

Intel[®] OpenSource HD Graphics Programmer's Reference Manual (PRM) Volume 4 Part 1: Subsystem and Cores – Shared Functions (SandyBridge)

For the 2011 Intel Core Processor Family

May 2011 Revision 1.0

NOTICE:

This document contains information on products in the design phase of development, and Intel reserves the right to add or remove product features at any time, with or without changes to this open source documentation.

Creative Commons License

You are free to Share — to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).

No Derivative Works. You may not alter, transform, or build upon this work.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL[®] PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The SandyBridge chipset family, Havendale/Auburndale chipset family, Intel[®] 965 Express Chipset Family, Intel[®] G35 Express Chipset, and Intel[®] 965GMx Chipset Mobile Family Graphics Controller may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel[®] sales office or your distributor to obtain the latest specifications and before placing your product order. I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed by Intel[®]. Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2011, Intel Corporation. All rights reserved.

Contents

1. S	ubsystem Overview	5
1.1	Introduction	5
1.2	Subsystem Topology	5
1.3	Execution Units (EUs)	5
1.4	Thread Dispatching	6
1.5	Shared Functions	6
1.6	Messages	8
1.6.	1 Message Register File (MRF)	9
1.6.	2 Send Instruction	9
1.6.	3 Creating and Sending a Message	10
1.6.	4 Message Payload Containing a Header	11
1.6.	5 Writebacks	11
1.6.	6 Message Delivery Ordering Rules	11
1.6.	7 Execution Mask and Messages	12
1.6.	8 End-Of-Thread (EOT) Message	12
1.6.	9 Performance	13
1.6.	10 Message Description Syntax	13
1.0.	meling Engine	14
2. 5		16
2.1	Texture Coordinate Processing	17
2.1.	1 I exture Coordinate Normalization	17
2.1.	2 Texture Coordinate Computation	1/
2.2	Texel Address Generation	18
2.2	1 Level of Detail Computation (Mipmapping)	19
2.2	2 Intra-Level Filtering Setup	22
2.2.	Jovel Feteb	20
2.3	1 Toxal Chroma Kaving	20
2.3.	Shadow Prefilter Compare	29
2.4	Tevel Filtering	20
2.5	Texel Color Gamma Linearization	30
2.0	Multisampled Surface Behavior [DevSNB+]	31
2.7	Denoise/Deinterlacer [DevSNB]	31
2.0	1 Introduction	31
2.8	2 Denoise Algorithm	34
2.8	3 Block Noise Estimate (part of Global Noise Estimate)	38
2.8	4 Deinterlacer Algorithm	39
2.8	5 Field Motion Detector	53
2.8	6 Implementation Overview	55
2.9	Adaptive Video Scaler	57
2.9.	1 Filtering Operations	59
2.10	Image Enhancement Filter and Video Signal Analysis	61
2.10	0.1 Block Diagram	62
2.10	0.2 Detail Filter Algorithm	62
2.10	0.3 Combination mode	64
2.11	State	69
2.1	1.1 BINDING_TABLE_STATE	69
2.1	1.2 SURFACE_STATE	70
2.1	1.3 SAMPLER_STATE1	01

2.11.4	SAMPLER_8x8_STATE [DevSNB+]	. 123
2.11.5	3DSTATE_CHROMA_KEY	. 128
2.11.6	3DSTATE SAMPLER PALETTE LOAD0	. 130
2.11.7	3DSTATE SAMPLER PALETTE LOAD1 [DevSNB]	. 131
2.11.8	3DSTATE MONOFILTER SIZE [DevILK+]	. 132
2.12 M	essages	. 133
2.12.1	Initiating Messages	. 133
2.12.2	Writeback Message	. 151
3. Data	Port	. 166
3.1 Ca	che Agents	. 166
3.1.1	Render Cache	. 167
3.1.2	Sampler Cache	. 167
3.1.3	Constant Cache [DevSNB+]	. 167
3.2 Su	rfaces	. 167
3.2.1	Surface State Model	. 167
3.2.2	Stateless Model	. 168
3.3 Wr	ite Commit	. 168
3.4 Re	ad/Write Ordering	. 169
3.5 Ac	cessing Buffers	. 169
3.6 Ac	cessing Media Surfaces	. 170
3.6.1	Color Processing [DevSNB+]	. 170
3.7 Ac	cessing Render Targets	. 193
3.7.1	Single Source	. 193
3.7.2	Dual Source [DevSNB+]	. 193
3.7.3	Replicate Data	. 193
3.7.4	Multiple Render Targets (MRT)	. 194
3.8 Sta	ite	. 194
3.8.1	BINDING_TABLE_STATE	. 194
3.8.2	SURFACE_STATE	. 194
3.8.3	COLOR_PROCESSING_STATE [DevSNB+]	. 194
3.9 Me	ssages	. 207
3.9.1	Global Definitions	. 207
3.9.2	Data Port Messages	. 207
3.9.3	OWord Block Read/Write	. 213
3.9.4	Unaligned OWord Block Read [DevSNB+]	. 216
3.9.5	OWord Dual Block Read/Write	. 218
3.9.6	Media Block Read/Write	. 220
3.9.7	DWord Scattered Read/Write	. 228
3.9.8	DWord Atomic write message [DevSNB]	. 232
3.9.9	Render Target Write	. 235
3.9.10	Render Target UNORM Read/Write [DevCTG] to [DevSNB]	. 253
3.9.11	Streamed Vertex Buffer Write [DevSNB]	. 259
3.9.12	AVC Loop Filter Read [DevCTG] to [DevSNB]	. 260

1. Subsystem Overview

1.1 Introduction

The DevSNB (SandyBridge) subsystem consists of an array of *execution units* (*EUs*, sometimes referred to as an arrray of *cores*) along with a set of *shared functions* outside the EUs that the EUs leverage for I/O and for complex computations. Programmers access the DevSNB Subsystem via the 3D or Media pipelines.

EUs are general-purpose programmable cores that support a rich instruction set that has been optimized to support various 3D API shader languages as well as media functions (primarily video) processing.

Shared functions are hardware units which serve to provide specialized supplemental functionality for the EUs. A shared function is implemented where the demand for a given specialized function is insufficient to justify the costs on a per-EU basis. Instead a single instantiation of that specialized function is implemented as a stand-alone entity outside the EUs and shared amongst the EUs.

Invocation of the shared functionality is performed via a communication mechanism call a "message". A message is a small, self-contained packet of information created by a kernel and directed to specific shared function. The message is defined by sequential series of MRF registers which hold message operands, a destination shared function ID, a function-specific encoding of the desired operation to be performed, and a destination GRF register to which any writeback response is to be directed. Messages are dispatched to the shared function under software control via the 'send' instruction. This instruction identifies the contents of the message and the GRF register location(s) to direct any response.

The message construction and delivery mechanisms are general in their definition and capable of supporting a wide variety of shared functions.

1.2 Subsystem Topology

The subsystem is organized as an array of EUs, and a set of functions that are shared among all of the EUs. (The EU array is further divided into rows with each row having its own first level instruction cache and Extended Math shared function, though this aspect of the implemented topology is not exposed to software). The Sampler, DataPort, URB and Message Gateway functions are shared among the entire array of EUs.

1.3 Execution Units (EUs)

Each EU is a vector machine capable of performing a given operation on as many as 16 pieces of data of the same type in parallel (though not necessarily on the same instant in time). In addition, each EU can support a number of execution contexts called *threads* that are used to avoid stalling the EU during a high-latency operation (external to the EU) by providing an opportunity for the EU to switch to a completely different workload with minimal latency while waiting for the high-latency operation to complete.

For example, if a program executing on an EU requires a texture read by the sampling engine, the EU may not necessarily idle while the data is fetched from memory, arranged, filtered and returned to the EU. Instead the EU will likely switch execution to another (unrelated) thread associated with that EU. If that thread encounters a stall, the EU may switch to yet another thread and so on. Once the Sampler result arrives back at the EU, the EU can switch back to the original thread and use the returned data as it continues execution of that thread.

The fact that there are multiple EU cores each with multiple threads can generally be ignored by software. There are some exceptions to this rule: e.g., for

- thread-to-thread communication (see *Message Gateway*, *Media*)
- synchronization of thread output to memory buffers (see Geometry Shader).

In contrast, the internal SIMD aspects of the EU are very much exposed to software.

This volume will not deal with the details of the EUs.

1.4 Thread Dispatching

When the 3D and Media pipelines send requests for thread initiation to the Subsystem, the thread Dispatcher receives the requests. The dispatcher performs such tasks as arbitrating between concurrent requests, assigning requested threads to hardware threads on EUs, allocating register space in each EU among multiple threads, and initializing a thread's registers with data from the fixed functions and from the URB. This operation is largely transparent to software.

1.5 Shared Functions

In general, a shared function has the ability to receive messages at its input, perform some specialized amount of work for each, and if required, generate output back to the message's originating execution unit (Message Gateway may generate output to a target execution unit specified by the message).

To uniquely identify shared functions, each is assigned a unique 4-bit identifier code called its 'Function ID'. This ID is specified in the 'send' instruction's 32b <desc> field of each message. DevSNB Function ID assignments are listed in the *Graphics Processing Engine* chapter of this specification.

Each shared function may support one or more related operations within itself. For example an Extended Math shared function may support operations such as reciprocal, sine, cosine, and/or others. These are generically referred to as sub-functions. The communication method as to which sub-function is desired is typically contained in the 16b 'function-control' field of the 'send' instruction <desc> field. Alternatively, a function may choose to define sub-function encodings in-band within message payload, or in the case of a single function shared-function, the function code may be implied. The architecture in no way interprets the sub-function code and the actual implementation choice is left to the function itself.

The Shared Function units included in the Subsystem are as follows (refer to the chapters devoted to each of these functions):

- Extended Math function
- Sampling Engine function

- DataPort function
- Message Gateway function
- Unified Return Buffer (URB)
- Thread Spawner (TS)
- Null function

The **Extended Math** function acts as an extension of the math functions already available inside the EUs. Certain functions such as inverse, square root, exponentiation, etc., require significant hardware resources to implement and are used infrequently enough that it is inefficient to implement them separately in each EU. The EUs therefore send the operands for these operations along with the operation to be performed to the Extended Math function which computes and returns the result to the requesting EU.

The **Sampling Engine** acts a (read-only) I/O port on behalf of the EUs, translating texture coordinates (and/or structure references) to memory addresses, reading texels and/or other data from memory, and in the case of texels, combining and filtering them according to programmed state. The resulting pixel and/or other data are then returned to the requesting EU.

The **Data Port** function acts as another I/O port on behalf of the EUs. It is both a read and a write port, and the only way for the Graphics Processing Engine to write results (e.g., images) back to memory. The Data Port contains the render and depth caches which receive the newly rendered pixels and write them out to memory when necessary. They also permit previously rendered objects to be read back efficiently by the Graphics Processing Engine in order to blend them with other rendered objects and test for visibility of newly rendered objects. Finally, the Data Port also provides read access constant buffers (arrays of constants in memory.)

The **Message Gateway** allows a thread to communicate (send a message to) another thread. A key is used to connect the sender and receiver threads, and a simple gateway protocol is used to send messages. This is primarily intended for media where a parent/child thread model is sometimes used and requires parent and child threads to synchronize and efficiently share information. It is not intended to be used by 3D graphics rendering threads.

The **Unified Return Buffer** (URB) is a single set of registers that EU threads use to return result data for future fixed functions and their threads to make use of. Individual entries in the buffer are "owned" by a given fixed function but a mechanism is provided where other fixed functions (those that follow) can read the data placed there by another fixed function. The buffer is considered a "Shared Function" since EUs need to be able to write result data to it using messages. In general, EU threads write their final results either to memory via the Data Port or to the URB for re-use by subsequent EU threads or certain 3D pipeline fixed-function units (CLIP, GS).

The **Thread Spawner** (TS) is a Shared Function that acts as a conduit for dispatching kernel-softwaregenerated threads, one thread can request another thread to be dispatched by sending a request to the TS. TS is unique as it is also a Fixed Function in the media pipeline for dispatching threads originated from Video Front End fixed function.

The **Null** shared function is supported to allow the broadcast of certain information (e.g, End Of Thread) without invoking any other operation or response.

1.6 Messages

Communication between the EUs and the shared functions and between the fixed function pipelines (which are not considered part of the "Subsystem") and the EUs is accomplished via packets of information called *messages*. Message transmission is requested via the 'send' instruction. Refer to the 'send' instruction definition in the *ISA Reference* chapter for details.

The information transmitted in a message falls into two categories:

- **Message Payload** data sourced from some number of registers (from 1 to 15 registers) in the Message Register File (MRF). The contents of the payload are dependent on the target function and specific function (etal), and may contain a header portion and/or data portion.
- Associated ("sideband") information provided by:
 - **Message Descriptor** specified with the 'send' instruction. Included in the message descriptor is control and routing information such as the target function ID, message payload length, response length, etc.
 - Additional information provided by the 'send' instruction, e.g., the starting destination register number, the execution mask (EMASK), etc.
 - o A small subset of Thread State, such as the Thread ID, EUID, etc.

The software view of messages is shown in Figure 1-1. There are four basic phases to a message's lifetime as illustrated below:

- 1.Creation The thread assembles the message payload into the Message Register File (MRF). This is done by a series of one or more instruction which specify a MRF register as the destination.
- 2.Delivery The thread issues the message for delivery via the 'send' instruction. The 'send' instruction specifies the MRF register which is the first of a sequential register series which makes the data payload, the length of the message payload within the MRF, the destination shared function ID (SFID), and where in the GRF any response is to be directed. The messaging subsystem will enqueue the message for delivery and eventually route the message to the specified shared function.
- 3. Processing The shared function receives the message and services it accordingly, as defined by the shared function definition.
- 4. Writeback If called for, the shared function delivers an integral number of registers of data to the thread's GRF in response to the message.

Figure 1-1. Data Flow Associated With Messages

1.6.1 Message Register File (MRF)

Each thread has a dedicated MRF which is logically identical to the GRF: 256 bits wide per register, with word-wide addressability. There are 16 MRF registers, referred to as "m0".."m15". From a software perspective, the MRF is write-only and thus may only be used as a destination specifier. Limited register-region specifications are allowed so long as the region is contained within a single MRF register.

Each register of the MRF has an associated in-flight status, indicating the contents of the register is needed as part of a pending message, but has yet to be transmitted by the hardware. This bit is set at the time the message is enqueued for delivery via the 'send' instruction. Should a subsequent write to an in-flight register be attempted, the execution unit will temporarily suspend the thread's execution until the register's in-flight status is cleared (i.e., the message has been transmitted).

Normal threads should construct their messages in m1..m15. The thread is free to start a message payload at any MRF register location, even to the point of having multiple messages under construction at the same time in non-overlapping spaces in the MRF. Further multiple messages over non-overlapping MRF space can be enqueued awaiting transmission at the same time. Regardless of actual hardware implementation, the thread should not assume that MRF addresses above m15 wrap to legal MRF registers.

1.6.2 Send Instruction

Messages are sent programmatically by the thread through the 'send' instruction. This instruction enqueues a message for delivery and marks as in-flight all MRF registers used for the message payload. It also allows for an optional implied move of one GRF register to a MRF register prior to the message being issued. This implied move allows for a higher message performance, eliminating the explicit 'mov'

that would normally be required to move R0 to the lead MRF register of the message (as required by many message definitions).

A typical 'send' instruction is exemplified here (please see the ISA for a full instruction description). This example performs an implicit move from r0 to m3, then issues a message to the Extended Math unit, with a payload of 1 register starting at m3, and expecting 1 register in reply to be placed in r5.

send (16) r5 m3 r0 0x01110001

The execution unit guarantees that any prior instruction which wrote to a MRF register is guaranteed to have retired, and its result written to the destination MRF register in time for message transmission.

1.6.3 Creating and Sending a Message

A code snippet is listed below, showing a 4-register message (m3 to m6) whose response is directed to r30. Note that message construction does not have to occur in MRF register order.

• • •				
mul (8)	m4	r20	r19	
mov (8)	m6	r21		
add (8)	m5	r29	r28	
send (8)	r30	m3	r0	<desc></desc>

Once a 'send' instruction is issued, the MRF registers used for its payload are marked as 'in-flight'. These registers remain in this state until the message is actually transmitted to the shared function and the register contents are no longer need. Any subsequent write to a MRF register which is in-flight results in a dependency and a thread switch until such time that the in-flight condition is cleared. An example is shown below in which the attempt to re-use m6 may result in a thread switch until message 1 is transmitted.

```
// --- message 1 ---
mul (8)
          m4
                 r20
                         r19
mov (8)
                r21
          m6
add (8)
          m5
                r29
                         r28
send (8) r30
                m3
                         r0
                              <desc>
. . .
// --- message 2 ---
mov (8)
                         // thread switch until the
          m6
                r15
                         // previous msg is sent and
                         // m6 in-flight is cleared.
```

. . .

MRF registers of one message may be reused for a subsequent message without restriction. The in-flight check mechanism prevents a MRF register staged as part of a pending message from being altered while awaiting transmission. Further, a thread may rely on the contents of a MRF register being unaltered after message transmission. This allows the thread to quickly issue an identical or slightly altered message using the same MRF register set without having to re-construct the entire payload.

Although more than one message may be enqueued at any point in time, care must be taken by the programmer to ensure that each message's destination GRF register region, if any, does no over lap with that of another enqueued message. This condition is not checked by HW. Due to varying latencies between two messages, and out-of-order, non-contiguous writeback cycles in the current implementation, the outcome in the GRF is indeterminate; It may be the result from the first message, or the result from the second message, or a mixture of data from both.

1.6.4 Message Payload Containing a Header

For most shared functions, the first register of the message payload contains the *header payload* of the message (or simply the *message header*). It contains the state fields (such as binding table pointer, sampler state pointer, etc) following a consistent format structure. Consequently, the rest of the message payload is referred to as the *data payload*.

Messages to Extended Math do not have a header and only contain data payload. Those messages may be referred to as header-less messages. Messages to Gateway combine the header and data payloads in a single message register.

1.6.5 Writebacks

Some messages generate return data as dictated by the 'function-control' (opcode) field of the 'send' instruction (part of the <desc> field). The DevSNB execution unit and message passing infrastructure do not interpret this field in any way to determine if writeback data is to be expected. Instead explicit fields in the 'send' instruction to the execution unit the starting GRF register and count of returning data. The execution unit uses this information to set in-flight bits on those registers to prevent execution of any instruction which uses them as an operand until the register(s) is(are) eventually written in response to the message. If a message is not expected to return data, the 'send' instruction's writeback destination specifier (<post_dest>) must be set to 'null' and the response length field of <desc> must be 0 (see 'send' instruction for more details).

The writeback data, if called for, arrives as a series of register writes to the GRF at the location specified by the starting GRF register and length as specified in the 'send' instruction. As each register is written back to the GRF, its in-flight flag is cleared and it becomes available for use as an instruction operand. If a thread was suspended pending return of that register, the dependency is lifted and the thread is allowed to continue execution (assuming no other dependency for that thread remains outstanding).

1.6.6 Message Delivery Ordering Rules

All messages between a thread and an individual shared function are delivered in the ordered they were sent. Messages to different shared functions originating from a single thread may arrive at their respective shared functions out of order.

The writebacks of various messages from the shared functions may return in any order. Further individual destination registers resulting from a single message may return out of order, potentially allowing

execution to continue before the entire response has returned (depending on the dependency chain inherent in the thread).

1.6.7 Execution Mask and Messages

The DevSNB Architecture defines an Execution Mask (EMask) for each instruction issued. This 16b bitfield identifies which SIMD computation channels are enabled for that instruction. Since the 'send' instruction is inherently scalar, the EMask is ignored as far as instruction dispatch is concerned. Further the execution size has no impact on the size of the 'send' instruction's implicit move (it is always 1 register regardless of specified execution size).

The 16b EMask is forwarded with the message to the destination shared function to indicate which SIMD channels were enabled at the time of the 'send'. A shared function may interpret or ignore this field as dictated by the functionality it exposes. For instance, the Extended Math shared function observes this field and performs the specified operation only on the operands with enabled channels, while the DataPort writes to the render cache ignore this field completely, instead using the pixel mask included inband in the message payload to indicate which channels carry valid data.

1.6.8 End-Of-Thread (EOT) Message

The final instruction of all threads must be a 'send' instruction which signals 'End-Of-Thread' (EOT). An EOT message is one in which the EOT bit is set in the 'send' instruction's 32b <desc> field. When issuing instructions, the EU looks for an EOT message, and when issued, shuts down the thread from further execution and considers the thread completed.

Only a subset of the shared functions can be specified as the target function of an EOT message, as shown in the table below.

Target Shared Functions supporting EOT messages

Null, DataPortWrite, URB, MessageGateway, ThreadSpawner

Target Shared Functions not supporting EOT messages DataPortRead, Sampler

Both the fixed-functions and the thread dispatcher require EOT notification at the completion of each thread. The thread dispatcher and fixed functions in the 3D pipeline obtain EOT notification by snooping all message transmissions, regardless of the explicit destination, looking for messages which signal endof-thread. The Thread Spawner in the media pipeline does not snoop for EOT. As it is also a shared function, all threads generated by Thread Spawner must send a message to Thread Spawner to explicitly signal end-of-thread.

The thread dispatcher, upon detecting an end-of-thread message, updates its accounting of resource usage by that thread, and is free to issue a new thread to take the place of the ended thread. Fixed functions require end-of-thread notification to maintain accounting as to which threads it issued have completed and which remain outstanding, and their associated resources such as URB handles.

Unlike the thread dispatcher, fixed-functions discriminate end-of-thread messages, only acting upon those from threads which they originated, as indicated by the 4b fixed-function ID present in R0 of end-of-thread

message payload. This 4b field is attached to the thread at new-thread dispatch time and is placed in its designated field in the R0 contents delivered to the GRF. Thus to satisfy the inclusion of the fixed-function ID, the typical end-of-thread message generally supplies R0 from the GRF as the first register of an end-of-thread message.

As an optimization, an end-of-thread message may be overload upon another "productive" message, saving the cost in execution and bandwidth of a dedicated end-of-thread message. Outside of the end-of-thread message, most threads issue a message just prior to their termination (for instance, a Dataport write to the framebuffer) so the overloaded end-of-thread is the common case. The requirement is that the message contains R0 from the GRF (to supply the fixed-function ID), and that destination shared function be either (a) the URB; (b) the Read or Write Dataport; or, (c) the Gateway, as these functions reside on the O-Bus. In the case where the last real message of a thread is to some other shared function, the thread must issue a separate message for the purposes of signaling end-of-thread to the "null" shared function.

1.6.9 Performance

The DevSNB Architecture imposes no requirement as to a shared function's latency or throughput. Due to this as well as factors such as message queuing, shared bus arbitration, implementation choices in bus bandwidth, and instantaneous demand for that function, the latency in delivering and obtaining a response to a message is non-deterministic. It is expected that a DevSNB implementation has some notion of fairness in transmission and servicing of messages so as to keep latency outliers to a minimum.

Other factors to consider with regard to performance:

- A thread may choose to have multiple messages under construction in non-overlapping registers the MRF at the same time.
- Multiple messages are allowed to be enqueued for transmission at the same time, so long as their MRF payload registers do not overlap.
- Messages may rely on the MRF registers being maintained across a send message, thus constructing subsequent messages overlaid on portions of a previous message,
- Software prefetching techniques may be beneficial for long latency data fetches (i.e. issue a load early in the thread for data that is required late in the thread).

1.6.10 Message Description Syntax

All message formats are defined in terms of DWords (32 bits). The message registers in all cases are 256 bits wide, or 8 DWords. The registers and DWords within the registers are named as follows, where n is the register number, and d is the DWord number from 0 to 7, from the least significant DWord at bits [31:0] within the 256-bit register to the most significant DWord at bits [255:224], respectively. For writeback messages, the register number indicates the offset from the specified starting destination register.

Dispatch Messages: Rn.d

Dispatch messages are sent by the fixed functions to dispatch threads. See the fixed function chapters in the *3D and Media* volume.

SEND Instruction Messages: Mn.d

These are the messages initiated by the thread via the SEND instruction to access shared functions. See the chapters on the shared functions later in this volume.

Writeback Messages: Wn.d

These messages return data from the shared function to the GRF where it can be accessed by thread that initiated the message.

The bits within each DWord are given in the second column in each table.

1.6.11 Message Errors

Messages are constructed via software, and not all possible bit encodings are legal, thus there is the possibility that a message may be sent containing one or more errors in its descriptor or payload contents. There are two points of error detection in the message passing system: (a) the message delivery subsystem is capable of detecting bad FunctionIDs and some cases of bad message lengths; (b) the shared functions contain various error detection mechanisms which identify bad sub-function codes, bad message lengths, and other misc errors. The error detection capabilities are specific to each shared function. The execution unit hardware itself does not perform message validation prior to transmission.

In both cases, information regarding the erroneous message is captured and made visible through MMIO registers, and the driver notified via an interrupt mechanism. The set of possible errors is listed in Table 1-1 with the associated outcome. Please see the chapter on error handling for detailed information.

Error	Outcome
Bad Shared Function ID	The message is discarded before reaching any shared function. If the message specified a destination, those registers will be marked as in-flight, and any future usage by the thread of those registers will cause a dependency which will never clear, resulting in a hung thread and eventual time-out.
Unknown opcode Incorrect message length	The destination shared function detects unknown opcodes (as specified in the 'send' instructions <desc> field), and known opcodes where the message payload is either too long or too short, and threats these cases as errors. When detected, the shared function latches and makes available via MMIO registers the following information: the EU and thread ID which sent the message, the length of the message and expected response, and any relevant portions of the first register (R0) of the message payload. The shared function alerts the driver of an erroneous message through and interrupt mechanism, then continues normal operation with the subsequent message.</desc>
Bad message contents in payload	Detection of bad data is an implementation decision of the shared function. Not all fields may be checked by the shared function, so an erroneous payload may return bogus data or no data at all. If an erroneous value is detected by the shared function, it is free to discard the message and continue with the subsequent message. If the thread was expecting a response, the destination registers specified in the associated 'send' instruction are never cleared potentially resulting in a hung thread and time-out.

Table 1-1. Error Cases

Error	Outcome
Incorrect response length	Case: too few registers specified – the thread may proceed with execution prior to all the data returning from the shared function, resulting in the thread operating on bad data in the GRF.
	Case: too many registers specified – the message response does not clear all the registers of the destination. In this case, if the thread references any of the residual registers, it may hand and result in an eventual time-out.
Improper use of End-Of-Thread (EOT)	Any 'send' instruction which specifies EOT must have a 'null' destination register. The EU enforces this and, if detected, will not issue the 'send' instruction, resulting in a hung thread and an eventual time-out.
	The 'send' instruction specifies that EOT is only recognized if the <desc> field of the instruction is an immediate. Should a thread attempt to end a thread using a <desc> sourced from a register, the EOT bit will not be recognized. In this case, the thread will continue to execute beyond the intended end of thread, resulting in a wide range of error conditions.</desc></desc>
Two outstanding messages using overlapping GRF destinations ranges	This is not checked by HW. Due to varying latencies between two messages, and out-of-order, non-contiguous writeback cycles, the outcome in the GRF is indeterminate; may be the result from the first message, or the result from the second message, or a combination of both.

2. Sampling Engine

The Sampling Engine provides the capability of advanced sampling and filtering of surfaces in memory.

The sampling engine function is responsible for providing filtered texture values to the DevSNB Core in response to sampling engine messages. The sampling engine uses SAMPLER_STATE to control filtering modes, address control modes, and other features of the sampling engine. A pointer to the sampler state is delivered with each message, and an index selects one of 16 states pointed to by the pointer. Some messages do not require SAMPLER_STATE. In addition, the sampling engine uses SURFACE_STATE to define the attributes of the surface being sampled. This includes the location, size, and format of the surface as well as other attributes.

Although data is commonly used for "texturing" of 3D surfaces, the data can be used for any purpose once returned to the execution core.

The following table summarizes the various subfunctions provided by the Sampling Engine. After the appropriate subfunctions are complete, the 4-component (reduced to fewer components in some cases) filtered texture value is provided to the DevSNB Core in order to complete the *sample* instruction.

Subfunction	Description
Texture Coordinate Processing	Any required operations are performed on the incoming pixel's interpolated internal texture coordinates. These operations may include: cube map intersection.
Texel Address Generation	The Sampling Engine will determine the required set of texel samples (specific texel values from specific texture maps), as defined by the texture map parameters and filtering modes. This includes coordinate wrap/clamp/mirror control, mipmap LOD computation and sample and/or miplevel weighting factors to be used in the subsequent filtering operations.
Texel Fetch	The required texel samples will be read from the texture map. This step may require decompression of texel data. The texel sample data is converted to an internal format.
Texture Palette Lookup	For streams which have "paletted" texture surface formats, this function uses the "index" values read from the texture map to look up texel color data from the texture palette.
Shadow Pre- Filter Compare	For shadow mapping, the texel samples are first compared to the 3 rd (R) component of the pixel's texture coordinate. The boolean results are used in the texture filter.
Texel Filtering	Texel samples are combined using the filter weight coefficients computed in the Texture Address Generation function. This "combination" ranges from simply passing through a "nearest" sample to blending the results of anisotropic filters performed on two mipmap levels. The output of this function is a single 4-component texel value.
Texel Color Gamma Linearization	Performs optional gamma decorrection on texel RGB (not A) values.
Denoise/	Performs denoise and deinterlacing functions for video content ([DevILK+])
Deinterlacer	
8x8 Video Scaler	Performs scaling using an 8x8 filter ([DevILK+])

Subfunction	Description
Image Enhancement Filter / Video Signal Analysis	Image Enhancement functions for video content ([DevILK+])

2.1 Texture Coordinate Processing

The Texture Coordinate Processing function of the Sampling Engine performs any operations on the texture coordinates that are required before physical addresses of texel samples can be generated.

2.1.1 Texture Coordinate Normalization

A texture coordinate may have *normalized* or *unnormalized* values. In this function, unnormalized coordinates are normalized.

Normalized coordinates are specified in units relative to the map dimensions, where the origin is located at the upper/left edge of the upper left texel, and the value 1.0 coincides with the lower/right edge of the lower right texel. 3D rendering typically utilizes normalized coordinates.

Unnormalized coordinates are in units of texels and have not been divided (normalized) by the associated map's height or width. Here the origin is the located at the upper/left edge of the upper left texel of the base texture map. Unnormalized coordinates delivered to the sampling engine are only supported with the "ld" type messages.

Figure 2-1. Normalized vs. Unnormalized Texture Coordinates

2.1.2 **Texture Coordinate Computation**

Cartesian (2D) and homogeneous (projected) texture coordinate values are projected from (interpolated) screen space back into texture coordinate space by dividing the pixel's S and T components by the Q component. This operation is done as part of the pixel shader kernel in the DevSNB Core.

Vector (cube map) texture coordinates are generated by first determining which of the 6 cube map faces (+X, +Y, +Z, -X, -Y, -Z) the vector intersects. The vector component (X, Y or Z) with the largest absolute

value determines the proper (major) axis, and then the sign of that component is used to select between the two faces associated with that axis. The coordinates along the two minor axes are then divided by the coordinate of the major axis, and scaled and translated, to obtain the 2D texture coordinate ([0,1]) within the chosen face. Note that the coordinates delivered to the sampling engine must already have been divided by the component with the largest absolute value.

An illustration of this cube map coordinate computation, simplified to only two dimensions, is provided below:

Figure 2-2. Cube Map Coordinate Computation Example

2.2 Texel Address Generation

To better understand texture mapping, consider the mapping of each object (screen-space) pixel onto the textures images. In texture space, the pixel becomes some arbitrarily sized and aligned quadrilateral. Any given pixel of the object may "cover" multiple texels of the map, or only a fraction of one texel. For each pixel, the usual goal is to sample and filter the texture image in order to best represent the covered texel values, with a minimum of blurring or aliasing artifacts. Per-texture state variables are provided to allow the user to employ quality/performance/footprint tradeoffs in selecting how the particular texture is to be sampled.

The Texel Address Generation function of the Sampling Engine is responsible for determining how the texture maps are to be sampled. Outputs of this function include the number of texel samples to be taken, along with the physical addresses of the samples and the filter weights to be applied to the samples after they are read. This information is computed given the incoming texture coordinate and gradient values, and the relevant state variables associated with the sampler and surface. This function also applies the texture coordinate address controls when converting the sample texture coordinates to map addresses.

2.2.1 Level of Detail Computation (Mipmapping)

Due to the specification and processing of texture coordinates at object vertices, and the subsequent object warping due to a perspective projection, the texture image may become *magnified* (where a texel covers more than one pixel) or *minified* (a pixel covers more than one texel) as it is mapped to an object. In the case where an object pixel is found to cover multiple texels (texture minification), merely choosing one (e.g., the texel sample nearest to the pixel's texture coordinate) will likely result in severe aliasing artifacts.

Mipmapping and texture filtering are techniques employed to minimize the effect of undersampling these textures. With mipmapping, software provides *mipmap levels*, a series of pre-filtered texture maps of decreasing resolutions that are stored in a fixed (monolithic) format in memory. When mipmaps are provided and enabled, and an object pixel is found to cover multiple texels (e.g., when a textured object is located a significant distance from the viewer), the device will sample the mipmap level(s) offering a texel/pixel ratio as close to 1.0 as possible.

The device supports up to 14 mipmap levels per map surface, ranging from 8192 x 8192 texels to a 1 X 1 texel. Each successive level has $\frac{1}{2}$ the resolution of the previous level in the U and V directions (to a minimum of 1 texel in either direction) until a 1x1 texture map is reached. The dimensions of mipmap levels need not be a power of 2.

Each mipmap level is associated with a *Level of Detail (LOD)* number. LOD is computed as the approximate, log₂ measure of the ratio of texels per pixel. The highest resolution map is considered LOD 0. A larger LOD number corresponds to lower resolution mip level.

The *Sampler*[*BaseMipLevel* state variable specifies the LOD value at which the minification filter vs. the magnification filter should be applied.

When the texture map is magnified (a texel covers more than one pixel), the base map (LOD 0) texture map is accessed, and the magnification mode selects between the nearest neighbor texel or bilinear interpolation of the 4 neighboring texels on the base (LOD 0) mipmap.

2.2.1.1 Base Level Of Detail (LOD)

The per-pixel LOD is computed in an implementation-dependent manner and approximates the log₂ of the texel/pixel ratio at the given pixel. The computation is typically based on the differential texel-space distances associated with a one-pixel differential distance along the screen x- and y-axes. These texel-space distances are computed by evaluating neighboring pixel texture coordinates, these coordinates being in units of texels on the base MIP level (multiplied by the corresponding surface size in texels). The q coordinates represent the third dimension for 3D (volume) surfaces, this coordinate is a constant 0 for 2D surfaces.

The ideal LOD computation is included below.

$$LOD(x, y) = \log_{2}[\rho(x, y)]$$

where :
$$\rho(x, y) = \max\left\{\sqrt{\left(\frac{\partial u}{\partial x}\right)^{2} + \left(\frac{\partial v}{\partial x}\right)^{2} + \left(\frac{\partial q}{\partial x}\right)^{2}}, \sqrt{\left(\frac{\partial u}{\partial y}\right)^{2} + \left(\frac{\partial v}{\partial y}\right)^{2} + \left(\frac{\partial q}{\partial y}\right)^{2}}\right\},$$

2.2.1.2 LOD Bias

A biasing offset can be applied to the computed LOD and used to artificially select a higher or lower miplevel and/or affect the weighting of the selected mipmap levels. Selecting a slightly higher mipmap level will trade off image blurring with possibly increased performance (due to better texture cache reuse). Lowering the LOD tends to sharpen the image, though at the expense of more texture aliasing artifacts.

The LOD bias is defined as sum of the *LODBias* state variable and the *pixLODBias* input from the input message (which can be non-zero only for sample_b messages). The application of LOD Bias is unconditional, therefore these variables must both be set to zero in order to prevent any undesired biasing.

Note that, while the LOD Bias is applied prior to clamping and min/mag determination and therefore can be used to control the min-vs-mag crossover point, its use has the undesired effect of actually changing the LOD used in texture filtering.

2.2.1.3 LOD Pre-Clamping

The LOD Pre-Clamping function can be enabled or disabled via the *LODPreClampEnable* state variable. Enabling pre-clamping matches OpenGL semantics, while disabling it matches Direct3D.

After biasing and/or adjusting of the LOD, the computed LOD value is clamped to a range specified by the (integer and fractional bits of) *MinLOD* and *MaxLOD* state variables prior to use in Min/Mag Determination.

MaxLOD specifies the lowest resolution mip level (maximum LOD value) that can be accessed, even when lower resolution maps may be available. Note that this is the only parameter used to specify the number of valid mip levels that be can be accessed, i.e., there is no explicit "number of levels stored in memory" parameter associated with a mip-mapped texture. All mip levels from the base mip level map through the level specified by the integer bits of *MaxLOD* must be stored in memory, or operation is UNDEFINED.

MinLOD specifies the highest resolution mip level (minimum LOD value) that can be accessed, where LOD==0 corresponds to the base map. This value is primarily used to deny access to high-resolution mip levels that have been evicted from memory when memory availability is low.

MinLOD and *MaxLOD* have both integer and fractional bits. The fractional parts will limit the inter-level filter weighting of the highest or lowest (respectively) resolution map. For example if *MinLOD* is 4.5 and *MipFilter* is LINEAR, LOD 4 can contribute only up to 50% of the final texel color.

2.2.1.4 Min/Mag Determination

The biased and clamped LOD is used to determine whether the texture is being minified (scaled down) or magnified (scaled up).

The *BaseMipLevel* state variable is subtracted from the biased and clamped LOD. The *BaseMipLevel* state variable therefore has the effect of selecting the "base" mip level used to compute Min/Map Determination. (This was added to match OpenGL semantics). Setting *BaseMipLevel* to 0 has the effect of using the highest-resolution mip level as the base map.

If the biased and clamped LOD is non-positive, the texture is being magnified, and a single (high-resolution) miplevel will be sampled and filtered using the *MagFilter* state variable. At this point the computed LOD is reset to 0.0. Note that LOD Clamping can restrict access to high-resolution miplevels.

If the biased LOD is positive, the texture is being minified. In this case the *MipFilter* state variable specifies whether one or two mip levels are to be included in the texture filtering, and how that (or those) levels are to be determined as a function of the computed LOD.

2.2.1.5 LOD Computation Pseudocode

This section illustrates the LOD biasing and clamping computation in pseudocode, encompassing the steps described in the previous sections. The computation of the initial per-pixel LOD value *LOD* is not shown.

[DevSNB]		
Bias:	S4.6	
MinLod:	U4.6	
MaxLod:	U4.6	
Base:	U4.1	
MIPCnt:	U4	
SurfMinLo	od: U4	
ResMinLod: hard-wired to zero		

If Out_of_Bounds is true, LOD is set to zero and instead of sampling the surface the texels are replaced with zero in all channels, except for surface formats that don't contain alpha, for which the alpha channel is replaced with one. These texels then proceed through the rest of the pipeline.

[DevSNB] Errata: Incorrect behavior is observed in cases where the min and mag mode filters are different and SurfMinLOD is nonzero. The determination of MagMode uses the following equation instead of the one in the above pseudocode: MagMode = (LOD + SurfMinLOD – Base <= 0)

Inter-Level Filtering Setup

The *MipFilter* state variable determines if and how texture mip maps are to be used and combined. The following table describes the various mip filter modes:

MipFilter Value	Description
MIPFILTER_NONE	Mipmapping is DISABLED. Apply a single filter on the highest resolution map available (after LOD clamping).
MIPFILTER_NEAREST	Choose the nearest mipmap level and apply a single filter to it. Here the biased LOD will be rounded to the nearest integer to obtain the desired miplevel. LOD Clamping may further restrict this miplevel selection.
MIPFILTER_LINEAR	Apply a filter on the two closest mip levels and linear blend the results using the distance between the computed LOD and the level LODs as the blend factor. Again, LOD Clamping may further restrict the selection of miplevels (and the blend factor between them).

When minifying and MIPFILTER_NEAREST is selected, the computed LOD is rounded to the nearest mip level.

When minifying and MIPFILTER_LINEAR is selected, the fractional bits of the computed LOD are used to generate an inter-level blend factor. The LOD is then truncated. The mip level selected by the truncated LOD, and the next higher (lower resolution) mip level are determined.

Regardless of *MipFilter* and the min/mag determination, all computed LOD values (two for MIPFILTER_LINEAR, otherwise one) are then unconditionally clamped to the range specified by the (integer bits of) *MinLOD* and *MaxLOD* state variables.

2.2.2 Intra-Level Filtering Setup

Depending on whether the texture is being minified or magnified, the *MinFilter* or *MagFilter* state variable (respectively) is used to select the sampling filter to be used within a mip level (intra-level, as opposed to any inter-level filter). Note that for volume maps, this selection also applies to filtering between layers.

The processing at this stage is restricted to the selection of the filter type, computation of the number and texture map coordinates of the texture samples, and the computation of any required filter parameters. The filtering of the samples occurs later on in the Sampling Engine function.

Sampler[]Min/MagFilter value	Description
MAPFILTER_NEAREST	Supported on all surface types. The texel nearest to the pixel's U,V,Q coordinate is read and output from the filter.
MAPFILTER_LINEAR	Not supported on buffer surfaces. The 2, 4, or 8 texels (depending on 1D, 2D/CUBE, or 3D surface, respectively) surrounding the pixel's U,V,Q coordinate are read and a linear filter is applied to produce a single filtered texel value.
MAPFILTER_ANISOTROPIC	Not supported on buffer or 3D surfaces. A projection of the pixel onto the texture map is generated and "subpixel" samples are taken along the major axis of the projection (center axis of the longer dimension). The outermost subpixels are weighted according to closeness to the edge of the projection, inner subpixels are weighted equally. Each subpixel samples a bilinear 2x2 of texels and the results are blended according to weights to produce a filtered texel value.
MAPFILTER_MONO	Supported only on 2D surfaces. This filter is only supported with the monochrome (MONO8) surface format. The monochrome texel block of the specified size surrounding the pixel is selected and filtered.

The following table summarizes the intra-level filtering modes.

2.2.2.1 MAPFILTER_NEAREST

When the MAPFILTER_NEAREST is selected, the texel with coordinates nearest to the pixel's texture coordinate is selected and output as the single texel sample coordinates for the level.

2.2.2.2 MAPFILTER_LINEAR

The following description indicates behavior of the MIPFILTER_LINEAR filter for 2D and CUBE surfaces. 1D and 3D surfaces follow a similar method but with a different number of dimensions available.

When the MAPFILTER_LINEAR filter is selected on a 2D surface, the 2x2 region of texels surrounding the pixel's texture coordinate are sampled and later bilinearly filtered.

Figure 2-3. Bilinear Filter Sampling

B6879-01

The four texels surrounding the pixel center are chosen for the bilinear filter. The filter weights each texel's contribution according to its distance from the pixel center. Texels further from the pixel center receive a smaller weight.

2.2.2.3 MAPFILTER_ANISOTROPIC

The MAPFILTER_ANISOTROPIC texture filter attempts to compensate for the anisotropic mapping of pixels into texture map space. A possibly non-square set of texel sample locations will be sampled and later filtered. The *MaxAnisotropy* state variable is used to select the maximum aspect ratio of the filter employed, up to 16:1.

The algorithm employed first computes the major and minor axes of the pixel projection onto the texture map. LOD is chosen based on the minor axis length in texel space. The anisotropic "ratio" is equal to the ratio between the major axis length and the minor axis length. The next larger even integer above the ratio determines the anisotropic number of "ways", which determines how many subpixels are chosen. A line along the major axis is determined, and "subpixels" are chosen along this line, spaced one texel apart, as shown in the diagram below. In this diagram, the texels are shown in light blue, and the pixels are in yellow.

Each subpixel samples a bilinear 2x2 around it just as if it was a single pixel. The result of each subpixel is then blended together using equal weights on all interior subpixels (not including the two endpoint subpixels). The endpoint subpixels have lesser weight, the value of which depends on how close the "ratio" is to the number of "ways". This is done to ensure continuous behavior in animation.

2.2.2.4 MAPFILTER_MONO

When the MAPFILTER_MONO filter is selected, a block of monochrome texels surrounding the pixel sample location are read and filtered using the kernel described below. The size of this block is controlled by **Monochrome Filter Height** and **Width** (referred to here as N_v and N_u , respectively) state. Filters from 1x1 to 7x7 are supported (not necessarily square).

The figure below shows a 6x5 filter kernel as an example. The footprint of the filter (filter kernel samples) is equal to the size of the filter and the pixel center lies at the exact center of this footprint. The position of the upper left filter kernel sample (u_f , v_f) relative to the pixel center at (u, v) is given by the following:

$$u_f = u - \frac{N_u}{2}$$
$$v_f = v - \frac{N_v}{2}$$

 β_u and β_v are the fractional parts of u_f and v_f , respectively. The integer parts select the upper left texel for the kernel filter, given here as $T_{0,0}$.

Figure 2-4. Sampling Using MAPFILTER_MONO

The formula for the final filter output F is given by the following. Since this is a monochrome filter, each texel value (T) is a single bit, and the output F is an intensity value that is replicated across the color and alpha channels.

$$\begin{split} S &= \frac{1}{N_u * N_v} \\ F &= \left[(1 - \beta_u)(1 - \beta_v) \sum_{i=0}^{N_u - 1N_v - 1} T_{i,j} + \beta_u (1 - \beta_v) \sum_{i=1}^{N_u} \sum_{j=0}^{N_v - 1} T_{i,j} + (1 - \beta_u) \beta_v \sum_{i=0}^{N_u - 1} \sum_{j=1}^{N_v} T_{i,j} + \beta_u \beta_v \sum_{i=1}^{N_v} \sum_{j=1}^{N_v} T_{i,j} \right] * S \end{split}$$

2.2.3 Texture Address Control

The *[TCX,TCY,TCZ]ControlMode* state variables control the access and/or generation of texel data when the specific texture coordinate component falls <u>outside</u> of the normalized texture map coordinate range [0,1).

Note: For **Wrap Shortest** mode, the setup kernel has already taken care of correctly interpolating the texture coordinates. Software will need to specify TEXCOORDMODE_WRAP mode for the sampler that is provided with wrap-shortest texture coordinates, or artifacts may be generated along map edges.

TC[X, Y,Z] Control	Operation
TEXCOORDMODE_CLAMP	Clamp to the texel value at the edge of the map.
TEXCOORDMODE_WRAP	Upon crossing an edge of the map, repeat at the other side of the map in the same dimension.
TEXCOORDMODE_CUBE	Only used for cube maps. Here texels from adjacent cube faces can be sampled along the edges of faces. This is considered the highest quality mode for cube environment maps.
TEXCOORDMODE_MIRROR	Similar to the wrap mode, though reverse direction through the map each time an edge is crossed. INVALID for use with unnormalized

TC[X, Y,Z] Control	Operation
	texture coordinates.
TEXCOORDMODE_MIRROR_ONCE	Similar to the wrap mode, though reverse direction through the map each time an edge is crossed. INVALID for use with unnormalized texture coordinates.

Separate controls are provided for texture TCX, TCY, TCZ coordinate components so, for example, the TCX coordinate can be wrapped while the TCY coordinate is clamped. Note that there are no controls provided for the TCW component as it is only used to scale the other 3 components before addressing modes are applied.

Maximum Wraps/Mirrors

The number of map wraps on a given object is limited to 32. Going beyond this limit is legal, but may result in artifacts due to insufficient internal precision, especially evident with larger surfaces. Precision loss starts at the subtexel level (slight color inaccuracies) and eventually reaches the texel level (choosing the wrong texels for filtering).

2.2.3.1 TEXCOORDMODE_WRAP Mode

In TEXCOORDMODE_WRAP addressing mode, the integer part of the texture coordinate is discarded, leaving only a fractional coordinate value. This results in the effect of the base map ([0,1)) being continuously repeated in all (axes-aligned) directions. Note that the interpolation between coordinate values 0.1 and 0.9 passes through 0.5 (as opposed to WrapShortest mode which interpolates through 0.0).

2.2.3.2 TEXCOORDMODE_MIRROR Mode

TEXCOORDMODE_MIRROR addressing mode is similar to Wrap mode, though here the base map is flipped at every integer junction. For example, for U values between 0 and 1, the texture is addressed normally, between 1 and 2 the texture is flipped (mirrored), between 2 and 3 the texture is normal again, and so on. The second row of pictures in the figure below indicate a map that is mirrored in one direction and then both directions. You can see that in the mirror mode every other integer map wrap the base map is mirrored in either direction.

Figure 2-5. Texture Wrap vs. Mirror Addressing Mode

2.2.3.3 TEXCOORDMODE_MIRROR_ONCE Mode

The TEXCOORDMODE_MIRROR_ONCE addressing mode is a combination of Mirror and Clamp modes. The absolute value of the texture coordinate component is first taken (thus mirroring about 0), and then the result is clamped to 1.0. The map is therefore mirrored once about the origin, and then clamped thereafter. This mode is used to reduce the storage required for symmetric maps.

2.2.3.4 TEXCOORDMODE_CLAMP Mode

The TEXCOORDMODE_CLAMP addressing mode repeats the "edge" texel when the texture coordinate extends outside the [0,1) range of the base texture map. This is contrasted to TEXCOORDMODE_CLAMPBORDER mode which defines a separate texel value for off-map samples. TEXCOORDMODE_CLAMP is also supported for cube maps, where texture samples will only be obtained from the intersecting face (even along edges).

The figure below illustrates the effect of clamp mode. The base texture map is shown, along with a texture mapped object with texture coordinates extending outside of the base map region.

Figure 2-6. Texture Clamp Mode

2.2.3.5 TEXCOORDMODE_CUBE Mode

For cube map textures TEXCOORDMODE_CUBE addressing mode can be set to allow inter-face filtering. When texel sample coordinates that extend beyond the selected cube face (e.g., due to intralevel filtering near a cube edge), the correct sample coordinates on the adjoining face will be computed. This will eliminate artifacts along the cube <u>edges</u>, though some artifacts at cube <u>corners</u> may still be present.

2.3 Texel Fetch

The Texel Fetch function of the Sampling Engine reads the texture map contents specified by the texture addresses associated with each texel sample. The texture data is read either directly from the memory-resident texture map, or from internal texture caches. The texture caches can be invalidated by the **Sampler Cache Invalidate** field of the MI_FLUSH instruction or via the **Read Cache Flush Enable** bit of PIPE_CONTROL. Except for consideration of coherency with CPU writes to textures and rendered textures, the texture cache does not affect the functional operation of the Sampling Engine pipeline.

When the surface format of a texture is defined as being a compressed surface, the Sampler will automatically decompress from the stored format into the appropriate [A]RGB values. The compressed texture storage formats and decompression algorithms can be found in the *Memory Data Formats* chapter. When the surface format of a texture is defined as being an index into the texture palette (format names includiong "Px"), the palette lookup of the index determines the appropriate RGB values.

2.3.1 Texel Chroma Keying

ChromaKey is a term used to describe a method of effectively removing or replacing a specific range of texel values from a map that is applied to a primitive, e.g., in order to define transparent regions in an RGB map. The Texel Chroma Keying function of the Sampling Engine pipeline conditionally tests texel samples against a "key" range, and takes certain actions if any texel samples are found to match the key.

2.3.1.1 Chroma Key Testing

ChromaKey refers to testing the texel sample components to see if they fall within a range of texel values, as defined by *ChromaKey[][High,Low]* state variables. If each component of a texel sample is found to lie within the respective (inclusive) range and ChromaKey is enabled, then an action will be taken to remove this contribution to the resulting texel stream output. Comparison is done separately on each of the channels and only if all 4 channels are within range the texel will be eliminated.

The Chroma Keying function is enabled on a per-sampler basis by the ChromaKeyEnable state variable.

The ChromaKey[][High,Low] state variables define the tested color range for a particular texture map.

2.3.1.2 Chroma Key Effects

There are two operations that can be performed to "remove" matching texel samples from the image. The *ChromaKeyEnable* state variable must first enable the chroma key function. The *ChromaKeyMode* state variable then specifies which operation to perform on a per-sampler basis.

The ChromaKeyMode state variable has the following two possible values:

KEYFILTER_KILL_ON_ANY_MATCH: Kill the pixel if any contributing texel sample matches the key

KEYFILTER_REPLACE_BLACK: Here the sample is replaced with (0,0,0,0). This matches the Direct3D COLORKEYBLENDENABLE functionality

The Kill Pixel operation has an effect on a pixel only if the associated sampler is referenced by a sample instruction in the pixel shader program. If the sampler is not referenced, the chroma key compare is not done and pixels cannot be killed based on it.

2.4 Shadow Prefilter Compare

When a *sample_c* message type is processed, a special shadow-mapping precomparison is performed on the texture sample values prior to filtering. Specifically, each texture sample value is compared to the "ref" component of the input message, using a compare function selected by *ShadowFunction*, and described in the table below. Note that only single-channel texel formats are supported for shadow mapping, and so there is no specific color channel on which the comparison occurs.

ShadowFunction	Result
PREFILTEROP_ALWAYS	0.0
PREFILTEROP_NEVER	1.0

ShadowFunction	Result
PREFILTEROP_LESS	(texel < ref) ? 0.0 : 1.0
PREFILTEROP_EQUAL	(texel == ref) ? 0.0 : 1.0
PREFILTEROP_LEQUAL	(texel <= ref) ? 0.0 : 1.0
PREFILTEROP_GREATER	(texel > ref) ? 0.0 : 1.0
PREFILTEROP_NOTEQUAL	(texel != ref) ? 0.0 : 1.0
PREFILTEROP_GEQUAL	(texel >= ref) ? 0.0 : 1.0

The binary result of each comparison is fed into the subsequent texture filter operation (in place of the texel's value which would normally be used).

Software is responsible for programming the "ref" component of the input message such that it approximates the same distance metric programmed in the texture map (e.g., distance from a specific light to the object pixel). In this way, the comparison function can be used to generate "in shadow" status for each texture sample, and the filtering operation can be used to provide soft shadow edges.

Programming Note:

• Refer to the Surface Formats table in section 0 for the specific surface formats that are supported with shadow mapping.

2.5 Texel Filtering

The Texel Filtering function of the Sampling Engine performs any required filtering of multiple texel values on and possibly between texture map layers and levels. The output of this function is a single texel color value.

The state variables *MinFilter*, *MagFilter*, and *MipFilter* are used to control the filtering of texel values. The *MipFilter* state variable specifies how many mipmap levels are included in the filter, and how the results of any filtering on these separate levels are combined to produce a final texel color. The *MinFilter* and *MagFilter* state variables specify how texel samples are filtered within a level.

2.6 Texel Color Gamma Linearization

This function is supported to allow pre-gamma-corrected texel RGB (not A) colors to be mapped back into linear (gamma=1.0) gamma space prior to (possible) blending with, and writing to the Color Buffer. This permits higher quality image blending by performing the blending on colors in linear gamma space.

This function is enabled on a per-texture basis by use of a surface format with "_SRGB" in its name. If enabled, the pre-filtered texel RGB color to be converted from gamma=2.4 space to gamma=1.0 space by applying a $^{(1/2.4)} = ^{0.4167}$ exponential function.

2.7 Multisampled Surface Behavior [DevSNB+]

The ld message has added an additional parameter for sample index (si) to support unfiltered loading from a multisampled surface.

The sampleinfo message returns specific parameters associated with a multisample surface. The resinfo message returns the height, width, depth, and MIP count of the surface (in units of *pixels*, not samples).

Any of the other messages (sample^{*}, LOD, load4) used with a (4x) multisampled surface will in-effect sample a surface with double the height and width as that indicated in the surface state. Each pixel position on the original-sized surface is replaced with a 2x2 of samples with the following arrangement:

sample 0	sample 2
sample 1	sample 3

This behavior is useful to implement the multisample resolve operation by selecting MAPFILTER_LINEAR and rendering a full-screen rectangle half the size in each dimension of the source texture map (multisampled surface). If pixel offsets are set correctly, each pixel is the average of the four underlying samples.

2.8 Denoise/Deinterlacer [DevSNB]

The Denoise/Deinterlacer function takes a 4:2:0 or 4:2:2 video stream and first apply a denoise filter to it and then deinterlace it.

The denoise filter is applied before the deinterlacer. The denoise filter detects and tries to minimize noise in the input field, while the deinterlacer takes a field consisting of every other lines converts a field into a frame. This block also gathers statistics for a global noise estimate made in software at the end of the frame which is used in following frames to tune the denoise filter and image enhancement filter.

The deinterlacer takes the top and bottom fields of each frame and converts them into two individual frames. This block also gathers statistics for a film mode detector in software run at the end of the frame. If the film mode detector for the previous frame concludes that the input is progressive rather than interlaced then the fields will be put together in the best order rather than being interlaced.

2.8.1 Introduction

2.8.1.1 Overview

This diagram shows how the Denoise/Deinterlacer fits in with the other functions of the video pipe. This is only one possible usage model, other models are possible.

2.8.1.2 Block Diagram

2.8.1.3 Features

- **Denoise Filter** detects noise and motion and filters the block with either a temporal filter when little motion is detected or a spatial filter. Noise estimates are kept between frames and blended together. Since the filter is before the deinterlacer it works on individual fields rather than frames. This usually improves the operation since the deinterlacer can take a single pixel of noise and spread it to an adjacent pixel, making it harder to remove. The denoise filter works the same whether deinterlacing or progressive cadence reconstruction is being done.
- Block Noise Estimate (BNE) part of the Global Noise Estimate (GNE) algorithm, this estimates the noise over the entire block. The GNE will be calculated at the end of the frame by combining all the BNEs. The final GNE value is used to control the denoise filter for the next frame.
- Film Mode Detection (FMD) Variances FMD determines if the input fields were created by sampling film and converting it to interlaced video. If so the deinterlacer is turned off in favor of reconstructing the frame from adjacent fields. Various sum-of-absolute differences are calcluated per block. The FMD algorithm is run at the end of the frame by looking at the variances of all blocks for both fields in the frame.
- **Deinterlacer** Estimates how much motion is occuring across the fields. Low motion scenes are reconstructed by averaging pixels from fields from nearby times (temporal deinterlacer), while high motion scenes are reconstructed by interpolating pixels from nearby space (spatial deinterlacer).

- Progressive Cadence Reconstruction If the FMD for the previous frame determines that film
 was converted into interlaced video, then this block reconstructs the original frame by directly
 putting together adjacent fields.
- **Chroma Upsampling** If the input is 4:2:0 then chroma will be doubled vertically to convert to 4:2:2. Chroma will then either go through it's own version of the deinterlacer or progressive cadence reconstruction.

When DI is enabled, the output for a 16x4 block is sent to the EU for further processing and writing to memory. When DI is disabled and DN enabled the output for a 16x8 block is sent to the EU.

Formats supported are:

NV12 is supported for hardware video decode.

UYVY, YUY2 and NV12 are required for WHQL.

YV12 and I420 are supported for software video decode.

IMC3 and IMC4 are supported as internal temporary formats.

NV11 and P208 are not supported, since they have been removed from the WHQL logo requirement.

(intel)

2.8.2 Denoise Algorithm

2.8.2.1 Motion Detection and Noise History Update

This block detection motion for the denoise filter, which it then combines with motion detected in the past in the same part of the screen. The Denoise History is both saved to memory and also used to control the temporal denoise filter.

The block calculates a number of values for updating the Denoise History. One value is calculated per 4x4 block (pixels from both fields, interleaved):

Block Sum of Temporal Absolute Difference:

$$\mathsf{BK_STAD} = \sum_{x=0}^{3} \sum_{y=0}^{3} abs(curr(x, y) - prev(x, y))$$

Where curr(x,y) and prev(x,y) are lumas from the current and previous field. The previous field should have already been run through the denoise filter.

Count of motion pixels: increment BK_Motion_Pixel for every pixel in the 4x4 for which: (abs(curr(x,y) – prev(x,y)) >= temporal_diff_th.

Absolute Sum of Temporal Difference sums the differences without the initial absolute value, so that random motions will tend to cancel out:

$$\mathsf{BK_TASD} = abs(\sum_{x=0}^{3} \sum_{y=0}^{3} (curr(x, y) - prev(x, y)))$$

Sum of Complexity Measure looks for differences in the spatial domain:

BK_SHCM =
$$\sum_{x=0}^{2} \sum_{y=0}^{3} abs(curr(x, y) - curr(x+1, y))$$
 // sum of 12 pixel pairs

BK_SVCM =
$$\sum_{x=0}^{3} \sum_{y=0}^{2} abs(curr(x, y) - curr(x, y+1))$$
 // sum of 12 pixel pairs

BK_SCM = BK_SHCM + BK_SVCM

Denoise Motion History Update (for an 8-bit motion history):

if (BK_STAD>=dnmh_stad_th) or (BK_Motion_Pixel > dnmh_mp_th) { // Motion Block

motion_block = 1;

if (denoise_history >= 128)

new_denoise_history = denoise_history / 2;

else

new_denoise_history = 0;

} else { // static block

motion_block = 0;

```
if (denoise_history < 128)
```

```
new_denoise_history = 128;
```


else if (denoise_history < dnmh_history_max)

```
new_denoise_history = denoise_history + dnmh_delta; // default value 8 for delta
```

else

new_denoise_history = denoise_history;

if ((BK_TASD > dnmh_tasd_th) and (BK_SCM < dnmh_scm_th))

new_denoise_history = 128;

}

2.8.2.2 Temporal Filter

For each pixel we need to filter we look at the noise history for the associated 4x4.

```
temporal_denoised = (new_denoise_history * curr(x,y) + (256 – new_denoise_history) * prev(x,y) +128)
>> 8
```

2.8.2.3 Context Adaptive Spatial Filter

For each pixel in the local 3x3, compare it's luma to the lumas of the pixel to be filtered. Each pixel for which the absolute difference is less than good_neighbor_th (see state variable in section 2.11.3.2) is marked as a "good neighbor":

The filtered pixel is then equal to:

spatial_denoised = ∑ Good_neighbor luma / num_good_neighbors

The divide is implemented as a multiply by a table lookup:

spatial_denoised = ((\sum_Good_neighbor luma + (num_good_neighbors >>1)) *
gn_q_table[num_good_neighbors-1]) >> 11

Note: The number of good neighbors varies from 1 to 9 since the center pixel is always good. Gn_q_table provides the reciprocal:

gn_q_table[9] = {2048, 1024, 682, 512, 409, 341, 292, 256, 227};

2.8.2.4 Denoise Blend

The denoise blend combines the temporal and spatial denoise outputs.

First we check to see if the temporal is out of the local range, if so we use the average of the denoised and the local limit instead:

if (temporal_denoised >= block_max)

temporal_denoised=(temporal_denoised+block_max)>>1;

if (temporal_denoised < block_min)

temporal_denoised=(temporal_denoised+block_min)>>1;

Where block_max and block_min are the largest and smallest luma values in the local 3x3 (can be shared with BNE calculation).

Next we decide between using the spatial and temporal denoise output:

t_diff = abs(curr(x,y) - prev(x,y);

```
if (t diff < temporal diff th) {</pre>
```

if (motion_block==1)

denoise_out = spatial_denoised;

else {

```
if (t_diff < temp_diff_low)</pre>
```

denoise_out=temporal_denoised;

else {

denoise_out=

(spatial denoised*(t diff-temp diff low) +

```
temporal_denoised*(temporal_diff_th-t_diff)+
```

(temporal_diff_th-temp_diff_low)/2

) * q_table[temporal_diff_th-temp_diff_low-1]) >> 10;

}

```
} else {
```

denoise_out = spatial_denoised;

```
}
```

Motion_block is defined in section 2.8.2.1 above. T_diff can be limited to 6-bits to minimize the multipler gates required in the blend. A divide is eliminated by providing the reciprocal of the divisor in the q_table which is defined:

q_table[16] = {1024,512,341,256,205,171,146,128,114,102,93,85,79,73,68,64}

The following restrictions also apply:

1) Temporal_diff_th – temp_diff_low is limited in the state variable definition to the range 16 to 1.

- 2) Since t_diff<temporal_diff_th; (t_diff temp_diff_low) is less than 16
- 3) Since t_diff>=temp_diff_low; (temporal_diff_th-t_diff) is less then or equal to 16.

The precision needed for spatial_denoised*(t_diff-temp_diff_low) is 8-bit times 4-bits to produce 12-bits. The other multiply is 8 by 5 to produce 13-bits; the extra bit is needed for 16. The multiplier to implement the divide will be a 13-bit times the 11-bit number out of q_table, but this could be reduced by implementing a 13x9 bit multiplier with the top 2 bits controlling a mux since the only table entries that use them are 1024 and 512.

2.8.3 Block Noise Estimate (part of Global Noise Estimate)

Edge detection is done on every pixel in the 16x4 (DI enabled) or 16x8 (DN only) by estimating a gradient on the 3x3 neighborhood of pixels in the current field. The calculation only uses a multiply of 2, so shifts and add are all that is needed. Currently only vertical and horizontal edges are detected, 45 degrees is a potential improvement.

Hrz Edge = $abs(c(x-1,y-1) + 2^{*}c(x,y-1) + c(x+1,y-1) - c(x-1,y+1) - 2^{*}c(x,y+1) - c(x+1,y+1))$

Vrt Edge = abs(c(x-1,y-1) + 2*c(x-1,y) + c(x-1,y+1) - c(x+1,y-1) - 2*c(x+1,y) - c(x+1,y+1))

The Hrz_Edge and Vrt_Edge are added together and if the sum is greater than bne_edge_th then an edge is detected:

ED = (Hrz_Edge +Vrt_Edge) >> 3

- median9 the median of the 9 luma values for the 3x3 neighborhood pixels is used. Median5, the median of the pixels above/below/right/left/center may be satisfactory as a lower gate count solution.
- for each pixel luma "y" in 3x3: noise_metric = sum(y median9)
- noise_min = min(abs(y-median9)) min of all 9 ys in 3x3
- noise_max = max(abs(y-median9)) max of all 9 ys in 3x3
- noise_min_max = noise_max(x,y) noise_min(x,y)
- pixel_noise_metric = noise_metric if (ED(x,y) < bne_edge_th) and (noise_max_min(x,y) < bne_nn_th) block_noise_estimate = min of all pixel_noise_metrics that pass the if test in the 16x4 (use 255 if no pixels pass the test)

If the block_noise_estimate is less than 255 then it is added to a sum gathered across the entire frame. The summation will need to be 23-bits wide to be able to sum 8-bit values for all 32,400 blocks in a 1920x1080 frame. In addition, there will be a count of the number of blocks in the sum. The data will be written to memory at the end of the frame. Two sets of counters are needed to support 2 simultaneous streams. The streams are distinguished by the dndi_stream_id state variable in the DI state.

The per block block_noise_estimate is also sent to the EU in the output message for possible use by the video encoder.

2.8.4 Deinterlacer Algorithm

The overall goal of the motion adaptive deinterlacer is to convert an interlaced video stream made of fields of alternating lines into a progressive video stream made of frames in which every line is provided.

If there is no motion in a scene, then the missing lines can be provided by looking at the previous or next fields, both of which have the missing lines. If there is a great deal of motion in the scene, then objects in the previous and next fields will have moved, so we can't use them for the missing pixels. Instead we have to interpolate from the neighboring lines to fill in the missing pixels. This can be thought of as interpolating in time if there is no motion and interpolating in space if there is motion.

This idea is implemented by creating a measure of motion on a per 2 pixel basis called the Spatial-Temporal Motion Measure (STMM). If this measure shows that there is little motion in an area around the pixels, then the missing pixels are created by averaging the pixel values from the previous and next frame. If the STMM shows that there is motion, then the missing pixels are filled in by interpolating from neighboring lines with the Spatial Deinterlacer (SDI). The two different ways to interpolate the missing pixels are blended for intermediate values of STMM to prevent sudden transitions.

The Deinterlacer uses two frames for reference. The current frame contains the field that we are deinterlacing. The reference frame is the closest frame in time to the field that we are deinterlacing – if we are working on the 1^{st} field then it is the previous frame, if it is the 2^{nd} field then it is the next frame.

2.8.4.1 Spatial-Temporal Motion Measure

This algorithm combines a complexity measure with a estimate of motion. This prevents high complexity scenes from incorrectly causing motion to be detected. It is calculated for a set of pixels 2 wide by 1 high.

Complexity is measured in the vertical and horizontal directions with the SVCM and SHCM. For each set of 2 pixels which need to be interpolated, a window of pixels is used that is 4 wide and 5 high - +/-1 pixel in X and +/- 2 pixels in Y. The pixels values are taken from both the current and previous field - for example, if we are deinterlacing the top field then lines y+2, y, and y-2 will come from the top field; while line y+1 and y-1 will come from the bottom field.

Spatial vertical complexity measure (SVCM) is a sum of all the differences in the vertical direction for a window around the current pixels. If we take x,y=0,0 as the left pixel of our 2x1 then:

SVCM =
$$\sum_{x=0}^{1} \sum_{y=0}^{2} abs(c(x, y) - c(x, y - 2))$$

Where c(x,y) is the luma value at that x,y location in the current frame. Note that we are skipping by 2 in the Y direction to ensure that the compares are only done with lines from the same field.

Spatial horizontal complexity measure (SHCM) is a sum of differences in the horizontal direction.

SHCM =
$$\sum_{x=-1}^{1} \sum_{y=-1}^{y=1} abs(c(x, y) - c(x+1, y))$$

The vertical edge complexity measure (VECM) is a sum of difference in the horizontal direction similar to SHCM, but uses different pixels from the window.

$$\mathsf{VECM} = \left(\left(\sum_{y=-2}^{y=2} abs(c(x, y) - c(x+1, y)) \right) * \mathsf{vecm_mul} \right) >>5$$

Temporal Difference Measure (TDM) is a measure of differences between pairs of fields with the same lines. It uses filtered versions of c(x,y) from the current frame and r(x,y) from the reference frame (either the previous or next frame).

The filter used is a cross filter which uses the pixels above, below, to the right and to the left of the needed pixel in the same field. When denoise filter is enabled, the filter input c(x,y) is a denoised pixel only if -2 <= y <= 6 for dndi_topfirst=1, and -3 <= Y <= 5 for dndi_topfirst=0. Note that r(x,y) is a denoised pixel regardless of y.

$$c'(x,y) = (2^{*}c(x,y) + c(x-1,y) + c(x+1,y) + 2^{*}c(x,y-2) + 2^{*}c(x,y+2)) >> 3$$
 (Done for both $c(x,y)$ and $r(x,y)$)

TDM =
$$\sum_{x=-1}^{2} \sum_{y=-2}^{2} abs(c'(x, y) - r'(x, y))$$

STMM is then calculated by :

STMM = ((TDM >>tdm_shift1)<<tdm_shift2) / (SCM >> 4) + stmm_c2)

where SCM = max(0, SVCM+SHCM-VECM). Tdm_shift1 is used to quantize the STMM result, while Tdm_shift2 is used to set the STMM range. Tdm_shift1 can range from 4 to 6; since TDM has 13 bits this results in between 9 and 7 bits of precision. Tdm_shift2 can range from 6 to 8, producing a value between 17 and 13 bits, of which only 9-bits are non-zero. The divide can be implemented by a 8-bit reciprocal table followed by an 9 -bit x 8-bit multiply by the TDM value, which finally produces an output of 8-bits.

STMM is then smoothed with an exponential moving average with the STMM saved from the previous field:

if (STMM > stmm_md_th)

STMM2 = (stmm_trc1 * STMM_s + (256-stmm_trc1)*STMM) / 256

else

STMM2 = (stmm_trc2 * STMM_s + (256-stmm_trc2)*STMM) / 256

with state variables stmm_trc1 (typical value 64), stmm_trc2 (typical value 200), and stmm_md_th.

This process prevent sudden changes in STMM, though STMM over a certain value uses a smaller smoothing constant (c1) which allows it to change faster. STMM2 is stored to memory to be read as STMM_s by the next frame.

One final step is used to prevent sudden drops in STMM in the horizontal direction – taking the maximum of the STMM on the right and left sides:

STMM3(x) = max (STMM2(x-2), STMM2(x), STMM2(x+2))

The resulting STMM3 will be used as a blending factor between the spatial and temporal deinterlacer.

2.8.4.2 Spatial Deinterlacer Angle Detection

Deciding the best pixels to interpolate in the current field is the job of the spatial deinterlacer. The simplest method would be to interpolate directly from the pixels above and below the missing pixels, but this can look bad; edges and lines particularly look jagged with this solution.

A better solution is to detect the direction of edges in the pixel neighborhood and interpolate along the edge direction.

Without Edge Detection

With Edge Detection

Edge detection is done per 2 pixels to lower the compute needed (may change in this implementation depending on quality). Edge detection is done by taking a window of pixels around the pixels of interest and comparing with a window offset in the direction being tested. The more simularity between the windows the more likely it is that the movement is in the direction of an edge.

We test 9 different directions to pick the best edge: vertical, $+/-45^{\circ}$, $+/-27^{\circ}$, $+/-18^{\circ}$ and +/-11 degrees. The window offset for 45° x+/-1, likewise the offset of 27° is x+/-2, 18° is x+/-3, and 11° is x+/-5. X+4 is not used because the gap between 18° and 11° is too small to make it worth checking.

Use x,y=0,0 for the left pixel of the pair that we want to interpolate, and xoffset is the offset described in the above paragraph. The equation for each angle checked is:

AngleCost_6x3 =
$$\sum_{x=-2y=-2,0,2}^{3} \sum_{y=-2,0,2} abs(n(x + xoffset, y + 1) - n(x - xoffset, y - 1))$$

The above picture illustrates the 45 degree angle compution – taking the sum-of-absolute differences of the two 6x3 blocks around the 2 pixels that need an angle estimated. Each block is offset by 1 in Y and X in opposite direction. The offset in X is larger for the other angles, of course. Angle detection requires up to 7 pixels (offset of 5 plus 2 to get all the pixels in the 6x3) on the right and left of the output block, requiring the input to the deinterlacer from the denoise to be 16 + 7 + 7, or 30 pixels.

Once we have all the angle values, the final decision is done by comparing them with each other. In the following diagram N45 indicates the AngleCost_6x3 for -45°, likewise P27 is the value for +27°, etc. Th and D are constants used to fine tune the algorithm.

Spatial Edge Angle Selection Output

B6783-02

Any missing arcs in the above diagram use the default edge of 90 degrees; for example if the lower left box has P11 >= Th then the default will be used.

2.8.4.2.1 Angle Robustness Check

Three special checks are made to eliminate incorrect angle detection.

Fallback Mode 1

Moving regions with fine details can confuse the angle detection. This fallback mode will detect fine details and fall back to 90 degrees if they are detected.

SUM_H1(x,y) =
$$\sum_{s=-2}^{3} abs(c(x+s, y) - c(x+s+1, y))$$

This sum is similar to SHCM, but over a horizontal line of -2 to +3 only.

$$SUM_H2(x,y) = \max_{s=-2,-1,\dots,3} (abs(c(x-2, y) - c(x+s, y)) + abs(c(x+s, y) - c(x+4, y)))$$

if $(SUM_H1(y-1) + SUM_H1(y+1) > SUM_H2(y-1) + SUM_H2(y+1) + sdi_t1 \&\&$

 $SUM_H1(y-1) + SUM_H1(y+1) \ge sdi_t2$ Then use 90 degree

The final decision for each pixel is done using the sums from above and below the current Y.

Fallback Mode 2

Sometimes the 6x3 angle detection window makes mistakes due to pixels on the edge of the window. Adding a check using a 2x1 window fixes these problems:

If(AngleCost_6x3(90 degree) + (AngleCost_2x1(90 degree) << 3) <

AngleCost_6x3(best angle) + ((AngleCost_2x1(best angle) + sdi_angle2x1)<<3)) then use 90 degree

AngleCost_2x1 is the same as AngleCost_6x3 with a much smaller window:

AngleCost_2x1 =
$$\sum_{x=0}^{1} abs(n(x + xoffset, y+1) - n(x - xoffset, y-1))$$

AngleCost_2x1 can be collected during the calculation of AngleCost_6x3.

Horizontal Median

One final step is used to prevent sudden angle changes – the angle detected for the pixel pair is compared to the angle detected for the pixels to the right and left and the median of the 3 is the angle finally used:

angle_final(x) = median3(angle(x-2), angle(x), angle(x+2))

2.8.4.3 Spatial Deinterlacer Interpolation

Once the best angle is picked, the interpolation is done on a per pixel basis. Both the chroma and luma need to be interpolated (see section 2.8.4.4 for chroma). Only 422 output is needed, so there will be a chroma pair for each 2 lumas. The interpolation itself is very simple: take a pixel from the line above and the line below along one of the 9 possible angles, and average the 8-bit luma and chroma values to get the result pixel. We will do 2 lumas per clock to get enough performance.

2.8.4.4 Chroma Up-Sampler

The DN/DI block supports 4:2:0, 4:1:1 and 4:2:2 inputs, but only outputs 4:2:2. For 4:2:0 and 4:1:1 the chroma needs to be up-sampled to 4:2:2 before interpolation.

The 4:2:0 input has chroma at $\frac{1}{4}$ the rate of the luma; $\frac{1}{2}$ in the horizontal and $\frac{1}{2}$ in the vertical directions. The output needs to be 4:2:2, where chroma is $\frac{1}{2}$ the rate of luma; $\frac{1}{2}$ the horizontal but the same in the vertical direction. Then chroma can be de-interlaced in the vertical direction. For luma we are working with 16x4 blocks, so for chroma we will have 8x2 in 4:2:0 and 8x4 in 4:2:2.

The 4:2:0 to 4:2:2 conversion requires doubling the chroma in the vertical direction to match the luma:

The chroma is doubled by a simple interpolation in both time and space. In the following equations, pixel locations are specified as u(field, x_location, y_location). Field=n would be from the current field, n-1 is from the previous field, and n+1 is from the next field. The Cr and Cb X and Y values are $\frac{1}{2}$ the luma values to map to the smaller area.

temporal_cr = (cr(n-1,x,y) + cr(n+1,x,y)) / 2 // Simple average in time

 $spatial_cr = (cr(n,x,y-1) + cr(n,x,y+1)) / 2$ // Simple average in vertical space

if (STMM3 < stmm_min)

new_cr = temporal_cr

else if (STMM > stmm_max)

new_cr = spatial_cr

else

new_cr = ((STMM3 - stmm_min) * spatial_cr + (stmm_max - STMM3) * temporal_cr) >> stmm_shift

Note that this simple chroma interpolation is not correct, since the chroma sample position is ¹/₄ of a pixel different between 420 and 422. The polyphase filter in the scaler will be used to correct this inprecision by modifying the filter coefficients in software.

For performance a single Cr and Cb has to be produce per clock in this stage to match the 2 pixel per clock performance goal.

4:1:1 also has chroma at ¼ the rate of luma; ¼ in the horizontal direction and the same in the vertical direction. To convert to 4:2:2 we need to double the chroma horizontally. This will be done by averaging the chromas to the right and left to produce the new chroma.

The above diagram shows how the existing chroma values (both U and V) are averaged between C0 and C1 to produce the new C¹/₂. C0 is the chroma asociated with lumas L0 through L3, while C1 is associated with L4 through L7.

2.8.4.5 Chroma Deinterlace

The next step is to do the deinterlacing. Chroma uses the output of the luma angle decision, but reduces the number of angles. The actual spatial deinterlace algorithm is a little different for chroma, since there are only 1 chroma per 2 lumas: some of the chromas are missing and must be filled in.

The diagram shows the chromas used in red. Only 90° , -27° and 27° are directly available. The chromas for +/-45° are derived by a simple average of the 90° and 27° chromas. +/-18° and +/-11° both use the chroma for +/-27°.

2.8.4.5.1 Static Image Fallback Mode

This algorithm has a problem with static images – alternate fields use different luma angle detections and can select different angles, causing noticable flicker. Rather than calculating a separate set of angles for chroma, we instead will blend with STMM so that a static image will use 90 degrees.

if (STMM3 < stmm_min)

chroma_sdi = chroma90degree

else if (STMM > stmm_max)

chroma_sdi = chroma_3angle

else

```
chroma_sdi = (chroma90degree * (stmm_max – STMM3) + chroma_3angle * (STMM3 – stmm_min)) >> stmm_shift
```

2.8.4.6 Temporal Deinterlacer and Final Deinterlacer Blend

The temporal deinterlacer is a simple average between the previous and next field; when deinterlacing the 1st field of current the average will be between the 2nd field of previous and the 2nd field of current.

The interpolation between spatial and temporal:

if (STMM3 < stmm_min)

deinterlace_out = tdi;

else if (STMM3 > stmm_max)

deinterlace_out = sdi;

else

```
deinterlace_out = (sdi * (STMM3 - stmm_min) + tdi * (stmm_max - STMM3)) >> stmm_shift
```

2.8.4.7 Progressive Cadence Reconstruction

When the FMD for the previous frame indicates that a progressive mode is being used rather than interlaced, the luma and chroma will be taken from adjacent fields rather than spatially interpolated. The exact fields needed depend on state variables written to memory by a thread at the end of the previous frame. The thread will use the FMD variances written to memory via CSunit on the flush at the end of a frame.

Since we are deinterlacing 2 fields at a time – one from the previous frame and one from the current frame (see section 2.8.6.1) we will need a state variable which says how each one should be put together. In each case there are only two possibilities – either the field should be put together with the matching field in the same frame or it should be put together with the adjacent field in the other frame.

If we are deinterlacing the 2nd field from frame N and the 1st field from frame N+1, then the FMD decision (which is made on frame boundaries) will be from frame N-1.

Chroma is reconstructed the same as luma – only the first step of doubling chroma is done in the chroma upsampling block for the two needed fields.

2.8.4.8 Motion Search

Motion will be estimated independently for each horizontal pair of pixels in the 16x4 block. The area around each pixel pair will be compared to areas in adjacent fields with different X/Y offsets. 16 different offsets, or motion vectors, will be examined in this order:

The area to be compared around the pixel pair is a 6 wide by 5 high window - 2 pixels on right and left and 2 lines above and below. The lines above and below are from both fields, so a total of 3 lines from the same field and 2 lines from the complement field are compared to lines in 2 fields from an adjacent frame.

The motion estimation equation for a pixel pair is:

$$SAD = \sum_{i=x-w}^{x+w+1} \sum_{j=y-h}^{y+h} |p_{ref}(i+M_x, j+M_y) - p_{curr}(i, j)|$$

(h = 2 and w = 2)

Mx, My is the motion vector offset being tested, and x,y is the location of the leftmost pixel of the pair. The motion vector with the smallest SAD is kept as the best motion estimate; if two motion vectors have the same SAD then the last one tested will be kept.

2.8.4.9 Robustness Checks

The motion estimate output goes through 2 checks to make sure it is not an aberration – a smoothness check and a consistency check.

2.8.4.9.1 Consistency Check

The consistency check is done per pixel and makes sure that the pixels we are interpolating for MC have a lower delta than the ones that would be interpolated for spatial DI:

$$\left|P_{cur_opp}\left(x - Edge, y - 1\right) - P_{cur_opp}\left(x + Edge, y + 1\right)\right| > \left|P_{DI}\left(x, y\right) - P_{DI_cur}\left(x, y\right)\right|$$

& &
$$\left|P_{DI}\left(x, y\right) - P_{DI_cur}\left(x, y\right)\right| < MC_pixel_consistency_TH(default:25)$$

Here Edge is the delta found by SDI which corresponds to the best angle. *MC_pixel_consistency_TH* (U6) is a state parameter.

P_{DI cur} is defined as: (same definition as in the motion compensation section)

• If (Mx%2 == 0 & & (My/2)%2 == 0)

$$P_{DI_{cur}}(x, y) = P_{cur_{same}}(x - M_{x}/2, y - M_{y}/2);$$
• If (Mx%2 == 1 & & (My/2)%2 == 0)

$$P_{DI_{cur}}(x, y) = \begin{cases} AVG(P_{cur_{same}}(x - M_{x}/2, y - M_{y}/2), P_{cur_{same}}(x - M_{x}/2 - 1, y - M_{y}/2)); \text{ if } (M_{x} \ge 0) \\ AVG(P_{cur_{same}}(x - M_{x}/2, y - M_{y}/2), P_{cur_{same}}(x - M_{x}/2 + 1, y - M_{y}/2)); \text{ if } (M_{x} < 0) \end{cases}$$
• If (Mx%2 == 0 & & (My/2)%2 == 1)

$$P_{DI_{cur}}(x, y) = AVG(P_{cur_{same}}(x - M_{x}/2, y - M_{y}/2 - 1), P_{cur_{same}}(x - M_{x}/2, y - M_{y}/2 + 1)); \text{ If } (Mx%2 == 1 & & (My/2)\%2 == 1) \end{cases}$$

$$P_{DI_{cur}}(x, y) = \begin{cases} AVG(P_{cur_{same}}(x - M_{x}/2, y - M_{y}/2 - 1), P_{cur_{same}}(x - M_{x}/2 - 1, y - M_{y}/2 + 1)); \text{ If } (M_{x} \ge 0) \\ P_{DI_{cur}}(x, y) = \begin{cases} AVG(P_{cur_{same}}(x - M_{x}/2, y - M_{y}/2 - 1), P_{cur_{same}}(x - M_{x}/2 - 1, y - M_{y}/2 - 1), P_{cur_{same}}(x - M_{x}/2 - 1, y - M_{y}/2 - 1), P_{cur_{same}}(x - M_{x}/2 - 1, y - M_{y}/2 - 1), P_{cur_{same}}(x - M_{x}/2 - 1, y - M_{y}/2 - 1), P_{cur_{same}}(x - M_{x}/2 - 1, y - M_{y}/2 - 1), P_{cur_{same}}(x - M_{x}/2 - 1, y - M_{y}/2 - 1), P_{cur_{same}}(x - M_{x}/2 - 1, y - M_{y}/2 - 1), P_{cur_{same}}(x - M_{x}/2 - 1, y - M_{y}/2 - 1), P_{cur_{same}}(x - M_{x}/2 - 1, y - M_{y}/2 - 1), P_{cur_{same}}(x - M_{x}/2 - 1, y - M_{y}/2 - 1), P_{cur_{same}}(x - M_{x}/2 - 1, y - M_{y}/2 - 1), P_{cur_{same}}(x - M_{x}/2 - 1, y - M_{y}/2 - 1), P_{cur_{same}}(x - M_{x}/2 + 1, y - M_{y}/2 - 1), P_{cur_{same}}(x - M_{x}/2 + 1, y - M_{y}/2 - 1), P_{cur_{same}}(x - M_{x}/2 + 1, y - M_{y}/2 - 1), P_{cur_{same}}(x - M_{x}/2 + 1, y - M_{y}/2 - 1), P_{cur_{same}}(x - M_{x}/2 + 1, y - M_{y}/2 - 1), P_{cur_{same}}(x - M_{x}/2 + 1, y - M_{y}/2 - 1), P_{cur_{same}}(x - M_{x}/2 + 1, y - M_{y}/2 - 1), P_{cur_{same}}(x - M_{x}/2 + 1, y - M_{y}/2 - 1), P_{cur_{same}}(x - M_{x}/2 + 1, y - M_{y}/2 + 1), P_{cur_{same}}(x - M_{x}/2 + 1, y - M_{y}/2 + 1), P_{cur_{same}}(x - M_{x}/2 + 1, y - M_{y}/2 + 1), P_{cur_{same}}(x - M_{x}/2 + 1, y - M_{y}/2 + 1), P_{cur_{same}}(x - M_{x}/2 + 1, y - M$$

2.8.4.9.2 Smoothness Check

The smoothness check compares the motion vector found for neighboring pixel pairs. The neighbors are different for different locations to make sure it stays within the local 4x4. Each pixel pair has 3 sets of comparison with neighbor pixel pair within the 4 by 4: 2 sets of X/Y comparisons for the vertical direction and one set of X/Y comparisons for the horizontal direction.

For lines 1 and 2 in the 16x4:

$$If (abs(MV_x(x, y) + MV_x(x, y+1))) \le smooth _mv _th$$

$$AND \ abs(MV_y(x, y) + MV_y(x, y+1)) \le smooth _mv _th$$

$$AND(abs(MV_x(x, y) - MV_x(x, y+2))) \le smooth _mv _th$$

$$AND \ abs(MV_y(x, y) - MV_y(x, y+2)) \le smooth _mv _th$$

Where *smooth_mv_th*(U2) is a state parameter.

This equation ensures that the pixel pair 1 and 2 lines below have motion vector X and Y components (MVx & MVy) that are within a threshold of the best motion vector for the current pixel pair. The compares with y+1 use "+" rather than "-" since they are comparing motion vectors in the opposite field, which have motion vectors pointing in the opposite direction, since they are using the current field as their reference. For example, if the current pixel has a motion vector of (4,2), the motion vector of x,y+1 would be the same if it is (-4,-2).

For lines 3 and 4 in the 16x4:

$$If (abs(MV_x(x, y) + MV_x(x, y-1))) \leq smooth _mv _th$$

$$AND \ abs(MV_y(x, y) + MV_y(x, y-1)) \leq smooth _mv _th$$

$$AND(abs(MV_x(x, y) - MV_x(x, y-2))) \leq smooth _mv _th$$

$$AND \ abs(MV_y(x, y) - MV_y(x, y-2)) \leq smooth _mv _th$$

For pixel pairs with the first pixel location x%4 == 0 (low X in the 4x4):

$$If (abs(MV_x(x, y) - MV_x(x+2, y))) \le smooth _mv _th$$

AND $abs(MV_y(x, y) - MV_y(x+2, y)) \le smooth _mv _th$

For pixel pairs with the first pixel location x%4 = 0 (high X in 4x4):

$$If (abs(MV_x(x, y) - MV_x(x - 2, y))) \le smooth _mv_th$$

$$AND \ abs(MV_y(x, y) - MV_y(x - 2, y)) \le smooth _mv_th$$

When all 3 comparisons pass the threshold, the smoothness check is passed.

2.8.4.10 Motion Comp

The MCDI output is an average done per pixel on pixels chosen from adjacent field.

There are 4 different equations depending on the motion vector (Mx, My):

If (Mx%2 ==0) && (My == 0) then $P_{DI}(x, y) = P_{ref_same}(x + M_x/2, y + M_y/2);$

If (Mx%2 ==1) && (My == 0) then

$$P_{DI}(x, y) = \begin{cases} AVG(P_{ref_same}(x + M_x / 2, y + M_y / 2), P_{ref_same}(x + M_x / 2 + 1, y + M_y / 2)), \text{ if } (M_x \ge 0) \\ AVG(P_{ref_same}(x + M_x / 2, y + M_y / 2), P_{ref_same}(x + M_x / 2 - 1, y + M_y / 2)), \text{ if } (M_x < 0) \end{cases}$$

If (Mx%2==0) && abs(My) == 2 then

$$P_{DI}(x, y) = \text{AVG}(P_{ref_same}(x + M_x/2, y + M_y/2 - 1), P_{ref_same}(x + M_x/2, y + M_y/2 + 1));$$

If (Mx%2==1) & abs(My) == 2 then

$$P_{DI}(x, y) = \begin{cases} AVG \begin{pmatrix} P_{ref_same}(x + M_x/2, y + M_y/2 - 1), P_{ref_same}(x + M_x/2 + 1, y + M_y/2 - 1), \\ P_{ref_same}(x + M_x/2, y + M_y/2 + 1), P_{ref_same}(x + M_x/2 + 1, y + M_y/2 + 1) \end{pmatrix}; if(M_x \ge 0) \\ AVG \begin{pmatrix} P_{ref_same}(x + M_x/2, y + M_y/2 - 1), P_{ref_same}(x + M_x/2 - 1, y + M_y/2 - 1), \\ P_{ref_same}(x + M_x/2, y + M_y/2 + 1), P_{ref_same}(x + M_x/2 - 1, y + M_y/2 - 1), \\ P_{ref_same}(x + M_x/2, y + M_y/2 + 1), P_{ref_same}(x + M_x/2 - 1, y + M_y/2 + 1)) \end{bmatrix}; if(M_x < 0) \end{cases}$$

For all these equations, if more vareties of My are used than -2,0,2 then we need to use (My/2)%2==0) instead of My==0, and (My/2)%2==1 instead of abs(My)==2.

2.8.4.11 Merge with TDI & SDI

The MADI equation was:

if (STMM3 < stmm_min)

deinterlace_out = tdi;

else if (STMM3 > stmm_max)

deinterlace_out = sdi;

Else

```
deinterlace_out = ((STMM3 - stmm_min) * sdi + (stmm_max - STMM3) * tdi) >> stmm_shift
```

Where STMM3 is a measure of the complexity of the scene and how much motion is in it.

The equation with MCDI is:

if (STMM3 < stmm_min)

Deinterlace_out = tdi;

else if (STMM3 > stmm_max)

deinterlace_out = DItemp;

else

deinterlace_out = ((STMM3 – stmm_min) * DItemp + (stmm_max - STMM3) * tdi) >> stmm_shift Where DItemp is defined below:

Content Adaptive Thresholding:

We denote the best_ME_SAD as the minimal SAD value for the MV candidates. Best_ME_SAD and Best_SAD_Angle_cost are measured based on the block of pixels. The new control equation with MCDI is calculated per pixel:

If ((best_ME_SAD <= **CAT_TH1**)

If (Consistency check is passed && Smoothness check is passed)

Dltemp = MCDI;

Else

Dltemp = sdi;

Else if (CAT_TH1<best_ME_SAD < CAT_TH2*30) {

If (Consistency check is passed && Smoothness check is passed) AND

(SDI_angle =90 degree) AND

(best_ME_SAD + **SAD_Tight_TH*30** < Best_SAD_Angle_cost*2) AND

{(MCDI==median3(MCDI, P____(x, y-1), P____(x, y+1)) ||

NeighborPixel_TH)

Dltemp = MCDI;

Else

DItemp = sdi;

} Else

DItemp = sdi

Where *CAT_TH1*(U2, default = 0), *SAD_Tight_TH* (U4, default=5) and *NeighborPixel_TH*(U4, default=10) are state parameters. CAT_TH2 is a content adaptive value dependent on SCM. SCM = SHCM+SVCM from the spatial complexity measurement.

If (SCM < SCM_A)

CAT_TH2 = SAD_THA;

Else if (SCM > SCM_B)

CAT_TH2 = SAD_THB;

Else

CAT_TH2 = SCM / CAT_slope;

Where *CAT_slope* (U4: default value 10). *SAD_THA* (U4, default 5) and *SAD_THB* (U4, default 10) are state parameters, and SCM_A and SCM_B are derived parameters:

SCM_A = CAT_slope * SAD_THA; // 4-bit * 4-bit to produce 8-bit value

SCM_B = CAT_slope * SAD_THB; // 4-bit * 4-bit to produce 8-bit value

2.8.5 Field Motion Detector

The Field Motion Detector is generated in either the EU or in the driver with a set of differences gathered across entire fields. It is used to detect when a non-interlaced source like a film has been converted to interlaced video – in this case there will be pairs of fields which can be put back together to make frames rather than interpolating. The variances for the block are sent to the VSCunit to be summed across the entire frame. The results are available in MMIO registers.

2.8.5.1 Simple Differences

The first set of variances are simply a sum of absolute pixel differences. The equations are done for every pixel with an even y coordinate:

variance[0] += Diff_cTpT = $(c(x,y) - p(x,y))^2$; – difference between pixels from the top fields of the current and previous frame.

variance[1] += Diff_cBpB = $(c(x,y+1) - p(x,y+1))^2$; - difference between pixels from the bottom fields of the current and previous frame.

variance[2] += Diff_cTcB = $(c(x,y) - c(x,y+1))^2$; - difference between pixels from the top field and bottom field in the current frame.

variance[3] += Diff_cTpB = $(c(x,y) - p(x,y+1))^2$; – difference between pixels from the top field of the current frame and bottom field of previous frame.

variance[4] += Diff_cBpT = $(c(x,y+1) - p(x,y))^2$; – difference between pixels from the bottom field of the current frame and top field of previous frame.

The variances summed for each 16x4 block are divided by 16 before adding them to the sum for the frame to make sure the frame-level sum fits in a 32-bit register.

2.8.5.2 Counter Variances

The rest of the variances are counters for variance conditions as described in the following code:

// Same field difference of the current frame

diff_cTcT = $(c(x,y) - c(x,y+2))^2$;

diff_cBcB = $(c(x,y-1) - c(x,y+1))^{2};$

// Same field difference of the previous frame

diff_pTpT = $(p(x,y) - p(x,y+2))^2$;

$$\begin{split} & \text{diff}_p BpB = (p(x,y-1) - p(x,y+1)) ^ 2; \\ & \text{// Same field vertical smoothness of the current frame} \\ & \text{diff}_cT = ABS(c(x,y) - c(x,y-2)) + ABS(c(x,y) - c(x,y+2)) - ABS(c(x,y-2) + c(x,y+2)); \\ & \text{diff}_cB = ABS(c(x,y+1) - c(x,y-1)) + ABS(c(x,y+1) - c(x,y+3)) - \\ & \text{ABS}(c(x,y-1) + c(x,y+3)); \\ & \text{if}(\text{ diff}_cTpT + \text{ diff}_cBpB > \text{ fmd}_t\text{ diff}) \{ \qquad // \text{ if moving pixels,} \end{split}$$

// Fine tears for cadence detection except 2-2 detection

if(diff_cTcB > diff_cTcT + diff_cBcB) variance[5]++;
else variance[6]++;

// Find tears for 2-2 cadence detection

if(diff_cT < fmd_vdiff1 && diff_cB < fmd_vdiff1) { $\ \ //$ if fields are vertically smooth,

variance[7]++; // total moving pixels

// Find tears. (1st condition is to exclude very small variations)	
if(diff_cTcB >=fmd_vdiff2 && diff_cTcB > diff_cTcT + diff_cBcB)	$TEAR_1(x,y) = 1$
if(diff_cTpB >=fmd_vdiff2 && diff_cTpB > diff_cTcT + diff_pBpB)	$TEAR_2(x,y) = 1$
if(diff_cBpT>=fmd_vdiff2 && diff_cBpT > diff_pTpT + diff_cBcB)	TEAR_3(x,y) = 1
1	

}

}

2.8.5.3 Tear Variances

The all 3 TEAR_N variables are compared to neighbors to eliminate strays:

 $\label{eq:teacher} \begin{array}{l} \text{if}(\text{TEAR}_N(x-1,y) == 0 \&\& \\ \\ \text{TEAR}_N(x+1,y) == 0 \&\& \\ \\ \text{TEAR}_N(x,y-2) == 0 \&\& \\ \\ \text{TEAR}_N(x,y+2) == 0) \\ \end{array} \\ \begin{array}{l} \text{TEAR}_N(x,y) = 0; \text{ where } N=1,2,3. \\ \\ \text{variance[8]} = \text{sum of } \text{TEAR}_1(x,y) \end{array}$

variance[9] = sum of TEAR_2(x,y)

variance[10] = sum of TEAR_3(x,y)

```
if (variance[8] > variance[9] && variance[8] > variance[10])
```

variance[7] = variance[8] = variance[9] = variance[10] = 0

if (variance[8] < fmd_thr_tear) variance[8] = 0

if (variance[9] < fmd_thr_tear) variance[9] = 0

if (variance[10] < fmd_thr_tear) variance[10] = 0

The variances are summed for each block across the frame. The accumulators may require 24-bit adders if the differences are 8-bits and there can be 128 (horizontally) * 256 (vertically) of them. The sums are written to memory at the end of the frame.

Two sets of FMD variances are needed to support 2 simultaneous streams. The streams are distinguished by the dndi_stream_id state variable in the DI state.

[DevILK] A-Stepping Erratum: TEAR_N compute doesn't follow the equation above. Two signals were missing, thus, it is incorrectly calculated as the following. Without the added protection of the N=-2 & N=4 collection of feature, the robustness of 2:2 detection suffers.

 $if(TEAR_N(x-1,y) == 0 \&\&$

 $TEAR_N(x+1,y) == 0 \&\&)$ $TEAR_N(x,y) = 0; where N=1,2,3.$

2.8.6 Implementation Overview

2.8.6.1 Input and Output Frames

Two frames are needed to do deinterlacing, but for any two frames, two fields can be deinterlaced, doubling the output for the same input bandwidth. This also allows the denoise filter to only filter a frame once.

The above picture shows that two frames are read in, called current and previous. The two fields of the next frame are denoised using adjacent fields. The 2nd field of previous can be deinterlaced using current as the reference, and the 1st field of current can be deinterlaced using previous as reference.

Since we are producing 2 16x4 outputs, and the performance goal is to output 2 pixels per clock, we have 64 clocks to run 2 denoise filters and 2 deinterlacers.

The fields are referred to as 1st and 2nd because either the top or bottom field can be the first in the sequence depending on a state variable.

2.8.6.1.1 Statistics Surface Memory Format

The statistics memory page is used to store both STMM and Denoise history. The STMM and Denoise history are stored in separate areas addressed by a single base address pointer:

The STMM for any pixel pair is addressed by:

STMM_X = pixelX / 2

 $STMM_Y = pixelY$

The Denoise History for any 4x4 block is addressed by

 $DH_X = Pitch/2 + pixelX/4$

 $DH_Y = pixelY/4$

Where the pixelX/Y comes from the address of the left pixel for STMM and the upper-left pixel for the Denoise History. The Pitch is from the surface state.

The read and write surfaces for each frame must be separate, since any individual block will not know if the neighbor blocks have been updated yet. This can be implemented as a ping-pong buffer pair with the write surface for each frame becoming the read surface for the next.

2.8.6.2 First Frame Special Case

The first frame in the sequence is a special case for both denoise and deinterlace. Only data from the current frame address is read, the previous frame, clean previous, statistics and control addresses are ignored. Behavior for each function is as follows:

- 1) Denoise The denoise filter needs to use the spatial filter, since there is no previous frame from which to do a temporal filter.
 - a. The Denoise Motion History is not read.
 - b. The blend between the temporal and spatial is forced to 100% spatial.
 - c. [DevSNB+]The Denoise Motion History output values are written to 0.
- 2) BNE The Block Noise Estimate only uses current frame values and so works normally.
- 3) Deinterlacer Only the 1st field of the current frame frame is deinterlaced in this case the 2nd of previous does not exist.
 - a. The spatial deinterlacer is used to produce the output.
 - b. The STMM input values are not read.
 - c. The STMM output values are written as a the maximum 255 value so that the next frame is correctly told that spatial deinterlacing was used in this frame.
- 4) FMD variances between the top and bottom of the current field should be output correctly. Variances that read from the previous field should indicate a maximum difference.
- 5) Progressive Cadence Reconstruction the FMD input is not read, so always assume interlaced.

2.9 Adaptive Video Scaler

The adaptive video scaler consists of a pair of filters. The sharp filter is an 8x8 and the smooth filter is bilinear. The results of the two filters are alpha blended together using an alpha factor determined separately from an algorithm that examines the pixel values in the each vector.

There are a total of four different coefficient tables with two in each direction. For both directions is it possible to use either of the two tables that are assigned to it or use both at once with one table for the Y and the other table for the U/V. The coefficients are programmable by software and loaded via a new command streamer instruction. The coefficients are considered to be nonpipelined state, with a full pipeline flush being required before a new set of coefficients is loaded.

The above diagram shows two pixels (red and green) mapped onto a texture map, with the texel centers blue. The red/green boxes around the pixels indicate the area where the pixel would choose the same 8x8 footprint for its filter, while the large transparent box indicates the footprint for each pixel.

The u/v addresses for each pixel (in texel space) are as follows:

red pixel: u=3.3, v=3.3 (betau=0.3, betav=0.3)

The integer u/v address of the upper left pixel of the footprint is a function of the pixel u/v address as follows:

u(UL) = floor(u(pix)) - 3v(UL) = floor(v(pix)) - 3

When the 8x8 filter is selected, the 8x8 texel block surrounding the pixel sample point is selected. The blend factors "beta" (horizontal and vertical) are determined by the relative distance between the pixel center and the nearest 4 texels (2x2). The betas are first truncated to 5 bits (i).

The beta value is used to look up two sets of 8 coefficients, one set of 8 for horizontal (called $K_h 0..7$), and one set of 8 for vertical (called $K_v 0..7$).

2.9.1 Filtering Operations

There are two separate filters, sharp and smooth, which are blended in an adaptive manner.

2.9.1.1 Sharp

The following formula is used to compute the filtered texture color for the sharp filter:

$$\begin{aligned} \mathsf{R0} &= \mathsf{T00}^*\mathsf{K}_{\mathsf{h}}\mathsf{0} + \mathsf{T01}^*\mathsf{K}_{\mathsf{h}}\mathsf{1} + \mathsf{T02}^*\mathsf{K}_{\mathsf{h}}\mathsf{2} + \mathsf{T03}^*\mathsf{K}_{\mathsf{h}}\mathsf{3} + \mathsf{T04}^*\mathsf{K}_{\mathsf{h}}\mathsf{4} + \mathsf{T05}^*\mathsf{K}_{\mathsf{h}}\mathsf{5} + \mathsf{T06}^*\mathsf{K}_{\mathsf{h}}\mathsf{6} + \mathsf{T07}^*\mathsf{K}_{\mathsf{h}}\mathsf{7} \\ \mathsf{R1} &= \mathsf{T10}^*\mathsf{K}_{\mathsf{h}}\mathsf{0} + \mathsf{T11}^*\mathsf{K}_{\mathsf{h}}\mathsf{1} + \mathsf{T12}^*\mathsf{K}_{\mathsf{h}}\mathsf{2} + \mathsf{T13}^*\mathsf{K}_{\mathsf{h}}\mathsf{3} + \mathsf{T14}^*\mathsf{K}_{\mathsf{h}}\mathsf{4} + \mathsf{T15}^*\mathsf{K}_{\mathsf{h}}\mathsf{5} + \mathsf{T16}^*\mathsf{K}_{\mathsf{h}}\mathsf{6} + \mathsf{T17}^*\mathsf{K}_{\mathsf{h}}\mathsf{7} \\ \mathsf{R2} &= \mathsf{T20}^*\mathsf{K}_{\mathsf{h}}\mathsf{0} + \mathsf{T21}^*\mathsf{K}_{\mathsf{h}}\mathsf{1} + \mathsf{T22}^*\mathsf{K}_{\mathsf{h}}\mathsf{2} + \mathsf{T23}^*\mathsf{K}_{\mathsf{h}}\mathsf{3} + \mathsf{T24}^*\mathsf{K}_{\mathsf{h}}\mathsf{4} + \mathsf{T25}^*\mathsf{K}_{\mathsf{h}}\mathsf{5} + \mathsf{T26}^*\mathsf{K}_{\mathsf{h}}\mathsf{6} + \mathsf{T27}^*\mathsf{K}_{\mathsf{h}}\mathsf{7} \\ \mathsf{R3} &= \mathsf{T30}^*\mathsf{K}_{\mathsf{h}}\mathsf{0} + \mathsf{T31}^*\mathsf{K}_{\mathsf{h}}\mathsf{1} + \mathsf{T32}^*\mathsf{K}_{\mathsf{h}}\mathsf{2} + \mathsf{T33}^*\mathsf{K}_{\mathsf{h}}\mathsf{3} + \mathsf{T34}^*\mathsf{K}_{\mathsf{h}}\mathsf{4} + \mathsf{T35}^*\mathsf{K}_{\mathsf{h}}\mathsf{5} + \mathsf{T36}^*\mathsf{K}_{\mathsf{h}}\mathsf{6} + \mathsf{T37}^*\mathsf{K}_{\mathsf{h}}\mathsf{7} \\ \mathsf{R4} &= \mathsf{T40}^*\mathsf{K}_{\mathsf{h}}\mathsf{0} + \mathsf{T41}^*\mathsf{K}_{\mathsf{h}}\mathsf{1} + \mathsf{T42}^*\mathsf{K}_{\mathsf{h}}\mathsf{2} + \mathsf{T43}^*\mathsf{K}_{\mathsf{h}}\mathsf{3} + \mathsf{T44}^*\mathsf{K}_{\mathsf{h}}\mathsf{4} + \mathsf{T45}^*\mathsf{K}_{\mathsf{h}}\mathsf{5} + \mathsf{T46}^*\mathsf{K}_{\mathsf{h}}\mathsf{6} + \mathsf{T47}^*\mathsf{K}_{\mathsf{h}}\mathsf{7} \\ \mathsf{R5} &= \mathsf{T50}^*\mathsf{K}_{\mathsf{h}}\mathsf{0} + \mathsf{T51}^*\mathsf{K}_{\mathsf{h}}\mathsf{1} + \mathsf{T52}^*\mathsf{K}_{\mathsf{h}}\mathsf{2} + \mathsf{T53}^*\mathsf{K}_{\mathsf{h}}\mathsf{3} + \mathsf{T54}^*\mathsf{K}_{\mathsf{h}}\mathsf{4} + \mathsf{T55}^*\mathsf{K}_{\mathsf{h}}\mathsf{5} + \mathsf{T56}^*\mathsf{K}_{\mathsf{h}}\mathsf{6} + \mathsf{T57}^*\mathsf{K}_{\mathsf{h}}\mathsf{7} \\ \mathsf{R6} &= \mathsf{T60}^*\mathsf{K}_{\mathsf{h}}\mathsf{0} + \mathsf{T61}^*\mathsf{K}_{\mathsf{h}}\mathsf{1} + \mathsf{T62}^*\mathsf{K}_{\mathsf{h}}\mathsf{2} + \mathsf{T63}^*\mathsf{K}_{\mathsf{h}}\mathsf{3} + \mathsf{T64}^*\mathsf{K}_{\mathsf{h}}\mathsf{4} + \mathsf{T65}^*\mathsf{K}_{\mathsf{h}}\mathsf{5} + \mathsf{T66}^*\mathsf{K}_{\mathsf{h}}\mathsf{6} + \mathsf{T67}^*\mathsf{K}_{\mathsf{h}}\mathsf{7} \\ \mathsf{R7} &= \mathsf{T70}^*\mathsf{K}_{\mathsf{h}}\mathsf{0} + \mathsf{T71}^*\mathsf{K}_{\mathsf{h}}\mathsf{1} + \mathsf{T72}^*\mathsf{K}_{\mathsf{h}}\mathsf{2} + \mathsf{T73}^*\mathsf{K}_{\mathsf{h}}\mathsf{3} + \mathsf{T74}^*\mathsf{K}_{\mathsf{h}}\mathsf{4} + \mathsf{T75}^*\mathsf{K}_{\mathsf{h}}\mathsf{5} + \mathsf{T76}^*\mathsf{K}_{\mathsf{h}}\mathsf{6} + \mathsf{T77}^*\mathsf{K}_{\mathsf{h}}\mathsf{7} \\ \mathsf{F}^*\mathsf{F}^*\mathsf{F}^*\mathsf{K}_{\mathsf{H}}\mathsf{5} + \mathsf{R6}^*\mathsf{K}_{\mathsf{H}}\mathsf{6} + \mathsf{R7}^*\mathsf{K}_{\mathsf{H}}\mathsf{7} \\ \mathsf{R7} &= \mathsf{R0}^*\mathsf{K}_{\mathsf{V}}\mathsf{0} + \mathsf{R1}^*\mathsf{K}_{\mathsf{V}}\mathsf{1} + \mathsf{R2}^*\mathsf{K}_{\mathsf{V}}\mathsf{2} + \mathsf{R3}^*\mathsf{K}_{\mathsf{V}}\mathsf{3} + \mathsf{R4}^*\mathsf{K}_{\mathsf{V}}\mathsf{4} + \mathsf{R5}^*\mathsf{K}_{\mathsf{V}}\mathsf{5} + \mathsf{R6}^*\mathsf{K}_{\mathsf{V}}\mathsf{6} + \mathsf{R7}^*\mathsf{K}_{\mathsf{V}} \\ \mathsf{R}} \\ \mathsf{R7} &$$

 $F_sharp = Clamp F' to [0.0, 1.0)$

where:

- Trc is the texel color in row r ([0..3]) and column c ([0..3]) of the 8x8 array of neighboring texel colors
- F_sharp is the final output color of the sharp filter.

2.9.1.2 Smooth

The following formula is used to compute the filtered texture color for the smooth filter:

F_smooth = (T33 * (1-betaU) + T34 * betaU) * (1-betav) + (T43 * (1-betaU) + T44 * betaU) * betav

2.9.1.3 Adaptive Filtering

The adaptive filter only supports RGB or YUV packed formats. For YUV formats, the alpha value is determined only by the Y channel (green), with this alpha value being applied to all three channels. For the RGB formats the alpha value is determined based on an average of all three channels with G having double the weight as the other channels.

Each horizontal or vertical filter has 8 texels input which feeds into an eight tap filter. On the center two there is a linear blend using the betaV. Then using the Y channel an adaptive part weight is calculated and the two filters are alpha blended. The adaptive part calculated on the Y channel is used on all three channels. Only the 8 MSBs are used in these calculations.

The adaptive part is done to classify a pixel as prone to ringing or not. This is done by analyzing the 8 Y samples from the interpolation window $(Wy_0...Wy_7)$.

When the pixels are in an RGB format, Y is extracted from the RGB components in window W:

 $Wy_i = (Wr_i + 2^*Wg_i + Wb_i)/4; 0 \le i \le 7$

There are 3 measurements on these samples that decide how to act. The result is a number between zero and one.

Analysis is performed on Y samples in 8 bit precision.

Measurement #1 –1st derivatives on center samples (minimum of 2 maximums).

maxDeriv4_a = max(|Wy3-Wy4|, |Wy2-Wy3|)

maxDeriv4_b = *max(|Wy3-Wy4|, |Wy4-Wy5|)*

maxDeriv4 = min(maxDeriv4_a, maxDeriv4_b)

Measurement $#2 - 2^{nd}$ derivatives on center samples (minimum of 2 maximums).

Deriv1 = Wy2-Wy3; Derive2 = Wy3-Wy4; Deriv3 = Wy4-Wy5

Deriv2a = |Deriv1-Deriv2|

Deriv2b = |Deriv3-Deriv2|

Deriv2Avg = (Deriv2a + Deriv2b)/2

D4 = min(Deriv2Avg, maxDeriv4)

Measurement $#3 - 1^{st}$ derivative on all (8) Y samples.

 $maxDeriv8 = max(|Wy_m - Wy_{m+1}|); 0 \le m \le 6;$

When *D4* is small enough and *maxDeriv8* is large enough then ringing can appear. So 2 alphas are calculated (one for *D4* and one for *maxDeriv8*), and the minimum of the two is used as the sharpness alpha. An alpha of 255 means the Polyphase scaler is used and an alpha of 0 means that the linear scaler is used.

 $D4Alpha = \begin{cases} D4 \le MaxDerivPoint4 & 0\\ D4 \ge MaxDerivPoint4 + 2^{8-MaxDeriv4SlpBits} & 255\\ else & (D4 - MaxDerivPoint4) \cdot 2^{8-MaxDeriv4SlpBits} \end{cases}$

 $D8Alpha = \begin{cases} maxDeriv8 \le MaxDerivPoint8 & 255 \\ maxDeriv8 \ge MaxDerivPoint8 + 2^{8-MaxDeriv8SlpBits} & 0 \\ else & 255 - ((maxDeriv8) + 2^{8-MaxDeriv8SlpBits}) \end{cases}$

 $255 - ((maxDeriv8 - MaxDerivPoint8) \cdot 2^{8-MaxDeriv8SlpBits})$

Note that multiplying by an exponent of 2 is implemented as bit shifts.

Calculate SharpnessAlpha (U0.8 precision):

```
SharpnessAlpha=max(D8alpha, D4Alpha)
```

if ((xDirection ? xAdaptiveBypass : YAdaptiveBypass) == 1) Then (*SharpenessAlpha* = *SharpnessLevel*)

The UV results are handled in the same manner.

2.10 Image Enhancement Filter and Video Signal Analysis

The IEF module takes in the YUV 444 color space with 10 bit components.

The IEF and VSA have 3 optional modes of operation: basic detail filter 3x3 mode, basic detail filter 5x5 mode and the combination mode. Detail Filter 3x3 mode which is a simple Sobel as VSA and 9 tap constant IEF. Detail Filter 5x5 mode which is a simple Sobel as VSA and 9 tap constant IEF on a sparse 5x5 environment. The combination mode is the full VSA mode and 25 tap filtering doing sharpening and/or smoothing. Either the detail filter mode or combination mode can be removed at synthesis.

VSA – Video Signal Analysis – analyzes the local Y environment of each pixel and outputs several values that describe its nature (smooth, detailed, sharpening). Those values will be used by the IEF to decide how the filter should be applied at each pixel location.

IEF – Image Enhancement Filter – The operations this filter performs are detail filter, smoothing and sharpening on the Y component, according to the VSA outputs.

The IEF throughput is 2 pixels per clock.

2.10.1 Block Diagram

2.10.2 Detail Filter Algorithm

2.10.2.1 VSA for Detail Filter

In the VSA for the detail filter mode, Sobel edge detection is used to set different weighting for detail filtering.

	-1	-2	-1]		-1	0	1	
$E_h =$	0	0	0	$E_v =$	-2	0	2	
	1	2	1		1	0	1	

The edge metric (*EM*) for the target pixel x is formulated as the convolution of the weighting with its 3x3 neighborhood NH9(x) as

[DevSNB-Astep]

 $EM(x) = |NH9(x) * E_h| + |NH9(x) * E_v| // where the input is 10 bits, EM is 4 bits (CLIP((|NH9(x) * E_h| + |NH9(x) * E_v|+8) >> 4, 0, 15))$

[DevSNB-Bstep]

 $EM(x) = |NH9(x) * E_h| + |NH9(x) * E_v| // where the input is 10 bits, EM is 4 bits (CLIP((|NH9(x) * E_h| + |NH9(x) * E_v|+4) >> 3, 0, 15))$

If (EM(x) > Strong_Edge_Threshold) local_adjust = Strong_Edge_Weight // local_adjust is 3bits

Else if (EM(x) > Weak_Edge_Threshold) local_adjust = Regular_Weight

Else local_adjust = Non_Edge_Weight

The Strong_Edge_Threshold, Weak_Edge_Threshold, Strong_Edge_Weight, Non_Edge_Weight and Regular_Weight are the pipelined state variables to be specified by driver. Strong_Edge_Threshold & Weak_Edge_Threshold are 4-bit length variables.

Min and Max on the 3x3 neighborhood are found and diff3 = Max - Min is calculated. Similarly diff5 represents the difference calculated based on 5x5 neighborhood.

2.10.2.2 Detail IEF

In the mode of detail filter 3x3, the below 2-Dimensional formula is used to extract the high frequency component from the 3x3 neighborhood.

 $sigma(Xc)(2nd_gradient) = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$

With the current pixel Xc with the 3x3 neighborhood below, the equation is

X1 X2 X3 X4 Xc X5 X6 X7 X8

Sigma(Xc)(2nd Gradient) = 8 * Xc - (X1+X2+X3+X4+X5+X6+X7+X8) // 13 bits

In the mode of detail filter 5x5, the below 2-Dimensional formula is used to extract the high frequency component from the neighborhood.

$$sigma(Xc)(2nd_gradient) = \begin{vmatrix} -1 & 0 & -1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 8 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & -1 & 0 & -1 \end{vmatrix}$$

The current pixel is Xc with the 5x5 neighborhood, the equation for 5x5 is

X0	X1	X2	X3	X4
X5	X6	X7	X8	X9
Ха	Xb	Xc	Xd	Xe
Xf	Xg	Xh	Xi	Xj
Xk	XI	Xm	Xn	Xo

The basic equation is

Sigma(Xc)(2nd_gradient)=8*Xc - (X0+X2+X4+Xa+Xe+Xk+Xm+Xo) // 13 bits

The filter used here is the none-directional filter and so different coefficients can be applied to each of the outer 5x5 ring, where the middle pixel is subtracted from each pixel so the sum of the filter's coefficients is 0.

Clipping:

The clipping is utilized to limit the range of the calculated Sigma(Xc) to be among min_clip and max_clip.

min clip = -1 < (5 + SrcPrecision - 8)

max_clip = (1<< (5 + SrcPrecision - 8)) - 1

(SrcPrecision = 8 for 8-bit video, =10 for 10-bit video)

Thus, min_clip <= clipped(Sigma(Xc)) <= max_clip.

The **Gain_Factor** is the state variable specified by users, local adjust is the result of the VSA, diff3 is max-min in the 3x3 neighborhood. The equation below gives the delta from the original pixel:

Delta(Xc) = (clipped(sigma(Xc)) * gain_factor * local_adjust + 64) / (128*clipped(8+diff3)) (delta is 7 bits, and clipped(8+diff3) is between (0,255)

[DevSNB]

{In HW implementation.

Delta(Xc) = ((clipped(sigma(Xc)) * gain_factor * local_adjust + 64) * (m_DivTable[clipped(8+diff3)]) >> 7)}

2.10.3 Combination mode

2.10.3.1 VSA Analysis

In the VSA for the combo mode, the operation on the 5x5 neighborhood of the Y channel is assumed.

Diff (local contrast) is used as the main criteria. The local contrast result obtained from the diff criteria is fine tuned using global noise measure and other measurements from the VSA. Diff5 and diff3 are

compared, because diff3 measures variability over a smaller region, it is multiplied by 3/2, the larger of the 2 is used as the basic parameter to estimate the smoothness strength. However if sharpness operation is performed the smaller of the 2 is used.

The mapping relation between filtering strength and the estimated variability is modeled using a piece wise linear (PWL) function to linearly interpolate the values among control points. The PWL parameters might vary depending on clip resolution, screen resolution, or other blocks in the video chain such as ACE. Using a PWL enables responding to specific clip features which will be measured by other modules (SW implemented).

8 points are used to divide the mapping range into 7 segments for PWL function. By default the value 0 is used as the Point 0 and the value 255 is used as the Point 7. Points 1 to 6 are specified by driver. Also, Slopes 0 to 6 and Bias 0 to 6 are specified by drivers. There are two sets of Point, Slope and Bias for the case of 3x3 and the case of 5x5. The pseudo code to implement PWL is as followed// (x[i],y[i]) and (x[i+1],y[i+1]) PWL(diff,PNT,BIAS5,SLP5)

PWL(diff,Point,Bias,Slope)

if(Point[end] <= diff) //end =7 in this case

i = end

else

find i such that Point[i] <= diff <Point[i+1]

return Interpolation = MIN(MAX(((diff - Point[i]) * Slope[i])/8 + Bias[i]),0),255)

Gradient analysis

The gradient is defined to be derived based on 2x2 pixels. On a 5x5 neighborhood, there will be 16 (4x4) gredients for the overlapping 2x2 units. dx and dy are calculated using the below convolution masks

For dx

for dy

norm_grad = (abs(dx) + abs(dy)) is calculated on the 4x4 overlapping window.

And MaxNorm is the largest norm _grad in the 4x4 window.

Measurements of Multi-Ridge & Steepness

MR (multi ridge) is the ratio between the total of all norm_grad in the 4x4 window and the difference between minimum and maximum on the 5x5 window.

 $tot_norm = \sum_{^{-2 < j < 2}}^{^{-2 < j < 2}} norm_grad(i,j)$

The total_norm is modified by the difference between minimum and maximum on the 5x5 window.

tot_norm -= 23* (max5 - min5)>>1; // zero if negative

MR = (5*(tot_norm / 8)) / (max5 - min5 +1) // 4 bit division

 $Dif5_mod = ((3*(max5 - min5))/8) + 1$

The norm is modified based on Dif5_mod

max_norm_mod= MAX(2*MaxNorm- Dif5_mod)/4,0) // 9.0u

Steepness = max_norm_mod/ Dif5_mod //4.0u. 4 bit division

2.10.3.1.1 Modify diff according to Global Noise Estimatiodenote

The GN1 is denoted as the Global Noise Estimation derived by software driver. The diff is modified based on the GN1 and the pixel intensity

 $modify_diff5 = diff5 - GN1$

modify_diff3 = diff3 - (GN1 > 0? GN1: GN1/2),0))

diff = MAX(MIN(MAX(modify_diff5, modify_diff3 + (modify_diff3)/2), 1),255) // 8.0u

if(diff > Pwl1_pnt3)

diff = MIN(modify_diff5 , modify_diff3 + (modify_diff3 >> 1)

2.10.3.1.2 The Weightings of Sharpening and smoothing strength

The weightings of sharpening and smoothening filter is based on the PWL conditioned on the modified diff.

Sharpening_strength = PWL(diff,PNT,BIAS5,SLP5) // 8.0u

Smoothing_strength = PWL(diff,PNT,BIAS3,SLP3) // 8.0u

And the sharpening weighting is further modified by the measurements of steepness and the multi-grid.

steepness = steepness - MAX(8 -(diff3/2),0); // steepness disabled when diff is very low

Sharpening_strength = Sharpening_strength *(16 – MIN((MR – MR_Threshold)* MR_Boost + (steepness – Steepness_Threshold)* Steepness_Boost),15))/16 // 8.0u

Where MR_Threshold, MR_Boost, Steepness_Threshold and Steepness_Boost are the parameters specified by driver.

2.10.3.2 Sharpening Filtering

R5c	R5cx	R5x	R5cx	R5c
R5cx	R3c	R3x	R3c	R5cx
R5xN	oraxii	rectio	irax I E	FR5x
R5cx	R3c	R3x	R3c	R5cx
R5c	R5cx	R5x	R5cx	R5c

The location of filter coefficients

The filter of the combinational mode is symmetric.

P(-2,-2)-P(0,0)	P(-1,-2)-P(0,0)	P(0,-2)-P(0,0)	P(1,-2)-P(0,0)	P(2,-2)-P(0,0)
P(-2,-1)-P(0,0)	P(-1,-1)-P(0,0)	P(0,-1)-P(0,0)	P(1,-1)-P(0,0)	P(2,-1)-P(0,0)
P(-2,0)-P(0,0)	P(-1,0)-P(0,0)		P(1,0)-P(0,0)	P(2,0)-P(0,0)
P(-2,1)-P(0,0)	P(-1,1)-P(0,0)	P(0,1)-P(0,0)	P(1,1)-P(0,0)	P(2,1)-P(0,0)
P(-2,2)-P(0,0)	P(-1,2)-P(0,0)	P(0,2)-P(0,0)	P(1,2)-P(0,0)	P(2,2)-P(0,0)

D(i,j) = P(i,j)-P(0,0) as the difference of the target (center) pixel, P(0,0), from the neighboring pixels, P(i,j), shown in the above figure.

Sharp = $R5C^{*}(D(2,0) + D(-2,0) + D(0,-2) + D(0,2)) +$

R5X*(D(2,2) + D(-2,2) + D(2,-2) + D(-2,-2)) +

R5CX*(D(2,1) + D(-2,1) + D(1,-2) + D(-1,-2) + D(-2,-1) + D(2,-1) + D(1,2) + D(-1,2))

R5C, R5X and R5CX are the paramters specified by driver.

2.10.3.3 Smoothing Filter

Similar to the content adaptive spatial filter in Section 1.8.2.4, smoothing filter is using only neighboring pixels whose value is close to the center pixel value. Global noise is used as a threshold to decide if a pixel value is close to the center pixel. Only pixels whose distance from the center pixel is less than the global noise are used for smoothing.

For each pixel in the 3x3 neighborhood:

If(D(i,j) < GN1) D(i,j) = D(i,j)

Else D(i,j) = 0

The number of pixels that are not zeroed are counted for the coefficient R3C & R3X individually as NZC and NZX. The factor (NZC, NZX) is then multiplied by each coefficient depending on how many pixels it multiplies. The pseudo code to derive NZC and NZX are as follows.

NZX = 0 NZC = 0 For (-2 <= i, j <=2) { If (ABS(D(i,j) < GN1) { If (i==0 || j==0) NZC ++; Else NZX ++; }

}

Apply smoothing operation

Smooth = R3C*(D(1,0) + D(-1,0) + D(0,-1) + D(0,1)) * NZ[NZC] +

R3X*(D(1,1) + D(-1,1) + D(1,-1) + D(-1,-1)) * NZ[NZX] // 12.2u round 3 lsb, check for overflow

2.10.3.4 Filter Blending

Smoothing filter reduces the power of some or all of the frequencies in the image, while sharpening filter enhance some of the frequencies in the image. The output of filtering is based on the blending of both filterings.

Filtering = -sharp_strength * Sharp + smooth_strength * Smooth // 11.0s round 10bits, check for overflows

Output_pixel = orginal_pixel + filtering // 10.0u

Limiting the Output Pixel

The limiter is applied to constrain the effect of overshoot and undershoot.

If (Output_pixel > max5)

Output_pixel =(Output_pixel - max5) * Maximum_Limiter + max5

Output_pixel = MIN(max5 + Clip_Limiter + ((max5 - max3)*Limiter_Boost), Output_pixel);

else if(Output_pixel < max5)

Output_pixel = min5 - (min5 - Output_pixel)* Minimum_Limiter

Output_pixel = MAX(min5 - (Clip_Limiter + ((min5 - min3) *Limiter_Boost)), Output_pixel)

Maximum_Limiter, Minimum_Limiter, Limiter_Boost and Clip_Limiter are the parameters specified by driver.

2.11 State

2.11.1 BINDING_TABLE_STATE

The binding table binds surfaces to logical resource indices used by shaders and other compute engine kernels. It is stored as an array of up to 256 elements, each of which contains one dword as defined here. The start of each element is spaced one dword apart. The first element of the binding table is aligned to a 32-byte boundary.

DWord	Bit	Description
0	31:5	Surface State Pointer. This 32-byte aligned address points to a surface state block. This pointer is relative to the Surface State Base Address.
		Format = SurfaceStateOffset[31:5]
	4:0	Reserved : MBZ

2.11.2 SURFACE_STATE

The surface state is stored as individual elements, each with its own pointer in the binding table. Each surface state element is aligned to a 32-byte boundary.

Surface state defines the state needed for the following objects:

- texture maps (1D, 2D, 3D, cube) read by the sampling engine
- buffers read by the sampling engine
- constant buffers read by the data cache via the data port
- render targets read/written by the render cache via the data port
- streamed vertex buffer output written by the render cache via the data port
- media surfaces read from the texture cache or render cache via the data port
- media surfaces written to the render cache via the data port

2.11.2.1 SURFACE_STATE for most messages

2.11.2.1.1 SURFACE_STATE for most messages [DevSNB]

			SURFACE	_STATE			
Project:	[De	vSNB]					
This is the r sample_8x8	normal surf 3.	ace state us	ed by all messages that us	se SURFACE_STATE except deinterlac	ce and		
DWord	Bit	Description					
0	31:29	Surface T	уре				
		Project:	All				
		Format:	U3 enumerat	ed type FormatD	esc		
		This field of	defines the type of the surf	ace.			
		Value	Name	Description	Project		
		0h	SURFTYPE_1D	Defines a 1-dimensional map or array maps	/ of All		
		1h	SURFTYPE_2D	Defines a 2-dimensional map or array maps	/ of All		
		2h	SURFTYPE_3D	Defines a 3-dimensional (volumetric) map	All		
		3h	SURFTYPE_CUBE	Defines a cube map or array of cube maps	All		
		4h	SURFTYPE_BUFFER	Defines an element in a buffer	All		
		5h-6h	Reserved		All		

		SI	JRFACE	_STAT	E			
	7h	SURFTYPE	E_NULL	Defines a	null surface		All	
	Program	ming Notes						
	A null surface will be used in instances where an actual surface is not bound. When a write message is generated to a null surface, no actual surface is written to. When a read message (including any sampling engine message) is generated to a null surface, the result is all zeros. Note that a null surface type is allowed to be used with all messages, even if it is not specificially indicated as supported. All of the remaining fields in surface state are ignored for null surfaces, with the following exceptions:							
	•	[DevSNB+]: buffer's corre	Width, Heigl sponding stat	nt, Depth , a e for all reno	nd LOD fields mu der target surface	ust match s, includir	the depth 1g null.	
	•	Surface Fori	nat must be F	R8G8B8A8_	UNORM.			
	The Surf Render T targets au depth but	ace Type of a arget Write n nd of the dep ffer or render	a surface used nessage) mus th buffer (defir targets are SI	d as a rende t be the san ned in 3DST URFTYPE_	er target (accesse ne as the Surface FATE_DEPTH_BU NULL.	ed via the l e Type of JFFER), ι	Data Port's all other render Inless either the	
28	Reserved	Project:	All			Format:	MBZ	
27	Data Retu	rn Format						
	Project:		All					
	Format:		U1 enumerate	ed type		FormatDe	esc	
	For Samp	ling Engine	Surfaces, [De	evBW] and	[DevCL] only:			
	This field determines the format of the return data from the sampling engine to the compute engine, but only if the Data Return Format field in the message descriptor is set to FLOAT32. This field is ignored for surfaces used by other units.							
	For Other	Surfaces:						
	This field i	s ignored.						
	For [DevC DATA_RE	TG+] Sampli TURN_FLOA	ng Engine sur T32 regardles	faces, the s ss of its proo	tate of this bit is e grammed value.	effectively		
	Value	Name		Desc	cription	Р	roject	
	0h	DATA_RET	URN_FLOAT	32 FLO	AT32 data is retur	rned A	JI	
	1h	DATA_RET	URN_S1.14	S1.1 retur	4 fixed point data ned	is [[[[DevBW], DevCL]	
	Program	ming Notes						
	The S1.1 SNORM) <i>with any</i> 1	4 return form map formats floating point	at is only lega where all cha or integer ma	l for returnir annels have p format.	ng data from norm <= 8 bits. <i>It is no</i>	nalized (U ot legal to	NORM, or use this format	
	S1.14 return format is only used for SIMD16 and SIMD8 messages from the sampling engine. For SIMD4x2 messages, FLOAT32 format will be used for surfaces specifying S1.14 data return format.							
	Data retu register, t	irned in forma thus the state	at S1.14 will be of this bit doe	e converted es not affect	to FLOAT32 before the kernel.	ore reachi	ng the GRF	
	It is recor generally	mmended tha be improved	t S1.14 forma	t be used w	herever it is legal	, as the pe	erformance will	

SURFACE_STATE								
	26:18	Surface Format						
		Project:	All					
		Format:	U9	FormatDesc				
		Specifies the format of all data port messages write message. Some	the surface or element within this surfa other than the render target message forms of the media block messages us	ice. This field is ignored for and streamed vertex buffer e the surface format.				
		Refer to the table in se	ection 0 for the formats supported and th	neir encodings.				
		Programming Notes	5					
		Tile Walk TILEWALK bits-per-element (BP	<pre>K_YMAJOR is UNDEFINED for render t E).</pre>	arget formats that have 128				
		YUV (YCRCB) surfac 3DPRIM_RECTLIST cannot kill pixels.	es used as render targets can only be with even X coordinates on all of its ver	rendered to using tices, and the pixel shader				
		If Number of Multisat field cannot be set to	amples is set to a value other than MUL the following formats:	TISAMPLECOUNT_1, this				
		 any format v any compre- any YCRCB 	with greater than 64 bits per element ssed texture format (BC*) * format					
	17:14	[DevSNB+]: Reserved : MBZ (this field has been moved to BLEND_STATE)						
	13	[DevSNB+]: Reserved : MBZ (this field has been superseded by the Color Buffer Blend Enable field in BLEND_STATE)						
	12	Vertical Line Stride						
		Project:	All					
		Format:	U1 in lines to skip between logically adjacent lines	FormatDesc				
		For 2D Non-Array Su	Irfaces accessed via the Sampling Er	ngine or Data Port:				
		Specifies number of lir support of interleaved	nes (0 or 1) to skip between logically ad (field) surfaces as textures.	jacent lines – provides				
		For Other Surfaces:						
		Vertical Line Stride mu	ist be zero.					
		Programming Notes	5					
		This bit must not be s	set if the surface format is a compressed	d type (BCn*).				
		If this bit is set on a s to any mode other tha to MIPFILTER_NON	ampling engine surface, texture addess an TEXCOORDMODE_CLAMP and the E.	s control modes cannot be set e mip mode filter must be set				

		S	URFACE_ST	ATE			
11	Vertical L	Vertical Line Stride Offset					
	Project:		All				
	Format:		U1 in lines of initial o Line Stride == 1)	ffset (when Vertical	FormatDesc		
	For 2D No	on-Array Su	rfaces accessed via	the Sampling Engir	ne or Data Port:		
	Specifies t Line Strid	he offset of e is 0.	the initial line from the	beginning of the buff	fer. Ignored when Vertical		
	For Other	Surfaces:					
	Vertical Lir	ne Stride Off	set must be zero.				
	Errata: pro	ject DevSNI	3				
	Description	า:					
	If "Numbe Vertical Lir	er of Multisa ne Stride Off	imples" is MULTISAN set must be zero	IPLECOUNT 1 and "	Vertical Line Stride" is 0		
	If " Number of Multisamples" is any value other than MULTISAMPLECOUNT_1 Vertical Line Stride Offset must be one						
10	MIP Map I	_ayout Mod	e				
	Project:		All				
	Format:		U1 enumerated type		FormatDesc		
	For 1D an	d 2D Surfa	ces and				
	For Cube	Surfaces ([DevILK+] only):				
	This field s stored to t details on	specifies wh he right of th the specifics	ich MIP map layout m ne LOD 0 map, or stor s of each layout mode	ode is used, whether ed below it. See Mer	the map for LOD 1 is mory Data Formats for		
	For Other	Surfaces:					
	This field is	s reserved :	MBZ				
	Value	Name	Des	cription	Project		
	0h	MIPLAYO	UT BELOW		All		
	1h	MIPI AYO	UT RIGHT		All		
	Program	ming Notes	5				
	MIPLAY	OUT_RIGHT	is legal only for 2D no	on-array surfaces			

SURFACE_STATE							
	9	Cube Map Corner Mode					
		Project:		All			
		Format:		U1 enumerated type		FormatDesc	
		For Cube	Surfaces ac	cessed by the Sampli	ng Engine:		
		When filter specifies if exist.	ing at the con it gets replace	rner of cube map one o ced with the opposite co	f the four texels doe orner texel or the ave	s not exist. This field erage of all three that	
		For Other	Surfaces:				
		This field is	s Reserved :	MBZ			
		Value	Name	Des	scription	Project	
		0h	CUBE_REF	PLICATE		All	
		1h	CUBE_AVE	ERAGE		[DevILK-B+]	
		Program	ming Notes				
		Programming Notes CUBE_AVERAGE may only be selected if all of the Cube Face Enable fields are equal to one.					
		Chromal	Key Enable r	nust not be set in CUBI	E_AVERAGE mode		
	8	Render Ca	ache Read V	Vrite Mode			
		Project:		All			
		Format:		U1 enumerated type		FormatDesc	
		For Surfa	ces accesse	ed via the Data Port to	Render Cache:		
		This field specifies the way Render Cache treats a write request. If unset, Render Cache allocates a write-only cache line for a write miss. If set, Render Cache allocates a read-write cache line for a write miss.					
		For Surfa Data Cacl	ces accesse ne:	ed via the Sampling Er	ngine or Data Port f	o Texture Cache or	
		This field i	s reserved : I	MBZ			
		Value	Name	Description		Project	
		0h		Allocating write-only c	ache for a write mis	s All	
		1h		Allocating read-write of	cache for a write mis	s All	
		Program	mina Notes				
		This field (from De	is provided f vSNB EU's p	or performance optimiz oint of view).	ation for Render Ca	che read/write accesses	
		Errata	Descrip	otion		Project	
		#	This fiel	ld must be set to 0h.		[DevBW-A,B]	

		SURF	ACE_S	STATE		
7:6	Media Boundary Pixel Mode					
	Project:	All				
	Format:	U2 er	numerated	ype F	FormatDes	C
	For 2D No	d Message:				
	This field enables control of which rows are returned on vertical out-of-bounds reads using the Data Port Media Block Read Message. In the description below, frame mode refers to Vertical Line Stride = 0, field mode is Vertical Line Stride = 1 in which only the even or odd rows are addressable. The frame refers to the entire surface, while the field refers only to the even or odd rows within the surface. Refer to section Error! Reference source not found. for more details.					
	For Other	Surfaces:				
	Reserved	MBZ				
	Value	Name		Description		Project
	Oh	NORMAL_MODE	E	the row returned on an ou bound access is the close in the frame or field. Row the opposite field are neve returned.	it-of- est row vs from er	All
	1h	Reserved				All
	2h	PROGRESSIVE	_FRAME	the row returned on an ou bound access is the close in the frame, even if in fiel	it-of- est row ld mode.	[DevCTG+]
	3h	INTERLACED_F	RAME	in field mode, the row retu an out-of-bound access is closest row in the field. In mode, even out-of-bound return the nearest even ro odd out-of-bound rows ret nearest odd row.	arned on the frame rows ow while turn the	[DevCTG+]
5:0	Cubo Eaco	Enables				
0.0	Project:	All				
	Format:	U6 bi	t mask of e	nables F	ormatDes	c
	For SURF	TYPE_CUBE Sur	faces acce	ssed via the Sampling En	gine:	
	Bits 5:0 of this field enable the individual faces of a cube map. Enabling a face indicates that the face is present in the cube map, while disabling it indicates that that face is represented by the texture map's border color. Refer to Memory Data Formats for the correlation between faces and the cube map memory layout. Note that storage for disabled faces must be provided.					e indicates ace is ats for the ge for
	For other	surfaces:				
	This field is	s reserved : MBZ				
	Value	Name	Descripti	on	Pro	oject
	100000b		-X face		All	
	010000b		+X face		All	

		S	URFACE_STATE	
		001000b	-Y face	All
		000100b	+Y face	All
		000010b	-Z face	All
		000001b	+Z face	All
		Programming Notes	S	
		When TEXCOORDM programmed to 1111	IODE_CLAMP is used when account of the second secon	essing a cube map, this field must be
		This field is ignored u	unless the Surface Type is SURF	FTYPE_CUBE.
1	31:0	Surface Base Addres	SS	
		Project:	All	
		Format:	GraphicsAddress[31:0]	FormatDesc
		Specifies the byte-alig	ned base address of the surface.	
		Programming Notes	S	
		For SURFTYPE_BU element of the surfact type. The address m R32G32B32A32_FL	FFER render targets, this field sp ce. The surface is interpreted as nust be naturally-aligned to the el- OAT elements must be 16-byte a	ecifies the base address of first a simple array of that single element ement size (e.g., a buffer containing ligned).
		For SURFTYPE_BU of the first element o address to the byte o	FFER non-rendertarget surfaces, f the surface, computed in softwa offset of the element in the buffer.	, this field specifies the base address are by adding the surface base
		Mipmapped, cube ar format, and only requ	nd 3D sampling engine surfaces a uire a single address for the base	are stored in a "monolithic" (fixed) texture.
		Linear <i>render target</i> surface formats, or a surfaces have no alig	surface base addresses must be multiple of 2 element-sizes for Y gnment requirements (byte alignn	element-size aligned, for non-YUV /UV surface formats. Other linear nent is sufficient.)
		ERRATA [DevSNB- DW, base address i	A0]: Linear render target base t must be DW aligned at minimu	for element size smaller than a m.
		Linear depth buffer s render targets (color)	urface base addresses must be 6) can be SURFTYPE_BUFFER, c	64-byte aligned. Note that while depth buffers cannot.
		Tiled surface base an Surface Base Addro the tiling algorithm.	ddresses must be 4KB-aligned. I ess are tiled, Surface Base Add	Note that only the offsets from ress itself is not transformed using
		[DevCTG+]: For tile Surface Base Addre	d surfaces, the actual start of the ess by the X Offset and Y Offset	surface can be offset from the tfields.
		Certain message typ requirements. Pleas restrictions.	es used to access surfaces have e refer to the specific message d	more stringent alignment ocumentation for additional

	SURFACE_STATE						
2	31:19	Height					
		Project:	All				
		Format:	U13	FormatDesc			
		Range	SURFTYPE_1D: must be zero				
			SURFTYPE_2D: height of surface - 1	(y/v dimension) [0,8191]			
			SURFTYPE_3D: height of surface - 1	(y/v dimension) [0,2047]			
			SURFTYPE_CUBE: height of surface	– 1 (y/v dimension) [0,8191]			
			SURFTYPE_BUFFER: contains bits [' in the buffer – 1 [0,8191]	19:7] of the number of entries			
		This field specifies the height of the surface. If the surface is MIP-mapped, this field contains the height of the base MIP level. For buffers, this field specifies a portion of the buffer size.					
		Programming Notes	6				
		For buffer surfaces, t subtracting one from 27-bit value into the I field. Unused upper	he number of entries in the buffer range the number of entries, software must pla leight , Width , and Depth fields as indic bits must be set to zero.	s from 1 to 2 ²⁷ . After ace the fields of the resulting cated, right-justified in each			
		If Vertical Line Strid frame	If Vertical Line Stride is 1, this field indicates the height of the field, not the height of the frame				
		The Height of a rend and the depth buffer SURFTYPE_1D or S mapped).	er target must be the same as the Heig (defined in 3DSTATE_DEPTH_BUFFEF URFTYPE_2D with Depth = 0 (non-arra	ht of the other render targets <), unless Surface Type is y) and LOD = 0 (non-mip			

SURFACE_STATE					
18:6	Width				
	Project:	All			
	Format:	U13 FormatDesc			
	Range	SURFTYPE_1D: width of surface – 1 (x/u dimension) [0,8191]			
		SURFTYPE_2D: width of surface – 1 (x/u dimension) [0,8191]			
		SURFTYPE_3D: width of surface – 1 (x/u dimension) [0,2047]			
		SURFTYPE_CUBE: width of surface – 1 (x/u dimension) [0,8191]			
		SURFTYPE_BUFFER: contains bits [6:0] of the number of entries in the buffer – 1 [0,127]			
	This field specifies the width of the surface. If the surface is MIP-mapped, this field specifies the width of the base MIP level. The width is specified in units of pixels or texels. For buffers, this field specifies a portion of the buffer size.				
	For surfaces accessed with the Media Block Read/Write message, this field is in units of DWords.				
	Programming Notes	5			
	For surface types oth be less than or equal	er than SURFTYPE_BUFFER, the Width specified by this field must to the surface pitch (specified in bytes via the Surface Pitch field).			
	For cube maps, Widt	h must be set equal to the Height.			
	For MONO8 textures	, Width must be a multiple of 32 texels.			
	The Width of a rende and the depth buffer SURFTYPE_1D or S mapped).	er target must be the same as the Width of the other render target(s) (defined in 3DSTATE_DEPTH_BUFFER), unless Surface Type is URFTYPE_2D with Depth = 0 (non-array) and LOD = 0 (non-mip			
	The Width of a rende	er target with YUV surface format must be a multiple of 2.			

SURFACE_STATE						
5:2	MIP Count	t / LOD				
	Project:		All			
	Format:		Sampling Engine Surfaces:	U4 in (LOD units – 1)	FormatDesc	
			Render Target Surfaces: U	4 in LOD units		
	Range		Sampling Engine Surfaces:	[0,13] representing [1,1	4] MIP levels	
			Render Target Surfaces: [0	,13] representing LOD		
			Other Surfaces: [0]			
	For Samp	ling Engine	Surfaces:			
	This field i Min LOD , memory fo	This field indicates the number of MIP levels allowed to be accessed starting at Surface Min LOD , which must be less than or equal to the number of MIP levels actually stored in memory for this surface.				
	Force the mip map access to be between the mipmap specified by the integer bits of the Min LOD and the ceiling of the value specified here.					
	For Render Target Surfaces:					
	This field defines the MIP level that is currently being rendered into. This is the absolute MIP level on the surface and is not relative to the Surface Min LOD field, which is ignored for render target surfaces.					
	For Other	Surfaces:				
	This field is	s reserved : I	MBZ			
	Value	Name	Description	F	Project	
	0h	Disable	Desc	A	All	
	1h	Enable	Desc	A	All	
	Program	ming Notes				
	The LOD and of the	of a render t e depth buffe	target must be the same as t r (defined in 3DSTATE_DEF	the LOD of the other ren PTH_BUFFER).	der target(s)	
	For rende	er targets wit	h YUV surface formats, the L	_OD must be zero.		

SURFACE_STATE								
1:0	Render Target Rotation							
	Project:	All						
	Format:	U2 enumerat	ed type	FormatDesc				
	For Rend	er Target Surfaces:						
	This field s	specifies the rotation of this	s render target surface when	being written to memory.				
	For Other This field i	s ignored.						
	Value	Name	Description	Project				
	0h	RTROTATE_0DEG	No rotation (0 degrees)	All				
	1h	RTROTATE_90DEG	Rotate by 90 degrees	All				
	2h	Reserved		All				
	3h	RTROTATE_270DEG	Rotate by 270 degrees	All				
	Programming Notes							
	Rotation mapped,	is not supported for render non-array 2D surfaces.	targets of any type other that he surface must be using tile	an simple, non-mip- d with X major.				
	Width an	d Height fields apply to th	e dimensions of the surface	before rotation.				
	For 90 ar than or e	nd 270 degree rotated surf qual to the Surface Pitch	aces, the Height (rather thar (specified in bytes).	n the Width) must be less				
	For 90 ar pixels (no	nd 270 degree rotated surfact the field value which is d	aces, the actual Height and ['] ecremented) must both be e	Width of the surface in ven.				
	Rotation B5G6R5 R8G8B8 B8G8R8 B10G10F R10G10F	is supported only for surfa _UNORM, B5G6R5_UNOF A X]8_UNORM_SRGB, B A X]8_UNORM_SRGB, B R10A2_UNORM_SRGB, R B10A2_UNORM_SRGB, R	ces with the following surface RM_SRGB, R8G8B8[A X]8_U 8G8R8[A X]8_UNORM, 10G10R10[A X]2_UNORM, 10G10B10A2_UNORM, 16G16B16A16_FLOAT, R16	e formats: JNORM, 6G16B16X16_FLOAT				

		S	URFACE_STATE					
3	31:21	Depth Broject:	All					
		Fiojeci.		FormatDaga				
		Pondo	SUBETYDE 1D: number of array along	romaiDesc				
		Range	SURFTYPE 2D: number of array eleme	nts = 1 [0, 511]				
			SURFTYPE 3D: depth of surface = 1 (7)	$r_{10} = r_{10}(0,0,1)$				
			SURFTYPE CUBE: number of array ele	ments -1 [see				
			programming notes for range]					
			SURFTYPE_BUFFER: contains bits [26: entries in the buffer – 1 [0,127]	20] of the number of				
		This field specifies the total number of levels for a volume texture or the number of array elements allowed to be accessed starting at the Minimum Array Element for arrayed surfaces. If the volume texture is MIP-mapped, this field specifies the depth of the base MIP level. For buffers, this field specifies a portion of the buffer size.						
		Programming Notes	5					
		The Depth of a render and of the depth buff	er target must be the same as the Depth o er (defined in 3DSTATE_DEPTH_BUFFEF	f the other render target(s) २).				
		For SURFTYPE_CU	BE:					
		[DevSNB+]: for Sau the number of cube a <i>divided by</i> 6). For oth	mpling Engine Surfaces, the range of this array elements (equal to the number of und her surfaces, this field must be zero.	s field is [0,84], indicating lerlying 2D array elements				
	20	Reserved Project:	All	Format: MBZ				
	19:3	Surface Pitch						
		Project: All						
		Format: U17	7 pitch in (#Bytes – 1)	FormatDesc				
		Range	suffaces of type SURFITPE_BUFFER: [0,204	/]->[IB, 2048B]				
		For	surfaces of type SURFTYPE_STRBUF: [0,204	.7] -> [1B, 2048B]				
		For	other linear surfaces: [0, 524287] -> [1B, 512KB	3]				
		For	X-tiled surface: [511, 524287] -> [512B, 512KE	3] = [1 tile, 1024 tiles]				
		For	Y-tiled surfaces: [127, 524287]->[128B, 512KB]] = [1 tile, 4096 tiles]				
		This field specifies the	e surface pitch in (#Bytes - 1).					
		For surfaces of type S	URFTYPE_BUFFER, this field indicates th	e size of the structure.				
		Programming Notes	5					
		For linear <i>render targ</i> YUV surface formats formats.	<i>yet</i> surfaces, the pitch must be a multiple of . Pitch must be a multiple of 2 * element s	f the element size for non- ize for YUV surface				
		For other linear surfa	ces, the pitch can be any multiple of bytes					
		For tiled surfaces, the	e pitch must be a multiple of the tile width.					

SURFACE_STATE							
	2	Reserved	Project:	All	Format: MBZ		
	1	Tiled Surfa	ace				
		Project:		All			
		Format:		U1 enumerated type	FormatDesc		
		This field s	pecifies whe	ther the surface is tiled.			
		Value	Name	Description	Project		
		0h	FALSE	Linear surface	All		
		1h	TRUE	Tiled surface	All		
		Programming Notes					
		Linear su (cacheab	rfaces can be le, snooped).	e mapped to Main Memory (Tiled surfaces can only be	uncached) or System Memory mapped to Main Memory.		
		The corre accessed	sponding ca again with a	che(s) must be invalidated b n altered state of this bit.	efore a previously accessed surface is		
		If Surface only in lin	e Type is SU ear memory)	RFTYPE_BUFFER, this fiel	d must be FALSE (buffers are supported		
		If the targ The data	et cache via cache only s	the Data Port is the Data Ca upports access to linear me	ache, this field must be disabled (zero). mory.		
		If Surface	e Type is SU	RFTYPE_NULL, this field m	ust be TRUE		
		[DevSNB tiled.	+]: For multi-	sample render targets, this t	ield must be 1. MSRTs can only be		

			SURFACE	_STATE						
	0	Tile Walk								
		Project:	All							
		Format:	U1 enumerat	ed type	FormatDesc					
		This field surface. S	specifies the type of memo see <i>Memory Interface Func</i>	ry tiling (XMajor or Yl <i>tions</i> for details on m	Major) employed to tile this emory tiling and restrictions.					
		Value	Name	Description	Project					
		0h	TILEWALK_XMAJOR	X major tiling	All					
		1h	TILEWALK_YMAJOR	Y major tiling	All					
		Program	ming Notes							
		Refer to types. (C display/o	Memory Data Formats for a Of particular interest is the to verlay buffers).	estrictions on <i>TileWa</i> act that YMAJOR tilir	alk direction for the various buffer ng is not supported for					
		The corre	The corresponding cache(s) must be invalidated before a previously accessed surface is accessed again with an altered state of this bit.							
		Use of TILEWALK_YMAJOR is UNDEFINED for render target formats that have 128 bits- per-element (BPE).								
		This field	This field is ignored when the surface is linear.							
		Errata: [DevSN	B] Set Tile Walk to TILE	WALK_XMAJOR if	Tiled Surface set to False					
4	31:28	Surface N	lin LOD							
		Project:	All							
		Format:	U4 in LOD ur	iits	FormatDesc					
		Range	[0,13]							
		For Samp	oling Engine Surfaces:							
		This field i This field i used to ad	ndicates the most detailed s added to the delivered LO Idress the surface.	LOD that can be acc DD (sample_l, ld, or r	essed as part of this surface. esinfo message types) before it is					
		For Other	Surfaces:							
		This field i	s ignored.							
		Program	ming Notes							
		This field	I must be zero if the Surfa	ce Format is MONO8	3					
		[DevBW	-A,B]: this field must be z	ero						

SURFACE_STATE					
27:17	Minimum Array Elen	nent			
	Project:	All			
	Format:	U11	FormatDesc		
	Range	1D/2D/cube surfaces: [0,511]			
		3D surfaces: [0,2047]			
	For Sampling Engin	e and Render Target 1D and 2D Surface	s:		
	This field indicates the This field is added to	e minimum array element that can be acce the delivered array index before it is used t	ssed as part of this surface. o address the surface.		
	For Render Target 3	D Surfaces:			
	This field indicates the minimum 'R' coordinate on the LOD currently being rendered to. This field is added to the delivered array index before it is used to address the surface.				
	For Sampling Engin	e Cube Surfaces on [DevSNB+] only:			
	This field indicates the minimum array element in the <i>underlying 2D surface array</i> that can be accessed as part of this surface (the cube array index is multipled by 6 to compute this value, although this field is <i>not</i> restricted to only multiples of 6). This field is added to the delivered array index before it is used to address the surface.				
	For Other Surfaces:				
	This field must be set	to zero.			
16:8	Render Target View	Extent			
	Project:	All			
	Format:	U9	FormatDesc		
	Range	[0,511] to indicate extent of [1,512]			
	For Render Target 3	BD Surfaces:			
	This field indicates th currently being rende	e extent of the accessible 'R' coordinates r red to.	ninus 1 on the LOD		
	For Render Target 1	D and 2D Surfaces:			
	This field must be set	t to the same value as the Depth field.			
	For Other Surfaces:				
	This field is ignored.				
7	Reserved Project	: All	Format: MBZ		

			SURF	ACE_STATE										
	6:4	Number o	of Multisamples											
		Project:	[DevS	NB+]										
		Format:	U3 en	umerated type	FormatDesc									
		This field	ndicates the numbe	r of multisamples on the surfa	ce.									
		[Pre-DevSNB]: Reserved : MBZ												
		Value	Name	Description	Project									
		0h	MULTISAMPLEC	OUNT_1	All									
		1h	Reserved		All									
		2h	MULTISAMPLEC	OUNT_4	All									
		3h-7h	Reserved		All									
		Program	ming Notes											
		If this fie apply:	d is any value other	than MULTISAMPLECOUNT	_1 the following restrictions									
		•	the Surface Type r	nust be SURFTYPE_2D										
		•	For sampling engin pixels must be with	e messages other than "ld", th n the following range:	e U and V addresses for all									
			 U * width - V * height 	- 0.5 ≥ 0 and ≤ (width -2) – 0.5 ≥ 0 and ≤ (height -2)										
:	3	Reserved	Project: All		Format: MBZ									
	2:0	Multisam	ple Position Palette	e Index										
		Project:	[DevS	NB+]										
		Format:	U3		FormatDesc									
		Range	[0,7]											
		This field i is using. otherwise	ndicates the index i This field is only use not used by hardwa	nto the sample position palette d as a return value for the san re.	e that the multisampled surface npleinfo message, and is									

			SU	RFACE_STAT	E								
5	31:25	X Offset											
		Project:	All										
		Format:	Pi	xelOffset[8:2]		FormatDesc							
		Range	Til (lo	eX surfaces: [0,ceil(5 w 2 bits missing)	12/BytesPerEleme	nt)4] in multiples of 4							
			Til (lo	eY surfaces: [0,ceil(12 w 2 bits missing)	28/BytesPerEleme	nt)-4] in multiples of 4							
		This field start (orig	This field specifies the horizontal offset in pixels from the Surface Base Address to the start (origin) of the surface.										
		This field effectively loosens the alignment restrictions on the origin of tiled surfaces. Previously, tiled surface origin was (by definition) located at the base address, and thus needed to satisfy the 4KB base address alignment restriction. Now the origin can be specified at a finer (4-wide x 2-high pixel) resolution.											
		Program	nming Notes										
		For linea	r surfaces, this f	field must be zero									
		For surfaces accessed with the Data Port Media Block Read/Write message, the pixel size is assumed to be 32 bits in width											
		For Surface Format with other than 8, 16, 32, 64, or 128 bits per pixel, this field must be											
		If Rende	zero. If Render Target Rotation is set to other than RTROTATE_0DEG, this field must be zero.										
	24	Surface V	ertical Alignme	ent									
		Project:	[D	evSNB+]									
		Format:	U 1	enumerated type		FormatDesc							
		For Samp	ling Engine Un	compressed and Re	nder Target Surfa	ices:							
		This field : Data Forn memory.	specifies the ver nats" chapter for This field applie	tical alignment require details on how this fie s to surface formats of	ment for the surfac ld changes the lay her than compress	ce. Refer to the "Memory out of the surface in sed formats.							
		For Other This field	Surfaces: is ignored.										
		Value	Name	Description		Project							
		0h	VALIGN_2	Vertical alignment	factor j = 2	All							
		1h	VALIGN_4	Vertical alignment	factor j = 4	All							
		Program	nming Notes										
		This field	I must be set to	VALIGN_2 if the Surfa	ice Format is 96 b	oits per element (BPE).							
		[DevSNE YCRCB	3]: Value of 1 is _SWAPUVY (0x	not supported for form 183), YCRCB_SWAPU	at YCRCB_NORM JV (0x18f), YCRCE	AL (0x182), 3_SWAPY (0x190)							

	S	URFACE_STATE	
23:20	Y Offset		
	Project:	All	
	Format:	RowOffset[4:1]	FormatDesc
	Range	TileX surfaces: [0,6] in multiples of 2 (low	v bit missing)
		TileY surfaces: [0,30] in multiples of 2 (lo	ow bit missing)
	This field specifies the the surface. (See add	vertical offset in rows from the Surface B itional description in the X Offset field)	ase Address to the start of
	Programming Notes	5	
	For linear surfaces, t	his field must be zero.	
	For render targets in zero.	which the Render Target Array Index is no	ot zero, this field must be
	For Surface Format zero.	with other than 8, 16, 32, 64, or 128 bits p	er pixel, this field must be
	If Render Target Ro	tation is set to other than RTROTATE_0D	EG, this field must be zero.
	[DevILK+]: For surfa Media Block Read/W	aces accessed in field mode (Vertical Line /rite message override), this field must be s	e Stride = 1 or equivalent set to a multiple of 4.
19:16	Surface Object Cont	rol State (MEMORY_OBJECT_CONTRO	L_STATE)
	Project:	[DevSNB+]	
	Format:	MEMORY_OBJECT_CONTROL_STATE	FormatDesc
	Specifies the memory	object control state for this surface.	
	DevSNB A Step Errat from Sampler or from by hardware. Thus it is	tum: When a surface is mapped through N Read Data Port, the Cacheability Control b s solely relies on the control from GTT entr	IT (Sampler Cache) either its [1:0] are forced to zero ies
15:0	Reserved Project:	All	Format: MBZ

2.11.2.1.2 Surface Formats

The following table indicates the supported surface formats and the 9-bit encoding for each. Note that some of these formats are used not only by the Sampling Engine, but also by the Data Port and the Vertex Fetch unit.

Support of each format and capability is as follows:

Y	supported on all products
Y*	supported only on [DevCTG+]
Y+	supported only on [DevCTG-B+]
Y~	supported only on [DevILK+]
Y^	supported only on [DevSNB+]

Sampling Engine	Sampling Engine Filtering	Sampling Engine Shadow Map	Sampling Engine Chroma Key	Render Target	Alpha Blend Render Target	Input Vertex Buffer	streamed Output vertex Buffers	Color Processing	Surface Format Encoding (Hex)	Format Name	Bits Per Element (BPE)
Y	Y~			Y	Y	Y	Y		000	R32G32B32A32_FLOAT	128**
Y				Y		Y	Y		001	R32G32B32A32_SINT	128**
Y				Y		Y	Y		002	R32G32B32A32_UINT	128**
						Y			003	R32G32B32A32_UNORM	128
						Y			004	R32G32B32A32_SNORM	128
						Y			005	R64G64_FLOAT	128
Y	Y~								006	R32G32B32X32_FLOAT	128
						Y			007	R32G32B32A32_SSCALED	128
						Y			008	R32G32B32A32_USCALED	128
Y	Y~					Y	Y		040	R32G32B32_FLOAT	96

Sampling Engine	Sampling Engine Filtering	Sampling Engine Shadow Map	Sampling Engine Chroma Key	Render Target	Alpha Blend Render Target	Input Vertex Buffer	Streamed Output Vertex Buffers	Color Processing	Surface Format Encoding (Hex)	Format Name	Bits Per Element (BPE)
Y						Y	Y		041	R32G32B32_SINT	96
Y						Y	Y		042	R32G32B32_UINT	96
						Y			043	R32G32B32_UNORM	96
						Y			044	R32G32B32_SNORM	96
						Y			045	R32G32B32_SSCALED	96
						Y			046	R32G32B32_USCALED	96
Y	Y			Y	Y+	Y		Y^	080	R16G16B16A16_UNORM	64
Y	Y			Y	Y^	Y			081	R16G16B16A16_SNORM	64
Y				Y		Y			082	R16G16B16A16_SINT	64
Y				Y		Y			083	R16G16B16A16_UINT	64
Y	Y			Y	Y	Y			084	R16G16B16A16_FLOAT	64
Y	Y~			Y	Y	Y	Y		085	R32G32_FLOAT	64
Y				Y		Y	Y		086	R32G32_SINT	64
Y				Y		Y	Y		087	R32G32_UINT	64
Y	Y~	Y							088	R32_FLOAT_X8X24_TYPELESS	64
Y									089	X32_TYPELESS_G8X24_UINT	64
Y	Y~								08A	L32A32_FLOAT	64
						Y			08B	R32G32_UNORM	64
						Y			08C	R32G32_SNORM	64
						Y			08D	R64_FLOAT	64

Sampling Engine	Sampling Engine Filtering	Sampling Engine Shadow Map	Sampling Engine Chroma Key	Render Target	Alpha Blend Render Target	Input Vertex Buffer	Streamed Output Vertex Buffers	Color Processing	Surface Format Encoding (Hex)	Format Name	Bits Per Element (BPE)
Y	Y								08E	R16G16B16X16_UNORM	64
Y	Y								08F	R16G16B16X16_FLOAT	64
Y	Y~								090	A32X32_FLOAT	64
Y	Y~								091	L32X32_FLOAT	64
Y	Y~								092	I32X32_FLOAT	64
						Y			093	R16G16B16A16_SSCALED	64
						Y			094	R16G16B16A16_USCALED	64
						Y			095	R32G32_SSCALED	64
						Y			096	R32G32_USCALED	64
Y	Y		Y	Y	Y	Y		Y^	0C0	B8G8R8A8_UNORM	32
Y	Y			Y	Y				0C1	B8G8R8A8_UNORM_SRGB	32
Y	Y			Y	Y	Y		Y^	0C2	R10G10B10A2_UNORM	32
Y	Y							Y^	0C3	R10G10B10A2_UNORM_SRGB	32
Y				Y		Y			0C4	R10G10B10A2_UINT	32
Y	Y					Y			0C5	R10G10B10_SNORM_A2_UNORM	32
Y	Y			Y	Y	Y		Y^	0C7	R8G8B8A8_UNORM	32
Y	Y			Y	Y			Y^	0C8	R8G8B8A8_UNORM_SRGB	32
Y	Y			Y	Y^	Y			0C9	R8G8B8A8_SNORM	32
Y				Y		Y			0CA	R8G8B8A8_SINT	32
Y				Y		Y			0CB	R8G8B8A8_UINT	32

Sampling Engine	Sampling Engine Filtering	Sampling Engine Shadow Map	Sampling Engine Chroma Key	Render Target	Alpha Blend Render Target	Input Vertex Buffer	Streamed Output Vertex Buffers	Color Processing	Surface Format Encoding (Hex)	Format Name	Bits Per Element (BPE)
Y	Y			Y	Y+	Y			0CC	R16G16_UNORM	32
Y	Y			Y	Y^	Y			0CD	R16G16_SNORM	32
Y				Y		Y			0CE	R16G16_SINT	32
Y				Y		Y			0CF	R16G16_UINT	32
Y	Y			Y	Y	Y			0D0	R16G16_FLOAT	32
Y	Y			Y	Y			Y^	0D1	B10G10R10A2_UNORM	32
Y	Y			Y	Y			Y^	0D2	B10G10R10A2_UNORM_SRGB	32
Y	Y			Y	Y	Y			0D3	R11G11B10_FLOAT	32
Y				Y		Y	Y		0D6	R32_SINT	32
Y				Y		Y	Y		0D7	R32_UINT	32
Y	Y~	Y		Y	Y	Y	Y		0D8	R32_FLOAT	32
Y	Y~	Y							0D9	R24_UNORM_X8_TYPELESS	32
Y									0DA	X24_TYPELESS_G8_UINT	32
Y	Y								0DF	L16A16_UNORM	32
Y	Y~	Y							0E0	I24X8_UNORM	32
Y	Y~	Y							0E1	L24X8_UNORM	32
Y	Y~	Y							0E2	A24X8_UNORM	32
Y	Y~	Y							0E3	I32_FLOAT	32
Y	Y~	Y							0E4	L32_FLOAT	32
Y	Y~	Y							0E5	A32_FLOAT	32

Sampling Engine	Sampling Engine Filtering	Sampling Engine Shadow Map	Sampling Engine Chroma Key	Render Target	Alpha Blend Render Target	Input Vertex Buffer	Streamed Output Vertex Buffers	Color Processing	Surface Format Encoding (Hex)	Format Name	Bits Per Element (BPE)
Y	Y		Y					Y^	0E9	B8G8R8X8_UNORM	32
Y	Y								0EA	B8G8R8X8_UNORM_SRGB	32
Y	Y								0EB	R8G8B8X8_UNORM	32
Y	Y								0EC	R8G8B8X8_UNORM_SRGB	32
Y	Y								0ED	R9G9B9E5_SHAREDEXP	32
Y	Y								0EE	B10G10R10X2_UNORM	32
Y	Y								0F0	L16A16_FLOAT	32
						Y			0F1	R32_UNORM	32
						Y			0F2	R32_SNORM	32
						Y			0F3	R10G10B10X2_USCALED	32
						Y			0F4	R8G8B8A8_SSCALED	32
						Y			0F5	R8G8B8A8_USCALED	32
						Y			0F6	R16G16_SSCALED	32
						Y			0F7	R16G16_USCALED	32
						Y			0F8	R32_SSCALED	32
						Y			0F9	R32_USCALED	32
									0FA	R8B8G8A8_UNORM	32
Y	Y		Y	Y	Y				100	B5G6R5_UNORM	16
Y	Y			Y	Y				101	B5G6R5_UNORM_SRGB	16
Y	Y		Y	Y	Y				102	B5G5R5A1_UNORM	16

Sampling Engine	Sampling Engine Filtering	Sampling Engine Shadow Map	Sampling Engine Chroma Key	Render Target	Alpha Blend Render Target	Input Vertex Buffer	Streamed Output Vertex Buffers	Color Processing	Surface Format Encoding (Hex)	Format Name	Bits Per Element (BPE)
Y	Y			Y	Y				103	B5G5R5A1_UNORM_SRGB	16
Y	Y		Y	Y	Y				104	B4G4R4A4_UNORM	16
Y	Y			Y	Y				105	B4G4R4A4_UNORM_SRGB	16
Y	Y			Y	Y	Y			106	R8G8_UNORM	16
Y	Y		Y	Y	Y^	Y			107	R8G8_SNORM	16
Y				Y		Y			108	R8G8_SINT	16
Y				Y		Y			109	R8G8_UINT	16
Y	Y	Y		Y	Y+	Y			10A	R16_UNORM	16
Y	Y			Y	Y^	Y			10B	R16_SNORM	16
Y				Y		Y			10C	R16_SINT	16
Y				Y		Y			10D	R16_UINT	16
Y	Y			Y	Y	Y			10E	R16_FLOAT	16
Y~	Y~								10F	A8P8_UNORM [palette0]	16
Y~	Y~								110	A8P8_UNORM [palette1]	16
Y	Y	Y							111	I16_UNORM	16
Y	Y	Y							112	L16_UNORM	16
Y	Y	Y							113	A16_UNORM	16
Y	Y		Y	<u> </u>					114	L8A8_UNORM	16
Y	Y	Y							115	I16_FLOAT	16
Y	Y	Y							116	L16_FLOAT	16

Sampling Engine	Sampling Engine Filtering	Sampling Engine Shadow Map	Sampling Engine Chroma Key	Render Target	Alpha Blend Render Target	Input Vertex Buffer	Streamed Output Vertex Buffers	Color Processing	Surface Format Encoding (Hex)	Format Name	Bits Per Element (BPE)
Y	Y	Y							117	A16_FLOAT	16
Y*	Y*								118	L8A8_UNORM_SRGB	16
Y	Y		Y						119	R5G5_SNORM_B6_UNORM	16
				Y	Y				11A	B5G5R5X1_UNORM	16
				Y	Y				11B	B5G5R5X1_UNORM_SRGB	16
						Y			11C	R8G8_SSCALED	16
						Y			11D	R8G8_USCALED	16
						Y			11E	R16_SSCALED	16
						Y			11F	R16_USCALED	16
Y~	Y~								122	P8A8_UNORM [palette0]	16
Y~	Y~								123	P8A8_UNORM [palette1]	16
Y	Y		Y*	Y	Y	Y			140	R8_UNORM	8
Y	Y			Y	Y^	Y			141	R8_SNORM	8
Y				Y		Y			142	R8_SINT	8
Y				Y		Y			143	R8_UINT	8
Y	Y		Y	Y	Y				144	A8_UNORM	8
Y	Y								145	I8_UNORM	8
Y	Y		Y						146	L8_UNORM	8
Y	Y								147	P4A4_UNORM [palette0]	8
Y	Y								148	A4P4_UNORM [palette0]	8

Sampling Engine	Sampling Engine Filtering	Sampling Engine Shadow Map	Sampling Engine Chroma Key	Render Target	Alpha Blend Render Target	Input Vertex Buffer	Streamed Output Vertex Buffers	Color Processing	Surface Format Encoding (Hex)	Format Name	Bits Per Element (BPE)
						Y			149	R8_SSCALED	8
						Y			14A	R8_USCALED	8
Y*	Y*								14B	P8_UNORM [palette0]	8
Y*	Y*								14C	L8_UNORM_SRGB	8
Y+	Y+								14D	P8_UNORM [palette1]	8
Y+	Y+								14E	P4A4_UNORM [palette1]	8
Y+	Y+								14F	A4P4_UNORM [palette1]	8
Y*	Y*								180	DXT1_RGB_SRGB	0
Y	Y								181	R1_UNORM/R1_UINT	1
Y	Y		Y	Y				Y^	182	YCRCB_NORMAL	0
Y	Y		Y	Y				Y^	183	YCRCB_SWAPUVY	0
Y*	Y*								184	P2_UNORM [palette0]	2
Y+	Y+								185	P2_UNORM [palette1]	2
Y	Y		Y						186	BC1_UNORM (DXT1)	0
Y	Y		Y						187	BC2_UNORM (DXT2/3)	0
Y	Y		Y						188	BC3_UNORM (DXT4/5)	0
Y	Y								189	BC4_UNORM	0
Y	Y								18A	BC5_UNORM	0
Y	Y								18B	BC1_UNORM_SRGB (DXT1_SRGB)	0
Y	Y								18C	BC2_UNORM_SRGB (DXT2/3_SRGB)	0

Sampling Engine	Sampling Engine Filtering	Sampling Engine Shadow Map	Sampling Engine Chroma Key	Render Target	Alpha Blend Render Target	Input Vertex Buffer	Streamed Output Vertex Buffers	Color Processing	Surface Format Encoding (Hex)	Format Name	Bits Per Element (BPE)
Y	Y								18D	BC3_UNORM_SRGB (DXT4/5_SRGB)	0
Y									18E	MONO8	1
Y	Y			Y				Y^	18F	YCRCB_SWAPUV	0
Y	Y			Y				Y^	190	YCRCB_SWAPY	0
Y	Y			<u> </u>					191	DXT1_RGB	0
Y	Y								192	FXT1	0
						Y			193	R8G8B8_UNORM	24
						Y			194	R8G8B8_SNORM	24
						Y			195	R8G8B8_SSCALED	24
						Y			196	R8G8B8_USCALED	24
						Y			197	R64G64B64A64_FLOAT	256
						Y			198	R64G64B64_FLOAT	192
Y	Y								199	BC4_SNORM	0
Y	Y								19A	BC5_SNORM	0
Y~	Y~					Y^			19B	R16G16B16_FLOAT	48
						Y			19C	R16G16B16_UNORM	48
						Y			19D	R16G16B16_SNORM	48
						Y			19E	R16G16B16_SSCALED	48
						Y			19F	R16G16B16_USCALED	48
									1A8	R8G8B8_UNORM_SRGB	24

Sampling Engine	Sampling Engine Filtering	Sampling Engine Shadow Map	Sampling Engine Chroma Key	Render Target	Alpha Blend Render Target	Input Vertex Buffer	Streamed Output vertex Buffers	Color Processing	Surface Format Encoding (Hex)	Format Name	Bits Per Element (BPE)
									1A1	BC6H_SF16	0
									1A2	BC7_UNORM	0
									1A3	BC7_UNORM_SRGB	0
									1A4	BC6H_UF16	0
									1A5	PLANAR_420_8†	0
									1FF	RAW	0

** Note: 128 BPE Formats cannot be Tiled Y when used as render targets

† For the PLANAR_420_8 format, the **TCX** and **TCY Address Control Modes** in SAMPLER_STATE must be set to TEXCOORDMODE_CLAMP and the **Height** and **Width** fields in SURFACE_STATE must indicate dimensions that are a multiple of 4 pixels.

NOTE: "RAW" is supported only with buffers and structured buffers accessed via the untyped surface read/write and untyped atomic operation messages, which do not have a column in the table.

2.11.2.1.3 Sampler Output Channel Mapping

The following table indicates the mapping of the channels from the surface to the channels output from the sampling engine. Formats with all four channels (R/G/B/A) in their name map each surface channel to the corresponding output, thus those formats are not shown in this table.

Surface Format Name	R	G	В	Α
R32G32B32X32_FLOAT	R	G	В	1.0
R32G32B32_FLOAT	R	G	В	1.0
R32G32B32_SINT	R	G	В	1.0
R32G32B32_UINT	R	G	В	1.0
R32G32_FLOAT	R	G	1.0	1.0

Surface Format Name	R	G	В	Α
	R	G	0.0	1.0
R32G32_SINT	R	G	0.0	1.0
R32G32_UINT	R	G	0.0	1.0
R32_FLOAT_X8X24_TYPELESS	R	0.0	0.0	1.0
X32_TYPELESS_G8X24_UINT	0.0	G	0.0	1.0
L32A32_FLOAT	L	L	L	A
R16G16B16X16_UNORM	R	G	В	1.0
R16G16B16X16_FLOAT	R	G	В	1.0
A32X32_FLOAT	0.0	0.0	0.0	A
L32X32_FLOAT	L	L	L	1.0
I32X32_FLOAT	I	I	I	I
R16G16_UNORM	R	G	1.0	1.0
	R	G	0.0	1.0
R16G16_SNORM	R	G	1.0	1.0
	R	G	0.0	1.0
R16G16_SINT	R	G	0.0	1.0
R16G16_UINT	R	G	0.0	1.0
R16G16_FLOAT	R	G	1.0	1.0
	R	G	0.0	1.0
R11G11B10_FLOAT	R	G	В	1.0
R32_SINT	R	0.0	0.0	1.0
R32_UINT	R	0.0	0.0	1.0
R32_FLOAT	R	1.0	1.0	1.0
	R	0.0	0.0	1.0
R24_UNORM_X8_TYPELESS	R	0.0	0.0	1.0
X24_TYPELESS_G8_UINT	0.0	G	0.0	1.0

Surface Format Name	R	G	В	Α
L16A16_UNORM	L	L	L	А
I24X8_UNORM	I	I	I	I
L24X8_UNORM	L	L	L	1.0
A24X8_UNORM	0.0	0.0	0.0	Α
I32_FLOAT	I	I	I	I
L32_FLOAT	L	L	L	1.0
A32_FLOAT	0.0	0.0	0.0	А
B8G8R8X8_UNORM	R	G	В	1.0
B8G8R8X8_UNORM_SRGB	R	G	В	1.0
R8G8B8X8_UNORM	R	G	В	1.0
R8G8B8X8_UNORM_SRGB	R	G	В	1.0
R9G9B9E5_SHAREDEXP	R	G	В	1.0
B10G10R10X2_UNORM	R	G	В	1.0
L16A16_FLOAT	L	L	L	А
B5G6R5_UNORM	R	G	В	1.0
B5G6R5_UNORM_SRGB	R	G	В	1.0
R8G8_UNORM	R	G	1.0	1.0
	R	G	0.0	1.0
R8G8_SNORM	R	G	1.0	1.0
	R	G	0.0	1.0
R8G8_SINT	R	G	0.0	1.0
R8G8_UINT	R	G	0.0	1.0
R16_UNORM	R	0.0	0.0	1.0
R16_SNORM	R	0.0	0.0	1.0
R16_SINT	R	0.0	0.0	1.0
R16_UINT	R	0.0	0.0	1.0

Surface Format Name	R	G	В	Α
R16_FLOAT	R	1.0	1.0	1.0
	R	0.0	0.0	1.0
I16_UNORM	1	I	I	I
L16_UNORM	L	L	L	1.0
A16_UNORM	0.0	0.0	0.0	A
L8A8_UNORM	L	L	L	A
I16_FLOAT	I	I	I	I
L16_FLOAT	L	L	L	1.0
A16_FLOAT	0.0	0.0	0.0	A
R5G5_SNORM_B6_UNORM	R	G	В	1.0
R8_UNORM	R	0.0	0.0	1.0
R8_SNORM	R	0.0	0.0	1.0
R8_SINT	R	0.0	0.0	1.0
R8_UINT	R	0.0	0.0	1.0
A8_UNORM	0.0	0.0	0.0	A
I8_UNORM	I	I	I	I
L8_UNORM	L	L	L	1.0
L8_UNORM_SRGB	L	L	L	1.0
R1_UNORM/R1_UINT	R	0.0	0.0	1.0
YCRCB_NORMAL	Cr	Y	Cb	1.0
YCRCB_SWAPUVY	Cr	Y	Cb	1.0
BC4_UNORM	R	0.0	0.0	1.0
BC5_UNORM	R	G	0.0	1.0
YCRCB_SWAPUV	Cr	Y	Cb	1.0
YCRCB_SWAPY	Cr	Y	Cb	1.0
DXT1_RGB	R	G	В	1.0

Surface Format Name	R	G	В	Α
DXT1_RGB_SRGB	R	G	В	1.0
BC4_SNORM	R	0.0	0.0	1.0
BC5_SNORM	R	G	0.0	1.0

2.11.3 SAMPLER_STATE

SAMPLER_STATE has three different formats, depending on the message type used. The sample_8x8 and deinterlace messages use a different format of SAMPLER_STATE as detailed in the corresponding sections.

2.11.3.1 Sampler State for most messages

2.11.3.1.1 SAMPLER_STATE [DevSNB]

	SAMPLER_STATE					
Project:	[De	vSNB]				
This is the r deinterlace. described h aligned to a	This is the normal sampler state used by all messages that use SAMPLER_STATE except sample_8x8 and leinterlace. The sampler state is stored as an array of up to 16 elements, each of which contains the dwords lescribed here. The start of each element is spaced 4 dwords apart. The first element of the sampler state array is aligned to a 32-byte boundary.					
DWord	Bit	Descriptio	า			
0	31	Sampler D	isable			
		Project:		All		
		Format:		Disable	FormatD	esc
		This field a	llows the sa	mpler to be disabled. If disabled, all out	put channels	will return 0.
	30	Reserved	Project:	All	Format:	MBZ
	29	Reserved				
	28	LOD PreC	lamp Enabl	e		
		Project:		All		
		Format:		U1 enumerated type	FormatD	esc
	When enabled, the computed LOD is clamped to [max,min] mip level <i>before</i> the mag-vs- min determination is performed. This is how the OpenGL API currently performs min/mag determination, and therefore it is expected that an OpenGL driver would need to set this bit.					
		Value	Name	Description	F	Project
		0h	Reserved		A	AII
		1h	OGL	OGL Mode (LOD PreClamp enal	bled) A	All

SAMPLER_STATE								
27	Min and Mag State Not Equal							
	Project:	[Dev	SNB]					
	Format:	U1 ei	numerated type	FormatDesc				
	Indicates if following a	state is not the sa re true:	ame for min and mag modes. Mu	st be set to 1 if any of the				
	• Mag Mo	ode Filter and Mir	Mode Filter are not the same					
	 Addres same 	s Rounding Enal	ble: U address mag filter and U a	ddress min filter are not the				
	 Addres same 	s Rounding Enal	ble: V address mag filter and V a	ddress min filter are not the				
	Address R same	Rounding Enable:	R address mag filter and R addr	ess min filter are not the				
	Value	Name	Description	Project				
	0h	MIN_MAG_E Q	Min and Mag state are equal	[DevSNB]				
	1h	MIN_MAG_NE Q	Min and Mag state are not equa	al [DevSNB]				
26:22	Base Mip	Level						
	Project:	All						
	Format:	U4.1		FormatDesc				
	Range	[0.0,1	13.0]					
	Specifies v and selecti	vhich mip level is on ng the "base" mip	considered the "base" level when level.	determining mag-vs-min filter				

SAMPLER_STATE							
21:20	Mip Mode	Filter					
	Project:	All					
	Format:	U2 enumerate	d type				
	This field of filtering.	determines if and how mip n	nap levels are chosen and/or comb	ined when texture			
	Value	Name	Description	Project			
	Oh	MIPFILTER_NONE	Disable mip mapping – force use of the mipmap level corresponding to Min LOD .	All			
	1h	MIPFILTER_NEAREST	Nearest, Select the nearest mip map	All			
	2h	Reserved		All			
	3h	MIPFILTER_LINEAR	Linearly interpolate between nearest mip maps (combined with linear min/mag filters this is analogous to "Trilinear" filtering).	All			
	Program	ming Notes					
	MIPFILTI Engine F message	ER_LINEAR is not supporte iltering" as indicated in the s type.	d for surface formats that do not su Surface Formats table unless using	upport "Sampling the sample_c			
19:17	Mag Mode	e Filter					
	Project:	All					
	Format:	U2 enumerate	d type				
	This field ((enlarged) dimension	determines how texels are s). For volume maps, this fil 	ampled/filtered when a texture is b ter mode selection also applies to t	eing "magnified" he 3 rd (inter-layer)			
	Value	Name	Description	Project			
	0h	MAPFILTER_NEAREST	Sample the nearest texel	All			
	1h	MAPFILTER_LINEAR	Bilinearly filter the 4 nearest texels	All			
	2h	MAPFILTER_ANISOTRO	PIC Perform an "anisotropic" filter on the chosen mip level	All			
	3h-5h	Reserved		All			
	6h	MAPFILTER_MONO	Perform a monochrome convolution filter	All			
	7h	Reserved		All			
	Program	ming Notes					
	Only MAI type SUF	PFILTER_NEAREST and M RFTYPE_3D.	IAPFILTER_LINEAR are supported	l for surfaces of			
	Only MA	PFILTER_NEAREST is sup	ported for surface formats that do r	not support			

	S	AMPLER_STATE					
	"Sampling Engine Fi sample_c message	Itering" as indicated in the Surface Forma type.	ts table unless using the				
	MAPFILTER_MONO: Only CLAMP_BORDER texture addressing mode is supported. Both Mag Mode Filter and Min Mode Filter must be programmed to MAPFILTER_MONO. Mip Mode Filter must be MIPFILTER_NONE. Only valid on surfaces with Surface Format MONO8 and with Surface Type SURFTYPE_2D.						
	MAPFILTER_ANISC with the TEXCOORI	DTROPIC may cause artifacts at cube edg DMODE_CUBE addressing mode.	es if enabled for cube maps				
	MAPFILTER_ANISC sample_I or sample header. [DevBW, D MAPFILTER_ANISC have to be worked a	DTROPIC will be overridden to MAPFILTE _c message type or when Force LOD to evCL] Errata: Force LOD to Zero will no DTROPIC to get forced to MAPFILTER_LI round using sample_I or sample_I_c.	R_LINEAR when using a Zero is set in the message ot cause NEAR and instead it will				
16:14	Min Mode Filter						
	Project:	All					
	Format:	U2 enumerated type	FormatDesc				
	This field determines (shrunk). For volume dimension.	how texels are sampled/filtered when a te maps, this filter mode selection also appl	exture is being "minified" ies to the 3 rd (inter-layer)				
	See Mag Mode Filter						
13:3	Texture LOD Bias						
	Project:	All					
	Format:	S4.6 2's complement	FormatDesc				
	Range	[-16.0, 16.0)					
	This field specifies the min-vs-mag determin positive LOD bias will and possibly higher p image (using more-de	e signed bias value added to the calculate ation and mip-level clamping. Assuming r result in a somewhat blurrier image (usin erformance, while a negative bias will res etailed mip levels) and may lower perform	ed texture map LOD prior to mipmapping is enabled, a g less-detailed mip levels) ult in a somewhat crisper ance.				
	Programming Note	s					
	There is <u>no</u> requiren for texture filtering (a legacy devices).	nent or need to offset the LOD Bias in orden as was required for correct bilinear and an	er to produce a correct LOD isotropic filtering in some				

			SAMPLER_STA	TE	
	2:0	Shadow F	Function		
		Project:	All		
		Format:	U3 enumerated type	Forma	atDesc
		This field specifies t texture sa and the "r	is used for shadow mapping support the specific comparison operation to mple red channel (except for alpha- ef" value provided in the input mess	t via the sample_c messag be used. The compariso only formats which use the age.	e type, and n is between the e alpha channel),
		Value	Name	Description	Project
		0h	PREFILTEROP_ALWAYS		All
		1h	PREFILTEROP_NEVER		All
		2h	PREFILTEROP_LESS		All
		3h	PREFILTEROP_EQUAL		All
		4h	PREFILTEROP_LEQUAL		All
		5h	PREFILTEROP_GREATER		All
		6h	PREFILTEROP_NOTEQUAL		All
		7h	PREFILTEROP_GEQUAL		All
1	31:22	Min LOD			
		Project:	All		
		Format:	U4.6 in LOD units	Forma	atDesc
		Range	[0.0, 13.0], where the u	upper limit is also bounded	by the Max LOD.
		This field applied. I and <u>before</u>	specifies the minimum value used to Note that the minification-vsmagnifi e this maximum (resolution) mip clar	 clamp the computed LOE ication status is determined mping is applied.) after LOD bias is d after LOD bias
		The intege level that	er bits of this field are used to contro may be accessed (where LOD 0 is t	l the "maximum" (highest i he highest resolution map)	resolution) mipmap).
		The fraction trilinear filt	onal bits of this value effectively clan ering is in use.	np the inter-level trilinear b	lend factor when
		Program	nming Notes		
		lf Min LC will alway	DD is greater than Max LOD, Min LO ys be Min LOD.	DD takes precedence, i.e.	the resulting LOD
		This field	I must be zero if the Min or Mag Mo	de Filter is set to MAPFIL	TER_MONO

SAMPLER_STATE							
21:12	Max LOD						
	Project:	All					
	Format:	U4.6 in LOD units	Form	atDesc			
	Range	[0.0, 13.0]					
	This field specifies the maximum value used to clamp the computed LOD after LOD bias is applied. Note that the minification-vsmagnification status is determined after LOD bias and <u>before</u> this minimum (resolution) mip clamping is applied.						
	The integer bits of this field are used to control the "minimum" (lowest resolution) mipmap level that may be accessed.						
	The fractional bits of this value effectively clamp the inter-level trilinear blend factor when trilinear filtering is in use.						
	Force the mip map access to be between the mipmap specified by the integer bits of the Min LOD and the ceiling of the value specified here.						
	Programming Notes						
	If Min LOD is greater than Max LOD , Min LOD takes precedence, i.e. the resulting LOD will always be Min LOD .						
11:10	Reserved	Project: All	Form	at: MBZ			
9	Cube Surf	ace Control Mode					
	Project:	All					
	Format:	U1 enumerated typ	e Form	atDesc			
	When sampling from a SURFTYPE_CUBE surface, this field controls whether the TC * Address Control Mode fields are interpreted as programmed or overridden to TEXCOORDMODE_CUBE.						
	Value	Name	Description	Project			
	0h	CUBECTRLMODE_PROGRA	MMED	All			

SAMPLER_STATE								
	8:6 TCX Address Control Mode							
		Project:	All					
		Format:	U3 enumerated type	FormatDesc				
		Controls how the 1 st (TCX, aka U) component of input texture coordinates are mapped to texture map addresses – specifically, how coordinates "outside" the texture are handled (wrap/clamp/mirror). The setting of this field is subject to being overridden by the Cube Surface Control Mode field when sampling from a SURFTYPE_CUBE surface.						
		Value	Name	Description	Project			
		0h	TEXCOORDMODE_WRAP	Map is repeated in the U direction	All			
		1h	TEXCOORDMODE_MIRROR	Map is mirrored in the U direction	All			
		2h	TEXCOORDMODE_CLAMP	Map is clamped to the edges of the accessed map	All			
		3h	TEXCOORDMODE_CUBE	For cube-mapping, filtering in edges access adjacent map faces	All			
		4h	Reserved		All			
		5h	TEXCOORDMODE_MIRROR_ONCE	Map is mirrored once about origin, then clamped	All			
		6h-7h	Reserved		All			
		Programming Notes When using cube map texture coordinates, only TEXCOORDMODE_CLAMP and TEXCOORDMODE_CUBE settings are valid, and each TC component must have the same Address Control mode.						
		 When TEXCOORDMODE_CLAMP is used when accessing a cube map, the map's Cube Face Enable field must be programmed to 111111b (all faces enabled). MAPFILTER_MONO: Texture addressing modes must all be set to TEXCOORDMODE_CLAMP_BORDER. Software must pad the border texels within the map itself with 0. TEXCOORDMODE_MIRROR and TEXCOORDMODE_MIRROR_ONCE cannot be used with the sample_unorm* message types. 						
	5:3	5:3 TCY Address Control Mode						
		Project:	All					
		Format:	U3 enumerated type	FormatDesc				
		Controls how the 2 nd (TCY, aka V) component of input texture coordinates are mapped to texture map addresses – specifically, how coordinates "outside" the texture are handled (wrap/clamp/mirror).						
		See Address TCX Control Mode above for details						

SAMPLER_STATE									
	2:0	TCZ Address Control Mode							
		Project:	All						
		Format:	U3 enumerated	type FormatD	esc				
		Controls how the 3 rd (TCZ) component of input texture coordinates are mapped to texture map addresses – specifically, how coordinates "outside" the texture are handled (wrap/clamp/mirror).							
		See Address TCX Control Mode above for details							
		Programming Notes:							
		[DevSNB]: if this field is set to TEXCOORDMODE_CLAMP_BORDER samples outside the map will clamp to 0 instead of boarder color							
2	31:5	Reserved							
	4:0	Reserved P	Project: All	Format:	MBZ				
3	31:29	Reserved; MBZ							
	28:26	Reserved : MBZ							
	25	ChromaKey Er	nable						
		Project:	All						
		Format:	Enable	FormatD	esc				
		This field enables the chroma key function.							
		Programming Notes							
		Supported only on a specific subset of surface formats. See section 0 "Surface Formats" for supported formats.							
		This field must be disabled if min or mag filter is MAPFILTER_MONO or MAPFILTER_ANISOTROPIC. This field must be disabled if used with a surface of type SURFTYPE_3D.							
	24:23								
		Project:	All						
		Format:	U2	FormatD	esc				
		Range	[0,3]						
		This field specifies the index of the ChromaKey Table entry associated with this Sampler. This field is a "don't care" unless ChromaKey Enable is ENABLED.							

		SAMPL	.ER_STATE		
22	ChromaK	ey Mode			
	Project:	All			
	Format:	U1 enun	nerated type	Forma	tDesc
	This field s field is ign	specifies the behavior ored if ChromaKey is	of the device in the e disabled.	vent of a ChromaKe	y match. This
	KEYFILTE	R_KILL_ON_ANY_N	IATCH:		
	In this moo mask bit fo Killed Pix	de, if any contributing or that pixel is cleared el Mask Return flag i	texel matches the ch . The result of this op is set on the input me	roma key, the corres peration is observabl ssage.	ponding pixel e only if the
	KEYFILTE	R_REPLACE_BLAC	K:		
	In this mod alpha=0) p G(Y)=0x10 the pixel p intended e through us	de, each texel that ma prior to filtering. For Y 0, B(Cb)=0x80. This v ipeline must be progra ffect, e.g., handle the se of alpha test, etc.	tches the chroma key CrCb surface formats will tend to darken/fad ammed to use the res case of a totally keye	r is replaced with (0, , the black value is A e edges of keyed re ulting filtered texel v d-out region (filtered	0,0,0) (black with A=0, R(Cr)=0x80, gions. Note that alue to gain the I texel alpha==0)
	Value	Name		Description	Project
	0h	KEYFILTER_KILL_	ON_ANY_MATCH		All
	1h	KEYFILTER_REPL	ACE_BLACK		All
21:19	Maximum	Anisotropy			
	Project:	All			
	Format:	U3 enun	nerated type	Forma	tDesc
	This field of MAPFILTE	clamps the maximum ER_ANISOTROPIC fil	value of the anisotrop ter (Min or Mag Mode	y ratio used by the Filter).	
	Value	Name	Description		Project
	0h	ANISORATIO_2	At most a 2:1 aspec	ct ratio filter is used	All
	1h	ANISORATIO_4	At most a 4:1 aspec	ct ratio filter is used	All
	2h	ANISORATIO_6	At most a 6:1 aspec	ct ratio filter is used	All
	3h	ANISORATIO_8	At most a 8:1 aspec	ct ratio filter is used	All
	4h	ANISORATIO_10	At most a 10:1 aspe	ect ratio filter is used	All
	5h	ANISORATIO_12	At most a 12:1 aspe	ect ratio filter is used	All
	6h	ANISORATIO_14	At most a 14:1 aspe	ect ratio filter is used	All
	7h	ANISORATIO_16	At most a 16:1 aspe	ect ratio filter is used	All

		S	AMF	PLER_STATE			
18:13	Address Ro	unding Er	nable				
	Project:		All				
	Format:		6-bit r	nask of enables	F	ormatDesc	
	Controls whe select texels address dime	ther the U to sample ension (U/	/V/R te . Each V/R) in	exture address is rounde bit provides independer either mag or min filter r	d or truncated nt control of rou mode.	before being used unding on one textu	to Jre
	Value	Name		Description		Project	
	100000b			U address mag filter		All	
	010000b			U address min filter		All	
	001000b			V address mag filter		All	
	000100b			V address min filter		All	
	000010b			R address mag filter		All	
	000001b			R address min filter		All	
12:1	Reserved	Project:	All		Fo	ormat: MBZ	
0	Non normali	zed Coor	dinate	S			
	Project:		DevS	NB+			
	Default Value	e:	0h	Disable			
	Format:		Enabl	e	F	ormatDesc	
	Programmi	na Notes					
	TCX/Y/Z Ac TEXCOORI	Idress Co	ntrol CLAMF	Mode must be TEXCOO	RDMODE_CL/	AMP or	
	Surface Typ	e must be	SURI	FTYPE_2D or SURFTYP	PE_3D.		

2.11.3.2 Sampler State for sample_8x8 message

[DevSNB] This state definition is used only by the *sample_8x8* message. This state is stored as an array of up to 4 elements, each of which contains the dwords described here. The start of each element is spaced 16 dwords apart. The first element of the array is aligned to a 32-byte boundary. The index with range 0-3 that selects which element is being used is multiplied by 4 to determine the **Sampler Index** in the message descriptor.

Programming Notes:

- IEF Filter Type was dropped and is assumed to be Detailed filter
- **IEF Filter Size** was dropped and assumed to be 5x5.
- IEF Bypass If we have Y/G-channel masked then the IEF bypass should always be forced to 1.

DWord	Bit	Description
0	31	AVS Filter Type. Defines the type of adaptive video scaler filter that will be enabled.
		0: Adaptive 8-tap polyphase filter
		1: Nearest filter
	30	Reserved : MBZ
	29	IEF Bypass. Causes IEF function to be bypassed, VSA will output neutral values. If Green(or Luma) channel is masked, we will always have IEF state set to bypass
	28	IEF Filter Type
		0: Combo mode
		1: Detail Filter
	27	IEF Filter Size
		0: 3x3
		1: 5x5
		Programming Notes:
		• If IEF Filter Type is Advanced Filter, this field must be set to 5x5
	26:19	Reserved : MBZ
	18	ChromaKey Enable. This field enables chroma keying when accessing this particular texture map.
		Programming Notes:
		 For sample_8x8 instructions KEYFILTER_REPLACE_BLACK is assumed if chromakey is enabled.
		• For 10 bit formats only the 8 MSBs will be compared.
		Format = Enable
	17:16	ChromaKey Index. This field specifies the index of the ChromaKey Table entry associated with this Sampler. This field is a "don't care" unless ChromaKey Enable is ENABLED.
		Format = U2
		Range = [0,3]
	15:0	Reserved : MBZ

DWord	Bit	Description
1	31:5	Sampler 8x8 State Pointer. This field specifies the pointer to the SAMPLER_8x8_STATE structure. This pointer is relative to the General State Base Address for [DevILK] or the Dynamic State Base Address for [DevSNB+].
		Programming Notes:
		 This field must be set to the same value in all sample_8x8 type SAMPLER_STATE instances applied to a given primitive.
		 [DevSNB+]: PIPE_CONTROL with State/Instruction Cache Invalidate set and the CS Stall field set is required between primitives that use different values of this field.
		This pointer must be aligned to 512 bits.
		Format = DynamicStateOffset[31:5]
	4:0	Reserved : MBZ
2	31:16	Reserved : MBZ
	15:8	Global Noise Estimation. Global noise estimation of previous frame from DI.
		Format = U8 (default = 22)
	7:4	Strong Edge Threshold. If EM > Strong Edge Threshold, the basic VSA detects a strong edge.
		Format = U4 (default = 8)
	3:0	Weak Edge Threshold. If Strong Edge Threshold > EM > Weak Edge Threshold, the basic VSA detects a weak edge.
		Format = U4 (default = 1)
3	31	Reserved : MBZ
	30:28	Strong Edge Weight. Sharpening strength when a strong edge is found in basic VSA.
		Format = U3 (default = 7)
	27	Reserved : MBZ
	26:24	Regular Weight. Sharpening strength when a weak edge is found in basic VSA.
		Format = U3 (default = 2)
	23	Reserved : MBZ
	22:20	Non Edge Weight. Sharpening strength when no edge is found in basic VSA.
		Format = U3 (default = 1)
	19:14	Gain Factor. User control sharpening strength.
		Format = U6 (default = 40)
	13:11	Reserved : MBZ
	10:6	R3c Coefficient. IEF smoothing coefficient, see IEF map.
		Format = U0.5 (default = (59+2) >> 2)
	5	Reserved : MBZ

DWord	Bit	Description
	4:0	R3x Coefficient. IEF smoothing coefficient, see IEF map.
		Format = U0.5 (default = ((25+2) >> 2)
4	31	Reserved : MBZ
	30:26	R5c Coefficient. IEF smoothing coefficient, see IEF map.
		Format = U0.5 (default = 3)
	25	Reserved : MBZ
	24:20	R5cx Coefficient. IEF smoothing coefficient, see IEF map.
		Format = U0.5 (default = 8)
	19	Reserved : MBZ
	18:14	R5x Coefficient. IEF smoothing coefficient, see IEF map.
		Format = U0.5 (default = 9)
	13:12	Reserved : MBZ
	11:8	Steepness Threshold. VSA uses steepness only when greater than this threshold.
		Format = U4 (default = 0)
	7	Steepness Boost. Used to increase effect of steepness.
		Format = Enable (default = 0)
	6:3	MR Threshold. VSA uses MR only when greater than this threshold.
		Format = U4 (default = 5)
	2	MR Boost. Used to increase effect of MR.
		Format = Enable (default = 0)
	1:0	Reserved : MBZ
5	31:24	PWL1 Point 4. Point 4 for PWL of <i>both</i> sharpening and smoothing strength.
		Format = U8 (default = 26)
	23:16	PWL1 Point 3. Point 3 for PWL of <i>both</i> sharpening and smoothing strength.
		Format = U8 (default = 16)
	15:8	PWL1 Point 2. Point 2 for PWL of <i>both</i> sharpening and smoothing strength.
		Format = U8 (default = 12)
	7:0	PWL1 Point 1. Point 1 for PWL of <i>both</i> sharpening and smoothing strength.
		Format = U8 (default = 4)
6	31:24	PWL1 R3 Bias 1. Bias 1 for PWL of smoothing strength.
		Format = U8 (default = 98)
	23:16	PWL1 R3 Bias 0. Bias 0 for PWL of smoothing strength.
		Format = U8 (default = 127)
	15:8	PWL1 Point 6. Point 6 for PWL of <i>both</i> sharpening and smoothing strength.
		Format = U8 (default = 160)

DWord	Bit	Description
	7:0	PWL1 Point 5. Point 5 for PWL of <i>both</i> sharpening and smoothing strength.
		Format = U8 (default = 40)
7	31:24	PWL1 R3 Bias 5. Bias 5 for PWL of smoothing strength.
		Format = U8 (default = 0)
	23:16	PWL1 R3 Bias 4. Bias 4 for PWL of smoothing strength.
		Format = U8 (default = 44)
	15:8	PWL1 R3 Bias 3. Bias 3 for PWL of smoothing strength.
		Format = U8 (default = 64)
	7:0	PWL1 R3 Bias 2. Bias 2 for PWL of smoothing strength.
		Format = U8 (default = 88)
8	31:24	PWL1 R5 Bias 2. Bias 2 for PWL of sharpening strength.
		Format = U8 (default = 32)
	23:16	PWL1 R5 Bias 1. Bias 1 for PWL of sharpening strength.
		Format = U8 (default = 32)
	15:8	PWL1 R5 Bias 0. Bias 0 for PWL of sharpening strength.
		Format = U8 (default = 3)
	7:0	PWL1 R3 Bias 6. Bi as 6 for PWL of smoothing strength.
		Format = U8 (default = 0)
9	31:24	PWL1 R5 Bias 6. Bias 6 for PWL of sharpening strength.
		Format = U8 (default = 88)
	23:16	PWL1 R5 Bias 5. Bias 5 for PWL of sharpening strength.
		Format = U8 (default = 108)
	15:8	PWL1 R5 Bias 4. Bias 4 for PWL of sharpening strength.
		Format = U8 (default = 100)
	7:0	PWL1 R5 Bias 3. Bias 3 for PWL of sharpening strength.
		Format = U8 (default = 58)
10	31:24	PWL1 R3 Slope 3. Slope 3 for PWL of smoothing strength.
		Format = S3.4 2's complement (default = -32)
	23:16	PWL1 R3 Slope 2. Slope 2 for PWL of smoothing strength.
		Format = S3.4 2's complement (default = -96)
	15:8	PWL1 R3 Slope 1. Slope 1 for PWL of smoothing strength.
		Format = S3.4 2's complement (default = -20)
	7:0	PWL1 R3 Slope 0. Slope 0 for PWL of smoothing strength.
		Format = S3.4 2's complement (default = -116)

DWord	Bit	Description
11	31:24	PWL1 R5 Slope 0. Slope 0 for PWL of sharpening strength.
		Format = S3.4 2's complement (default = 116)
	23:16	PWL1 R3 Slope 6. Slope 6 for PWL of smoothing strength.
		Format = S3.4 2's complement (default = 0)
	15:8	PWL1 R3 Slope 5. Slope 5 for PWL of smoothing strength.
		Format = S3.4 2's complement (default = 0)
	7:0	PWL1 R3 Slope 4. Slope 4 for PWL of smoothing strength.
		Format = S3.4 2's complement (default = -50)
12	31:24	PWL1 R5 Slope 4. Slope 4 for PWL of sharpening strength.
		Format = S3.4 2's complement (default = 9)
	23:16	PWL1 R5 Slope 3. Slope 3 for PWL of sharpening strength.
		Format = S3.4 2's complement (default = 67)
	15:8	PWL1 R5 Slope 2. Slope 2 for PWL of sharpening strength.
		Format = S3.4 2's complement (default = 104)
	7:0	PWL1 R5 Slope 1. Slope 1 for PWL of sharpening strength.
		Format = S3.4 2's complement (default = 0)
13	31:28	Maximum Limiter. Strength of overshoot limiter.
		Format = U0.4 (default = 11)
	27:24	Minimum Limiter. Strength of undershoot limiter.
		Format = U0.4 (default = 10)
	23:20	Reserved : MBZ
	19:16	Limiter Boost. Used to increase limiter strength
		Format = U0.4 (default = 0)
	15:8	PWL1 R5 Slope 6. Slope 6 for PWL of sharpening strength.
		Format = S3.4 2's complement (default = -15)
	7:0	PWL1 R5 Slope 5. Slope 5 for PWL of sharpening strength.
		Format = S3.4 2's complement (default = -3)
14	31:18	Reserved : MBZ
	17:8	Clip Limiter. If extreme point is on the boundary of the neighborhood, adjust limiter's strength.
		Format = U10 (default = 130)
	7:0	Reserved : MBZ

2.11.3.3 For deinterlace message

This state definition is used only by the *deinterlace* message. This state is stored as an array of up to 8 elements, each of which contains the dwords described here. The start of each element is spaced 8 dwords apart. The first element of the array is aligned to a 32-byte boundary. The index with range 0-7 that selects which element is being used is multiplied by 2 to determine the **Sampler Index** in the message descriptor.

DWord	Bit	Description
0	31:24	Denoise STAD Threshold. Threshold for denoise sum of temporal absolute differences.
		Format = U8
	23:16	Denoise Maximum History. Maximum allowed value for denoise history.
		Format = U8
		Range = [128,240]
	15:8	Denoise History Delta. Amount that denoise_history is increased.
		Format = U8
		Range = [0,15]
	7:0	Denoise ASD Threshold. Threshold for denoise absolute sum of differences.
		Format = U8
		Range = [0,63]
1	31:30	Reserved : MBZ
	29:24	Temporal Difference Threshold.
		Format = U6
		Programming Notes:
		• Temporal Difference Threshold – Low Temporal Difference Threshold must be larger than or equal to 0 and less than or equal to 16.
	23:22	Reserved : MBZ

DWord	Bit	Description
	21:16	Low Temporal Difference Threshold.
		Format = U6
		Programming Notes:
		• Temporal Difference Threshold – Low Temporal Difference Threshold must be larger than 0 and less than or equal to 16.
	15:13	STMM C2: Bias for divisor in STMM equation.
		Format = U3
		Range = [0,7] representing values [1,8]
	12:8	Denoise Moving Pixel Threshold. Threshold for number of moving pixels to declare a block to be moving.
		Format = U5
		Range = [0,16]
	7:0	Denoise Threshold for Sum of Complexity Measure.
		Format = U8
2	31:24	Good Neighbor Threshold. Maximum difference from current pixel for neighboring pixels to be considered a good neighbor.
		Format = U8
		Range = [0,63]
	23:16	Denoise Edge Threshold. Threshold for detecting an edge in denoise.
		Format = U8
		Range = [0,15]
	15:8	Block Noise Estimate Edge Threshold. Threshold for detecting an edge in block noise estimate.
		Format = U8
		Range = [0,15]

DWord	Bit	Description
	7:0	Block Noise Estimate Noise Threshold. Threshold for noise maximum/minimum.
		Format = U8
		Range = [0,31]
3	31	STMM Blending Constant Select.
		Format = U1
		0: Use the blending constant for small values of STMM for stmm_md_th
		1: Use the blending constant for large values of STMM for stmm_md_th
	30:24	Blending constant across time for large values of STMM.
		Format = U7
	23:16	Blending constant across time for small values of STMM.
		Format = U8
	15:14	Reserved : MBZ
	13:8	Multiplier for VECM. Determines the strength of the vertical edge complexity measure.
		Format = U6
	7:0	Maximum STMM. Largest allowed STMM in blending equations.
		Format = U8
4	31:24	Minimum STMM. Smallest allowed STMM in blending equations.
		Format = U8
	23:22	STMM Shift Down. Amount to shift STMM down (quantize to fewer bits).
		Format = U2
		0: Shift by 4
		1: Shift by 5
		2: Shift by 6
		3: Reserved

DWord	Bit	Description
	21:20	STMM Shift Up. Amount to shift STMM up (set range).
		Format = U2
		0: Shift by 6
		1: Shift by 7
		2: Shift by 8
		3: Reserved
	19:16	STMM Output Shift. Amount to shift output of STMM blend equation.
		Programming Notes:
		 The value of this field must satisfy the following equation: stmm_max – stmm_min = 2 ^ stmm_output_shift
		Format = U4
		Range = [0,16]
	15:8	SDI Threshold. Threshold for angle detection in SDI algorithm.
		Format = U8
	7:0	SDI Delta. Delta value for angle detection in SDI algorithm.
		Format = U8
5	31:24	SDI Fallback Mode 1 T1 Constant.
		Format = U8
	23:16	SDI Fallback Mode 1 T2 Constant.
		Format = U8
	15:8	SDI Fallback Mode 2 Constant (Angle2x1).
		Format = U8
	7:0	FMD Temporal Difference Threshold.
		Format = U8

DWord	Bit	Description
6	31:24	FMD #1 Vertical Difference Threshold.
		Format = U8
	23:16	FMD #2 Vertical Difference Threshold.
		Format = U8
	15:14	Reserved : MBZ
	13:8	FMD Tear Threshold.
		Format = U6
	7	Reserved : MBZ
	6	Progressive DN. Indicates that the denoise algorithm should assume progressive input when filtering neighboring pixels. DI Enable must be disabled when this field is enabled.
		Format = Enable
		0: DN assumes interlaced video and filters alternate lines together
		1: DN assumes progressive video and filters neighboring lines together
	5	DN/DI First Frame. Indicates that this is the first frame of the stream, so previous clean is not available
		Format = Enable
		0: Not first field; previous clean surface state is valid
		1: First field; previous clean surface state is invalid
	4	DN/DI Stream ID. Distinguishes between the two simultaneous streams that are supported. Used to update the GNE and FMD counters for that stream.
		Format = U1
	3	DN/DI Top First. Indicates the top field is first in sequence, otherwise bottom is first
		Format = Enable
		0 = Bottom field occurs first in sequence
		1 = Top field occurs first in sequence

DWord	Bit	Description
	2	DI Partial. If DI Enable and DI Partial are both enabled, the deinterlacer will output the partial VDI writeback message.
		Format = Enable
		0: Output normal VDI writeback message (only if DI Enable is enabled also)
		1: Output partial VDI writeback message (only if DI Enable is enabled also)
	1	DI Enable. Deinterlacer is bypassed if this is disabled: the output is the same as the input (same as a 2:2 cadence). FMD and STMM are not calculated and the values in the response message are 0.
		Format = Enable
		0: Do not calculate DI
		1: Calculate DI
		Programming Notes:
		• DI Enable and DN Enable cannot both be disabled.
	0	DN Enable. Denoise is bypassed if this is low – BNE is still calculated and output, but the denoised fields are not. VDI does not read in the denoised previous frame but uses the pointer for the original previous frame.
		Format = Enable
		0: Do not denoise frame
		1: Denoise frame
		Programming Notes:
		• DI Enable and DN Enable cannot both be disabled.
7	31:23	Column Width Minus1
		This field specifies the (column width-1) / stride in units of blocks (Each blocks has width 16 pixels).
		A column width * 16 that equals the width of the frame means the walker will walk to the end of the frame.
		Format = U9
		Range = [0, 511] representing column widths [1 to 512]
		(interpret value as binary value + 1)

DWord	Bit	Description
	31:19	Reserved : MBZ
	18	VDI Walker Enable
		Format = U1
		0: Walker Disabled. Use XY generated by Driver.
		1: Walker Enabled. Use XY generated by VDIunit.
		Programming Note: When enabled frame size should be aligned to 16x8 in DN only mode and 16x4 in DI enabled mode
	17:16	FMD for 2nd field of previous frame.
		Format = U2
		0: Deinterlace (not progressive output)
		1: Put together with previous field in sequence (1st field of previous frame).
		2: Put together with next field in sequence (1st field of current frame).
	15:10	Reserved : MBZ
	9:8	FMD for 1st field of current frame.
		Format = U2
		0: Deinterlace (not progressive output).
		1: Put together with previous field in sequence (2nd field of previous frame).
		2: Put together with next field in sequence (2nd field of current frame).
	7:0	Reserved : MBZ

2.11.4 SAMPLER_8x8_STATE [DevSNB+]

		SAMPLER_8x8_ST	ATE		
Project:	[DevSNB+]	Length	Bias:	2	
The 8x8	The 8x8 coefficients and other state used by the sample_8x8 message are stored as indirect state, pointed				

to by a field in SAMPLER_STATE. There are four different tables loaded using this structure (0X, 0Y, 1X, and 1Y). Each table is stored as an array of 17 elements, each with either 4 or 8 coefficients.

DWord	Bit		Description	
0	31:24	Table 0X Filter Coef	ficient[0,3]	
		Project:	[DevSNB+]	
		Format:	S1.6	in 2's complement format
		Range	[DevSNB]: Range = [0.0, +2.0)	
			[DevSNB+]: Range = [-2.0, +2.0)	
	23:16	Table 0X Filter Coef	ficient[0,2]	
		Project:	All	
		Format:	S1.6	in 2's complement format
		Range:	[-1, +1)	
	15:8	Table 0X Filter Coef	ficient[0,1]	
		Project:	All	
		Format:	S1.6	in 2's complement
		Range	[-2 ⁻¹ , +2 ⁻¹)	lonnat
		Programming Note Must be zero if the fe	r s ormat is R10G10B10A2_UNORM or R8G8	B8A8_UNORM

		SA	MPLER_8x8_STATE	
	7:0	Table 0X Filter Coef	ificient[0,0]	
		Format:	S1.6	in 2's complement format
		Range	[-2 ⁻² , +2 ⁻²)	
		Programming Note	25	
		Must be zero if the f	ormat is R10G10B10A2_UNORM or R8G8	B8A8_UNORM
1	31:24	Table 0X Filter Coef	ificient[0,7]	
		Project: Format:	All S1.6	FormatDesc: in 2's
		i onnat.	31.0	complement format
		Range	[-2 ⁻² , +2 ⁻²)	
	23:16	Table 0X Filter Coef	ficient[0,6]	
		Format:	S1.6	FormatDesc: in 2's complement format
		Range	[-2 ⁻¹ , +2 ⁻¹)	
	15:8	Table 0X Filter Coef	ficient[0,5]	
		Format:	S1.6	in 2's complement
		Range	[-1, +1)	lonnat
	7.0	Table OX Filter Coof	ficient[0.4]	
	7.0	Format:	S1.6	in 2's complement
				format
		Pange	$[Dev SNB_{1}] \cdot Dep = [20 \pm 20]$	
		Range	[Devond+]. Range = [-2.0, +2.0)	
2:3		Table 0Y Filter Coef	ficient[0,7:0]	
		This table has the sar	me layout as Table 0X above.	

		SAMPLER_8x8_STATE				
4	31:24	Table 1X Filter Coefficient[0,3]				
		Format: S1.6	FormatDesc; in 2's complement format			
		Range [0.0, +2.0)				
		BitFieldDesc				
	23:16	Table 1X Filter Coefficient[0,2]				
		Format: S1.6	FormatDesc			
		Range [-1, +1)				
		BitFieldDesc				
	15:0	Reserved Project: All	Format: MBZ			
5	31:16	Reserved Project: All	Format: MBZ			
	15:8	Table 1X Filter Coefficient[0,5]				
		Format: S1.6	FormatDesc: in 2's complement format			
		Range [-1, +1)				
		BitFieldDesc				
	7:0	Table 1X Filter Coefficient[0,4]				
		Format: S1.6	FormatDesc: in 2's complement format			
		Range [0.0, +2.0)				
		BitFieldDesc				
6:7		Table 1Y Filter Coefficient[0,7:0]				
		This table has the same layout as Table 1X above.				
8:15		Filter Coefficient[1,7:0]				
		Default Value: 0h Desc	Format: OpCode			
16:23	31:29	Filter Coefficient[2,7:0]				
128:135		Filter Coefficient[16,7:0]				

		S	AMPLER_8x8_STATE	
136	31:24	Default Sharpnes	s Level	
		Project:	All	
		Security:	None	
		Default Value:	0h DefaultVaueDes	C
		Mask:	MMIO(0x2000)#16	
		Format:	U8	FormatDesc
		Address:	GraphicsAddress[31:0]	
		Surface Type:	U32	
		Range	02^32-1	
		When adaptive scalers.	scaling is off, determines the balance	between sharp and smooth
		Value Name	Description	Project
		0	contribute 1 from the smooth s	scalar
		255	contribute 1 from the sharp sc	alar All
	23:16	Max Derivative 4	Pixels	
		Format:	U8	FormatDesc
		Used in adaptive t	iltering to specify the lower boundary of th	e smooth 4 pixel area.
	15:8	Max Derivative 8	Pixels	
		Format:	U8	FormatDesc
		Used in adaptive	e filtering to specify the lower boundar	y of the smooth 8 pixel area.
	7	Reserved Proj	ect: All	Format: MBZ
	6:4	Transition Area w	vith 4 Pixels	
		Format:	U8	FormatDesc
		Used in adaptive calculation.	e filtering to specify the width of the tra	ansition area for the 4 pixel
	3	Reserved Proj	ect: All	Format: MBZ
	2:0	Transition Area w	vith 8 Pixels	
		Format:	U3	FormatDesc
		Used in adaptive f	iltering to specify the width of the transitior	n area for the 8 pixel calculation
137	31:23	Reserved Proj	ect: All	Format: MBZ
	22	Bypass X Adapti	ve Filtering	
		Format:	Disable	FormatDesc
		When disabled, th smooth and sharp	e X direction will use Default Sharpness filters rather than the calculated value.	Level to blend between the
		Value Name	Description	Project
		1 Disabl	e Disable X adaptive filtering	
		0 Enable	e Enable X adaptive filtering	

		SAN	MPL	ER_8x8_STATE	
21	Bypass Y	Adaptive F	ilte		
	Format:		Disab	le	FormatDesc
	When dis the smoo	abled the, th and sha	Y dire rp filte	ction will use Default Sharpnes rs rather than the calculated va	s Level to blend between lue.
	Value	Name		Description	Project
	1	Disable		Disable X adaptive filtering	
	0	Enable		Enable X adaptive filtering	
20:2	Reserved	Project:	All		Format: MBZ
1	Adaptive I	Filter for all	l chan	nels	
	Project:		All		
	Security:		None		
	Access:		None		
	Exists If:		Alway	/S	
	Default Val	ue:	0h	DefaultVaueDesc	
	Mask:		MMIC	D(0x2000)#16	
	Format:		U32		FormatDesc
	Address:		Grapl	nicsAddress[31:0]	
	Surface Ty	pe:	U32		
	Range		02^3	32-1	
	Only to be	enabled if 8	3-tap A	daptive filter mode is on. Else it sho	ould be disabled.
	Value	Name		Description	Project
	1	Enable		Enable adaptive filter on UV/RB channels	
	0	Disable		Disable adaptive filter on UV/RB channels	
0	BitFieldNa	me			
	This shoul This shoul	d be always d be enable	set to d only	0 for YUV input and can be enable if we enable 8-tap adaptive filter fo	d/disabled for RGB input. r RGB input.
	Value	Name		Description	Project
	1	Enable		Enable the RGB Adaptive filter us equation (Y=(R+2G+B)>>2)	sing the
	0	Disable		Disable the RGB Adaptive equation use G-Ch directly for adaptive filter	on and er

2.11.5 3DSTATE_CHROMA_KEY

r							
	3DSTATE_CHROMA_KEY						
Project:	All	Length Bias: 2					
The 3DST/	TE CHR	OMA KEY instruction is used to program texture color/chroma-key key values. A table					
containing	four set of	values is supported. The ChromaKey Index sampler state variable is used to select					
which table	/hich table entry is associated with the map. Texture chromakey functions are enabled and controlled via						
use of the	se of the ChromaKey Enable texture sampler state variable.						
Toxturo Co	lor Kov (k	eving on a paletted texture index) is not supported					
		eying on a paletted texture index) is not supported.					
DWord	Bit	Description					
0	31:29	Command Type					
		Default Value: 3h GFXPIPE Format: OpCode					
	28:27	Command SubType					
		Default Value: 3h GFXPIPE 3D Format: OpCode					
	26:24	3D Command Opcode					
		Default Value: 1h 3DSTATE Format: OpCode					
	23:16	3D Command Sub Opcode					
	Default Value: 04h 3DSTATE CHROMA KEY Format: OpCode						
	15:8	Reserved Project: All Format: MBZ					
	7:0	DWord Length					
		Default Value: 2h Excludes DWord (0,1)					
		Format: =n Total Length - 2					
1	31:30	ChromaKey Table Index					
		Project: All					
		Format: U2 index					
		Range 03					
		Selects which entry in the ChromaKey table is to be loaded					
	20.0	Reserved Project: All Format: MBZ					
	29.0						
2	31:0	ChromaKey Low Value					
		This field specifies the "low" (minimum) value of the chroma key range. Texel samples are considered "matching the key" if each component of the texel falls within the (inclusive) chroma range.					
		See ChromaKey High Value for further format, programming info.					

		3DSTATE	_CHRO	MA_KE	Y		
3	31:0	ChromaKey High Value					
		This field specifies the "high" (maximum) value of the chroma key range. Texel samples are considered "matching the key" if each component of the texel falls within the (inclusive) chroma range.					
		Programming Notes					
		ChromaKey values are speci- less than 8 bits per channel, number of MSBs into the LS conversion when it programs replication).	ified using 8 the device v Bs of each Chromakey	-bit channels vill expand c channel. So y Low/High \	s. When usi hannels by i ftware must /alues (e.g.,	ng surface for replicating th account for by performin	ormats with le required this ng the same
		For channels that do not exis maps), software must explici formats using unsigned chron magnitude chroma key value from the ChromaKey function	For channels that do not exist in the actual surface (e.g., Alpha channel for non-ARGB maps), software must explicitly program full range high/low values (High=FFh, Low=0h for formats using unsigned chroma key values, High=7Fh, Low=FFh for formats using sign magnitude chroma key values) in order to effectively remove the comparison of that field from the ChromaKey function.				
		For channels in SNORM form that channel is interpreted in (use positive zero instead). I R5G5_SNORM_B6_UNORM SNORM.	nat in the su <i>sign magnit</i> For channels /), the Chror	irface format <i>tude</i> format. s with mixed maKey is pro	, the value in Negative ze UNORM/St ogrammed a	n the high/lo ero value is r NORM forma s if all chanr	w value for not supported ats (i.e. nels are
		YUV ChromaKey will use an to the chroma key values for The chrominance value used question.	interpolated those texels is the avera	l chrominand s without chr age of values	ce value fron ominance de s to the left a	n the map fo ue to downsa and right of t	r comparison ampling. he texel in
		It is UNDEFINED to program than the corresponding comp	any compo conent of Ch	nent of the 0 romaKey Lo	ChromaKey w Value.	High Value t	o be less
		Format = interpreted accordi	ng to associ	ated texel fo	rmat "class"	:	
		Only the surface formats liste can be used with this feature is UNDEFINED.	ed as suppo e. Use of an	rted for chro y other surfa	ma key in th ice format w	e surface foi ith chroma k	rmats table ey enabled
		Surface Format	31:24	23:16	15:8	7:0	
		ARGB and BC (DXT) formats	A	R	G	В	
		YCrCb formats	А	Cr	Y	Cb]

2.11.6 3DSTATE_SAMPLER_PALETTE_LOAD0

3DSTATE_SAMPLER_PALETTE_LOAD0

Project:	All		Length Bias:	2
The 2DSTATE		DALETTE I OADO instruction	is used to load '	22 hit values into the first to

The 3DSTATE_SAMPLER_PALETTE_LOAD0 instruction is used to load 32-bit values into the first texture palette. The texture palette is used whenever a texture with a paletted format (containing "Px [palette0]") is referenced by the sampler.

This instruction is used to load all or a subset of the 256 entries of the first palette. Partial loads always start from the first (index 0) entry.

DWord	Bit	Description					
0	31:29	Command Type					
		Default Value: 3h GFXPIPE Format: OpCode					
	28:27	Command SubType					
		Default Value: 3h GFXPIPE_3D Format: OpCode					
	26:24	3D Command Opcode					
		Default Value: 1h 3DSTATE Format: OpCode					
	23:16	3D Command Sub Opcode					
		Default Value: 02h 3DSTATE_SAMPLER_PALETTE_ Format: OpCode LOAD0					
	15:8	Reserved Project: All Format: MBZ					
	7:0	DWord Length					
		Default Value: 0h Excludes DWord (0,1)					
		Format: =n Total Length - 2					
1n	31:24	Palette Alpha[0:N-1]					
		Project: [DevCTG-A+]					
		Alpha values loaded into the first N entries of the texture palette.					
		Format = U8					
	23:0	Palette Color[0:N-1]					
		Project: All					
		Colors loaded into the first N entries of the texture color palette.					
		Format = Bits 23:0 = U24 interpreted as RGB_888 color as follows:					
		[23:16] Red					
		[15:8] Green					
		[7:0] Blue					

2.11.7 3DSTATE_SAMPLER_PALETTE_LOAD1 [DevSNB]

	3DSTATE_SAMPLER_	PALETTE_	LOAD1		
Project:	[DevSNB]	Length Bias:	2		
he 3DSTATE_SAMPLER_PALETTE_LOAD1 instruction is used to load 32-bit values into the second					

texture palette. The second texture palette is used whenever a texture with a paletted format (containing "Px...[palette1]") is referenced by the sampler.

This instruction is used to load all or a subset of the 256 entries of the second palette. Partial loads always start from the first (index 0) entry.

	1	
DWord	Bit	Description
0	31:29	Command Type
		Default Value: 3h GFXPIPE Format: OpCode
	28:27	Command SubType
		Default Value: 3h GFXPIPE_3D Format: OpCode
	26:24	3D Command Opcode
		Default Value: 1h 3DSTATE Format: OpCode
	23:16	3D Command Sub Opcode
		Default Value: 0Ch 3DSTATE_SAMPLER_PALETTE_LO Format: OpCode AD1
	15:8	Reserved Project: All Format: MBZ
	7:0	DWord Length
		Default Value: 0h Excludes DWord (0,1)
	_	Format: =n Total Length - 2
1n	31:0	Palette Color[0:N-1]
		Project: All
		Colors loaded into the first N entries of the texture color palette.
		Format = Bits 31:0 = U32 interpreted as ARGB_8888 color as follows:
		[31:24] Alpha
		[23:16] Red
		[15:8] Green
		[7:0] Blue

2.11.8 3DSTATE_MONOFILTER_SIZE [DevILK+]

3DSTATE_MONOFILTER_SIZE				
Project:	[De	vILK+] Length Bias: 2		
This state s	pecifies the	e size of the filter which is used when filtering in MAPFILTER_MON	IO mode.	
DWord	Bit	Description		
0	31:29	Command Type		
		Default Value: 3h GFXPIPE	Format: OpCode	
	28:27	Command SubType		
		Default Value: 3h GFXPIPE_3D	Format: OpCode	
	26:24	3D Command Opcode		
		Default Value: 1h 3DSTATE_NONPIPELINED	Format: OpCode	
	23:16	3D Command Sub Opcode		
		Default Value: 11h 3DSTATE_MONOFILTER_SIZE	Format: OpCode	
	15:8	Reserved Project: All Format: MBZ		
	7:0	DWord Length		
		Default Value: 0h Excludes DWord (0,	1)	
		Format: =n	Total Length - 2	
		Project: All		
1	31:6	Reserved Project: All	Format: MBZ	
	5:3	Monochrome Filter Width		
		Project: All		
		Format: U3	FormatDesc	
		Range [1,7]		
		This field specifies the width of the monochrome filter. It is ignor is not enabled.	ed if the monochrome filter	
	2:0	Monochrome Filter Height		
		Project: All		
		Format: U3	FormatDesc	
		Range [1,7]		
		This field specifies the height of the monochrome filter. It is igno filter is not enabled.	red if the monochrome	

2.12 Messages

Restrictions:

• Use of any message to the Sampling Engine function with the **End of Thread** bit set in the message descriptor is not allowed.

2.12.1 Initiating Messages

Execution Mask

SIMD16. The 16-bit execution mask forms the valid pixel signals. This determines which pixels are sampled and results returned to the GRF registers. Samples for invalid pixels are not overwritten in the GRF. However, if LOD needs to be computed for a subspan based on the message type and MIP filter mode and at least one pixel in the subspan being valid, the sampling engine assumes that the parameters for the upper left, upper right, and lower left pixels in the subspan are valid regardless of the execution mask, as these are needed for the LOD computation.

SIMD8. The lower 8 bits of the execution mask forms the valid pixel signals. If LOD needs to be computed based on MIP filter mode and at least one pixel in the subspan being valid, the sampling engine assumes that the parameters for the upper left, upper right, and lower left pixels in the subspan are valid regardless of the execution mask, as these are needed for the LOD computation.

SIMD4x2. The lower 8 bits of the execution mask is interpreted in groups of four. If any of the high 4 bits are asserted, that sample is valid. If any of the low 4 bits are asserted, that sample is valid. The **Write Channel Mask** rather than the execution mask determines which channels are written back to the GRF.

SIMD32. The execution mask is ignored, all pixels are considered valid and all channels are returned regardless of the execution mask.

2.12.1.1 Message Descriptor

2.12.1.1.1 Message Descriptor - [DevSNB]

The following message descriptor applies to [DevSNB]. Four more bits have been added to the message descriptor.

Bit	Description
19	Header Present: Specifies whether the message includes a header phase. If the header is not present (this field is zero), all of the fields normally contained in the header are assumed to be 0.
	Format = Enable
18	Reserved : MBZ
17:16	SIMD Mode: Specifies the SIMD mode of the message being sent.
	Format = U2
	0 = SIMD4x2
	1 = SIMD8
	2 = SIMD16
	3 = SIMD32/64
15:12	Message Type: Specifies the type of message being sent.
	Format = U4
	Refer to the table in section 2.12.1.3.1 for encoding details.
11:8	Sampler Index: Specifies the index into the sampler state table. Ignored for "Id", "resinfo", and "sampleinfo" type messages.
	Format = U4
	Range = [0,15]
	Programming Notes:
	 for the deinterlace message, this field must be a multiple of 2 (even)
	 for the sample_8x8 message, this field must be a multiple of 4
7:0	Binding Table Index: Specifies the index into the binding table.
	Format = U8
	Range = [0,255]

2.12.1.2 Message Header

The message header for the sampling engine is the same regardless of the message type. If the header is not present, behavior is as if the message was sent with all fields in the header set to zero (write channel masks are all enabled and offsets are zero).

DWord	Bit	Description			
M0.7	31:0	Ignored			
M0.6	31:0	Ignored			
M0.5	31:0	Ignored			
M0.4	31:0	Ignored			
M0.3	31:5	Ignored			
	4:0	Ignored			
M0.2	31:20	Ignored			
	19:18	Ignored			
	17	Ignored			
	16	Ignored			
	15	Alpha Write Channel Mask: Enables the alpha channel to be written back to the originating thread.			
		0: Alpha channel will be written back			
		1: Alpha channel will not be written back			
		Programming Notes:			
		 a message with all four channels masked is not allowed 			
		 this field is ignored for the deinterlace message. 			
		 this field must be set to zero for sample_8x8 in VSA mode. 			
	14	Blue Write Channel Mask: See Alpha Write Channel Mask			
	13	Green Write Channel Mask: See Alpha Write Channel Mask			
	12	Red Write Channel Mask: See Alpha Write Channel Mask			
	11:8	U Offset: the u offset from the _aoffimmi modifier on the "sample" or "Id" instruction in DX10. Must be zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER. Must be set to zero if _aoffimmi is not specified. Format is S3 2's complement.			
		Programming Note:			
		• this field is ignored for the sample_unorm*, sample_8x8, and deinterlace messages			
		this field is ignored if the "offu" parameter is included in the gather4* messages			

DWord	Bit	Description
	7:4	V Offset: the v offset from the _aoffimmi modifier on the "sample" or "Id" instruction in DX10. Must be zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER. Must be set to zero if _aoffimmi is not specified. Format is S3 2's complement.
		Programming Note:
		• this field is ignored for the sample_unorm*, sample_8x8, and deinterlace messages
		 this field is ignored if the "offu" parameter is included in the gather4* messages
	3:0	R Offset: the r offset from the _aoffimmi modifier on the "sample" or "ld" instruction in DX10. Must be zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER. Must be set to zero if _aoffimmi is not specified. Format is S3 2's complement.
		Programming Note:
		• this field is ignored for the sample_unorm*, sample_8x8, and deinterlace messages
M0.1	31:0	Ignored
M0.0	31:0	Ignored

2.12.1.3 Payload Parameter Definition

The message type field in the message descriptor in combination with the message length determines which message is being sent. The table defines all of the *parameters* sent for each message type. The position of the parameters in the payload is given in the section following corresponding to the *SIMD mode* given in the table. The instruction column indicates the DX10 shader instructions expected to be translated to each message type.

All parameters are of type IEEE_Float, except those in the ld and resinfo instruction message types, which are of type S31. Any parameter indicated with a blank entry in the table is unused. A message register containing only unused parameters not included as part of the message. The response lengths given below assume all channels are unmasked. SIMD16 messages with masked channels will have reduced response length.

2.12.1.3.1 Payload Parameter Definition [DevSNB]

The table below shows all of the message types supported by the sampling engine. The **Message Type** field in the message descriptor determines which message is being sent. The **SIMD Mode** field determines the number of instances (i.e. pixels) and the formatting of the initiating and writeback messages. The **Header Present** field determines whether a header is delivered as the first phase of the message or the default header from R0 of the thread's dispatch is used. The **Message Length** field is used to vary the number of parameters sent with each message. Higher-numbered parameters are optional, and default to a value of 0 if not sent but needed for the surface being sampled.

The message lengths are computed as follows, where "N" is the number of parameters ("N" is rounded up to the next multiple of 4 for SIMD4x2), and "H" is 1 if the header is present, 0 otherwise. The maximum message length allowed to the sampler is 11. This would disallow sample_d, sample_b_c, and sample_l_c with a SIMD Mode of SIMD16.

SIMD Mode	Message Length
SIMD4x2	H + (N/4)
SIMD8	H + N
SIMD16	H + (2*N)

The response lengths are computed as follows:

	SIMD Mode	Response Length
SIMD8	SIMD4x2	1
	sample+killpix	5
	all other message types	4
	SIMD16	8 *

* For SIMD16, phases in the response length are reduced by 2 for each channel that is masked.

SIMD16 messages with six or more parameters exceed the maximum message length allowed, in which case they are not supported. This includes some forms of sample_d, sample_d_c, and sample_l_c message types.

Message	mnemonic	mnemonic					parameters				
туре		0	1	2	3	4	5	6	7	8	9
0000	sample	u	v	r	ai						
0001	sample_b	u	v	r	ai	bias					
0010	sample_l	u	v	r	ai	lod					
0011	sample_c	u	v	r	ai	ref					
0100	sample_d	u	v	r	ai	dudx	dudy	dvdx	dvdy	drdx	drdy
0101	sample_b_c	u	v	r	ai	ref	bias				
0110	sample_l_c	u	v	r	ai	ref	lod				
0111	ld	u	v	r	lod	si					
1000*	load4	u	v	r	ai						
1001*	LOD	u	v	r	ai						
1010	resinfo	lod									
1011*	sampleinfo										
1100	sample+killpix	u	v	r							

SIMD4x2, SIMD8, and SIMD16 Messages:

* These messages are supported only on [DevSNB+].

For the SIMD32/SIMD64 messages, the input message is not defined in terms of parameters. "H" is 1 if the header is present, 0 otherwise.

Message Type	mnemonic	Payload Layout	Message Length	Response Length
00000	sample_unorm	Pixel Shader	H + 1	8 **
00010	sample_unorm+killpix	Pixel Shader	H + 1	9 **
00011	sample_8x8	Pixel Shader	H + 1	16 *
01000	deinterlace	Pixel Shader	H + 1	†
01100	sample_unorm	Media	H + 1	8 **
01010	sample_unorm+killpix	Media	H + 1	9 **
01011	sample_8x8	Media	H + 1	16 *

* For sample_8x8, phases in the response length are reduced by 4 for each channel that is masked.

** For sample_unorm, phases in the response length are reduced by 2 for each channel that is masked.

† For deinterlace, response length depending on certain state fields. Refer to writeback message definition for details.

2.12.1.4 Message Types

The behavior of each message type is as follows:

Message Type	Description				
sample	The surface is sampled using the indicated sampler state. LOD is computed using gradients between adjacent pixels. One, two, or three parameters may be specified depending on how many coordinate dimensions the indicated surface type uses. Extra parameters specified are ignored. Missing parameters are defaulted to 0.				
	MULTISAMPLECOUNT_4), fraction of U*width has to be 0.5. same for V* height				
	Programming Notes:				
	 The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D, SURFTYPE_3D, or SURFTYPE_CUBE. 				
	 The Surface Format of the associated surface cannot be MONO8 or any UINT or SINT format. 				
	 sample is not supported in SIMD4x2 mode. 				

Message Type	Description
sample+killpix	The surface is sampled as in the sample message type. An additional register is returned after the sample results which contains the kill pixel mask. This message type is required to allow the result of a chroma key enabled sampler in KEYFILTER_KILL_ON_ANY_MATCH mode to affect the final pixel mask.
	Programming Notes:
	• The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D, SURFTYPE_3D, or SURFTYPE_CUBE.
	 The Surface Format of the associated surface cannot be MONO8 or any UINT or SINT format.
	sample+killpix is supported only in SIMD8 mode.
sample_b	The surface is sampled using the indicated sampler state. LOD is computed using gradients between adjacent pixels, then the value in the parameter is added to the LOD for each pixel. The LOD bias delivered in the bias parameter is restricted to a range of [-16.0, +16.0). Values outside this range produce undefined results.
	Programming Notes:
	• The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D, SURFTYPE_3D, or SURFTYPE_CUBE.
	 The Surface Format of the associated surface cannot be MONO8 or any UINT or SINT format.
	sample_b is not supported in SIMD4x2 mode.
sample_I	The surface is sampled using the indicated sampler state. LOD is not computed, but instead is taken from the lod parameter.
	Programming Notes:
	• The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D, SURFTYPE_3D, or SURFTYPE_CUBE.
	• The Surface Format of the associated surface cannot be a UINT or SINT format.

Message Type	Description
sample_c	The surface is sampled using the indicated sampler state. All four coordinates must be specified, however v and r may not be used depending on the indicated surface type. The ai parameter indicates the array index for a cube surface. The ref parameter specifies the reference value that is compared against the red channel of the sampled surface, and the texel is replaced with either white or black depending on the result of the comparison. The WGF sample_c_lz instruction is implemented by issuing the sample_c message with Force LOD to Zero enabled in the message header or by issuing the sample_l_c message with the LOD parameter set to zero.
	Programming Notes:
	 The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D, or SURFTYPE_CUBE.
	• The Surface Format of the associated surface must be indicated as supporting shadow mapping as indicated in the surface format table.
	 With sample_c, MIPFILTER_LINEAR, MAPFILTER_LINEAR, MAPFILTER_ANISOTROPIC are allowed even for surface formats that are listed as not supporting filtering in the surface formats table.
	 Use of the SIMD4x2 form of sample_c without Force LOD to Zero enabled in the message header is not allowed, as it is not possible for the hardware to compute LOD for SIMD4x2 messages. For [DevILK+], sample_c is not supported in SIMD4x2 mode.
	 Use of sample_c with SURFTYPE_CUBE surfaces is undefined with the following surface formats: I24X8_UNORM, L24X8_UNORM, A24X8_UNORM, I32_FLOAT, L32_FLOAT, A32_FLOAT.
	 [DevBW, DevCL] Errata: When sample_c is used on a texture map with A16_FLOAT surface format, any value read in from the texture map that is a NaN will be treated like a + inf.
	 [Pre-DevILK] Errata: When either the reference value or the source value from the texture map is NaN the compare value will be incorrectly replaced with 1.0 rather than 0.0 for Shadow Function of GEQUAL, GREATER, LEQUAL, or LESS.
sample_b_c	This is a combination of sample_b and sample_c. Both the LOD bias and reference values are delivered. All restrictions applying to both sample_b and sample_c must be honored.
sample_I_c	This is a combination of sample_I and sample_c. Both the LOD and reference values are delivered. All restrictions applying to both sample_I and sample_c must be honored. However, unlike sample_c, sample_I_c is allowed as a SIMD4x2 message.
sample_g sample_d	The surface is sampled using the indicated sampler state. LOD is computed using the gradients present in the message. The r coordinate and its gradients are required only for surface types that use the third coordinate. Usage of this message type on cube surfaces assumes that the u, v, and gradients have already been transformed onto the appropriate face, but still in [-1,+1] range. The r coordinate contains the faceid, and the r gradients are ignored by hardware.
	Programming Notes:
	 The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D, SURFTYPE_3D, or SURFTYPE_CUBE.
	 The Surface Format of the associated surface cannot be MONO8 or any UINT or SINT format.

Message Type	Description				
sample_g_c sample_d_c	This is a combination of sample_g and sample_c. Both the gradients for calculating LOD and reference values are delivered. All restrictions applying to both sample_g and sample_c must be honored. However, unlike sample_c, sample_g_c is allowed as a SIMD4x2 message.				
resinfo	The surface indicated in the surface state is not sampled. Instead, the width, height, depth, and MIP count of the surface are returned as indicated in the table below. The format of the returned data is FLOAT32 for [Pre-DevCTG], and UINT32 for [DevCTG+]. The width, height, and depth may be shifted right, per pixel, by the LOD value provided in the lod parameter to give the dimensions of the specified mip level. The lod parameter is an unsigned 32-bit integer in this mode (note that sending a signed 32-bit integer always has the same effect, as negative values are out-of-range when interpreted as unsigned integers). The Sampler State Pointer and Sampler Index are ignored.				
	surface type	red	green	blue	alpha
	SURFTYPE_1D	(Width+1)>>LOD	[DevSNB]:Depth==0 ? 0 : Depth+1	0	MIPCount
	SURFTYPE_2D	(Width+1)>>LOD	(Height+1)>>LOD	[DevSNB]:Depth==0 ? 0 : Depth+1	MIPCount
	SURFTYPE_3D	(Width+1)>>LOD	(Height+1)>>LOD	(Depth+1)>>LOD	MIPCount
	SURFTYPE_CUBE	(Wdith+1)>>LOD	(Height+1)>>LOD	[DevSNB+]: Depth==0 ? 0 : Depth+1	MIPCount

Message Type	Description			
ld ld2dms	The surface is sampled using a default sampler state, indicated below. The parameter contains the LOD of the mip map to be sampled. The parameter contains the sample index, which is clamped to the number of samples on the surface (supported on [DevSNB+] only).			
ld_mcs	The v and r channel may be ignored depending on the indicated surface type. All incoming values are unsigned 32-bit integers in this mode. The u, v, and r parameters contain integer texel addresses on the LOD indicated in the parameter. The Sampler State Pointer and Sampler Index are ignored.			
ld2dss				
	For these message types, the sampler state is defaulted as follows:			
	• min, mag, and mip filter modes are "nearest"			
	 all address control modes are "zero" (a special mode in which any texel off the map or outside the MIP range of the surface has a value of zero in all channels, except for surface formats without an alpha channel, which will return a value of one in the alpha channel) 			
	Programming Notes:			
	 The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D, SURFTYPE_3D, or SURFTYPE_BUFFER for the ld message. 			
	 The Surface Type of the associated surface must be SURFTYPE_2D for the ld_mcs, ld2dms, and ld2dss messages. 			
	The Surface Format of the associated surface cannot be MONO8.			
sampleinfo	[DevSNB+] only: The surface indicated in the surface state is not sampled. Instead, the number of samples (UINT32) and the sample position palette index (UINT32) for the surface are returned in the red and alpha channels respectively as UINT32 values. The sample position palette index returned in alpha is incremented by one from its value in the surface state. The Sampler State Pointer and Sampler Index are ignored.			
	[DevSNB] : Errata: If the Surface Type is SURFTYPE_NULL, the values of the above state fields from SURFACE_STATE are returned, rather than zeros that would normally be expected.			
LOD	[DevSNB+] only: The surface indicated in the surface state is not sampled. Instead, LOD is computed as if the surface will be sampled, using the indicated sampler state, and the clamped and unclamped LOD values are returned in the red and green channels, respectively, in FLOAT32 format. The blue and alpha channels are undefined, and can be masked to avoid returning them. LOD is computed using gradients between adjacent pixels. Three parameters are always specified, with extra parameters not needed for the surface being ignored.			
	Programming Notes:			
	 The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D, SURFTYPE_3D, or SURFTYPE_CUBE. 			
	 The Surface Format of the associated surface cannot be MONO8 or any UINT or SINT format. 			
	LOD is not supported in SIMD4x2 mode.			
	• [DevSNB-A0, DevSNB-B0] Errata: Fractional Bit may be off for the clamped LOD.			

Message Type	Description		
gather4 gather4_po	[DevSNB+] only: The surface is sampled using bilinear filtering, regardless of the filtering mode specified in the sampler state. For SURFTYPE_2D LOD is forced to zero before sampling. The samples are not filtered, but instead the four samples are returned directly in the sample's corresponding four channels as follows:		
(load4)	upper left sample = alpha channel upper right sample = blue channel		
	lower left sample = red channel lower right sample = green channel		
	 Two or three parameters may be specified depending on how many coordinate dimensions the indicated surface type uses. Extra parameters specified are ignored. Missing parameters default to 0. Programming Notes: The Surface Type of the associated surface must be SURFTYPE_2D or SURFTYPE_CUBE. If the message type is gather4_po, only SURFTYPE_2D is allowed. The Surface Format of the associated surface cannot be MONO8 or any UINT or SINT format, [DevSNB]: The Surface Format must be a format that consists of a single channel (i.e. red or alpha only). Mip Mode Filter must be set to MIPFILTER_NONE [DevSNB] errata: When gather4 is used with an Address Control Mode of MIRROR or MIRROR_ONCE, the odd instances of the surface will return texels in incorrect positions. 		

Message Type	Description			
sample_unorm	The surface is sampled using the indicated sampler state. 32 contiguous pixels in a 8-wide 4-high arrangement are sampled. The U and V addresses for the upper left pixel is deliver in this message along with a Delta U and Delta V parameter. Given a pixel at (x,y) relative the upper left pixel (where (0,0) is the upper left pixel), the U and V for that pixel are computed as follows:			
	U(x,y) = U(0,0) + DeltaU * x			
	V(x,y) = V(0,0) + DeltaV * y			
	Programming Notes:			
	The Surface Type of the associated surface must be SURFTYPE_2D			
	 The Surface Format of the associated surface must be UNORM with <= 8 bits per channel 			
	The MIP Count, Depth, Surface Min LOD, and Min Array Element of the associated surface must be 0			
	 The Min and Mag Mode Filter must be MAPFILTER_NEAREST or MAPFILTER_LINEAR 			
	The Mip Mode Filter must be MIPFILTER_NONE			
	 The TCX and TCY Address Control Mode cannot be TEXCOORDMODE_CLAMP_BORDER 			
	TEXCOORDMODE_MIRROR			
	TEXCOORDMODE_MIRROR_ONCE			
	DeltaU * Width of the associated surface must be less than or equal to 3.0			
	DeltaV * Height of the associated surface must be less than or equal to 3.0			
sample_unorm_RG	[DevCTG] to [DevILK] only: This message is identical to the sample_unorm message except it only returns the red and green channels in the writeback message. All restrictions of the sample_unorm message apply to this message also.			
sample_unorm_RG	[DevCTG] to [DevILK] only: This message is identical to the sample_unorm_RG message			
+killpix	message. This message type is required to allow the result of a chroma key enabled sampler in KEYFILTER_KILL_ON_ANY_MATCH mode to affect the final pixel mask. All restrictions of the sample_unorm message apply to this message also.			
sample_unorm	[DevSNB+] only: This message is identical to the sample_unorm message except it returns a kill pixel mask in addition to the selected channels in the writeback message. This message			
+killpix	type is required to allow the result of a chroma key enabled sampler in KEYFILTER_KILL_ON_ANY_MATCH mode to affect the final pixel mask. All restrictions of the sample_unorm message apply to this message also.			

Message Type	Description
sample_8x8	[DevILK+] only: The surface is sampled using an optional 8x8 filter followed by an optional image enhancement filter, using state defined in SAMPLER_STATE and SAMPLER_8x8_STATE. The input consists of 64 contiguous pixels in an 16-wide by 4-high arrangement. The address control mode behaves as clamp mode. The U and V addresses for the upper left pixel are delivered in this message along with a Delta U and Delta V parameter. Given a pixel at (x,y) relative to the upper left pixel (where (0,0) is the upper left pixel), the U and V for that pixel are computed as follows:
	U(x,y) = U(0,0) + DeltaU * x + U_2 nd _Derivative * x * (x - 1)/2
	V(x,y) = V(0,0) + DeltaV * y
	Programming Notes:
	 The Surface Type of the associated surface must be SURFTYPE_2D
	 The Surface Format of the associated surface must be UNORM with <= 10 bits per channel
	 DeltaV * Height of the associated surface must be less than 16.0
	 Map Width must be >= 4
	 DeltaU * Width of the associated surfaces must be less than 16.0 and greater than or equal to 0.0
	 The following must be true: (DeltaU * Width / 18) <= U_2ndDerivative * Width < (64 – 2 * DeltaU * Width) / 35
	• [DevILK-A]: If sample_8x8 or deinterlace messages are used in a thread, software must ensure that the same thread or other threads that can concurrently be running do not use any other sampling engine messages.
	•
deinterlace	[DevSNB]: The surface is deinterlaced and/or denoised, using state defined in SAMPLER_STATE. The U and V addresses for the upper left pixel are delivered in this message.
	Programming Notes:
	• [DevILK-A]: If sample_8x8 or deinterlace messages are used in a thread, software must ensure that the same thread or other threads that can concurrently be running do not use any other sampling engine messages.

Programming Notes:

• For surfaces of type SURFTYPE_CUBE, the sampling engine requires u, v, and r parameters that have already been divided by the absolute value of the parameter (u, v, or r) with the largest absolute value.

2.12.1.5 Parameter Types

sample*, LOD, and gather4 messages

For all of the sample*, LOD, and gather4 message types, all parameters are 32-bit floating point, except the 'mcs', 'offu', and 'offv' parameters. Usage of the u, v, and r parameters is as follows based on **Surface Type**. Normalized values range from [0,1] across the surface, with values outside the surface behaving as specified by the **Address Control Mode** in that dimension. Unnormalized values range from [0,n-1] across the surface, where n is the size of the surface in that dimension, with values outside the surface being clamped to the surface.

Surface Type	u	v	r	ai
SURFTYPE_1D	normalized 'x' coordinate	unnormalized array index	ignored	ignored
SURFTYPE_2D	normalized 'x' coordinate	normalized 'y' coordinate	unnormalized array index	ignored
SURFTYPE_3D	normalized 'x' coordinate	normalized 'y' coordinate	normalized 'z' coordinate	ignored
SURFTYPE_CUBE	normalized 'x' coordinate	normalized 'y' coordinate	normalized 'z' coordinate	unnormalized array index

Ld* messages

For the ld message types, all parameters are 32-bit signed integers, except the 'mcs' parameter. Usage of the u, v, and r parameters is as follows based on **Surface Type**. Unnormalized values range from [0,n-1] across the surface, where n is the size of the surface in that dimension. Input of any value outside of the range returns zero.

Surface Type	u	v	r
SURFTYPE_1D	unnormalized 'x' coordinate	unnormalized array index	ignored
SURFTYPE_2D	unnormalized 'x' coordinate	unnormalized 'y' coordinate	unnormalized array index
SURFTYPE_3D	unnormalized 'x' coordinate	unnormalized 'y' coordinate	unnormalized 'z' coordinate
SURFTYPE_BUFFER	unnormalized 'x' coordinate	ignored	ignored

2.12.1.6 SIMD16 Payload

The payload of a SIMD16 message provides addresses for the sampling engine to process 16 entities (examples of an entity are vertex and pixel). The number of parameters required to sample the surface depends on the state that the sampler/surface is in. Each parameter takes two message registers, with 8 entities, each a 32-bit floating point value, being placed in each register. Each parameter always takes a consistent position in the input payload. The length field can be used to send a shorter message, but intermediate parameters cannot be skipped as there is no way to signal this. For example, a 2D map using "sample_b" needs only u, v, and bias, but must send the r parameter as well.

DWord	Bit	Description
M1.7	31:0	Subspan 1, Pixel 3 (lower right) Parameter 0
		Specifies the value of the pixel's parameter 0. The actual parameter that maps to parameter 0 is given in the table in section 2.12.1.3.
		Format = IEEE Float for all sample* message types, U32 for Id and resinfo message types.
M1.6	31:0	Subspan 1, Pixel 2 (lower left) Parameter 0
M1.5	31:0	Subspan 1, Pixel 1 (upper right) Parameter 0
M1.4	31:0	Subspan 1, Pixel 0 (upper left) Parameter 0
M1.3	31:0	Subspan 0, Pixel 3 (lower right) Parameter 0
M1.2	31:0	Subspan 0, Pixel 2 (lower left) Parameter 0
M1.1	31:0	Subspan 0, Pixel 1 (upper right) Parameter 0
M1.0	31:0	Subspan 0, Pixel 0 (upper left) Parameter 0
M2.7	31:0	Subspan 3, Pixel 3 (lower right) Parameter 0
M2.6	31:0	Subspan 3, Pixel 2 (lower left) Parameter 0
M2.5	31:0	Subspan 3, Pixel 1 (upper right) Parameter 0
M2.4	31:0	Subspan 3, Pixel 0 (upper left) Parameter 0
M2.3	31:0	Subspan 2, Pixel 3 (lower right) Parameter 0
M2.2	31:0	Subspan 2, Pixel 2 (lower left) Parameter 0
M2.1	31:0	Subspan 2, Pixel 1 (upper right) Parameter 0
M2.0	31:0	Subspan 2, Pixel 0 (upper left) Parameter 0
M3 – Mn		Repeat packets 1 and 2 to cover all required parameters

2.12.1.7 SIMD8 Payload

This message is intended to be used in a SIMD8 thread, or in pairs from a SIMD16 thread. Each message contains sample requests for just 8 pixels.

DWord	Bit	Description
M1.7	31:0	Subspan 1, Pixel 3 (lower right) Parameter 0
		Specifies the value of the pixel's parameter 0. The actual parameter that maps to parameter 0 is given in the table in section 2.12.1.3.
		Format = IEEE Float for all sample* message types, U32 for ld and resinfo message types.
M1.6	31:0	Subspan 1, Pixel 2 (lower left) Parameter 0
M1.5	31:0	Subspan 1, Pixel 1 (upper right) Parameter 0
M1.4	31:0	Subspan 1, Pixel 0 (upper left) Parameter 0
M1.3	31:0	Subspan 0, Pixel 3 (lower right) Parameter 0
M1.2	31:0	Subspan 0, Pixel 2 (lower left) Parameter 0
M1.1	31:0	Subspan 0, Pixel 1 (upper right) Parameter 0
M1.0	31:0	Subspan 0, Pixel 0 (upper left) Parameter 0
M2 – Mn		Repeat packet 1 to cover all required parameters

2.12.1.8 SIMD4x2 Payload

DWord	Bit	Description
M1.7	31:0	Sample 1 Parameter 3
		Specifies the value of the pixel's parameter 3. The actual parameter that maps to parameter 3 is given in the table in section 2.12.1.3.
		Format = IEEE Float for all sample* message types, U32 for ld and resinfo message types.
M1.6	31:0	Sample 1 Parameter 2
M1.5	31:0	Sample 1 Parameter 1
M1.4	31:0	Sample 1 Parameter 0
M1.3	31:0	Sample 0 Parameter 3
M1.2	31:0	Sample 0 Parameter 2
M1.1	31:0	Sample 0 Parameter 1

DWord	Bit	Description
M1.0	31:0	Sample 0 Parameter 0
M2		Parameters 4-7 if present
M3		Parameters 8-11 if present

2.12.1.9 SIMD32/64 Payload

2.12.1.9.1 Pixel Shader

This position of **Delta U/V** in the pixel shader payload layout is to allow the register delivered in the pixel shader dispatch containing the coefficients for the texture coordinates to be left in their original position (Delta U = Cxs, Delta V = Cyt). The values for U and V are computed in the pixel shader into the unused positions in this register.

DWord	Bit	Description	
M1.7	31:0	Ignored	
M1.6	31:0	Pixel 0 V Address	
		Format:	
		sample_unorm* and sample_8x8: IEEE_Float in normalized space	
		deinterlace: U32 (Range: [0,2046])	
M1.5	31:0	Delta V : defines the difference in V for adjacent pixels in the Y direction.	
		Programming Notes:	
		 Delta V multiplied by Height in SURFACE_STATE must be less than or equal to 3 for sample_unorm* message types. 	
		 Delta V multiplied by Height in SURFACE_STATE must be less than 16 for the sample_8x8 message type. 	
		This field is ignored for the deinterlace message type.	
		Format = IEEE_Float in normalized space	
M1.4	31:0	Ignored	
M1.3	31:0	Ignored	
M1.2	31:0	Pixel 0 U Address	
		Format:	
		sample_unorm* and sample_8x8: IEEE_Float in normalized space	
		deinterlace: U32 (Range: [0,4095])	

DWord	Bit	Description
M1.1	31:0	U 2 nd Derivative
		Defines the change in the delta U for adjacent pixels in the X direction.
		Programming Notes:
		 This field is ignored for messages other than sample_8x8.
		Format = IEEE_Float in normalized space
M1.0	31:0	Delta U: defines the difference in U for adjacent pixels in the X direction.
		Programming Notes:
		 Delta U multiplied by Width in SURFACE_STATE must be less than or equal to 3 for sample_unorm* message types.
		This field is ignored for the deinterlace message type.
		Format = IEEE_Float in normalized space

2.12.1.9.2 Media [DevILK+ only]

The position of **Delta U** and **U 2nd Derivative** in the media payload layout is intended to make media kernels more efficient. Sending a message using the media payload layout behaves identically to the pixel shader payload layout other than the position of these two fields.

DWord	Bit	Description
M1.7	31:0	Ignored
M1.6	31:0	Pixel 0 V Address
		Format:
		sample_unorm* and sample_8x8: IEEE_Float in normalized space
		deinterlace: U32 (Range: [0,2046])
M1.5	31:0	Delta V : defines the difference in V for adjacent pixels in the Y direction.
		Programming Notes:
		 Delta V multiplied by Height in SURFACE_STATE must be less than or equal to 3 for sample_unorm* message types.
		 Delta V multiplied by Height in SURFACE_STATE must be less than 16 for the sample_8x8 message type.
		This field is ignored for the deinterlace message type.
		Format = IEEE_Float in normalized space
M1.4	31:0	Ignored
M1.3	31:0	Ignored

DWord	Bit	Description
M1.2	31:0	Pixel 0 U Address
		Format:
		sample_unorm* and sample_8x8: IEEE_Float in normalized space
		deinterlace: U32 (Range: [0,4095])
M1.1	31:0	Delta U: defines the difference in U for adjacent pixels in the X direction.
		Programming Notes:
		 Delta U multiplied by Width in SURFACE_STATE must be less than or equal to 3 for sample_unorm* message types.
		This field is ignored for the deinterlace message type.
		Format = IEEE_Float in normalized space
M1.0	31:0	U 2 nd Derivative
		Defines the change in the delta U for adjacent pixels in the X direction.
		Programming Notes:
		 This field is ignored for messages other than sample_8x8.
		Format = IEEE_Float in normalized space

2.12.2 Writeback Message

Corresponding to the four input message definitions are four writeback messages. Each input message generates a corresponding writeback message of the same type (SIMD16, SIMD8, SIMD4x2, or SIMD32/64).

2.12.2.1 SIMD16

A SIMD16 writeback message consists of up to 8 destination registers. Which registers are returned is determined by the write channel mask received in the corresponding input message. Each asserted write channel mask results in both destination registers of the corresponding channel being skipped in the writeback message, and all channels with higher numbered registers being dropped down to fill in the space occupied by the masked channel. For example, if only red and alpha are enabled, red is sent to regid+0 and regid+1, and alpha to regid+2 and regid+3. The pixels written within each destination register is determined by the execution mask on the "send" instruction.

DWord	Bit	Description
W0.7	31:0	Subspan 1, Pixel 3 (lower right) Red: Specifies the value of the pixel's red channel.
		Format = IEEE Float, S31 signed 2's comp integer, or U32 unsigned integer. Format depends on the Data Return Format programmed for the surface being sampled.
W0.6	31:0	Subspan 1, Pixel 2 (lower left) Red
W0.5	31:0	Subspan 1, Pixel 1 (upper right) Red

DWord	Bit	Description
W0.4	31:0	Supspan 1, Pixel 0 (upper left) Red
W0.3	31:0	Subspan 0, Pixel 3 (lower right) Red
W0.2	31:0	Subspan 0, Pixel 2 (lower left) Red
W0.1	31:0	Subspan 0, Pixel 1 (upper right) Red
W0.0	31:0	Supspan 0, Pixel 0 (upper left) Red
W1.7	31:0	Subspan 3, Pixel 3 (lower right) Red
W1.6	31:0	Subspan 3, Pixel 2 (lower left) Red
W1.5	31:0	Subspan 3, Pixel 1 (upper right) Red
W1.4	31:0	Supspan 3, Pixel 0 (upper left) Red
W1.3	31:0	Subspan 2, Pixel 3 (lower right) Red
W1.2	31:0	Subspan 2, Pixel 2 (lower left) Red
W1.1	31:0	Subspan 2, Pixel 1 (upper right) Red
W1.0	31:0	Supspan 2, Pixel 0 (upper left) Red
W2		Subspans 1 and 0 of Green: See W0 definition for pixel locations
W3		Subspans 3 and 2 of Green: See W1 definition for pixel locations
W4		Subspans 1 and 0 of Blue: See W0 definition for pixel locations
W5		Subspans 3 and 2 of Blue: See W1 definition for pixel locations
W6		Subspans 1 and 0 of Alpha: See W0 definition for pixel locations
W7		Subspans 3 and 2 of Alpha: See W1 definition for pixel locations

2.12.2.2 SIMD8

This writeback message consists of four registers, or five in the case of sample+killpix. As opposed to the SIMD16 writeback message, channels that are masked in the write channel mask are not skipped, all four channels are always returned. The masked channels, however, are not overwritten in the destination register.

For the sample+killpix message types, an additional register (W4) is included after the last channel register.

DWord	Bit	Description
W0.7	31:0	Subspan 1, Pixel 3 (lower right) Red: Specifies the value of the pixel's red channel.
		Format = IEEE Float, S31 signed 2's comp integer, or U32 unsigned integer. Format depends on the Data Return Format programmed for the surface being sampled.
W0.6	31:0	Subspan 1, Pixel 2 (lower left) Red
W0.5	31:0	Subspan 1, Pixel 1 (upper right) Red
W0.4	31:0	Supspan 1, Pixel 0 (upper left) Red
W0.3	31:0	Subspan 0, Pixel 3 (lower right) Red
W0.2	31:0	Subspan 0, Pixel 2 (lower left) Red
W0.1	31:0	Subspan 0, Pixel 1 (upper right) Red
W0.0	31:0	Supspan 0, Pixel 0 (upper left) Red
W1		Subspans 1 and 0 of Green: See W0 definition for pixel locations
W2		Subspans 1 and 0 of Blue: See W0 definition for pixel locations
W3		Subspans 1 and 0 of Alpha: See W0 definition for pixel locations
W4.7:1		Reserved (not written) : W4 is only delivered for the sample+killpix message type
W4.0	31:16	Dispatch Pixel Mask: This field is always 0xffff to allow dword-based ANDing with the R0 header in the pixel shader thread.
	15:0	Active Pixel Mask: This field has the bit for all pixels set to 1 except those pixels that have been killed as a result of chroma key with kill pixel mode. Since the SIMD8 message applies to only 8 pixels, only the low 8 bits within this field are used. The high 8 bits are always set to 1.
		[DevBW, DevCL] Errata: Active Pixel Mask needs to be ORed with the inverse of the EMask before it is ANDed with the DMask. Also if the sample instruction is within a conditional then the active pixel mask will be overwritten with the partial mask on each different sample instruction so this will have to be done for each instance of the sample instruction not just as the end.

2.12.2.3 SIMD4x2

A SIMD4x2 writeback message always consists of a single message register containing all four channels of each of the two "pixels" (called "samples" here, as they are not really pixels) of data. The write channel mask bits as well as the execution mask on the "send" instruction are used to determine which of the channels in the destination register are overwritten. If any of the four execution mask bits for a sample is asserted, that sample is considered to be active. The active channels in the write channel mask will be written in the destination register for that sample. If the sample is inactive (all four execution mask bits deasserted), none of the channels for that sample will be written in the destination register.

DWord	Bit	Description
W0.7	31:0	Sample 1 Alpha: Specifies the value of the pixel's alpha channel.
		Format = IEEE Float, S31 signed 2's comp integer, or U32 unsigned integer. Format depends on the Data Return Format programmed for the surface being sampled.
W0.6	31:0	Sample 1 Blue
W0.5	31:0	Sample 1 Green
W0.4	31:0	Sample 1 Red
W0.3	31:0	Sample 0 Alpha
W0.2	31:0	Sample 0 Blue
W0.1	31:0	Sample 0 Green
W0.0	31:0	Sample 0 Red

2.12.2.4 SIMD32/64

2.12.2.4.1 sample_unorm* * [DevSNB]

Pixels are numbered as follows:

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31

[DevSNB+]: Which registers are returned is determined by the write channel mask received in the corresponding input message. Each asserted write channel mask results in both destination registers of the corresponding channel being skipped in the writeback message, and all channels with higher numbered registers being dropped down to fill in the space occupied by the masked channel. For example, if only red and alpha are enabled, red is sent to regid+0 and regid+1, and alpha to regid+2 and regid+3 (using 16 bit Full mode as an example).

DWord	Bit	Description
W0.7	31:16	Pixel 15 Red
		Format = 16-bit UNORM with an 8-bit range (the value FF00h maps to a real value of 1.0)
		Range = [0000h:FF00h]
	15:0	Pixel 14 Red
W0.6		Pixel 13 & 12 Red

DWord	Bit	Description
W0.5		Pixel 7 & 6 Red
W0.4		Pixel 5 & 4 Red
W0.3		Pixel 11 & 10 Red
W0.2		Pixel 9 & 8 Red
W0.1		Pixel 3 & 2 Red
W0.0		Pixel 1 & 0 Red
W1.7		Pixel 31 & 30 Red
W1.6		Pixel 29 & 28 Red
W1.5		Pixel 23 & 22 Red
W1.4		Pixel 21 & 20 Red
W1.3		Pixel 27 & 26 Red
W1.2		Pixel 25 & 24 Red
W1.1		Pixel 19 & 18 Red
W1.0		Pixel 17 & 16 Red
W2.7:0		Pixels 15:0 Green
W3.7:0		Pixels 31:16 Green
W4.7:0		Pixels 15:0 Blue
		W4-W7 are not sent for the _RG versions of the sample_unorm message
W5.7:0		Pixels 31:16 Blue
		W4-W7 are not sent for the _RG versions of the sample_unorm message
W6.7:0		Pixels 15:0 Alpha
		W2 and W3 are not sent for the _RG versions of the sample_unorm message
W7.7:0		Pixels 31:16 Alpha
		W4-W7 are not sent for the _RG versions of the sample_unorm message

For the sample_unorm_RG+killpix and sample_unorm+killpix messages, an additional writeback phase is returned. For sample_unorm_RG+killpix, "n" is equal to 4, for sample_unorm+killpix, "n" depends on which channels are enabled for return, this register will immediately follow the first part of the writeback message.

DWord	Bit		Description							
Wn.7:1		Rese	rved	(not w	/ritten)				
Wn.0	31:0	Activ been The b	/e Pix killec	t el Ma l as a this n	isk: T resulf nask c	his fie t of ch corres	eld ha iroma pond	s the key v to the	bit for all pixels set to 1 except those pixels that have vith kill pixel mode. e pixels as follows:	
		0	1	4	5	1 6	1 7	2 0	2 1	
		2	3	6	7	1 8	1 9	2 2	2 3	
		8	9	1 2	1 3	2 4	2 5	2 8	2 9	
		1 0	1 1	1 4	1 5	2 6	2 7	3 0	3 1	

2.12.2.5 Sample_8x8 Writeback Messages

2.12.2.5.1 Sample_8x8 Writeback Messages [DevSNB]

The writeback message for sample_8x8 consists of up to 16 destination registers. Which registers are returned is determined by the write channel mask received in the corresponding input message. Each asserted write channel mask results in all four destination registers of the corresponding channel being skipped in the writeback message, and all channels with higher numbered registers being dropped down to fill in the space occupied by the masked channel.

Pixels are numbered as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63

"16 bit Full" Output Format Control Mode

DWord	Bit	Description
W0.7	31:16	Pixel 15 Red
		Format = 16-bit UNORM with an 8-bit range (the value FF00h maps to a real value of 1.0)
		Range = [0000h:FF00h]
	15:0	Pixel 14 Red
W0.6		Pixel 13 & 12 Red
W0.5		Pixel 7 & 6 Red
W0.4		Pixel 5 & 4 Red
W0.3		Pixel 11 & 10 Red
W0.2		Pixel 9 & 8 Red
W0.1		Pixel 3 & 2 Red
W0.0		Pixel 1 & 0 Red
W1.7		Pixel 31 & 30 Red
W1.6		Pixel 29 & 28 Red
W1.5		Pixel 23 & 22 Red
W1.4		Pixel 21 & 20 Red
W1.3		Pixel 27 & 26 Red
W1.2		Pixel 25 & 24 Red
W1.1		Pixel 19 & 18 Red
W1.0		Pixel 17 & 16 Red
W2.7:0		Pixels 15:0 Green
W3.7:0		Pixels 31:16 Green
W4.7:0		Pixels 15:0 Blue
W5.7:0		Pixels 31:16 Blue

DWord	Bit	Description
W6.7:0		Pixels 15:0 Alpha
W7.7:0		Pixels 31:16 Alpha
W8.7:0		Pixels 47:32 Red
W9.7:0		Pixels 63:33 Red
W10.7:0		Pixels 47:32 Green
W11.7:0		Pixels 63:33 Green
W12.7:0		Pixels 47:32 Blue
W13.7:0		Pixels 63:33 Blue
W14.7:0		Pixels 47:32 Alpha
W15.7:0		Pixels 63:33 Alpha

2.12.2.5.2 deinterlace

The deinterlace message has three different writeback messages, depending on the **DI Enable** and **DI Partial** fields of SAMPLER_STATE.

Pixels are indicated by an (X, Y) pair. The following tables indicate the format of common **Luma**, **Chroma, STMM**, and **Block Noise Estimate/Denoise History** blocks defined as portions of the specific writeback messages defined in the following sections. Each block defines one register.

Luma block definition:

DWord	Bit	Description
Wn.7	31:24	Luma (15,1)
		Format = U8
	23:16	Luma (14,1)
	15:8	Luma (13,1)
	7:0	Luma (12,1)
Wn.6	31:0	Luma (11:8,1)
Wn.5	31:0	Luma (7:4,1)
Wn.4	31:0	Luma (3:0,1)

DWord	Bit	Description
Wn.3	31:0	Luma (15:12,0)
Wn.2	31:0	Luma (11:8,0)
Wn.1	31:0	Luma (7:4,0)
Wn.0	31:0	Luma (3:0,0)

Chroma block definition:

DWord	Bit	Description
Wp.7	31:24	Cb (14,1)
		Format = U8
	23:16	Cr (14,1)
		Format = U8
	15:8	Cb (12,1)
	7:0	Cr (12,1)
Wp.6	31:0	Cr & Cb (10:8,1)
Wp.5	31:0	Cr & Cb (6:4,1)
Wp.4	31:0	Cr & Cb (2:0,1)
Wp.3	31:0	Cr & Cb (14:12,0)
Wp.2	31:0	Cr & Cb (10:8,0)
Wp.1	31:0	Cr & Cb (6:4,0)
Wp.0	31:0	Cr & Cb (2:0,0)

STMM block definition:

DWord	Bit	Description
Wr.7	31:24	STMM (14,3)
		Format = U8
	23:16	STMM (12,3)
	15:8	STMM (10,3)

DWord	Bit	Description
	7:0	STMM (8,3)
Wr.6	31:0	STMM (6:0,3)
Wr.5	31:0	STMM (14:8,2)
Wr.4	31:0	STMM (6:0,2)
Wr.3	31:0	STMM (14:8,1)
Wr.2	31:0	STMM (6:0,1)
Wr.1	31:0	STMM (14:8,0)
Wr.0	31:0	STMM (6:0,0)

Block Noise Estimate/Denoise History block definition: [DevSNB DI enabled]

DWord	Bit	Description	
Wq.7	31:16	Y[15:0] – Location of 16x4	
Wq.7	15:0	([15:0] - Location of 16x4	
Wq.6	31:24	STAD0 - Sum in time of absolute differences for 4x4	
		Format = U8 [STAD values are 0 if DN is disabled]	
Wq.6	23:16	STAD1	
Wq.6	15:8	STAD2	
Wq.6	7:0	STAD3 (Ignore when both DN & DI are enabled)	
Wq.5	31:24	SHCM0 - Sum horizontally of absolute differences for 4x4	
		Format = U8 [SHCM values are 0 if DN is disabled]	
Wq.5	23:16	SHCM1	
Wq.5	15:8	SHCM2	
Wq.5	7:0	SHCM3 (Ignore when both DN & DI are enabled)	
Wq.4	31:24	SVCM0 Sum Vertically of absolute differences for 4x4	
		Format = U8 [SVCM values are 0 if DN is disabled]	
Wq.4	23:16	SVCM1	

DWord	Bit	Description	
Wq.4	15:8	SVCM2	
Wq.4	7:0	SVCM3 (Ignore when both DN & DI are enabled)	
Wq.3	31:16	Diff_cTpT - difference in top fields of current and previous frame	
		Format = U16	
Wq.3	15:0	Diff_cBpB - difference in bottom field of current and previous frame	
Wq.2	31:16	Diff_cTcB - difference between top and bottom field in current frame.	
Wq.2	15:0	Diff_cTpB - difference between current top and previous bottom	
Wq.1	31:16	Diff_cBpT - difference between current bottom and previous top.	
Wq.1	15:8	Motion_Count - number of pixels that are moving (different above a threshold)	
		Format = U8	
Wq.1	7:0	Block Noise Estimate for 16x4 (Valid only if DN is enabled)	
Wq.0	31:24	Denoise History for $4x4$ at Y = 15 to 12, X = 3 to 0	
		Format = U8	
Wq.0	23:16	Denoise History for $4x4$ at Y = 11 to 8, X = 3 to 0	
Wq.0	15:8	Denoise History for $4x4$ at Y = 7 to 4, X = 3 to 0	
Wq.0	7:0	Denoise History for $4x4$ at Y = 3 to 0, X = 3 to 0	

Block Noise Estimate/Denoise History block definition: [DevSNB DI disabled]

DWord	Bit	Description	
Wq.7	31:16	Y[15:0] – Location of 16x4	
Wq.7	15:0	X[15:0] - Location of 16x4	
Wq.6	31:24	STAD0 - Sum in time of absolute differences for 4x8 Format = U8	
Wq.6	23:16	STAD1	
Wq.6	15:8	STAD2	
Wq.6	7:0	STAD3	

DWord	Bit	Description	
Wq.5	31:24	SHCM0 - Sum horizontally of absolute difference for 4x8	
Wq.5	23:16	SHCM1	
Wq.5	15:8	SHCM2	
Wq.5	7:0	SHCM3	
Wq.4	31:24	SVCM0 Sum Vertically of absolute difference for 4x8	
Wq.4	23:16	SVCM1	
Wq.4	15:8	SVCM2	
Wq.4	7:0	SVCM3	
Wq.3	31:16	Reserved	
Wq.3	15:0	Reserved	
Wq.2	31:8	Reserved	
Wq.2	7:0	Block Noise Estimate for 16x8	
Wq.1	31:24	Denoise History for 4x4 at X = 15 to 12, Y = 7 to 4	
		Format = U8	
Wq.1	23:16	Denoise History for $4x4$ at X = 11 to 8, Y = 7 to 4	
Wq.1	15:8	Denoise History for $4x4$ at X = 7 to 4, Y = 7 to 4	
Wq.1	7:0	Denoise History for $4x4$ at X = 15 to 12, Y = 3 to 0	
Wq.0	31:24	Denoise History for $4x4$ at Y = 15 to 12, X = 3 to 0	
		Format = U8	
Wq.0	23:16	Denoise History for 4x4 at Y = 11 to 8, X = 3 to 0	
Wq.0	15:8	Denoise History for $4x4$ at Y = 7 to 4, X = 3 to 0	
Wq.0	7:0	Denoise History for 4x4 at Y = 3 to 0, X = 3 to 0	

DI Enabled (Only)

This writeback message is returned when the DI Enable field in SAMPLER_STATE is enabled. The response length possibilities are:

• DevSNB & DN Enabled: 12

• DevSNB & DN Disabled: 10

DWord	Bit	Description	
W0		Previous 2nd Field Deinterlaced Luma for Y=0,1	
		Refer to Luma block above for definition.	
W1		Previous 2nd Field Deinterlaced Luma for Y=2,3	
W2		Previous 2nd Field Deinterlaced Chroma for Y=0,1	
		Refer to Chroma block above for definition.	
W3		Previous 2nd Field Deinterlaced Chroma for Y=2,3	
W4		Current 1 st Field Deinterlaced Luma for Y=0,1	
W5		Current 1 st Field Deinterlaced Luma for Y=2,3	
W6		Current 1 st Field Deinterlaced Chroma for Y=0,1	
W7		Current 1 st Field Deinterlaced Chroma for Y=2,3	
W8		STMM	
		Refer to STMM block above for definition.	
W9		Block Noise Estimate/Denoise History	
		Refer to Block Noise Estimate/Denoise History block above for definition.	
W10		Current 2 nd Field Luma for 16x2	
		This register is only included if DN Enable is enabled.	
W11		Current 2 nd Field Chroma	
		This register is only included if DN Enable is enabled.	
		Only valid if input surface format is 4:2:2	

The denoised luma for both the current 1^{st} and 2^{nd} field needs to be written out, but only the 2^{nd} field has a dedicated location. This is because the denoised data for the 1^{st} field is in the deinterlaced output for the 1^{st} field – Y=0 and Y=2 are the denoised data, while Y=1 and Y=3 either the deinterlaced lines or copied from the previous or current frame if progressive.

DI Disabled

This writeback message is returned when the **DI Enable** field in SAMPLER_STATE is disabled. The DN with DI disabled responses with a 16x8 block rather than a 16x4 with a response length of 9 for a 4:2:2 input format, or 5 for other formats. Two denoised luma and chroma fields are combined into an interleaved top/bottom format.

	Description	
W0	Luma for Y=0 & 1	
	Refer to Luma block above for definition.	
W1	Luma for Y=2 & 3	
	Refer to Luma block above for definition, but add 2 to Y to get location	

		Description		
W2		Luma for Y=4 & 5		
W3		Luma for Y=6 & 7		
W4.7	31:16	Y[15:0]		
		Y co-ordinate of the current block within the frame		
W4.7	15:0	X[15:0]		
		X co-ordinate of the current block within the frame		
W4.6	31:24	STAD0 – Sum in time of absolute differences for the 1st 4x8		
		Format = U8		
W4.6	23:16	STAD1 – Sum in time of absolute differences for the 2 nd 4x8		
W4.6	15:8	STAD2 – Sum in time of absolute differences for the 3 rd 4x8		
W4.6	7:0	STAD3 – Sum in time of aboslute differences for the 4 th 4x8		
W4.5	31:24	SHCM0 – Sum horizontaly of absolute differences		
W4.5	23:16	SHCM1		
W4.5	15:8	SHCM2		
W4.5	7:0	SHCM3		
W4.4	31:24	SVCM0 – Sum vertically of absolute differences.		
W4.4	23:16	SVCH1		
W4.4	15:8	SVCH2		
W4.4	7:0	SVCH3		
W4.3	31:0	Reserved : MBZ		
W4.2	31:8	Reserved : MBZ		
	7:0	Block Noise Estimate		
		Format = U8		
W4.1	31:24	Denoise History for 4x4 at X = 15 to 12, Y = 7 to 4		
	23:16	Denoise History for 4x4 at X = 11 to 8, Y = 7 to 4		
	15:8	Denoise History for $4x4$ at $X = 7$ to 4 , $Y = 7$ to 4		
	7:0	Denoise History for $4x4$ at $X = 3$ to 0, $Y = 7$ to 4		

		Description		
W4.0	31:24	Denoise History for 4x4 at X = 15 to 12, Y = 3 to 0		
	23:16	Denoise History for 4x4 at X = 11 to 8, Y = 3 to 0		
	15:8	Denoise History for 4x4 at X = 7 to 4, Y = 3 to 0		
	7:0	Denoise History for 4x4 at X = 3 to 0, Y = 3 to 0		
W5		Chroma for Y=0 & 1		
		Refer to Chroma block above for definition.		
		Only delivered if input surface format is 4:2:2		
W6		Chroma for Y=2 & 3		
		Refer to Chroma block above for definition, but add 2 to Y to get location.		
		Only delivered if input surface format is 4:2:2		
W7		Chroma for Y=4 & 5		
		Only valid if input surface format is 4:2:2		
W8		Chroma for Y=6 & 7		
		Only sent if input surface format is 4:2:2		

3. Data Port

The Data Port provides all memory accesses for the DevSNB subsystem other than those provided by the sampling engine. These include render target writes, constant buffer reads, scratch space reads/writes, and media surface accesses.

[DevSNB+]: The diagram below shows the three parts of the Data Port (Sampler Cache, Constant Cache, and Render Cache) and how they connect with the caches and memory subsystem. The execution units and sampling engine are shown for clarity.

The kernel programs running in the execution units communicate with the data port via messages, the same as for the other shared function units. The three data ports are considered to be separate shared functions, each with its own shared function identifier.

3.1 Cache Agents

The data port allows access to memory via various caches. The choice of which cache to use for a given application is dictated by its restrictions, coherency issues, and how heavily that cache is used for other purposes.

[DevSNB+]: The cache to use is selected by the shared function accessed.

3.1.1 Render Cache

[DevSNB]: The render cache is the only cache that supports both reads and writes. All writes must use this cache. In addition, all reads to a surface that is also being written should use this cache to avoid expensive flushing that would be required for coherency. The render cache supports both linear and tiled memory.

The render cache is intended to be used for the following surfaces:

- 3D render target surfaces
- destination surfaces for media applications
- intermediate working surfaces for media applications
- scratch space buffers
- streamed vertex buffers

3.1.2 Sampler Cache

The sampler cache is a read-only cache that supports both linear and tiled memory. In addition to being used by the sampling engine (via the sampling engine messages), the sampler cache is intended to be used for source surfaces in media applications via the data port. The same application may use the sampler cache via the sampling engine and data port without flushing the pipeline between accesses.

3.1.3 Constant Cache [DevSNB+]

The constant cache is a read-only cache that supports only linear memory and only the messages that operate on buffer surface types. It is intended to be used only for constant buffers.

3.2 Surfaces

The data elements accessed by the data port are called "surfaces". There are two models used by the data port to access these surfaces: surface state model and stateless model.

3.2.1 Surface State Model

The data port uses the binding table to bind indices to surface state, using the same mechanism used by the sampling engine. The surface state model is used when a **Binding Table Index** (specified in the message descriptor) of less than 255 is specified. In this model, the **Binding Table Index** is used to index into the binding table, and the binding table entry contains a pointer to the SURFACE_STATE. SURFACE_STATE contains the parameters defining the surface to be accessed, including its location, format, and size.

This model is intended to be used for constant buffers, render target surfaces, and media surfaces.

3.2.2 Stateless Model

The stateless model is used when a **Binding Table Index** (specified in the message descriptor) of 255 is specified. In this model, the binding table is not accessed, and the parameters that define the surface state are overloaded as follows:

- Surface Type = SURFTYPE_BUFFER
- Surface Format = R32G32B32A32_FLOAT
- Vertical Line Stride = 0
- Surface Base Address = General State Base Address + Immediate Base Address
- Buffer Size = checked only against General State Access Upper Bound
- Surface Pitch = 16 bytes
- Utilize Fence = false
- Tiled = false

This model is primarily intended to be used for scratch space buffers.

3.3 Write Commit

For write messages, an optional write commit writeback message can be requested via the Send Write Commit Message bit in the message descriptor. This bit causes a return message to the thread indicating when the write has been committed to the in-order cache pipeline and it is safe to issue another access to the same data with the assurance that it will happen after the first write. A read issued after the write commit ensures that the read will get the newly written data, and another write issued after the write commit will be the last to modify the data. "Committed" does not guarantee that the data has been actually written to the memory subsystem, but only that the write has been scheduled and cannot be passed by another read or write issued subsequently.

If **Send Write Commit Message** is used on a Flush Render Cache message, the write commit is sent only when the render cache has completed its flush to memory. A read issued to another cache after the write commit is received will be guaranteed to retrieve the "new" data that was written before the Flush Render Cache message was issued.

The write commit does not modify the destination register, but merely clears the dependency associated with the destination register. Thus, a simple "mov" instruction using the register as a source is sufficient to wait for the write commit to occur. The following code sequence indicates this:

send r12 m1 DPWRITE	;	issue write to render cache
mov ml r3	;	assemble read message
mov r12 r12	;	block on write commit
send r13 m1 DPREAD	;	read same location as write

[DevSNB-A] Erratum: A write message with all the addresses/offsets out of bounds with write-commit bit set is not supported.

[DevSNB] Prior to End of Thread with a URB_WRITE, the kernel must ensure all writes are complete by sending the final write as a committed write for all non-pixel shaders.

3.4 Read/Write Ordering

[DevSNB+]: Reads and writes issued from the same thread *are* guaranteed to be processed in the same order as they are issued. Software mechanisms must still ensure ordering of accesses issued from different threads.

3.5 Accessing Buffers

There are four data port messages used to access buffers. Three of these are used for both constant buffers and scratch space buffers, the fourth is used by the geometry shader kernel to write to streamed vertex buffers. All of these messages support only buffers, and can use the surface state model as well as the stateless model.

The following table indicates the intended applications of each of the buffer messages.

Message	Applications
OWord Block Read/Write	constant buffer reads of a single constant or multiple contiguous constants
	scratch space reads/writes where the index for each pixel/vertex is the same
	 block constant reads, scratch memory reads/writes for media
OWord Dual Block Read/Write	• SIMD4x2 constant buffer reads where the indices of each vertex/pixel are different (if there are two indices and they are the same, hardware will optimize the cache accesses and do only one cache access)
	 SIMD4x2 scratch space reads/writes where the indices are different.
DWord Scattered Read/Write	 SIMD8/16 constant buffer reads where the indices of each pixel are different (read one channel per message)
	 SIMD8/16 scratch space reads/writes where the indices are different (read/write one channel per message)
	general purpose DWord scatter/gathering, used by media
Streamed Vertex Buffer Write	geometry shader streaming vertex data out

These messages generally ignore the surface format field of the state and perform no format conversion. The exception is the Streamed Vertex Buffer Write, which uses the surface format field to determine only how many channels are to be written. The data contained in each channel is still not converted in any way.

3.6 Accessing Media Surfaces

The Media Block Read/Write message is intended to be used to access 2D media surfaces. The message specifies an X/Y coordinate into the 2D surface as input. Since this message only supports 2D surfaces, the stateless model cannot be used with this message.

3.6.1 Color Processing [DevSNB+]

The image enhancement color processing pipe, known as IECP or shortly CP. The pipe contains a couple of functions:

- Packer with 422 to 444 converter.
- Skin Tone detection & Enhancement (STDE).
- TCCE Automatic Contrast Enhancement (ACE) & Total Color Control (TCC).
- Procamp.
- Color Space Converter (CSC).
- repacker with 444 to 422 converter

Since these functions are performed on per-pixel basis, IECP is integrated in Render Cache Pixel Backend (RCPB). The operation of each functionality could be on/off through the enable bit of each function.

Note: all of the state parameters related to IECP are denoted in the bold and italic font format.

3.6.1.1 Overview of color processing pipeline

The input message to IECP is 256 bits data from RCPB (contains 2 lines X 2 pixels per clock). This **unpacker** converts 256b into two pixels per clock, 36 bits each. In case of 422 inputs the UV are the same for the two pixels in the pair (422 to 444 conversion).

The **Re-packer** (the CSC) delivers 2 pixels in parallel, 36 bits each. The 2x2 message pixels are packed again to 256b and sent with the outgoing message. The 256 bits are organized according to the data type (422/444, 8/16 bits). In case of 422 output, the UV is the average of two adjacent pixels. Also the pipe itself is 12bis/pixel component, in the output message it will be either 8 bit/pixel component (while taking only the 8 MSB) or 16 bits/pixel component (while adding 0000 at the LSB).

There is statistic information from ACE block (10 bit histogram, 1 bit aoi and 1bit skin pixel) to be sent to VSC (Video Statistic Counter). VSC will process on these data and output the maximum and minimum value of the luma values (Ymax and Ymin) and the number of total skin pixels through MMIO. The

Software development can access these data through MMIO and performs the SW part of the color processing algorithms.

The color-processing enables the user to customize visual quality of video playback on the PC platform. The seven functions main goals can be summarized as:

- (i) 422 to 444 converter and the 444 to 422 converter functions enable us some flexibility in the data format input and output.
- (ii) Skin Tone Detection/Enhancement function detects skin like color and attempts to change the tone based on user specified parameters to make it more palatable to the user.
- (iii) Automatic Contrast Enhancement increases details in dark and bright areas by changing the contrast function in relation to frames luma histogram.
- (iv) Total color control allows the user to increase or decrease the color saturation of the six basic colors (Red, Green, Blue, Magenta, Cyan, Yellow).
- (v) Procamp enables the user to control the Brightness, Contrast, Saturation and the Hue.
- (vi) Color Space Converter enables the user to convert color space from YUV format to RGB.

3.6.1.2 Skin Tone Detection/Enhancement (STD/E)

The STD/E unit, composed of the Skin Tone Detection (STD) and Skin Tone Enhancement (STE) units, is part of color processing pipe located at the Render Cache Pixel Backend (RCBP).

The main goal of the STD/E is to reproduce the skin colors in a way that is more palatable to the observer, and by that to increase the sensed image quality. It may also pass indication of skin tones to the TCC and ACE.

The STD unit detects the skin like colors and passes a grade of skin tone color to the STE. The STE modify the saturation and Hue of the pixel. Both the STD and STE are per-pixel basis. The input pixels are required to be on the YUV space.

The skin tone detected factor will be recorded as a 5-bit number and it will be passed to the module of ACE and TCC to indicate the strength of skin tone likelihood.

3.6.1.2.1 STD

The STD operates on digital images in the YUV color space. In these space the skin-tone region is represented by the ellipse in the (U,V) subspace (chroma components), by a trapeze membership function in the Y direction (luma component) and by a piece-wise linear classifier in the (V,Y) subspace.

U,V data is transformed into Hue and Saturation space through shifting and rotation

Step 1: shift rectangle U_center = U - U_mid V_center = V - V_mid Step 2: rotate rectangle Sat = -(U_center * Cos - V_center * Sin) Hue = -(U_center * Sin + V_center * Cos)

Where: Sin = $Sin(\alpha)$, and Cos = $Cos(\alpha)$.

Rectangle skin-tone measure determination

Skin-tone detection is described by a continue score on the [0,1] range, where a level 0 means not a skin (SkinToneFactor = 0), and a level 1 (SkinToneFactor = 1) means a full skin. In between, (0,1) region, we have partial skin-tone detection. This partial skin-tone detection is controlled by a margin parameter, which will be denoted by "*HS_margin*". The SkinToneFactor is expressed by 5 bits, and thus have values in the [0,31] range.

```
if( abs(Sat) <= SatMax && abs(Hue) <= HueMax)
{
    if(HS_margin >= 5)
    {
        Sat_Factor = (Sat_max-abs(Sat)) / 2<sup>(HS_margin - 5)</sup>;
}
```



```
Hue_Factor = (Hue_max-abs(Hue)) / 2^{(HS_margin - 5)};
      }
   else
      {
        Sat_Factor = (Sat_max-abs(Sat)) * 2<sup>(HS_margin - 5)</sup>;
        Hue_Factor = (Hue_max-abs(Hue)) * 2^{(Hs_margin - 5)};
      } //end of if(HS_margin >= 5)
 }
else
{
        Sat_Factor = 0;
        Hue_Factor = 0;
} //end of if( abs(Sat) <= SatMax && abs(Hue) <= HueMax)</pre>
Sat_Factor = min(Sat_Factor,31);
Hue_Factor = min(Hue_Factor,31);
Rectagle_SkinToneFactor = min(Sat_Factor, Hue_Factor);
```


Rhombus skin tone detection determination

Similar to the rectangle skin-tone measure, a rhombus-margin (*Diamond_margin*) is introduced. This introduces a new rhombus region, inner to the original rhombus, in a similar happened with the rectangle. There are two regions such that: outside the original rhombus a SkinToneFactor = 0 (not a skin); inside the inner rhombus SkinToneFactor = 1 (full skin); in between 0 < SkinToneFactor < 1 indicating a partial skin-tone detection. As in the rectangle case, the SkinToneFactor is expressed by 5 bits, and thus have values in the [0,31] range.

A Diamond SkinToneFactor calculations algorithm is:

```
Dist = abs(Sat - Diamond_du) + Diamond_alpha(1/tan(\beta)) * abs(Hue -
Diamond dv);
                      //outside the diamond
if(Dist >= Diamond TH)
{
  D Factor = 0; //the point is out of the large rhombus
}
else if(Dist < (Diamond TH - Diamond_margin))</pre>
  {
    D_Factor = 31; //the point is inside the inner rhombus
  }
   else //the point is inbetween the outer and the inner rhombuses
   {
    if(Diamond margin >= 5)
     {
      D_Factor = (Diamond TH - Dist) / 2<sup>(</sup>Diamond margin <sup>- 5)</sup>;
     }
     else
     {
      D_Factor = (Diamond_TH - Dist) * 2<sup>(</sup>Diamond_margin <sup>- 5)</sup>;
     } // end of if(Diamond_margin >= 5)
   } // if(D < (Diamond TH - Diamond_margin))</pre>
```


Diamond_SkinToneFactor = D_factor;

Finally the level of the skin-tone detection in the (U,V) subspace is given by:

UV_SkinToneFactor = min(Rectangle_SkinToneFactor, Diamond_SkinToneFactor);

Detection in Y direction

The detection based on the Y-values, is given by a piece-wise linear membership function, which is defined with 4 points (Y_point_x) (x=1, 2, 3, and 4).

```
if(Y >= Y_Point_0 && in_Y < Point_1)

Y_Factor = (Y - Y_Point_0) * Y_Slope_1;
else if(Y >= Point_1 && Y < Point_2)

Y_Factor = 31;
else if(Y >= Point_2 && Y < Point_3)

Y_Factor = (Point_3 - Y) * Y_Slope_2;
else

Y_Factor = 0;</pre>
```

At the end of the process a double (min,max) clipping is applied:

Y_Factor = min(31,max(Y_Factor,0));

The final Skin-Tone detection is is given by:

SkinToneFactor = min(UV_SkinToneFactor, Y_factor);

Detection in the VY plane (3D-like DTD)

The operation of the detection in VY plane is particularly enabled by VY_STD_Enable bit

It is known that the application of a three-dimensional (3D) classifier in the (Y,U,V) space, instead of a two dimensional (2D) skin-tone detector in the (U,V) plane, is resulted in a better detection. Implementation complexity of the full 3D classifier is too high, and forces us to approximate the classifier by more simple, but useful methods. Skin-tone data distribution implies (it is almost convex, and has a predominate directions) that the 3D classifier could be approximated by the intersection of the three 2D classifiers in (U,V), (U,Y), and (V,Y) subspaces. The (U,V) subspace is the most important one it is already approximated by the ellipse, as was described previously. Our study implies that the (V,Y) subspace is the next most important one. Although the (U,Y) space carries the STD information, it is heavily redundant and has the reduced importance.

Thus the approximation of 3D classifier is an intersection of (U,V) and (V,Y) two-dimensional classifiers. The (V,Y) classifier is given by two piece-wise linear functions (PWLF), Each PWLF is composed of four straight segments. Each segment is described by the three parameters (Point, Slope and bias). Thus a single PWLF (lower or upper) is described by 12 parameters (4 points, 4 biases, 4 slopes).

The parameters of lower part are: 4 point <u>*PxL*</u> (x=0, 1, 2, 3), 4 bias <u>*BxL*</u> (x=0, 1, 2, 3) and 4 slope <u>*SxL*</u> (x=0, 1, 2, 3).

The parameters of upper part are: 4 point <u>**PxU**</u> (x=0, 1, 2, 3), 4 bias <u>**BxU**</u> (x=0, 1, 2, 3) and 4 slope <u>**SxU**</u> (x=0, 1, 2, 3).

There are Programming Restrictions to specify the parameters:

- The points must be in the non-decreasing order: P0 <= P1 <= P2 <= P3.
- The parts must be continues on they ends. Thus the user:
 - (a). must set: $PO_L = PO_U$ (continuity at the leftmost points).
 - (b). must care for continuity at the rightmost points.

Margin for the detection in the VY plane (3D-like DTD)

Vertical margins of each part were introduced to provide a "soft" continuous detection over the classifier boundaries. There are two parameters defined

MarginVYL - the margin of the lower (blue) part.

MarginVYU - the margin of the upper (red) part.

Consider a pixel with coordinates $(Y,V) = (P2_L,V_1)$. This pixel has a Y coordinate exactly as of the point P2 and a V coordinate equal V1. For this pixel the detection relative to the Lower Part will be:

detL = Min (Max ((V1 - B2L) / MarginVYL, 0), 1)

The identical calculations are made for the Upper Line as well:

detU = Min (Max ((VU - V1) / MarginVYU, 0), 1)

Where:

det_L - is a detection relative to the Lower Part

- det_{U} is a detection relative to the Upper Part
- V_U is a V value of the Upper PWLF correspond to the Y=P2_L
- B_U is a V value of the Lower PWLF correspond to the Y=P2_L

The inverse operation of (1/ MarginVYL), and (1/ MarginVYU) is specified by the parameters INV_*MARGIN_VYL* and *INV_Margin_VYU*.

Both detections (det_L, det_U) are reduced to 5 bit representations, and the overal detection in the (V,Y)-plane is given by:

$$det_VY = min(det_L, det_U)$$

The final Skin-Tone Detection is given by the minimum of the previously calculated STD in the (U,V)-plane (9), and the current one:

SkinToneFactor = min(SkinToneFactor, det_VY)

This value is represented with 5 bits, and has a [0,31] range.

3.6.1.2.2 STE

The enhancement step is performed on the pixels which were detected as the skin-tone pixels only by the previous (STD) step. This step is divided into two sub-steps: saturation correction enhancemen and hue correction enhancement

STE – Saturation Correction Enhancement

The enhancement is performed by the transformation $Sat_{New} = F_{Sat}(Sat_{Old})$, which is realized by the piecewise linear function (PWLF) with a 4 straight segments.

The parameters of this PWLF are:

Points:

SATP0 = -SatMax

SATPx (x=1,2,3) - defined by the user

SATP4 = SatMax

Biases:

SATB0 = -SatMax

SATBx (x=1,2,3) – defined by the user

SATB4 = SatMax

Slopes:

SATSx (x=0,1,2,3) – defined by the user

There are Programming Restrictions to specify the parameters:

- The point Sat = -Sat_{Max} maps to itself: $(-Sat_{Max}) \rightarrow (-Sat_{Max})$.
- The point Sat = Sat_{Max} maps to itself: (Sat_{Max}) → (Sat_{Max}).
- The correction function is continuous.
- The correction function is non-decreasing.

STE – Hue Correction Enhancement

The enhancement is performed by the transformation $Hue_{New} = F_{Sat}(Hue_{Old})$, which is realized by the piece-wise linear function (PWLF) with a 4 straight segments.

The parameters of this PWLF are:

Points:

HUEP0 = -HueMax

HUEPx (x=1,2,3) – defined by the user

HUEP4 = HueMax

Biases:

HUEB0 = -HueMax

HUEBx (x=1,2,3) - defined by the user

HUEB4 = HueMax

Slopes:

HUESx (x=0,1,2,3) - defined by the user

There is Programming Restrictions to specify the parameters

- The point Hue = -HueUE_{Max} maps to itself: (-Hue_{Max}) \rightarrow (-Hue_{Max}).
- The point Hue = Hue_{Max} maps to itself: $(Hue_{Max}) \rightarrow (Hue_{Max})$.
- The correction function is continuous.
- The correction function is non-decreasing.

STE – Skin Type Correction Enhancement

The operation of this mode is enabled by the control parameter Skin_types_enable.

The Saturation and Hue enhancement processes are basic STE procedure. The advanced mode to adjust the enhacement based on the skin type define the second set of the Sat and the Hue enhancement parameters, which has an identical structure as the previous one (Points, Biases, Slopes) but having different values. We will refer one set of parameters to the Bright skin (Bs), and the other to the Dark skin (Ds). Each pixel is referred as belongs to the Bright, the Dark, or to the both skin types with a different membership values. The Dark/Bright skin classifier is defined by the two parameters: *Skin types thesh*, and *Skin types margin*. It works on the luma (Y) values.

The parameters related are

Points:

HUEPx_DARK (x=1,2,3) - defined by the user

SATPx_DARK (x=1,2,3) - defined by the user

Biases:

HUEBx_DARK (x=1,2,3) – defined by the user

SATBx_DARK (x=1,2,3) - defined by the user

Slopes:

HUESx_DARK (x=0,1,2,3) – defined by the user

SATSx_DARK (x=0,1,2,3) – defined by the user

For the luma value Y, we define

Y_A = skinTypesThesh - skinTypesMargin

 Y_{B} = skinTypesThesh + skinTypesMargin

$$\begin{split} \mathsf{MV}_{\mathsf{Dark}} &= 1 \;, & \text{if } Y < Y_{\mathsf{A}} \\ &= 0, & \text{if } Y > Y_{\mathsf{B}} \\ &= (Y_{\mathsf{B}} - Y) \,/ \, (2^* \, \text{skinTypesMargin}), & \text{if } Y_{\mathsf{A}} <= Y <= Y_{\mathsf{B}} \end{split}$$

 $MV_{Bright} = 1 - mV_{Dark}$

Where MV_{Dark} and MV_{Bright} are the membership value of the Dark and Bright skin (belongnes). (*Note: the membership values represent the "belongness" of the skin pixel to the different skin types*). Also, we mark that the inverse operation of 1/(2* Skin_types_margin) will be specified by the parameter *INV_skin_type_margin*.

In previous sections the procedure for the calculation of the Sat_{New} and Hue_{New} values was described. We calculate these values for the two skin types and thus get Sat_{New B}, Hue_{New B}, and Sat_{New D}, Hue_{New D} values, where and subscribes "B" and "D" stands for the Bright and the Dark skin types, respectively. (In this case, the parameters with "_DARK" extension are used to work out Sat_{New D} and Hue_{New D}, and the other set of the parameter could be reloaded with the parameters to work out Sat_{New D}, Hue_{New D}.)The final values of the enhanced pixel will be given by:

Sat_{New} = MV_{Dark} * Sat_{New D} + MV_{Bright} * Sat_{New B} Hue_{New} = MV_{Dark} * Hue_{New D} + MV_{Bright} * Hue_{New B}

STE - (Sat, Hue) to (U, V) transformation

In prior session, the $(U,V) \rightarrow (Sat,Hue)$ transformation was proceeded by the two steps: *shift*, and *rotation*. Thus the backward transformation should be done in the inverse order: a *rotation*, and then a *shift*.

// Rotate back: U_Center_New = (Sat_New * Cos) + (Hue_New * Sin) V_Center_New = -(Sat_New * Sin) + (Hue_New * Cos)

// Shift: U_New = U_Center_New + U_mid V_New = V_Center_New + V_mid

The (U_new, V_new) are the (Sat_{New}, Hue_{New}) values in transformed to the original (U,V) coordinates.

Let denote the original (U,V) values of the pixel by (U_in,V_in) . Thus the difference between the corrected and the original values are:

$$DU = U_new - U_in$$

 $DV = V_new - V_in$

The final correction must be depended by the *SkinToneFactor* value, and therefore DU, DV are corrected by:

DU = DU * STD_ Likelihood_Factor DV = DV * STD_ Likelihood_Factor

Where:

(Remember that the 0 <= SkinToneFactor <= 31).

After the DU and DV were corrected by the STD likelihood factor, the final (U,V) will be calculated by:

$$U = U_{in} + DU$$
$$V = V_{in} + DV$$

3.6.1.3 Adaptive Contrast Enhancement (ACE)

The Automatic Contrast Enhancement (ACE) is a part of the color processing pipe, which located at the render cache in the RCPB block.

The main goals of the ACE is to improve the overall contrast of the image, and emphasizing details when relevant (such as in dark areas).

The ACE algorithm analyzes the image, and consequently changes contrast of the image according to its characteristics. It works in YCbCr color space, where analysis and changes are performed over the Y component. The result of ACE is a 1d (1 dimension) look up table (1D LUT) operating on Y. The ACE follows the skin tone enhancement module in the pipe.

The ACE is receiving skin information from the STD block. When the frame includes skin the affect of the ACE is reduced in the skin area.

The ACE operation is divided into three stages:

- 1. Collecting information on Y and building the picture histogram. (Hardware)
- 2. Analysis on the collected data. (Software/Kernel)
- 3. Modification of the Y component. (Hardware)

The major steps of ACE can be divided into the following steps and depict in the below diagram.

- 1. Histogram calculation of the Y values.
- 2. Limiting extremely large histogram's bins.
- 3. Calculate the Image's gray level mean value (Ymean).
- 4. Calculate the Image's "Dark Factor" by the Ymean and external transfer function.
- 5. Find the PWLF anchor input and output points according to the "Portion Values" and the "Destination Points" of the Bright and the Dark images.
- 6. Find the PWLF anchor Input points by the blending of the Dark and Bright anchor <u>input points</u>, according to the Dark Factor calculated previously.
- 7. Find the PWLF anchor Output points by the blending of the Dark and Bright anchor <u>output points</u>, according to the Dark Factor calculated previously.
- 8. Limit Slopes between the anchor points. This stage's output is the current's image ACE PWLF.
- 9. "Soften" the ACE PWLF by blending I with the Identity Transformation.
- 10. Blend the current PWLF with the PWLF of the previous image (History blend).
- 11. Apply the final PWLF, and get the Yout values.

Note: Step 1 & step 11 are done in HW and steps 2-10 are done in software.

The main ACE goals are overall contrast improvement, and details emphasizing. ACE algorithm generates a Piece-wise Linear Function (PWLF), and the final gray values, Yout, are calculated by Yout = PWLF(Yin).

The HW compares the input pixels to the *skin_threshold* to determine if the target pixel is a skin pixel or not. It operates on all of the input pixels if the *Full_image_histogram* flag is defined. (to ignore the AOI flag). HW output the histogram of luma pixel value to VSC, and at VSC, the maximum and minimum value

of luma pixels (Ymax, Ymin) ans the number of skin pixels is determined to be made available to the software development via MMIO register.

An eleven-segment (12 points) was established to implement PWLF via the state parameters (Points: *Ymin, Y1-Y10, Ymax*, Bias: *B1 – B10*, Slope: *S0-S10*).

3.6.1.4 Total Color Control (TCC)

The TCC allows users to choose different grades of saturation for each of the six basic colors (Red, Green, Blue, Magenta, Yellow and Cyan) in order to custom the color scheme. The TCC algorithm operates on the UV-color components in the YUV color space. It operates in the pixel-wise mode, without considering any neighborhood information.

Its input is:

- 1. U,V color components (10 bit)
- 2. Skin-tone detection value (5 bit)
- 3. External control parameters

Its output is the new U, V values (10 bit).

The motivation to implement this block in HW is to reduce the power of the system and therefore the battery life.

The pixel TPT (throughput) is two pixels per clock. The pipeline works in YUV formats only – 10bit pixels. The TCC block is control by state only and does not require any memory access. The TCC block runs at the same frequency of the existing RCPBunit.

There are two paths in parallel to support the requirement of two pixels per clock. Valid out is a signal which high when the pixels are valid.

The TCC block includes three sub blocks.

Angle_calculator

This block receive pixel U and V and perform division of <u>abs|v|</u> by <u>abs|u|</u> using Divider ROM with pipeline.

The division result is used to calculated arctan of the V/U. This result is used to calculate the angle called θ , by using approximation equation. This angle is defined as a 10bit.

To simplify this calculation the "arctangent" function is approximated in the [0,45]^o region by the second order polynomial:

$$\theta$$
 = arctan(x) = -0.2880x² + 1.0797x - 0.005; (0 <= x <= 1)

The resulted θ is given in radians with the maximal error of 0.005 rad. (0.286 deg.) This approximation is calculated by the minimizing the mean squared error (mse) between the actual "arctan" function, and its polynomial approximation, and thus represents the optimal mse-approximation in the [0, π /4] region. The θ for the all regions is calculated by:

	θ _{0.25π} ;	for region I,	(0 <= x <= 1),
	$\pi/2 - \theta_{0.25\pi};$	for region II,	(1 < (V/U) < infinity)
	$\pi/2 + \theta_{0.25\pi};$	for region III,	(-infinity < (V/U) < -1)
θ =	$π$ - $θ_{0.25π}$;	for region IV,	(-1 <= (V/U) < 0)
	$\pi + \theta_{0.25\pi};$	for region V,	(0 <= (V/U) <= 1)
	$3\pi/2$ - $\theta_{0.25\pi}$;	for region VI,	(1 < (V/U) < infinity)
	$3\pi/2 + \theta_{0.25\pi};$	for region VII,	(-infinity < (V/U) < -1)
	2 π - θ _{0.25π} ;	for region VIII	, (-1 <= (V/U) < 0)

Whereas x = (V/U), and the $\theta_{0.25\pi}$ is given by the above equation.

Saturation_Factor_Calculator

This block is using the angle θ , locate where it is in the color wheel, find the appropriate base colors and calculate the proportional distance from the adjacent base color. The result called α . Alpha (α) represent the distance from the two relevant base color.

Calculate the saturation by using the appropriate user parameters. The result is the Saturation factor. This block considering also the threshold and the maximum UV values, and considering also correction for gray colors to minimize the possible noise. In addition the saturation skipping doing saturation when the color is skin and doing alpha blending according the skin factor called STDscore.

This block requires several external parameters such:

BaseColor1,..., BaseColor6 – Six basic user defined colors.

SatFactor1,..., SatFactor6 – Six basic saturation change user defined factors.

ColorTransitSlope12,ColorTransit61 – Six calculation result of 1/(BaseColorX – BaseColorY)

ColorBias1,..., ColorBias6 - Six color bias.

STDscore - Skin-tone Detection score (from STD/E).

The result of SF is a number of 8bits.

There are four major steps to derive the saturation factor.

Calculation of the Saturation Factor (SF)

 θ – current pixel's color as calculated by the Eq. (3)

Lined boxes show additional data used by each block.

 $SFs_i - SF$ after the step "i".

 SFs_4 is the SF_{final} .

The Interpolated Basic SFs1

With the calculated angle θ , which lies in the $[\theta_{Ci}, \theta_{Ci+1}]$ interval, the Interpolated Basic SFs₁ will be:

SFs₁ = (1- α) **SatFactor**_{*i*} + α **SatFactor**_{*i*+1}

Whereas α is calculated by:

$$\alpha = Min\{Max[(\theta - BaseColor_i)^*ColorTransitSlope_i - ColorBias_i, 0], 1\}$$

Over Saturation Limiter SFs2

Over Saturation Limiter block is used to avoid saturation boosting of the already high saturated pixels. The SFs_2 is calculated by:

 SFs_1 , for $(SF_1 \le 1)$

 $SFs_2 = 1 + (SFs_1 - 1)(MaxColor - UV_{max})/MaxColor, for (1 < SF_1 <= 2) AND (UV_{max} <= UVMaxColor)$

1, for
$$(UV_{max} > UVMaxColor)$$

Where the $UV_{max} = max(|U|,|V|)$, and *UVMaxColor* is an external parameter which in the case of YUV color space is equal to 448 in 10bit representation. *The Inv_UVMaxColor* was used for the inverse calculation of 1/UVMaxColor.

Note: The last condition (UV_{max} > **UVMaxColor**) is associated with the illegal colors, and usually hasn't to appear.

GrayPixels Saturation LimiterSFs3

This block limits the saturation of the almost gray pixels. The reason for this limiter is to prevent the noise amplification by the Saturation increase process. The result of this block is:

$$SFs_3 = 1 + dSF * CLF$$

Where:

$$dSF = SFs_2 - 1;$$

And the CLF is called Color Limiting Factor and ranges from 0 to 1. The calculation of the CLF is given by:

= 1; for (SFs₂ <= 1) AND (any
$$UV_{max}$$
)

CLF = 0; for
$$(UV_{max} \le UV_Threshold)$$

= $(UV_{max} - UV_{Threshold}) / 2^{UV_{Threshold_Bits}}$; for $(UV_{Threshold} < UV_{max} < (UV_{Threshold+2}^{UV_{Threshold_Bits}}))$

Skin-tone Saturation LimiterSFs4

The last block effects TCC strength operation of the Skin-tone pixels. Uncontrolled enhancement of the skin pixels could lead to appearing of artifacts and to undesired results. The final SFs₄ is calculated by a linear blending:

 $SFs_4 = (128*STE_{factor} + (256 - STE_{factor}) SFs_3) / 256$

Where the STE_{factor} is called Skin Tone factor and is calculated by:

<u>Note</u>: the STD_{score} (from STD) and the **STE_Threshold** are presented with 5 bits. The multiplication by 2^3 is in order to raise the "diff" to 8 bits.

The STD_{score} is a result of the Skin-tone Detection module. It is represented with 5 bits, where the values 0 and 31 mean no skin-tone, and full skin-tone detection, respectively. The STE_{factor} is given by 8 bits, where the value 256 represents the number 1.

It is evident that for the high values of STE_{factor} the resulted SFs_4 is close to 1, which means a weak TCC action of this pixel ($SFs_4 = 1$ actually means TCC is off).

UV Modification – The input pixels are multiple by the saturation factor. The results are the output pixels. SF _{final} is the final saturation factor which actually resulted from the forth SFcalculation block:

$$SF_{final} = SFs_4$$

The calculation of the U_{new} , and V_{new} output values. They are calculated below:

Whereas (U,V) are the original input color components,

Because these pixels are represented in the unbiased form, which is the result of substraction of the value 512 from the original [U,V] values, the final $[U_{out}, V_{out}]$ values are given by:

$$U_{out} = U_{new} + 512$$
$$V_{out} = V_{new} + 512$$

This is the final TCC output represented with 10 bits.

3.6.1.5 **ProcAmp**

The PROCAMP block modifies the brightness, contrast, hue and saturation of an image in YCbCr color space (or similar).

The algorithm itself uses 8-16 bits per color.

Y Processing: 256 is subtracted from the Y values to position the black level at zero. This removes the DC offset so that adjusting the contrast does not vary the black level. Since Y values may be less than 256, negative Y values should be supported at this point. Contrast is adjusted by multiplying the YUV pixel values by a constant. If U and V are adjusted, a color shift will result whenever the contrast is changed. The brightness property value is added (or subtracted) from the contrast adjusted Y values; this is done to avoid introducing a DC offset due to adjusting the contrast. Finally the value 64 is added to reposition the black level at 256. The equation for processing of Y values is:

 $Y' = ((Y-256) \times C) + B + 256,$

where C is the *Contrast* value and B is the *Brightness* value.

UV Processing: 2048 is first subtracted from both U and V values to position the range around zero. The hue property is implemented by mixing the U and V values together:

 $U' = (U-2048) \times Cos(H) + (V-2048) \times Sin(H)$

 $V' = (V-2048) \times Cos(H) - (U-2048) \times Sin(H)$

Where H represents the desired Hue angle; Saturation is adjusted by multiplying both U and V by a constant.

Finally, the value 2048 is added to both U and V. The combined processing of Hue and Saturation on the UV data is:

 $U' = (((U-2048) \times Cos(H) + (V-2048) \times Sin(H)) \times C \times S) + 2048$

Doc Ref #: IHD-OS-V4 Pt1 - 05 11

V' = (((V-2048) x Cos(H) - (U-2048) x Sin(H)) x C x S) + 2048

Where C is the contrast, H is Hue angle and S is the Saturation and the combination of $Cos(H)^*C^*S$ and $Sin(H)^*C^*S$ is specified by parameters **Cos_c_s** and **Sin_c_s**.

3.6.1.6 Color Space Conversion

The CSC block enables linear conversion between color spaces using vector shift, matrix multiplication, and additional shift.

The CSC algorithm is a linear coordinate transformation, comprising of the following stages:

- Shifting the input color coordinate.
- Multiply by 3*3 matrix
- Shifting the output color coordinate
- Formula representation of last 3 steps:

$$\begin{pmatrix} \text{vout}_1\\ \text{vout}_2\\ \text{vout}_3 \end{pmatrix} = \begin{pmatrix} a11 & a12 & a13\\ a21 & a22 & a23\\ a31 & a32 & a33 \end{pmatrix} * \begin{pmatrix} \text{vin}_1+\text{v0}_1\\ \text{vin}_2+\text{v0}_2\\ \text{vin}_3+\text{v0}_3 \end{pmatrix} + \begin{pmatrix} \text{u0}_1\\ \text{u0}_2\\ \text{u0}_3 \end{pmatrix}$$

Where:

aij are the matrix elements, i.e., the transform coefficients: C0, C1, C2, C3, C4, C5, C6, C7, C8.

vin_i is the input pixel color components

v0_i is the input offset vector, i.e., Offset_in_1, Offset_in_2, Offset_in_3.

u0_1_i is the output offset vector. i.e., Offset_out_1, Offset_out_2, Offset_out_3.

Clipping the output to ensure each component is in allowed range.

The parameters **YUV_IN** is used to set input to be RGB format and **YUV_OUT** is uased to set output to be RGB format

Notes about Repacker:

There are two states to be used in the repacker: *Alpha from State Select* and *color pipe alpha*. The last module in the IECP pipeline.

If Alpha from State Select is set, the Y, U, V is packed with the information from color pipe alpha, and then the data is sent out to RCPB.

Otherwise, "0" is inserted in the 4LSB (alpha) and the packed data is sent out to RCPB.

3.7 Accessing Render Targets

Render targets are the surfaces that the final results of pixel shaders are written to. The render targets support a large set of surface formats (refer to surface formats table in *Sampling Engine* for details) with hardware conversion from the format delivered by the thread. The render target message also causes numerous side effects, including potentially alpha test, depth test, stencil test, alpha blend (which normally causes a read of the render target), and other functions. These functions are covered in the *Windower* chapter as some of them (depth/stencil test) are also partially done in the Windower.

The render target write messages are specifically for the use of pixel shader threads that are spawned by the windower, and may not be used by any other threads. This is due to the pixel scoreboard side-effects that sending of this message entails. The pixel scoreboard ensures that incorrect ordering of reads and writes to the same pixel does not occur.

3.7.1 Single Source

The "normal" render target messages are single source. There are two forms, SIMD16 and SIMD8, intended for the equivalent-sized pixel shader threads. A single color (4 channels) is delivered for each of the 16 or 8 pixels in the message payload. Optional depth, stencil, and antialias alpha information can also be delivered with these messages.

The pixel scoreboard bits corresponding to the dispatched pixel mask (or half of the mask in the case of SIMD8 messages) are cleared only if the **Last Render Target Select** bit is set in the message descriptor.

The single source message will not cause a write to the render target if **Dual Source Blend Enable** in 3DSTATE_WM is *enabled*. However, if **Last Render Target Select** is set, the message will still cause pixel scoreboard clear and depth/stencil buffer updates if enabled.

3.7.2 Dual Source [DevSNB+]

The dual source render target messages only have SIMD8 forms due to maximum message length limitations. SIMD16 pixel shaders must send two of these messages to cover all of the pixels. Each message contains two colors (4 channels each) for each pixel in the message payload. In addition to the first source, the second source can be selected as a blend factor (BLENDFACTOR_*_SRC1_* options in the blend factor fields of COLOR_CALC_STATE or BLEND_STATE). Optional depth, stencil, and antialias alpha information can also be delivered with these messages.

Each dual source message delivered will clear the corresponding pixel scoreboard bits if the Last Render Target Select bit in the message descriptor is set.

The dual source message will revert to a single source message using source 0 if **Dual Source Blend Enable** in 3DSTATE_WM is disabled.

3.7.3 Replicate Data

The replicate data render target message is intended to be used for "fast clear" functionality in cases where the color data for each pixel is identical. This message performs better than the other messages due to its smaller message length. This message does not support depth, stencil, or antialias alpha data being sent with it. This message must target only tiled memory. Access of linear memory using this message type is UNDEFINED. The depth buffer can be cleared through the "early depth" function in

conjunction with a pixel shader using this message. Refer to the *Windower* chapter for more details on the early depth function.

The pixel scoreboard bits corresponding to the dispatched pixel mask are cleared only if the Last Render **Target Select** bit is set in the message descriptor.

3.7.4 Multiple Render Targets (MRT)

Multiple render targets are supported with the single source and replicate data messages. Each render target is accessed with a separate Render Target Write message, each with a different surface indicated (different binding table index). The depth buffer is written only by the message(s) to the last render target, indicated by the Last Render Target Select bit set to clear the pixel scoreboard bits.

[DevSNB+]: MRT is not supported when one or more RTs have this surface formats: YCRCB_SWAPUVY, YCRCB_SWAPUV, YCRCB_SWAPY, YCRCB_NORMAL

3.8 State

3.8.1 BINDING_TABLE_STATE

The data port uses the binding table to retrieve surface state. Refer to *Sampling Engine* for the definition of this state.

3.8.2 SURFACE_STATE

The data port uses the surface state for constant buffers, render targets, and media surfaces. Refer to *Sampling Engine* for the definition of this state.

3.8.3 COLOR_PROCESSING_STATE [DevSNB+]

This state structure contains the state used by the color processing function.

DWord	Bit	Description
		STD / STE State
0	31:24	V_Mid: Rectangle middle-point V coordinate.
		Format = U8 (The default is 154)
	23:16	U_Mid: Rectangle middle-point U coordinate.
		Format = U8 (The default is 110)
	15:10	Hue_Max: Rectangle half width.
		Format = U6 (The default is 14)
	9:4	Sat_Max: Rectangle half length.
		Format = U6 (The default is 31)

DWord	Bit	Description
-	3	Reserved : MBZ
	2	Output Control
		0: Output Pixels
		1: Output STD Decisions
	1	STE Enable
		Format = Enable
	0	STD Enable
		Format = Enable
1	31	Reserved : MBZ
	30:28	Diamond Margin
		Format = U3 (The default is 4)
	27:21	Diamond_du: Rhombus center shift in the sat-direction, relative to the rectangle center.
		Format = S7 2's complement (The default is 0)
	20:18	HS_margin: Defines rectangle margin.
		Format = U3 (The default is 3)
	17:10	Cos(α)
		Format = S0.7 2's complement (The default is 79/128)
	9:8	Reserved: MBZ
	7:0	Sin(α)
		Format = S0.7 2's complement (The default is 101/128)
2	31:21	Reserved : MBZ
	20:13	Diamond_alpha: 1 / tan(β)
		Format = U2.6 (The default is 100/64)
	12:7	Diamond_Th: Half length of the rhombus axis in the sat-direction.
		Format = U6 (The default is 35)
	6:0	Diamond_dv: Rhombus center shift in the hue-direction, relative to the rectangle center.
		Format = S6 2's complement (The default is 0)
3	31:24	Y_point_3: Third point of the Y piecewise linear membership function.
		Format = U8 (The default is 254)
	23:16	Y_point_2: Second point of the Y piecewise linear membership function.
		Format = U8 (The default is 47)
	15:8	Y_point_1: First point of the Y piecewise linear membership function.
		Format = U8 (The default is 46)
	7	VY_STD_Enable: Enables STD in the VY subspace.
		Format = Enable
	6:0	Reserved : MBZ

DWord	Bit	Description
4	31:18	Reserved : MBZ
	17:13	Y_Slope_2: Slope between points Y3 and Y4.
		Format = U2.3 (The default is 31/8)
	12:8	Y_Slope_1: Slope between points Y1 and Y2.
		Format = U2.3 (The default is 31/8)
	7:0	Y_point_4: Fourth point of the Y piecewise linear membership function.
		Format = U8 (The default is 255)
5	31:16	INV_skin_types_margin: 1/(2* Skin_types_margin)
		Format = U0.16 (Skin_Type_margin = 20)
	15:0	INV_Margin_VYL: 1 / Margin_VYL
		Format = U0.16 (Margin_VYL = 6554/65536)
6	31:24	P1L: Y Point 1 of the lower part of the detection PWLF.
		Format = U8 (The default is 216)
	23:16	P0L: Y Point 0 of the lower part of the detection PWLF.
		Format = U8 (The default is 46)
	15:0	INV_Margin_VYU: 1 / Margin_VYU
		Format = 0.16 (Margin_VYU = 3227/65536)
7	31:24	B1L: V Bias 1 of the lower part of the detection PWLF.
		Format = U8 (The default is 130)
	23:16	B0L: V Bias 0 of the lower part of the detection PWLF.
		Format = U8 (The default is 133)
	15:8	P3L: Y Point 3 of the lower part of the detection PWLF.
		Format = U8 (The default is 236)
	7:0	P2L: Y Point 2 of the lower part of the detection PWLF.
		Format = U8 (The default is 236)
8	31:27	Reserved : MBZ
	26:16	S0L: Slope 0 of the lower part of the detection PWLF.
		Format = S2.8 2's complement (The default is -5/256)
	15:8	B3L: V Bias 3 of the lower part of the detection PWLF.
		Format = U8 (The default is 130)
	7:0	B2L: V Bias 2 of the lower part of the detection PWLF.
		Format = U8 (The default is 130)
9	31:22	Reserved : MBZ
	21:11	S2L: Slope 2 of the lower part of the detection PWLF.
		Format = S2.8 2's complement (The default is 0/256)

DWord	Bit	Description
	10:0	S1L: Slope 1 of the lower part of the detection PWLF.
		Format = S2.8 2's complement (The default is 0/256)
10	31:27	Reserved : MBZ
	26:19	P1U: Y Point 1 of the upper part of the detection PWLF.
		Format = U8 (The default is 66)
	18:11	P0U: Y Point 0 of the upper part of the detection PWLF.
		Format = U8 (The default is 46)
	10:0	S3L: Slope 3 of the lower part of the detection PWLF.
		Format = S2.8 2's complement (The default is 0/256)
11	31:24	B1U: V Bias 1 of the upper part of the detection PWLF.
		Format = U8 (The default is 163)
	23:16	B0U: V Bias 0 of the upper part of the detection PWLF.
		Format = U8 (The default is 143)
	15:8	P3U: Y Point 3 of the upper part of the detection PWLF.
		Format = U8 (The default is 236)
	7:0	P2U: Y Point 2 of the upper part of the detection PWLF.
		Format = U8 (The default is 150)
12	31:27	Reserved : MBZ
	26:16	S0U: Slope 0 of the upper part of the detection PWLF.
		Format = S2.8 2's complement (The default is 256/256)
	15:8	B3U: V Bias 3 of the upper part of the detection PWLF.
		Format = U8 (The default is 140)
	7:0	B2U: V Bias 2 of the upper part of the detection PWLF.
		Format = U8 (The default is 200)
13	31:22	Reserved : MBZ
	21:11	S2U: Slope 2 of the upper part of the detection PWLF.
		Format = S2.8 2's complement (The default is -179/256)
	10:0	S1U: Slope 1 of the upper part of the detection PWLF.
		Format = S2.8 2's complement (The default is 113/256)
14	31:28	Reserved : MBZ
	27:20	Skin_types_margin: Skin types Y margin
		Format = U8 (The default is 20)
	19:12	Skin_types_thresh: Skin types Y threshold
		Format = U8 (The default is 120)
	11	Skin_types_enable: Treat differently bright and dark skin types
		Format = Enable

DWord	Bit	Description
	10:0	S3U: Slope 3 of the upper part of the detection PWLF.
		Format = S2.8 2's complement (The default is 0/256)
15	31	Reserved : MBZ
	30:21	SATB1: First bias for the saturation PWLF (bright skin).
		Format = S7.2 2's complement (The default is 0/4)
	20:14	SATP3: Third point for the saturation PWLF (bright skin).
		Format = S6 2's complement (The default is 31)
	13:7	SATP2: Second point for the saturation PWLF (bright skin).
		Format = S6 2's complement (The default is 31)
	6:0	SATP1: First point for the saturation PWLF (bright skin).
		Format = S6 2's complement (The default is -11)
16	31	Reserved : MBZ
	30:20	SATS0: Zeroth slope for the saturation PWLF (bright skin)
		Format = U3.8 (The default is 397/256)
	19:10	SATB3: Third bias for the saturation PWLF (bright skin)
		Format = S7.2 2's complement (The default is 124/4)
	9:0	SATB2: Second bias for the saturation PWLF (bright skin)
		Format = S7.2 2's complement (The default is 124/4)
17	31:22	Reserved : MBZ
	21:11	SATS2: Second slope for the saturation PWLF (bright skin)
		Format = U3.8 (The default is 256/256)
	10:0	SATS1: First slope for the saturation PWLF (bright skin)
		Format = U3.8 (The default is 189/256)
18	31:25	HUEP3: Third point for the hue PWLF (bright skin)
		Format = S6 2's complement (The default is 14)
	24:18	HUEP2: Second point for the hue PWLF (bright skin)
		Format = S6 2's complement (The default is 2)
	17:11	HUEP1: First point for the hue PWLF (bright skin)
		Format = S6 2's complement (The default is 0)
	10:0	SATS3: Third slope for the saturation PWLF (bright skin)
		Format = U3.8 (The default is 256/256)
19	31:30	Reserved : MBZ
	29:20	HUEB3: Third bias for the hue PWLF (bright skin)
		Format = S7.2 2's complement (The default is 56/4)
	19:10	HUEB2: Second bias for the hue PWLF (bright skin)
		Format = S7.2 2's complement (The default is 0/4)

DWord	Bit	Description
	9:0	HUEB1: First bias for the hue PWLF (bright skin)
		Format = S7.2 2's complement (The default is 0/4)
20	31:22	Reserved : MBZ
	21:11	HUES1: First slope for the hue PWLF (bright skin)
		Format = U3.8 (The default is 0/256)
	10:0	HUES0: Zeroth slope for the hue PWLF (bright skin)
		Format = U3.8 (The default is 256/256)
21	31:22	Reserved : MBZ
	21:11	HUES3: Third slope for the hue PWLF (bright skin)
		Format = U3.8 (The default is 256/256)
	10:0	HUES2: Second slope for the hue PWLF (bright skin)
		Format = U3.8 (The default is 299/256)
22	31	Reserved : MBZ
	30:21	SATB1_DARK: First bias for the saturation PWLF (dark skin)
		Format = S7.2 2's complement (The default is 0/4)
	20:14	SATP3_DARK: Third point for the saturation PWLF (dark skin)
		Format = S6 2's complement (The default is 31)
	13:7	SATP2_DARK: Second point for the saturation PWLF (dark skin)
		Format = S6 2's complement (The default is 31)
	6:0	SATP1_DARK: First point for the saturation PWLF (dark skin)
		Format = S6 2's complement (The default is -11)
23	31	Reserved : MBZ
	30:20	SATS0_DARK: Zeroth slope for the saturation PWLF (dark skin)
		Format = U3.8 (The default is 397/256)
	19:10	SATB3_DARK: Third bias for the saturation PWLF (dark skin)
		Format = S7.2 2's complement (The default is 124/4)
	9:0	SATB2_DARK: Second bias for the saturation PWLF (dark skin)
		Format = S7.2 2's complement (The default is 124/4)
24	31:22	Reserved : MBZ
	21:11	SATS2_DARK: Second slope for the saturation PWLF (dark skin)
		Format = U3.8 (The default is 256/256)
	10:0	SATS1_DARK: First slope for the saturation PWLF (dark skin)
		Format = U3.8 (The default is 189/256)
25	31:25	HUEP3_DARK: Third point for the hue PWLF (dark skin).
		Format = S6 2's complement (The default is 14)

DWord	Bit	Description
-	24:18	HUEP2_DARK: Second point for the hue PWLF (dark skin).
		Format = S6 2's complement (The default is 2)
	17:11	HUEP1_DARK: First point for the hue PWLF (dark skin).
		Format = S6 2's complement (The default is 0)
	10:0	SATS3_DARK: Third slope for the saturation PWLF (dark skin)
		Format = U3.8 (The default is 256/256)
26	31:30	Reserved : MBZ
	29:20	HUEB3_DARK: Third bias for the hue PWLF (dark skin).
		Format = S7.2 2's complement (The default is 56/4)
	19:10	HUEB2_DARK: Second bias for the hue PWLF (dark skin).
		Format = S7.2 2's complement (The default is 0/4)
	9:0	HUEB1_DARK: First bias for the hue PWLF (dark skin).
		Format = S7.2 2's complement (The default is 0/4)
27	31:22	Reserved : MBZ
	21:11	HUES1_DARK: First slope for the hue PWLF (dark skin).
		Format = U3.8 (The default is 0/256)
	10:0	HUES0_DARK: Zeroth slope for the hue PWLF (dark skin).
		Format = U3.8 (The default is 256/256)
28	31:22	Reserved : MBZ
	21:11	HUES3_DARK: Third slope for the hue PWLF (dark skin).
		Format = U3.8 (The default is 256/256)
	10:0	HUES2_DARK: Second slope for the hue PWLF (dark skin).
		Format = U3.8 (The default is 299/256)
		ACE State
29	31:7	Reserved : MBZ
	6:2	Skin_threshold: Used for Y analysis (min/max) for pixels which are higher than skin threshold.
		Format = U5 (The default is 26)
	1	Full_image_histogram: Used to ignore the area of interest for full image histogram.
		Format = Enable (The default is 0)
	0	ACE Enable
		Format = Enable
30	31:24	Y3: The value of the y_pixel for point 3 in PWL.
		Format = U8 (The default is 76)
	23:16	Y2: The value of the y_pixel for point 2 in PWL.
		Format = U8 (The default is 56)

DWord	Bit	Description
	15:8	Y1: The value of the y_pixel for point 1 in PWL.
		Format = U8 (The default is 36)
	7:0	Ymin: The value of the y_pixel for point 0 in PWL.
		Format = U8 (The default is 16)
31	31:24	Y7: The value of the y_pixel for point 7 in PWL.
		Format = U8 (The default is 156)
	23:16	Y6: The value of the y_pixel for point 6 in PWL.
		Format = U8 (The default is 136)
	15:8	Y5: The value of the y_pixel for point 5 in PWL.
		Format = U8 (The default is 116)
	7:0	Y4: The value of the y_pixel for point 4 in PWL.
		Format = U8 (The default is 96)
32	31:24	Ymax: The value of the y_pixel for point 11 in PWL.
		Format = U8 (The default is 235)
	23:16	Y10: The value of the y_pixel for point 10 in PWL.
		Format = U8 (The default is 216)
	15:8	Y9: The value of the y_pixel for point 9 in PWL.
		Format = U8 (The default is 196)
	7:0	Y8: The value of the y_pixel for point 8 in PWL.
		Format = U8 (The default is 176)
33	31:24	B4: The value of the bias for point 4 in PWL.
		Format = U8 (The default is 96)
	23:16	B3: The value of the bias for point 3 in PWL.
		Format = U8 (The default is 76)
	15:8	B2: The value of the bias for point 2 in PWL.
		Format = U8 (The default is 56)
	7:0	B1: The value of the bias for point 1 in PWL.
		Format = U8 (The default is 36)
34	31:24	B8: The value of the bias for point 8 in PWL.
		Format = U8 (The default is 176)
	23:16	B7: The value of the bias for point 7 in PWL.
		Format = U8 (The default is 156)
	15:8	B6: The value of the bias for point 6 in PWL.
		Format = U8 (The default is 136)
	7:0	B5: The value of the bias for point 5 in PWL.
		Format = U8 (The default is 116)

DWord	Bit	Description
35	31:16	Reserved : MBZ
	15:8	B10: The value of the bias for point 10 in PWL.
		Format = U8 (The default is 216)
	7:0	B9: The value of the bias for point 9 in PWL.
		Format = U8 (The default is 196)
36	31:27	Reserved : MBZ
	26:16	S1: The value of the slope for point 1 in PWL
		Format = U1.10 (The default is 1024/1024)
	15:11	Reserved : MBZ
	10:0	S0: The value of the slope for point 0 in PWL
		Format = U1.10 (The default is 1024/1024)
37	31:27	Reserved : MBZ
	26:16	S3: The value of the slope for point 3 in PWL
		Format = U1.10 (The default is 1024/1024)
	15:11	Reserved : MBZ
	10:0	S2: The value of the slope for point 2 in PWL
		Format = U1.10 (The default is 1024/1024)
38	31:27	Reserved : MBZ
	26:16	S5: The value of the slope for point 5 in PWL
		Format = U1.10 (The default is 1024/1024)
	15:11	Reserved : MBZ
	10:0	S4: The value of the slope for point 4 in PWL
		Format = U1.10 (The default is 1024/1024)
39	31:27	Reserved : MBZ
	26:16	S7: The value of the slope for point 7 in PWL
		Format = U1.10 (The default is 1024/1024)
	15:11	Reserved : MBZ
	10:0	S6: The value of the slope for point 6 in PWL
		Format = U1.10 (The default is 1024/1024)
40	31:27	Reserved : MBZ
	26:16	S9: The value of the slope for point 9 in PWL
		Format = U1.10 (The default is 1024/1024)
	15:11	Reserved : MBZ
	10:0	S8: The value of the slope for point 8 in PWL
		Format = U1.10 (The default is 1024/1024)

DWord	Bit	Description
41	31:11	Reserved : MBZ
	10:0	S10: The value of the slope for point 10 in PWL
		Format = U1.10 (The default is 1024/1024)
		TCC State
42	31:24	SatFactor3: The saturation factor for yellow.
		Format = U1.7 (The default is 220)
	23:16	SatFactor2: The saturation factor for red.
		Format = U1.7 (The default is 220)
	15:8	SatFactor1: The saturation factor for magenta.
		Format = U1.7 (The default is 220)
	7	TCC Enable
		Format = Enable
	6:0	Reserved : MBZ
43	31:24	SatFactor6: The saturation factor for blue.
		Format = U1.7 (The default is 220)
	23:16	SatFactor5: The saturation factor for cyan.
		Format = U1.7 (The default is 220)
	15:8	SatFactor4: The saturation factor for green.
		Format = U1.7 (The default is 220)
	7:0	Reserved : MBZ
44	31:30	Reserved : MBZ
	29:20	BaseColor3: Base Color 3
		Format = U10 (The default is 483)
	19:10	BaseColor2: Base Color 2
		Format = U10 (The default is 307)
	9:0	BaseColor1: Base Color 1
		Format = U10 (The default is 145)
45	31:30	Reserved : MBZ
	29:20	BaseColor6: Base Color 6
		Format = U10 (The default is 995)
	19:10	BaseColor5: Base Color 5
		Format = U10 (The default is 819)
	9:0	BaseColor4: Base Color 4
		Format = U10 (The default is 657)
46	31:16	ColorTransitSlope23: The calculation result of 1 / (BC3 – BC2) [1/62]
		Format = U0.16 (The default is 744)

DWord	Bit	Description
	15:0	ColorTransitSlope12: The calculation result of 1 / (BC2 – BC1) [1/57]
		Format = U0.16 (The default is 405)
47	31:16	ColorTransitSlope45: The calculation result of 1 / (BC5 – BC4) [1/57]
		Format = U0.16 (The default is 407)
		ColorTransitSlope34: The calculation result of 1 / (BC4 – BC3) [1/61]
		Format = U0.16 (The default is 1131)
48	31:16	ColorTransitSlope61: The calculation result of 1 / (BC1 – BC6) [1/62]
		Format = U0.16 (The default is 377)
	15:0	ColorTransitSlope56: The calculation result of 1 / (BC6 – BC5) [1/62]
		Format = U0.16 (The default is 372)
49	31:22	ColorBias3: Color bias for BaseColor3.
		Format = U2.8 (The default is 0)
	21:12	ColorBias2: Color bias for BaseColor2.
		Format = U2.8 (The default is 150)
	11:2	ColorBias1: Color bias for BaseColor1.
		Format = U2.8 (The default is 0)
	1:0	Reserved : MBZ
50	31:22	ColorBias6: Color bias for BaseColor6.
		Format = U2.8 (The default is 0)
	21:12	ColorBias5: Color bias for BaseColor5.
		Format = U2.8 (The default is 0)
	11:2	ColorBias4: Color bias for BaseColor4.
		Format = U2.8 (The default is 0)
	1:0	Reserved : MBZ
51	31	Reserved : MBZ
	30:24	UV Threshold: Low UV threshold.
		Format = U7 (The default is 3)
	23:19	Reserved : MBZ
	18:16	UV Threshold Bits: Low UV transition width bits.
		Format = U3 (The default is 3)
	15:13	Reserved : MBZ
	12:8	STE Threshold: Skin tone pixels enhancement threshold.
		Format = U5 (The default is 0)
	7:3	Reserved : MBZ
	2:0	STE Slope Bits: Skin tone pixels enhancement slope bits.
		Format = U3 (The default is 0)

DWord	Bit	Description
52	31:16	Inv_UVMaxColor: 1 / UVMaxColor. Used for the SFs2 calculation.
		Format = U0.16 (The default is 146)
	15:9	Reserved : MBZ
	8:0	UVMaxColor: The maximum absolute value of the legal UV pixels. Used for the SFs2 calculation.
		Format = U9 (The default is 448)
		PROCAMP State
53	31:28	Reserved : MBZ
	27:17	Contrast: Contrast magnitude.
		Format = U4.7 (The default is 1.0)
	16:13	Reserved : MBZ
	12:1	Brightness: Brightness magnitude.
		Format = S7.4 2's complement (The default is 0.0)
	0	PROCAMP Enable
		Format = Enable (The default is 1)
54	31:16	Cos_c_s: UV multiplication cosine factor.
		Format = S7.8 2's complement (The default is 256)
	15:0	Sin_c_s: UV multiplication sine factor.
		Format = S7.8 2's complement (The default is 0)
		CSC State
55	31:29	Reserved : MBZ
	28:16	C1: Transform coefficient.
		Format = S2.10 2's complement (The default is 0)
	15:3	C0: Transform coefficient.
		Format = S2.10 2's complement (The default is 1024)
	2	YUV_IN: CSC input offset enable
		Format = YUV (The default is 0)
	1	YUV_OUT: CSC output offset enable
		Format = RGB (The default is 0)
	0	Transform Enable
		Format = Enable
56	31:26	Reserved : MBZ
	25:13	C3: Transform coefficient.
		Format = S2.10 2's complement (The default is 0)
	12:0	C2: Transform coefficient.
		Format = S2.10 2's complement (The default is 0)

DWord	Bit	Description
57	31:26	Reserved : MBZ
	25:13	C5: Transform coefficient.
		Format = S2.10 2's complement (The default is 0)
	12:0	C4: Transform coefficient.
		Format = S2.10 2's complement (The default is 1024)
58	31:26	Reserved : MBZ
	25:13	C7: Transform coefficient.
		Format = S2.10 2's complement (The default is 0)
	12:0	C6: Transform coefficient.
		Format = S2.10 2's complement (The default is 0)
59	31:13	Reserved : MBZ
	12:0	C8: Transform coefficient.
		Format = S2.10 2's complement (The default is 1024)
60	31:20	Reserved : MBZ
	19:10	Offset out 1: Offset out for Y/R.
		Format = S9 2's complement (The default is 0)
	9:0	Offset in 1: Offset in for Y/R.
		Format = S9 2's complement (The default is 0)
61	31:20	Reserved : MBZ
	19:10	Offset out 2: Offset out for U/G.
		Format = S9 2's complement (The default is 0)
	9:0	Offset in 2: Offset in for U/G.
		Format = S9 2's complement (The default is 0)
62	31:20	Reserved : MBZ
	19:10	Offset out 3: Offset out for V/B.
		Format = S9 2's complement (The default is 0)
	9:0	Offset in 3: Offset in for V/B.
		Format = S9 2's complement (The default is 0)
63	31:17	Reserved : MBZ
	16	Alpha from State Select
		Format = U1 enumerated type
		0: alpha is taken from message
		1: alpha is taken from state
	15:0	Color Pipe Alpha
		Format = U16

3.9 Messages

3.9.1 Global Definitions

For data port messages, part of the message descriptor is used to determine the message type. This field is documented here. The remainder of the message descriptor is defined differently depending on the message type, and is documented in the section for the corresponding message.

[DevSNB+]: The Data Port is actually three separate targets, Data Port Sampler Cache, Data Port Constant Cache, and Data Port Render Cache, each with its own target unit ID. Each target has its own set of message type encodings as shown below.

Restrictions:

- Data port messages may not have the End of Thread bit set in the message descriptor other than the following exeptions:
 - The Render Target Write message may have **End of Thread** set for pixel shader threads dispatched by the windower in non-contiguous dispatch mode.
 - The Render Target UNORM Write message may have **End of Thread** set for pixel shader threads dispatched by the windower in contiguous dispatch mode.
 - **[DevSNB+] only:** The Media Block Write message may have **End of Thread** set for pixel shader threads dispatched by the windower in contiguous dispatch mode.

3.9.2 Data Port Messages

Most of the messages have an existing definition that is not expected to change. There are several new messages that are documented here.

Data C	ache	Data	Port	Message	Summary
--------	------	------	------	---------	---------

Message Type	Header Required	Shared Local Memory Support	Stateless Support	Address Modes	Vector Width
OWord Block Read	yes	no	yes	global	1
OWord Block Write	yes	no	yes	global	1
Unaligned OWord Block Read	yes	no	yes	global	1
OWord Dual Block Read	no	no	yes	global + offset	2
OWord Dual Block Write	no	no	yes	global + offset	2

Message Type	Header Required	Shared Local Memory Support	Stateless Support	Address Modes	Vector Width
DWord Scattered Read	no	no	yes	global + offset	8, 16
DWord Scattered Write	no	no	yes	global + offset	8, 16
Byte Scattered Read	no	yes		global + offset	8, 16
Byte Scattered Write	no	yes		global + offset	8, 16
Untyped Surface Read	no	yes		1D or 2D	2, 8, 16
Untyped Surface Write	no	yes		1D or 2D	2, 8, 16
Untyped Atomic Operation	no	yes		1D or 2D	8, 16
Scratch Block Read	yes	no	yes (only)	Imm_Buf + offset	
Scratch Block Write	yes	no	yes (only)	Imm_Buf + offset	
Memory Fence	yes	N/A	N/A	N/A	N/A

"global" is the **Global Offset** in the message header (if header is not present, Global Offset is zero). "imm_buf" is the Immediate Buffer Base Address provided in message header register M0.5.

"offset" is in the message payload, and is per-slot.

"handle" is the handle address in the message header.

"URBoffset" is the **Global Offset** field in the URB message descriptor.

"1D" and "2D" are the address payload.

[DevSNB+] Render Cache Data Port Message Summary

Message Type	Header Required	Address Modes	Vector Width
Media Block Read	yes	2D	1
Media Block Write	yes	2D	1
Render Target Write	No ¹	2D + RTAI	8, 16

Typed Surface Read	yes	1D, 2D, 3D, 4D	8
Typed Surface Write	yes	1D, 2D, 3D, 4D	8
Typed Atomic Operation	yes	1D, 2D, 3D, 4D	8
Memory Fence	yes	N/A	N/A

"4D" address refers to U/V/R/LOD for mip-mapped surfaces "2D + RTAI" address refers to a basic 2D address with render target array index for the third dimension

¹[DevSNB-A/B] Errata: Render Target Write messages require a header when Pixel Shader Computed Depth is enabled

Message Descriptor 3.9.2.1

3.9.2.1.1 Message Descriptor [DevSNB+]

The following message descriptor applies to [DevSNB+].

DATA PORT SAMPLER CACHE		DATA CACH	DATA PORT CONSTANT CACHE		DATA PORT RENDER CACHE	
Bit	Description	Bit	Description	Bit	Description	
19	Header Present. If set, in Write message section for	dicates more de	that the message includes the tails on this field.	he head	er. Refer to Render Target	
	Programming Notes:					
	The header must be prese	nt unles	s the message type is <i>Rend</i>	er Targe	t Write	
	Erratum: [DevSNB+]:SW must not rely on HW to perform out of bounds check for (X,) Render Target Write messages with this bit reset.				oounds check for (X,Y) for	
	Format = Enable					
18	Ignored					
17:16	Ignored	17:16	Ignored	17	Send Write Commit Message. Indicates that a write commit message will be sent back to the thread when the write has been committed. See section 3.3 for more details. This field is ignored on read message	

DATA CACH	PORT SAMPLER E	DATA PORT CONSTANT CACHE		DATA	DATA PORT RENDER CACHE	
					types.	
					Format = Enable	
15:13	Message Type	15:13	Message Type	16:13	Message Type	
	000: OWord Block Read		000: OWord Block Read		0000: OWord Block Read	
	010: OWord Dual Block Read		010: OWord Dual Block Read		0001: Render Target UNORM Read	
	100. Media Block Read 101: Unaligned OWord Block Read		Read		0010: OWord Dual Block Read	
	110: DWord Scattered		reserved.		0100: Media Block Read	
	Read All other encodings are				0101: Unaligned OWord Block Read	
	reserved.				0110: DWord Scattered Read	
					0111: DWord Atomic write message	
					1000: OWord Block Write	
					1001: OWord Dual Block Write	
					1010: Media Block Write	
					1011: DWord Scattered Write	
					1100: Render Target Write	
					1101: Streamed Vertex Buffer Write	
					1110: Render Target UNORM Write	
					All other encodings are reserved.	
12:8	Message Specific Contro	ol. Refer	to the specific message sec	tion for	the definition of these bits.	
7:0	Binding Table Index. S binding table index of 255 allowed only with the rend model.	pecifies indicate ler cach	the index into the binding t is that a stateless model is t e data port. Refer to sectio	table for to be use on 2.2.2	the specified surface. A ed. The stateless model is for details on the stateless	
	Format = U8					

DATA PORT SAMPLER CACHE	DATA PORT CONSTANT CACHE	DATA PORT RENDER CACHE
Range = [0,255]		

3.9.2.2 Message Header

This header applies to the following data port messages:

- OWord Block Read/Write
- Unaligned OWord Block Read
- OWord Dual Block Read/Write
- DWord Scattered Read/Write

The header definitions for the other data port messages is in the section for each message.

DWord	Bit	Description
M0.7	31:0	Reserved
M0.6	31:0	Reserved
M0.5	31:10	Immediate Buffer Base Address. Specifies the surface base address for messages in which the Binding Table Index is 255 (stateless model), otherwise this field is ignored. This pointer is relative to the General State Base Address .
		Format = GeneralStateOffset[31:10]
	9:8	Ignored
	7:0	Dispatch ID. This ID is assigned by the fixed function unit and is a unique identifier for the thread. It is used to free up resources used by the thread upon thread completion.
M0.4	31:0	Ignored (reserved for hardware delivery of binding table pointer)
M0.3	31:4	Ignored
	3:0	Reserved

DWord	Bit	Description					
M0.2	31:0	Global Offset.					
		[DevSNB+]:					
		Specifies the global element offset into the buffer.					
		 For the Unaligned OWord messages, this offset is in units of Bytes but must be DWord aligned (bits 1:0 MBZ) 					
		 For the other OWord messages, this offset is in units of OWords 					
		 For the DWord messages, this offset is in units of DWords 					
		 For the Byte messages, this offset is in units of Bytes 					
		Format = U32					
		Range = [0,FFFFFFCh] for Unaliged OWord messages					
		Range = [0,0FFFFFFFh] for other OWord messages					
		Range = [0,3FFFFFFh] for DWord messages					
		Range = [0,FFFFFFFh] for Byte messages					
		Format = U32					
		Range = [0,FFFFFFCh] for Unaliged OWord messages					
		Range = [0,0FFFFFFFh] for other OWord messages					
		Range = [0,3FFFFFFh] for DWord messages					
M0.1	31:0	Ignored					
M0.0	31:0	Ignored					

3.9.2.3 Write Commit Writeback Message

The writeback message is only sent on Data Port Write messages if the **Send Write Commit Message** bit in the message descriptor is set. The destination register is not modified. Write messages without the **Send Write Commit Message** bit set will not return anything to the thread (response length is 0 and destination register is null).

DWord	Bit	Description
W0.7:0		Reserved

3.9.3 OWord Block Read/Write

This message takes one offset (Global Offset), and reads or writes 1, 2, 4, or 8 contiguous OWords starting at that offset.

Restrictions:

- the only surface type allowed is SURFTYPE_BUFFER.
- the surface format is ignored, data is returned from the constant buffer to the GRF without format conversion.

- the surface pitch is ignored, the surface is treated as a 1-dimensional surface. An element size (pitch) of 16 bytes is used to determine the size of the buffer for out-of-bounds checking if using the surface state model. [DevSNB+]
- the surface cannot be tiled
- the surface base address must be OWord aligned
- the **Render Cache Read Write Mode** field in SURFACE_STATE must be set to read/write mode when using this message with the render cache in the surface state model
- the Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be set to read/write mode when using this message with the render cache in the stateless model

Applications:

- constant buffer reads of a single constant or multiple contiguous constants
- scratch space reads/writes where the index for each pixel/vertex is the same
- block constant reads, scratch memory reads/writes for media

Execution Mask. The low 8 bits of the execution mask are used to enable the 8 channels in the first and third GRF registers returned (W0, W2) for read, or the first and third write registers sent (M1, M3). The high 8 bits are used similarly for the second and fourth (W1, W3 or M2, M4). For reads, any mask bit asserted within a group of four will cause the entire OWord to be read and returned to the destination GRF register. For writes, each mask bit is considered for its corresponding DWord written to the destination surface.

For the 1-OWord messages, only the low 8 bits of the execution mask are used. Either the low 4 bits or the high 4 bits, depending on the position of the OWord to be read or written, is used as the single group of four with behavior following that in the preceding paragraph. **[DevBW,DevCL] errata:** Execution mask bits outside of those corresponding to the OWord being read/written cannot be asserted.

The above behavior enables a SIMD16 thread to use the 8-OWord form of this message to access two channels (red and green) of a single scratch register across 16 pixels. A second message would access the other two channels (blue and alpha). The execution mask is used to ensure that data associated with inactive pixels are not overwritten.

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the surface are dropped and will not modify memory contents.

3.9.3.1 OWord Block Message Descriptor

Bit	Description
13	Reserved
12	Ignored [DevSNB]
11	Ignored [DevSNB]
10:8	Block Size. Specifies the number of contiguous OWords to be read or written

Bit	Description		
13	Reserved		
	000: 1 OWord, read into or written from the low 128 bits of the destination register		
	001: 1 OWord, read into or written from the high 128 bits of the destination register		
	010: 2 OWords		
	011: 4 OWords		
	100: 8 OWords		
	all other encodings are reserved.		
	Programming Notes:		
	The 6 OWord block size is valid only with Data Port Constant Cache.		

3.9.3.2 Message Payload (Write)

For the write operation, the message payload consists of one, two, or four registers (not including the header) depending on the **Block Size** specified in the message. For the one-constant case, data is taken from either the high or low half of the payload register depending on the half selected in **Block Size**. In this case, the other half of the payload register is ignored.

The **Offset** referred to below is the **Global Offset** and is in units of OWords. The **OWord** array index is also in units of OWords.

DWord	Bit	Description
M1.7:4	127:0	OWord[Offset + 1]. If the block size is 1 OWord to be written from the high 128 bits of the destination, OWord[Offset] will appear in this location
M1.3:0	127:0	OWord[Offset]
M2.7:4	127:0	OWord[Offset+3]
M2.3:0	127:0	OWord[Offset+2]
M3.7:4	127:0	OWord[Offset+5]
M3.3:0	127:0	OWord[Offset+4]
M4.7:4	127:0	OWord[Offset+7]
M4.3:0	127:0	OWord[Offset+6]

3.9.3.3 Writeback Message (Read)

For the read operation, the writeback message consists of one, two, three, or four registers depending on the **Block Size** specified in the message. For the one-constant case, data is placed in either the high or low half of the returned register depending on the half selected in **Block Size**. In this case, the other half of the register is not changed.

The **Offset** referred to below is the **Global Offset** and is in units of OWords. The **OWord** array index is also in units of OWords.

DWord	Bit	Description
W0.7:4	127:0	OWord[Offset + 1]. If the block size is 1 OWord to be loaded into the high 128 bits of the destination, OWord[Offset] will appear in this location
W0.3:0	127:0	OWord[Offset]
W1.7:4	127:0	OWord[Offset+3]
W1.3:0	127:0	OWord[Offset+2]
W2.7:4	127:0	OWord[Offset+5]
W2.3:0	127:0	OWord[Offset+4]
W3.7:4	127:0	OWord[Offset+7]
W3.3:0	127:0	OWord[Offset+6]

3.9.4 Unaligned OWord Block Read [DevSNB+]

This message takes one DWord aligned offset (**Global Offset**), and reads 1, 2, 4, or 8 contiguous OWords starting at that offset. This message is identical to the OWord Block Read message except the offset alignment. For read/write cache, only the read path supports this unaligned OWord Block access.

Restrictions:

- the only surface type allowed is SURFTYPE_BUFFER.
- the surface format is ignored, data is returned from the constant buffer to the GRF without format conversion.
- the surface pitch is ignored, the surface is treated as a 1-dimensional surface. An element size (pitch) of 16 bytes is used to determine the size of the buffer for out-of-bounds checking if using the surface state model. [DevSNB+]
- the surface cannot be tiled
- the surface base address must be **OWord** aligned
- the **Render Cache Read Write Mode** field in SURFACE_STATE must be set to read/write mode when using this message with the render cache in the surface state model

• the **Stateless Render Cache Read-Write Mode** field in the SVG_WORK_CTL register must be set to read/write mode when using this message with the render cache in the stateless model

Applications:

• Reads with offset that is not aligned with data size, such as row store usage in media

Execution Mask. The execution mask is ignored by this message.

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0.

3.9.4.1 Message Descriptor

Bit	Description
13	Ignored
12:11	Ignored
10:8	Block Size. Specifies the number of contiguous OWords to be read
	000: 1 OWord, read into the low 128 bits of the destination register
	001: 1 OWord, read into the high 128 bits of the destination register
	010: 2 OWords
	011: 4 OWords
	100: 8 OWords
	all other encodings are reserved.

3.9.4.2 Writeback Message (Read)

For the read operation, the writeback message consists of one, two, or four registers depending on the **Block Size** specified in the message. For the one-constant case, data is placed in either the high or low half of the returned register depending on the half selected in **Block Size**. In this case, the other half of the register is not changed.

The **Global Offset** is in units of **Bytes**, aligned to **DWord** (two LSBs set to zero). The **OWordX** array in units of OWord starts at Global Offset.

DWord	Bit	Description
W0.7:4	127:0	OWord1 = *(&OWord0 + 1). If the block size is 1 OWord to be loaded into the high 128 bits of the destination, OWord0 will appear in this location
W0.3:0	127:0	OWord0 = Buffer[Global Offset]
W1.7:4	127:0	OWord3 = *(&OWord2 + 1)
W1.3:0	127:0	OWord2 = *(&OWord1 + 1)
W2.7:4	127:0	OWord5= *(&OWord4 + 1)
W2.3:0	127:0	OWord4 = *(&OWord3 + 1)
W3.7:4	127:0	OWord7 = *(&OWord6 + 1)

DWord	Bit	Description
W3.3:0	127:0	OWord6 = *(&OWord5 + 1)

3.9.5 OWord Dual Block Read/Write

This message takes two offsets, and reads or writes 1 or 4 contiguous OWords starting at each offset. The Global Offset is added to each of the specific offsets.

Programming Restrictions: Writes to overlapping addresses will have undefined write ordering.

Restrictions:

- the only surface type allowed is SURFTYPE_BUFFER.
- the surface format is ignored, data is returned from the constant buffer to the GRF without format conversion.
- the surface pitch is ignored, the surface is treated as a 1-dimensional surface. An element size (pitch) of 16 bytes is used to determine the size of the buffer for out-of-bounds checking if using the surface state model. [DevSNB+]
- the surface cannot be tiled
- the surface base address must be OWord aligned
- the **Render Cache Read Write Mode** field in SURFACE_STATE must be set to read/write mode when using this message with the render cache in the surface state model
- the Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be set to read/write mode when using this message with the render cache in the stateless model

Applications:

- SIMD4x2 constant buffer reads where the indices of each vertex/pixel are different (if there are two indices and they are the same, hardware will optimize the cache accesses and do only one cache access)
- SIMD4x2 scratch space reads/writes where the indices are different

Execution Mask. The low 8 bits of the execution mask are used to enable the 8 channels in the GRF registers returned for read, or each of the write registers sent. For reads, any mask bit asserted within a group of four will cause the entire OWord to be read and returned to the destination GRF register. For writes, each mask bit is considered for its corresponding DWord written to the destination surface.

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the surface are dropped and will not modify memory contents.

3.9.5.1 Message Descriptor

Bit	Description
13	Reserved
12	Ignored
11:10	Ignored
9:8	Block Size: Specifies the number of OWords in each block to be read or written
	00: 1 OWord 10: 4 OWords
	all other encodings are reserved.

3.9.5.2 Message Payload

DWord	Bit	Description						
M1.7	31:0	Ignored						
M1.6	31:0	Ignored						
M1.5	31:0	Ignored						
M1.4	31:0	Block Offset 1.						
		DevSNB+]:						
		Specifies the OWord offset of OWord Block 1 into the surface.						
		Format = U32						
		Range = [0,0FFFFFFh]						
M1.3	31:0	Ignored						
M1.2	31:0	Ignored						
M1.1	31:0	Ignored						
M1.0	31:0	Block Offset 0						

3.9.5.3 Additional Message Payload (Write)

For the write operation, the message payload consists of one or four registers (not including the header or the first part of the payload) depending on the **Block Size** specified in the message.

The Offset1/0 referred to below is the Global Offset added to the corresponding Block Offset 1/0 and is in units of Owords. The OWord array index is also in units of OWords.

DWord	Bit	Description
M2.7:4	127:0	OWord[Offset1]
M2.3:0	127:0	OWord[Offset0]
M3.7:4	127:0	OWord[Offset1+1]
M3.3:0	127:0	OWord[Offset0+1]
M4.7:4	127:0	OWord[Offset1+2]

DWord	Bit	Description				
M4.3:0	127:0	OWord[Offset0+2]				
M4.7:4	127:0	OWord[Offset1+3]				
M4.3:0	127:0	OWord[Offset0+3]				

3.9.5.4 Writeback Message (Read)

For the read operation, the writeback message consists of one or four registers depending on the **Block Size** specified in the message.

The **Offset1/0** referred to below is the **Global Offset** added to the corresponding **Block Offset 1/0** and is in units of Owords. The **OWord** array index is also in units of OWords.

DWord	Bit	Description
W0.7:4	127:0	OWord[Offset1]
W0.3:0	127:0	OWord[Offset0]
W1.7:4	127:0	OWord[Offset1+1]
W1.3:0	127:0	OWord[Offset0+1]
W2.7:4	127:0	OWord[Offset1+2]
W2.3:0	127:0	OWord[Offset0+2]
W3.7:4	127:0	OWord[Offset1+3]
W3.3:0	127:0	OWord[Offset0+3]

3.9.6 Media Block Read/Write

The read form of this message enables a rectangular block of data samples to be read from the source surface and written into the GRF. The write form enables data from the GRF to be written to a rectangular block.

Restrictions:

- the only surface type allowed is non-arrayed, non-mipmapped SURFTYPE_2D. Because of this, the stateless surface model is not supported with this message.
- the surface format is used to determine the pixel structure for boundary clamp, the raw data from the surface is returned to the thread without any format conversion nor filtering operation
- the target cache cannot be the data cache
- the surface base address must be 32-byte aligned
- When a surface is XMajor tiled, (tile walk field in the surface state is set to TILEWALK_XMAJOR), a memory area mapped through the Render Cache cannot be read and/or wrote in mixed frame and field modes. For example, if a memory location is first written

with a zero Vertical Line Stride (frame mode), and later on (without render cache flush) read back using Vertical Line Stride of one (field mode), the read data stored in GRF are uncertain.

- The block width and offset should be aligned to the size of pixels stored in the surface. For a surface with 8bpp pixels for example, the block width and offset can be byte aligned. For a surface with 16bpp pixels, it is word aligned.
 - For YUV422 formats, the block width and offset must be pixel pair aligned (i.e. dword aligned).
- The write form of message has the additional restriction that both **X Offset** and **Block Width** must be DWord aligned.
- [DevSNB-A] Erratum: IECP enabled medis write messages are not supported.
- When Color Processing is enabled for media write message. Render target must be tiled.

Applications:

• Block reads/writes for media

Execution Mask. The execution mask on the send instruction for this type of message is ignored. The data that is read or written is determined completely by the block parameters.

Out-of-Bounds Accesses. Reads outside of the surface results in the address being clamped to the nearest edge of the surface and the pixel in the position being returned. Writes outside of the surface are dropped and will not modify memory contents.

Determining the boundary pixel value depends on the surface format. Surface format definitions can be found in the Surface Formats Section of the Sampling Engine Chapter.

- For a surface with 8bpp pixels, the boundary byte is replicated. For example, for a boundary dword B0B1B2B3, to replicate the left boundary byte pixel, the out of bound dwords have the format of B0B0B0B0, and that for right boundary is B3B3B3B3.
 - This rule applies to all surface formats with BPE of 8. As the data port does not perform format conversion, the most likely used surface formats are R8_UINT and R8_SINT.
- For any other surfaces with 16bpp pixels, boundary pixel replication is on words. For example, for a boundary dword B0B1B2B3, to replicate the left boundary word pixel, the out of bound dwords have the format of B0B1B0B1, and that for right boundary is B2B3B2B3.
 - This rule applies to all surface formats with BPE of 16. As the data port does not perform format conversion, only the formats with integer data types may be useful in practice.
- For special surfaces with 16bpp pixels YUV422 packed format, there are two basic cases depending on the Y location: YUYV (surface format YCRCB_NORMAL) and UYVY (surface format YCRCB_SWAPY). Boundary handling for YVYU (surface format YCRCB_SWAPUV) is the same as that for YUYV. Similarly, boundary handling for VYUY (surface format YCRCB_SWAPUV) is the same as that for UYVY. Note that these four surface formats have 16bpp pixels, even though the BPE fields are set to zero according to the table in the Surface Formats Section.

- For a boundary dword Y0U0Y1V0, to replicate the left boundary, we get Y0U0**Y0**V0, and to replicate the right boundary, we get **Y1**U0Y1V0.
- For a boundary dword U0Y0V0Y1, to replicate the left boundary, we get U0Y0V0Y0, and to replicate the right boundary, we get U0Y1V0Y1.
- For a surface with 32bpp pixels, the boundary dword pixel is replicated.
 - This rule applies to all surface formats with BPE of 32. As the data port does not perform format conversion, some of the formats may not be useful in practice.

Hardware behavior for any other surface types is undefined.

When Color Processing Enable is set to 1 and the IECP output surface to be written is NV12 format (R16_UNORM surface format 0x10A, should be used if the output surface is NV12 format).

- NV12 surface state : The width of the surface should be always multiples of 4pixels. For 16bpp input message (422 8-bit) the width will always need to be in multiples of 8bytes and for 32bpp input message (422 16-bit or 444 8-bit) the width should be in multiples of 16bytes. Height should be in multiples of 2pixel high. (presently the MFX restriction is that width should be in multiples of 2pixels).
 - a. y-offset of the media block write from the EU should be always even
 - b. x-offset of the media block write from the EU should be in multiples of 4 pixel.
- 2. The media block dword write can have only the following combinations (for IECP when NV12 output format is used):
 - a. 8pixel wide for 422 8-bit mode
 - b. 4pixel wide for 422 8-bit mode
 - c. 4pixel wide for 422 16-bit
 - d. 4pixel wide for 444 8-bit.
 - e. 444 16-bit input format cannot be supported when the output format is NV12 (s/w should not use this combination).
 - f. It has to be in multiples of 2pixel high for all above modes.
- 3. If 444-format is used then we use only the pixel_0 UV values of the 2x2 pixel and the rest are dropped and in case of 422-format the top UV values are used and the bottom UV values is dropped if the output format is NV12 format.
- 4. Assuming IECP messages will always have vertical stride = 0. (since this is only for preprocessing before the encoder).

3.9.6.1 Message Descriptor

Bit	Description						
13	Reserved: MBZ						
12	Reserved : MBZ						
11	[DevSNB+]: Reserved : MBZ						
10	Vertical Line Stride Override Specifies whether the Vertical Line Stride and Vertical Line Stride Offset fields in the surface state should be replaced by bits 9 and 8 below. If this field is 1, Height in the surface state (see SURFACE_STATE section of Sampling Engine chapter) is modified according the following rules:						
	Vertical Line Stride	Override Vertical Line	Derived 1-based surface height				
	(in surface state)	Stride	(As a function of the 0-based Height in surface state)				
	0	0	Height + 1				
			(Normal)				
	0	1	(Height +1) / 2				
	Restriction: (Height + 1) must be number.						
	1	0	(Height + 1) * 2				
	1	1	Height + 1				
			(Normal)				
	tion video buffer, if Vertical Line Stride in surface should be 479. When accessing the bottom field of al Line Stride and Override Vertical Line Stride ce height (of the field) will be 240 ((Height + 1) / 2). state is 1 and Vertical Line Stride Offset in surface op field of the video buffer. In this case, Height (of Accessing the bottom video field will use the same rame (with Override Vertical Line Stride and will result in a derived surface height of 480						
	0 Use parameters in	the surface state and	ignore bits 9:8				
	1 Use bits 9:8 to provide the Vertical Line Stride and Vertical Line Stride Offset						

Bit	Description
9	Override Vertical Line Stride
	Specifies number of lines (0 or 1) to skip between logically adjacent lines – provides support of interleaved (field) surfaces as textures.
	Format = U1 in lines to skip between logically adjacent lines
	[DevBW-A] Erratum: This field is ignored by hardware.
8	Override Vertical Line Stride Offset
	Specifies the offset of the initial line from the beginning of the buffer. Ignored when Override Vertical Line Stride is 0.
	Format = U1 in lines of initial offset (when Vertical Line Stride == 1)

3.9.6.2 Message Header

DWord	Bit	Description							
M0.7	31:0	Reserved							
M0.6	31:0	Reserved							
M0.5	31:8	Ignored							
	7:0	FFTID. This ID is assigned by the fixed function unit and is a unique identifier for the thread. It is used to free up resources used by the thread upon thread completion.							
M0.4	31:0	Ignored (reserved for hardware delivery of binding table pointer)							
M0.3	31:5	Color Processing State Pointer [DevSNB+]. Defines the pointer to COLOR_PROCESSING_STATE. Ignored on read messages and when Color Processing Enable is not set. This pointer is relative to the General State Base Address.							
		Programming Notes:							
		 This pointer is <i>not</i> delivered via state variables like most other pointers are delivered. It must be delivered via another software-defined mechanism such as CURBE. 							
		Format = GeneralStateOffset[31:5]							
	4 Ignored								
	3:2 Message Format [DevSNB+]. Defines the format of the message if Color Proc Enable is set.								
	0: YUV 4:2:2, 8 bits per channel								
	1: YUV 4:4, 8 bits per channel								
	2: YUV 4:2:2, 16 bits per channel								
	1	Area of Interest [DevSNB+]. This field controls whether the statistic for the luma pixels is collected at VSC for ACE histogram. This field is effective only when the state variable Full_image_histogram is disabled.							
	0	Color Processing Enable [DevSNB+]. This field controls whether color processing is enabled on a media block write message.							
		Format = Enable							
		[DevSNB-A] Erratum: This bit must be set to zero.							
The follow	 ing M0 2 de	finition applies only if the Message Mode field is set to NORMAL.							
	21.00								
M0.2	31:29								
	28:24	Reserved							

DWord	Bit	Description									
	21:16	Block Height. Height in rows of block being accessed.									
		Programming Notes:									
		 The Block Height is restricted to the following maximum values depending on the Block Width: 									
			Block Width (bytes) Maximum Block Height (rows)								
			1-4 64								
			5-8 32								
			9-	16		1	6				
			17	-32		1	8				
		Format = I	J6								
		Range = [0,63] represe	enting 1 to 6	64 rows						
	15:10	Ignored									
	9:8	Reserved	Reserved								
	7:5	Ignored	Ignored								
	4:0	Block Wid	1th. Width in	bytes of the	e block bein	g accessed					
		Programm	ning Notes:								
		• N	Must be DWord aligned for the write form of the message.								
		Format = U5									
		Range = [0,31] representing 1 to 32 Bytes									
The followi	ing M0.2 de	finition appli	es only if the	e Message I	Mode field is	set to PIXI	EL_MASK:				
MO.2	31:0	Pixel Mask. One bit per pixel (each pixel being a DWord) indicating which pixels are to be written. This field is ignored by the read message, all pixels are always returned The bits in this mask correspond to the pixels (DWords) as follows:									
		0	1	4	5	16	17	20	21		
		2	2 3 6 7 18 19 22 23								
		8	9	12	13	24	25	28	29		
		10	11	14	15	26	27	30	31		
M0.1	31:0	Y offset.	The Y offset	of the upper	left corner	of the block	into the su	rface.			
		Format = S31									
		Programming Notes:									
		If Message Mode is set to PIXEL_MASK, this field must be a multiple of 4									

DWord	Bit	Description
M0.0	31:0	X offset. The X offset of the upper left corner of the block into the surface.
		Must be DWord aligned (Bits 1:0 MBZ) for the write form of the message.
		The X offset field defines the offset in the input message block. This may differ from the offset in the surface if Color Processing is enabled due to format conversion.
		[DevBW, DevCL] This field must also be DWord aligned for the read form of the message.
		Format = S31
		Programming Notes:
		If Message Mode is set to PIXEL_MASK, this field must be a multiple of 32

Programming Note: The legal combinations of block width, pitch control, sub-register offset and block height are given below:

	sub-register offsets								
block width	pitch control	0	1	2	3	4	5	6	7
	00	1-64	1	1	1	1	1	1	1
1-4	01	1-64	1-64	illegal	illegal	1-2	1-2	illegal	illegal
	10	illegal							
	11	1-64	1-64	1-64	1-64	illegal	illegal	illegal	illegal
	00	1-32	illegal	1	illegal	1	illegal	1	illegal
5-8	01	1-32	illegal	1-32	illegal	illegal	illegal	illegal	illegal
	10	illegal							
	11	1-32	illegal	1-32	illegal	1-32	illegal	1-32	illegal
	00	1-16	illegal	illegal	illegal	1	illegal	illegal	illegal
9-16	01	1-16	illegal	illegal	illegal	1-16	illegal	illegal	illegal
	10	illegal							
	11	1-16	illegal	illegal	illegal	1-16	illegal	illegal	illegal
	00	1-8	illegal						
7-32	01	1-8	illegal						
	10	illegal							
	11	1-8	illegal						

Block Height for given block width, pitch control, subreg offsets

3.9.6.3 Message Payload (Write)

DWord	Bit	Description
M1:n		Write Data. The format of the write data depends on the Block Height and Block Width. The data is aligned to the least significant bits of the first register, and the register pitch is equal to the next power-of-2 that is greater than or equal to the Block Width.

If **Color Processing Enable** is enabled, the write data is divided into pixels according to the **Message Format** field. The fields within each pixel are defined below. For the 4:2:2 modes, each pixel position includes channels for two pixels.

Message Format	31:24	23:16	15:8	7:0
YUV 4:2:2, 8 bits per channel	Cr (V)	right pixel lum (Y1)	Cb (U)	left pixel lum (Y0)
YUV 4:4:4, 8 bits per channel	alpha (A)	luminance (Y)	Cb (U)	Cr (V)
	63:48	47:32	31:16	15:0
YUV 4:2:2, 16 bits per channel	63:48 Cr (V)	47:32 right pixel lum (Y1)	31:16 Cb (U)	15:0 left pixel lum (Y0)

3.9.6.4 Writeback Message (Read)

DWord	Bit	Description
W0:n		Read Data [DevSNB+] The format of the read data depends on the Block Height and Block Width . The data is aligned to the least significant bits of the first register, and the register pitch is equal to the next power-of-2 that is greater than or equal to the Block Width . Width .

3.9.7 DWord Scattered Read/Write

This message takes a set of offsets, and reads or writes 8 or 16 scattered DWords starting at each offset. The Global Offset is added to each of the specific offsets.

Programming Restrictions: Writes to overlapping addresses will have undefined write ordering.

For read messages with X/Y offsets that are outside the bounds of the surface, the address is clamped to the nearest edge of the surface. For write messages with X/Y offsets that are outside the bounds of the surface, the behavior is undefined.

[DevSNB] Hardware does not check for or optimize for cases where offsets are equal or contiguous, thus for optimal performance in these cases a different message may provide higher performance.

Restrictions:

- the only surface type allowed is SURFTYPE_BUFFER.
- the surface format is ignored, data is returned from the constant buffer to the GRF without format conversion.
- the surface pitch is ignored, the surface is treated as a 1-dimensional surface. An element size (pitch) of 16 bytes is used to determine the size of the buffer for out-of-bounds checking if using the surface state model. [DevSNB+]
- the surface cannot be tiled
- the surface base address must be DWord aligned
- the **Render Cache Read Write Mode** field in SURFACE_STATE must be set to read/write mode when using this message with the render cache in the surface state model
- the Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be set to read/write mode when using this message with the render cache in the stateless model

Applications:

- SIMD8/16 constant buffer reads where the indices of each pixel are different (read one channel per message)
- SIMD8/16 scratch space reads/writes where the indices are different (read/write one channel per message)
- general purpose DWord scatter/gathering, used by media

Execution Mask. Depending on the block size, either the low 8 bits or all 16 bits of the execution mask are used to determine which DWords are read into the destination GRF register (for read), or which DWords are written to the surface (for write).

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the surface are dropped and will not modify memory contents.

3.9.7.1 Message Descriptor

Bit	Description
13	Reserved
12	Ignored
11:10	Ignored

Bit	Description			
13	Reserved			
9:8	Block Size. Specifies the number of DWords to be read or written			
	10: 8 DWords			
	11: 16 DWords			
	All other encodings are reserved.			

3.9.7.2 Message Payload

DWord	Bit	Description
M1.7	31:0	Offset 7.
		[DevSNB+]:
		Specifies the DWord offset of DWord 7 into the surface.
		Format = U32
		Range = [0,3FFFFFFh]
M1.6	31:0	Offset 6
M1.5	31:0	Offset 5
M1.4	31:0	Offset 4
M1.3	31:0	Offset 3
M1.2	31:0	Offset 2
M1.1	31:0	Offset 1
M1.0	31:0	Offset 0
M2.7	31:0	Offset 15. This message register is included only if the block size is 16 DWords.
M2.6	31:0	Offset 14
M2.5	31:0	Offset 13
M2.4	31:0	Offset 12
M2.3	31:0	Offset 11
M2.2	31:0	Offset 10
M2.1	31:0	Offset 9
M2.0	31:0	Offset 8

3.9.7.3 Additional Message Payload (Write)

For the write operation, either one or two additional registers (depending on the block size) of payload contain the data to be written.

The **Offsetn** referred to below is the **Global Offset** added to the corresponding **Offset n** and is in units of Dwords. The **DWord** array index is also in units of DWords.

DWord	Bit	Description
M3.7	31:0	DWord[Offset7]
M3.6	31:0	DWord[Offset6]
M3.5	31:0	DWord[Offset5]
M3.4	31:0	DWord[Offset4]
M3.3	31:0	DWord[Offset3]
M3.2	31:0	DWord[Offset2]
M3.1	31:0	DWord[Offset1]
M3.0	31:0	DWord[Offset0]
M4.7	31:0	DWord[Offset15]. This message register is included only if the block size is 16 DWords
M4.6	31:0	DWord[Offset14]
M4.5	31:0	DWord[Offset13]
M4.4	31:0	DWord[Offset12]
M4.3	31:0	DWord[Offset11]
M4.2	31:0	DWord[Offset10]
M4.1	31:0	DWord[Offset9]
M4.0	31:0	DWord[Offset8]

3.9.7.4 Writeback Message (Read)

For the read operation, the writeback message consists of either one or two registers depending on the block size.

The **Offsetn** referred to below is the **Global Offset** added to the corresponding **Offset n** and is in units of Dwords. The **DWord** array index is also in units of DWords.

DWord	Bit	Description
W0.7	31:0	DWord[Offset7]
W0.6	31:0	DWord[Offset6]
W0.5	31:0	DWord[Offset5]
W0.4	31:0	DWord[Offset4]
W0.3	31:0	DWord[Offset3]
W0.2	31:0	DWord[Offset2]
W0.1	31:0	DWord[Offset1]
W0.0	31:0	DWord[Offset0]
W1.7	31:0	DWord[Offset15]. This writeback message register is included only if the block size is 16 DWords.
W1.6	31:0	DWord[Offset14]
W1.5	31:0	DWord[Offset13]
W1.4	31:0	DWord[Offset12]
W1.3	31:0	DWord[Offset11]
W1.2	31:0	DWord[Offset10]
W1.1	31:0	DWord[Offset9]
W1.0	31:0	DWord[Offset8]

3.9.8 DWord Atomic write message [DevSNB]

This message takes a set of offsets, and writes 8 scattered DWords starting at each offset. The Global Offset is added to each of the specific offsets. Although this is a write message, it has the read-data returning based on the atomic opcode.

For offsets that are outside the bounds of the surface, the corresponding DW is turned off in the hardware.

Hardware does not check for or optimize for cases where offsets are equal or contiguous, thus for optimal performance in these cases a different message may provide higher performance.

Restrictions:

• the only surface type allowed is SURFTYPE_BUFFER.

- the surface format is ignored, data is returned to the GRF without format conversion.
- the surface pitch is ignored, the surface is treated as a 1-dimensional surface. An element size (pitch) of 16 bytes is used to determine the size of the buffer for out-of-bounds checking if using the surface state model.
- the surface cannot be tiled
- the surface base address must be DWord aligned

Execution Mask. 8 dword enables are generated out of execution masks.

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the surface are dropped and will not modify memory contents.

3.9.8.1 Message Descriptor

Bit	Description
12	Two-Source Message . When this bit is set, there are two data-phases for two sources. Two-source message is used only for opcode "0111" and for all other opcodes this bit must be 0.
	When this bit is 0, M3 is not sent to the data-port.
11:8	Atomic Operation Code: (Please refer to the table below)
	Unsupported opcodes:
	1101, 1110, 1111

Opcode	Operation	Return Value
0000	ADD: new = old + src0	Old value
0001	SUB: new = old – src0	Old value
0010	INC : new = old+1	Old value
0011	DEC: new = old-1	Old value
0100	MIN: new = min(old, src0)	Old value
0101	MAX: new = max(old, src0)	Old value
0110	XCHG: new = src0	Old value
0111	CMPXCHG : new = (old==src1) ? src0 : old	Old value
1000	AND: new = old & src0	Old value
1001	OR: new = old src0	Old value

1010	XOR: new = old ^ src0	Old value
1011	MIN_SINT: new = min(old, src0)	Old value(signed)
1100	MAX_SINT: new = max(old, src0)	Old value(signed)
1101-1111	NOP : new = old,	Old value

3.9.8.2 Message Payload

DWord	Bit	Description
M1.7	31:0	Offset 7.
		Specifies the DWord offset of DWord 7 into the surface.
		Format = U32
		Range = [0,3FFFFFFh]
M1.6	31:0	Offset 6
M1.5	31:0	Offset 5
M1.4	31:0	Offset 4
M1.3	31:0	Offset 3
M1.2	31:0	Offset 2
M1.1	31:0	Offset 1
M1.0	31:0	Offset 0

3.9.8.3 Source Payload

Either one or two additional registers (depending on **Two-Source Message**) of source payload contain the data to be used as source.

The **Offsetn** referred to below is the **Global Offset** added to the corresponding **Offset n** and is in units of DWords. The **DWord** array index is also in units of DWords.

DWord	Bit	Description
M2.7	31:0	DWord[Offset7] Src0
M2.6	31:0	DWord[Offset6] Src0
M2.5	31:0	DWord[Offset5] Src0
M2.4	31:0	DWord[Offset4] Src0
M2.3	31:0	DWord[Offset3] Src0
M2.2	31:0	DWord[Offset2] Src0

DWord	Bit	Description
M2.1	31:0	DWord[Offset1] Src0
M2.0	31:0	DWord[Offset0] Src0
M3.7	31:0	DWord[Offset7] Src1
M3.6	31:0	DWord[Offset6] Src1
M3.5	31:0	DWord[Offset5] Src1
M3.4	31:0	DWord[Offset4] Src1
M3.3	31:0	DWord[Offset3] Src1
M3.2	31:0	DWord[Offset2] Src1
M3.1	31:0	DWord[Offset1] Src1
M3.0	31:0	DWord[Offset0] Src1

3.9.8.4 Writeback Message

For the read operation, the writeback message consists of either one or two registers depending on the block size.

The **Offsetn** referred to below is the **Global Offset** added to the corresponding **Offset n** and is in units of DWords. The **DWord** array index is also in units of DWords.

DWord	Bit	Description
W0.7	31:0	DWord[Offset7]
W0.6	31:0	DWord[Offset6]
W0.5	31:0	DWord[Offset5]
W0.4	31:0	DWord[Offset4]
W0.3	31:0	DWord[Offset3]
W0.2	31:0	DWord[Offset2]
W0.1	31:0	DWord[Offset1]
W0.0	31:0	DWord[Offset0]

3.9.9 Render Target Write

This message takes four subspans of pixels for write to a render target. Depending on parameters contained in the message and state, it may also perform a depth and stencil buffer write and/or a render target read for a color blend operation. Additional operations enabled in the Color Calculator state will also be initiated as a result of issuing this message (depth test, alpha test, logic ops, etc.). This message is intended only for use by pixel shader kernels for writing results to render targets.

Restrictions:

• All surface types are allowed.

- A
- For SURFTYPE_BUFFER and SURFTYPE_1D surfaces, only the X coordinate is used to index into the surface. The Y coordinate must be zero.
- For SURFTYPE_1D, 2D, 3D, and CUBE surfaces, a **Render Target Array Index** is included in the input message to provide an additional coordinate. The **Render Target Array Index** must be zero for SURFTYPE_BUFFER.
- The surface format is restricted to the set supported as render target. If source/dest color blend is enabled, the surface format is further restricted to the set supported as alpha blend render target.
- The last message sent to the render target by a thread must have the **End Of Thread** bit set in the message descriptor and the dispatch mask set correctly in the message header to enable correct clearing of the pixel scoreboard.
- The stateless model cannot be used with this message (Binding Table Index cannot be 255).
- This message can only be issued from a kernel specified in WM_STATE or 3DSTATE_WM (pixel shader kernel), dispatched in non-contiguous mode. Any other kernel issuing this message will cause undefined behavior.
- [DevCTG+]: The dual source message cannot be used if the Render Target Rotation field in SURFACE_STATE is set to anything other than RTROTATE_0DEG.
- This message cannot be used on a surface in field mode (Vertical Line Stride = 1)
- If multiple SIMD8 Dual Source messages are delivered by the pixel shader thread, each SIMD8_DUALSRC_LO message must be issued *before* the SIMD8_DUALSRC_HI message with the same **Slot Group Select** setting.
- [DevSNB-A]:SIMD8 Dual Source Messages are not supported.
- [DevSNB-A,B]: Dual Source Messages to the linear RT or MSRT can result in incorrect PS_DEPTH_COUNT.
- [DevSNB]: SIMD8 Image Write: Out of bounds write to SURFTYPE_BUFFER with more than 8K elements is undefined.

Execution Mask. The execution mask for render target messages is ignored. Control of which pixels are active is controlled by the **Pixel/Sample Enables** fields in the message header.

Out-of-Bounds Accesses. Accesses to pixels outside of the surface are dropped and will not modify memory contents. However, if the **Render Target Array Index** is out of bounds, it is set to zero and the surface write is not surpressed.

3.9.9.1 Subspan/Pixel to Slot Mapping

The following table indicates the mapping of subspans, pixels, and samples to slots in the pixel shader dispatch depending on the number of samples and message size. This table applies to all devices, however NumSamples = 4X is supported only on [DevSNB].

Pixels are numbered as follows within a subspan:

0 = upper left

1 = upper right

- 2 = lower left
- 3 = lower right

sspi = Starting Sample Pair Index (from the message header)

Message Size	Num Samples		Slot Mapping
SIMD16	1X	Slot[3:0]	= Subspan[0].Pixel[3:0].Sample[0]
		Slot[7:4]	= Subspan[1].Pixel[3:0].Sample[0]
		Slot[11:8]	= Subspan[2].Pixel[3:0].Sample[0]
		Slot[15:12]	= Subspan[3].Pixel[3:0].Sample[0]
	4X	Slot[3:0]	= Subspan[0].Pixel[3:0].Sample[0]
		Slot[7:4]	= Subspan[0].Pixel[3:0].Sample[1]
		Slot[11:8]	= Subspan[0].Pixel[3:0].Sample[2]
		Slot[15:12]	= Subspan[0].Pixel[3:0].Sample[3]
SIMD8	1X	Slot[3:0]	= Subspan[0].Pixel[3:0].Sample[0]
		Slot[7:4]	= Subspan[1].Pixel[3:0].Sample[0]
	4X	Slot[3:0]	= Subspan[0].Pixel[3:0].Sample[2*sspi+0]
		Slot[7:4]	= Subspan[0].Pixel[3:0].Sample[2*sspi+1]

Restriction:

- [DevSNB+]: When SIMD32 or SIMD16 PS threads send render target writes with multiple SIMD8 and SIMD16 messages, the following must hold:
 - All the slots (as described above) must have a corresponding render target write irrespective of the slot's validity. A slot is considered valid when at least one sample is enabled. For example, a SIMD16 PS thread must send two SIMD8 render target writes to cover all the slots.

 PS thread must send SIMD render target write messages with increasing slot numbers. For example, SIMD16 thread has Slot[15:0] and if two SIMD8 render target writes are used, the first SIMD8 render target write must send Slot[7:0] and the next one must send Slot[15:8].

3.9.9.2 Message Descriptor

3.9.9.2.1 Message Descriptor [DevSNB+]

Bit	Descrip	Description		
13	[DevSNB+] Ignored			
2	Last Render Target Select. This bit must be set on the group of pixels. For single render target pixel shaders messages. For multiple render target pixel shaders, the render target.	he last render target write message sent for each , this bit is set on all render target write his bit is set only on messages sent to the last		
	This bit must be zero for SIMD8 Image Write message 3D FF, this bit must be zero.	e. In general, when threads are not launched by		
11	Slot Group Select. This field selects whether slots 15	5:0 or slots 31:16 are used for bypassed data.		
	Bypassed data includes the antialias alpha, multisamp present also includes the X/Y addresses and pixel ena SLOTGRP_LO must be selected on every message. correctly for each message based on which slots are of	le coverage mask, and if the header is not ables. For 8- and 16-pixel dispatches, For 32-pixel dispatches, this field must be set currently being processed.		
	0: SLOTGRP_LO: choose b	ypassed data for slots 15:0		
	1: SLOTGRP_HI: choose b	ypassed data for slots 31:16		
	This bit must be zero for SIMD8 Image Write message.			

Bit	Description		
10:8	Message Type. This field specifies the type of render target message.		
	For the SIMD8_DUALSRC_xx me X/Y addresses, and oMask.	ssages, the low bit indicates which slots to use for the pixel enables,	
	Programming Notes:		
	 SIMD16_REPDATA (Mes Using this Message Type 	ssage Type = 111) is only supported when accessing tiled memory. to access linear (untiled) memory is UNDEFINED.	
	000: SIMD16:	SIMD16 single source message	
	001: SIMD16_REPDATA:	SIMD16 single source message with replicated data	
	010: SIMD8_DUALSRC_LO:	SIMD8 dual source message, use slots 7:0	
	011: SIMD8_DUALSRC_HI:	SIMD8 dual source message, use slots 15:8	
	100: SIMD8_LO:	SIMD8 single source message, use slots 7:0	
	101: SIMD8_IMAGE_WR:	SIMD8 2D/3D Image Write, use slots 7:0 [DevSNB Only]	
	Note: the above slots indicated a SLOTGRP_HI is selected, the SIM 7:0 or 15:8, respectively.	re within the 16 slots selected by Slot Group Select . If ID8 message types above reference slots 23:16 or 31:24 instead of	
	[DevSNB]: When Pixel Shader ou for Render Target Write must be S	tputs oDepth and PS invocation mode is PERPIXEL, Message Type SIMD8.	
	Errata: [DevSNB+]: When Pixel (including SIMD8_DUALSRC_xx).	Shader outputs oMask, this message type is not supported: SIMD8	

3.9.9.3 Message Header

The render target write message has a two-register message header.

3.9.9.3.1 Message Header [DevSNB+]

If the header is not present, behavior is as if the message was sent with most fields set to the same value that was delivered in R0 and R1 on the pixel shader thread dispatch. The following fields, which are not delivered in the pixel shader dispatch, behave as if they are set to zero:

• Render Target Index

• Source0 Alpha Present to Render Target

DWord	Bit	Description
M0.7	31:0	Reserved
M0.6	31:0	Reserved
M0.5	31:10	Ignored
	9:8	Color Code: This ID is assigned by the Windower unit and is used to track synchronizng events.
		Format: Reserved for HW Implementation Use.
	7:0	FFTID. The Fixed Function Thread ID is assigned by the fixed function unit and is a unique identifier for the thread. It is used to free up resources used by the thread upon thread completion.
M0.4	31:0	Ignored (reserved for hardware delivery of binding table pointer)
M0.3	31:0	Ignored
M0.2	31:3	Ignored
	2:0	Render Target Index. Specifies the render target index that will be used to select blend state from BLEND_STATE.
		Format = U3
M0.1	31:6	Color Calculator State Pointer. Specifies the 64-byte aligned pointer to the color calculator state. This pointer is relative to the General State Base Address.
		Format = GeneralStateOffset[31:6]
	5:0	Ignored
M0.0	31	Ignored
	30:27	Viewport Index. Specifies the index of the viewport currently being used.
		Format = U4
		Range = [0,15]

DWord	Bit	Description	
	26:16	Render Target Array Index. Specifies the array index to be used for the following surface types:	
		SURFTYPE_1D: specifies the array index. Range = [0,511]	
		SURFTYPE_2D: specifies the array index. Range = [0,511]	
		SURFTYPE_3D: specifies the "z" or "r" coordinate. Range = [0,2047]	
		SURFTYPE_CUBE: specifies the face identifier. Range = [0,5]	
		SURFTYPE_BUFFER: must be zero.	
		face Render Target Array Index	
		+x 0	
		-x 1	
		+y 2	
		-у З	
		+z 4	
		-z 5	
		Format = U11	
		The Render Target Array Index used by hardware for access to the Render Target is overridden with the Minimum Array Element defined in SURFACE_STATE if it is out of the range between Minimum Array Element and Depth . For cube surfaces, a depth value of 5 is used for this determination.	
	15	Front/Back Facing Polygon. Determines whether the polygon is front or back facing. Used by the render cache to determine which stencil test state to use.	
		0: Front Facing	
		1: Back Facing	
	14	Ignored	
	13	Source Depth Present to Render Target. Indicates that source depth is included in the message.	
	12	oMask to Render Target	
		This bit indicates that oMask data is present in the message and is to be used to mask off samples.	
	11	Source0 Alpha Present to RenderTarget. This bit indicates that Source0 Alpha (aka o0.a) data is included in RTWrite message. If present, these alpha values are used as inputs to AlphaTest and AlphaToCoverage functions. This is required to meet the API rules when writing to multiple render targets (MRTs).	
		Programming Notes:	
		 This bit should not be set when writing to RT0, though sending and using redundant alpha will provide the correct results (at lower performance). 	
		 This bit is not supported on Dual-Source Blend message types, as source0 alpha is already included in those messages. 	
		This bit is not supported on replicated data message types.	
	10:9	Ignored	

DWord	Bit	Description
	8:6	Starting Sample Pair Index: indicates the index of the first sample pair of the dispatch
		Format = U3
		[DevSNB]: Range = [0,1]
	5:0	Ignored
M1.7	31:16	Dispatched Pixel/Sample Enables. One bit per pixel (or sample within pixel) indicating which pixels/samples were originally enabled when the thread was dispatched. This field is only required for the end-of-thread message and on all dual-source messages.
		The Dispatched Pixel/Sample Enables <i>must be unmodified</i> from the ones sent when the pixel shader thread was initiated. If the Dispatched Pixel/Sample Enables are modified, behavior is undefined.
		Multisample Note:
		 When operating in PERSAMPLE mode these bits correspond to samples, not pixels. Each subspan slot (4 bits) corresponds to a specific sample location for the subspan. Note that in NUMSAMPLES_1 mode, a pixel and sample are synonomous.
		When operating in PERPIXEL mode, this field is ignored, and instead the SampleEnableMask (obtained via bypass) are used to clear the Depth Scoreboard.
	15:0	Pixel/Sample Enables. One bit per pixel/sample indicating which pixels/samples are still lit based on kill instruction activity in the pixel shader. This mask is used to control actual writes to the color buffer.
		Multisample Note:
		 When operating in PERSAMPLE mode these bits correspond to samples, not pixels, as the PS is run per-sample. Each subspan slot (4 bits) corresponds to a specific sample location for the subspan.
		When operating in PERPIXEL mode, these bits still correspond to pixels, as the PS is run per-pixel. Each pixel's mask bit is replicated according to Number of Multisamples and combined with other masks to control writes to the multisample locations.
M1.6	31:0	Ignored
M1.5	31:16	Y3. Y coordinate for upper-left pixel of subspan 3 (slot 12)
		Format = U16
	15:0	X3. X coordinate for upper-left pixel of subspan 3 (slot 12)
		Format = U16
M1.4	31:16	Y2
	15:0	X2
M1.3	31:16	Y1
	15:0	X1
M1.2	31:16	Y0
	15:0	X0
M1.1	31:0	Ignored
M1.0	31:0	Ignored

DWord	Bit	Description	
M0.7	31:0	Reserved	
M0.6	31:0	Reserved	
M0.5	31:10	Ignored	
	9:8	Color Code: This ID is assigned by the Windower unit and is used to track synchronizng events.	
		Format: Reserved for HW Implementation Use.	
	7:0	FFTID. The Fixed Function Thread ID is assigned by the fixed function unit and is a unique identifier for the thread. It is used to free up resources used by the thread upon thread completion.	
M0.4	31:0	Ignored (reserved for hardware delivery of binding table pointer)	
M0.3	31:0	Ignored	
M0.2	31:3	Ignored	
	2:0	Render Target Index. Specifies the render target index that will be used to select blend state from BLEND_STATE.	
		Format = U3	
M0.1	31:6	Color Calculator State Pointer. Specifies the 64-byte aligned pointer to the color calculator state. This pointer is relative to the General State Base Address .	
		Format = GeneralStateOffset[31:6]	
	5:0	Ignored	
M0.0	31	Ignored	
	30:27	Viewport Index. Specifies the index of the viewport currently being used.	
		Format = U4	
		Range = [0,15]	
		SIMD8_IMAGE_WR message type this field is ignored by hardware.	

3.9.9.4 Header for SIMD8_IMAGE_WRITE [DevSNB]

DWord	Bit	Description
	26:16	Render Target Array Index. Specifies the array index to be used for the following surface types:
		SURFTYPE_1D: specifies the array index. Range = [0,511]
		SURFTYPE_2D: specifies the array index. Range = [0,511]
		SURFTYPE_3D: specifies the "z" or "r" coordinate. Range = [0,2047]
		SURFTYPE_CUBE: specifies the face identifier. Range = [0,5]
		SURFTYPE_BUFFER: must be zero.
		face Render Target Array Index
		+x 0
		-x 1
		+y 2
		-y 3
		+z 4
		-z 5
		Format = U11
		The Render Target Array Index used by hardware for access to the Render Target is overridden with the Minimum Array Element defined in SURFACE_STATE if it is out of the range between Minimum Array Element and Depth . For cube surfaces, a depth value of 5 is used for this determination.
		For SMD8_IMAGE_WRITE :
		For SURFTYPE_2D, this field must be 0.
		For SURFTYPE_3D, this field may not be 0 for "Write-3D-Image" operation.
	15:8	Ignored
	7:0	Pixel Maks for SIMD8 messages.
		1: Pixel is enabled
		0: Pixel is disabled , in this case the corresponding (x,y) should be ignored by hardware.
M1.7	31:16	Y7: y-coordinate for pixel 7
		Format = U16
	15:0	X7: x-coordinate for pixel 7
		Format = U16
M1.6	31:16	Y6: y-coordinate for pixel 6
		Format = U16
	15:0	X6: x-coordinate for pixel 6
		Format = U16
M1.5	31:16	Y5: y-coordinate for pixel 5
		Format = U16

DWord	Bit	Description
	15:0	X5: x-coordinate for pixel 5
		Format = U16
M1.4	31:16	Y4: y-coordinate for pixel 4
		Format = U16
	15:0	X4: x-coordinate for pixel 4
		Format = U16
M1.3	31:16	Y3: y-coordinate for pixel 3
		Format = U16
	15:0	X3: x-coordinate for pixel 3
		Format = U16
M1.2	31:16	Y2: y-coordinate for pixel 2
		Format = U16
	15:0	X2: x-coordinate for pixel 2
		Format = U16
M1.1	31:16	Y1: y-coordinate for pixel 1
		Format = U16
	15:0	X1: x-coordinate for pixel 1
		Format = U16
M1.0	31:16	Y0: y-coordinate for pixel 0
		Format = U16
	15:0	X0: x-coordinate for pixel 0
		Format = U16

3.9.9.5 Source 0 Alpha Payload [DevSNB+]

The source 0 alpha registers, if included, appear in M2 and M3, immediately following the header (if present).

For the SIMD8 single source message, only slot 7:0 data is sent (M2). The source 0 alpha phases are not supported for dual source messages.

DWord	Bit	Description
M2.7	31:0	Source 0 Alpha for Slot 7
		Format = IEEE_Float
		This and the next register is only included if Source 0 Alpha Present bit is set.
M2.6	31:0	Source 0 Alpha for Slot 6

DWord	Bit	Description
M2.5	31:0	Source 0 Alpha for Slot 5
M2.4	31:0	Source 0 Alpha for Slot 4
M2.3	31:0	Source 0 Alpha for Slot 3
M2.2	31:0	Source 0 Alpha for Slot 2
M2.1	31:0	Source 0 Alpha for Slot 1
M2.0	31:0	Source 0 Alpha for Slot 0
M3.7	31:0	Source 0 Alpha for Slot 15
M3.6	31:0	Source 0 Alpha for Slot 14
M3.5	31:0	Source 0 Alpha for Slot 13
M3.4	31:0	Source 0 Alpha for Slot 12
M3.3	31:0	Source 0 Alpha for Slot 11
M3.2	31:0	Source 0 Alpha for Slot 10
M3.1	31:0	Source 0 Alpha for Slot 9
M3.0	31:0	Source 0 Alpha for Slot 8

3.9.9.6 oMask Payload [DevSNB+]

The oMask payload, if present, follows source 0 alpha. The value of 'p' depends on whether the header and source 0 alpha are present.

Sample "n" for that pixel will be killed (not written to the render target or depth buffer) if bit "n" of the oMask is zero. Bits numbers where "n" is larger than the number of multisamples are ignored.

For the SIMD8 messages, only slots 7:0 data is used, or only slots 15:8 depending on the **Message Type** encoding.

DWord	Bit	Description
Mp.7	31:16	oMask for Slot 15
		Format = 16-bit mask
		This register is only included if oMask Present bit is set.
	15:0	oMask for Slot 14
Mp.6	31:16	oMask for Slot 13

DWord	Bit	Description
	15:0	oMask for Slot 12
Mp.5	31:16	oMask for Slot 11
	15:0	oMask for Slot 10
Mp.4	31:16	oMask for Slot 9
	15:0	oMask for Slot 8
Mp.3	31:16	oMask for Slot 7
	15:0	oMask for Slot 6
Mp.2	31:16	oMask for Slot 5
	15:0	oMask for Slot 4
Mp.1	31:16	oMask for Slot 3
	15:0	oMask for Slot 2
Mp.0	31:16	oMask for Slot 1
	15:0	oMask for Slot 0

3.9.9.7 Color Payload: SIMD16 Single Source

3.9.9.7.1 Color Payload: SIMD16 Single Source [DevSNB+]

This payload is included if the Message Type is SIMD16 single source. The value of 'm' depends on whether the header, source 0 alpha, and oMask are present.

DWord	Bit	Description
Mm.7	31:0	Slot 7 Red. Specifies the value of the slot's red component.
		Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.
Mm.6	31:0	Slot 6 Red
Mm.5	31:0	Slot 5 Red
Mm.4	31:0	Slot 4 Red
Mm.3	31:0	Slot 3 Red

DWord	Bit	Description
Mm.2	31:0	Slot 2 Red
Mm.1	31:0	Slot 1 Red
Mm.0	31:0	Slot 0 Red
M(m+1).7	31:0	Slot 15 Red
M(m+1).6	31:0	Slot 14 Red
M(m+1).5	31:0	Slot 13 Red
M(m+1).4	31:0	Slot 12 Red
M(m+1).3	31:0	Slot 11 Red
M(m+1).2	31:0	Slot 10 Red
M(m+1).1	31:0	Slot 9 Red
M(m+1).0	31:0	Slot 8 Red
M(m+2)		Slot[7:0] Green. See Mm definition for slot locations
M(m+3)		Slot[15:8] Green. See M(m+1) definition for slot locations
M(m+4)		Slot[7:0] Blue. See Mm definition for slot locations
M(m+5)		Slot[15:8] Blue. See M(m+1) definition for slot locations
M(m+6)		Slot[7:0] Alpha. See Mm definition for slot locations
M(m+7)		Slot[15:8] Alpha. See M(m+1) definition for slot locations

3.9.9.8 Color Payload: SIMD8 Single Source

This payload is included if the Message Type is SIMD8 single source or SIMD8 Image Write. For **[DevSNB+]**, the value of 'm' depends on whether the header, source 0 alpha, and oMask are present.

DWord	Bit	Description
Mm.7	31:0	Slot 7 Red. Specifies the value of the slot's red component.
		Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.
Mm.6	31:0	Slot 6 Red
Mm.5	31:0	Slot 5 Red

DWord	Bit	Description
Mm.4	31:0	Slot 4 Red
Mm.3	31:0	Slot 3 Red
Mm.2	31:0	Slot 2 Red
Mm.1	31:0	Slot 1 Red
Mm.0	31:0	Slot 0 Red
M(m+1)		Slot[7:0] Green. See Mm definition for slot locations
M(m+2)		Slot[7:0] Blue. See Mm definition for slot locations
M(m+3)		Slot[7:0] Alpha. See Mm definition for slot locations

3.9.9.9 Color Payload: SIMD16 Replicated Data

This payload is included if the Message Type specifies single source message with replicated data. One set of R/G/B/A data is included in the message, and this data is replicated to all 16 pixels.

This message is legal with color data only (for **[DevSNB+]**, oMask is also legal with this message). The registers for depth, stencil, and antialias alpha data cannot be included with this message, and the corresponding bits in the message header must indicate that these registers are not present.

For [DevSNB+], the value of 'm' depends on whether the header and oMask are present.

Programming Notes:

o This message is allowed only on tiled surfaces

DWord	Bit	Description
Mm.7:4	31:0	Reserved
Mm.3	31:0	Alpha. Specifies the value of all slots' alpha channel.
		Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.
Mm.2	31:0	Blue
Mm.1	31:0	Green
Mm.0	31:0	Red

3.9.9.10 Color Payload: SIMD8 Dual Source [DevSNB+]

This payload is included if the **Message Type** specifies dual source message. For **[DevSNB+]**, the value of 'm' depends on whether the header, source 0 alpha, and oMask are present.

The dual source message contains only 2 subspans (8 pixels) due to limitations in message length.

DWord	Bit	Description
Mm.7	31:0	Slot 7 Source 0 Red. Specifies the value of the slot's red component.
		Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.
Mm.6	31:0	Slot 6 Source 0 Red
Mm.5	31:0	Slot 5 Source 0 Red
Mm.4	31:0	Slot 4 Source 0 Red
Mm.3	31:0	Slot 3 Source 0 Red
Mm.2	31:0	Slot 2 Source 0 Red
Mm.1	31:0	Slot 1 Source 0 Red
Mm.0	31:0	Slot 0 Source 0 Red
M(m+1)		Slot[7:0] Source 0 Green. See Mm definition for slot locations
M(m+2)		Slot[7:0] Source 0 Blue. See Mm definition for slot locations
M(m+3)		Slot[7:0] Source 0 Alpha. See Mm definition for slot locations
M(m+4)		Slot[7:0] Source 1 Red. See Mm definition for slot locations
M(m+5)		Slot[7:0] Source 1 Green. See Mm definition for slot locations
M(m+6)		Slot[7:0] Source 1 Blue. See Mm definition for slot locations
M(m+7)		Slot[7:0] Source 1 Alpha. See Mm definition for slot locations

3.9.9.11 Depth Payload

The depth registers, if included, appear immediately following the color payload.

For the SIMD8 messages, only slot 7:0 data is sent, or only slot 15:8 depending on the **Message Type** encoding. Any complete message register containing ignored data cannot be delivered.

DWord	Bit	Description							
Mn.7	31:0	Source Depth for Slot 7							
		Format = IEEE_Float							
		This and the next register is only included if Source Depth Present bit is set.							
Mn.6	31:0	Source Depth for Slot 6							
Mn.5	31:0	Source Depth for Slot 5							
Mn.4	31:0	Source Depth for Slot 4							
Mn.3	31:0	Source Depth for Slot 3							
Mn.2	31:0	Source Depth for Slot 2							
Mn.1	31:0	Source Depth for Slot 1							
Mn.0	31:0	Source Depth for Slot 0							
M(n+1).7	31:0	Source Depth for Slot 15							
M(n+1).6	31:0	Source Depth for Slot 14							
M(n+1).5	31:0	Source Depth for Slot 13							
M(n+1).4	31:0	Source Depth for Slot 12							
M(n+1).3	31:0	Source Depth for Slot 11							
M(n+1).2	31:0	Source Depth for Slot 10							
M(n+1).1	31:0	Source Depth for Slot 9							
M(n+1).0	31:0	Source Depth for Slot 8							
Mk.7	31:0	Reserved							
Mk.6	31:0	Destination Depth for Slot 6							
Mk.5	31:0	Destination Depth for Slot 5							
Mk.4	31:0	Destination Depth for Slot 4							
Mk.3	31:0	Destination Depth for Slot 3							
Mk.2	31:0	Destination Depth for Slot 2							
Mk.1	31:0	Destination Depth for Slot 1							

DWord	Bit	Description
Mk.0	31:0	Destination Depth for Slot 0
M(k+1).7	31:0	Destination Depth for Slot 15
M(k+1).6	31:0	Destination Depth for Slot 14
M(k+1).5	31:0	Destination Depth for Slot 13
M(k+1).4	31:0	Destination Depth for Slot 12
M(k+1).3	31:0	Destination Depth for Slot 11
M(k+1).2	31:0	Destination Depth for Slot 10
M(k+1).1	31:0	Destination Depth for Slot 9
M(k+1).0	31:0	Destination Depth for Slot 8

3.9.9.12 Message Sequencing Summary

3.9.9.12.1 Message Sequencing Summary [DevSNB+]

This section summarizes the sequencing that occurs for each legal render target write message. All messages have the M0 and M1 header registers if the header is present. If the header is not present, all registers below are renumbered starting with M0 where M2 appears. All cases not shown in this table are illegal.

Key:

s0, s1 = source 0, source 1

1/0 = slots 15:8

3/2 = slots 7:0

sZ = source depth

oM = oMask

Messa ge Tvno	oMask Presen	Source Depth	d Alpha Presen	M2	МЗ	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14
000	0	0	0	1/0R	3/2R	1/0G	3/2G	1/0B	3/2B	1/0A	3/2A					
000	0	0	1	1/0s0A	3/2s0A	1/0R	3/2R	1/0G	3/2G	1/0B	3/2B	1/0A	3/2A			
000	0	1	0	1/0R	3/2R	1/0G	3/2G	1/0B	3/2B	1/0A	3/2A	1/0sZ	3/2sZ			

Messa ge	oMask Presen ↓	Source Depth	o Alpha Presen	M2	МЗ	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14
000	0	1	1	1/0s0A	3/2s0A	1/0R	3/2R	1/0G	3/2G	1/0B	3/2B	1/0A	3/2A	1/0sZ	3/2sZ	
000	1	0	0	оМ	1/0R	3/2R	1/0G	3/2G	1/0B	3/2B	1/0A	3/2A				
000	1	0	1	1/0soA	3/2s0A	оМ	1/0R	3/2R	1/0G	3/2G	1/0B	3/2B	1/0A	3/2A		
000	1	1	0	оМ	1/0R	3/2R	1/0G	3/2G	1/0B	3/2B	1/0A	3/2A	1/0sZ	3/2sZ		
000	1	1	1	1/0s0A	3/2s0A	оМ	1/0R	3/2R	1/0G	3/2G	1/0B	3/2B	1/0A	3/2A	1/0sZ	3/2sZ
001	0	0	0	RGBA												
001	1	0	0	оМ	RGBA											
010	0	0	0	1/0s0R	1/0s0G	1/0s0B	1/0s0A	1/0s1R	1/0s1G	1/0s1B	1/0s1A					
010	0	1	0	1/0s0R	1/0s0G	1/0s0B	1/0s0A	1/0s1R	1/0s1G	1/0s1B	1/0s1A	1/0sZ				
010	1	0	0	оМ	1/0s0R	1/0s0G	1/0s0B	1/0s0A	1/0s1R	1/0s1G	1/0s1B	1/0s1A				
010	1	1	0	оМ	1/0s0R	1/0s0G	1/0s0B	1/0s0A	1/0s1R	1/0s1G	1/0s1B	1/0s1A	1/0sZ			
011	0	0	0	3/2s0R	3/2s0G	3/2s0B	3/2s0A	3/2s1R	3/2s1G	3/2s1B	3/2s1A					
011	0	1	0	3/2s0R	3/2s0G	3/2s0B	3/2s0A	3/2s1R	3/2s1G	3/2s1B	3/2s1A	3/2sZ				
011	1	0	0	оМ	3/2s0R	3/2s0G	3/2s0B	3/2s0A	3/2s1R	3/2s1G	3/2s1B	3/2s1A				
011	1	1	0	оМ	3/2s0R	3/2s0G	3/2s0B	3/2s0A	3/2s1R	3/2s1G	3/2s1B	3/2s1A	3/2sZ			
100	0	0	0	R	G	В	A									
100	0	0	1	s0A	R	G	В	A								
100	0	1	0	R	G	В	A	sZ								
100	0	1	1	s0A	R	G	В	A	sZ							
100	1	0	0	оМ	R	G	В	A								
100	1	0	1	s0A	οМ	R	G	В	A							
100	1	1	0	оМ	R	G	В	A	sZ							
100	1	1	1	s0A	оМ	R	G	В	A	sZ						

3.9.10 Render Target UNORM Read/Write [DevCTG] to [DevSNB]

This message is supported on [DevCTG] to [DevSNB] only.

This message reads from or writes to an 8x4 rectangular block of pixels in the render target.

Restrictions:

- the only **Surface Type** allowed is SURFTYPE_2D. Because of this, the stateless surface model is not supported with this message.
- the Surface Format must be R8G8B8A8_UNORM, B8G8R8A8_UNORM, R8G8B8X8_UNORM, or B8G8R8X8_UNORM. This is used to determine the pixel structure for boundary clamp, the raw data from the surface is returned to the thread without any format conversion nor filtering operation
- the **Surface Base Address** must be 32-byte aligned
- When a surface is XMajor tiled, (Tile Walk field in the surface state is set to TILEWALK_XMAJOR), a memory area mapped through the Render Cache cannot be read and/or written in mixed frame and field modes. For example, if a memory location is first written with a zero Vertical Line Stride (frame mode), and later on (without render cache flush) read back using Vertical Line Stride of one (field mode), the read data stored in GRF are uncertain.
- Unlike the normal "Render Target Write" message, no operations enabled by COLOR_CALC_STATE are supported (alpha blend, alpha test, depth test, stencil, test, logic ops, etc.). [Pre-DevSNB]: Depth buffer operations are still possible if under conditions of "promoted depth" as described in the Windower chapter. Non-promoted and computed depth cases are not supported with this message.
- The Target Cache for the read message must be the Render Cache.
- **[Pre-DevSNB]:** If this message is issued from a windower dispatched thread, only one Render Target UNORM Write message is allowed in each 32-pixel dispatch thread, two are required in each 64-pixel dispatch thread. This is because the scoreboard is cleared whenever this message is issued.

Execution Mask. The execution mask on the send instruction for this type of message is ignored. The data that is written is determined by the **Pixel Mask**.

Out-of-Bounds Accesses. Writes outside of the surface result are dropped and do not modify memory contents. Reads outside of the surface return zero.

Bit			ſ	Description	I		
12	Ignored						
11	Ignored						
10	Vertical Line Stride Override						
	Specifies whether t surface state shoul	he Vertic a d be repla	Vertical Line Stride and Vertical Line Stride Offset fields in the be replaced by bits 9 and 8 below.				
	If this field is 1, Hei chapter) is modified	ght in the l according	surface state g the following	(see SURF g rules:	ACE_STATE	section of Sampling Engine	
	Warning: Vertical Li Stride	ne	Warning Overrid Vertical L	: e ine	Warning:	Derived 1-based surface height	
	Warning: n surface state)	(i)	Stride		Warning: based I	(As a function of the 0- leight in surface state)	
	Warning:	0	Warning:	0	Warning:	Height + 1	
					Warning:	(Normal)	
	Warning:	0	Warning:	1	Warning:	(Height +1) / 2	
					Warning: must be an	Restriction: (Height + 1) even number.	
	Warning:	1	Warning:	0	Warning:	(Height + 1) * 2	
	Warning:	1	Warning:	1	Warning:	Height + 1	
					Warning:	(Normal)	
	For example, for a state is 0, i.e. a fran this frame video by Offset will be set to In contrary, if Vertic state is 0, the surfat the top field) should surface height of 2 Override Vertical L ((Height + 1) * 2). 0 Use parameters	720x480 s ne, Heigh uffer, both 1, then th cal Line St ice state r l be progra 240. Acce ine Stride s in the su	standard reso t (of the fram o Override Vo e derived sur tride in surface epresents the ammed as 23 essing the vi e Offset set	elution video e) should be ertical Line face height e state is 1 e top field of 9. Accessin deo frame to 0) will re nd ignore bit	b buffer, if Ver e 479. When a Stride and O (of the field) v and Vertical I f the video bur g the bottom v (with Overrid esult in a der	tical Line Stride in surface accessing the bottom field of verride Vertical Line Stride vill be 240 ((Height + 1) / 2). Line Stride Offset in surface ffer. In this case, Height (of video field will use the same e Vertical Line Stride and ived surface height of 480	
	1 Use bits 9:8 to	provide th	e Vertical Li	ne Stride ar	nd Vertical Li	ne Stride Offset	

3.9.10.1 Render Target UNORM Message Descriptor

Bit	Description
9	Override Vertical Line Stride
	Specifies number of lines (0 or 1) to skip between logically adjacent lines – provides support of interleaved (field) surfaces as textures.
	Format = U1 in lines to skip between logically adjacent lines
8	Override Vertical Line Stride Offset
	Specifies the offset of the initial line from the beginning of the buffer. Ignored when Override Vertical Line Stride is 0.
	Format = U1 in lines of initial offset (when Vertical Line Stride == 1)

3.9.10.2 Message Header

DWord	Bit	Description
M0.7	31:0	Reserved
M0.6	31:0	Reserved
M0.5	31:8	Ignored
	7:0	Dispatch ID. This ID is assigned by the fixed function unit and is a unique identifier for the thread. It is used to free up resources used by the thread upon thread completion.
M0.4	31:0	Ignored (reserved for hardware delivery of binding table pointer)
M0.3	31:0	Ignored
M0.2	31:0	Pixel Mask. One bit per pixel indicating which pixels are lit, possibly impacted by kill instruction activity in the pixel shader. This mask is used to control actual writes to the color buffer. This field is ignored by the read message, all pixels are always returned.
M0.1	31:0	Y offset. The Y offset of the upper left corner of the block into the surface. Must be 4-row aligned (Bits 1:0 MBZ).
		Format = S31
M0.0	31:0	X offset. The X offset of the upper left corner of the block into the surface. This is a pixel offset assuming a 32-bit pixel. Must be 8-pixel aligned (Bits 2:0 MBZ).
		Format = S31

3.9.10.3 Message Payload (Write Message only)

The channels are defined as follows depending on surface format:

Ch	anne	el F	R8G8	B8A	B_UN R IIN		1 B 1 B	8G8R8A8_UNORM
Cha	innel	0		Re	ed			Blue
Channel 1		1	Green					Green
Channel 2		2	Blue					Red
Channel 3				Alp	ha			Alpha
Pixels are n			mber	ed as	follo	WS:		
0	1	2	3	4	5	6	7	
8	9	10	11	12	13	14	15	
16	17	18	19	20	21	22	23	
24	25	26	27	28	29	30	31	

DWord	Bit	Description
M1.7	31:24	Pixel 15 Channel 1
		Format = 8-bit UNORM
	23:16	Pixel 15 Channel 0
	15:8	Pixel 14 Channel 1
	7:0	Pixel 14 Channel 0
M1.6		Pixel 13 & 12 Channel 1/0
M1.5		Pixel 7 & 6 Channel 1/0
M1.4		Pixel 5 & 4 Channel 1/0
M1.3		Pixel 11 & 10 Channel 1/0
M1.2		Pixel 9 & 8 Channel 1/0
M1.1		Pixel 3 & 2 Channel 1/0
M1.0		Pixel 1 & 0 Channel 1/0
M2.7		Pixel 31 & 30 Channel 1/0
M2.6		Pixel 29 & 28 Channel 1/0

DWord	Bit	Description
M2.5		Pixel 23 & 22 Channel 1/0
M2.4		Pixel 21 & 20 Channel 1/0
M2.3		Pixel 27 & 26 Channel 1/0
M2.2		Pixel 25 & 24 Channel 1/0
M2.1		Pixel 19 & 18 Channel 1/0
M2.0		Pixel 17 & 16 Channel 1/0
M3.7:0		Pixels 15:0 Channel 3/2
M4.7:0		Pixels 31:16 Channel 3/2

3.9.10.4 Writeback Message (Read Message only)

DWord	Bit	Description
W0.7	31:24	Pixel 15 Channel 1
		Format = 8-bit UNORM
	23:16	Pixel 15 Channel 0
	15:8	Pixel 14 Channel 1
	7:0	Pixel 14 Channel 0
W0.6		Pixel 13 & 12 Channel 1/0
W0.5		Pixel 7 & 6 Channel 1/0
W0.4		Pixel 5 & 4 Channel 1/0
W0.3		Pixel 11 & 10 Channel 1/0
W0.2		Pixel 9 & 8 Channel 1/0
W0.1		Pixel 3 & 2 Channel 1/0
W0.0		Pixel 1 & 0 Channel 1/0
W1.7		Pixel 31 & 30 Channel 1/0
W1.6		Pixel 29 & 28 Channel 1/0
W1.5		Pixel 23 & 22 Channel 1/0

DWord	Bit	Description
W1.4		Pixel 21 & 20 Channel 1/0
W1.3		Pixel 27 & 26 Channel 1/0
W1.2		Pixel 25 & 24 Channel 1/0
W1.1		Pixel 19 & 18 Channel 1/0
W1.0		Pixel 17 & 16 Channel 1/0
W2.7:0		Pixels 15:0 Channel 3/2
W3.7:0		Pixels 31:16 Channel 3/2

3.9.11 Streamed Vertex Buffer Write [DevSNB]

This message writes a single 4-tuple of data to a buffer, at a destination index specified in the message header.

Restrictions:

- surface types allowed are SURFTYPE_BUFFER and SURFTYPE_NULL
- surface formats allowed are indicated in the "Streamed Output Vertex Buffers" column of the Surface Formats table in the Sampling Engine chapter
- the surface cannot be tiled
- use of this message with the **End Of Thread** bit set in the message descriptor is not allowed as the Dispatch ID is not included in the message payload.
- the stateless model cannot be used with this message (Binding Table Index cannot be 255).
- Both the surface base address and surface pitch must be DWord aligned.

Execution Mask. The low 4 bits of the execution mask are used to enable the 4 channels of the write to the destination surface.

Out-of-Bounds Accesses. Writes to areas outside of the surface are dropped and will not modify memory contents.

3.9.11.1 Message Descriptor

Bit	Description
12	Ignored
11	Ignored
10	[DevILK+]: Ignored
9	[DevILK+]: Ignored
8	[DevILK+]: Ignored

3.9.11.2 Message Payload

DWord	Bit	Description
M0.7	31:0	Reserved
M0.6	31:0	Reserved
M0.5	31:0	Destination Index. Specifies the index into the destination array where the data will be written
		Format = U32
		Range = $[0,2^{27}-1]$
M0.4	31:0	Ignored (reserved for hardware delivery of binding table pointer)
M0.3	31:0	A Data. Data for the A channel of the destination
		Format = IEEE_Float, U32, or S31 matching the surface format of the target surface (no format conversion is performed by hardware)
M0.2	31:0	B Data. Data for the B channel of the destination
		Format = IEEE_Float, U32, or S31 matching the surface format of the target surface (no format conversion is performed by hardware)
M0.1	31:0	G Data. Data for the G channel of the destination
		Format = IEEE_Float, U32, or S31 matching the surface format of the target surface (no format conversion is performed by hardware)
M0.0	31:0	R Data. Data for the R channel of the destination
		Format = IEEE_Float, U32, or S31 matching the surface format of the target surface (no format conversion is performed by hardware)

3.9.12 AVC Loop Filter Read [DevCTG] to [DevSNB]

This message enables a specially formed AVC Loop Filter control data block to read from the source surface, converted via table-look-up and expanded before being written into the GRF.

Restrictions:

- the only surface type allowed is SURFTYPE_BUFFER.
- the surface base address must be dword aligned

Applications:

• Specifically for AVC Loop Filter

Execution Mask. The execution mask on the send instruction for this type of message is ignored. The data that is read is determined completely by the message parameters.

Out-of-Bounds Accesses. Read outside of the surface returns zero.

The source surface contains an array of AVC-LF data structure, each corresponds to a macroblock. The AVC-LF data structure contains 16 dwords as shown in the following table.

DWord	Bit	Description
0	31:24	Reserved : MBZ
	23	FilterTopMbEdgeFlag
	22	FilterLeftMbEdgeFlag
	21	FilterInternal4x4EdgesFlag
	20	FilterInternal8x8EdgesFlag
	19	FieldModeAboveMbFlag
	18	FieldModeLeftMbFlag
	17	FieldModeCurrentMbFlag
	16	MbaffFrameFlag
	15:8	VertOrigin
	7:0	HorzOrigin
1	31:30	bS_h13
	29:28	bS_h12
	27:26	bS_h11
	25:24	bS_h10

DWord	Bit	Description
	23:22	b\$_v33
	21:20	bS_v23
	19:18	bS_v13
	17:16	bS_v03
	15:14	b\$_v32
	13:12	b\$_v22
	11:10	b\$_v12
	9:8	b\$_v02
	7:6	bS_v31
	5:4	b\$_v21
	3:2	bS_v11
	1:0	bS_v01
2	31:28	b\$_v30_0
	17:24	b\$_v20_0
	23:20	bS_v10_0
	19:16	bS_v00_0
	15:14	bS_h33
	13:12	bS_h32
	11:10	bS_h31
	9:8	bS_h30
	7:6	b\$_h23
	5:4	b\$_h22
	3:2	bS_h21
	1:0	bS_h20

DWord	Bit	Description
3	31:28	bS_h03_0
	27:24	bS_h02_0
	23:20	b\$_h01_0
	19:16	b\$_h00_0
	15:12	b\$_v03
	11:8	b\$_v02
	7:4	b\$_v01
	3:0	b\$_v00
4	31:24	bIndexBinternal_Y
		Internal index B for Y
	23:16	bIndexBinternal_Y
		Internal index A for Y
	15:12	bS_h03_1
	11:8	bS_h02_1
	7:4	bS_h01_1
	3:0	bS_h00_1
5	31:24	bIndexBleft1_Y
	23:16	bIndexAleft1_Y
	15:8	bIndexBleft0_Y
	7:0	bIndexAleft0_Y
6	31:24	bIndexBtop1_Y
	23:16	bIndexAtop1_Y
	15:8	bIndexBtop0_Y
	7:0	bIndexAtop0_Y
7	31:24	bIndexBleft0_Cb
	23:16	bIndexAleft0_Cb

DWord	Bit	Description
	15:8	bIndexBinternal_Cb
	7:0	bIndexAinternal_Cb
8	31:24	bIndexBtop0_Cb
	23:16	bIndexAtop0_Cb
	15:8	bIndexBleft1_Cb
	7:0	bIndexAleft1_Cb
9	31:24	bIndexBinternal_Cr
	23:16	bIndexAinternal_Cr
	15:8	bIndexBtop1_Cb
	7:0	bIndexAtop1_Cb
10	31:24	bIndexBleft1_Cr
	23:16	bIndexAleft1_Cr
	15:8	bIndexBleft0_Cr
	7:0	bIndexAleft0_Cr
11	31:24	bIndexBtop1_Cr
	23:16	bIndexAtop1_Cr
	15:8	bIndexBtop0_Cr
	7:0	bIndexAtop0_Cr
12	31:2	Reserved : MBZ

DWord	Bit	Description
	1:0	DisableDeblockingFilterIdc
		This is the slice level signal provided as a hint for kernel performance tuning. It is supplied for cases where some slices in a frame have ILDB and some others don't have. In this case, ILDB kernel will be called for all macroblocks in a frame including the ones in the slice that disables ILDB. Setting this bit correctly will ensure that ILDB is not performed on MBs belonging to the slice which has disable deblocking set to 1. For example, kernel may check bit 0, if it is set to 1, no ILDB is performed on the macroblock.
		00 - filterInternalEdgesFlag is set equal to 1
		01 – disable all deblocking operation, no deblocking parameter syntax element is read; filterInternalEdgesFlag is set equal to 0
		10 - macroblocks in different slices are considered not available; filterInternalEdgesFlag is set equal to 1
		11 – Reserved (not defined in AVC)
13	31:0	Reserved : MBZ
14	31:0	Reserved : MBZ
15	31:0	Reserved : MBZ

3.9.12.1 Message Descriptor

Bit	Description
12:11	Ignored ([DevCTG]: these bits are part of the Read Message Type field)
10:8	Ignored

3.9.12.2 Message Header

DWord	Bit	Description
M0.7	31:0	Reserved
M0.6	31:0	Reserved
M0.5	31:8	Ignored
	7:0	Dispatch ID. This ID is assigned by the fixed function unit and is a unique identifier for the thread. It is used to free up resources used by the thread upon thread completion.
M0.4	31:0	Ignored (reserved for hardware delivery of binding table pointer)
M0.3	31:0	Ignored

DWord	Bit	Description
M0.2	31:0	Global Offset. Specifies the global byte offset into the buffer.
		This offset must be OWord aligned (bits 3:0 MBZ)
		Format = U32
		Range = [0,FFFFFF0h]
M0.1	31:0	Ignored
M0.0	31:0	Ignored

3.9.12.3 Writeback Message

The writeback message is formed by the data port using the information from the stored surface and integrated lookup tables defining alpha, beta, tc0, and the edge control map.

Many of the fields are passed directly from the stored surface to the writeback message.

IndexA and IndexB index the following tables to populate the alpha and beta values. These tables are used for Y, Cr, and Cb. IndexTop0 values derive AlphaTop0 and BetaTop0, IndexTop1 values derive AlphaTop1 and BetaTop1, and likewise for the Left values.

Table 3-1.Derivation of offset dependent threshold variables α and β from indexA and indexB

										in	dexA	(for	· α) c	or ind	exB	(for	β)									
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
α	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	4	5	6	7	8	9	10	12	13
β	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	2	3	3	3	3	4	4	4

Table 3-1. (Concluded) – Derivation of indexA and indexB from offset dependent threshold variables α and β

										in	dex/	A (for	· α) c	or inc	lexB	(for	β)									
	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51
α	15	17	20	22	25	28	32	36	40	45	50	56	63	71	80	90	101	113	127	144	162	182	203	226	255	255
β	6	6	7	7	8	8	9	9	10	10	11	11	12	12	13	13	14	14	15	15	16	16	17	17	18	18

For each block boundary, the data port must use the boundary strength values to derive tc0 and an edge control map. The following shows the layout of the boundary values in a Y block. Cr and Cb layout follows suit.

Figure 3-1. Boundary Values Layout in a Y Block

The boundary strengths are used in conjunction with indexA to derive tc0 values. The tables below show tc0 output as a function of the boundary strength (bS) and indexA. On external edges, the boundary strength may be 4. Under this condition, hardware should set the value of tc0 to 0.

For determination of tc0, use IndexA0 and external top and left boundary strength (0) values to derive bTc0 values with an index of $_0$. During Mbaff mode, use IndexA1 and external top and left boundary strength (1) to derive bTc0 values with an index of $_1$. The layout of the tc0 values in the macroblocks corresponds to Figure 3-1 in the same manner as the boundary strengths.

		indexA																								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
bS = 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
bS = 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
bS = 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
bS = 4												to	:0 se	et to	0											

Table 3-2. Value of variable t_{C0} as a function of indexA and bS

Table 3-2 (concluded) – Value of variable t_{c0} as a function of indexA and bS

													inde	exA												
	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51
bS = 1	1	1	1	1	1	1	1	2	2	2	2	3	3	3	4	4	4	5	6	6	7	8	9	10	11	13
bS = 2	1	1	1	1	1	2	2	2	2	3	3	3	4	4	5	5	6	7	8	8	10	11	12	13	15	17
bS = 3	1	2	2	2	2	3	3	3	4	4	4	5	6	6	7	8	9	10	11	13	14	16	18	20	23	25
bS = 4		tc0 set to 0																								

The boundary strengths also create the edge control maps in the writeback message. The internal boundaries require one control map set according to the boundary strength to drive the deblocking functionality. The external boundaries require two control maps set according to the boundary strength to enable deblocking and choose the deblocking algorithm. These control maps are shown in the tables below. Each edge's boundary strength has a corresponding edge control map (e.g. bS_v01 corresponds to EdgeCntIMap_v01).

Table 3-3. Boundary Strength Mapping to Edge Control Map: Internal Boundaries

bS	Internal boundary Edge Control Map	Description
00	0000	bS = 0, no de-blocking
01	1111	Perform de-blocking using bS < 4 algorithm
10	1111	Perform de-blocking using bS < 4 algorithm
11	1111	Perform de-blocking using bS < 4 algorithm

Table 3-4. Boundary Strength Mapping to Edge Control Map A: External Boundaries, Deblocking Enable

bS	External boundary Edge Control Map A	Description
0000	0000	bS = 0, no de-blocking
0001	1111	bS > 0, de-blocking the segment
0010	1111	bS > 0, de-blocking the segment
0011	1111	bS > 0, de-blocking the segment
0100	1111	bS > 0, de-blocking the segment

Table 3-5. Boundary Strength Mapping to Edge Control Map B: External Boundaries, Deblocking Algorithm

bS	External boundary Edge Control Map B	Description
0000	0000	(No deblocking, set algorithm to 0)
0001	0000	Perform de-blocking using bS < 4 algorithm
0010	0000	Perform de-blocking using bS < 4 algorithm
0011	0000	Perform de-blocking using bS < 4 algorithm
0100	1111	Perform de-blocking using bS = 4 algorithm

The following is the layout of the combined writeback message.

DWord	Bit	Description
W0.7	31:24	bIndexBleft0_Cb
	23:16	bIndexAleft0_Cb
	15:8	bIndexBinternal_Cb

DWord	Bit	Description
	7:0	bIndexAinternal_Cb
W0.6	31:24	bIndexBtop1_Y
	23:16	bIndexAtop1_Y
	15:8	bIndexBtop0_Y
	7:0	bIndexAtop0_Y
W0.5	31:24	bIndexBleft1_Y
	23:16	bIndexAleft1_Y
	15:8	bIndexBleft0_Y
	7:0	bIndexAleft0_Y
W0.4	31:24	bIndexBinternal_Y
		Internal index B for Y
	23:16	bIndexAinternal_Y
		Internal index A for Y
	15:12	bS_h03_1
	11:8	bS_h02_1
	7:4	bS_h01_1
	3:0	bS_h00_1
W0.3	31:28	bS_h03_0
	27:24	bS_h02_0
	23:20	bS_h01_0
	19:16	bS_h00_0
	15:12	b\$_v30_1
	11:8	bS_v20_1
	7:4	bS_v10_1
	3:0	b\$_v00_1
W0.2	31:28	b\$_v30_0

DWord	Bit	Description
	27:24	b\$_v20_0
	23:20	bS_v10_0
	19:16	bS_v00_0
	15:8	bbSinternalBotHorz
	7:0	bbSinternalMidHorz
W0.1	31:30	bS_h13
	29:28	bS_h12
	27:26	bS_h11
	25:24	bS_h10
	23:22	bS_v33
	21:20	b\$_v23
	19:18	bS_v13
	17:16	bS_v03
	15:14	b\$_v32
	13:12	b\$_v22
	11:10	b\$_v12
	9:8	b\$_v02
	7:6	b\$_v31
	5:4	b\$_v21
	3:2	b\$_v11
	1:0	bS_v01
W0.0	31:24	Reserved : MBZ
	23	FilterTopMbEdgeFlag
	22	FilterLeftMbEdgeFlag

DWord	Bit	Description
	21	FilterInternal4x4EdgesFlag
	20	FilterInternal8x8EdgesFlag
	19	FieldModeAboveMbFlag
	18	FieldModeLeftMbFlag
	17	FieldModeCurrentMbFlag
	16	MbaffFrameFlag
	15:8	VertOrigin
	7:0	HorzOrigin
W1.7	31:0	Reserved : MBZ
W1.6	31:0	Reserved : MBZ
W1.5	31:0	Reserved : MBZ
W1.4	31:0	Reserved : MBZ
W1.3	31:24	blndexBtop1_Cr
	23:16	bIndexAtop1_Cr
	15:8	bIndexBtop0_Cr
	7:0	bIndexAtop0_Cr
W1.2	31:24	bIndexBleft1_Cr
	23:16	bIndexAleft1_Cr
	15:8	bIndexBleft0_Cr
	7:0	bIndexAleft0_Cr
W1.1	31:24	bIndexBinternal_Cr
	23:16	bIndexAinternal_Cr
	15:8	blndexBtop1_Cb
	7:0	blndexAtop1_Cb

DWord	Bit	Description
W1.0	31:24	bIndexBtop0_Cb
	23:16	bIndexAtop0_Cb
	15:8	bIndexBleft1_Cb
	7:0	blndexAleft1_Cb
W2.7	31:28	EdgeCntIMapB_h03_1
		Used in Mbaff mode only
	27:24	EdgeCntIMapB_h02_1
		Used in Mbaff mode only
	23:20	EdgeCntlMapB_h01_1
		Used in Mbaff mode only
	19:16	EdgeCntlMapB_h00_1
		Used in Mbaff mode only
	15:12	EdgeCntlMapA_h03_1
		Used in Mbaff mode only
	11:8	EdgeCntlMapA_h02_1
		Used in Mbaff mode only
	7:4	EdgeCntlMapA_h01_1
		Used in Mbaff mode only
	3:0	EdgeCntlMapA_h00_1
		Used in Mbaff mode only
W2.6	31:28	EdgeCntIMapB_v30_1
		Used in Mbaff mode only
	27:24	EdgeCntIMapB_v20_1
		Used in Mbaff mode only
	23:20	EdgeCntIMapB_v01_1
		Used in Mbaff mode only
	19:16	EdgeCntIMapB_v00_1
		Used in Mbaff mode only
	15:12	EdgeCntIMapA_v30_1
		Used in Mbaff mode only
	11:8	EdgeCntIMapA_v20_1
		Used in Mbaff mode only
	7:4	EdgeCntIMapA_v10_1
		Used in Mbaff mode only

DWord	Bit	Description
	3:0	EdgeCntIMapA_v00_1
		Used in Mbaff mode only
W2.5	31:28	EdgeCntlMapB_h03_0
	27:24	EdgeCntlMapB_h02_0
	23:20	EdgeCntIMapB_h01_0
	19:16	EdgeCntIMapB_h00_0
	15:12	EdgeCntIMapA_h03_0
	11:8	EdgeCntIMapA_h02_0
	7:4	EdgeCntIMapA_h01_0
	3:0	EdgeCntIMapA_h00_0
W2.4	31:28	EdgeCntIMapB_v30_0
	27:24	EdgeCntIMapB_v20_0
	23:20	EdgeCntIMapB_v10_0
	19:16	EdgeCntIMapB_v00_0
	15:12	EdgeCntIMapA_v30_0
	11:8	EdgeCntIMapA_v20_0
	7:4	EdgeCntIMapA_v10_0
	3:0	EdgeCntlMapA_v00_0
W2.3	31:0	Reserved : MBZ
W2.2	31:28	EdgeCntlMap_h33
	27:24	EdgeCntlMap_h32
	23:20	EdgeCntlMap_h31
	19:16	EdgeCntlMap_h30
	15:12	EdgeCntlMap_h23
	11:8	EdgeCntlMap_h22

DWord	Bit	Description
	7:4	EdgeCntlMap_h21
	3:0	EdgeCntlMap_h20
W2.1	31:28	EdgeCntlMap_h13
	27:24	EdgeCntlMap_h12
	23:20	EdgeCntlMap_h11
	19:16	EdgeCntlMap_h10
	15:12	EdgeCntlMap_v33
	11:8	EdgeCntlMap_v23
	7:4	EdgeCntlMap_v13
	3:0	EdgeCntlMap_v03
W2.0	31:28	EdgeCntlMap_v32
	27:24	EdgeCntlMap_v22
	23:20	EdgeCntlMap_v12
	19:16	EdgeCntlMap_v02
	15:12	EdgeCntlMap_v31
	11:8	EdgeCntlMap_v21
	7:4	EdgeCntlMap_v11
	3:0	EdgeCntlMap_v01
W3.7	31:24	bTc0_h33_0_Y
	23:16	bTc0_h32_0_Y
	15:8	bTc0_h31_0_Y
	7:0	bTc0_h30_0_Y
W3.6	31:24	bTc0_h23_0_Y
	23:16	bTc0_h22_0_Y

DWord	Bit	Description
	15:8	bTc0_h21_0_Y
	7:0	bTc0_h20_0_Y
W3.5	31:24	bTc0_h13_0_Y
	23:16	bTc0_h12_0_Y
	15:8	bTc0_h11_0_Y
	7:0	bTc0_h10_0_Y
W3.4	31:24	bTc0_h03_0_Y
	23:16	bTc0_h02_0_Y
	15:8	bTc0_h01_0_Y
	7:0	bTc0_h00_0_Y
W3.3	31:24	bTc0_v33_Y
	23:16	bTc0_v23_Y
	15:8	bTc0_v13_Y
	7:0	bTc0_v03_Y
W3.2	31:24	bTc0_v32_Y
	23:16	bTc0_v22_Y
	15:8	bTc0_v12_Y
	7:0	bTc0_v02_Y
W3.1	31:24	bTc0_v31_Y
	23:16	bTc0_v21_Y
	15:8	bTc0_v11_Y
	7:0	bTc0_v01_Y
W3.0	31:24	bTc0_v30_0_Y
	23:16	bTc0_v20_0_Y

DWord	Bit	Description
	15:8	bTc0_v10_0_Y
	7:0	bTc0_v00_0_Y
W4.7	31:24	bTc0_h03_1_Y
		Used in Mbaff mode only
	23:16	bTc0_h02_1_Y
		Used in Mbaff mode only
	15:8	bTc0_h01_1_Y
		Used in Mbaff mode only
	7:0	bTc0_h00_1_Y
		Used in Mbaff mode only
W4.6	31:24	bTc0_v30_1_Y
		Used in Mbaff mode only
	23:16	bTc0_v20_1_Y
		Used in Mbaff mode only
	15:8	bTc0_v10_1_Y
		Used in Mbaff mode only
	7:0	bTc0_v00_1_Y
		Used in Mbaff mode only
W4.5	31:0	MBZ
W4.4	31:24	bBetaTop1_Y
	23:16	bAlphaTop1_Y
	15:8	bBetaLeft1_Y
	7:0	bAlphaLeft1_Y
W4.3	31:0	MBZ
W4.2	31:0	MBZ
W4.1	31:16	MBZ
	15:8	bBetaInternal_Y
	7:0	bAlphaInternal_Y
W4.0	31:24	bBetaTop0_Y

DWord	Bit	Description
	23:16	bAlphaTop0_Y
	15:8	bBetaLeft0_Y
	7:0	bAlphaLeft0_Y
W5.7	31:24	bTc0_h23_Cr
	23:16	bTc0_h22_Cr
	15:8	bTc0_h21_Cr
	7:0	bTc0_h20_Cr
W5.6	31:24	bTc0_h03_0_Cr
	23:16	bTc0_h02_0_Cr
	15:8	bTc0_h01_0_Cr
	7:0	bTc0_h00_0_Cr
W5.5	31:24	bTc0_v32_Cr
	23:16	bTc0_v22_Cr
	15:8	bTc0_v12_Cr
	7:0	bTc0_v02_Cr
W5.4	31:24	bTc0_v30_0_Cr
	23:16	bTc0_v20_0_Cr
	15:8	bTc0_v10_0_Cr
	7:0	bTc0_v00_0_Cr
W5.3	31:24	bTc0_h23_Cb
	23:16	bTc0_h22_Cb
	15:8	bTc0_h21_Cb
	7:0	bTc0_h20_Cb
W5.2	31:24	bTc0_h03_0_Cb

DWord	Bit	Description
	23:16	bTc0_h02_0_Cb
	15:8	bTc0_h01_0_Cb
	7:0	bTc0_h00_0_Cb
W5.1	31:24	bTc0_v32_Cb
	23:16	bTc0_v22_Cb
	15:8	bTc0_v12_Cb
	7:0	bTc0_v02_Cb
W5.0	31:24	bTc0_v30_0_Cb
	23:16	bTc0_v20_0_Cb
	15:8	bTc0_v10_0_Cb
	7:0	bTc0_v00_0_Cb
W6.7	31:0	MBZ
W6.6	31:0	MBZ
W6.5	31:0	MBZ
W6.4	31:0	MBZ
W6.3	31:16	MBZ
	15:8	bBetaInternal_Cr
	7:0	bAlphaInternal_Cr
W6.2	31:24	bBetaTop0_Cr
	23:16	bAlphaTop0_Cr
	15:8	bBetaLeft0_Cr
	7:0	bAlphaLeft0_Cr
W6.1	31:16	MBZ
	15:8	bBetaInternal_Cb

DWord	Bit	Description
	7:0	bAlphaInternal_Cb
W6.0	31:24	bBetaTop0_Cb
	23:16	bAlphaTop0_Cb
	15:8	bBetaLeft0_Cb
	7:0	bAlphaLeft0_Cb
W7.7	31:24	bTc0_h03_1_Cr
	23:16	bTc0_h02_1_Cr
W7.6	15:8	bTc0_h01_1_Cr
	7:0	bTc0_h00_1_Cr
	31:24	bTc0_v30_1_Cr
	23:16	bTc0_v20_1_Cr
	15:8	bTc0_v10_1_Cr
	7:0	bTc0_v00_1_Cr
W7.5	31:0	MBZ
W7.4	31:24	bBetaTop1_Cr
	23:16	bAlphaTop1_Cr
	15:8	bBetaLeft1_Cr
	7:0	bAlphaLeft1_Cr
W7.3	31:24	bTc0_h03_1_Cb
	23:16	bTc0_h02_1_Cb
	15:8	bTc0_h01_1_Cb
W7.2	7:0	bTc0_h00_1_Cb
	31:24	bTc0_v30_1_Cb
	23:16	bTc0_v20_1_Cb

DWord	Bit	Description
W7.1	15:8	bTc0_v10_1_Cb
	7:0	bTc0_v00_1_Cb
	31:0	MBZ
W7.0	31:24	bBetaTop1_Cb
	23:16	bAlphaTop1_Cb
	15:8	bBetaLeft1_Cb
	7:0	bAlphaLeft1_Cb

Revision History

Revision	Description	Date
1.0	First 2011 OpenSource edition	May 2011