: 1

The HWSTAM register has the same format as the Interrupt Control Registers. The bits in this
register are “mask” bits that prevent the corresponding bits in the Interrupt Status Register from
generating a “Hardware Status Write” (PCI write cycle). Any unmasked interrupt bit (HWSTAM bit
set to 0) will allow the Interrupt Status Register to be written to the ISR location (within the memory
page specified by the Hardware Status Page Address Register) when that Interrupt Status Register
bit changes state.

Programming Note:

 To write the interrupt to the HWSP, the corresponding IMR bit must also be clear (enabled).

 At most 1 bit can be unmasked at any given time.

Bit Description

31:0 Hardware Status Mask Register

Project: All

Default Value: FFFFFFFFh DefaultVaueDesc

Format: Array of Masks

Refer to Interrupt Control Register section for bit definitions, Reserved bits are RO

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 51

1.1.8.2 IMR—Interrupt Mask Register

IMR—Interrupt Mask Register
Register Type: MMIO_CS
Address Offset: 20A8h
Project: All
Default Value: FFFF FFFFh
Access: R/W, RO
Size (in bits): 32
The IMR register is used by software to control which Interrupt Status Register bits are “masked” or
“unmasked”. “Unmasked” bits will be reported in the IIR, possibly triggering a CPU interrupt, and will persist in
the IIR until cleared by software. “Masked” bits will not be reported in the IIR and therefore cannot generate
CPU interrupts.

Bit Description

31:0 Interrupt Mask Bits

Project: All

Default Value: FFFF FFFFh

Format: Array of interrupt
mask bits

Refer to Table 3-4 in Interrupt Control
Register section for bit definitions

This field contains a bit mask which selects which interrupt bits (from the ISR) are
reported in the IIR. Reserved biths in teh Interrupt Control Register are RO

Value Name Description Project

0h Not Masked Will be reported in the IIR All

1h Masked Will not be reported in the IIR All

52 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.8.3 Hardware-Detected Error Bit Definitions (for EIR, EMR, ESR)

This section defines the Hardware-Detected Error bit definitions and ordering that is common to the EIR,
EMR and ESR registers. The EMR selects which error conditions (bits) in the ESR are reported in the
EIR. Any bit set in the EIR will cause the Master Error bit in the ISR to be set. EIR bits will remain set
until the appropriate bit(s) in the EIR is cleared by writing the appropriate EIR bits with ‘1’ (except for the
unrecoverable bits described below).

The following table describes the Hardware-Detected Error bits:

Table 1-2. Hardware-Detected Error Bits

Bit Description

31:5 Reserved: MBZ

4 Page Table Error: This bit is set when a Graphics Memory Mapping Error is detected. The
cause of the error is indicated (to some extent) in the PGTBL_ER register.

Note: This error indications can not be cleared except by reset (i.e., it is a fatal error).

1 = Page table error

3 Memory Privilege Violation Error. This bit is set if a command in a non-secure batch buffer
attempts an operation to the GGTT (this can only happen in commands that contain a PPGTT
vs. GGTT selector). The command will be executed as if the selector bit indicated PPGTT and
parsing will continue.

2 Command Privilege Violation Error. This bit is set if a command classified as privileged is
parsed in a non-secure batch buffer. The command will be converted to a NOOP and parsing
will continue.

1 Reserved: MBZ

0 Instruction Error: This bit is set when the Renderer Instruction Parser detects an error while
parsing an instruction.

Instruction errors include:

1) Client ID value (Bits 31:29 of the Header) is not supported (only MI, 2D and 3D are
supported).

2) Defeatured MI Instruction Opcodes:

1: Instruction Error detected.

Note: This error indications cannot be cleared except by reset (i.e., it is a fatal error).

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 53

1.1.8.3.1 EIR — Error Identity Register

EIR — Error Identity Register
Register Type: MMIO_CS
Address
Offset:

20B0h

Project: All
Default Value: 0000 0000h
Access: R/W, RO
Size (in bits): 32
The EIR register contains the persistent values of Hardware-Detected Error Condition bits. Any bit set in this
register will cause the Master Error bit in the ISR to be set. The EIR register is also used by software to clear
detected errors (by writing a ‘1’ to the appropriate bit(s)), except for ther unrecoverable bits described.)

Bit Description

31:16 Reserved Project: All Format: MBZ

15:0 Error Identity Bits

Project: All

Default Value: 0h

Format: Array of Error
condition bits

See Table 1 5. Hardware-Detected Error Bits

This register contains the persistent values of ESR error status bits that are unmasked via the
EMR register. The logical OR of all (defined) bits in this register is reported in the Master Error bit
of the Interrupt Status Register. In order to clear an error condition, software must first clear the
error by writing a ‘1’ to the appropriate bit(s) in this field. If required, software should then
proceed to clear the Master Error bit of the IIR. Reserved bits are RO.

Bit Description

31:5 Reserved: MBZ

Value Name Description Project

1h Error occurred Error occurred All

Programming Notes Project

Writing a ‘1’ to a set bit will cause that error condition to be cleared. However,
the Page Table Error bit (Bit 4) nor the Instruction Error bit (Bit 0) cannot be
cleared except by reset (i.e., it is a fatal error).

All

54 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.8.3.2 EMR—Error Mask Register

EMR—Error Mask Register
Register Type: MMIO_CS
Address
Offset:

20B4h

Project: All
Default Value: FFFF FFFFh
Access: R/W, RO
Size (in bits): 32
The EMR register is used by software to control which Error Status Register bits are “masked” or
“unmasked”. “Unmasked” bits will be reported in the EIR, thus setting the Master Error ISR bit and possibly
triggering a CPU interrupt, and will persist in the EIR until cleared by software. “Masked” bits will not be
reported in the EIR and therefore cannot generate Master Error conditions or CPU interrupts. Reserved bits
are RO.

Bit Description

31:16 Reserved Project: All Format: MBZ

15:0 Error Mask Bits

Project: All

Default Value: FFFF FFDFh

Format: Array of error
condition mask
bits

See Table 1 5. Hardware-Detected Error Bits

This register contains a bit mask that selects which error condition bits (from the ESR) are
reported in the EIR.

Value Name Description Project

0h Not Masked Will be reported in the EIR All

1h Masked Will not be reported in the EIR All

1.1.8.3.3 ESR—Error Status Register

ESR—Error Status Register
Register Type: MMIO_CS
Address
Offset:

20B8h

Project: All
Default Value: 0000 0000h
Access: RO
Size (in bits): 32
The ESR register contains the current values of all Hardware-Detected Error condition bits (these are all by
definition “persistent”). The EMR register selects which of these error conditions are reported in the
persistent EIR (i.e., set bits must be cleared by software) and thereby causing a Master Error interrupt
condition to be reported in the ISR.

Bit Description

31:16 Reserved Project: All Format: MBZ

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 55

ESR—Error Status Register
15:0 Error Status Bits

Project: All

Default Value: 0h

Format: Array of error
condition bits

See Table 1 5. Hardware-Detected Error Bits

This register contains the non-persistent values of all hardware-detected error condition bits.

Value Name Description Project

1h Error Condition
Detected

Error Condition detected All

56 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.9 Logical Context Support

1.1.9.1 BB_ADDR—Batch Buffer Head Pointer Register

BB_ADDR—Batch Buffer Head Pointer Register
Register Type: MMIO_CS
Address
Offset:

2140h

Project: All
Default Value: 0000 0000 0000 0000h
Access: RO
Size (in bits): 32
This register contains the current DWord Graphics Memory Address of the last-initiated batch buffer.

Programming Restriction:
This register should NEVER be programmed by driver, this is for HW internal use only.

Bit Description

31:2 Batch Buffer Head
Pointer

Project: All Format: GraphicsAddress[31:2]

This field specifies the DWord-aligned Graphics Memory Address where the last initiated Batch
Buffer is currently fetching commands. If no batch buffer is currently active, the Valid bit will be
0 and this field will be meaningless.

1 Reserved Project: All Format: MBZ

0 Valid

Project: All

Default Value: 0h

Format: U1

Value Name Description Project

0h Invalid Batch buffer Invalid All

1h Valid Batch buffer Valid All

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 57

1.1.9.2 BB_STATE – Batch Buffer State Register

BB_STATE – Batch Buffer State Register
Register Type: MMIO_CS
Address
Offset:

2110h

Project: All
Default Value: 0000 0000h
Access: RO
Size (in bits): 32

This register contains the attributes of the last batch buffer initiated from the Ring Buffer. These
include the security indicator.

This register should not be written by software directly. Software should always set these fields via
the MI_BATCH_BUFFER_START command when initiating a batch buffer.

 {DevSNB] This register is not restored with context. As a consequence, MI_WAIT_FOR_EVENT
cannot enter RC6 inside a batch buffer with any of these attributes set

Bit Description

31:8 Reserved Project: All Format: MBZ

7 Reserved Project: Format:

6 Clear Command
Buffer Enable

Project: All Format: U1

If set the batch buffer is getting executed from the Write Once protected memory area.
The address of the batch buffer is an offset into the WOPCM area.

5 Buffer Security Indicator

Project: All

Default Value: 0h

Format: MI_BufferSecurityType

If set, this batch buffer is non-secure and cannot execute privileged commands nor access
privileged (GGTT) memory. It will be accessed via the PPGTT. If clear, this batch buffer
is secure and will be accessed via the GGTT.

Note: This field reflects the effective security level and may not be the same as the Buffer
Security Indicator written using MI_BATCH_BUFFER_START.

Value Name Description Project

0h MIBUFFER_SECURE Located in GGTT memory All

1h MIBUFFER_NONSECURE Located in PPGTT memory All

4 Reserved

3:0 Reserved Project: All Format: MBZ

58 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.9.3 CTXT_SR_CTL – Context Save/Restore Control Register

CTXT_SR_CTL – Context Save/Restore Control Register
Register Type: 2714h [DevSNB]

Address
Offset:

2714h

Project: All
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32
This register is saved and restored with context.

Bit Description

31:2 Reserved Project: All Format: MBZ

1 Reserved

0 Render Context Restore
Inhibit

Project: All Format: U1

This is not a true register bit. This bit should be set in the context image of a ring context
that is being submitted for the first time. Setting this bit will inhibit the restoring of render
context (including extended context if applicable) so that restoring of an uninitialized
render context can be prevented. This bit will always be set on a context save (since the
render context cannot be uninitialized on context save – it will always contain at least
default values.)

1.1.9.4 CCID—Current Context Register

CCID—Current Context Register
Register Type: MMIO_CS
Address
Offset:

2180h

Project: All
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

This register contains the current “logical rendering context address” associated with the ring buffer.

Programming Note: The CCID register must not be written directly (via MMIO) unless the
Command Streamer is completely idle (i.e., the Ring Buffer is empty and the pipeline is idle).
Note that, under normal conditions, the CCID register should only be updated from the command
stream using the MI_SET_CONTEXT command.

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 59

CCID—Current Context Register
Bit Description

31:12 Logical Render Context Address (LRCA)

Project: All

Default Value: 0h

Address: GraphicsAddress[31:11]

This field contains the 4 KB-aligned Graphics Memory Address of the current Logical
Rendering Context. Bit 11 MBZ.
This register will point to a Logical Pipeline Context (a subset of a Logical Rendering
Context) if loaded using MI_SET_CONTEXT.

11:10 Reserved Project: All Format: MBZ

9 Reserved

8 Reserved Project: All Format: Must be ‘1’

7:4 Reserved Project: All Format: MBZ

3 Extended State Save

Enable
Project: All Format: Enable

If set, the extended state identified in the Logical Context Data section of the Memory Data
Formats chapter, is saved as part of switching away from this logical context.

2 Extended State
Restore Enable

Project: All Format: Enable

If set, the extended state identified in the Logical Context Data section of the Memory Data
Formats chapter, was loaded (or restored) as part of switching to this logical context.

0 Valid

Project: All

Default Value: 0h

Format: U1

Value Name Description Project

0h Invalid The other fields of this register are invalid. A
switch away from the context will not invoke a
context save operation.

All

1h Valid The other fields of this register are valid, and a
switch from the context will invoke the normal
context save/restore operations.

All

60 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.9.5 CXT_SIZE—Context Sizes

CXT_SIZE—Context Sizes
Register Type: MMIO_CS
Address Offset: Write: 21A8h, Read: 21A0h
Project: DevSNB
Default Value: 1E0CDDD3h
Access: Read/32 bit Write
Size (in bits): 32

Bit Description

31:30 Reserved Project: All Format: MBZ

29:24 Power Context Size

Project: Dev SNB

Default Value: 1Eh DefaultVaueDesc

Format: U32 FormatDesc

BitFieldDesc

23:18 Ring Context Size

Project: Dev SNB

Default Value: 3h DefaultVaueDesc

Format: U32 FormatDesc

BitFieldDesc

17:12 Render Context Size

Project: Dev SNB

Default Value: Dh DefaultVaueDesc

Format: U32 FormatDesc

BitFieldDesc

11:6 Extended Context Size

Project: Dev SNB

Default Value: 37h DefaultVaueDesc

Format: U32 FormatDesc

BitFieldDesc

5:0 3D Pipeline State Context Size

Project: Dev SNB

Default Value: 13h DefaultVaueDesc

Format: U32 FormatDesc

BitFieldDesc

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 61

1.1.9.6 CXT_PIPESTATEBASE — Pipeline State Base Address

CXT_PIPESTATEBASE — Pipeline State Base Address
Register Type: MMIO_CS
Address Offset: 21B0h
Project: DevSNB
Default Value: 00000000h
Access: R/W
Size (in bits): 32

 This register contains the base address where the pipeline state data is saved when PSMI
interruption granularity in GFX_MODE is set to mid-triangle

Bit Description

31:12 Pipeline State Base Address

Project: All

Default Value: 0h Invalid base address

Format: Address Page Base Address

The page aligned base address for pipelined state context data.

Programming Notes

 There must be 4 contiguous pages allocated with this base address to support 8
pipeline state specific context data

11:1 Reserved Project: All Format: MBZ

0 Valid Project: All Format: Bool

Valid bit for 31:12. Defaults to invalid (clear)

62 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.9.7 MTCH_CID_RST – Matched Context ID Reset Register

MTCH_CID_RST – Matched Context ID Reset Register
Register
Type:

MMIO_CS

Address
Offset:

2524h

Project: All
Default
Value:

0000 0002h

Access: R/W
Size (in
bits):

32

This register is used to generate a Context ID specific reset (Render Only). To initiate a reset,
the register is written with the pending bit set. Hardware compares the current context ID with
the register and on match generates a Render Only reset. After reset is complete, HW clears
the pending bit and can be programmed to generate an interrupt. The match bit is set. If the
current context ID does not match this register, the pending bit is reset and an interrupt is
generated. The match bit is reset.

The match indicates the result of the last comparison, and its valid only when pending bit is
zero.

Please see MCIDRST interrupt bit assignment in the Interrupt Control Registers.

Bit Description

31:12 Match Context ID Project: All Format: U20

Contains the context ID to be compared with the currently running context ID.

11:2 Reserved Project: All Format: MBZ

1 Match Project: All Format: U20

This bit indicates the result of the match operation; 1 means the Current Context ID
matches the Match Context ID field.

0 Pending Project: All Format: U20

This bit indicates that a matched context ID reset is pending. The bit should be set when
the register is written (in order to have a pending MTCH_CID_RST request), and will be
reset by hardware to indicate that the operation is completed (Either with a match or
mismatch)

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 63

1.1.9.8 SYNC_FLIP_STATUS – Wait for event and Display flip flags Register

SYNC_FLIP_STATUS – Wait for event and Display flip flags
Register

Register Type: MMIO_CS
Address Offset: 25A0h

Project: All
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

This register is the saved value of what wait for events are still valid. This register is part of context
save and restore for RC6 feature..

Bit Description

31 Reserved Project: All Format: MBZ

30 Display Plane A Asyncronous Display
Flip Pending

Project
:

All Format: Enable

This field enables a wait for the duration of a Display Plane A “Flip Pending”
condition. If a flip request is pending, the parser will wait until the flip operation has
completed (i.e., the new front buffer address has now been loaded into the active
front buffer registers). See Display Flip Pending Condition (in the Device
Programming Interface chapter of MI Functions.

29 Display Plane A Syncronous Flip
Display Pending

Project
:

All Format: Enable

This field enables a wait for the duration of a Display Plane A “Flip Pending”
condition. If a flip request is pending, the parser will wait until the flip operation has
completed (i.e., the new front buffer address has now been loaded into the active
front buffer registers). See Display Flip Pending Condition (in the Device
Programming Interface chapter of MI Functions.

28 Display Sprite A Syncronous Flip
Display Pending

Project
:

All Format: Enable

This field enables a wait for the duration of a Display Sprite A “Flip Pending”
condition. If a flip request is pending, the parser will wait until the flip operation has
completed (i.e., the new front buffer address has now been loaded into the active
front buffer registers). See Display Flip Pending Condition in the Device
Programming Interface chapter of MI Functions.

27 Reserved Project: All Format: MBZ

64 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

SYNC_FLIP_STATUS – Wait for event and Display flip flags
Register

26 Display Plane B Asyncronous Display
Flip Pending

Project
:

All Format: Enable

This field enables a wait for the duration of a Display Plane B “Flip Pending”
condition. If a flip request is pending, the parser will wait until the flip operation has
completed (i.e., the new front buffer address has now been loaded into the active
front buffer registers). See Display Flip Pending Condition (in the Device
Programming Interface chapter of MI Functions.

25 Display Plane B Syncronous Flip
Display Pending

Project
:

All Format: Enable

This field enables a wait for the duration of a Display Plane B “Flip Pending”
condition. If a flip request is pending, the parser will wait until the flip operation has
completed (i.e., the new front buffer address has now been loaded into the active
front buffer registers). See Display Flip Pending Condition (in the Device
Programming Interface chapter of MI Functions.

24 Display Sprite B Syncronous Flip
Display Pending

Project
:

All Format: Enable

This field enables a wait for the duration of a Display Sprite B “Flip Pending”
condition. If a flip request is pending, the parser will wait until the flip operation has
completed (i.e., the new front buffer address has now been loaded into the active
front buffer registers). See Display Flip Pending Condition in the Device
Programming Interface chapter of MI Functions.

23 Display Plane A Asyncronous
Performance Flip Pending Wait Enable

Project
:

All Format: Enable

This field enables a wait for the duration of a Display Plane A “Flip Pending”
condition. If a flip request is pending, the parser will wait until the flip operation has
completed (i.e., the new front buffer address has now been loaded into the active
front buffer registers). See Display Flip Pending Condition (in the Device
Programming Interface chapter of MI Functions.

22 Display Plane A Asyncronous Flip
Pending Wait Enable

Project
:

All Format: Enable

This field enables a wait for the duration of a Display Plane A “Flip Pending”
condition. If a flip request is pending, the parser will wait until the flip operation has
completed (i.e., the new front buffer address has now been loaded into the active
front buffer registers). See Display Flip Pending Condition (in the Device
Programming Interface chapter of MI Functions.

21 Display Plane A Syncronous Flip
Pending Wait Enable

Project
:

All Format: Enable

This field enables a wait for the duration of a Display Plane A “Flip Pending”
condition. If a flip request is pending, the parser will wait until the flip operation has
completed (i.e., the new front buffer address has now been loaded into the active
front buffer registers). See Display Flip Pending Condition (in the Device
Programming Interface chapter of MI Functions.

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 65

SYNC_FLIP_STATUS – Wait for event and Display flip flags
Register

20 Display Sprite A Syncronous Flip
Pending Wait Enable

Project
:

All Format: Enable

This field enables a wait for the duration of a Display Sprite A “Flip Pending”
condition. If a flip request is pending, the parser will wait until the flip operation has
completed (i.e., the new front buffer address has now been loaded into the active
front buffer registers). See Display Flip Pending Condition in the Device
Programming Interface chapter of MI Functions.

19 Reserved Project: All Format: MBZ

18 Display Pipe A Scan Line Wait Enable Project
:

All Format: Enable

This field enables a wait while a Display Pipe A “Scan Line” condition exists. This
condition is defined as the the start of the scan line specified in the Pipe A Display
Scan Line Count Range Compare Register. See Scan Line Event in the Device
Programming Interface chapter of MI Functions.

17 Display Pipe A Vertical Blank Wait
Enable

Project
:

All Format
:

U32

This field enables a wait until the next Display Pipe A “Vertical Blank” event
occurs. This event is defined as the start of the next Display Pipe A vertical blank
period. Note that this can cause a wait for up to an entire refresh period. See
Vertical Blank Event (See Programming Interface).

16 Display Pipe A H Blank Wait Enable Project
:

All Format: Enable

This field enables a wait until the start of next Display Pipe A “Horizontal Blank”
event occurs. This event is defined as the start of the next Display A Horizontal
blank period. Note that this can cause a wait for up to a line. See Horizontal Blank
Event in the Device Programming Interface chapter of MI Functions.

15 Display Plane B Asyncronous
Performance Flip Pending Wait Enable

Project
:

All Format: Enable

This field enables a wait for the duration of a Display Plane B “Flip Pending”
condition. If a flip request is pending, the parser will wait until the flip operation has
completed (i.e., the new front buffer address has now been loaded into the active
front buffer registers). See Display Flip Pending Condition (in the Device
Programming Interface chapter of MI Functions.

14 Display Plane B Asyncronous Flip
Pending Wait Enable

Project
:

All Format: Enable

This field enables a wait for the duration of a Display Plane B “Flip Pending”
condition. If a flip request is pending, the parser will wait until the flip operation has
completed (i.e., the new front buffer address has now been loaded into the active
front buffer registers). See Display Flip Pending Condition (in the Device
Programming Interface chapter of MI Functions.

66 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

SYNC_FLIP_STATUS – Wait for event and Display flip flags
Register

13 Display Plane B Syncronous Flip
Pending Wait Enable

Project
:

All Format: Enable

This field enables a wait for the duration of a Display Plane B “Flip Pending”
condition. If a flip request is pending, the parser will wait until the flip operation has
completed (i.e., the new front buffer address has now been loaded into the active
front buffer registers). See Display Flip Pending Condition (in the Device
Programming Interface chapter of MI Functions.

12 Display Sprite B Syncronous Flip
Pending Wait Enable

Project
:

All Format: Enable

This field enables a wait for the duration of a Display Sprite B “Flip Pending”
condition. If a flip request is pending, the parser will wait until the flip operation has
completed (i.e., the new front buffer address has now been loaded into the active
front buffer registers). See Display Flip Pending Condition in the Device
Programming Interface chapter of MI Functions.

11 Reserved Project: All Format: MBZ

10 Display Pipe B Scan Line Wait Enable Project
:

All Format: Enable

This field enables a wait while a Display Pipe B “Scan Line” condition exists. This
condition is defined as the the start of the scan line specified in the Pipe B Display
Scan Line Count Range Compare Register. See Scan Line Event in the Device
Programming Interface chapter of MI Functions.

9 Display Pipe B Vertical Blank Wait
Enable

Project
:

All Format
:

U32

This field enables a wait until the next Display Pipe B “Vertical Blank” event
occurs. This event is defined as the start of the next Display Pipe B vertical blank
period. Note that this can cause a wait for up to an entire refresh period. See
Vertical Blank Event (See Programming Interface).

8 Display Pipe B H Blank Wait Enable Project
:

All Format: Enable

This field enables a wait until the start of next Display Pipe B “Horizontal Blank”
event occurs. This event is defined as the start of the next Display B Horizontal
blank period. Note that this can cause a wait for up to a line. See Horizontal Blank
Event in the Device Programming Interface chapter of MI Functions.

7:5 Reserved Project: All Format: MBZ

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 67

SYNC_FLIP_STATUS – Wait for event and Display flip flags
Register

4:0 Condition Code Wait Select

Project: All

This field enables a wait for the duration that the corresponding condition code is
active. These enable select one of 15 condition codes in the EXCC register, that
cause the parser to wait until that condition-code in the EXCC is cleared.

Value Name Description Project

0h Not Enabled Condition Code Wait not enabled All

1h-5h Enabled Condition Code select enabled;
selects one of 5 codes, 0 – 4

All

6h-
15h

Reserved All

Programming Notes

Note that not all condition codes are implemented. The parser operation is
UNDEFINED if an unimplemented condition code is selected by this field. The
description of the EXCC register (Memory Interface Registers) lists the codes that
are implemented.

68 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.10 Pipelines Statistics Counter Registers
These registers keep continuous count of statistics regarding the 3D pipeline. They are saved and
restored with context but should not be changed by software except to reset them to 0 at context creation
time. These registers may be read at any time; however, to obtain a meaningful result, a pipeline flush
just prior to reading the registers is necessary in order to synchronize the counts with the primitive stream.

1.1.10.1 IA_VERTICES_COUNT — Reported Vertices Counter

IA_VERTICES_COUNT
Register Type: MMIO_CS
Address
Offset:

2310h

Project: All
Default Value: 00000000h; 00000000h;
Access: R/W
Size (in bits): 64
Trusted Type: 1
This register stores the count of vertices processed by VF. This register is part of the context save and
restore.

Bit Description

63:0 IA Vertices Count Report

Total number of vertices fetched by the VF stage. This count is updated for every input
vertex as long as Statistics Enable is set in VF_STATE (see the Vertex Fetch Chapter in the
3D Volume.)

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 69

1.1.10.2 IA_PRIMITIVES_COUNT — Reported Vertex Fetch Output Primitives
Counter

IA_PRIMITIVES_COUNT
Register Type: MMIO_CS
Address
Offset:

2318h

Project: All
Default Value: 00000000h; 00000000h;

Access: R/W
Size (in bits): 64

Trusted Type: 1
This register stores the count of primitives generated by VF. This register is part of the context save and
restore.

Bit Description

63:0 IA Primitives Count Report

Total number of primitives output by the Vertex Fetch (IA) stage. This count is updated for every
primitive output by the VF stage, as long as Statistics Enable is set in VF_STATE (see the
Vertex Fetch Chapter in the 3D Volume.)

1.1.10.3 VS_INVOCATION_COUNT— Reported Vertex Shader Invocation
Counter

VS_INVOCATION_COUNT
Register Type: MMIO_CS
Address Offset: 2320h
Project: All
Default Value: 00000000h; 00000000h;
Access: R/W
Size (in bits): 64
Trusted Type: 1
This register stores the value of the vertex count shaded by VS. This register is part of the context save and
restore

Bit Description

63:0 VS Invocation Count Report

Number of vertex shader threads invoked by the VS stage. Updated only when Statistics
Enable is set in VS_STATE (see the Vertex Shader Chapter in the 3D Volume.)

70 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.10.4 GS_INVOCATION_COUNT — Reported Geometry Shader Thread
Invocation Counter

GS_INVOCATION_COUNT
Register Type: MMIO_CS
Address
Offset:

2328h

Project: All
Default Value: 00000000h; 00000000h;

Access: R/W
Size (in bits): 64

Trusted Type: 1
This register stores the number of invoked geometry shader threads. This register is part of the context save
and restore.

Bit Description

63:0 GS Invocation Count

Number of geometry shader threads invoked by the GS stage. Updated only when Statistics
Enable is set in GS_STATE (see the Geometry Shader Chapter in the 3D Volume.)

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 71

1.1.10.5 GS_PRIMITIVES_COUNT — Reported Geometry Shader Output
Primitives Counter

GS_PRIMITIVES_COUNT
Register Type: MMIO_CS

Address
Offset:

2330h

Project: All

Default Value: 00000000h; 00000000h;
Access: R/W

Size (in bits): 64
Trusted Type: 1
This register reflects the total number of primitives that have been output by the Geometry Shader stage. This
register is part of the context save and restore.

Bit Description

63:0 GS Primitives Count

Total number of primitives output by the geometry stage. Updated only when Statistics Enable is
set in GS_STATE (see the Geometry Shader Chapter in the 3D Volume.)

1.1.10.6 CL_INVOCATION_COUNT— Reported Clipper Thread Invocation
Counter

CL_INVOCATION_COUNT
Register Type: MMIO_CS
Address
Offset:

2338h

Project: All
Default Value: 00000000h; 00000000h;

Access: R/W
Size (in bits): 64

Trusted Type: 1
This register stores the count of objects entering the Clipper stage. This register is part of the context save and
restore.

Bit Description

63:0 CL Invocation Count Report

Number of objects entering the clipper stage. Updated only when Statistics Enable is set in
CLIP_STATE (see the Clipper Chapter in the 3D Volume.)

72 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.10.7 CL_PRIMITIVES_COUNT— Reported Clipper Output Primitives Counter

CL_PRIMITIVES_COUNT
Register Type: MMIO_CS
Address
Offset:

2340h

Project: All
Default Value: 00000000h; 00000000h;
Access: R/W
Size (in bits): 64
Trusted Type: 1
This register reflects the total number of primitives that have been output by the clipper. This register is part
of the context save and restore.

Bit Description

63:0 Clipped Primitives Output Count

Total number of primitives output by the clipper stage. This count is updated for every
primitive output by the clipper stage, as long as Statistics Enable is set in SF_STATE (see
the Clipper and SF Chapters in the 3D Volume.)

1.1.10.8 PS_INVOCATION_COUNT— Reported Pixels Shaded Counter

PS_INVOCATION_COUNT
Register Type: MMIO_CS
Address
Offset:

2348h

Project: All
Default Value: 00000000h; 00000000h;
Access: R/W
Size (in bits): 64
Trusted Type: 1
This register stores the value of the count of fragments that get shaded. This register is part of the context
save and restore.

Bit Description

63:0 PS Invocation Count

Reflects a count of the total number of fragments that are dispatched to pixel shader
invocations while Statistics Enable is set in the Windower. See the Windower chapter of the
3D volume for details. This count will generally be much greater than the actual count of PS
threads since a single thread may process up to 32 pixels.

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 73

1.1.10.9 PS_DEPTH_COUNT — Reported Pixels Passing Depth Test counter

PS_DEPTH_COUNT
Register Type: MMIO_CS
Address
Offset:

2350h

Project: All

Default Value: 00000000h; 00000000h;
Access: R/W

Size (in bits): 64
Trusted Type: 1
This register stores the value of the count of pixels that have passed the depth test. This register is part of the
context save and restore. Note that the value of this register can be obtained in a pipeline-synchronous
fashion without a pipeline flush by using the 3DCONTROL command. See 3D Overview in the 3D volume.

Bit Description

63:0 Depth Count

This register reflects the total number of pixels that have passed the depth test (i.e., will be
visible). All pixels are counted when Statistics Enable is set in the Windower State. See the
Windower chapter of the 3D volume for details. Pixels that pass the depth test but fail the
stencil test will not be counted.

1.1.10.10 TIMESTAMP — Reported Timestamp Count

TIMESTAMP — Reported Timestamp Count
Register Type: MMIO_CS
Address
Offset:

2358h

Project: All
Default Value: 0000 0000 0000 0000h
Access: RO. This register is not set by the context restore.
Size (in bits): 64

This register provides an elapsed real-time value that can be used as a timestamp for GPU events
over short periods of time. Note that the value of this register can be obtained in a 3D pipeline-
synchronous fashion without a pipeline flush by using the PIPE_CONTROL command. See 3D
Geometry Pipeline in the “3D and Media” volume.

This register (effectively) counts at a constant frequency by adjusting the increment amount
according to the actual reference clock frequency. SW therefore does not need to know the
reference clock frequency.

This register is not reset by a graphics reset. It will maintain its value unless a full chipset reset is
performed.

Bit Description

63:36 Reserved Project: All Format: MBZ

35:0 Timestamp Value Project: All Format: U32

This register toggles every 80 ns of time.

74 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.10.11 SO_NUM_PRIMS_WRITTEN— Reported Stream Output Num Primitives
Written Counter

SO_NUM_PRIMS_WRITTEN— Reported Stream Output Num
Primitives Written Counter

Register Type: MMIO_CS
Address
Offset:

2288h

Project: All
Default Value: 0000 0000 0000 0000h
Access: R/W
Size (in bits): 64

This register is used to (indirectly) count the number of primitives which GS threads have
successfully written to Streamed Vertex Output buffers. This register is part of the context save and
restore.
[Errata] This register gets reset when write happens to register 2380h

Bit Description

63:0 Num Prims Written Count Project: All Format: U64

This count is incremented (by one) every time a GS thread outputs a DataPort Streamed Vertex
Buffer Write message with the Increment Num Prims Written bit set in the message header
(see the Geometry Shader and Data Port chapters in the 3D Volume.)

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 75

1.1.10.12 SO_PRIM_STORAGE_NEEDED — Reported Stream Output Primitive
Storage Needed Counter

SO_PRIM_STORAGE_NEEDED — Reported Stream Output Primitive
Storage Needed Counter

Register Type: MMIO_CS

Address
Offset:

2280h

Project: All

Default Value: 0000 0000 0000 0000h
Access: RO. This register is set by the context restore.

Size (in bits): 64
This register is used to (indirectly) count the number of primitives which GS threads would have written to
Streamed Vertex Output buffers if all buffers had been large enough to accommodate the writes . This register
is part of the context save and restore.
[Errata] This register gets reset when write happens to register 2388h

Bit Description

63:0 Prim Storage Needed Count Project: All Format: U64

This count is incremented (by one) every time a GS thread outputs a DataPort Streamed Vertex
Buffer Write message with the Increment Prim Storage Needed bit set in the message header
(see the Geometry Shader and Data Port chapters in the 3D Volume.)

1.1.11 Performance Statistics Registers
[DevSNB] When an over flow condition occurs and the buffers need to be reset, or when software wants
to change the OABUFFER to point to a new area in memory, Programming of the performance ring must
follow the sequence below.

 Clear OA enable bit by writing 0x2360[0] = 0

 Write OASTATUS2

 Write OABUFFER

 Write OASTATUS1

 Set OA enable bit by writing 0x2360[0] = 1

76 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.11.1 OACONTROL – Observation Architecture Control

OACONTROL – Observation Architecture Control
Register Type: MMIO
Address Offset: [DevSNB] 2360h
Project: All
Default Value: 00000000h
Access: R/W
Size (in bits): 32

This register is used to program the OA unit.

Bit Description

31:12 Select Context ID

Project: All

Specifies the context ID of the one context that affects the performance counters. All other
contexts are ignored.

11:6 Timer Period Project: All Format: Select

Specifies the period of the timer strobe as a function of the minimum TIME_STAMP
resolution. The period is determined by selecting a specified bit from the
TIME_STAMP register as follows:

StrobePeriod = MinimumTimeStampPeriod * 2TimerPeriod

The exponent is defined by this field.

Note: The TIME_STAMP is not reset at start time so the phase of the strobe is not
synchronized with the enable of the OA unit. This could result in approximately a full
StrobePeriod elapsing prior to the first trigger. Usage for this mechanism should be time based
periodic triggering, typically.

5 Timer Enable

Project: All

Default Value: 0h Disabled

Format: Enable

This field enables the timer logic to output a periodic strobe, as defined by the Timer Period.
When disabled the timer output is not asserted.

Value Name Description Project

0h Disable Counter does not get written out on
regular interval

All

1h Enable Counter gets written out on regular
intervals, defined by the Timer Period

All

4:2 Reserved

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 77

OACONTROL – Observation Architecture Control
1 Specific Context Enable

Project: [DevSNB]

Default Value: 0h All contexts considered

Mask: MMIO(0x2000)#16

Format: U32 FormatDesc

Enables counters to work on a context specific workload. The context is given by
bits 31:12. OA unit level clock gating must be ENABLED when using specific
ContextID feature.

Value Name Description Project

0h Disable All contexts are considered All

1h Enable Only the contexts with the Select Context
ID are considered

All

0 Performance

Counter Enable
Project: All Format: Enable

Global performance counter enable. If clear, no counting will occur.
MI_REPORT_PERF_COUNT is undefined when clear.

[DevSNB] When this bit is set, in order to have cohenret counts, RC6 power state
must be disabled. This can be achieved by programming MMIO registers as
0xA094=0x0 and 0xA090[31]=1.

[DevSNB] EU clock gating must be disabled when this bit is set.

78 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.11.2 OASTATUS1 – Observation Architecture Status Register

OASTATUS1— Observation Architecture Status Register
Register Type: MMIO
Address
Offset:

[DevSNB] 2364h

Project: All
Default Value: 00000000h
Access: R/W
Size (in bits): 32

This register is used to program the OA unit.

Bit Description

31:6 Tail Ppointer

Project: All

Virtual address of the internal trigger based buffer and it is updated for every 64B
cacheline write to memory when reporting via internal trigger. This pointer will not be
updated for MI_REPORT_PERF_COUNT command based writes.

When OA is enabled, this address must be programmed by SW to the base address of
the internal trigger base mechanism.

[DevSNB+]: SW must ensure that Tail pointer and the Head Pointer (in OASTATUS2)
do not have different values while programming.

5:3 Inter Trigger Report Buffer Size

Project: All

Default Value: 0h All context considered

This field indicates the size of buffer for internal trigger mechanism. This field is
programmed in terms of multiple of 128KB.

Value Description Project

0b 16KB GEN6

1b 32KB GEN6

2 48KB GEN6

3 64KB GEN6

4 80KB GEN6

5 96KB GEN6

6 112KB GEN6

7 128KB GEN6

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 79

OASTATUS1— Observation Architecture Status Register
2 Counter OverFlow

Error
Project: All Format: Select

This bit is set if any of the counters overflows.

This bit can be reset by SW in B0.

[DevSNB] Erratum: This bit must be cleared after the ring is enabled and before OA is
enabled.

1 Buffer Overflow

Project: All

Default Value: 0h

This bit is set when the Tail-pointer - Head pointer > max internal trigger buffer size

0 Report Lost
Error

Project: All Format: Enable

This bit is set if the Report Logic is requested to write out the counter values
before the previous report request was completed. The report request is
ignored and the counter continue to count.

This bit can be reset by SW in B0.

1.1.11.3 OASTATUS2 – Observation Architecture Status Register

OASTATUS2— Observation Architecture Status Register
Register Type: MMIO

Address Offset: [DevSNB] 2368h

Project: All

Default Value: 00000000h
Access: RW
Size (in bits): 32

This register is used to program the OA unit.

Bit Description

31:6 Head Pointer

Project: All

Virtual address of the internal trigger based buffer that is updated by software after consuming
from the report buffer. This pointer must be updated by SW for internal trigger base buffer only.

4:1 Reserved Project: All Format: MBZ

80 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

OASTATUS2— Observation Architecture Status Register
0 Memory select

PPGTT/GGTT
access

Project: All Format: U32

 0 – PPGTT

 1 – GGTT

1.1.11.4 OABUFFER – Observation Architecture Buffer

OABUFFER— Observation Architecture Status Register
Register Type: MMIO
Address Offset:

[DevSNB] 23B0h
Project: All
Default Value: 00000000h
Access: {DevSNB] Write Only
Size (in bits): 32
This register is used to program the OA unit.

[DevSNB] This MMIO must be set before the OASTATUS1 register and set after the OASTATUS2
register. This is to enable proper functionality of the overflow bit.

 [DevSNB] Report Buffer Offset Must be 512KB aligned.

Bit Description

31:6 Report Buffer Offset

Project: All

This field specifies 64B aligned GFX MEM address where the chap counter values are
reported.

5 Reserved Project: All Format: MBZ

4 Reserved

3 Reserved

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 81

OABUFFER— Observation Architecture Status Register
2 OA Report Trigger

Select
Project: All Format:

1 - Level Report trigger
1-2 - Edge Report trigger.

1 Reserved

0 Reserved

1.1.11.5 OASTARTTRIG1 – Observation Architecture Start Trigger

OASTARTTRIG1— Observation Architecture Buffer
Register Type: MMIO
Address Of
fset:

 [DevSNB] 238Ch

Project: All
Default Value: 00000000h

Access: RW
Size (in bits): 32

This register is used to program the OA unit.

OASTARTTRIG5-8 will be used to start Boolean counters 4 to 7.

OASTARTTRIG1-4 will be used to start Boolean counters 0 to 3.

GEN6 report trigger behavior can be derived by programming these two sets of OA START
registers with the same value.

Bit Description

31:16 Reserved Project: All Format: MBZ

15:0 Threshold Value Project: All Format: U16

Threshold value for the compare logic within the trigger logic

82 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.11.6 OASTARTTRIG2 – Observation Architecture Start Trigger

OASTARTTRIG2— Observation Architecture Start Trigger
Register Type: MMIO
Address Offset:

[DevSNB] 2388h
Project: All
Default Value: 00000000h
Access: RW
Size (in bits): 32

This register is used to program the OA unit.

OASTARTTRIG5-8 will be used to start Boolean counters 4 to 7.

OASTARTTRIG1-4 will be used to start Boolean counters 0 to 3.

GEN6 report trigger behavior can be derived by programming these two sets of OA START registers
with the same value.

Bit Description

31:24 Reserved

23 Threshold Enable

Enable the threshold compare logic within the trigger logic.

22 vert D Enable 0

Invert the specified signal at the D stage of the trigger logic

21 Invert C Enable 1

Invert the specified signal at the C stage of the trigger logic.

20 Invert C Enable 0

Invert the specified signal at the C stage of the trigger logic.

19 Invert B Enable 3

Invert the specified signal at the B stage of the trigger logic.

18 Invert B Enable 2

Invert the specified signal at the B stage of the trigger logic

17 Invert B Enable 1

Invert the specified signal at the B stage of the trigger logic

16 Invert B Enable 0

Invert the specified signal at the B stage of the trigger logic

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 83

OASTARTTRIG2— Observation Architecture Start Trigger
15 Invert A Enable 15

Invert the specified signal at the A stage of the trigger logic.

14 Invert A Enable 14

Invert the specified signal at the A stage of the trigger logic.

13 Invert A Enable 13

Invert the specified signal at the A stage of the trigger logic.

12 Invert A Enable 12

Invert the specified signal at the A stage of the trigger logic.

11 Invert A Enable 11

Invert the specified signal at the A stage of the trigger logic.

10 Invert A Enable 10

Invert the specified signal at the A stage of the trigger logic.

9 Invert A Enable 9

Invert the specified signal at the A stage of the trigger logic.

8 Invert A Enable 8

Invert the specified signal at the A stage of the trigger logic

7 Invert A Enable 7

Invert the specified signal at the A stage of the trigger logic.

6 Invert A Enable 6

Invert the specified signal at the A stage of the trigger logic.

5 Invert A Enable 5

Invert the specified signal at the A stage of the trigger logic.

4 Invert A Enable 4

Invert the specified signal at the A stage of the trigger logic.

3 Invert A Enable 3

Invert the specified signal at the A stage of the trigger logic.

84 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

OASTARTTRIG2— Observation Architecture Start Trigger
2 Invert A Enable 2

Invert the specified signal at the A stage of the trigger logic.

1 Invert A Enable 1

Invert the specified signal at the A stage of the trigger logic.

0 Invert A Enable 0

Invert the specified signal at the A stage of the trigger logic.

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 85

1.1.11.7 OAREPORTTRIG1 – Observation Architecture Report Trigger

OAREPORTTRIG1— Observation Architecture Report Trigger
Register Type: MMIO
Address
Offset:

[DevSNB] 237Ch

Project: All
Default Value: 00000000h
Access: RW
Size (in bits): 32

This register is used to program the OA unit.

Bit Description

31:16 Occurrence vs. Duration Select

Project: All

Format: Occurrence[16]

1 bit per NOA counter total 16 bits

Value Name Description Project

0h Duration All

1h Occurence All

15:0 Threshold Value Project: All Format: U16

Threshold value for the compare logic within the trigger logic

86 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.11.8 OAREPORTTRIG2 – Observation Architecture Report Trigger

OAREPORTTRIG2— Observation Architecture Report Trigger
Register Type: MMIO
Address Offset:

[DevSNB] 2378h
Project: All
Default Value: 00000000h
Access: RW
Size (in bits): 32

This register is used to program the OA unit.

Bit Description

31 Report Trigger
enable

Enable the report trigger for threshold triggers.

30:24 Reserved Project: All Format: MBZ

23 Threshold Enable

Enable the threshold compare logic within the trigger logic.

22 Invert D Enable 0

Invert the specified signal at the D stage of the trigger logic.

21 Invert C Enable 1

Invert the specified signal at the C stage of the trigger logic.

20 Invert C Enable 0

Invert the specified signal at the C stage of the trigger logic.

19 Invert B Enable 3

Invert the specified signal at the B stage of the trigger logic.

18 Invert B Enable 2

Invert the specified signal at the B stage of the trigger logic.

17 Invert B Enable 1

Invert the specified signal at the B stage of the trigger logic.
16 Invert B Enable 0

Invert the specified signal at the B stage of the trigger logic.
15 Invert A Enable 15

Invert the specified signal at the A stage of the trigger logic.

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 87

OAREPORTTRIG2— Observation Architecture Report Trigger
14 Invert A Enable 14

Invert the specified signal at the A stage of the trigger logic

13 Invert A Enable 13

Invert the specified signal at the A stage of the trigger logic

12 Invert A Enable 12

Invert the specified signal at the A stage of the trigger logic

11 Invert A Enable 11

Invert the specified signal at the A stage of the trigger logic

10 Invert A Enable 10

Invert the specified signal at the A stage of the trigger logic

9 Invert A Enable 9

Invert the specified signal at the A stage of the trigger logic

8 Invert A Enable 8

Invert the specified signal at the A stage of the trigger logic

7 Invert A Enable 7

Invert the specified signal at the A stage of the trigger logic

6 Invert A Enable 6

Invert the specified signal at the A stage of the trigger logic

5 Invert A Enable 5

Invert the specified signal at the A stage of the trigger logic

4 Invert A Enable 4

Invert the specified signal at the A stage of the trigger logic

3 Invert A Enable 3

Invert the specified signal at the A stage of the trigger logic

2 Invert A Enable 2

Invert the specified signal at the A stage of the trigger logic

1 Invert A Enable 1

Invert the specified signal at the A stage of the trigger logic

0 Invert A Enable 0

Invert the specified signal at the A stage of the trigger logic

88 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.11.9 CEC0-0 – Customizable Event Creation

CEC0-0— Customizable Event Creation
Register
Type:

MMIO

Address
Offset:

[DevSNB] 2390h

Project: All
Default
Value:

00000000h

Access: Write Only
Size (in
bits):

32

This register is used to program the OA unit.

Bit Description

31:21 Reserved Project: All Format: MBZ

20:19 Source Select Project: All Format: U2

Selects Event for the Boolean logic. Selects the 16 bunch of events from the, Boolean Events and
Previous Events.

Value Name Description Project

00b Reserved All

01b Prev Events Selects the Previous events All

10b Boolean Events Selects the Boolean Events All

11b Reserved All

18:3 Compare Value Project: All Format: U16

This field is loaded to compare against the 8 NOA signals that are fed into this block. The
type of comparison that is done is controlled by the Compare Function. When the compare
function is true, then the signal for the NOA event is asserted. This in turn can be counted
by any of the CHAP counters.

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 89

CEC0-0— Customizable Event Creation
2:0 Compare Function Project: All Format: U16

This field is loaded to compare against the 8 NOA signals that are fed into this block.
The type of comparison that is done is controlled by the Compare Function. When the
compare function is true, then the signal for the NOA event is asserted. This in turn can
be counted by any of the CHAP counters.

Value Name Description Project

000b Any Are Equal Compare and assert if any are equal
(Can be used as OR function)

All

001b Greater Than Compare and output signal if greater than All

010b Equal Compare and assert output if equal to
(Can also be used as AND function)

All

011b Greater Than or
Equal

Compare and assert output if greater than
or equal

All

100b Less Than Compare and assert output if less than All

101b Not Equal Compare and assert output if not equal All

110b Less Than or
Equal

Compare and assert output if less than or
equal

All

111b Reserved All

1.1.11.10 CEC0-1 – Customizable Event Creation

CEC0-1— Customizable Event Creation
Register Type: MMIO
Address
Offset:

[DevSNB] 2394h

Project: All
Default Value: 00000000h
Access: Write Only
Size (in bits): 32
This register is used to program the OA unit.

Bit Description

31:16 Reserved

15:0 Mask Project: All Format: U32

These 8 bits are used to mask off entries from the comparison. For each bit: 0: This bit is
considered in event calculations. 1: This bit is ignored in event calculations.

90 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.11.11 CEC1-0 – Customizable Event Creation

CEC1-0— Customizable Event Creation
Register Type: MMIO
Address Offset: [DevSNB] 2398h

Project: All
Default Value: 00000000h
Access: Write Only
Size (in bits): 32

This register is used to program the OA unit.

Bit Description

31:21 Reserved Project: All Format: MBZ

20:19 Source select Project: All Format: U2

Selects Event for the Boolean logic. Selects the 16 bunch of events from the Booleanents and
Previous Events.

Value Name Description Project

00b Reserved All

01b Prev Events Selects the Previous events All

10b Boolean Events Selects the Boolean Events All

11b Reserved All

18:3 Reserved Project: All Format:

2:0 Compare Function Project: All Format: U3

Value Name Description Project

000b Any Are Equal Compare and assert if any are equal
(Can be used as OR function)

All

001b Greater Than Compare and output signal if greater than All

010b Equal Compare and assert output if equal to
(Can also be used as AND function)

All

011b Greater Than or
Equal

Compare and assert output if greater than or
equal

All

100b Less Than Compare and assert output if less than All

101b Not Equal Compare and assert output if not equal All

110b Less Than or
Equal

Compare and assert output if less than or equal All

111b Reserved All

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 91

1.1.11.12 CEC1-1 – Customizable Event Creation

CEC1-1— Customizable Event Creation
Register Type: MMIO
Address
Offset:

 [DevSNB] 239Ch

Project: All

Default Value: 00000000h
Access: RW

Size (in bits): 32
This register is used to program the OA unit.

Bit Description

31:16 Considerations Project: All Format: U32

0: The bit is considered in event calculations. 1: The bit is delayed by 1 clock before considering
it in event calculations. This is particularly useful for doing state machine arc coverage

15:0 Mask Project: All Format: U32

These 8 bits are used to mask off entries from the comparison. For each bit: 0: This bit
is considered in event calculations. 1: This bit is ignored in event calculations.

92 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.11.13 CEC2-0 – Customizable Event Creation

CEC2-0— Customizable Event Creation
Register Type: MMIO
Address Offset: [DevSNB] 23A0h

Project: All
Default Value: 00000000h
Access: Write Only
Size (in bits): 32

This register is used to program the OA unit.

Bit Description

31:21 Reserved Project: All Format: MBZ

20:19 Source select Project: All Format: U2

Selects Event for the Boolean logic. Selects the 16 bunch of events from the Boolean Events and
Previous Events. See section 5 for more details

Value Name Description Project

00b Reserved All

01b Prev Events Selects the Previous events All

10b Boolean Events Selects the Boolean Events All

11b Reserved All

18:3 Compare Value Project: All Format: U16

The type of comparison that is done is controlled by the Compare Function. When the compare
function is true, then the signal for the NOA event is asserted. This in turn can be counted by any
of the CHAP counters.

2:0 Compare Function Project: All Format: U3

Value Name Description Project

000b Any Are Equal Compare and assert if any are equal
(Can be used as OR function)

All

001b Greater Than Compare and output signal if greater than All

010b Equal Compare and assert output if equal to
(Can also be used as AND function)

All

011b Greater Than or
Equal

Compare and assert output if greater than or
equal

All

100b Less Than Compare and assert output if less than All

101b Not Equal Compare and assert output if not equal All

110b Less Than or Equal Compare and assert output if less than or equal All

111b Reserved All

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 93

1.1.11.14 CEC2-1 – Customizable Event Creation

CEC2-1— Customizable Event Creation
Register Type: MMIO
Address Offset: [DevSNB] 23A4h

Project: All
Default Value: 00000000h
Access: Write Only
Size (in bits): 32
This register is used to program the OA unit.

Bit Description

31:16 Considerations Project: All Format: U32

0: The bit is considered in event calculations. 1: The bit is delayed by 1 clock before considering it in
event calculations. This is particularly useful for doing state machine arc coverage.

15:0 Mask Project: All Format: U32

These 8 bits are used to mask off entries from the comparison. For each bit: 0: This bit is considered in
event calculations. 1: This bit is ignored in event calculations.

94 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.1.11.15 CEC3-0 – Customizable Event Creation

CEC3-0— Customizable Event Creation
Register Type: MMIO
Address Offset: [DevSNB] 23A8h

Project: All
Default Value: 00000000h
Access: RW
Size (in bits): 32

This register is used to program the OA unit.
Bit Description

31:21 Reserved Project: All Format: MBZ

20:19 Source select Project: [DevSNB] Format: U2

Selects Event for the Boolean logic. Selects the 16 bunch of events from the Boolean Events
and Previous Events.

Value Name Description Project

00b Reserved All

01b Prev Events Selects the Previous events All

10b Boolean Events Selects the Boolean Events All

11b Reserved All

18:3 Compare Value Project: All Format: U16

This field is loaded to compare against the 8 signals that are fed into this block. The type of
comparison that is done is controlled by the Compare Function. When the compare
function is true, then the signal for the event is asserted. This in turn can be counted by any
of the CHAP counters.

2:0 Compare Function Project: All Format: U3

Value Name Description Project

000b Any Are Equal Compare and assert if any are equal
(Can be used as OR function)

All

001b Greater Than Compare and output signal if greater
than

All

010b Equal Compare and assert output if equal to
(Can also be used as AND function)

All

011b Greater Than or Equal Compare and assert output if greater
than or equal

All

100b Less Than Compare and assert output if less than All

101b Not Equal Compare and assert output if not equal All

110b Less Than or Equal Compare and assert output if less than
or equal

All

111b Reserved All

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 95

1.1.11.16 CEC3-1 – Customizable Event Creation

CEC3-1— Customizable Event Creation
Register Type: MMIO
Address
Offset:

{DevSNB] 23ACh

Project: All
Default Value: 00000000h
Access: Write Only
Size (in bits): 32
This register is used to program the OA unit.

Bit Description

31:16 Considerations Project: All Format: U32

0: The bit is considered in event calculations. 1: The bit is delayed by 1 clock before
considering it in event calculations. This is particularly useful for doing state machine arc
coverage.

15:0 Mask Project: All Format: U32

These 8 bits are used to mask off entries from the comparison. For each bit: 0: This bit is
considered in event calculations. 1: This bit is ignored in event calculations.

1.2 Memory Interface Commands for Rendering Engine

1.2.1 Introduction
This chapter describes the formats of the “Memory Interface” commands, including brief descriptions of
their use. The functions performed by these commands are discussed fully in the Memory Interface
Functions Device Programming Environment chapter.

This chapter describes MI Commands for the original graphics processing engine. The term “for
Rendering Engine” in the title has been added to differentiate this chapter from a similar one describing
the MI commands for the Media Decode Engine.

The commands detailed in this chapter are used across products within the Gen4+ family. However,
slight changes may be present in some commands (i.e., for features added or removed), or some
commands may be removed entirely. Refer to the Preface chapter for product specific summary.

1.2.2 Software Synchronization Commands
To support mid-triangle interruption, certain commands need to be placed in a temporary location in
hardware until primitive commands are complete. This introduces out-of-order command execution.
Below show the commands that are affected. Note that the INSTPM register has a bit that is used to
force in-order execution. If set, however, mid-triangle modes like PSMI cannot be enabled.

96 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

Command Qualifications

MI_NOOP When writing to the NOOPID register

MI_USER_INTERRUPT Always

MI_PROBE Writing out new value after check

MI_UNPROBE Always

MI_SEMAPHORE_MBOX Memory write

MI_STORE_DATA_IMM Always

MI_STORE_DATA_INDEX Always

MI_LOAD_REGISTER_IMM Always

MI_UPDATE_GTT Always

MI_STORE_REGISTER_MEM Register read is done in-order, register write done out-of-order

1.2.3 MI_ARB_CHECK

MI_ARB_CHECK
Project: All Length Bias: 1
Engine: Render

The MI_ARB_CHECK instruction is used to check the ring buffer double buffered head pointer
(register UHPTR). This instruction can be used to pre-empt the current execution of the ring buffer.
Note that the valid bit in the updated head pointer register needs to be set for the command
streamer to be pre-empted.

Programming Notes:

 The current head pointer is loaded with the updated head pointer register independent of
the location of the updated head

 If the current head pointer and the updated head pointer register are equal, hardware will
automatically reset the valid bit corresponding to the UHPTR

 For GEN6 this instruction can be placed only in a ring buffer, never in a batch buffer.
 For pre-emption, the wrap count in the ring buffer head register is no longer maintained by

hardware. The hardware updates the wrap count to the value in the UHPTR register.

DWord Bit Description

0 31:29 Command Type

Default
Value:

0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default
Value:

05h MI_ARB_CHECK Format: OpCode

22:0 Reserved Project: All Format: MBZ

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 97

1.2.4 MI_ARB_ON_OFF

MI_ARB_ON_OFF
Project: All Length Bias: 1
Engine: Render

The MI_ARB_ON_OFF instruction is used to disable/enable context switching. Note that context
switching will remain disabled until re-enabled through use of this command. This command will
also prevent a switch in the case of waiting on events, running out of commands or a surface probe
fault. These will effectively hang the device if allowed to occur while arbitration is off (context
switching is disabled.)

This command should always be used as an off-on pair with the sequence of instructions to be
protected from context switch between MI_ARB_OFF and MI_ARB_ON. Software must use this
arbitration control with caution since it has the potential to increase the response time of the Render
Engine to pre-emption requests.

This is a privileged command; it will not be effective (will be converted to a no-op) if executed from
within a non-secure batch buffer. This command can only be issued when Per-Process Virtual
Address Space is set; if the bit is set it will be converted to NOOP.

DWord Bit Description

0 31:29 Command Type

Default
Value:

0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default
Value:

08h MI_ARB_ON_OFF Format: OpCode

22:1 Reserved Project: All Format: MBZ

0 Arbitration Enable

Format: Enable

This field enables or disables context switches due to pre-emption.

98 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.2.5 MI_BATCH_BUFFER_END

MI_BATCH_BUFFER_END
Project: All Length Bias: 1
Engine: Render

The MI_BATCH_BUFFER_END command is used to terminate the execution of commands stored
in a batch buffer initiated using a MI_BATCH_BUFFER_START command.

DWord Bit Description

0 31:29 Command Type

Default
Value:

0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default
Value:

0Ah MI_ BATCH_BUFFER_END Format: OpCode

22:0 Reserved Project: All Format: MBZ

1.2.6 MI_CONDITIONAL_BATCH_BUFFER_END

MI_CONDITIONAL_BATCH_BUFFER_END
Project: All Length Bias: 2
Engine: Render

The MI_BATCH_BUFFER_END command is used to conditionally terminate the execution of
commands stored in a batch buffer initiated using a MI_BATCH_BUFFER_START command.

DWord Bit Description

0 31:29 Command Type

Default
Value:

0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default
Value:

36h MI_CONDITIONAL_BATCH_BUF
FER_END

Format: OpCode

22 Use Global GTT

Project: All

Default Value: 0h DefaultVaueDesc

Format: U1 FormatDesc

If set, this command will use the global GTT to translate the Compare Address
and this command must be executing from a privileged (secure) batch buffer. If
clear, the PPGTT will be used to translate the Compare Address.

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 99

MI_CONDITIONAL_BATCH_BUFFER_END
21 Compare Semaphore

Project: All

Default Value: 0h DefaultVaueDesc

Format: U1 FormatDesc

If set, the value from the Compare Data Dword is compared to the value from the
Compare Address in memory. If the value at Compare Address is greater than
the Compare Data Dword, execution of current command buffer should continue.

If clear, no comparison takes place.

20 Reserved

19:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:0 Compare Data Dword

Data dword to compare memory. The Data dword is supplied by software to control
execution of the command buffer. If the compare is enabled and the data at
Compare Address is greater than this dword, the execution of the command
buffer should continue.

2 31:3 Compare Address

Qword address to fetch Data Dword(DW0) from memory.
HW will compare the Data Dword(DW0) with Compare Data Dword

2:0 Reserved Project: All Format: MBZ

100 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.2.7 MI_BATCH_BUFFER_START

MI_BATCH_BUFFER_START
Project: All Length Bias: 2
Engine: Render

The MI_BATCH_BUFFER_START command is used to initiate the execution of commands stored
in a batch buffer. For restrictions on the location of batch buffers, see Batch Buffers in the Device
Programming Interface chapter of MI Functions.

The batch buffer can be specified as secure or non-secure, determining the operations considered
valid when initiated from within the buffer and any attached (chained) batch buffers. See Batch
Buffer Protection in the Device Programming Interface chapter of MI Functions.

Programming Notes:

 Batch buffers referenced with physical addresses must not extend beyond the end of the
starting physical page (can’t span physical pages). However, a batch buffer initiated using a
physical address can chain to another buffer in another physical page.

 A batch buffer initiated with this command must end either with a
MI_BATCH_BUFFER_END command or by chaining to another batch buffer with an
MI_BATCH_BUFFER_START command.

 For virtual batch buffers, it is essential that the address location beyond the current page be
populated inside the GTT. HW performs over-fetch of the command addresses and any
over-fetch requires a valid TLB entry. A single extra page beyond the batch buffer is
sufficient.

 Prior to sending batch buffer start command with clear command buffer enable set, software
has to ensure pipe is flushed explicitly by sending MI_FLUSH.

DWord Bit Description

0 31:29 Command Type

Default
Value:

0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default
Value:

31h MI_BATCH_BUFFER_START Format: OpCode

22 Reserved Format: MBZ

22:17 Reserved Project: All Format: MBZ

16 Reserved Project: Format:

.

15 Reserved Project: Format:

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 101

MI_BATCH_BUFFER_START
14:13 Reserved Project: All Format: MBZ

12 Reserved Project: All Format:

11 Clear Command
Buffer Enable

Project: All Format: U1

The following batch buffer is to be executed from the Write Once protected
memory area. The address of the batch buffer is an offset into the WOPCM area.
This batch buffer needs to be pre-ceded by a MI_FLUSH command or
PIPE_CONTROL with CS Stall set.

10 Reserved Format: MBZ

9 Reserved Project: All Format: MBZ

8 Buffer Security and Address Space Indicator

Project: All

Format: MI_BufferSecurityType

When this command is executed from within a batch buffer (i.e., is a “chained” batch
buffer command), this field is IGNORED and the next buffer in the chain inherits the
initial buffer’s security characteristics.

[DevSNB] When Per-Process GTT Enable is set, it is assumed that all code is in a
secure environment, independent of address space. Under this condition, this bit
only specifies the address space (GGTT or PPGTT). All commands are executed
“as-is”

Value Name Description Project

0h GGTT This batch buffer is secure and will be
accessed via the GGTT.

All

1h PPGTT This batch buffer will always be
accessed via the PPGTT

All

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total - Bias

1 31:2 Batch Buffer Start Address

Project: All

Address: GraphicsAddress[31:2]

Surface Type: BatchBuffer

This field specifies Bits 31:2 of the starting address of the batch buffer.

1:0 Reserved Project: All Format: MBZ

102 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.2.7.1 Command Access of Privileged Memory

Memory space mapped through the global GTT is considered “privileged” memory. Commands that have
the capability of accessing both privileged and unprivileged (PPGTT space) memory will contain a bit that,
if set, will attempt a “privileged” access through the GGTT rather than an unprivileged access through the
context-local PPGTT.

“User mode” command buffers should not be able to access privileged memory under any circumstances.
These command buffers will be issued by the kernel mode driver with the batch buffer’s Buffer Security
Indicator set to “non-secure”. Commands in such a batch buffer are not allowed to access privileged
memory. The commands in these buffers are supplied by the user mode driver and will not be validated
by the kernel mode driver. For a batch buffer marked as non-secure if Per-Process Virtual Address
Space is set, the command buffer fetches are generated using the PPGTT space.

“Kernel mode” command buffers are allowed to access privileged memory. The batch buffers Buffer
Security indicator is set to “secure” in this case. In some of the commands that access memory in a
secure batch buffer, a bit is provided in the command to steer the access to Per process or Global virtual
space. Secure batch buffers are executed from the global GTT.

Commands in ring buffers and commands in batch buffers that are marked as secure (by the kernel mode
driver) are allowed to access both privileged and unprivileged memory and may choose on a command-
by-command basis.

Table 1-3. GGTT and PPGTT Usage by Command

Command Address Allowed Access

MI_BATCH_BUFFER_START* Command Address Selectable

MI_DISPLAY_FLIP Display Buffer Base GGTT Only

MI_STORE_DATA_IMM* Storage Address Selectable

MI_STORE_DATA_INDEX** Storage Offset Selectable

MI_STORE_REGISTER_MEM* Storage Address Selectable

MI_SEMAPHORE_MBOX Semaphore Address Selectable

PIPE_CONTROL STDW Address Selectable

*Command has a GGTT/PPGTT selector added to it vs. previous products.

**Added bit allows offset to apply to global HW Status Page or PP HW Status Page found in context
image.

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 103

1.2.8 MI_CLFLUSH

MI_CLFLUSH
Project: [DevSNB] Length Bias: 2

Engine: Render

Flushes out the page given in the command out to system memory. This command is specific
to the render engine. This command is not privileged.

The MI_CLFLUSH will generare zero-length cycles which look like zero-length writes which are
dropped in SuperQ to optimize performance. To get the MI_CLFLUSH to the ring/LLC, the
zero-length optimization should be disabled. S/W should disable the optimization via SGCM
bit18 (set to “0”) before pushing CLFLUSHs to CS ring and re-enable it after observing the
storeDW post CLFLUSHs are complete.

DWord Bit Description

0 31:29 Command Type

Default
Value:

0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default
Value:

27h Store DW MI_CLFLUSH Format: OpCode

22 Use Global GTT

Project: All

This bit will be ignored and treated as if clear when executing from a non-privileged
batch buffer. It is allowed for this bit to be clear when executing this command from
a privileged (secure) batch buffer. This bit must be ‘1’ if the Per Process GTT
Enable bit is clear.

Value Name Description Project

0h Per Process
Graphics
Address

 All

1h Global
Graphics
Address

This command will use the global
GTT to translate the Address and
this command must be executing
from a privileged (secure) batch
buffer.

All

21:8 Reserved Project: All Format: MBZ

104 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

MI_CLFLUSH
7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:6 Page Base Address

Project: All

Address: GraphicsAddress[31:0]

4KB aligned Page Address which software requires hardware to flush to
DRAM.

11:0 Reserved Project: All Format: MBZ

2..n 31:0 DW Representing ½ Cache Line

Project: All

MBZ. The information given to hardware is the DW itself, not the
contents. Hardware uses the DW count of the command to determine the
offset from the base to flush out. The offset is ½ cache line (8 DW = 1HW)
granular so for a full page, the command will need

4096 bytes / 4 bytes per DW / 8 DW per HW = 128 DW.

Note that this is not possible given the 5:0 DW length. Software must split
up the DWs with multiple MI_CLFLUSH commands. Example seen below

1st MI_CLFLUSH: address 11:0 = 0, header 5:0 = 0x3FE (62 - 1/2 CL)

2st MI_CLFLUSH: address 11:0 = 62*32, header 5:0 = 0x3FE (62 - 1/2
CL)

3st MI_CLFLUSH: address 11:0 = 62*64, header 5:0 = 0x3FE (62 - 1/2
CL)

4st MI_CLFLUSH: address 11:0 = 62*96, header 5:0 = 0x3FE (62 - 1/2
CL)

... etc.. until all requested cachelines are flushed.

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 105

1.2.9 MI_DISPLAY_FLIP

MI_DISPLAY_FLIP
Project: All Length Bias: 2

Engine: Render

The MI_DISPLAY_FLIP command is used to request a specific display plane to switch (flip) to
display a new buffer. The buffer is specified with a starting address and pitch. The tiled
attribute of the buffer start address is programmed as part of the packet.

The operation this command performs is also known as a “display flip request” operation – in
that the flip operation itself will occur at some point in the future. This command specifies when
the flip operation is to occur: either synchronously with vertical retrace to avoid tearing artifacts
(possibly on a future frame), or asynchronously (as soon as possible) to minimize rendering
stalls at the cost of tearing artifacts.

Programming Notes:

1. This command simply requests a display flip operation -- command execution then
continues normally. There is no guarantee that the flip (even if asynchronous) will occur
prior to subsequent commands being executed. (Note that completion of the MI_FLUSH
command does not guarantee that outstanding flip operations have completed). The
MI_WAIT_FOR_EVENT command can be used to provide this synchronization – by
pausing command execution until a pending flip has actually completed. This
synchronization can also be performed by use of the Display Flip Pending hardware
status.

2. After a display flip operation is requested, software is responsible for initiating any
required synchronization with subsequent buffer clear or rendering operations. For multi-
buffering (e.g., double buffering) operations, this will typically require updating
SURFACE_STATE or the binding table to change the rendering (back) buffer. In
addition, prior to any subsequent clear or rendering operations, software must typically
ensure that the new rendering buffer is not actively being displayed. Again, the
MI_WAIT_FOR_EVENT command or Display Flip Pending hardware status can be used
to provide this synchronization.

3. The display buffer command uses the X and Y offset for the tiled buffers from the Display
Interface registers. Software is allowed to change the offset via the MMIO interface
irrespective of the flip commands enqueued in the command stream. For tiled buffers,
the display subsystem uses the X and Y offset in generation of the final request to
memory. The offset is always updated on the next vblank for both Synchronous and
Asynch Flips. It is not necessary to have a flip enqueued to update the X and Y offset

4. The display buffer command uses the linear dword offset for the linear buffers from the
Display Interface registers. Software is allowed to change the offset via the MMIO
interface irrespective of the flip commands enqueued in the command stream. For linear
buffers, the display subsystem uses the dword offset in generation of the final request to
memory.

 For synchronous flips the offset is updated on the next vblank. It is not necessary to
have a sync flip enqueued to update the dword offset.

106 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

MI_DISPLAY_FLIP
 Linear memory does not support asynchronous flips

5. DWord 3 (Left Eye Display Buffer Base Address) must not be set with synchronous flips
or asynchronous flips. It is only allowed to be sent with stereo 3D flips

DWord Bit Description

0 31:29 Command Type

Default
Value:

0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default
Value:

14h MI_DISPLAY_FLIP Format: OpCode

22 Async Flip
Indicator

Project: All Format: Enable

This bit should always be set if DW2 [1:0] == ‘01’ (async flip). This field is
required due to HW limitations. This bit is used by the render pipe while DW2 is
used by the display hardware.

21:20 Display (Plane) Select

Project: [DevSNB]

Format: U2 FormatDesc

This field selects which display plane is to perform the flip operation.

Value Name Description Project

0h Display
Plane A

 All

1h Display
Plane B

 All

2h Display
Sprite A

 All

3h Display
Sprite B

 All

19:8 Reserved Project: Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

For Synchronous Flips and Asynchronous Flips,, this field must be programmed
to 1h for a total length of 3.

1 31 Reserved

30:16 Reserved Project: All Format: MBZ

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 107

MI_DISPLAY_FLIP
15:6 Display Buffer Pitch

Project: All

Default Value: 0h DefaultVaueDesc

Format: U10

For Synchronous Flips and Stereo 3D Flips only, this field specifies the 64-byte
aligned pitch of the new display buffer.

For Asynchronous Flips, this parameter is programmed so that all the flips in a
flip chain should maintain the same pitch as programmed with the last
synchronous flip or stereo 3D flip or direct thru mmio.

5:1 Reserved Project: All Format: MBZ

0 Tile Parameter

Project: [DevSNB+]

Default Value: 0h DefaultVaueDesc

Format: Enable

For Asynchronous Flips, this parameter cannot be changed. All the flips in a flip
chain should maintain the same tile parameter as programmed with the last
synchronous flip or direct thru mmio.

Value Name Description Project

0h Linear For Syncronous Flips Only All

1h Tiled X All

Programming Notes

Performing a synchronous or asynchronous flip will drop any previous
synchronous flip that has not yet completed.

2 31:12 Display Buffer Base Address

Project: All

Address: GraphicsAddress[31:12]

This field specifies Bits 31:12 of the Graphics Address of the new display buffer.
In stereo 3D mode this is the right eye base address.

Programming Notes

 The Display buffer must reside completely in Main Memory
 This address is always translated via the global (rather than per-

process) GTT

11:3 Reserved Project: All Format: MBZ
2 Reserved

108 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

MI_DISPLAY_FLIP
1:0 Flip Type

Project: All

Default Value: 00b Synchronous flip

This field specifies whether the flip operation should be performed
asynchronously to vertical retrace.

Value Name Description Project

00b Sync Flip The flip will occur during the
vertical blanking interval – thus
avoiding any tearing artifacts.

All

01b Async Flip The flip will occur “as soon as
possible” – and may exhibit
tearing artifacts

All

Programming Notes

 The Display Buffer Pitch and Tile parameter fields cannot be changed
for asynchronous flips (i.e., the new buffer must have the same pitch/tile
format as the previous buffer).

 Asynch flips are Supported on X-Tiled Frame buffers only.

 For Asynch Flips the Buffers used must be 32KB aligned.

 Asynch flips Supported on Display Planes A and B and C only

3 31:12 Reserved

11:0 Reserved Project: All Format: MBZ

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 109

1.2.10 MI_FLUSH

MI_FLUSH
Project: All Length Bias: 1
Engine: Render

The MI_FLUSH command is used to perform an internal “flush” operation. The parser pauses on an
internal flush until all drawing engines have completed any pending operations and the read caches
are invalidated including the texture cache accessed via the Sampler or the data port. In addition,
this command can also be used to:

1. Flush any dirty data in the Render Cache to memory. This is done by default, however this
can be inhibited.

2. Invalidate the state and command cache.

Usage note: After this command is completed and followed by a Store DWord-type command, CPU
access to graphics memory will be coherent (assuming the Render Cache flush is not inhibited).
This command is specific to the render engine. Other engines use MI_FLUSH_DW

Note that if no post-sync operation is enabled for Flush completion, a register write to DE scratch
space will be generated by command streamer. Scratch space description is given in DE Bspecs.

DWord Bit Description

0 31:29 Command Type

Default
Value:

0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default
Value:

04h MI_FLUSH Format: OpCode

22:7 Reserved Project: All Format: MBZ

6 Protected memory

Enable
Project: All Format: Enable

After completion of the flush, the hardware will limit all access to the Protected
Content Memory. Only command streamer initiated cacheable writes are allowed to
non-PCM memory.

5 Indirect State Pointers Disable Project: All Format: Disable

At the completion of the flush, the indirect state pointers in the hardware will be
considered as invalid ie the indirect pointers will not be restored for the context.

4 Generic Media State Clear Project: All Format: Disable

If set, all generic media state context information will not be included with the next
context save, assuming no new state is initiated after the flush. If clear, the generic
media state context save state will not be affected. An MI_FLUSH with this bit set
should be issued once all the Media Objects that will be processed by a given
persistent root thread have been issued or when an MI_SET_CONTEXT switching
from a generic media context to a 3D context completes. When using
MI_SET_CONTEXT, once state is programmed, it will be saved and restarted as part
of any context each time that context is saved/restored until an MI_FLUSH with this
bit set is issued in that context.

110 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

MI_FLUSH
3 Reserved Project: All Format:

2 Render Cache Flush Inhibit Project: All Format: Boolean

If set, the Render Cache is not flushed as part of the processing of this command.

Value Name Description Project

0h Flush Flush the Render Cache All

1h Don’t Flush Do not flush the Render Cache All

1 State/Instruction Cache Invalidate Project: All Format: Boolean

If set, Invalidates the State and Instruction Cache

Value Name Description Project

0h Don’t
Invalidate

Leave State/Instruction Cache
unaffected

All

1h Invalidate Invalidate State/Instruction Cache All

0 Reserved Project: All Format: MBZ

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 111

1.2.11 MI_LOAD_REGISTER_IMM

MI_LOAD_REGISTER_IMM
Project: All Length Bias: 2
Engine: Render

The MI_LOAD_REGISTER_IMM command requests a write of up to a DWord constant supplied in
the command to the specified Register Offset (i.e., offset into Memory-Mapped Register Range).

Programming Notes:

 A stalling flush must be sent down pipeline before issuing this command

 The behavior of this command is controlled by Dword 3, Bit 8 (Disable Register Access)
of the RINGBUF register. If this command is disallowed then the command stream
converts it to a NOOP.

 If this command is executed from a BB then the behavior of this command is controlled
by Dword 0, Bit 8 (Security Indicator) of the BATCH_BUFFER_START Command. If the
batch buffer is insecure then the command stream converts this command to a NOOP.
Note that the corresponding ring buffer must allow a register update for this command to
execute.

 To ensure this command gets executed before upcoming commands in the ring, either a

stalling pipeControl should be sent after this command, or MMIO 0x20C0 bit 7 should be
set to 1.

 When base address of 0x180000 is added to the Register Offset, when executed will

result in updating of the register in the other GT in GTB mode of operation then the GT
from which this instruction is executed. When this instruction is executed by Command
Streamer with COREID-0 will result in updating the register in GT with COREID-1 and
vice versa, when base address of 0x180000 is added to the register offset.

The following addresses should NOT be used for LRIs

 1. 0x8800 - 0x88FF

 2. >= 0xC0000

Limited LRI cycles to the Display Engine 0x40000-0xBFFFF) are allowed, but must be spaced to
allow only one pending at a time. This can be done by issuing an SRM to the same address
immediately after each LRI.

DWord Bit Description

0 31:29 Command Type

Default
Value:

0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default
Value:

22h MI_LOAD_REGISTER_IMM Format: OpCode

112 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

MI_LOAD_REGISTER_IMM
22:12 Reserved Project: All Format: MBZ

11:8 Byte Write Disables

Format: Enable[4] Bit 8 corresponds to Data DWord
[7:0]

Range Must specify a valid register write operation

If [11:8] is ‘1111’, then this command will behave as a NOOP.

Otherwise, the value is forwarded to the destination register.

7:0 DWord Length

Default Value: 1h Excludes DWord (0,1)

Format: =n Total Length - 2

1 31:2 Register Offset

Format: U30

Address: MmioAddress[31:2]

This field specifies bits [31:2] of the offset into the Memory Mapped Register
Range (i.e., this field specifies a DWord offset).

When base address of 0x180000 is added to the Register Offset, when
executed will result in updating of the register in the other GT in GTB
mode of operation then the GT from which this instruction is executed.
When this instruction is executed by Command Streamer with COREID-0
will result in updating the register in GT with COREID-1 and vice versa,
when base address of 0x180000 is added to the register offset.

1:0 Reserved Project: All Format: MBZ

2 31:0 Data DWord

Mask: Bytes Write Disables

Format: U32

This field specifies the DWord value to be written to the targeted location.

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 113

1.2.12 MI_NOOP

MI_NOOP
Project: All Length Bias: 1

 Engine: Render

The MI_NOOP command basically performs a “no operation” in the command stream and is typically
used to pad the command stream (e.g., in order to pad out a batch buffer to a QWord boundary).
However, there is one minor (optional) function this command can perform – a 22-bit value can be
loaded into the MI NOPID register. This provides a general-purpose command stream tagging
("breadcrumb") mechanism (e.g., to provide sequencing information for a subsequent breakpoint
interrupt).

Performance Note:

On previous products, the process time to execute a NOP command is min of 6 clock cycles.

On [DevSNB], the NOP process time is reduced to 1 clock. One example usage of the improved NOP
throughput is for some multi-pass media application whereas some unwanted media object commands
are replaced by MI_NOOP without repacking the commands in a batch buffer.

DWord Bit Description

0 31:29 Command Type

Default
Value:

0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default
Value:

0h MI_NOOP Format: OpCode

22 Identification Number Register Write Enable

Project: All

Format: Enable

This field enables the value in the Identification Number field to be written into the
MI NOPID register. If disabled, that register is unmodified – making this
command an effective “no operation” function.

Value Name Description Projec

t

0h Disable Do not write the NOP_ID register. All

1h Enable Write the NOP_ID register. All

31:0 Identification Number Project: All Format: U22

This field contains a 22-bit number which can be written to the MI NOPID register.

114 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.2.13 Surface Probing
These commands are only valid when the “Surface Fault Enable” bit is set in the GFX_MODE register

1.2.14 MI_REPORT_HEAD

MI_REPORT_HEAD
Project: All Length Bias: 1
Engine: Render

The MI_REPORT_HEAD command causes the Head Pointer value of the active ring buffer to be
written to a cacheable (snooped) system memory location.

The location written is relative to the address programmed in the Hardware Status Page Address
Register.

Programming Notes:

 This command must not be executed from a Batch Buffer.

DWord Bit Description

0 31:29 Command Type

Default
Value:

0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default
Value:

07h MI_REPORT_HEAD Format: OpCode

22:0 Reserved Project: All Format: MBZ

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 115

1.2.15 MI_SEMAPHORE_MBOX

MI_SEMAPHORE_MBOX
Project: [DevSNB] Length Bias: 2
Engine: Render

This command is provided as alternative to MI_SEMAPHORE to provide mailbox-type
semaphores where there is no update of the semaphore by the checking process (the consumer).
Single-bit compare-and-update semantics are also provided. In either case, atomic access of
semaphores need not be guaranteed by hardware as with the previous command. This command
should eventually supersede the previous command.

Synchronization between contexts (especially between contexts running on 2 different engines) is
provided by the MI_SEMAPHORE_MBOX command. Note that contexts attempting to
synchronize in this fashion must be able to access a common memory location. This means the
contexts must share the same virtual address space (have the same page directory), must have a
common physical page mapped into both of their respective address spaces or the semaphore
commands must be executing from a secure batch buffer or directly from a ring with the Use
Global GTT bit set such that they are “privileged” and will use the (always shared) global GTT.

MI_SEMAPHORE with the Update Semaphore bit set (and the Compare Semaphore bit clear)
implements the Signal command, while the Wait command is indicated by Compare Semaphore
being set. Note that Wait can cause a context switch. Signal increments unconditionally.

DWord Bit Description

0 31:29 Command Type

Default
Value:

0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default
Value:

16h MI_SEMAPHORE_MBOX Format: OpCode

22 Use Global GTT Project: All Format: U32

If set, this command will use the global GTT to translate the Semaphore Address
and this command must be executing from a privileged (secure) batch buffer. If
clear, the PPGTT will be used to translate the Semaphore Address.

This bit will be ignored (and treated as if clear) if this command is executed from a
non-privileged batch buffer. It is allowed for this bit to be clear when executing this
command from a privileged (secure) batch buffer or directly from a ring buffer.

21 Update
Semaphore

Project: All Format: U32

If set, the value from the Semaphore Data Dword is written to memory. If
Compare Semaphore is also set, the semaphore is not updated if the semaphore
comparison fails.

If clear, the data at Semaphore Address is not changed.

116 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

MI_SEMAPHORE_MBOX
20 Compare

Semaphore
Project: All Format: U32

If set, the value from the Semaphore Data Dword is compared to the value from the
Semaphore Address in memory. If the value at Semaphore Address is greater
than the Semaphore Data Dword, execution is continued from the current
command buffer.

If clear, no comparison takes place. Update Semaphore must be set in this case.

19 Reserved Project: All Format: MBZ

18 Compare

Register
Project: All Format: Compare Type

If set, data in MMIO register will be used for compare.

If clear, data in memory will be used for compare.

17:16 Register Select Project: All Format
:

Register Select

If compare register is set in bit[18], this filed indicate which register will be used.

0: VCS register (RVSYNC)

1: [Reserved]

2: BCS regiser (RBSYNC)

3. Use General Register Select

15:14 Reserved Project: All Format: MBZ

13:8 Reserved Project: All Format:

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

1 31:0 Semaphore Data Dword Project: All Format: U32

Data dword to compare/update memory. The Data dword is supplied by software
to control execution of the command buffer. If the compare is enabled and the
data at Semaphore Address is greater than this dword, the execution of the
command buffer continues.

2 31:2 PointerBitFieldName/MMIO Register Address

Project: All

Address: GraphicsVirtualAddress[31:2]

Surface Type: Semaphore

if Compare Register bit[18] is cleared, this field is the Graphics Memory Address
of the 32 bit value for the semaphore.

If Compare Register bit[18] is set, this field is the MMIO address of the register for
the semaphore.

1:0 Reserved Project: All Format: MBZ

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 117

1.2.16 MI_SET_CONTEXT

MI_SET_CONTEXT
Project: All Length Bias: 2
Engine: Render

The MI_SET_CONTEXT command is used to specify the logical context associated with the hardware
context. A logical context is an area in memory used to store hardware context information, and the context
is referenced via a 2KB-aligned pointer. If the (new) logical context is different (i.e., at a different memory
address), the device will proceed to save the current HW context values to the current logical context
address, and then restore (load) the new logical context by reading the context from the new address and
loading it into the hardware context state. If the logical context address specified in this command matches
the current logical context address, this command is effectively treated as a NOP.

This command also includes some controls over the context save/restore process. It is specific to the render
engine

 The Force Restore bit can be used to refresh the on-chip device state from the same memory
address if the indirect state buffers have been modified.

 The Restore Inhibit bit can be used to prevent the new context from being loaded at all. This must
be used to prevent an uninitialized context from being loaded. Once software has initialized a
context (by setting all state variables to initial values via commands), the context can then be stored
and restored normally.

 This command is legal only if Per-Process Virtual Address Space in the GFX_MODE register is
reset.

 This command needs to be always followed by a single MI_NOOP instruction to workaround a Gen4
silicon issue.

 When switching from a generic media context to a 3D context, the generic media state must be
cleared via the Generic Media State Clear bit 16 in PIPE_CONTROL (or bit 4 in MI_FLUSH) before
saving 3D context.

 [DevSNB] If Flush TLB invalidation Mode is enabled it’s the driver’s responsibility to invalidate the
TLBs at least once after the previous context switch after any GTT mappings changed (including
new GTT entries). This can be done by a pipelined PIPE_CONTROL with TLB inv bit set
immediately before MI_SET_CONTEXT.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default Value: 18h MI_SET_CONTEXT Format: OpCode

22:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

118 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

MI_SET_CONTEXT

1 31:12 Logical Context Address

Project: All

Address: GraphicsAddress[31:12]

Surface Type: Logical Context

This field contains the 4KB-aligned physical address of the Logical Context that is to be
loaded into the hardware context. If this address is equal to the CCID register associated
with the current ring, no load will occur. Prior to loading this new context, the device will
save the existing context as required. After the context switch operation completes, this
address will be loaded into the associated CCID register.

[DevSNB] This field needs to be 4KB aligned virtual address.

11:10 Reserved Project: All Format: MBZ

9 Reserved Format: MBZ

8 Reserved, Must be 1 Project: All Format: Must Be One

7:5 Reserved Project: All Format: MBZ

4 Reserved

3 Extended State Save Enable Project: {DevSNB] Format: U32

If set, the extended state identified in the Logical Context Data section of the Memory Data
Formats chapter is saved as part of switching away from this logical context. This bit will be
stored in the associated CCID register to control the context save operation when switching
away from this context (as part of a subsequent MI_SET_CONTEXT command).

This bit must be ‘1’ when RS2 power state is enabled (via MCHBAR, offset 0x11B8)

3 Reserved Project: Format:

2 Extended State Restore Enable Project: {DevSN
B]

Format: U32

If set, the extended state identified in the Logical Context Data section of the Memory Data
Formats chapter is loaded (or restored) as part of switching to this logical context. This
method can be used to restore things such as filter coefficients using the indirect state
restore followed by a restore of the extended logical context data. This bit affects the switch
(if required) to the context specified in Logical Context Address. This bit will also be stored
in the associated CCID register to control a subsequent context save operation when
switching to this context (as part of a subsequent ring buffer switch).

This bit must be ‘1’ when RS2 power state is enabled (via MCHBAR, offset 0x11B8)

2 Reserved Project: Format:

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 119

MI_SET_CONTEXT
1 Force Restore Project: All Format: U32

When switching to this logical context a comparison between Logical Context Address
and the contests of the CCID register is performed. Normally, matching addresses
prevent a context restore from occurring; however, when this bit is set a context restore
is forced to occur. This bit cannot be set with Restore Inhibit.

Note: This bit is not saved in the associated CCID register. It only affects the
processing of this command.

0 Restore Inhibit Project: All Format: U32

If set, the restore of the HW context from the logical context specified by Logical Context
Address is inhibited (i.e., the existing HW context values are maintained). This bit must be
used to prevent the loading of an uninitialized logical context. If clear, the context switch
proceeds normally. This bit cannot be set with Force Restore.

Note: This bit is not saved in the associated CCID register. It only affects the processing
of this command.

120 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.2.17 MI_STORE_DATA_IMM

MI_STORE_DATA_IMM
Project: All Length Bias: 2
Engine: Render

The MI_STORE_DATA_IMM command requests a write of the QWord constant supplied in the packet to the
specified Memory Address. As the write targets a System Memory Address, the write operation is coherent
with the CPU cache (i.e., the processor cache is snooped).

Programming Notes:

This command should not be used within a “non-secure” batch buffer to access global virtual space. Doing
so will cause the command parser to perform the write with byte enables turned off. This command can be
used within ring buffers and/or “secure” batch buffers.

This command can be used for general software synchronization through variables in cacheable memory
(i.e., where software does not need to poll un-cached memory or device registers).

This command simply initiates the write operation with command execution proceeding normally. Although
the write operation is guaranteed to complete “eventually”, there is no mechanism to synchronize command
execution with the completion (or even initiation) of these operations.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default Value: 20h MI_STORE_DATA_IMM Format: OpCode

22 Use Global GTT

Project: All

This bit will be ignored and treated as if clear when executing from a non-privileged batch
buffer. It is allowed for this bit to be clear when executing this command from a privileged
(secure) batch buffer. This bit must be ‘1’ if the Per Process GTT Enable bit is clear.

Value Name Description Project

0h Reserved

1h Global Graphics
Address

This command will use the global GTT to
translate the Address and this command must
be executing from a privileged (secure) batch
buffer.

All

21:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 2h Excludes DWord (0,1) =
2 for DWord, 3 for QWord

Format: =n Total Length - 2

1 31:0 Reserved Project: All Format: MBZ

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 121

MI_STORE_DATA_IMM

2 31:2 Address

Project: All

Address: GraphicsAddress[31:2]

Surface Type: U32(2)

This field specifies Bits 31:2 of the Address where the DWord will be stored. As the store
address must be DWord-aligned, Bits 1:0 of that address MBZ. This address must be 8B
aligned for a store “QW” command.

1 Reserved Project: All Format: MBZ

0 Reserved Project: Format:

3 31:0 Data DWord 0 Project: All Format: U32

This field specifies the DWord value to be written to the targeted location.
For a QWord write this DWord is the lower DWord of the QWord to be reported (DW 0).

4 31:0 Data DWord 1 Project: All Format: U32

This field specifies the upper DWord value to be written to the targeted QWord location
(DW 1).

1.2.18 MI_STORE_DATA_INDEX

MI_STORE_DATA_INDEX
Project: All Length Bias: 2
Engine: Render

The MI_STORE_DATA_INDEX command requests a write of the data constant supplied in the packet to the
specified offset from the System Address defined by the Hardware Status Page Address Register. As the
write targets a System Address, the write operation is coherent with the CPU cache (i.e., the processor
cache is snooped).

Programming Notes:

Use of this command with an invalid or uninitialized value in the Hardware Status Page Address Register is
UNDEFINED.

This command can be used for general software synchronization through variables in cacheable memory
(i.e., where software does not need to poll uncached memory or device registers).

This command simply initiates the write operation with command execution proceeding normally. Although
the write operation is guaranteed to complete “eventually”, there is no mechanism to synchronize command
execution with the completion (or even initiation) of these operations.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND Format: OpCode

122 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

MI_STORE_DATA_INDEX
28:23 MI Command Opcode

Default Value: 21h MI_STORE_DATA_INDEX Format: OpCode

22 Reserved Project: Format:

21 Use Per-Process Hardware Status Page

Project: All

If this bit is set, this command will index into the per-process hardware status page at offset
28K from the LRCA. If clear, the Global Hardware Status Page will be indexed. This bit will
be ignored and treated as set if this command is executed from within a non-secure batch
buffer.

This but must always be ‘0’

20:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 1h Excludes DWord (0,1)
= 1 for DWord, 2 for QWord

Format: =n Total Length - 2

1 31:12 Reserved Project: All Format: MBZ

11:2 Offset

Project: All

Format: U10 zero-based DWord offset into the HW status page.

Address: HardwareStatusPageOffset[11:2]

Surface Type: U32

Range [16, 1023]

This field specifies the offset (into the hardware status page) to which the data will be
written. Note that the first few DWords of this status page are reserved for special-purpose
data storage – targeting these reserved locations via this command is UNDEFINED.

This address must be 8B aligned for a store “QW” command.

1:0 Reserved Project: All Format: MBZ

2 31:0 Data DWord 0 Project: All Format: U32

This field specifies the DWord value to be written to the targeted location.
For a QWord write this DWord is the lower DWord of the QWord to be reported (DW 0).

3 31:0 Data DWord 1 Project: All Format: U32

This field specifies the upper DWord value to be written to the targeted QWord location
(DW 1).

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 123

1.2.19 MI_STORE_REGISTER_MEM

MI_STORE_REGISTER_MEM
Project: All Length Bias: 2
Engine: Render

The MI_STORE_REGISTER_MEM command requests a register read from a specified memory
mapped register location in the device and store of that DWord to memory. The register address is
specified along with the command to perform the read.
Programming Notes:

The command temporarily halts command execution.

The memory address for the write is snooped on the host bus.

This command should not be used within a "non-secure" batch buffer to access global virtual space.
Doing so will cause the command parser to perform the write with byte enables turned off. This
command can be used within ring buffers and/or "secure" batch buffers.

This command will cause undefined data to be written to memory if given register addresses for the
PGTBL_CTL_0 or FENCE registers

The following addresses should NOT be used for SRMs

 1. 0x8800 - 0x88FF

 2. >= 0x40000

The only exception is an SRM cycle to 0x40000-0xBFFFF when used as part of the LRI read-after-
write requirement.

DWord Bit Description

0 31:29 Command Type

Default
Value:

0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default
Value:

24h MI_STORE_REGISTER_MEM Format: OpCode

124 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

MI_STORE_REGISTER_MEM
22 Use Global GTT

Project: All

This bit will be ignored and treated as if clear when executing from a non-privileged
batch buffer. It is allowed for this bit to be clear when executing this command from
a privileged (secure) batch buffer. This bit must be ‘1’ if the Per Process GTT
Enable bit is clear.

Value Name Description Project

0h Reserved

1h Global Graphics
Address

This command will use the global
GTT to translate the Address and
this command must be executing
from a privileged (secure) batch
buffer.

All

21 Reserved Format: MBZ

20:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 1h Excludes DWord (0,1)

Format: =n Total Length - 2

1 31:26 Reserved Project: All Format: MBZ

25:2 Register Address

Project: All

Address: MMIO Address[25:2]

Surface Type: MMIO Register

This field specifies Bits 25:2 of the Register offset the DWord will be read from. As
the register address must be DWord-aligned, Bits 1:0 of that address MBZ.

Programming Notes Project

Storing a VGA register is not permitted and will store an
UNDEFINED value.

All

The values of PGTBL_CTL0 or any of the FENCE registers cannot
be stored to memory; UNDEFINED values will be written to
memory if the addresses of these registers are specified.

All

1:0 Reserved Project: All Format: MBZ

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 125

MI_STORE_REGISTER_MEM
2 31:2 Memory Address

Project: All

Address: GraphicsAddress[31:2]

Surface Type: MMIO Register

This field specifies the address of the memory location where the register
value specified in the DWord above will be written. The address specifies
the DWord location of the data.

Range = GraphicsVirtualAddress[31:2] for a DWord register

1 Reserved Project: All Format: MBZ

0 Reserved

1.2.20 MI_SUSPEND_FLUSH

MI_SUSPEND_FLUSH
Project: All Length Bias: 1
Engine: Render

Blocks MMIO sync flush or any flushes related to VT-d while enabled.

DWord Bit Description

0 31:29 Command Type

Default
Value:

0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default
Value:

0Bh MI_SUSPEND_FLUSH Format: OpCode

22:1 Reserved Project: All Format: MBZ

0 Suspend Flush

Project: All

Default Value: 0h DefaultVaueDesc

Format: Enable FormatDesc

This field suspends flush due to sync flush or implicit flush generated during VTD
enable, disable and IOTLB invalidation.

Value Name Description Project

0h Disable All

1h Enable All

126 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.2.21 MI_UPDATE_GTT

MI_UPDATE_GTT
Project: All Length Bias: 2
Engine: Render

The MI_UPDATE_GTT command is used to update GTT page table entries in a coherent manner
and at a predictable place in the command flow.

An MI_FLUSH should be placed before this command, since work associated with preceding
commands that are still in the pipeline may be referencing GTT entries that will be changed by its
execution. The flush will also invalidate TLBs and read caches that may become invalid as a result
of the changed GTT entries. MI_FLUSH is not required if it can be guaranteed that the pipeline is
free of any work that relies on changing GTT entries (such as MI_UPDATE_GTT contained in a
paging DMA buffer that is doing only update/mapping activities and no rendering).

This is a privileged command. This command will be converted to a no-op and an error flagged if it
is executed from within a non-secure batch buffer.

Note that MI_UPDATE_GTT is mainly for the pages that are strictly used by GT. If driver chooses to
update the CPU used pages thru MI_UPDATE_GTT, it needs to write to MMIO address x101008
(any value) to ensure system agent TLBs are invalidated before the new pages can be used.

DWord Bit Description

0 31:29 Command Type

Default
Value:

0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default
Value:

23h MI_UPDATE_GTT Format: OpCode

22 Use Global GTT

Project: All

Value Name Description Project

0h Per Process
Graphics
Address

This command will use the Per
Process GTT to translate the
Address and this command must
be executing from a privileged
(secure) batch buffer.

All

1h Global
Graphics
Address

This command will use the global
GTT to translate the Address and
this command must be executing
from a privileged (secure) batch
buffer.

All

21:8 Reserved Project: All Format: MBZ

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 127

MI_UPDATE_GTT
7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

1 31:12 Entry Address

Project: All

Address: GraphicsAddress[31:12]

This field simply holds the DW offset of the first table entry to be modified. Note that
one or more of the upper bits may need to be 0, i.e., for a 2G aperture, bit 31 MBZ.

11:0 Reserved Project: All Format: MBZ

2..n 31:0 Entry Data

Project: All

Format: Table Entry

This Dword becomes the new page table entry. See PPGTT/Global
GTT Table Entries (PTEs) in Memory Interface Registers.

1.2.22 MI_USER_INTERRUPT

MI_USER_INTERRUPT
Project: All Length Bias: 1
Engine: Render

The MI_USER_INTERRUPT command is used to generate a User Interrupt condition. The parser
will continue parsing after processing this command. See User Interrupt.

DWord Bit Description

0 31:29 Command Type

Default
Value:

0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default
Value:

02h MI_USER_INTERRUPT Format: OpCode

22:0 Reserved Project: All Format

:
MBZ

128 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

1.2.23 MI_WAIT_FOR_EVENT

MI_WAIT_FOR_EVENT
Project: All Length Bias: 1

Engine: Render

The MI_WAIT_FOR_EVENT command is used to pause command stream processing until a
specific event occurs or while a specific condition exists. See Wait Events/Conditions, Device
Programming Interface in MI Functions. Only one event/condition can be specified -- specifying
multiple events is UNDEFINED.

The effect of the wait operation depends on the source of the command. Once parsed, the
parser will halt (and suspend command arbitration) until the event/condition occurs. Note that if a
specified condition does not exist (the condition code is inactive) at the time the parser executes
this command, the parser proceeds, treating this command as a no-operation.

If CSunit is waiting for V-blank or flip done, HW can go into RC1/RC6 state.

Software must disable MI_WAIT_FOR_EVENT RC6 entry via RC_PSMI_CTRL if
MI_WAIT_FOR_EVENT is parsed in a batch buffer with the following attributes set:

 batch buffer in PPGTT space (labeled “non-secure” in command)

 CB^2 batch buffer

MI_NOOP setting NOP register (or any other benign command) must be set after
MI_WAIT_FOR_EVENT under the following conditions

 Back-to-back MI_WAIT_FOR_EVENT commands

 MI_WAIT_FOR_EVENT is the last command before head = tail

DWord Bit Description

0 31:29 Command Type

Default
Value:

0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default
Value:

03h MI_WAIT_FOR_EVENT Format: OpCode

22:20 Reserved Project: Format: MBZ

22 Reserved Project: Format:

21 Reserved Project: Format:

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 129

MI_WAIT_FOR_EVENT
20 Reserved Project: Format:

19:16 Condition Code Wait Select

Project: All

This field enables a wait for the duration that the corresponding condition code is
active. These enable select one of 15 condition codes in the EXCC register, that
cause the parser to wait until that condition-code in the EXCC is cleared.

Value Name Description Project

0h Not Enabled Condition Code Wait not enabled All

1h-5h Enabled Condition Code select enabled;
selects one of 5 codes, 0 – 4

All

6h-15h Reserved All

Programming Notes

Note that not all condition codes are implemented. The parser operation is
UNDEFINED if an unimplemented condition code is selected by this field.

15:14 Reserved Project: Format: MBZ

13 Display Pipe B H Blank Wait Enable Project: All Format: Enable

This field enables a wait until the start of next Display Pipe B “Horizontal Blank”
event occurs. This event is defined as the start of the next Display B Horizontal
blank period. Note that this can cause a wait for up to a line. See Horizontal Blank
Event in the Device Programming Interface chapter of MI Functions.

12 Reserved Project: All Format: MBZ

11 Display Pipe B Vertical Blank Wait
Enable

Project: All Format: U32

This field enables a wait until the next Display Pipe B “Vertical Blank” event
occurs. This event is defined as the start of the next Display Pipe B vertical blank
period. Note that this can cause a wait for up to an entire refresh period. See
Vertical Blank Event (See Programming Interface).

10 Display Sprite B Flip Pending Wait
Enable

Project: All Format: Enable

This field enables a wait for the duration of a Display Sprite B “Flip Pending”
condition. If a flip request is pending, the parser will wait until the flip operation has
completed (i.e., the new front buffer address has now been loaded into the active
front buffer registers).

130 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

MI_WAIT_FOR_EVENT
9 Display Plane B Flip Pending Wait

Enable
Project: All Format: Enable

This field enables a wait for the duration of a Display Plane B “Flip Pending”
condition. If a flip request is pending, the parser will wait until the flip operation has
completed (i.e., the new front buffer address has now been loaded into the active
front buffer registers).

8 Display Pipe B Scan Line Wait Enable Project: All Format: Enable

This field enables a wait while a Display Pipe B “Scan Line” condition exists. This
condition is defined as the the start of the scan line specified in the Pipe B Display
Scan Line Count Range Compare Register.

7:6 Reserved Project: All Format: MBZ

5 Display Pipe A H Blank Wait Enable Project: All Format: U32

This field enables a wait until the start of next Display Pipe A “Horizontal Blank”
event occurs. This event is defined as the start of the next Display A Horizontal
blank period. Note that this can cause a wait for up to a line.

4 Reserved Project: All Format: MBZ

3 Display Pipe A Vertical Blank Wait
Enable

Project: All Format: Enable

This field enables a wait until the next Display Pipe A “Vertical Blank” event
occurs. This event is defined as the start of the next Display A vertical blank
period. Note that this can cause a wait for up to an entire refresh period.

2 Display Sprite A Flip Pending Wait
Enable

Project: All Format: Enable

This field enables a wait for the duration of a Display Sprite A “Flip Pending”
condition. If a flip request is pending, the parser will wait until the flip operation has
completed (i.e., the new front buffer address has now been loaded into the active
front buffer registers). See Display Flip Pending Condition in the Device
Programming Interface chapter of MI Functions.

1 Display Plane A Flip Pending Wait
Enable

Project: All Format: Enable

This field enables a wait for the duration of a Display Plane A “Flip Pending”
condition. If a flip request is pending, the parser will wait until the flip operation has
completed (i.e., the new front buffer address has now been loaded into the active
front buffer registers). See Display Flip Pending Condition in the Device
Programming Interface chapter of MI Functions.

Doc Ref #: IHD-OS-V1 Pt3 – 05 11 131

MI_WAIT_FOR_EVENT
0 Display Pipe A Scan Line

Wait Enable
Project: All Format: Enable

This field enables a wait while a Display Pipe A “Scan Line” condition exists. This
condition is defined as the the start of the scan line specified in the Pipe A Display
Scan Line Count Range Compare Register. See Scan Line Event in the Device
Programming Interface chapter of MI Functions.

132 Doc Ref #: IHD-OS-V1 Pt3 – 05 11

Revision History

Revision Number Description Revision Date

1.0 First 2011 Opensource edition May 2011

§§

