

Doc Ref #: IHD-OS-V4 Pt1 – 05 11

Intel® OpenSource HD Graphics
Programmer’s Reference Manual (PRM)
Volume 4 Part 1: Subsystem and Cores – Shared
Functions (SandyBridge)

For the 2011 Intel Core Processor Family

May 2011

Revision 1.0

NOTICE:

This document contains information on products in the design phase of development, and Intel
reserves the right to add or remove product features at any time, with or without changes to this
open source documentation.

2 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

Creative Commons License

You are free to Share — to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor
(but not in any way that suggests that they endorse you or your use of the work).

No Derivative Works. You may not alter, transform, or build upon this work.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them.

The SandyBridge chipset family, Havendale/Auburndale chipset family, Intel® 965 Express Chipset
Family, Intel® G35 Express Chipset, and Intel® 965GMx Chipset Mobile Family Graphics Controller may
contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel® sales office or your distributor to obtain the latest specifications and before
placing your product order. I2C is a two-wire communications bus/protocol developed by Philips. SMBus
is a subset of the I2C bus/protocol and was developed by Intel®. Implementations of the I2C bus/protocol
may require licenses from various entities, including Philips Electronics N.V. and North American Philips
Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2011, Intel Corporation. All rights reserved.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 3

Contents
1. Subsystem Overview .. 5

1.1 Introduction .. 5
1.2 Subsystem Topology.. 5
1.3 Execution Units (EUs) .. 5
1.4 Thread Dispatching .. 6
1.5 Shared Functions ... 6
1.6 Messages... 8

1.6.1 Message Register File (MRF) .. 9
1.6.2 Send Instruction ... 9
1.6.3 Creating and Sending a Message.. 10
1.6.4 Message Payload Containing a Header .. 11
1.6.5 Writebacks.. 11
1.6.6 Message Delivery Ordering Rules ... 11
1.6.7 Execution Mask and Messages ... 12
1.6.8 End-Of-Thread (EOT) Message... 12
1.6.9 Performance... 13
1.6.10 Message Description Syntax.. 13
1.6.11 Message Errors.. 14

2. Sampling Engine ... 16
2.1 Texture Coordinate Processing ... 17

2.1.1 Texture Coordinate Normalization ... 17
2.1.2 Texture Coordinate Computation...17

2.2 Texel Address Generation ... 18
2.2.1 Level of Detail Computation (Mipmapping).. 19
2.2.2 Intra-Level Filtering Setup .. 22
2.2.3 Texture Address Control .. 25

2.3 Texel Fetch .. 28
2.3.1 Texel Chroma Keying... 29

2.4 Shadow Prefilter Compare... 29
2.5 Texel Filtering... 30
2.6 Texel Color Gamma Linearization ... 30
2.7 Multisampled Surface Behavior [DevSNB+] .. 31
2.8 Denoise/Deinterlacer [DevSNB]... 31

2.8.1 Introduction... 31
2.8.2 Denoise Algorithm.. 34
2.8.3 Block Noise Estimate (part of Global Noise Estimate)... 38
2.8.4 Deinterlacer Algorithm.. 39
2.8.5 Field Motion Detector ... 53
2.8.6 Implementation Overview... 55

2.9 Adaptive Video Scaler.. 57
2.9.1 Filtering Operations.. 59

2.10 Image Enhancement Filter and Video Signal Analysis .. 61
2.10.1 Block Diagram.. 62
2.10.2 Detail Filter Algorithm... 62
2.10.3 Combination mode ... 64

2.11 State ... 69
2.11.1 BINDING_TABLE_STATE ... 69
2.11.2 SURFACE_STATE .. 70
2.11.3 SAMPLER_STATE ..101

4 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

2.11.4 SAMPLER_8x8_STATE [DevSNB+].. 123
2.11.5 3DSTATE_CHROMA_KEY.. 128
2.11.6 3DSTATE_SAMPLER_PALETTE_LOAD0.. 130
2.11.7 3DSTATE_SAMPLER_PALETTE_LOAD1 [DevSNB]... 131
2.11.8 3DSTATE_MONOFILTER_SIZE [DevILK+] .. 132

2.12 Messages ... 133
2.12.1 Initiating Messages .. 133
2.12.2 Writeback Message.. 151

3. Data Port... 166
3.1 Cache Agents... 166

3.1.1 Render Cache .. 167
3.1.2 Sampler Cache... 167
3.1.3 Constant Cache [DevSNB+] .. 167

3.2 Surfaces ... 167
3.2.1 Surface State Model... 167
3.2.2 Stateless Model.. 168

3.3 Write Commit ... 168
3.4 Read/Write Ordering .. 169
3.5 Accessing Buffers .. 169
3.6 Accessing Media Surfaces... 170

3.6.1 Color Processing [DevSNB+]...170
3.7 Accessing Render Targets... 193

3.7.1 Single Source... 193
3.7.2 Dual Source [DevSNB+]... 193
3.7.3 Replicate Data.. 193
3.7.4 Multiple Render Targets (MRT)..194

3.8 State ... 194
3.8.1 BINDING_TABLE_STATE ... 194
3.8.2 SURFACE_STATE .. 194
3.8.3 COLOR_PROCESSING_STATE [DevSNB+].. 194

3.9 Messages... 207
3.9.1 Global Definitions ... 207
3.9.2 Data Port Messages... 207
3.9.3 OWord Block Read/Write ... 213
3.9.4 Unaligned OWord Block Read [DevSNB+] .. 216
3.9.5 OWord Dual Block Read/Write... 218
3.9.6 Media Block Read/Write... 220
3.9.7 DWord Scattered Read/Write...228
3.9.8 DWord Atomic write message [DevSNB]... 232
3.9.9 Render Target Write... 235
3.9.10 Render Target UNORM Read/Write [DevCTG] to [DevSNB] .. 253
3.9.11 Streamed Vertex Buffer Write [DevSNB] ... 259
3.9.12 AVC Loop Filter Read [DevCTG] to [DevSNB] .. 260

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 5

1. Subsystem Overview

1.1 Introduction
The DevSNB (SandyBridge) subsystem consists of an array of execution units (EUs, sometimes referred
to as an arrray of cores) along with a set of shared functions outside the EUs that the EUs leverage for
I/O and for complex computations. Programmers access the DevSNB Subsystem via the 3D or Media
pipelines.

EUs are general-purpose programmable cores that support a rich instruction set that has been optimized
to support various 3D API shader languages as well as media functions (primarily video) processing.

Shared functions are hardware units which serve to provide specialized supplemental functionality for the
EUs. A shared function is implemented where the demand for a given specialized function is insufficient
to justify the costs on a per-EU basis. Instead a single instantiation of that specialized function is
implemented as a stand-alone entity outside the EUs and shared amongst the EUs.

Invocation of the shared functionality is performed via a communication mechanism call a “message”. A
message is a small, self-contained packet of information created by a kernel and directed to specific
shared function. The message is defined by sequential series of MRF registers which hold message
operands, a destination shared function ID, a function-specific encoding of the desired operation to be
performed, and a destination GRF register to which any writeback response is to be directed. Messages
are dispatched to the shared function under software control via the ‘send’ instruction. This instruction
identifies the contents of the message and the GRF register location(s) to direct any response.

The message construction and delivery mechanisms are general in their definition and capable of
supporting a wide variety of shared functions.

1.2 Subsystem Topology
The subsystem is organized as an array of EUs, and a set of functions that are shared among all of the
EUs. (The EU array is further divided into rows with each row having its own first level instruction cache
and Extended Math shared function, though this aspect of the implemented topology is not exposed to
software). The Sampler, DataPort, URB and Message Gateway functions are shared among the entire
array of EUs.

1.3 Execution Units (EUs)
Each EU is a vector machine capable of performing a given operation on as many as 16 pieces of data of
the same type in parallel (though not necessarily on the same instant in time). In addition, each EU can
support a number of execution contexts called threads that are used to avoid stalling the EU during a
high-latency operation (external to the EU) by providing an opportunity for the EU to switch to a
completely different workload with minimal latency while waiting for the high-latency operation to
complete.

6 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

For example, if a program executing on an EU requires a texture read by the sampling engine, the EU
may not necessarily idle while the data is fetched from memory, arranged, filtered and returned to the EU.
Instead the EU will likely switch execution to another (unrelated) thread associated with that EU. If that
thread encounters a stall, the EU may switch to yet another thread and so on. Once the Sampler result
arrives back at the EU, the EU can switch back to the original thread and use the returned data as it
continues execution of that thread.

The fact that there are multiple EU cores each with multiple threads can generally be ignored by software.
There are some exceptions to this rule: e.g., for

 thread-to-thread communication (see Message Gateway, Media)

 synchronization of thread output to memory buffers (see Geometry Shader).

In contrast, the internal SIMD aspects of the EU are very much exposed to software.

This volume will not deal with the details of the EUs.

1.4 Thread Dispatching
When the 3D and Media pipelines send requests for thread initiation to the Subsystem, the thread
Dispatcher receives the requests. The dispatcher performs such tasks as arbitrating between concurrent
requests, assigning requested threads to hardware threads on EUs, allocating register space in each EU
among multiple threads, and initializing a thread’s registers with data from the fixed functions and from
the URB. This operation is largely transparent to software.

1.5 Shared Functions
In general, a shared function has the ability to receive messages at its input, perform some specialized
amount of work for each, and if required, generate output back to the message’s originating execution
unit (Message Gateway may generate output to a target execution unit specified by the message).

To uniquely identify shared functions, each is assigned a unique 4-bit identifier code called its ‘Function
ID’. This ID is specified in the ‘send’ instruction’s 32b <desc> field of each message. DevSNB Function ID
assignments are listed in the Graphics Processing Engine chapter of this specification.

Each shared function may support one or more related operations within itself. For example an Extended
Math shared function may support operations such as reciprocal, sine, cosine, and/or others. These are
generically referred to as sub-functions. The communication method as to which sub-function is desired is
typically contained in the 16b ‘function-control’ field of the ‘send’ instruction <desc> field. Alternatively, a
function may choose to define sub-function encodings in-band within message payload, or in the case of
a single function shared-function, the function code may be implied. The architecture in no way interprets
the sub-function code and the actual implementation choice is left to the function itself.

The Shared Function units included in the Subsystem are as follows (refer to the chapters devoted to
each of these functions):

 Extended Math function

 Sampling Engine function

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 7

 DataPort function

 Message Gateway function

 Unified Return Buffer (URB)

 Thread Spawner (TS)

 Null function

The Extended Math function acts as an extension of the math functions already available inside the EUs.
Certain functions such as inverse, square root, exponentiation, etc., require significant hardware
resources to implement and are used infrequently enough that it is inefficient to implement them
separately in each EU. The EUs therefore send the operands for these operations along with the
operation to be performed to the Extended Math function which computes and returns the result to the
requesting EU.

The Sampling Engine acts a (read-only) I/O port on behalf of the EUs, translating texture coordinates
(and/or structure references) to memory addresses, reading texels and/or other data from memory, and in
the case of texels, combining and filtering them according to programmed state. The resulting pixel
and/or other data are then returned to the requesting EU.

The Data Port function acts as another I/O port on behalf of the EUs. It is both a read and a write port,
and the only way for the Graphics Processing Engine to write results (e.g., images) back to memory. The
Data Port contains the render and depth caches which receive the newly rendered pixels and write them
out to memory when necessary. They also permit previously rendered objects to be read back efficiently
by the Graphics Processing Engine in order to blend them with other rendered objects and test for
visibility of newly rendered objects. Finally, the Data Port also provides read access constant buffers
(arrays of constants in memory.)

The Message Gateway allows a thread to communicate (send a message to) another thread. A key is
used to connect the sender and receiver threads, and a simple gateway protocol is used to send
messages. This is primarily intended for media where a parent/child thread model is sometimes used and
requires parent and child threads to synchronize and efficiently share information. It is not intended to be
used by 3D graphics rendering threads.

The Unified Return Buffer (URB) is a single set of registers that EU threads use to return result data for
future fixed functions and their threads to make use of. Individual entries in the buffer are “owned” by a
given fixed function but a mechanism is provided where other fixed functions (those that follow) can read
the data placed there by another fixed function. The buffer is considered a “Shared Function” since EUs
need to be able to write result data to it using messages. In general, EU threads write their final results
either to memory via the Data Port or to the URB for re-use by subsequent EU threads or certain 3D
pipeline fixed-function units (CLIP, GS).

The Thread Spawner (TS) is a Shared Function that acts as a conduit for dispatching kernel-software-
generated threads, one thread can request another thread to be dispatched by sending a request to the
TS. TS is unique as it is also a Fixed Function in the media pipeline for dispatching threads originated
from Video Front End fixed function.

The Null shared function is supported to allow the broadcast of certain information (e.g, End Of Thread)
without invoking any other operation or response.

8 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

1.6 Messages
Communication between the EUs and the shared functions and between the fixed function pipelines
(which are not considered part of the “Subsystem”) and the EUs is accomplished via packets of
information called messages. Message transmission is requested via the ‘send’ instruction. Refer to the
‘send’ instruction definition in the ISA Reference chapter for details.

The information transmitted in a message falls into two categories:

 Message Payload data sourced from some number of registers (from 1 to 15 registers) in the
Message Register File (MRF). The contents of the payload are dependent on the target function
and specific function (etal), and may contain a header portion and/or data portion.

 Associated (“sideband”) information provided by:

o Message Descriptor specified with the ‘send’ instruction. Included in the message
descriptor is control and routing information such as the target function ID, message
payload length, response length, etc.

o Additional information provided by the ‘send’ instruction, e.g., the starting destination
register number, the execution mask (EMASK), etc.

o A small subset of Thread State, such as the Thread ID, EUID, etc.

The software view of messages is shown in Figure 1-1. There are four basic phases to a message’s
lifetime as illustrated below:

1. Creation The thread assembles the message payload into the Message Register File
(MRF). This is done by a series of one or more instruction which specify a MRF
register as the destination.

2. Delivery The thread issues the message for delivery via the ‘send’ instruction. The
‘send’ instruction specifies the MRF register which is the first of a sequential
register series which makes the data payload, the length of the message
payload within the MRF, the destination shared function ID (SFID), and where
in the GRF any response is to be directed. The messaging subsystem will
enqueue the message for delivery and eventually route the message to the
specified shared function.

3. Processing The shared function receives the message and services it accordingly, as
defined by the shared function definition.

4. Writeback If called for, the shared function delivers an integral number of registers of data
to the thread’s GRF in response to the message.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 9

Figure 1-1. Data Flow Associated With Messages

B6876-01

Thread

Thread-State

GRF

MRF

Execution
Pipeline

Shared Func X

Shared Func Y

Shared Func Z

Instruction
Stream

Operands

1. Message Creation

2. Message Delivery

3. Message Processing

4. Write-back Response

1.6.1 Message Register File (MRF)
Each thread has a dedicated MRF which is logically identical to the GRF: 256 bits wide per register, with
word-wide addressability. There are 16 MRF registers, referred to as “m0”..”m15”. From a software
perspective, the MRF is write-only and thus may only be used as a destination specifier. Limited register-
region specifications are allowed so long as the region is contained within a single MRF register.

Each register of the MRF has an associated in-flight status, indicating the contents of the register is
needed as part of a pending message, but has yet to be transmitted by the hardware. This bit is set at the
time the message is enqueued for delivery via the ‘send’ instruction. Should a subsequent write to an in-
flight register be attempted, the execution unit will temporarily suspend the thread’s execution until the
register’s in-flight status is cleared (i.e., the message has been transmitted).

Normal threads should construct their messages in m1..m15. The thread is free to start a message
payload at any MRF register location, even to the point of having multiple messages under construction at
the same time in non-overlapping spaces in the MRF. Further multiple messages over non-overlapping
MRF space can be enqueued awaiting transmission at the same time. Regardless of actual hardware
implementation, the thread should not assume that MRF addresses above m15 wrap to legal MRF
registers.

1.6.2 Send Instruction
Messages are sent programmatically by the thread through the ‘send’ instruction. This instruction
enqueues a message for delivery and marks as in-flight all MRF registers used for the message payload.
It also allows for an optional implied move of one GRF register to a MRF register prior to the message
being issued. This implied move allows for a higher message performance, eliminating the explicit ‘mov’

10 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

that would normally be required to move R0 to the lead MRF register of the message (as required by
many message definitions).

A typical ‘send’ instruction is exemplified here (please see the ISA for a full instruction description). This
example performs an implicit move from r0 to m3, then issues a message to the Extended Math unit, with
a payload of 1 register starting at m3, and expecting 1 register in reply to be placed in r5.

 send (16) r5 m3 r0 0x01110001

The execution unit guarantees that any prior instruction which wrote to a MRF register is guaranteed to
have retired, and its result written to the destination MRF register in time for message transmission.

1.6.3 Creating and Sending a Message
A code snippet is listed below, showing a 4-register message (m3 to m6) whose response is directed to
r30. Note that message construction does not have to occur in MRF register order.

 ...

 mul (8) m4 r20 r19

 mov (8) m6 r21

 add (8) m5 r29 r28

 send (8) r30 m3 r0 <desc>

 ...

Once a ‘send’ instruction is issued, the MRF registers used for its payload are marked as ‘in-flight’. These
registers remain in this state until the message is actually transmitted to the shared function and the
register contents are no longer need. Any subsequent write to a MRF register which is in-flight results in a
dependency and a thread switch until such time that the in-flight condition is cleared. An example is
shown below in which the attempt to re-use m6 may result in a thread switch until message 1 is
transmitted.

 ...

 // --- message 1 ---

 mul (8) m4 r20 r19

 mov (8) m6 r21

 add (8) m5 r29 r28

 send (8) r30 m3 r0 <desc>

 ...

 // --- message 2 ---

 mov (8) m6 r15 // thread switch until the

 // previous msg is sent and

 // m6 in-flight is cleared.

 ...

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 11

MRF registers of one message may be reused for a subsequent message without restriction. The in-flight
check mechanism prevents a MRF register staged as part of a pending message from being altered while
awaiting transmission. Further, a thread may rely on the contents of a MRF register being unaltered after
message transmission. This allows the thread to quickly issue an identical or slightly altered message
using the same MRF register set without having to re-construct the entire payload.

Although more than one message may be enqueued at any point in time, care must be taken by the
programmer to ensure that each message’s destination GRF register region, if any, does no over lap with
that of another enqueued message. This condition is not checked by HW. Due to varying latencies
between two messages, and out-of-order, non-contiguous writeback cycles in the current implementation,
the outcome in the GRF is indeterminate; It may be the result from the first message, or the result from
the second message, or a mixture of data from both.

1.6.4 Message Payload Containing a Header
For most shared functions, the first register of the message payload contains the header payload of the
message (or simply the message header). It contains the state fields (such as binding table pointer,
sampler state pointer, etc) following a consistent format structure. Consequently, the rest of the message
payload is referred to as the data payload.

Messages to Extended Math do not have a header and only contain data payload. Those messages may
be referred to as header-less messages. Messages to Gateway combine the header and data payloads
in a single message register.

1.6.5 Writebacks
Some messages generate return data as dictated by the ‘function-control’ (opcode) field of the ‘send’
instruction (part of the <desc> field). The DevSNB execution unit and message passing infrastructure do
not interpret this field in any way to determine if writeback data is to be expected. Instead explicit fields in
the ‘send’ instruction to the execution unit the starting GRF register and count of returning data. The
execution unit uses this information to set in-flight bits on those registers to prevent execution of any
instruction which uses them as an operand until the register(s) is(are) eventually written in response to
the message. If a message is not expected to return data, the ‘send’ instruction’s writeback destination
specifier (<post_dest>) must be set to ‘null’ and the response length field of <desc> must be 0 (see
‘send’ instruction for more details).

The writeback data, if called for, arrives as a series of register writes to the GRF at the location specified
by the starting GRF register and length as specified in the ‘send’ instruction. As each register is written
back to the GRF, its in-flight flag is cleared and it becomes available for use as an instruction operand. If
a thread was suspended pending return of that register, the dependency is lifted and the thread is allowed
to continue execution (assuming no other dependency for that thread remains outstanding).

1.6.6 Message Delivery Ordering Rules
All messages between a thread and an individual shared function are delivered in the ordered they were
sent. Messages to different shared functions originating from a single thread may arrive at their respective
shared functions out of order.

The writebacks of various messages from the shared functions may return in any order. Further individual
destination registers resulting from a single message may return out of order, potentially allowing

12 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

execution to continue before the entire response has returned (depending on the dependency chain
inherent in the thread).

1.6.7 Execution Mask and Messages
The DevSNB Architecture defines an Execution Mask (EMask) for each instruction issued. This 16b bit-
field identifies which SIMD computation channels are enabled for that instruction. Since the ‘send’
instruction is inherently scalar, the EMask is ignored as far as instruction dispatch is concerned. Further
the execution size has no impact on the size of the ‘send' instruction’s implicit move (it is always 1 register
regardless of specified execution size).

The 16b EMask is forwarded with the message to the destination shared function to indicate which SIMD
channels were enabled at the time of the ‘send’. A shared function may interpret or ignore this field as
dictated by the functionality it exposes. For instance, the Extended Math shared function observes this
field and performs the specified operation only on the operands with enabled channels, while the
DataPort writes to the render cache ignore this field completely, instead using the pixel mask included in-
band in the message payload to indicate which channels carry valid data.

1.6.8 End-Of-Thread (EOT) Message
The final instruction of all threads must be a ‘send’ instruction which signals ‘End-Of-Thread’ (EOT). An
EOT message is one in which the EOT bit is set in the ‘send’ instruction’s 32b <desc> field. When issuing
instructions, the EU looks for an EOT message, and when issued, shuts down the thread from further
execution and considers the thread completed.

Only a subset of the shared functions can be specified as the target function of an EOT message, as
shown in the table below.

Target Shared Functions

supporting EOT messages

Target Shared Functions

not supporting EOT messages

Null, DataPortWrite, URB, MessageGateway,
ThreadSpawner

DataPortRead, Sampler

Both the fixed-functions and the thread dispatcher require EOT notification at the completion of each
thread. The thread dispatcher and fixed functions in the 3D pipeline obtain EOT notification by snooping
all message transmissions, regardless of the explicit destination, looking for messages which signal end-
of-thread. The Thread Spawner in the media pipeline does not snoop for EOT. As it is also a shared
function, all threads generated by Thread Spawner must send a message to Thread Spawner to explicity
signal end-of-thread.

The thread dispatcher, upon detecting an end-of-thread message, updates its accounting of resource
usage by that thread, and is free to issue a new thread to take the place of the ended thread. Fixed
functions require end-of-thread notification to maintain accounting as to which threads it issued have
completed and which remain outstanding, and their associated resources such as URB handles.

Unlike the thread dispatcher, fixed-functions discriminate end-of-thread messages, only acting upon those
from threads which they originated, as indicated by the 4b fixed-function ID present in R0 of end-of-thread

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 13

message payload. This 4b field is attached to the thread at new-thread dispatch time and is placed in its
designated field in the R0 contents delivered to the GRF. Thus to satisfy the inclusion of the fixed-function
ID, the typical end-of-thread message generally supplies R0 from the GRF as the first register of an end-
of-thread message.

As an optimization, an end-of-thread message may be overload upon another “productive” message,
saving the cost in execution and bandwidth of a dedicated end-of-thread message. Outside of the end-of-
thread message, most threads issue a message just prior to their termination (for instance, a Dataport
write to the framebuffer) so the overloaded end-of-thread is the common case. The requirement is that
the message contains R0 from the GRF (to supply the fixed-function ID), and that destination shared
function be either (a) the URB; (b) the Read or Write Dataport; or, (c) the Gateway, as these functions
reside on the O-Bus. In the case where the last real message of a thread is to some other shared
function, the thread must issue a separate message for the purposes of signaling end-of-thread to the
“null” shared function.

1.6.9 Performance
The DevSNB Architecture imposes no requirement as to a shared function’s latency or throughput. Due to
this as well as factors such as message queuing, shared bus arbitration, implementation choices in bus
bandwidth, and instantaneous demand for that function, the latency in delivering and obtaining a
response to a message is non-deterministic. It is expected that a DevSNB implementation has some
notion of fairness in transmission and servicing of messages so as to keep latency outliers to a minimum.

Other factors to consider with regard to performance:

 A thread may choose to have multiple messages under construction in non-overlapping registers
the MRF at the same time.

 Multiple messages are allowed to be enqueued for transmission at the same time, so long as
their MRF payload registers do not overlap.

 Messages may rely on the MRF registers being maintained across a send message, thus
constructing subsequent messages overlaid on portions of a previous message,

 Software prefetching techniques may be beneficial for long latency data fetches (i.e. issue a load
early in the thread for data that is required late in the thread).

1.6.10 Message Description Syntax
All message formats are defined in terms of DWords (32 bits). The message registers in all cases are
256 bits wide, or 8 DWords. The registers and DWords within the registers are named as follows, where
n is the register number, and d is the DWord number from 0 to 7, from the least significant DWord at bits
[31:0] within the 256-bit register to the most significant DWord at bits [255:224], respectively. For
writeback messages, the register number indicates the offset from the specified starting destination
register.

Dispatch Messages: Rn.d

Dispatch messages are sent by the fixed functions to dispatch threads. See the fixed function chapters in
the 3D and Media volume.

14 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

SEND Instruction Messages: Mn.d

These are the messages initiated by the thread via the SEND instruction to access shared functions. See
the chapters on the shared functions later in this volume.

Writeback Messages: Wn.d

These messages return data from the shared function to the GRF where it can be accessed by thread
that initiated the message.

The bits within each DWord are given in the second column in each table.

1.6.11 Message Errors
Messages are constructed via software, and not all possible bit encodings are legal, thus there is the
possibility that a message may be sent containing one or more errors in its descriptor or payload
contents. There are two points of error detection in the message passing system: (a) the message
delivery subsystem is capable of detecting bad FunctionIDs and some cases of bad message lengths; (b)
the shared functions contain various error detection mechanisms which identify bad sub-function codes,
bad message lengths, and other misc errors. The error detection capabilities are specific to each shared
function. The execution unit hardware itself does not perform message validation prior to transmission.

In both cases, information regarding the erroneous message is captured and made visible through MMIO
registers, and the driver notified via an interrupt mechanism. The set of possible errors is listed in Table
1-1 with the associated outcome. Please see the chapter on error handling for detailed information.

Table 1-1. Error Cases

Error Outcome

Bad Shared Function ID The message is discarded before reaching any shared function. If the message
specified a destination, those registers will be marked as in-flight, and any
future usage by the thread of those registers will cause a dependency which
will never clear, resulting in a hung thread and eventual time-out.

Unknown opcode

Incorrect message length

The destination shared function detects unknown opcodes (as specified in the
‘send’ instructions <desc> field), and known opcodes where the message
payload is either too long or too short, and threats these cases as errors. When
detected, the shared function latches and makes available via MMIO registers
the following information: the EU and thread ID which sent the message, the
length of the message and expected response, and any relevant portions of the
first register (R0) of the message payload. The shared function alerts the driver
of an erroneous message through and interrupt mechanism, then continues
normal operation with the subsequent message.

Bad message contents in
payload

Detection of bad data is an implementation decision of the shared function. Not
all fields may be checked by the shared function, so an erroneous payload may
return bogus data or no data at all. If an erroneous value is detected by the
shared function, it is free to discard the message and continue with the
subsequent message. If the thread was expecting a response, the destination
registers specified in the associated ‘send’ instruction are never cleared
potentially resulting in a hung thread and time-out.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 15

Error Outcome

Incorrect response length Case: too few registers specified – the thread may proceed with execution prior
to all the data returning from the shared function, resulting in the thread
operating on bad data in the GRF.

Case: too many registers specified – the message response does not clear all
the registers of the destination. In this case, if the thread references any of the
residual registers, it may hand and result in an eventual time-out.

Improper use of End-Of-Thread
(EOT)

Any ‘send’ instruction which specifies EOT must have a ‘null’ destination
register. The EU enforces this and, if detected, will not issue the ‘send’
instruction, resulting in a hung thread and an eventual time-out.

The ‘send’ instruction specifies that EOT is only recognized if the <desc> field
of the instruction is an immediate. Should a thread attempt to end a thread
using a <desc> sourced from a register, the EOT bit will not be recognized. In
this case, the thread will continue to execute beyond the intended end of
thread, resulting in a wide range of error conditions.

Two outstanding messages
using overlapping GRF
destinations ranges

This is not checked by HW. Due to varying latencies between two messages,
and out-of-order, non-contiguous writeback cycles, the outcome in the GRF is
indeterminate; may be the result from the first message, or the result from the
second message, or a combination of both.

16 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

2. Sampling Engine
The Sampling Engine provides the capability of advanced sampling and filtering of surfaces in memory.

The sampling engine function is responsible for providing filtered texture values to the DevSNB Core in
response to sampling engine messages.. The sampling engine uses SAMPLER_STATE to control
filtering modes, address control modes, and other features of the sampling engine. A pointer to the
sampler state is delivered with each message, and an index selects one of 16 states pointed to by the
pointer. Some messages do not require SAMPLER_STATE. In addition, the sampling engine uses
SURFACE_STATE to define the attributes of the surface being sampled. This includes the location, size,
and format of the surface as well as other attributes.

Although data is commonly used for “texturing” of 3D surfaces, the data can be used for any purpose
once returned to the execution core.

The following table summarizes the various subfunctions provided by the Sampling Engine. After the
appropriate subfunctions are complete, the 4-component (reduced to fewer components in some cases)
filtered texture value is provided to the DevSNB Core in order to complete the sample instruction.

Subfunction Description

Texture
Coordinate
Processing

Any required operations are performed on the incoming pixel’s interpolated internal texture
coordinates. These operations may include: cube map intersection.

Texel Address
Generation

The Sampling Engine will determine the required set of texel samples (specific texel values
from specific texture maps), as defined by the texture map parameters and filtering modes.
This includes coordinate wrap/clamp/mirror control, mipmap LOD computation and sample
and/or miplevel weighting factors to be used in the subsequent filtering operations.

Texel Fetch The required texel samples will be read from the texture map. This step may require
decompression of texel data. The texel sample data is converted to an internal format.

Texture Palette
Lookup

For streams which have “paletted” texture surface formats, this function uses the “index”
values read from the texture map to look up texel color data from the texture palette.

Shadow Pre-
Filter Compare

For shadow mapping, the texel samples are first compared to the 3rd (R) component of the
pixel’s texture coordinate. The boolean results are used in the texture filter.

Texel Filtering Texel samples are combined using the filter weight coefficients computed in the Texture
Address Generation function. This “combination” ranges from simply passing through a
“nearest” sample to blending the results of anisotropic filters performed on two mipmap
levels. The output of this function is a single 4-component texel value.

Texel Color
Gamma
Linearization

Performs optional gamma decorrection on texel RGB (not A) values.

Denoise/

Deinterlacer

Performs denoise and deinterlacing functions for video content ([DevILK+])

8x8 Video
Scaler

Performs scaling using an 8x8 filter ([DevILK+])

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 17

Subfunction Description

Image
Enhancement
Filter / Video
Signal Analysis

Image Enhancement functions for video content ([DevILK+])

2.1 Texture Coordinate Processing
The Texture Coordinate Processing function of the Sampling Engine performs any operations on the
texture coordinates that are required before physical addresses of texel samples can be generated.

2.1.1 Texture Coordinate Normalization
A texture coordinate may have normalized or unnormalized values. In this function, unnormalized
coordinates are normalized.

Normalized coordinates are specified in units relative to the map dimensions, where the origin is located
at the upper/left edge of the upper left texel, and the value 1.0 coincides with the lower/right edge of the
lower right texel . 3D rendering typically utilizes normalized coordinates.

Unnormalized coordinates are in units of texels and have not been divided (normalized) by the associated
map’s height or width. Here the origin is the located at the upper/left edge of the upper left texel of the
base texture map. Unnormalized coordinates delivered to the sampling engine are only supported with
the “ld” type messages.

Figure 2-1. Normalized vs. Unnormalized Texture Coordinates

B6877-01

Normalized
U0, 0

V

1, 1

Unnormalized
U0, 0

V

15, 11

2.1.2 Texture Coordinate Computation
Cartesian (2D) and homogeneous (projected) texture coordinate values are projected from (interpolated)
screen space back into texture coordinate space by dividing the pixel’s S and T components by the Q
component. This operation is done as part of the pixel shader kernel in the DevSNB Core.

Vector (cube map) texture coordinates are generated by first determining which of the 6 cube map faces
(+X, +Y, +Z, -X, -Y, -Z) the vector intersects. The vector component (X, Y or Z) with the largest absolute

18 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

value determines the proper (major) axis, and then the sign of that component is used to select between
the two faces associated with that axis. The coordinates along the two minor axes are then divided by
the coordinate of the major axis, and scaled and translated, to obtain the 2D texture coordinate ([0,1])
within the chosen face. Note that the coordinates delivered to the sampling engine must already have
been divided by the component with the largest absolute value.

An illustration of this cube map coordinate computation, simplified to only two dimensions, is provided
below:

Figure 2-2. Cube Map Coordinate Computation Example

B6878-01

J

+I face

I0

J0/I0

I0,J0

abs(I0)>abs(J0)

Selects +I face

+J face

-J face

-I face

Note:
Face origin is here

I1

2.2 Texel Address Generation
To better understand texture mapping, consider the mapping of each object (screen-space) pixel onto the
textures images. In texture space, the pixel becomes some arbitrarily sized and aligned quadrilateral.
Any given pixel of the object may “cover” multiple texels of the map, or only a fraction of one texel. For
each pixel, the usual goal is to sample and filter the texture image in order to best represent the covered
texel values, with a minimum of blurring or aliasing artifacts. Per-texture state variables are provided to
allow the user to employ quality/performance/footprint tradeoffs in selecting how the particular texture is
to be sampled.

The Texel Address Generation function of the Sampling Engine is responsible for determining how the
texture maps are to be sampled. Outputs of this function include the number of texel samples to be
taken, along with the physical addresses of the samples and the filter weights to be applied to the
samples after they are read. This information is computed given the incoming texture coordinate and
gradient values, and the relevant state variables associated with the sampler and surface. This function
also applies the texture coordinate address controls when converting the sample texture coordinates to
map addresses.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 19

2.2.1 Level of Detail Computation (Mipmapping)
Due to the specification and processing of texture coordinates at object vertices, and the subsequent
object warping due to a perspective projection, the texture image may become magnified (where a texel
covers more than one pixel) or minified (a pixel covers more than one texel) as it is mapped to an object.
In the case where an object pixel is found to cover multiple texels (texture minification), merely choosing
one (e.g., the texel sample nearest to the pixel’s texture coordinate) will likely result in severe aliasing
artifacts.

Mipmapping and texture filtering are techniques employed to minimize the effect of undersampling these
textures. With mipmapping, software provides mipmap levels, a series of pre-filtered texture maps of
decreasing resolutions that are stored in a fixed (monolithic) format in memory. When mipmaps are
provided and enabled, and an object pixel is found to cover multiple texels (e.g., when a textured object is
located a significant distance from the viewer), the device will sample the mipmap level(s) offering a
texel/pixel ratio as close to 1.0 as possible.

The device supports up to 14 mipmap levels per map surface, ranging from 8192 x 8192 texels to a 1 X 1
texel. Each successive level has ½ the resolution of the previous level in the U and V directions (to a
minimum of 1 texel in either direction) until a 1x1 texture map is reached. The dimensions of mipmap
levels need not be a power of 2.

Each mipmap level is associated with a Level of Detail (LOD) number. LOD is computed as the
approximate, log2 measure of the ratio of texels per pixel. The highest resolution map is considered LOD
0. A larger LOD number corresponds to lower resolution mip level.

The Sampler[]BaseMipLevel state variable specifies the LOD value at which the minification filter vs. the
magnification filter should be applied.

When the texture map is magnified (a texel covers more than one pixel), the base map (LOD 0) texture
map is accessed, and the magnification mode selects between the nearest neighbor texel or bilinear
interpolation of the 4 neighboring texels on the base (LOD 0) mipmap.

2.2.1.1 Base Level Of Detail (LOD)

The per-pixel LOD is computed in an implementation-dependent manner and approximates the log2 of the
texel/pixel ratio at the given pixel. The computation is typically based on the differential texel-space
distances associated with a one-pixel differential distance along the screen x- and y-axes. These texel-
space distances are computed by evaluating neighboring pixel texture coordinates, these coordinates
being in units of texels on the base MIP level (multiplied by the corresponding surface size in texels).
The q coordinates represent the third dimension for 3D (volume) surfaces, this coordinate is a constant 0
for 2D surfaces.

The ideal LOD computation is included below.

,,max),(

:where

)],([log),(

222222

2

y

q

y

v

y

u

x

q

x

v

x

u
yx

yxyxLOD

20 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

2.2.1.2 LOD Bias

A biasing offset can be applied to the computed LOD and used to artificially select a higher or lower
miplevel and/or affect the weighting of the selected mipmap levels. Selecting a slightly higher mipmap
level will trade off image blurring with possibly increased performance (due to better texture cache reuse).
Lowering the LOD tends to sharpen the image, though at the expense of more texture aliasing artifacts.

The LOD bias is defined as sum of the LODBias state variable and the pixLODBias input from the input
message (which can be non-zero only for sample_b messages). The application of LOD Bias is
unconditional, therefore these variables must both be set to zero in order to prevent any undesired
biasing.

Note that, while the LOD Bias is applied prior to clamping and min/mag determination and therefore can
be used to control the min-vs-mag crossover point, its use has the undesired effect of actually changing
the LOD used in texture filtering.

2.2.1.3 LOD Pre-Clamping

The LOD Pre-Clamping function can be enabled or disabled via the LODPreClampEnable state variable.
Enabling pre-clamping matches OpenGL semantics, while disabling it matches Direct3D.

After biasing and/or adjusting of the LOD , the computed LOD value is clamped to a range specified by
the (integer and fractional bits of) MinLOD and MaxLOD state variables prior to use in Min/Mag
Determination.

MaxLOD specifies the lowest resolution mip level (maximum LOD value) that can be accessed, even
when lower resolution maps may be available. Note that this is the only parameter used to specify the
number of valid mip levels that be can be accessed, i.e., there is no explicit “number of levels stored in
memory” parameter associated with a mip-mapped texture. All mip levels from the base mip level map
through the level specified by the integer bits of MaxLOD must be stored in memory, or operation is
UNDEFINED.

MinLOD specifies the highest resolution mip level (minimum LOD value) that can be accessed, where
LOD==0 corresponds to the base map. This value is primarily used to deny access to high-resolution
mip levels that have been evicted from memory when memory availability is low.

MinLOD and MaxLOD have both integer and fractional bits. The fractional parts will limit the inter-level
filter weighting of the highest or lowest (respectively) resolution map. For example if MinLOD is 4.5 and
MipFilter is LINEAR, LOD 4 can contribute only up to 50% of the final texel color.

2.2.1.4 Min/Mag Determination

The biased and clamped LOD is used to determine whether the texture is being minified (scaled down) or
magnified (scaled up).

The BaseMipLevel state variable is subtracted from the biased and clamped LOD. The BaseMipLevel
state variable therefore has the effect of selecting the “base” mip level used to compute Min/Map
Determination. (This was added to match OpenGL semantics). Setting BaseMipLevel to 0 has the effect
of using the highest-resolution mip level as the base map.

If the biased and clamped LOD is non-positive, the texture is being magnified, and a single (high-
resolution) miplevel will be sampled and filtered using the MagFilter state variable. At this point the
computed LOD is reset to 0.0. Note that LOD Clamping can restrict access to high-resolution miplevels.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 21

If the biased LOD is positive, the texture is being minified. In this case the MipFilter state variable
specifies whether one or two mip levels are to be included in the texture filtering, and how that (or those)
levels are to be determined as a function of the computed LOD.

2.2.1.5 LOD Computation Pseudocode

This section illustrates the LOD biasing and clamping computation in pseudocode, encompassing the
steps described in the previous sections. The computation of the initial per-pixel LOD value LOD is not
shown.

 [DevSNB]

Bias: S4.6

MinLod: U4.6

MaxLod: U4.6

Base: U4.1

MIPCnt: U4

SurfMinLod: U4

ResMinLod: hard-wired to zero

If Out_of_Bounds is true, LOD is set to zero and instead of sampling the surface the texels are replaced
with zero in all channels, except for surface formats that don’t contain alpha, for which the alpha channel
is replaced with one. These texels then proceed through the rest of the pipeline.

[DevSNB] Errata: Incorrect behavior is observed in cases where the min and mag mode filters are
different and SurfMinLOD is nonzero. The determination of MagMode uses the following equation
instead of the one in the above pseudocode: MagMode = (LOD + SurfMinLOD – Base <= 0)

Inter-Level Filtering Setup

The MipFilter state variable determines if and how texture mip maps are to be used and combined. The
following table describes the various mip filter modes:

MipFilter Value Description

MIPFILTER_NONE Mipmapping is DISABLED. Apply a single filter on the highest resolution
map available (after LOD clamping).

MIPFILTER_NEAREST Choose the nearest mipmap level and apply a single filter to it. Here the
biased LOD will be rounded to the nearest integer to obtain the desired
miplevel. LOD Clamping may further restrict this miplevel selection.

MIPFILTER_LINEAR Apply a filter on the two closest mip levels and linear blend the results using
the distance between the computed LOD and the level LODs as the blend
factor. Again, LOD Clamping may further restrict the selection of miplevels
(and the blend factor between them).

When minifying and MIPFILTER_NEAREST is selected, the computed LOD is rounded to the nearest mip
level.

22 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

When minifying and MIPFILTER_LINEAR is selected, the fractional bits of the computed LOD are used to
generate an inter-level blend factor. The LOD is then truncated. The mip level selected by the truncated
LOD, and the next higher (lower resolution) mip level are determined.

Regardless of MipFilter and the min/mag determination, all computed LOD values (two for
MIPFILTER_LINEAR, otherwise one) are then unconditionally clamped to the range specified by the
(integer bits of) MinLOD and MaxLOD state variables.

2.2.2 Intra-Level Filtering Setup
Depending on whether the texture is being minified or magnified, the MinFilter or MagFilter state variable
(respectively) is used to select the sampling filter to be used within a mip level (intra-level, as opposed to
any inter-level filter). Note that for volume maps, this selection also applies to filtering between layers.

The processing at this stage is restricted to the selection of the filter type, computation of the number and
texture map coordinates of the texture samples, and the computation of any required filter parameters.
The filtering of the samples occurs later on in the Sampling Engine function.

The following table summarizes the intra-level filtering modes.

Sampler[]Min/MagFilter value Description

MAPFILTER_NEAREST Supported on all surface types. The texel nearest to the pixel’s U,V,Q
coordinate is read and output from the filter.

MAPFILTER_LINEAR Not supported on buffer surfaces. The 2, 4, or 8 texels (depending on 1D,
2D/CUBE, or 3D surface, respectively) surrounding the pixel’s U,V,Q
coordinate are read and a linear filter is applied to produce a single filtered
texel value.

MAPFILTER_ANISOTROPIC Not supported on buffer or 3D surfaces. A projection of the pixel onto the
texture map is generated and “subpixel” samples are taken along the major
axis of the projection (center axis of the longer dimension). The outermost
subpixels are weighted according to closeness to the edge of the projection,
inner subpixels are weighted equally. Each subpixel samples a bilinear 2x2
of texels and the results are blended according to weights to produce a
filtered texel value.

MAPFILTER_MONO Supported only on 2D surfaces. This filter is only supported with the
monochrome (MONO8) surface format. The monochrome texel block of the
specified size surrounding the pixel is selected and filtered.

2.2.2.1 MAPFILTER_NEAREST

When the MAPFILTER_NEAREST is selected, the texel with coordinates nearest to the pixel’s texture
coordinate is selected and output as the single texel sample coordinates for the level.

2.2.2.2 MAPFILTER_LINEAR

The following description indicates behavior of the MIPFILTER_LINEAR filter for 2D and CUBE surfaces.
1D and 3D surfaces follow a similar method but with a different number of dimensions available.

When the MAPFILTER_LINEAR filter is selected on a 2D surface, the 2x2 region of texels surrounding
the pixel’s texture coordinate are sampled and later bilinearly filtered.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 23

Figure 2-3. Bilinear Filter Sampling

B6879-01

Pixel’s Texel
Coords

Nearest
Texel Center

Bup

Bleft 1-Bleft

1-Bup

The four texels surrounding the pixel center are chosen for the bilinear filter. The filter weights each
texel’s contribution according to its distance from the pixel center. Texels further from the pixel center
receive a smaller weight.

2.2.2.3 MAPFILTER_ANISOTROPIC

The MAPFILTER_ANISOTROPIC texture filter attempts to compensate for the anisotropic mapping of
pixels into texture map space. A possibly non-square set of texel sample locations will be sampled and
later filtered. The MaxAnisotropy state variable is used to select the maximum aspect ratio of the filter
employed, up to 16:1.

The algorithm employed first computes the major and minor axes of the pixel projection onto the texture
map. LOD is chosen based on the minor axis length in texel space. The anisotropic “ratio” is equal to the
ratio between the major axis length and the minor axis length. The next larger even integer above the
ratio determines the anisotropic number of “ways”, which determines how many subpixels are chosen. A
line along the major axis is determined, and “subpixels” are chosen along this line, spaced one texel
apart, as shown in the diagram below. In this diagram, the texels are shown in light blue, and the pixels
are in yellow.

24 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

B6880-01

x

y

u

y

Pixel Center

Subpixel Center

1.0
 tex

el
0.5

 tex
el 0.5

 tex
el

1.0
 te

xel

Each subpixel samples a bilinear 2x2 around it just as if it was a single pixel. The result of each subpixel
is then blended together using equal weights on all interior subpixels (not including the two endpoint
subpixels). The endpoint subpixels have lesser weight, the value of which depends on how close the
“ratio” is to the number of “ways”. This is done to ensure continuous behavior in animation.

2.2.2.4 MAPFILTER_MONO

When the MAPFILTER_MONO filter is selected, a block of monochrome texels surrounding the pixel
sample location are read and filtered using the kernel described below. The size of this block is
controlled by Monochrome Filter Height and Width (referred to here as Nv and Nu, respectively) state.
Filters from 1x1 to 7x7 are supported (not necessarily square).

The figure below shows a 6x5 filter kernel as an example. The footprint of the filter (filter kernel samples)
is equal to the size of the filter and the pixel center lies at the exact center of this footprint. The position of
the upper left filter kernel sample (uf, vf) relative to the pixel center at (u, v) is given by the following:

2

2

v
f

u
f

N
vv

N
uu

u and v are the fractional parts of uf and vf, respectively. The integer parts select the upper left texel for
the kernel filter, given here as T0,0.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 25

Figure 2-4. Sampling Using MAPFILTER_MONO

B6881-01

pixel center (u,v)
texels
filter kernel samples

ßu

ßv
0

1

2

3

4

5

v

0 1 2 3 4 5 6 u

The formula for the final filter output F is given by the following. Since this is a monochrome filter, each
texel value (T) is a single bit, and the output F is an intensity value that is replicated across the color and
alpha channels.

STTTTF

NN
S

u vu vu vu v N

i

N

j
jivu

N

i

N

j
jivu

N

i

N

j
jivu

N

i

N

j
jivu

vu

*)1()1()1)(1(

*

1

1 1
,

1

0 1
,

1

1

0
,

1

0

1

0
,

2.2.3 Texture Address Control
The [TCX,TCY,TCZ]ControlMode state variables control the access and/or generation of texel data when
the specific texture coordinate component falls outside of the normalized texture map coordinate range
[0,1).

Note: For Wrap Shortest mode, the setup kernel has already taken care of correctly interpolating the
texture coordinates. Software will need to specify TEXCOORDMODE_WRAP mode for the sampler that
is provided with wrap-shortest texture coordinates, or artifacts may be generated along map edges.

TC[X,Y,Z] Control Operation

TEXCOORDMODE_CLAMP Clamp to the texel value at the edge of the map.

TEXCOORDMODE_WRAP Upon crossing an edge of the map, repeat at the other side of the
map in the same dimension.

TEXCOORDMODE_CUBE Only used for cube maps. Here texels from adjacent cube faces can
be sampled along the edges of faces. This is considered the highest
quality mode for cube environment maps.

TEXCOORDMODE_MIRROR Similar to the wrap mode, though reverse direction through the map
each time an edge is crossed. INVALID for use with unnormalized

26 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

TC[X,Y,Z] Control Operation

texture coordinates.

TEXCOORDMODE_MIRROR_ONCE Similar to the wrap mode, though reverse direction through the map
each time an edge is crossed. INVALID for use with unnormalized
texture coordinates.

Separate controls are provided for texture TCX, TCY, TCZ coordinate components so, for example, the
TCX coordinate can be wrapped while the TCY coordinate is clamped. Note that there are no controls
provided for the TCW component as it is only used to scale the other 3 components before addressing
modes are applied.

Maximum Wraps/Mirrors

The number of map wraps on a given object is limited to 32. Going beyond this limit is legal, but may
result in artifacts due to insufficient internal precision, especially evident with larger surfaces. Precision
loss starts at the subtexel level (slight color inaccuracies) and eventually reaches the texel level
(choosing the wrong texels for filtering).

2.2.3.1 TEXCOORDMODE_WRAP Mode

In TEXCOORDMODE_WRAP addressing mode, the integer part of the texture coordinate is discarded,
leaving only a fractional coordinate value. This results in the effect of the base map ([0,1)) being
continuously repeated in all (axes-aligned) directions. Note that the interpolation between coordinate
values 0.1 and 0.9 passes through 0.5 (as opposed to WrapShortest mode which interpolates through
0.0).

2.2.3.2 TEXCOORDMODE_MIRROR Mode

TEXCOORDMODE_MIRROR addressing mode is similar to Wrap mode, though here the base map is
flipped at every integer junction. For example, for U values between 0 and 1, the texture is addressed
normally, between 1 and 2 the texture is flipped (mirrored), between 2 and 3 the texture is normal again,
and so on. The second row of pictures in the figure below indicate a map that is mirrored in one direction
and then both directions. You can see that in the mirror mode every other integer map wrap the base
map is mirrored in either direction.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 27

Figure 2-5. Texture Wrap vs. Mirror Addressing Mode

B6882-01

Wrap Mode

Mirror Mode

2.2.3.3 TEXCOORDMODE_MIRROR_ONCE Mode

The TEXCOORDMODE_MIRROR_ONCE addressing mode is a combination of Mirror and Clamp
modes. The absolute value of the texture coordinate component is first taken (thus mirroring about 0),
and then the result is clamped to 1.0. The map is therefore mirrored once about the origin, and then
clamped thereafter. This mode is used to reduce the storage required for symmetric maps.

2.2.3.4 TEXCOORDMODE_CLAMP Mode

The TEXCOORDMODE_CLAMP addressing mode repeats the “edge” texel when the texture coordinate
extends outside the [0,1) range of the base texture map. This is contrasted to
TEXCOORDMODE_CLAMPBORDER mode which defines a separate texel value for off-map samples.
TEXCOORDMODE_CLAMP is also supported for cube maps, where texture samples will only be
obtained from the intersecting face (even along edges).

The figure below illustrates the effect of clamp mode. The base texture map is shown, along with a
texture mapped object with texture coordinates extending outside of the base map region.

28 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

Figure 2-6. Texture Clamp Mode

B6883-01

Texture

Textured Object
(Clamp &,V Mode)

0,0 -1,-1

1,1

2,2

2.2.3.5 TEXCOORDMODE_CUBE Mode

For cube map textures TEXCOORDMODE_CUBE addressing mode can be set to allow inter-face
filtering. When texel sample coordinates that extend beyond the selected cube face (e.g., due to intra-
level filtering near a cube edge), the correct sample coordinates on the adjoining face will be computed.
This will eliminate artifacts along the cube edges, though some artifacts at cube corners may still be
present.

2.3 Texel Fetch
The Texel Fetch function of the Sampling Engine reads the texture map contents specified by the texture
addresses associated with each texel sample. The texture data is read either directly from the memory-
resident texture map, or from internal texture caches. The texture caches can be invalidated by the
Sampler Cache Invalidate field of the MI_FLUSH instruction or via the Read Cache Flush Enable bit of
PIPE_CONTROL. Except for consideration of coherency with CPU writes to textures and rendered
textures, the texture cache does not affect the functional operation of the Sampling Engine pipeline.

When the surface format of a texture is defined as being a compressed surface, the Sampler will
automatically decompress from the stored format into the appropriate [A]RGB values. The compressed
texture storage formats and decompression algorithms can be found in the Memory Data Formats
chapter. When the surface format of a texture is defined as being an index into the texture palette (format
names includiong “Px”), the palette lookup of the index determines the appropriate RGB values.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 29

2.3.1 Texel Chroma Keying
ChromaKey is a term used to describe a method of effectively removing or replacing a specific range of
texel values from a map that is applied to a primitive, e.g., in order to define transparent regions in an
RGB map. The Texel Chroma Keying function of the Sampling Engine pipeline conditionally tests texel
samples against a “key” range, and takes certain actions if any texel samples are found to match the key.

2.3.1.1 Chroma Key Testing

ChromaKey refers to testing the texel sample components to see if they fall within a range of texel values,
as defined by ChromaKey[][High,Low] state variables. If each component of a texel sample is found to lie
within the respective (inclusive) range and ChromaKey is enabled, then an action will be taken to remove
this contribution to the resulting texel stream output. Comparison is done separately on each of the
channels and only if all 4 channels are within range the texel will be eliminated.

The Chroma Keying function is enabled on a per-sampler basis by the ChromaKeyEnable state variable.

The ChromaKey[][High,Low] state variables define the tested color range for a particular texture map.

2.3.1.2 Chroma Key Effects

There are two operations that can be performed to “remove” matching texel samples from the image. The
ChromaKeyEnable state variable must first enable the chroma key function. The ChromaKeyMode state
variable then specifies which operation to perform on a per-sampler basis.

The ChromaKeyMode state variable has the following two possible values:

KEYFILTER_KILL_ON_ANY_MATCH: Kill the pixel if any contributing texel sample matches the key

KEYFILTER_REPLACE_BLACK: Here the sample is replaced with (0,0,0,0). This matches the Direct3D
COLORKEYBLENDENABLE functionality

The Kill Pixel operation has an effect on a pixel only if the associated sampler is referenced by a sample
instruction in the pixel shader program. If the sampler is not referenced, the chroma key compare is not
done and pixels cannot be killed based on it.

2.4 Shadow Prefilter Compare
When a sample_c message type is processed, a special shadow-mapping precomparison is performed
on the texture sample values prior to filtering. Specifically, each texture sample value is compared to the
“ref” component of the input message, using a compare function selected by ShadowFunction, and
described in the table below. Note that only single-channel texel formats are supported for shadow
mapping, and so there is no specific color channel on which the comparison occurs.

ShadowFunction Result

PREFILTEROP_ALWAYS 0.0

PREFILTEROP_NEVER 1.0

30 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

ShadowFunction Result

PREFILTEROP_LESS (texel < ref) ? 0.0 : 1.0

PREFILTEROP_EQUAL (texel == ref) ? 0.0 : 1.0

PREFILTEROP_LEQUAL (texel <= ref) ? 0.0 : 1.0

PREFILTEROP_GREATER (texel > ref) ? 0.0 : 1.0

PREFILTEROP_NOTEQUAL (texel != ref) ? 0.0 : 1.0

PREFILTEROP_GEQUAL (texel >= ref) ? 0.0 : 1.0

The binary result of each comparison is fed into the subsequent texture filter operation (in place of the
texel’s value which would normally be used).

Software is responsible for programming the ”ref” component of the input message such that it
approximates the same distance metric programmed in the texture map (e.g., distance from a specific
light to the object pixel). In this way, the comparison function can be used to generate “in shadow” status
for each texture sample, and the filtering operation can be used to provide soft shadow edges.

Programming Note:

 Refer to the Surface Formats table in section 0 for the specific surface formats that are supported
with shadow mapping.

2.5 Texel Filtering
The Texel Filtering function of the Sampling Engine performs any required filtering of multiple texel values
on and possibly between texture map layers and levels. The output of this function is a single texel color
value.

The state variables MinFilter, MagFilter, and MipFilter are used to control the filtering of texel values. The
MipFilter state variable specifies how many mipmap levels are included in the filter, and how the results of
any filtering on these separate levels are combined to produce a final texel color. The MinFilter and
MagFilter state variables specify how texel samples are filtered within a level.

2.6 Texel Color Gamma Linearization
This function is supported to allow pre-gamma-corrected texel RGB (not A) colors to be mapped back into
linear (gamma=1.0) gamma space prior to (possible) blending with, and writing to the Color Buffer. This
permits higher quality image blending by performing the blending on colors in linear gamma space.

This function is enabled on a per-texture basis by use of a surface format with “_SRGB” in its name. If
enabled, the pre-filtered texel RGB color to be converted from gamma=2.4 space to gamma=1.0 space
by applying a ^(1/2.4) = ^0.4167 exponential function.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 31

2.7 Multisampled Surface Behavior [DevSNB+]
The ld message has added an additional parameter for sample index (si) to support unfiltered loading
from a multisampled surface.

The sampleinfo message returns specific parameters associated with a multisample surface. The resinfo
message returns the height, width, depth, and MIP count of the surface (in units of pixels, not samples).

Any of the other messages (sample*, LOD, load4) used with a (4x) multisampled surface will in-effect
sample a surface with double the height and width as that indicated in the surface state. Each pixel
position on the original-sized surface is replaced with a 2x2 of samples with the following arrangement:

sample 0 sample 2

sample 1 sample 3

This behavior is useful to implement the multisample resolve operation by selecting MAPFILTER_LINEAR
and rendering a full-screen rectangle half the size in each dimension of the source texture map
(multisampled surface). If pixel offsets are set correctly, each pixel is the average of the four underlying
samples.

2.8 Denoise/Deinterlacer [DevSNB]
The Denoise/Deinterlacer function takes a 4:2:0 or 4:2:2 video stream and first apply a denoise filter to it
and then deinterlace it.

The denoise filter is applied before the deinterlacer. The denoise filter detects and tries to minimize noise
in the input field, while the deinterlacer takes a field consisting of every other lines converts a field into a
frame. This block also gathers statistics for a global noise estimate made in software at the end of the
frame which is used in following frames to tune the denoise filter and image enhancement filter.

The deinterlacer takes the top and bottom fields of each frame and converts them into two individual
frames. This block also gathers statistics for a film mode detector in software run at the end of the frame.
If the film mode detector for the previous frame concludes that the input is progressive rather than
interlaced then the fields will be put together in the best order rather than being interlaced.

2.8.1 Introduction

2.8.1.1 Overview

This diagram shows how the Denoise/Deinterlacer fits in with the other functions of the video pipe. This
is only one possible usage model, other models are possible.

Video Decoder
(MPEG-2,

AVC or VC1)

Encoded Video
Source

(e.g. DVD)

Denoise /
Deinterlacer

Advanced
Video
Scaler

Image
Enhancement

Color
Processing

32 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

2.8.1.2 Block Diagram

2.8.1.3 Features

 Denoise Filter – detects noise and motion and filters the block with either a temporal filter when
little motion is detected or a spatial filter. Noise estimates are kept between frames and blended
together. Since the filter is before the deinterlacer it works on individual fields rather than frames.
This usually improves the operation since the deinterlacer can take a single pixel of noise and
spread it to an adjacent pixel, making it harder to remove. The denoise filter works the same
whether deinterlacing or progressive cadence reconstruction is being done.

 Block Noise Estimate (BNE) – part of the Global Noise Estimate (GNE) algorithm, this estimates
the noise over the entire block. The GNE will be calculated at the end of the frame by combining
all the BNEs. The final GNE value is used to control the denoise filter for the next frame.

 Film Mode Detection (FMD) Variances – FMD determines if the input fields were created by
sampling film and converting it to interlaced video. If so the deinterlacer is turned off in favor of
reconstructing the frame from adjacent fields. Various sum-of-absolute differences are calcluated
per block. The FMD algorithm is run at the end of the frame by looking at the variances of all
blocks for both fields in the frame.

 Deinterlacer – Estimates how much motion is occuring across the fields. Low motion scenes are
reconstructed by averaging pixels from fields from nearby times (temporal deinterlacer), while
high motion scenes are reconstructed by interpolating pixels from nearby space (spatial
deinterlacer).

Global Noise
Detection

Current
Field

(luma only)

Motion
Detection
 & Noise

Motion History
Previous
Denoised

Field
(luma only)

Spatial 3x3
Filter

Temporal
Filter

Denoise Filter

Block Noise Measure
(8 - bits for 16 x 4 block)
Summarized by EU at
end of frame for Global

Noise Measure

Denoised Frame
(8-bit luma only

saved to memory for
next pass)

Deinterlacer

Noise Motion
History Out

(an 8 - bit value per
4 x 4 block)

Noise History
(8 -bit per 4 x 4)

Motion
Detection
and FMD
Variances

Angle
Detection

Chroma
Upsample

Current Frame (chroma)

Temporal
Deinterlacer

Spatial
Deinterlacer

Blend

To both
Deinterlacers

Previous Frame

(chroma)

FMD
Variances

(between 5 and 8
8-bit values)

Progressive
Cadence

Reconstruct

FMD Cadence
from Previous Frame

(an 8 - bit value)

STMM (Motion
Measure)

(8-bits/2pixels,
saved to memory for

next pass)

STMM from previous frame
(8 -bit per 2 pixels)

Next Field
(luma only)

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 33

 Progressive Cadence Reconstruction – If the FMD for the previous frame determines that film
was converted into interlaced video, then this block reconstructs the original frame by directly
putting together adjacent fields.

 Chroma Upsampling – If the input is 4:2:0 then chroma will be doubled vertically to convert to
4:2:2. Chroma will then either go through it’s own version of the deinterlacer or progressive
cadence reconstruction.

When DI is enabled, the output for a 16x4 block is sent to the EU for further processing and writing to
memory. When DI is disabled and DN enabled the output for a 16x8 block is sent to the EU.

Formats supported are:

 NV12 is supported for hardware video decode.

 UYVY, YUY2 and NV12 are required for WHQL.

 YV12 and I420 are supported for software video decode.

 IMC3 and IMC4 are supported as internal temporary formats.

NV11 and P208 are not supported, since they have been removed from the WHQL logo requirement.

34 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

2.8.2 Denoise Algorithm

Sobel
Edge Detection

Current
Field

(luma only)

3x3 Median9
(Find median
luma value in

3x3)

Noise Metric
(sum(abs(y-

median9)

Noise Max_Min
(find max and min

of abs(y-
median9))

Pixel Noise
Metric

(Compare inputs
to thresholds to

determine “good”
noise candidates)

Noise_
Max_Min

Min of all “good”
noise candidates

Block
Noise
Metric

 Block Noise Estimate (For GNE) (One value for 16x4 block)

Motion Detection & Denoise Motion History Update

BK_STAD = sum(abs(curr–prev)) for each 4x4

Clean
Previous

Field BK_Motion_Pixel = (count pixels with
abs(curr-prev) > temp_diff_th)

BK_TASD = abs(sum(curr-prev))

Temporal Noise Factors

BK_SHCM = sum(abs(curr(x,y)-curr(x+1,y))

BK_SVCM = sum(abs(curr(x,y)-curr(x,y+1))
 +

BK_SCM

Denoise Motion
History Update

Denoise History

Temporal Filter
nnh * prev +

(256-nnh) * curr

Complexity Measure

Content Adaptive
Spatial Filter

ED

Blend

New Denoise History

2.8.2.1 Motion Detection and Noise History Update

This block detection motion for the denoise filter, which it then combines with motion detected in the past
in the same part of the screen. The Denoise History is both saved to memory and also used to control
the temporal denoise filter.

The block calculates a number of values for updating the Denoise History. One value is calculated per
4x4 block (pixels from both fields, interleaved):

Block Sum of Temporal Absolute Difference:

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 35

BK_STAD =

3

0

3

0

)),(),((
x y

yxprevyxcurrabs

Where curr(x,y) and prev(x,y) are lumas from the current and previous field. The previous field should
have already been run through the denoise filter.

Count of motion pixels: increment BK_Motion_Pixel for every pixel in the 4x4 for which: (abs(curr(x,y) –
prev(x,y)) >= temporal_diff_th.

Absolute Sum of Temporal Difference sums the differences without the initial absolute value, so that
random motions will tend to cancel out:

BK_TASD =))),(),(((
3

0

3

0

x y

yxprevyxcurrabs

Sum of Complexity Measure looks for differences in the spatial domain:

BK_SHCM =

2

0

3

0

)),1(),((
x y

yxcurryxcurrabs // sum of 12 pixel pairs

BK_SVCM =

3

0

2

0

))1,(),((
x y

yxcurryxcurrabs // sum of 12 pixel pairs

BK_SCM = BK_SHCM + BK_SVCM

Denoise Motion History Update (for an 8-bit motion history):

if (BK_STAD>=dnmh_stad_th) or (BK_Motion_Pixel > dnmh_mp_th) { // Motion Block

 motion_block = 1;

 if (denoise_history >= 128)

new_denoise_history = denoise_history / 2;

 else

 new_denoise_history = 0;

} else { // static block

 motion_block = 0;

 if (denoise_history < 128)

new_denoise_history = 128;

36 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

 else if (denoise_history < dnmh_history_max)

 new_denoise_history = denoise_history + dnmh_delta; // default value 8 for delta

 else

 new_denoise_history = denoise_history;

 if ((BK_TASD > dnmh_tasd_th) and (BK_SCM < dnmh_scm_th))

 new_denoise_history = 128;

}

2.8.2.2 Temporal Filter

For each pixel we need to filter we look at the noise history for the associated 4x4.

temporal_denoised = (new_denoise_history * curr(x,y) + (256 – new_denoise_history) * prev(x,y) +128)
>> 8

2.8.2.3 Context Adaptive Spatial Filter

For each pixel in the local 3x3, compare it’s luma to the lumas of the pixel to be filtered. Each pixel for
which the absolute difference is less than good_neighbor_th (see state variable in section 2.11.3.2) is
marked as a “good neighbor”:

The filtered pixel is then equal to:

spatial_denoised = ∑ Good_neighbor luma / num_good_neighbors

The divide is implemented as a multiply by a table lookup:

spatial_denoised = ((∑Good_neighbor luma + (num_good_neighbors >>1)) *
gn_q_table[num_good_neighbors-1]) >> 11

Note: The number of good neighbors varies from 1 to 9 since the center pixel is always good.
Gn_q_table provides the reciprocal:

 gn_q_table[9] = {2048, 1024, 682, 512, 409, 341, 292, 256, 227};

2.8.2.4 Denoise Blend

The denoise blend combines the temporal and spatial denoise outputs.

First we check to see if the temporal is out of the local range, if so we use the average of the denoised
and the local limit instead:

if (temporal_denoised >= block_max)

 temporal_denoised=(temporal_denoised+block_max)>>1;

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 37

if (temporal_denoised < block_min)

 temporal_denoised=(temporal_denoised+block_min)>>1;

Where block_max and block_min are the largest and smallest luma values in the local 3x3 (can be shared with
BNE calculation).

Next we decide between using the spatial and temporal denoise output:

 t_diff = abs(curr(x,y) – prev(x,y);

 if (t_diff < temporal_diff_th) {

 if (motion_block==1)

 denoise_out = spatial_denoised;

 else {

 if (t_diff < temp_diff_low)

 denoise_out=temporal_denoised;

 else {

 denoise_out=

 (spatial_denoised*(t_diff-temp_diff_low) +

 temporal_denoised*(temporal_diff_th-t_diff)+

 (temporal_diff_th-temp_diff_low)/2

) * q_table[temporal_diff_th-temp_diff_low-1]) >> 10;

 }

 } else {

 denoise_out = spatial_denoised;

 }

Motion_block is defined in section 2.8.2.1 above. T_diff can be limited to 6-bits to minimize the multipler
gates required in the blend. A divide is eliminated by providing the reciprocal of the divisor in the q_table
which is defined:

 q_table[16] = {1024,512,341,256,205,171,146,128,114,102,93,85,79,73,68,64}

The following restrictions also apply:

1) Temporal_diff_th – temp_diff_low is limited in the state variable definition to the range 16 to 1.

38 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

2) Since t_diff<temporal_diff_th; (t_diff – temp_diff_low) is less than 16

3) Since t_diff>=temp_diff_low; (temporal_diff_th-t_diff) is less then or equal to 16.

The precision needed for spatial_denoised*(t_diff-temp_diff_low) is 8-bit times 4-bits to produce 12-bits.
The other multiply is 8 by 5 to produce 13-bits; the extra bit is needed for 16. The multiplier to implement
the divide will be a 13-bit times the 11-bit number out of q_table, but this could be reduced by
implementing a 13x9 bit multiplier with the top 2 bits controlling a mux since the only table entries that use
them are 1024 and 512.

2.8.3 Block Noise Estimate (part of Global Noise Estimate)
Edge detection is done on every pixel in the 16x4 (DI enabled) or 16x8 (DN only) by estimating a gradient
on the 3x3 neighborhood of pixels in the current field. The calculation only uses a multiply of 2, so shifts
and add are all that is needed. Currently only vertical and horizontal edges are detected, 45 degrees is a
potential improvement.

Hrz Edge = abs(c(x-1,y-1) +2*c(x,y-1) +c(x+1,y-1) –c(x-1,y+1) –2*c(x,y+1) –c(x+1,y+1))

Vrt Edge = abs(c(x-1,y-1) +2*c(x-1,y) +c(x-1,y+1) –c(x+1,y-1) –2*c(x+1,y) –c(x+1,y+1))

The Hrz_Edge and Vrt_Edge are added together and if the sum is greater than bne_edge_th then an
edge is detected:

 ED = (Hrz_Edge +Vrt_Edge) >> 3

 median9 – the median of the 9 luma values for the 3x3 neighborhood pixels is used. Median5,
the median of the pixels above/below/right/left/center may be satisfactory as a lower gate count
solution.

 for each pixel luma “y” in 3x3: noise_metric = sum(y – median9)

 noise_min = min(abs(y-median9)) - min of all 9 ys in 3x3

 noise_max = max(abs(y-median9)) – max of all 9 ys in 3x3

 noise_min_max = noise_max(x,y) – noise_min(x,y)

 pixel_noise_metric = noise_metric if (ED(x,y) < bne_edge_th) and (noise_max_min(x,y) <
bne_nn_th) block_noise_estimate = min of all pixel_noise_metrics that pass the if test in the
16x4 (use 255 if no pixels pass the test)

If the block_noise_estimate is less than 255 then it is added to a sum gathered across the entire frame.
The summation will need to be 23-bits wide to be able to sum 8-bit values for all 32,400 blocks in a
1920x1080 frame. In addition, there will be a count of the number of blocks in the sum. The data will be
written to memory at the end of the frame. Two sets of counters are needed to support 2 simultaneous
streams. The streams are distinguished by the dndi_stream_id state variable in the DI state.

The per block block_noise_estimate is also sent to the EU in the output message for possible use by the
video encoder.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 39

2.8.4 Deinterlacer Algorithm
The overall goal of the motion adaptive deinterlacer is to convert an interlaced video stream made of
fields of alternating lines into a progressive video stream made of frames in which every line is provided.

If there is no motion in a scene, then the missing lines can be provided by looking at the previous or next
fields, both of which have the missing lines. If there is a great deal of motion in the scene, then objects in
the previous and next fields will have moved, so we can’t use them for the missing pixels. Instead we
have to interpolate from the neighboring lines to fill in the missing pixels. This can be thought of as
interpolating in time if there is no motion and interpolating in space if there is motion.

This idea is implemented by creating a measure of motion on a per 2 pixel basis called the Spatial-
Temporal Motion Measure (STMM). If this measure shows that there is little motion in an area around
the pixels, then the missing pixels are created by averaging the pixel values from the previous and next
frame. If the STMM shows that there is motion, then the missing pixels are filled in by interpolating from
neighboring lines with the Spatial Deinterlacer (SDI). The two different ways to interpolate the missing
pixels are blended for intermediate values of STMM to prevent sudden transitions.

The Deinterlacer uses two frames for reference. The current frame contains the field that we are
deinterlacing. The reference frame is the closest frame in time to the field that we are deinterlacing – if
we are working on the 1st field then it is the previous frame, if it is the 2nd field then it is the next frame.

2.8.4.1 Spatial-Temporal Motion Measure

This algorithm combines a complexity measure with a estimate of motion. This prevents high complexity
scenes from incorrectly causing motion to be detected. It is calculated for a set of pixels 2 wide by 1 high.

Complexity is measured in the vertical and horizontal directions with the SVCM and SHCM. For each set
of 2 pixels which need to be interpolated, a window of pixels is used that is 4 wide and 5 high - +/-1 pixel
in X and +/- 2 pixels in Y. The pixels values are taken from both the current and previous field - for
example, if we are deinterlacing the top field then lines y+2,y, and y-2 will come from the top field; while
line y+1 and y-1 will come from the bottom field.

Spatial vertical complexity measure (SVCM) is a sum of all the differences in the vertical direction for a
window around the current pixels. If we take x,y=0,0 as the left pixel of our 2x1 then:

SVCM =

1

0

2

0

))2,(),((
x y

yxcyxcabs

Where c(x,y) is the luma value at that x,y location in the current frame. Note that we are skipping by 2 in
the Y direction to ensure that the compares are only done with lines from the same field.

Spatial horizontal complexity measure (SHCM) is a sum of differences in the horizontal direction.

SHCM =

1

1

1

1

)),1(),((
x

y

y

yxcyxcabs

The vertical edge complexity measure (VECM) is a sum of difference in the horizontal direction similar to
SHCM, but uses different pixels from the window.

40 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

VECM =

vecm_mul*)),1(),((
2

2

y

y

yxcyxcabs >>5

Temporal Difference Measure (TDM) is a measure of differences between pairs of fields with the same
lines. It uses filtered versions of c(x,y) from the current frame and r(x,y) from the reference frame (either
the previous or next frame).

The filter used is a cross filter which uses the pixels above, below, to the right and to the left of the
needed pixel in the same field. When denoise filter is enabled, the filter input c(x,y) is a denoised pixel
only if -2<=y<=6 for dndi_topfirst=1, and -3<=Y<=5 for dndi_topfirst=0. Note that r(x,y) is a denoised pixel
regardless of y.

c’(x,y) = (2*c(x,y) +c(x-1,y) +c(x+1,y) +2*c(x,y-2) +2*c(x,y+2)) >> 3 (Done for both c(x,y) and r(x,y))

TDM =

2

1

2

2

)),('),('(
x y

yxryxcabs

STMM is then calculated by :

STMM = ((TDM >>tdm_shift1)<<tdm_shift2) / (SCM >> 4) + stmm_c2)

where SCM = max(0, SVCM+SHCM-VECM). Tdm_shift1 is used to quantize the STMM result, while
Tdm_shift2 is used to set the STMM range. Tdm_shift1 can range from 4 to 6; since TDM has 13 bits this
results in between 9 and 7 bits of precision. Tdm_shift2 can range from 6 to 8, producing a value
between 17 and 13 bits, of which only 9-bits are non-zero. The divide can be implemented by a 8-bit
reciprocal table followed by an 9 -bit x 8-bit multiply by the TDM value, which finally produces an output of
8-bits.

STMM is then smoothed with an exponential moving average with the STMM saved from the previous
field:

 if (STMM > stmm_md_th)

 STMM2 = (stmm_trc1 * STMM_s + (256-stmm_trc1)*STMM) / 256

 else

STMM2 = (stmm_trc2 * STMM_s + (256-stmm_trc2)*STMM) / 256

with state variables stmm_trc1 (typical value 64), stmm_trc2 (typical value 200), and stmm_md_th.

This process prevent sudden changes in STMM, though STMM over a certain value uses a smaller
smoothing constant (c1) which allows it to change faster. STMM2 is stored to memory to be read as
STMM_s by the next frame.

One final step is used to prevent sudden drops in STMM in the horizontal direction – taking the maximum
of the STMM on the right and left sides:

STMM3(x) = max (STMM2(x-2), STMM2(x), STMM2(x+2))

The resulting STMM3 will be used as a blending factor between the spatial and temporal deinterlacer.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 41

2.8.4.2 Spatial Deinterlacer Angle Detection

Deciding the best pixels to interpolate in the current field is the job of the spatial deinterlacer. The
simplest method would be to interpolate directly from the pixels above and below the missing pixels, but
this can look bad; edges and lines particularly look jagged with this solution.

A better solution is to detect the direction of edges in the pixel neighborhood and interpolate along the
edge direction.

Existing Pixels

Interpolated Pixels

Without Edge Detection With Edge Detection

Interpolation

Interpolation

Interpolation

Interpolation

Edge detection is done per 2 pixels to lower the compute needed (may change in this implementation
depending on quality). Edge detection is done by taking a window of pixels around the pixels of interest
and comparing with a window offset in the direction being tested. The more simularity between the
windows the more likely it is that the movement is in the direction of an edge.

We test 9 different directions to pick the best edge: vertical, +/-45°, +/-27°, +/-18° and +/-11
degrees. The window offset for 45° x+/-1, likewise the offset of 27° is x+/-2, 18° is x+/-3, and 11° is x+/-5.
X+4 is not used because the gap between 18° and 11° is too small to make it worth checking.

Use x,y=0,0 for the left pixel of the pair that we want to interpolate, and xoffset is the offset described in
the above paragraph. The equation for each angle checked is:

AngleCost_6x3 =

3

2 2,0,2

))1,()1,((
x y

yxoffsetxnyxoffsetxnabs

42 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

The above picture illustrates the 45 degree angle compution – taking the sum-of-absolute differences of
the two 6x3 blocks around the 2 pixels that need an angle estimated. Each block is offset by 1 in Y and X
in opposite direction. The offset in X is larger for the other angles, of course. Angle detection requires up
to 7 pixels (offset of 5 plus 2 to get all the pixels in the 6x3) on the right and left of the output block,
requiring the input to the deinterlacer from the denoise to be 16 + 7 + 7, or 30 pixels.

Once we have all the angle values, the final decision is done by comparing them with each other. In the
following diagram N45 indicates the AngleCost_6x3 for -45°, likewise P27 is the value for +27°, etc. Th
and D are constants used to fine tune the algorithm.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 43

Default Edge=90

If ((N45+Th<P45) &&
(N45+Th<P90)) then N45
Else if ((P45+Th<N45) &&
(P45+Th<P90)) then P45

If(N27+D<N45)
then N27

If(P27+D<P45)
then P27

IfN45

Yes

If(P45<Th)
Edge=P45

No

If(N45<Th)
Edge=N45

If(N18+D<N27)
then N18

If(P18+D<P27)
then P18

Yes

If(P27<Th)
Edge=P27

No

If(P11+D<P18)
then P11

Yes

If(P18<Th)
Edge=P18

No

If(P11<Th)
Edge=P11

If(N27<Th)
Edge=N27

If(N11+D<N18)
then N11

IfP45

If(N18<Th)
Edge=N18

If(N11<Th)
Edge=N11

No Yes

No Yes

No Yes

Spatial Edge Angle Selection Output

B6783-02

Any missing arcs in the above diagram use the default edge of 90 degrees; for example if the lower left
box has P11 >= Th then the default will be used.

2.8.4.2.1 Angle Robustness Check

Three special checks are made to eliminate incorrect angle detection.

Fallback Mode 1

Moving regions with fine details can confuse the angle detection. This fallback mode will detect fine
details and fall back to 90 degrees if they are detected.

SUM_H1(x,y) =

3

2

)),1(),((
s

ysxcysxcabs

This sum is similar to SHCM, but over a horizontal line of -2 to +3 only.

44 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

SUM_H2(x,y) =)),4(),(()),(),2(((max
3,...,1,2

yxcysxcabsysxcyxcabs
s

if (SUM_H1(y-1) + SUM_H1(y+1) > SUM_H2(y-1) + SUM_H2(y+1) + sdi_t1 &&

 SUM_H1(y-1) + SUM_H1(y+1) >= sdi_t2) Then use 90 degree

The final decision for each pixel is done using the sums from above and below the current Y.

Fallback Mode 2

Sometimes the 6x3 angle detection window makes mistakes due to pixels on the edge of the window.
Adding a check using a 2x1 window fixes these problems:

If(AngleCost_6x3(90 degree) + (AngleCost_2x1(90 degree)<<3) <

 AngleCost_6x3(best angle) + ((AngleCost_2x1(best angle) + sdi_angle2x1)<<3)) then use 90 degree

AngleCost_2x1 is the same as AngleCost_6x3 with a much smaller window:

AngleCost_2x1 =

1

0

))1,()1,((
x

yxoffsetxnyxoffsetxnabs

AngleCost_2x1 can be collected during the calculation of AngleCost_6x3.

Horizontal Median

One final step is used to prevent sudden angle changes – the angle detected for the pixel pair is
compared to the angle detected for the pixels to the right and left and the median of the 3 is the angle
finally used:

angle_final(x) = median3(angle(x-2), angle(x), angle(x+2))

2.8.4.3 Spatial Deinterlacer Interpolation

Once the best angle is picked, the interpolation is done on a per pixel basis. Both the chroma and luma
need to be interpolated (see section 2.8.4.4 for chroma). Only 422 output is needed, so there will be a
chroma pair for each 2 lumas. The interpolation itself is very simple: take a pixel from the line above and
the line below along one of the 9 possible angles, and average the 8-bit luma and chroma values to get
the result pixel. We will do 2 lumas per clock to get enough performance.

2.8.4.4 Chroma Up-Sampler

The DN/DI block supports 4:2:0, 4:1:1 and 4:2:2 inputs, but only outputs 4:2:2. For 4:2:0 and 4:1:1 the
chroma needs to be up-sampled to 4:2:2 before interpolation.

The 4:2:0 input has chroma at ¼ the rate of the luma; ½ in the horizontal and ½ in the vertical directions.
The output needs to be 4:2:2, where chroma is ½ the rate of luma; ½ the horizontal but the same in the
vertical direction. Then chroma can be de-interlaced in the vertical direction. For luma we are working
with 16x4 blocks, so for chroma we will have 8x2 in 4:2:0 and 8x4 in 4:2:2.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 45

The 4:2:0 to 4:2:2 conversion requires doubling the chroma in the vertical direction to match the luma:

n-1’th n’th n+1’th n-1’th n’th n+1’th

A

B

C

D

Step 1 Step 2

The chroma is doubled by a simple interpolation in both time and space. In the following equations, pixel
locations are specified as u(field, x_location, y_location). Field=n would be from the current field, n-1 is
from the previous field, and n+1 is from the next field. The Cr and Cb X and Y values are ½ the luma
values to map to the smaller area.

temporal_cr = (cr(n-1,x,y) + cr(n+1,x,y)) / 2 // Simple average in time

spatial_cr = (cr(n,x,y-1) + cr(n,x,y+1)) / 2 // Simple average in vertical space

if (STMM3 < stmm_min)

 new_cr = temporal_cr

else if (STMM > stmm_max)

 new_cr = spatial_cr

else

 new_cr = ((STMM3 – stmm_min) * spatial_cr + (stmm_max - STMM3) * temporal_cr) >> stmm_shift

Note that this simple chroma interpolation is not correct, since the chroma sample position is ¼ of a pixel
different between 420 and 422. The polyphase filter in the scaler will be used to correct this inprecision
by modifying the filter coefficients in software.

46 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

For performance a single Cr and Cb has to be produce per clock in this stage to match the 2 pixel per
clock performance goal.

4:1:1 also has chroma at ¼ the rate of luma; ¼ in the horizontal direction and the same in the vertical
direction. To convert to 4:2:2 we need to double the chroma horizontally. This will be done by averaging
the chromas to the right and left to produce the new chroma.

The above diagram shows how the existing chroma values (both U and V) are averaged between C0 and
C1 to produce the new C½. C0 is the chroma asociated with lumas L0 through L3, while C1 is associated
with L4 through L7.

2.8.4.5 Chroma Deinterlace

The next step is to do the deinterlacing. Chroma uses the output of the luma angle decision, but reduces
the number of angles. The actual spatial deinterlace algorithm is a little different for chroma, since there
are only 1 chroma per 2 lumas: some of the chromas are missing and must be filled in.

The diagram shows the chromas used in red. Only 90°, -27° and 27° are directly available. The chromas
for +/-45° are derived by a simple average of the 90° and 27° chromas. +/-18° and +/-11° both use the
chroma for +/-27°.

2.8.4.5.1 Static Image Fallback Mode

This algorithm has a problem with static images – alternate fields use different luma angle detections and
can select different angles, causing noticable flicker. Rather than calculating a separate set of angles for
chroma, we instead will blend with STMM so that a static image will use 90 degrees.

if (STMM3 < stmm_min)

 chroma_sdi = chroma90degree

else if (STMM > stmm_max)

-11 ° -18 ° -27 ° -45 ° 90 ° 45 ° 27° 18° 11°

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 47

 chroma_sdi = chroma_3angle

else

 chroma_sdi = (chroma90degree * (stmm_max – STMM3) + chroma_3angle * (STMM3 – stmm_min))
>> stmm_shift

2.8.4.6 Temporal Deinterlacer and Final Deinterlacer Blend

The temporal deinterlacer is a simple average between the previous and next field; when deinterlacing
the 1st field of current the average will be between the 2nd field of previous and the 2nd field of current.

The interpolation between spatial and temporal:

if (STMM3 < stmm_min)

 deinterlace_out = tdi;

else if (STMM3 > stmm_max)

 deinterlace_out = sdi;

else

 deinterlace_out = (sdi * (STMM3 – stmm_min) + tdi * (stmm_max – STMM3)) >> stmm_shift

2.8.4.7 Progressive Cadence Reconstruction

When the FMD for the previous frame indicates that a progressive mode is being used rather than
interlaced, the luma and chroma will be taken from adjacent fields rather than spatially interpolated. The
exact fields needed depend on state variables written to memory by a thread at the end of the previous
frame. The thread will use the FMD variances written to memory via CSunit on the flush at the end of a
frame.

Since we are deinterlacing 2 fields at a time – one from the previous frame and one from the current
frame (see section 2.8.6.1) we will need a state variable which says how each one should be put
together. In each case there are only two possibilities – either the field should be put together with the
matching field in the same frame or it should be put together with the adjacent field in the other frame.

If we are deinterlacing the 2nd field from frame N and the 1st field from frame N+1, then the FMD decision
(which is made on frame boundaries) will be from frame N-1.

Chroma is reconstructed the same as luma – only the first step of doubling chroma is done in the chroma
upsampling block for the two needed fields.

2.8.4.8 Motion Search

Motion will be estimated independently for each horizontal pair of pixels in the 16x4 block. The area
around each pixel pair will be compared to areas in adjacent fields with different X/Y offsets. 16 different
offsets, or motion vectors, will be examined in this order:

48 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

 Y= -2, X = -1, 0, 1

 Y = 0, X = -6, -5, -4, -3, -2, 2, 3, 4, 5, 6

 Y = 2, X = -1, 0, 1

The area to be compared around the pixel pair is a 6 wide by 5 high window - 2 pixels on right and left
and 2 lines above and below. The lines above and below are from both fields, so a total of 3 lines from
the same field and 2 lines from the complement field are compared to lines in 2 fields from an adjacent
frame.

The motion estimation equation for a pixel pair is:

 2 2

,,
1

wandh

jipMjMipSAD
wx

wxi

hy

hyj
curryxref

Mx, My is the motion vector offset being tested, and x,y is the location of the leftmost pixel of the pair.
The motion vector with the smallest SAD is kept as the best motion estimate; if two motion vectors have
the same SAD then the last one tested will be kept.

2.8.4.9 Robustness Checks

The motion estimate output goes through 2 checks to make sure it is not an aberration – a smoothness
check and a consistency check.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 49

2.8.4.9.1 Consistency Check

The consistency check is done per pixel and makes sure that the pixels we are interpolating for MC have
a lower delta than the ones that would be interpolated for spatial DI:

)25:(___ , ,&&

 , ,1,1,

_

defaultTHyconsistencpixelMCyxPyxP

yxPyxPyEdgexPyEdgexP

curDIDI

curDIDIoppcuroppcur

Here Edge is the delta found by SDI which corresponds to the best angle. MC_pixel_consistency_TH
(U6)is a state parameter.

PDI_cur is defined as: (same definition as in the motion compensation section)

)0(;
12/ ,12/,12/ ,2/

,12/ ,12/,12/ ,2/
AVG

)0(;
12/ ,12/,12/ ,2/

,12/ ,12/,12/ ,2/
AVG

 ,

1)(My/2)%2 && 1If(Mx%2

;12/ ,2/,12/ ,2/AVG ,

1)(My/2)%2 && 0If(Mx%2•

)0(if ;2/ ,12/,2/ ,2/AVG

)0(if ;2/ ,12/,2/ ,2/AVG
 ,

0)(My/2)%2 && 1If(Mx%2•

;2/ ,2/ ,

0)(My/2)%2 && 0If(Mx%2•

__

__

__

__

_

__

__

_

__

x
yxsamecuryxsamecur

yxsamecuryxsamecur

x
yxsamecuryxsamecur

yxsamecuryxsamecur

curDI

yxsamecuryxsamecurcurDI

xyxsamecuryxsamecur

xyxsamecuryxsamecur

curDI

yxsamecurcurDI

Mif
MyMxPMyMxP

MyMxPMyMxP

Mif
MyMxPMyMxP

MyMxPMyMxP

yxP

MyMxPMyMxPyxP

MMyMxPMyMxP

MMyMxPMyMxP
yxP

MyMxPyxP

2.8.4.9.2 Smoothness Check

The smoothness check compares the motion vector found for neighboring pixel pairs. The neighbors are
different for different locations to make sure it stays within the local 4x4. Each pixel pair has 3 sets of
comparison with neighbor pixel pair within the 4 by 4: 2 sets of X/Y comparisons for the vertical direction
and one set of X/Y comparisons for the horizontal direction.

For lines 1 and 2 in the 16x4:

 thmvsmoothyxMVyxMVabsAND

thmvsmoothyxMVyxMVabsAND

thmvsmoothyxMVyxMVabsAND

thmvsmoothyxMVyxMVabsIf

yy

xx

yy

xx

__)2,(),(

__)2,(),(

__)1,(),(

 __)1,(),(

50 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

Where smooth_mv_th(U2) is a state parameter.

This equation ensures that the pixel pair 1 and 2 lines below have motion vector X and Y components
(MVx & MVy) that are within a threshold of the best motion vector for the current pixel pair. The
compares with y+1 use “+” rather than “-“ since they are comparing motion vectors in the opposite field,
which have motion vectors pointing in the opposite direction, since they are using the current field as their
reference. For example, if the current pixel has a motion vector of (4,2), the motion vector of x,y+1 would
be the same if it is (-4,-2).

For lines 3 and 4 in the 16x4:

 thmvsmoothyxMVyxMVabsAND

thmvsmoothyxMVyxMVabsAND

thmvsmoothyxMVyxMVabsAND

thmvsmoothyxMVyxMVabsIf

yy

xx

yy

xx

__)2,(),(

 __)2,(),(

__)1,(),(

__)1,(),(

For pixel pairs with the first pixel location x%4 == 0 (low X in the 4x4):

 thmvsmoothyxMVyxMVabsAND

thmvsmoothyxMVyxMVabsIf

yy

xx

__),2(),(

__),2(),(

For pixel pairs with the first pixel location x%4 != 0 (high X in 4x4):

 thmvsmoothyxMVyxMVabsAND

thmvsmoothyxMVyxMVabsIf

yy

xx

__),2(),(

 __),2(),(

When all 3 comparisons pass the threshold, the smoothness check is passed.

2.8.4.10 Motion Comp

The MCDI output is an average done per pixel on pixels chosen from adjacent field.

There are 4 different equations depending on the motion vector (Mx, My):

If (Mx%2 ==0) && (My == 0) then ;2/ ,2/ , _ yxsamerefDI MyMxPyxP

If (Mx%2 ==1) && (My == 0) then

)0(if ;2/ ,12/,2/ ,2/AVG

)0(if ;2/ ,12/,2/ ,2/AVG
 ,

__

__

xyxsamerefyxsameref

xyxsamerefyxsameref

DI MMyMxPMyMxP

MMyMxPMyMxP
yxP

If (Mx%2==0) && abs(My) == 2 then

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 51

 ;12/ ,2/,12/ ,2/AVG , __ yxsamerefyxsamerefDI MyMxPMyMxPyxP

If (Mx%2==1) & abs(My) == 2 then

)0(;
12/ ,12/,12/ ,2/

,12/ ,12/,12/ ,2/
AVG

)0(;
12/ ,12/,12/ ,2/

,12/ ,12/,12/ ,2/
AVG

 ,

__

__

__

__

x
yxsamerefyxsameref

yxsamerefyxsameref

x
yxsamerefyxsameref

yxsamerefyxsameref

DI

Mif
MyMxPMyMxP

MyMxPMyMxP

Mif
MyMxPMyMxP

MyMxPMyMxP

yxP

For all these equations, if more vareties of My are used than -2,0,2 then we need to use (My/2)%2==0)
instead of My==0, and (My/2)%2==1 instead of abs(My)==2.

2.8.4.11 Merge with TDI & SDI

The MADI equation was:

if (STMM3 < stmm_min)

deinterlace_out = tdi;

else if (STMM3 > stmm_max)

deinterlace_out = sdi;

Else

deinterlace_out = ((STMM3 – stmm_min) * sdi + (stmm_max - STMM3) * tdi) >> stmm_shift

Where STMM3 is a measure of the complexity of the scene and how much motion is in it.

The equation with MCDI is:

if (STMM3 < stmm_min)

 Deinterlace_out = tdi;

else if (STMM3 > stmm_max)

 deinterlace_out = DItemp;

else

 deinterlace_out = ((STMM3 – stmm_min) * DItemp + (stmm_max - STMM3) * tdi) >> stmm_shift

Where DItemp is defined below:

52 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

Content Adaptive Thresholding:

We denote the best_ME_SAD as the minimal SAD value for the MV candidates. Best_ME_SAD and
Best_SAD_Angle_cost are measured based on the block of pixels. The new control equation with MCDI
is calculated per pixel:

If ((best_ME_SAD <= CAT_TH1)

If (Consistency check is passed && Smoothness check is passed)

DItemp = MCDI;

Else

DItemp = sdi;

Else if (CAT_TH1<best_ME_SAD < CAT_TH2*30) {

If (Consistency check is passed && Smoothness check is passed) AND

 (SDI_angle =90 degree) AND

 (best_ME_SAD + SAD_Tight_TH*30 < Best_SAD_Angle_cost*2) AND

{(MCDI==median3(MCDI, ,) ||

 (Min[abs(MCDI -), abs(MCDI -)] <

 NeighborPixel_TH)}

DItemp = MCDI;

Else

DItemp = sdi;

} Else

DItemp = sdi

Where CAT_TH1(U2, default = 0), SAD_Tight_TH (U4, default=5) and NeighborPixel_TH(U4,
default=10) are state parameters. CAT_TH2 is a content adaptive value dependent on SCM. SCM =
SHCM+SVCM from the spatial complexity measurement.

If (SCM < SCM_A)

 CAT_TH2 = SAD_THA;

Else if (SCM > SCM_B)

 CAT_TH2 = SAD_THB;

Else

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 53

 CAT_TH2 = SCM / CAT_slope;

Where CAT_slope (U4: default value 10). SAD_THA (U4, default 5) and SAD_THB (U4, default 10) are
state parameters, and SCM_A and SCM_B are derived parameters:

 SCM_A = CAT_slope * SAD_THA; // 4-bit * 4-bit to produce 8-bit value

 SCM_B = CAT_slope * SAD_THB; // 4-bit * 4-bit to produce 8-bit value

2.8.5 Field Motion Detector

The Field Motion Detector is generated in either the EU or in the driver with a set of differences gathered
across entire fields. It is used to detect when a non-interlaced source like a film has been converted to
interlaced video – in this case there will be pairs of fields which can be put back together to make frames
rather than interpolating. The variances for the block are sent to the VSCunit to be summed across the
entire frame. The results are available in MMIO registers.

2.8.5.1 Simple Differences

The first set of variances are simply a sum of absolute pixel differences. The equations are done for
every pixel with an even y coordinate:

variance[0] += Diff_cTpT = (c(x,y) – p(x,y)) ^ 2; – difference between pixels from the top fields of the
current and previous frame.

variance[1] += Diff_cBpB = (c(x,y+1) – p(x,y+1)) ^ 2; – difference between pixels from the bottom fields
of the current and previous frame.

variance[2] += Diff_cTcB = (c(x,y) – c(x,y+1)) ^ 2; – difference between pixels from the top field and
bottom field in the current frame.

variance[3] += Diff_cTpB = (c(x,y) – p(x,y+1)) ^ 2; – difference between pixels from the top field of the
current frame and bottom field of previous frame.

variance[4] += Diff_cBpT = (c(x,y+1) – p(x,y)) ^ 2; – difference between pixels from the bottom field of
the current frame and top field of previous frame.

The variances summed for each 16x4 block are divided by 16 before adding them to the sum for the
frame to make sure the frame-level sum fits in a 32-bit register.

2.8.5.2 Counter Variances

The rest of the variances are counters for variance conditions as described in the following code:

// Same field difference of the current frame

diff_cTcT = (c(x,y) – c(x,y+2)) ^ 2;

diff_cBcB = (c(x,y-1) – c(x,y+1)) ^ 2;

// Same field difference of the previous frame

diff_pTpT = (p(x,y) – p(x,y+2)) ^ 2;

54 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

diff_pBpB = (p(x,y-1) – p(x,y+1)) ^ 2;

// Same field vertical smoothness of the current frame

diff_cT = ABS(c(x,y) – c(x,y-2)) + ABS(c(x,y) – c(x,y+2)) – ABS(c(x,y-2) + c(x,y+2));

diff_cB = ABS(c(x,y+1) – c(x,y-1)) + ABS(c(x,y+1) – c(x,y+3)) –

ABS(c(x,y-1) + c(x,y+3));

if(diff_cTpT + diff_cBpB > fmd_tdiff) { // if moving pixels,

 // Fine tears for cadence detection except 2-2 detection

 if(diff_cTcB > diff_cTcT + diff_cBcB) variance[5]++;

 else variance[6]++;

 // Find tears for 2-2 cadence detection

 if(diff_cT < fmd_vdiff1 && diff_cB < fmd_vdiff1) { // if fields are vertically smooth,

variance[7]++; // total moving pixels

// Find tears. (1st condition is to exclude very small variations)

if(diff_cTcB >=fmd_vdiff2 && diff_cTcB > diff_cTcT + diff_cBcB) TEAR_1(x,y) = 1

if(diff_cTpB >=fmd_vdiff2 && diff_cTpB > diff_cTcT + diff_pBpB) TEAR_2(x,y) = 1

if(diff_cBpT>=fmd_vdiff2 && diff_cBpT > diff_pTpT + diff_cBcB) TEAR_3(x,y) = 1

 }

}

2.8.5.3 Tear Variances

The all 3 TEAR_N variables are compared to neighbors to eliminate strays:

if(TEAR_N(x-1,y) == 0 &&

 TEAR_N(x+1,y) == 0 &&

 TEAR_N(x,y-2) == 0 &&

 TEAR_N(x,y+2) == 0) TEAR_N(x,y) = 0; where N=1,2,3.

variance[8] = sum of TEAR_1(x,y)

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 55

variance[9] = sum of TEAR_2(x,y)

variance[10] = sum of TEAR_3(x,y)

if (variance[8] > variance[9] && variance[8] > variance[10])

 variance[7] = variance[8] = variance[9] = variance[10] = 0

if (variance[8] < fmd_thr_tear) variance[8] = 0

if (variance[9] < fmd_thr_tear) variance[9] = 0

if (variance[10] < fmd_thr_tear) variance[10] = 0

The variances are summed for each block across the frame. The accumulators may require 24-bit adders
if the differences are 8-bits and there can be 128 (horizontally) * 256 (vertically) of them. The sums are
written to memory at the end of the frame.

Two sets of FMD variances are needed to support 2 simultaneous streams. The streams are
distinguished by the dndi_stream_id state variable in the DI state.

[DevILK] A-Stepping Erratum: TEAR_N compute doesn’t follow the equation above. Two signals were
missing, thus, it is incorrectly calculated as the following. Without the added protection of the N=-2 & N=4
collection of feature, the robustness of 2:2 detection suffers.

if(TEAR_N(x-1,y) == 0 &&

 TEAR_N(x+1,y) == 0 &&) TEAR_N(x,y) = 0; where N=1,2,3.

2.8.6 Implementation Overview

2.8.6.1 Input and Output Frames

Two frames are needed to do deinterlacing, but for any two frames, two fields can be deinterlaced,
doubling the output for the same input bandwidth. This also allows the denoise filter to only filter a frame
once.

2nd field

1st field

Denoised
Previous

2nd field

1st field

Current

Denoise
Filter

Denoise
Filter

Deinterlacer

Saved to Memory
for Next Frame

1st of
Current

2nd of
Previous

56 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

The above picture shows that two frames are read in, called current and previous. The two fields of the
next frame are denoised using adjacent fields. The 2nd field of previous can be deinterlaced using current
as the reference, and the 1st field of current can be deinterlaced using previous as reference.

Since we are producing 2 16x4 outputs, and the performance goal is to output 2 pixels per clock, we have
64 clocks to run 2 denoise filters and 2 deinterlacers.

The fields are referred to as 1st and 2nd because either the top or bottom field can be the first in the
sequence depending on a state variable.

2.8.6.1.1 Statistics Surface Memory Format

The statistics memory page is used to store both STMM and Denoise history. The STMM and Denoise
history are stored in separate areas addressed by a single base address pointer:

Not UsedSTMM

Denoise
History

Pitch

Pitch/2 Pitch/4

The STMM for any pixel pair is addressed by:

 STMM_X = pixelX / 2

 STMM_Y = pixelY

The Denoise History for any 4x4 block is addressed by

 DH_X = Pitch/2 + pixelX/4

 DH_Y = pixelY/4

Where the pixelX/Y comes from the address of the left pixel for STMM and the upper-left pixel for the
Denoise History. The Pitch is from the surface state.

The read and write surfaces for each frame must be separate, since any individual block will not know if
the neighbor blocks have been updated yet. This can be implemented as a ping-pong buffer pair with the
write surface for each frame becoming the read surface for the next.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 57

2.8.6.2 First Frame Special Case

The first frame in the sequence is a special case for both denoise and deinterlace. Only data from the
current frame address is read, the previous frame, clean previous, statistics and control addresses are
ignored. Behavior for each function is as follows:

1) Denoise – The denoise filter needs to use the spatial filter, since there is no previous frame from
which to do a temporal filter.

a. The Denoise Motion History is not read.

b. The blend between the temporal and spatial is forced to 100% spatial.

c. [DevSNB+]The Denoise Motion History output values are written to 0.

2) BNE – The Block Noise Estimate only uses current frame values and so works normally.

3) Deinterlacer – Only the 1st field of the current frame frame is deinterlaced in this case – the 2nd of
previous does not exist.

a. The spatial deinterlacer is used to produce the output.

b. The STMM input values are not read.

c. The STMM output values are written as a the maximum 255 value so that the next frame
is correctly told that spatial deinterlacing was used in this frame.

4) FMD – variances between the top and bottom of the current field should be output correctly.
Variances that read from the previous field should indicate a maximum difference.

5) Progressive Cadence Reconstruction – the FMD input is not read, so always assume interlaced.

2.9 Adaptive Video Scaler
The adaptive video scaler consists of a pair of filters. The sharp filter is an 8x8 and the smooth filter is
bilinear. The results of the two filters are alpha blended together using an alpha factor determined
separately from an algorithm that examines the pixel values in the each vector.

There are a total of four different coefficient tables with two in each direction. For both directions is it
possible to use either of the two tables that are assigned to it or use both at once with one table for the Y
and the other table for the U/V. The coefficients are programmable by software and loaded via a new
command streamer instruction. The coefficients are considered to be nonpipelined state, with a full
pipeline flush being required before a new set of coefficients is loaded.

58 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

The above diagram shows two pixels (red and green) mapped onto a texture map, with the texel centers
blue. The red/green boxes around the pixels indicate the area where the pixel would choose the same
8x8 footprint for its filter, while the large transparent box indicates the footprint for each pixel.

The u/v addresses for each pixel (in texel space) are as follows:

red pixel: u=3.3, v=3.3 (betau=0.3, betav=0.3)

green pixel: u=4.3, v=4.7 (betau=0.3, betav=0.7)

The integer u/v address of the upper left pixel of the footprint is a function of the pixel u/v address as
follows:

u(UL) = floor(u(pix)) – 3

v(UL) = floor(v(pix)) – 3

When the 8x8 filter is selected, the 8x8 texel block surrounding the pixel sample point is selected. The
blend factors "beta" (horizontal and vertical) are determined by the relative distance between the pixel
center and the nearest 4 texels (2x2). The betas are first truncated to 5 bits (i).

The beta value is used to look up two sets of 8 coefficients, one set of 8 for horizontal (called Kh0..7), and
one set of 8 for vertical (called Kv0..7).

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 59

2.9.1 Filtering Operations
There are two separate filters, sharp and smooth, which are blended in an adaptive manner.

2.9.1.1 Sharp

The following formula is used to compute the filtered texture color for the sharp filter:

R0 = T00*Kh0 + T01*Kh1 + T02*Kh2 + T03*Kh3 + T04*Kh4 + T05*Kh5 + T06*Kh6 + T07*Kh7

R1 = T10*Kh0 + T11*Kh1 + T12*Kh2 + T13*Kh3 + T14*Kh4 + T15*Kh5 + T16*Kh6 + T17*Kh7

R2 = T20*Kh0 + T21*Kh1 + T22*Kh2 + T23*Kh3 + T24*Kh4 + T25*Kh5 + T26*Kh6 + T27*Kh7

R3 = T30*Kh0 + T31*Kh1 + T32*Kh2 + T33*Kh3 + T34*Kh4 + T35*Kh5 + T36*Kh6 + T37*Kh7

R4 = T40*Kh0 + T41*Kh1 + T42*Kh2 + T43*Kh3 + T44*Kh4 + T45*Kh5 + T46*Kh6 + T47*Kh7

R5 = T50*Kh0 + T51*Kh1 + T52*Kh2 + T53*Kh3 + T54*Kh4 + T55*Kh5 + T56*Kh6 + T57*Kh7

R6 = T60*Kh0 + T61*Kh1 + T62*Kh2 + T63*Kh3 + T64*Kh4 + T65*Kh5 + T66*Kh6 + T67*Kh7

R7 = T70*Kh0 + T71*Kh1 + T72*Kh2 + T73*Kh3 + T74*Kh4 + T75*Kh5 + T76*Kh6 + T77*Kh7

F’ = R0*Kv0 + R1*Kv1 + R2*Kv2 + R3*Kv3 + R4*Kv4 + R5*Kv5 + R6*Kv6 + R7*Kv7

F_sharp = Clamp F’ to [0.0, 1.0)

where:

 Trc is the texel color in row r ([0..3]) and column c ([0..3]) of the 8x8 array of neighboring texel
colors

 F_sharp is the final output color of the sharp filter.

2.9.1.2 Smooth

The following formula is used to compute the filtered texture color for the smooth filter:

F_smooth = (T33 * (1-betaU) + T34 * betaU) * (1-betav) + (T43 * (1-betaU) + T44 * betaU) * betav

2.9.1.3 Adaptive Filtering

The adaptive filter only supports RGB or YUV packed formats. For YUV formats, the alpha value is
determined only by the Y channel (green), with this alpha value being applied to all three channels. For
the RGB formats the alpha value is determined based on an average of all three channels with G having
double the weight as the other channels.

60 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

Each horizontal or vertical filter has 8 texels input which feeds into an eight tap filter. On the center two
there is a linear blend using the betaV. Then using the Y channel an adaptive part weight is calculated
and the two filters are alpha blended. The adaptive part calculated on the Y channel is used on all three
channels. Only the 8 MSBs are used in these calculations.

The adaptive part is done to classify a pixel as prone to ringing or not. This is done by analyzing the 8 Y
samples from the interpolation window (Wy0… Wy7).

When the pixels are in an RGB format, Y is extracted from the RGB components in window W:

Wyi= (Wri+ 2*Wgi+ Wbi)/4; 0<=i<=7

There are 3 measurements on these samples that decide how to act. The result is a number between
zero and one.

Analysis is performed on Y samples in 8 bit precision.

Measurement #1 –1st derivatives on center samples (minimum of 2 maximums).

maxDeriv4_a = max(|Wy3-Wy4|, |Wy2-Wy3|)

maxDeriv4_b = max(|Wy3-Wy4|, |Wy4-Wy5|)

maxDeriv4 = min(maxDeriv4_a, maxDeriv4_b)

Measurement #2 –2nd derivatives on center samples (minimum of 2 maximums).

Deriv1 = Wy2-Wy3; Derive2 = Wy3-Wy4; Deriv3 = Wy4-Wy5

Deriv2a = |Deriv1-Deriv2|

Deriv2b = |Deriv3-Deriv2|

Deriv2Avg = (Deriv2a + Deriv2b)/2

D4 = min(Deriv2Avg, maxDeriv4)

Measurement #3 – 1st derivative on all (8) Y samples.

maxDeriv8 = max(|Wym - Wym+1|); 0 ≤ m ≤ 6;

When D4 is small enough and maxDeriv8 is large enough then ringing can appear. So 2 alphas are
calculated (one for D4 and one for maxDeriv8), and the minimum of the two is used as the sharpness
alpha. An alpha of 255 means the Polyphase scaler is used and an alpha of 0 means that the linear
scaler is used.

8

8

4 0

4 2 255

2

D

D4Alpha D

else D4

MaxDeriv4SlpBits

MaxDeriv4SlpBits

MaxDerivPoint4

MaxDerivPoint4

MaxDerivPoint4

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 61

8

8

255

2 0

255 2

maxDeriv8

D8Alpha maxDeriv8

else maxDeriv8

MaxDeriv8SlpBits

MaxDeriv8SlpBits

MaxDerivPoint8

MaxDerivPoint8

MaxDerivPoint8

Note that multiplying by an exponent of 2 is implemented as bit shifts.

Calculate SharpnessAlpha (U0.8 precision):

SharpnessAlpha=max(D8alpha, D4Alpha)

if ((xDirection ? xAdaptiveBypass : YAdaptiveBypass) == 1) Then (SharpenessAlpha =
SharpnessLevel)

The UV results are handled in the same manner.

2.10 Image Enhancement Filter and Video Signal Analysis
The IEF module takes in the YUV 444 color space with 10 bit components.

The IEF and VSA have 3 optional modes of operation: basic detail filter 3x3 mode, basic detail filter 5x5
mode and the combination mode. Detail Filter 3x3 mode which is a simple Sobel as VSA and 9 tap
constant IEF. Detail Filter 5x5 mode which is a simple Sobel as VSA and 9 tap constant IEF on a sparse
5x5 environment. The combination mode is the full VSA mode and 25 tap filtering doing sharpening
and/or smoothing. Either the detail filter mode or combination mode can be removed at synthesis.

VSA – Video Signal Analysis – analyzes the local Y environment of each pixel and outputs several values
that describe its nature (smooth, detailed, sharpening). Those values will be used by the IEF to decide
how the filter should be applied at each pixel location.

IEF – Image Enhancement Filter – The operations this filter performs are detail filter, smoothing and
sharpening on the Y component, according to the VSA outputs.

The IEF throughput is 2 pixels per clock.

62 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

2.10.1 Block Diagram

2.10.2 Detail Filter Algorithm

2.10.2.1 VSA for Detail Filter

In the VSA for the detail flter mode, Sobel edge detection is used to set different weighting for detail
filtering.

101

202

101

_

121

000

121

_ vEhE

The edge metric (EM) for the target pixel x is formulated as the convolution of the weighting with its
3x3 neighborhood NH9(x) as

[DevSNB-Astep]

EM(x) = |NH9(x) * E_h| + |NH9(x) * E_v| // where the input is 10 bits, EM is 4 bits (CLIP((|NH9(x) *
E_h| + |NH9(x) * E_v|+8) >> 4 , 0 ,15))

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 63

[DevSNB-Bstep]

EM(x) = |NH9(x) * E_h| + |NH9(x) * E_v| // where the input is 10 bits, EM is 4 bits (CLIP((|NH9(x) *
E_h| + |NH9(x) * E_v|+4) >> 3 , 0 ,15))

If (EM(x) > Strong_Edge_Threshold) local_adjust = Strong_Edge_Weight // local_adjust is 3bits

Else if (EM(x) > Weak_Edge_Threshold) local_adjust = Regular_Weight

Else local_adjust = Non_Edge_Weight

The Strong_Edge_Threshold, Weak_Edge_Threshold, Strong_Edge_Weight, Non_Edge_Weight
and Regular_Weight are the pipelined state variables to be specified by driver.
Strong_Edge_Threshold & Weak_Edge_Threshold are 4-bit length variables.

Min and Max on the 3x3 neighborhood are found and diff3 = Max – Min is calculated. Similarly diff5
represents the difference calculated based on 5x5 neighborhood.

2.10.2.2 Detail IEF

In the mode of detail filter 3x3, the below 2-Dimensional formula is used to extract the high frequency
component from the 3x3 neighborhood.

111

181

111

)_2)((gradientndXcsigma

With the current pixel Xc with the 3x3 neighborhood below, the equation is

 X1 X2 X3

 X4 Xc X5

 X6 X7 X8

Sigma(Xc)(2nd Gradient) = 8 * Xc - (X1+X2+X3+X4+X5+X6+X7+X8) // 13 bits

In the mode of detail filter 5x5, the below 2-Dimensional formula is used to extract the high frequency
component from the neighborhood.

10101

00000

10801

00000

10101

)_2)((gradientndXcsigma

64 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

The current pixel is Xc with the 5x5 neighborhood, the equation for 5x5 is

X0 X1 X2 X3 X4

X5 X6 X7 X8 X9

Xa Xb Xc Xd Xe

Xf Xg Xh Xi Xj

Xk Xl Xm Xn Xo

The basic equation is

Sigma(Xc)(2nd_gradient)=8*Xc – (X0+X2+X4+Xa+Xe+Xk+Xm+Xo) // 13 bits

The filter used here is the none-directional filter and so different coefficients can be applied to each of the
outer 5x5 ring, where the middle pixel is subtracted from each pixel so the sum of the filter’s coefficients is
0.

Clipping:

The clipping is utilized to limit the range of the calculated Sigma(Xc) to be among min_clip and max_clip.

min_clip = -1<< (5 + SrcPrecision - 8)

max_clip = (1<< (5 + SrcPrecision - 8)) - 1

(SrcPrecision = 8 for 8-bit video, =10 for 10-bit video)

Thus, min_clip <= clipped(Sigma(Xc)) <= max_clip.

The Gain_Factor is the state variable specified by users, local adjust is the result of the VSA, diff3 is
max-min in the 3x3 neighborhood. The equation below gives the delta from the original pixel:

Delta(Xc) = (clipped(sigma(Xc)) * gain_factor * local_adjust + 64) / (128*clipped(8+diff3)) (delta is 7 bits,
and clipped(8+diff3) is between (0,255)

[DevSNB]

{In HW implementation.

Delta(Xc) = ((clipped(sigma(Xc)) * gain_factor * local_adjust + 64) * (m_DivTable[clipped(8+diff3)]) >> 7)}

2.10.3 Combination mode

2.10.3.1 VSA Analysis

In the VSA for the combo mode, the operation on the 5x5 neighborhood of the Y channel is assumed.

Diff (local contrast) is used as the main criteria. The local contrast result obtained from the diff criteria is
fine tuned using global noise measure and other measurements from the VSA. Diff5 and diff3 are

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 65

compared, because diff3 measures variability over a smaller region, it is multiplied by 3/2, the larger of
the 2 is used as the basic parameter to estimate the smoothness strength. However if sharpness
operation is performed the smaller of the 2 is used.

The mapping relation between filtering strength and the estimated variability is modeled using a piece
wise linear (PWL) function to linearly interpolate the values among control points. The PWL parameters
might vary depending on clip resolution, screen resolution, or other blocks in the video chain such as
ACE. Using a PWL enables responding to specific clip features which will be measured by other modules
(SW implemented).

8 points are used to divide the mapping range into 7 segments for PWL function. By default the value 0 is
used as the Point 0 and the value 255 is used as the Point 7. Points 1 to 6 are specified by driver. Also,
Slopes 0 to 6 and Bias 0 to 6 are specified by drivers. There are two sets of Point, Slope and Bias for the
case of 3x3 and the case of 5x5. The pseudo code to implement PWL is as followed// (x[i],y[i]) and
(x[i+1],y[i+1]) PWL(diff,PNT,BIAS5,SLP5)

PWL(diff,Point,Bias,Slope)

 if(Point[end] <= diff) //end =7 in this case

 i = end

 else

 find i such that Point[i] <= diff <Point[i+1]

return Interpolation = MIN(MAX(((diff – Point[i]) * Slope[i])/8 + Bias[i]),0),255)

Gradient analysis

The gradient is defined to be derived based on 2x2 pixels. On a 5x5 neighborhood, there will be 16 (4x4)
gredients for the overlapping 2x2 units. dx and dy are calculated using the below convolution masks

For dx

+1 -1

+1 -1

 for dy

1 1

66 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

-1 -1

norm_grad = (abs(dx) + abs(dy)) is calculated on the 4x4 overlapping window.

And MaxNorm is the largest norm _grad in the 4x4 window.

Measurements of Multi-Ridge & Steepness

MR (multi ridge) is the ratio between the total of all norm_grad in the 4x4 window and the difference
between minimum and maximum on the 5x5 window.

-2<j<2

-2<i<2

tot_norm = norm_grad(i,j)

The total_norm is modified by the difference between minimum and maximum on the 5x5 window.

tot_norm -= 23* (max5 - min5)>>1; // zero if negative

MR = (5*(tot_norm / 8)) / (max5 - min5 +1) // 4 bit division

Dif5_mod = ((3*(max5 - min5))/8) +1

The norm is modified based on Dif5_mod

max_norm_mod= MAX(2*MaxNorm– Dif5_mod)/4,0) // 9.0u

Steepness = max_norm_mod/ Dif5_mod //4.0u. 4 bit division

2.10.3.1.1 Modify diff according to Global Noise Estimatiodenote

The GN1 is denoted as the Global Noise Estimation derived by software driver. The diff is modified based
on the GN1 and the pixel intensity

modify_diff5 = diff5 – GN1

modify_diff3 = diff3 - (GN1 > 0? GN1: GN1/2),0))

diff = MAX(MIN(MAX(modify_diff5 , modify_diff3 + (modify_diff3)/2), 1),255) // 8.0u

if(diff > Pwl1_pnt3)

 diff = MIN(modify_diff5 , modify_diff3 + (modify_diff3 >> 1)

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 67

2.10.3.1.2 The Weightings of Sharpening and smoothing strength

The weightings of sharpening and smoothening filter is based on the PWL conditioned on the modified
diff.

Sharpening_strength = PWL(diff,PNT,BIAS5,SLP5) // 8.0u

Smoothing_strength = PWL(diff,PNT,BIAS3,SLP3) // 8.0u

And the sharpening weighting is further modified by the measurements of steepness and the multi-grid.

steepness = steepness - MAX(8 -(diff3/2),0); // steepness disabled when diff is very low

Sharpening_strength = Sharpening_strength *(16 – MIN((MR – MR_Threshold)* MR_Boost + (steepness
– Steepness_Threshold)* Steepness_Boost),15))/16 // 8.0u

Where MR_Threshold, MR_Boost, Steepness_Threshold and Steepness_Boost are the parameters
specified by driver.

2.10.3.2 Sharpening Filtering

R3c

R5c

R3x

R3x

R3x

R3x

R3c

R3c R3c

R5cx

R5x

R5c

R5cx

R5x

R5cxR5cx

R5cx R5cx

R5cxR5cx

R5c R5cR5x

R5x

The location of filter coefficients

The filter of the combinational mode is symmetric.

68 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

D(i,j) = P(i,j)-P(0,0) as the difference of the target (center) pixel, P(0,0), from the neighboring pixels, P(i,j),
shown in the above figure.

Sharp = R5C*(D(2,0) + D(-2,0) + D(0,-2) + D(0,2)) +

 R5X*(D(2,2) + D(-2,2) + D(2,-2) + D(-2,-2)) +

 R5CX*(D(2,1) + D(-2,1) + D(1,-2) + D(-1,-2) + D(-2,-1) + D(2,-1) + D(1,2) + D(-1,2))

R5C, R5X and R5CX are the paramters specified by driver.

2.10.3.3 Smoothing Filter

Similar to the content adaptive spatial filter in Section 1.8.2.4, smoothing filter is using only neighboring
pixels whose value is close to the center pixel value. Global noise is used as a threshold to decide if a
pixel value is close to the center pixel. Only pixels whose distance from the center pixel is less than the
global noise are used for smoothing.

For each pixel in the 3x3 neighborhood:

If(D(i,j) < GN1) D(i,j) = D(i,j)

Else D(i,j) = 0

The number of pixels that are not zeroed are counted for the coefficient R3C & R3X individually as NZC
and NZX. The factor (NZC, NZX) is then multiplied by each coefficient depending on how many pixels it
multiplies. The pseudo code to derive NZC and NZX are as follows.

NZX = 0

NZC = 0

For (-2 <= i, j <=2) {

 If (ABS(D(i,j) < GN1) {

 If (i==0 || j==0) NZC ++;

 Else NZX ++;

}

}

Apply smoothing operation

Smooth = R3C*(D(1,0) + D(-1,0) + D(0,-1) + D(0,1)) * NZ[NZC] +

 R3X*(D(1,1) + D(-1,1) + D(1,-1) + D(-1,-1)) * NZ[NZX] // 12.2u round 3 lsb, check for overflow

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 69

2.10.3.4 Filter Blending

Smoothing filter reduces the power of some or all of the frequencies in the image, while sharpening filter
enhance some of the frequencies in the image. The output of filtering is based on the blending of both
filterings.

Filtering = -sharp_strength * Sharp + smooth_strength * Smooth // 11.0s round 10bits, check for
overflows

Output_pixel = orginal_pixel + filtering // 10.0u

Limiting the Output Pixel

The limiter is applied to constrain the effect of overshoot and undershoot.

If (Output_pixel > max5)

 Output_pixel =(Output_pixel - max5) * Maximum_Limiter + max5

 Output_pixel = MIN(max5 + Clip_Limiter + ((max5 - max3)*Limiter_Boost), Output_pixel);

else if(Output_pixel < max5)

 Output_pixel = min5 - (min5 - Output_pixel)* Minimum_Limiter

 Output_pixel = MAX(min5 - (Clip_Limiter + ((min5 - min3) *Limiter_Boost)), Output_pixel)

Maximum_Limiter, Minimum_Limiter, Limiter_Boost and Clip_Limiter are the parameters specified by
driver.

2.11 State

2.11.1 BINDING_TABLE_STATE
The binding table binds surfaces to logical resource indices used by shaders and other compute engine
kernels. It is stored as an array of up to 256 elements, each of which contains one dword as defined
here. The start of each element is spaced one dword apart. The first element of the binding table is
aligned to a 32-byte boundary.

DWord Bit Description

0 31:5 Surface State Pointer. This 32-byte aligned address points to a surface state block. This
pointer is relative to the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

 4:0 Reserved : MBZ

70 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

2.11.2 SURFACE_STATE
The surface state is stored as individual elements, each with its own pointer in the binding table. Each
surface state element is aligned to a 32-byte boundary.

Surface state defines the state needed for the following objects:

 texture maps (1D, 2D, 3D, cube) read by the sampling engine

 buffers read by the sampling engine

 constant buffers read by the data cache via the data port

 render targets read/written by the render cache via the data port

 streamed vertex buffer output written by the render cache via the data port

 media surfaces read from the texture cache or render cache via the data port

 media surfaces written to the render cache via the data port

2.11.2.1 SURFACE_STATE for most messages

2.11.2.1.1 SURFACE_STATE for most messages [DevSNB]

SURFACE_STATE
Project: [DevSNB]
This is the normal surface state used by all messages that use SURFACE_STATE except deinterlace and
sample_8x8.

DWord Bit Description

0 31:29 Surface Type

Project: All

Format: U3 enumerated type FormatDesc

This field defines the type of the surface.

Value Name Description Project

0h SURFTYPE_1D Defines a 1-dimensional map or array of
maps

All

1h SURFTYPE_2D Defines a 2-dimensional map or array of
maps

All

2h SURFTYPE_3D Defines a 3-dimensional (volumetric)
map

All

3h SURFTYPE_CUBE Defines a cube map or array of cube
maps

All

4h SURFTYPE_BUFFER Defines an element in a buffer All

5h-6h Reserved All

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 71

SURFACE_STATE
7h SURFTYPE_NULL Defines a null surface All

Programming Notes

A null surface will be used in instances where an actual surface is not bound. When a
write message is generated to a null surface, no actual surface is written to. When a read
message (including any sampling engine message) is generated to a null surface, the
result is all zeros. Note that a null surface type is allowed to be used with all messages,
even if it is not specificially indicated as supported. All of the remaining fields in surface
state are ignored for null surfaces, with the following exceptions:

 [DevSNB+]: Width, Height, Depth, and LOD fields must match the depth
buffer’s corresponding state for all render target surfaces, including null.

 Surface Format must be R8G8B8A8_UNORM.

The Surface Type of a surface used as a render target (accessed via the Data Port’s
Render Target Write message) must be the same as the Surface Type of all other render
targets and of the depth buffer (defined in 3DSTATE_DEPTH_BUFFER), unless either the
depth buffer or render targets are SURFTYPE_NULL.

28 Reserved Project: All Format: MBZ

27 Data Return Format

Project: All

Format: U1 enumerated type FormatDesc

For Sampling Engine Surfaces, [DevBW] and [DevCL] only:

This field determines the format of the return data from the sampling engine to the compute
engine, but only if the Data Return Format field in the message descriptor is set to
FLOAT32. This field is ignored for surfaces used by other units.

For Other Surfaces:

This field is ignored.

For [DevCTG+] Sampling Engine surfaces, the state of this bit is effectively
DATA_RETURN_FLOAT32 regardless of its programmed value.

Value Name Description Project

0h DATA_RETURN_FLOAT32 FLOAT32 data is returned All

1h DATA_RETURN_S1.14 S1.14 fixed point data is
returned

[DevBW],
[DevCL]

Programming Notes

The S1.14 return format is only legal for returning data from normalized (UNORM, or
SNORM) map formats where all channels have <= 8 bits. It is not legal to use this format
with any floating point or integer map format.

S1.14 return format is only used for SIMD16 and SIMD8 messages from the sampling
engine. For SIMD4x2 messages, FLOAT32 format will be used for surfaces specifying
S1.14 data return format.

Data returned in format S1.14 will be converted to FLOAT32 before reaching the GRF
register, thus the state of this bit does not affect the kernel.

It is recommended that S1.14 format be used wherever it is legal, as the performance will
generally be improved.

72 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

SURFACE_STATE
26:18 Surface Format

Project: All

Format: U9 FormatDesc

Specifies the format of the surface or element within this surface. This field is ignored for
all data port messages other than the render target message and streamed vertex buffer
write message. Some forms of the media block messages use the surface format.

Refer to the table in section 0 for the formats supported and their encodings.

Programming Notes

Tile Walk TILEWALK_YMAJOR is UNDEFINED for render target formats that have 128
bits-per-element (BPE).

YUV (YCRCB) surfaces used as render targets can only be rendered to using
3DPRIM_RECTLIST with even X coordinates on all of its vertices, and the pixel shader
cannot kill pixels.

If Number of Multisamples is set to a value other than MULTISAMPLECOUNT_1, this
field cannot be set to the following formats:

 any format with greater than 64 bits per element
 any compressed texture format (BC*)
 any YCRCB* format

17:14 [DevSNB+]: Reserved : MBZ (this field has been moved to BLEND_STATE)

13 [DevSNB+]: Reserved : MBZ (this field has been superseded by the Color Buffer Blend

Enable field in BLEND_STATE)

12 Vertical Line Stride

Project: All

Format: U1 in lines to skip between logically
adjacent lines

FormatDesc

For 2D Non-Array Surfaces accessed via the Sampling Engine or Data Port:

Specifies number of lines (0 or 1) to skip between logically adjacent lines – provides
support of interleaved (field) surfaces as textures.

For Other Surfaces:

Vertical Line Stride must be zero.

Programming Notes

This bit must not be set if the surface format is a compressed type (BCn*).

If this bit is set on a sampling engine surface, texture addess control modes cannot be set
to any mode other than TEXCOORDMODE_CLAMP and the mip mode filter must be set
to MIPFILTER_NONE.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 73

SURFACE_STATE
11 Vertical Line Stride Offset

Project: All

Format: U1 in lines of initial offset (when Vertical
Line Stride == 1)

FormatDesc

For 2D Non-Array Surfaces accessed via the Sampling Engine or Data Port:

Specifies the offset of the initial line from the beginning of the buffer. Ignored when Vertical
Line Stride is 0.

For Other Surfaces:

Vertical Line Stride Offset must be zero.

Errata: project DevSNB

Description:

If “Number of Multisamples” is MULTISAMPLECOUNT 1 and “Vertical Line Stride” is 0
Vertical Line Stride Offset must be zero

If “Number of Multisamples” is any value other than MULTISAMPLECOUNT_1 Vertical
Line Stride Offset must be one

10 MIP Map Layout Mode

Project: All

Format: U1 enumerated type FormatDesc

For 1D and 2D Surfaces and

For Cube Surfaces ([DevILK+] only):

This field specifies which MIP map layout mode is used, whether the map for LOD 1 is
stored to the right of the LOD 0 map, or stored below it. See Memory Data Formats for
details on the specifics of each layout mode.

For Other Surfaces:

This field is reserved : MBZ

Value Name Description Project

0h MIPLAYOUT_BELOW All

1h MIPLAYOUT_RIGHT All

Programming Notes

MIPLAYOUT_RIGHT is legal only for 2D non-array surfaces

74 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

SURFACE_STATE
9 Cube Map Corner Mode

Project: All

Format: U1 enumerated type FormatDesc

For Cube Surfaces accessed by the Sampling Engine:

When filtering at the corner of cube map one of the four texels does not exist. This field
specifies if it gets replaced with the opposite corner texel or the average of all three that
exist.

For Other Surfaces:

This field is Reserved : MBZ

Value Name Description Project

0h CUBE_REPLICATE All

1h CUBE_AVERAGE [DevILK-B+]

Programming Notes

CUBE_AVERAGE may only be selected if all of the Cube Face Enable fields are equal to
one.

ChromaKey Enable must not be set in CUBE_AVERAGE mode

8 Render Cache Read Write Mode

Project: All

Format: U1 enumerated type FormatDesc

For Surfaces accessed via the Data Port to Render Cache:

This field specifies the way Render Cache treats a write request. If unset, Render Cache
allocates a write-only cache line for a write miss. If set, Render Cache allocates a read-
write cache line for a write miss.

For Surfaces accessed via the Sampling Engine or Data Port to Texture Cache or
Data Cache:

This field is reserved : MBZ

Value Name Description Project

0h Allocating write-only cache for a write miss All

1h Allocating read-write cache for a write miss All

Programming Notes

This field is provided for performance optimization for Render Cache read/write accesses
(from DevSNB EU’s point of view).

Errata Description Project

This field must be set to 0h. [DevBW-A,B]

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 75

SURFACE_STATE
7:6 Media Boundary Pixel Mode

Project: All

Format: U2 enumerated type FormatDesc

For 2D Non-Array Surfaces accessed via the Data Port Media Block Read Message:

This field enables control of which rows are returned on vertical out-of-bounds reads using
the Data Port Media Block Read Message. In the description below, frame mode refers to
Vertical Line Stride = 0, field mode is Vertical Line Stride = 1 in which only the even or
odd rows are addressable. The frame refers to the entire surface, while the field refers
only to the even or odd rows within the surface. Refer to section Error! Reference source
not found. for more details.

For Other Surfaces:

Reserved : MBZ

Value Name Description Project

0h NORMAL_MODE the row returned on an out-of-
bound access is the closest row
in the frame or field. Rows from
the opposite field are never
returned.

All

1h Reserved All

2h PROGRESSIVE_FRAME the row returned on an out-of-
bound access is the closest row
in the frame, even if in field mode.

[DevCTG+]

3h INTERLACED_FRAME in field mode, the row returned on
an out-of-bound access is the
closest row in the field. In frame
mode, even out-of-bound rows
return the nearest even row while
odd out-of-bound rows return the
nearest odd row.

[DevCTG+]

5:0 Cube Face Enables

Project: All

Format: U6 bit mask of enables FormatDesc

For SURFTYPE_CUBE Surfaces accessed via the Sampling Engine:

Bits 5:0 of this field enable the individual faces of a cube map. Enabling a face indicates
that the face is present in the cube map, while disabling it indicates that that face is
represented by the texture map’s border color. Refer to Memory Data Formats for the
correlation between faces and the cube map memory layout. Note that storage for
disabled faces must be provided.

For other surfaces:

This field is reserved : MBZ

Value Name Description Project

100000b -X face All

010000b +X face All

76 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

SURFACE_STATE
001000b -Y face All

000100b +Y face All

000010b -Z face All

000001b +Z face All

Programming Notes

When TEXCOORDMODE_CLAMP is used when accessing a cube map, this field must be
programmed to 111111b (all faces enabled).

This field is ignored unless the Surface Type is SURFTYPE_CUBE.

1 31:0 Surface Base Address

Project: All

Format: GraphicsAddress[31:0] FormatDesc

Specifies the byte-aligned base address of the surface.

Programming Notes

For SURFTYPE_BUFFER render targets, this field specifies the base address of first
element of the surface. The surface is interpreted as a simple array of that single element
type. The address must be naturally-aligned to the element size (e.g., a buffer containing
R32G32B32A32_FLOAT elements must be 16-byte aligned).

For SURFTYPE_BUFFER non-rendertarget surfaces, this field specifies the base address
of the first element of the surface, computed in software by adding the surface base
address to the byte offset of the element in the buffer.

Mipmapped, cube and 3D sampling engine surfaces are stored in a “monolithic” (fixed)
format, and only require a single address for the base texture.

Linear render target surface base addresses must be element-size aligned, for non-YUV
surface formats, or a multiple of 2 element-sizes for YUV surface formats. Other linear
surfaces have no alignment requirements (byte alignment is sufficient.)

ERRATA [DevSNB-A0]: Linear render target base for element size smaller than a
DW, base address must be DW aligned at minimum.

Linear depth buffer surface base addresses must be 64-byte aligned. Note that while
render targets (color) can be SURFTYPE_BUFFER, depth buffers cannot.

Tiled surface base addresses must be 4KB-aligned. Note that only the offsets from
Surface Base Address are tiled, Surface Base Address itself is not transformed using
the tiling algorithm.

[DevCTG+]: For tiled surfaces, the actual start of the surface can be offset from the
Surface Base Address by the X Offset and Y Offset fields.

Certain message types used to access surfaces have more stringent alignment
requirements. Please refer to the specific message documentation for additional
restrictions.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 77

SURFACE_STATE
2 31:19 Height

Project: All

Format: U13 FormatDesc

Range SURFTYPE_1D: must be zero

SURFTYPE_2D: height of surface – 1 (y/v dimension) [0,8191]

SURFTYPE_3D: height of surface – 1 (y/v dimension) [0,2047]

SURFTYPE_CUBE: height of surface – 1 (y/v dimension) [0,8191]

SURFTYPE_BUFFER: contains bits [19:7] of the number of entries
in the buffer – 1 [0,8191]

This field specifies the height of the surface. If the surface is MIP-mapped, this field
contains the height of the base MIP level. For buffers, this field specifies a portion of the
buffer size.

Programming Notes

For buffer surfaces, the number of entries in the buffer ranges from 1 to 227. After
subtracting one from the number of entries, software must place the fields of the resulting
27-bit value into the Height, Width, and Depth fields as indicated, right-justified in each
field. Unused upper bits must be set to zero.

If Vertical Line Stride is 1, this field indicates the height of the field, not the height of the
frame

The Height of a render target must be the same as the Height of the other render targets
and the depth buffer (defined in 3DSTATE_DEPTH_BUFFER), unless Surface Type is
SURFTYPE_1D or SURFTYPE_2D with Depth = 0 (non-array) and LOD = 0 (non-mip
mapped).

78 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

SURFACE_STATE
18:6 Width

Project: All

Format: U13 FormatDesc

Range SURFTYPE_1D: width of surface – 1 (x/u dimension) [0,8191]

SURFTYPE_2D: width of surface – 1 (x/u dimension) [0,8191]

SURFTYPE_3D: width of surface – 1 (x/u dimension) [0,2047]

SURFTYPE_CUBE: width of surface – 1 (x/u dimension) [0,8191]

SURFTYPE_BUFFER: contains bits [6:0] of the number of entries
in the buffer – 1 [0,127]

This field specifies the width of the surface. If the surface is MIP-mapped, this field
specifies the width of the base MIP level. The width is specified in units of pixels or texels.
For buffers, this field specifies a portion of the buffer size.

For surfaces accessed with the Media Block Read/Write message, this field is in units of
DWords.

Programming Notes

For surface types other than SURFTYPE_BUFFER, the Width specified by this field must
be less than or equal to the surface pitch (specified in bytes via the Surface Pitch field).

For cube maps, Width must be set equal to the Height.

For MONO8 textures, Width must be a multiple of 32 texels.

The Width of a render target must be the same as the Width of the other render target(s)
and the depth buffer (defined in 3DSTATE_DEPTH_BUFFER), unless Surface Type is
SURFTYPE_1D or SURFTYPE_2D with Depth = 0 (non-array) and LOD = 0 (non-mip
mapped).

The Width of a render target with YUV surface format must be a multiple of 2.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 79

SURFACE_STATE
5:2 MIP Count / LOD

Project: All

Format: Sampling Engine Surfaces: U4 in (LOD units – 1)

Render Target Surfaces: U4 in LOD units

FormatDesc

Range Sampling Engine Surfaces: [0,13] representing [1,14] MIP levels

Render Target Surfaces: [0,13] representing LOD

Other Surfaces: [0]

For Sampling Engine Surfaces:

This field indicates the number of MIP levels allowed to be accessed starting at Surface
Min LOD, which must be less than or equal to the number of MIP levels actually stored in
memory for this surface.

Force the mip map access to be between the mipmap specified by the integer bits of the
Min LOD and the ceiling of the value specified here.

For Render Target Surfaces:

This field defines the MIP level that is currently being rendered into. This is the absolute
MIP level on the surface and is not relative to the Surface Min LOD field, which is ignored
for render target surfaces.

For Other Surfaces:

This field is reserved : MBZ

Value Name Description Project

0h Disable Desc All

1h Enable Desc All

Programming Notes

The LOD of a render target must be the same as the LOD of the other render target(s)
and of the depth buffer (defined in 3DSTATE_DEPTH_BUFFER).

For render targets with YUV surface formats, the LOD must be zero.

80 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

SURFACE_STATE
1:0 Render Target Rotation

Project: All

Format: U2 enumerated type FormatDesc

For Render Target Surfaces:

This field specifies the rotation of this render target surface when being written to memory.

For Other Surfaces:
This field is ignored.

Value Name Description Project

0h RTROTATE_0DEG No rotation (0 degrees) All

1h RTROTATE_90DEG Rotate by 90 degrees All

2h Reserved All

3h RTROTATE_270DEG Rotate by 270 degrees All

Programming Notes

Rotation is not supported for render targets of any type other than simple, non-mip-
mapped, non-array 2D surfaces. The surface must be using tiled with X major.

Width and Height fields apply to the dimensions of the surface before rotation.

For 90 and 270 degree rotated surfaces, the Height (rather than the Width) must be less
than or equal to the Surface Pitch (specified in bytes).

For 90 and 270 degree rotated surfaces, the actual Height and Width of the surface in
pixels (not the field value which is decremented) must both be even.

Rotation is supported only for surfaces with the following surface formats:
B5G6R5_UNORM, B5G6R5_UNORM_SRGB, R8G8B8[A|X]8_UNORM,
R8G8B8[A|X]8_UNORM_SRGB, B8G8R8[A|X]8_UNORM,
B8G8R8[A|X]8_UNORM_SRGB, B10G10R10[A|X]2_UNORM,
B10G10R10A2_UNORM_SRGB, R10G10B10A2_UNORM,
R10G10B10A2_UNORM_SRGB, R16G16B16A16_FLOAT, R16G16B16X16_FLOAT

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 81

SURFACE_STATE
3 31:21 Depth

Project: All

Format: U11 FormatDesc

Range SURFTYPE_1D: number of array elements – 1 [0,511]

SURFTYPE_2D: number of array elements – 1 [0,511]

SURFTYPE_3D: depth of surface – 1 (z/r dimension) [0,2047]

SURFTYPE_CUBE: number of array elements – 1 [see
programming notes for range]

SURFTYPE_BUFFER: contains bits [26:20] of the number of
entries in the buffer – 1 [0,127]

This field specifies the total number of levels for a volume texture or the number of array
elements allowed to be accessed starting at the Minimum Array Element for arrayed
surfaces. If the volume texture is MIP-mapped, this field specifies the depth of the base
MIP level. For buffers, this field specifies a portion of the buffer size.

Programming Notes

The Depth of a render target must be the same as the Depth of the other render target(s)
and of the depth buffer (defined in 3DSTATE_DEPTH_BUFFER).

For SURFTYPE_CUBE:

 [DevSNB+]: for Sampling Engine Surfaces, the range of this field is [0,84], indicating
the number of cube array elements (equal to the number of underlying 2D array elements
divided by 6). For other surfaces, this field must be zero.

20 Reserved Project: All Format: MBZ

19:3 Surface Pitch

Project: All

Format: U17 pitch in (#Bytes – 1) FormatDesc

Range For surfaces of type SURFTYPE_BUFFER: [0,2047] -> [1B, 2048B]

For surfaces of type SURFTYPE_STRBUF: [0,2047] -> [1B, 2048B]

For other linear surfaces: [0, 524287] -> [1B, 512KB]

For X-tiled surface: [511, 524287] –> [512B, 512KB] = [1 tile, 1024 tiles]

For Y-tiled surfaces: [127, 524287]->[128B, 512KB] = [1 tile, 4096 tiles]

This field specifies the surface pitch in (#Bytes - 1).

For surfaces of type SURFTYPE_BUFFER, this field indicates the size of the structure.

Programming Notes

For linear render target surfaces, the pitch must be a multiple of the element size for non-
YUV surface formats. Pitch must be a multiple of 2 * element size for YUV surface
formats.

For other linear surfaces, the pitch can be any multiple of bytes.

For tiled surfaces, the pitch must be a multiple of the tile width.

82 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

SURFACE_STATE
2 Reserved Project: All Format: MBZ

1 Tiled Surface

Project: All

Format: U1 enumerated type FormatDesc

This field specifies whether the surface is tiled.

Value Name Description Project

0h FALSE Linear surface All

1h TRUE Tiled surface All

Programming Notes

Linear surfaces can be mapped to Main Memory (uncached) or System Memory
(cacheable, snooped). Tiled surfaces can only be mapped to Main Memory.

The corresponding cache(s) must be invalidated before a previously accessed surface is
accessed again with an altered state of this bit.

If Surface Type is SURFTYPE_BUFFER, this field must be FALSE (buffers are supported
only in linear memory)

If the target cache via the Data Port is the Data Cache, this field must be disabled (zero).
The data cache only supports access to linear memory.

If Surface Type is SURFTYPE_NULL, this field must be TRUE

[DevSNB+]: For multi-sample render targets, this field must be 1. MSRTs can only be
tiled.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 83

SURFACE_STATE
0 Tile Walk

Project: All

Format: U1 enumerated type FormatDesc

This field specifies the type of memory tiling (XMajor or YMajor) employed to tile this
surface. See Memory Interface Functions for details on memory tiling and restrictions.

Value Name Description Project

0h TILEWALK_XMAJOR X major tiling All

1h TILEWALK_YMAJOR Y major tiling All

Programming Notes

Refer to Memory Data Formats for restrictions on TileWalk direction for the various buffer
types. (Of particular interest is the fact that YMAJOR tiling is not supported for
display/overlay buffers).

The corresponding cache(s) must be invalidated before a previously accessed surface is
accessed again with an altered state of this bit.

Use of TILEWALK_YMAJOR is UNDEFINED for render target formats that have 128 bits-
per-element (BPE).

This field is ignored when the surface is linear.

Errata:
[DevSNB] Set Tile Walk to TILEWALK_XMAJOR if Tiled Surface set to False

4 31:28 Surface Min LOD

Project: All

Format: U4 in LOD units FormatDesc

Range [0,13]

For Sampling Engine Surfaces:

This field indicates the most detailed LOD that can be accessed as part of this surface.
This field is added to the delivered LOD (sample_l, ld, or resinfo message types) before it is
used to address the surface.

For Other Surfaces:

This field is ignored.

Programming Notes

This field must be zero if the Surface Format is MONO8

[DevBW-A,B]: this field must be zero

84 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

SURFACE_STATE
27:17 Minimum Array Element

Project: All

Format: U11 FormatDesc

Range 1D/2D/cube surfaces: [0,511]

3D surfaces: [0,2047]

For Sampling Engine and Render Target 1D and 2D Surfaces:

This field indicates the minimum array element that can be accessed as part of this surface.
This field is added to the delivered array index before it is used to address the surface.

For Render Target 3D Surfaces:

This field indicates the minimum ‘R’ coordinate on the LOD currently being rendered to.
This field is added to the delivered array index before it is used to address the surface.

For Sampling Engine Cube Surfaces on [DevSNB+] only:

This field indicates the minimum array element in the underlying 2D surface array that can
be accessed as part of this surface (the cube array index is multipled by 6 to compute this
value, although this field is not restricted to only multiples of 6). This field is added to the
delivered array index before it is used to address the surface.

For Other Surfaces:

This field must be set to zero.

16:8 Render Target View Extent

Project: All

Format: U9 FormatDesc

Range [0,511] to indicate extent of [1,512]

For Render Target 3D Surfaces:

This field indicates the extent of the accessible ‘R’ coordinates minus 1 on the LOD
currently being rendered to.

For Render Target 1D and 2D Surfaces:

This field must be set to the same value as the Depth field.

For Other Surfaces:

This field is ignored.

7 Reserved Project: All Format: MBZ

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 85

SURFACE_STATE
6:4 Number of Multisamples

Project: [DevSNB+]

Format: U3 enumerated type FormatDesc

This field indicates the number of multisamples on the surface.

[Pre-DevSNB]: Reserved : MBZ

Value Name Description Project

0h MULTISAMPLECOUNT_1 All

1h Reserved All

2h MULTISAMPLECOUNT_4 All

3h-7h Reserved All

Programming Notes

If this field is any value other than MULTISAMPLECOUNT_1 the following restrictions
apply:

 the Surface Type must be SURFTYPE_2D

 For sampling engine messages other than “ld”, the U and V addresses for all
pixels must be within the following range:

o U * width – 0.5 ≥ 0 and ≤ (width -2)
o V * height – 0.5 ≥ 0 and ≤ (height -2)

3 Reserved Project: All Format: MBZ

2:0 Multisample Position Palette Index

Project: [DevSNB+]

Format: U3 FormatDesc

Range [0,7]

This field indicates the index into the sample position palette that the multisampled surface
is using. This field is only used as a return value for the sampleinfo message, and is
otherwise not used by hardware.

86 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

SURFACE_STATE
5 31:25 X Offset

Project: All

Format: PixelOffset[8:2] FormatDesc

Range TileX surfaces: [0,ceil(512/BytesPerElement)4] in multiples of 4
(low 2 bits missing)

TileY surfaces: [0,ceil(128/BytesPerElement)-4] in multiples of 4
(low 2 bits missing)

This field specifies the horizontal offset in pixels from the Surface Base Address to the
start (origin) of the surface.

This field effectively loosens the alignment restrictions on the origin of tiled surfaces.
Previously, tiled surface origin was (by definition) located at the base address, and thus
needed to satisfy the 4KB base address alignment restriction. Now the origin can be
specified at a finer (4-wide x 2-high pixel) resolution.

Programming Notes

For linear surfaces, this field must be zero

For surfaces accessed with the Data Port Media Block Read/Write message, the pixel size
is assumed to be 32 bits in width

For Surface Format with other than 8, 16, 32, 64, or 128 bits per pixel, this field must be
zero.

If Render Target Rotation is set to other than RTROTATE_0DEG, this field must be zero.

24 Surface Vertical Alignment

Project: [DevSNB+]

Format: U1 enumerated type FormatDesc

For Sampling Engine Uncompressed and Render Target Surfaces:

This field specifies the vertical alignment requirement for the surface. Refer to the “Memory
Data Formats” chapter for details on how this field changes the layout of the surface in
memory. This field applies to surface formats other than compressed formats.

For Other Surfaces:
This field is ignored.

Value Name Description Project

0h VALIGN_2 Vertical alignment factor j = 2 All

1h VALIGN_4 Vertical alignment factor j = 4 All

Programming Notes

This field must be set to VALIGN_2 if the Surface Format is 96 bits per element (BPE).

[DevSNB]: Value of 1 is not supported for format YCRCB_NORMAL (0x182),
YCRCB_SWAPUVY (0x183), YCRCB_SWAPUV (0x18f), YCRCB_SWAPY (0x190)

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 87

SURFACE_STATE
23:20 Y Offset

Project: All

Format: RowOffset[4:1] FormatDesc

Range TileX surfaces: [0,6] in multiples of 2 (low bit missing)

TileY surfaces: [0,30] in multiples of 2 (low bit missing)

This field specifies the vertical offset in rows from the Surface Base Address to the start of
the surface. (See additional description in the X Offset field)

Programming Notes

For linear surfaces, this field must be zero.

For render targets in which the Render Target Array Index is not zero, this field must be
zero.

For Surface Format with other than 8, 16, 32, 64, or 128 bits per pixel, this field must be
zero.

If Render Target Rotation is set to other than RTROTATE_0DEG, this field must be zero.

[DevILK+]: For surfaces accessed in field mode (Vertical Line Stride = 1 or equivalent
Media Block Read/Write message override), this field must be set to a multiple of 4.

19:16 Surface Object Control State (MEMORY_OBJECT_CONTROL_STATE)

Project: [DevSNB+]

Format: MEMORY_OBJECT_CONTROL_STATE FormatDesc

Specifies the memory object control state for this surface.

DevSNB A Step Erratum: When a surface is mapped through MT (Sampler Cache) either
from Sampler or from Read Data Port, the Cacheability Control bits [1:0] are forced to zero
by hardware. Thus it is solely relies on the control from GTT entries

15:0 Reserved Project: All Format: MBZ

88 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

2.11.2.1.2 Surface Formats

The following table indicates the supported surface formats and the 9-bit encoding for each. Note that
some of these formats are used not only by the Sampling Engine, but also by the Data Port and the
Vertex Fetch unit.

Support of each format and capability is as follows:

Y supported on all products

Y* supported only on [DevCTG+]

Y+ supported only on [DevCTG-B+]

Y~ supported only on [DevILK+]

Y^ supported only on [DevSNB+]

S
am

p
lin

g
 E

n
g

in
e

S
am

p
lin

g
 E

n
g

in
e

F
ilt

er
in

g

S
am

p
lin

g
 E

n
g

in
e

S
h

ad
o

w
 M

ap

S
am

p
lin

g
 E

n
g

in
e

C
h

ro
m

a
K

ey

R
en

d
er

 T
ar

g
et

A
lp

h
a

B
le

n
d

 R
en

d
er

 T
ar

g
et

In
p

u
t

V
er

te
x

B
u

ff
er

S
tr

ea
m

ed
 O

u
tp

u
t

V
er

te
x

B
u

ff
er

s

C
o

lo
r

P
ro

ce
ss

in
g

S
u

rf
ac

e
F

o
rm

at
 E

n
co

d
in

g
 (

H
ex

)

Format Name

B
it

s
P

er
 E

le
m

en
t

(B
P

E
)

Y Y~ Y Y Y Y 000 R32G32B32A32_FLOAT 128**

Y Y Y Y 001 R32G32B32A32_SINT 128**

Y Y Y Y 002 R32G32B32A32_UINT 128**

 Y 003 R32G32B32A32_UNORM 128

 Y 004 R32G32B32A32_SNORM 128

 Y 005 R64G64_FLOAT 128

Y Y~ 006 R32G32B32X32_FLOAT 128

 Y 007 R32G32B32A32_SSCALED 128

 Y 008 R32G32B32A32_USCALED 128

Y Y~ Y Y 040 R32G32B32_FLOAT 96

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 89

S
am

p
lin

g
 E

n
g

in
e

S
am

p
lin

g
 E

n
g

in
e

F
ilt

er
in

g

S
am

p
lin

g
 E

n
g

in
e

S
h

ad
o

w
 M

ap

S
am

p
lin

g
 E

n
g

in
e

C
h

ro
m

a
K

ey

R
en

d
er

 T
ar

g
et

A
lp

h
a

B
le

n
d

 R
en

d
er

 T
ar

g
et

In
p

u
t

V
er

te
x

B
u

ff
er

S
tr

ea
m

ed
 O

u
tp

u
t

V
er

te
x

B
u

ff
er

s

C
o

lo
r

P
ro

ce
ss

in
g

S
u

rf
ac

e
F

o
rm

at
 E

n
co

d
in

g
 (

H
ex

)

Format Name

B
it

s
P

er
 E

le
m

en
t

(B
P

E
)

Y Y Y 041 R32G32B32_SINT 96

Y Y Y 042 R32G32B32_UINT 96

 Y 043 R32G32B32_UNORM 96

 Y 044 R32G32B32_SNORM 96

 Y 045 R32G32B32_SSCALED 96

 Y 046 R32G32B32_USCALED 96

Y Y Y Y+ Y Y^ 080 R16G16B16A16_UNORM 64

Y Y Y Y^ Y 081 R16G16B16A16_SNORM 64

Y Y Y 082 R16G16B16A16_SINT 64

Y Y Y 083 R16G16B16A16_UINT 64

Y Y Y Y Y 084 R16G16B16A16_FLOAT 64

Y Y~ Y Y Y Y 085 R32G32_FLOAT 64

Y Y Y Y 086 R32G32_SINT 64

Y Y Y Y 087 R32G32_UINT 64

Y Y~ Y 088 R32_FLOAT_X8X24_TYPELESS 64

Y 089 X32_TYPELESS_G8X24_UINT 64

Y Y~ 08A L32A32_FLOAT 64

 Y 08B R32G32_UNORM 64

 Y 08C R32G32_SNORM 64

 Y 08D R64_FLOAT 64

90 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

S
am

p
lin

g
 E

n
g

in
e

S
am

p
lin

g
 E

n
g

in
e

F
ilt

er
in

g

S
am

p
lin

g
 E

n
g

in
e

S
h

ad
o

w
 M

ap

S
am

p
lin

g
 E

n
g

in
e

C
h

ro
m

a
K

ey

R
en

d
er

 T
ar

g
et

A
lp

h
a

B
le

n
d

 R
en

d
er

 T
ar

g
et

In
p

u
t

V
er

te
x

B
u

ff
er

S
tr

ea
m

ed
 O

u
tp

u
t

V
er

te
x

B
u

ff
er

s

C
o

lo
r

P
ro

ce
ss

in
g

S
u

rf
ac

e
F

o
rm

at
 E

n
co

d
in

g
 (

H
ex

)

Format Name

B
it

s
P

er
 E

le
m

en
t

(B
P

E
)

Y Y 08E R16G16B16X16_UNORM 64

Y Y 08F R16G16B16X16_FLOAT 64

Y Y~ 090 A32X32_FLOAT 64

Y Y~ 091 L32X32_FLOAT 64

Y Y~ 092 I32X32_FLOAT 64

 Y 093 R16G16B16A16_SSCALED 64

 Y 094 R16G16B16A16_USCALED 64

 Y 095 R32G32_SSCALED 64

 Y 096 R32G32_USCALED 64

Y Y Y Y Y Y Y^ 0C0 B8G8R8A8_UNORM 32

Y Y Y Y 0C1 B8G8R8A8_UNORM_SRGB 32

Y Y Y Y Y Y^ 0C2 R10G10B10A2_UNORM 32

Y Y Y^ 0C3 R10G10B10A2_UNORM_SRGB 32

Y Y Y 0C4 R10G10B10A2_UINT 32

Y Y Y 0C5 R10G10B10_SNORM_A2_UNORM 32

Y Y Y Y Y Y^ 0C7 R8G8B8A8_UNORM 32

Y Y Y Y Y^ 0C8 R8G8B8A8_UNORM_SRGB 32

Y Y Y Y^ Y 0C9 R8G8B8A8_SNORM 32

Y Y Y 0CA R8G8B8A8_SINT 32

Y Y Y 0CB R8G8B8A8_UINT 32

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 91

S
am

p
lin

g
 E

n
g

in
e

S
am

p
lin

g
 E

n
g

in
e

F
ilt

er
in

g

S
am

p
lin

g
 E

n
g

in
e

S
h

ad
o

w
 M

ap

S
am

p
lin

g
 E

n
g

in
e

C
h

ro
m

a
K

ey

R
en

d
er

 T
ar

g
et

A
lp

h
a

B
le

n
d

 R
en

d
er

 T
ar

g
et

In
p

u
t

V
er

te
x

B
u

ff
er

S
tr

ea
m

ed
 O

u
tp

u
t

V
er

te
x

B
u

ff
er

s

C
o

lo
r

P
ro

ce
ss

in
g

S
u

rf
ac

e
F

o
rm

at
 E

n
co

d
in

g
 (

H
ex

)

Format Name

B
it

s
P

er
 E

le
m

en
t

(B
P

E
)

Y Y Y Y+ Y 0CC R16G16_UNORM 32

Y Y Y Y^ Y 0CD R16G16_SNORM 32

Y Y Y 0CE R16G16_SINT 32

Y Y Y 0CF R16G16_UINT 32

Y Y Y Y Y 0D0 R16G16_FLOAT 32

Y Y Y Y Y^ 0D1 B10G10R10A2_UNORM 32

Y Y Y Y Y^ 0D2 B10G10R10A2_UNORM_SRGB 32

Y Y Y Y Y 0D3 R11G11B10_FLOAT 32

Y Y Y Y 0D6 R32_SINT 32

Y Y Y Y 0D7 R32_UINT 32

Y Y~ Y Y Y Y Y 0D8 R32_FLOAT 32

Y Y~ Y 0D9 R24_UNORM_X8_TYPELESS 32

Y 0DA X24_TYPELESS_G8_UINT 32

Y Y 0DF L16A16_UNORM 32

Y Y~ Y 0E0 I24X8_UNORM 32

Y Y~ Y 0E1 L24X8_UNORM 32

Y Y~ Y 0E2 A24X8_UNORM 32

Y Y~ Y 0E3 I32_FLOAT 32

Y Y~ Y 0E4 L32_FLOAT 32

Y Y~ Y 0E5 A32_FLOAT 32

92 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

S
am

p
lin

g
 E

n
g

in
e

S
am

p
lin

g
 E

n
g

in
e

F
ilt

er
in

g

S
am

p
lin

g
 E

n
g

in
e

S
h

ad
o

w
 M

ap

S
am

p
lin

g
 E

n
g

in
e

C
h

ro
m

a
K

ey

R
en

d
er

 T
ar

g
et

A
lp

h
a

B
le

n
d

 R
en

d
er

 T
ar

g
et

In
p

u
t

V
er

te
x

B
u

ff
er

S
tr

ea
m

ed
 O

u
tp

u
t

V
er

te
x

B
u

ff
er

s

C
o

lo
r

P
ro

ce
ss

in
g

S
u

rf
ac

e
F

o
rm

at
 E

n
co

d
in

g
 (

H
ex

)

Format Name

B
it

s
P

er
 E

le
m

en
t

(B
P

E
)

Y Y Y Y^ 0E9 B8G8R8X8_UNORM 32

Y Y 0EA B8G8R8X8_UNORM_SRGB 32

Y Y 0EB R8G8B8X8_UNORM 32

Y Y 0EC R8G8B8X8_UNORM_SRGB 32

Y Y 0ED R9G9B9E5_SHAREDEXP 32

Y Y 0EE B10G10R10X2_UNORM 32

Y Y 0F0 L16A16_FLOAT 32

 Y 0F1 R32_UNORM 32

 Y 0F2 R32_SNORM 32

 Y 0F3 R10G10B10X2_USCALED 32

 Y 0F4 R8G8B8A8_SSCALED 32

 Y 0F5 R8G8B8A8_USCALED 32

 Y 0F6 R16G16_SSCALED 32

 Y 0F7 R16G16_USCALED 32

 Y 0F8 R32_SSCALED 32

 Y 0F9 R32_USCALED 32

 0FA R8B8G8A8_UNORM 32

Y Y Y Y Y 100 B5G6R5_UNORM 16

Y Y Y Y 101 B5G6R5_UNORM_SRGB 16

Y Y Y Y Y 102 B5G5R5A1_UNORM 16

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 93

S
am

p
lin

g
 E

n
g

in
e

S
am

p
lin

g
 E

n
g

in
e

F
ilt

er
in

g

S
am

p
lin

g
 E

n
g

in
e

S
h

ad
o

w
 M

ap

S
am

p
lin

g
 E

n
g

in
e

C
h

ro
m

a
K

ey

R
en

d
er

 T
ar

g
et

A
lp

h
a

B
le

n
d

 R
en

d
er

 T
ar

g
et

In
p

u
t

V
er

te
x

B
u

ff
er

S
tr

ea
m

ed
 O

u
tp

u
t

V
er

te
x

B
u

ff
er

s

C
o

lo
r

P
ro

ce
ss

in
g

S
u

rf
ac

e
F

o
rm

at
 E

n
co

d
in

g
 (

H
ex

)

Format Name

B
it

s
P

er
 E

le
m

en
t

(B
P

E
)

Y Y Y Y 103 B5G5R5A1_UNORM_SRGB 16

Y Y Y Y Y 104 B4G4R4A4_UNORM 16

Y Y Y Y 105 B4G4R4A4_UNORM_SRGB 16

Y Y Y Y Y 106 R8G8_UNORM 16

Y Y Y Y Y^ Y 107 R8G8_SNORM 16

Y Y Y 108 R8G8_SINT 16

Y Y Y 109 R8G8_UINT 16

Y Y Y Y Y+ Y 10A R16_UNORM 16

Y Y Y Y^ Y 10B R16_SNORM 16

Y Y Y 10C R16_SINT 16

Y Y Y 10D R16_UINT 16

Y Y Y Y Y 10E R16_FLOAT 16

Y~ Y~ 10F A8P8_UNORM [palette0] 16

Y~ Y~ 110 A8P8_UNORM [palette1] 16

Y Y Y 111 I16_UNORM 16

Y Y Y 112 L16_UNORM 16

Y Y Y 113 A16_UNORM 16

Y Y Y 114 L8A8_UNORM 16

Y Y Y 115 I16_FLOAT 16

Y Y Y 116 L16_FLOAT 16

94 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

S
am

p
lin

g
 E

n
g

in
e

S
am

p
lin

g
 E

n
g

in
e

F
ilt

er
in

g

S
am

p
lin

g
 E

n
g

in
e

S
h

ad
o

w
 M

ap

S
am

p
lin

g
 E

n
g

in
e

C
h

ro
m

a
K

ey

R
en

d
er

 T
ar

g
et

A
lp

h
a

B
le

n
d

 R
en

d
er

 T
ar

g
et

In
p

u
t

V
er

te
x

B
u

ff
er

S
tr

ea
m

ed
 O

u
tp

u
t

V
er

te
x

B
u

ff
er

s

C
o

lo
r

P
ro

ce
ss

in
g

S
u

rf
ac

e
F

o
rm

at
 E

n
co

d
in

g
 (

H
ex

)

Format Name

B
it

s
P

er
 E

le
m

en
t

(B
P

E
)

Y Y Y 117 A16_FLOAT 16

Y* Y* 118 L8A8_UNORM_SRGB 16

Y Y Y 119 R5G5_SNORM_B6_UNORM 16

 Y Y 11A B5G5R5X1_UNORM 16

 Y Y 11B B5G5R5X1_UNORM_SRGB 16

 Y 11C R8G8_SSCALED 16

 Y 11D R8G8_USCALED 16

 Y 11E R16_SSCALED 16

 Y 11F R16_USCALED 16

Y~ Y~ 122 P8A8_UNORM [palette0] 16

Y~ Y~ 123 P8A8_UNORM [palette1] 16

Y Y Y* Y Y Y 140 R8_UNORM 8

Y Y Y Y^ Y 141 R8_SNORM 8

Y Y Y 142 R8_SINT 8

Y Y Y 143 R8_UINT 8

Y Y Y Y Y 144 A8_UNORM 8

Y Y 145 I8_UNORM 8

Y Y Y 146 L8_UNORM 8

Y Y 147 P4A4_UNORM [palette0] 8

Y Y 148 A4P4_UNORM [palette0] 8

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 95

S
am

p
lin

g
 E

n
g

in
e

S
am

p
lin

g
 E

n
g

in
e

F
ilt

er
in

g

S
am

p
lin

g
 E

n
g

in
e

S
h

ad
o

w
 M

ap

S
am

p
lin

g
 E

n
g

in
e

C
h

ro
m

a
K

ey

R
en

d
er

 T
ar

g
et

A
lp

h
a

B
le

n
d

 R
en

d
er

 T
ar

g
et

In
p

u
t

V
er

te
x

B
u

ff
er

S
tr

ea
m

ed
 O

u
tp

u
t

V
er

te
x

B
u

ff
er

s

C
o

lo
r

P
ro

ce
ss

in
g

S
u

rf
ac

e
F

o
rm

at
 E

n
co

d
in

g
 (

H
ex

)

Format Name

B
it

s
P

er
 E

le
m

en
t

(B
P

E
)

 Y 149 R8_SSCALED 8

 Y 14A R8_USCALED 8

Y* Y* 14B P8_UNORM [palette0] 8

Y* Y* 14C L8_UNORM_SRGB 8

Y+ Y+ 14D P8_UNORM [palette1] 8

Y+ Y+ 14E P4A4_UNORM [palette1] 8

Y+ Y+ 14F A4P4_UNORM [palette1] 8

Y* Y* 180 DXT1_RGB_SRGB 0

Y Y 181 R1_UNORM/R1_UINT 1

Y Y Y Y Y^ 182 YCRCB_NORMAL 0

Y Y Y Y Y^ 183 YCRCB_SWAPUVY 0

Y* Y* 184 P2_UNORM [palette0] 2

Y+ Y+ 185 P2_UNORM [palette1] 2

Y Y Y 186 BC1_UNORM (DXT1) 0

Y Y Y 187 BC2_UNORM (DXT2/3) 0

Y Y Y 188 BC3_UNORM (DXT4/5) 0

Y Y 189 BC4_UNORM 0

Y Y 18A BC5_UNORM 0

Y Y 18B BC1_UNORM_SRGB (DXT1_SRGB) 0

Y Y 18C BC2_UNORM_SRGB (DXT2/3_SRGB) 0

96 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

S
am

p
lin

g
 E

n
g

in
e

S
am

p
lin

g
 E

n
g

in
e

F
ilt

er
in

g

S
am

p
lin

g
 E

n
g

in
e

S
h

ad
o

w
 M

ap

S
am

p
lin

g
 E

n
g

in
e

C
h

ro
m

a
K

ey

R
en

d
er

 T
ar

g
et

A
lp

h
a

B
le

n
d

 R
en

d
er

 T
ar

g
et

In
p

u
t

V
er

te
x

B
u

ff
er

S
tr

ea
m

ed
 O

u
tp

u
t

V
er

te
x

B
u

ff
er

s

C
o

lo
r

P
ro

ce
ss

in
g

S
u

rf
ac

e
F

o
rm

at
 E

n
co

d
in

g
 (

H
ex

)

Format Name

B
it

s
P

er
 E

le
m

en
t

(B
P

E
)

Y Y 18D BC3_UNORM_SRGB (DXT4/5_SRGB) 0

Y 18E MONO8 1

Y Y Y Y^ 18F YCRCB_SWAPUV 0

Y Y Y Y^ 190 YCRCB_SWAPY 0

Y Y 191 DXT1_RGB 0

Y Y 192 FXT1 0

 Y 193 R8G8B8_UNORM 24

 Y 194 R8G8B8_SNORM 24

 Y 195 R8G8B8_SSCALED 24

 Y 196 R8G8B8_USCALED 24

 Y 197 R64G64B64A64_FLOAT 256

 Y 198 R64G64B64_FLOAT 192

Y Y 199 BC4_SNORM 0

Y Y 19A BC5_SNORM 0

Y~ Y~ Y^ 19B R16G16B16_FLOAT 48

 Y 19C R16G16B16_UNORM 48

 Y 19D R16G16B16_SNORM 48

 Y 19E R16G16B16_SSCALED 48

 Y 19F R16G16B16_USCALED 48

 1A8 R8G8B8_UNORM_SRGB 24

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 97

S
am

p
lin

g
 E

n
g

in
e

S
am

p
lin

g
 E

n
g

in
e

F
ilt

er
in

g

S
am

p
lin

g
 E

n
g

in
e

S
h

ad
o

w
 M

ap

S
am

p
lin

g
 E

n
g

in
e

C
h

ro
m

a
K

ey

R
en

d
er

 T
ar

g
et

A
lp

h
a

B
le

n
d

 R
en

d
er

 T
ar

g
et

In
p

u
t

V
er

te
x

B
u

ff
er

S
tr

ea
m

ed
 O

u
tp

u
t

V
er

te
x

B
u

ff
er

s

C
o

lo
r

P
ro

ce
ss

in
g

S
u

rf
ac

e
F

o
rm

at
 E

n
co

d
in

g
 (

H
ex

)

Format Name

B
it

s
P

er
 E

le
m

en
t

(B
P

E
)

 1A1 BC6H_SF16 0

 1A2 BC7_UNORM 0

 1A3 BC7_UNORM_SRGB 0

 1A4 BC6H_UF16 0

 1A5 PLANAR_420_8† 0

 1FF RAW 0

** Note: 128 BPE Formats cannot be Tiled Y when used as render targets

† For the PLANAR_420_8 format, the TCX and TCY Address Control Modes in SAMPLER_STATE
must be set to TEXCOORDMODE_CLAMP and the Height and Width fields in SURFACE_STATE must
indicate dimensions that are a multiple of 4 pixels.

NOTE: “RAW” is supported only with buffers and structured buffers accessed via the untyped surface
read/write and untyped atomic operation messages, which do not have a column in the table.

2.11.2.1.3 Sampler Output Channel Mapping

The following table indicates the mapping of the channels from the surface to the channels output from
the sampling engine. Formats with all four channels (R/G/B/A) in their name map each surface channel
to the corresponding output, thus those formats are not shown in this table.

Surface Format Name R G B A

R32G32B32X32_FLOAT R G B 1.0

R32G32B32_FLOAT R G B 1.0

R32G32B32_SINT R G B 1.0

R32G32B32_UINT R G B 1.0

R32G32_FLOAT R G 1.0 1.0

98 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

Surface Format Name R G B A

R G 0.0 1.0

R32G32_SINT R G 0.0 1.0

R32G32_UINT R G 0.0 1.0

R32_FLOAT_X8X24_TYPELESS R 0.0 0.0 1.0

X32_TYPELESS_G8X24_UINT 0.0 G 0.0 1.0

L32A32_FLOAT L L L A

R16G16B16X16_UNORM R G B 1.0

R16G16B16X16_FLOAT R G B 1.0

A32X32_FLOAT 0.0 0.0 0.0 A

L32X32_FLOAT L L L 1.0

I32X32_FLOAT I I I I

R G 1.0 1.0 R16G16_UNORM

R G 0.0 1.0

R G 1.0 1.0 R16G16_SNORM

R G 0.0 1.0

R16G16_SINT R G 0.0 1.0

R16G16_UINT R G 0.0 1.0

R G 1.0 1.0 R16G16_FLOAT

R G 0.0 1.0

R11G11B10_FLOAT R G B 1.0

R32_SINT R 0.0 0.0 1.0

R32_UINT R 0.0 0.0 1.0

R 1.0 1.0 1.0 R32_FLOAT

R 0.0 0.0 1.0

R24_UNORM_X8_TYPELESS R 0.0 0.0 1.0

X24_TYPELESS_G8_UINT 0.0 G 0.0 1.0

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 99

Surface Format Name R G B A

L16A16_UNORM L L L A

I24X8_UNORM I I I I

L24X8_UNORM L L L 1.0

A24X8_UNORM 0.0 0.0 0.0 A

I32_FLOAT I I I I

L32_FLOAT L L L 1.0

A32_FLOAT 0.0 0.0 0.0 A

B8G8R8X8_UNORM R G B 1.0

B8G8R8X8_UNORM_SRGB R G B 1.0

R8G8B8X8_UNORM R G B 1.0

R8G8B8X8_UNORM_SRGB R G B 1.0

R9G9B9E5_SHAREDEXP R G B 1.0

B10G10R10X2_UNORM R G B 1.0

L16A16_FLOAT L L L A

B5G6R5_UNORM R G B 1.0

B5G6R5_UNORM_SRGB R G B 1.0

R G 1.0 1.0 R8G8_UNORM

R G 0.0 1.0

R G 1.0 1.0 R8G8_SNORM

R G 0.0 1.0

R8G8_SINT R G 0.0 1.0

R8G8_UINT R G 0.0 1.0

R16_UNORM R 0.0 0.0 1.0

R16_SNORM R 0.0 0.0 1.0

R16_SINT R 0.0 0.0 1.0

R16_UINT R 0.0 0.0 1.0

100 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

Surface Format Name R G B A

R 1.0 1.0 1.0 R16_FLOAT

R 0.0 0.0 1.0

I16_UNORM I I I I

L16_UNORM L L L 1.0

A16_UNORM 0.0 0.0 0.0 A

L8A8_UNORM L L L A

I16_FLOAT I I I I

L16_FLOAT L L L 1.0

A16_FLOAT 0.0 0.0 0.0 A

R5G5_SNORM_B6_UNORM R G B 1.0

R8_UNORM R 0.0 0.0 1.0

R8_SNORM R 0.0 0.0 1.0

R8_SINT R 0.0 0.0 1.0

R8_UINT R 0.0 0.0 1.0

A8_UNORM 0.0 0.0 0.0 A

I8_UNORM I I I I

L8_UNORM L L L 1.0

L8_UNORM_SRGB L L L 1.0

R1_UNORM/R1_UINT R 0.0 0.0 1.0

YCRCB_NORMAL Cr Y Cb 1.0

YCRCB_SWAPUVY Cr Y Cb 1.0

BC4_UNORM R 0.0 0.0 1.0

BC5_UNORM R G 0.0 1.0

YCRCB_SWAPUV Cr Y Cb 1.0

YCRCB_SWAPY Cr Y Cb 1.0

DXT1_RGB R G B 1.0

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 101

Surface Format Name R G B A

DXT1_RGB_SRGB R G B 1.0

BC4_SNORM R 0.0 0.0 1.0

BC5_SNORM R G 0.0 1.0

2.11.3 SAMPLER_STATE
SAMPLER_STATE has three different formats, depending on the message type used. The sample_8x8
and deinterlace messages use a different format of SAMPLER_STATE as detailed in the corresponding
sections.

2.11.3.1 Sampler State for most messages

2.11.3.1.1 SAMPLER_STATE [DevSNB]

SAMPLER_STATE
Project: [DevSNB]
This is the normal sampler state used by all messages that use SAMPLER_STATE except sample_8x8 and
deinterlace. The sampler state is stored as an array of up to 16 elements, each of which contains the dwords
described here. The start of each element is spaced 4 dwords apart. The first element of the sampler state array is
aligned to a 32-byte boundary.

DWord Bit Description

0 31 Sampler Disable

Project: All

Format: Disable FormatDesc

This field allows the sampler to be disabled. If disabled, all output channels will return 0.

30 Reserved Project: All Format: MBZ

29 Reserved

28 LOD PreClamp Enable

Project: All

Format: U1 enumerated type FormatDesc

When enabled, the computed LOD is clamped to [max,min] mip level before the mag-vs-
min determination is performed. This is how the OpenGL API currently performs min/mag
determination, and therefore it is expected that an OpenGL driver would need to set this
bit.

Value Name Description Project

0h Reserved All

1h OGL OGL Mode (LOD PreClamp enabled) All

102 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

SAMPLER_STATE
27 Min and Mag State Not Equal

Project: [DevSNB]

Format: U1 enumerated type FormatDesc

Indicates if state is not the same for min and mag modes. Must be set to 1 if any of the
following are true:

 Mag Mode Filter and Min Mode Filter are not the same

 Address Rounding Enable: U address mag filter and U address min filter are not the
same

 Address Rounding Enable: V address mag filter and V address min filter are not the
same

Address Rounding Enable: R address mag filter and R address min filter are not the
same

Value Name Description Project

0h MIN_MAG_E
Q

Min and Mag state are equal [DevSNB]

1h MIN_MAG_NE
Q

Min and Mag state are not equal [DevSNB]

26:22 Base Mip Level

Project: All

Format: U4.1 FormatDesc

Range [0.0,13.0]

Specifies which mip level is considered the “base” level when determining mag-vs-min filter
and selecting the “base” mip level.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 103

SAMPLER_STATE
21:20 Mip Mode Filter

Project: All

Format: U2 enumerated type

This field determines if and how mip map levels are chosen and/or combined when texture
filtering.

Value Name Description Project

0h MIPFILTER_NONE Disable mip mapping – force
use of the mipmap level
corresponding to Min LOD.

All

1h MIPFILTER_NEAREST Nearest, Select the nearest mip
map

All

2h Reserved All

3h MIPFILTER_LINEAR Linearly interpolate between
nearest mip maps (combined
with linear min/mag filters this is
analogous to “Trilinear”
filtering).

All

Programming Notes

MIPFILTER_LINEAR is not supported for surface formats that do not support “Sampling
Engine Filtering” as indicated in the Surface Formats table unless using the sample_c
message type.

19:17 Mag Mode Filter

Project: All

Format: U2 enumerated type

This field determines how texels are sampled/filtered when a texture is being “magnified”
(enlarged). For volume maps, this filter mode selection also applies to the 3rd (inter-layer)
dimension.

Value Name Description Project

0h MAPFILTER_NEAREST Sample the nearest texel All

1h MAPFILTER_LINEAR Bilinearly filter the 4
nearest texels

All

2h MAPFILTER_ANISOTROPIC Perform an “anisotropic”
filter on the chosen mip
level

All

3h-5h Reserved All

6h MAPFILTER_MONO Perform a monochrome
convolution filter

All

7h Reserved All

Programming Notes

Only MAPFILTER_NEAREST and MAPFILTER_LINEAR are supported for surfaces of
type SURFTYPE_3D.

Only MAPFILTER_NEAREST is supported for surface formats that do not support

104 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

SAMPLER_STATE
“Sampling Engine Filtering” as indicated in the Surface Formats table unless using the
sample_c message type.

MAPFILTER_MONO: Only CLAMP_BORDER texture addressing mode is supported. .
Both Mag Mode Filter and Min Mode Filter must be programmed to
MAPFILTER_MONO. Mip Mode Filter must be MIPFILTER_NONE. Only valid on
surfaces with Surface Format MONO8 and with Surface Type SURFTYPE_2D.

MAPFILTER_ANISOTROPIC may cause artifacts at cube edges if enabled for cube maps
with the TEXCOORDMODE_CUBE addressing mode.

MAPFILTER_ANISOTROPIC will be overridden to MAPFILTER_LINEAR when using a
sample_l or sample_l_c message type or when Force LOD to Zero is set in the message
header. [DevBW, DevCL] Errata: Force LOD to Zero will not cause
MAPFILTER_ANISOTROPIC to get forced to MAPFILTER_LINEAR and instead it will
have to be worked around using sample_l or sample_l_c.

16:14 Min Mode Filter

Project: All

Format: U2 enumerated type FormatDesc

This field determines how texels are sampled/filtered when a texture is being “minified”
(shrunk). For volume maps, this filter mode selection also applies to the 3rd (inter-layer)
dimension.

See Mag Mode Filter
13:3 Texture LOD Bias

Project: All

Format: S4.6 2’s complement FormatDesc

Range [-16.0, 16.0)

This field specifies the signed bias value added to the calculated texture map LOD prior to
min-vs-mag determination and mip-level clamping. Assuming mipmapping is enabled, a
positive LOD bias will result in a somewhat blurrier image (using less-detailed mip levels)
and possibly higher performance, while a negative bias will result in a somewhat crisper
image (using more-detailed mip levels) and may lower performance.

Programming Notes

There is no requirement or need to offset the LOD Bias in order to produce a correct LOD
for texture filtering (as was required for correct bilinear and anisotropic filtering in some
legacy devices).

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 105

SAMPLER_STATE
2:0 Shadow Function

Project: All

Format: U3 enumerated type FormatDesc

This field is used for shadow mapping support via the sample_c message type, and
specifies the specific comparison operation to be used. The comparison is between the
texture sample red channel (except for alpha-only formats which use the alpha channel),
and the “ref” value provided in the input message.

Value Name Description Project

0h PREFILTEROP_ALWAYS All

1h PREFILTEROP_NEVER All

2h PREFILTEROP_LESS All

3h PREFILTEROP_EQUAL All

4h PREFILTEROP_LEQUAL All

5h PREFILTEROP_GREATER All

6h PREFILTEROP_NOTEQUAL All

7h PREFILTEROP_GEQUAL All

1 31:22 Min LOD

Project: All

Format: U4.6 in LOD units FormatDesc

Range [0.0, 13.0], where the upper limit is also bounded by the Max LOD.

This field specifies the minimum value used to clamp the computed LOD after LOD bias is
applied. Note that the minification-vs.-magnification status is determined after LOD bias
and before this maximum (resolution) mip clamping is applied.

The integer bits of this field are used to control the “maximum” (highest resolution) mipmap
level that may be accessed (where LOD 0 is the highest resolution map).

The fractional bits of this value effectively clamp the inter-level trilinear blend factor when
trilinear filtering is in use.

Programming Notes

If Min LOD is greater than Max LOD, Min LOD takes precedence, i.e. the resulting LOD
will always be Min LOD.

This field must be zero if the Min or Mag Mode Filter is set to MAPFILTER_MONO

106 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

SAMPLER_STATE
21:12 Max LOD

Project: All

Format: U4.6 in LOD units FormatDesc

Range [0.0, 13.0]

This field specifies the maximum value used to clamp the computed LOD after LOD bias is
applied. Note that the minification-vs.-magnification status is determined after LOD bias
and before this minimum (resolution) mip clamping is applied.

The integer bits of this field are used to control the “minimum” (lowest resolution) mipmap
level that may be accessed.

The fractional bits of this value effectively clamp the inter-level trilinear blend factor when
trilinear filtering is in use.

Force the mip map access to be between the mipmap specified by the integer bits of the
Min LOD and the ceiling of the value specified here.

Programming Notes

If Min LOD is greater than Max LOD, Min LOD takes precedence, i.e. the resulting LOD
will always be Min LOD.

11:10 Reserved Project: All Format: MBZ

9 Cube Surface Control Mode

Project: All

Format: U1 enumerated type FormatDesc

When sampling from a SURFTYPE_CUBE surface, this field controls whether the TC*
Address Control Mode fields are interpreted as programmed or overridden to
TEXCOORDMODE_CUBE.

Value Name Description Project

0h CUBECTRLMODE_PROGRAMMED All

1h CUBECTRLMODE_OVERRIDE All

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 107

SAMPLER_STATE
8:6 TCX Address Control Mode

Project: All

Format: U3 enumerated type FormatDesc

Controls how the 1st (TCX, aka U) component of input texture coordinates are mapped to
texture map addresses – specifically, how coordinates “outside” the texture are handled
(wrap/clamp/mirror). The setting of this field is subject to being overridden by the Cube
Surface Control Mode field when sampling from a SURFTYPE_CUBE surface.

Value Name Description Project

0h TEXCOORDMODE_WRAP Map is repeated in the
U direction

All

1h TEXCOORDMODE_MIRROR Map is mirrored in the
U direction

All

2h TEXCOORDMODE_CLAMP Map is clamped to the
edges of the accessed
map

All

3h TEXCOORDMODE_CUBE For cube-mapping,
filtering in edges
access adjacent map
faces

All

4h Reserved All

5h TEXCOORDMODE_MIRROR_ONCE Map is mirrored once
about origin, then
clamped

All

6h-7h Reserved All

Programming Notes

When using cube map texture coordinates, only TEXCOORDMODE_CLAMP and
TEXCOORDMODE_CUBE settings are valid, and each TC component must have the
same Address Control mode.

When TEXCOORDMODE_CLAMP is used when accessing a cube map, the map’s Cube
Face Enable field must be programmed to 111111b (all faces enabled).

MAPFILTER_MONO: Texture addressing modes must all be set to
TEXCOORDMODE_CLAMP_BORDER. Software must pad the border texels within the
map itself with 0.

TEXCOORDMODE_MIRROR and TEXCOORDMODE_MIRROR_ONCE cannot be used
with the sample_unorm* message types.

5:3 TCY Address Control Mode

Project: All

Format: U3 enumerated type FormatDesc

Controls how the 2nd (TCY, aka V) component of input texture coordinates are mapped to
texture map addresses – specifically, how coordinates “outside” the texture are handled
(wrap/clamp/mirror).

See Address TCX Control Mode above for details

108 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

SAMPLER_STATE
2:0 TCZ Address Control Mode

Project: All

Format: U3 enumerated type FormatDesc

Controls how the 3rd (TCZ) component of input texture coordinates are mapped to texture
map addresses – specifically, how coordinates “outside” the texture are handled
(wrap/clamp/mirror).

See Address TCX Control Mode above for details

Programming Notes:

[DevSNB]: if this field is set to TEXCOORDMODE_CLAMP_BORDER samples outside the
map will clamp to 0 instead of boarder color

2 31:5 Reserved

4:0 Reserved Project: All Format: MBZ
3 31:29 Reserved; MBZ

28:26 Reserved : MBZ

25 ChromaKey Enable

Project: All

Format: Enable FormatDesc

This field enables the chroma key function.

Programming Notes

Supported only on a specific subset of surface formats. See section 0 “Surface Formats”
for supported formats.

This field must be disabled if min or mag filter is MAPFILTER_MONO or
MAPFILTER_ANISOTROPIC.

This field must be disabled if used with a surface of type SURFTYPE_3D.

24:23 ChromaKey Index

Project: All

Format: U2 FormatDesc

Range [0,3]

This field specifies the index of the ChromaKey Table entry associated with this Sampler.
This field is a “don’t care” unless ChromaKey Enable is ENABLED.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 109

SAMPLER_STATE
22 ChromaKey Mode

Project: All

Format: U1 enumerated type FormatDesc

This field specifies the behavior of the device in the event of a ChromaKey match. This
field is ignored if ChromaKey is disabled.

KEYFILTER_KILL_ON_ANY_MATCH:

In this mode, if any contributing texel matches the chroma key, the corresponding pixel
mask bit for that pixel is cleared. The result of this operation is observable only if the
Killed Pixel Mask Return flag is set on the input message.

KEYFILTER_REPLACE_BLACK:

In this mode, each texel that matches the chroma key is replaced with (0,0,0,0) (black with
alpha=0) prior to filtering. For YCrCb surface formats, the black value is A=0, R(Cr)=0x80,
G(Y)=0x10, B(Cb)=0x80. This will tend to darken/fade edges of keyed regions. Note that
the pixel pipeline must be programmed to use the resulting filtered texel value to gain the
intended effect, e.g., handle the case of a totally keyed-out region (filtered texel alpha==0)
through use of alpha test, etc.

Value Name Description Project

0h KEYFILTER_KILL_ON_ANY_MATCH All

1h KEYFILTER_REPLACE_BLACK All

21:19 Maximum Anisotropy

Project: All

Format: U3 enumerated type FormatDesc

This field clamps the maximum value of the anisotropy ratio used by the
MAPFILTER_ANISOTROPIC filter (Min or Mag Mode Filter).

Value Name Description Project

0h ANISORATIO_2 At most a 2:1 aspect ratio filter is used All

1h ANISORATIO_4 At most a 4:1 aspect ratio filter is used All

2h ANISORATIO_6 At most a 6:1 aspect ratio filter is used All

3h ANISORATIO_8 At most a 8:1 aspect ratio filter is used All

4h ANISORATIO_10 At most a 10:1 aspect ratio filter is used All

5h ANISORATIO_12 At most a 12:1 aspect ratio filter is used All

6h ANISORATIO_14 At most a 14:1 aspect ratio filter is used All

7h ANISORATIO_16 At most a 16:1 aspect ratio filter is used All

110 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

SAMPLER_STATE
18:13 Address Rounding Enable

Project: All

Format: 6-bit mask of enables FormatDesc

Controls whether the U/V/R texture address is rounded or truncated before being used to
select texels to sample. Each bit provides independent control of rounding on one texture
address dimension (U/V/R) in either mag or min filter mode.

Value Name Description Project

100000b U address mag filter All

010000b U address min filter All

001000b V address mag filter All

000100b V address min filter All

000010b R address mag filter All

000001b R address min filter All

12:1 Reserved Project: All Format: MBZ

0 Non normalized Coordinates

Project: DevSNB+

Default Value: 0h Disable

Format: Enable FormatDesc

Programming Notes

TCX/Y/Z Address Control Mode must be TEXCOORDMODE_CLAMP or
TEXCOORDMODE_CLAMP_BORDER if enabled.

Surface Type must be SURFTYPE_2D or SURFTYPE_3D.

2.11.3.2 Sampler State for sample_8x8 message

[DevSNB] This state definition is used only by the sample_8x8 message. This state is stored as an array
of up to 4 elements, each of which contains the dwords described here. The start of each element is
spaced 16 dwords apart. The first element of the array is aligned to a 32-byte boundary. The index with
range 0-3 that selects which element is being used is multiplied by 4 to determine the Sampler Index in
the message descriptor.

Programming Notes:

 IEF Filter Type was dropped and is assumed to be Detailed filter

 IEF Filter Size was dropped and assumed to be 5x5.

 IEF Bypass – If we have Y/G-channel masked then the IEF bypass should always be forced
to 1.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 111

DWord Bit Description

0 31 AVS Filter Type. Defines the type of adaptive video scaler filter that will be enabled.

0: Adaptive 8-tap polyphase filter

1: Nearest filter

 30 Reserved : MBZ

 29 IEF Bypass. Causes IEF function to be bypassed, VSA will output neutral values.

If Green(or Luma) channel is masked, we will always have IEF state set to bypass

 28 IEF Filter Type

0: Combo mode

1: Detail Filter

 27 IEF Filter Size

0: 3x3

1: 5x5

Programming Notes:

 If IEF Filter Type is Advanced Filter, this field must be set to 5x5

 26:19 Reserved : MBZ

 18 ChromaKey Enable. This field enables chroma keying when accessing this particular
texture map.

Programming Notes:

 For sample_8x8 instructions KEYFILTER_REPLACE_BLACK is assumed if
chromakey is enabled.

 For 10 bit formats only the 8 MSBs will be compared.

Format = Enable

 17:16 ChromaKey Index. This field specifies the index of the ChromaKey Table entry associated
with this Sampler. This field is a “don’t care” unless ChromaKey Enable is ENABLED.

Format = U2

Range = [0,3]

 15:0 Reserved : MBZ

112 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

1 31:5 Sampler 8x8 State Pointer. This field specifies the pointer to the SAMPLER_8x8_STATE
structure. This pointer is relative to the General State Base Address for [DevILK] or the
Dynamic State Base Address for [DevSNB+].

Programming Notes:

 This field must be set to the same value in all sample_8x8 type SAMPLER_STATE
instances applied to a given primitive.

 [DevSNB+]: PIPE_CONTROL with State/Instruction Cache Invalidate set and
the CS Stall field set is required between primitives that use different values of this
field.

 This pointer must be aligned to 512 bits.

Format = DynamicStateOffset[31:5]

 4:0 Reserved : MBZ

2 31:16 Reserved : MBZ

 15:8 Global Noise Estimation. Global noise estimation of previous frame from DI.

Format = U8 (default = 22)

 7:4 Strong Edge Threshold. If EM > Strong Edge Threshold, the basic VSA detects a
strong edge.

Format = U4 (default = 8)

 3:0 Weak Edge Threshold. If Strong Edge Threshold > EM > Weak Edge Threshold, the
basic VSA detects a weak edge.

Format = U4 (default = 1)

3 31 Reserved : MBZ

 30:28 Strong Edge Weight. Sharpening strength when a strong edge is found in basic VSA.

Format = U3 (default = 7)

 27 Reserved : MBZ

 26:24 Regular Weight. Sharpening strength when a weak edge is found in basic VSA.

Format = U3 (default = 2)

 23 Reserved : MBZ

 22:20 Non Edge Weight. Sharpening strength when no edge is found in basic VSA.

Format = U3 (default = 1)

 19:14 Gain Factor. User control sharpening strength.

Format = U6 (default = 40)

 13:11 Reserved : MBZ

 10:6 R3c Coefficient. IEF smoothing coefficient, see IEF map.

Format = U0.5 (default = (59+2) >> 2)

 5 Reserved : MBZ

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 113

DWord Bit Description

 4:0 R3x Coefficient. IEF smoothing coefficient, see IEF map.

Format = U0.5 (default = ((25+2) >> 2)

4 31 Reserved : MBZ

 30:26 R5c Coefficient. IEF smoothing coefficient, see IEF map.

Format = U0.5 (default = 3)

 25 Reserved : MBZ

 24:20 R5cx Coefficient. IEF smoothing coefficient, see IEF map.

Format = U0.5 (default = 8)

 19 Reserved : MBZ

 18:14 R5x Coefficient. IEF smoothing coefficient, see IEF map.

Format = U0.5 (default = 9)

 13:12 Reserved : MBZ

 11:8 Steepness Threshold. VSA uses steepness only when greater than this threshold.

Format = U4 (default = 0)

 7 Steepness Boost. Used to increase effect of steepness.

Format = Enable (default = 0)

 6:3 MR Threshold. VSA uses MR only when greater than this threshold.

Format = U4 (default = 5)

 2 MR Boost. Used to increase effect of MR.

Format = Enable (default = 0)

 1:0 Reserved : MBZ

5 31:24 PWL1 Point 4. Point 4 for PWL of both sharpening and smoothing strength.

Format = U8 (default = 26)

 23:16 PWL1 Point 3. Point 3 for PWL of both sharpening and smoothing strength.

Format = U8 (default = 16)

 15:8 PWL1 Point 2. Point 2 for PWL of both sharpening and smoothing strength.

Format = U8 (default = 12)

 7:0 PWL1 Point 1. Point 1 for PWL of both sharpening and smoothing strength.

Format = U8 (default = 4)

6 31:24 PWL1 R3 Bias 1. Bias 1 for PWL of smoothing strength.

Format = U8 (default = 98)

 23:16 PWL1 R3 Bias 0. Bias 0 for PWL of smoothing strength.

Format = U8 (default = 127)

 15:8 PWL1 Point 6. Point 6 for PWL of both sharpening and smoothing strength.

Format = U8 (default = 160)

114 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

 7:0 PWL1 Point 5. Point 5 for PWL of both sharpening and smoothing strength.

Format = U8 (default = 40)

 7 31:24 PWL1 R3 Bias 5. Bias 5 for PWL of smoothing strength.

Format = U8 (default = 0)

 23:16 PWL1 R3 Bias 4. Bias 4 for PWL of smoothing strength.

Format = U8 (default = 44)

 15:8 PWL1 R3 Bias 3. Bias 3 for PWL of smoothing strength.

Format = U8 (default = 64)

 7:0 PWL1 R3 Bias 2. Bias 2 for PWL of smoothing strength.

Format = U8 (default = 88)

8 31:24 PWL1 R5 Bias 2. Bias 2 for PWL of sharpening strength.

Format = U8 (default = 32)

 23:16 PWL1 R5 Bias 1. Bias 1 for PWL of sharpening strength.

Format = U8 (default = 32)

 15:8 PWL1 R5 Bias 0. Bias 0 for PWL of sharpening strength.

Format = U8 (default = 3)

 7:0 PWL1 R3 Bias 6. Bi as 6 for PWL of smoothing strength.

Format = U8 (default = 0)

9 31:24 PWL1 R5 Bias 6. Bias 6 for PWL of sharpening strength.

Format = U8 (default = 88)

 23:16 PWL1 R5 Bias 5. Bias 5 for PWL of sharpening strength.

Format = U8 (default = 108)

 15:8 PWL1 R5 Bias 4. Bias 4 for PWL of sharpening strength.

Format = U8 (default = 100)

 7:0 PWL1 R5 Bias 3. Bias 3 for PWL of sharpening strength.

Format = U8 (default = 58)

10 31:24 PWL1 R3 Slope 3. Slope 3 for PWL of smoothing strength.

Format = S3.4 2’s complement (default = -32)

 23:16 PWL1 R3 Slope 2. Slope 2 for PWL of smoothing strength.

Format = S3.4 2’s complement (default = -96)

 15:8 PWL1 R3 Slope 1. Slope 1 for PWL of smoothing strength.

Format = S3.4 2’s complement (default = -20)

 7:0 PWL1 R3 Slope 0. Slope 0 for PWL of smoothing strength.

Format = S3.4 2’s complement (default = -116)

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 115

DWord Bit Description

11 31:24 PWL1 R5 Slope 0. Slope 0 for PWL of sharpening strength.

Format = S3.4 2’s complement (default = 116)

 23:16 PWL1 R3 Slope 6. Slope 6 for PWL of smoothing strength.

Format = S3.4 2’s complement (default = 0)

 15:8 PWL1 R3 Slope 5. Slope 5 for PWL of smoothing strength.

Format = S3.4 2’s complement (default = 0)

 7:0 PWL1 R3 Slope 4. Slope 4 for PWL of smoothing strength.

Format = S3.4 2’s complement (default = -50)

12 31:24 PWL1 R5 Slope 4. Slope 4 for PWL of sharpening strength.

Format = S3.4 2’s complement (default = 9)

 23:16 PWL1 R5 Slope 3. Slope 3 for PWL of sharpening strength.

Format = S3.4 2’s complement (default = 67)

 15:8 PWL1 R5 Slope 2. Slope 2 for PWL of sharpening strength.

Format = S3.4 2’s complement (default = 104)

 7:0 PWL1 R5 Slope 1. Slope 1 for PWL of sharpening strength.

Format = S3.4 2’s complement (default = 0)

13 31:28 Maximum Limiter. Strength of overshoot limiter.

Format = U0.4 (default = 11)

 27:24 Minimum Limiter. Strength of undershoot limiter.

Format = U0.4 (default = 10)

 23:20 Reserved : MBZ

 19:16 Limiter Boost. Used to increase limiter strength

Format = U0.4 (default = 0)

 15:8 PWL1 R5 Slope 6. Slope 6 for PWL of sharpening strength.

Format = S3.4 2’s complement (default = -15)

 7:0 PWL1 R5 Slope 5. Slope 5 for PWL of sharpening strength.

Format = S3.4 2’s complement (default = -3)

14 31:18 Reserved : MBZ

 17:8 Clip Limiter. If extreme point is on the boundary of the neighborhood, adjust limiter’s
strength.

Format = U10 (default = 130)

 7:0 Reserved : MBZ

116 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

2.11.3.3 For deinterlace message

This state definition is used only by the deinterlace message. This state is stored as an array of up to 8
elements, each of which contains the dwords described here. The start of each element is spaced 8
dwords apart. The first element of the array is aligned to a 32-byte boundary. The index with range 0-7
that selects which element is being used is multiplied by 2 to determine the Sampler Index in the
message descriptor.

DWord Bit Description

0 31:24 Denoise STAD Threshold. Threshold for denoise sum of temporal absolute differences.

Format = U8

 23:16 Denoise Maximum History. Maximum allowed value for denoise history.

Format = U8

Range = [128,240]

 15:8 Denoise History Delta. Amount that denoise_history is increased.

Format = U8

Range = [0,15]

 7:0 Denoise ASD Threshold. Threshold for denoise absolute sum of differences.

Format = U8

Range = [0,63]

1 31:30 Reserved : MBZ

 29:24 Temporal Difference Threshold.

Format = U6

Programming Notes:

o Temporal Difference Threshold – Low Temporal Difference Threshold must be
larger than or equal to 0 and less than or equal to 16.

 23:22 Reserved : MBZ

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 117

DWord Bit Description

 21:16 Low Temporal Difference Threshold.

Format = U6

Programming Notes:

o Temporal Difference Threshold – Low Temporal Difference Threshold must be
larger than 0 and less than or equal to 16.

 15:13 STMM C2: Bias for divisor in STMM equation.

Format = U3

Range = [0,7] representing values [1,8]

 12:8 Denoise Moving Pixel Threshold. Threshold for number of moving pixels to declare a
block to be moving.

Format = U5

Range = [0,16]

 7:0 Denoise Threshold for Sum of Complexity Measure.

Format = U8

2 31:24 Good Neighbor Threshold. Maximum difference from current pixel for neighboring pixels
to be considered a good neighbor.

Format = U8

Range = [0,63]

 23:16 Denoise Edge Threshold. Threshold for detecting an edge in denoise.

Format = U8

Range = [0,15]

 15:8 Block Noise Estimate Edge Threshold. Threshold for detecting an edge in block noise
estimate.

Format = U8

Range = [0,15]

118 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

 7:0 Block Noise Estimate Noise Threshold. Threshold for noise maximum/minimum.

Format = U8

Range = [0,31]

3 31 STMM Blending Constant Select.

Format = U1

0: Use the blending constant for small values of STMM for stmm_md_th

1: Use the blending constant for large values of STMM for stmm_md_th

 30:24 Blending constant across time for large values of STMM.

Format = U7

 23:16 Blending constant across time for small values of STMM.

Format = U8

 15:14 Reserved : MBZ

 13:8 Multiplier for VECM. Determines the strength of the vertical edge complexity measure.

Format = U6

 7:0 Maximum STMM. Largest allowed STMM in blending equations.

Format = U8

4 31:24 Minimum STMM. Smallest allowed STMM in blending equations.

Format = U8

 23:22 STMM Shift Down. Amount to shift STMM down (quantize to fewer bits).

Format = U2

0: Shift by 4

1: Shift by 5

2: Shift by 6

3: Reserved

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 119

DWord Bit Description

 21:20 STMM Shift Up. Amount to shift STMM up (set range).

Format = U2

0: Shift by 6

1: Shift by 7

2: Shift by 8

3: Reserved

 19:16 STMM Output Shift. Amount to shift output of STMM blend equation.

Programming Notes:

 The value of this field must satisfy the following equation: stmm_max – stmm_min
= 2 ^ stmm_output_shift

Format = U4

Range = [0,16]

 15:8 SDI Threshold. Threshold for angle detection in SDI algorithm.

Format = U8

 7:0 SDI Delta. Delta value for angle detection in SDI algorithm.

Format = U8

5 31:24 SDI Fallback Mode 1 T1 Constant.

Format = U8

 23:16 SDI Fallback Mode 1 T2 Constant.

Format = U8

 15:8 SDI Fallback Mode 2 Constant (Angle2x1).

Format = U8

 7:0 FMD Temporal Difference Threshold.

Format = U8

120 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

6 31:24 FMD #1 Vertical Difference Threshold.

Format = U8

 23:16 FMD #2 Vertical Difference Threshold.

Format = U8

 15:14 Reserved : MBZ

 13:8 FMD Tear Threshold.

Format = U6

 7 Reserved : MBZ

 6 Progressive DN. Indicates that the denoise algorithm should assume progressive input
when filtering neighboring pixels. DI Enable must be disabled when this field is enabled.

Format = Enable

0: DN assumes interlaced video and filters alternate lines together

1: DN assumes progressive video and filters neighboring lines together

 5 DN/DI First Frame. Indicates that this is the first frame of the stream, so previous clean is
not available

Format = Enable

0: Not first field; previous clean surface state is valid

1: First field; previous clean surface state is invalid

 4 DN/DI Stream ID. Distinguishes between the two simultaneous streams that are supported.
Used to update the GNE and FMD counters for that stream.

Format = U1

 3 DN/DI Top First. Indicates the top field is first in sequence, otherwise bottom is first

Format = Enable

0 = Bottom field occurs first in sequence

1 = Top field occurs first in sequence

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 121

DWord Bit Description

 2 DI Partial. If DI Enable and DI Partial are both enabled, the deinterlacer will output the
partial VDI writeback message.

Format = Enable

0: Output normal VDI writeback message (only if DI Enable is enabled also)

1: Output partial VDI writeback message (only if DI Enable is enabled also)

 1 DI Enable. Deinterlacer is bypassed if this is disabled: the output is the same as the input
(same as a 2:2 cadence). FMD and STMM are not calculated and the values in the
response message are 0.

Format = Enable

0: Do not calculate DI

1: Calculate DI

Programming Notes:

o DI Enable and DN Enable cannot both be disabled.

 0 DN Enable. Denoise is bypassed if this is low – BNE is still calculated and output, but the
denoised fields are not. VDI does not read in the denoised previous frame but uses the
pointer for the original previous frame.

Format = Enable

0: Do not denoise frame

1: Denoise frame

Programming Notes:

o DI Enable and DN Enable cannot both be disabled.

7 31:23 Column Width Minus1

This field specifies the (column width-1) / stride in units of blocks (Each blocks has width 16
pixels).

A column width * 16 that equals the width of the frame means the walker will walk to the end
of the frame.

Format = U9

Range = [0, 511] representing column widths [1 to 512]

(interpret value as binary value + 1)

122 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

 31:19 Reserved : MBZ

18 VDI Walker Enable

Format = U1

0: Walker Disabled. Use XY generated by Driver.

1: Walker Enabled. Use XY generated by VDIunit.

Programming Note: When enabled frame size should be aligned to 16x8 in DN only mode
and 16x4 in DI enabled mode

 17:16 FMD for 2nd field of previous frame.

Format = U2

0: Deinterlace (not progressive output)

1: Put together with previous field in sequence (1st field of previous frame).

2: Put together with next field in sequence (1st field of current frame).

 15:10 Reserved : MBZ

 9:8 FMD for 1st field of current frame.

Format = U2

0: Deinterlace (not progressive output).

1: Put together with previous field in sequence (2nd field of previous frame).

2: Put together with next field in sequence (2nd field of current frame).

 7:0 Reserved : MBZ

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 123

2.11.4 SAMPLER_8x8_STATE [DevSNB+]

SAMPLER_8x8_STATE
Project: [DevSNB+] Length Bias: 2

The 8x8 coefficients and other state used by the sample_8x8 message are stored as indirect state, pointed
to by a field in SAMPLER_STATE. There are four different tables loaded using this structure (0X, 0Y, 1X,
and 1Y). Each table is stored as an array of 17 elements, each with either 4 or 8 coefficients.

DWord Bit Description

0 31:24 Table 0X Filter Coefficient[0,3]

Project: [DevSNB+]

Format: S1.6 in 2’s complement
format

Range [DevSNB]: Range = [0.0, +2.0)

[DevSNB+]: Range = [-2.0, +2.0)

23:16 Table 0X Filter Coefficient[0,2]

Project: All

Format: S1.6 in 2’s complement
format

Range: [-1, +1)

15:8 Table 0X Filter Coefficient[0,1]

Project: All

Format: S1.6 in 2’s complement
format

Range [-2-1, +2-1)

Programming Notes

Must be zero if the format is R10G10B10A2_UNORM or R8G8B8A8_UNORM

124 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

SAMPLER_8x8_STATE
7:0 Table 0X Filter Coefficient[0,0]

Format: S1.6 in 2’s complement
format

Range [-2-2, +2-2)

Programming Notes

Must be zero if the format is R10G10B10A2_UNORM or R8G8B8A8_UNORM

1 31:24 Table 0X Filter Coefficient[0,7]

Project: All

Format: S1.6 FormatDesc: in 2’s
complement format

Range [-2-2, +2-2)

23:16 Table 0X Filter Coefficient[0,6]

Format: S1.6 FormatDesc: in 2’s
complement format

Range [-2-1, +2-1)

15:8 Table 0X Filter Coefficient[0,5]

Format: S1.6 in 2’s complement
format

Range [-1, +1)

7:0 Table 0X Filter Coefficient[0,4]

Format: S1.6 in 2’s complement
format

Range [DevSNB+]: Range = [-2.0, +2.0)

2:3 Table 0Y Filter Coefficient[0,7:0]

This table has the same layout as Table 0X above.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 125

SAMPLER_8x8_STATE
4 31:24 Table 1X Filter Coefficient[0,3]

Format: S1.6 FormatDesc; in 2’s
complement format

Range [0.0, +2.0)

BitFieldDesc

23:16 Table 1X Filter Coefficient[0,2]

Format: S1.6 FormatDesc

Range [-1, +1)

BitFieldDesc

15:0 Reserved Project: All Format: MBZ
5 31:16 Reserved Project: All Format: MBZ

15:8 Table 1X Filter Coefficient[0,5]

Format: S1.6 FormatDesc: in 2’s
complement format

Range [-1, +1)

BitFieldDesc

7:0 Table 1X Filter Coefficient[0,4]

Format: S1.6 FormatDesc: in 2’s
complement format

Range [0.0, +2.0)

BitFieldDesc

6:7 Table 1Y Filter Coefficient[0,7:0]

This table has the same layout as Table 1X above.
8:15 Filter Coefficient[1,7:0]

Default Value: 0h Desc Format: OpCode
16:23 31:29 Filter Coefficient[2,7:0]

…

128:135 Filter Coefficient[16,7:0]

126 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

SAMPLER_8x8_STATE
136 31:24 Default Sharpness Level

Project: All

Security: None

Default Value: 0h DefaultVaueDesc

Mask: MMIO(0x2000)#16

Format: U8 FormatDesc

Address: GraphicsAddress[31:0]

Surface Type: U32

Range 0..2^32-1

When adaptive scaling is off, determines the balance between sharp and smooth
scalers.

Value Name Description Project

0 contribute 1 from the smooth scalar

255 contribute 1 from the sharp scalar All

23:16 Max Derivative 4 Pixels

Format: U8 FormatDesc

Used in adaptive filtering to specify the lower boundary of the smooth 4 pixel area.

15:8 Max Derivative 8 Pixels

Format: U8 FormatDesc

Used in adaptive filtering to specify the lower boundary of the smooth 8 pixel area.
7 Reserved Project: All Format: MBZ

6:4 Transition Area with 4 Pixels

Format: U8 FormatDesc

Used in adaptive filtering to specify the width of the transition area for the 4 pixel
calculation.

3 Reserved Project: All Format: MBZ

2:0 Transition Area with 8 Pixels

Format: U3 FormatDesc

Used in adaptive filtering to specify the width of the transition area for the 8 pixel calculation
137 31:23 Reserved Project: All Format: MBZ

22 Bypass X Adaptive Filtering

Format: Disable FormatDesc

When disabled, the X direction will use Default Sharpness Level to blend between the
smooth and sharp filters rather than the calculated value.

Value Name Description Project

1 Disable Disable X adaptive filtering

0 Enable Enable X adaptive filtering

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 127

SAMPLER_8x8_STATE
21 Bypass Y Adaptive Filte

Format: Disable FormatDesc

When disabled the, Y direction will use Default Sharpness Level to blend between
the smooth and sharp filters rather than the calculated value.

Value Name Description Project

1 Disable Disable X adaptive filtering

0 Enable Enable X adaptive filtering

20:2 Reserved Project: All Format: MBZ

1 Adaptive Filter for all channels

Project: All

Security: None

Access: None

Exists If: Always

Default Value: 0h DefaultVaueDesc

Mask: MMIO(0x2000)#16

Format: U32 FormatDesc

Address: GraphicsAddress[31:0]

Surface Type: U32

Range 0..2^32-1

Only to be enabled if 8-tap Adaptive filter mode is on. Else it should be disabled.

Value Name Description Project

1 Enable Enable adaptive filter on UV/RB
channels

0 Disable Disable adaptive filter on UV/RB
channels

0 BitFieldName

This should be always set to 0 for YUV input and can be enabled/disabled for RGB input.
This should be enabled only if we enable 8-tap adaptive filter for RGB input.

Value Name Description Project

1 Enable Enable the RGB Adaptive filter using the
equation (Y=(R+2G+B)>>2)

0 Disable Disable the RGB Adaptive equation and
use G-Ch directly for adaptive filter

128 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

2.11.5 3DSTATE_CHROMA_KEY

3DSTATE_CHROMA_KEY
Project: All Length Bias: 2

The 3DSTATE_CHROMA_KEY instruction is used to program texture color/chroma-key key values. A table
containing four set of values is supported. The ChromaKey Index sampler state variable is used to select
which table entry is associated with the map. Texture chromakey functions are enabled and controlled via
use of the ChromaKey Enable texture sampler state variable.

Texture Color Key (keying on a paletted texture index) is not supported.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode
28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode
26:24 3D Command Opcode

Default Value: 1h 3DSTATE Format: OpCode
23:16 3D Command Sub Opcode

Default Value: 04h 3DSTATE_CHROMA_KEY Format: OpCode
15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 2h Excludes DWord (0,1)

Format: =n Total Length - 2
1 31:30 ChromaKey Table Index

Project: All

Format: U2 index

Range 0..3

Selects which entry in the ChromaKey table is to be loaded

29:0 Reserved Project: All Format: MBZ
2 31:0 ChromaKey Low Value

This field specifies the “low” (minimum) value of the chroma key range. Texel samples are
considered “matching the key” if each component of the texel falls within the (inclusive)
chroma range.

See ChromaKey High Value for further format, programming info.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 129

3DSTATE_CHROMA_KEY
3 31:0 ChromaKey High Value

This field specifies the “high” (maximum) value of the chroma key range. Texel samples
are considered “matching the key” if each component of the texel falls within the (inclusive)
chroma range.

Programming Notes

ChromaKey values are specified using 8-bit channels. When using surface formats with
less than 8 bits per channel, the device will expand channels by replicating the required
number of MSBs into the LSBs of each channel. Software must account for this
conversion when it programs Chromakey Low/High Values (e.g., by performing the same
replication).

For channels that do not exist in the actual surface (e.g., Alpha channel for non-ARGB
maps), software must explicitly program full range high/low values (High=FFh, Low=0h for
formats using unsigned chroma key values, High=7Fh, Low=FFh for formats using sign
magnitude chroma key values) in order to effectively remove the comparison of that field
from the ChromaKey function.

For channels in SNORM format in the surface format, the value in the high/low value for
that channel is interpreted in sign magnitude format. Negative zero value is not supported
(use positive zero instead). For channels with mixed UNORM/SNORM formats (i.e.
R5G5_SNORM_B6_UNORM), the ChromaKey is programmed as if all channels are
SNORM.

YUV ChromaKey will use an interpolated chrominance value from the map for comparison
to the chroma key values for those texels without chrominance due to downsampling.
The chrominance value used is the average of values to the left and right of the texel in
question.

It is UNDEFINED to program any component of the ChromaKey High Value to be less
than the corresponding component of ChromaKey Low Value.

Format = interpreted according to associated texel format “class”:

Only the surface formats listed as supported for chroma key in the surface formats table
can be used with this feature. Use of any other surface format with chroma key enabled
is UNDEFINED.

Surface Format 31:24 23:16 15:8 7:0

ARGB and BC (DXT)
formats

A R G B

YCrCb formats A Cr Y Cb

130 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

2.11.6 3DSTATE_SAMPLER_PALETTE_LOAD0

3DSTATE_SAMPLER_PALETTE_LOAD0
Project: All Length Bias: 2

The 3DSTATE_SAMPLER_PALETTE_LOAD0 instruction is used to load 32-bit values into the first texture
palette. The texture palette is used whenever a texture with a paletted format (containing “Px [palette0]”) is
referenced by the sampler.

This instruction is used to load all or a subset of the 256 entries of the first palette. Partial loads always start
from the first (index 0) entry.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode
28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode
26:24 3D Command Opcode

Default Value: 1h 3DSTATE Format: OpCode
23:16 3D Command Sub Opcode

Default Value: 02h 3DSTATE_SAMPLER_PALETTE_
LOAD0

Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2
1..n 31:24 Palette Alpha[0:N-1]

Project: [DevCTG-A+]

Alpha values loaded into the first N entries of the texture palette.

Format = U8

23:0 Palette Color[0:N-1]

Project: All

Colors loaded into the first N entries of the texture color palette.

Format = Bits 23:0 = U24 interpreted as RGB_888 color as follows:

[23:16] Red

[15:8] Green

[7:0] Blue

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 131

2.11.7 3DSTATE_SAMPLER_PALETTE_LOAD1 [DevSNB]

3DSTATE_SAMPLER_PALETTE_LOAD1
Project: [DevSNB] Length Bias: 2

The 3DSTATE_SAMPLER_PALETTE_LOAD1 instruction is used to load 32-bit values into the second
texture palette. The second texture palette is used whenever a texture with a paletted format (containing
“Px...[palette1]”) is referenced by the sampler.

This instruction is used to load all or a subset of the 256 entries of the second palette. Partial loads always
start from the first (index 0) entry.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode
28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode
26:24 3D Command Opcode

Default Value: 1h 3DSTATE Format: OpCode
23:16 3D Command Sub Opcode

Default Value: 0Ch 3DSTATE_SAMPLER_PALETTE_LO
AD1

Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2
1..n 31:0 Palette Color[0:N-1]

Project: All

Colors loaded into the first N entries of the texture color palette.

Format = Bits 31:0 = U32 interpreted as ARGB_8888 color as follows:

[31:24] Alpha

[23:16] Red

[15:8] Green

[7:0] Blue

132 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

2.11.8 3DSTATE_MONOFILTER_SIZE [DevILK+]

3DSTATE_MONOFILTER_SIZE
Project: [DevILK+] Length Bias: 2
This state specifies the size of the filter which is used when filtering in MAPFILTER_MONO mode.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode
28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode
26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED Format: OpCode
23:16 3D Command Sub Opcode

Default Value: 11h 3DSTATE_MONOFILTER_SIZE Format: OpCode
15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All
1 31:6 Reserved Project: All Format: MBZ

5:3 Monochrome Filter Width

Project: All

Format: U3 FormatDesc

Range [1,7]

This field specifies the width of the monochrome filter. It is ignored if the monochrome filter
is not enabled.

2:0 Monochrome Filter Height

Project: All

Format: U3 FormatDesc

Range [1,7]

This field specifies the height of the monochrome filter. It is ignored if the monochrome
filter is not enabled.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 133

2.12 Messages
Restrictions:

 Use of any message to the Sampling Engine function with the End of Thread bit set in the
message descriptor is not allowed.

2.12.1 Initiating Messages
Execution Mask

SIMD16. The 16-bit execution mask forms the valid pixel signals. This determines which pixels are
sampled and results returned to the GRF registers. Samples for invalid pixels are not overwritten in the
GRF. However, if LOD needs to be computed for a subspan based on the message type and MIP filter
mode and at least one pixel in the subspan being valid, the sampling engine assumes that the
parameters for the upper left, upper right, and lower left pixels in the subspan are valid regardless of the
execution mask, as these are needed for the LOD computation.

SIMD8. The lower 8 bits of the execution mask forms the valid pixel signals. If LOD needs to be
computed based on MIP filter mode and at least one pixel in the subspan being valid, the sampling
engine assumes that the parameters for the upper left, upper right, and lower left pixels in the subspan
are valid regardless of the execution mask, as these are needed for the LOD computation.

SIMD4x2. The lower 8 bits of the execution mask is interpreted in groups of four. If any of the high 4 bits
are asserted, that sample is valid. If any of the low 4 bits are asserted, that sample is valid. The Write
Channel Mask rather than the execution mask determines which channels are written back to the GRF.

SIMD32. The execution mask is ignored, all pixels are considered valid and all channels are returned
regardless of the execution mask.

134 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

2.12.1.1 Message Descriptor

2.12.1.1.1 Message Descriptor - [DevSNB]

The following message descriptor applies to [DevSNB]. Four more bits have been added to the message
descriptor.

Bit Description

19 Header Present: Specifies whether the message includes a header phase. If the header is not
present (this field is zero), all of the fields normally contained in the header are assumed to be 0.

Format = Enable

18 Reserved : MBZ

17:16 SIMD Mode: Specifies the SIMD mode of the message being sent.

Format = U2

0 = SIMD4x2

1 = SIMD8

2 = SIMD16

3 = SIMD32/64

15:12 Message Type: Specifies the type of message being sent.

Format = U4

Refer to the table in section 2.12.1.3.1 for encoding details.

11:8 Sampler Index: Specifies the index into the sampler state table. Ignored for “ld”, “resinfo”, and
“sampleinfo” type messages.

Format = U4

Range = [0,15]

Programming Notes:

 for the deinterlace message, this field must be a multiple of 2 (even)

 for the sample_8x8 message, this field must be a multiple of 4

7:0 Binding Table Index: Specifies the index into the binding table.

Format = U8

Range = [0,255]

2.12.1.2 Message Header

The message header for the sampling engine is the same regardless of the message type. If the header
is not present, behavior is as if the message was sent with all fields in the header set to zero (write
channel masks are all enabled and offsets are zero).

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 135

DWord Bit Description

M0.7 31:0 Ignored

M0.6 31:0 Ignored

M0.5 31:0 Ignored

M0.4 31:0 Ignored

M0.3 31:5 Ignored

 4:0 Ignored

M0.2 31:20 Ignored

 19:18 Ignored

 17 Ignored

 16 Ignored

 15 Alpha Write Channel Mask: Enables the alpha channel to be written back to the
originating thread.

0: Alpha channel will be written back

1: Alpha channel will not be written back

Programming Notes:

 a message with all four channels masked is not allowed..

 this field is ignored for the deinterlace message.

 this field must be set to zero for sample_8x8 in VSA mode.

 14 Blue Write Channel Mask: See Alpha Write Channel Mask

 13 Green Write Channel Mask: See Alpha Write Channel Mask

 12 Red Write Channel Mask: See Alpha Write Channel Mask

 11:8 U Offset: the u offset from the _aoffimmi modifier on the “sample” or “ld” instruction in
DX10. Must be zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER.
Must be set to zero if _aoffimmi is not specified. Format is S3 2’s complement.

Programming Note:

 this field is ignored for the sample_unorm*, sample_8x8, and deinterlace messages

 this field is ignored if the “offu” parameter is included in the gather4* messages

136 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

 7:4 V Offset: the v offset from the _aoffimmi modifier on the “sample” or “ld” instruction in
DX10. Must be zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER.
Must be set to zero if _aoffimmi is not specified. Format is S3 2’s complement.

Programming Note:

 this field is ignored for the sample_unorm*, sample_8x8, and deinterlace messages

 this field is ignored if the “offu” parameter is included in the gather4* messages

 3:0 R Offset: the r offset from the _aoffimmi modifier on the “sample” or “ld” instruction in
DX10. Must be zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER.
Must be set to zero if _aoffimmi is not specified. Format is S3 2’s complement.

Programming Note:

 this field is ignored for the sample_unorm*, sample_8x8, and deinterlace messages

M0.1 31:0 Ignored

M0.0 31:0 Ignored

2.12.1.3 Payload Parameter Definition

The message type field in the message descriptor in combination with the message length determines
which message is being sent. The table defines all of the parameters sent for each message type. The
position of the parameters in the payload is given in the section following corresponding to the SIMD
mode given in the table. The instruction column indicates the DX10 shader instructions expected to be
translated to each message type.

All parameters are of type IEEE_Float, except those in the ld and resinfo instruction message types,
which are of type S31. Any parameter indicated with a blank entry in the table is unused. A message
register containing only unused parameters not included as part of the message. The response lengths
given below assume all channels are unmasked. SIMD16 messages with masked channels will have
reduced response length.

2.12.1.3.1 Payload Parameter Definition [DevSNB]

The table below shows all of the message types supported by the sampling engine. The Message Type
field in the message descriptor determines which message is being sent. The SIMD Mode field
determines the number of instances (i.e. pixels) and the formatting of the initiating and writeback
messages. The Header Present field determines whether a header is delivered as the first phase of the
message or the default header from R0 of the thread’s dispatch is used. The Message Length field is
used to vary the number of parameters sent with each message. Higher-numbered parameters are
optional, and default to a value of 0 if not sent but needed for the surface being sampled.

The message lengths are computed as follows, where “N” is the number of parameters (“N” is rounded up
to the next multiple of 4 for SIMD4x2), and “H” is 1 if the header is present, 0 otherwise. The maximum
message length allowed to the sampler is 11. This would disallow sample_d, sample_b_c, and
sample_l_c with a SIMD Mode of SIMD16.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 137

SIMD Mode Message Length

SIMD4x2 H + (N/4)

SIMD8 H + N

SIMD16 H + (2*N)

The response lengths are computed as follows:

SIMD Mode Response Length

SIMD4x2 1

sample+killpix 5
SIMD8

all other message types 4

SIMD16 8 *

* For SIMD16, phases in the response length are reduced by 2 for each channel that is masked.

SIMD16 messages with six or more parameters exceed the maximum message length allowed, in which
case they are not supported. This includes some forms of sample_d, sample_d_c, and sample_l_c
message types.

SIMD4x2, SIMD8, and SIMD16 Messages:

parameters Message
Type

mnemonic

0 1 2 3 4 5 6 7 8 9

0000 sample u v r ai

0001 sample_b u v r ai bias

0010 sample_l u v r ai lod

0011 sample_c u v r ai ref

0100 sample_d u v r ai dudx dudy dvdx dvdy drdx drdy

0101 sample_b_c u v r ai ref bias

0110 sample_l_c u v r ai ref lod

0111 ld u v r lod si

1000* load4 u v r ai

1001* LOD u v r ai

1010 resinfo lod

1011* sampleinfo

1100 sample+killpix u v r

* These messages are supported only on [DevSNB+].

138 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

For the SIMD32/SIMD64 messages, the input message is not defined in terms of parameters. “H” is 1 if
the header is present, 0 otherwise.

[DevSNB+] SIMD32/SIMD64 Messages:

Message Type mnemonic Payload
Layout

Message
Length

Response
Length

00000 sample_unorm Pixel Shader H + 1 8 **

00010 sample_unorm+killpix Pixel Shader H + 1 9 **

00011 sample_8x8 Pixel Shader H + 1 16 *

01000 deinterlace Pixel Shader H + 1 †

01100 sample_unorm Media H + 1 8 **

01010 sample_unorm+killpix Media H + 1 9 **

01011 sample_8x8 Media H + 1 16 *

* For sample_8x8, phases in the response length are reduced by 4 for each channel that is masked.

** For sample_unorm, phases in the response length are reduced by 2 for each channel that is masked.

† For deinterlace, response length depending on certain state fields. Refer to writeback message
definition for details.

2.12.1.4 Message Types

The behavior of each message type is as follows:

Message Type Description

sample

The surface is sampled using the indicated sampler state. LOD is computed using gradients
between adjacent pixels. One, two, or three parameters may be specified depending on how
many coordinate dimensions the indicated surface type uses. Extra parameters specified are
ignored. Missing parameters are defaulted to 0.

Restriction: if sample from a multisampled surface (Number of Multisamples is
MULTISAMPLECOUNT_4), fraction of U*width has to be 0.5. same for V* height

Programming Notes:

 The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D,
SURFTYPE_3D, or SURFTYPE_CUBE.

 The Surface Format of the associated surface cannot be MONO8 or any UINT or SINT
format.

 sample is not supported in SIMD4x2 mode.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 139

Message Type Description

sample+killpix The surface is sampled as in the sample message type. An additional register is returned
after the sample results which contains the kill pixel mask. This message type is required to
allow the result of a chroma key enabled sampler in KEYFILTER_KILL_ON_ANY_MATCH
mode to affect the final pixel mask.

Programming Notes:

 The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D,
SURFTYPE_3D, or SURFTYPE_CUBE.

 The Surface Format of the associated surface cannot be MONO8 or any UINT or SINT
format.

 sample+killpix is supported only in SIMD8 mode.

sample_b The surface is sampled using the indicated sampler state. LOD is computed using gradients
between adjacent pixels, then the value in the parameter is added to the LOD for each pixel.
The LOD bias delivered in the bias parameter is restricted to a range of [-16.0, +16.0). Values
outside this range produce undefined results.

Programming Notes:

 The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D,
SURFTYPE_3D, or SURFTYPE_CUBE.

 The Surface Format of the associated surface cannot be MONO8 or any UINT or SINT
format.

 sample_b is not supported in SIMD4x2 mode.

sample_l The surface is sampled using the indicated sampler state. LOD is not computed, but instead
is taken from the lod parameter.

Programming Notes:

 The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D,
SURFTYPE_3D, or SURFTYPE_CUBE.

 The Surface Format of the associated surface cannot be a UINT or SINT format.

140 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

Message Type Description

sample_c The surface is sampled using the indicated sampler state. All four coordinates must be
specified, however v and r may not be used depending on the indicated surface type. The ai
parameter indicates the array index for a cube surface. The ref parameter specifies the
reference value that is compared against the red channel of the sampled surface, and the
texel is replaced with either white or black depending on the result of the comparison. The
WGF sample_c_lz instruction is implemented by issuing the sample_c message with Force
LOD to Zero enabled in the message header or by issuing the sample_l_c message with the
LOD parameter set to zero.

Programming Notes:

 The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D, or
SURFTYPE_CUBE.

 The Surface Format of the associated surface must be indicated as supporting shadow
mapping as indicated in the surface format table.

 With sample_c, MIPFILTER_LINEAR, MAPFILTER_LINEAR,
MAPFILTER_ANISOTROPIC are allowed even for surface formats that are listed as not
supporting filtering in the surface formats table.

 Use of the SIMD4x2 form of sample_c without Force LOD to Zero enabled in the message
header is not allowed, as it is not possible for the hardware to compute LOD for SIMD4x2
messages. For [DevILK+], sample_c is not supported in SIMD4x2 mode.

 Use of sample_c with SURFTYPE_CUBE surfaces is undefined with the following surface
formats: I24X8_UNORM, L24X8_UNORM, A24X8_UNORM, I32_FLOAT, L32_FLOAT,
A32_FLOAT.

 [DevBW, DevCL] Errata: When sample_c is used on a texture map with A16_FLOAT
surface format, any value read in from the texture map that is a NaN will be treated like a
+ inf.

 [Pre-DevILK] Errata: When either the reference value or the source value from the texture
map is NaN the compare value will be incorrectly replaced with 1.0 rather than 0.0 for
Shadow Function of GEQUAL, GREATER, LEQUAL, or LESS.

sample_b_c This is a combination of sample_b and sample_c. Both the LOD bias and reference values
are delivered. All restrictions applying to both sample_b and sample_c must be honored.

sample_l_c This is a combination of sample_l and sample_c. Both the LOD and reference values are
delivered. All restrictions applying to both sample_l and sample_c must be honored.
However, unlike sample_c, sample_l_c is allowed as a SIMD4x2 message.

sample_g

sample_d

The surface is sampled using the indicated sampler state. LOD is computed using the
gradients present in the message. The r coordinate and its gradients are required only for
surface types that use the third coordinate. Usage of this message type on cube surfaces
assumes that the u, v, and gradients have already been transformed onto the appropriate
face, but still in [-1,+1] range. The r coordinate contains the faceid, and the r gradients are
ignored by hardware.

Programming Notes:

 The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D,
SURFTYPE_3D, or SURFTYPE_CUBE.

 The Surface Format of the associated surface cannot be MONO8 or any UINT or SINT
format.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 141

Message Type Description

sample_g_c

sample_d_c

This is a combination of sample_g and sample_c. Both the gradients for calculating LOD and
reference values are delivered. All restrictions applying to both sample_g and sample_c must
be honored. However, unlike sample_c, sample_g_c is allowed as a SIMD4x2 message.

resinfo The surface indicated in the surface state is not sampled. Instead, the width, height, depth,
and MIP count of the surface are returned as indicated in the table below. The format of the
returned data is FLOAT32 for [Pre-DevCTG], and UINT32 for [DevCTG+]. The width, height,
and depth may be shifted right, per pixel, by the LOD value provided in the lod parameter to
give the dimensions of the specified mip level. The lod parameter is an unsigned 32-bit
integer in this mode (note that sending a signed 32-bit integer always has the same effect, as
negative values are out-of-range when interpreted as unsigned integers). The Sampler State
Pointer and Sampler Index are ignored.

surface type red green blue alpha

SURFTYPE_1D (Width+1)>>LOD [DevSNB]:Depth==0
? 0 : Depth+1

0 MIPCount

SURFTYPE_2D (Width+1)>>LOD (Height+1)>>LOD [DevSNB]:Depth==0
? 0 : Depth+1

MIPCount

SURFTYPE_3D (Width+1)>>LOD (Height+1)>>LOD (Depth+1)>>LOD MIPCount

SURFTYPE_CUBE (Wdith+1)>>LOD (Height+1)>>LOD [DevSNB+]:
Depth==0 ? 0 :
Depth+1

MIPCount

142 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

Message Type Description

ld

ld2dms

ld_mcs

Id2dss

The surface is sampled using a default sampler state, indicated below. The parameter
contains the LOD of the mip map to be sampled. The parameter contains the sample index,
which is clamped to the number of samples on the surface (supported on [DevSNB+] only).
The v and r channel may be ignored depending on the indicated surface type. All incoming
values are unsigned 32-bit integers in this mode. The u, v, and r parameters contain integer
texel addresses on the LOD indicated in the parameter. The Sampler State Pointer and
Sampler Index are ignored.

For these message types, the sampler state is defaulted as follows:

• min, mag, and mip filter modes are “nearest”

• all address control modes are “zero” (a special mode in which any texel off the map or
outside the MIP range of the surface has a value of zero in all channels, except for
surface formats without an alpha channel, which will return a value of one in the alpha
channel)

Programming Notes:

 The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D,
SURFTYPE_3D, or SURFTYPE_BUFFER for the ld message.

 The Surface Type of the associated surface must be SURFTYPE_2D for the ld_mcs ,
ld2dms , and Id2dss messages.

 The Surface Format of the associated surface cannot be MONO8.

sampleinfo [DevSNB+] only: The surface indicated in the surface state is not sampled. Instead, the
number of samples (UINT32) and the sample position palette index (UINT32) for the surface
are returned in the red and alpha channels respectively as UINT32 values. The sample
position palette index returned in alpha is incremented by one from its value in the surface
state. The Sampler State Pointer and Sampler Index are ignored.

[DevSNB] : Errata: If the Surface Type is SURFTYPE_NULL, the values of the above state
fields from SURFACE_STATE are returned, rather than zeros that would normally be
expected.

LOD [DevSNB+] only: The surface indicated in the surface state is not sampled. Instead, LOD is
computed as if the surface will be sampled, using the indicated sampler state, and the
clamped and unclamped LOD values are returned in the red and green channels, respectively,
in FLOAT32 format. The blue and alpha channels are undefined, and can be masked to avoid
returning them. LOD is computed using gradients between adjacent pixels. Three parameters
are always specified, with extra parameters not needed for the surface being ignored.

Programming Notes:

 The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D,
SURFTYPE_3D, or SURFTYPE_CUBE.

 The Surface Format of the associated surface cannot be MONO8 or any UINT or SINT
format.

 LOD is not supported in SIMD4x2 mode.

 [DevSNB-A0, DevSNB-B0] Errata: Fractional Bit may be off for the clamped LOD.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 143

Message Type Description

gather4

gather4_po

(load4)

[DevSNB+] only: The surface is sampled using bilinear filtering, regardless of the filtering
mode specified in the sampler state. For SURFTYPE_2D LOD is forced to zero before
sampling. The samples are not filtered, but instead the four samples are returned directly in
the sample’s corresponding four channels as follows:

upper left sample = alpha channel upper right sample = blue channel

lower left sample = red channel lower right sample = green channel

Two or three parameters may be specified depending on how many coordinate dimensions the
indicated surface type uses. Extra parameters specified are ignored. Missing parameters
default to 0.

Programming Notes:

 The Surface Type of the associated surface must be SURFTYPE_2D or
SURFTYPE_CUBE. If the message type is gather4_po, only SURFTYPE_2D is allowed.

 The Surface Format of the associated surface cannot be MONO8 or any UINT or SINT
format,

 [DevSNB]: The Surface Format must be a format that consists of a single channel (i.e. red
or alpha only).

 Mip Mode Filter must be set to MIPFILTER_NONE

 [DevSNB] errata: When gather4 is used with an Address Control Mode of MIRROR or
MIRROR_ONCE, the odd instances of the surface will return texels in incorrect positions.

144 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

Message Type Description

sample_unorm The surface is sampled using the indicated sampler state. 32 contiguous pixels in a 8-wide by
4-high arrangement are sampled. The U and V addresses for the upper left pixel is delivered
in this message along with a Delta U and Delta V parameter. Given a pixel at (x,y) relative to
the upper left pixel (where (0,0) is the upper left pixel), the U and V for that pixel are computed
as follows:

U(x,y) = U(0,0) + DeltaU * x

V(x,y) = V(0,0) + DeltaV * y

Programming Notes:

 The Surface Type of the associated surface must be SURFTYPE_2D

 The Surface Format of the associated surface must be UNORM with <= 8 bits per
channel

 The MIP Count, Depth, Surface Min LOD, and Min Array Element of the associated
surface must be 0

 The Min and Mag Mode Filter must be MAPFILTER_NEAREST or
MAPFILTER_LINEAR

 The Mip Mode Filter must be MIPFILTER_NONE

 The TCX and TCY Address Control Mode cannot be
TEXCOORDMODE_CLAMP_BORDER

TEXCOORDMODE_MIRROR

TEXCOORDMODE_MIRROR_ONCE

 DeltaU * Width of the associated surface must be less than or equal to 3.0

 DeltaV * Height of the associated surface must be less than or equal to 3.0

sample_unorm_RG [DevCTG] to [DevILK] only: This message is identical to the sample_unorm message except
it only returns the red and green channels in the writeback message. All restrictions of the
sample_unorm message apply to this message also.

sample_unorm_RG

+killpix

[DevCTG] to [DevILK] only: This message is identical to the sample_unorm_RG message
except it returns a kill pixel mask in addition to the red and green channels in the writeback
message. This message type is required to allow the result of a chroma key enabled sampler
in KEYFILTER_KILL_ON_ANY_MATCH mode to affect the final pixel mask. All restrictions of
the sample_unorm message apply to this message also.

sample_unorm

+killpix

[DevSNB+] only: This message is identical to the sample_unorm message except it returns a
kill pixel mask in addition to the selected channels in the writeback message. This message
type is required to allow the result of a chroma key enabled sampler in
KEYFILTER_KILL_ON_ANY_MATCH mode to affect the final pixel mask. All restrictions of
the sample_unorm message apply to this message also.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 145

Message Type Description

sample_8x8 [DevILK+] only: The surface is sampled using an optional 8x8 filter followed by an optional
image enhancement filter, using state defined in SAMPLER_STATE and
SAMPLER_8x8_STATE. The input consists of 64 contiguous pixels in an 16-wide by 4-high
arrangement. The address control mode behaves as clamp mode. The U and V addresses
for the upper left pixel are delivered in this message along with a Delta U and Delta V
parameter. Given a pixel at (x,y) relative to the upper left pixel (where (0,0) is the upper left
pixel), the U and V for that pixel are computed as follows:

U(x,y) = U(0,0) + DeltaU * x + U_2nd_Derivative * x * (x - 1)/2

V(x,y) = V(0,0) + DeltaV * y

Programming Notes:

 The Surface Type of the associated surface must be SURFTYPE_2D

 The Surface Format of the associated surface must be UNORM with <= 10 bits per
channel

 DeltaV * Height of the associated surface must be less than 16.0

 Map Width must be >= 4

 DeltaU * Width of the associated surfaces must be less than 16.0 and greater than or
equal to 0.0

 The following must be true: (DeltaU * Width / 18) <= U_2ndDerivative * Width < (64 –
2 * DeltaU * Width) / 35

 [DevILK-A]: If sample_8x8 or deinterlace messages are used in a thread, software
must ensure that the same thread or other threads that can concurrently be running
do not use any other sampling engine messages.

deinterlace [DevSNB]: The surface is deinterlaced and/or denoised, using state defined in
SAMPLER_STATE. The U and V addresses for the upper left pixel are delivered in this
message.

Programming Notes:

 [DevILK-A]: If sample_8x8 or deinterlace messages are used in a thread, software
must ensure that the same thread or other threads that can concurrently be running
do not use any other sampling engine messages.

Programming Notes:

 For surfaces of type SURFTYPE_CUBE, the sampling engine requires u, v, and r parameters that
have already been divided by the absolute value of the parameter (u, v, or r) with the largest
absolute value.

146 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

2.12.1.5 Parameter Types

sample*, LOD, and gather4 messages

For all of the sample*, LOD, and gather4 message types, all parameters are 32-bit floating point, except
the ‘mcs’, ‘offu’, and ‘offv’ parameters. Usage of the u, v, and r parameters is as follows based on
Surface Type. Normalized values range from [0,1] across the surface, with values outside the surface
behaving as specified by the Address Control Mode in that dimension. Unnormalized values range from
[0,n-1] across the surface, where n is the size of the surface in that dimension, with values outside the
surface being clamped to the surface.

Surface Type u v r ai

SURFTYPE_1D normalized ‘x’
coordinate

unnormalized array
index

ignored ignored

SURFTYPE_2D normalized ‘x’
coordinate

normalized ‘y’
coordinate

unnormalized array
index

ignored

SURFTYPE_3D normalized ‘x’
coordinate

normalized ‘y’
coordinate

normalized ‘z’
coordinate

ignored

SURFTYPE_CUBE normalized ‘x’
coordinate

normalized ‘y’
coordinate

normalized ‘z’
coordinate

unnormalized
array index

Ld* messages

For the ld message types, all parameters are 32-bit signed integers, except the ‘mcs’ parameter. Usage
of the u, v, and r parameters is as follows based on Surface Type. Unnormalized values range from [0,n-
1] across the surface, where n is the size of the surface in that dimension. Input of any value outside of
the range returns zero.

Surface Type u v r

SURFTYPE_1D unnormalized ‘x’ coordinate unnormalized array index ignored

SURFTYPE_2D unnormalized ‘x’ coordinate unnormalized ‘y’ coordinate unnormalized array index

SURFTYPE_3D unnormalized ‘x’ coordinate unnormalized ‘y’ coordinate unnormalized ‘z’
coordinate

SURFTYPE_BUFFER unnormalized ‘x’ coordinate ignored ignored

2.12.1.6 SIMD16 Payload

The payload of a SIMD16 message provides addresses for the sampling engine to process 16 entities
(examples of an entity are vertex and pixel). The number of parameters required to sample the surface
depends on the state that the sampler/surface is in. Each parameter takes two message registers, with 8
entities, each a 32-bit floating point value, being placed in each register. Each parameter always takes a
consistent position in the input payload. The length field can be used to send a shorter message, but
intermediate parameters cannot be skipped as there is no way to signal this. For example, a 2D map
using “sample_b” needs only u, v, and bias, but must send the r parameter as well.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 147

DWord Bit Description

M1.7 31:0 Subspan 1, Pixel 3 (lower right) Parameter 0

Specifies the value of the pixel’s parameter 0. The actual parameter that maps to
parameter 0 is given in the table in section 2.12.1.3.

Format = IEEE Float for all sample* message types, U32 for ld and resinfo message types.

M1.6 31:0 Subspan 1, Pixel 2 (lower left) Parameter 0

M1.5 31:0 Subspan 1, Pixel 1 (upper right) Parameter 0

M1.4 31:0 Subspan 1, Pixel 0 (upper left) Parameter 0

M1.3 31:0 Subspan 0, Pixel 3 (lower right) Parameter 0

M1.2 31:0 Subspan 0, Pixel 2 (lower left) Parameter 0

M1.1 31:0 Subspan 0, Pixel 1 (upper right) Parameter 0

M1.0 31:0 Subspan 0, Pixel 0 (upper left) Parameter 0

M2.7 31:0 Subspan 3, Pixel 3 (lower right) Parameter 0

M2.6 31:0 Subspan 3, Pixel 2 (lower left) Parameter 0

M2.5 31:0 Subspan 3, Pixel 1 (upper right) Parameter 0

M2.4 31:0 Subspan 3, Pixel 0 (upper left) Parameter 0

M2.3 31:0 Subspan 2, Pixel 3 (lower right) Parameter 0

M2.2 31:0 Subspan 2, Pixel 2 (lower left) Parameter 0

M2.1 31:0 Subspan 2, Pixel 1 (upper right) Parameter 0

M2.0 31:0 Subspan 2, Pixel 0 (upper left) Parameter 0

M3 – Mn Repeat packets 1 and 2 to cover all required parameters

148 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

2.12.1.7 SIMD8 Payload

This message is intended to be used in a SIMD8 thread, or in pairs from a SIMD16 thread. Each
message contains sample requests for just 8 pixels.

DWord Bit Description

M1.7 31:0 Subspan 1, Pixel 3 (lower right) Parameter 0

Specifies the value of the pixel’s parameter 0. The actual parameter that maps to
parameter 0 is given in the table in section 2.12.1.3.

Format = IEEE Float for all sample* message types, U32 for ld and resinfo message types.

M1.6 31:0 Subspan 1, Pixel 2 (lower left) Parameter 0

M1.5 31:0 Subspan 1, Pixel 1 (upper right) Parameter 0

M1.4 31:0 Subspan 1, Pixel 0 (upper left) Parameter 0

M1.3 31:0 Subspan 0, Pixel 3 (lower right) Parameter 0

M1.2 31:0 Subspan 0, Pixel 2 (lower left) Parameter 0

M1.1 31:0 Subspan 0, Pixel 1 (upper right) Parameter 0

M1.0 31:0 Subspan 0, Pixel 0 (upper left) Parameter 0

M2 – Mn Repeat packet 1 to cover all required parameters

2.12.1.8 SIMD4x2 Payload

DWord Bit Description

M1.7 31:0 Sample 1 Parameter 3

Specifies the value of the pixel’s parameter 3. The actual parameter that maps to
parameter 3 is given in the table in section 2.12.1.3.

Format = IEEE Float for all sample* message types, U32 for ld and resinfo message types.

M1.6 31:0 Sample 1 Parameter 2

M1.5 31:0 Sample 1 Parameter 1

M1.4 31:0 Sample 1 Parameter 0

M1.3 31:0 Sample 0 Parameter 3

M1.2 31:0 Sample 0 Parameter 2

M1.1 31:0 Sample 0 Parameter 1

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 149

DWord Bit Description

M1.0 31:0 Sample 0 Parameter 0

M2 Parameters 4-7 if present

M3 Parameters 8-11 if present

2.12.1.9 SIMD32/64 Payload

2.12.1.9.1 Pixel Shader

This position of Delta U/V in the pixel shader payload layout is to allow the register delivered in the pixel
shader dispatch containing the coefficients for the texture coordinates to be left in their original position
(Delta U = Cxs, Delta V = Cyt). The values for U and V are computed in the pixel shader into the unused
positions in this register.

DWord Bit Description

M1.7 31:0 Ignored

M1.6 31:0 Pixel 0 V Address

Format:

sample_unorm* and sample_8x8: IEEE_Float in normalized space

deinterlace: U32 (Range: [0,2046])

M1.5 31:0 Delta V: defines the difference in V for adjacent pixels in the Y direction.

Programming Notes:

 Delta V multiplied by Height in SURFACE_STATE must be less than or equal to 3
for sample_unorm* message types.

 Delta V multiplied by Height in SURFACE_STATE must be less than 16 for the
sample_8x8 message type.

 This field is ignored for the deinterlace message type.

Format = IEEE_Float in normalized space

M1.4 31:0 Ignored

M1.3 31:0 Ignored

M1.2 31:0 Pixel 0 U Address

Format:

sample_unorm* and sample_8x8: IEEE_Float in normalized space

deinterlace: U32 (Range: [0,4095])

150 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

M1.1 31:0 U 2nd Derivative

Defines the change in the delta U for adjacent pixels in the X direction.

Programming Notes:

 This field is ignored for messages other than sample_8x8.

Format = IEEE_Float in normalized space

M1.0 31:0 Delta U: defines the difference in U for adjacent pixels in the X direction.

Programming Notes:

 Delta U multiplied by Width in SURFACE_STATE must be less than or equal to 3
for sample_unorm* message types.

 This field is ignored for the deinterlace message type.

Format = IEEE_Float in normalized space

2.12.1.9.2 Media [DevILK+ only]

The position of Delta U and U 2nd Derivative in the media payload layout is intended to make media
kernels more efficient. Sending a message using the media payload layout behaves identically to the
pixel shader payload layout other than the position of these two fields.

DWord Bit Description

M1.7 31:0 Ignored

M1.6 31:0 Pixel 0 V Address

Format:

sample_unorm* and sample_8x8: IEEE_Float in normalized space

deinterlace: U32 (Range: [0,2046])

M1.5 31:0 Delta V: defines the difference in V for adjacent pixels in the Y direction.

Programming Notes:

 Delta V multiplied by Height in SURFACE_STATE must be less than or equal to 3
for sample_unorm* message types.

 Delta V multiplied by Height in SURFACE_STATE must be less than 16 for the
sample_8x8 message type.

 This field is ignored for the deinterlace message type.

Format = IEEE_Float in normalized space

M1.4 31:0 Ignored

M1.3 31:0 Ignored

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 151

DWord Bit Description

M1.2 31:0 Pixel 0 U Address

Format:

sample_unorm* and sample_8x8: IEEE_Float in normalized space

deinterlace: U32 (Range: [0,4095])

M1.1 31:0 Delta U: defines the difference in U for adjacent pixels in the X direction.

Programming Notes:

 Delta U multiplied by Width in SURFACE_STATE must be less than or equal to 3
for sample_unorm* message types.

 This field is ignored for the deinterlace message type.

Format = IEEE_Float in normalized space

M1.0 31:0 U 2nd Derivative

Defines the change in the delta U for adjacent pixels in the X direction.

Programming Notes:

 This field is ignored for messages other than sample_8x8.

Format = IEEE_Float in normalized space

2.12.2 Writeback Message
Corresponding to the four input message definitions are four writeback messages. Each input message
generates a corresponding writeback message of the same type (SIMD16, SIMD8, SIMD4x2, or
SIMD32/64).

2.12.2.1 SIMD16

A SIMD16 writeback message consists of up to 8 destination registers. Which registers are returned is
determined by the write channel mask received in the corresponding input message. Each asserted write
channel mask results in both destination registers of the corresponding channel being skipped in the
writeback message, and all channels with higher numbered registers being dropped down to fill in the
space occupied by the masked channel. For example, if only red and alpha are enabled, red is sent to
regid+0 and regid+1, and alpha to regid+2 and regid+3. The pixels written within each destination
register is determined by the execution mask on the “send” instruction.

 DWord Bit Description

W0.7 31:0 Subspan 1, Pixel 3 (lower right) Red: Specifies the value of the pixel’s red channel.

Format = IEEE Float, S31 signed 2’s comp integer, or U32 unsigned integer. Format
depends on the Data Return Format programmed for the surface being sampled.

W0.6 31:0 Subspan 1, Pixel 2 (lower left) Red

W0.5 31:0 Subspan 1, Pixel 1 (upper right) Red

152 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

 DWord Bit Description

W0.4 31:0 Supspan 1, Pixel 0 (upper left) Red

W0.3 31:0 Subspan 0, Pixel 3 (lower right) Red

W0.2 31:0 Subspan 0, Pixel 2 (lower left) Red

W0.1 31:0 Subspan 0, Pixel 1 (upper right) Red

W0.0 31:0 Supspan 0, Pixel 0 (upper left) Red

W1.7 31:0 Subspan 3, Pixel 3 (lower right) Red

W1.6 31:0 Subspan 3, Pixel 2 (lower left) Red

W1.5 31:0 Subspan 3, Pixel 1 (upper right) Red

W1.4 31:0 Supspan 3, Pixel 0 (upper left) Red

W1.3 31:0 Subspan 2, Pixel 3 (lower right) Red

W1.2 31:0 Subspan 2, Pixel 2 (lower left) Red

W1.1 31:0 Subspan 2, Pixel 1 (upper right) Red

W1.0 31:0 Supspan 2, Pixel 0 (upper left) Red

W2 Subspans 1 and 0 of Green: See W0 definition for pixel locations

W3 Subspans 3 and 2 of Green: See W1 definition for pixel locations

W4 Subspans 1 and 0 of Blue: See W0 definition for pixel locations

W5 Subspans 3 and 2 of Blue: See W1 definition for pixel locations

W6 Subspans 1 and 0 of Alpha: See W0 definition for pixel locations

W7 Subspans 3 and 2 of Alpha: See W1 definition for pixel locations

2.12.2.2 SIMD8

This writeback message consists of four registers, or five in the case of sample+killpix. As opposed to the
SIMD16 writeback message, channels that are masked in the write channel mask are not skipped, all four
channels are always returned. The masked channels, however, are not overwritten in the destination
register.

For the sample+killpix message types, an additional register (W4) is included after the last channel
register.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 153

DWord Bit Description

W0.7 31:0 Subspan 1, Pixel 3 (lower right) Red: Specifies the value of the pixel’s red channel.

Format = IEEE Float, S31 signed 2’s comp integer, or U32 unsigned integer. Format
depends on the Data Return Format programmed for the surface being sampled.

W0.6 31:0 Subspan 1, Pixel 2 (lower left) Red

W0.5 31:0 Subspan 1, Pixel 1 (upper right) Red

W0.4 31:0 Supspan 1, Pixel 0 (upper left) Red

W0.3 31:0 Subspan 0, Pixel 3 (lower right) Red

W0.2 31:0 Subspan 0, Pixel 2 (lower left) Red

W0.1 31:0 Subspan 0, Pixel 1 (upper right) Red

W0.0 31:0 Supspan 0, Pixel 0 (upper left) Red

W1 Subspans 1 and 0 of Green: See W0 definition for pixel locations

W2 Subspans 1 and 0 of Blue: See W0 definition for pixel locations

W3 Subspans 1 and 0 of Alpha: See W0 definition for pixel locations

W4.7:1 Reserved (not written) : W4 is only delivered for the sample+killpix message type

W4.0 31:16 Dispatch Pixel Mask: This field is always 0xffff to allow dword-based ANDing with the R0
header in the pixel shader thread.

 15:0 Active Pixel Mask: This field has the bit for all pixels set to 1 except those pixels that have
been killed as a result of chroma key with kill pixel mode. Since the SIMD8 message
applies to only 8 pixels, only the low 8 bits within this field are used. The high 8 bits are
always set to 1.

[DevBW, DevCL] Errata: Active Pixel Mask needs to be ORed with the inverse of the
EMask before it is ANDed with the DMask. Also if the sample instruction is within a
conditional then the active pixel mask will be overwritten with the partial mask on each
different sample instruction so this will have to be done for each instance of the sample
instruction not just as the end.

2.12.2.3 SIMD4x2

A SIMD4x2 writeback message always consists of a single message register containing all four channels
of each of the two “pixels” (called “samples” here, as they are not really pixels) of data. The write channel
mask bits as well as the execution mask on the “send” instruction are used to determine which of the
channels in the destination register are overwritten. If any of the four execution mask bits for a sample is
asserted, that sample is considered to be active. The active channels in the write channel mask will be
written in the destination register for that sample. If the sample is inactive (all four execution mask bits
deasserted), none of the channels for that sample will be written in the destination register.

154 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

W0.7 31:0 Sample 1 Alpha: Specifies the value of the pixel’s alpha channel.

Format = IEEE Float, S31 signed 2’s comp integer, or U32 unsigned integer. Format
depends on the Data Return Format programmed for the surface being sampled.

W0.6 31:0 Sample 1 Blue

W0.5 31:0 Sample 1 Green

W0.4 31:0 Sample 1 Red

W0.3 31:0 Sample 0 Alpha

W0.2 31:0 Sample 0 Blue

W0.1 31:0 Sample 0 Green

W0.0 31:0 Sample 0 Red

2.12.2.4 SIMD32/64

2.12.2.4.1 sample_unorm* * [DevSNB]

Pixels are numbered as follows:

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

[DevSNB+]: Which registers are returned is determined by the write channel mask received in the
corresponding input message. Each asserted write channel mask results in both destination registers of
the corresponding channel being skipped in the writeback message, and all channels with higher
numbered registers being dropped down to fill in the space occupied by the masked channel. For
example, if only red and alpha are enabled, red is sent to regid+0 and regid+1, and alpha to regid+2 and
regid+3 (using 16 bit Full mode as an example).

DWord Bit Description

W0.7 31:16 Pixel 15 Red

Format = 16-bit UNORM with an 8-bit range (the value FF00h maps to a real value of 1.0)

Range = [0000h:FF00h]

 15:0 Pixel 14 Red

W0.6 Pixel 13 & 12 Red

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 155

DWord Bit Description

W0.5 Pixel 7 & 6 Red

W0.4 Pixel 5 & 4 Red

W0.3 Pixel 11 & 10 Red

W0.2 Pixel 9 & 8 Red

W0.1 Pixel 3 & 2 Red

W0.0 Pixel 1 & 0 Red

W1.7 Pixel 31 & 30 Red

W1.6 Pixel 29 & 28 Red

W1.5 Pixel 23 & 22 Red

W1.4 Pixel 21 & 20 Red

W1.3 Pixel 27 & 26 Red

W1.2 Pixel 25 & 24 Red

W1.1 Pixel 19 & 18 Red

W1.0 Pixel 17 & 16 Red

W2.7:0 Pixels 15:0 Green

W3.7:0 Pixels 31:16 Green

W4.7:0 Pixels 15:0 Blue

W4-W7 are not sent for the _RG versions of the sample_unorm message

W5.7:0 Pixels 31:16 Blue

W4-W7 are not sent for the _RG versions of the sample_unorm message

W6.7:0 Pixels 15:0 Alpha

W2 and W3 are not sent for the _RG versions of the sample_unorm message

W7.7:0 Pixels 31:16 Alpha

W4-W7 are not sent for the _RG versions of the sample_unorm message

For the sample_unorm_RG+killpix and sample_unorm+killpix messages, an additional writeback phase is
returned. For sample_unorm_RG+killpix, “n” is equal to 4, for sample_unorm+killpix, “n” depends on
which channels are enabled for return, this register will immediately follow the first part of the writeback
message.

156 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

Wn.7:1 Reserved (not written)

Wn.0 31:0 Active Pixel Mask: This field has the bit for all pixels set to 1 except those pixels that have
been killed as a result of chroma key with kill pixel mode.

The bits in this mask correspond to the pixels as follows:

0 1 4 5 1
6

1
7

2
0

2
1

2 3 6 7 1
8

1
9

2
2

2
3

8 9 1
2

1
3

2
4

2
5

2
8

2
9

1
0

1
1

1
4

1
5

2
6

2
7

3
0

3
1

2.12.2.5 Sample_8x8 Writeback Messages

2.12.2.5.1 Sample_8x8 Writeback Messages [DevSNB]

The writeback message for sample_8x8 consists of up to 16 destination registers. Which registers are
returned is determined by the write channel mask received in the corresponding input message. Each
asserted write channel mask results in all four destination registers of the corresponding channel being
skipped in the writeback message, and all channels with higher numbered registers being dropped down
to fill in the space occupied by the masked channel.

Pixels are numbered as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 157

 “16 bit Full” Output Format Control Mode

DWord Bit Description

W0.7 31:16 Pixel 15 Red

Format = 16-bit UNORM with an 8-bit range (the value FF00h maps to a real value of 1.0)

Range = [0000h:FF00h]

 15:0 Pixel 14 Red

W0.6 Pixel 13 & 12 Red

W0.5 Pixel 7 & 6 Red

W0.4 Pixel 5 & 4 Red

W0.3 Pixel 11 & 10 Red

W0.2 Pixel 9 & 8 Red

W0.1 Pixel 3 & 2 Red

W0.0 Pixel 1 & 0 Red

W1.7 Pixel 31 & 30 Red

W1.6 Pixel 29 & 28 Red

W1.5 Pixel 23 & 22 Red

W1.4 Pixel 21 & 20 Red

W1.3 Pixel 27 & 26 Red

W1.2 Pixel 25 & 24 Red

W1.1 Pixel 19 & 18 Red

W1.0 Pixel 17 & 16 Red

W2.7:0 Pixels 15:0 Green

W3.7:0 Pixels 31:16 Green

W4.7:0 Pixels 15:0 Blue

W5.7:0 Pixels 31:16 Blue

158 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

W6.7:0 Pixels 15:0 Alpha

W7.7:0 Pixels 31:16 Alpha

W8.7:0 Pixels 47:32 Red

W9.7:0 Pixels 63:33 Red

W10.7:0 Pixels 47:32 Green

W11.7:0 Pixels 63:33 Green

W12.7:0 Pixels 47:32 Blue

W13.7:0 Pixels 63:33 Blue

W14.7:0 Pixels 47:32 Alpha

W15.7:0 Pixels 63:33 Alpha

2.12.2.5.2 deinterlace

The deinterlace message has three different writeback messages, depending on the DI Enable and DI
Partial fields of SAMPLER_STATE.

Pixels are indicated by an (X, Y) pair. The following tables indicate the format of common Luma,
Chroma, STMM, and Block Noise Estimate/Denoise History blocks defined as portions of the specific
writeback messages defined in the following sections. Each block defines one register.

Luma block definition:

DWord Bit Description

Wn.7 31:24 Luma (15,1)

Format = U8

 23:16 Luma (14,1)

 15:8 Luma (13,1)

 7:0 Luma (12,1)

Wn.6 31:0 Luma (11:8,1)

Wn.5 31:0 Luma (7:4,1)

Wn.4 31:0 Luma (3:0,1)

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 159

DWord Bit Description

Wn.3 31:0 Luma (15:12,0)

Wn.2 31:0 Luma (11:8,0)

Wn.1 31:0 Luma (7:4,0)

Wn.0 31:0 Luma (3:0,0)

Chroma block definition:

DWord Bit Description

Wp.7 31:24 Cb (14,1)

Format = U8

 23:16 Cr (14,1)

Format = U8

 15:8 Cb (12,1)

 7:0 Cr (12,1)

Wp.6 31:0 Cr & Cb (10:8,1)

Wp.5 31:0 Cr & Cb (6:4,1)

Wp.4 31:0 Cr & Cb (2:0,1)

Wp.3 31:0 Cr & Cb (14:12,0)

Wp.2 31:0 Cr & Cb (10:8,0)

Wp.1 31:0 Cr & Cb (6:4,0)

Wp.0 31:0 Cr & Cb (2:0,0)

STMM block definition:

DWord Bit Description

Wr.7 31:24 STMM (14,3)

Format = U8

 23:16 STMM (12,3)

 15:8 STMM (10,3)

160 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

 7:0 STMM (8,3)

Wr.6 31:0 STMM (6:0,3)

Wr.5 31:0 STMM (14:8,2)

Wr.4 31:0 STMM (6:0,2)

Wr.3 31:0 STMM (14:8,1)

Wr.2 31:0 STMM (6:0,1)

Wr.1 31:0 STMM (14:8,0)

Wr.0 31:0 STMM (6:0,0)

Block Noise Estimate/Denoise History block definition: [DevSNB DI enabled]

DWord Bit Description

Wq.7 31:16 Y[15:0] – Location of 16x4

Wq.7 15:0 X[15:0] - Location of 16x4

Wq.6 31:24 STAD0 - Sum in time of absolute differences for 4x4

Format = U8 [STAD values are 0 if DN is disabled]

Wq.6 23:16 STAD1

Wq.6 15:8 STAD2

Wq.6 7:0 STAD3 (Ignore when both DN & DI are enabled)

Wq.5 31:24 SHCM0 - Sum horizontally of absolute differences for 4x4

 Format = U8 [SHCM values are 0 if DN is disabled]

Wq.5 23:16 SHCM1

Wq.5 15:8 SHCM2

Wq.5 7:0 SHCM3 (Ignore when both DN & DI are enabled)

Wq.4 31:24 SVCM0 Sum Vertically of absolute differences for 4x4

Format = U8 [SVCM values are 0 if DN is disabled]

Wq.4 23:16 SVCM1

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 161

DWord Bit Description

Wq.4 15:8 SVCM2

Wq.4 7:0 SVCM3 (Ignore when both DN & DI are enabled)

Wq.3 31:16 Diff_cTpT - difference in top fields of current and previous frame

Format = U16

Wq.3 15:0 Diff_cBpB - difference in bottom field of current and previous frame

Wq.2 31:16 Diff_cTcB - difference between top and bottom field in current frame.

Wq.2 15:0 Diff_cTpB - difference between current top and previous bottom

Wq.1 31:16 Diff_cBpT - difference between current bottom and previous top.

Wq.1 15:8 Motion_Count - number of pixels that are moving (different above a threshold)

Format = U8

Wq.1 7:0 Block Noise Estimate for 16x4 (Valid only if DN is enabled)

Wq.0 31:24 Denoise History for 4x4 at Y = 15 to 12, X = 3 to 0

Format = U8

Wq.0 23:16 Denoise History for 4x4 at Y = 11 to 8, X = 3 to 0

Wq.0 15:8 Denoise History for 4x4 at Y = 7 to 4, X = 3 to 0

Wq.0 7:0 Denoise History for 4x4 at Y = 3 to 0, X = 3 to 0

 Block Noise Estimate/Denoise History block definition: [DevSNB DI disabled]

DWord Bit Description

Wq.7 31:16 Y[15:0] – Location of 16x4

Wq.7 15:0 X[15:0] - Location of 16x4

Wq.6 31:24 STAD0 - Sum in time of absolute differences for 4x8
Format = U8

Wq.6 23:16 STAD1

Wq.6 15:8 STAD2

Wq.6 7:0 STAD3

162 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

Wq.5 31:24 SHCM0 - Sum horizontally of absolute difference for 4x8

Wq.5 23:16 SHCM1

Wq.5 15:8 SHCM2

Wq.5 7:0 SHCM3

Wq.4 31:24 SVCM0 Sum Vertically of absolute difference for 4x8

Wq.4 23:16 SVCM1

Wq.4 15:8 SVCM2

Wq.4 7:0 SVCM3

Wq.3 31:16 Reserved

Wq.3 15:0 Reserved

Wq.2 31:8 Reserved

Wq.2 7:0 Block Noise Estimate for 16x8

Wq.1 31:24 Denoise History for 4x4 at X = 15 to 12, Y = 7 to 4

Format = U8

Wq.1 23:16 Denoise History for 4x4 at X = 11 to 8, Y = 7 to 4

Wq.1 15:8 Denoise History for 4x4 at X = 7 to 4, Y = 7 to 4

Wq.1 7:0 Denoise History for 4x4 at X = 15 to 12, Y = 3 to 0

Wq.0 31:24 Denoise History for 4x4 at Y = 15 to 12, X = 3 to 0

Format = U8

Wq.0 23:16 Denoise History for 4x4 at Y = 11 to 8, X = 3 to 0

Wq.0 15:8 Denoise History for 4x4 at Y = 7 to 4, X = 3 to 0

Wq.0 7:0 Denoise History for 4x4 at Y = 3 to 0, X = 3 to 0

DI Enabled (Only)

This writeback message is returned when the DI Enable field in SAMPLER_STATE is enabled. The
response length possibilities are:

 DevSNB & DN Enabled: 12

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 163

 DevSNB & DN Disabled: 10

DWord Bit Description

W0 Previous 2nd Field Deinterlaced Luma for Y=0,1

Refer to Luma block above for definition.

W1 Previous 2nd Field Deinterlaced Luma for Y=2,3

W2 Previous 2nd Field Deinterlaced Chroma for Y=0,1

Refer to Chroma block above for definition.

W3 Previous 2nd Field Deinterlaced Chroma for Y=2,3

W4 Current 1st Field Deinterlaced Luma for Y=0,1

W5 Current 1st Field Deinterlaced Luma for Y=2,3

W6 Current 1st Field Deinterlaced Chroma for Y=0,1

W7 Current 1st Field Deinterlaced Chroma for Y=2,3

W8 STMM

Refer to STMM block above for definition.

W9 Block Noise Estimate/Denoise History

Refer to Block Noise Estimate/Denoise History block above for definition.

W10 Current 2nd Field Luma for 16x2

This register is only included if DN Enable is enabled.

W11 Current 2nd Field Chroma

This register is only included if DN Enable is enabled.

Only valid if input surface format is 4:2:2

The denoised luma for both the current 1st and 2nd field needs to be written out, but only the 2nd field has a
dedicated location. This is because the denoised data for the 1st field is in the deinterlaced output for the
1st field – Y=0 and Y=2 are the denoised data, while Y=1 and Y=3 either the deinterlaced lines or copied
from the previous or current frame if progressive.

DI Disabled

This writeback message is returned when the DI Enable field in SAMPLER_STATE is disabled. The DN
with DI disabled responses with a 16x8 block rather than a 16x4 with a response length of 9 for a 4:2:2
input format, or 5 for other formats. Two denoised luma and chroma fields are combined into an
interleaved top/bottom format.

 Description

W0 Luma for Y=0 & 1

Refer to Luma block above for definition.

W1 Luma for Y=2 & 3

Refer to Luma block above for definition, but add 2 to Y to get location

164 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

 Description

W2 Luma for Y=4 & 5

W3 Luma for Y=6 & 7

W4.7 31:16 Y[15:0]

Y co-ordinate of the current block within the frame

W4.7 15:0 X[15:0]

X co-ordinate of the current block within the frame

W4.6 31:24 STAD0 – Sum in time of absolute differences for the 1st 4x8

Format = U8

W4.6 23:16 STAD1– Sum in time of absolute differences for the 2nd 4x8

W4.6 15:8 STAD2 – Sum in time of absolute differences for the 3rd 4x8

W4.6 7:0 STAD3 – Sum in time of aboslute differences for the 4th 4x8

W4.5 31:24 SHCM0 – Sum horizontaly of absolute differences

W4.5 23:16 SHCM1

W4.5 15:8 SHCM2

W4.5 7:0 SHCM3

W4.4 31:24 SVCM0 – Sum vertically of absolute differences.

W4.4 23:16 SVCH1

W4.4 15:8 SVCH2

W4.4 7:0 SVCH3

W4.3 31:0 Reserved : MBZ

W4.2 31:8 Reserved : MBZ

 7:0 Block Noise Estimate

Format = U8

W4.1 31:24 Denoise History for 4x4 at X = 15 to 12, Y = 7 to 4

 23:16 Denoise History for 4x4 at X = 11 to 8, Y = 7 to 4

 15:8 Denoise History for 4x4 at X = 7 to 4, Y = 7 to 4

 7:0 Denoise History for 4x4 at X = 3 to 0, Y = 7 to 4

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 165

 Description

W4.0 31:24 Denoise History for 4x4 at X = 15 to 12, Y = 3 to 0

 23:16 Denoise History for 4x4 at X = 11 to 8, Y = 3 to 0

 15:8 Denoise History for 4x4 at X = 7 to 4, Y = 3 to 0

 7:0 Denoise History for 4x4 at X = 3 to 0, Y = 3 to 0

W5 Chroma for Y=0 & 1

Refer to Chroma block above for definition.

Only delivered if input surface format is 4:2:2

W6 Chroma for Y=2 & 3

Refer to Chroma block above for definition, but add 2 to Y to get location.

Only delivered if input surface format is 4:2:2

W7 Chroma for Y=4 & 5

Only valid if input surface format is 4:2:2

W8 Chroma for Y=6 & 7

Only sent if input surface format is 4:2:2

166 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

3. Data Port
The Data Port provides all memory accesses for the DevSNB subsystem other than those provided by the
sampling engine. These include render target writes, constant buffer reads, scratch space reads/writes,
and media surface accesses.

[DevSNB+]: The diagram below shows the three parts of the Data Port (Sampler Cache, Constant
Cache, and Render Cache) and how they connect with the caches and memory subsystem. The
execution units and sampling engine are shown for clarity.

Data Port Sampler Cache

Data Port Render Cache

Sampler Cache

Render Cache

Sampling Engine

Execution
Units

Memory
SubsystemData Port Constant Cache Constant Cache

The kernel programs running in the execution units communicate with the data port via messages, the
same as for the other shared function units. The three data ports are considered to be separate shared
functions, each with its own shared function identifier.

3.1 Cache Agents
The data port allows access to memory via various caches. The choice of which cache to use for a given
application is dictated by its restrictions, coherency issues, and how heavily that cache is used for other
purposes.

[DevSNB+]: The cache to use is selected by the shared function accessed.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 167

3.1.1 Render Cache
[DevSNB]: The render cache is the only cache that supports both reads and writes. All writes must use
this cache. In addition, all reads to a surface that is also being written should use this cache to avoid
expensive flushing that would be required for coherency. The render cache supports both linear and tiled
memory.

The render cache is intended to be used for the following surfaces:

 3D render target surfaces

 destination surfaces for media applications

 intermediate working surfaces for media applications

 scratch space buffers

 streamed vertex buffers

3.1.2 Sampler Cache
The sampler cache is a read-only cache that supports both linear and tiled memory. In addition to being
used by the sampling engine (via the sampling engine messages), the sampler cache is intended to be
used for source surfaces in media applications via the data port. The same application may use the
sampler cache via the sampling engine and data port without flushing the pipeline between accesses.

3.1.3 Constant Cache [DevSNB+]
The constant cache is a read-only cache that supports only linear memory and only the messages that
operate on buffer surface types. It is intended to be used only for constant buffers.

3.2 Surfaces
The data elements accessed by the data port are called “surfaces”. There are two models used by the
data port to access these surfaces: surface state model and stateless model.

3.2.1 Surface State Model
The data port uses the binding table to bind indices to surface state, using the same mechanism used by
the sampling engine. The surface state model is used when a Binding Table Index (specified in the
message descriptor) of less than 255 is specified. In this model, the Binding Table Index is used to
index into the binding table, and the binding table entry contains a pointer to the SURFACE_STATE.
SURFACE_STATE contains the parameters defining the surface to be accessed, including its location,
format, and size.

This model is intended to be used for constant buffers, render target surfaces, and media surfaces.

168 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

3.2.2 Stateless Model
The stateless model is used when a Binding Table Index (specified in the message descriptor) of 255 is
specified. In this model, the binding table is not accessed, and the parameters that define the surface
state are overloaded as follows:

 Surface Type = SURFTYPE_BUFFER

 Surface Format = R32G32B32A32_FLOAT

 Vertical Line Stride = 0

 Surface Base Address = General State Base Address + Immediate Base Address

 Buffer Size = checked only against General State Access Upper Bound

 Surface Pitch = 16 bytes

 Utilize Fence = false

 Tiled = false

This model is primarily intended to be used for scratch space buffers.

3.3 Write Commit
For write messages, an optional write commit writeback message can be requested via the Send Write
Commit Message bit in the message descriptor. This bit causes a return message to the thread indicating
when the write has been committed to the in-order cache pipeline and it is safe to issue another access to
the same data with the assurance that it will happen after the first write. A read issued after the write
commit ensures that the read will get the newly written data, and another write issued after the write
commit will be the last to modify the data. "Committed" does not guarantee that the data has been
actually written to the memory subsystem, but only that the write has been scheduled and cannot be
passed by another read or write issued subsequently.

If Send Write Commit Message is used on a Flush Render Cache message, the write commit is sent
only when the render cache has completed its flush to memory. A read issued to another cache after the
write commit is received will be guaranteed to retrieve the “new” data that was written before the Flush
Render Cache message was issued.

The write commit does not modify the destination register, but merely clears the dependency associated
with the destination register. Thus, a simple “mov” instruction using the register as a source is sufficient
to wait for the write commit to occur. The following code sequence indicates this:

send r12 m1 DPWRITE ; issue write to render cache

mov m1 r3 ; assemble read message

mov r12 r12 ; block on write commit

send r13 m1 DPREAD ; read same location as write

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 169

[DevSNB-A] Erratum: A write message with all the addresses/offsets out of bounds with write-commit bit
set is not supported.

[DevSNB] Prior to End of Thread with a URB_WRITE, the kernel must ensure all writes are complete by
sending the final write as a committed write for all non-pixel shaders.

3.4 Read/Write Ordering
[DevSNB+]: Reads and writes issued from the same thread are guaranteed to be processed in the same
order as they are issued. Software mechanisms must still ensure ordering of accesses issued from
different threads.

3.5 Accessing Buffers
There are four data port messages used to access buffers. Three of these are used for both constant
buffers and scratch space buffers, the fourth is used by the geometry shader kernel to write to streamed
vertex buffers. All of these messages support only buffers, and can use the surface state model as well
as the stateless model.

The following table indicates the intended applications of each of the buffer messages.

Message Applications

OWord Block Read/Write

 constant buffer reads of a single constant or multiple contiguous constants

 scratch space reads/writes where the index for each pixel/vertex is the same

 block constant reads, scratch memory reads/writes for media

OWord Dual Block Read/Write

 SIMD4x2 constant buffer reads where the indices of each vertex/pixel are
different (if there are two indices and they are the same, hardware will
optimize the cache accesses and do only one cache access)

 SIMD4x2 scratch space reads/writes where the indices are different.

DWord Scattered Read/Write

 SIMD8/16 constant buffer reads where the indices of each pixel are different
(read one channel per message)

 SIMD8/16 scratch space reads/writes where the indices are different
(read/write one channel per message)

 general purpose DWord scatter/gathering, used by media

Streamed Vertex Buffer Write
 geometry shader streaming vertex data out

170 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

These messages generally ignore the surface format field of the state and perform no format conversion.
The exception is the Streamed Vertex Buffer Write, which uses the surface format field to determine only
how many channels are to be written. The data contained in each channel is still not converted in any
way.

3.6 Accessing Media Surfaces
The Media Block Read/Write message is intended to be used to access 2D media surfaces. The
message specifies an X/Y coordinate into the 2D surface as input. Since this message only supports 2D
surfaces, the stateless model cannot be used with this message.

3.6.1 Color Processing [DevSNB+]
The image enhancement color processing pipe, known as IECP or shortly CP. The pipe contains a couple
of functions:

 Packer with 422 to 444 converter.

 Skin Tone detection & Enhancement (STDE).

 TCCE - Automatic Contrast Enhancement (ACE) & Total Color Control (TCC).

 Procamp.

 Color Space Converter (CSC).

 repacker with 444 to 422 converter

Since these functions are performed on per-pixel basis, IECP is integrated in Render Cache Pixel
Backend (RCPB). The operation of each functionality could be on/off through the enable bit of each
function.

Note: all of the state parameters related to IECP are denoted in the bold and italic font format.

3.6.1.1 Overview of color processing pipeline

The input message to IECP is 256 bits data from RCPB (contains 2 lines X 2 pixels per clock). This
unpacker converts 256b into two pixels per clock, 36 bits each. In case of 422 inputs the UV are the
same for the two pixels in the pair (422 to 444 conversion).

The Re-packer (the CSC) delivers 2 pixels in parallel, 36 bits each. The 2x2 message pixels are packed
again to 256b and sent with the outgoing message. The 256 bits are organized according to the data type
(422/444, 8/16 bits). In case of 422 output, the UV is the average of two adjacent pixels. Also the pipe
itself is 12bis/pixel component, in the output message it will be either 8 bit/pixel component (while taking
only the 8 MSB) or 16 bits/pixel component (while adding 0000 at the LSB).

There is statistic information from ACE block (10 bit histogram, 1 bit aoi and 1bit skin pixel) to be sent to
VSC (Video Statistic Counter). VSC will process on these data and output the maximum and minimum
value of the luma values (Ymax and Ymin) and the number of total skin pixels through MMIO. The

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 171

Software development can access these data through MMIO and performs the SW part of the color
processing algorithms.

The color-processing enables the user to customize visual quality of video playback on the PC platform.
The seven functions main goals can be summarized as:

(i) 422 to 444 converter and the 444 to 422 converter functions enable us some flexibility in
the data format input and output.

(ii) Skin Tone Detection/Enhancement function detects skin like color and attempts to
change the tone based on user specified parameters to make it more palatable to the
user.

(iii) Automatic Contrast Enhancement increases details in dark and bright areas by changing
the contrast function in relation to frames luma histogram.

(iv) Total color control allows the user to increase or decrease the color saturation of the six
basic colors (Red, Green, Blue, Magenta, Cyan, Yellow).

(v) Procamp enables the user to control the Brightness, Contrast, Saturation and the Hue.

(vi) Color Space Converter enables the user to convert color space from YUV format to RGB.

3.6.1.2 Skin Tone Detection/Enhancement (STD/E)

The STD/E unit, composed of the Skin Tone Detection (STD) and Skin Tone Enhancement (STE) units, is
part of color processing pipe located at the Render Cache Pixel Backend (RCBP).

The main goal of the STD/E is to reproduce the skin colors in a way that is more palatable to the
observer, and by that to increase the sensed image quality. It may also pass indication of skin tones to
the TCC and ACE.

172 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

The STD unit detects the skin like colors and passes a grade of skin tone color to the STE. The STE
modify the saturation and Hue of the pixel. Both the STD and STE are per-pixel basis. The input pixels
are required to be on the YUV space.

The skin tone detected factor will be recorded as a 5-bit number and it will be passed to the module of
ACE and TCC to indicate the strength of skin tone likelihood.

3.6.1.2.1 STD

The STD operates on digital images in the YUV color space. In these space the skin-tone region is
represented by the ellipse in the (U,V) subspace (chroma components), by a trapeze membership
function in the Y direction (luma component) and by a piece-wise linear classifier in the (V,Y) subspace.

U,V data is transformed into Hue and Saturation space through shifting and rotation

Step 1: shift rectangle

U_center = U – U_mid

 V_center = V - V_mid

Step 2: rotate rectangle

Sat = -(U_center * Cos - V_center * Sin)

 Hue = -(U_center * Sin + V_center * Cos)

Where: Sin = Sin(, and Cos = Cos().

Rectangle skin-tone measure determination

Skin-tone detection is described by a continue score on the [0,1] range, where a level 0 means not a skin
(SkinToneFactor = 0) , and a level 1 (SkinToneFactor = 1) means a full skin. In between, (0,1) region, we
have partial skin-tone detection. This partial skin-tone detection is controlled by a margin parameter,
which will be denoted by “HS_margin”. The SkinToneFactor is expressed by 5 bits, and thus have values
in the [0,31] range.

if(abs(Sat) <= SatMax && abs(Hue) <= HueMax)

{

 if(HS_margin >= 5)

 {

 Sat_Factor = (Sat_max-abs(Sat)) / 2
(HS_margin - 5)

;

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 173

 Hue_Factor = (Hue_max-abs(Hue)) / 2
(HS_margin - 5)

;

 }

 else

 {

 Sat_Factor = (Sat_max-abs(Sat)) * 2
(HS_margin - 5)

;

 Hue_Factor = (Hue_max-abs(Hue)) * 2
(HS_margin - 5)

;

 } //end of if(HS_margin >= 5)

 }

else

{

 Sat_Factor = 0;

 Hue_Factor = 0;

} //end of if(abs(Sat) <= SatMax && abs(Hue) <= HueMax)

Sat_Factor = min(Sat_Factor,31);

Hue_Factor = min(Hue_Factor,31);

Rectagle_SkinToneFactor = min(Sat_Factor, Hue_Factor);

174 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

Rhombus skin tone detection determination

Similar to the rectangle skin-tone measure, a rhombus-margin (Diamond_margin) is introduced. This
introduces a new rhombus region, inner to the original rhombus, in a similar happened with the rectangle.
There are two regions such that: outside the original rhombus a SkinToneFactor = 0 (not a skin); inside
the inner rhombus SkinToneFactor = 1 (full skin); in between 0 < SkinToneFactor < 1 indicating a partial
skin-tone detection. As in the rectangle case, the SkinToneFactor is expressed by 5 bits, and thus have
values in the [0,31] range.

A Diamond SkinToneFactor calculations algorithm is:

Dist = abs(Sat – Diamond_du) + Diamond_alpha(1/tan()) * abs(Hue –
Diamond_dv);

 //outside the diamond

if(Dist >= Diamond_TH)

{

 D_Factor = 0; //the point is out of the large rhombus

}

else if(Dist < (Diamond_TH - Diamond_margin))

 {

 D_Factor = 31; //the point is inside the inner rhombus

 }

 else //the point is inbetween the outer and the inner rhombuses

 {

 if(Diamond_margin >= 5)

 {

 D_Factor = (Diamond_TH - Dist) / 2
(
Diamond_margin

 - 5)
;

 }

 else

 {

 D_Factor = (Diamond_TH - Dist) * 2
(
Diamond_margin

 - 5)
;

 } // end of if(Diamond_margin >= 5)

 } // if(D < (Diamond_TH - Diamond_margin))

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 175

 Diamond_SkinToneFactor = D_factor;

Finally the level of the skin-tone detection in the (U,V) subspace is given by:

 UV_SkinToneFactor = min(Rectangle_SkinToneFactor, Diamond_SkinToneFactor);

Detection in Y direction

The detection based on the Y-values, is given by a piece-wise linear membership function, which is
defined with 4 points (Y_point_x) (x=1, 2, 3, and 4).

if(Y >= Y_Point_0 && in_Y < Point_1)

 Y_Factor = (Y – Y_Point_0) * Y_Slope_1;

else if(Y >= Point_1 && Y < Point_2)

 Y_Factor = 31;

 else if(Y >= Point_2 && Y < Point_3)

 Y_Factor = (Point_3 - Y) * Y_Slope_2 ;

 else

 Y_Factor = 0;

At the end of the process a double (min,max) clipping is applied:

 Y_Factor = min(31,max(Y_Factor,0));

The final Skin-Tone detection is is given by:

 SkinToneFactor = min(UV_SkinToneFactor, Y_factor);

176 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

Detection in the VY plane (3D-like DTD)

The operation of the detection in VY plane is particularly enabled by VY_STD_Enable bit

It is known that the application of a three-dimensional (3D) classifier in the (Y,U,V) space, instead of a two
dimensional (2D) skin-tone detector in the (U,V) plane, is resulted in a better detection. Implementation
complexity of the full 3D classifier is too high, and forces us to approximate the classifier by more simple,
but useful methods. Skin-tone data distribution implies (it is almost convex, and has a predominate
directions) that the 3D classifier could be approximated by the intersection of the three 2D classifiers in
(U,V), (U,Y), and (V,Y) subspaces. The (U,V) subspace is the most important one it is already
approximated by the ellipse, as was described previously. Our study implies that the (V,Y) subspace is
the next most important one. Although the (U,Y) space carries the STD information, it is heavily
redundant and has the reduced importance.

Thus the approximation of 3D classifier is an intersection of (U,V) and (V,Y) two-dimensional classifiers.
The (V,Y) classifier is given by two piece-wise linear functions (PWLF), Each PWLF is composed of four
straight segments. Each segment is described by the three parameters (Point, Slope and bias). Thus a
single PWLF (lower or upper) is described by 12 parameters (4 points, 4 biases, 4 slopes).

The parameters of lower part are: 4 point PxL (x=0, 1, 2, 3), 4 bias BxL (x=0, 1, 2, 3) and 4 slope SxL
(x=0, 1, 2, 3).

The parameters of upper part are: 4 point PxU (x=0, 1, 2, 3), 4 bias BxU (x=0, 1, 2, 3) and 4 slope SxU
(x=0, 1, 2, 3).

There are Programming Restrictions to specify the parameters:

 The points must be in the non-decreasing order: P0 <= P1 <= P2 <= P3.

 The parts must be continues on they ends. Thus the user:

(a). must set: P0L = P0U (continuity at the leftmost points).

(b). must care for continuity at the rightmost points.

Margin for the detection in the VY plane (3D-like DTD)

Vertical margins of each part were introduced to provide a “soft” continuous detection over the classifier
boundaries. There are two parameters defined

MarginVYL - the margin of the lower (blue) part.

MarginVYU - the margin of the upper (red) part.

Consider a pixel with coordinates (Y,V) = (P2L,V1),. This pixel has a Y coordinate exactly as of the point
P2, and a V coordinate equal V1. For this pixel the detection relative to the Lower Part will be:

 detL = Min (Max ((V1 – B2L) / MarginVYL, 0), 1)

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 177

The identical calculations are made for the Upper Line as well:

 detU = Min (Max ((VU – V1) / MarginVYU, 0) , 1)

Where:

 detL - is a detection relative to the Lower Part

 detU - is a detection relative to the Upper Part

 VU - is a V value of the Upper PWLF correspond to the Y=P2L

 BU - is a V value of the Lower PWLF correspond to the Y=P2L

The inverse operation of (1/ MarginVYL), and (1/ MarginVYU) is specified by the parameters
INV_MARGIN_VYL and INV_Margin_VYU.

Both detections (detL, detU) are reduced to 5 bit representations, and the overal detection in the (V,Y)-
plane is given by:

 det_VY = min(detL, detU)

The final Skin-Tone Detection is given by the minimum of the previously calculated STD in the (U,V)-
plane (9), and the current one:

 SkinToneFactor = min(SkinToneFactor, det_VY)

This value is represented with 5 bits, and has a [0,31] range.

3.6.1.2.2 STE

The enhancement step is performed on the pixels which were detected as the skin-tone pixels only by the
previous (STD) step. This step is divided into two sub-steps: saturation correction enhancemen and hue
correction enhancement

STE – Saturation Correction Enhancement

The enhancement is performed by the transformation SatNew = FSat(SatOld), which is realized by the piece-
wise linear function (PWLF) with a 4 straight segments.

The parameters of this PWLF are:

Points:

SATP0 = -SatMax

SATPx (x=1,2,3) – defined by the user

178 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

SATP4 = SatMax

Biases:

SATB0 = -SatMax

SATBx (x=1,2,3) – defined by the user

SATB4 = SatMax

Slopes:

SATSx (x=0,1,2,3) – defined by the user

There are Programming Restrictions to specify the parameters:

 The point Sat = -SatMax maps to itself: (-SatMax) (-SatMax).

 The point Sat = SatMax maps to itself: (SatMax) (SatMax).

 The correction function is continuous.

 The correction function is non-decreasing.

SatOld

SatNew

(-SatMax ,-SatMax)

(SatMax ,SatMax)

Identity

General form of the Saturation
correction PWLF

Correction
Function

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 179

STE – Hue Correction Enhancement

The enhancement is performed by the transformation HueNew = FSat(HueOld), which is realized by the
piece-wise linear function (PWLF) with a 4 straight segments.

The parameters of this PWLF are:

Points:

HUEP0 = -HueMax

HUEPx (x=1,2,3) – defined by the user

HUEP4 = HueMax

Biases:

HUEB0 = -HueMax

HUEBx (x=1,2,3) – defined by the user

HUEB4 = HueMax

Slopes:

HUESx (x=0,1,2,3) – defined by the user

There is Programming Restrictions to specify the parameters

 The point Hue = -HueUEMax maps to itself: (-HueMax) (-HueMax).

 The point Hue = HueMax maps to itself: (HueMax) (HueMax).

 The correction function is continuous.

 The correction function is non-decreasing.

180 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

STE – Skin Type Correction Enhancement

The operation of this mode is enabled by the control parameter Skin_types_enable.

The Saturation and Hue enhancement processes are basic STE procedure. The advanced mode to
adjust the enhacement based on the skin type define the second set of the Sat and the Hue
enhancement parameters, which has an identical structure as the previous one (Points, Biases, Slopes)
but having different values. We will refer one set of parameters to the Bright skin (Bs), and the other to
the Dark skin (Ds). Each pixel is referred as belongs to the Bright, the Dark, or to the both skin types with
a different membership values. The Dark/Bright skin classifier is defined by the two parameters:
Skin_types_thesh, and Skin_types_margin. It works on the luma (Y) values.

The parameters related are

Points:

HUEPx_DARK (x=1,2,3) – defined by the user

SATPx_DARK (x=1,2,3) – defined by the user

Biases:

HUEBx_DARK (x=1,2,3) – defined by the user

SATBx_DARK (x=1,2,3) – defined by the user

Slopes:

HUESx_DARK (x=0,1,2,3) – defined by the user

SATSx_DARK (x=0,1,2,3) – defined by the user

For the luma value Y, we define

HueOld

HueNew

(-HueMax,-
HueMax)

(HueMax ,HueMax)

Identity

General form of the Hue
correction PWLF

Correction
Function

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 181

 YA = skinTypesThesh - skinTypesMargin

 YB = skinTypesThesh + skinTypesMargin

 MVDark = 1 , if Y < YA

 = 0, if Y > YB

 = (YB – Y) / (2* skinTypesMargin), if YA <= Y <= YB

 MVBright = 1 - mVDark

Where MVDark and MVBright are the membership value of the Dark and Bright skin (belongnes). (Note: the
membership values represent the “belongness” of the skin pixel to the different skin types). Also, we mark
that the inversee operation of 1/(2* Skin_types_margin) wil be specified by the parameter
INV_skin_type_margin.

In previous sections the procedure for the calculation of the SatNew and HueNew values was described. We
calculate these values for the two skin types and thus get SatNew B, HueNew B, and SatNew D, HueNew D
values, where and subscribes “B” and “D” stands for the Bright and the Dark skin types, respectively. (In
this case, the parameters with “_DARK” extension are used to work out SatNew D and HueNew D, and the
other set of the parameter could be reloaded with the parameters to work out SatNew D, HueNew D.)The final
values of the enhanced pixel will be given by:

SatNew = MVDark * SatNew D + MVBright * SatNew B

HueNew = MVDark * HueNew D + MVBright * HueNew B

STE – (Sat, Hue) to (U, V) transformation

In prior session, the (U,V) (Sat,Hue) transformation was proceeded by the two steps: shift, and
rotation. Thus the backward transformation should be done in the inverse order: a rotation, and then a
shift.

 // Rotate back:

 U_Center_New = (Sat_New * Cos) + (Hue_New * Sin)

 V_Center_New = -(Sat_New * Sin) + (Hue_New * Cos)

182 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

 // Shift:

 U_New = U_Center_New + U_mid

 V_New = V_Center_New + V_mid

The (U_new, V_new) are the (SatNew, HueNew) values in transformed to the original (U,V) coordinates.

Let denote the original (U,V) values of the pixel by (U_in,V_in). Thus the difference between the corrected
and the original values are:

 DU = U_new – U_in

 DV = V_new – V_in

The final correction must be depended by the SkinToneFactor value, and therefore DU, DV are corrected
by:

 DU = DU * STD_ Likelihood_Factor

 DV = DV * STD_ Likelihood_Factor

Where:

STD_ Likelihood_Factor = (SkinToneFactor / 32)

(Remember that the 0 <= SkinToneFactor <= 31).

After the DU and DV were corrected by the STD likelihood factor, the final (U,V) will be calculated by:

 U = U_in + DU

 V = V_in + DV

3.6.1.3 Adaptive Contrast Enhancement (ACE)

The Automatic Contrast Enhancement (ACE) is a part of the color processing pipe, which located at
the render cache in the RCPB block.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 183

The main goals of the ACE is to improve the overall contrast of the image, and emphasizing details
when relevant (such as in dark areas).

The ACE algorithm analyzes the image, and consequently changes contrast of the image according
to its characteristics. It works in YCbCr color space, where analysis and changes are performed over
the Y component. The result of ACE is a 1d (1 dimension) look up table (1D LUT) operating on Y. The
ACE follows the skin tone enhancement module in the pipe.

The ACE is receiving skin information from the STD block. When the frame includes skin the affect of
the ACE is reduced in the skin area.

The ACE operation is divided into three stages:

1. Collecting information on Y and building the picture histogram. (Hardware)

2. Analysis on the collected data. (Software/Kernel)

3. Modification of the Y component. (Hardware)

The major steps of ACE can be divided into the following steps and depict in the below diagram.

1. Histogram calculation of the Y values.

2. Limiting extremely large histogram’s bins.

3. Calculate the Image’s gray level mean value (Ymean).

4. Calculate the Image’s “Dark Factor” by the Ymean and external transfer function.

5. Find the PWLF anchor input and output points according to the “Portion Values” and the
“Destination Points” of the Bright and the Dark images.

6. Find the PWLF anchor Input points by the blending of the Dark and Bright anchor input points,
according to the Dark Factor calculated previously.

7. Find the PWLF anchor Output points by the blending of the Dark and Bright anchor output points,
according to the Dark Factor calculated previously.

8. Limit Slopes between the anchor points. This stage’s output is the current’s image ACE PWLF.

9. “Soften” the ACE PWLF by blending I with the Identity Transformation.

10. Blend the current PWLF with the PWLF of the previous image (History blend).

11. Apply the final PWLF, and get the Yout values.

Note: Step 1 & step 11 are done in HW and steps 2-10 are done in software.

The main ACE goals are overall contrast improvement, and details emphasizing. ACE algorithm
generates a Piece-wise Linear Function (PWLF), and the final gray values, Yout, are calculated by Yout =
PWLF(Yin).

The HW compares the input pixels to the skin_threshold to determine if the target pixel is a skin pixel or
not. It operates on all of the input pixels if the Full_image_histogram flag is defined. (to ignore the AOI
flag). HW output the histogram of luma pixel value to VSC, and at VSC, the maximum and minimum value

184 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

of luma pixels (Ymax, Ymin) ans the number of skin pixels is determined to be made available to the
software development via MMIO register.

An eleven-segment (12 points) was established to implement PWLF via the state parameters (Points:
Ymin, Y1-Y10, Ymax, Bias: B1 – B10, Slope: S0-S10).

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 185

186 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

3.6.1.4 Total Color Control (TCC)

The TCC allows users to choose different grades of saturation for each of the six basic colors (Red,
Green, Blue, Magenta, Yellow and Cyan) in order to custom the color scheme. The TCC algorithm
operates on the UV-color components in the YUV color space. It operates in the pixel-wise mode, without
considering any neighborhood information.

Its input is:

1. U,V color components (10 bit)

2. Skin-tone detection value (5 bit)

3. External control parameters

Its output is the new U, V values (10 bit).

The motivation to implement this block in HW is to reduce the power of the system and therefore the
battery life.

The pixel TPT (throughput) is two pixels per clock. The pipeline works in YUV formats only – 10bit pixels.
The TCC block is control by state only and does not require any memory access. The TCC block runs at
the same frequency of the existing RCPBunit.

There are two paths in parallel to support the requirement of two pixels per clock. Valid out is a signal
which high when the pixels are valid.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 187

The TCC block includes three sub blocks.

Angle_calculator

This block receive pixel U and V and perform division of abs|v| by abs|u| using Divider ROM with pipeline.

The division result is used to calculated arctan of the V/U. This result is used to calculate the angle called
θ, by using approximation equation. This angle is defined as a 10bit.

To simplify this calculation the “arctangent” function is approximated in the [0,45]o region by the second
order polynomial:

 = arctan(x) = -0.2880x2 + 1.0797x - 0.005; (0 <= x <= 1)

The resulted is given in radians with the maximal error of 0.005 rad. (0.286 deg.) This approximation is
calculated by the minimizing the mean squared error (mse) between the actual “arctan” function, and its
polynomial approximation, and thus represents the optimal mse-approximation in the [0,/4] region. The
for the all regions is calculated by:

 0.25; for region I, (0 <= x <= 1),

 /2 – 0.25; for region II, (1 < (V/U) < infinity)

 /2 + 0.25; for region III, (-infinity < (V/U) < -1)

 = - 0.25; for region IV, (-1 <= (V/U) < 0)

 + 0.25; for region V, (0 <= (V/U) <= 1)

 3 - 0.25; for region VI, (1 < (V/U) < infinity)

 3 + 0.25; for region VII, (-infinity < (V/U) < -1)

 2- 0.25; for region VIII, (-1 <= (V/U) < 0)

Whereas x = (V/U), and the 0.25 is given by the above equation.

Saturation_Factor_Calculator

This block is using the angle θ, locate where it is in the color wheel, find the appropriate base colors and
calculate the proportional distance from the adjacent base color. The result called . Alpha ()
represent the distance from the two relevant base color.

Calculate the saturation by using the appropriate user parameters. The result is the Saturation factor.
This block considering also the threshold and the maximum UV values, and considering also correction
for gray colors to minimize the possible noise. In addition the saturation skipping doing saturation when
the color is skin and doing alpha blending according the skin factor called STDscore.

This block requires several external parameters such:

BaseColor1,…, BaseColor6 – Six basic user defined colors.

SatFactor1,…, SatFactor6 – Six basic saturation change user defined factors.

ColorTransitSlope12, …..ColorTransit61 – Six calculation result of 1/(BaseColorX – BaseColorY)

ColorBias1,…, ColorBias6 – Six color bias.

188 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

STDscore – Skin-tone Detection score (from STD/E).

The result of SF is a number of 8bits.

There are four major steps to derive the saturation factor.

The Interpolated Basic SFs1

With the calculated angle , which lies in the [Ci, Ci+1] interval, the Interpolated Basic SFs1 will be:

SFs1 = (1- SatFactor i + SatFactor i+1

Whereas is calculated by:

 = Min{Max[(BaseColor i)*ColorTransitSlope i – ColorBias i, 0], 1}

Over Saturation Limiter SFs2

Over Saturation Limiter block is used to avoid saturation boosting of the already high saturated pixels.
The SFs2 is calculated by:

 SFs1 , for (SF1 <= 1)

SFs2 = 1 + (SFs1 – 1)(MaxColor – UVmax)/MaxColor, for (1 < SF1 <= 2) AND (UVmax <= UVMaxColor)

 1, for (UVmax > UVMaxColor)

Over
Saturation

SFs2
Gray
Pixels

Saturation

Skin-tone
Saturation

SFs3

Basic colors: c1,
…, c6

Max(|U|,|V|) UVthr,

UVthrBits

ST score

STEthr,

STEslopeBits

 Interpolated
basic SF

SFs1

Calculation of the Saturation Factor (SF)

 – current pixel’s color as calculated by the Eq. (3)

 Lined boxes show additional data used by each block.

 SFsi – SF after the step “i”.

 SFs4 is the SFfinal.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 189

Where the UVmax = max(|U|,|V|), and UVMaxColor is an external parameter which in the case of YUV
color space is equal to 448 in 10bit representation. The Inv_UVMaxColor was used for the inverse
calculation of 1/UVMaxColor.

Note: The last condition (UVmax > UVMaxColor) is associated with the illegal colors, and usually hasn’t to
appear.

GrayPixels Saturation LimiterSFs3

This block limits the saturation of the almost gray pixels. The reason for this limiter is to prevent the noise
amplification by the Saturation increase process. The result of this block is:

 SFs3 = 1 + dSF * CLF

Where:

 dSF = SFs2 – 1;

And the CLF is called Color Limiting Factor and ranges from 0 to 1. The calculation of the CLF is given
by:

 = 1; for (SFs2 <= 1) AND (any UVmax)

 CLF = 0; for (UVmax <= UV_Threshold)

 = (UVmax – UV_Threshold) / 2UV_Threshold_Bits ; for (UV_Threshold < UVmax <
(UV_Threshold+2UV_Threshold_Bits))

Skin-tone Saturation LimiterSFs4

The last block effects TCC strength operation of the Skin-tone pixels. Uncontrolled enhancement of the
skin pixels could lead to appearing of artifacts and to undesired results. The final SFs4 is calculated by a
linear blending:

 SFs4 = (128*STEfactor + (256 - STEfactor) SFs3) / 256

Where the STEfactor is called Skin Tone factor and is calculated by:

 diff = (STDscore – STE_Threshold) * 23

Note: the STDscore (from STD) and the STE_Threshold are presented with 5 bits. The multiplication by 23
is in order to raise the “diff” to 8 bits.

 STEfactor = Min {Max [(diff * 2 STE_SlopeBits), 0], 255}

190 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

The STDscore is a result of the Skin-tone Detection module. It is represented with 5 bits, where the values
0 and 31 mean no skin-tone, and full skin-tone detection, respectively. The STEfactor is given by 8 bits,
where the value 256 represents the number 1.

It is evident that for the high values of STEfactor the resulted SFs4 is close to 1, which means a weak TCC
action of this pixel (SFs4 = 1 actually means TCC is off).

UV Modification – The input pixels are multiple by the saturation factor. The results are the output pixels.

SF final is the final saturation factor which actually resulted from the forth SFcalculation block:

SFfinal = SFs4

The calculation of the Unew, and Vnew output values. They are calculated below:

 Unew = U * SFfinal

 Vnew = V * SFfinal

Whereas (U,V) are the original input color components,

Because these pixels are represented in the unbiased form, which is the result of substraction of the
value 512 from the original [U,V] values, the final [Uout, Vout] values are given by:

 Uout = Unew + 512

 Vout = Vnew + 512

This is the final TCC output represented with 10 bits.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 191

3.6.1.5 ProcAmp

The PROCAMP block modifies the brightness, contrast, hue and saturation of an image in YCbCr color
space (or similar).

Calculate
Offsets

Subtract
Offsets

Y Calculation

UV Calculation

Add Offsets Clipping

BitPrec

Yin

Uin, Vin

Y

U, V

Y’

U’, V’

Yout

Uout, Vout

Yout

Uout, Vout

The algorithm itself uses 8-16 bits per color.

Y Processing: 256 is subtracted from the Y values to position the black level at zero. This removes the
DC offset so that adjusting the contrast does not vary the black level. Since Y values may be less than
256, negative Y values should be supported at this point. Contrast is adjusted by multiplying the YUV
pixel values by a constant. If U and V are adjusted, a color shift will result whenever the contrast is
changed. The brightness property value is added (or subtracted) from the contrast adjusted Y values;
this is done to avoid introducing a DC offset due to adjusting the contrast. Finally the value 64 is added to
reposition the black level at 256. The equation for processing of Y values is:

Y’ = ((Y-256) x C) + B + 256,

where C is the Contrast value and B is the Brightness value.

UV Processing: 2048 is first subtracted from both U and V values to position the range around zero.
The hue property is implemented by mixing the U and V values together:

U’ = (U-2048) x Cos(H) + (V-2048) x Sin(H)

V’ = (V-2048) x Cos(H) – (U-2048) x Sin(H)

Where H represents the desired Hue angle; Saturation is adjusted by multiplying both U and V by a
constant.

Finally, the value 2048 is added to both U and V. The combined processing of Hue and Saturation on the
UV data is:

U’ = (((U-2048) x Cos(H) + (V-2048) x Sin(H)) x C x S) + 2048

192 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

V’ = (((V-2048) x Cos(H) - (U-2048) x Sin(H)) x C x S) + 2048

Where C is the contrast, H is Hue angle and S is the Saturation and the combination of Cos(H)*C*S and
Sin(H)*C*S is specified by parameters Cos_c_s and Sin_c_s.

3.6.1.6 Color Space Conversion

The CSC block enables linear conversion between color spaces using vector shift, matrix multiplication,
and additional shift.

The CSC algorithm is a linear coordinate transformation, comprising of the following stages:

 Shifting the input color coordinate.

 Multiply by 3*3 matrix

 Shifting the output color coordinate

 Formula representation of last 3 steps:

vout_1 11 12 13 vin_1+v0_1 u0_1

 vout_2 = 21 22 23 * vin_2+v0_2 u0_2

vout_3 31 32 33 vin_3+v0_3 u0_3

a a a

a a a

a a a

Where:

aij are the matrix elements, i.e., the transform coefficients: C0, C1, C2, C3, C4, C5, C6, C7, C8.

vin_i is the input pixel color components

v0_i is the input offset vector, i.e., Offset_in_1, Offset_in_2, Offset_in_3.

u0_1_i is the output offset vector. i.e., Offset_out_1, Offset_out_2, Offset_out_3.

Clipping the output to ensure each component is in allowed range.

The parameters YUV_IN is used to set input to be RGB format and YUV_OUT is uased to set output to
be RGB format

Notes about Repacker:

There are two states to be used in the repacker: Alpha from State Select and color pipe alpha. The last
module in the IECP pipeline.

If Alpha from State Select is set, the Y, U ,V is packed with the information from color pipe alpha, and
then the data is sent out to RCPB.

Otherwise, “0” is inserted in the 4LSB (alpha) and the packed data is sent out to RCPB.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 193

3.7 Accessing Render Targets
Render targets are the surfaces that the final results of pixel shaders are written to. The render targets
support a large set of surface formats (refer to surface formats table in Sampling Engine for details) with
hardware conversion from the format delivered by the thread. The render target message also causes
numerous side effects, including potentially alpha test, depth test, stencil test, alpha blend (which
normally causes a read of the render target), and other functions. These functions are covered in the
Windower chapter as some of them (depth/stencil test) are also partially done in the Windower.

The render target write messages are specifically for the use of pixel shader threads that are spawned by
the windower, and may not be used by any other threads. This is due to the pixel scoreboard side-effects
that sending of this message entails. The pixel scoreboard ensures that incorrect ordering of reads and
writes to the same pixel does not occur.

3.7.1 Single Source
The “normal” render target messages are single source. There are two forms, SIMD16 and SIMD8,
intended for the equivalent-sized pixel shader threads. A single color (4 channels) is delivered for each of
the 16 or 8 pixels in the message payload. Optional depth, stencil, and antialias alpha information can
also be delivered with these messages.

The pixel scoreboard bits corresponding to the dispatched pixel mask (or half of the mask in the case of
SIMD8 messages) are cleared only if the Last Render Target Select bit is set in the message descriptor.

The single source message will not cause a write to the render target if Dual Source Blend Enable in
3DSTATE_WM is enabled. However, if Last Render Target Select is set, the message will still cause
pixel scoreboard clear and depth/stencil buffer updates if enabled.

3.7.2 Dual Source [DevSNB+]
The dual source render target messages only have SIMD8 forms due to maximum message length
limitations. SIMD16 pixel shaders must send two of these messages to cover all of the pixels. Each
message contains two colors (4 channels each) for each pixel in the message payload. In addition to the
first source, the second source can be selected as a blend factor (BLENDFACTOR_*_SRC1_* options in
the blend factor fields of COLOR_CALC_STATE or BLEND_STATE). Optional depth, stencil, and
antialias alpha information can also be delivered with these messages.

Each dual source message delivered will clear the corresponding pixel scoreboard bits if the Last Render
Target Select bit in the message descriptor is set.

The dual source message will revert to a single source message using source 0 if Dual Source Blend
Enable in 3DSTATE_WM is disabled.

3.7.3 Replicate Data
The replicate data render target message is intended to be used for “fast clear” functionality in cases
where the color data for each pixel is identical. This message performs better than the other messages
due to its smaller message length. This message does not support depth, stencil, or antialias alpha data
being sent with it. This message must target only tiled memory. Access of linear memory using this
message type is UNDEFINED. The depth buffer can be cleared through the “early depth” function in

194 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

conjunction with a pixel shader using this message. Refer to the Windower chapter for more details on
the early depth function.

The pixel scoreboard bits corresponding to the dispatched pixel mask are cleared only if the Last Render
Target Select bit is set in the message descriptor.

3.7.4 Multiple Render Targets (MRT)
Multiple render targets are supported with the single source and replicate data messages. Each render
target is accessed with a separate Render Target Write message, each with a different surface indicated
(different binding table index). The depth buffer is written only by the message(s) to the last render
target, indicated by the Last Render Target Select bit set to clear the pixel scoreboard bits.

[DevSNB+]: MRT is not supported when one or more RTs have this surface formats:
YCRCB_SWAPUVY, YCRCB_SWAPUV, YCRCB_SWAPY, YCRCB_NORMAL

3.8 State

3.8.1 BINDING_TABLE_STATE
The data port uses the binding table to retrieve surface state. Refer to Sampling Engine for the definition
of this state.

3.8.2 SURFACE_STATE
The data port uses the surface state for constant buffers, render targets, and media surfaces. Refer to
Sampling Engine for the definition of this state.

3.8.3 COLOR_PROCESSING_STATE [DevSNB+]
This state structure contains the state used by the color processing function.

DWord Bit Description

 STD / STE State

0 31:24 V_Mid: Rectangle middle-point V coordinate.

Format = U8 (The default is 154)

 23:16 U_Mid: Rectangle middle-point U coordinate.

Format = U8 (The default is 110)

 15:10 Hue_Max: Rectangle half width.

Format = U6 (The default is 14)

 9:4 Sat_Max: Rectangle half length.

Format = U6 (The default is 31)

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 195

DWord Bit Description

 3 Reserved : MBZ

 2 Output Control

0: Output Pixels

1: Output STD Decisions

 1 STE Enable

Format = Enable

 0 STD Enable

Format = Enable

1 31 Reserved : MBZ

 30:28 Diamond Margin

Format = U3 (The default is 4)

 27:21 Diamond_du: Rhombus center shift in the sat-direction, relative to the rectangle center.

Format = S7 2’s complement (The default is 0)

 20:18 HS_margin: Defines rectangle margin.

Format = U3 (The default is 3)

 17:10 Cos()

Format = S0.7 2’s complement (The default is 79/128)

 9:8 Reserved: MBZ

 7:0 Sin()

Format = S0.7 2’s complement (The default is 101/128)

2 31:21 Reserved : MBZ

 20:13 Diamond_alpha: 1 / tan()

Format = U2.6 (The default is 100/64)

 12:7 Diamond_Th: Half length of the rhombus axis in the sat-direction.

Format = U6 (The default is 35)

 6:0 Diamond_dv: Rhombus center shift in the hue-direction, relative to the rectangle center.

Format = S6 2’s complement (The default is 0)

3 31:24 Y_point_3: Third point of the Y piecewise linear membership function.

Format = U8 (The default is 254)

 23:16 Y_point_2: Second point of the Y piecewise linear membership function.

Format = U8 (The default is 47)

 15:8 Y_point_1: First point of the Y piecewise linear membership function.

Format = U8 (The default is 46)

 7 VY_STD_Enable: Enables STD in the VY subspace.

Format = Enable

 6:0 Reserved : MBZ

196 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

4 31:18 Reserved : MBZ

 17:13 Y_Slope_2: Slope between points Y3 and Y4.

Format = U2.3 (The default is 31/8)

 12:8 Y_Slope_1: Slope between points Y1 and Y2.

Format = U2.3 (The default is 31/8)

 7:0 Y_point_4: Fourth point of the Y piecewise linear membership function.

Format = U8 (The default is 255)

5 31:16 INV_skin_types_margin: 1/(2* Skin_types_margin)

Format = U0.16 (Skin_Type_margin = 20)

 15:0 INV_Margin_VYL: 1 / Margin_VYL

Format = U0.16 (Margin_VYL = 6554/65536)

6 31:24 P1L: Y Point 1 of the lower part of the detection PWLF.

Format = U8 (The default is 216)

 23:16 P0L: Y Point 0 of the lower part of the detection PWLF.

Format = U8 (The default is 46)

 15:0 INV_Margin_VYU: 1 / Margin_VYU

Format = 0.16 (Margin_VYU = 3227/65536)

7 31:24 B1L: V Bias 1 of the lower part of the detection PWLF.

Format = U8 (The default is 130)

 23:16 B0L: V Bias 0 of the lower part of the detection PWLF.

Format = U8 (The default is 133)

 15:8 P3L: Y Point 3 of the lower part of the detection PWLF.

Format = U8 (The default is 236)

 7:0 P2L: Y Point 2 of the lower part of the detection PWLF.

Format = U8 (The default is 236)

8 31:27 Reserved : MBZ

 26:16 S0L: Slope 0 of the lower part of the detection PWLF.

Format = S2.8 2’s complement (The default is -5/256)

 15:8 B3L: V Bias 3 of the lower part of the detection PWLF.

Format = U8 (The default is 130)

 7:0 B2L: V Bias 2 of the lower part of the detection PWLF.

Format = U8 (The default is 130)

9 31:22 Reserved : MBZ

 21:11 S2L: Slope 2 of the lower part of the detection PWLF.

Format = S2.8 2’s complement (The default is 0/256)

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 197

DWord Bit Description

 10:0 S1L: Slope 1 of the lower part of the detection PWLF.

Format = S2.8 2’s complement (The default is 0/256)

10 31:27 Reserved : MBZ

 26:19 P1U: Y Point 1 of the upper part of the detection PWLF.

Format = U8 (The default is 66)

 18:11 P0U: Y Point 0 of the upper part of the detection PWLF.

Format = U8 (The default is 46)

 10:0 S3L: Slope 3 of the lower part of the detection PWLF.

Format = S2.8 2’s complement (The default is 0/256)

11 31:24 B1U: V Bias 1 of the upper part of the detection PWLF.

Format = U8 (The default is 163)

 23:16 B0U: V Bias 0 of the upper part of the detection PWLF.

Format = U8 (The default is 143)

 15:8 P3U: Y Point 3 of the upper part of the detection PWLF.

Format = U8 (The default is 236)

 7:0 P2U: Y Point 2 of the upper part of the detection PWLF.

Format = U8 (The default is 150)

12 31:27 Reserved : MBZ

 26:16 S0U: Slope 0 of the upper part of the detection PWLF.

Format = S2.8 2’s complement (The default is 256/256)

 15:8 B3U: V Bias 3 of the upper part of the detection PWLF.

Format = U8 (The default is 140)

 7:0 B2U: V Bias 2 of the upper part of the detection PWLF.

Format = U8 (The default is 200)

13 31:22 Reserved : MBZ

 21:11 S2U: Slope 2 of the upper part of the detection PWLF.

Format = S2.8 2’s complement (The default is -179/256)

 10:0 S1U: Slope 1 of the upper part of the detection PWLF.

Format = S2.8 2’s complement (The default is 113/256)

14 31:28 Reserved : MBZ

 27:20 Skin_types_margin: Skin types Y margin

Format = U8 (The default is 20)

 19:12 Skin_types_thresh: Skin types Y threshold

Format = U8 (The default is 120)

 11 Skin_types_enable: Treat differently bright and dark skin types

Format = Enable

198 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

 10:0 S3U: Slope 3 of the upper part of the detection PWLF.

Format = S2.8 2’s complement (The default is 0/256)

15 31 Reserved : MBZ

 30:21 SATB1: First bias for the saturation PWLF (bright skin).

Format = S7.2 2’s complement (The default is 0/4)

 20:14 SATP3: Third point for the saturation PWLF (bright skin).

Format = S6 2’s complement (The default is 31)

 13:7 SATP2: Second point for the saturation PWLF (bright skin).

Format = S6 2’s complement (The default is 31)

 6:0 SATP1: First point for the saturation PWLF (bright skin).

Format = S6 2’s complement (The default is -11)

16 31 Reserved : MBZ

 30:20 SATS0: Zeroth slope for the saturation PWLF (bright skin)

Format = U3.8 (The default is 397/256)

 19:10 SATB3: Third bias for the saturation PWLF (bright skin)

Format = S7.2 2’s complement (The default is 124/4)

 9:0 SATB2: Second bias for the saturation PWLF (bright skin)

Format = S7.2 2’s complement (The default is 124/4)

17 31:22 Reserved : MBZ

 21:11 SATS2: Second slope for the saturation PWLF (bright skin)

Format = U3.8 (The default is 256/256)

 10:0 SATS1: First slope for the saturation PWLF (bright skin)

Format = U3.8 (The default is 189/256)

18 31:25 HUEP3: Third point for the hue PWLF (bright skin)

Format = S6 2’s complement (The default is 14)

 24:18 HUEP2: Second point for the hue PWLF (bright skin)

Format = S6 2’s complement (The default is 2)

 17:11 HUEP1: First point for the hue PWLF (bright skin)

Format = S6 2’s complement (The default is 0)

 10:0 SATS3: Third slope for the saturation PWLF (bright skin)

Format = U3.8 (The default is 256/256)

19 31:30 Reserved : MBZ

 29:20 HUEB3: Third bias for the hue PWLF (bright skin)

Format = S7.2 2’s complement (The default is 56/4)

 19:10 HUEB2: Second bias for the hue PWLF (bright skin)

Format = S7.2 2’s complement (The default is 0/4)

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 199

DWord Bit Description

 9:0 HUEB1: First bias for the hue PWLF (bright skin)

Format = S7.2 2’s complement (The default is 0/4)

20 31:22 Reserved : MBZ

 21:11 HUES1: First slope for the hue PWLF (bright skin)

Format = U3.8 (The default is 0/256)

 10:0 HUES0: Zeroth slope for the hue PWLF (bright skin)

Format = U3.8 (The default is 256/256)

21 31:22 Reserved : MBZ

 21:11 HUES3: Third slope for the hue PWLF (bright skin)

Format = U3.8 (The default is 256/256)

 10:0 HUES2: Second slope for the hue PWLF (bright skin)

Format = U3.8 (The default is 299/256)

22 31 Reserved : MBZ

 30:21 SATB1_DARK: First bias for the saturation PWLF (dark skin)

Format = S7.2 2’s complement (The default is 0/4)

 20:14 SATP3_DARK: Third point for the saturation PWLF (dark skin)

Format = S6 2’s complement (The default is 31)

 13:7 SATP2_DARK: Second point for the saturation PWLF (dark skin)

Format = S6 2’s complement (The default is 31)

 6:0 SATP1_DARK: First point for the saturation PWLF (dark skin)

Format = S6 2’s complement (The default is -11)

23 31 Reserved : MBZ

 30:20 SATS0_DARK: Zeroth slope for the saturation PWLF (dark skin)

Format = U3.8 (The default is 397/256)

 19:10 SATB3_DARK: Third bias for the saturation PWLF (dark skin)

Format = S7.2 2’s complement (The default is 124/4)

 9:0 SATB2_DARK: Second bias for the saturation PWLF (dark skin)

Format = S7.2 2’s complement (The default is 124/4)

24 31:22 Reserved : MBZ

 21:11 SATS2_DARK: Second slope for the saturation PWLF (dark skin)

Format = U3.8 (The default is 256/256)

 10:0 SATS1_DARK: First slope for the saturation PWLF (dark skin)

Format = U3.8 (The default is 189/256)

25 31:25 HUEP3_DARK: Third point for the hue PWLF (dark skin).

Format = S6 2’s complement (The default is 14)

200 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

 24:18 HUEP2_DARK: Second point for the hue PWLF (dark skin).

Format = S6 2’s complement (The default is 2)

 17:11 HUEP1_DARK: First point for the hue PWLF (dark skin).

Format = S6 2’s complement (The default is 0)

 10:0 SATS3_DARK: Third slope for the saturation PWLF (dark skin)

Format = U3.8 (The default is 256/256)

26 31:30 Reserved : MBZ

 29:20 HUEB3_DARK: Third bias for the hue PWLF (dark skin).

Format = S7.2 2’s complement (The default is 56/4)

 19:10 HUEB2_DARK: Second bias for the hue PWLF (dark skin).

Format = S7.2 2’s complement (The default is 0/4)

 9:0 HUEB1_DARK: First bias for the hue PWLF (dark skin).

Format = S7.2 2’s complement (The default is 0/4)

27 31:22 Reserved : MBZ

 21:11 HUES1_DARK: First slope for the hue PWLF (dark skin).

Format = U3.8 (The default is 0/256)

 10:0 HUES0_DARK: Zeroth slope for the hue PWLF (dark skin).

Format = U3.8 (The default is 256/256)

28 31:22 Reserved : MBZ

 21:11 HUES3_DARK: Third slope for the hue PWLF (dark skin).

Format = U3.8 (The default is 256/256)

 10:0 HUES2_DARK: Second slope for the hue PWLF (dark skin).

Format = U3.8 (The default is 299/256)

 ACE State

29 31:7 Reserved : MBZ

 6:2 Skin_threshold: Used for Y analysis (min/max) for pixels which are higher than skin
threshold.

Format = U5 (The default is 26)

 1 Full_image_histogram: Used to ignore the area of interest for full image histogram.

Format = Enable (The default is 0)

 0 ACE Enable

Format = Enable

30 31:24 Y3: The value of the y_pixel for point 3 in PWL.

Format = U8 (The default is 76)

 23:16 Y2: The value of the y_pixel for point 2 in PWL.

Format = U8 (The default is 56)

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 201

DWord Bit Description

 15:8 Y1: The value of the y_pixel for point 1 in PWL.

Format = U8 (The default is 36)

 7:0 Ymin: The value of the y_pixel for point 0 in PWL.

Format = U8 (The default is 16)

31 31:24 Y7: The value of the y_pixel for point 7 in PWL.

Format = U8 (The default is 156)

 23:16 Y6: The value of the y_pixel for point 6 in PWL.

Format = U8 (The default is 136)

 15:8 Y5: The value of the y_pixel for point 5 in PWL.

Format = U8 (The default is 116)

 7:0 Y4: The value of the y_pixel for point 4 in PWL.

Format = U8 (The default is 96)

32 31:24 Ymax: The value of the y_pixel for point 11 in PWL.

Format = U8 (The default is 235)

 23:16 Y10: The value of the y_pixel for point 10 in PWL.

Format = U8 (The default is 216)

 15:8 Y9: The value of the y_pixel for point 9 in PWL.

Format = U8 (The default is 196)

 7:0 Y8: The value of the y_pixel for point 8 in PWL.

Format = U8 (The default is 176)

33 31:24 B4: The value of the bias for point 4 in PWL.

Format = U8 (The default is 96)

 23:16 B3: The value of the bias for point 3 in PWL.

Format = U8 (The default is 76)

 15:8 B2: The value of the bias for point 2 in PWL.

Format = U8 (The default is 56)

 7:0 B1: The value of the bias for point 1 in PWL.

Format = U8 (The default is 36)

34 31:24 B8: The value of the bias for point 8 in PWL.

Format = U8 (The default is 176)

 23:16 B7: The value of the bias for point 7 in PWL.

Format = U8 (The default is 156)

 15:8 B6: The value of the bias for point 6 in PWL.

Format = U8 (The default is 136)

 7:0 B5: The value of the bias for point 5 in PWL.

Format = U8 (The default is 116)

202 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

35 31:16 Reserved : MBZ

 15:8 B10: The value of the bias for point 10 in PWL.

Format = U8 (The default is 216)

 7:0 B9: The value of the bias for point 9 in PWL.

Format = U8 (The default is 196)

36 31:27 Reserved : MBZ

 26:16 S1: The value of the slope for point 1 in PWL

Format = U1.10 (The default is 1024/1024)

 15:11 Reserved : MBZ

 10:0 S0: The value of the slope for point 0 in PWL

Format = U1.10 (The default is 1024/1024)

37 31:27 Reserved : MBZ

 26:16 S3: The value of the slope for point 3 in PWL

Format = U1.10 (The default is 1024/1024)

 15:11 Reserved : MBZ

 10:0 S2: The value of the slope for point 2 in PWL

Format = U1.10 (The default is 1024/1024)

38 31:27 Reserved : MBZ

 26:16 S5: The value of the slope for point 5 in PWL

Format = U1.10 (The default is 1024/1024)

 15:11 Reserved : MBZ

 10:0 S4: The value of the slope for point 4 in PWL

Format = U1.10 (The default is 1024/1024)

39 31:27 Reserved : MBZ

 26:16 S7: The value of the slope for point 7 in PWL

Format = U1.10 (The default is 1024/1024)

 15:11 Reserved : MBZ

 10:0 S6: The value of the slope for point 6 in PWL

Format = U1.10 (The default is 1024/1024)

40 31:27 Reserved : MBZ

 26:16 S9: The value of the slope for point 9 in PWL

Format = U1.10 (The default is 1024/1024)

 15:11 Reserved : MBZ

 10:0 S8: The value of the slope for point 8 in PWL

Format = U1.10 (The default is 1024/1024)

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 203

DWord Bit Description

41 31:11 Reserved : MBZ

 10:0 S10: The value of the slope for point 10 in PWL

Format = U1.10 (The default is 1024/1024)

 TCC State

42 31:24 SatFactor3: The saturation factor for yellow.

Format = U1.7 (The default is 220)

 23:16 SatFactor2: The saturation factor for red.

Format = U1.7 (The default is 220)

 15:8 SatFactor1: The saturation factor for magenta.

Format = U1.7 (The default is 220)

 7 TCC Enable

Format = Enable

 6:0 Reserved : MBZ

43 31:24 SatFactor6: The saturation factor for blue.

Format = U1.7 (The default is 220)

 23:16 SatFactor5: The saturation factor for cyan.

Format = U1.7 (The default is 220)

 15:8 SatFactor4: The saturation factor for green.

Format = U1.7 (The default is 220)

 7:0 Reserved : MBZ

44 31:30 Reserved : MBZ

 29:20 BaseColor3: Base Color 3

Format = U10 (The default is 483)

 19:10 BaseColor2: Base Color 2

Format = U10 (The default is 307)

 9:0 BaseColor1: Base Color 1

Format = U10 (The default is 145)

45 31:30 Reserved : MBZ

 29:20 BaseColor6: Base Color 6

Format = U10 (The default is 995)

 19:10 BaseColor5: Base Color 5

Format = U10 (The default is 819)

 9:0 BaseColor4: Base Color 4

Format = U10 (The default is 657)

46 31:16 ColorTransitSlope23: The calculation result of 1 / (BC3 – BC2) [1/62]

Format = U0.16 (The default is 744)

204 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

 15:0 ColorTransitSlope12: The calculation result of 1 / (BC2 – BC1) [1/57]

Format = U0.16 (The default is 405)

47 31:16 ColorTransitSlope45: The calculation result of 1 / (BC5 – BC4) [1/57]

Format = U0.16 (The default is 407)

 ColorTransitSlope34: The calculation result of 1 / (BC4 – BC3) [1/61]

Format = U0.16 (The default is 1131)

48 31:16 ColorTransitSlope61: The calculation result of 1 / (BC1 – BC6) [1/62]

Format = U0.16 (The default is 377)

 15:0 ColorTransitSlope56: The calculation result of 1 / (BC6 – BC5) [1/62]

Format = U0.16 (The default is 372)

49 31:22 ColorBias3: Color bias for BaseColor3.

Format = U2.8 (The default is 0)

 21:12 ColorBias2: Color bias for BaseColor2.

Format = U2.8 (The default is 150)

 11:2 ColorBias1: Color bias for BaseColor1.

Format = U2.8 (The default is 0)

 1:0 Reserved : MBZ

50 31:22 ColorBias6: Color bias for BaseColor6.

Format = U2.8 (The default is 0)

 21:12 ColorBias5: Color bias for BaseColor5.

Format = U2.8 (The default is 0)

 11:2 ColorBias4: Color bias for BaseColor4.

Format = U2.8 (The default is 0)

 1:0 Reserved : MBZ

51 31 Reserved : MBZ

 30:24 UV Threshold: Low UV threshold.

Format = U7 (The default is 3)

 23:19 Reserved : MBZ

 18:16 UV Threshold Bits: Low UV transition width bits.

Format = U3 (The default is 3)

 15:13 Reserved : MBZ

 12:8 STE Threshold: Skin tone pixels enhancement threshold.

Format = U5 (The default is 0)

 7:3 Reserved : MBZ

 2:0 STE Slope Bits: Skin tone pixels enhancement slope bits.

Format = U3 (The default is 0)

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 205

DWord Bit Description

52 31:16 Inv_UVMaxColor: 1 / UVMaxColor. Used for the SFs2 calculation.

Format = U0.16 (The default is 146)

 15:9 Reserved : MBZ

 8:0 UVMaxColor: The maximum absolute value of the legal UV pixels. Used for the SFs2
calculation.

Format = U9 (The default is 448)

 PROCAMP State

53 31:28 Reserved : MBZ

 27:17 Contrast: Contrast magnitude.

Format = U4.7 (The default is 1.0)

 16:13 Reserved : MBZ

 12:1 Brightness: Brightness magnitude.

Format = S7.4 2’s complement (The default is 0.0)

 0 PROCAMP Enable

Format = Enable (The default is 1)

54 31:16 Cos_c_s: UV multiplication cosine factor.

Format = S7.8 2’s complement (The default is 256)

 15:0 Sin_c_s: UV multiplication sine factor.

Format = S7.8 2’s complement (The default is 0)

 CSC State

55 31:29 Reserved : MBZ

 28:16 C1: Transform coefficient.

Format = S2.10 2’s complement (The default is 0)

 15:3 C0: Transform coefficient.

Format = S2.10 2’s complement (The default is 1024)

 2 YUV_IN: CSC input offset enable

Format = YUV (The default is 0)

 1 YUV_OUT: CSC output offset enable

Format = RGB (The default is 0)

 0 Transform Enable

Format = Enable

56 31:26 Reserved : MBZ

 25:13 C3: Transform coefficient.

Format = S2.10 2’s complement (The default is 0)

 12:0 C2: Transform coefficient.

Format = S2.10 2’s complement (The default is 0)

206 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

57 31:26 Reserved : MBZ

 25:13 C5: Transform coefficient.

Format = S2.10 2’s complement (The default is 0)

 12:0 C4: Transform coefficient.

Format = S2.10 2’s complement (The default is 1024)

58 31:26 Reserved : MBZ

 25:13 C7: Transform coefficient.

Format = S2.10 2’s complement (The default is 0)

 12:0 C6: Transform coefficient.

Format = S2.10 2’s complement (The default is 0)

59 31:13 Reserved : MBZ

 12:0 C8: Transform coefficient.

Format = S2.10 2’s complement (The default is 1024)

60 31:20 Reserved : MBZ

 19:10 Offset out 1: Offset out for Y/R.

Format = S9 2’s complement (The default is 0)

 9:0 Offset in 1: Offset in for Y/R.

Format = S9 2’s complement (The default is 0)

61 31:20 Reserved : MBZ

 19:10 Offset out 2: Offset out for U/G.

Format = S9 2’s complement (The default is 0)

 9:0 Offset in 2: Offset in for U/G.

Format = S9 2’s complement (The default is 0)

62 31:20 Reserved : MBZ

 19:10 Offset out 3: Offset out for V/B.

Format = S9 2’s complement (The default is 0)

 9:0 Offset in 3: Offset in for V/B.

Format = S9 2’s complement (The default is 0)

63 31:17 Reserved : MBZ

 16 Alpha from State Select

Format = U1 enumerated type

0: alpha is taken from message

1: alpha is taken from state

 15:0 Color Pipe Alpha

Format = U16

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 207

3.9 Messages

3.9.1 Global Definitions
For data port messages, part of the message descriptor is used to determine the message type. This
field is documented here. The remainder of the message descriptor is defined differently depending on
the message type, and is documented in the section for the corresponding message.

[DevSNB+]: The Data Port is actually three separate targets, Data Port Sampler Cache, Data Port
Constant Cache, and Data Port Render Cache, each with its own target unit ID. Each target has its
own set of message type encodings as shown below.

Restrictions:

 Data port messages may not have the End of Thread bit set in the message descriptor other
than the following exeptions:

o The Render Target Write message may have End of Thread set for pixel shader threads
dispatched by the windower in non-contiguous dispatch mode.

o The Render Target UNORM Write message may have End of Thread set for pixel
shader threads dispatched by the windower in contiguous dispatch mode.

o [DevSNB+] only: The Media Block Write message may have End of Thread set for
pixel shader threads dispatched by the windower in contiguous dispatch mode.

3.9.2 Data Port Messages
Most of the messages have an existing definition that is not expected to change. There are several new
messages that are documented here.

Data Cache Data Port Message Summary

Message Type Header
Required

Shared
Local

Memory
Support

Stateless
Support

Address Modes Vector
Width

OWord Block Read yes no yes global 1

OWord Block Write yes no yes global 1

Unaligned OWord
Block Read

yes no yes global 1

OWord Dual Block
Read

no no yes global +
offset

2

OWord Dual Block
Write

no no yes global +
offset

2

208 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

Message Type Header
Required

Shared
Local

Memory
Support

Stateless
Support

Address Modes Vector
Width

DWord Scattered
Read

no no yes global +
offset

8, 16

DWord Scattered
Write

no no yes global +
offset

8, 16

Byte Scattered
Read

no yes global +
offset

8, 16

Byte Scattered
Write

no yes global +
offset

8, 16

Untyped Surface
Read

no yes 1D or 2D 2, 8,
16

Untyped Surface
Write

no yes 1D or 2D 2, 8,
16

Untyped Atomic
Operation

no yes 1D or 2D 8, 16

Scratch Block
Read

yes no yes
(only)

Imm_Buf +
offset

Scratch Block
Write

yes no yes
(only)

Imm_Buf +
offset

Memory Fence yes N/A N/A N/A N/A

“global” is the Global Offset in the message header (if header is not present, Global Offset is zero).
“imm_buf” is the Immediate Buffer Base Address provided in message header register M0.5.
“offset” is in the message payload, and is per-slot.
“handle” is the handle address in the message header.
“URBoffset” is the Global Offset field in the URB message descriptor.
“1D” and “2D” are the address payload.

[DevSNB+] Render Cache Data Port Message Summary

Message Type Header
Required

Address Modes Vector
Width

Media Block Read yes 2D 1

Media Block Write yes 2D 1

Render Target Write No1 2D + RTAI 8, 16

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 209

Typed Surface Read yes 1D, 2D, 3D, 4D 8

Typed Surface Write yes 1D, 2D, 3D, 4D 8

Typed Atomic Operation yes 1D, 2D, 3D, 4D 8

Memory Fence yes N/A N/A

“4D” address refers to U/V/R/LOD for mip-mapped surfaces
“2D + RTAI” address refers to a basic 2D address with render target array index for the third dimension

1[DevSNB-A/B] Errata: Render Target Write messages require a header when Pixel Shader Computed
Depth is enabled

3.9.2.1 Message Descriptor

3.9.2.1.1 Message Descriptor [DevSNB+]

The following message descriptor applies to [DevSNB+].

DATA PORT SAMPLER
CACHE

DATA PORT CONSTANT
CACHE

DATA PORT RENDER CACHE

Bit Description Bit Description Bit Description

19 Header Present. If set, indicates that the message includes the header. Refer to Render Target
Write message section for more details on this field.

Programming Notes:

The header must be present unless the message type is Render Target Write

Erratum: [DevSNB+]:SW must not rely on HW to perform out of bounds check for (X,Y) for
Render Target Write messages with this bit reset.

Format = Enable

18 Ignored

17:16 Ignored 17:16 Ignored 17 Send Write Commit
Message. Indicates that
a write commit message
will be sent back to the
thread when the write
has been committed.
See section 3.3 for more
details. This field is
ignored on read message

210 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DATA PORT SAMPLER
CACHE

DATA PORT CONSTANT
CACHE

DATA PORT RENDER CACHE

types.

Format = Enable

15:13 Message Type

000: OWord Block Read

010: OWord Dual Block
Read

100: Media Block Read

101: Unaligned OWord
Block Read

110: DWord Scattered
Read

All other encodings are
reserved.

15:13 Message Type

000: OWord Block Read

010: OWord Dual Block
Read

110: DWord Scattered
Read

All other encodings are
reserved.

16:13 Message Type

0000: OWord Block
Read

0001: Render Target
UNORM Read

0010: OWord Dual Block
Read

0100: Media Block Read

0101: Unaligned OWord
Block Read

0110: DWord Scattered
Read

0111: DWord Atomic
write message

1000: OWord Block
Write

1001: OWord Dual Block
Write

1010: Media Block Write

1011: DWord Scattered
Write

1100: Render Target
Write

1101: Streamed Vertex
Buffer Write

1110: Render Target
UNORM Write

All other encodings are
reserved.

12:8 Message Specific Control. Refer to the specific message section for the definition of these bits.

7:0 Binding Table Index. Specifies the index into the binding table for the specified surface. A
binding table index of 255 indicates that a stateless model is to be used. The stateless model is
allowed only with the render cache data port. Refer to section 2.2.2 for details on the stateless
model.

Format = U8

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 211

DATA PORT SAMPLER
CACHE

DATA PORT CONSTANT
CACHE

DATA PORT RENDER CACHE

Range = [0,255]

212 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

3.9.2.2 Message Header

This header applies to the following data port messages:

 OWord Block Read/Write

 Unaligned OWord Block Read

 OWord Dual Block Read/Write

 DWord Scattered Read/Write

The header definitions for the other data port messages is in the section for each message.

DWord Bit Description

M0.7 31:0 Reserved

M0.6 31:0 Reserved

M0.5 31:10 Immediate Buffer Base Address. Specifies the surface base address for messages in
which the Binding Table Index is 255 (stateless model), otherwise this field is ignored. This
pointer is relative to the General State Base Address.

Format = GeneralStateOffset[31:10]

 9:8 Ignored

 7:0 Dispatch ID. This ID is assigned by the fixed function unit and is a unique identifier for the
thread. It is used to free up resources used by the thread upon thread completion.

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

31:4 Ignored M0.3

3:0 Reserved

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 213

DWord Bit Description

M0.2 31:0 Global Offset.

[DevSNB+]:

Specifies the global element offset into the buffer.

 For the Unaligned OWord messages, this offset is in units of Bytes but must be
DWord aligned (bits 1:0 MBZ)

 For the other OWord messages, this offset is in units of OWords

 For the DWord messages, this offset is in units of DWords

 For the Byte messages, this offset is in units of Bytes

Format = U32

Range = [0,FFFFFFFCh] for Unaliged OWord messages

Range = [0,0FFFFFFFh] for other OWord messages

Range = [0,3FFFFFFFh] for DWord messages

 Range = [0,FFFFFFFFh] for Byte messages

Format = U32

Range = [0,FFFFFFFCh] for Unaliged OWord messages

Range = [0,0FFFFFFFh] for other OWord messages

Range = [0,3FFFFFFFh] for DWord messages

M0.1 31:0 Ignored

M0.0 31:0 Ignored

3.9.2.3 Write Commit Writeback Message

The writeback message is only sent on Data Port Write messages if the Send Write Commit Message
bit in the message descriptor is set. The destination register is not modified. Write messages without the
Send Write Commit Message bit set will not return anything to the thread (response length is 0 and
destination register is null).

DWord Bit Description

W0.7:0 Reserved

3.9.3 OWord Block Read/Write
This message takes one offset (Global Offset), and reads or writes 1, 2, 4, or 8 contiguous OWords
starting at that offset.

Restrictions:

 the only surface type allowed is SURFTYPE_BUFFER.

 the surface format is ignored, data is returned from the constant buffer to the GRF without format
conversion.

214 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

 the surface pitch is ignored, the surface is treated as a 1-dimensional surface. An element size
(pitch) of 16 bytes is used to determine the size of the buffer for out-of-bounds checking if using
the surface state model. [DevSNB+]

 the surface cannot be tiled

 the surface base address must be OWord aligned

 the Render Cache Read Write Mode field in SURFACE_STATE must be set to read/write mode
when using this message with the render cache in the surface state model

 the Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be
set to read/write mode when using this message with the render cache in the stateless model

Applications:

 constant buffer reads of a single constant or multiple contiguous constants

 scratch space reads/writes where the index for each pixel/vertex is the same

 block constant reads, scratch memory reads/writes for media

Execution Mask. The low 8 bits of the execution mask are used to enable the 8 channels in the first and
third GRF registers returned (W0, W2) for read, or the first and third write registers sent (M1, M3). The
high 8 bits are used similarly for the second and fourth (W1, W3 or M2, M4). For reads, any mask bit
asserted within a group of four will cause the entire OWord to be read and returned to the destination
GRF register. For writes, each mask bit is considered for its corresponding DWord written to the
destination surface.

For the 1-OWord messages, only the low 8 bits of the execution mask are used. Either the low 4 bits or
the high 4 bits, depending on the position of the OWord to be read or written, is used as the single group
of four with behavior following that in the preceding paragraph. [DevBW,DevCL] errata: Execution
mask bits outside of those corresponding to the OWord being read/written cannot be asserted.

The above behavior enables a SIMD16 thread to use the 8-OWord form of this message to access two
channels (red and green) of a single scratch register across 16 pixels. A second message would access
the other two channels (blue and alpha). The execution mask is used to ensure that data associated with
inactive pixels are not overwritten.

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of
the surface are dropped and will not modify memory contents.

3.9.3.1 OWord Block Message Descriptor

Bit Description

13 Reserved

12 Ignored [DevSNB]

11 Ignored [DevSNB]

10:8 Block Size. Specifies the number of contiguous OWords to be read or written

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 215

Bit Description

13 Reserved

000: 1 OWord, read into or written from the low 128 bits of the destination register

001: 1 OWord, read into or written from the high 128 bits of the destination register

010: 2 OWords

011: 4 OWords

100: 8 OWords

all other encodings are reserved.

Programming Notes:

 The 6 OWord block size is valid only with Data Port Constant Cache.

3.9.3.2 Message Payload (Write)

For the write operation, the message payload consists of one, two, or four registers (not including the
header) depending on the Block Size specified in the message. For the one-constant case, data is taken
from either the high or low half of the payload register depending on the half selected in Block Size. In
this case, the other half of the payload register is ignored.

The Offset referred to below is the Global Offset and is in units of OWords. The OWord array index is
also in units of OWords.

DWord Bit Description

M1.7:4 127:0 OWord[Offset + 1]. If the block size is 1 OWord to be written from the high 128 bits of the
destination, OWord[Offset] will appear in this location

M1.3:0 127:0 OWord[Offset]

M2.7:4 127:0 OWord[Offset+3]

M2.3:0 127:0 OWord[Offset+2]

M3.7:4 127:0 OWord[Offset+5]

M3.3:0 127:0 OWord[Offset+4]

M4.7:4 127:0 OWord[Offset+7]

M4.3:0 127:0 OWord[Offset+6]

216 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

3.9.3.3 Writeback Message (Read)

For the read operation, the writeback message consists of one, two, three, or four registers depending on
the Block Size specified in the message. For the one-constant case, data is placed in either the high or
low half of the returned register depending on the half selected in Block Size. In this case, the other half
of the register is not changed.

The Offset referred to below is the Global Offset and is in units of OWords. The OWord array index is
also in units of OWords.

DWord Bit Description

W0.7:4 127:0 OWord[Offset + 1]. If the block size is 1 OWord to be loaded into the high 128 bits of the
destination, OWord[Offset] will appear in this location

W0.3:0 127:0 OWord[Offset]

W1.7:4 127:0 OWord[Offset+3]

W1.3:0 127:0 OWord[Offset+2]

W2.7:4 127:0 OWord[Offset+5]

W2.3:0 127:0 OWord[Offset+4]

W3.7:4 127:0 OWord[Offset+7]

W3.3:0 127:0 OWord[Offset+6]

3.9.4 Unaligned OWord Block Read [DevSNB+]
This message takes one DWord aligned offset (Global Offset), and reads 1, 2, 4, or 8 contiguous
OWords starting at that offset. This message is identical to the OWord Block Read message except the
offset alignment. For read/write cache, only the read path supports this unaligned OWord Block access.

Restrictions:

 the only surface type allowed is SURFTYPE_BUFFER.

 the surface format is ignored, data is returned from the constant buffer to the GRF without format
conversion.

 the surface pitch is ignored, the surface is treated as a 1-dimensional surface. An element size
(pitch) of 16 bytes is used to determine the size of the buffer for out-of-bounds checking if using
the surface state model. [DevSNB+]

 the surface cannot be tiled

 the surface base address must be OWord aligned

 the Render Cache Read Write Mode field in SURFACE_STATE must be set to read/write mode
when using this message with the render cache in the surface state model

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 217

 the Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be
set to read/write mode when using this message with the render cache in the stateless model

Applications:

 Reads with offset that is not aligned with data size, such as row store usage in media

Execution Mask. The execution mask is ignored by this message.

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0.

3.9.4.1 Message Descriptor

Bit Description

13 Ignored

12:11 Ignored

10:8 Block Size. Specifies the number of contiguous OWords to be read

000: 1 OWord, read into the low 128 bits of the destination register

001: 1 OWord, read into the high 128 bits of the destination register

010: 2 OWords

011: 4 OWords

100: 8 OWords

all other encodings are reserved.

3.9.4.2 Writeback Message (Read)

For the read operation, the writeback message consists of one, two, or four registers depending on the
Block Size specified in the message. For the one-constant case, data is placed in either the high or low
half of the returned register depending on the half selected in Block Size. In this case, the other half of
the register is not changed.

The Global Offset is in units of Bytes, aligned to DWord (two LSBs set to zero). The OWordX array in
units of OWord starts at Global Offset.

DWord Bit Description

W0.7:4 127:0 OWord1 = *(&OWord0 + 1). If the block size is 1 OWord to be loaded into the high 128 bits
of the destination, OWord0 will appear in this location

W0.3:0 127:0 OWord0 = Buffer[Global Offset]

W1.7:4 127:0 OWord3 = *(&OWord2 + 1)

W1.3:0 127:0 OWord2 = *(&OWord1 + 1)

W2.7:4 127:0 OWord5= *(&OWord4 + 1)

W2.3:0 127:0 OWord4 = *(&OWord3 + 1)

W3.7:4 127:0 OWord7 = *(&OWord6 + 1)

218 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

W3.3:0 127:0 OWord6 = *(&OWord5 + 1)

3.9.5 OWord Dual Block Read/Write
This message takes two offsets, and reads or writes 1 or 4 contiguous OWords starting at each offset.
The Global Offset is added to each of the specific offsets.

Programming Restrictions: Writes to overlapping addresses will have undefined write ordering.

Restrictions:

 the only surface type allowed is SURFTYPE_BUFFER.

 the surface format is ignored, data is returned from the constant buffer to the GRF without format
conversion.

 the surface pitch is ignored, the surface is treated as a 1-dimensional surface. An element size
(pitch) of 16 bytes is used to determine the size of the buffer for out-of-bounds checking if using
the surface state model. [DevSNB+]

 the surface cannot be tiled

 the surface base address must be OWord aligned

 the Render Cache Read Write Mode field in SURFACE_STATE must be set to read/write mode
when using this message with the render cache in the surface state model

 the Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be
set to read/write mode when using this message with the render cache in the stateless model

Applications:

 SIMD4x2 constant buffer reads where the indices of each vertex/pixel are different (if there are
two indices and they are the same, hardware will optimize the cache accesses and do only one
cache access)

 SIMD4x2 scratch space reads/writes where the indices are different

Execution Mask. The low 8 bits of the execution mask are used to enable the 8 channels in the GRF
registers returned for read, or each of the write registers sent. For reads, any mask bit asserted within a
group of four will cause the entire OWord to be read and returned to the destination GRF register. For
writes, each mask bit is considered for its corresponding DWord written to the destination surface.

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of
the surface are dropped and will not modify memory contents.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 219

3.9.5.1 Message Descriptor

Bit Description

13 Reserved

12 Ignored

11:10 Ignored

9:8 Block Size: Specifies the number of OWords in each block to be read or written

00: 1 OWord
10: 4 OWords

all other encodings are reserved.

3.9.5.2 Message Payload

DWord Bit Description

M1.7 31:0 Ignored

M1.6 31:0 Ignored

M1.5 31:0 Ignored

M1.4 31:0 Block Offset 1.

[DevSNB+]:

Specifies the OWord offset of OWord Block 1 into the surface.

Format = U32

Range = [0,0FFFFFFFh]

M1.3 31:0 Ignored

M1.2 31:0 Ignored

M1.1 31:0 Ignored

M1.0 31:0 Block Offset 0

3.9.5.3 Additional Message Payload (Write)

For the write operation, the message payload consists of one or four registers (not including the header or
the first part of the payload) depending on the Block Size specified in the message.

The Offset1/0 referred to below is the Global Offset added to the corresponding Block Offset 1/0 and is
in units of Owords. The OWord array index is also in units of OWords.

DWord Bit Description

M2.7:4 127:0 OWord[Offset1]

M2.3:0 127:0 OWord[Offset0]

M3.7:4 127:0 OWord[Offset1+1]

M3.3:0 127:0 OWord[Offset0+1]

M4.7:4 127:0 OWord[Offset1+2]

220 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

M4.3:0 127:0 OWord[Offset0+2]

M4.7:4 127:0 OWord[Offset1+3]

M4.3:0 127:0 OWord[Offset0+3]

3.9.5.4 Writeback Message (Read)

For the read operation, the writeback message consists of one or four registers depending on the Block
Size specified in the message.

The Offset1/0 referred to below is the Global Offset added to the corresponding Block Offset 1/0 and is
in units of Owords. The OWord array index is also in units of OWords.

DWord Bit Description

W0.7:4 127:0 OWord[Offset1]

W0.3:0 127:0 OWord[Offset0]

W1.7:4 127:0 OWord[Offset1+1]

W1.3:0 127:0 OWord[Offset0+1]

W2.7:4 127:0 OWord[Offset1+2]

W2.3:0 127:0 OWord[Offset0+2]

W3.7:4 127:0 OWord[Offset1+3]

W3.3:0 127:0 OWord[Offset0+3]

3.9.6 Media Block Read/Write
The read form of this message enables a rectangular block of data samples to be read from the source
surface and written into the GRF. The write form enables data from the GRF to be written to a
rectangular block.

Restrictions:

 the only surface type allowed is non-arrayed, non-mipmapped SURFTYPE_2D. Because of this,
the stateless surface model is not supported with this message.

 the surface format is used to determine the pixel structure for boundary clamp, the raw data from
the surface is returned to the thread without any format conversion nor filtering operation

 the target cache cannot be the data cache

 the surface base address must be 32-byte aligned

 When a surface is XMajor tiled, (tile walk field in the surface state is set to
TILEWALK_XMAJOR), a memory area mapped through the Render Cache cannot be read
and/or wrote in mixed frame and field modes. For example, if a memory location is first written

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 221

with a zero Vertical Line Stride (frame mode), and later on (without render cache flush) read back
using Vertical Line Stride of one (field mode), the read data stored in GRF are uncertain.

 The block width and offset should be aligned to the size of pixels stored in the surface. For a
surface with 8bpp pixels for example, the block width and offset can be byte aligned. For a
surface with 16bpp pixels, it is word aligned.

o For YUV422 formats, the block width and offset must be pixel pair aligned (i.e. dword
aligned).

 The write form of message has the additional restriction that both X Offset and Block Width
must be DWord aligned.

 [DevSNB-A] Erratum: IECP enabled medis write messages are not supported.

 When Color Processing is enabled for media write message. Render target must be tiled.

Applications:

 Block reads/writes for media

Execution Mask. The execution mask on the send instruction for this type of message is ignored. The
data that is read or written is determined completely by the block parameters.

Out-of-Bounds Accesses. Reads outside of the surface results in the address being clamped to the
nearest edge of the surface and the pixel in the position being returned. Writes outside of the surface are
dropped and will not modify memory contents.

Determining the boundary pixel value depends on the surface format. Surface format definitions can be
found in the Surface Formats Section of the Sampling Engine Chapter.

 For a surface with 8bpp pixels, the boundary byte is replicated. For example, for a boundary
dword B0B1B2B3, to replicate the left boundary byte pixel, the out of bound dwords have the
format of B0B0B0B0, and that for right boundary is B3B3B3B3.

o This rule applies to all surface formats with BPE of 8. As the data port does not perform
format conversion, the most likely used surface formats are R8_UINT and R8_SINT.

 For any other surfaces with 16bpp pixels, boundary pixel replication is on words. For example, for
a boundary dword B0B1B2B3, to replicate the left boundary word pixel, the out of bound dwords
have the format of B0B1B0B1, and that for right boundary is B2B3B2B3.

o This rule applies to all surface formats with BPE of 16. As the data port does not perform
format conversion, only the formats with integer data types may be useful in practice.

 For special surfaces with 16bpp pixels YUV422 packed format, there are two basic cases
depending on the Y location: YUYV (surface format YCRCB_NORMAL) and UYVY (surface
format YCRCB_SWAPY). Boundary handling for YVYU (surface format YCRCB_SWAPUV) is
the same as that for YUYV. Similarly, boundary handling for VYUY (surface format
YCRCB_SWAPUVY) is the same as that for UYVY. Note that these four surface formats have
16bpp pixels, even though the BPE fields are set to zero according to the table in the Surface
Formats Section.

222 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

o For a boundary dword Y0U0Y1V0, to replicate the left boundary, we get Y0U0Y0V0, and
to replicate the right boundary, we get Y1U0Y1V0.

o For a boundary dword U0Y0V0Y1, to replicate the left boundary, we get U0Y0V0Y0, and
to replicate the right boundary, we get U0Y1V0Y1.

 For a surface with 32bpp pixels, the boundary dword pixel is replicated.

o This rule applies to all surface formats with BPE of 32. As the data port does not perform
format conversion, some of the formats may not be useful in practice.

Hardware behavior for any other surface types is undefined.

When Color Processing Enable is set to 1 and the IECP output surface to be written is NV12 format
(R16_UNORM surface format 0x10A, should be used if the output surface is NV12 format).

1. NV12 surface state : The width of the surface should be always multiples of 4pixels. For
16bpp input message (422 8-bit) the width will always need to be in multiples of 8bytes and
for 32bpp input message (422 16-bit or 444 8-bit) the width should be in multiples of 16bytes.
Height should be in multiples of 2pixel high. (presently the MFX restriction is that width should
be in multiples of 2pixels).

a. y-offset of the media block write from the EU should be always even

b. x-offset of the media block write from the EU should be in multiples of 4 pixel.

2. The media block dword write can have only the following combinations (for IECP when NV12
output format is used):

a. 8pixel wide for 422 8-bit mode

b. 4pixel wide for 422 8-bit mode

c. 4pixel wide for 422 16-bit

d. 4pixel wide for 444 8-bit.

e. 444 16-bit input format cannot be supported when the output format is NV12 (s/w should
not use this combination).

f. It has to be in multiples of 2pixel high for all above modes.

3. If 444-format is used then we use only the pixel_0 UV values of the 2x2 pixel and the rest are
dropped and in case of 422-format the top UV values are used and the bottom UV values is
dropped if the output format is NV12 format.

4. Assuming IECP messages will always have vertical stride = 0. (since this is only for pre-
processing before the encoder).

3.9.6.1 Message Descriptor

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 223

Bit Description

13 Reserved: MBZ

12 Reserved : MBZ

11 [DevSNB+]: Reserved : MBZ

10 Vertical Line Stride Override

Specifies whether the Vertical Line Stride and Vertical Line Stride Offset fields in the
surface state should be replaced by bits 9 and 8 below.

If this field is 1, Height in the surface state (see SURFACE_STATE section of Sampling Engine
chapter) is modified according the following rules:

Vertical Line
Stride

(in surface state)

Override
Vertical Line
Stride

Derived 1-based surface height

(As a function of the 0-based Height in
surface state)

0 0 Height + 1

(Normal)

0 1 (Height +1) / 2

Restriction: (Height + 1) must be an even
number.

1 0 (Height + 1) * 2

1 1 Height + 1

(Normal)

For example, for a 720x480 standard resolution video buffer, if Vertical Line Stride in surface
state is 0, i.e. a frame, Height (of the frame) should be 479. When accessing the bottom field of
this frame video buffer, both Override Vertical Line Stride and Override Vertical Line Stride
Offset will be set to 1, then the derived surface height (of the field) will be 240 ((Height + 1) / 2).
In contrary, if Vertical Line Stride in surface state is 1 and Vertical Line Stride Offset in surface
state is 0, the surface state represents the top field of the video buffer. In this case, Height (of
the top field) should be programmed as 239. Accessing the bottom video field will use the same
surface height of 240. Accessing the video frame (with Override Vertical Line Stride and
Override Vertical Line Stride Offset set to 0) will result in a derived surface height of 480
((Height + 1) * 2).

0 -- Use parameters in the surface state and ignore bits 9:8

1 -- Use bits 9:8 to provide the Vertical Line Stride and Vertical Line Stride Offset

224 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

Bit Description

9 Override Vertical Line Stride

Specifies number of lines (0 or 1) to skip between logically adjacent lines – provides support of
interleaved (field) surfaces as textures.

Format = U1 in lines to skip between logically adjacent lines

[DevBW-A] Erratum: This field is ignored by hardware.

8 Override Vertical Line Stride Offset

Specifies the offset of the initial line from the beginning of the buffer. Ignored when Override
Vertical Line Stride is 0.

Format = U1 in lines of initial offset (when Vertical Line Stride == 1)

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 225

3.9.6.2 Message Header

DWord Bit Description

M0.7 31:0 Reserved

M0.6 31:0 Reserved

M0.5 31:8 Ignored

 7:0 FFTID. This ID is assigned by the fixed function unit and is a unique identifier for the
thread. It is used to free up resources used by the thread upon thread completion.

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:5 Color Processing State Pointer [DevSNB+]. Defines the pointer to
COLOR_PROCESSING_STATE. Ignored on read messages and when Color Processing
Enable is not set. This pointer is relative to the General State Base Address.

Programming Notes:

 This pointer is not delivered via state variables like most other pointers are
delivered. It must be delivered via another software-defined mechanism such as
CURBE.

Format = GeneralStateOffset[31:5]

 4 Ignored

 3:2 Message Format [DevSNB+]. Defines the format of the message if Color Processing
Enable is set.

0: YUV 4:2:2, 8 bits per channel
1: YUV 4:4:4, 8 bits per channel
2: YUV 4:2:2, 16 bits per channel
3: YUV 4:4:4, 16 bits per channel

 1 Area of Interest [DevSNB+]. This field controls whether the statistic for the luma pixels is
collected at VSC for ACE histogram. This field is effective only when the state variable
Full_image_histogram is disabled.

 0 Color Processing Enable [DevSNB+]. This field controls whether color processing is
enabled on a media block write message.

Format = Enable

[DevSNB-A] Erratum: This bit must be set to zero.

The following M0.2 definition applies only if the Message Mode field is set to NORMAL:

M0.2 31:29 Ignored

 28:24 Reserved

226 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

 21:16 Block Height. Height in rows of block being accessed.

Programming Notes:

 The Block Height is restricted to the following maximum values depending on the
Block Width:

Block Width (bytes) Maximum Block Height (rows)

1-4 64

5-8 32

9-16 16

17-32 8

Format = U6

Range = [0,63] representing 1 to 64 rows

 15:10 Ignored

 9:8 Reserved

 7:5 Ignored

 4:0 Block Width. Width in bytes of the block being accessed.

Programming Notes:

 Must be DWord aligned for the write form of the message.

Format = U5

Range = [0,31] representing 1 to 32 Bytes

The following M0.2 definition applies only if the Message Mode field is set to PIXEL_MASK:

MO.2 31:0 Pixel Mask. One bit per pixel (each pixel being a DWord) indicating which pixels are to be
written. This field is ignored by the read message, all pixels are always returned..

The bits in this mask correspond to the pixels (DWords) as follows:

0 1 4 5 16 17 20 21

2 3 6 7 18 19 22 23

8 9 12 13 24 25 28 29

10 11 14 15 26 27 30 31

M0.1 31:0 Y offset. The Y offset of the upper left corner of the block into the surface.

Format = S31

Programming Notes:

If Message Mode is set to PIXEL_MASK, this field must be a multiple of 4

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 227

DWord Bit Description

M0.0 31:0 X offset. The X offset of the upper left corner of the block into the surface.

Must be DWord aligned (Bits 1:0 MBZ) for the write form of the message.

The X offset field defines the offset in the input message block. This may differ from the
offset in the surface if Color Processing is enabled due to format conversion.

[DevBW, DevCL] This field must also be DWord aligned for the read form of the message.

Format = S31

Programming Notes:

If Message Mode is set to PIXEL_MASK, this field must be a multiple of 32

Programming Note: The legal combinations of block width, pitch control, sub-register offset and block
height are given below:

Block Height for given block width, pitch control, subreg offsets

 sub-register offsets

block width pitch control 0 1 2 3 4 5 6 7

00 1-64 1 1 1 1 1 1 1

01 1-64 1-64 illegal illegal 1-2 1-2 illegal illegal

10 illegal illegal illegal illegal illegal illegal illegal illegal
1-4

11 1-64 1-64 1-64 1-64 illegal illegal illegal illegal

00 1-32 illegal 1 illegal 1 illegal 1 illegal

01 1-32 illegal 1-32 illegal illegal illegal illegal illegal

10 illegal illegal illegal illegal illegal illegal illegal illegal
5-8

11 1-32 illegal 1-32 illegal 1-32 illegal 1-32 illegal

00 1-16 illegal illegal illegal 1 illegal illegal illegal

01 1-16 illegal illegal illegal 1-16 illegal illegal illegal

10 illegal illegal illegal illegal illegal illegal illegal illegal
9-16

11 1-16 illegal illegal illegal 1-16 illegal illegal illegal

00 1-8 illegal illegal illegal illegal illegal illegal illegal

01 1-8 illegal illegal illegal illegal illegal illegal illegal

10 illegal illegal illegal illegal illegal illegal illegal illegal
7-32

11 1-8 illegal illegal illegal illegal illegal illegal illegal

228 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

3.9.6.3 Message Payload (Write)

DWord Bit Description

M1:n Write Data. The format of the write data depends on the Block Height and Block Width.
The data is aligned to the least significant bits of the first register, and the register pitch is
equal to the next power-of-2 that is greater than or equal to the Block Width.

If Color Processing Enable is enabled, the write data is divided into pixels according to the Message
Format field. The fields within each pixel are defined below. For the 4:2:2 modes, each pixel position
includes channels for two pixels.

Message Format 31:24 23:16 15:8 7:0

YUV 4:2:2, 8 bits per channel Cr (V) right pixel lum
(Y1)

Cb (U) left pixel lum (Y0)

YUV 4:4:4, 8 bits per channel alpha (A) luminance (Y) Cb (U) Cr (V)

 63:48 47:32 31:16 15:0

YUV 4:2:2, 16 bits per
channel

Cr (V) right pixel lum
(Y1)

Cb (U) left pixel lum (Y0)

YUV 4:4:4, 16 bits per
channel

alpha (A) Cr (V) luminance (Y) Cb (U)

3.9.6.4 Writeback Message (Read)

DWord Bit Description

W0:n Read Data [DevSNB+] The format of the read data depends on the Block Height and
Block Width. The data is aligned to the least significant bits of the first register, and the
register pitch is equal to the next power-of-2 that is greater than or equal to the Block
Width.

3.9.7 DWord Scattered Read/Write
This message takes a set of offsets, and reads or writes 8 or 16 scattered DWords starting at each offset.
The Global Offset is added to each of the specific offsets.

Programming Restrictions: Writes to overlapping addresses will have undefined write ordering.

For read messages with X/Y offsets that are outside the bounds of the surface, the address is clamped to
the nearest edge of the surface. For write messages with X/Y offsets that are outside the bounds of the
surface, the behavior is undefined.

[DevSNB] Hardware does not check for or optimize for cases where offsets are equal or contiguous, thus
for optimal performance in these cases a different message may provide higher performance.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 229

Restrictions:

 the only surface type allowed is SURFTYPE_BUFFER.

 the surface format is ignored, data is returned from the constant buffer to the GRF without format
conversion.

 the surface pitch is ignored, the surface is treated as a 1-dimensional surface. An element size
(pitch) of 16 bytes is used to determine the size of the buffer for out-of-bounds checking if using
the surface state model. [DevSNB+]

 the surface cannot be tiled

 the surface base address must be DWord aligned

 the Render Cache Read Write Mode field in SURFACE_STATE must be set to read/write mode
when using this message with the render cache in the surface state model

 the Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be
set to read/write mode when using this message with the render cache in the stateless model

Applications:

 SIMD8/16 constant buffer reads where the indices of each pixel are different (read one channel
per message)

 SIMD8/16 scratch space reads/writes where the indices are different (read/write one channel per
message)

 general purpose DWord scatter/gathering, used by media

Execution Mask. Depending on the block size, either the low 8 bits or all 16 bits of the execution mask
are used to determine which DWords are read into the destination GRF register (for read), or which
DWords are written to the surface (for write).

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of
the surface are dropped and will not modify memory contents.

3.9.7.1 Message Descriptor

Bit Description

13 Reserved

12 Ignored

11:10 Ignored

230 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

Bit Description

13 Reserved

9:8 Block Size. Specifies the number of DWords to be read or written

10: 8 DWords

11: 16 DWords

All other encodings are reserved.

3.9.7.2 Message Payload

DWord Bit Description

M1.7 31:0 Offset 7.

[DevSNB+]:

Specifies the DWord offset of DWord 7 into the surface.

Format = U32

Range = [0,3FFFFFFFh]

M1.6 31:0 Offset 6

M1.5 31:0 Offset 5

M1.4 31:0 Offset 4

M1.3 31:0 Offset 3

M1.2 31:0 Offset 2

M1.1 31:0 Offset 1

M1.0 31:0 Offset 0

M2.7 31:0 Offset 15. This message register is included only if the block size is 16 DWords.

M2.6 31:0 Offset 14

M2.5 31:0 Offset 13

M2.4 31:0 Offset 12

M2.3 31:0 Offset 11

M2.2 31:0 Offset 10

M2.1 31:0 Offset 9

M2.0 31:0 Offset 8

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 231

3.9.7.3 Additional Message Payload (Write)

For the write operation, either one or two additional registers (depending on the block size) of payload
contain the data to be written.

The Offsetn referred to below is the Global Offset added to the corresponding Offset n and is in units of
Dwords. The DWord array index is also in units of DWords.

DWord Bit Description

M3.7 31:0 DWord[Offset7]

M3.6 31:0 DWord[Offset6]

M3.5 31:0 DWord[Offset5]

M3.4 31:0 DWord[Offset4]

M3.3 31:0 DWord[Offset3]

M3.2 31:0 DWord[Offset2]

M3.1 31:0 DWord[Offset1]

M3.0 31:0 DWord[Offset0]

M4.7 31:0 DWord[Offset15]. This message register is included only if the block size is 16 DWords

M4.6 31:0 DWord[Offset14]

M4.5 31:0 DWord[Offset13]

M4.4 31:0 DWord[Offset12]

M4.3 31:0 DWord[Offset11]

M4.2 31:0 DWord[Offset10]

M4.1 31:0 DWord[Offset9]

M4.0 31:0 DWord[Offset8]

232 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

3.9.7.4 Writeback Message (Read)

For the read operation, the writeback message consists of either one or two registers depending on the
block size.

The Offsetn referred to below is the Global Offset added to the corresponding Offset n and is in units of
Dwords. The DWord array index is also in units of DWords.

DWord Bit Description

W0.7 31:0 DWord[Offset7]

W0.6 31:0 DWord[Offset6]

W0.5 31:0 DWord[Offset5]

W0.4 31:0 DWord[Offset4]

W0.3 31:0 DWord[Offset3]

W0.2 31:0 DWord[Offset2]

W0.1 31:0 DWord[Offset1]

W0.0 31:0 DWord[Offset0]

W1.7 31:0 DWord[Offset15]. This writeback message register is included only if the block size is 16
DWords.

W1.6 31:0 DWord[Offset14]

W1.5 31:0 DWord[Offset13]

W1.4 31:0 DWord[Offset12]

W1.3 31:0 DWord[Offset11]

W1.2 31:0 DWord[Offset10]

W1.1 31:0 DWord[Offset9]

W1.0 31:0 DWord[Offset8]

3.9.8 DWord Atomic write message [DevSNB]
This message takes a set of offsets, and writes 8 scattered DWords starting at each offset. The Global
Offset is added to each of the specific offsets. Although this is a write message, it has the read-data
returning based on the atomic opcode.

For offsets that are outside the bounds of the surface, the corresponding DW is turned off in the
hardware.

Hardware does not check for or optimize for cases where offsets are equal or contiguous, thus for optimal
performance in these cases a different message may provide higher performance.

Restrictions:

 the only surface type allowed is SURFTYPE_BUFFER.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 233

 the surface format is ignored, data is returned to the GRF without format conversion.

 the surface pitch is ignored, the surface is treated as a 1-dimensional surface. An element size
(pitch) of 16 bytes is used to determine the size of the buffer for out-of-bounds checking if using
the surface state model.

 the surface cannot be tiled

 the surface base address must be DWord aligned

Execution Mask. 8 dword enables are generated out of execution masks.

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of
the surface are dropped and will not modify memory contents.

3.9.8.1 Message Descriptor

Bit Description

12 Two-Source Message. When this bit is set, there are two data-phases for two sources. Two-source
message is used only for opcode "0111" and for all other opcodes this bit must be 0.

When this bit is 0, M3 is not sent to the data-port.

11:8 Atomic Operation Code: (Please refer to the table below)

Unsupported opcodes:

1101, 1110, 1111

Opcode Operation Return Value

0000 ADD: new = old + src0 Old value

0001 SUB: new = old – src0 Old value

0010 INC : new = old+1 Old value

0011 DEC: new = old-1 Old value

0100 MIN: new = min(old, src0) Old value

0101 MAX: new = max(old, src0) Old value

0110 XCHG: new = src0 Old value

0111 CMPXCHG : new = (old==src1) ? src0 : old Old value

1000 AND: new = old & src0 Old value

1001 OR: new = old | src0 Old value

234 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

1010 XOR: new = old ^ src0 Old value

1011 MIN_SINT: new = min(old, src0) Old value(signed)

1100 MAX_SINT: new = max(old, src0) Old value(signed)

1101-1111 NOP : new = old, Old value

3.9.8.2 Message Payload

DWord Bit Description

M1.7 31:0 Offset 7.

Specifies the DWord offset of DWord 7 into the surface.

Format = U32

Range = [0,3FFFFFFFh]

M1.6 31:0 Offset 6

M1.5 31:0 Offset 5

M1.4 31:0 Offset 4

M1.3 31:0 Offset 3

M1.2 31:0 Offset 2

M1.1 31:0 Offset 1

M1.0 31:0 Offset 0

3.9.8.3 Source Payload

Either one or two additional registers (depending on Two-Source Message) of source payload contain
the data to be used as source.

The Offsetn referred to below is the Global Offset added to the corresponding Offset n and is in units of
DWords. The DWord array index is also in units of DWords.

DWord Bit Description

M2.7 31:0 DWord[Offset7] Src0

M2.6 31:0 DWord[Offset6] Src0

M2.5 31:0 DWord[Offset5] Src0

M2.4 31:0 DWord[Offset4] Src0

M2.3 31:0 DWord[Offset3] Src0

M2.2 31:0 DWord[Offset2] Src0

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 235

DWord Bit Description

M2.1 31:0 DWord[Offset1] Src0

M2.0 31:0 DWord[Offset0] Src0

M3.7 31:0 DWord[Offset7] Src1

M3.6 31:0 DWord[Offset6] Src1

M3.5 31:0 DWord[Offset5] Src1

M3.4 31:0 DWord[Offset4] Src1

M3.3 31:0 DWord[Offset3] Src1

M3.2 31:0 DWord[Offset2] Src1

M3.1 31:0 DWord[Offset1] Src1

M3.0 31:0 DWord[Offset0] Src1

3.9.8.4 Writeback Message

For the read operation, the writeback message consists of either one or two registers depending on the
block size.

The Offsetn referred to below is the Global Offset added to the corresponding Offset n and is in units of
DWords. The DWord array index is also in units of DWords.

DWord Bit Description

W0.7 31:0 DWord[Offset7]

W0.6 31:0 DWord[Offset6]

W0.5 31:0 DWord[Offset5]

W0.4 31:0 DWord[Offset4]

W0.3 31:0 DWord[Offset3]

W0.2 31:0 DWord[Offset2]

W0.1 31:0 DWord[Offset1]

W0.0 31:0 DWord[Offset0]

3.9.9 Render Target Write
This message takes four subspans of pixels for write to a render target. Depending on parameters
contained in the message and state, it may also perform a depth and stencil buffer write and/or a render
target read for a color blend operation. Additional operations enabled in the Color Calculator state will
also be initiated as a result of issuing this message (depth test, alpha test, logic ops, etc.). This message
is intended only for use by pixel shader kernels for writing results to render targets.

Restrictions:

 All surface types are allowed.

236 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

 A

 For SURFTYPE_BUFFER and SURFTYPE_1D surfaces, only the X coordinate is used to index
into the surface. The Y coordinate must be zero.

 For SURFTYPE_1D, 2D, 3D, and CUBE surfaces, a Render Target Array Index is included in
the input message to provide an additional coordinate. The Render Target Array Index must be
zero for SURFTYPE_BUFFER.

 The surface format is restricted to the set supported as render target. If source/dest color blend
is enabled, the surface format is further restricted to the set supported as alpha blend render
target.

 The last message sent to the render target by a thread must have the End Of Thread bit set in
the message descriptor and the dispatch mask set correctly in the message header to enable
correct clearing of the pixel scoreboard.

 The stateless model cannot be used with this message (Binding Table Index cannot be 255).

 This message can only be issued from a kernel specified in WM_STATE or 3DSTATE_WM (pixel
shader kernel), dispatched in non-contiguous mode. Any other kernel issuing this message will
cause undefined behavior.

 [DevCTG+]: The dual source message cannot be used if the Render Target Rotation field in
SURFACE_STATE is set to anything other than RTROTATE_0DEG.

 This message cannot be used on a surface in field mode (Vertical Line Stride = 1)

 If multiple SIMD8 Dual Source messages are delivered by the pixel shader thread, each
SIMD8_DUALSRC_LO message must be issued before the SIMD8_DUALSRC_HI message with
the same Slot Group Select setting.

 [DevSNB-A]:SIMD8 Dual Source Messages are not supported.

 [DevSNB-A,B]: Dual Source Messages to the linear RT or MSRT can result in incorrect
PS_DEPTH_COUNT.

 [DevSNB]: SIMD8 Image Write: Out of bounds write to SURFTYPE_BUFFER with more than 8K
elements is undefined.

Execution Mask. The execution mask for render target messages is ignored. Control of which pixels are
active is controlled by the Pixel/Sample Enables fields in the message header.

Out-of-Bounds Accesses. Accesses to pixels outside of the surface are dropped and will not modify
memory contents. However, if the Render Target Array Index is out of bounds, it is set to zero and the
surface write is not surpressed.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 237

3.9.9.1 Subspan/Pixel to Slot Mapping

The following table indicates the mapping of subspans, pixels, and samples to slots in the pixel shader
dispatch depending on the number of samples and message size. This table applies to all devices,
however NumSamples = 4X is supported only on [DevSNB].

Pixels are numbered as follows within a subspan:

0 = upper left

1 = upper right

2 = lower left

3 = lower right

sspi = Starting Sample Pair Index (from the message header)

Message
Size

Num
Samples

Slot Mapping

1X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

Slot[11:8] = Subspan[2].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[3].Pixel[3:0].Sample[0]

4X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]

SIMD16

1X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

4X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[2*sspi+0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[2*sspi+1]

SIMD8

Restriction:

 [DevSNB+]: When SIMD32 or SIMD16 PS threads send render target writes with multiple SIMD8
and SIMD16 messages, the following must hold:

o All the slots (as described above) must have a corresponding render target write irrespective
of the slot's validity. A slot is considered valid when at least one sample is enabled. For
example, a SIMD16 PS thread must send two SIMD8 render target writes to cover all the
slots.

238 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

o PS thread must send SIMD render target write messages with increasing slot numbers. For
example, SIMD16 thread has Slot[15:0] and if two SIMD8 render target writes are used, the
first SIMD8 render target write must send Slot[7:0] and the next one must send Slot[15:8].

3.9.9.2 Message Descriptor

3.9.9.2.1 Message Descriptor [DevSNB+]

Bit Description

13 [DevSNB+] Ignored

2 Last Render Target Select. This bit must be set on the last render target write message sent for each
group of pixels. For single render target pixel shaders, this bit is set on all render target write
messages. For multiple render target pixel shaders, this bit is set only on messages sent to the last
render target.

This bit must be zero for SIMD8 Image Write message. In general, when threads are not launched by
3D FF, this bit must be zero.

11 Slot Group Select. This field selects whether slots 15:0 or slots 31:16 are used for bypassed data.

Bypassed data includes the antialias alpha, multisample coverage mask, and if the header is not
present also includes the X/Y addresses and pixel enables. For 8- and 16-pixel dispatches,
SLOTGRP_LO must be selected on every message. For 32-pixel dispatches, this field must be set
correctly for each message based on which slots are currently being processed.

0: SLOTGRP_LO: choose bypassed data for slots 15:0

1: SLOTGRP_HI: choose bypassed data for slots 31:16

This bit must be zero for SIMD8 Image Write message.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 239

Bit Description

10:8 Message Type. This field specifies the type of render target message.

For the SIMD8_DUALSRC_xx messages, the low bit indicates which slots to use for the pixel enables,
X/Y addresses, and oMask.

Programming Notes:

 SIMD16_REPDATA (Message Type = 111) is only supported when accessing tiled memory.
Using this Message Type to access linear (untiled) memory is UNDEFINED.

000: SIMD16: SIMD16 single source message

001: SIMD16_REPDATA: SIMD16 single source message with replicated data

010: SIMD8_DUALSRC_LO: SIMD8 dual source message, use slots 7:0

011: SIMD8_DUALSRC_HI: SIMD8 dual source message, use slots 15:8

100: SIMD8_LO: SIMD8 single source message, use slots 7:0

101: SIMD8_IMAGE_WR: SIMD8 2D/3D Image Write, use slots 7:0 [DevSNB Only]

Note: the above slots indicated are within the 16 slots selected by Slot Group Select. If
SLOTGRP_HI is selected, the SIMD8 message types above reference slots 23:16 or 31:24 instead of
7:0 or 15:8, respectively.

[DevSNB]: When Pixel Shader outputs oDepth and PS invocation mode is PERPIXEL, Message Type
for Render Target Write must be SIMD8.

Errata: [DevSNB+]: When Pixel Shader outputs oMask, this message type is not supported: SIMD8
(including SIMD8_DUALSRC_xx).

240 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

3.9.9.3 Message Header

The render target write message has a two-register message header.

3.9.9.3.1 Message Header [DevSNB+]

If the header is not present, behavior is as if the message was sent with most fields set to the same value
that was delivered in R0 and R1 on the pixel shader thread dispatch. The following fields, which are not
delivered in the pixel shader dispatch, behave as if they are set to zero:

 Render Target Index

 Source0 Alpha Present to Render Target

DWord Bit Description

M0.7 31:0 Reserved

M0.6 31:0 Reserved

M0.5 31:10 Ignored

 9:8 Color Code: This ID is assigned by the Windower unit and is used to track synchronizng
events.

Format: Reserved for HW Implementation Use.

 7:0 FFTID. The Fixed Function Thread ID is assigned by the fixed function unit and is a unique
identifier for the thread. It is used to free up resources used by the thread upon thread
completion.

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:0 Ignored

M0.2 31:3 Ignored

 2:0 Render Target Index. Specifies the render target index that will be used to select blend
state from BLEND_STATE.

Format = U3

M0.1 31:6 Color Calculator State Pointer. Specifies the 64-byte aligned pointer to the color
calculator state. This pointer is relative to the General State Base Address.

Format = GeneralStateOffset[31:6]

 5:0 Ignored

M0.0 31 Ignored

 30:27 Viewport Index. Specifies the index of the viewport currently being used.

Format = U4

Range = [0,15]

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 241

DWord Bit Description

 26:16 Render Target Array Index. Specifies the array index to be used for the following surface
types:

SURFTYPE_1D: specifies the array index. Range = [0,511]

SURFTYPE_2D: specifies the array index. Range = [0,511]

SURFTYPE_3D: specifies the “z” or “r” coordinate. Range = [0,2047]

SURFTYPE_CUBE: specifies the face identifier. Range = [0,5]

SURFTYPE_BUFFER: must be zero.

face Render Target Array Index

+x 0

-x 1

+y 2

-y 3

+z 4

-z 5

Format = U11

The Render Target Array Index used by hardware for access to the Render Target is
overridden with the Minimum Array Element defined in SURFACE_STATE if it is out of
the range between Minimum Array Element and Depth. For cube surfaces, a depth value
of 5 is used for this determination.

 15 Front/Back Facing Polygon. Determines whether the polygon is front or back facing.
Used by the render cache to determine which stencil test state to use.

0: Front Facing

1: Back Facing

 14 Ignored

 13 Source Depth Present to Render Target. Indicates that source depth is included in the
message.

 12 oMask to Render Target

This bit indicates that oMask data is present in the message and is to be used to mask off
samples.

 11 Source0 Alpha Present to RenderTarget. This bit indicates that Source0 Alpha (aka
o0.a) data is included in RTWrite message. If present, these alpha values are used as
inputs to AlphaTest and AlphaToCoverage functions. This is required to meet the API rules
when writing to multiple render targets (MRTs).

Programming Notes:

 This bit should not be set when writing to RT0, though sending and using
redundant alpha will provide the correct results (at lower performance).

 This bit is not supported on Dual-Source Blend message types, as source0 alpha
is already included in those messages.

 This bit is not supported on replicated data message types.

 10:9 Ignored

242 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

 8:6 Starting Sample Pair Index: indicates the index of the first sample pair of the dispatch

Format = U3

[DevSNB]: Range = [0,1]

 5:0 Ignored

M1.7 31:16 Dispatched Pixel/Sample Enables. One bit per pixel (or sample within pixel) indicating
which pixels/samples were originally enabled when the thread was dispatched. This field is
only required for the end-of-thread message and on all dual-source messages.

The Dispatched Pixel/Sample Enables must be unmodified from the ones sent when the
pixel shader thread was initiated. If the Dispatched Pixel/Sample Enables are modified,
behavior is undefined.

Multisample Note:

 When operating in PERSAMPLE mode these bits correspond to samples, not
pixels. Each subspan slot (4 bits) corresponds to a specific sample location for
the subspan. Note that in NUMSAMPLES_1 mode, a pixel and sample are
synonomous.

When operating in PERPIXEL mode, this field is ignored, and instead the
SampleEnableMask (obtained via bypass) are used to clear the Depth Scoreboard.

 15:0 Pixel/Sample Enables. One bit per pixel/sample indicating which pixels/samples are still lit
based on kill instruction activity in the pixel shader. This mask is used to control actual
writes to the color buffer.

Multisample Note:

 When operating in PERSAMPLE mode these bits correspond to samples, not
pixels, as the PS is run per-sample. Each subspan slot (4 bits) corresponds to a
specific sample location for the subspan.

When operating in PERPIXEL mode, these bits still correspond to pixels, as the PS is run
per-pixel. Each pixel’s mask bit is replicated according to Number of Multisamples and
combined with other masks to control writes to the multisample locations.

M1.6 31:0 Ignored

M1.5 31:16 Y3. Y coordinate for upper-left pixel of subspan 3 (slot 12)

Format = U16

 15:0 X3. X coordinate for upper-left pixel of subspan 3 (slot 12)

Format = U16

M1.4 31:16 Y2

 15:0 X2

M1.3 31:16 Y1

 15:0 X1

M1.2 31:16 Y0

 15:0 X0

M1.1 31:0 Ignored

M1.0 31:0 Ignored

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 243

3.9.9.4 Header for SIMD8_IMAGE_WRITE [DevSNB]

DWord Bit Description

M0.7 31:0 Reserved

M0.6 31:0 Reserved

M0.5 31:10 Ignored

 9:8 Color Code: This ID is assigned by the Windower unit and is used to track synchronizng
events.

Format: Reserved for HW Implementation Use.

 7:0 FFTID. The Fixed Function Thread ID is assigned by the fixed function unit and is a unique
identifier for the thread. It is used to free up resources used by the thread upon thread
completion.

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:0 Ignored

M0.2 31:3 Ignored

 2:0 Render Target Index. Specifies the render target index that will be used to select blend
state from BLEND_STATE.

Format = U3

M0.1 31:6 Color Calculator State Pointer. Specifies the 64-byte aligned pointer to the color
calculator state. This pointer is relative to the General State Base Address.

Format = GeneralStateOffset[31:6]

 5:0 Ignored

M0.0 31 Ignored

 30:27 Viewport Index. Specifies the index of the viewport currently being used.

Format = U4

Range = [0,15]

SIMD8_IMAGE_WR message type this field is ignored by hardware.

244 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

 26:16 Render Target Array Index. Specifies the array index to be used for the following surface
types:

SURFTYPE_1D: specifies the array index. Range = [0,511]

SURFTYPE_2D: specifies the array index. Range = [0,511]

SURFTYPE_3D: specifies the “z” or “r” coordinate. Range = [0,2047]

SURFTYPE_CUBE: specifies the face identifier. Range = [0,5]

SURFTYPE_BUFFER: must be zero.

face Render Target Array Index

+x 0

-x 1

+y 2

-y 3

+z 4

-z 5

Format = U11

The Render Target Array Index used by hardware for access to the Render Target is
overridden with the Minimum Array Element defined in SURFACE_STATE if it is out of
the range between Minimum Array Element and Depth. For cube surfaces, a depth value
of 5 is used for this determination.

For SMD8_IMAGE_WRITE :

For SURFTYPE_2D, this field must be 0.

For SURFTYPE_3D, this field may not be 0 for "Write-3D-Image" operation.

 15:8 Ignored

 7:0 Pixel Maks for SIMD8 messages.

1: Pixel is enabled

0: Pixel is disabled , in this case the corresponding (x,y) should be ignored by hardware.

M1.7 31:16 Y7: y-coordinate for pixel 7

Format = U16

 15:0 X7: x-coordinate for pixel 7

Format = U16

M1.6 31:16 Y6: y-coordinate for pixel 6

Format = U16

 15:0 X6: x-coordinate for pixel 6

Format = U16

M1.5 31:16 Y5: y-coordinate for pixel 5

Format = U16

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 245

DWord Bit Description

 15:0 X5: x-coordinate for pixel 5

Format = U16

M1.4 31:16 Y4: y-coordinate for pixel 4

Format = U16

 15:0 X4: x-coordinate for pixel 4

Format = U16

M1.3 31:16 Y3: y-coordinate for pixel 3

Format = U16

 15:0 X3: x-coordinate for pixel 3

Format = U16

M1.2 31:16 Y2: y-coordinate for pixel 2

Format = U16

 15:0 X2: x-coordinate for pixel 2

Format = U16

M1.1 31:16 Y1: y-coordinate for pixel 1

Format = U16

 15:0 X1: x-coordinate for pixel 1

Format = U16

M1.0 31:16 Y0: y-coordinate for pixel 0

Format = U16

 15:0 X0: x-coordinate for pixel 0

Format = U16

3.9.9.5 Source 0 Alpha Payload [DevSNB+]

The source 0 alpha registers, if included, appear in M2 and M3, immediately following the header (if
present).

For the SIMD8 single source message, only slot 7:0 data is sent (M2). The source 0 alpha phases are
not supported for dual source messages.

DWord Bit Description

M2.7 31:0 Source 0 Alpha for Slot 7

Format = IEEE_Float

This and the next register is only included if Source 0 Alpha Present bit is set.

M2.6 31:0 Source 0 Alpha for Slot 6

246 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

M2.5 31:0 Source 0 Alpha for Slot 5

M2.4 31:0 Source 0 Alpha for Slot 4

M2.3 31:0 Source 0 Alpha for Slot 3

M2.2 31:0 Source 0 Alpha for Slot 2

M2.1 31:0 Source 0 Alpha for Slot 1

M2.0 31:0 Source 0 Alpha for Slot 0

M3.7 31:0 Source 0 Alpha for Slot 15

M3.6 31:0 Source 0 Alpha for Slot 14

M3.5 31:0 Source 0 Alpha for Slot 13

M3.4 31:0 Source 0 Alpha for Slot 12

M3.3 31:0 Source 0 Alpha for Slot 11

M3.2 31:0 Source 0 Alpha for Slot 10

M3.1 31:0 Source 0 Alpha for Slot 9

M3.0 31:0 Source 0 Alpha for Slot 8

3.9.9.6 oMask Payload [DevSNB+]

The oMask payload, if present, follows source 0 alpha. The value of ‘p’ depends on whether the header
and source 0 alpha are present.

Sample “n” for that pixel will be killed (not written to the render target or depth buffer) if bit “n” of the
oMask is zero. Bits numbers where “n” is larger than the number of multisamples are ignored.

For the SIMD8 messages, only slots 7:0 data is used, or only slots 15:8 depending on the Message Type
encoding.

DWord Bit Description

Mp.7 31:16 oMask for Slot 15

Format = 16-bit mask

This register is only included if oMask Present bit is set.

 15:0 oMask for Slot 14

Mp.6 31:16 oMask for Slot 13

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 247

DWord Bit Description

 15:0 oMask for Slot 12

Mp.5 31:16 oMask for Slot 11

 15:0 oMask for Slot 10

Mp.4 31:16 oMask for Slot 9

 15:0 oMask for Slot 8

Mp.3 31:16 oMask for Slot 7

 15:0 oMask for Slot 6

Mp.2 31:16 oMask for Slot 5

 15:0 oMask for Slot 4

Mp.1 31:16 oMask for Slot 3

 15:0 oMask for Slot 2

Mp.0 31:16 oMask for Slot 1

 15:0 oMask for Slot 0

3.9.9.7 Color Payload: SIMD16 Single Source

3.9.9.7.1 Color Payload: SIMD16 Single Source [DevSNB+]

This payload is included if the Message Type is SIMD16 single source. The value of ‘m’ depends on
whether the header, source 0 alpha, and oMask are present.

DWord Bit Description

Mm.7 31:0 Slot 7 Red. Specifies the value of the slot’s red component.

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being
accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.

Mm.6 31:0 Slot 6 Red

Mm.5 31:0 Slot 5 Red

Mm.4 31:0 Slot 4 Red

Mm.3 31:0 Slot 3 Red

248 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

Mm.2 31:0 Slot 2 Red

Mm.1 31:0 Slot 1 Red

Mm.0 31:0 Slot 0 Red

M(m+1).7 31:0 Slot 15 Red

M(m+1).6 31:0 Slot 14 Red

M(m+1).5 31:0 Slot 13 Red

M(m+1).4 31:0 Slot 12 Red

M(m+1).3 31:0 Slot 11 Red

M(m+1).2 31:0 Slot 10 Red

M(m+1).1 31:0 Slot 9 Red

M(m+1).0 31:0 Slot 8 Red

M(m+2) Slot[7:0] Green. See Mm definition for slot locations

M(m+3) Slot[15:8] Green. See M(m+1) definition for slot locations

M(m+4) Slot[7:0] Blue. See Mm definition for slot locations

M(m+5) Slot[15:8] Blue. See M(m+1) definition for slot locations

M(m+6) Slot[7:0] Alpha. See Mm definition for slot locations

M(m+7) Slot[15:8] Alpha. See M(m+1) definition for slot locations

3.9.9.8 Color Payload: SIMD8 Single Source

This payload is included if the Message Type is SIMD8 single source or SIMD8 Image Write. For
[DevSNB+], the value of ‘m’ depends on whether the header, source 0 alpha, and oMask are present.

DWord Bit Description

Mm.7 31:0 Slot 7 Red. Specifies the value of the slot’s red component.

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being
accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.

Mm.6 31:0 Slot 6 Red

Mm.5 31:0 Slot 5 Red

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 249

DWord Bit Description

Mm.4 31:0 Slot 4 Red

Mm.3 31:0 Slot 3 Red

Mm.2 31:0 Slot 2 Red

Mm.1 31:0 Slot 1 Red

Mm.0 31:0 Slot 0 Red

M(m+1) Slot[7:0] Green. See Mm definition for slot locations

M(m+2) Slot[7:0] Blue. See Mm definition for slot locations

M(m+3) Slot[7:0] Alpha. See Mm definition for slot locations

3.9.9.9 Color Payload: SIMD16 Replicated Data

This payload is included if the Message Type specifies single source message with replicated data. One
set of R/G/B/A data is included in the message, and this data is replicated to all 16 pixels.

This message is legal with color data only (for [DevSNB+], oMask is also legal with this message). The
registers for depth, stencil, and antialias alpha data cannot be included with this message, and the
corresponding bits in the message header must indicate that these registers are not present.

For [DevSNB+], the value of ‘m’ depends on whether the header and oMask are present.

Programming Notes:

o This message is allowed only on tiled surfaces

DWord Bit Description

Mm.7:4 31:0 Reserved

Mm.3 31:0 Alpha. Specifies the value of all slots’ alpha channel.

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being
accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.

Mm.2 31:0 Blue

Mm.1 31:0 Green

Mm.0 31:0 Red

250 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

3.9.9.10 Color Payload: SIMD8 Dual Source [DevSNB+]

This payload is included if the Message Type specifies dual source message. For [DevSNB+], the value
of ‘m’ depends on whether the header, source 0 alpha, and oMask are present.

The dual source message contains only 2 subspans (8 pixels) due to limitations in message length.

DWord Bit Description

Mm.7 31:0 Slot 7 Source 0 Red. Specifies the value of the slot’s red component.

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being
accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.

Mm.6 31:0 Slot 6 Source 0 Red

Mm.5 31:0 Slot 5 Source 0 Red

Mm.4 31:0 Slot 4 Source 0 Red

Mm.3 31:0 Slot 3 Source 0 Red

Mm.2 31:0 Slot 2 Source 0 Red

Mm.1 31:0 Slot 1 Source 0 Red

Mm.0 31:0 Slot 0 Source 0 Red

M(m+1) Slot[7:0] Source 0 Green. See Mm definition for slot locations

M(m+2) Slot[7:0] Source 0 Blue. See Mm definition for slot locations

M(m+3) Slot[7:0] Source 0 Alpha. See Mm definition for slot locations

M(m+4) Slot[7:0] Source 1 Red. See Mm definition for slot locations

M(m+5) Slot[7:0] Source 1 Green. See Mm definition for slot locations

M(m+6) Slot[7:0] Source 1 Blue. See Mm definition for slot locations

M(m+7) Slot[7:0] Source 1 Alpha. See Mm definition for slot locations

3.9.9.11 Depth Payload

The depth registers, if included, appear immediately following the color payload.

For the SIMD8 messages, only slot 7:0 data is sent, or only slot 15:8 depending on the Message Type
encoding. Any complete message register containing ignored data cannot be delivered.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 251

DWord Bit Description

Mn.7 31:0 Source Depth for Slot 7

Format = IEEE_Float

This and the next register is only included if Source Depth Present bit is set.

Mn.6 31:0 Source Depth for Slot 6

Mn.5 31:0 Source Depth for Slot 5

Mn.4 31:0 Source Depth for Slot 4

Mn.3 31:0 Source Depth for Slot 3

Mn.2 31:0 Source Depth for Slot 2

Mn.1 31:0 Source Depth for Slot 1

Mn.0 31:0 Source Depth for Slot 0

M(n+1).7 31:0 Source Depth for Slot 15

M(n+1).6 31:0 Source Depth for Slot 14

M(n+1).5 31:0 Source Depth for Slot 13

M(n+1).4 31:0 Source Depth for Slot 12

M(n+1).3 31:0 Source Depth for Slot 11

M(n+1).2 31:0 Source Depth for Slot 10

M(n+1).1 31:0 Source Depth for Slot 9

M(n+1).0 31:0 Source Depth for Slot 8

Mk.7 31:0 Reserved

Mk.6 31:0 Destination Depth for Slot 6

Mk.5 31:0 Destination Depth for Slot 5

Mk.4 31:0 Destination Depth for Slot 4

Mk.3 31:0 Destination Depth for Slot 3

Mk.2 31:0 Destination Depth for Slot 2

Mk.1 31:0 Destination Depth for Slot 1

252 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

Mk.0 31:0 Destination Depth for Slot 0

M(k+1).7 31:0 Destination Depth for Slot 15

M(k+1).6 31:0 Destination Depth for Slot 14

M(k+1).5 31:0 Destination Depth for Slot 13

M(k+1).4 31:0 Destination Depth for Slot 12

M(k+1).3 31:0 Destination Depth for Slot 11

M(k+1).2 31:0 Destination Depth for Slot 10

M(k+1).1 31:0 Destination Depth for Slot 9

M(k+1).0 31:0 Destination Depth for Slot 8

3.9.9.12 Message Sequencing Summary

3.9.9.12.1 Message Sequencing Summary [DevSNB+]

This section summarizes the sequencing that occurs for each legal render target write message. All
messages have the M0 and M1 header registers if the header is present. If the header is not present, all
registers below are renumbered starting with M0 where M2 appears. All cases not shown in this table are
illegal.

Key:

s0, s1 = source 0, source 1

1/0 = slots 15:8

3/2 = slots 7:0

sZ = source depth

oM = oMask

M
es

s
a

g
e

T
yp

e
o

M
as

k
P

re
s

en
t S

o
u

rc
e

D
ep

th

P
re

s
en

0 A
lp

h
a

P
re

s
en

t

M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14

000 0 0 0 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A

000 0 0 1 1/0s0A 3/2s0A 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A

000 0 1 0 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A 1/0sZ 3/2sZ

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 253

M
es

s
a

g
e

T
yp

e
o

M
as

k
P

re
s

en
t S

o
u

rc
e

D
ep

th

P
re

s
en

0 A
lp

h
a

P
re

s
en

t

M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14

000 0 1 1 1/0s0A 3/2s0A 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A 1/0sZ 3/2sZ

000 1 0 0 oM 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A

000 1 0 1 1/0soA 3/2s0A oM 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A

000 1 1 0 oM 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A 1/0sZ 3/2sZ

000 1 1 1 1/0s0A 3/2s0A oM 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A 1/0sZ 3/2sZ

001 0 0 0 RGBA

001 1 0 0 oM RGBA

010 0 0 0 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A

010 0 1 0 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A 1/0sZ

010 1 0 0 oM 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A

010 1 1 0 oM 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A 1/0sZ

011 0 0 0 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A

011 0 1 0 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A 3/2sZ

011 1 0 0 oM 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A

011 1 1 0 oM 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A 3/2sZ

100 0 0 0 R G B A

100 0 0 1 s0A R G B A

100 0 1 0 R G B A sZ

100 0 1 1 s0A R G B A sZ

100 1 0 0 oM R G B A

100 1 0 1 s0A oM R G B A

100 1 1 0 oM R G B A sZ

100 1 1 1 s0A oM R G B A sZ

3.9.10 Render Target UNORM Read/Write [DevCTG] to [DevSNB]
This message is supported on [DevCTG] to [DevSNB] only.

This message reads from or writes to an 8x4 rectangular block of pixels in the render target.

254 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

Restrictions:

 the only Surface Type allowed is SURFTYPE_2D. Because of this, the stateless surface model
is not supported with this message.

 the Surface Format must be R8G8B8A8_UNORM, B8G8R8A8_UNORM, R8G8B8X8_UNORM,
or B8G8R8X8_UNORM. This is used to determine the pixel structure for boundary clamp, the
raw data from the surface is returned to the thread without any format conversion nor filtering
operation

 the Surface Base Address must be 32-byte aligned

 When a surface is XMajor tiled, (Tile Walk field in the surface state is set to
TILEWALK_XMAJOR), a memory area mapped through the Render Cache cannot be read
and/or written in mixed frame and field modes. For example, if a memory location is first written
with a zero Vertical Line Stride (frame mode), and later on (without render cache flush) read back
using Vertical Line Stride of one (field mode), the read data stored in GRF are uncertain.

 Unlike the normal “Render Target Write” message, no operations enabled by
COLOR_CALC_STATE are supported (alpha blend, alpha test, depth test, stencil, test, logic ops,
etc.). [Pre-DevSNB]: Depth buffer operations are still possible if under conditions of “promoted
depth” as described in the Windower chapter. Non-promoted and computed depth cases are not
supported with this message.

 The Target Cache for the read message must be the Render Cache.

 [Pre-DevSNB]: If this message is issued from a windower dispatched thread, only one Render
Target UNORM Write message is allowed in each 32-pixel dispatch thread, two are required in
each 64-pixel dispatch thread. This is because the scoreboard is cleared whenever this message
is issued.

Execution Mask. The execution mask on the send instruction for this type of message is ignored. The
data that is written is determined by the Pixel Mask.

Out-of-Bounds Accesses. Writes outside of the surface result are dropped and do not modify memory
contents. Reads outside of the surface return zero.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 255

3.9.10.1 Render Target UNORM Message Descriptor

Bit Description

12 Ignored

11 Ignored

10 Vertical Line Stride Override

Specifies whether the Vertical Line Stride and Vertical Line Stride Offset fields in the
surface state should be replaced by bits 9 and 8 below.

If this field is 1, Height in the surface state (see SURFACE_STATE section of Sampling Engine
chapter) is modified according the following rules:

Warning:
Vertical Line

Stride

Warning: (i
n surface

state)

Warning:
Override

Vertical Line
Stride

Warning: Derived 1-based surface
height

Warning: (As a function of the 0-
based Height in surface state)

Warning: 0 Warning: 0 Warning: Height + 1

Warning: (Normal)

Warning: 0 Warning: 1 Warning: (Height +1) / 2

Warning: Restriction: (Height + 1)
must be an even number.

Warning: 1 Warning: 0 Warning: (Height + 1) * 2

Warning: 1 Warning: 1 Warning: Height + 1

Warning: (Normal)

For example, for a 720x480 standard resolution video buffer, if Vertical Line Stride in surface
state is 0, i.e. a frame, Height (of the frame) should be 479. When accessing the bottom field of
this frame video buffer, both Override Vertical Line Stride and Override Vertical Line Stride
Offset will be set to 1, then the derived surface height (of the field) will be 240 ((Height + 1) / 2).
In contrary, if Vertical Line Stride in surface state is 1 and Vertical Line Stride Offset in surface
state is 0, the surface state represents the top field of the video buffer. In this case, Height (of
the top field) should be programmed as 239. Accessing the bottom video field will use the same
surface height of 240. Accessing the video frame (with Override Vertical Line Stride and
Override Vertical Line Stride Offset set to 0) will result in a derived surface height of 480
((Height + 1) * 2).

0 -- Use parameters in the surface state and ignore bits 9:8

1 -- Use bits 9:8 to provide the Vertical Line Stride and Vertical Line Stride Offset

256 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

Bit Description

9 Override Vertical Line Stride

Specifies number of lines (0 or 1) to skip between logically adjacent lines – provides support of
interleaved (field) surfaces as textures.

Format = U1 in lines to skip between logically adjacent lines

8 Override Vertical Line Stride Offset

Specifies the offset of the initial line from the beginning of the buffer. Ignored when Override
Vertical Line Stride is 0.

Format = U1 in lines of initial offset (when Vertical Line Stride == 1)

3.9.10.2 Message Header

DWord Bit Description

M0.7 31:0 Reserved

M0.6 31:0 Reserved

M0.5 31:8 Ignored

 7:0 Dispatch ID. This ID is assigned by the fixed function unit and is a unique identifier for the
thread. It is used to free up resources used by the thread upon thread completion.

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:0 Ignored

M0.2 31:0 Pixel Mask. One bit per pixel indicating which pixels are lit, possibly impacted by kill
instruction activity in the pixel shader. This mask is used to control actual writes to the
color buffer. This field is ignored by the read message, all pixels are always returned.

M0.1 31:0 Y offset. The Y offset of the upper left corner of the block into the surface. Must be 4-row
aligned (Bits 1:0 MBZ).

Format = S31

M0.0 31:0 X offset. The X offset of the upper left corner of the block into the surface. This is a pixel
offset assuming a 32-bit pixel. Must be 8-pixel aligned (Bits 2:0 MBZ).

Format = S31

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 257

3.9.10.3 Message Payload (Write Message only)

The channels are defined as follows depending on surface format:

Channel R8G8B8A8_UNORM
R8G8B8X8_UNORM

B8G8R8A8_UNORM
B8G8R8X8_UNORM

Channel 0 Red Blue
Channel 1 Green Green
Channel 2 Blue Red
Channel 3 Alpha Alpha
Pixels are numbered as follows:

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

DWord Bit Description

M1.7 31:24 Pixel 15 Channel 1

Format = 8-bit UNORM

 23:16 Pixel 15 Channel 0

 15:8 Pixel 14 Channel 1

 7:0 Pixel 14 Channel 0

M1.6 Pixel 13 & 12 Channel 1/0

M1.5 Pixel 7 & 6 Channel 1/0

M1.4 Pixel 5 & 4 Channel 1/0

M1.3 Pixel 11 & 10 Channel 1/0

M1.2 Pixel 9 & 8 Channel 1/0

M1.1 Pixel 3 & 2 Channel 1/0

M1.0 Pixel 1 & 0 Channel 1/0

M2.7 Pixel 31 & 30 Channel 1/0

M2.6 Pixel 29 & 28 Channel 1/0

258 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

M2.5 Pixel 23 & 22 Channel 1/0

M2.4 Pixel 21 & 20 Channel 1/0

M2.3 Pixel 27 & 26 Channel 1/0

M2.2 Pixel 25 & 24 Channel 1/0

M2.1 Pixel 19 & 18 Channel 1/0

M2.0 Pixel 17 & 16 Channel 1/0

M3.7:0 Pixels 15:0 Channel 3/2

M4.7:0 Pixels 31:16 Channel 3/2

3.9.10.4 Writeback Message (Read Message only)

DWord Bit Description

W0.7 31:24 Pixel 15 Channel 1

Format = 8-bit UNORM

 23:16 Pixel 15 Channel 0

 15:8 Pixel 14 Channel 1

 7:0 Pixel 14 Channel 0

W0.6 Pixel 13 & 12 Channel 1/0

W0.5 Pixel 7 & 6 Channel 1/0

W0.4 Pixel 5 & 4 Channel 1/0

W0.3 Pixel 11 & 10 Channel 1/0

W0.2 Pixel 9 & 8 Channel 1/0

W0.1 Pixel 3 & 2 Channel 1/0

W0.0 Pixel 1 & 0 Channel 1/0

W1.7 Pixel 31 & 30 Channel 1/0

W1.6 Pixel 29 & 28 Channel 1/0

W1.5 Pixel 23 & 22 Channel 1/0

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 259

DWord Bit Description

W1.4 Pixel 21 & 20 Channel 1/0

W1.3 Pixel 27 & 26 Channel 1/0

W1.2 Pixel 25 & 24 Channel 1/0

W1.1 Pixel 19 & 18 Channel 1/0

W1.0 Pixel 17 & 16 Channel 1/0

W2.7:0 Pixels 15:0 Channel 3/2

W3.7:0 Pixels 31:16 Channel 3/2

3.9.11 Streamed Vertex Buffer Write [DevSNB]
This message writes a single 4-tuple of data to a buffer, at a destination index specified in the message
header.

Restrictions:

 surface types allowed are SURFTYPE_BUFFER and SURFTYPE_NULL

 surface formats allowed are indicated in the “Streamed Output Vertex Buffers” column of the
Surface Formats table in the Sampling Engine chapter

 the surface cannot be tiled

 use of this message with the End Of Thread bit set in the message descriptor is not allowed as
the Dispatch ID is not included in the message payload.

 the stateless model cannot be used with this message (Binding Table Index cannot be 255).

 Both the surface base address and surface pitch must be DWord aligned.

Execution Mask. The low 4 bits of the execution mask are used to enable the 4 channels of the write to
the destination surface.

Out-of-Bounds Accesses. Writes to areas outside of the surface are dropped and will not modify
memory contents.

260 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

3.9.11.1 Message Descriptor

Bit Description

12 Ignored

11 Ignored

10 [DevILK+]: Ignored

9 [DevILK+]: Ignored

8 [DevILK+]: Ignored

3.9.11.2 Message Payload

DWord Bit Description

M0.7 31:0 Reserved

M0.6 31:0 Reserved

M0.5 31:0 Destination Index. Specifies the index into the destination array where the data will be
written

Format = U32

Range = [0,227-1]

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:0 A Data. Data for the A channel of the destination

Format = IEEE_Float, U32, or S31 matching the surface format of the target surface (no
format conversion is performed by hardware)

M0.2 31:0 B Data. Data for the B channel of the destination

Format = IEEE_Float, U32, or S31 matching the surface format of the target surface (no
format conversion is performed by hardware)

M0.1 31:0 G Data. Data for the G channel of the destination

Format = IEEE_Float, U32, or S31 matching the surface format of the target surface (no
format conversion is performed by hardware)

M0.0 31:0 R Data. Data for the R channel of the destination

Format = IEEE_Float, U32, or S31 matching the surface format of the target surface (no
format conversion is performed by hardware)

3.9.12 AVC Loop Filter Read [DevCTG] to [DevSNB]
This message enables a specially formed AVC Loop Filter control data block to read from the source
surface, converted via table-look-up and expanded before being written into the GRF.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 261

Restrictions:

 the only surface type allowed is SURFTYPE_BUFFER.

 the surface base address must be dword aligned

Applications:

 Specifically for AVC Loop Filter

Execution Mask. The execution mask on the send instruction for this type of message is ignored. The
data that is read is determined completely by the message parameters.

Out-of-Bounds Accesses. Read outside of the surface returns zero.

The source surface contains an array of AVC-LF data structure, each corresponds to a macroblock. The
AVC-LF data structure contains 16 dwords as shown in the following table.

DWord Bit Description

0 31:24 Reserved : MBZ

 23 FilterTopMbEdgeFlag

 22 FilterLeftMbEdgeFlag

 21 FilterInternal4x4EdgesFlag

 20 FilterInternal8x8EdgesFlag

 19 FieldModeAboveMbFlag

 18 FieldModeLeftMbFlag

 17 FieldModeCurrentMbFlag

 16 MbaffFrameFlag

 15:8 VertOrigin

 7:0 HorzOrigin

1 31:30 bS_h13

 29:28 bS_h12

 27:26 bS_h11

 25:24 bS_h10

262 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

 23:22 bS_v33

 21:20 bS_v23

 19:18 bS_v13

 17:16 bS_v03

 15:14 bS_v32

 13:12 bS_v22

 11:10 bS_v12

 9:8 bS_v02

 7:6 bS_v31

 5:4 bS_v21

 3:2 bS_v11

 1:0 bS_v01

2 31:28 bS_v30_0

 17:24 bS_v20_0

 23:20 bS_v10_0

 19:16 bS_v00_0

 15:14 bS_h33

 13:12 bS_h32

 11:10 bS_h31

 9:8 bS_h30

 7:6 bS_h23

 5:4 bS_h22

 3:2 bS_h21

 1:0 bS_h20

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 263

DWord Bit Description

3 31:28 bS_h03_0

 27:24 bS_h02_0

 23:20 bS_h01_0

 19:16 bS_h00_0

 15:12 bS_v03

 11:8 bS_v02

 7:4 bS_v01

 3:0 bS_v00

4 31:24 bIndexBinternal_Y

Internal index B for Y

 23:16 bIndexBinternal_Y

Internal index A for Y

 15:12
bS_h03_1

 11:8
bS_h02_1

 7:4
bS_h01_1

 3:0
bS_h00_1

5 31:24
bIndexBleft1_Y

 23:16
bIndexAleft1_Y

 15:8
bIndexBleft0_Y

 7:0
bIndexAleft0_Y

6 31:24
bIndexBtop1_Y

 23:16
bIndexAtop1_Y

 15:8
bIndexBtop0_Y

 7:0
bIndexAtop0_Y

7 31:24
bIndexBleft0_Cb

 23:16
bIndexAleft0_Cb

264 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

 15:8
bIndexBinternal_Cb

 7:0
bIndexAinternal_Cb

8 31:24
bIndexBtop0_Cb

 23:16
bIndexAtop0_Cb

 15:8
bIndexBleft1_Cb

 7:0
bIndexAleft1_Cb

9 31:24
bIndexBinternal_Cr

 23:16
bIndexAinternal_Cr

 15:8
bIndexBtop1_Cb

 7:0
bIndexAtop1_Cb

10 31:24
bIndexBleft1_Cr

 23:16
bIndexAleft1_Cr

 15:8
bIndexBleft0_Cr

 7:0
bIndexAleft0_Cr

11 31:24
bIndexBtop1_Cr

 23:16
bIndexAtop1_Cr

 15:8
bIndexBtop0_Cr

 7:0
bIndexAtop0_Cr

12 31:2 Reserved : MBZ

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 265

DWord Bit Description

 1:0 DisableDeblockingFilterIdc

This is the slice level signal provided as a hint for kernel performance tuning. It is
supplied for cases where some slices in a frame have ILDB and some others don’t
have. In this case, ILDB kernel will be called for all macroblocks in a frame
including the ones in the slice that disables ILDB. Setting this bit correctly will
ensure that ILDB is not performed on MBs belonging to the slice which has disable
deblocking set to 1. For example, kernel may check bit 0, if it is set to 1, no ILDB is
performed on the macroblock.

00 - filterInternalEdgesFlag is set equal to 1

01 – disable all deblocking operation, no deblocking parameter syntax element is read;
filterInternalEdgesFlag is set equal to 0

10 - macroblocks in different slices are considered not available; filterInternalEdgesFlag
is set equal to 1

11 – Reserved (not defined in AVC)

13 31:0 Reserved : MBZ

14 31:0 Reserved : MBZ

15 31:0 Reserved : MBZ

3.9.12.1 Message Descriptor

Bit Description

12:11 Ignored ([DevCTG]: these bits are part of the Read Message Type field)

10:8 Ignored

3.9.12.2 Message Header

DWord Bit Description

M0.7 31:0 Reserved

M0.6 31:0 Reserved

M0.5 31:8 Ignored

 7:0 Dispatch ID. This ID is assigned by the fixed function unit and is a unique identifier for the
thread. It is used to free up resources used by the thread upon thread completion.

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:0 Ignored

266 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

M0.2 31:0 Global Offset. Specifies the global byte offset into the buffer.

 This offset must be OWord aligned (bits 3:0 MBZ)

Format = U32

Range = [0,FFFFFFF0h]

M0.1 31:0 Ignored

M0.0 31:0 Ignored

3.9.12.3 Writeback Message

The writeback message is formed by the data port using the information from the stored surface and
integrated lookup tables defining alpha, beta, tc0, and the edge control map.

Many of the fields are passed directly from the stored surface to the writeback message.

IndexA and IndexB index the following tables to populate the alpha and beta values. These tables are
used for Y, Cr, and Cb. IndexTop0 values derive AlphaTop0 and BetaTop0, IndexTop1 values derive
AlphaTop1 and BetaTop1, and likewise for the Left values.

Table 3-1.Derivation of offset dependent threshold variables and from indexA and indexB

 indexA (for) or indexB (for)

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 5 6 7 8 9 10 12 13

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 3 3 3 3 4 4 4

Table 3-1. (Concluded) – Derivation of indexA and indexB from offset dependent threshold
variables and

 indexA (for) or indexB (for)

 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

 15 17 20 22 25 28 32 36 40 45 50 56 63 71 80 90 101 113 127 144 162 182 203 226 255 255

 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18

For each block boundary, the data port must use the boundary strength values to derive tc0 and an edge
control map. The following shows the layout of the boundary values in a Y block. Cr and Cb layout
follows suit.

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 267

Figure 3-1. Boundary Values Layout in a Y Block

h00 h01 h02 h03

h10 h11 h12 h13

h20 h21 h22 h23

h30 h31 h32 h33

v0
0

v1
0

v2
0

v3
0

v0
1

v0
2

v0
3

v1
1

v1
2

v1
3

v2
1

v2
2

v2
3

v3
1

v3
2

v3
3

The boundary strengths are used in conjunction with indexA to derive tc0 values. The tables below show
tc0 output as a function of the boundary strength (bS) and indexA. On external edges, the boundary
strength may be 4. Under this condition, hardware should set the value of tc0 to 0.

For determination of tc0, use IndexA0 and external top and left boundary strength (0) values to derive
bTc0 values with an index of _0_. During Mbaff mode, use IndexA1 and external top and left boundary
strength (1) to derive bTc0 values with an index of _1_. The layout of the tc0 values in the macroblocks
corresponds to Figure 3-1 in the same manner as the boundary strengths.

268 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

Table 3-2. Value of variable tC0 as a function of indexA and bS

 indexA

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

bS = 1 0 1 1 1

bS = 2 0 1 1 1 1 1

bS = 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

bS = 4 tc0 set to 0

 Table 3-2 (concluded) – Value of variable tC0 as a function of indexA and bS

 indexA

 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

bS = 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 4 4 4 5 6 6 7 8 9 10 11 13

bS = 2 1 1 1 1 1 2 2 2 2 3 3 3 4 4 5 5 6 7 8 8 10 11 12 13 15 17

bS = 3 1 2 2 2 2 3 3 3 4 4 4 5 6 6 7 8 9 10 11 13 14 16 18 20 23 25

bS = 4 tc0 set to 0

The boundary strengths also create the edge control maps in the writeback message. The internal
boundaries require one control map set according to the boundary strength to drive the deblocking
functionality. The external boundaries require two control maps set according to the boundary strength to
enable deblocking and choose the deblocking algorithm. These control maps are shown in the tables
below. Each edge’s boundary strength has a corresponding edge control map (e.g. bS_v01 corresponds
to EdgeCntlMap_v01).

Table 3-3. Boundary Strength Mapping to Edge Control Map: Internal Boundaries

bS
Internal boundary
Edge Control Map Description

00 0000 bS = 0, no de-blocking

01 1111
Perform de-blocking using bS < 4
algorithm

10 1111
Perform de-blocking using bS < 4
algorithm

11 1111
Perform de-blocking using bS < 4
algorithm

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 269

Table 3-4. Boundary Strength Mapping to Edge Control Map A: External Boundaries, Deblocking
Enable

bS
External boundary

Edge Control Map A Description

0000 0000 bS = 0, no de-blocking

0001 1111 bS > 0, de-blocking the segment

0010 1111 bS > 0, de-blocking the segment

0011 1111 bS > 0, de-blocking the segment

0100 1111 bS > 0, de-blocking the segment

Table 3-5. Boundary Strength Mapping to Edge Control Map B: External Boundaries, Deblocking
Algorithm

bS
External boundary

Edge Control Map B Description

0000 0000 (No deblocking, set algorithm to 0)

0001 0000
Perform de-blocking using bS < 4
algorithm

0010 0000
Perform de-blocking using bS < 4
algorithm

0011 0000
Perform de-blocking using bS < 4
algorithm

0100 1111
Perform de-blocking using bS = 4
algorithm

The following is the layout of the combined writeback message.

DWord Bit Description

W0.7 31:24
bIndexBleft0_Cb

 23:16
bIndexAleft0_Cb

 15:8
bIndexBinternal_Cb

270 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

 7:0
bIndexAinternal_Cb

W0.6 31:24
bIndexBtop1_Y

 23:16
bIndexAtop1_Y

 15:8
bIndexBtop0_Y

 7:0
bIndexAtop0_Y

W0.5 31:24
bIndexBleft1_Y

 23:16
bIndexAleft1_Y

 15:8
bIndexBleft0_Y

 7:0
bIndexAleft0_Y

W0.4 31:24 bIndexBinternal_Y

Internal index B for Y

 23:16 bIndexAinternal_Y

Internal index A for Y

 15:12
bS_h03_1

 11:8
bS_h02_1

 7:4
bS_h01_1

 3:0
bS_h00_1

W0.3 31:28 bS_h03_0

 27:24 bS_h02_0

 23:20 bS_h01_0

 19:16 bS_h00_0

 15:12 bS_v30_1

 11:8 bS_v20_1

 7:4 bS_v10_1

 3:0 bS_v00_1

W0.2 31:28 bS_v30_0

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 271

DWord Bit Description

 27:24 bS_v20_0

 23:20 bS_v10_0

 19:16 bS_v00_0

 15:8 bbSinternalBotHorz

 7:0 bbSinternalMidHorz

W0.1 31:30 bS_h13

 29:28 bS_h12

 27:26 bS_h11

 25:24 bS_h10

 23:22 bS_v33

 21:20 bS_v23

 19:18 bS_v13

 17:16 bS_v03

 15:14 bS_v32

 13:12 bS_v22

 11:10 bS_v12

 9:8 bS_v02

 7:6 bS_v31

 5:4 bS_v21

 3:2 bS_v11

 1:0 bS_v01

W0.0 31:24 Reserved : MBZ

 23 FilterTopMbEdgeFlag

 22 FilterLeftMbEdgeFlag

272 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

 21 FilterInternal4x4EdgesFlag

 20 FilterInternal8x8EdgesFlag

 19 FieldModeAboveMbFlag

 18 FieldModeLeftMbFlag

 17 FieldModeCurrentMbFlag

 16 MbaffFrameFlag

 15:8 VertOrigin

 7:0 HorzOrigin

W1.7 31:0 Reserved : MBZ

W1.6 31:0 Reserved : MBZ

W1.5 31:0 Reserved : MBZ

W1.4 31:0 Reserved : MBZ

W1.3 31:24
bIndexBtop1_Cr

 23:16
bIndexAtop1_Cr

 15:8
bIndexBtop0_Cr

 7:0
bIndexAtop0_Cr

W1.2 31:24
bIndexBleft1_Cr

 23:16
bIndexAleft1_Cr

 15:8
bIndexBleft0_Cr

 7:0
bIndexAleft0_Cr

W1.1 31:24
bIndexBinternal_Cr

 23:16
bIndexAinternal_Cr

 15:8
bIndexBtop1_Cb

 7:0
bIndexAtop1_Cb

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 273

DWord Bit Description

W1.0 31:24
bIndexBtop0_Cb

 23:16
bIndexAtop0_Cb

 15:8
bIndexBleft1_Cb

 7:0
bIndexAleft1_Cb

W2.7 31:28 EdgeCntlMapB_h03_1

Used in Mbaff mode only

 27:24 EdgeCntlMapB_h02_1

Used in Mbaff mode only

 23:20 EdgeCntlMapB_h01_1

Used in Mbaff mode only

 19:16 EdgeCntlMapB_h00_1

Used in Mbaff mode only

 15:12 EdgeCntlMapA_h03_1

Used in Mbaff mode only

 11:8 EdgeCntlMapA_h02_1

Used in Mbaff mode only

 7:4 EdgeCntlMapA_h01_1

Used in Mbaff mode only

 3:0 EdgeCntlMapA_h00_1

Used in Mbaff mode only

W2.6 31:28 EdgeCntlMapB_v30_1

Used in Mbaff mode only

 27:24 EdgeCntlMapB_v20_1

Used in Mbaff mode only

 23:20 EdgeCntlMapB_v01_1

Used in Mbaff mode only

 19:16 EdgeCntlMapB_v00_1

Used in Mbaff mode only

 15:12 EdgeCntlMapA_v30_1

Used in Mbaff mode only

 11:8 EdgeCntlMapA_v20_1

Used in Mbaff mode only

 7:4 EdgeCntlMapA_v10_1

Used in Mbaff mode only

274 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

 3:0 EdgeCntlMapA_v00_1

Used in Mbaff mode only

W2.5
31:28 EdgeCntlMapB_h03_0

27:24 EdgeCntlMapB_h02_0

23:20 EdgeCntlMapB_h01_0

19:16 EdgeCntlMapB_h00_0

15:12 EdgeCntlMapA_h03_0

11:8 EdgeCntlMapA_h02_0

7:4 EdgeCntlMapA_h01_0

3:0 EdgeCntlMapA_h00_0

W2.4
31:28 EdgeCntlMapB_v30_0

27:24 EdgeCntlMapB_v20_0

23:20 EdgeCntlMapB_v10_0

19:16 EdgeCntlMapB_v00_0

15:12 EdgeCntlMapA_v30_0

11:8 EdgeCntlMapA_v20_0

7:4 EdgeCntlMapA_v10_0

3:0 EdgeCntlMapA_v00_0

W2.3
31:0

Reserved : MBZ

W2.2
31:28 EdgeCntlMap_h33

27:24 EdgeCntlMap_h32

23:20 EdgeCntlMap_h31

19:16 EdgeCntlMap_h30

15:12 EdgeCntlMap_h23

11:8 EdgeCntlMap_h22

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 275

DWord Bit Description

7:4 EdgeCntlMap_h21

3:0 EdgeCntlMap_h20

W2.1
31:28 EdgeCntlMap_h13

27:24 EdgeCntlMap_h12

23:20 EdgeCntlMap_h11

19:16 EdgeCntlMap_h10

15:12

EdgeCntlMap_v33

11:8

EdgeCntlMap_v23

7:4

EdgeCntlMap_v13

3:0

EdgeCntlMap_v03

W2.0
31:28 EdgeCntlMap_v32

27:24 EdgeCntlMap_v22

23:20 EdgeCntlMap_v12

19:16 EdgeCntlMap_v02

15:12 EdgeCntlMap_v31

11:8 EdgeCntlMap_v21

7:4 EdgeCntlMap_v11

3:0 EdgeCntlMap_v01

W3.7 31:24
bTc0_h33_0_Y

 23:16
bTc0_h32_0_Y

 15:8
bTc0_h31_0_Y

 7:0
bTc0_h30_0_Y

W3.6 31:24
bTc0_h23_0_Y

 23:16
bTc0_h22_0_Y

276 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

 15:8
bTc0_h21_0_Y

 7:0
bTc0_h20_0_Y

W3.5 31:24
bTc0_h13_0_Y

 23:16
bTc0_h12_0_Y

 15:8
bTc0_h11_0_Y

 7:0
bTc0_h10_0_Y

W3.4 31:24
bTc0_h03_0_Y

 23:16
bTc0_h02_0_Y

 15:8
bTc0_h01_0_Y

 7:0
bTc0_h00_0_Y

W3.3 31:24
bTc0_v33_Y

 23:16
bTc0_v23_Y

 15:8
bTc0_v13_Y

 7:0
bTc0_v03_Y

W3.2 31:24
bTc0_v32_Y

 23:16
bTc0_v22_Y

 15:8
bTc0_v12_Y

 7:0
bTc0_v02_Y

W3.1 31:24
bTc0_v31_Y

 23:16
bTc0_v21_Y

 15:8
bTc0_v11_Y

 7:0
bTc0_v01_Y

W3.0 31:24
bTc0_v30_0_Y

 23:16
bTc0_v20_0_Y

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 277

DWord Bit Description

 15:8
bTc0_v10_0_Y

 7:0
bTc0_v00_0_Y

W4.7 31:24 bTc0_h03_1_Y

Used in Mbaff mode only

 23:16 bTc0_h02_1_Y

Used in Mbaff mode only

 15:8 bTc0_h01_1_Y

Used in Mbaff mode only

 7:0 bTc0_h00_1_Y

Used in Mbaff mode only

W4.6 31:24 bTc0_v30_1_Y

Used in Mbaff mode only

 23:16 bTc0_v20_1_Y

Used in Mbaff mode only

 15:8 bTc0_v10_1_Y

Used in Mbaff mode only

 7:0 bTc0_v00_1_Y

Used in Mbaff mode only

W4.5 31:0
MBZ

W4.4 31:24
bBetaTop1_Y

 23:16
bAlphaTop1_Y

 15:8
bBetaLeft1_Y

 7:0
bAlphaLeft1_Y

W4.3 31:0
MBZ

W4.2 31:0
MBZ

W4.1 31:16
MBZ

 15:8
bBetaInternal_Y

 7:0
bAlphaInternal_Y

W4.0 31:24
bBetaTop0_Y

278 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

 23:16
bAlphaTop0_Y

 15:8
bBetaLeft0_Y

 7:0
bAlphaLeft0_Y

W5.7 31:24
bTc0_h23_Cr

 23:16
bTc0_h22_Cr

 15:8
bTc0_h21_Cr

 7:0
bTc0_h20_Cr

W5.6 31:24
bTc0_h03_0_Cr

 23:16
bTc0_h02_0_Cr

 15:8
bTc0_h01_0_Cr

 7:0
bTc0_h00_0_Cr

W5.5 31:24
bTc0_v32_Cr

 23:16
bTc0_v22_Cr

 15:8
bTc0_v12_Cr

 7:0
bTc0_v02_Cr

W5.4 31:24
bTc0_v30_0_Cr

 23:16
bTc0_v20_0_Cr

 15:8
bTc0_v10_0_Cr

 7:0
bTc0_v00_0_Cr

W5.3 31:24
bTc0_h23_Cb

 23:16
bTc0_h22_Cb

 15:8
bTc0_h21_Cb

 7:0
bTc0_h20_Cb

W5.2 31:24
bTc0_h03_0_Cb

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 279

DWord Bit Description

 23:16
bTc0_h02_0_Cb

 15:8
bTc0_h01_0_Cb

 7:0
bTc0_h00_0_Cb

W5.1 31:24
bTc0_v32_Cb

 23:16
bTc0_v22_Cb

 15:8
bTc0_v12_Cb

 7:0
bTc0_v02_Cb

W5.0 31:24
bTc0_v30_0_Cb

 23:16
bTc0_v20_0_Cb

 15:8
bTc0_v10_0_Cb

 7:0
bTc0_v00_0_Cb

W6.7
31:0 MBZ

W6.6
31:0 MBZ

W6.5
31:0 MBZ

W6.4
31:0 MBZ

W6.3
31:16 MBZ

15:8 bBetaInternal_Cr

7:0 bAlphaInternal_Cr

W6.2 31:24
bBetaTop0_Cr

 23:16
bAlphaTop0_Cr

 15:8
bBetaLeft0_Cr

 7:0
bAlphaLeft0_Cr

W6.1
31:16 MBZ

15:8 bBetaInternal_Cb

280 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

DWord Bit Description

7:0 bAlphaInternal_Cb

W6.0 31:24
bBetaTop0_Cb

 23:16
bAlphaTop0_Cb

 15:8
bBetaLeft0_Cb

 7:0
bAlphaLeft0_Cb

W7.7
31:24 bTc0_h03_1_Cr

23:16 bTc0_h02_1_Cr

15:8 bTc0_h01_1_Cr

7:0 bTc0_h00_1_Cr

W7.6
31:24 bTc0_v30_1_Cr

23:16 bTc0_v20_1_Cr

15:8 bTc0_v10_1_Cr

7:0 bTc0_v00_1_Cr

W7.5
31:0 MBZ

W7.4
31:24 bBetaTop1_Cr

23:16 bAlphaTop1_Cr

15:8 bBetaLeft1_Cr

7:0 bAlphaLeft1_Cr

W7.3
31:24 bTc0_h03_1_Cb

23:16 bTc0_h02_1_Cb

15:8 bTc0_h01_1_Cb

7:0 bTc0_h00_1_Cb

W7.2
31:24 bTc0_v30_1_Cb

23:16 bTc0_v20_1_Cb

Doc Ref #: IHD-OS-V4 Pt1 – 05 11 281

DWord Bit Description

15:8 bTc0_v10_1_Cb

7:0 bTc0_v00_1_Cb

W7.1
31:0 MBZ

W7.0
31:24 bBetaTop1_Cb

23:16 bAlphaTop1_Cb

15:8 bBetaLeft1_Cb

7:0 bAlphaLeft1_Cb

282 Doc Ref #: IHD-OS-V4 Pt1 – 05 11

Revision History
Revision Description Date

1.0 First 2011 OpenSource edition May 2011

