

Intel® 965 Express Chipset
Family and Intel® G35 Express
Chipset Graphics Controller PRM

Programmer’s Reference Manual (PRM)

Volume 1: Graphics Core

January 2008

Revision 1.0a

Technical queries: ilg@linux.intel.com

www.intellinuxgraphics.org

2

Creative Commons License

You are free:

to Share — to copy, distribute,display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any
way that suggests that they endorse you or your use of the work).

No Derivative Works. You may not alter, transform, or build upon this work.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended
for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them.

The Intel® 965 Express Chipset Family and Intel® G35 Express Chipset may contain design defects or errors known as errata
which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was
developed by Intel. Implementations of the I2C bus/protocol may require licenses from various entities, including Philips
Electronics N.V. and North American Philips Corporation.

Intel and the Intel are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2008, Intel Corporation. All rights reserved.

http://creativecommons.org/licenses/by-nd/3.0/us/�

 3

Contents
1 Introduction ...18

1.1 Notations and Conventions ..20
1.1.1 Reserved Bits and Software Compatibility20

1.2 Terminology ..20
2 Graphics Device Overview ..32

2.1 Graphics Memory Controller Hub (GMCH)...32
2.2 Graphics Processing Unit (GPU) ..33

3 Graphics Processing Engine (GPE) ...34
3.1 Introduction ..34
3.2 Overview ..34

3.2.1 Block Diagram ..34
3.2.2 Command Stream (CS) Unit ...35
3.2.3 3D Pipeline...35
3.2.4 Media Pipeline...36
3.2.5 GEN4 Subsystem ..36

3.2.5.1 Execution Units (EUs)..36
3.2.6 GPE Function IDs ..36

3.3 Pipeline Selection ...38
3.4 URB Allocation ...38

3.4.1 URB_FENCE..39
3.5 Constant URB Entries (CURBEs)..44

3.5.1 Overview ...44
3.5.2 Multiple CURBE Allocation...44
3.5.3 CS_URB_STATE ..45
3.5.4 CONSTANT_BUFFER...46

3.6 Memory Access Indirection ..47
3.6.1 STATE_BASE_ADDRESS ...49

3.7 Instruction and State Prefetch..53
3.7.1 STATE_PREFETCH ...54

3.8 System Thread Configuration ...55
3.8.1 STATE_SIP ...55

3.9 Command Ordering Rules ..56
3.9.1 PIPELINE_SELECT ...56
3.9.2 PIPE_CONTROL ...56
3.9.3 URB-Related State-Setting Commands57
3.9.4 Common Pipeline State-Setting Commands.................................57
3.9.5 3D Pipeline-Specific State-Setting Commands57
3.9.6 Media Pipeline-Specific State-Setting Commands58
3.9.7 URB_FENCE (URB Fencing & Entry Allocation)..............................58
3.9.8 CONSTANT_BUFFER (CURBE Load) ..59
3.9.9 3DPRIMITIVE..59
3.9.10 MEDIA_OBJECT...59

4 Graphics Command Formats...60

4

4.1 Command Formats ...60
4.1.1 Memory Interface Commands..61
4.1.2 2D Commands ..61
4.1.3 3D/Media Commands...61
4.1.4 Video Codec Commands ...61
4.1.5 Command Header ...61

4.2 Command Map...64
4.2.1 Memory Interface Command Map ..64
4.2.2 2D Command Map...66
4.2.3 3D/Media Command Map..67

5 Register Address Maps...70
5.1 Graphics Register Address Map...70

5.1.1 Memory and I/O Space Registers...70
5.1.2 PCI Configuration Space...72
5.1.3 Graphics Register Memory Address Map......................................73

5.2 VGA and Extended VGA Register Map ..95
5.2.1 VGA and Extended VGA I/O and Memory Register Map95

5.3 Indirect VGA and Extended VGA Register Indices96
6 Memory Data Formats ... 100

6.1 Memory Object Overview... 100
6.1.1 Memory Object Types .. 100

6.2 Channel Formats .. 101
6.2.1 Unsigned Normalized (UNORM) ... 101
6.2.2 Gamma Conversion (SRGB) .. 102
6.2.3 Signed Normalized (SNORM)... 102
6.2.4 Unsigned Integer (UINT/USCALED) .. 102
6.2.5 Signed Integer (SINT/SSCALED).. 102
6.2.6 Floating Point (FLOAT) ... 103

6.2.6.1 32-bit Floating Point.. 103
6.2.6.2 64-bit Floating Point.. 103

6.3 Non-Video Surface Formats ... 103
6.3.1 Surface Format Naming.. 103
6.3.2 Intensity Formats.. 104
6.3.3 Luminance Formats ... 104
6.3.4 P4A4_UNORM ... 105
6.3.5 A4P4_UNORM ... 105

6.4 Compressed Surface Formats... 106
6.4.1 FXT Texture Formats ... 106

6.4.1.1 Overview of FXT1 Formats 106
6.4.1.2 FXT1 CC_HI Format .. 107
6.4.1.3 FXT1 CC_CHROMA Format 109
6.4.1.4 FXT1 CC_MIXED Format .. 111
6.4.1.5 FXT1 CC_ALPHA Format... 116

6.4.2 BC Texture Formats... 119
6.4.2.1 Opaque and One-bit Alpha Textures (BC1) 119
6.4.2.2 Opaque Textures (BC1_RGB).................................... 122
6.4.2.3 Compressed Textures with Alpha Channels (BC2-3) 122

6.5 Video Pixel/Texel Formats.. 124
6.5.1 Packed Memory Organization .. 124
6.5.2 Planar Memory Organization ... 125

6.6 Surface Memory Organizations ... 127

 5

6.7 Graphics Translation Tables ... 127
6.8 Hardware Status Page... 128
6.9 Instruction Ring Buffers... 128
6.10 Instruction Batch Buffers ... 128
6.11 Display, Overlay, Cursor Surfaces... 128
6.12 2D Render Surfaces .. 128
6.13 2D Monochrome Source .. 129
6.14 2D Color Pattern .. 129
6.15 3D Color Buffer (Destination) Surfaces .. 129
6.16 3D Depth Buffer Surfaces .. 130
6.17 Surface Layout... 130

6.17.1 Buffers .. 130
6.17.2 1D Surfaces.. 131
6.17.3 2D Surfaces.. 131

6.17.3.1 Computing MIP level sizes.. 132
6.17.3.2 Base Address for LOD Calculation.............................. 132
6.17.3.3 Minimum Pitch ... 133
6.17.3.4 Alignment Unit Size... 134
6.17.3.5 Cartesian to Linear Address Conversion...................... 134
6.17.3.6 Compressed Mipmap Layout 134
6.17.3.7 Surface Arrays ... 135

6.17.4 Cube Surfaces .. 135
6.17.4.1 Hardware Cube Map Layout...................................... 135
6.17.4.2 Restrictions.. 136

6.17.5 3D Surfaces.. 136
6.17.5.1 Minimum Pitch ... 138

6.18 Surface Padding Requirements ... 139
6.18.1 Sampling Engine Surfaces .. 139
6.18.2 Render Target and Media Surfaces... 139

6.19 Logical Context Data... 140
6.19.1 Overall Context Layout... 140

6.19.1.1 Per-Process GTT and Run Lists Disabled 140
6.19.2 Register/State Context... 140
6.19.3 The Probe List... 155
6.19.4 Pipelined State Page .. 155
6.19.5 Ring Buffer... 155
6.19.6 The Per-Process Hardware Status Page..................................... 156

7 Device 2 Configuration Registers ... 158
7.1 Introduction .. 158
7.2 Device 2, Function 0 ... 158

7.2.1 VID2 — Vendor Identification .. 160
7.2.2 DID2 — Device Identification .. 161
7.2.3 PCICMD2 — PCI Command ... 162
7.2.4 PCISTS2 — PCI Status ... 163
7.2.5 RID2 — Revision Identification .. 164
7.2.6 CC — Class Code... 165
7.2.7 CLS — Cache Line Size... 165
7.2.8 MLT2 — Master Latency Timer... 166
7.2.9 HDR2 — Header Type .. 166
7.2.10 BIST — Built In Self Test .. 166
7.2.11 GTTMMADR — Graphics Translation Table Range Address............ 167

6

7.2.12 GMADR — Graphics Memory Range Address 168
7.2.13 IOBAR — I/O Base Address... 169
7.2.14 SVID2 — Subsystem Vendor Identification 169
7.2.15 SID2 — Subsystem Identification... 170
7.2.16 ROMADR — Video BIOS ROM Base Address 170
7.2.17 CAPPOINT — Capabilities Pointer ... 170
7.2.18 INTRLINE — Interrupt Line ... 171
7.2.19 INTRPIN — Interrupt Pin .. 171
7.2.20 MINGNT — Minimum Grant ... 171
7.2.21 MAXLAT — Maximum Latency ... 172
7.2.22 MCAPPTR — Capabilities Pointer (to Mirror of Dev0 CAPID).......... 172
7.2.23 MCAPID — Mirror of Dev 0 Capability Identification. 172
7.2.24 MGGC — Mirror of Dev0 GMCH Graphics Control 173
7.2.25 MDEVENdev0F0 — Mirror of Dev0 DEVEN.................................. 174
7.2.26 SSRW — Software Scratch Read Write...................................... 174
7.2.27 BSM — Base of Stolen Memory.. 174
7.2.28 HSRW — Hardware Scratch Read Write 175
7.2.29 MSAC — Multi Size Aperture Control .. 175
7.2.30 SCWBFC — Secondary CWB Flush Control ([DevBW] Only).......... 176
7.2.31 CAPL — Capabilities List Control .. 176
7.2.32 MSI_CAPID — Message Signaled Interrupts Capability ID............ 177
7.2.33 MC — Message Control... 178
7.2.34 MA — Message Address.. 179
7.2.35 MD — Message Data .. 179
7.2.36 GDRST — Graphics Device Reset ... 180
7.2.37 GMBUSFREQ — GMBUS frequency binary encoding..................... 181
7.2.38 PMCAPID — Power Management Capabilities ID 181
7.2.39 PMCAP — Power Management Capabilities................................. 182
7.2.40 PMCS — Power Management Control/Status 183
7.2.41 SWSMI — Software SMI ... 184
7.2.42 ASLE — System Display Event Register 184
7.2.43 SWSCI — Software SCI .. 185
7.2.44 LBB — Legacy Backlight Brightness ([DevCL] Only) 186
7.2.45 MID2 — Manufacturing ID .. 187
7.2.46 ASLS — ASL Storage ... 187

7.3 Device 2, Function 1 ... 188
7.3.1 VID2 — Vendor Identification .. 189
7.3.2 DID2 — Device Identification .. 189
7.3.3 PCICMD2 — PCI Command ... 190
7.3.4 PCISTS2 — PCI Status ... 191
7.3.5 RID2 — Revision Identification .. 192
7.3.6 CC — Class Code... 193
7.3.7 CLS — Cache Line Size... 193
7.3.8 MLT2 — Master Latency Timer... 194
7.3.9 HDR2 — Header Type .. 194
7.3.10 BIST — Built In Self Test .. 194
7.3.11 MMADR — Memory Mapped Range Address 195
7.3.12 SVID2 — Subsystem Vendor Identification 195
7.3.13 SID2 — Subsystem Identification... 196
7.3.14 ROMADR — Video BIOS ROM Base Address 196
7.3.15 CAPPOINT — Capabilities Pointer ... 196
7.3.16 MINGNT — Minimum Grant ... 197
7.3.17 MAXLAT — Maximum Latency ... 197
7.3.18 MCAPPTR — Capabilities Pointer (to Mirror of Dev0 CAPID).......... 197
7.3.19 MCAPID — Mirror of Dev 0 Capability Identification. 198

 7

7.3.20 MGGC — Mirror of Dev0 GMCH Graphics Control 199
7.3.21 MDEVENdev0F0 — Mirror of Dev0 DEVEN.................................. 199
7.3.22 SSRW — Software Scratch Read Write...................................... 200
7.3.23 BSM — Base of Stolen Memory.. 200
7.3.24 HSRW — Hardware Scratch Read Write 200
7.3.25 MSAC — Multi Size Aperture Control .. 201

8 Memory Interface Registers.. 202
8.1 Introduction .. 202
8.2 Virtual Memory Control ... 202

8.2.1 Global Virtual Memory.. 202
8.2.1.1 PGTBL_CTL—Page Table Control Register 203
8.2.1.2 PGTBL_ER—Page Table Error Register (Debug)............ 205
8.2.1.3 Graphics Translation Table (GTT) Range (GTTADR) 207
8.2.1.4 GTT Page Table Entries (PTEs) 208

8.2.2 Single-Level (Flat) Per-Process Virtual Memory 209
8.2.2.1 PGTBL_CTL2— Per Process Page Table Control Register 209
8.2.2.2 PGTBL_STR2—Page Table Steer Register (Per Process). 211

8.2.3 TLB Read Interface .. 213
8.2.3.1 TLB_RD_EXT — TLB Read Extent............................... 213
8.2.3.2 Instruction/State Cache (ISC)................................... 214
8.2.3.3 Vertex Fetch (VF) ... 215
8.2.3.4 Command Streamer (CS)... 216
8.2.3.5 Texture Cache (MT) .. 217
8.2.3.6 Render Cache (RC) ... 218

8.3 GFX_MODE – Graphics Mode Register... 219
8.4 EXCC—Execute Condition Code Register .. 220
8.5 RINGBUF—Ring Buffer Registers ... 222

8.5.1 UHPTR — Pending Head Pointer Register................................... 226
8.6 Debug Registers Control .. 227

8.6.1 HW_MEMRD—Memory Read Sync Register (Debug).................... 227
8.6.2 IPEIR—Instruction Parser Error Identification Register (Debug) 228
8.6.3 IPEHR—Instruction Parser Error Header Register (Debug) 229
8.6.4 INSTDONE—Instruction Stream Interface Done Register (Debug) . 229
8.6.5 INSTPS—Instruction Parser State Register (Debug) 231
8.6.6 ACTHD — Active Head Pointer Register (Debug) 231
8.6.7 DMA_FADD_P — Primary DMA Engine Fetch Address (Debug) 232
8.6.8 INSTDONE_1 — Additional Instruction Stream Interface Done

(Debug)... 232
8.6.9 GFX_FLSH_CNTL — Graphics Flush Control 234

8.7 NOPID — NOP Identification Register .. 235
8.8 Interrupt Control Registers .. 236

8.8.1 HWS_PGA — Hardware Status Page Address Register 239
8.8.2 PWRCTXA — Power Context Register Address ([DevCL] Only) 240
8.8.3 HWSTAM — Hardware Status Mask Register 241
8.8.4 IER — Interrupt Enable Register .. 244
8.8.5 IIR — Interrupt Identity Register ... 245
8.8.6 IMR—Interrupt Mask Register.. 246
8.8.7 ISR — Interrupt Status Register .. 247

8.9 Hardware-Detected Error Bit Definitions (for EIR, EMR, ESR) 248
8.9.1 EIR — Error Identity Register .. 249
8.9.2 EMR—Error Mask Register... 250
8.9.3 ESR—Error Status Register ... 251

8

8.10 Register Definitions for Context Save .. 252
8.10.1 INSTPM—Instruction Parser Mode Register 252
8.10.2 Cache_Mode_0— Cache Mode Register 0 254
8.10.3 Cache_Mode_1— Cache Mode Register 1 257
8.10.4 BB_ADDR—Batch Buffer Head Pointer Register 261
8.10.5 BB_STATE – Batch Buffer State Register................................... 262
8.10.6 CTXT_SR_CTL – Context Save/Restore Control Register 263

8.11 Logical Context Support .. 264
8.11.1 CCID—Current Context ID Register .. 264
8.11.2 CXT_SIZE—Context Size with Extended State............................ 266
8.11.3 CXT_SIZE_NOEXT—Context Size without the Extended State....... 266

8.12 Arbitration Control, and Scratch Bits ... 267
8.12.1 MI_DISPLAY_POWER_DOWN—Display Power Down ([DevCL] Only)267
8.12.2 MI_ARB_STATE—Memory Interface Arbitration State Register...... 268
8.12.3 MI_RDRET_STATE—Memory Interface Read Return State Register 271
8.12.4 MI_MODE — Mode Register for Software Interface 274
8.12.5 ECOSKPD—ECO Scratch Pad (DEBUG)...................................... 278

8.13 Debug Registers... 281
8.13.1 CSFLFSM — Flush FSM (Debug)... 281
8.13.2 CSFLFLAG — Flush FLAG (Debug) .. 283
8.13.3 CSFLTRK — Flush Track (Debug) ... 284
8.13.4 CSCMDOP — Instruction DWORD (Debug)................................. 284
8.13.5 CSCMDVLD — Instruction DWORD Valid (Debug) 285
8.13.6 CLKCMP — Compare count clock stop (Debug)........................... 285
8.13.7 VFDC—Set Value of Draw Count (DEBUG)................................. 286
8.13.8 VFSKPD—VF Scratch Pad (DEBUG)... 286

8.14 Software Visible Counter Registers.. 288
8.14.1 PS_DEPTH_COUNT — Reported Pixels Passing Depth Test Counter288
8.14.2 TIMESTAMP — Reported Timestamp Count................................ 289

8.15 MTCH_CID_RST – Matched Context ID Reset Register 290
8.16 Interrupt Control Registers .. 291

8.16.1.1 BCS_IPEIR—Instruction Parser Error Identification Register
(Debug) .. 292

8.16.1.2 BCS_IPEHR—Instruction Parser Error Header Register
(Debug) .. 292

8.16.1.3 BCS_ACTHD — Active Head Pointer Register (Debug)... 292
8.16.1.4 BCS_DMA_FADD —DMA Engine Fetch Address (Debug) 293
8.16.1.5 BCS_HWS_PGA — Hardware Status Page Address Register293
8.16.1.6 BCS_NOPID — NOP Identification Register 294
8.16.1.7 BCS_MI_MODE — Mode Register for Software Interface294
8.16.1.8 BCS_INSTPM—Instruction Parser Mode Register 295
8.16.1.9 BCS_UHPTR — Pending Head Pointer Register............. 296
8.16.1.10 BCS_CNTR—Counter for the Bit Stream Decode Engine 296
8.16.1.11 BCS_THRSH—Threshold for the Counter of Bit Stream

Decode Engine ... 296
8.16.1.12 BCS_BB_ADDR—Batch Buffer Head Pointer Register 297
8.16.1.13 BCS_RCCID—Ring Buffer Current Context ID Register.. 297
8.16.1.14 BCS_RNCID—Ring Buffer Next Context ID Register...... 298

8.17 Software Control Bit Definitions.. 298
8.18 Frame Buffer Compression Control ([DevCL] Only).................................. 299

8.18.1 FBC_CFB_BASE — Compressed Frame Buffer Base Address 299
8.18.2 FBC_LL_BASE — Compressed Frame Line Length Buffer Address .. 300
8.18.3 FBC_CONTROL — Frame Buffer Compression Control Register 301
8.18.4 FBC_COMMAND — Frame Buffer Compression Command Register 302

 9

8.18.5 FBC_STATUS — Frame Buffer Compression Status Register 303
8.18.6 FBC_CONTROL2— Frame Buffer Compression 2nd Control Register 305
8.18.7 FBC_DISPYOFF — FBC Fence Display Buffer Y Offset 306
8.18.8 FBC_MOD_NUM— FBC Number of Modifications for Recompression307
8.18.9 FBC_TAG — Frame Buffer Compression TAG Interface (DEBUG) ... 308

8.19 Fence Registers.. 310
8.19.1 FENCE — Graphics Memory Fence Table Registers...................... 310

8.20 GFX MMIO – MCHBAR Aperture .. 312
9 Memory Interface Commands for Rendering Engine ... 314

9.1 Introduction .. 314
9.2 MI_ARB_CHECK ... 314
9.3 MI_BATCH_BUFFER_END... 315
9.4 MI_BATCH_BUFFER_START.. 315
9.5 MI_DISPLAY_FLIP... 318
9.6 MI_FLUSH ... 323
9.7 MI_LOAD_REGISTER_IMM ... 324
9.8 MI_LOAD_SCAN_LINES_EXCL .. 325
9.9 MI_LOAD_SCAN_LINES_INCL... 327
9.10 MI_NOOP .. 328
9.11 MI_OVERLAY_FLIP.. 329

9.11.1 Turning the Overlay Off.. 331
9.11.2 Valid Overlay Flip Sequences .. 331

9.12 MI_REPORT_HEAD.. 332
9.13 MI_SET_CONTEXT .. 332
9.14 MI_STORE_DATA_IMM .. 335
9.15 MI_STORE_DATA_INDEX... 337
9.16 MI_STORE_REGISTER_MEM... 339
9.17 MI_USER_INTERRUPT ... 341
9.18 MI_WAIT_FOR_EVENT... 341

10 Memory Interface Commands for Blitter Engine... 346
10.1 Introduction .. 346
10.2 MI_LOAD_REGISTER_IMM ... 347
10.3 MI_NOOP .. 348
10.4 MI_STORE_DATA_IMM .. 349
10.5 MI_STORE_DATA_INDEX... 350
10.6 MI_USER_INTERRUPT ... 352
10.7 MI_WAIT_FOR_EVENT... 352

11 Graphics Memory Interface Functions... 354
11.1 Introduction .. 354
11.2 Graphics Memory Clients ... 354
11.3 Graphics Memory Addressing Overview.. 355

11.3.1 Graphics Address Path ... 355
11.4 Graphics Memory Address Spaces... 357
11.5 Address Tiling Function ... 357

11.5.1 Linear vs. Tiled Storage.. 357
11.5.2 Tile Formats ... 360

10

11.5.3 Tiling Algorithm .. 362
11.5.4 Tiling Support ... 363

11.5.4.1 Tiled (Fenced) Regions .. 363
11.5.4.2 Tiled Surface Parameters ... 364
11.5.4.3 Tiled Surface Restrictions... 364

11.5.5 Per-Stream Tile Format Support .. 367
11.6 Logical Memory Mapping ... 367

11.6.1 Logical Memory Space Mappings.. 368
11.7 Physical Graphics Memory ... 372

11.7.1 Physical Graphics Address Types ... 372
11.7.2 Main Memory.. 373

11.7.2.1 Optimizing Main Memory Allocation 373
11.7.2.2 Application of the Theory (Page Coloring)................... 373

12 Device Programming Environment... 376
12.1 Programming Model.. 376
12.2 Graphics Device Register Programming.. 376
12.3 Graphics Device Command Streams.. 377

12.3.1 Command Use .. 377
12.3.2 Command Transport Overview .. 377
12.3.3 Command Parser... 378
12.3.4 The Ring Buffer... 378

12.3.4.1 The Ring Buffer (RB) ... 379
12.3.4.2 Ring Buffer Registers... 379
12.3.4.3 Ring Buffer Placement ... 381
12.3.4.4 Ring Buffer Initialization .. 381
12.3.4.5 Ring Buffer Use .. 381
12.3.4.6 Ring Buffer Semaphore.. 382

12.3.5 Batch Buffers.. 382
12.3.5.1 Batch Buffer Chaining.. 382
12.3.5.2 Ending Batch Buffers ... 383

12.3.6 Indirect Data .. 383
12.3.6.1 Logical Contexts ... 383

12.3.7 Command Arbitration... 383
12.3.7.1 Arbitration Policies and Rationale 383
12.3.7.2 Wait Commands ... 384
12.3.7.3 Wait Events/Conditions.. 384
12.3.7.4 Command Arbitration Points 385
12.3.7.5 Command Arbitration Rules...................................... 385
12.3.7.6 Batch Buffer Protection.. 385

12.3.8 Graphics Engine Synchronization ... 386
12.3.9 Graphics Memory Coherency... 387
12.3.10 Graphics Cache Coherency.. 387

12.3.10.1 Rendering Cache .. 387
12.3.10.2 Sampler Cache ... 388
12.3.10.3 Instruction/State Cache ... 388
12.3.10.4 Vertex Cache ... 389
12.3.10.5 GTT TLBs... 389

12.3.11 Command Synchronization ... 389
12.3.11.1 MI_FLUSH ... 390
12.3.11.2 Sync Flush... 390

12.4 Hardware Status .. 391
12.4.1 Hardware-Detected Errors (Master Error bit) 392
12.4.2 Thermal Sensor Event.. 392

 11

12.4.3 Sync Status.. 392
12.4.4 Display Plane A, B, Flip Pending... 392
12.4.5 Overlay Flip Pending .. 392
12.4.6 Display Pipe A,B VBLANK.. 392
12.4.7 User Interrupt... 393
12.4.8 PIPE_CONTROL Notify Interrupt... 393
12.4.9 Display Port Interrupt .. 393

12.5 Hardware Status Writes... 393
12.6 Interrupts ... 393
12.7 Errors ... 394

12.7.1 Error Reporting ... 394
12.7.2 Page Table Errors .. 395
12.7.3 Clearing Errors.. 395

12.8 Rendering Context Management ... 396
12.8.1 Multiple Logical Rendering Contexts ... 396

12.8.1.1 Current Context IDs .. 397
12.8.1.2 Intra-Ring Context Switch.. 397
12.8.1.3 Logical Rendering Context Creation and Initialization ... 398
12.8.1.4 Context Save ... 398

12.9 Reset State ... 399
13 Frame Buffer Compression ([DevCL] Only) ... 400

13.1 Overview .. 400
13.2 Programming Interface ... 401

13.2.1 FBC unit programming interface .. 401
13.2.2 Programming interface from Display Engine 402

13.3 Operating Modes .. 403
13.3.1 RLE-FBC Function Modes .. 403
13.3.2 Compression Modes... 404

13.3.2.1 Single Compression Mode .. 404
13.3.2.2 Periodic Compression Mode 404

13.4 Usage Restrictions.. 405
13.5 Power Management Interface ... 406
13.6 Memory Data Structures.. 407

13.6.1 RLE Pixel Runs .. 407
13.6.2 RLE Pixel Run Sets .. 407
13.6.3 RLE-Compressed Line .. 407
13.6.4 RLE Compressed Frame and Line Length Buffers 408

13.7 Tuning Parameters ... 409
13.7.1 Stride .. 409
13.7.2 Interval ... 409
13.7.3 FBC Modification Counter.. 409

13.8 Implementation (DEBUG) .. 410
13.8.1 Tag Array... 410

13.8.1.1 Transitions... 410
13.8.2 Compressor.. 411
13.8.3 Decompressor... 412
13.8.4 Frame Buffer Write Detector ... 412
13.8.5 Coherency.. 413

14 BLT Engine... 414
14.1 Introduction .. 414
14.2 Classical BLT Engine Functional Description.. 414

12

14.2.1 Basic BLT Functional Considerations... 415
14.2.1.1 Color Depth Configuration and Color Expansion........... 415
14.2.1.2 Graphics Data Size Limitations.................................. 416
14.2.1.3 Bit-Wise Operations .. 416
14.2.1.4 Per-Pixel Write-Masking Operations 421
14.2.1.5 When the Source and Destination Locations Overlap 422

14.2.2 Basic Graphics Data Considerations.. 426
14.2.2.1 Contiguous vs. Discontinuous Graphics Data............... 426
14.2.2.2 Source Data... 427
14.2.2.3 Monochrome Source Data .. 428
14.2.2.4 Pattern Data .. 429
14.2.2.5 Destination Data... 431

14.2.3 BLT Programming Examples.. 432
14.2.3.1 Pattern Fill — A Very Simple BLT............................... 432
14.2.3.2 Drawing Characters Using a Font Stored in System

Memory... 435
14.3 BLT Instruction Overview... 438
14.4 BLT Engine State.. 438
14.5 Cacheable Memory Support ... 439
14.6 Device Cache Coherency: Render and Texture Caches 439
14.7 BLT Engine Instructions... 440

14.7.1 Blt Programming Restrictions .. 440
14.8 Fill/Move Instructions.. 440

14.8.1 COLOR_BLT (Fill) .. 441
14.8.2 SRC_COPY_BLT (Move) .. 442

14.9 2D (X,Y) BLT Instructions .. 443
14.9.1 XY_SETUP_BLT ... 445
14.9.2 XY_SETUP_MONO_PATTERN_SL_BLT 446
14.9.3 XY_SETUP_CLIP_ BLT .. 447
14.9.4 XY_PIXEL_BLT .. 447
14.9.5 XY_SCANLINES_BLT .. 448
14.9.6 XY_TEXT_BLT ... 449
14.9.7 XY_TEXT_IMMEDIATE_BLT ... 450
14.9.8 XY_COLOR_BLT .. 451
14.9.9 XY_PAT_BLT... 452
14.9.10 XY_PAT_CHROMA_BLT ... 453
14.9.11 XY_PAT_BLT_IMMEDIATE ... 454
14.9.12 XY_PAT_CHROMA_BLT_IMMEDIATE ... 455
14.9.13 XY_MONO_PAT_BLT... 456
14.9.14 XY_MONO_PAT_FIXED_BLT .. 458

14.9.14.1 Monochrome Pattern Memory Format 460
14.9.14.2 HS_HORIZONTAL 0 ... 461
14.9.14.3 HS_VERTICAL 1.. 461
14.9.14.4 HS_FDIAGONAL 2... 461
14.9.14.5 HS_BDIAGONAL 3... 461
14.9.14.6 HS_CROSS 4.. 462
14.9.14.7 HS_DIAGCROSS 5 .. 462
14.9.14.8 Screen Door 8 .. 462
14.9.14.9 SD Wide 9 ... 462
14.9.14.10 Walking Bit (One) A 463
14.9.14.11 Walking Zero B ... 463

14.9.15 XY_SRC_COPY_BLT ... 463
14.9.16 XY_SRC_COPY_CHROMA_BLT ... 465
14.9.17 XY_MONO_SRC_COPY_BLT ... 466

 13

14.9.18 XY_MONO_SRC_COPY_ IMMEDIATE_BLT 468
14.9.19 XY_FULL_BLT.. 470
14.9.20 XY_FULL_IMMEDIATE_PATTERN_BLT.. 472
14.9.21 XY_FULL_MONO_SRC_BLT.. 474
14.9.22 XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT...................... 476
14.9.23 XY_FULL_MONO_PATTERN_BLT ... 478
14.9.24 XY_FULL_MONO_PATTERN_MONO_SRC_BLT 480

14.10 BLT Engine Instruction Field Definitions ... 482
14.10.1 BR00—BLT Opcode & Control .. 482
14.10.2 BR01—Setup BLT Raster OP, Control, and Destination Offset 485
14.10.3 BR05—Setup Expansion Background Color 487
14.10.4 BR06—Setup Expansion Foreground Color................................. 488
14.10.5 BR07—Setup Color Pattern Address ... 489
14.10.6 BR09—Destination Address... 490
14.10.7 BR11—BLT Source Pitch (Offset).. 491
14.10.8 BR12—Source Address ... 492
14.10.9 BR13—BLT Raster OP, Control, and Destination Pitch.................. 492
14.10.10 BR14—Destination Width & Height ... 494
14.10.11 BR15—Color Pattern Address .. 495
14.10.12 BR16—Pattern Expansion Background & Solid Pattern Color......... 496
14.10.13 BR17—Pattern Expansion Foreground Color............................... 496
14.10.14 BR18—Source Expansion Background, and Destination Color 497
14.10.15 BR19—Source Expansion Foreground Color 497

14

Figures

Figure 2-1. GMCH Block Diagram ..32
Figure 2-2. Block Diagram of the GPU ..33
Figure 3-1. The Graphics Processing Engine ..34
Figure 3-2. GPE Diagram Showing Fixed/Shared Functions....................................35
Figure 3-3. URB Allocation – 3D Pipeline...39
Figure 3-4 URB Allocation – Media Pipeline ..40
Figure 6-1. FXT1 Encoded Blocks.. 106
Figure 6-2. Memory Layout of Packed YUV 4:2:2 Formats 125
Figure 6-3. YUV 4:2:0 Format Memory Organization .. 126
Figure 6-4. YUV 4:1:0 Format Memory Organization .. 127
Figure 6-5. Volume Texture Map ... 136
Figure 11-1. Graphics Memory Paths... 356
Figure 11-2. Rectangular Memory Operand Parameters 358
Figure 11-3. Linear Surface Layout .. 358
Figure 11-4. Memory Tile Dimensions ... 359
Figure 11-5. Tiled Surface Layout.. 360
Figure 11-6. Y-Major Tile Layout ... 361
Figure 11-7. Tiled Surface Placement ... 365
Figure 11-8. Global and Render GTT Mapping... 369
Figure 11-9. GTT Re-mapping to Handle Differing Pitches 371
Figure 11-10. Logical-to-Physical Graphics Memory Mapping 371
Figure 11-11. Memory Interfaces .. 372
Figure 11-12. Memory Pages backing Color and Depth Buffers............................. 374
Figure 12-1. Graphics Controller Command Interface ... 378
Figure 12-2. Ring Buffer... 379
Figure 12-3. Batch Buffer Chaining .. 382
Figure 13-1. 32bpp Pixel Run.. 407
Figure 13-2. 16bpp Pixel Run... 407
Figure 13-3. Pixel Run Set.. 407
Figure 13-4. RLE-Compression Buffers .. 408
Figure 14-1. Block Diagram and Data Paths of the BLT Engine............................. 415
Figure 14-2. Block Diagram and Data Paths of the BLT Engine............................. 421
Figure 14-3. Source Corruption in BLT with Overlapping Source and Destination

Locations... 423
Figure 14-4. Correctly Performed BLT with Overlapping Source and Destination

Locations... 424
Figure 14-5. Suggested Starting Points for Possible Source and Destination Overlap

Situations .. 425
Figure 14-6. Representation of On-Screen Single 6-Pixel Line in the Frame Buffer .. 426
Figure 14-7. Representation of On-Screen 6x4 Array of Pixels in the Frame Buffer.. 427
Figure 14-8. Pattern Data -- Always an 8x8 Array of Pixels................................. 429
Figure 14-9. 8bpp Pattern Data -- Occupies 64 Bytes (8 quadwords) 430
Figure 14-10. 16bpp Pattern Data -- Occupies 128 Bytes (16 quadwords) 430
Figure 14-11. 32bpp Pattern Data -- Occupies 256 Bytes (32 quadwords) 430
Figure 14-12. On-Screen Destination for Example Pattern Fill BLT 432
Figure 14-13. Pattern Data for Example Pattern Fill BLT...................................... 433
Figure 14-14. Results of Example Pattern Fill BLT .. 434
Figure 14-15. On-Screen Destination for Example Character Drawing BLT 435

 15

Figure 14-16. Source Data in System Memory for Example Character Drawing BLT. 435
Figure 14-17. Results of Example Character Drawing BLT 437

Tables

Table 1-1. Supported Chipsets ..18
Table 3-1. Gen4 Function IDs ...37
Table 3-2. Base Address Utilization..48
Table 4-1. RCP Command Header Format ..62
Table 4-2. VCCP Command Header Format ..63
Table 4-3. Memory Interface Commands for RCP ..64
Table 4-4. Memory Interface Commands for VCCP ..65
Table 5-1. Graphics Controller Register Memory and I/O Map71
Table 5-2. Memory-Mapped Registers ...73
Table 5-3. I/O and Memory Register Map ...95
Table 5-4. 2D Sequence Registers (3C4h / 3C5h) ..96
Table 5-5. 2D Graphics Controller Registers (3CEh / 3CFh)97
Table 5-6. 2D Attribute Controller Registers (3C0h / 3C1h)97
Table 5-7. 2D CRT Controller Registers (3B4h / 3D4h / 3B5h / 3D5h).....................98
Table 6-1. FXT1 Format Summary ... 106
Table 6-2. FXT CC_HI Block Encoding .. 107
Table 6-3. FXT CC_HI Decoded Colors.. 108
Table 6-4. FXT CC_HI Interpolated Color Table.. 108
Table 6-5. FXT CC_CHROMA Block Encoding ... 109
Table 6-6. FXT CC_CHROMA Decoded Colors... 110
Table 6-7. FXT CC_CHROMA Interpolated Color Table... 111
Table 6-8. FXT CC_MIXED Block Encoding .. 111
Table 6-9. FXT CC_MIXED (Alpha[0]=0) Decoded Colors 112
Table 6-10. FXT CC_MIXED Decoded Colors (Alpha[0] = 0)................................. 112
Table 6-11. FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 0-15)..... 113
Table 6-12. FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 16-31) ... 114
Table 6-13. FXT CC_MIXED (Alpha[0]=0) Decoded Colors................................... 114
Table 6-14. FXT CC_MIXED Decoded Colors (Alpha[0] = 1)................................. 114
Table 6-15. FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 0-15)..... 115
Table 6-16. FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 16-31) ... 115
Table 6-17. FXT CC_ALPHA Block Encoding.. 116
Table 6-18. FXT CC_ALPHA Decoded Colors .. 117
Table 6-19. FXT CC_ALPHA Interpolated Color Table (LERP=0) 118
Table 6-20. FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 0-15) 118
Table 6-21. FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 16-31) 118
Table 6-22. Depth Buffer Formats ... 130
Table 6-23. Alignment Units for Texture Maps ... 134
Table 6-24. Context Setup that Cannot Use Defaults ... 150
Table 6-25. Initialization of Command State .. 151
Table 9-1. Bit Definition for Interrupt Control Registers 236
Table 9-2. Hardware-Detected Error Bits ... 248
Table 8-3. Bit Definition for Interrupt Control Registers 291
Table 11-1. Graphics Memory Clients ... 354
Table 11-2. Graphics Memory Address Types .. 357
Table 11-3. X-Major Tile Layout ... 361

16

Table 11-4. Physical Memory Address Types ... 372
Table 12-1. Ring Buffer Characteristics... 380
Table 12-2. Graphics Memory Coherency.. 387
Table 12-3. Page Table Error Types .. 395
Table 14-1. Bit-Wise Operations and 8-Bit Codes (00-3F) 417
Table 14-2. Bit-Wise Operations and 8-bit Codes (40 - 7F).................................. 418
Table 14-3. Bit-Wise Operations and 8-bit Codes (80 - BF).................................. 419
Table 14-4. Bit-Wise Operations and 8-bit Codes (C0 - FF).................................. 420

 17

Revision History

Document
Number

Revision
Number

Description Revision Date VVol

 1 1.0a Initial release. January 2008

18

1 Introduction

This Programmer’s Reference Manual (PRM) describes the architectural behavior and
programming environment of the Intel® 965 Express Chipset family and Intel® G35
Express Chipset GMCH graphics devices (see Table 1-1). The GMCH’s Graphics
Controller (GC) contains an extensive set of registers and instructions for
configuration, 2D, 3D, and Video systems. The PRM describes the register, instruction,
and memory interfaces and the device behaviors as controlled and observed through
those interfaces. The PRM also describes the registers and instructions and provides
detailed bit/field descriptions.

Note: The term “Gen4” is used throughout the PRM to refer to the Generation 4 family of
graphics devices. The devices listed in Table 1-1 are Gen4 devices.

Table 1-1. Supported Chipsets

Chipset Family Name Device Name Device Tag

Intel® Q965 Chipset
Intel® Q963 Chipset
Intel® G965 Chipset

82Q965 GMCH
82Q963 GMCH
82G965 GMCH

[DevBW]

Intel® G35 Chipset 82G35 GMCH [DevBW-E]

Intel® GM965 Chipset
Intel® GME965 Chipset

GM965 GMCH
GME965 GMCH

[DevCL]

NOTES:
1. Unless otherwise specified, the information in this document applies to all of the devices

mentioned in Table 1-1. For Information that does not apply to all devices, the Device
Tag is used.

2. Throughout the PRM, references to “All” in a project field refters to all devices in
Table 1-1.

3. Throughout the PRM, references to [DevBW] apply to both [DevBW] and [DevBW-E].
[DevBW-E] is referenced specifically for information that is [DevBW-E] only.

4. Stepping info is sometimes appended to the device tag (e.g., [DevBW-C]). Information
without any device tagging is applicable to all devices/steppings.

The PRM is intended for hardware, software, and firmware designers who seek to
implement or use the graphic functions of the 965 Express Chipset family and G35
Chipset Express Chipset. Familiarity with 2D and 3D graphics programming is
assumed.

 19

The Programmer’s Reference Manual is organized into four volumes:

• PRM, Volume 1: Graphics Core
Volume 1 covers the overall Graphics Processing Unit (GPU), without much detail
on 3D, Media, or the core subsystem. Topics include the command streamer,
context switching, and memory access (including tiling). The Memory Data
Formats can also be found in this volume.

The volume also contains a chapter on the Graphics Processing Engine (GPE). The
GPE is a collective term for 3D, Media, the subsystem, and the parts of the
memory interface that are used by these units. Display, blitter and their memory
interfaces are not included in the GPE.

• PRM, Volume 2; 3D/Media
Volume 2 covers the 3D and Media pipelines in detail. This volume is where details
for all of the “fixed functions” are covered, including commands processed by the
pipelines, fixed-function state structures, and a definition of the inputs (payloads)
and outputs of the threads spawned by these units.

This volume also covers the single Media Fixed Function, VLD. It describes how to
initiate generic threads using the thread spawner (TS). It is generic threads which
will be used for doing the majority of media functions. Programmable kernels will
handle the algorithms for media functions such IDCT, Motion Compensation,
WMV9, and even Motion Estimation (used for encoding MPEG streams).

• PRM, Volume 3: Display Registers
Volume 3 describes the control registers for the display. The overlay registers and
VGA registers are also cover in this volume.

• PRM, Volume 4: Subsystem and Cores
Volume 4 describes the GMCH programmable cores, or EUs, and the “shared
functions”, which are shared by more than one EU and perform functions such as
I/O and complex math functions.

The shared functions consist of the sampler, extended math unit, data port (the
interface to memory for 3D and media), Unified Return Buffer (URB), and the
Message Gateway which is used by EU threads to signal each other. The EUs use
messages to send data to and receive data from the subsystem; the messages are
described along with the shared functions, although the generic message send EU
instruction is described with the rest of the instructions in the Instruction Set
Architecture (ISA) chapters.

This latter part of this volume describes the GMCH core, or EU, and the associated
instructions that are used to program it. The instruction descriptions make up
what is referred to as an Instruction Set Architecture, or ISA. The ISA describes
all of the instructions that the GMCH core can execute, along with the registers
that are used to store local data.

20

1.1 Notations and Conventions

1.1.1 Reserved Bits and Software Compatibility

In many register, instruction and memory layout descriptions, certain bits are marked
as “Reserved”. When bits are marked as reserved, it is essential for compatibility with
future devices that software treat these bits as having a future, though unknown,
effect. The behavior of reserved bits should be regarded as not only undefined, but
unpredictable. Software should follow these guidelines in dealing with reserved bits:

Do not depend on the states of any reserved bits when testing values of registers that
contain such bits. Mask out the reserved bits before testing. Do not depend on the
states of any reserved bits when storing to instruction or to a register.

When loading a register or formatting an instruction, always load the reserved bits
with the values indicated in the documentation, if any, or reload them with the values
previously read from the register.

1.2 Terminology

Term Abbr. Definition

3D Pipeline — One of the two pipelines supported in the GPE. The 3D
pipeline is a set of fixed-function units arranged in a
pipelined fashion, which process 3D-related commands by
spawning EU threads. Typically this processing includes
rendering primitives. See 3D Pipeline.

Adjacency — One can consider a single line object as existing in a strip
of connected lines. The neighboring line objects are
called “adjacent objects”, with the non-shared endpoints
called the “adjacent vertices.” The same concept can be
applied to a single triangle object, considering it as
existing in a mesh of connected triangles. Each triangle
shares edges with three other adjacent triangles, each
defined by an non-shared adjacent vertex. Knowledge of
these adjacent objects/vertices is required by some object
processing algorithms (e.g., silhouette edge detection).
See 3D Pipeline.

Application IP AIP Application Instruction Pointer. This is part of the control
registers for exception handling for a thread. Upon an
exception, hardware moves the current IP into this
register and then jumps to SIP.

Architectural
Register File

ARF A collection of architecturally visible registers for a thread
such as address registers, accumulator, flags, notification
registers, IP, null, etc. ARF should not be mistaken as just
the address registers.

Array of Cores — Refers to a group of Gen4 EUs, which are physically
organized in two or more rows. The fact that the EUs are
arranged in an array is (to a great extent) transparent to
CPU software or EU kernels.

 21

Term Abbr. Definition

Binding Table — Memory-resident list of pointers to surface state blocks
(also in memory).

Binding Table
Pointer

BTP Pointer to a binding table, specified as an offset from the
Surface State Base Address register.

Bypass Mode — Mode where a given fixed function unit is disabled and
forwards data down the pipeline unchanged. Not
supported by all FF units.

Byte B A numerical data type of 8 bits, B represents a signed
byte integer.

Child Thread — A branch-node or a leaf-node thread that is created by
another thread. It is a kind of thread associated with the
media fixed function pipeline. A child thread is originated
from a thread (the parent) executing on an EU and
forwarded to the Thread Dispatcher by the TS unit. A child
thread may or may not have child threads depending on
whether it is a branch-node or a leaf-node thread. All pre-
allocated resources such as URB and scratch memory for
a child thread are managed by its parent thread.

Clip Space — A 4-dimensional coordinate system within which a clipping
frustum is defined. Object positions are projected from
Clip Space to NDC space via “perspecitive divide” by the
W coordinate, and then viewport mapped into Screen
Space

Clipper — 3D fixed function unit that removes invisible portions of
the drawing sequence by discarding (culling) primitives or
by “replacing” primitives with one or more primitives that
replicate only the visible portion of the original primitive.

Color Calculator CC Part of the Data Port shared function, the color calculator
performs fixed-function pixel operations (e.g., blending)
prior to writing a result pixel into the render cache.

Command — Directive fetched from a ring buffer in memory by the
Command Streamer and routed down a pipeline. Should
not be confused with instructions which are fetched by the
instruction cache subsystem and executed on an EU.

Command
Streamer

CS or CSI Functional unit of the Graphics Processing Engine that
fetches commands, parses them and routes them to the
appropriate pipeline.

Constant URB
Entry

CURBE A UE that contains “constant” data for use by various
stages of the pipeline.

Control Register CR The read-write registers are used for thread mode control
and exception handling for a thread.

Data Port DP Shared function unit that performs a majority of the
memory access types on behalf of Gen4 programs. The
Data Port contains the render cache and the constant
cache and performs all memory accesses requested by
Gen4 programs except those performed by the Sampler.
See DataPort.

22

Term Abbr. Definition

Degenerate Object — Object that is invisible due to coincident vertices or
because does not intersect any sample points (usually due
to being tiny or a very thin sliver).

Destination — Describes an output or write operand.

Destination Size — The number of data elements in the destination of a Gen4
SIMD instruction.

Destination Width — The size of each of (possibly) many elements of the
destination of a Gen4 SIMD instruction.

Double Quad word
(DQword)

DQ A fundamental data type, DQ represents 16 bytes.

Double word
(DWord)

D or DW A fundamental data type, D or DW represents 4 bytes.

Drawing Rectangle — A screen-space rectangle within which 3D primitives are
rendered. An objects screen-space positions are relative
to the Drawing Rectangle origin. See Strips and Fans.

End of Block EOB A 1-bit flag in the non-zero DCT coefficient data structure
indicating the end of an 8x8 block in a DCT coefficient
data buffer.

End Of Thread EOT a message sideband signal on the Output message bus
signifying that the message requester thread is
terminated. A thread must have at least one SEND
instruction with the EOT bit in the message descriptor
field set in order to properly terminate.

Exception — Type of (normally rare) interruption to EU execution of a
thread’s instructions. An exception occurrence causes the
EU thread to begin executing the System Routine which is
designed to handle exceptions.

Execution Channel — The width of each of several data elements that may be
processed by a single Gen4 SIMD instruction.

Execution Size ExecSize Execution Size indicates the number of data elements
processed by a GEN4 SIMD instruction. It is one of the
GEN4 instruction fields and can be changed per
instruction.

Execution Unit EU Execution Unit. An EU is a multi-threaded processor within
the GEN4 multi-processor system. Each EU is a fully-
capable processor containing instruction fetch and decode,
register files, source operand swizzle and SIMD ALU, etc.
An EU is also referred to as a GEN4 Core.

Execution Unit
Identifier

EUID The 4-bit field within a thread state register (SR0) that
identifies the row and column location of the EU a thread
is located. A thread can be uniquely identified by the EUID
and TID.

Execution Width ExecWidth The width of each of several data elements that may be
processed by a single Gen4 SIMD instruction.

Extended Math
Unit

EM A Shared Function that performs more complex math
operations on behalf of several EUs.

 23

Term Abbr. Definition

FF Unit — A Fixed-Function Unit is the hardware component of a 3D
Pipeline Stage. A FF Unit typically has a unique FF ID
associated with it.

Fixed Function FF Function of the pipeline that is performed by dedicated
(vs. programmable) hardware.

Fixed Function ID FFID Unique identifier for a fixed function unit.

FLT_MAX fmax The magnitude of the maximum representable single
precision floating number according to IEEE-754 standard.
FLT_MAX has an exponent of 0xFE and a mantissa of all
one’s.

Gateway GW See Message Gateway.

GEN4 Core — Alternative name for an EU in the GEN4 multi-processor
system.

General Register
File

GRF Large read/write register file shared by all the EUs for
operand sources and destinations. This is the most
commonly used read-write register space organized as an
array of 256-bit registers for a thread.

General State Base
Address

— The Graphics Address of a block of memory-resident
“state data”, which includes state blocks, scratch space,
constant buffers and kernel programs. The contents of
this memory block are referenced via offsets from the
contents of the General State Base Address register. See
Graphics Processing Engine.

Geometry Shader GS Fixed-function unit between the vertex shader and the
clipper that (if enabled) dispatches “geometry shader”
threads on its input primitives. See Geometry Shader.

Graphics Address — The GPE virtual address of some memory-resident object.
This virtual address gets mapped by a GTT or PGTT to a
physical memory address. Note that many memory-
resident objects are referenced not with Graphics
Addresses, but instead with offsets from a “base address
register”.

Graphics
Processing Engine

GPE Collective name for the Subsystem, the 3D and Media
pipelines, and the Command Streamer.

Guardband GB Region that may be clipped against to make sure objects
do not exceed the limitations of the renderer’s coordinate
space.

Horizontal Stride HorzStride The distance in element-sized units between adjacent
elements of a Gen4 region-based GRF access.

Immediate floating
point vector

VF A numerical data type of 32 bits, an immediate floating
point vector of type VF contains 4 floating point elements
with 8-bit each. The 8-bit floating point element contains
a sign field, a 3-bit exponent field and a 4-bit mantissa
field. It may be used to specify the type of an immediate
operand in an instruction.

24

Term Abbr. Definition

Immediate integer
vector

V A numerical data type of 32 bits, an immediate integer
vector of type V contains 8 signed integer elements with
4-bit each. The 4-bit integer element is in 2’s compliment
form. It may be used to specify the type of an immediate
operand in an instruction.

Index Buffer IB Buffer in memory containing vertex indices.

In-loop Deblocking
Filter

ILDB The deblocking filter operation in the decoding loop. It is a
stage after MC in the video decoding pipe. It is required to
support WMV9 Profile B video decoder acceleration.

Instruction — Data in memory directing an EU operation. Instructions
are fetched from memory, stored in a cache and executed
on one or more Gen4 cores. Not to be confused with
commands which are fetched and parsed by the command
streamer and dispatched down the 3D or Media pipeline.

Instruction Pointer IP The address (really an offset) of the instruction currently
being fetched by an EU. Each EU has its own IP.

Instruction Set
Architecture

ISA The GEN4 ISA describes the instructions supported by a
GEN4 EU.

Instruction State
Cache

ISC On-chip memory that holds recently-used instructions and
state variable values.

Interface
Descriptor

— Media analog of a State Descriptor.

Intermediate Z IZ Completion of the Z (depth) test at the front end of the
Windower/Masker unit when certain conditions are met
(no alpha, no pixel-shader computed Z values, etc.)

Inverse Discrete
Cosine Transform

IDCT the stage in the video decoding pipe between IQ and MC

Inverse
Quantization

IQ A stage in the video decoding pipe between IS and IDCT.

Inverse Scan IS A stage in the video decoding pipe between VLD and IQ.
In this stage, a sequence of none-zero DCT coefficients
are converted into a block (e.g. an 8x8 block) of
coefficients. VFE unit has fixed functions to support IS for
both MPEG-2 and WMV.

Jitter — Just-in-time compiler.

Kernel — A sequence of Gen4 instructions that is logically part of
the driver or generated by the jitter. Differentiated from
a Shader which is an application supplied program that is
translated by the jitter to Gen4 instructions.

Least Significant
Bit

LSB Least Significant Bit

MathBox — See Extended Math Unit

Media — Term for operations such as video decode and encode
that are normally performed by the Media pipeline.

 25

Term Abbr. Definition

Media Pipeline — Fixed function stages dedicated to media and “generic”
processing, sometimes referred to as the generic pipeline.

Message — Messages are data packages transmitted from a thread to
another thread, another shared function or another fixed
function. Message passing is the primary communication
mechanism of GEN4 architecture.

Message Gateway — Shared function that enables thread-to-thread message
communication/synchronization used solely by the Media
pipeline.

Message Register
File

MRF Write-only registers used by EUs to assemble messages
prior to sending and as the operand of a send instruction.

Most Significant Bit MSB Most Significant Bit

Motion
Compensation

MC Part of the video decoding pipe.

Motion Picture
Expert Group

MPEG MPEG is the international standard body
JTC1/SC29/WG11 under ISO/IEC that has defined audio
and video compression standards such as MPEG-1, MPEG-
2, and MPEG-4, etc.

Motion Vector Field
Selection

MVFS A four-bit field selecting reference fields for the motion
vectors of the current macroblock.

Multi Render
Targets

MRT Multiple independent surfaces that may be the target of a
sequence of 3D or Media commands that use the same
surface state.

Normalized Device
Coordinates

NDC Clip Space Coordinates that have been divided by the Clip
Space “W” component.

Object — A single triangle, line or point.

Out-of-loop De-
Blocking Filter

OLDB The de-blocking filter operation outside the decoding loop.
It is required to support WMV9 Profile A video decoder
acceleration.

Out-of-loop De-
Ringing Filter

OLDR The de-ringing filter operation outside the decoding loop.
It is required to support WMV9 Profile A video decoder
acceleration.

Parent Thread — A thread corresponding to a root-node or a branch-node
in thread generation hierarchy. A parent thread may be a
root thread or a child thread depending on its position in
the thread generation hierarchy.

Pipeline Stage — A abstracted element of the 3D pipeline, providing
functions performed by a combination of the
corresponding hardware FF unit and the threads spawned
by that FF unit.

Pipelined State
Pointers

PSP Pointers to state blocks in memory that are passed down
the pipeline.

Pixel Shader PS Shader that is supplied by the application, translated by
the jitter and is dispatched to the EU by the Windower
(conceptually) once per pixel.

26

Term Abbr. Definition

Point — A drawing object characterized only by position
coordinates and width.

Primitive — Synonym for object: triangle, rectangle, line or point.

Primitive Topology — A composite primitive such as a triangle strip, or line list.
Also includes the objects triangle, line and point as
degenerate cases.

Provoking Vertex — The vertex of a primitive topology from which vertex
attributes that are constant across the primitive are
taken.

Quad Quad word
(QQword)

QQ A fundamental data type, QQ represents 32 bytes.

Quad Word
(QWord)

QW A fundamental data type, QW represents 8 bytes.

Rasterization — Conversion of an object represented by vertices into the
set of pixels that make up the object.

Region-based
addressing

— Collective term for the register addressing modes
available in the EU instruction set that permit
discontiguous register data to be fetched and used as a
single operand.

Render Cache RC Cache in which pixel color and depth information is
written prior to being written to memory, and where prior
pixel destination attributes are read in preparation for
blending and Z test.

Render Target RT A destination surface in memory where render results are
written.

Render Target
Array Index

— Selector of which of several render targets the current
operation is targeting.

Root Thread — A root-node thread. A thread corresponds to a root-node
in a thread generation hierarchy. It is a kind of thread
associated with the media fixed function pipeline. A root
thread is originated from the VFE unit and forwarded to
the Thread Dispatcher by the TS unit. A root thread may
or may not have child threads. A root thread may have
scratch memory managed by TS. A root thread with
children has its URB resource managed by the VFE.

Sampler — Shared function that samples textures and reads data
from buffers on behalf of EU programs.

Scratch Space — Memory allocated to the subsystem that is used by EU
threads for data storage that exceeds their register
allocation, persistent storage, storage of mask stack
entries beyond the first 16, etc.

Shader — A Gen4 program that is supplied by the application in an
high level shader language, and translated to Gen4
instructions by the jitter.

 27

Term Abbr. Definition

Shared Function SF Function unit that is shared by EUs. EUs send messages
to shared functions; they consume the data and may
return a result. The Sampler, Data Port and Extended
Math unit are all shared functions.

Shared Function ID SFID Unique identifier used by kernels and shaders to target
shared functions and to identify their returned messages.

Single Instruction
Multiple Data

SIMD The term SIMD can be used to describe the kind of
parallel processing architecture that exploits data
parallelism at instruction level. It can also be used to
describe the instructions in such architecture.

Source — Describes an input or read operand

Spawn — To initiate a thread for execution on an EU. Done by the
thread spawner as well as most FF units in the 3D
pipeline.

Sprite Point — Point object using full range texture coordinates. Points
that are not sprite points use the texture coordinates of
the point’s center across the entire point object.

State Descriptor — Blocks in memory that describe the state associated with
a particular FF, including its associated kernel pointer,
kernel resource allowances, and a pointer to its surface
state.

State Register SR The read-only registers containing the state information of
the current thread, including the EUID/TID, Dispatcher
Mask, and System IP.

State Variable SV An individual state element that can be varied to change
the way given primitives are rendered or media objects
processed. On Gen4 state variables persist only in
memory and are cached as needed by
rendering/processing operations except for a small
amount of non-pipelined state.

Stream Output — A term for writing the output of a FF unit directly to a
memory buffer instead of, or in addition to, the output
passing to the next FF unit in the pipeline.

Strips and Fans SF Fixed function unit whose main function is to decompose
primitive topologies such as strips and fans into primitives
or objects.

Sub-Register — Subfield of a SIMD register. A SIMD register is an aligned
fixed size register for a register file or a register type. For
example, a GRF register, r2, is 256-bit wide, 256-bit
aligned register. A sub-register, r2.3:d, is the fourth
dword of GRF register r2.

Subsystem — The Gen4 name given to the resources shared by the FF
units, including shared functions and EUs.

Surface — A rendering operand or destination, including textures,
buffers, and render targets.

Surface State — State associated with a render surface including

28

Term Abbr. Definition

Surface State Base
Pointer

— Base address used when referencing binding table and
surface state data.

Synchronized Root
Thread

— A root thread that is dispatched by TS upon a ‘dispatch
root thread’ message.

System IP SIP There is one global System IP register for all the threads.
From a thread’s point of view, this is a virtual read only
register. Upon an exception, hardware performs some
bookkeeping and then jumps to SIP.

System Routine — Sequence of Gen4 instructions that handles exceptions.
SIP is programmed to point to this routine, and all threads
encountering an exception will call it.

Thread — An instance of a kernel program executed on an EU. The
life cycle for a thread starts from the executing the first
instruction after being dispatched from Thread Dispatcher
to an EU to the execution of the last instruction – a send
instruction with EOT that signals the thread termination.
Threads in GEN4 system may be independent from each
other or communicate with each other through Message
Gateway share function.

Thread Dispatcher TD Functional unit that arbitrates thread initiation requests
from Fixed Functions units and instantiates the threads on
EUs.

Thread Identifier TID The field within a thread state register (SR0) that
identifies which thread slots on an EU a thread occupies. A
thread can be uniquely identified by the EUID and TID.

Thread Payload — Prior to a thread starting execution, some amount of data
will be pre-loaded in to the thread’s GRF (starting at r0).
This data is typically a combination of control information
provided by the spawning entity (FF Unit) and data read
from the URB.

Thread Spawner TS The second and the last fixed function stage of the media
pipeline that initiates new threads on behalf of
generic/media processing.

Topology — See Primitive Topology.

Unified Return
Buffer

URB The on-chip memory managed/shared by GEN4 Fixed
Functions in order for a thread to return data that will be
consumed either by a Fixed Function or other threads.

Unsigned Byte
integer

UB A numerical data type of 8 bits.

Unsigned Double
Word integer

UD A numerical data type of 32 bits. It may be used to
specify the type of an operand in an instruction.

Unsigned Word
integer

UW A numerical data type of 16 bits. It may be used to
specify the type of an operand in an instruction.

Unsynchronized
Root Thread

— A root thread that is automatically dispatched by TS.

URB Dereference — See URB Reference

 29

Term Abbr. Definition

URB Entry UE URB Entry: A logical entity stored in the URB (such as a
vertex), referenced via a URB Handle.

URB Entry
Allocation Size

— Number of URB entries allocated to a Fixed Function unit.

URB Fence Fence Virtual, movable boundaries between the URB regions
owned by each FF unit.

URB Handle — A unique identifier for a URB entry that is passed down a
pipeline.

URB Reference — For the most part, data is passed down the fixed function
pipeline in an indirect fashion. The data is typically stored
in the URB and accessed via a URB handle. When a
pipeline stage passes the handle of a URB data entry to a
downstream stage, it is said to make a URB reference.
Note that there may be several references to the same
URB data entry in the pipeline at any given time. When a
downstream stage accesses the URB data entry via a URB
handle, it is said to “dereference” the URB data entry.
When there are no longer any references to a URB data
entry within the pipeline, the URB storage can be
reclaimed.

Variable Length
Decode

VLD The first stage of the video decoding pipe that consists
mainly of bit-wide operations. GEN4 supports hardware
VLD acceleration in the VFE fixed function stage.

Vertex Buffer VB Buffer in memory containing vertex attributes.

Vertex Cache VC Cache of Vertex URB Entry (VUE) handles tagged with
vertex indices. See the VS chapter for details on this
cache.

Vertex Fetcher VF The first FF unit in the 3D pipeline responsible for fetching
vertex data from memory. Sometimes referred to as the
Vertex Formatter.

Vertex Header — Vertex data required for every vertex appearing at the
beginning of a Vertex URB Entry.

Vertex ID — Unique ID for each vertex that can optionally be included
in vertex attribute data sent down the pipeline and used
by kernel/shader threads.

Vertex Index — Offset (in vertex-sized units) of a given vertex in a vertex
buffer. Available in the VF and VS units for debugging
purposes.

Vertex Sequence
Number

— Unique ID for each vertex sent down the south bus that
may be used to identify vertices for debugging purposes.

Vertex Shader VS An API-supplied program that calculates vertex attributes.
Also refers to the FF unit that dispatches threads to
“shade” (calculate attributes for) vertices.

Vertex URB Entry VUE A URB entry that contains data for a specific vertex.

Vertical Stride VertStride The distance in element-sized units between 2 vertically-
adjacent elements of a Gen4 region-based GRF access.

30

Term Abbr. Definition

Video Front End VFE The first fixed function in the GEN4 generic pipeline;
performs fixed-function media operations.

Viewport VP Post-clipped geometry is mapped to a rectangular region
of the bound rendertarget(s). This rectangular region is
called a viewport. Typically, the viewport is set to the full
extent of the rendertarget(s), but any subregion can be
used as well.

Windower IZ WIZ Term for Windower/Masker that encapsulates its early
(“intermediate”) depth test function.

Windower/Masker WM Fixed function triangle/line rasterizer.

Word W A numerical data type of 16 bits, W represents a signed
word integer.

§§

 31

32

2 Graphics Device Overview

2.1 Graphics Memory Controller Hub (GMCH)

The GMCH is a system memory controller with an integrated graphics device. The
integrated graphics device is sometimes referred to in this document as a Graphics
Processing Unit (GPU). The GMCH connects to the CPU via a host bus and to system
memory via a memory bus. The GMCH also contains some IO functionality to
interface to an external graphics device and also to an IO controller. This document
will not contain any further references to external graphics devices or IO controllers.

The graphics core, or GPU, resides within the GMCH, which also contains the memory
interface, configuration registers, and other chipset functions. The GPU itself can be
viewed as comprising the command streamer (CS) or command parser, the Memory
Interface or MI, the display interface, and (by far the largest element of the Gen4
family GMCH) the 3D/Media engine. This latter piece is made up of the 3D and media
“fixed function” (FF) pipelines, and the Gen4 subsystem, which these pipelines make
use of to run “shaders” and kernels.

Figure 2-1. GMCH Block Diagram

Memory

Graphics
Processing
Unit (GPU)

Display
Device

GMCH

CPU

Memory
Controller

IO
Interface

IO Controller

(Optional)
External
Graphics
Device

 33

2.2 Graphics Processing Unit (GPU)

The Graphics Processing Unit is controlled by the CPU through a direct interface of
memory-mapped IO registers, and indirectly by parsing commands that the CPU has
placed in memory. The display interface and blitter (block image transferrer) are
controlled primarily by direct CPU register addresses, while the 3D and Media pipelines
and the parallel Video Codec Engine (VCE) are controlled primarily through instruction
lists in memory.

The Gen4 subsystem contains an array of cores, or execution units, along with a
number of “shared functions”, which receive and process messages at the behest of
programs running on the cores. The shared functions perform critical tasks such as
sampling textures and updating the render target (usually the frame buffer). The
cores themselves are described by an instruction set architecture, or ISA.

Figure 2-2. Block Diagram of the GPU

Display/
Overlay Blitter

Display
Device

Memory Interface

3D Media
3D/

Media
Sub-

system

Memory
Interface

CPU Register
Interface

GPU GPE

VCE

34

3 Graphics Processing Engine
(GPE)

3.1 Introduction

This chapter serves two purposes: It provides a high-level description of the Graphics
Processing Engine (GPE) of the GEN4 Graphics Processing Unit (GPU). It also specifies
the programming and behaviors of the functions common to both pipelines (3D,
Media) within the GPE. However, details specific to either pipeline are not addressed
here.

3.2 Overview

The Graphics Processing Engine (GPE) performs the bulk of the graphics processing
provided by the GEN4 GPU. It consists of the 3D and Media fixed-function pipelines,
the Command Streamer (CS) unit that feeds them, and the GEN4 Subsystem that
provides the bulk of the computations required by the pipelines.

3.2.1 Block Diagram

Figure 3-1. The Graphics Processing Engine

3D

Media

Command
Streamer

Array of
Cores

URB

Sampler

Math

CC
Render
Cache

Subsystem

ITC*

*Inter-Thread Communication

Vertex
Buffers

Memory
Objects

Source
Surfaces

Destination
Surfaces

 35

Figure 3-2. GPE Diagram Showing Fixed/Shared Functions

CS

URB

Commands

Command Stream
from MI Function

Memory

GPE

3D
Pipeline

VF
VS
GS

CLIP
SF
WM

Media
Pipeline

VFE
TS

Sampler

DataPort

MathBox

Gateway

GEN4
Subsystem

3.2.2 Command Stream (CS) Unit

The Command Stream (CS) unit manages the use of the 3D and Media pipelines, in
that it performs switching between pipelines and forwarding command streams to the
currently active pipeline. It manages allocation of the URB and helps support the
Constant URB Entry (CURBE) function.

3.2.3 3D Pipeline

The 3D pipeline provides specialized 3D primitive processing functions. These
functions are provided by a pipeline of “fixed function” stages (units) and GEN4
threads spawned by these units. See 3D Pipeline Overview.

36

3.2.4 Media Pipeline

The Media pipeline provides both specialized media-related processing functions and
the ability to perform more general (“generic”) functionality. These Media-specific
functions are provided by a Video Front End (VFE) unit. A Thread Spawner (TS) unit
is utilized to spawn GEN4 threads requested by the VFE unit or as required when the
pipeline is used for general processing. See Media Pipeline Overview.

3.2.5 GEN4 Subsystem

The GEN4 Subsystem is the collective name for the GEN4 programmable cores, the
Shared Functions accessed by them (including the Sampler, Extended Math Unit
(“MathBox”), the DataPort, and the Inter-Thread Communication (ITC) Gateway), and
the Dispatcher which manages threads running on the cores.

3.2.5.1 Execution Units (EUs)

While the number of EU cores in the GEN4 subsystem is almost entirely transparent to
the programming model, there are a few areas where this parameter comes into play:

• The amount of scratch space required is a function of (#EUs * #Threads/EU)

• Debug registers (e.g., EU-enable bitmasks)

Device # of EUs #Threads/EU

All 8 4

3.2.6 GPE Function IDs

The following table lists the assigments (encodings) of the Shared Function and Fixed
Function IDs used within the GPE. A Shared Function is a valid target of a message
initiated via a ‘send’ instruction. A Fixed Function is an identifiable unit of the 3D or
Media pipeline. Note that the Thread Spawner is both a Shared Function and Fixed
Function.

Note: The initial intention was to combine these two ID namespaces, so that (theoretically)
an agent (such as the Thread Spawner) that served both as a Shared Function and
Fixed Function would have a single, unique 4-bit ID encoding. However, this is not a
requirement of the architecture.

 37

Table 3-1. Gen4 Function IDs

ID[3:0] SFID Shared Function FFID Fixed Function

0x0 SFID_NULL Null FFID_NULL Null

0x1 SFID_MATH Extended Math Reserved ---

0x2 SFID_SAMPLER Sampler Reserved ---

0x3 SFID_GATEWAY Message Gateway Reserved ---

0x4 SFID_DP_READ DataPort Read Reserved ---

0x5 SFID_DP_WRITE DataPort Write Reserved ---

0x6 SFID_URB URB Reserved ---

0x7 SFID_SPAWNER Thread Spawner FFID_SPAWNER Thread Spawner

0x8 Reserved --- FFID_VFE Video Front End

0x9 Reserved --- FFID_VS Vertex Shader

0xA Reserved --- FFID_CS Command Stream

0xB Reserved --- FFID_VF Vertex Fetch

0xC Reserved --- FFID_GS Geometry Shader

0xD Reserved --- FFID_CLIP Clipper Unit

0xE Reserved --- FFID_SF Strip/Fan Unit

0xF Reserved --- FFID_WM Windower/Masker Unit

38

3.3 Pipeline Selection

The PIPELINE_SELECT command is used to specify which GPE pipeline (3D or Media)
is to be considered the “current” active pipeline. Issuing 3D-pipeline-specific
commands when the Media pipeline is selected, or vice versa, is UNDEFINED.

This command causes the URB deallocation of the previously selected pipe. For
example, switching from the 3D pipe to the Media pipe (either within or between
contexts) will cause the CS to send a “Deallocating Flush” down the 3D pipe. This will
cause each 3D FF to start a URB deallocation sequence after the current tasks are
done. When the WM sees this, it will de-reference the current Constant URB Entry.
Once this happens, all 3D URB entries will be deallocated (after some north bus
delay). This allows the CS to set the URB fences for the media pipe. And vice versa
for switching from media to 3D pipes.

Programming Restriction:

• Software must ensure the current pipeline is flushed via an MI_FLUSH prior to the
execution of PIPELINE_SELECT.

DWord Bit Description

31:29 Instruction Type = GFXPIPE = 3h

28:16 3D Instruction Opcode = PIPELINE_SELECT

GFXPIPE[28:27 = 0h, 26:24 = 1h, 23:16 = 04h] (Non-pipelined)

15:1 Reserved: MBZ

0

0 Pipeline Select

0: 3D pipeline is selected

1: Media pipeline is selected

This one bit of Pipeline Select state is contained within the logical context.

Note: Implementation Note: Currently, this bit is only required for switching pipelines.
The CS unit needs to know which pipeline (if any) has an outstanding CURBE
reference pending. A switch away from that pipeline requires the CS unit to force any
CURBE entries to be deallocated.

3.4 URB Allocation

Storage in the URB is divided among the various fixed functions in a programmable
fashion using the URB_FENCE command (see following).

 39

3.4.1 URB_FENCE

The URB_FENCE command is used to define the current URB allocation for those FF
units that can own (write) URB entries. The FF units’ allocations are specified via a
set of 512-bit granular fence pointers, in a predefined order in the URB as shown in
the diagram below. (In the discussion below, “previous” refers to the relative position
in the list presented in Figure 3-3, not necessarily with respect to the order of fence
pointers in the command or the order of FF units in the physical pipelines).

The URB_FENCE command is required in certain programming sequences (see
programming notes below, as well as the Command Ordering Rules subsection below).

Each FF unit that can own URB entries is provided with a fence pointer that specifies
the URB address immediately following that FF unit’s allocated region (i.e., it identifies
the end of the allocated region). The range allocated to a particular FF unit therefore
starts at the previous FF unit’s fence pointer and ends at its associated fence pointer.
The starting fence pointer for the first (VS) fixed function is implied to be 0. URB
locations starting at the fence pointer of the last FF unit in the list (CS) are effectively
unusable. If a FF unit’s fence pointer is identical to the previous FF unit’s fence
pointer, the FF unit has no URB storage allocated to it (and therefore the FF unit must
either be disabled or otherwise programmed to not require its own URB entries).

The fencing and allocation of the URB is performed in a pipeline-dependent manner.
The following diagrams show the layout of the URB fence regions for the 3D and Media
pipelines (depending on which one is selected via PIPELINE_SELECT). In the
URB_FENCE command, Fence values not associated with the currently selected
pipeline will be ignored.

Figure 3-3. URB Allocation – 3D Pipeline

VFVS Allocation

unused

VS Fence

512 bits

GS Allocation

CLIP Allocation

SF Allocation

CS Allocation

0

GS Fence

CLP Fence

SF Fence

CS Fence

URB_SIZE

40

Figure 3-4 URB Allocation – Media Pipeline

unused

512 bits

VFE Allocation

CS Allocation

0

VFE Fence

CS Fence

URB_SIZE

Programming Notes:

1. URB Size

a. URB_SIZE is 16KB = 256 512-bit units

2. On a per-fixed-function basis, software must modify (via pipeline state pointer
commands) any (active) fixed-function state which relies on the size of the
fixed-function’s fenced URB region. If a fixed-function’s URB region is
repositioned within the URB, but retains the same size, the previous state is
still valid. Note that changing fence pointers via URB_FENCE only affects the
location of the allocated region, not the contents – i.e., no data copy is
performed.

3. A URB_FENCE command must be issued subsequent to any change to
the value in the GS or CLIP unit’s Maximum Number of Threads
state (via PIPELINE_STATE_POINTERS) and before any subsequent
pipeline processing (e.g., via 3DPRIMITIVE or CONSTANT_BUFFER).

4. A URB_FENCE command must be issued subsequent to any change to
the value in any FF unit’s Number of URB Entries or URB_Entry
Allocation Size state (via PIPELINE_STATE_POINTERS) and before
any subsequent pipeline processing (e.g., via 3DPRIMITIVE or
CONSTANT_BUFFER). Also see the Command Ordering Rules
subsection below.

5. To workaround a silicon issue it is required that this instruction be
programmed within a 64 byte cacheline aligned memory chunk (i.e., it
must not cross a 64-byte cacheline boundary.)

URB_FENCE
Project: All Length Bias: 2

This command is used to set the fences between URB regions owned by the fixed functions.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

 41

URB_FENCE
28:27 Command SubType

Default Value: 0h GFXPIPE_COMMON Format: OpCode

26:24 3D Command Opcode

Default Value: 0h GFXPIPE_PIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 00h URB_FENCE Format: OpCode

15:14 Reserved Project: All Format: MBZ

13 CS Unit URB Reallocation Request

Project: All

Format: Enable FormatDesc

If set, the CS unit will perform a URB entry deallocation/reallocation action.

Note: Modifying the CS URB allocation via URB_FENCE invalidates any previous CURBE
entries. Therefore software must subsequently [re]issue a CONSTANT_BUFFER
command before CURBE data can be used in the pipeline.

(The following description applies to all URB Reallocation Request bits):

A reallocation action is required if either (a) the region of the URB allocated to this unit
changes location or size as defined by the bracketing Fence values, or (b) the Number
of URB Entries or URB Entry Allocation Size state variables associated with this unit
have been modified since the last reallocation action. Software is required to set this bit
accordingly.

Within the context’s command stream, this is the only cause of a reallocation action --- a
reallocation action is not performed as a side effect of a change to the formentioned
state variables. Hardware will, however, take care of deallocation/reallocation resulting
from context swtiches.

Note that all Fence values provided in this command (and relevant to the selected
pipeline) are considered valid and provided to the active pipeline, regardless of any
reallocation requests. For example, if the 3D pipeline is selected and only the CS Fence
is being changed, the CLIP, GS, VS and SF Fence values must be programmed to their
correct (previous) values.

12 VFE Unit URB Reallocation Request

Project: All

Format: Enable FormatDesc

If set, the VFE unit will perform a URB entry deallocation/reallocation action. (See CS
Unit URB Reallocation Request description)

11 SF Unit URB Reallocation Request

Project: All

Format: Enable FormatDesc

If set, the SF unit will perform a URB entry deallocation/reallocation action. (See CS
Unit URB Reallocation Request description)

42

URB_FENCE
10 CLIP Unit URB Reallocation Request

Project: All

Format: Enable FormatDesc

If set, the CLIP unit will perform a URB entry deallocation/reallocation action. (See
CS Unit URB Reallocation Request description)

9 GS Unit URB Reallocation Request

Project: All

Format: Enable FormatDesc

If set, the GS unit will perform a URB entry deallocation/reallocation action. (See CS
Unit URB Reallocation Request description)

8 VS Unit URB Reallocation Request

Project: All

Format: Enable FormatDesc

If set, the VS unit will perform a URB entry deallocation/reallocation action. (See CS
Unit URB Reallocation Request description)

7:0 DWord Length

Default Value: 1h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:30 Reserved Project: All Format: MBZ

29:20 CLIP Fence

Project: All

Format: U10 representing the first 512-bit
URB address beyond this unit’s URB
space

FormatDesc

Range [GS Fence,256]

Indicates the URB fence value for the CLIP unit.

This field is considered valid whenever the 3D pipeline is selected via
PIPELINE_SELECT. Otherwise it is ignored.

19:10 GS Fence

Project: All

Format: U10 representing the first 512-bit
URB address beyond this unit’s URB
space

FormatDesc

Range [VS Fence,256]

Indicates the URB fence value for the GS unit.

This field is considered valid whenever the 3D pipeline is selected via
PIPELINE_SELECT. Otherwise it is ignored.

 43

URB_FENCE
9:0 VS Fence

Project: All

Format: U10 representing the first 512-bit
URB address beyond this unit’s URB
space

FormatDesc

Range [0,256]

Indicates the URB fence value for the VS unit.

Note: When the 3D pipeline is used, the VS FF unit must be allocated URB space
even if the VS function (i.e., “vertex shading”) is disabled. The VF unit utilizes Vertex
URB Entries (VUEs) allocated to the VS in order to input vertex data to the 3D pipeline
even if vertex shading is not enabled.

This field is considered valid whenever the 3D pipeline is selected via
PIPELINE_SELECT. Otherwise it is ignored.

2 31 Reserved Project: All Format: MBZ

30:20 CS Fence

Project: All

Format: U11 representing the first 512-bit
URB address beyond this unit’s URB
space

FormatDesc

Range [VFE Fence,256] (Media) or [SF Fence,256] (3D Pipe)

Indicates the URB fence value for the CS unit.

This field is always considered valid, as it is relevant regardless of the currently
selected pipeline.

19:10 VFE Fence

Project: All

Format: U10 representing the first 512-bit
URB address beyond this unit’s URB
space

FormatDesc

Range [0,256]

Indicates the URB fence value for the VFE unit. This field is considered valid whenever
the Media pipeline is selected via PIPELINE_SELECT. Otherwise it is ignored.

9:0 SF Fence

Project: All

Format: U10 representing the first 512-bit
URB address beyond this unit’s URB
space

FormatDesc

Range [CLIP Fence,256]

Indicates the URB fence value for the SF unit.

This field is considered valid whenever the 3D pipeline is selected via
PIPELINE_SELECT. Otherwise it is ignored.

44

3.5 Constant URB Entries (CURBEs)

3.5.1 Overview

It is anticipated that threads will need to access some amount of non-immediate
constant data, e.g., a matrix from a VS kernel. While the DataPort can be used to
read (“pull”) this data from a memory buffer, doing so may incur a performance
penalty due to the latency of the access. In order to provide a higher-performance
path, both pipelines are provided with the ability to preload (“push”) data from a
memory buffer into the URB and have portions of that data automatically included in
subsequent thread payloads. These pushed constants will then be immediately
available for use by the thread (at the expense of increased GRF allocation, dispatch
latency, etc.).

The mechanism to push constants into thread payloads is the Constant URB Entry
(CURBE). The CURBE is a special URB entry (owned by the CS unit) used to store the
constant data. Software can issue the CONSTANT_BUFFER command to specify the
source Constant Buffer in memory. Upon receipt of that command, the CS unit will
read the Constant Buffer data from memory and write the data into the CURBE. Fixed
functions of the pipeline can be programmed to include their subset of the CURBE data
in thread payloads.

3.5.2 Multiple CURBE Allocation

There is only one “current” CURBE state provided by the architecture. Portions of the
current CURBE is available to the various fixed-function stages of the pipelines.
However, in order to avoid having to flush the pipeline prior to modifying the contents
of the current CURBE, the GPE is supplied with the ability to pipeline changes to the
current CURBE. This support comes in the form of a set of CURBEs that can be
maintained in the URB. A region of the URB can be allocated to the CS unit (see
URB_FENCE command) to hold this set of CURBEs. Within that region, software can
define a set of up to 4 Constant URB Entries (CURBEs) – (see CS_URB_STATE
command).

When a CONSTANT_BUFFER command is received, an attempt is made to find an
unused CURBE within the set. If one is found, it is used as the destination of the
memory read, and the handle of that CURBE is passed down the pipeline without
incurring a pipeline flush performance penalty. Fixed functions will switch to using the
new CURBE as the handle travels down the pipeline. When the handle reaches the
end of the pipeline, the previous CURBE is marked as unused.

If a CONSTANT_BUFFER command is encountered and there is only one CURBE
allocated and it is in use, the CS unit will implicitly wait for the pipeline to drain and
the CURBE to become available to be overwritten. Due to the performance impact of
modifying the CURBE when only a single CURBE is allocated, it is recommended that
software operate with a single CURBE allocation only if (a) the CURBE is large enough
to make multiple allocations undesirable, and/or (b) it is anticipated that the constant
data will remain static for long processing periods (thus amortizing the impact of
modifying it).

 45

3.5.3 CS_URB_STATE

CS_URB_STATE
Project: All Length Bias: 2
The CS_URB_STATE packet is used to define the number and size of CURBEs contained within the CS unit’s
allocated URB region.
DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 0h GFXPIPE_COMMON Format: OpCode

26:24 3D Command Opcode

Default Value: 0h GFXPIPE_PIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 01h CS_URB_STATE Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:9 Reserved Project: All Format: MBZ

8:4 URB Entry Allocation Size

Project: All

Format: U5 count (of 512-bit units) – 1 FormatDesc

Range [0,31] = [1,32] 512-bit units = [2,64] 256-bit URB rows

Specifies the length of each URB entry owned by the CS unit.

3 Reserved Project: All Format: MBZ

2:0 Number of URB Entries

Project: All

Format: U3 count of entries FormatDesc

Range [0,4]

Specifies the number of URB entries that are used by the CS unit.

46

3.5.4 CONSTANT_BUFFER

CONSTANT_BUFFER
Project: All Length Bias: 2
The CONSTANT_BUFFER packet is used to define the memory address of data that will be read by the CS unit and
stored into the current CURBE entry.

Programming Notes:
• Issuing a CONSTANT_BUFFER packet with Valid set when the CS unit does not have any CURBE entries

allocated in the URB results in UNDEFINED behavior.

• Modifying the CS URB allocation via URB_FENCE invalidates any previous CURBE entries. Therefore software
must subsequently [re]issue a CONSTANT_BUFFER command before CURBE data can be used in the pipeline.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 0h GFXPIPE_COMMON Format: OpCode

26:24 3D Command Opcode

Default Value: 0h GFXPIPE_PIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 02h CONSTANT_BUFFER Format: OpCode

15:9 Reserved Project: All Format: MBZ

8 Valid

Project: All

Format: Enable FormatDesc

If TRUE, a Constant Buffer will be defined and possibly used in the pipeline (depending
on FF unit state programming). The Buffer Starting Address and Buffer Length
fields are valid.

If FALSE, the Constant Buffer becomes undefined and unused. The Buffer Starting
Address and Buffer Length fields are ignored. The FF unit state descriptors must
not specify the use of CURBE data, or behavior is UNDEFINED.

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

 47

CONSTANT_BUFFER
1 31:6 Buffer Starting Address

Project: All

Format: GeneralStateOffset[31:6] or
GraphicsAddress[31:6] (see below)

FormatDesc

If Valid is set and INSTPM<CONSTANT_BUFFER Address Offset Disable> is clear
(enabled), this field defines the location of the memory-resident constant data via a
64Byte-granular offset from the General State Base Address.

If Valid is set and INSTPM<CONSTANT_BUFFER Address Offset Disable> is set
(disabled), this field defines the location of the memory-resident constant data via a
64Byte-granular Graphics Address (not offset).

Programming Notes

Constant Buffers can only be allocated in linear (not tiled) graphics memory

Constant Buffers can only be mapped to Main Memory (UC)

5:0 Buffer Length

Project: All

Format: U6 Count-1 in 512-bit units FormatDesc

If Valid is set, this field specifies the length of the constant data to be loaded from
memory into the CURBE in 512-bit units (minus one). The length must be less than
or equal to the URB Entry Allocation Size specified via the CS_URB_STATE
command.

3.6 Memory Access Indirection

The GPE supports the indirection of certain graphics (GTT-mapped) memory accesses.
This support comes in the form of two base address state variables used in certain
memory address computations with the GPE.

The intent of this functionality is to support the dynamic relocation of certain driver-
generated memory structures after command buffers have been generated but prior
to their submittal for execution. For example, as the driver builds the command
stream it could append pipeline state descriptors, kernel binaries, etc. to a general
state buffer. References to the individual items would be inserting in the command
buffers as offsets from the base address of the state buffer. The state buffer could
then be freely relocated prior to command buffer execution, with the driver only
needing to specify the final base address of the state buffer. Two base addresses are
provided to permit surface-related state (binding tables, surface state tables) to be
maintained in a state buffer separate from the general state buffer.

While the use of these base addresses is unconditional, the indirection can be
effectively disabled by setting the base addresses to zero. The following table lists the
various GPE memory access paths and which base address (if any) is relevant.

48

Table 3-2. Base Address Utilization

Base Address Used Memory Accesses

CS unit reads from CURBE Constant Buffers via
CONSTANT_BUFFER when INSTPM< CONSTANT_BUFFER
Address Offset Disable> is clear (enabled).

3D Pipeline FF state read by the 3D FF units, as referenced by
state pointers passed via 3DSTATE_PIPELINE_POINTERS.

Media pipeline FF state, as referenced by state pointers passed
via MEDIA_PIPELINE_POINTERS.

General State Base
Address

DataPort memory accesses resulting from ‘stateless’ DataPort
Read/Write requests. See DataPort for a definition of the
‘stateless’ form of requests.

Sampler reads of Sampler State data and associated Default
Color State data

Viewport states used by CLIP, SF, and WM/CC

General State Base
Address

COLOR_CALC_STATE

Normal EU instruction stream (non-system routine) General State Base
Address

System routine EU instruction stream (starting address = SIP)

Sampler and DataPort reads of Binding Table data, as referenced
by BT pointers passed via 3DSTATE_BINDING_TABLE_POINTERS

Surface State Base
Address

Sampler and DataPort reads of Surface State data

Indirect Object Base
Address

MEDIA_OBJECT Indirect Data accessed by the CS unit .

CS unit reads from Ring Buffers, Batch Buffers

CS unit reads from CURBE Constant Buffers via
CONSTANT_BUFFER when INSTPM< CONSTANT_BUFFER
Address Offset Disable> is set (disabled).

CS writes resulting from 3D_CONTROL

All VF unit memory accesses (Index Buffers, Vertex Buffers)

All Sampler Surface Memory Data accesses (texture fetch, etc.)

All DataPort memory accesses except ‘stateless’ DataPort
Read/Write requests (e.g., RT accesses.) See DataPort for a
definition of the ‘stateless’ form of requests.

Memory reads resulting from STATE_PREFETCH commands

Any physical memory access by the device

None

GTT-mapped accesses not included above (i.e., default)

 49

The following notation is used in the PRM to distinguish between addresses and
offsets:

Notation Definition

PhysicalAddress[n:m] Corresponding bits of a physical graphics memory byte address
(not mapped by a GTT)

GraphicsAddress[n:m] Corresponding bits of an absolute, virtual graphics memory byte
address (mapped by a GTT)

GeneralStateOffset[n:m] Corresponding bits of a relative byte offset added to the General
State Base Address value, the result of which is interpreted as a
virtual graphics memory byte address (mapped by a GTT)

SurfaceStateOffset[n:m] Corresponding bits of a relative byte offset added to the Surface
State Base Address value, the result of which is interpreted as a
virtual graphics memory byte address (mapped by a GTT)

3.6.1 STATE_BASE_ADDRESS

The STATE_BASE_ADDRESS command sets the base pointers for subsequent state,
instruction, and media indirect object accesses by the GPE. (See Table 3-2. Base
Address Utilization for details)

Programming Notes:

• The following commands must be reissued following any change to the base
addresses:
⎯ 3DSTATE_PIPELINE_POINTERS
⎯ 3DSTATE_BINDING_TABLE_POINTERS
⎯ MEDIA_STATE_POINTERS.

• Execution of this command causes a full pipeline flush, thus its use should be
minimized for higher performance.

50

STATE_BASE_ADDRESS
Project: All Length Bias: 2
The STATE_BASE_ADDRESS command sets the base pointers for subsequent state, instruction, and media
indirect object accesses by the GPE. (See Table 3-2. Base Address Utilization for details)

Programming Notes:
• The following commands must be reissued following any change to the base addresses:

⎯ 3DSTATE_PIPELINE_POINTERS
⎯ 3DSTATE_BINDING_TABLE_POINTERS
⎯ MEDIA_STATE_POINTERS.

• Execution of this command causes a full pipeline flush, thus its use should be minimized for higher
performance.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 0h GFXPIPE_COMMON Format: OpCode

26:24 3D Command Opcode

Default Value: 1h GFXPIPE_NONPIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 01h STATE_BASE_ADDRESS Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 4h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

 51

STATE_BASE_ADDRESS
1 31:12 General State Base Address

Project: All

Format: GraphicsAddress[31:12] FormatDesc

Specifies the 4K-byte aligned base address for general state accesses. See Table 3-2
for details on where this base address is used.

11:1 Reserved Project: All Format: MBZ

0 Modify Enable

Project: All

Format: Enable FormatDesc

The address in this dword is updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated address All

1h Enable Modify the address All

2 31:12 Surface State Base Address

Project: All

Format: GraphicsAddress[31:12] FormatDesc

Specifies the 4K-byte aligned base address for binding table and surface state accesses.
See Table 3-2 for details on where this base address is used.

11:1 Reserved Project: All Format: MBZ

0 Modify Enable

Project: All

Format: Enable FormatDesc

The address in this dword is updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated address All

1h Enable Modify the address All

52

STATE_BASE_ADDRESS
3 31:12 Indirect Object Base Address

Project: All

Format: GraphicsAddress[31:12] FormatDesc

Specifies the 4K-byte aligned base address for indirect object load in MEDIA_OBJECT
command. See Table 3-2 for details on where this base address is used.

11:1 Reserved Project: All Format: MBZ

0 Modify Enable

Project: All

Format: Enable FormatDesc

The address in this dword is updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated address All

1h Enable Modify the address All

4 31:12 General State Access Upper Bound

Project: All

Format: GraphicsAddress[31:12] FormatDesc

Specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address for
general state accesses. This includes all accesses that are offset from General State
Base Address (see Table 3-2). Read accesses from this address and beyond will
return UNDEFINED values. Data port writes to this address and beyond will be
“dropped on the floor” (all data channels will be disabled so no writes occur). Setting
this field to 0 will cause this range check to be ignored.

If non-zero, this address must be greater than the General State Base Address.

11:1 Reserved Project: All Format: MBZ

0 Modify Enable

Project: All

Format: Enable FormatDesc

The bound in this dword is updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated bound All

1h Enable Modify the bound All

 53

STATE_BASE_ADDRESS
5 31:12 Indirect Object Access Upper Bound

Project: All

Format: GraphicsAddress[31:12] FormatDesc

This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address
access by an indirect object load in a MEDIA_OBJECT command. Indirect data accessed
at this address and beyond will appear to be 0. Setting this field to 0 will cause this
range check to be ignored.

If non-zero, this address must be greater than the Indirect Object Base Address.

Hardware ignores this field if indirect data is not present.

Setting this field to FFFFFh will cause this range check to be ignored.

11:1 Reserved Project: All Format: MBZ

0 Modify Enable

Project: All

Format: Enable FormatDesc

The bound in this dword is updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated bound All

1h Enable Modify the bound All

3.7 Instruction and State Prefetch

The STATE_PREFETCH command is provided strictly as an optional mechanism to
possibly enhance pipeline performance by prefetching data into the GPE’s Instruction
and State Cache (ISC).

54

3.7.1 STATE_PREFETCH

STATE_PREFETCH
Project: All Length Bias: 2

(This command is provided strictly for performance optimization opportunities, and likely requires some
experimentation to evaluate the overall impact of additional prefetching.)

The STATE_PREFETCH command causes the GPE to attempt to prefetch a sequence of 64-byte cache lines into
the GPE-internal cache (“L2 ISC”) used to access EU kernel instructions and fixed/shared function indirect state
data. While state descriptors, surface state, and sampler state are automatically prefetched by the GPE, this
command may be used to prefetch data not automatically prefetched, such as: 3D viewport state; Media
pipeline Interface Descriptors; EU kernel instructions.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 0h GFXPIPE_COMMON Format: OpCode

26:24 3D Command Opcode

Default Value: 0h GFXPIPE_PIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 03h STATE_PREFETCH Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:6 Prefetch Pointer

Project: All

Format: GraphicsAddress[31:6] FormatDesc

Specifies the 64-byte aligned address to start the prefetch from. This pointer is an
absolute virtual address, it is not relative to any base pointer.

5:3 Reserved Project: All Format: MBZ

2:0 Prefetch Count

Project: All

Format: U3 count of cache lines (minus one) FormatDesc

Range [0,7] indicating a count of [1,8]

Indicates the number of contiguous 64-byte cache lines that will be prefetched.

 55

3.8 System Thread Configuration

3.8.1 STATE_SIP

STATE_SIP
Project: All Length Bias: 2
The STATE_SIP command specifies the starting instruction location of the System Routine that is shared by all
threads in execution.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 0h GFXPIPE_COMMON Format: OpCode

26:24 3D Command Opcode

Default Value: 1h GFXPIPE_NONPIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 02h STATE_SIP Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:4 System Instruction Pointer (SIP)

Project: All

Format: GeneralStateOffset[31:4] FormatDesc

Specifies the instruction address of the system routine associated with the current
context as a 128-bit granular offset from the General State Base Address. SIP is
shared by all threads in execution. The address specifies the double quadword aligned
instruction location.

Errata Description Project

BWT007 Instructions pointed at by offsets from General State Base
must be contained within 32-bit physical address space
(that is, must map to memory pages under 4G.)

[DevBW-A]

3:0 Reserved Project: All Format: MBZ

56

3.9 Command Ordering Rules

There are several restrictions regarding the ordering of commands issued to the GPE.
This subsection describes these restrictions along with some explanation of why they
exist. Refer to the various command descriptions for additional information.

The following flowchart illustrates an example ordering of commands which can be
used to perform activity within the GPE.

MI_FLUSH

PIPELINE_SELECT

Pipeline?

CS_URB_STATE

3DSTATE_PIPELINE_POINTERS

URB_FENCE

CONSTANT_BUFFER

3DPRIMITIVE / 3DCONTROL

MEDIA_STATE_POINTERS

URB_FENCE

CONSTANT_BUFFER

MEDIA_OBJECT

3D Media

Common or Pipeline-specific state-
setting commands can be issued
along any paths from here down

3.9.1 PIPELINE_SELECT

The previously-active pipeline needs to be flushed via the MI_FLUSH command
immediately before switching to a different pipeline via use of the PIPELINE_SELECT
command. Refer to Section 3.3 for details on the PIPELINE_SELECT command.

3.9.2 PIPE_CONTROL

The PIPE_CONTROL command does not require URB fencing/allocation to have been
performed, nor does it rely on any other pipeline state. It is intended to be used on
both the 3D pipe and the Media pipe. It has special optimizations to support the
pipelining capability in the 3D pipe which do not apply to the Media pipe.

 57

3.9.3 URB-Related State-Setting Commands

Several commands are used (among other things) to set state variables used in URB
entry allocation --- specifically, the Number of URB Entries and the URB Entry
Allocation Size state variables associated with various pipeline units. These state
variables must be set-up prior to the issuing of a URB_FENCE command. (See the
sub-section on URB_FENCE below).

CS_URB_STATE (only) specifies these state variables for the common CS FF unit.
3DSTATE_PIPELINED_POINTERs sets the state variables for FF units in the 3D
pipeline, and MEDIA_STATE_POINTERS sets them for the Media pipeline. Depending
on which pipeline is currently active, only one of these commands needs to be used.
Note that these commands can also be reissued at a later time to change other state
variables, though if a change is made to (a) any Number of URB Entries and the
URB Entry Allocation Size state variables or (b) the Maximum Number of
Threads state for the GS or CLIP FF units, a URB_FENCE command must follow.

3.9.4 Common Pipeline State-Setting Commands

The following commands are used to set state common to both the 3D and Media
pipelines. This state is comprised of CS FF unit state, non-pipelined global state (EU,
etc.), and Sampler shared-function state.

• STATE_BASE_ADDRESS

• STATE_SIP

• 3DSTATE_SAMPLER_PALETTE_LOAD

• 3DSTATE_CHROMA_KEY

The state variables associated with these commands must be set appropriately prior
to initiating activity within a pipeline (i.e., 3DPRIMITIVE or MEDIA_OBJECT).

3.9.5 3D Pipeline-Specific State-Setting Commands

The following commands are used to set state specific to the 3D pipeline.

• 3DSTATE_PIPELINED_POINTERS

• 3DSTATE_BINDING_TABLE_POINTERS

• 3DSTATE_VERTEX_BUFFERS

• 3DSTATE_VERTEX_ELEMENTS

• 3DSTATE_INDEX_BUFFERS

• 3DSTATE_DRAWING_RECTANGLE

• 3DSTATE_CONSTANT_COLOR

• 3DSTATE_DEPTH_BUFFER

• 3DSTATE_POLY_STIPPLE_OFFSET

• 3DSTATE_POLY_STIPPLE_PATTERN

• 3DSTATE_LINE_STIPPLE

• 3DSTATE_GLOBAL_DEPTH_OFFSET

The state variables associated with these commands must be set appropriately prior
to issuing 3DPRIMITIVE.

58

3.9.6 Media Pipeline-Specific State-Setting Commands

The following commands are used to set state specific to the Media pipeline.

• MEDIA_STATE_POINTERS

The state variables associated with this command must be set appropriately prior to
issuing MEDIA_OBJECT.

3.9.7 URB_FENCE (URB Fencing & Entry Allocation)

URB_FENCE command is used to initiate URB entry deallocation/allocation processes
within pipeline FF units. The URB_FENCE command is first processed by the CS FF
unit, and is then directed down the currently selected pipeline to the FF units
comprising that pipeline.

As the FF units receive the URB_FENCE command, a URB entry deallocation/allocation
process with be initiated if (a) the FF unit is currently enabled (note that some cannot
be disabled) and (b) the ModifyEnable bit associated with that FF unit’s Fence value
is set. If these conditions are met, the deallocation of the FF unit’s currently-allocated
URB entries (if any) commences. (Implementation Note: For better performance, this
deallocation proceeds in parallel with allocation of new handles).

Modifying the CS URB allocation via URB_FENCE invalidates any previous CURBE
entries. Therefore software must subsequently [re]issue a CONSTANT_BUFFER
command before CURBE data can be used in the pipeline.

The allocation of new handles (if any) for the FF unit then commences. The
parameters used to perform this allocation come from (a) the URB_FENCE Fence
values, and (b) the relevant URB entry state associated with the FF unit: specifically,
the Number of URB Entries and the URB Entry Allocation Size. For the CS unit,
this state is programmed via CS_URB_STATE, while the other FF units receive this
state indirectly via PIPELINED_STATE_POINTERS or MEDIA_STATE_POINTERS
commands.

Although a FF unit’s allocation process relies on it’s URB Fence as well as the relevant
FF unit pipelined state, only the URB_FENCE command initiates URB entry
deallocation/allocation. This imposes the following restriction: If a change is made to
(a) the Number of URB Entries or URB Entry Allocation Size state for a given FF
unit or (b) the Maximum Number of Threads state for the GS or CLIP FF units, a
URB_FENCE command specifying a valid URB Fence state for that FF unit must be
subsequently issued – at some point prior to the next CONSTANT_BUFFER,
3DPRIMITIVE (if using the 3D pipeline) or MEDIA_OBJECT (if using the Media
pipeline). It is invalid to change Number of URB Entries or URB Entry Allocation
Size state for enabled FF units without also issuing a subsequent URB_FENCE
command specifying a valid Fence valid for that FF unit.

It is valid to change a FF unit’s Fence value without specifying a change to its
Number of URB Entries or URB Entry Allocation Size state, though the values
must be self-consistent.

 59

3.9.8 CONSTANT_BUFFER (CURBE Load)

The CONSTANT_BUFFER command is used to load constant data into the CURBE URB
entries owned by the CS unit. In order to write into the URB, CS URB fencing and
allocation must have been established. Therefore, CONSTANT_BUFFER can only be
issued after CS_URB_STATE and URB_FENCE commands have been issued, and prior
to any other pipeline processing (i.e., 3DPRIMITIVE or MEDIA_OBJECT). See the
definition of CONSTANT_BUFFER for more details.

Modifying the CS URB allocation via URB_FENCE invalidates any previous CURBE
entries. Therefore software must subsequently [re]issue a CONSTANT_BUFFER
command before CURBE data can be used in the pipeline.

3.9.9 3DPRIMITIVE

Before issuing a 3DPRIMITIVE command, all state (with the exception of
MEDIA_STATE_POINTERS) needs to be valid. Therefore the commands used to set
this state need to have been issued at some point prior to the issue of 3DPRIMITIVE.

3.9.10 MEDIA_OBJECT

Before issuing a MEDIA_OBJECT command, all state (with the exception of 3D-
pipeline-specific state) needs to be valid. Therefore the commands used to set this
state need to have been issued at some point prior to the issue of MEDIA_OBJECT.

60

4 Graphics Command Formats

4.1 Command Formats

This section describes the general format of the graphics device commands.

Graphics commands are defined with various formats. The first DWord of all
commands is called the header DWord. The header contains the only field common to
all commands -- the client field that determines the device unit that will process the
command data. The Command Parser examines the client field of each command to
condition the further processing of the command and route the command data
accordingly.

Some Gen4 Devices include two Command Parsers, each controlling an independent
processing engine. These will be referred to in this document as the Render
Command Parser (RCP) and the Video Codec Command Parser (VCCP).

Valid client values for the Render Command Parser are:

Client # Client

0 Memory Interface (MI_xxx)

1 Miscellaneous (includes Trusted Ops)

2 2D Rendering (xxx_BLT_xxx)

3 Graphics Pipeline (3D and Media)

4-7 Reserved

Graphics commands vary in length, though are always multiples of DWords. The
length of a command is either:

• Implied by the client/opcode

• Fixed by the client/opcode yet included in a header field (so the Command Parser
explicitly knows how much data to copy/process)

• Variable, with a field in the header indicating the total length of the command

Note that command sequences require QWord alignment and padding to QWord length
to be placed in Ring and Batch Buffers.

The following subsections provide a brief overview of the graphics commands by client
type provides a diagram of the formats of the header DWords for all commands.
Following that is a list of command mnemonics by client type.

 61

4.1.1 Memory Interface Commands

Memory Interface (MI) commands are basically those commands which do not require
processing by the 2D or 3D Rendering/Mapping engines. The functions performed by
these commands include:

• Control of the command stream (e.g., Batch Buffer commands, breakpoints, ARB
On/Off, etc.)

• Hardware synchronization (e.g., flush, wait-for-event)

• Software synchronization (e.g., Store DWORD, report head)

• Graphics buffer definition (e.g., Display buffer, Overlay buffer)

• Miscellaneous functions

Refer to the Memory Interface Commands chapter for a description of these
commands.

4.1.2 2D Commands

The 2D commands include various flavors of Blt operations, along with commands to
set up Blt engine state without actually performing a Blt. Most commands are of fixed
length, though there are a few commands that include a variable amount of "inline"
data at the end of the command.

Refer to the 2D Commands chapter for a description of these commands.

4.1.3 3D/Media Commands

The 3D/Media commands are used to program the graphics pipelines for 3D or media
operations.

Refer to the 3D chapter for a description of the 3D state and primitive commands and
the Media chapter for a description of the media-related state and object commands.

4.1.4 Video Codec Commands

4.1.5 Command Header

The Command Headers are shown in the following tables.

62

Table 4-1. RCP Command Header Format

Bits

TYPE 31:29 28:24 23 22 21:0

Memory

Interface

(MI)

000 Opcode

00h – NOP

0Xh – Single DWord Commands

1Xh – Two+ DWord Commands

2Xh – Store Data Commands

3Xh – Ring/Batch Buffer Cmds

 Identification No./DWord Count

Command Dependent Data

5:0 – DWord Count

5:0 – DWord Count

5:0 – DWord Count

Reserved 001 Opcode – 11111 23:19

Sub Opcode
00h – 01h

18:16

Re-
served

15:0

DWord Count

2D 010 Opcode Command Dependent Data

4:0 – DWord Count

TYPE 31:29 28:27 26:24 23:16 15:8 7:0

Common 011 00 Opcode – 000 Sub Opcode Data
DWord
Count

Common (NP) 011 00 Opcode – 001 Sub Opcode Data
DWord
Count

Reserved 011 00 Opcode – 010 – 111

Single Dword
Command

011 01 Opcode – 000 – 001 Sub Opcode
 N/A

Reserved 011 01 Opcode – 010 – 111

Media State 011 10 Opcode – 000 Sub Opcode

Dword
Count

Media Object 011 10 Opcode – 001 – 010 Sub Opcode Dword Count

Reserved 011 10 Opcode – 011 – 111

3DState 011 11 Opcode – 000 Sub Opcode Data
DWord
Count

3DState (NP) 011 11 Opcode – 001 Sub Opcode Data
DWord
Count

PIPE_Control 011 11 Opcode – 010 Data
DWord
Count

3DPrimitive 011 11 Opcode – 011 Data
DWord
Count

Reserved 011 11 Opcode – 100 – 111

Reserved 1XX XX

NOTES:

1. The qualifier “NP” indicates that the state variable is non-pipelined and the
render pipe is flushed before such a state variable is updated. The other state
variables are pipelined (default).

 63

Table 4-2. VCCP Command Header Format

Bits

TYPE 31:29 28:24 23 22 21:0

Memory

Interface

(MI)

000 Opcode

00h – NOP

0Xh – Single DWord Commands

1Xh – Reserved

2Xh – Store Data Commands

3Xh – Ring/Batch Buffer Cmds

 Identification No./DWord Count

Command Dependent Data

5:0 – DWord Count

5:0 – DWord Count

5:0 – DWord Count

TYPE 31:29 28:27 26:24 23:16 15:0

Reserved 011 0X XXX XX

Reserved 011 10 0XX

AVC State 011 10 100 Opcode: 0h – 4h DWord Count

AVC Object 011 10 100 Opcode: 8h DWord Count

VC1 State 011 10 101 Opcode: 0h – 4h DWord Count

VC1 Object 011 10 101 Opcode: 8h DWord Count

Reserved 011 10 110 Opcode: 0h – 1h DWord Count

Reserved 011 10 110 Opcode: 8h DWord Count

Reserved 011 10 11X

Reserved 011 11 XXX

TYPE 31:29 28:27 26:24 23:21 20:16 15:0

MFX Common 011 10 000 000 subopcode DWord Count

Reserved 011 10 000 001-111 subopcode DWord Count

AVC Common 011 10 001 000 subopcode DWord Count

AVC Dec 011 10 001 001 subopcode DWord Count

AVC Enc 011 10 001 010 subopcode DWord Count

Reserved 011 10 001 011-111 subopcode DWord Count

Reserved (for
VC1 Common)

011 10 010
000 subopcode DWord Count

VC1 Dec 011 10 010 001 subopcode DWord Count

Reserved (for
VC1 Enc)

011 10 010
010 subopcode DWord Count

Reserved 011 10 010 011-111 subopcode DWord Count

Reserved
(MPEG2
Common)

011 10 011
000 subopcode DWord Count

MPEG2 Dec 011 10 011 001 subopcode DWord Count

Reserved (for
MPEG2 Enc)

011 10 011
010 subopcode DWord Count

Reserved 011 10 011 011-111 subopcode DWord Count

Reserved 011 10 100-111 XXX

64

4.2 Command Map

This section provides a map of the graphics command opcodes.

4.2.1 Memory Interface Command Map

All the following commands are defined in Memory Interface Commands.

Table 4-3. Memory Interface Commands for RCP

Opcode
(28:23)

Command Comments

1-DWord

00h MI_NOOP

01h Reserved

02h MI_USER_INTERRUPT

03h MI_WAIT_FOR_EVENT

04h MI_FLUSH

05h MI_ARB_CHECK

06h Reserved

07h MI_REPORT_HEAD

08-09h Reserved

0Ah MI_BATCH_BUFFER_END

0Bh–0Fh Reserved

2+ DWord

10h Reserved

11h MI_OVERLAY_FLIP

12h MI_LOAD_SCAN_LINES_INCL

13h MI_LOAD_SCAN_LINES_EXCL

14h MI_DISPLAY_BUFFER_INFO

15h Reserved

16h Reserved

17h Reserved

18h MI_SET_CONTEXT

19h–1Fh Reserved

Store Data

20h MI_STORE_DATA_IMM

21h MI_STORE_DATA_INDEX

22h MI_LOAD_REGISTER_IMM

23h Reserved

24h MI_STORE_REGISTER_MEM

 65

Opcode
(28:23)

Command Comments

25h Reserved

26h Reserved

27h–2Fh Reserved

Ring/Batch Buffer

30h Reserved

31h MI_BATCH_BUFFER_START

32h–3Fh Reserved

Table 4-4. Memory Interface Commands for VCCP

Opcode
(28:23)

Command Comments

1-DWord

00h MI_NOOP

01h Reserved

02h MI_USER_INTERRUPT

03h Reserved

04h MI_FLUSH

05h MI_ARB_CHECK

06-09h Reserved

0Ah MI_BATCH_BUFFER_END

0Bh–0Fh Reserved

2- DWord

10h–1Fh Reserved

Store Data

20h MI_STORE_DATA_IMM

21h MI_STORE_DATA_INDEX

22h–2Fh Reserved

Ring/Batch Buffer

30h Reserved

31h MI_BATCH_BUFFER_START

32h–3Fh Reserved

66

4.2.2 2D Command Map
All the following commands are defined in Blitter Instructions.

Opcode
(28:22)

Command Comments

00h Reserved

01h XY_SETUP_BLT

02h Reserved

03h XY_SETUP_CLIP_BLT

04h–10h Reserved

11h XY_SETUP_MONO_PATTERN_SL_BLT

12h–23h Reserved

24h XY_PIXEL_BLT

25h XY_SCANLINES_BLT

26h XY_TEXT_BLT

23h–30h Reserved

31h XY_TEXT_IMMEDIATE_BLT

32h–3Fh Reserved

40h COLOR_BLT

41h–42h Reserved

43h SRC_COPY_BLT

44h–4Fh Reserved

50h XY_COLOR_BLT

51h XY_PAT_BLT

52h XY_MONO_PAT_BLT

53h XY_SRC_COPY_BLT

54h XY_MONO_SRC_COPY_BLT

55h XY_FULL_BLT

56h XY_FULL_MONO_SRC_BLT

57h XY_FULL_MONO_PATTERN_BLT

58h XY_FULL_MONO_PATTERN_MONO_SRC_BLT

59h XY_MONO_PAT_FIXED_BLT

5Ah–70h Reserved

71h XY_MONO_SRC_COPY_IMMEDIATE_BLT

72h XY_PAT_BLT_IMMEDIATE

73h XY_SRC_COPY_CHROMA_BLT

74h XY_FULL_IMMEDIATE_PATTERN_BLT

75h XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT

76h XY_PAT_CHROMA_BLT

 67

Opcode
(28:22)

Command Comments

77h XY_PAT_CHROMA_BLT_IMMEDIATE

78h–7Fh Reserved

4.2.3 3D/Media Command Map

Pipeline
Type

(28:27)

Opcode Sub
Opcode

Command Definition Chapter

Common
(pipelined)

Bits
26:24

Bits
23:16

0h 0h 00h URB_FENCE Graphics Processing Engine

0h 0h 01h CS_URB_STATE Graphics Processing Engine

0h 0h 02h CONSTANT_BUFFER Graphics Processing Engine

0h 0h 03h STATE_PREFETCH Graphics Processing Engine

0h 0h 04h-FFh Reserved

Common
(non-

pipelined)

Bits
26:24

Bits
23:16

0h 1h 00h Reserved n/a

0h 1h 01h STATE_BASE_ADDRESS Graphics Processing Engine

0h 1h 02h STATE_SIP Graphics Processing Engine

0h 1h 03h–FFh Reserved n/a

Reserved Bits
26:24

Bits
23:16

0h 2h–7h XX Reserved n/a

68

Pipeline
Type

(28:27)

Opcode Sub
Opcode

Command Definition Chapter

Single DW Opcode
(26:24)

Bits
23:16

1h 0h 00h-01h Reserved n/a

1h 0h 02h Reserved n/a

1h 0h 03h-0Ah Reserved n/a

1h 0h 0Bh Reserved n/a

1h 0h 0Ch-FFh Reserved n/a

1h 1h 00h-03h Reserved n/a

1h 1h 04h PIPELINE_SELECT Graphics Processing Engine

1h 1h 05h-FFh Reserved n/a

1h 2h-7h XX Reserved n/a

Media Opcode
(26:24)

Bits
23:16

2h 0h 00h MEDIA_STATE_POINTERS Media

2h 1h 00h MEDIA_OBJECT Media

2h 1h 01h MEDIA_OBJECT_EX Media

2h 1h 02h MEDIA_OBJECT_PRT Media

2h 2h–7h XX Reserved n/a

Pipeline
Type

(28:27)

Opcode Sub
Opcode

Command Definition
Chapter

3D State
(Pipelined)

Bits
26:24

Bits
23:16

3h 0h 00h 3DSTATE_PIPELINED_POINTERS 3D Pipeline

3h 0h 01h 3DSTATE_BINDING_TABLE_POINTERS 3D Pipeline

3h 0h 02h Reserved

3h 0h 03h–04h Reserved n/a

3h 0h 05h 3DSTATE_URB 3D Pipeline

3h 0h 06h-07h Reserved n/a

3h 0h 08h 3DSTATE_VERTEX_BUFFERS Vertex Fetch

3h 0h 09h 3DSTATE_VERTEX_ELEMENTS Vertex Fetch

 69

Pipeline
Type

(28:27)

Opcode Sub
Opcode

Command Definition
Chapter

3h 0h 0Ah 3DSTATE_INDEX_BUFFER Vertex Fetch

3h 0h 0Bh Reserved n/a

3h 0h 0Ch Reserved n/a

3h 0h 0Dh 3DSTATE_VIEWPORT_STATE_POINTERS 3D Pipeline

3h 0h 0Eh–FFh Reserved n/a

3D State
(Non-

Pipelined)

Bits
26:24

Bits
23:16

3h 1h 00h 3DSTATE_DRAWING_RECTANGLE Strips & Fans

3h 1h 01h 3DSTATE_CONSTANT_COLOR Color Calculator

3h 1h 02h 3DSTATE_SAMPLER_PALETTE_LOAD0 Sampling Engine

3h 1h 03h Reserved

3h 1h 04h 3DSTATE_CHROMA_KEY Sampling Engine

3h 1h 05h 3DSTATE_DEPTH_BUFFER Windower

3h 1h 06h 3DSTATE_POLY_STIPPLE_OFFSET Windower

3h 1h 07h 3DSTATE_POLY_STIPPLE_PATTERN Windower

3h 1h 08h 3DSTATE_LINE_STIPPLE Windower

3h 1h 09h 3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP Windower

3h 1h 0Ah–FFh Reserved Windower

3D
(Control)

Bits
26:24

Bits
23:16

3h 2h 00h PIPE_CONTROL 3D Pipeline

3h 2h 01h–FFh Reserved n/a

3D
(Primitive)

Bits
26:24

Bits
23:16

3h 3h 00h 3DPRIMITIVE Vertex Fetch

3h 3h 01h–FFh Reserved n/a

3h 4h–7h 00h–FFh Reserved n/a

70

5 Register Address Maps

5.1 Graphics Register Address Map

This chapter provides address maps of the graphics controllers I/O and memory-
mapped registers. Individual register bit field descriptions are provided in the
following chapters. PCI configuration address maps and register bit descriptions are
provided in the following chapter.

5.1.1 Memory and I/O Space Registers

This section provides a high-level register map (register groupings per function). The
memory and I/O maps for the graphics device registers are shown in the following
table, except PCI Configuration registers that are described in the following chapter.

Note: The VGA and Extended VGA registers can be accessed via standard VGA I/O locations
as well as via memory-mapped locations.

Note: All graphics MMIO registers can also be accessed via CPU I/O.

The memory space address listed for each register is an offset from the base memory
address programmed into the MMADR register (PCI configuration offset 14h).

 71

Table 5-1. Graphics Controller Register Memory and I/O Map

Start
Offset

End
Offset

Description

00000h 00FFFh VGA and Extended VGA Control Registers. These registers are located in both
I/O space and memory space. The VGA and Extended VGA registers contain the
following register sets: General Control/Status, Sequencer (SRxx), Graphics
Controller (GRxx), Attribute Controller (Arxx), VGA Color Palette, and CRT Controller
(CRxx) registers. Detailed bit descriptions are provided in the VGA and Extended VGA
Register Chapter. The registers within a set are accessed using an indirect addressing
mechanism as described at the beginning of each section. Note that some of the
register description sections have additional operational information at the beginning
of the section

01000h 01FFFh Reserved

02000h 02FFFh Instruction, Memory, and Interrupt Control Registers:

Instruction Control Registers Ring Buffer registers and page table control
registers are located in this address range. Various instruction status, error, and
operating registers are located in this group of registers.

Graphics Memory Fence Registers. The Graphics Memory Fence registers are
used for memory tiling capabilities.

Interrupt Control/Status Registers. This register set provides interrupt
control/status for various GC functions.

Display Interface Control Register. This register controls the FIFO watermark and
provides burst length control.

Logical Context Registers

Software Visible Counters

03000h 031FFh FENCE & Per Process GTT Control registers

03200h 03FFFh Frame Buffer Compression Registers

04000h 043FFh Reserved.

04400h 04FFFh Reserved.

05000h 05FFFh I/O Control Registers

06000h 06FFFh Clock Control Registers. This memory address space is the location of the GC clock
control and power management registers

07000h 073FFh 3D Internal Debug Registers

07400h 088FFh GPE Debug Registers (3D/Media Fixed Functions)

08900h 08FFFh Reserved for Subsystem Debug Registers

09000h 09FFFh Reserved

0A000h 0AFFFh Display Palette Registers

0B000h 0FFFFh Reserved

10000h 13FFFh MMIO MCHBAR. Alias through which the graphics driver can access registers in the
MCHBAR accessed through device 0.

14000h 2FFFFh Reserved

72

Start
Offset

End
Offset

Description

30000h 3FFFFh Overlay Registers. These registers provide control of the overlay engine. The
overlay registers are double-buffered with one register buffer located in graphics
memory and the other on the device. On-chip registers are not directly writeable. To
update the on-chip registers software writes to the register buffer area in graphics
memory and instructs the device to update the on-chip registers.

40000h 5FFFFh Reserved

60000h 6FFFFh Display Engine Pipeline Registers

70000h 72FFFh Display and Cursor Registers

73000h 73FFFh Performance Counters

74000h 7FFFFh Reserved

5.1.2 PCI Configuration Space

See the releveant EDS for details on accessing PCI configuration space, PCI address
map tables, and register descriptions.

 73

5.1.3 Graphics Register Memory Address Map

All graphics device registers are directly accessible via memory-mapped I/O and
indirectly accessible via the MMIO_INDEX and MMIO_DATA I/O registers. In addition,
the VGA and Extended VGA registers are I/O mapped.

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access

00000h−00FFFh ⎯ VGA and VGA Extended Registers

These registers are both memory and I/O mapped
and are listed in the following table. Note that the
I/O address and memory offset address are the
same value for each register.

⎯

Reserved (1000h−1FFFh)

01000h−01FFFh ⎯ Reserved ⎯

Primary CS Instruction and Interrupt Control Registers (02000h−02FFFh)

02000h−0201Fh ⎯ Reserved ⎯

02020h−02023h PGTBL_CTL Page Table Control Register R/W

02024h−02027h PGTBL_ER Page Table Error Register (DEBUG) RO

02028h–0202Bh EXCC Execute Condition Code Register R/W,RO

0202Ch–0202Fh ⎯ Reserved ⎯

02030h–02033h PRB0_TAIL Primary Ring Buffer 0 Tail Register R/W

02034h–02037h PRB0_HEAD Primary Ring Buffer 0 Head Register R/W

02038h–0203Bh PRB0_STARTsted Primary Ring Buffer 0 Start Register R/W

0203Ch–0203Fh PRB0_CTL Primary Ring Buffer 0 Control Register R/W

02040h–0205Fh ⎯ Reserved ⎯

02060h–02063h HW_MEMRD Memory Read Sync Register (DEBUG) RO

02064h–02067h IPEIR Instruction Parser Error Identification Register
(DEBUG)

RO

02068h–0206Bh IPEHR Instruction Parser Error Header Register (DEBUG) RO

0206Ch–0206Fh INSTDONE Instruction Stream Interface Done Register
(DEBUG)

RO

02070h–02073h INSTPS Instruction Parser State Register (DEBUG) RO

02074h–02077h ACTHD Active Head Pointer Register (DEBUG) RO

02078h–0207Bh DMA_FADD_P Primary DMA Engine Fetch Address Register
(DEBUG)

RO

0207Ch–0207Fh INSTDONE_1 Instruction Stream Interface Done 1 (Debug) RO

74

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access

02080h–02083h HWS_PGA Hardware Status Page Address Register R/W

02084h–02087h ⎯ Reserved ⎯

02088h–0208Ch PWRCTXA Power Context Register Address ([DevCL]) R/W

0208Dh–02093h ⎯ Reserved ⎯

02094h–02097h NOPID NOP Identification Register RO

02098h−0209Bh HWSTAM Hardware Status Mask Register R/W

0209Ch–0209Fh MI_MODE Mode Register for Software Interface R/W

020A0h−020A3h IER Interrupt Enable Register R/W

020A4h−020A7h IIR Interrupt Identity Register R/WC

020A8h−020ABh IMR Interrupt Mask Register R/W

020ACh−020AFh ISR Interrupt Status Register RO

020B0h−020B3h EIR Error Identity Register R/WC

020B4h−020B7h EMR Error Mask Register R/W

020B8h−020BBh ESR Error Status Register RO

020BCh−020BFh ⎯ Reserved ⎯

020C0h–020C3h INSTPM Instruction Parser Mode Register
(SAVED/RESTORED)

R/W

020C4h–020C7h PGTBL_CTL2 Per-process Page Table Control 0 R/W

020C8h–020CBh PGTBL_STR2 Page Table Steer Register (Per Process) R/W

020CCh–020DFh ⎯ Reserved ⎯

MI_DISPLAY_POWER_D
OWN

Display Power Down Enable ([DevCL] Only) R/W 020E0h−020E3h

MI_RDRET_STATE Memory Interface Read Return State Register
([DevBW] Only)

R/W

020E4h−020E7h MI_ARB_STATE Memory Interface Arbitration State Register

(SAVED/RESTORED)

R/W

020E8h−020FBh ⎯ Reserved ⎯

020FCh–020FFh MI_RDRET_STATE Memory Interface Read Return State Register
([DevCL] Only)

R/W

02100h–0211Fh ⎯ Reserved ⎯

02120h–02123h CACHE_MODE_0 Cache Mode Register 0 (DEBUG)

(SAVED/RESTORED)

R/W

02124h−02127h CACHE_MODE_1 Cache Mode Register 1 (DEBUG)

(SAVED/RESTORED)

R/W

 75

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access

02128h–02133h ⎯ Reserved ⎯

02134h–02137h UHPTR Pending Head Pointer Register R/W

02138h–0213Fh ⎯ Reserved ⎯

02140h–02147h BB_ADDR Batch Buffer Current Address RO

02148h–0214Bh BB_STATE Batch Buffer State Register R/W

0214Ch–0216Fh ⎯ Reserved ⎯

02170h–02177h GFX_FLSH_CNTL Graphics Flush Control R/W

02178h–0217Bh ⎯ Reserved ⎯

0217Ch–0217Fh PR_CTR_THRSH Reserved ⎯

02180h−02183h CCID0 Current Context ID 0 (assoc w/ PRB0) R/W

02184h−0218Fh ⎯ Reserved ⎯

02190h−02193h ⎯ Reserved

02194h−0219Fh ⎯ Reserved ⎯

021A0h−021A3h CXT_SIZE Context Size (DEBUG) R/W

021A4h−021A7h CXT_SIZE_NOEXT Context Size without Ext. State (DEBUG) R/W

021A8h-021CFh ⎯ Reserved ⎯

021D0h-021D3h ECOSKPD ECO Scratch Pad (DEBUG) R/W

021D4h-021FFh ⎯ Reserved ⎯

02200h−02303h CSFLFSM Flush FSM (Debug) R/W

02204h–02207h CSFLFLAG Flush FLAG (Debug) R/W

02208h–0220Bh CSFLTRK Flush Track (Debug) R/W

0220Ch–0220Fh CSCMDOP Instruction DWORD (Debug) R/W

02210h–02213h CSCMDVLD Instruction DWORD Valid (Debug) R/W

02214h−0230Fh ⎯ Reserved ⎯

02310h-0234Fh ⎯ Reserved ⎯

02350h-02357h PS_DEPTH_COUNT Reported Pixels Passing Depth Test Counter R/W

02358–0235Fh TIMESTAMP Reported Timestamp Count R/W

02360–02367h CLKCMP Compare Count Clock Stop (Debug)

02368h−0236Fh ⎯ Reserved ⎯

02370h−02377h ⎯ Reserved ⎯

02378h−0237Fh ⎯ Reserved ⎯

76

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access

02380h−02387h ⎯ Reserved ⎯

02388h−0244Fh ⎯ Reserved ⎯

02450h−02453h VFDC Set Value of Draw Count (DEBUG) R/W

02454h−0246Fh ⎯ Reserved ⎯

02470h−02473h VFSKPD VF Scratch Pad (DEBUG) R/W

02474h−024FFh ⎯ Reserved ⎯

Per-Process GTT Control (02500h−025FFh)

02500h−0251Fh ⎯ Reserved ⎯

02520h–02520 GFX_MODE Graphics Mode R/W

Probe List Control (02600h−026FFh) : Reserved

02600h−026FFh ⎯ Reserved ⎯

Run List Control (02700h−027FFh) : Reserved

02700h−02FFFh ⎯ Reserved ⎯

FENCE & Per-Process GTT Control (03000h−031FFh)

03000h-03007h FENCE[0] Graphics Memory Fence Table Register [0] R/W

… … …

0307Ch-0307Fh FENCE[15] Graphics Memory Fence Table Register [15] R/W

Frame Buffer Compression Control (03200h−03FFFh) ([DevCL] Only)

03200h−03203h FBC_CFB_BASE Compressed Frame Buffer Base Address R/W

03204h−03207h FBC_LL_BASE Compressed Frame Line Length Buffer Address R/W

03208h−0320Bh FBC_CONTROL Frame Buffer Compression Control Register R/W

0320Ch−0320Fh FBC_COMMAND Frame Buffer Compression Command Register R/W

03210h−03213h FBC_STATUS Frame Buffer Compression Status Register R/W

03214h−03217h FBC_CONTROL2 Frame Buffer Compression 2nd Control Register R/W

0321Bh−0321Eh FBC_DISPYOFF Frame Buffer Compression Display Y Offset R/W

03220h−03223h FBC_MOD_NUM Frame Buffer Compression Num of Modifications R/W

03214h−032FFh ⎯ Reserved ⎯

03300h−033C3h FBC_TAG Frame Buffer Compression Tag Interface (Debug) R/W

03400h−03FFFh ⎯ Reserved ⎯

Frame Buffer Compression Control (03200h−03FFFh) : Reserved

03200h−03FFFh DPFC_CB_BASE DPFC Compressed Buffer Base Address R/W

 77

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access

BCS Instruction and Interrupt Control Registers (04000h−043FFh)

04000h−043FFh ⎯ Reserved ⎯

04064h–04067h BCS_IPEIR Instruction Parser Error Identification Register
(Debug)

RO

04068h–0406Bh BCS_IPEHR Instruction Parser Error Header Register (Debug) RO

04074h–04077h BCS_ACTHD Active Head Pointer Register (Debug) RO

04078h – 0407Bh BCS_DMA_FADD DMA Engine Fetch Address (Debug) RO

04080h–04083h BCS_HWS_PGA Hardware Status Page Address Register R/W

04084h–04093h ⎯ Reserved ⎯

04094h–04097h BCS_NOPID NOP Identification Register RO

04097h–0409B ⎯ Reserved ⎯

0409Ch–0409Fh BCS_MI_MODE Mode Register for Software Interface R/W

040A0h–040BFh ⎯ Reserved ⎯

040C0h–040C3h BCS_INSTPM Instruction Parser Mode Register R/W

040C4h–04133h ⎯ Reserved ⎯

04134h–04137h BCS_UHPTR Pending Head Pointer R/W

04138h–04177h ⎯ Reserved ⎯

04178h–0417Bh BCS_CNTR Counter for the Bit Stream Decode Engine R/W

0417Ch–0417Fh BCS_THRSH Threshold for the Counter of Bit Stream Decode
Engine

R/W

04180h–0413Fh ⎯ Reserved ⎯

04140h–04147h BCS_BB_ADDR Batch Buffer Head Pointer Register RO

04148h–0418Fh ⎯ Reserved ⎯

04190h–04193h BCS_RCCID Ring Buffer Current Context ID R/W

04194h–04197h BCS_RNCID Ring Buffer Next Context ID R/W

04198h–043FFh ⎯ Reserved ⎯

 (04400h−044FFh) : Reserved

04400h–044FFh ⎯ Reserved ⎯

78

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access

MFC Status Registers (04500h−04FFFh) : Reserved

04500h-04FFFh ⎯ Reserved ⎯

I/O Control Registers (05000h−05FFFh)

05000h−0500Fh ⎯ Reserved ⎯

05010h−05013h GPIO_CTL0 General Purpose I/O Control Register [0] R/W

05014h−05017h GPIO_CTL1 General Purpose I/O Control Register [1] R/W

05018h−0501Bh GPIO_CTL2 General Purpose I/O Control Register [2] R/W

0501Ch−0501Fh GPIO_CTL3 General Purpose I/O Control Register [3] R/W

05020h−05023h GPIO_CTL4 General Purpose I/O Control Register [4] R/W

05024h−05027h GPIO_CTL5 General Purpose I/O Control Register [5] R/W

05028h−0502Bh GPIO_CTL6 General Purpose I/O Control Register [6] R/W

0502Ch−0502Fh GPIO_CTL7 General Purpose I/O Control Register [7] R/W

05030h−050FFh ⎯ Reserved ⎯

05100h−05103h GMBUS0 GMBUS Clock Select/Device Select R/W

05104h−05107h GMBUS1 GMBUS Command/Status R/W

05108h−0510Bh GMBUS2 GMBUS Status R/W

0510Ch−0510Fh GMBUS3 GMBUS Data Buffer R/W

05110h−05F13h GMBUS4 GMBUS Interrupt Mask R/W

05114h−0511Fh ⎯ Reserved ⎯

05120h−05123h GMBUS5 GMBUS 2-Byte Index Register R/W

05124h−05FFFh ⎯ Reserved ⎯

VSC Registers (05000h – 05FFFh) : Reserved

05000h-0506Fh ⎯ Reserved ⎯

VSC Registers : Reserved

05070h-05083h Reserved

Clock Control and Power Management Registers (06000h−06FFFh)

06000h−06003h VGA0 VGA 0 Divisor R/W

06004h−06007h VGA1 VGA 1 Divisor R/W

06008h−0600Fh Reserved

06010h−06013h VGA_PD VGA Post Divisor Select R/W

06014h−06017h DPLLA_CTRL Display PLL A Control R/W

 79

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access

06018h−0601Bh DPLLB_CTRL Display PLL B Control R/W

0601Ch−0601Fh DPLLAMD Display PLL A SDVO/UDI Multiplier/Divsor R/W

06020h−06023h DPLLBMD Display PLL B SDVO/UDI Multiplier/Divsor R/W

06024h−0603Fh ⎯ Reserved ⎯

06040h−06043h FPA0 DPLL A Divisor 0 R/W

06044h−06047h FPA1 DPLL A Divisor 1 R/W

06048h−0604Bh FPB0 DPLL B Divisor 0 R/W

0604Ch−0604Fh FPB1 DPLL B Divisor 1 R/W

06050h−0606Bh ⎯ Reserved ⎯

0606Ch–0606Fh DPLL_TEST DPLLA and DPLLB Test Register R/W

06070h−06103h ⎯ Reserved ⎯

06104h−06107h D_STATE D State Function Control R/W

06108h−061FFh ⎯ Reserved ⎯

06200h−06203h DSPCLK_GATE_D Clock Gating Disable for Display Register R/W

06204h−06207h RENCLK_GATE_D1 Clock Gating Disable for Render Register I R/W

06208h−0620Bh RENDCLK_GATE_D2 Clock Gating Disable for Render Register II ⎯

0620Ch−0620Fh ⎯ Reserved ⎯

06210h–06213h RAMCLK_GATE_D GFX RAM Clock Gating Disable Register ([DevCL]
Only)

R/W

06214h–06125h DEUC Dynamic EU Control R/W/L

06216h−06FFFh ⎯ Reserved ⎯

3D-Internal Debug Registers (07000h−073FFh) Reserved

07000h−073FFh ⎯ Reserved ⎯

GPE Debug Registers (07400h−088FFh, DEBUG ONLY, Subject to Change)

07400h−07403h SVG_CTL Debug Control R/W

07404h−07407h SVG_RDATA Debug Return Data RO

07408h−0740Bh SVG_WORK_CTL Debug Workaround Control R/W

0740Ch−074FFh ⎯ Reserved ⎯

07500h−07503h VF_CTL Debug Control R/W

07504h−07507h VF_STRG_VAL Debug Snapshot Trigger Value R/W

07508h−0750Bh VF_STR_VL_OVR Debug Start Vertex Location Override R/W

0750Ch−0750Fh VF_VC_OVR Debug Vertex Count Override R/W

80

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access

07510h−07513h VF_STR_PSKIP Debug Starting Primitives Skipped RO

07514h−07517h VF_MAX_PRIM Debug Max Primitives R/W

07518h−0751Bh VF_RDATA Debug Return Data RO

0751Ch−075FFh ⎯ Reserved ⎯

07600h−07603h VS_CTL Debug Control R/W

07604h−07607h VS_STRG_VAL Debug Snapshot Trigger Value R/W

07608h−0760Bh VS_RDATA Debug Return Data RO

0760Ch−078FFh ⎯ Reserved ⎯

07900h−07903h GS_CTL Debug Control R/W

07904h−07907h GS_STRG_VAL Debug Snapshot Trigger Value R/W

07908h−0790Bh GS_RDATA Debug Return Data RO

0790Ch−079FFh ⎯ Reserved ⎯

07A00h−07A03h CL_CTL Debug Control R/W

07A04h−07A07h CL_STRG_VAL Debug Snapshot Trigger Value R/W

07A08h−07A0Bh CL_RDATA Debug Return Data RO

07A0Ch−07AFFh ⎯ Reserved ⎯

07B00h−07B03h SF_CTL Debug Control R/W

07B04h−07B07h SF_STRG_VAL Debug Snapshot Trigger Value R/W

07B08h−07B0Bh SF_MIN_PR_IND Debug Minimum Primitive Index R/W

07B0Ch−07B0Fh SF_MAX_PR_IND Debug Maximum Primitive Index R/W

07B10h−07B13h SF_CLIP_RMIN Debug Clip Rectangle Minimum Coordinates R/W

07B14h−07B17h SF_CLIP_RMAX Debug Clip Rectangle Maximum Coordinates R/W

07B18h−07B1Bh SF_RDATA Debug Return Data RO

07B1Ch−07BFFh ⎯ Reserved ⎯

07C00h−07C03h WIZ_CTL Debug Control R/W

07C04h−07C07h WIZ_STRG_VAL Debug Snapshot Trigger Value R/W

07C08h−07C0Bh WIZ_RDATA Debug Return Data RO

07C0Ch−07CFFh ⎯ Reserved ⎯

07D00h−07D03h VFE_CTL Debug Control R/W

07D04h–07D07h VFE_STRG_VAL Debug Snapshot Trigger Value R/W

07D08h–07D0Bh VFE_RDATA Debug Return Data RO

07D0Ch−07DFFh ⎯ Reserved ⎯

 81

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access

07E00h−07E03h TS_CTL Debug Control R/W

07E04h−07E07h TS_STRG_0-6VAL Debug Snapshot Trigger R0.6 Value R/W

07E08h−07E0Bh TS_STRG_0-7VAL Debug Snapshot Trigger R0.7 Value R/W

07E0Ch−07E0Fh TS_RDATA Debug Return Data RO

07E10h−07FFFh ⎯ Reserved ⎯

08000h−08003h TD_CTL Debug Control R/W

08004h−08007h TD_CTL2 Debug Control 2 R/W

08008h−0800Bh TD_VF_VS_EMSK Debug VF/VS Execution Mask R/W

0800Ch−0800Fh TD_GS_EMSK Debug GS Execution Mask R/W

08010h−08013h TD_CLIP_EMSK Debug Clipper Execution Mask R/W

08014h−08017h TD_SF_EMSK Debug SF Execution Mask R/W

08018h−0801Bh TD_WIZ_EMSK Debug WIZ Execution Mask R/W

0801Ch−0801Fh TD_0-6_EHTRG_VAL Debug R0.6 External Halt Trigger Value R/W

08020h−08023h TD_0-7_EHTRG_VAL Debug R0.7 External Halt Trigger Value R/W

08024h−08027h TD_0-6_EHTRG_MSK Debug R0.6 External Halt Trigger Mask R/W

08028h−0802Bh TD_0-7_EHTRG_MSK Debug R0.7 External Halt Trigger Mask R/W

0802Ch−0802Fh TD_RDATA Debug Return Data RO

08030h−08033h TD_TS_EMSK Debug TS Execution Mask ⎯

08034h−080FFh ⎯ Reserved ⎯

08100h−08103h MATH_CTL Math Debug Control R/W

08104h−08107h MATH_RDATA Math Debug Return Data RO

08108h−081FFh ⎯ Reserved ⎯

08200h−08203h ISC_CTL Instruction / State Debug Control R/W

08204h−0827FFh ⎯ Reserved ⎯

08280h−08283h ISC_L1CA_CTR Instruction L1 Cache Debug Control RO

08284h−08287h ISC_L1CA_RDATA Instruction L1 Cache Debug Return Data

08288h−0828Bh ISC_L1CA_BP_ADR1 Instruction L1 Cache Breakpoint Address 1 Control

0828Ch−0828Fh ⎯ Reserved ⎯

08290h−08293h ISC_L1CA_BP_ADR2 Instruction L1 Cache Breakpoint Address 2 Control

08294h−08297h ISC_L1CA_BP_OPC1 Instruction L1 Cache Breakpoint Opcode 1 Control

08298h−0829Bh ISC_L1CA_BP_OPC2 Instruction L1 Cache Breakpoint Opcode 2 Control

0829Ch−082FFh ⎯ Reserved ⎯

82

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access

08300h−08303h MA_DEBUG_1 Message Arbiter Debug Control R/W

08304h−083FFh ⎯ Reserved ⎯

08400h−08403h SAMPLER_CTL Sampler Debug Control R/W

08404h−08407h SAMPLER_RDATA Sampler Debug Return Data RO

08408h−084FFh ⎯ Reserved ⎯

08500h−08503h DP_CTL Data Port Debug Control R/W

08504h−08507h DP_RDATA Data Port Debug Return Data RO

08508h−085FFh ⎯ Reserved ⎯

08600h−08603h RC_CTL Debug Control R/W

08604h−08607h RC_DEF_CLR Debug Force Default Color R/W

08608h−0860Bh RC_RDATA Debug Return Data RO

0860Ch−086FFh ⎯ Reserved ⎯

08700h−08703h URB_CTL Debug Control R/W

08704h−08707h ⎯ Reserved ⎯

08708h−0870Bh URB_RDATA Debug Return Data RO

0870Ch−087FFh ⎯ Reserved ⎯

08800h−08803h EU_CTL Debug Control R/W

08804h−0880Fh ⎯ Reserved ⎯

08810h−08817h EU_ATT Debug Attention RO

08818h−0881Fh ⎯ Reserved ⎯

08820h−08827h EU_ATT_DATA EU Debug Attention Data RO

08828h−0882Fh ⎯ Reserved ⎯

08830h−08837h EU_ATT_CLR Debug Attention Clear WO

08838h−0883Fh ⎯ Reserved ⎯

08840h−08843h EU_RDATA Debug Return Data RO

08844h−088FFh ⎯ Reserved ⎯

Reserved for Debug (08900h−09FFFh)

08900h−08FFFh ⎯ Reserved for Subsystem Debug ⎯

09000h−09FFFh ⎯ Reserved ⎯

Display Palette (0A000h−0AFFFh)

0A000h−0A3FFh DPALETTE_A Display Pipe A Palette R/W

0A400h−0A7FFh ⎯ Reserved ⎯

 83

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access

0A800h−0ABFFh DPALETTE_B Display Pipe B Palette R/W

0AC00h−0AFFFh ⎯ Reserved ⎯

TLB Read Range (0B000h−0BFFFh) : Reserved

0B000h−0BFFFh ⎯ Reserved ⎯

AVC Video Decode (0C000h−0CFFFh) : Reserved

0C000h-0CFFFh -- Reserved --

0D000h−0FFFFh ⎯ Reserved ⎯

GFX MMIO – MCHBAR Aperture (10000h-13FFFh)

10000h-13FFFh ⎯ MCHBAR Aperture R/W

Reserved (14000h−2FFFFh)

14000h-2FFFFh ⎯ Reserved ⎯

Overlay Registers (30000h−03FFFFh)
(For additional address offsets in the double-buffering scheme, see Overlay Chapter)

30000h−30003h OVADD Overlay Register Update Address R/W

30004h−30007h OTEST Overlay Test Register R/W

30008h−3000Bh DOVSTA Display/Overlay Status RO

3000Ch−3000Fh DOVSTAEX Display/Overlay Extended Status RO

30010h−30013h OVR_GAMMA5 Overlay Gamma Correction [5] R/W

30014h−30017h OVR_GAMMA4 Overlay Gamma Correction [4] R/W

30018h−3001Bh OVR_GAMMA3 Overlay Gamma Correction [3] R/W

3001Ch−3001Fh OVR_GAMMA2 Overlay Gamma Correction [2] R/W

30020h−30023h OVR_GAMMA1 Overlay Gamma Correction [1] R/W

30024h−30027h OVR_GAMMA0 Overlay Gamma Correction [0] R/W

30028h−30057h — Reserved —

30058h−3005Bh SYNCPH0 Overlay Flip Sync Lock Phase 0 RO

3005Ch−3005Fh SYNCPH1 Overlay Flip Sync Lock Phase 1 RO

30060h−30063h SYNCPH2 Overlay Flip Sync Lock Phase 2 RO

30064h−30067h SYNCPH3 Overlay Flip Sync Lock Phase 3 RO

30068h−300FFh — Reserved —

30100h–30103 OBUF_0Y Overlay Buffer 0 Y Pointer RO

30104h−30107h OBUF_1Y Overlay Buffer 1 Y Pointer RO

30108h−3010Bh OBUF_0U Overlay Buffer 0 U Pointer RO

84

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access

3010Ch−3010Fh OBUF_0V Overlay Buffer 0 V Pointer RO

30110h−30113h OBUF_1U Overlay Buffer 1 U Pointer RO

30114h−30117h OBUF_1V Overlay Buffer 1 V Pointer RO

30118h−3011Bh OSTRIDE Overlay Stride RO

3011Ch−3011Fh YRGB_VPH Y/RGB Vertical Phase RO

30120h−30123h UV_VPH UV Vertical Phase RO

30124h−30127h HORZ_PH Horizontal Phase RO

30128h−3012Bh INIT_PHS Initial Phase RO

3012Ch−3012Fh DWINPOS Destination Window Position RO

30130h−30133h DWINSZ Destination Window Size RO

30134h−30137h SWIDTH Source Width RO

30138h−3013Bh SWIDTHSW Source Width in Swords RO

3013Ch−3013Fh SHEIGHT Source Height RO

30140h−30143h YRGBSCALE Y/RGB Scale Factor RO

30144h−30147h UVSCALE U V Scale Factor RO

30148h−3014Bh OVCLRC0 Overlay Color Correction 0 RO

3014Ch−3014Fh OVCLRC1 Overlay Color Correction 1 RO

30150h−30153h DCLRKV Destination Color Key Value RO

30154h−30157h DCLRKM Destination Color Key Mask RO

30158h−3015Bh SCHRKVH Source Chroma Key Value High RO

3015Ch−3015Fh SCHRKVL Source Chroma Key Value Low RO

30160h−30163h SCHRKEN Source Chroma Key Enable RO

30164h−30167h OCONFIG Overlay Configuration RO

30168h−3016Bh OCMD Overlay Command RO

3016Ch−3016Fh ⎯ Reserved ⎯

30170h−30173h OSTART_0Y Overlay Surface Y 0 Base Address Register RO

30174h−30177h OSTART _1Y Overlay Surface Y 1 Base Address Register RO

30178h−3017Bh OSTART _0U Overlay Surface U 0 Base Address Register RO

3017Ch−3017Fh OSTART _0V Overlay Surface V 0 Base Address Register RO

30180h−30183h OSTART _1U Overlay Surface U 1 Base Address Register RO

30184h−30187h OSTART _1V Overlay Surface V 1 Base Address Register RO

30188h−3018Bh OTILEOFF_0Y Overlay Surface Y 0 Base Address Register RO

 85

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access

3018Ch−3018Fh OTILEOFF _1Y Overlay Surface Y 1 Base Address Register RO

30190h−30193h OTILEOFF _0U Overlay Surface U 0 Bae Address Register RO

30194h−30197h OTILEOFF _0V Overlay Surface V 0 Base Address Register RO

30198h−3019Bh OTILEOFF _1U Overlay Surface U 1 Base Address Register RO

3019Ch−3019Fh OTILEOFF _1V Overlay Surface V 1 Base Address Register RO

301A0h−301A3h ⎯ Reserved ⎯

301A4h−301A7h UVSCALEV UV Vertical Downscale Integer Register RO

301A8h−302FFh ⎯ Reserved ⎯

30300h−303FFh Y_VCOEFS Overlay Y Vertical Filter Coefficients RO

30368h−303FFh ⎯ Reserved ⎯

30400h−305FFh Y_HCOEFS Overlay Y Horizontal Filter Coefficient RO

304ACh−305FFh ⎯ Reserved ⎯

30600h−306FFh UV_VCOEFS Overlay UV Vertical Filter Coefficients RO

30668h−306FFh ⎯ Reserved ⎯

30700h−307FFh UV_HCOEFS Overlay UV Horizontal Filter Coefficients RO

30768h−3FFFFh ⎯ Reserved ⎯

Reserved (40000h−5FFFFh)

40000h–5FFFFh ⎯ Reserved ⎯

Display Engine Pipeline Registers (60000h–6FFFFh)

Display Pipeline A

60000h–60003h HTOTAL_A Pipe A Horizontal Total R/W

60004h–60007h HBLANK_A Pipe A Horizontal Blank R/W

60008h–6000Bh HSYNC_A Pipe A Horizontal Sync R/W

6000Ch–6000Fh VTOTAL_A Pipe A Vertical Total R/W

60010h–60013h VBLANK_A Pipe A Vertical Blank R/W

60014h–60017h VSYNC_A Pipe A Vertical Sync R/W

60018h–6001Bh ⎯ Reserved R/W

6001Ch–6001Fh PIPEASRC Pipe A Source Image Size R/W

60020h–60023h BCLRPAT_A Pipe A Border Color Pattern R/W

60024h–60027h ⎯ Reserved ⎯

60028h–6002Bh VSYNCSHIFT_A Vertical Sync Shift Register A ⎯

6002Ch–6004Fh ⎯ Reserved ⎯

86

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access

60050h–60053h CRCCTRLREDA Pipe A CRC Red Control R/W

60054h–60057h CRCCTRLGREENA Pipe A CRC Green Control R/W

60058h–6005Bh CRCCTRLBLUEA Pipe A CRC Blue Control R/W

6005Ch–6005Fh CRCCTRLRESA Pipe A CRC Residual Control Register R/W

60060h–60063h CRCRESREDA Pipe A CRC Red Result RO

60064h–60067h CRCRESGREENA Pipe A CRC Green Result RO

60068h–6006Bh CRCRESBLUEA Pipe A CRC Blue Result RO

6006Ch-6006Fh CRCRESRESA Pipe A CRC Residual Result RO

60070h–60FFFh ⎯ Reserved ⎯

Display Pipeline B

61000h–61003h HTOTAL_B Pipe B Horizontal Total R/W

61004h–61007h HBLANK_B Pipe B Horizontal Blank R/W

61008h–6100Bh HSYNC_B Pipe B Horizontal Sync R/W

6100Ch–6100Fh VTOTAL_B Pipe B Vertical Total R/W

61010h–61013h VBLANK_B Pipe B Vertical Blank R/W

61014h–61017h VSYNC_B Pipe B Vertical Sync R/W

61018h–6101Bh ⎯ Reserved ⎯

6101Ch–6101Fh PIPEBSRC Pipe B Source Image Size R/W

61020h–61023h BCLRPAT_B Pipe B Border Color Pattern R/W

61024h–61027h ⎯ Reserved ⎯

61028h–6102Bh VSYNCSHIFT_B Vertical Sync Shift Register B ⎯

6102Ch–6104Fh ⎯ Reserved ⎯

61050h–61053h CRCCTRLREDB Pipe B CRC Red Control R/W

61054h–61057h CRCCTRLGREENB Pipe B CRC Green Control R/W

61058h–6105Bh CRCCTRLBLUEB Pipe B CRC Blue Control R/W

6105Ch–6105Fh CRCCTRLRESB Pipe B CRC Residual Control Register R/W

61060h–61063h CRCRESREDB Pipe B CRC Red Result RO

61064h–61067h CRCRESGREENB Pipe B CRC Green Result RO

61068h–6106Bh CRCRESBLUEB Pipe B CRC Blue Result RO

6106Ch–6106Fh CRCRESRESB Pipe B CRC Residual Result RO

61070h–610FFh ⎯ Reserved ⎯

61100h–61103h ADPA Analog Display Port A Control R/W

 87

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access

61104h–6110Fh ⎯ Reserved ⎯

61110h–61113h PORT_HOTPLU_EN Port HotPlug Enable R/W

61114h–61117h PORT_HOTPLU_STAT Port HotPlug Status R/W

61118h–6113Fh ⎯ Reserved ⎯

61140h-61143h sDVO/HDMIB Digital Display Port B Control Register R/W

61144h–6114Fh ⎯ Reserved ⎯

61150h-61153h sDVO/DP Digital Display Port DFT Register R/W

61154h–61157h sDVO/DP Digital Display Port DFT Register 2 R/W

61158h–6115Fh ⎯ Reserved ⎯

61160h-61163h sDVO/HDMIC Digital Display Port C l R/W

61164h–6116Bh ⎯ Reserved ⎯

6116Ch–6116Fh ⎯ Reserved ⎯

61170h–61173h VIDEO_DIP_CTL Video DIP Control R/W

61174h–61177h ⎯ Reserved ⎯

61178h–6117Bh VIDEO_DIP_DATA Video Data Island Packet Data R/W

6117Ch–61177h ⎯ Reserved ⎯

LVDS ([DevCL] Only)

61180h–61183h LVDS Digital Display Port Control ([DevCL]) R/W

61184h–611FFh ⎯ Reserved ⎯

Panel Power Sequencing ([DevCL] Only)

61200h–61203h PP_STATUS Panel Power Status RO

61204h–61207h PP_CONTROL Panel Power Control R/W

61208h–6120Bh PP_ON_DELAYS Panel Power On Sequencing Delays R/W

6120Ch–6120Fh PP_OFF_DELAYS Panel Power Off Sequencing Delays R/W

61210h–61213h PP_DIVISOR Panel Power Cycle Delay and Reference Divisor R/W

61214h–6122Fh ⎯ Reserved ⎯

Panel Fitting ([DevCL] Only)

61230h–61233h PFIT_CONTROL Panel Fitting Control R/W

61234h–61237h PFIT_PGM_RATIOS Programmed Panel Fitting Ratios R/W

61238h–6124Fh ⎯ Reserved ⎯

88

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access

Backlight Control and Modulation ([DevCL] Only)

61250h–61253h BLC_PWM_CTL2 Backlight PWM Control Register 2 R/W

61254h–61257h BLC_PWM_CTL Backlight PWM Control R/W

61258h–6125Fh ⎯ Reserved ⎯

61260h–61263h BLM_HIST_CTL Image BLM Histogram Control Register R/W

61264h–61267h Image Enhancement Bin Data Register RO, R/W

61268h–6126Bh Histogram Threshold Guardband Register R/W

6126Ch–61FFFh ⎯ Reserved ⎯

High Definition Audio Registers (62000h–62FFFh)

62000h–62003h AUD_CONFIG Audio Configuration R/W

62004h–6200Fh ⎯ Reserved ⎯

62010h–62013h AUD_DEBUG Audio Debug RO

62014h–6201Fh ⎯ Reserved ⎯

62020h–62023h AUD_VID_DID Audio Vendor ID / Device ID RO

62024h–62027h AUD_RID Audio Revision ID RO

62028h–6202Bh AUD_SUBN_CNT Audio Subordinate Node Count RO

6202Ch–6203Fh ⎯ Reserved ⎯

62040h–62043h AUD_FUNC_GRP Audio Function Group Type RO

62044h–62047h AUD_FUNC_SUBN_CNT Audio Function Subordinate Node Count RO

62048h–6204Bh AUD_GRP_CAP Audio Function Group Capabilities RO

6204Ch–6204Fh AUD_PWRST Audio Power State RO

62050h–62053h AUD_SUPPWR Audio Supported Power State RO

62054h–62057h AUD_SID Audio Root Node Subsystem ID RO

62058h–6206Fh ⎯ Reserved ⎯

62070h–62073h AUD_OUT_CWCAP Audio Output Converter Widget Capabilities RO

62074h–62077h AUD_OUT_PCMSIZE Audio PCM Size and Rates R/W

62078h–6207Bh AUD_OUT_STR Audio Stream Formats R/W

6207Ch–6207Fh AUD_OUT_DIG_CNVT Audio Digital Converter R/W

62080h–62083h AUD_OUT_CH_STR Audio Channel ID and Stream ID RO

62084h–62087h AUD_OUT_STR_DESC Audio Stream Descriptor Format RO

62088h–6209Fh ⎯ Reserved ⎯

620A0h–620A3h AUD_PINW_CAP Audio Pin Complex Widget Capabilities RO

 89

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access

620A4h–620A7h AUD_PIN_CAP Audio Pin Capabilities RO

620A8h–620ABh AUD_PINW_CONNLNG Audio Connection List Length RO

620ACh–620AFh AUD_PINW_CONNLST Audio Connection List Entry RO

620B0h–620B3h AUD_PINW_CNTR Audio Pin Widget Control RO

620B4h–620B7h AUD_CNTL_ST Audio Control State RO

620B8h–620BBh AUD_PINW_UNSOLRES
P

Audio Unsolicited Response Enable RO

620BCh–620BFh AUD_PINW_CONFIG Audio Configuration Default RO

620C0h–620D3h ⎯ Reserved ⎯

620D4h–620D7h AUD_HDMIW_STATUS Audio HDMI Status R/W

620D8h–6210Bh ⎯ Reserved ⎯

6210Ch–62117h AUD_HDMIW_HDMIEDI
D

HDMI Data EDID Block R/W

62118h–62127h AUD_HDMIW_INFOFR Audio HDMI Widget Data Island Packet R/W

62128h–67FFFh ⎯ Reserved ⎯

TV Out Control Registers (68000h–6FFFFh)

68000h–68003h TV_CTL TV Out Control R/W

68004h-68007h TV_DAC TV DAC Control/Status R/W, RO

68008h–6800Fh ⎯ Reserved ⎯

68010h–68013h TV_CSC_Y Color Space Convert Y R/W

68014h–68017h TV_CSC_Y2 Color Space Convert Y2 R/W

68018h–6801Bh TV_CSC_U Color Space Convert U R/W

6801Ch–6801Fh TV_CSC_U2 Color Space Convert U2 R/W

68020h–68023h TV_CSC_V Color Space Convert V R/W

68024h–68027h TV_CSC_V2 Color Space Convert V2 R/W

68028h–6802Bh TV_CLR_KNOBS Color Knobs R/W

6802Ch–6802Fh TV_CLR_LEVEL Color Level Control R/W

68030h–68033h TV_H_CTL_1 H Control 1 R/W

68034h–68037h TV_H_CTL_2 H Control 2 R/W

68038h–6803Bh TV_H_CTL_3 H Control 3 R/W

6803Ch–6803Fh TV_V_CTL_1 V Control 1 R/W

68040h–68043h TV_V_CTL_2 V Control 2 R/W

68044h–68047h TV_V_CTL_3 V Control 3 R/W

68048h–6804Bh TV_V_CTL_4 V Control 4 R/W

6804Ch–6804Fh TV_V_CTL_5 V Control 5 R/W

90

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access

68050h–68053h TV_V_CTL_6 V Control 6 R/W

68054h–68057h TV_V_CTL_7 V Control 7 R/W

68058h–6805Fh ⎯ Reserved ⎯

68060h–68063h TV_SC_CTL_1 SubCarrier Control 1 R/W

68064h–68067h TV_SC_CTL_2 SubCarrier Control 2 R/W

68068h–6806Bh TV_SC_CTL_3 SubCarrier Control 3 R/W

6806Ch–6806Fh ⎯ Reserved ⎯

68070h–68073h TV_WIN_POS Window Position R/W

68074h–68077h TV_WIN_SIZE Window Size R/W

68078h–6807Fh ⎯ Reserved ⎯

68080h–68083h TV_FILTER_CTL_1 Filter Control 1 R/W

68084h–68087h TV_FILTER_CTL_2 Filter Control 2 R/W

68088h–6808Bh TV_FILTER_CTL_3 Filter Control 3 R/W

6808Ch-6808Fh SIN_ROM Sine ROM ⎯

68090h-68093h TV_CC_ CTL Closed Caption Control R/W

68094h-68097h TV_CC_DATA1 Closed Caption Data Field 1 R/W

68098h-6809Bh TV_CC_DATA2 Closed Caption Data Field 2 R/W

6809Ch–680AFh ⎯ Reserved ⎯

680B0h-680B3h TV_WSS_ CTL WSS Control R/W

680B4h-680B7h TV_WSS_DATA WSS Data R/W

68100h–681EFh TV_H_LUMA H Filter Luma Coefficients R/W

681F0h–681FFh ⎯ Reserved ⎯

68200h–682EFh TV_H_CHROMA H Filter Chroma Coefficients R/W

682F0h–682FFh ⎯ Reserved ⎯

68300h–683ABh TV_V_LUMA V Filter Luma Coefficients R/W

683ACh–683FFh ⎯ Reserved ⎯

68400h–684ABh TV_V_CHROMA V Filter Chroma Coefficients R/W

684ACh–6FFFFh ⎯ Reserved ⎯

Display and Cursor Control Registers (70000h–77FFFh)

Display Pipeline A Control

70000h–70003h PIPEA_DSL Pipe A Display Scan Line Count RO

70004h–70007h PIPEA_SLC Pipe A Display Scan Line Count Range Compare RO

70008h–7000Bh PIPEACONF Pipe A Configuration R/W

7000Ch–7000Fh ⎯ Reserved ⎯

70010h–70013h PIPEAGCMAXRED Pipe A Gamma Correction Max Red R/W

70014h–70017h PIPEAGCMAXGRN Pipe A Gamma Correction Max Green R/W

 91

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access

70018h–7001Bh PIPEAGCMAXBLU Pipe A Gamma Correction Max Blue R/W

7001Ch–70023h ⎯ Reserved ⎯

70024h–70027h PIPEASTAT Pipe A Display Status Select R/W

70028h–7002Fh ⎯ Reserved ⎯

70030h–70033h DSPARB Display Arbitration Control R/W

70034h–70037h FW1 Display FIFO Watermark Control 1 R/W

70038h–7003Bh FW2 Display FIFO Watermark Control 2

7003Ch–7003Fh FW3 Display FIFO Watermark Control 3 R/W

70040h-70043h PIPEAFRAMEH Pipe A Frame Count High RO

70044h-70047h PIPEAFRAMEPIX Pipe A Frame Count Low and Pixel Count RO

70048h-7007Fh ⎯ Reserved ⎯

Cursor A and B Registers

70080h–70083h CURACNTR Cursor A Control R/W

70084h–70087h CURABASE Cursor A Base Address R/W

70088h–7008Bh CURAPOS Cursor A Position R/W

7008Ch–7008Fh ⎯ Reserved ⎯

70090h–7009Fh CURAPALET[0:3] Cursor A Palette 0:3 R/W

700A0h–700BFh ⎯ Reserved ⎯

700C0h–700C3h CURBCNTR Cursor B Control R/W

700C4h–700C7h CURBBASE Cursor B Base Address R/W

700C8h–700CBh CURBPOS Cursor B Position R/W

700CCh–700CFh ⎯ Reserved ⎯

700D0h–700DFh CURBPALET[0:3] Cursor B Palette 0:3 R/W

700E0h–7017Fh ⎯ Reserved ⎯

Display A Control

70180h–70183h DSPACNTR Display A Plane Control R/W

70184h–70187h DSPALINOFF Display A Linear Offset Register R/W

70188h–7018Bh DSPASTRIDE Display A Stride R/W

7018Ch-7018Fh ⎯ Reserved ⎯

70190h-70193h DSPARESV (RSVD) Display A Reserved R/W

70194h–70197h DSPAKEYVAL Sprite Color Key Value R/W

70198h–7019Bh DSPAKEYMSK Sprite Color Key Mask Value R/W

7019Ch–7019Fh DSPASURF Display A Surface Base Address Register R/W

701A0h-701A3h ⎯ Reserved ⎯

701A4h–701A7h DSPATILEOFF Display A Tiled Offset Register R/W

701A8h-701FFh ⎯ Reserved ⎯

70200h-70203h DSPAFLPQSTAT Flip Queue Status Register R/W

92

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access

70204h–703FFh ⎯ Reserved ⎯

VBIOS Software Flags 0-6

70400h-70403h ⎯ Reserved ⎯

70404h–7040Fh ⎯ Reserved ⎯

70410h–7044Fh SWFxx Software Flag 00:0F R/W

70450h–70FFFh ⎯ Reserved ⎯

Display Pipeline B Control

71000h–71003h PIPEB_DSL Pipe B Display Scan Line Count RO

71004h–71007h PIPEB_SLC Pipe B Display Scan Line Range Compare RO

71008h–7100Bh PIPEBCONF Pipe B Configuration R/W

7100Ch–7100Fh ⎯ Reserved ⎯

71010h–71013h PIPEBGCMAXRED Pipe B Gamma Correction Max Red R/W

71014h–71017h PIPEBGCMAXGRN Pipe B Gamma Correction Max Green R/W

71018h–7101Bh PIPEBGCMAXBLU Pipe B Gamma Correction Max Blue R/W

71024h–71027h PIPEBSTAT Pipe B Status R/W

71028h–7103Fh ⎯ Reserved ⎯

71040h-71043h PIPEBFRAMEH Pipe B Frame Count High RO

71044h-71047h PIPEBFRAMEPIX Pipe B Frame Count Low and Pixel Count RO

71048h-7117Fh ⎯ Reserved ⎯

Display B / Sprite Control

71180h–71183h DSPBCNTR Display B / Sprite Control R/W

71184h–71187h DSPBLINOFFSET Display B / Sprite Linear Offset R/W

71188h–7118Bh DSPBSTRIDE Display B / Sprite Stride R/W

7118Ch–71193h ⎯ Reserved ⎯

71194h–71197h DSPBKEYVAL Display B / Sprite Color Key Value R/W

71198h–7119Bh DSPBKEYMSK Display B / Sprite Color Key Mask R/W

7119Ch–7119Fh DSPBSURF Display B Surface Base Address Register R/W

711A0h-711A3h ⎯ Reserved ⎯

711A4h–711A7h DSPBTILEOFF Display B Tiled Offset Register R/W

711A8h-711FFh ⎯ Reserved ⎯

 71200h-71203h DSPBFLPQSTAT Flip Queue Status Register R/W

71204h–713FFh ⎯ Reserved ⎯

 93

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access

Video BIOS Registers

71400h–71403h VGACNTRL VGA Display Plane Control R/W

71404h–7140Fh ⎯ Reserved ⎯

VBIOS Software Flags 10-1F

71410h–7144Fh SWF[10-1F] Software Flag 10 – 1F R/W

71450h–71FFFh ⎯ Reserved ⎯

Display C / Sprite Control

72000h–7217Fh ⎯ Reserved ⎯

72180h–72183h DSPCCNTR Display C / Sprite Control R/W

72184h–72187h DSPCLINOFF Display C / Sprite Linear Offset Register R/W

72188h–7218Bh DSPCSTRIDE Display C / Sprite Stride R/W

7218Ch–7218Fh DSPCPOS Display C / Sprite Position R/W

72190h–72193h DSPCSIZE Display C / Sprite Height and Width R/W

72194h–72197h DSPCKEYMINVAL Display C / Sprite Color Key Min Value R/W

72198h–7219Bh DSPCKEYMSK Display C / Sprite Color Key Mask R/W

7219Ch–7219Fh DSPCSURF Display C Surface Address Register R/W

721A0h–721A3h DSPCKEYMAXVAL Display C / Sprite Color Key Max Value R/W

721A4h–721A7h DSPCTILEOFF Display C Tiled Offset Register R/W

721A4h-721FFh ⎯ Reserved ⎯

72200h-72203h DSPCFLPQSTAT Flip Queue Status Register R/W

72204h–721CFh ⎯ Reserved ⎯

721D0h–721D3h DCLRC0 Display C Color Correction 0 R/W

721D4h–721D7h DCLRC1 Display C Color Correction 1 R/W

721D8h–721DFh ⎯ Reserved ⎯

721E0h–721E3h GAMC5 Display C Gamma Correction Register 5 R/W

721E4h–721E7h GAMC4 Display C Gamma Correction Register 4 R/W

721E8h–721EBh GAMC3 Display C Gamma Correction Register 3 R/W

721ECh–721EFh GAMC2 Display C Gamma Correction Register 2 R/W

721F0h–721F3h GAMC1 Display C Gamma Correction Register 1 R/W

721F4h–721F7h GAMC0 Display C Gamma Correction Register 0 R/W

721F8h–723FFh ⎯ Reserved ⎯

94

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access

Video Sprite A Control : Reserved

72000h–723FFh ⎯ Reserved ⎯

VBIOS Software Flags 30-32

72400h–72413h ⎯ Reserved ⎯

72414h–72417h SWF[30] Software Flag 30 R/W

72418h–7241Bh SWF[31] Software Flag 31 R/W

7241Ch–7241Fh SWF[32] Software Flag 32 R/W

72420h–72FFFh ⎯ Reserved ⎯

Performance Counters (73000h-73FFFh)

73000h–73003h PCSRC Performance Counter Source Register R/W

73004h–73007h PCSTAT Performance Counter Status Register RO

73008h–7317Fh — Reserved —

Video Sprite B Control : Reserved

73180h–733FFh — Reserved —

Reserved (74000h-7FFFFh)

74000h–7FFFFh — Reserved —

 95

5.2 VGA and Extended VGA Register Map

For I/O locations, the value in the address column represents the register I/O address.
For memory mapped locations, this address is an offset from the base address
programmed in the MMADR register.

5.2.1 VGA and Extended VGA I/O and Memory Register Map
Table 5-3. I/O and Memory Register Map

Address Register Name (Read) Register Name (Write)

2D Registers

3B0h–3B3h Reserved Reserved

3B4h VGA CRTC Index (CRX)
(monochrome)

VGA CRTC Index (CRX)
(monochrome)

3B5h VGA CRTC Data (monochrome) VGA CRTC Data (monochrome)

3B6h–3B9h Reserved Reserved

3Bah VGA Status Register (ST01) VGA Feature Control Register (FCR)

3BBh–3BFh Reserved Reserved

3C0h VGA Attribute Controller Index (ARX) VGA Attribute Controller Index
(ARX)/
VGA Attribute Controller Data
(alternating writes select ARX or
write ARxx Data)

3C1h VGA Attribute Controller Data
(read ARxx data)

Reserved

3C2h VGA Feature Read Register (ST00) VGA Miscellaneous Output Register
(MSR)

3C3h Reserved Reserved

3C4h VGA Sequencer Index (SRX) VGA Sequencer Index (SRX)

3C5h VGA Sequencer Data (SRxx) VGA Sequencer Data (SRxx)

3C6h VGA Color Palette Mask (DACMASK) VGA Color Palette Mask (DACMASK)

3C7h VGA Color Palette State (DACSTATE) VGA Color Palette Read Mode Index
(DACRX)

3C8h VGA Color Palette Write Mode Index
(DACWX)

VGA Color Palette Write Mode Index
(DACWX)

3C9h VGA Color Palette Data (DACDATA) VGA Color Palette Data (DACDATA)

3CAh VGA Feature Control Register (FCR) Reserved

3CBh Reserved Reserved

3CCh VGA Miscellaneous Output Register
(MSR)

Reserved

96

Address Register Name (Read) Register Name (Write)

3CDh Reserved Reserved

3CEh VGA Graphics Controller Index (GRX) VGA Graphics Controller Index
(GRX)

3CFh VGA Graphics Controller Data (GRxx) VGA Graphics Controller Data
(GRxx)

3D0h–3D1h Reserved Reserved

2D Registers

3D4h VGA CRTC Index (CRX) VGA CRTC Index (CRX)

3D5h VGA CRTC Data (CRxx) VGA CRTC Data (CRxx)

System Configuration Registers

3D6h GFX/2D Configurations Extensions
Index (XRX)

GFX/2D Configurations Extensions
Index (XRX)

3D7h GFX/2D Configurations Extensions
Data (XRxx)

GFX/2D Configurations Extensions
Data (XRxx)

2D Registers

3D8h–3D9h Reserved Reserved

3DAh VGA Status Register (ST01) VGA Feature Control Register (FCR)

3DBh–3DFh Reserved Reserved

5.3 Indirect VGA and Extended VGA Register Indices

The registers listed in this section are indirectly accessed by programming an index
value into the appropriate SRX, GRX, ARX, or CRX register. The index and data
register address locations are listed in the previous section. Additional details
concerning the indirect access mechanism are provided in the VGA and Extended VGA
Register Description Chapter (see SRxx, GRxx, ARxx or CRxx sections).

Table 5-4. 2D Sequence Registers (3C4h / 3C5h)

Index Sym Description

00h SR00 Sequencer Reset

01h SR01 Clocking Mode

02h SR02 Plane / Map Mask

03h SR03 Character Font

04h SR04 Memory Mode

07h SR07 Horizontal Character Counter Reset

 97

Table 5-5. 2D Graphics Controller Registers (3CEh / 3CFh)

Index Sym Register Name

00h GR00 Set / Reset

01h GR01 Enable Set / Reset

02h GR02 Color Compare

03h GR03 Data Rotate

04h GR04 Read Plane Select

05h GR05 Graphics Mode

06h GR06 Miscellaneous

07h GR07 Color Don’t Care

08h GR08 Bit Mask

10h GR10 Address Mapping

11h GR11 Page Selector

18h GR18 Software Flags

Table 5-6. 2D Attribute Controller Registers (3C0h / 3C1h)

Index Sym Register Name

00h AR00 Palette Register 0

01h AR01 Palette Register 1

02h AR02 Palette Register 2

03h AR03 Palette Register 3

04h AR04 Palette Register 4

05h AR05 Palette Register 5

06h AR06 Palette Register 6

07h AR07 Palette Register 7

08h AR08 Palette Register 8

09h AR09 Palette Register 9

0Ah AR0A Palette Register A

0Bh AR0B Palette Register B

0Ch AR0C Palette Register C

0Dh AR0D Palette Register D

0Eh AR0E Palette Register E

0Fh AR0F Palette Register F

10h AR10 Mode Control

11h AR11 Overscan Color

12h AR12 Memory Plane Enable

13h AR13 Horizontal Pixel Panning

14h AR14 Color Select

98

Table 5-7. 2D CRT Controller Registers (3B4h / 3D4h / 3B5h / 3D5h)

Index Sym Register Name

00h CR00 Horizontal Total

01h CR01 Horizontal Display Enable End

02h CR02 Horizontal Blanking Start

03h CR03 Horizontal Blanking End

04h CR04 Horizontal Sync Start

05h CR05 Horizontal Sync End

06h CR06 Vertical Total

07h CR07 Overflow

08h CR08 Preset Row Scan

09h CR09 Maximum Scan Line

0Ah CR0A Text Cursor Start

0Bh CR0B Text Cursor End

0Ch CR0C Start Address High

0Dh CR0D Start Address Low

0Eh CR0E Text Cursor Location High

0Fh CR0F Text Cursor Location Low

10h CR10 Vertical Sync Start

11h CR11 Vertical Sync End

12h CR12 Vertical Display Enable End

13h CR13 Offset

14h CR14 Underline Location

15h CR15 Vertical Blanking Start

16h CR16 Vertical Blanking End

17h CR17 CRT Mode

18h CR18 Line Compare

22h CR22 Memory Read Latch Data

24h CR24 Test Register for Toggle State of Attribute Control Register

§§

 99

100

6 Memory Data Formats

This chapter describes the attributes associated with the memory-resident data
objects operated on by the graphics pipeline. This includes object types, pixel
formats, memory layouts, and rules/restrictions placed on the dimensions, physical
memory location, pitch, alignment, etc. with respect to the specific operations
performed on the objects.

6.1 Memory Object Overview

Any memory data accessed by the device is considered part of a memory object of
some memory object type.

6.1.1 Memory Object Types

The following table lists the various memory objects types and an indication of their
role in the system.

Memory Object Type Role

Graphics Translation Table (GTT) Contains PTEs used to translate “graphics addresses” into physical
memory addresses.

Hardware Status Page Cached page of sysmem used to provide fast driver synchronization.

Logical Context Buffer Memory areas used to store (save/restore) images of hardware
rendering contexts. Logical contexts are referenced via a pointer to the
corresponding Logical Context Buffer.

Ring Buffers Buffers used to transfer (DMA) instruction data to the device. Primary
means of controlling rendering operations.

Batch Buffers Buffers of instructions invoked indirectly from Ring Buffers.

State Descriptors Contains state information in a prescribed layout format to be read by
hardware. Many different state descriptor formats are supported.

Vertex Buffers Buffers of 3D vertex data indirectly referenced through “indexed” 3D
primitive instructions.

VGA Buffer

(Must be mapped UC on PCI)

Graphics memory buffer used to drive the display output while in legacy
VGA mode.

Display Surface Memory buffer used to display images on display devices.

Overlay Surface Memory buffer used to display overlaid images on display devices.

Overlay Register, Filter Coefficients

Buffer

Memory area used to provide double-buffer for Overlay register and
filter coefficient loading.

Cursor Surface Hardware cursor pattern in memory.

 101

Memory Object Type Role

2D Render Source Surface used as primary input to 2D rendering operations.

2D Render R-M-W Destination 2D rendering output surface that is read in order to be combined in the
rendering function. Destination surfaces that accessed via this Read-
Modify-Write mode have somewhat different restrictions than Write-
Only Destination surfaces.

2D Render Write-Only Destination 2D rendering output surface that is written but not read by the 2D
rendering function. Destination surfaces that accessed via a Write-Only
mode have somewhat different restrictions than Read-Modify-Write
Destination surfaces.

2D Monochrome Source 1 bpp surfaces used as inputs to 2D rendering after being converted to
foreground/background colors.

2D Color Pattern 8x8 pixel array used to supply the “pattern” input to 2D rendering
functions.

DIB “Device Independent Bitmap” surface containing “logical” pixel values
that are converted (via LUTs) to physical colors.

3D Color Buffer Surface receiving color output of 3D rendering operations. May also be
accessed via R-M-W (aka blending). Also referred to as a Render
Target.

3D Depth Buffer Surface used to hold per-pixel depth and stencil values used in 3D
rendering operations. Accessed via RMW.

3D Texture Map Color surface (or collection of surfaces) which provide texture data in
3D rendering operations.

“Non-3D” Texture

Surface read by Texture Samplers, though not in normal 3D rendering
operations (e.g., in video color conversion functions).

Motion Comp Surfaces These are the Motion Comp reference pictures.

Motion Comp Correction Data Buffer This is Motion Comp intra-coded or inter-coded correction data.

6.2 Channel Formats

6.2.1 Unsigned Normalized (UNORM)

An unsigned normalized value with n bits is interpreted as a value between 0.0 and
1.0. The minimum value (all 0’s) is interpreted as 0.0, the maximum value (all 1’s) is
interpreted as 1.0. Values inbetween are equally spaced. For example, a 2-bit
UNORM value would have the four values 0, 1/3, 2/3, and 1.

If the incoming value is interpreted as an n-bit integer, the interpreted value can be
calculated by dividing the integer by 2n-1.

102

6.2.2 Gamma Conversion (SRGB)

Gamma conversion is only supported on UNORM formats. If this flag is included in the
surface format name, it indicates that a reverse gamma conversion is to be done after
the source surface is read, and a forward gamma conversion is to be done before the
destination surface is written.

6.2.3 Signed Normalized (SNORM)

A signed normalized value with n bits is interpreted as a value between -1.0 and +1.0.
If the incoming value is interpreted as a 2’s-complement n-bit signed integer, the
interpreted value can be calculated by dividing the integer by 2n-1-1. Note that the
most negative value of -2n-1 will result in a value slightly smaller than -1.0. This value
is clamped to -1.0, thus there are two representations of -1.0 in SNORM format.

6.2.4 Unsigned Integer (UINT/USCALED)

The UINT and USCALED formats interpret the source as an unsigned integer value
with n bits with a range
of 0 to 2n-1.

The UINT formats copy the source value to the destination (zero-extending if
required), keeping the value as an integer.

The USCALED formats convert the integer into the corresponding floating point value
(e.g., 0x03 --> 3.0f). For 32-bit sources, the value is rounded to nearest even.

6.2.5 Signed Integer (SINT/SSCALED)

A signed integer value with n bits is interpreted as a 2’s complement integer with a
range of -2n-1 to +2n-1-1.

The SINT formats copy the source value to the destination (sign-extending if
required), keeping the value as an integer.

The SSCALED formats convert the integer into the corresponding floating point value
(e.g., 0xFFFD --> -3.0f). For 32-bit sources, the value is rounded to nearest even.

 103

6.2.6 Floating Point (FLOAT)

Refer to IEEE Standard 754 for Binary Floating-Point Arithmetic. The IA-32 Intel®
Architecture Software Developer’s Manual also describes floating point data types
(though GEN4 deviates slightly from those behaviors).

6.2.6.1 32-bit Floating Point

Bit Description

31 Sign (s)

30:23 Exponent (e) Biased Exponent

22:0 Fraction (f) Does not include “hidden one”

The value of this data type is derived as:
• if e == 255 and f != 0, then v is NaN regardless of s
• if e == 255 and f == 0, then v = (-1)s*infinity (signed infinity)
• if 0 < e < 255, then v = (-1)s*2(e-127)*(1.f)
• if e == 0 and f != 0, then v = (-1)s*2(e-126)*(0.f) (denormalized numbers)
• if e == 0 and f == 0, then v = (-1)s*0 (signed zero)

6.2.6.2 64-bit Floating Point

Bit Description

63 Sign (s)

62:52 Exponent (e) Biased Exponent

51:0 Fraction (f) Does not include “hidden one”

The value of this data type is derived as:
• if e == b’11..11’ and f != 0, then v is NaN regardless of s
• if e == b’11..11’ and f == 0, then v = (-1)s*infinity (signed infinity)
• if 0 < e < b’11..11’, then v = (-1)s*2(e-1023)*(1.f)
• if e == 0 and f != 0, then v = (-1)s*2(e-1022)*(0.f) (denormalized numbers)
• if e == 0 and f == 0, then v = (-1)s*0 (signed zero)

6.3 Non-Video Surface Formats

This section describes the lowest-level organization of a surfaces containing discrete
“pixel” oriented data (e.g., discrete pixel (RGB,YUV) colors, subsampled video data,
3D depth/stencil buffer pixel formats, bump map values etc. Many of these pixel
formats are common to the various pixel-oriented memory object types.

6.3.1 Surface Format Naming

Unless indicated otherwise, all pixels are stored in “little endian” byte order. I.e.,
pixel bits 7:0 are stored in byte n, pixel bits 15:8 are stored in byte n+1, and so on.

104

The format labels include color components in little endian order (e.g., R8G8B8A8
format is physically stored as R, G, B, A).

The name of most of the surface formats specifies its format. Channels are listed in
little endian order (LSB channel on the left, MSB channel on the right), with the
channel format specified following the channels with that format. For example,
R5G5_SNORM_B6_UNORM contains, from LSB to MSB, 5 bits of red in SNORM format,
5 bits of green in SNORM format, and 6 bits of blue in UNORM format.

6.3.2 Intensity Formats

All surface formats containing “I” include an intensity value. When used as a source
surface for the sampling engine, the intensity value is replicated to all four channels
(R,G,B,A) before being filtered. Intensity surfaces are not supported as destinations.

6.3.3 Luminance Formats

All surface formats contaning “L” include a luminance value. When used as a source
surface for the sampling engine, the luminance value is replicated to the three color
channels (R,G,B) before being filtered. The alpha channel is provided either from
another field or receives a default value. Luminance surfaces are not supported as
destinations.

 105

6.3.4 P4A4_UNORM

This texel format contains a 4-bit Alpha value (in the high nibble) and a 4-bit Palette
Index value (in the low nibble).

7 4 3 0

Alpha Palette Index

Bit Description

7:4 Alpha

Alpha value which will be replicated to both the high and low nibble of an 8-bit value, and then
divided by 255 to yield a [0.0,1.0] Alpha value.

Format: U4

3:0 Palette Index

A 4-bit index which is used to lookup a 24-bit (RGB) value in the texture palette (loaded via
3DSTATE_SAMPLER_PALETTE_LOAD)

Format: U4

6.3.5 A4P4_UNORM

This texel format contains a 4-bit Alpha value (in the low nibble) and a 4-bit Color
Index value (in the high nibble).

7 4 3 0

Palette Index Alpha

Bit Description

7:4 Palette Index

A 4-bit color index which is used to lookup a 24-bit RGB value in the texture palette.

Format: U4

3:0 Alpha

Alpha value which will be replicated to both the high and low nibble of an 8-bit value, and then
divided by 255 to yield a [0.0,1.0] alpha value.

Format: U4

106

6.4 Compressed Surface Formats

This section contains information on the internal organization of compressed surface
formats.

6.4.1 FXT Texture Formats

There are four different FXT1 compressed texture formats. Each of the formats
compress two 4x4 texel blocks into 128 bits. In each compression format, the 32
texels in the two 4x4 blocks are arranged according to the following diagram:

Figure 6-1. FXT1 Encoded Blocks

t0 t1 t2 t3

t4 t5 t6 t7

t8 t9 t10 t11

t12 t13 t14 t15

t16 t17 t18 t19

t20 t21 t22 t23

t24 t25 t26 t27

t28 t29 t30 t31

6.4.1.1 Overview of FXT1 Formats

During the compression phase, the encoder selects one of the four formats for each
block based on which encoding scheme results in best overall visual quality. The
following table lists the four different modes and their encodings:

Table 6-1. FXT1 Format Summary

Bit
127

Bit
126

Bit
125

Block
Compression

Mode

Summary Description

0 0 X CC_HI 2 R5G5B5 colors supplied. Single LUT with 7 interpolated color
values and transparent black

0 1 0 CC_CHROMA 4 R5G5B5 colors used directly as 4-entry LUT.

0 1 1 CC_ALPHA 3 A5R5G5B5 colors supplied. LERP bit selects between 1 LUT with
3 discrete colors + transparent black and 2 LUTs using
interpolated values of Color 0,1 (t0-15) and Color 1,2 (t16-31).

1 x x CC_MIXED 4 R5G5B5 colors supplied, where Color0,1 LUT is used for t0-t15,
and Color2,3 LUT used for t16-31. Alpha bit selects between LUTs
with 4 interpolated colors or 3 interpolated colors + transparent
black.

 107

6.4.1.2 FXT1 CC_HI Format

In the CC_HI encoding format, two base 15-bit R5G5B5 colors (Color 0, Color 1) are
included in the encoded block. These base colors are then expanded (using high-
order bit replication) to 24-bit RGB colors, and used to define an 8-entry lookup table
of interpolated color values (the 8th entry is transparent black). The encoded block
contains a 3-bit index value per texel that is used to lookup a color from the table.

6.4.1.2.1 CC_HI Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_HI block
format:

Table 6-2. FXT CC_HI Block Encoding

Bit Description

127:126 Mode = ‘00’b (CC_HI)

125:121 Color 1 Red

120:116 Color 1 Green

115:111 Color 1 Blue

110:106 Color 0 Red

105:101 Color 0 Green

100:96 Color 0 Blue

95:93 Texel 31 Select

... ...

50:48 Texel 16 Select

47:45 Texel 15 Select

... ...

2:0 Texel 0 Select

108

6.4.1.2.2 CC_HI Block Decoding

The two base colors, Color 0 and Color 1 are converted from R5G5B5 to R8G8B8 by
replicating the 3 MSBs into the 3 LSBs, as shown in the following table:

Table 6-3. FXT CC_HI Decoded Colors

Expanded Color
Bit

Expanded Channel
Bit

Encoded Block
Source Bit

Color 1 [23:19] Color 1 Red [7:3] [125:121]

Color 1 [18:16] Color 1 Red [2:0] [125:123]

Color 1 [15:11] Color 1 Green [7:3] [120:116]

Color 1 [10:08] Color 1 Green [2:0] [120:118]

Color 1 [07:03] Color 1 Blue [7:3] [115:111]

Color 1 [02:00] Color 1 Blue [2:0] [115:113]

Color 0 [23:19] Color 0 Red [7:3] [110:106]

Color 0 [18:16] Color 0 Red [2:0] [110:108]

Color 0 [15:11] Color 0 Green [7:3] [105:101]

Color 0 [10:08] Color 0 Green [2:0] [105:103]

Color 0 [07:03] Color 0 Blue [7:3] [100:96]

Color 0 [02:00] Color 0 Blue [2:0] [100:98]

These two 24-bit colors (Color 0, Color 1) are then used to create a table of seven
interpolated colors (with Alpha = 0FFh), along with an eight entry equal to RGBA =
0,0,0,0, as shown in the following table:

Table 6-4. FXT CC_HI Interpolated Color Table

Interpolated
Color

Color RGB Alpha

0 Color0.RGB 0FFh

1 (5 * Color0.RGB + 1 * Color1.RGB + 3) / 6 0FFh

2 (4 * Color0.RGB + 2 * Color1.RGB + 3) / 6 0FFh

3 (3 * Color0.RGB + 3 * Color1.RGB + 3) / 6 0FFh

4 (2 * Color0.RGB + 4 * Color1.RGB + 3) / 6 0FFh

5 (1 * Color0.RGB + 5 * Color1.RGB + 3) / 6 0FFh

6 Color1.RGB 0FFh

7 RGB = 0,0,0 0

This table is then used as an 8-entry Lookup Table, where each 3-bit Texel n Select
field of the encoded CC_HI block is used to index into a 32-bit A8R8G8B8 color from
the table completing the decode of the CC_HI block.

 109

6.4.1.3 FXT1 CC_CHROMA Format

In the CC_CHROMA encoding format, four 15-bit R5B5G5 colors are included in the
encoded block. These colors are then expanded (using high-order bit replication) to
form a 4-entry table of 24-bit RGB colors. The encoded block contains a 2-bit index
value per texel that is used to lookup a 24-bit RGB color from the table. The Alpha
component defaults to fully opaque (0FFh).

6.4.1.3.1 CC_CHROMA Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_CHROMA
block format:

Table 6-5. FXT CC_CHROMA Block Encoding

Bit Description

127:125 Mode = ‘010’b (CC_CHROMA)

124 Unused

123:119 Color 3 Red

118:114 Color 3 Green

113:109 Color 3 Blue

108:104 Color 2 Red

103:99 Color 2 Green

98:94 Color 2 Blue

93:89 Color 1 Red

88:84 Color 1 Green

83:79 Color 1 Blue

78:74 Color 0 Red

73:69 Color 0 Green

68:64 Color 0 Blue

63:62 Texel 31 Select

...

33:32 Texel 16 Select

31:30 Texel 15 Select

...

1:0 Texel 0 Select

110

6.4.1.3.2 CC_CHROMA Block Decoding

The four colors (Color 0-3) are converted from R5G5B5 to R8G8B8 by replicating the 3
MSBs into the 3 LSBs, as shown in the following tables:

Table 6-6. FXT CC_CHROMA Decoded Colors

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 3 [23:17] Color 3 Red [7:3] [123:119]

Color 3 [18:16] Color 3 Red [2:0] [123:121]

Color 3 [15:11] Color 3 Green [7:3] [118:114]

Color 3 [10:08] Color 3 Green [2:0] [118:116]

Color 3 [07:03] Color 3 Blue [7:3] [113:109]

Color 3 [02:00] Color 3 Blue [2:0] [113:111]

Color 2 [23:17] Color 2 Red [7:3] [108:104]

Color 2 [18:16] Color 2 Red [2:0] [108:106]

Color 2 [15:11] Color 2 Green [7:3] [103:99]

Color 2 [10:08] Color 2 Green [2:0] [103:101]

Color 2 [07:03] Color 2 Blue [7:3] [98:94]

Color 2 [02:00] Color 2 Blue [2:0] [98:96]

Color 1 [23:17] Color 1 Red [7:3] [93:89]

Color 1 [18:16] Color 1 Red [2:0] [93:91]

Color 1 [15:11] Color 1 Green [7:3] [88:84]

Color 1 [10:08] Color 1 Green [2:0] [88:86]

Color 1 [07:03] Color 1 Blue [7:3] [83:79]

Color 1 [02:00] Color 1 Blue [2:0] [83:81]

Color 0 [23:17] Color 0 Red [7:3] [78:74]

Color 0 [18:16] Color 0 Red [2:0] [78:76]

Color 0 [15:11] Color 0 Green [7:3] [73:69]

Color 0 [10:08] Color 0 Green [2:0] [73:71]

Color 0 [07:03] Color 0 Blue [7:3] [68:64]

Color 0 [02:00] Color 0 Blue [2:0] [68:66]

This table is then used as a 4-entry Lookup Table, where each 2-bit Texel n Select
field of the encoded CC_CHROMA block is used to index into a 32-bit A8R8G8B8 color
from the table (Alpha defaults to 0FFh) completing the decode of the CC_CHROMA
block.

 111

Table 6-7. FXT CC_CHROMA Interpolated Color Table

Texel Select Color ARGB

0 Color0.ARGB

1 Color1.ARGB

2 Color2.ARGB

3 Color3.ARGB

6.4.1.4 FXT1 CC_MIXED Format

In the CC_MIXED encoding format, four 15-bit R5G5B5 colors are included in the
encoded block: Color 0 and Color 1 are used for Texels 0-15, and Color 2 and Color 3
are used for Texels 16-31.

Each pair of colors are then expanded (using high-order bit replication) to form 4-
entry tables of 24-bit RGB colors. The encoded block contains a 2-bit index value per
texel that is used to lookup a 24-bit RGB color from the table. The Alpha component
defaults to fully opaque (0FFh).

6.4.1.4.1 CC_MIXED Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_MIXED block
format:

Table 6-8. FXT CC_MIXED Block Encoding

Bit Description

127 Mode = ‘1’b (CC_MIXED)

126 Color 3 Green [0]

125 Color 1 Green [0]

124 Alpha [0]

123:119 Color 3 Red

118:114 Color 3 Green

113:109 Color 3 Blue

108:104 Color 2 Red

103:99 Color 2 Green

98:94 Color 2 Blue

93:89 Color 1 Red

88:84 Color 1 Green

83:79 Color 1 Blue

78:74 Color 0 Red

112

Bit Description

73:69 Color 0 Green

68:64 Color 0 Blue

63:62 Texel 31 Select

... ...

33:32 Texel 16 Select

31:30 Texel 15 Select

... ...

1:0 Texel 0 Select

6.4.1.4.2 CC_MIXED Block Decoding

The decode of the CC_MIXED block is modified by Bit 124 (Alpha [0]) of the encoded
block.

Alpha[0] = 0 Decoding

When Alpha[0] = 0 the four colors are encoded as 16-bit R5G6B5 values, with the
Green LSB defined as per the following table:

Table 6-9. FXT CC_MIXED (Alpha[0]=0) Decoded Colors

Encoded Color Bit Definition

Color 3 Green [0] Encoded Bit [126]

Color 2 Green [0] Encoded Bit [33] XOR Encoded Bit [126]

Color 1 Green [0] Encoded Bit [125]

Color 0 Green [0] Encoded Bit [1] XOR Encoded Bit [125]

The four colors (Color 0-3) are then converted from R5G5B6 to R8G8B8 by replicating
the 3 MSBs into the 3 LSBs, as shown in the following table:

Table 6-10. FXT CC_MIXED Decoded Colors (Alpha[0] = 0)

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 3 [23:17] Color 3 Red [7:3] [123:119]

Color 3 [18:16] Color 3 Red [2:0] [123:121]

Color 3 [15:11] Color 3 Green [7:3] [118:114]

Color 3 [10] Color 3 Green [2] [126]

Color 3 [09:08] Color 3 Green [1:0] [118:117]

Color 3 [07:03] Color 3 Blue [7:3] [113:109]

 113

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 3 [02:00] Color 3 Blue [2:0] [113:111]

Color 2 [23:17] Color 2 Red [7:3] [108:104]

Color 2 [18:16] Color 2 Red [2:0] [108:106]

Color 2 [15:11] Color 2 Green [7:3] [103:99]

Color 2 [10] Color 2 Green [2] [33] XOR [126]]

Color 2 [09:08] Color 2 Green [1:0] [103:100]

Color 2 [07:03] Color 2 Blue [7:3] [98:94]

Color 2 [02:00] Color 2 Blue [2:0] [98:96]

Color 1 [23:17] Color 1 Red [7:3] [93:89]

Color 1 [18:16] Color 1 Red [2:0] [93:91]

Color 1 [15:11] Color 1 Green [7:3] [88:84]

Color 1 [10] Color 1 Green [2] [125]

Color 1 [09:08] Color 1 Green [1:0] [88:86]

Color 1 [07:03] Color 1 Blue [7:3] [83:79]

Color 1 [02:00] Color 1 Blue [2:0] [83:81]

Color 0 [23:17] Color 0 Red [7:3] [78:74]

Color 0 [18:16] Color 0 Red [2:0] [78:76]

Color 0 [15:11] Color 0 Green [7:3] [73:69]

Color 0 [10] Color 0 Green [2] [1] XOR [125]

Color 0 [09:08] Color 0 Green [1:0] [73:71]

Color 0 [07:03] Color 0 Blue [7:3] [68:64]

Color 0 [02:00] Color 0 Blue [2:0] [68:66]

The two sets of 24-bit colors (Color 0,1 and Color 2,3) are then used to create two
tables of four interpolated colors (with Alpha = 0FFh). The Color0,1 table is used as a
lookup table for texel 0-15 indices, and the Color2,3 table used for texels 16-31
indices, as shown in the following figures:

Table 6-11. FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 0-15)

Texel 0-
15 Select

Color RGB Alpha

0 Color0.RGB 0FFh

1 (2*Color0.RGB + Color1.RGB + 1) /3 0FFh

2 (Color0.RGB + 2*Color1.RGB + 1) /3 0FFh

3 Color1.RGB 0FFh

114

Table 6-12. FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 16-31)

Texel 16-31
Select

Color RGB Alpha

0 Color2.RGB 0FFh

1 (2/3) * Color2.RGB + (1/3) * Color3.RGB 0FFh

2 (1/3) * Color2.RGB + (2/3) * Color3.RGB 0FFh

3 Color3.RGB 0FFh

Alpha[0] = 1 Decoding

When Alpha[0] = 1, Color0 and Color2 are encoded as 15-bit R5G5B5 values. Color1
and Color3 are encoded as RGB565 colors, with the Green LSB obtained as shown in
the following table:

Table 6-13. FXT CC_MIXED (Alpha[0]=0) Decoded Colors

Encoded Color Bit Definition

Color 3 Green [0] Encoded Bit [126]

Color 1 Green [0] Encoded Bit [125]

All four colors are then expanded to 24-bit R8G8B8 colors by bit replication, as show
in the following diagram.

Table 6-14. FXT CC_MIXED Decoded Colors (Alpha[0] = 1)

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 3 [23:17] Color 3 Red [7:3] [123:119]

Color 3 [18:16] Color 3 Red [2:0] [123:121]

Color 3 [15:11] Color 3 Green [7:3] [118:114]

Color 3 [10] Color 3 Green [2] [126]

Color 3 [09:08] Color 3 Green [1:0] [118:117]

Color 3 [07:03] Color 3 Blue [7:3] [113:109]

Color 3 [02:00] Color 3 Blue [2:0] [113:111]

Color 2 [23:19] Color 2 Red [7:3] [108:104]

Color 2 [18:16] Color 2 Red [2:0] [108:106]

Color 2 [15:11] Color 2 Green [7:3] [103:99]

Color 2 [10:08] Color 2 Green [2:0] [103:101]

Color 2 [07:03] Color 2 Blue [7:3] [98:94]

Color 2 [02:00] Color 2 Blue [2:0] [98:96]

Color 1 [23:17] Color 1 Red [7:3] [93:89]

Color 1 [18:16] Color 1 Red [2:0] [93:91]

Color 1 [15:11] Color 1 Green [7:3] [88:84]

Color 1 [10] Color 1 Green [2] [125]

 115

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 1 [09:08] Color 1 Green [1:0] [88:87]

Color 1 [07:03] Color 1 Blue [7:3] [83:79]

Color 1 [02:00] Color 1 Blue [2:0] [83:81]

Color 0 [23:19] Color 0 Red [7:3] [78:74]

Color 0 [18:16] Color 0 Red [2:0] [78:76]

Color 0 [15:11] Color 0 Green [7:3] [73:69]

Color 0 [10:08] Color 0 Green [2:0] [73:71]

Color 0 [07:03] Color 0 Blue [7:3] [68:64]

Color 0 [02:00] Color 0 Blue [2:0] [68:66]

The two sets of 24-bit colors (Color 0,1 and Color 2,3) are then used to create two
tables of four colors. The Color0,1 table is used as a lookup table for texel 0-15
indices, and the Color2,3 table used for texels 16-31 indices. The color at index 1 is
the linear interpolation of the base colors, while the color at index 3 is defined as
Black (0,0,0) with Alpha = 0, as shown in the following figures:

Table 6-15. FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 0-15)

Texel 0-15
Select

Color RGB Alpha

0 Color0.RGB 0FFh

1 (Color0.RGB + Color1.RGB) /2 0FFh

2 Color1.RGB 0FFh

3 Black (0,0,0) 0

Table 6-16. FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 16-31)

Texel 16-
31 Select

Color RGB Alpha

0 Color2.RGB 0FFh

1 (Color2.RGB + Color3.RGB) /2 0FFh

2 Color3.RGB 0FFh

3 Black (0,0,0) 0

These tables are then used as a 4-entry Lookup Table, where each 2-bit Texel n Select
field of the encoded CC_MIXED block is used to index into the appropriate 32-bit
A8R8G8B8 color from the table, completing the decode of the CC_CMIXED block.

116

6.4.1.5 FXT1 CC_ALPHA Format

In the CC_ALPHA encoding format, three A5R5G5B5 colors are provided in the
encoded block. A control bit (LERP) is used to define the lookup table (or tables) used
to dereference the 2-bit Texel Selects.

6.4.1.5.1 CC_ALPHA Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_ALPHA block
format:

Table 6-17. FXT CC_ALPHA Block Encoding

Bit Description

127:125 Mode = ‘011’b (CC_ALPHA)

124 LERP

123:119 Color 2 Alpha

118:114 Color 1 Alpha

113:109 Color 0 Alpha

108:104 Color 2 Red

103:99 Color 2 Green

98:94 Color 2 Blue

93:89 Color 1 Red

88:84 Color 1 Green

83:79 Color 1 Blue

78:74 Color 0 Red

73:69 Color 0 Green

68:64 Color 0 Blue

63:62 Texel 31 Select

... ...

33:32 Texel 16 Select

31:30 Texel 15 Select

... ...

1:0 Texel 0 Select

 117

6.4.1.5.2 CC_ALPHA Block Decoding

Each of the three colors (Color 0-2) are converted from A5R5G5B5 to A8R8G8B8 by
replicating the 3 MSBs into the 3 LSBs, as shown in the following tables:

Table 6-18. FXT CC_ALPHA Decoded Colors

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 2 [31:27] Color 2 Alpha [7:3] [123:119]

Color 2 [26:24] Color 2 Alpha [2:0] [123:121]

Color 2 [23:17] Color 2 Red [7:3] [108:104]

Color 2 [18:16] Color 2 Red [2:0] [108:106]

Color 2 [15:11] Color 2 Green [7:3] [103:99]

Color 2 [10:08] Color 2 Green [2:0] [103:101]

Color 2 [07:03] Color 2 Blue [7:3] [98:94]

Color 2 [02:00] Color 2 Blue [2:0] [98:96]

Color 1 [31:27] Color 1 Alpha [7:3] [118:114]

Color 1 [26:24] Color 1 Alpha [2:0] [118:116]

Color 1 [23:17] Color 1 Red [7:3] [93:89]

Color 1 [18:16] Color 1 Red [2:0] [93:91]

Color 1 [15:11] Color 1 Green [7:3] [88:84]

Color 1 [10:08] Color 1 Green [2:0] [88:86]

Color 1 [07:03] Color 1 Blue [7:3] [83:79]

Color 1 [02:00] Color 1 Blue [2:0] [83:81]

Color 0 [31:27] Color 0 Alpha [7:3] [113:109]

Color 0 [26:24] Color 0 Alpha [2:0] [113:111]

Color 0 [23:17] Color 0 Red [7:3] [78:74]

Color 0 [18:16] Color 0 Red [2:0] [78:76]

Color 0 [15:11] Color 0 Green [7:3] [73:69]

Color 0 [10:08] Color 0 Green [2:0] [73:71]

Color 0 [07:03] Color 0 Blue [7:3] [68:64]

Color 0 [02:00] Color 0 Blue [2:0] [68:66]

118

LERP = 0 Decoding

When LERP = 0, a single 4-entry lookup table is formed using the three expanded
colors, with the 4th entry defined as transparent black (ARGB=0,0,0,0). Each 2-bit
Texel n Select field of the encoded CC_ALPHA block is used to index into a 32-bit
A8R8G8B8 color from the table completing the decode of the CC_ALPHA block.

Table 6-19. FXT CC_ALPHA Interpolated Color Table (LERP=0)

Texel Select Color Alpha

0 Color0.RGB Color0.Alpha

1 Color1.RGB Color1.Alpha

2 Color2.RGB Color2.Alpha

3 Black (RGB=0,0,0) 0

LERP = 1 Decoding

When LERP = 1, the three expanded colors are used to create two tables of four
interpolated colors. The Color0,1 table is used as a lookup table for texel 0-15
indices, and the Color1,2 table used for texels 16-31 indices, as shown in the following
figures:

Table 6-20. FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 0-15)

Texel 0-
15 Select

Color ARGB

0 Color0.ARGB

1 (2*Color0.ARGB + Color1.ARGB + 1) /3

2 (Color0.ARGB + 2*Color1.ARGB + 1) /3

3 Color1.ARGB

Table 6-21. FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 16-31)

Texel 16-
31 Select

Color ARGB

0 Color2.ARGB

1 (2*Color2.ARGB + Color1.ARGB + 1) /3

2 (Color2.ARGB + 2*Color1.ARGB + 1) /3

3 Color1.ARGB

 119

6.4.2 BC Texture Formats

The hardware supports three “BCn” surface formats that divide surfaces (texture
maps) into independent 4x4 texel blocks and stores compressed versions of these
blocks in 1 or 2 QWord units. Note that non-power-of-2 dimensioned maps may
require the surface to be padded out to the next multiple of four texels – here the pad
texels are not referenced by the device.

An 8-byte (QWord) block encoding can be used if the source texture contains no
transparency (is opaque) or if the transparency can be specified by a one-bit alpha.
A 16-byte (DQWord) block encoding can be used to support source textures that
require more than one-bit alpha: here the 1st QWord is used to encode the texel
alpha values, and the 2nd QWord is used to encode the texel color values.

These three types of format are discussed in the following sections:

• Opaque and One-bit Alpha Textures (BC1)

• Opaque Textures (BC1_RGB)

• Textures with Alpha Channels (BC2-3)

Notes:

• Any single texture must specify that its data is stored as 64 or 128 bits per group
of 16 texels. If 64-bit blocks—that is, format BC1—are used for the texture, it is
possible to mix the opaque and one-bit alpha formats on a per-block basis within
the same texture. In other words, the comparison of the unsigned integer
magnitude of color_0 and color_1 is performed uniquely for each block of 16
texels.

• When 128-bit blocks are used, then the alpha channel must be specified in either
explicit (format BC2) or interpolated mode (format BC3) for the entire texture.
Note that as with color, once interpolated mode is selected then either 8
interpolated alphas or 6 interpolated alphas mode can be used on a block-by-block
basis. Again the magnitude comparison of alpha_0 and alpha_1 is done uniquely
on a block-by-block basis.

6.4.2.1 Opaque and One-bit Alpha Textures (BC1)

Texture format BC1 is for textures that are opaque or have a single transparent color.
For each opaque or one-bit alpha block, two 16-bit R5G6B5 values and a 4x4 bitmap
with 2-bits-per-pixel are stored. This totals 64 bits (1 QWord) for 16 texels, or 4-bits-
per-texel.

In the block bitmap, there are two bits per texel to select between the four colors, two
of which are stored in the encoded data. The other two colors are derived from these
stored colors by linear interpolation.

The one-bit alpha format is distinguished from the opaque format by comparing the
two 16-bit color values stored in the block. They are treated as unsigned integers. If
the first color is greater than the second, it implies that only opaque texels are
defined. This means four colors will be used to represent the texels. In four-color
encoding, there are two derived colors and all four colors are equally distributed in

120

RGB color space. This format is analogous to R5G6B5 format. Otherwise, for one-bit
alpha transparency, three colors are used and the fourth is reserved to represent
transparent texels. Note that the color blocks in BC2-3 formats strictly use four
colors, as the alpha values are obtained from the alpha block (the DX7 Direct3D
reference rasterizer had a known bug that erroneously allowed 3-color BC2-3 color
blocks).

In three-color encoding, there is one derived color and the fourth two-bit code is
reserved to indicate a transparent texel (alpha information). This format is analogous
to A1R5G5B5, where the final bit is used for encoding the alpha mask.

The following piece of pseudo-code illustrates the algorithm for deciding whether
three- or four-color encoding is selected:

if (color_0 > color_1)
{
 // Four-color block: derive the other two colors.
 // 00 = color_0, 01 = color_1, 10 = color_2, 11 = color_3
 // These two bit codes correspond to the 2-bit fields
 // stored in the 64-bit block.
 color_2 = (2 * color_0 + color_1) / 3;
 color_3 = (color 0 + 2 * color_1) / 3;
}
else
{
 // Three-color block: derive the other color.
 // 00 = color_0, 01 = color_1, 10 = color_2,
 // 11 = transparent.
 // These two bit codes correspond to the 2-bit fields
 // stored in the 64-bit block.
 color_2 = (color_0 + color_1) / 2;
 color_3 = transparent;
}

The following tables show the memory layout for the 8-byte block. It is assumed that
the first index corresponds to the y-coordinate and the second corresponds to the x-
coordinate. For example, Texel[1][2] refers to the texture map pixel at (x,y) = (2,1).

Here is the memory layout for the 8-byte (64-bit) block:

Word Address 16-bit Word

0 Color_0

1 Color_1

2 Bitmap Word_0

3 Bitmap Word_1

Color_0 and Color_1 (colors at the two extremes) are laid out as follows:

Bits Color

15:11 Red color component

10:5 Green color component

4:0 Blue color component

 121

Bitmap Word_0 is laid out as follows:

Bits Texel

1:0 (LSB) Texel[0][0]

3:2 Texel[0][1]

5:4 Texel[0][2]

7:6 Texel[0][3]

9:8 Texel[1][0]

11:10 Texel[1][1]

13:12 Texel[1][2]

15:14 Texel[1][3]

Bitmap Word_1 is laid out as follows:

Bits Texel

1:0 (LSB) Texel[2][0]

3:2 Texel[2][1]

5:4 Texel[2][2]

7:6 Texel[2][3]

9:8 Texel[3][0]

11:10 Texel[3][1]

13:12 Texel[3][2]

15:14 (MSB) Texel[3][3]

Example of Opaque Color Encoding

As an example of opaque encoding, we will assume that the colors red and black are
at the extremes. We will call red color_0 and black color_1. There will be four
interpolated colors that form the uniformly distributed gradient between them. To
determine the values for the 4x4 bitmap, the following calculations are used:

00 ? color_0
01 ? color_1
10 ? 2/3 color_0 + 1/3 color_1
11 ? 1/3 color_0 + 2/3 color_1

Example of One-bit Alpha Encoding

This format is selected when the unsigned 16-bit integer, color_0, is less than the
unsigned 16-bit integer, color_1. An example of where this format could be used is
leaves on a tree to be shown against a blue sky. Some texels could be marked as
transparent while three shades of green are still available for the leaves. Two of these
colors fix the extremes, and the third color is an interpolated color.

122

The bitmap encoding for the colors and the transparency is determined using the
following calculations:

00 ? color_0
01 ? color_1
10 ? 1/2 color_0 + 1/2 color_1
11 ? Transparent

6.4.2.2 Opaque Textures (BC1_RGB)

Texture format BC1_RGB is identical to BC1, with the exception that the One-bit Alpha
encoding is removed. Color 0 and Color 1 are not compared, and the resulting texel
color is derived strictly from the Opaque Color Encoding. The alpha channel defaults
to 1.0.

6.4.2.3 Compressed Textures with Alpha Channels (BC2-3)

There are two ways to encode texture maps that exhibit more complex transparency.
In each case, a block that describes the transparency precedes the 64-bit block
already described. The transparency is either represented as a 4x4 bitmap with four
bits per pixel (explicit encoding), or with fewer bits and linear interpolation analogous
to what is used for color encoding.

The transparency block and the color block are laid out as follows:

Word Address 64-bit Block

3:0 Transparency block

7:4 Previously described 64-bit block

Explicit Texture Encoding

For explicit texture encoding (BC2 formats), the alpha components of the texels that
describe transparency are encoded in a 4x4 bitmap with 4 bits per texel. These 4 bits
can be achieved through a variety of means such as dithering or by simply using the 4
most significant bits of the alpha data. However they are produced, they are used just
as they are, without any form of interpolation.

Note:

DirectDraw’s compression method uses the 4 most significant bits.

The following tables illustrate how the alpha information is laid out in memory, for
each 16-bit word.

This is the layout for Word 0:

Bits Alpha

3:0 (LSB) [0][0]

7:4 [0][1]

11:8 [0][2]

15:12 (MSB) [0][3]

 123

This is the layout for Word 1:

Bits Alpha

3:0 (LSB) [1][0]

7:4 [1][1]

11:8 [1][2]

15:12 (MSB) [1][3]

This is the layout for Word 2:

Bits Alpha

3:0 (LSB) [2][0]

7:4 [2][1]

11:8 [2][2]

15:12 (MSB) [2][3]

This is the layout for Word 3:

Bits Alpha

3:0 (LSB) [3][0]

7:4 [3][1]

11:8 [3][2]

15:12 (MSB) [3][3]

Three-Bit Linear Alpha Interpolation

The encoding of transparency for the BC3 formats is based on a concept similar to the
linear encoding used for color. Two 8-bit alpha values and a 4x4 bitmap with three
bits per pixel are stored in the first eight bytes of the block. The representative alpha
values are used to interpolate intermediate alpha values. Additional information is
available in the way the two alpha values are stored. If alpha_0 is greater than
alpha_1, then six intermediate alpha values are created by the interpolation.
Otherwise, four intermediate alpha values are interpolated between the specified
alpha extremes. The two additional implicit alpha values are 0 (fully transparent) and
255 (fully opaque).

The following pseudo-code illustrates this algorithm:

// 8-alpha or 6-alpha block?
if (alpha_0 > alpha_1) {
 // 8-alpha block: derive the other 6 alphas.
 // 000 = alpha_0, 001 = alpha_1, others are interpolated
 alpha_2 = (6 * alpha_0 + alpha_1) / 7; // bit code 010
 alpha_3 = (5 * alpha_0 + 2 * alpha_1) / 7; // Bit code 011
 alpha_4 = (4 * alpha_0 + 3 * alpha_1) / 7; // Bit code 100
 alpha_5 = (3 * alpha_0 + 4 * alpha_1) / 7; // Bit code 101
 alpha_6 = (2 * alpha_0 + 5 * alpha_1) / 7; // Bit code 110

124

 alpha_7 = (alpha_0 + 6 * alpha_1) / 7; // Bit code 111
 }
else { // 6-alpha block: derive the other alphas.
 // 000 = alpha_0, 001 = alpha_1, others are interpolated
 alpha_2 = (4 * alpha_0 + alpha_1) / 5; // Bit code 010
 alpha_3 = (3 * alpha_0 + 2 * alpha_1) / 5; // Bit code 011
 alpha_4 = (2 * alpha_0 + 3 * alpha_1) / 5; // Bit code 100
 alpha_5 = (alpha_0 + 4 * alpha_1) / 5; // Bit code 101
 alpha_6 = 0; // Bit code 110
 alpha_7 = 255; // Bit code 111
}

The memory layout of the alpha block is as follows:

Byte Alpha

0 Alpha_0

1 Alpha_1

2 [0][2] (2 LSBs), [0][1], [0][0]

3 [1][1] (1 LSB), [1][0], [0][3], [0][2] (1 MSB)

4 [1][3], [1][2], [1][1] (2 MSBs)

5 [2][2] (2 LSBs), [2][1], [2][0]

6 [3][1] (1 LSB), [3][0], [2][3], [2][2] (1 MSB)

7 [3][3], [3][2], [3][1] (2 MSBs)

6.5 Video Pixel/Texel Formats

This section describes the “video” pixel/texel formats with respect to memory layout.
See the Overlay chapter for a description of how the Y, U, V components are sampled.

6.5.1 Packed Memory Organization

Color components are all 8 bits in size for YUV formats. For YUV 4:2:2 formats each
DWord will contain two pixels and only the byte order affects the memory
organization.

The following four YUV 4:2:2 surface formats are supported, listed with alternate
names:

• YCRCB_NORMAL (UYVY) (R8G8_B8G8_UNORM)
• YCRCB_SWAPUVY (YUY2) (G8R8_G8B8_UNORM)
• YCRCB_SWAPUV
• YCRCB_SWAPY

The channels are mapped as follows:
Cr (V) Red

Y Green

Cb (U) Blue

 125

Figure 6-2. Memory Layout of Packed YUV 4:2:2 Formats

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

YUV 4:2:2 (UV/Y Swap)

Pixel N Pixel N Pixel N+1

Y U
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Y V
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

YUV 4:2:2 (Y Swap)

Pixel N Pixel N Pixel N+1

Mem_Layout_YUV 422

U Y
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

V Y
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

YUV 4:2:2 (Normal)

Pixel N+1 Pixel N Pixel N

V Y
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

U Y
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

YUV 4:2:2 (UV Swap)

Pixel N+1 Pixel N Pixel N

Y V
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Y U
31

6.5.2 Planar Memory Organization

Planar formats use what could be thought of as separate buffers for the three color
components. Because there is a separate stride for the Y and U/V data buffers, several
memory footprints can be supported.

Note: There is no direct support for use of planar video surfaces as textures. The sampling
engine can be used to operate on each of the 8bpp buffers separately (via a single-
channel 8-bit format such as I8_UNORM). The U and V buffers can be written
concurrently by using multiple render targets from the pixel shader. The Y buffer
must be written in a separate pass due to its different size.

The following figure shows two types of memory organization for the YUV 4:2:0 planar
video data:

1. The memory organization of the common YV12 data, where all three planes are
contiguous and the strides of U and V components are half of that of the Y
component.

2. An alternative memory structure that the addresses of the three planes are
independent but satisfy certain alignment restrictions.

126

Figure 6-3. YUV 4:2:0 Format Memory Organization

Y

V

U

Width

Height

Height/2

Width/2

Height/2

Y Pointer

V Pointer

U Pointer

Y

U

V

Width

Height

Height/2

Width/2

Height/2

Y Pointer

U Pointer

V Pointer

(a) (b)
YUV 420 Mem Org

 127

The following figure shows memory organization of the planar YUV 4:1:0 format
where the planes are contiguous. The stride of the U and V planes is a quarter of that
of the Y plane.

Figure 6-4. YUV 4:1:0 Format Memory Organization

Y

U

V

Width

Height

Height/4

Width/4

Height/4

Y Pointer

U Pointer

V Pointer

YUV 410 Mem Org

6.6 Surface Memory Organizations

See Memory Interface Functions chapter for a discussion of tiled vs. linear surface
formats.

6.7 Graphics Translation Tables

The Graphics Translation Tables GTT (Graphics Translation Table, sometimes known
as the global GTT) and PPGTT (Per-Process Graphics Translation Table) are memory-
resident page tables containing an array of DWord Page Translation Entries (PTEs)
used in mapping logical Graphics Memory addresses to physical memory addresses,
and sometimes snooped system memory “PCI” addresses.

The graphics translation tables must reside in (unsnooped) system memory.

The base address (MM offset) of the GTT and the PPGTT are programmed via the
PGTBL_CTL and PGTBL_CTL2 MI registers, respectively. The translation table base
addresses must be 4KB aligned. The GTT size can be either 128KB, 256KB or 512KB
(mapping to 128MB, 256MB, and 512MB aperture sizes respectively) and is physically
contiguous. The global GTT should only be programmed via the range defined by
GTTADR. The PPGTT is programmed directly in memory. The per-process GTT
(PPGTT) size is controlled by the PGTBL_CTL2 register. The PPGTT can, in addition to
the above sizes, also be 64KB in size (corresponding to a 64MB aperture). Refer to
the GTT Range chapter for a bit definition of the PTE entries.

128

6.8 Hardware Status Page

The hardware status page is a naturally-aligned 4KB page residing in snooped system
memory. This page exists primarily to allow the device to report status via PCI
master writes – thereby allowing the driver to read/poll WB memory instead of UC
reads of device registers or UC memory.

The address of this page is programmed via the HWS_PGA MI register. The definition
of that register (in Memory Interface Registers) includes a description of the layout of
the Hardware Status Page.

6.9 Instruction Ring Buffers

Instruction ring buffers are the memory areas used to pass instructions to the device.
Refer to the Programming Interface chapter for a description of how these buffers are
used to transport instructions.

The RINGBUF register sets (defined in Memory Interface Registers) are used to specify
the ring buffer memory areas. The ring buffer must start on a 4KB boundary and be
allocated in linear memory. The length of any one ring buffer is limited to 2MB.

Note that “indirect” 3D primitive instructions (those that access vertex buffers) must
reside in the same memory space as the vertex buffers.

6.10 Instruction Batch Buffers

Instruction batch buffers are contiguous streams of instructions referenced via an
MI_BATCH_BUFFER_START and related instructions (see Memory Interface
Instructions, Programming Interface). They are used to transport instructions
external to ring buffers.

Note that batch buffers should not be mapped to snooped SM (PCI) addresses. The
device will treat these as MainMemory (MM) address, and therefore not snoop the CPU
cache.

The batch buffer must be QWord aligned and a multiple of QWords in length. The
ending address is the address of the last valid QWord in the buffer. The length of any
single batch buffer is “virtually unlimited” (i.e., could theoretically be 4GB in length).

6.11 Display, Overlay, Cursor Surfaces

These surfaces are memory image buffers (planes) used to refresh a display device in
non-VGA mode. See the Display chapter for specifics on how these surfaces are
defined/used.

6.12 2D Render Surfaces

These surfaces are used as general source and/or destination operands in 2D Blt
operations.

 129

Note that the device provides no coherency between 2D render surfaces and the
texture cache – i.e., the texture cache must be explicitly invalidated prior to the use of
a texture that has been modified via the Blt engine.

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces
are used, restrictions on their size, placement, etc.

6.13 2D Monochrome Source

These 1bpp surfaces are used as source operands to certain 2D Blt operations, where
the Blt engine expands the 1bpp source into the required color depth.

The device uses the texture cache to store monochrome sources. There is no
mechanism to maintain coherency between 2D render surfaces and (texture)-cached
monochrome sources, software is required to explicitly invalidate the texture cache
before using a memory-based monochrome source that has been modified via the Blt
engine. (Here the assumption is that SW enforces memory-based monochrome
source surfaces as read-only surfaces).

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces
are used, restrictions on their size, placement, coherency rules, etc.

6.14 2D Color Pattern

Color pattern surfaces are used as special pattern operands in 2D Blt operations.

The device uses the texture cache to store color patterns. There is no mechanism to
maintain coherency between 2D render surfaces and (texture)-cached color patterns,
software is required to explicitly invalidate the texture cache before using a memory-
based color pattern that has been modified via the Blt engine. (Here the assumption
is that SW enforces memory-based color pattern surfaces as read-only surfaces).

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces
are used, restrictions on their size, placement, etc.

6.15 3D Color Buffer (Destination) Surfaces

3D Color buffer surfaces are used to hold per-pixel color values for use in the 3D
pipeline. Note that the 3D pipeline always requires a Color buffer to be defined.

Refer to Non-Video Pixel/Texel Formats section in this chapter for details on the Color
buffer pixel formats. Refer to the 3D Instruction and 3D Rendering chapters for
details on the usage of the Color Buffer.

The Color buffer is defined as the BUFFERID_COLOR_BACK memory buffer via the
3DSTATE_BUFFER_INFO instruction. That buffer can be mapped to LM, SM (snooped
or unsnooped) and can be linear or tiled. When both the Depth and Color buffers are
tiled, the respective Tile Walk directions must match.

When a linear Color and a linear Depth buffers are used together:

1. They may have different pitches, though both pitches must be a multiple of 32
bytes.

2. They must be co-aligned with a 32-byte region.

130

6.16 3D Depth Buffer Surfaces

Depth buffer surfaces are used to hold per-pixel depth values and per-pixel stencil
values for use in the 3D pipeline. Note that the 3D pipeline does not require a Depth
buffer to be allocated, though a Depth buffer is required to perform (non-trivial) Depth
Test and Stencil Test operations.

The following table summarizes the possible formats of the Depth buffer. Refer to
Depth Buffer Formats section in this chapter for details on the pixel formats. Refer to
the Windower and DataPort chapters for details on the usage of the Depth Buffer.

Table 6-22. Depth Buffer Formats

DepthBufferFormat /
DepthComponent

bpp Description

D32_FLOAT_S8X24_UINT 64 32-bit floating point Z depth value in first DWord, 8-
bit stencil in upper byte of second DWord

D32_FLOAT 32 32-bit floating point Z depth value

D24_UNORM_S8_UINT 32 24-bit fixed point Z depth value in lower 3 bytes, 8-
bit stencil value in upper byte

D16_UNORM 16 16-bit fixed point Z depth value

The Depth buffer is specified via the 3DSTATE_DEPTH_BUFFER command. See the
description of that instruction in Windower for restrictions.

6.17 Surface Layout

This section describes the formats of surfaces and data within the surfaces.

6.17.1 Buffers

A buffer is an array of structures. Each structure contains up to 2048 bytes of
elements. Each element is a single surface format using one of the supported surface
formats depending on how the surface is being accessed. The surface pitch state for
the surface specifies the size of each structure in bytes.

The buffer is stored in memory contiguously with each element in the structure
packed together, and the first element in the next structure immediately following the
last element of the previous structure. Buffers are supported only in linear memory.

 131

a b c d e f0
1
2
3

15

B
uf

fe
r S

iz
e

Surface Pitch

6.17.2 1D Surfaces

One-dimensional surfaces are identical to 2D surfaces with height of one. Arrays of
1D surfaces are also supported. Please refer to the 2D Surfaces section for details on
how these surfaces are stored.

6.17.3 2D Surfaces

Surfaces that comprise texture mip-maps are stored in a fixed “monolithic” format and
referenced by a single base address. The base map and associated mipmaps are
located within a single rectangular area of memory identified by the base address of
the upper left corner and a pitch. The base address references the upper left corner
of the base map. The pitch must be specified at least as large as the widest mip-map.
In some cases it must be wider; see the section on Minimum Pitch below.

These surfaces may be overlapped in memory and must adhere to the following
memory organization rules:

• For non-compressed texture formats, each mipmap must start on an even row
within the monolithic rectangular area. For 1-texel-high mipmaps, this may
require a row of padding below the previous mipmap. This restriction does not
apply to any compressed texture formats: i.e., each subsequent (lower-res)
compressed mipmap is positioned directly below the previous mipmap.

• Vertical alignment restrictions vary with memory tiling type: 1 DWord for linear,
16-byte (DQWord) for tiled. (Note that tiled mipmaps are not required to start at
the left edge of a tile row).

132

6.17.3.1 Computing MIP level sizes

Map width and height specify the size of the largest MIP level (LOD 0). Less detailed
LOD level (i+1) sizes are determined by dividing the width and height of the current
(i) LOD level by 2 and truncating to an integer (floor). This is equivalent to shifting
the width/height by 1 bit to the right and discarding the bit shifted off. The map
height and width are clamped on the low side at 1.

In equations, the width and height of an LOD “L” can be expressed as:

()()
()()1:?0

1:?0
LheightLheightH

LwidthLwidthW

L

L

>>>>>=
>>>>>=

6.17.3.2 Base Address for LOD Calculation

It is conceptually easier to think of the space that the map uses in Cartesian space (x,
y), where x and y are in units of texels, with the upper left corner of the base map at
(0, 0). The final step is to convert from Cartesian coordinates to linear addresses as
documented at the bottom of this section.

It is useful to think of the concept of “stepping” when considering where the next MIP
level will be stored in rectangular memory space. We either step down or step right
when moving to the next higher LOD.

• for MIPLAYOUT_RIGHT maps:
⎯ step right when moving from LOD 0 to LOD 1
⎯ step down for all of the other MIPs

• for MIPLAYOUT_BELOW maps:
⎯ step down when moving from LOD 0 to LOD 1
⎯ step right when moving from LOD 1 to LOD 2
⎯ step down for all of the other MIPs

To account for the cache line alignment required, we define i and j as the width and
height, respectively, of an alignment unit. This alignment unit is defined below. We
then define lower-case wL and hL as the padded width and height of LOD “L” as
follows:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎠
⎞

⎜
⎝
⎛=

j
Hceiljh

i
Wceiliw

L
L

L
L

*

*

Equations to compute the upper left corner of each MIP level are then as follows:

 133

for MIPLAYOUT_RIGHT maps:

...
),(

),(
),(

)0,(
)0,0(

32104

2103

102

01

0

hhhwLOD
hhwLOD

hwLOD
wLOD

LOD

++=
+=

=
=
=

for MIPLAYOUT_BELOW maps:

...
),(

),(
),(

),0(
)0,0(

32014

2013

012

01

0

hhhwLOD
hhwLOD

hwLOD
hLOD

LOD

++=
+=

=
=
=

6.17.3.3 Minimum Pitch

For MIPLAYOUT_RIGHT maps, the minimum pitch must be calculated before choosing
a fence to place the map within. This is approximately equal to 1.5x the pitch
required by the base map, with possible adjustments made for cache line alignment.
For MIPLAYOUT_BELOW and MIPLAYOUT_LEGACY maps, the minimum pitch required
is equal to that required by the base (LOD 0) map.

A safe but simple calculation of minimum pitch is equal to 2x the pitch required by the
base map for MIPLAYOUT_RIGHT maps. This ensures that enough pitch is available,
and since it is restricted to MIPLAYOUT_RIGHT maps, not much memory is wasted. It
is up to the driver (hardware independent) whether to use this simple determination
of pitch or a more complex one.

134

6.17.3.4 Alignment Unit Size

The following table indicates the i and j values that should be used for each map
format. Note that the compressed formats are padded to a full compression cell.

Table 6-23. Alignment Units for Texture Maps

map format alignment unit width “i” alignment unit height “j”

YUV 4:2:2 formats 4 2

BC1-5 4 4

FXT1 8 4

all other formats 4 2

6.17.3.5 Cartesian to Linear Address Conversion

A set of variables are defined in addition to the i and j defined above.
• b = bytes per texel of the native map format (0.5 for BC1, FXT1, and 4-bit surface

format, 2.0 for YUV 4:2:2, others aligned to surface format)
• t = texel rows / memory row (4 for BC1-3 and FXT1, 1 for all other formats)
• p = pitch in bytes (equal to pitch in dwords * 4)
• B = base address in bytes (address of texel 0,0 of the base map)
• x, y = cartestian coordinates from the above calculations in units of texels

(assumed that x is always a multiple of i and y is a multiple of j)
• A = linear address in bytes

xbt
t
ypBA ++=

This calculation gives the linear address in bytes for a given MIP level (taking into
account L1 cache line alignment requirements).

6.17.3.6 Compressed Mipmap Layout

Mipmaps of textures using compressed (BCn, FXT) texel formats are also stored in a
monolithic format. The compressed mipmaps are stored in a similar fashion to
uncompressed mipmaps, with each block of source (uncompressed) texels
represented by a 1 or 2 QWord compressed block. The compressed blocks occupy the
same logical positions as the texels they represent, where each row of compressed
blocks represent a 4-high row of uncompressed texels. The format of the blocks is
preserved, i.e., there is no “intermediate” format as required on some other devices.

The following exceptions apply to the layout of compressed (vs. uncompressed)
mipmaps:

• Mipmaps are not required to start on even rows, therefore each successive mip
level is located on the texel row immediately below the last row of the previous
mip level. Pad rows are neither required nor allowed.

• The dimensions of the mip maps are first determined by applying the sizing
algorithm presented in Non-Power-of-Two Mipmaps above. Then, if necessary,
they are padded out to compression block boundaries.

 135

6.17.3.7 Surface Arrays

Both 1D and 2D surfaces can be specified as an array. The only difference in the
surface state is the presence of a depth value greater than one, indicating multiple
array “slices”.

A value QPitch is defined which indicates the worst-case size for one slice in the
texture array. This QPitch is multiplied by the array index to and added to the surface
base address to determine the base address for that slice. Within the slice, the map is
stored identically to a MIPLAYOUT_BELOW 2D surface. MIPLAYOUT_BELOW is the
only format supported by 1D non-arrays and both 2D and 1D arrays, the programming
of the MIP Map Layout Mode state variable is ignored when using a TextureArray.

The following equation is used for surface formats other than compressed textures:

() PitchjhhQPitch *1110 ++=

The input variables in this equation are defined in sections above.

The equation for compressed textures (BC* and FXT1 surface formats) follows:

()
Pitch

jhh
QPitch *

4
1110 ++

=

6.17.4 Cube Surfaces

The 3D pipeline supports cubic environment maps, conceptually arranged as a cube
surrounding the origin of a 3D coordinate system aligned to the cube faces. These
maps can be used to supply texel (color/alpha) data of the environment in any
direction from the enclosed origin, where the direction is supplied as a 3D “vector”
texture coordinate. These cube maps can also be mipmapped.

Each texture map level is represented as a group of six, square cube face texture
surfaces. The faces are identified by their relationship to the 3D texture coordinate
system. The subsections below describe the cube maps as described at the API as
well as the memory layout dictated by the hardware.

6.17.4.1 Hardware Cube Map Layout

The cube face textures are stored in the same way as 3D surfaces are stored (see
section 6.17.5 for details). For cube surfaces, however, the depth is equal to the
number of faces (always 6) and is not reduced for each MIP. The equation for DL is
replaced with the following for cube surfaces:

6=LD

The “q” coordinate is replaced with the face identifier as follows:

136

“q” coordinate face

0 +x

1 -x

2 +y

3 -y

4 +z

5 -z

6.17.4.2 Restrictions

• The cube map memory layout is the same whether or not the cube map is mip-
mapped, and whether or not all six faces are “enabled”, though the memory
backing disabled faces or non-supplied levels can be used by software for other
purposes.

• The cube map faces all share the same Surface Format

6.17.5 3D Surfaces

Multiple texture map surfaces (and their respective mipmap chains) can be arranged
into a structure known as a Texture3D (volume) texture. A volume texture map
consists of many planes of 2D texture maps. See Sampler for a description of how
volume textures are used.

Figure 6-5. Volume Texture Map

Mip 0 Mip 1 Mip 2

P la ne= 0
M ip =0P la ne= 0

M ip= 0P la ne= 0
M ip= 0P la ne= 0

M ip= 0P lan e= 0
M ip= 0P lan e= 0

M ip= 0P lan e= 0
M ip= 0P lan e= 0

P =0

P la ne= 0
M ip= 1P lan e=0

Mip =1
P la ne= 0

M ip= 1P lane =0

u

v

q

 137

Note that the number of planes defined at each
successive mip level is halved. Volumetric texture
maps are stored as follows. All of the LOD=0 q-planes
are stacked vertically, then below that, the LOD=1 q-
planes are stacked two-wide, then the LOD=2 q-
planes are stacked four-wide below that, and so on.

The width, height, and depth of LOD “L” are as
follows:

()()
()()1:?0

1:?0
LheightLheightH

LwidthLwidthW

L

L

>>>>>=
>>>>>=

This is the same as for a regular texture. For volume
textures we add:

DL = ((depth >> L) > 0?depth >>L:1)

Cache-line aligned width and height are as follows,
with i and j being a function of the map format as
shown in Table 6-23.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎠
⎞

⎜
⎝
⎛=

j
Hceiljh

i
Wceiliw

L
L

L
L

*

*

Note that it is not necessary to cache-line align in the
“depth” dimension (i.e. lower case “d”).

The following equations for LODL,q give the base
address Cartesian coordinates for the map at LOD L
and depth q.

...

)*)3(*
4

*
2

,)8%((

)*)2(*
2

,)4%((

)*)1(*,*)2%((

)*,0(

32
2

1
1

003,3

21
1

002,2

1001,1

0,0

hqhDceilhDceilhDwqLOD

hqhDceilhDwqLOD

hqhDwqLOD
hqLOD

q

q

q

q

>>+⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+=

>>+⎟
⎠
⎞

⎜
⎝
⎛+=

>>+=

=

These values are then used as “base addresses” and
the 2D MIP Map equations are used to compute the
location within each LOD/q map.

q=0

q=1

q=3

q=2

q=4

q=5

q=6

q=7

LOD 0 (Mip 0)

LOD 1 (Mip 1)

q=0 q=1
q=0

LOD 2 (Mip 2)

q=0

q=2

q=1

q=3

LOD 3 (Mip 3)

138

6.17.5.1 Minimum Pitch

The minimum pitch required to store the 3D map may in some cases be greater than
the minimum pitch required by the LOD=0 map. This is due to cache line alignment
requirements that may impact some of the MIP levels requiring additional spacing in
the horizontal direction.

 139

6.18 Surface Padding Requirements

6.18.1 Sampling Engine Surfaces

The sampling engine accesses texels outside of the surface if they are contained in the
same cache line as texels that are within the surface. These texels will not participate
in any calculation performed by the sampling engine and will not affect the result of
any sampling engine operation, however if these texels lie outside of defined pages in
the GTT, a GTT error will result when the cache line is accessed. In order to avoid
these GTT errors, “padding” at the bottom and right side of a sampling engine surface
is sometimes necessary.

It is possible that a cache line will straddle a page boundary if the base address or
pitch is not aligned. All pages included in the cache lines that are part of the surface
must map to valid GTT entries to avoid errors. To determine the necessary padding
on the bottom and right side of the surface, refer to the table in Section 6.17.3.4 for
the i and j parameters for the surface format in use. The surface must then be
extended to the next multiple of the alignment unit size in each dimension, and all
texels contained in this extended surface must have valid GTT entries.

For example, suppose the surface size is 15 texels by 10 texels and the alignment
parameters are i=4 and j=2. In this case, the extended surface would be 16 by 10.
Note that these calculations are done in texels, and must be converted to bytes based
on the surface format being used to determine whether additional pages need to be
defined.

For buffers, which have no inherent “height,” padding requirements are different. A
buffer must be padded to the next multiple of 256 array elements, with an additional
16 bytes added beyond that to account for the L1 cache line.

For cube surfaces, an additional two rows of padding are required at the bottom of the
surface. This must be ensured regardless of whether the surface is stored tiled or
linear. This is due to the potential rotation of cache line orientation from memory to
cache.

For compressed textures (BC* and FXT1 surface formats), padding at the bottom of
the surface is to an even compressed row, which is equal to a multiple of 8
uncompressed texel rows. Thus, for padding purposes, these surfaces behave as if j
= 8 only for surface padding purposes. The value of 4 for j still applies for mip level
alignment and QPitch calculation.

6.18.2 Render Target and Media Surfaces

The data port accesses data (pixels) outside of the surface if they are contained in the
same cache request as pixels that are within the surface. These pixels will not be
returned by the requesting message, however if these pixels lie outside of defined
pages in the GTT, a GTT error will result when the cache request is processed. In
order to avoid these GTT errors, “padding” at the bottom of the surface is sometimes
necessary.

If the surface contains an odd number of rows of data, a final row below the surface
must be allocated. If the surface will be accessed in field mode (Vertical Stride = 1),
enough additional rows below the surface must be allocated to make the extended
surface height (including the padding) a multiple of 4.

140

6.19 Logical Context Data

Logical Contexts are memory images used to store copies of the device’s rendering
and ring context.

Logical Contexts are aligned to 256-byte boundaries.

Logical contexts are referenced by their memory address. The format and contents of
rendering contexts are considered device-dependent and software must not access
the memory contents directly. The definition of the logical rendering and power
context memory formats is included here primarily for internal documentation
purposes.

6.19.1 Overall Context Layout

6.19.1.1 Per-Process GTT and Run Lists Disabled

For this case (which is the only case for [DevBW] and [DevCL]), the entire context
image consists of the Register/State Context, including the pipelined state section.

6.19.2 Register/State Context

The following table describes the device-dependent layout of a logical context in
memory.

DWord Bits State Field

MEMORY INTERFACE STATE
00h 31:0 MI_Noop
01h 31:29 Instruction Type = MI_INSTRUCTION = 0h

28:23 MI Instruction Opcode = MI_LOAD_REGISTER_IMM = 22h
22:12 Reserved: MBZ
11:8 Byte Write Disables:

This field specifies which bytes of the Data DWord are not to be written to the DWord
offset specified in Register Offset.
Format = Enable[4] (bit 8 corresponds to Data DWord [7:0]).
Range = Must specify a valid register write operation
This field will always be written as Fh on context saves.

7:6 Reserved: MBZ

5:0 DWord Length (Excludes DWord 0,1) = 2bh (dec_44)
02h 31:0 CACHE_MODE_0 Address
03h 31:0 CACHE_MODE_0 Data
04h 31:0 CACHE_MODE_1 Address
05h 31:0 CACHE_MODE_1 Data
06h 31:0 MI_ARB_STATE Address
07h 31:0 MI_ARB_STATE Data
08h 31:0 INSTPM Address
09h 31:0 INSTPM Data

0Ah-29h 31:0 Reserved
2Ah 31:0 PS_DEPTH_COUNT Lower Address
2Bh 31:0 PS_DEPTH_COUNT Lower Data

 141

DWord Bits State Field

2Ch 31:0 PS_DEPTH_COUNT Upper Address
2Dh 31:0 PS_DEPTH_COUNT Upper Data
2Eh 31:0 MI_Noop
2Fh 31:0 MI_Noop

PIPELINE_SELECT
30h 31:29 Instruction Type = GFXPIPE = 3h
 28:23 3D Instruction Opcode = PIPELINE_SELECT

GFXPIPE[28:27 = 0h, 26:24 = 1h, 23:16 = 04h] (Non-pipelined)
 22:1 Reserved: MBZ
 0 0: 3D pipeline is selected

1: Media pipeline is selected

CS_URB_STATE

31h 31:29 Command Type = GFXPIPE = 3h

28:16 3D Command Opcode = CS_URB_STATE

GFXPIPE[28:27 = 0h, 26:24 = 0h, 23:16 = 01h] (Pipelined)

 15:8 Reserved : MBZ

 7:0 DWord Length (excludes DWords 0,1) = 0

32h 31:9 Reserved : MBZ

 8:4 URB Entry Allocation Size

 3 Reserved: MBZ

 2:0 Number of URB Entries

URB_FENCE
33h 31:29 Instruction Type = GFXPIPE = 3h

 28:16 3D Instruction Opcode = URB_FENCE
GFXPIPE[28:27 = 0h, 26:24 = 0h, 23:16 = 00h] (Pipelined)

 15:14 Reserved : MBZ
13 ModifyEnable(CS Fence)
12 ModifyEnable(VFE Fence)
11 ModifyEnable(SF Fence)
10 ModifyEnable(CLIP Fence)
9 ModifyEnable(GS Fence)
8 ModifyEnable(VS Fence)

 7:0 DWord Length (Excludes DWords 0,1) = 1

34h 31:30 Reserved : MBZ
 29:20 CLP Fence
 19:10 GS Fence
 9:0 VS Fence

35h 31:30 Reserved : MBZ
 29:20 CS Fence
 19:10 VFE Fence
 9:0 SF Fence

CONSTANT_BUFFER

36h 31:29 Command Type = GFXPIPE = 3h

28:16 3D Command Opcode = CONSTANT_BUFFER

GFXPIPE[28:27 = 0h, 26:24 = 0h, 23:16 = 02h] (Pipelined)

142

DWord Bits State Field

15:9 Reserved : MBZ

8 Valid (Saved as clear since CONSTANT_BUFFER is saved later)

 7:0 DWord Length (excludes DWords 0,1) = 0

37h 31:6 Buffer Starting Address

 5:0 Buffer Length

STATE_BASE_ADDRESS

38h 31:29 Command Type = GFXPIPE = 3h

28:16 3D Command Opcode = STATE_BASE_ADDRESS

GFXPIPE[28:27 = 0h, 26:24 = 1h, 23:16 = 01h] (Nonpipelined)

 15:8 Reserved : MBZ

 7:0 DWord Length (Excludes DWords 0,1) = 4

39h 31:12 General State Base Address

 11:1 Reserved : MBZ

 0 Modify Enable

3Ah 31:12 Surface State Base Address

 11:1 Reserved : MBZ

 0 Modify Enable

3Bh 31:12 Indirect Object Base Address

 11:1 Reserved : MBZ

 0 Modify Enable

3Ch 31:12 General State Access Upper Bound

 11:1 Reserved : MBZ

 0 Modify Enable

3Dh 31:12 Indirect Object Access Upper Bound

 11:1 Reserved: MBZ

 0 Modify Enable

STATE_SIP
3Eh 31:29 Command Type = GFXPIPE = 3h

 28:16 Command Opcode = STATE_SIP
GFXPIPE[28:27 = 0h, 26:24 = 1h, 23:16 = 02h] (Non-Pipelined)

 15:8 Reserved : MBZ
 7:0 DWord Length (Excludes DWords 0,1) = 0

3Fh 31:4 System Instruction Pointer (SIP)
 3:0 Reserved : MBZ

3DSTATE_DRAWING_RECTANGLE
40h 31:29 Instruction Type = GFXPIPE = 3h

 28:16 3D Instruction Opcode = 3DSTATE_DRAWING_RECTANGLE
GFXPIPE[28:27 = 3h, 26:24 = 1h, 23:16 = 00h] (Non-Pipelined)

 15:0 ength (Excludes DWord 0,1) = 2

 143

DWord Bits State Field

41h 31:16 Clipped Drawing Rectangle Y Min
 15:0 Clipped Drawing Rectangle X Min

42h 31:16 Clipped Drawing Rectangle Y Max
 15:0 Clipped Drawing Rectangle X Max

43h 31:16 Drawing Rectangle Origin Y

 15:0 Drawing Rectangle Origin X

3DSTATE_DEPTH_BUFFER
44h 31:29 Instruction Type = GFXPIPE = 3h

28:16 3D Instruction Opcode = 3DSTATE_DEPTH_BUFFER

GFXPIPE[28:27 = 3h, 26:24 = 1h, 23:16 = 05h] (Non-Pipelined)
 15:0 DWord Length (excl. DWord 0,1) = 3

45h 31:29 Surface Type
 28 Reserved: MBZ
 27 Tiled Surface
 26 Tile Walk
 25 Depth Buffer Coordinate Offset Disable
 24:21 Reserved : MBZ
 20:18 Surface Format
 17:0 Surface Pitch

46h 31:0 Surface Base Address
47h 31:19 Height

 18:6 Width
 5:2 LOD
 1 MIP Map Layout Mode
 0 Reserved : MBZ

48h 31:21 Depth
 20:12 Minimum Array Element
 11:0 Reserved : MBZ

3DSTATE_CHROMA_KEY (INDEX_0)
49h 31:29 Instruction Type = 3D_INSTRUCTION = 3h

28:16 3D Instruction Opcode = 3DSTATE_CHROMA_KEY

GFXPIPE[28:27 = 3h, 26:24 = 1h; 23:16 = 04h] (Non-Pipelined)
 15:0 DWord Length (Excludes DWords 0,1) = 2

4Ah 31:30 ChromaKey Table Index = 0
 29:0 Reserved: MBZ

4Bh 31:0 ChromaKey Low Value
4Ch 31:0 ChromaKey High Value

3DSTATE_CHROMA_KEY (INDEX_1)
4Dh 31:29 Instruction Type = 3D_INSTRUCTION = 3h

28:16 3D Instruction Opcode = 3DSTATE_CHROMA_KEY

GFXPIPE[28:27 = 3h, 26:24 = 1h; 23:16 = 04h] (Non-Pipelined)
 15:0 DWord Length (Excludes DWords 0,1) = 2

4Eh 31:30 ChromaKey Table Index = 1
 29:0 Reserved: MBZ

4Fh 31:0 ChromaKey Low Value
50h 31:0 ChromaKey High Value

3DSTATE_CHROMA_KEY (INDEX_2)
51h 31:29 Instruction Type = 3D_INSTRUCTION = 3h

28:16 3D Instruction Opcode = 3DSTATE_CHROMA_KEY

GFXPIPE[28:27 = 3h, 26:24 = 1h; 23:16 = 04h] (Non-Pipelined)
 15:0 DWord Length (Excludes DWords 0,1) = 2

52h 31:30 ChromaKey Table Index = 2
 29:0 Reserved: MBZ

144

DWord Bits State Field

53h 31:0 ChromaKey Low Value
54h 31:0 ChromaKey High Value

3DSTATE_CHROMA_KEY (INDEX_3)
55h 31:29 Instruction Type = 3D_INSTRUCTION = 3h

28:16 3D Instruction Opcode = 3DSTATE_CHROMA_KEY

GFXPIPE[28:27 = 3h, 26:24 = 1h; 23:16 = 04h] (Non-Pipelined)
 15:0 DWord Length (Excludes DWords 0,1) = 2

56h 31:30 ChromaKey Table Index = 3
 29:0 Reserved: MBZ

57h 31:0 ChromaKey Low Value
58h 31:0 ChromaKey High Value

3D State Constant Color
59h 31:29 Instruction Type = GFXPIPE = 3h

 28:16 3D Instruction Opcode = 3DSTATE_CONSTANT_COLOR
GFXPIPE[28:27 = 3h, 26:24 = 1h, 23:16 = 01h] (Non-Pipelined)

 15:0 DWord Length (excl. DWord 0,1) = 3
5Ah 31:0 Blend Constant Color Red
5Bh 31:0 Blend Constant Color Blue
5Ch 31:0 Blend Constant Color Green
5Dh 31:0 Blend Constant Color Alpha

3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP
5Eh 31:29 Instruction Type = 3D_INSTRUCTION = 3h

 28:16 3D Instruction Opcode = 3DSTATE_GLOABL_DEPTH_OFFSET_CLAMP
GFXPIPE[28:27 = 3h, 26:24 = 1h, 23:16 = 09h] (Non-Pipelined)

 15:0 DWord Length (excl. DWord 0,1) = 0
5Fh 31:0 Global Depth Offset Clamp

3DSTATE_POLY_STIPPLE_OFFSET
60h 31:29 Instruction Type = 3D_INSTRUCTION = 3h

28:16 3D Instruction Opcode = 3DSTATE_POLY_STIPPLE_OFFSET

GFXPIPE[28:27 = 3h, 26:24 = 1h, 23:16 = 06h] (Non-Pipelined)
 15:0 DWord Length (excl. DWord 0,1) = 0

61h 31:13 Reserved: MBZ
 12:8 Polygon Stipple X Offset
 7:5 Reserved: MBZ
 4:0 Polygon Stipple Y Offset

3DSTATE_LINE_STIPPLE
62h 31:29 Instruction Type = 3D_INSTRUCTION = 3h

28:16 3D Instruction Opcode = 3DSTATE_LINE_STIPPLE

GFXPIPE[28:27 = 3h, 26:24 = 1h, 23:16 = 08h] (Non-Pipelined)
 15:0 DWord Length (excl. DWord 0,1) = 1

63h 31 Modify Enable (Current Repeat Counter, Current Stipple Index)
 30 Reserved: MBZ

29:21 Current Repeat Counter

This field sets the HW-internal repeat counter state.
Format = U9

 20 Reserved: MBZ

19:16 Current Stipple Index

This field sets the HW-internal stipple pattern index.
Format = U4

15:0 Line Stipple Pattern

Specifies a pattern used to mask out bit specific pixels while rendering lines.
Format = 16 bit mask. Bit 15 = most significant bit, Bit 0 = least significant bit

64h 31:16 Line Stipple Inverse Repeat Count
 15:9 Reserved: MBZ

 145

DWord Bits State Field

 8:0 Line Stipple Repeat Count
SVGunit Context Data (Media)

MEDIA_STATE_POINTERS
Note: Dwords 65h – 67h will be saved as MI_NOOP (opcode 00h) unless MEDIA_STATE_POINTERS

has been initialized (issued at least once).
65h 31:29 Command Type = GFXPIPE = 3h

28:16 Media Command Opcode = MEDIA_STATE_POINTERS

Pipeline[28:27] = Media = 2h; Opcode[26:24] = 0h; Subopcode[23:16] = 0h
 15:0 DWord Length (Excludes DWords 0,1) = 01h

66h 31:5 Pointer to VLD_STATE
 4:1 Reserved : MBZ
 0 VLD Enable

67h 31:5 Pointer to VFE_STATE
 4:0 Reserved : MBZ

SVGunit Context Data (3D)
3DSTATE_PIPELINE_POINTERS

Note: Dwords 68h – 6Eh will be saved as MI_NOOP (opcode 00h) unless
3DSTATE_PIPELINE_POINTERS has been initialized (issued at least once).

68h 31:29 Command Type = GFXPIPE = 3h

28:16 3D Command Opcode = 3DSTATE_PIPELINED_POINTERS

GFXPIPE[28:27 = 3h, 26:24 = 0h, 23:16 = 00h] (Pipelined)
 15:8 Reserved : MBZ
 7:0 DWord Length (Excludes DWords 0,1) = 5

69h 31:5 Pointer to VS_STATE
 4:0 Reserved : MBZ

6Ah 31:5 Pointer to GS_STATE
 4:1 Reserved : MBZ
 0 GS Enable

6Bh 31:5 Pointer to CLP_STATE
 4:1 Reserved : MBZ
 0 CLP Enable

6Ch 31:5 Pointer to SF_STATE
 4:0 Reserved : MBZ

6Dh 31:5 Pointer to WINDOWER_STATE
 4:0 Reserved : MBZ

6Eh 31:6 Pointer to COLOR_CALC_STATE
 5:0 Reserved : MBZ

3DSTATE_BINDING_TABLE_POINTERS
Note: Dwords 6Fh – 74h will be saved as MI_NOOP (opcode 00h) unless

3DSTATE_BINDING_TABLE_POINTERS has been initialized (issued at least once).
6Fh 31:29 Command Type = GFXPIPE = 3h

28:16 3D Command Opcode = 3DSTATE_BINDING_TABLE_POINTERS

GFXPIPE[28:27 = 3h, 26:24 = 0h, 23:16 = 01h] (Pipelined)
 15:8 Reserved : MBZ
 7:0 DWord Length (Excludes DWords 0,1) = 4

70h 31:5 Pointer to VS Binding Table
 4:0 Reserved : MBZ

71h 31:5 Pointer to GS Binding Table
 4:0 Reserved : MBZ

72h 31:5 Pointer to CLP Binding Table
 4:0 Reserved : MBZ

73h 31:5 Pointer to SF Binding Table
 4:0 Reserved : MBZ

74h 31:5 Pointer to PS Binding Table

146

DWord Bits State Field

 4:0 Reserved : MBZ
CONSTANT_BUFFER

Note: Dwords 75h – 76h will be saved as MI_NOOP (opcode 00h) unless CONSTANT_BUFFER has
been initialized (issued at least once).

75h 31:29 Command Type = GFXPIPE = 3h

28:16 3D Command Opcode = CONSTANT_BUFFER

GFXPIPE[28:27 = 0h, 26:24 = 0h, 23:16 = 02h] (Pipelined)
 15:9 Reserved : MBZ
 8 Valid (Will be set if CONSTANT_BUFFER was issued in the context to be saved)
 7:0 DWord Length (excludes DWords 0,1) = 0

76h 31:6 Buffer Starting Address
 5:0 Buffer Length

77h 31:0 MI_Noop
(This region was formerly Blitter Related Context Data)

78 – 87h
31:0 Reserved

Should be treated as garbage data when inspecting a saved context.
VFunit Related Context Data

3DSTATE_INDEX_BUFFER
88h 31:29 Command Type = GFXPIPE = 3h

 28:16 GFXPIPE Opcode = 3DSTATE_INDEX_BUFFER
GFXPIPE[28:27 = 3h, 26:24 = 0h, 23:16 = 0Ah] (Pipelined)

 15:11 Reserved : MBZ
 10 Cut Index Enable
 9:8 Index Format
 7:0 DWord Length (excludes DWords 0,1) = 1

89h 31:0 Buffer Starting Address
8Ah 31:0 Buffer Ending Address

3DSTATE_VERTEX_BUFFER
8Bh 31:29 Command Type = GFXPIPE = 3h

 28:16 GFXPIPE Opcode = 3DSTATE_VERTEX_BUFFERS
GFXPIPE[28:27 = 3h, 26:24 = 0h, 23:16 = 08h] (Pipelined)

 15:8 Reserved : MBZ
 7:0 DWord Length (excludes DWords 0,1)

8C-8Fh Vertex Buffer 0 State
90-93 Vertex Buffer 1 State

 …
CC-CFh Vertex Buffer 16 State

3DSTATE_VERTEX_ELEMENT (71 - 93h)
D0h 31:29 Command Type = GFXPIPE = 3h

 28:16 GFXPIPE Opcode = 3DSTATE_VERTEX_ELEMENTS
GFXPIPE[28:27 = 3h, 26:24 = 0h, 23:16 = 09h] (Pipelined)

 15:8 Reserved : MBZ
 7:0 DWord Length (excludes DWords 0,1)

D1 –
D2h

[1-2]
dw

Element[0]

D3 –
D4h

[3-4]
dw

Element[1]

… … …

F3 – F4h
[37-

38]dw
Element[17]

F5h 31:0 Reserved

 147

DWord Bits State Field

F6-FFh MI_NOOP
DMunit Related Context Data

3DSTATE_SAMPLER_PALETTE_LOAD (ONLY on Extended SAVE Mode)
100h 31:29 Instruction Type = GFXPIPE = 3h

28:16 3D Instruction Opcode = 3DSTATE_SAMPLER_PALETTE_LOAD

GFXPIPE[28:27 = 3h, 26:24 = 1h; 23:16 = 02h] (Non-Pipelined)
 15:4 Reserved: MBZ
 3:0 DWord Length (excludes DWords 0,1)

101-
110h

31:24 Reserved

 23:0 Palette Color[0:N-1]
111-
117h

31:0 MI_NOOP

WIZunit Related Context Data
3DSTATE_POLY_STIPPLE_PATTERN (ONLY on Extended SAVE Mode)

118h 31:29 Instruction Type = 3D_INSTRUCTION = 3h

28:16 3D Instruction Opcode = 3DSTATE_POLY_STIPPLE_PATTERN

GFXPIPE[28:27 = 3h, 26:24 = 1h, 23:16 = 07h] (Non-Pipelined)
 15:0 DWord Length (excl. DWord 0,1) = 31

119h 31:0 Polygon Stipple Pattern Row 1 (top most)
11Ah 31:0 Polygon Stipple Pattern Row 2

11Bh –
138h

31:0 Polygon Stipple Pattern Rows 3 through 32 (bottom-most)

139-
13Fh

31:0 MI_Noop

6.19.2.1.1 Power Context Memory Layout ([DevCL] Only)

Additional context data is required if a reset occurs (if power is lost, for example)
between the save and restore of a context. A mobile-only feature provides for saving
and restoring the following context state/registers in this event. Note that the context
below includes a pointer (in an MI_SET_CONTEXTcommand) to the usual logical
rendering context which is considered a subset of the power context when power
context is saved/restored. See the device EDS for further details.

DWord Bits State Field

MEMORY INTERFACE STATE

00h 31:0 MI_NOOP

01h 31:29 Instruction Type = MI_INSTRUCTION = 0h

 28:23 MI Instruction Opcode = MI_LOAD_REGISTER_IMM = 22h

 22:12 Reserved: MBZ

 11:8 Byte Write Disables = Fh (all enabled)

 7:6 Reserved: MBZ

 5:0 DWord Length (Excludes DWord 0,1) = Ah

02h 31:0 Scratch Pad Register Address Offset

03h 31:0 Scratch Pad Register Data

04h 31:0 EXCC Register Address Offset

148

DWord Bits State Field

05h 31:21 Reserved. MBZ.

 20:16 Bit Write Masks for Bits 4:0: Written as 1Fh (all enabled)

 15:5 Reserved: MBZ

 4:0 User Defined Condition Codes

06h 31:0 Ring Buffer Tail Pointer Register Offset

07h 31:21 Reserved: MBZ

 20:3 Tail Offset (Never Saved on Context Switch)

 2:1 Reserved: MBZ

 0 In Use (Always saved as 0)

08h 31:0 Ring Buffer Starting Address Register Offset

09h 31:12 Starting Address

 11:0 Reserved: MBZ

0Ah
31:0 Ring Buffer Head Pointer Register Offset

Note: The Head reg is restored after the Address reg, as restoring the
Address reg resets the Head.

0Bh 31:21 Wrap Count

 20:2 Head Offset

 1:0 Reserved: MBZ

0Ch 31:0 Ring Buffer Length Register Offset

0Dh 31:21 Reserved: MBZ

 20:12 Buffer Length

 11 RB Wait

 10 RB Arb off

 9 RB in time slice

 8 Disable Register Accesses

 7:3 Reserved: MBZ

 2:1 Automatic Report Head Pointer

 0 Ring Buffer Enable

0Eh 31:29 Instruction Type = MI_INSTRUCTION = 0h

 28:23 MI Instruction Opcode = MI_SET_CONTEXT = 18h

 22:6 Reserved: MBZ

 5:0 DWord Length (Excludes Dword 0,1) = 0

0Fh 31:11 Logical Context Address

 10:4 Reserved: MBZ

 8 Memory Space Select

 7:4 Physical Start Address Extension

 3 Extended State Save Enable

 2 Extended State Restore Enable

 1 Force Restore

 149

DWord Bits State Field

 0 Restore Inhibit

150

6.19.2.1.2 Logical Context Initialization

Each logical context should initialize all device state before beginning operations so
that any context switches that occur subsequently will save and restore coherent
device state. See Memory Interface Functions for more information. Table 6-25
provides values that should be used to initialize any state that the context does not
require for its operations. Note that these state variables will need to be set to
something more intelligent for a context that intends to perform operations that
depend on them. The values of these state variables are saved (and subsequently
restored) on any context switch, with the exception of the
3DSTATE_SAMPLER_PALETTE_LOAD and 3DSTATE_POLY_STIPPLE_PATTERN which
are only saved from and restored to contexts that have the Extended State Save
Enable and Extended State Restore Enable, respectively, set in the
MI_SET_CONTEXT command that triggers the context switch. See Memory Interface
Commands for details of this command.

Note that 3D/Media pipelined state cannot be initialized; it is not stored internally to
the device but is accessed from state blocks in memory as required by rendering
operations. Any context that will issue 3DPRIMITIVE or MEDIA_OBJECT_LOAD
commands must first place valid state structures in memory and send down the
corresponding command (3DSTATE_PIPELINED_POINTERS or
MEDIA_STATE_POINTERS) to point to it. There are no defaults for this state. The
following table (Table 6-24) summarizes state that MUST BE properly set up for a
given context. Please refer to the Graphics Processing Engine (GPE), 3D Pipeline and
Media chapters for details on these commands.

Table 6-24. Context Setup that Cannot Use Defaults

Context Required Setup Notes

3D PIPELINE_SELECT 3D Pipeline must be selected

 CS_URB_STATE Must allocate sufficient URB space for
constants that will be used.

 3DSTATE_PIPELINED_POINTERS Pointers for all enabled FF units (when
offset from base address) must point to
valid state in memory.

 3DSTATE_BINDING_TABLE_POINTERS Pointers for all enabled FF units (when
offset from base address) must point to
valid binding tables in memory.

 STATE_BASE_ADDRESS Must be properly initialized so that
pointers above point to valid state
blocks.

 URB_FENCE Enabled FF units must be allocated
sufficient URB space to avoid deadlock.
Note that most FF units cannot be
disabled. Only VS and CLIP can be
disabled.

 CONSTANT_BUFFER Must point to a valid constant buffer if
constants will be used.

 STATE_SIP Must point to a valid exception handler
if any threads will be dispatched with
any exceptions enabled.

 151

Context Required Setup Notes

Media PIPELINE_SELECT Media Pipeline must be selected

 CS_URB_STATE Same as above

 MEDIA_STATE_POINTERS Pointers for one, or both if enabled,
Media FF units (when offset from base
address) must point to valid state in
memory.

 STATE_BASE_ADDRESS Must be properly initialized so that
pointers above point to valid state
blocks.

 URB_FENCE Enabled FF units must be allocated
sufficient URB space to avoid deadlock.
Note that the VFE FF unit cannot be
disabled.

 CONSTANT_BUFFER Must point to a valid constant buffer if
constants will be used.

 STATE_SIP Must point to a valid exception handler
if any threads will be dispatched with
any exceptions enabled.

Table 6-25. Initialization of Command State

Instruction/Field Value

PIPELINE_SELECT

Pipeline Select 0 = 3D pipeline is selected

CS_URB_STATE

URB Entry Allocation Size 0
Number of URB Entries 0

URB_FENCE

CS Unit URB Reallocation Request 0
VFE Fence Unit URB Reallocation Request 0
SF Unit URB Reallocation Request 0
CLIP Unit URB Reallocation Request 0
GS Unit URB Reallocation Request 0
VS Unit URB Reallocation Request 0
CLP Fence 192
GS Fence 128
VS Fence 64
CS Fence 256
VFE Fence 0
SF Fence 252

CONSTANT_BUFFER

Valid 0
Buffer Starting Address 0
Buffer Length 0

STATE_BASE_ADDRESS

General State Base Address 0

152

Instruction/Field Value

Surface State Base Address 0
Indirect Object Base Address 0
General State Access Upper Bound 0
Indirect Object Access Upper Bound 0

STATE_SIP

System Instruction Pointer 0

3DSTATE_DRAWING_RECTANGLE

Clipped Drawing Rectangle Y Min 0
Clipped Drawing Rectangle X Min 0
Clipped Drawing Rectangle Y Max 8191
Clipped Drawing Rectangle X Max 8191
Drawing Rectangle Origin Y 0
Drawing Rectangle Origin X 0

3DSTATE_DEPTH_BUFFER

Surface Type 7 (SURFTYPE_NULL)
Tiled Surface 0
Tile Walk 1 = Y
Depth Buffer Coordinate Offset Disable 0
Surface Format 0
Surface Pitch 0
Surface Base Address 0
Height 0
Width 0
LOD 0
MIP Map Layout Mode 0 = MIPLAYOUT_BELOW
Depth 0
Minimum Array Element 0

3DSTATE_CHROMA_KEY (INDEX_0)

ChromaKey Table Index 0
ChromaKey Low Value 0
ChromaKey High Value 0

3DSTATE_CHROMA_KEY (INDEX_1)

ChromaKey Table Index 1
ChromaKey Low Value 0
ChromaKey High Value 0

3DSTATE_CHROMA_KEY (INDEX_2)

ChromaKey Table Index 2
ChromaKey Low Value 0
ChromaKey High Value 0

3DSTATE_CHROMA_KEY (INDEX_3)

ChromaKey Table Index 3
ChromaKey Low Value 0
ChromaKey High Value 0

3DSTATE_CONSTANT_COLOR

Blend Constant Color Red 1.0
Blend Constant Color Blue 1.0

 153

Instruction/Field Value

Blend Constant Color Green 1.0
Blend Constant Color Alpha 1.0

3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP

Global Depth Offset Clamp 0.0

3DSTATE_POLY_STIPPLE_OFFSET

Polygon Stipple X Offset 0
Polygon Stipple Y Offset 0

3DSTATE_LINE_STIPPLE

Modify Enable 0
Current Repeat Counter 0
Current Stipple Index 0
Line Stipple Pattern 0
Line Stipple Inverse Repeat Count 0
Line Stipple Repeat Count 0

MEDIA_STATE_POINTERS

Pointer to VLD_STATE 0
VLD Enable 0
Pointer to VFE_STATE 0

3DSTATE_PIPELINE_POINTERS

Pointer to VS_STATE 0
Pointer to GS_STATE 0
GS Enable 0
Pointer to CLP_STATE 0
CLP Enable 0
Pointer to SF_STATE 0
Pointer to WINDOWER_STATE 0
Pointer to COLOR_CALC_STATE 0

3DSTATE_BINDING_TABLE_POINTERS

Pointer to VS Binding Table 0
Pointer to GS Binding Table 0
Pointer to CLP Binding Table 0
Pointer to SF Binding Table 0
Pointer to PS Binding Table 0

3DSTATE_INDEX_BUFFER

Cut Index Enable 0
Index Format 0
Buffer Starting Address 0
Buffer Ending Address 0

3DSTATE_VERTEX_BUFFER (0 – 16)

DWord Length (excludes DWords 0,1) 50 (32h)
Vertex Buffer Index 0
Buffer Access Type 0 = VERTEXDATA
Buffer Pitch 0
Buffer Starting Address 0
Max Index 0
… values repeated for all 17 Vertex Buffers …

154

Instruction/Field Value

3DSTATE_VERTEX_ELEMENT (0 – 17)

DWord Length (excludes DWords 0,1) 35 (23h)

Vertex Buffer Index 0

Valid 0

Source Element Format 0

Source Element Offset 0

Component 0 Control 2 = VFCOMP_STORE_0

Component 1 Control 0 = VFCOMP_NOSTORE

Component 2 Control 0 = VFCOMP_NOSTORE

Component 3 Control 0 = VFCOMP_NOSTORE

Destination Element Offset 0

… values repeated for all 18 Vertex Elements ...
3DSTATE_SAMPLER_PALETTE_LOAD (Required
to be initialized only if context uses extended
save)

DWord Length (excludes DWords 0,1) 15
Palette Color 0 0
Palette Color 1 0
… 0
Palette Color 15 0
3DSTATE_POLY_STIPPLE_PATTERN (Required to
be initialized only if context uses extended save)

DWord Length (excl. DWord 0,1) 31
Polygon Stipple Pattern Row 1 (top most) 0
Polygon Stipple Pattern Row 2 0
… 0
Polygon Stipple Pattern Row 32 (bottom-most) 0

 155

6.19.3 The Probe List

The Probe List consists of 1024 slots. Each slot can hold a probe list entry. Each
entry is one Dword and has the following format:

Bit Description

31:12 Surface Page Base Address.

Format = PerProcessGraphicsVirtualAddress[31:12]

11:1 Reserved. MBZ

0 Fault. This bit is set by HW if this probe faults (either on context restore or when executing
MI_PROBE.) This bit is ignored when this probe entry is read in order to be re-checked as part of a
context restore operation.

SW must clear the Fault bit in a probe list entry for which it has successfully serviced
a surface fault. When restoring a context, Fault bits are only set for new faults. They
are not cleared for reprobes which do not fault.

6.19.4 Pipelined State Page

This page is used a scratch area for the pipeline to store pipelined state that is not
referenced indirectly. Under no circumstances should SW read from or write to this
page.

6.19.5 Ring Buffer

This page is used a scratch area for the pipeline to store ring buffer commands that
need to be reissued. Under no circumstances should SW read from or write to this
page.

156

6.19.6 The Per-Process Hardware Status Page

The following table defines the layout of the Per-process Hardware Status Page:

DWord
Offset

Description

(3FFh –
020h)

These locations can be used for general purpose via the MI_STORE_DATA_INDEX or
MI_STORE_DATA_IMM instructions.

1F:1A Reserved.

19 Context Save Finished Timestamp

18 Context Restore Complete Timestamp

17 Pre-empt Request Received Timestamp

16 Last Switch Timestamp

15:12 Reserved.

11:10 Probe List Slot Fault Register (2 DWs)

F:5 Reserved.

4 Ring Head Pointer Storage: The contents of the Ring Buffer Head Pointer register (register DWord
1) are written to this location either as result of an MI_REPORT_HEAD instruction or as the result of
an “automatic report” (see RINGBUF registers).

3:0 Reserved.

This page is designed to be read by SW in order to glean additional details about a
context beyond what it can get from the context status.

Accesses to this page will automatically be treated as cacheable and snooped. It is
therefore illegal to locate this page in any region where snooping is illegal (such as in
stolen memory).

§§

 157

158

7 Device 2 Configuration
Registers

7.1 Introduction

PCI Configuration Device 2 is the Internal Graphics Device (IGD). The common subset
of these registers is thus documented in this specification. For all other configuration
register devices, please see the EDS for the particular device concerned.

Note that only a subset of the Device 2 Configuration registers is documented here.
Registers that are not documented here are available for use (and many are already
used) for product-specific control registers that relate to Device 2. Please see the EDS
for the complete set of Device 2 registers for a given product.

All registers documented herein are common between all products in the Gen4 family
except for the minor exceptions noted. Any changes to the registers documented here
must be presented to the common graphics core change control board.

7.2 Device 2, Function 0
Register Name Register

Symbol
Register

Start
Register

End
Default Value Access

Vendor Identification VID2 0 1 8086h RO;

Device Identification DID2 2 3 [Device
Specific]

RO;

PCI Command PCICMD2 4 5 0000h RO; R/W;

PCI Status PCISTS2 6 7 0090h RO;

Revision Identification RID2 8 8 00h RO;

Class Code CC 9 B 030000h RO;

Cache Line Size CLS C C 00h RO;

Master Latency Timer MLT2 D D 00h RO;

Header Type HDR2 E E 80h RO;

Built In Self Test BIST F F 00h RO;

Graphics Translation Table Range
Address

GTTMMADR 10 17 000000000000
0004h

RO; R/W;

Graphics Memory Range Address GMADR 18 1F 000000000000
000Ch

RO; R/W;
R/W/L;

I/O Base Address IOBAR 20 23 00000001h RO; R/W;

 159

Register Name Register
Symbol

Register
Start

Register
End

Default Value Access

Subsystem Vendor Identification SVID2 2C 2D 0000h R/WO;

Subsystem Identification SID2 2E 2F 0000h R/WO;

Video BIOS ROM Base Address ROMADR 30 33 00000000h RO;

Capabilities Pointer CAPPOINT 34 34 90h RO;

Interrupt Line INTRLINE 3C 3C 00h R/W;

Interrupt Pin INTRPIN 3D 3D 01h RO;

Minimum Grant MINGNT 3E 3E 00h RO;

Maximum Latency MAXLAT 3F 3F 00h RO;

Capabilities Pointer (to Mirror of
Dev0 CAPID)

MCAPPTR 44 44 48h RO;

Mirror of Dev 0 Capability
Identification

MCAPID 48 51 [Device
Specific]

RO;

Mirror of Dev0 GMCH Graphics
Control

MGGC 52 53 0030h RO;

Mirror of Dev0 DEVEN MDEVENdev0F
0

54 57 [Device
Specific]

RO;

Software Scratch Read Write SSRW 58 5B 00000000h R/W;

Base of Stolen Memory BSM 5C 5F [Device
Specific]

RO;

Hardware Scratch Read Write HSRW 60 61 0000h R/W;

Multi Size Aperture Control MSAC 62 62 02h RO; R/W;
R/W/L;

VTD Status VTDS 63 63 02h or 00h RO;

Secondary CWB Flush Control
[DevBW Only]

SCWBFC 68 6F 000000000000
0000h

RO

Capabilities List Control CAPL 7F 7F 00h RO; R/W;

Message Signaled Interrupts
Capability ID

MSI_CAPID 90 91 D005h RO;

Message Control MC 92 93 0000h RO; R/W;

Message Address MA 94 97 00000000h R/W; RO;

Message Data MD 98 99 0000h R/W;

FLR Capability ID FLRCAPID A4 A5 0009h RO;

FLR Length and Version FLRLENVER A6 A7 2006h RO;

FLR Control FLRCNTL A8 A9 0000h RO; R/W;

FLR Status FLRSTAT AA AA 00h RO

Graphics Device Reset GDRST C0 C0 00h RO; R/W;

160

Register Name Register
Symbol

Register
Start

Register
End

Default Value Access

GMBUS frequency binary
encoding

GMBUSFREQ CC CD 0000h R/W; RO;

Power Management Capabilities
ID

PMCAPID D0 D1 0001h RO;

Power Management Capabilities PMCAP D2 D3 0022h or 0023h RO;

Power Management
Control/Status

PMCS D4 D5 0000h RO; R/W;

Software SMI SWSMI E0 E1 0000h R/W;

System Display Event Register ASLE E4 E7 00000000h R/W;

Software SCI SWSCI E8 E9 0000h RO; R/W;

Legacy Backlight Brightness LBB F4 F7 00000000h R/W;

Manufacturing ID MID2 F8 FB [Device
Specific]

RO;

ASL Storage ASLS FC FF 00000000h R/W;

7.2.1 VID2 — Vendor Identification
B/D/F/Type: 0/2/0/PCI
Address Offset: 0-1h
Default Value: 8086h
Access: RO;
Size: 16 bits

This register combined with the Device Identification register uniquely identifies any
PCI device.

Bit Access Default
Value

Description

15:0 RO 8086h Vendor Identification Number (VID): PCI standard identification for
Intel.

 161

7.2.2 DID2 — Device Identification
B/D/F/Type: 0/2/0/PCI
Address Offset: 2-3h
Default Value: [Device Specific]
Access: RO;
Size: 16 bits

This register combined with the Vendor Identification register uniquely identifies any
PCI device.

Bit Access Default
Value

Description

15:0 RO -- Device Identification Number (DID): Identifier assigned to the GMCH
core/primary PCI device. Intel Reserved Text: Some bits of this field are
actually determined by fuses, which allows unique Device IDs to be used for
different product SKUs.

162

7.2.3 PCICMD2 — PCI Command
B/D/F/Type: 0/2/0/PCI
Address Offset: 4-5h
Default Value: 0000h
Access: RO; R/W;
Size: 16 bits

This 16-bit register provides basic control over the IGDs ability to respond to PCI
cycles. The PCICMD Register in the IGD disables the IGD PCI compliant master
accesses to main memory.

Bit Access Default
Value

Description

15:11 RO 00h Reserved

10 R/W 0b Interrupt Disable: This bit disables the device from asserting INTx#.

0: Enable the assertion of this device's INTx# signal.

1: Disable the assertion of this device's INTx# signal. DO_INTx messages
will not be sent to DMI.

9 RO 0b Fast Back-to-Back (FB2B): Not Implemented. Hardwired to 0.

8 RO 0b SERR Enable (SERRE): Not Implemented. Hardwired to 0.

7 RO 0b Address/Data Stepping Enable (ADSTEP): Not Implemented.
Hardwired to 0.

6 RO 0b Parity Error Enable (PERRE): Not Implemented. Hardwired to 0. Since
the IGD belongs to the category of devices that does not corrupt programs or
data in system memory or hard drives, the IGD ignores any parity error that
it detects and continues with normal operation.

5 RO 0b Video Palette Snooping (VPS): This bit is hardwired to 0 to disable
snooping.

4 RO 0b Memory Write and Invalidate Enable (MWIE): Hardwired to 0. The
IGD does not support memory write and invalidate commands.

3 RO 0b Special Cycle Enable (SCE): This bit is hardwired to 0. The IGD ignores
Special cycles.

2 R/W 0b Bus Master Enable (BME):

0: Disable IGD bus mastering.

1: Enable the IGD to function as a PCI compliant master.

1 R/W 0b Memory Access Enable (MAE): This bit controls the IGDs response to
memory space accesses.

0: Disable.

1: Enable.

0 R/W 0b I/O Access Enable (IOAE): This bit controls the IGDs response to I/O
space accesses.

0: Disable.

1: Enable.

 163

7.2.4 PCISTS2 — PCI Status
B/D/F/Type: 0/2/0/PCI
Address Offset: 6-7h
Default Value: 0090h
Access: RO;
Size: 16 bits

PCISTS is a 16-bit status register that reports the occurrence of a PCI compliant
master abort and PCI compliant target abort. PCISTS also indicates the DEVSEL#
timing that has been set by the IGD.

Bit Access Default
Value

Description

15 RO 0b Detected Parity Error (DPE): Since the IGD does not detect parity, this
bit is always hardwired to 0.g

14 RO 0b Signaled System Error (SSE): The IGD never asserts SERR#, therefore
this bit is hardwired to 0.

13 RO 0b Received Master Abort Status (RMAS): The IGD never gets a Master
Abort, therefore this bit is hardwired to 0.

12 RO 0b Received Target Abort Status (RTAS): The IGD never gets a Target
Abort, therefore this bit is hardwired to 0.

11 RO 0b Signaled Target Abort Status (STAS): Hardwired to 0. The IGD does
not use target abort semantics.

10:9 RO 00b DEVSEL Timing (DEVT): N/A. These bits are hardwired to "00".

8 RO 0b Master Data Parity Error Detected (DPD): Since Parity Error Response
is hardwired to disabled (and the IGD does not do any parity detection), this
bit is hardwired to 0.

7 RO 1b Fast Back-to-Back (FB2B): Hardwired to 1. The IGD accepts fast back-
to-back when the transactions are not to the same agent.

6 RO 0b User Defined Format (UDF): Hardwired to 0.

5 RO 0b 66 MHz PCI Capable (66C): N/A - Hardwired to 0.

4 RO 1b Capability List (CLIST): This bit is set to 1 to indicate that the register at
34h provides an offset into the function痴 PCI Configuration Space containing
a pointer to the location of the first item in the list.

3 RO 0b Interrupt Status: This bit reflects the state of the interrupt in the device.
Only when the Interrupt Disable bit in the command register is a 0 and this
Interrupt Status bit is a 1, will the devices INTx# signal be asserted. Setting
the Interrupt Disable bit to a 1 has no effect on the state of this bit.

2:0 RO 000b Reserved.:

164

7.2.5 RID2 — Revision Identification
B/D/F/Type: 0/2/0/PCI
Address Offset: 8h
Default Value: 00h
Access: RO;
Size: 8 bits

Compatible Revision ID (CRID):

 An 8 bit hardwired value assigned by the ID Council. Normally, the value assigned as
the CRID will be identical to the SRID value of a previous stepping of the product with
which the new product is deemed "compatible". Note that CRID is not an addressable
PCI register. The CRID value is simply reflected through the RID register when
appropriately selected. Lower 4 bits of the CRID are driven by Fuses. The CRID fuses
are programmed based on the SKU.

Stepping Revision ID (SRID):

An 8 bit hardwired value assigned by the ID Council. The values assigned as the SRID
of a product's steppings will be selectively incremented based on the degree of change
to that stepping. It is suggested that the first stepping of any given product have an
SRID value = 01h simply to avoid the "reserved register" value of 00h. Note that
SRID is not an addressable PCI register. The SRID value is simply reflected through
the RID register when appropriately selected.

 RID Select Key Value:

 This is hardwired value (69h). If the latched value written to the RID register address
matches this RID Select Key Value, the CRID value be presented for reading from the
RID register.

RID Definition:

This register contains the revision number of the GMCH Device #0. Following PCI
Reset the SRID value is selected to be read. When a write occurs to this register the
write data is compared to the hardwired RID Select Key Value which is 69h. If the
data matches this key a flag is set that enables the CRID value to be read through this
register.

 Note that the flag is a "write once'. Therefore once the CRID is selected to be read,
the only way to again select the SRID is to PCI Reset the component. Also if any
value other than the key (69h) is written to the RID register, the flag is locked such
that the SRID is selected until the component is PCI Reset. Note that the RID register
itself is not directly write-able.

This register contains the revision number for Device #2 Functions 0 and 1.

Bit Access Default
Value

Description

7:0 RO 00h Revision Identification Number (RID): This is an 8-bit value that
indicates the revision identification number for the GMCH.

 165

7.2.6 CC — Class Code
B/D/F/Type: 0/2/0/PCI
Address Offset: 9-Bh
Default Value: 030000h
Access: RO;
Size: 24 bits

This register contains the device programming interface information related to the
Sub-Class Code and Base Class Code definition for the IGD. This register also contains
the Base Class Code and the function sub-class in relation to the Base Class Code.

Bit Access Default
Value

Description

23:16 RO 03h Base Class Code (BCC): This is an 8-bit value that indicates the base
class code for the GMCH. This code has the value 03h, indicating a Display
Controller.

15:8 RO 00h Sub-Class Code (SUBCC): Based on Device #0 GGC-GMS bits and GGC-
IVD bits.

00h: VGA compatible

80h: Non VGA (GMS = "000" or IVD = "1")

7:0 RO 00h Programming Interface (PI):

00h: Hardwired as a Display controller.

7.2.7 CLS — Cache Line Size
B/D/F/Type: 0/2/0/PCI
Address Offset: Ch
Default Value: 00h
Access: RO;
Size: 8 bits

The IGD does not support this register as a PCI slave.

Bit Access Default
Value

Description

7:0 RO 00h Cache Line Size (CLS): This field is hardwired to 0s. The IGD as a PCI
compliant master does not use the Memory Write and Invalidate command
and, in general, does not perform operations based on cache line size.

166

7.2.8 MLT2 — Master Latency Timer
B/D/F/Type: 0/2/0/PCI
Address Offset: Dh
Default Value: 00h
Access: RO;
Size: 8 bits

The IGD does not support the programmability of the master latency timer because it
does not perform bursts.

Bit Access Default
Value

Description

7:0 RO 00h Master Latency Timer Count Value: Hardwired to 0s.

7.2.9 HDR2 — Header Type
B/D/F/Type: 0/2/0/PCI
Address Offset: Eh
Default Value: 80h
Access: RO;
Size: 8 bits

This register contains the Header Type of the IGD.

Bit Access Default
Value

Description

7 RO 1b Multi Function Status (MFunc): Indicates if the device is a Multi-
Function Device. The Value of this register is determined by Device #0, offset
54h, DEVEN[4]. If Device #0 DEVEN[4] is set, the Mfunc bit is also set.

6:0 RO 00h Header Code (H): This is a 7-bit value that indicates the Header Code for
the IGD. This code has the value 00h, indicating a type 0 configuration space
format.

7.2.10 BIST — Built In Self Test
B/D/F/Type: 0/2/0/PCI
Address Offset: Fh
Default Value: 00h
Access: RO;
Size: 8 bits

This register is used for control and status of Built In Self Test (BIST).

Bit Access Default
Value

Description

7 RO 0b BIST Supported: BIST is not supported. This bit is hardwired to 0.

6:0 RO 00h Reserved

 167

7.2.11 GTTMMADR — Graphics Translation Table Range Address
B/D/F/Type: 0/2/0/PCI
Address Offset: 10-17h
Default Value: 0000000000000004h
Access: RO; R/W;
Size: 64 bits

This register requests allocation for combined Graphics Translation Table and Memory
Mapped Range. The allocation is split evenly between GTTADDR and MMIO, with
MMIO coming first (lowest address) in the space.

For the Global GTT, GTTADDR is defined as part of a memory BAR in graphics device
config space as an alias with which software writes values (PTEs) into the global
Graphics Translation Table (GTT). Writing PTEs directly into the global GTT memory
area is allowed.

Device Total
Allocation

GTTADDR
Size

GTT
Entries

Total Aperture
Size

Base Address
Bits

All 1 MB 512K 128K 512M 35:20

The device snoops writes to GTTADDR space in order to invalidate any cached
translations within the various TLB's implemented on-chip. There are some
exceptions to this – see GTT-TLB in the Programming Interface chapter.

The Global GTT base address is programmed in the PGTB_CNTL register. The Global
GTT resides in Main Memory

The Global GTT is required to be 4KB aligned, with each entry being DWord aligned.

Bit Access Default
Value

Description

63:36 R/W 0000000h Must be set to 0 since addressing above 64GB is not supported.

35:21 R/W 0000h Memory Base Address: Set by the OS, these bits correspond to address
signals [35:21].

20 R/W R/W, Memory Base Address[20].

0 indicates at least 2MB address range.

19:4 RO 0000h Reserved: Hardwired to 0's to indicate at least 1MB address range.

3 RO 0b Prefetchable Memory: Hardwired to 0 to prevent prefetching.

2:1 RO 10b Memory Type ()

00 : To indicate 32 bit base address

01: Reserved

10 : To indicate 64 bit base address

11: Reserved

0 RO 0b Memory/IO Space: Hardwired to 0 to indicate memory space.

168

7.2.12 GMADR — Graphics Memory Range Address
B/D/F/Type: 0/2/0/PCI
Address Offset: 18-1Fh
Default Value: 000000000000000Ch
Access: RO; R/W; R/W/L;
Size: 64 bits

IGD graphics memory base address is specified in this register.

Bit Access Default
Value

Description

63:36 RO 0000000h Reserved

35:29 R/W 00h Memory Base Address: Set by the OS, these bits correspond to address
signals [35:29].

28 R/W/L 0b 512 MB Address Mask: This bit is either part of the Memory Base Address
(R/W) or part of the Address Mask (RO), depending on the value of
MSAC[1:0].

See MSAC (Dev 2, Func 0, offset 62h) for details.

27 R/W/L 0b 256 MB Address Mask: This bit is either part of the Memory Base Address
(R/W) or part of the Address Mask (RO), depending on the value of
MSAC[1:0].

See MSAC (Dev 2, Func 0, offset 62h) for details.

26:4 RO 000000h Address Mask: Hardwired to 0s to indicate at least 128MB address range.

3 RO 1b Prefetchable Memory: Hardwired to 1 to enable prefetching.

2:1 RO 10b Memory Type ()

00 : To indicate 32 bit base address

01: Reserved

10 : To indicate 64 bit base address

11: Reserved

0 RO 0b Memory/IO Space: Hardwired to 0 to indicate memory space.

 169

7.2.13 IOBAR — I/O Base Address
B/D/F/Type: 0/2/0/PCI
Address Offset: 20-23h
Default Value: 00000001h
Access: RO; R/W;
Size: 32 bits

This register provides the Base offset of the I/O registers within Device #2. Bits 15:3
are programmable allowing the I/O Base to be located anywhere in 16bit I/O Address
Space. Bits 2:1 are fixed and return zero, bit 0 is hardwired to a one indicating that 8
bytes of I/O space are decoded.

Access to the 8Bs of IO space is allowed in PM state D0 when IO Enable (PCICMD bit
0) set. Access is disallowed in PM states D1-D3 or if IO Enable is clear or if Device #2
is turned off or if internal graphics is disabled thru the fuse or fuse override
mechanisms. Note that access to this IO BAR is independent of VGA functionality
within Device #2. Also note that this mechanism in available only through function 0
of Device#2 and is not duplicated in function #1.

If accesses to this IO bar are allowed then the GMCH claims all 8, 16 or 32 bit IO
cycles from the CPU that falls within the 8B claimed.

Bit Access Default
Value

Description

31:16 RO 0000h Reserved Read as 0's, these bits correspond to address signals [31:16].

15:3 R/W 0000h IO Base Address: Set by the OS, these bits correspond to address signals
[15:3].

2:1 RO 00b Memory Type: Hardwired to 0s to indicate 32-bit address.

0 RO 1b Memory / IO Space: Hardwired to 1 to indicate IO space.

7.2.14 SVID2 — Subsystem Vendor Identification
B/D/F/Type: 0/2/0/PCI
Address Offset: 2C-2Dh
Default Value: 0000h
Access: R/WO;
Size: 16 bits

Bit Access Default
Value

Description

15:0 R/WO 0000h Subsystem Vendor ID: This value is used to identify the vendor of the
subsystem. This register should be programmed by BIOS during boot-up.
Once written, this register becomes Read-Only. This register can only be
cleared by a Reset.

170

7.2.15 SID2 — Subsystem Identification
B/D/F/Type: 0/2/0/PCI
Address Offset: 2E-2Fh
Default Value: 0000h
Access: R/WO;
Size: 16 bits

 Bit Access Default
Value

Description

15:0 R/WO 0000h Subsystem Identification: This value is used to identify a particular
subsystem. This field should be programmed by BIOS during boot-up. Once
written, this register becomes Read-Only. This register can only be cleared by
a Reset.

7.2.16 ROMADR — Video BIOS ROM Base Address
B/D/F/Type: 0/2/0/PCI
Address Offset: 30-33h
Default Value: 00000000h
Access: RO;
Size: 32 bits

The IGD does not use a separate BIOS ROM, therefore this register is hardwired to 0s.

Bit Access Default
Value

Description

31:18 RO 0000h ROM Base Address: Hardwired to 0s.

17:11 RO 00h Address Mask: Hardwired to 0s to indicate 256 KB address range.

10:1 RO 000h Reserved: Hardwired to 0s.

0 RO 0b ROM BIOS Enable: 0 = ROM not accessible.

7.2.17 CAPPOINT — Capabilities Pointer
B/D/F/Type: 0/2/0/PCI
Address Offset: 34h
Default Value: 90h
Access: RO;
Size: 8 bits

Bit Access Default
Value

Description

7:0 RO 90h Capabilities Pointer Value: This field contains an offset into the function's
PCI Configuration Space for the first item in the New Capabilities Linked List
which is the MSI Capabilities ID register at address 90h or the Power
Management Capabilities ID registers at address D0h. The value is
determined by CAPL[0].

 171

7.2.18 INTRLINE — Interrupt Line
B/D/F/Type: 0/2/0/PCI
Address Offset: 3Ch
Default Value: 00h
Access: R/W;
Size: 8 bits

Bit Access Default
Value

Description

7:0 R/W 00h Interrupt Connection: Used to communicate interrupt line routing
information. POST software writes the routing information into this register
as it initializes and configures the system. The value in this register indicates
which input of the system interrupt controller that the device’s interrupt pin
is connected to.

7.2.19 INTRPIN — Interrupt Pin
B/D/F/Type: 0/2/0/PCI
Address Offset: 3Dh
Default Value: 01h
Access: RO;
Size: 8 bits

Bit Access Default
Value

Description

7:0 RO 01h Interrupt Pin: As a single function device, the IGD specifies INTA# as its
interrupt pin.

 01h: INTA#.

7.2.20 MINGNT — Minimum Grant
B/D/F/Type: 0/2/0/PCI
Address Offset: 3Eh
Default Value: 00h
Access: RO;
Size: 8 bits

Bit Access Default
Value

Description

7:0 RO 00h Minimum Grant Value: The IGD does not burst as a PCI compliant master.

172

7.2.21 MAXLAT — Maximum Latency
B/D/F/Type: 0/2/0/PCI
Address Offset: 3Fh
Default Value: 00h
Access: RO;
Size: 8 bits

Bit Access Default
Value

Description

7:0 RO 00h Maximum Latency Value: The IGD has no specific requirements for how
often it needs to access the PCI bus.

7.2.22 MCAPPTR — Capabilities Pointer (to Mirror of Dev0
CAPID)
B/D/F/Type: 0/2/0/PCI
Address Offset: 44h
Default Value: 48h
Access: RO;
Size: 8 bits

Bit Access Default
Value

Description

7:0 RO 48h Capabilities Pointer Value: In this case the first capability is the product-
specific Capability Identifier (CAPID0).

7.2.23 MCAPID — Mirror of Dev 0 Capability Identification.
B/D/F/Type: 0/2/0/PCI
Address Offset: 48-51h
Default Value: [Device Specific]
Access: RO;
Size: 80 bits

This is an INTEL RESERVED register and should NOT be disclosed to customers. It is
for test and debug purposes only and will not be included in external documentation.
Control of bits in this register are only required for customer visible SKU
differentiation.

Bit Access Default
Value

Description

79:0 RO -- Device Specific Bit Definitions

 173

7.2.24 MGGC — Mirror of Dev0 GMCH Graphics Control
B/D/F/Type: 0/2/0/PCI
Address Offset: 52-53h
Default Value: 0030h
Access: RO;
Size: 16 bits

Bit Access Default
Value

Description

15:7 RO 000000000b Reserved

6:4 RO 011b Graphics Mode Select (GMS): This field is used to select the amount
of Main Memory that is pre-allocated to support the Internal Graphics
device in VGA (non-linear) and Native (linear) modes. The BIOS ensures
that memory is pre-allocated only when Internal graphics is enabled.
Stolen Memory Base is located between (TOLUD - SMSize) to TOUD.

000 = No memory pre-allocated. Device 2 (IGD) does not claim VGA
cycles (Mem and IO), and the Sub-Class Code field within Device 2
function 0. Class Code register is 80.

001 = DVMT (UMA) mode, 1 MB memory pre-allocated for frame buffer.

010 = DVMT (UMA) mode, 4 MB memory pre-allocated for frame buffer.

011 = DVMT (UMA) mode, 8 MB memory pre-allocated for frame buffer.

100 = DVMT (UMA) mode, 16 MB memory pre-allocated for frame
buffer.

101 = DVMT (UMA) mode, 32 MB memory pre-allocated for frame
buffer.

110 = DVMT (UMA) mode, 48 MB memory pre-allocated for frame
buffer.

111 = DVMT (UMA) mode, 64 MB memory pre-allocated for frame
buffer.

Note: This register is locked and becomes Read Only when the D_LCK bit
in the SMRAM register is set. Hardware does not clear or set any of
these bits automatically based on IGD being disabled/enabled.

3:2 RO 00b Reserved

1 RO 0b IGD VGA Disable (IVD): 1:Disable. Device 2 (IGD) does not claim
VGA cycles (Mem and IO), and the Sub-Class Code field within Device 2
function 0 Class Code register is 80.

0: Enable (Default). Device 2 (IGD) claims VGA memory and IO cycles,
the Sub-Class Code within Device 2 Class Code register is 00.

0 RO 0b Reserved

174

7.2.25 MDEVENdev0F0 — Mirror of Dev0 DEVEN
B/D/F/Type: 0/2/0/PCI
Address Offset: 54-57h
Default Value: [Device Specific]
Access: RO;
Size: 32 bits

Allows for enabling/disabling of PCI devices and functions that are within the MCH.

Bit Access Default
Value

Description

31:0 RO -- Device Specific Bit Definitions. See Device 0 documentation in the EDS.

7.2.26 SSRW — Software Scratch Read Write
B/D/F/Type: 0/2/0/PCI
Address Offset: 58-5Bh
Default Value: 00000000h
Access: R/W;
Size: 32 bits

Bit Access Default
Value

Description

31:0 R/W 00000000h Reserved

7.2.27 BSM — Base of Stolen Memory
B/D/F/Type: 0/2/0/PCI
Address Offset: 5C-5Fh
Default Value: [Device Specific]
Access: RO;
Size: 32 bits

Graphics Stolen Memory and TSEG are within DRAM space defined under TOLUD.
From the top of low used DRAM, GMCH claims 1 to 64MBs of DRAM for internal
graphics if enabled.

Bit Access Default
Value

Description

31:20 RO -- Base of Stolen Memory (BSM): This register contains bits 31 to 20 of the
base address of stolen DRAM memory. The host interface determines the
base of graphics stolen memory by subtracting the graphics stolen memory
size from TOLUD. See Device 0 TOLUD in the EDS for more explanation.

19:0 RO 00000h Reserved

 175

7.2.28 HSRW — Hardware Scratch Read Write
B/D/F/Type: 0/2/0/PCI
Address Offset: 60-61h
Default Value: 0000h
Access: R/W;
Size: 16 bits

Bit Access Default
Value

Description

15:0 R/W 0000h Reserved R/W

7.2.29 MSAC — Multi Size Aperture Control
B/D/F/Type: 0/2/0/PCI
Address Offset: 62h
Default Value: 02h
Access: RO; R/W; R/W/L;
Size: 8 bits

This register determines the size of the graphics memory aperture in function 0. By
default the aperture size is 256 MB. Only the system BIOS will write this register
based on pre-boot address allocation efforts, but the graphics may read this register
to determine the correct aperture size. System BIOS needs to save this value on boot
so that it can reset it correctly during S3 resume.

Bit Access Default
Value

Description

7:4 R/W 0h Scratch Bits Only: Have no physical effect on hardware.

3 RO 0b Reserved

2:1 R/W/L 01b Aperture Size (LHSAS):

11: bits [28:27] of GMADR register are made Read only and forced to zero,
allowing only 512MB of GMADR

01: bit [28] of GMADR is made R/W and bit [27] of GMADR is forced to zero
allowing 256MB of GMADR

00: bits [28:27] of GMADR register are made R/W allowing 128MB of GMADR

10: Illegal programming.

0 RO 0b Reserved

176

7.2.30 SCWBFC — Secondary CWB Flush Control ([DevBW] Only)
B/D/F/Type: 0/2/0/PCI
Address Offset: 68-6Fh
Default Value: 0000000000000000h
Access: W
Size: 64 bits

This register is for hardware debug purposes only. This is not relevant for software.
All the data stored in the secondary CWB is flushed to memory before a write to this
page is completed on the Front side bus. The write data is discarded. All transactions
from the CPU that follow are not processed by the chipset till the "flush write"
completes creating a fence beyond which coherency is guaranteed.

A read to this page does not flush the primary CWB/DWB and returns Zeros.

Bit Access Default
Value

Description

63:0 W 000000000
0000000h

Secondary CWB Flush Control (SCWBFC): A CPU Dword/Qword write
to this space flushes the Secondary CWB/DWB of all writes. The data is
discarded..

7.2.31 CAPL — Capabilities List Control
B/D/F/Type: 0/2/0/PCI
Address Offset: 7Fh
Default Value: 00h
Access: RO; R/W;
Size: 8 bits

Allows BIOS to hide capabilities that are part of the Device 2 PCI Capabilities Linked
List. By setting the appropriate bits, certain capabilities will be "skipped" during a
later phase of system initialization. This is an INTEL RESERVED register and should
NOT be disclosed to customers. It is for test and debug purposes only and will not be
included in external documentation.

Bit Access Default
Value

Description

7:1 RO 00h Reserved.:

0 R/W 0b MSI Capability Hidden (MSICH):

0: MSI Capability at 90h is included in list.

1: MSI Capability is NOT included in list. Power Management Capability ID's
(D0h) pointer is the next capability.

 177

7.2.32 MSI_CAPID — Message Signaled Interrupts Capability ID
B/D/F/Type: 0/2/0/PCI
Address Offset: 90-91h
Default Value: D005h
Access: RO;
Size: 16 bits

When a device supports MSI it can generate an interrupt request to the processor by
writing a predefined data item (a message) to a predefined memory address. The
reporting of the existence of this capability can be disabled by setting MSICH (CAPL[0]
@ 7Fh). In that case walking this linked list will skip this capability and instead go
directly to the PCI PM capability.

Bit Access Default
Value

Description

15:8 RO D0h Pointer to Next Capability: This contains a pointer to the next item in the
capabilities list which is the Power Management Capability.

7:0 RO 05h Capability ID: Value of 05h identifies this linked list item (capability
structure) as being for MSI registers.

178

7.2.33 MC — Message Control
B/D/F/Type: 0/2/0/PCI
Address Offset: 92-93h
Default Value: 0000h
Access: RO; R/W;
Size: 16 bits

System software can modify bits in this register, but the device is prohibited from
doing so.
If the device writes the same message multiple times, only one of those messages is
guaranteed to be serviced. If all of them must be serviced, the device must not
generate the same message again until the driver services the earlier one.

Bit Access Default
Value

Description

15:8 RO 00h Reserved

7 RO 0b 64-bit Address Capable: Hardwired to 0 to indicate that the function does
not implement the upper 32 bits of the Message Address register and is
incapable of generating a 64-bit memory address. This may need to change
in future implementations when addressable system memory exceeds the
32bit/4GB limit.

6:4 R/W 000b Multiple Message Enable (MME): System software programs this field to
indicate the actual number of messages allocated to this device. This number
will be equal to or less than the number actually requested. The encoding is
the same as for the MMC field below.

3:1 RO 000b Multiple Message Capable (MMC): System software reads this field to
determine the number of messages being requested by this device. Value :
Number of Messages Requested

000: 1 All of the following are reserved in this implementation:

001: 2

010: 4

011: 8

100: 16

101: 32

110: Reserved.

111: Reserved.

0 R/W 0b MSI Enable (MSIEN): Controls the ability of this device to generate MSIs.

 179

7.2.34 MA — Message Address
B/D/F/Type: 0/2/0/PCI
Address Offset: 94-97h
Default Value: 00000000h
Access: R/W; RO;
Size: 32 bits

A read from this register produces undefined results.

Bit Access Default
Value

Description

31:2 R/W 00000000h Message Address: Used by system software to assign an MSI address to
the device. The device handles an MSI by writing the padded contents of
the MD register to this address.

1:0 RO 00b Force Dword Align: Hardwired to 0 so that addresses assigned by
system software are always aligned on a dword address boundary.

7.2.35 MD — Message Data
B/D/F/Type: 0/2/0/PCI
Address Offset: 98-99h
Default Value: 0000h
Access: R/W;
Size: 16 bits

Bit Access Default
Value

Description

15:0 R/W 0000h Message Data: Base message data pattern assigned by system software
and used to handle an MSI from the device. When the device must generate
an interrupt request, it writes a 32-bit value to the memory address specified
in the MA register. The upper 16 bits are always set to 0. The lower 16 bits
are supplied by this register.

180

7.2.36 GDRST — Graphics Device Reset
B/D/F/Type: 0/2/0/PCI
Address Offset: C0h
Default Value: 00h
Access: RO; RW/L;
Size: 8 bits

Bit Access Defau
lt

Value

Description

7:5 RO 0h Reserved ():

4:2 RW/L 00b Graphics Reset Domain (GRDOM): Graphics Reset Domain (GRDOM):

000 – Full Graphics Reset will be performed (Render and Media engines and Display clock
domain resets asserted)

001 – Render Engine only will be reset

011 – Media Engine only will be reset

010 – Reserved (Illegal Programming)

1XX – Reserved (Illegal Programming)

1 RO 0h Reserved ():

0 RW/L 0b Graphics Reset Enable (GR):

Setting this bit asserts graphics-only reset. The clock domains to be reset are determined
by GRDOM. Hardware resets this bit when the reset is complete. Setting this bit without
waiting for it to clear, is undefined behavior.

Once this bit is set to a "1" all MMIO registers associated with the selected engine(s) are
returned to power on default state. Ring buffer pointers are reset, command stream
fetches are dropped and ongoing render pipeline processing is halted, state machines and
State Variables returned to power on default state. If the Display is reset, all display
engines are halted (garbage on screen). VGA memory is not available, Store DWORDs
and interrupts associated with the reset engine(s) are not guaranteed to be completed.
Device #2 IO registers are not available.

Device #2 Config registers continue to be available while Graphics reset is asserted.

 181

7.2.37 GMBUSFREQ — GMBUS frequency binary encoding
B/D/F/Type: 0/2/0/PCI
Address Offset: CC-CDh
Default Value: 0000h
Access: R/W; RO;
Size: 16 bits

Bit Access Default
Value

Description

15:10 RO 000000b Reserved (RSVD)

9:0 R/W 0000000
000b

CMBUS CDCLK frequency (cdfreq)

7.2.38 PMCAPID — Power Management Capabilities ID
B/D/F/Type: 0/2/0/PCI
Address Offset: D0-D1h
Default Value: 0001h
Access: RO;
Size: 16 bits

Bit Access Default
Value

Description

15:8 RO 00h NEXT_PTR: This contains a pointer to the next item in the capabilities list.

7:0 RO 01h CAP_ID: SIG defines this ID is 01h for power management.

182

7.2.39 PMCAP — Power Management Capabilities
B/D/F/Type: 0/2/0/PCI
Address Offset: D2-D3h
Default Value: 0022h
Access: RO;
Size: 16 bits

Bit Access Default
Value

Description

15:11 RO 00h PME Support: This field indicates the power states in which the IGD may
assert PME#. Hardwired to 0 to indicate that the IGD does not assert the
PME# signal.

10 RO 0b D2: The D2 power management state is not supported. This bit is
hardwired to 0.

9 RO 0b D1: Hardwired to 0 to indicate that the D1 power management state is not
supported.

8:6 RO 000b Reserved.

5 RO 1b Device Specific Initialization (DSI): Hardwired to 1 to indicate that
special initialization of the IGD is required before generic class device driver
is to use it.

4 RO 0b Auxiliary Power Source: Hardwired to 0.

3 RO 0b PME Clock: Hardwired to 0 to indicate IGD does not support PME#
generation.

2:0 RO 01-b Version: [DevBW] Hardwired to 010b to indicate that there are 4 bytes of
power management registers implemented and that this device complies with
revision 1.1 of the PCI Power Management Interface Specification.

[DevCL] 010b indicates compliant with revision 1.1 of the PCI Power
Management Speficiation. 011b indicates compliance with revision 1.2 of the
PCI Power Management Specification. The value in this register is
determined by the value of MCHBAR offset C08[15].

 183

7.2.40 PMCS — Power Management Control/Status
B/D/F/Type: 0/2/0/PCI
Address Offset: D4-D5h
Default Value: 0000h
Access: RO; R/W;
Size: 16 bits

Bit Access Default
Value

Description

15 RO 0b PME_Status: This bit is 0 to indicate that IGD does not support PME#
generation from D3 (cold).

14:13 RO 00b Data Scale (Reserved): The IGD does not support data register. This bit
always returns 0 when read, write operations have no effect.

12:9 RO 0h Data_Select (Reserved): The IGD does not support data register. This
bit always returns 0 when read, write operations have no effect.

8 RO 0b PME_En: This bit is 0 to indicate that PME# assertion from D3 (cold) is
disabled.

7:4 RO 00h Reserved Always returns 0 when read, write operations have no effect.

3 RO - [DevBW] Only: Reserved, hardwired to 0.

No_Soft_Reset. Will be set according to the state of MCHBAR C08[14].
When transitioning from D3hot to D0, a 0 indicates the device performs an
internal reset, a 1 indicates that the device does not perform an internal
reset, and Configuration Context is preserved. Note that the state of this bit
has no hardware effect – it is programmable since there is some ambiguity as
to which definition of the bit our hardware behavior better matches.

2 RO 0b Reserved Always returns 0 when read, write operations have no effect.

1:0 R/W 00b PowerState: This field indicates the current power state of the IGD and can
be used to set the IGD into a new power state. If software attempts to write
an unsupported state to this field, write operation must complete normally on
the bus, but the data is discarded and no state change occurs.

 On a transition from D3 to D0 the graphics controller is optionally reset to
initial values. Behavior of the graphics controller in supported states is
detailed in the power management section of the PRM.

 Bits[1:0] Power state

 00 D0 Default

 01 D1 Not Supported

 10 D2 Not Supported

 11 D3

184

7.2.41 SWSMI — Software SMI
B/D/F/Type: 0/2/0/PCI
Address Offset: E0-E1h
Default Value: 0000h
Access: R/W; R/WC;
Size: 16 bits

As long as there is the potential that DVO port legacy drivers exist which expect this
register at this address, Dev#2F0address E0h-E1h must be reserved for this register.

Bit Access Default
Value

Description

15:8 R/W 00h SW scratch bits:

7:1 R/W 00h Software Flag: Used to indicate caller and SMI function desired, as well as
return result.

0 R/W 0b GMCH Software SMI Event: When set this bit will trigger an SMI.
Software must clear this bit to remove the SMI condition.

7.2.42 ASLE — System Display Event Register
B/D/F/Type: 0/2/0/PCI
Address Offset: E4-E7h
Default Value: 00000000h
Access: R/W;
Size: 32 bits

The exact use of these bytes including whether they are addressed as bytes,words, or
as a dword, is not pre-determined but subject to change by driver and System BIOS
teams (acting in unison).

Bit Access Default
Value

Description

31:24 R/W 00h ASLE Scratch Trigger3: When written, this scratch byte triggers an
interrupt when IEF bit 0 is enabled and IMR bit 0 is unmasked. If written as
part of a 16-bit or 32-bit write, only one interrupt is generated in common.

23:16 R/W 00h ASLE Scratch Trigger2: When written, this scratch byte triggers an
interrupt when IEF bit 0 is enabled and IMR bit 0 is unmasked. If written as
part of a 16-bit or 32-bit write, only one interrupt is generated in common.

15:8 R/W 00h ASLE Scratch Trigger 1: When written, this scratch byte triggers an
interrupt when IEF bit 0 is enabled and IMR bit 0 is unmasked. If written as
part of a 16-bit or 32-bit write, only one interrupt is generated in common.

7:0 R/W 00h ASLE Scratch Trigger 0: When written, this scratch byte triggers an
interrupt when IEF bit 0 is enabled and IMR bit 0 is unmasked. If written as
part of a 16-bit or 32-bit write, only one interrupt is generated in common.

 185

7.2.43 SWSCI — Software SCI
B/D/F/Type: 0/2/0/PCI
Address Offset: E8-E9h
Default Value: 0000h
Access: RWO; RW;
Size: 16 bits

This register serves 2 purposes:

1) Support selection of SMI or SCI event source (SMISCISEL - bit15)

2) SCI Event trigger (GSSCIE – bit 0).

To generate a SW SCI event, software (System BIOS/Graphics driver) should program
bit 15 (SMISCISEL) to 1. This is typically programmed once (assuming SMIs are never
triggered). On a "0" to "1" subsequent transition in bit 0 of this register (caused by a
software write operation), GMCH sends a single SCI message (as currently defined in
Grantsdale GMCH EDS) down the DMI link to ICH. ICH will set the DMISCI bit in its
TCO1_STS register and TCOSCI_STS bit in its GPE0 register upon receiving this
message from DMI. The corresponding SCI event handler in BIOS is to be defined as a
_Lxx method, indicating level trigger to the operating system.

Once written as 1, software must write a "0" to this bit to clear it, and all other write
transitions (1->0, 0->0, 1->1) or if bit 15 is "0" will not cause GMCH to send SCI
message to DMI link.

To generate a SW SMI event, software should program bit 15 to 0 and trigger SMI via
writes to SWSMI register (See SWSMI register for programming details).

Bit Access Default
Value

Description

15 RWO 0b SMI or SCI event select (SMISCISEL): SMI or SCI event select
(SMISCISEL)-

0 = SMI (default)

1 = SCI

If selected event source is SMI, SMI trigger and associated
scratch bits accesses are performed via SWSMI register at
offset E0h. If SCI event source is selected, the rest of the bits
in this register provide SCI trigger capability and associated
SW scratch pad area.

14:1 RW 00000000
000000b

Software scratch bits (SCISB): SW scratch bits (read/write bits not used
by hardware) (SCISB)

0 RW 0b GMCH Software SCI Event (GSSCIE): If SCI event is selected (SMISCISEL
= 1), on a “0” to “1” transition of GSSCIE bit, GMCH will send a SCI message
via DMI link to ICH to cause the TCOSCI_STS bit in its GPE0 register to be
set to 1.

Software must write a “0” to clear this bit.

186

7.2.44 LBB — Legacy Backlight Brightness ([DevCL] Only)
B/D/F/Type: 0/2/0/PCI
Address Offset: F4-F7h
Default Value: 00000000h
Access: R/W;
Size: 32 bits

This register can be accessed by either Byte, Word, or Dword PCI config cycles. A
write to this register will cause the Backlight Event (Display B Interrupt) if enabled.

Bit Access Default
Value

Description

31:24 R/W 00h LBPC Scratch Trigger3: When written, this scratch byte triggers an
interrupt when LBEE is enabled in the Pipe B Status register and the Display
B Event is enabled in IER and unmasked in IMR etc. If written as part of a
16-bit or 32-bit write, only one interrupt is generated in common.

23:16 R/W 00h LBPC Scratch Trigger2: When written, this scratch byte triggers an
interrupt when LBEE is enabled in the Pipe B Status register and the Display
B Event is enabled in IER and unmasked in IMR etc. If written as part of a
16-bit or 32-bit write, only one interrupt is generated in common.

15:8 R/W 00h LBPC Scratch Trigger1: When written, this scratch byte triggers an
interrupt when LBEE is enabled in the Pipe B Status register and the Display
B Event is enabled in IER and unmasked in IMR etc. If written as part of a
16-bit or 32-bit write, only one interrupt is generated in common.

7:0 R/W 00h Legacy Backlight Brightness (LBES): The value of zero is the lowest
brightness setting and 255 is the brightest. A write to this register will cause
a flag to be set (LBES) in the PIPEBSTATUS register and cause an interrupt if
Backlight event in the PIPEBSTATUS register and cause an Interrupt if
Backlight Event (LBEE) and Display B Event is enabled by software.

 187

7.2.45 MID2 — Manufacturing ID
B/D/F/Type: 0/2/0/PCI
Address Offset: F8-FBh
Default Value: [Device Specific]
Access: RO;
Size: 32 bits

This is an INTEL RESERVED register and should NOT be disclosed to customers. It is
for test and debug purposes only and will not be included in external documentation.

Bit Access Default
Value

Description

31:24 RO 00h Reserved

23:16 RO -- Manufacturing Stepping ID (MSTEP)

15:8 RO 0Fh Foundry Code (FOUND):

0Fh: Foundry code for Intel

others: Reserved

These bits identify the Foundry; code of 0000 1111b = foundry code for
Intel.

7:3 RO -- Process ID (PROC)

2:0 RO -- Dot Process (DOT)

7.2.46 ASLS — ASL Storage
B/D/F/Type: 0/2/0/PCI
Address Offset: FC-FFh
Default Value: 00000000h
Access: R/W;
Size: 32 bits

This SW scratch register only needs to be read/write accessible. The exact bit register
usage must be worked out in common between System BIOS and driver software, but
storage for switching/indicating up to 6 devices is possible with this amount. For each
device, the ASL control method will require two bits for _DOD (BIOS detectable yes or
no, VGA/NonVGA), one bit for _DGS (enable/disable requested), and two bits for
_DCS (enabled now/disabled now, connected or not).

Bit Access Default
Value

Description

31:0 R/W 00000000h RW according to a software controlled usage to support device switching.

188

7.3 Device 2, Function 1
Register Name Register

Symbol
Register

Start
Register

End
Default
Value

Access

Vendor Identification VID2 0 1 8086h RO;

Device Identification DID2 2 3 [Device
Specific]

RO;

PCI Command PCICMD2 4 5 0000h RO; R/W;

PCI Status PCISTS2 6 7 0090h RO;

Revision Identification RID2 8 8 00h RO;

Class Code CC 9 B 038000h RO;

Cache Line Size CLS C C 00h RO;

Master Latency Timer MLT2 D D 00h RO;

Header Type HDR2 E E 80h RO;

Built In Self Test BIST F F 00h RO;

Memory Mapped Range Address MMADR 10 17 000000000
0000004h

RO; R/W;

Subsystem Vendor Identification SVID2 2C 2D 0000h RO;

Subsystem Identification SID2 2E 2F 0000h RO;

Video BIOS ROM Base Address ROMADR 30 33 00000000h RO;

Capabilities Pointer CAPPOINT 34 34 D0h RO;

Minimum Grant MINGNT 3E 3E 00h RO;

Maximum Latency MAXLAT 3F 3F 00h RO;

Capabilities Pointer (to Mirror of Dev0
CAPID)

MCAPPTR 44 44 48h RO;

Mirror of Dev 0 Capability Identification MCAPID 48 51 [Device
Specific]

RO;

Mirror of Dev0 GMCH Graphics Control MGGC 52 53 0030h RO;

Mirror of Dev0 DEVEN MDEVENdev0
F0

54 57 [Device
Specific]

RO;

Software Scratch Read Write SSRW 58 5B 00000000h RO;

Base of Stolen Memory BSM 5C 5F [Device
Specific]

RO;

Hardware Scratch Read Write HSRW 60 61 0000h RO;

Multi Size Aperture Control MSAC 62 62 02h RO;

 189

7.3.1 VID2 — Vendor Identification
B/D/F/Type: 0/2/0/PCI
Address Offset: 0-1h
Default Value: 8086h
Access: RO;
Size: 16 bits

This register combined with the Device Identification register uniquely identifies any
PCI device.

Bit Access Default
Value

Description

15:0 RO 8086h Vendor Identification Number (VID): PCI standard identification for
Intel.

7.3.2 DID2 — Device Identification
B/D/F/Type: 0/2/0/PCI
Address Offset: 2-3h
Default Value: [Device Specific]
Access: RO;
Size: 16 bits

This register combined with the Vendor Identification register uniquely identifies any
PCI device.

Bit Access Default
Value

Description

15:0 RO -- Device Identification Number (DID): Identifier assigned to the GMCH
core/primary PCI device. Intel Reserved Text: Some bits of this field are
actually determined by fuses, which allows unique Device IDs to be used for
different product SKUs. See the device EDS for details.

190

7.3.3 PCICMD2 — PCI Command
B/D/F/Type: 0/2/0/PCI
Address Offset: 4-5h
Default Value: 0000h
Access: RO; R/W;
Size: 16 bits

This 16-bit register provides basic control over the IGDs ability to respond to PCI
cycles. The PCICMD Register in the IGD disables the IGD PCI compliant master
accesses to main memory.

Bit Access Default
Value

Description

15:11 RO 00h Reserved

10 R/W 0b Interrupt Disable: This bit disables the device from asserting INTx#.

0: Enable the assertion of this device's INTx# signal.

1: Disable the assertion of this device's INTx# signal. DO_INTx messages
will not be sent to DMI.

9 RO 0b Fast Back-to-Back (FB2B): Not Implemented. Hardwired to 0.

8 RO 0b SERR Enable (SERRE): Not Implemented. Hardwired to 0.

7 RO 0b Address/Data Stepping Enable (ADSTEP): Not Implemented.
Hardwired to 0.

6 RO 0b Parity Error Enable (PERRE): Not Implemented. Hardwired to 0. Since
the IGD belongs to the category of devices that does not corrupt programs or
data in system memory or hard drives, the IGD ignores any parity error that
it detects and continues with normal operation.

5 RO 0b Video Palette Snooping (VPS): This bit is hardwired to 0 to disable
snooping.

4 RO 0b Memory Write and Invalidate Enable (MWIE): Hardwired to 0. The
IGD does not support memory write and invalidate commands.

3 RO 0b Special Cycle Enable (SCE): This bit is hardwired to 0. The IGD ignores
Special cycles.

2 R/W 0b Bus Master Enable (BME):

0: Disable IGD bus mastering.

1: Enable the IGD to function as a PCI compliant master.

1 R/W 0b Memory Access Enable (MAE): This bit controls the IGDs response to
memory space accesses.

0: Disable.

1: Enable.

0 R/W 0b I/O Access Enable (IOAE): This bit controls the IGDs response to I/O
space accesses.

0: Disable.

1: Enable.

 191

7.3.4 PCISTS2 — PCI Status
B/D/F/Type: 0/2/0/PCI
Address Offset: 6-7h
Default Value: 0090h
Access: RO;
Size: 16 bits

PCISTS is a 16-bit status register that reports the occurrence of a PCI compliant
master abort and PCI compliant target abort. PCISTS also indicates the DEVSEL#
timing that has been set by the IGD.

Bit Access Default
Value

Description

15 RO 0b Detected Parity Error (DPE): Since the IGD does not detect parity, this
bit is always hardwired to 0.

14 RO 0b Signaled System Error (SSE): The IGD never asserts SERR#, therefore
this bit is hardwired to 0.

13 RO 0b Received Master Abort Status (RMAS): The IGD never gets a Master
Abort, therefore this bit is hardwired to 0.

12 RO 0b Received Target Abort Status (RTAS): The IGD never gets a Target
Abort, therefore this bit is hardwired to 0.

11 RO 0b Signaled Target Abort Status (STAS): Hardwired to 0. The IGD does not
use target abort semantics.

10:9 RO 00b DEVSEL Timing (DEVT): N/A. These bits are hardwired to "00".

8 RO 0b Master Data Parity Error Detected (DPD): Since Parity Error Response
is hardwired to disabled (and the IGD does not do any parity detection), this
bit is hardwired to 0.

7 RO 1b Fast Back-to-Back (FB2B): Hardwired to 1. The IGD accepts fast back-
to-back when the transactions are not to the same agent.

6 RO 0b User Defined Format (UDF): Hardwired to 0.

5 RO 0b 66 MHz PCI Capable (66C): N/A - Hardwired to 0.

4 RO 1b Capability List (CLIST): This bit is set to 1 to indicate that the register at
34h provides an offset into the function痴 PCI Configuration Space containing
a pointer to the location of the first item in the list.

3 RO 0b Interrupt Status: This bit reflects the state of the interrupt in the device.
Only when the Interrupt Disable bit in the command register is a 0 and this
Interrupt Status bit is a 1, will the devices INTx# signal be asserted. Setting
the Interrupt Disable bit to a 1 has no effect on the state of this bit.

2:0 RO 000b Reserved.

192

7.3.5 RID2 — Revision Identification
B/D/F/Type: 0/2/0/PCI
Address Offset: 8h
Default Value: 00h
Access: RO;
Size: 8 bits

Compatible Revision ID (CRID):

An 8 bit hardwired value assigned by the ID Council. Normally, the value assigned as
the CRID will be identical to the SRID value of a previous stepping of the product with
which the new product is deemed "compatible". Note that CRID is not an addressable
PCI register. The CRID value is simply reflected through the RID register when
appropriately selected. Lower 4 bits of the CRID are driven by Fuses. The CRID fuses
are programmed based on the SKU.

Stepping Revision ID (SRID):

 An 8 bit hardwired value assigned by the ID Council. The values assigned as the SRID
of a product's steppings will be selectively incremented based on the degree of change
to that stepping. It is suggested that the first stepping of any given product have an
SRID value = 01h simply to avoid the "reserved register" value of 00h. Note that
SRID is not an addressable PCI register. The SRID value is simply reflected through
the RID register when appropriately selected.

 RID Select Key Value:

 This is hardwired value (69h). If the latched value written to the RID register address
matches this RID Select Key Value, the CRID value be presented for reading from the
RID register.

 RID Definition:

This register contains the revision number of the GMCH Device #0. Following PCI
Reset the SRID value is selected to be read. When a write occurs to this register the
write data is compared to the hardwired RID Select Key Value which is 69h. If the
data matches this key a flag is set that enables the CRID value to be read through this
register.

Note that the flag is a "write once'. Therefore once the CRID is selected to be read,
the only way to again select the SRID is to PCI Reset the component. Also if any
value other than the key (69h) is written to the RID register, the flag is locked such
that the SRID is selected until the component is PCI Reset. Note that the RID register
itself is not directly write-able.

This register contains the revision number for Device #2 Functions 0 and 1.

Bit Access Default
Value

Description

7:0 RO 00h Revision Identification Number (RID): This is an 8-bit value that
indicates the revision identification number for the GMCH.

 193

7.3.6 CC — Class Code
B/D/F/Type: 0/2/0/PCI
Address Offset: 9-Bh
Default Value: 038000h
Access: RO;
Size: 24 bits

This register contains the device programming interface information related to the
Sub-Class Code and Base Class Code definition for the IGD. This register also contains
the Base Class Code and the function sub-class in relation to the Base Class Code.

Bit Access Default
Value

Description

23:16 RO 03h Base Class Code (BCC): This is an 8-bit value that indicates the base
class code for the GMCH. This code has the value 03h, indicating a Display
Controller.

15:8 RO 80h Sub-Class Code (SUBCC): 80h: Non VGA

7:0 RO 00h Programming Interface (PI):

00h: Hardwired as a Display controller.

7.3.7 CLS — Cache Line Size
B/D/F/Type: 0/2/0/PCI
Address Offset: Ch
Default Value: 00h
Access: RO;
Size: 8 bits

The IGD does not support this register as a PCI slave.

Bit Access Default
Value

Description

7:0 RO 00h Cache Line Size (CLS): This field is hardwired to 0s. The IGD as a PCI
compliant master does not use the Memory Write and Invalidate command
and, in general, does not perform operations based on cache line size.

194

7.3.8 MLT2 — Master Latency Timer
B/D/F/Type: 0/2/0/PCI
Address Offset: Dh
Default Value: 00h
Access: RO;
Size: 8 bits

The IGD does not support the programmability of the master latency timer because it
does not perform bursts.

Bit Access Default
Value

Description

7:0 RO 00h Master Latency Timer Count Value: Hardwired to 0s.

7.3.9 HDR2 — Header Type
B/D/F/Type: 0/2/0/PCI
Address Offset: Eh
Default Value: 80h
Access: RO;
Size: 8 bits

This register contains the Header Type of the IGD.

Bit Access Default
Value

Description

7 RO 1b Multi Function Status (MFunc): Indicates if the device is a Multi-
Function Device. The Value of this register is determined by Device #0, offset
54h, DEVEN[4]. If Device #0 DEVEN[4] is set, the Mfunc bit is also set.

6:0 RO 00h Header Code (H): This is a 7-bit value that indicates the Header Code for
the IGD. This code has the value 00h, indicating a type 0 configuration space
format.

7.3.10 BIST — Built In Self Test
B/D/F/Type: 0/2/0/PCI
Address Offset: Fh
Default Value: 00h
Access: RO;
Size: 8 bits

This register is used for control and status of Built In Self Test (BIST).

Bit Access Default
Value

Description

7 RO 0b BIST Supported: BIST is not supported. This bit is hardwired to 0.

6:0 RO 00h Reserved

 195

7.3.11 MMADR — Memory Mapped Range Address
B/D/F/Type: 0/2/1/PCI
Address Offset: 10-17h
Default Value: 0000000000000004h
Access: RO; R/W;
Size: 64 bits

This register requests allocation for the IGD registers and instruction ports. The
allocation is for 512 KB and the base address is defined by bits [35:20].

Bit Access Default
Value

Description

63:36 RO 0000000h Reserved ():

35:20 R/W 0000h Memory Base Address (): Set by the OS, these bits correspond to address
signals [35:20].

19:4 RO 0000h Address Mask (): Hardwired to 0's to indicate 512 KB address range (
aligned to 1M boundary).

3 RO 0b Prefetchable Memory (): Hardwired to 0 to prevent prefetching.

2 RO 1b Memory Type (): 0 : To indicate 32 bit base address

1 : To indicate 64 bit base address

1 RO 0b Reserved ():

0 RO 0b Memory / IO Space (): Hardwired to 0 to indicate memory space.

7.3.12 SVID2 — Subsystem Vendor Identification
B/D/F/Type: 0/2/0/PCI
Address Offset: 2C-2Dh
Default Value: 0000h
Access: RO;
Size: 16 bits

Bit Access Default
Value

Description

15:0 RO 0000h Subsystem Vendor ID: This value is used to identify the vendor of the
subsystem. This register should be programmed by BIOS during boot-up.
Once written, this register becomes Read-Only. This register can only be
cleared by a Reset.

NOTE: This is a RO copy of the Dev2Fxn0 value.

196

7.3.13 SID2 — Subsystem Identification
B/D/F/Type: 0/2/0/PCI
Address Offset: 2E-2Fh
Default Value: 0000h
Access: RO;
Size: 16 bits

Bit Access Default
Value

Description

15:0 RO 0000h Subsystem Identification: This value is used to identify a particular
subsystem. This field should be programmed by BIOS during boot-up. Once
written, this register becomes Read-Only. This register can only be cleared by
a Reset.

NOTE: This is a RO copy of the Dev2Fxn0 value.

7.3.14 ROMADR — Video BIOS ROM Base Address
B/D/F/Type: 0/2/0/PCI
Address Offset: 30-33h
Default Value: 00000000h
Access: RO;
Size: 32 bits

The IGD does not use a separate BIOS ROM, therefore this register is hardwired to 0s.

Bit Access Default
Value

Description

31:18 RO 0000h ROM Base Address: Hardwired to 0s.

17:11 RO 00h Address Mask: Hardwired to 0s to indicate 256 KB address range.

10:1 RO 000h Reserved: Hardwired to 0s.

0 RO 0b ROM BIOS Enable: 0 = ROM not accessible.

7.3.15 CAPPOINT — Capabilities Pointer
B/D/F/Type: 0/2/0/PCI
Address Offset: 34h
Default Value: D0h
Access: RO;
Size: 8 bits

Bit Access Default
Value

Description

7:0 RO D0h Capabilities Pointer Value: This field contains an offset into the function's
PCI Configuration Space for the first item in the New Capabilities Linked List
which the Power Management Capabilities ID registers at address D0h.

 197

7.3.16 MINGNT — Minimum Grant
B/D/F/Type: 0/2/0/PCI
Address Offset: 3Eh
Default Value: 00h
Access: RO;
Size: 8 bits

Bit Access Default
Value

Description

7:0 RO 00h Minimum Grant Value: The IGD does not burst as a PCI compliant
master.

7.3.17 MAXLAT — Maximum Latency
B/D/F/Type: 0/2/0/PCI
Address Offset: 3Fh
Default Value: 00h
Access: RO;
Size: 8 bits

Bit Access Default
Value

Description

7:0 RO 00h Maximum Latency Value: The IGD has no specific requirements for how
often it needs to access the PCI bus.

7.3.18 MCAPPTR — Capabilities Pointer (to Mirror of Dev0
CAPID)
B/D/F/Type: 0/2/0/PCI
Address Offset: 44h
Default Value: 48h
Access: RO;
Size: 8 bits

Bit Access Default
Value

Description

7:0 RO 48h Capabilities Pointer Value: In this case the first capability is the product-
specific Capability Identifier (CAPID0).

198

7.3.19 MCAPID — Mirror of Dev 0 Capability Identification.
B/D/F/Type: 0/2/0/PCI
Address Offset: 48-51h
Default Value: [Device Specific]
Access: RO;
Size: 80 bits

This is an INTEL RESERVED register and should NOT be disclosed to customers. It is
for test and debug purposes only and will not be included in external documentation.
Control of bits in this register are only required for customer visible SKU
differentiation.

Bit Access Default
Value

Description

79:0 RO -- Device Specific Bit Definitions – see the device EDS for details.

 199

7.3.20 MGGC — Mirror of Dev0 GMCH Graphics Control
B/D/F/Type: 0/2/0/PCI
Address Offset: 52-53h
Default Value: 0030h
Access: RO;
Size: 16 bits

Bit Access Default
Value

Description

15:7 RO 000000000b Reserved

6:4 RO 011b Graphics Mode Select (GMS): This field is used to select the amount
of Main Memory that is pre-allocated to support the Internal Graphics
device in VGA (non-linear) and Native (linear) modes. The BIOS ensures
that memory is pre-allocated only when Internal graphics is enabled.
Stolen Memory Base is located between (TOLUD - SMSize) to TOUD.

000 = No memory pre-allocated. Device 2 (IGD) does not claim VGA
cycles (Mem and IO), and the Sub-Class Code field within
Device 2 function 0. Class Code register is 80.

001 = DVMT (UMA) mode, 1 MB memory pre-allocated for frame buffer.

010 = DVMT (UMA) mode, 4 MB memory pre-allocated for frame buffer.

011 = DVMT (UMA) mode, 8 MB memory pre-allocated for frame buffer.

100 = DVMT (UMA) mode, 16 MB memory pre-allocated for frame
buffer.

101 = DVMT (UMA) mode, 32 MB memory pre-allocated for frame
buffer.

110 = DVMT (UMA) mode, 48 MB memory pre-allocated for frame
buffer.

111 = DVMT (UMA) mode, 64 MB memory pre-allocated for frame
buffer.

Note: This register is locked and becomes Read Only when the D_LCK bit
in the SMRAM register is set. Hardware does not clear or set any of
these bits automatically based on IGD being disabled/enabled.

3:2 RO 00b Reserved

1 RO 0b IGD VGA Disable (IVD):

1 = Disable. Device 2 (IGD) does not claim VGA cycles (Mem and IO),
and the Sub-Class Code field within Device 2 function 0 Class Code
register is 80.

0 = Enable (Default). Device 2 (IGD) claims VGA memory and IO
cycles, the Sub-Class Code within Device 2 Class Code register is 00.

0 RO 0b Reserved

7.3.21 MDEVENdev0F0 — Mirror of Dev0 DEVEN
B/D/F/Type: 0/2/0/PCI

200

Address Offset: 54-57h
Default Value: [Device Specific]
Access: RO;
Size: 32 bits

Allows for enabling/disabling of PCI devices and functions that are within the MCH.

Bit Access Default
Value

Description

31:0 RO -- Device Specific Bit Definitions. See Device 0 documentation in the EDS.

7.3.22 SSRW — Software Scratch Read Write
B/D/F/Type: 0/2/0/PCI
Address Offset: 58-5Bh
Default Value: 00000000h
Access: RO;
Size: 32 bits

Bit Access Default
Value

Description

31:0 RO 00000000h Reserved

7.3.23 BSM — Base of Stolen Memory
B/D/F/Type: 0/2/0/PCI
Address Offset: 5C-5Fh
Default Value: [Device Specific]
Access: RO;
Size: 32 bits

Graphics Stolen Memory and TSEG are within DRAM space defined under TOLUD.
From the top of low used DRAM, GMCH claims 1 to 64MBs of DRAM for internal
graphics if enabled.

Bit Access Default
Value

Description

31:20 RO -- Base of Stolen Memory (BSM): This register contains bits 31 to 20 of the
base address of stolen DRAM memory. The host interface determines the
base of graphics stolen memory by subtracting the graphics stolen memory
size from TOLUD. See Device 0 TOLUD in the EDS for more explanation.

19:0 RO 00000h Reserved

7.3.24 HSRW — Hardware Scratch Read Write
B/D/F/Type: 0/2/0/PCI
Address Offset: 60-61h
Default Value: 0000h

 201

Access: RO;
Size: 16 bits

Bit Access Default
Value

Description

15:0 RO 0000h Reserved

7.3.25 MSAC — Multi Size Aperture Control
B/D/F/Type: 0/2/0/PCI
Address Offset: 62h
Default Value: 02h
Access: RO;
Size: 8 bits

This register determines the size of the graphics memory aperture in function. By
default the aperture size is 256 MB. Only the system BIOS will write this register
based on pre-boot address allocation efforts, but the graphics may read this register
to determine the correct aperture size. System BIOS needs to save this value on boot
so that it can reset it correctly during S3 resume.

Bit Access Default
Value

Description

7:4 RO 0h Scratch Bits Only: Have no physical effect on hardware.

3 RO 0b Reserved

2:1 RO 01b Aperture Size (LHSAS):

11: bits [28:27] of GMADR register are made Read only and forced to zero,
allowing only 512MB of GMADR

01: bit [28] of GMADR is made R/W and bit [27] of GMADR is forced to zero
allowing 256MB of GMADR

00: bits [28:27] of GMADR register are made R/W allowing 128MB of GMADR

10: Illegal programming.

0 RO 0b Reserved

202

8 Memory Interface Registers

8.1 Introduction

This chapter describes the memory-mapped registers associated with the Memory
Interface, including brief descriptions of their use. The functions performed by these
registers are discussed fully in the Memory Interface Functions, Memory Interface
Instructions, and Programming Environment chapters.

The registers detailed in this chapter are used across the Gen4 family of products.
However, slight changes may be present in some registers (i.e., for features added or
removed), or some registers may be removed entirely. These changes are clearly
marked within this chapter.

8.2 Virtual Memory Control

Gen4 products differ somewhat in the types of virtual memory they support and how
they support it. The following table describes the structures to support Global virtual
memory (shared between all GFX processes) and per-process virtual memory.

Virtual Memory Structure All

Global (GGTT) Anywhere

Per-Process (PPGTT) Single-level, anywhere

8.2.1 Global Virtual Memory

Global Virtual Memory is the default target memory if a PPGTT is not enabled (or for
products that don’t support PPGTT). If a PPGTT is also present, the method to choose
which is targeted by memory and rendering operations varies by product. See the
sections on Per-Process Virtual Memory for more information. High priority graphics
clients such as Display and Cursor always access global virtual memory.

 203

8.2.1.1 PGTBL_CTL—Page Table Control Register

PGTBL_CTL—Page Table Control Register
Register Type: MMIO
Address Offset: 2020h
Project: All
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

The PGTBL_CTL register is used to enable or disable the mapping of graphics memory using the Global Graphics
Translation Table (GGTT), set the size, and to set the base (physical) address of the GGTT.

 Software must use the following steps to modify the Global GTT directly or update the Global GTT base:

1. Flush the Gfx Pipeline

2. Flush the Chipset write buffers using the flush (GFX_FLSH_CTL) register

3. Update Global GTT using physical address/Update the Global GTT base register

4. Flush Chipset write buffers using the flush (GFX_FLSH_CTL) register
The GGTT must be 4KByte aligned. The GGTT must reside in un-snooped Main Memory and must be contiguous.
The GGTT must be completely contained within physical memory. A memory access that requires fetching a
GGTT entry that is not in physical memory will have UNDEFINED results.

[All Devices]: Software can use the GTTADR space to update entries in the GGTT. This allows the device to
“snoop” writes to GTTADR and invalidate internal Translation Look-aside Buffers (TLBs) as required.

This register is not reset by a graphics reset. It will maintain its value unless a full chipset reset is performed.

Bit Description

31:12 Page Table Base Address

Project: All

Default Value: 0h

Address: GraphicsAddress[31:12]

Surface Type: PageTableEntry

This field specifies Bits 31:12 of the starting address of the global GTT.

This address is a physical offset into system memory. This address must be in physical memory,
i.e., it must be below the top of memory. Furthermore, the GGTT must be entirely contained
within physical memory, i.e., the GTT Size added to the Page Table Base Address must be below
top of memory.

This field is only valid when the Page Table Enable field is specified as ENABLED.

Programming Notes Project

The base address for the GTT is expected to be size aligned in memory. Eg for
512KB size of the GTT bits 18:12 of the address need to be zero

DevCL

11:8 Reserved Project: All Format: MBZ

204

PGTBL_CTL—Page Table Control Register
7:4 Physical Start Address Extension

Project: All

Default Value: 0h

Address: GraphicsAddress[35:32]

This field specifies Bits 35:32 of the starting address of the GGTT.

3:1 Size of the Global GTT

Project: All

Default Value: 0h

Format: U3

Value Name Description Project

000 512KB 512KB All

001 256KB 256KB All

010 128KB 128KB All

011 1MB 1MB Reserved

100 2MB 2MB Reserved

101 1.5MB 1.5MB Reserved

11X Reserved Reserved All

0 Page Table Enable

Project: All

Security: None

Default Value: 0h

Format: Enable

This field determines whether GM mappings are enabled. If disabled, GM mapping does not occur
except for requests from the CPU and VGA streams. Any accesses to GM (other than CPU read,
and VGA streams) while this bit is clear generates a Page Table HW Error (see Page Table Error
in Programming Interface).

Note: The source of the Page Table HW Error is available only via the Debug PGTBL_ER register.

Value Name Description Project

0h Disable GM mapping does not occur except
for requests from the CPU and VGA
streams.

All

1h Enable ENABLED All

 205

8.2.1.2 PGTBL_ER—Page Table Error Register (Debug)

PGTBL_ER—Page Table Error Register
Register Type: MMIO
Address Offset: 2024h
Project: All
Default Value: 0000 0000h
Access: RO
Size (in bits): 32

This register applies when the Per-Process Virtual Address Space and Run List Enable is clear else see below

The PGTBL_ER Debug register stores information indicating the source of an error associated with GM mapping via the GTT.
Note that this is a READ-ONLY register and cannot be modified by software.

Error Types:

• XX _INVALID_GTT_PTE: Translated Page Table Entry (PTE) is marked as not valid. Implemented by all
streams. Detected at translation time for either Global or Per-Process GTT.

• XX _INVALID_PTE_DATA: The PTE was marked valid, though the memory space or page mapped is not
considered legal (i.e., Address points to PAM, SMM, over TOM and other restricted spaces in Main Memory).
Implemented by Host Only.

• CS_INVALID_GTT: Set if a ring buffer is active and the Page table is not enabled.

This register identifies the TLB that detected the error. After an error, Normal priority data streams Commands,
Render Cache and Mapping Cache stop execution. GTT errors on Host reads are not recorded. If there is an
error on a read access a read request is forwarded to a memory address and data obtained from memory is
returned to the CPU. Errors on Host writes are recorded and the write is completed with byte enables off.

Each Source records the first error and ignores subsequent errors.

Bit Description

31:27 Reserved Project: All Format: MBZ

26 MT_INVALID_GTT_PTE Project: All Format: Flag

Invalid Sampler Cache GTT entry

25 Reserved Project: All Format: MBZ

24 LC_INVALID_GTT_PTE

Project: All

Default Value: 0h

Format: Flag

Invalid Render Cache GTT entry

Errata Description Project

GEN4016 This bit will never be set. All

23 ISC_INVALID_GTT_PTE Project: All Format: Flag

Invalid Instruction/State Cache GTT entry

206

PGTBL_ER—Page Table Error Register
22 ROC_INVALID_GTT_PTE Project: All Format: Flag

Reserved since there is no ROC

21 CS_VertexData_INVALID_GTT_PTE Project: All Format: Flag

Invalid GTT Entry during Vertex Fetch

20 CS_Command_INVALID_GTT_PTE Project: All Format: Flag

Invalid GTT Entry during Command Fetch

19 CS_INVALID_GTT Project: All Format: Flag

18 CRSR _INVALID_GTT_PTE Project: All Format: Flag

Invalid GTT Entry during Cursor Fetch

17 Reserved Project: All Format: MBZ

16 OVRL_INVALID_GTT_PTE

Project: All

Default Value: 0h

Format: Flag

Invalid GTT Entry during Overlay Fetch

Errata Description Project

BWT010 Invalid GTT Entry during Overlay Fetch is ignored. DevBW-A, DevBW-B

15:13 Reserved Project: All Format: MBZ

12 DISPC_INVALID_GTT_PTE Project: All Format: Flag

Invalid GTT Entry during Display C Fetch

11:9 Reserved Project: All Format: MBZ

8 DISPB_INVALID_GTT_PTE Project: All Format: Flag

Invalid GTT Entry during Display B Fetch

7:5 Reserved Project: All Format: MBZ

4 DISPA_INVALID_GTT_PTE Project: All Format: Flag

Invalid GTT Entry during Display A Fetch

3:2 Reserved Project: All Format: MBZ

1 HOST_ INVALID_PTE_DATA Project: All Format: Flag

Valid PTE references illegal memory, such as PAM, SMM or TOM

 207

PGTBL_ER—Page Table Error Register
0 HOST_INVALID_GTT_PTE

Project: All

Default Value: 0h

Format: Flag

Invalid GTT Entry during Fetch on behalf of the Host

Errata Description Project

BWT015 This bit will never be set. DevBW

8.2.1.3 Graphics Translation Table (GTT) Range (GTTADR)
Address Offset: GTTADR in CPU Physical Space
Access: Aligned DWord Read/Write

The GTTADR memory BAR defined in graphics device config space is an alias for the
Global GTT.

Programming Notes: It is recommended that the driver map all graphics memory
pages in the GGTT to some physical page, if only a dummy page.

208

8.2.1.4 GTT Page Table Entries (PTEs)

Page Table Entry: 1 DWord per 4KB Graphics Memory page.

31 12 11:8 7:4 3 2 1 0

Physical Page Address
31:12

Reserved:MBZ Physical
Page

Address
35:32

Reserved Mapping Type Valid

Bits Description

31: 12 Physical Page Address 31:12: If the Valid bit is set, This field provides the page number of the
physical memory page backing the corresponding Graphics Memory page.

11:8 Reserved: MBZ

7:4 Physical Start Address Extension: This field specified Bits 35:32 of the page table entry. This field
must be zero for 32 bit addresses.

3 Reserved: MBZ

2:1 Mapping Type: If the Valid bit is set, this field specifies the type of physical memory backing this
Graphics Memory page, as defined below:

0: Physical address targets Main Memory (not snooped). Physical address is a main memory page
number (including pages in stolen memory).

1-2: Reserved

3: Physical address targets cacheable Main Memory (aka System Memory) (causes snoop on
processor bus). Must not be targeted by the processor through graphics memory range. Accesses
via the Instruction stream are permitted (no error generated), yet treated as unsnooped Main
Memory. This removes restrictions regarding Instruction stream overfetches into dissimilar graphics
memory regions.

0 Valid PTE: This field indicates whether the mapping of the corresponding Graphics Memory page is
valid.

1: Valid

0: Invalid. An access (other than a CPU Read) through an invalid PTE will result in Page Table
Error (Invalid PTE).

 209

8.2.2 Single-Level (Flat) Per-Process Virtual Memory

8.2.2.1 PGTBL_CTL2— Per Process Page Table Control Register

PGTBL_CTL2— Per Process Page Table Control Register
Register Type: MMIO
Address Offset: 20C4h
Project: All
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

The PGTBL_CTL2 register is used to enable the secondary mapping of graphics memory addresses by defining
the starting point of the per-process Graphics Translation Table (PPGTT).

Software must assure that a pipeline flush occurs subsequent to updating any PPGTT entries or changing the
value of the Page Table Base Address and prior to any new access in the PPGTT aperture.

Once a PPGTT is established, software can update entries of the PPGTT using physical writes. The PPGTT does
not have an access window corresponding to GTTADR that will trigger snoops and/or flushes when possibly pre-
fetched entries are modified.

The PPGTT can be up to 1MB in size as programmed below. Each 4B entry in the PPGTT corresponds to a 4KB
page of memory mapped through the PPGTT aperture.

The PPGTT must be 4KByte-aligned. The PPGTT must reside in unsnooped Main Memory and must be
contiguously size aligned. This register is saved and restored per context. If the valid bit for this register is not
set, the hardware uses the Global GTT.

Bit Description

31:12 Page Table Base Address

Project: All

Default Value: 0h

Address: GraphicsAddress[31:12]

Surface Type: PageTableEntry

This field specifies Bits 31:12 of the starting address of the GTT. Bit 1 of the address is MBZ.

This address is a physical offset into system memory.

This field is only valid when the Page Table Enable field is specified as ENABLED.

Format = “Effective Local Memory Address” Bits 31:2

11:8 Reserved Project: All Format: MBZ

7:4 Physical Start Address Extension

Project: All

Default Value: 0h

Address: GraphicsAddress[35:2]

This field specified Bits 35:32 of the page table entry. This field must be zero for 32 bit addresses.

210

PGTBL_CTL2— Per Process Page Table Control Register
3:1 Size of the PPGTT

Project: All

Default Value: 0h

Format: U3

Value Name Description Project

000 64KB 64KB All

001 128KB 128KB All

010 256KB 256KB All

011 512KB 512KB All

100 1MB 1MB All

101-111 Reserved Reserved All

0 Page Table Enable

Project: All

Default Value: 0h

Format: Enable

This field determines whether GM mappings are enabled. If enabled, the Page Table Base Address
specifies the starting address of the PGTT. If disabled, GM mapping will proceed using the global
GTT.

Value Name Description Project

0h Disable GM mapping will proceed using the global GTT. All

1h Enable The Page Table Base Address specifies the starting
address of the PGTT

All

 211

8.2.2.2 PGTBL_STR2—Page Table Steer Register (Per Process)

PGTBL_STR2—Page Table Steer Register (Per Process)
Register Type: MMIO
Address Offset: 20C8h
Project: All
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

The PGTBL_STR2 register is used to map the graphics functions to either the per-process GTT or the global GTT.

This register is saved and restored with context. If the valid bit for the per-process GTT is not set, the hardware
uses the Global GTT for all functions and ignores the contents of this register.

Bit Description

31:22 Reserved Project: All Format: MBZ

21:16 Write enable bits Project: All Format: Mask[5:0]

This bit needs to be set in order to change the value for the corresponding location of register
bits 5:0

15:6 Reserved Project: All Format: MBZ

5 Location of the render batch buffer

Project: All

Default Value: 0h

Format: U1

Location of the render batch buffer

Value Name Description Project

0h Batch buffer accesses are translated through the
global GTT

All

1h Batch buffer accesses are translated through the
per-process GTT (PGTT).

All

4 Location of indirect state buffers includes states and instructions

Project: All

Default Value: 0h

Format: U1

Location of indirect state buffers includes states and instructions

Value Name Description Project

0h Indirect state buffer accesses are translated through
the global GTT

All

1h Indirect state buffer accesses are translated through
the per-process GTT (PGTT).

All

212

PGTBL_STR2—Page Table Steer Register (Per Process)
3 Location of Vertex buffer

Project: All

Default Value: 0h

Format: U1

Location of Vertex buffer

Value Name Description Project

0h Vertex buffer accesses are translated through the global
GTT

All

1h Vertex buffer accesses are translated through the per-
process GTT (PGTT).

All

2 Reserved Project: All Format: MBZ

1 Location of functions using the Sampler cache

Project: All

Default Value: 0h

Format: U1

Location of functions using the Sampler cache

Value Name Description Project

0h Sampler surface accesses are translated through the
global GTT

All

1h Sampler surface accesses are translated through the
per-process GTT (PGTT).

All

0 Location of functions using the render cache

Project: All

Default Value: 0h

Format: U1

Includes Render targets, constants, Scratch Space access and direct reads/writes from EUs to
memory.

Value Name Description Project

0h Render surface accesses are translated through the
global GTT

All

1h Render surface accesses are translated through the
per-process GTT (PGTT).

All

 213

8.2.3 TLB Read Interface

It may be necessary for one or more pages belonging to a context to be unmapped
from its PPGTT in order to map other pages when resolving a page fault. Pages that
get unmapped cannot be one of the set that the HW is currently using. SW should
read all of the TLB entry virtual addresses in order to report these virtual page
addresses to the OS/Scheduler such that it can avoid swapping these pages out in
order to bring in a page to resolve a fault.

8.2.3.1 TLB_RD_EXT — TLB Read Extent

TLB_RD_EXT -- TLB Read Extent
Register Type: MMIO
Address Offset: 251Ch
Project: All
Default Value: 0000 0780h
Access: RO
Size (in bits): 32

This RO register can be read by software to determine how many TLB Read entries follow. SW must read the
entire set to make sure all in-use pages are reported during the servicing of a page fault.

Bit Description

31:2 TLB Read Extent

Project: All

Default Value: 01E0h ???

Format: U30

This RO register is hardwired to a count of the total number of TLB read registers SW can read
this register to determine the total range of potentially valid DWs in the TLB read range.

1:0 Reserved Project: All Format: MBZ

Unused registers in the range below, from B000h to B000h + TLB Read Extent, should
be treated as reserved and read as 0. This allows SW to read the entire range
contiguously and maintain proper behavior when reading unused, reserved registers.

214

8.2.3.2 Instruction/State Cache (ISC)

Instruction/State Cache (ISC)
Register Type: MMIO
Address Offset: B000h
Project: All
Default Value: TBD
Access: RO
Size (in bits): 16x32

DWord Bit Description

0..15 31:12 TLB Page Address

Project: All

Address: GraphicsVirtualAddress[31:12]

If the Valid bit is set, this field contains the page address of the TLB entry.

11:2 Reserved Project: All Format: MBZ

1 Global GTT
Address

Project: All Format: MBZ

Hardwired to 0.

0 Valid Project: All Format: Enable

If this bit is set, this entry contains a valid TLB entry. If clear, this TLB entry is
effectively “empty” and may be disregarded.

 215

8.2.3.3 Vertex Fetch (VF)

Vertex Fetch (VF)
Register Type: MMIO
Address Offset: B100h
Project: All
Default Value: TBD
Access: RO
Size (in bits): 19x32

DWord Bit Description

0..18 31:12 TLB Page Address

Project: All

Address: GraphicsVirtualAddress[31:12]

If the Valid bit is set, this field contains the page address of the TLB entry.

11:2 Reserved Project: All Format: MBZ

1 Global GTT
Address

Project: All Format: MBZ

Hardwired to 0.

0 Valid Project: All Format: Enable

If this bit is set, this entry contains a valid TLB entry. If clear, this TLB entry is
effectively “empty” and may be disregarded.

216

8.2.3.4 Command Streamer (CS)

Command Streamer (CS)
Register Type: MMIO
Address Offset: B200h
Project: All
Default Value: TBD
Access: RO
Size (in bits): 6x32

DWord Bit Description

0..5 31:12 TLB Page Address

Project: All

Address: GraphicsVirtualAddress[31:12]

If the Valid bit is set, this field contains the page address of the TLB entry.

11:2 Reserved Project: All Format: MBZ

1 Global GTT
Address

Project: All Format: Flag

If set, this virtual address is a global GTT address, and is guaranteed to remain
mapped. Only TLB entries with this bit clear need to be communicated as being part
of a minimum set that must remain mapped during the servicing of a page fault. Only
the Command Streamer (CS) may contain global GTT entries in its TLB; all the other
clients will hardwire this bit to 0 in all of their TLB read registers.

0 Valid Project: All Format: Enable

If this bit is set, this entry contains a valid TLB entry. If clear, this TLB entry is
effectively “empty” and may be disregarded.

 217

8.2.3.5 Texture Cache (MT)

Texture Cache (MT)
Register Type: MMIO
Address Offset: B300h
Project: All
Default Value: ???
Access: RO
Size (in bits): 32x32

DWord Bit Description

0..31 31:12 TLB Page Address

Project: All

Address: GraphicsVirtualAddress[31:12]

If the Valid bit is set, this field contains the page address of the TLB entry.

11:2 Reserved Project: All Format: MBZ

1 Global GTT
Address

Project: All Format: MBZ

Hardwired to 0.

0 Valid Project: All Format: Enable

If this bit is set, this entry contains a valid TLB entry. If clear, this TLB entry is
effectively “empty” and may be disregarded.

218

8.2.3.6 Render Cache (RC)

Render Cache (RC)
Register Type: MMIO
Address Offset: B400h
Project: All
Default Value: ???
Access: RO
Size (in bits): 224x32
224 DWords

DWord Bit Description

0.223 31:12 TLB Page Address

Project: All

Address: GraphicsVirtualAddress[31:12]

If the Valid bit is set, this field contains the page address of the TLB entry.

11:2 Reserved Project: All Format: MBZ

1 Global GTT
Address

Project: All Format: MBZ

Hardwired to 0.

0 Valid Project: All Format: Enable

If this bit is set, this entry contains a valid TLB entry. If clear, this TLB entry is
effectively “empty” and may be disregarded.

 219

8.3 GFX_MODE – Graphics Mode Register

GFX_MODE – Graphics Mode Register
Register Type: MMIO
Address Offset: 2520h
Project: All
Default Value: 00000000h
Access: R/W
Size (in bits): 32

This register contains a control bit for the new run list and 2-level PPGTT functions. This register is not
saved/restored with context. This register is not reset with single-engine GFX reset; it is only reset by a global
graphics reset (all engines including display).

Bit Description

31:16 Mask Bits

Format: Mask[15:0]

Must be set to modify corresponding bit in Bits 15:0. (All implemented bits)

15 Reserved Project: All Format: MBZ

14 Reserved Project: All Format: MBZ

13 Reserved Project: All Format: MBZ

12:0 Reserved Project: All Format: MBZ

220

8.4 EXCC—Execute Condition Code Register

EXCC—Execute Condition Code Register
Register Type: MMIO
Address Offset: 2028h
Project: All
Default Value: 00000000h
Access: R/W,RO
Size (in bits): 32

This register contains user defined and hardware generated conditions that are used by MI_WAIT_FOR_EVENT
commands. An MI_WAIT_FOR_EVENT instruction excludes the executing ring from arbitration if the selected
event evaluates to a “1”, while instruction is discarded if the condition evaluates to a “0”. Once excluded a ring is
enabled into arbitration when the selected condition evaluates to a “0”.

Bit Description

31:22 Reserved Project: All Format: MBZ

21 Mask Bits

Format: Mask[5]

This bit serves as a write enable for bit 5. If this register is written with this bit clear the
corresponding bit in the field 5 will not be modified.

Reading these bits always returns 0s.

20:16 Mask Bits

Format: Mask[4:0]

These bits serves as a write enable for bits 4:0. If this register is written with any of these bits clear
the corresponding bit in the field 4:0 will not be modified.

Reading these bits always returns 0s.

15:12 Reserved Project: All Format: MBZ

11 Pending Indirect State Dirty Bit Project: All Format: U32

This field keeps track of whether or not an indirect state pointer command has been parsed in the
current context. Clears either on a context save or explicitly through a flush command

10:8 Pending Indirect State Counter

This field keeps track of the maximum number of indirect state pointers pending in the system.
When the register is saved/restored, it saves either a value of 1 or 0.

This field is Read-Only

7:6 Reserved Project: All Format: MBZ

 221

EXCC—Execute Condition Code Register
5 Indirect State Pointer Force Restore

Determines whether to use pending indirect state counter to restore data to memory, or restore
indirect data

Value Name Description Project

0h Use Pending Use the pending indirect state counter to restore data
to memory

All

1h Don’t Use
Pending

Don’t use pending indirect state counter to restore data
to memory. Always restore indirect data

All

4:0 User Defined Condition Codes

The software may signal a Stream Semaphore by setting the Mask bit and Signal Bit together to
match the bit field specified in a WAIT_FOR_EVENT (Semaphore).

222

8.5 RINGBUF—Ring Buffer Registers

RING_BUFFER_TAIL
Register Type: MMIO
Address Offset: 2030h
Project: All
Default Value: 00000000h
Access: R/W
Size (in bits): 32

These registers are used to define and operate the “ring buffer” mechanism which can be used to pass
instructions to the command interface. The buffer itself is located in a physical memory region. The ring buffer
is defined by a 4 Dword register set that includes starting address, length, head offset, tail offset, and control
information. Refer to the Programming Interface chapter for a detailed description of the parameters specified
in this ring buffer register set, restrictions on the placement of ring buffer memory, arbitration rules, and in how
the ring buffer can be used to pass instructions.

Ring Buffer Tail Offsets must be properly programmed before ring is enabled. A Ring Buffer can be
enabled when empty.

Bit Description

31:21 Reserved Project: All Format: MBZ

20:3 Tail Offset

Project: All

Format: U18 QWord Offset

This field is written by software to specify where the valid instructions placed in the ring buffer
end. The value written points to the QWord past the last valid QWord of instructions. In other
words, it can be defined as the next QWord that software will write instructions into. Software
must write subsequent instructions to QWords following the Tail Offset, possibly wrapping around
to the top of the buffer (i.e., software can’t skip around within the buffer). Note that all DWords
prior to the location indicated by the Tail Offset must contain valid instruction data – which may
require instruction padding by software. See Head Offset for more information.

2:0 Reserved Project: All Format: MBZ

 223

RING_BUFFER_HEAD
Register Type: MMIO
Address Offset: 2034h
Project: All
Default Value: 00000000h
Access: R/W
Size (in bits): 32

These registers are used to define and operate the “ring buffer” mechanism which can be used to pass
instructions to the command interface. The buffer itself is located in a physical memory region. The ring buffer
is defined by a 4 Dword register set that includes starting address, length, head offset, tail offset, and control
information. Refer to the Programming Interface chapter for a detailed description of the parameters specified
in this ring buffer register set, restrictions on the placement of ring buffer memory, arbitration rules, and in how
the ring buffer can be used to pass instructions.

Ring Buffer Head Offsets must be properly programmed before ring is enabled. A Ring Buffer can be
enabled when empty.

Bit Description

31:21 Wrap Count

Project: All

Default Value: 0h

Format: U11 count of ring buffer wraps

This field is incremented by 1 whenever the Head Offset wraps from the end of the buffer back to
the start (i.e., whenever it wraps back to 0). Appending this field to the Head Offset field
effectively creates a virtual 4GB Head “Pointer” which can be used as a tag associated with
instructions placed in a ring buffer. The Wrap Count itself will wrap to 0 upon overflow.

 The Wrap Count will get cleared as a result of writes of the Starting Address field.

20:2 Head Offset

Project: All

Format: U19 DWord Offset

This field is written by software to specify where the valid instructions placed in the ring buffer
end. The value written points to the QWord past the last valid QWord of instructions. In other
words, it can be defined as the next QWord that software will write instructions into. Software
must write subsequent instructions to QWords following the Tail Offset, possibly wrapping around
to the top of the buffer (i.e., software can’t skip around within the buffer). Note that all DWords
prior to the location indicated by the Tail Offset must contain valid instruction data – which may
require instruction padding by software. See Head Offset for more information.

Programming Notes Project

A RB can be enabled empty or containing some number of valid instructions. All

Head Offset is cleared as a result of writes of the Starting Address field. All

1 Reserved Project: All Format: MBZ

0 Wait for Condition Indicator Project: All Format: Enabled

This is a read only value used to indicate whether or not the command streamer is currently
waiting for a conditional code to be cleared from 0x2028

224

RING_BUFFER_START
Register Type: MMIO

Address Offset: 2038h

Project: All

Default Value: 00000000h

Access: R/W

Size (in bits): 32

These registers are used to define and operate the “ring buffer” mechanism which can be used to pass
instructions to the command interface. The buffer itself is located in a physical memory region. The ring buffer
is defined by a 4 Dword register set that includes starting address, length, head offset, tail offset, and control
information. Refer to the Programming Interface chapter for a detailed description of the parameters specified
in this ring buffer register set, restrictions on the placement of ring buffer memory, arbitration rules, and in how
the ring buffer can be used to pass instructions.

Bit Description

31:12 Starting Address

Project: All

Address: GraphicsAddress[31:12]

Surface Type: RingBuffer

This field specifies Bits 31:12 of the 4KB-aligned starting Graphics Address of the ring buffer.
Address bits 31 down to 29 must be zero.

Writing this register also causes the Head Offset to be reset to zero, and the Wrap Count to be
reset to zero.

All ring buffer pages must map to Main Memory (uncached) pages.

Ring Buffer addresses are always translated through the global GTT. Per-process
address space can only be used via a batch buffer with the appropriate Memory
Space Select.

11:0 Reserved Project: All Format: MBZ

 225

RING_BUFFER_CONTROL
Register Type: MMIO
Address Offset: 203Ch
Project: All
Default Value: 00000000h
Access: R/W
Size (in bits): 32

These registers are used to define and operate the “ring buffer” mechanism which can be used to pass
instructions to the command interface. The buffer itself is located in a physical memory region. The ring buffer
is defined by a 4 Dword register set that includes starting address, length, head offset, tail offset, and control
information. Refer to the Programming Interface chapter for a detailed description of the parameters specified
in this ring buffer register set, restrictions on the placement of ring buffer memory, arbitration rules, and in how
the ring buffer can be used to pass instructions.

Bit Description

31:0 Buffer Length

Project: All

Format: U9-1 Count of 4 KB pages

Range 0..1FFh

This field is written by SW to specify the length of the ring buffer in 4 KB Pages.

Range = [0 = 1 page = 4 KB, 1FFh = 512 pages = 2 MB]

11 RB Wait Project: All Format: Boolean

Indicates that this ring has executed a WAIT_FOR_EVENT instruction and is currently waiting.
Software can write a “1” to clear this bit, write of “0” has no effect. When the RB is waiting for an
event and this bit is cleared, the wait will be terminated and the RB will be returned to
arbitration.

10:3 Reserved Project: All Format: MBZ

2:1 Automatic Report Head Pointer

Project: All

This field is written by software to control the automatic “reporting” (write) of this ring buffer’s
“Head Pointer” register (register DWord 1) to the corresponding location within the Hardware
Status Page. Automatic reporting can either be disabled or enabled at 4KB, 64KB or 128KB
boundaries within the ring buffer.

Value Name Description Project

0h MI_AUTOREPORT_OFF Automatic reporting disabled All

1h MI_AUTOREPORT_64KB

MI_AUTOREPORT_4KB

Report every 16 pages (64KB)

When the Per-Process Virtual Address
Space and Run List Enable bit is set,
the ring buffer reports every 4KB

All

2h Reserved Reserved All

3h MI_AUTOREPORT_128KB
Report every 32 pages (128KB)

All

226

RING_BUFFER_CONTROL
0 Ring Buffer Enable Project: All Format: Enable

This field is used to enable or disable this ring buffer. It can be enabled or disabled regardless of
whether there are valid instructions pending.

8.5.1 UHPTR — Pending Head Pointer Register

UHPTR — Pending Head Pointer Register
Register Type: MMIO
Address Offset: 2134h
Project: All
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

Bit Description

31:3 Head Pointer Address

Project: All

Default Value: 0h

Address: GraphicsAddress[31:3]

This register represents the GFX address offset where execution should continue in the ring buffer
following execution of an MI_ARB_CHECK command.

2:1 Reserved Project: All Format: MBZ

0 Head Pointer Valid

Project: All

Default Value: 0h

Format: U1

This bit is set by the software to request a pre-emption. It is reset by hardware after the head
pointer in this register is read. The hardware uses the head pointer programmed in this register at
the time the reset is generated.

Value Name Description Project

0h No valid updated head pointer register, resume
execution at the current location in the ring buffer

All

1h Indicates that there is an updated head pointer
programmed in this register

All

 227

8.6 Debug Registers Control

8.6.1 HW_MEMRD—Memory Read Sync Register (Debug)

HW_MEMRD—Memory Read Sync Register (Debug)
Register Type: MMIO
Address Offset: 2060h
Project: All
Default Value: 0000 0000h
Access: RO
Size (in bits): 32

This register is used to flush the data from the Graphics dedicated chipset buffers into memory. A read to the
register is generated post-flush completion of the graphics pipeline by the software. Read to this register is
expected to be used in debug mode. The hardware will always return 0 for this register.

Bit Description

31:0 Reserved Project: All Format: MBZ

228

8.6.2 IPEIR—Instruction Parser Error Identification Register
(Debug)

IPEIR—Instruction Parser Error Identification Register (Debug)
Register Type: MMIO
Address Offset: 2064h
Project: All
Default Value: 0000 0000h
Access: RO
Size (in bits): 32

The IPEIR register identifies the general location of instructions that generate a Invalid Instruction Errors for the
Renderer IP. (Note: The header (DWord 0) of the offending instruction will be stored in the IPEHR register).

Bit Description

31:4 Reserved Project: All Format: MBZ

3 Batch Buffer Error Project: All Format: Flag

If this bit is set the faulting instruction was executed from a batch buffer. If this bit is clear the
faulting instruction was executed directly from a ring buffer.

2:0 Ring ID

Project: All

Default Value: 0h

Format: U3

This field indicates which ring buffer is associated with the faulting

Value Name Description Project

0 Ring Buffer 0 Ring Buffer 0 All

1-7 Reserved Reserved All

 229

8.6.3 IPEHR—Instruction Parser Error Header Register (Debug)

IPEHR—Instruction Parser Error Header Register (Debug)
Register Type: MMIO
Address Offset: 2068h
Project: All
Default Value: 0000 0000h
Access: RO
Size (in bits): 32

The IPEHR register is used to identify the instructions that generate Invalid Instruction Errors. This register is
loaded with the header (DWord 0) of each instruction that is executed. It will therefore hold the header of an
instruction that generates an Invalid Instruction Error.

Bit Description

31:0 Header Project: All Format: U32

This field will contain the header (DWord 0) of a Renderer IP instruction that generates an Invalid
Instruction Error.

8.6.4 INSTDONE—Instruction Stream Interface Done Register
(Debug)

INSTDONE—Instruction Stream Interface Done Register (Debug)
Register Type: MMIO
Address Offset: 206Ch
Project: All
Default Value: FFE7 FFFEh
Access: RO
Size (in bits): 32
This read-only register reports “Done” signals associated with the various internal engines and instruction
transport mechanisms. In general, when the rendering engines of the device are idle, all bits will be set. If, for
some reason, the device hangs, this register can be used to determine which functions are stalled with pending
operations.

Bit Description

31 Row 0, EU 0 Done

30 Row 0, EU 1 Done

29 Row 0, EU 2 Done

28 Row 0, EU 3 Done

27 Row 1, EU 0 Done

26 Row 1, EU 1 Done

230

INSTDONE—Instruction Stream Interface Done Register (Debug)
25 Row 1, EU 2 Done

24 Row 1, EU 3 Done

23 Strips and Fans (SF) Done

22 Setup (SE) Done

21 Windower (WM) Done

20 Reserved. Read as “0”

19 Reserved. Read as “0”

18 Dispatcher (DIP) Done

17 Projection and LOD (PL) Done

16 Dependent Address Generator (DG) Done

15 Quad Cache Controller (QC) Done

14 Texture Fetch (FT) Done

13 Texture Decompressor (DM) Done

12 Sampler Cache (SC) Done

11 Filter (FL) Done

10 Bypass FIFO (BY) Done

9 Pixel Shader (PS) Done

8 Color Calculator (CC) Done

7 Map Filter Done: FL_done

6 Map L2 Cache Idle.

5 Message Arbiter Row 0 (EU output and EU input for Row 0) Done

4 Message Arbiter Row 1 (EU output and EU input for Row 1) Done

3 Instruction Cache Row 0 Done

2 Instruction Cache Row 1 Done

1 Command Parser (CP) Done

0 Ring 0 Enable

 231

8.6.5 INSTPS—Instruction Parser State Register (Debug)

INSTPS—Instruction Parser State Register (Debug)
Register Type: MMIO
Address Offset: 2070h
Project: All
Default Value: UUUU UUUUh
Access: RO
Size (in bits): 32

This register contains the state code of the Instruction Parser in the CSI. Decoding the contents of this register
will indicate what the Instruction Parser is currently doing.

Bit Description

31:0 Instruction
Parser State

Project: All Format: Implementation Specific

Fields in this register identify the active Ring Buffer or Batch Buffer, and Batch buffer type.

8.6.6 ACTHD — Active Head Pointer Register (Debug)

ACTHD — Active Head Pointer Register (Debug)
Register Type: MMIO
Address Offset: 2074h
Project: All
Default Value: 0000 0000h
Access: RO
Size (in bits): 32

This register contains the Head “Pointer” (DWord Graphics Memory Address) of the currently-active ring buffer.

Bit Description

31:2 Head Pointer

Project: All

Default Value: 0h

Address: GraphicsAddress[31:2]

DWord Graphics Address corresponding to the Head Pointer of the currently-active ring or batch
buffer.

1:0 Reserved Project: All Format: MBZ

232

8.6.7 DMA_FADD_P — Primary DMA Engine Fetch Address
(Debug)

DMA_FADD_P — Primary DMA Engine Fetch Address (Debug)
Register Type: MMIO
Address Offset: 2078h
Project: All
Default Value: 0000 0000h
Access: RO
Size (in bits): 32

This register contains the QWord offset from the start address of the instruction being fetched by the Primary
DMA engine.

Bit Description

31:3 Current DMA QWord
Offset

Project: All Format: U30

This field contains the offset of the QWord (from the start of the ring buffer or batch
buffer) that the “Primary” instruction parser DMA engine is currently accessing
(fetching). Note that this offset will typically lead the Head offset (as instructions must
be fetched before execution).

2:0 Reserved Project: All Format: MBZ

8.6.8 INSTDONE_1 — Additional Instruction Stream Interface
Done (Debug)

INSTDONE_1 — Additional Instruction Stream Interface Done (Debug)
Register Type: MMIO
Address Offset: 207Ch
Project: All

Default Value: 0000 0000h
Access: RO
Size (in bits): 32

Bit Description

31:20 Reserved

19 gw_cs_done_cr

18 svsm_cs_done_cr

17 svdw_cs_done_cr

16 svdr_cs_done_cr

 233

INSTDONE_1 — Additional Instruction Stream Interface Done (Debug)
15 svrw_cs_done_cr

14 svrr_cs_done_cr

13 svts_cs_done_cr

12 masm_cs_done_cr

11 masf_cs_done_cr

10 mawb_cs_done_cr

9 em1_cs_done_cr

8 em0_cs_done_cr

7 uc1_cs_done

6 uc0_cs_done

5 urb_cs_done

4 isc_cs_done

3 cl_cs_done

2 gs_cs_done

1 vs0_cs_done

0 vf_cs_done

234

8.6.9 GFX_FLSH_CNTL — Graphics Flush Control

GFX_FLSH_CNTL — Graphics Flush Control
Register Type: MMIO
Address Offset: 2170h
Project: All
Default Value: 0000 0000 0000 0000h
Access: Write Only
Size (in bits): 64

The flush initiated by this register is required whenever the GTT base address is changed or GTT entries are
updated directly in memory by the host. See the description of the PGTBL_CTL_0 register for the sequence of
operations required to update the GTT base or directly update GTT entries without using GTTADR.

Bit Description

63:0 Project: All Format: U64

A CPU Dword/Qword write to this space flushes the GWB of all writes. The data associated with the
write to this register is discarded.

A command stream write to this space has no effect and the write data is discarded; the cycle is
completed.

It is UNDEFINED to read from this register.

 235

8.7 NOPID — NOP Identification Register

NOPID — NOP Identification Register
Register Type: MMIO
Address Offset: 2094h
Project: All
Default Value: 00000000h
Access: RO
Size (in bits): 32

The NOPID register contains the Noop Identification value specified by the last MI_NOOP instruction that
enabled this register to be updated.

Bit Description

31:22 Reserved Project: All Format: MBZ

21:0 Identification Number

Project: All

Security: None

Default Value: 0h DefaultVaueDesc

This field contains the 22-bit Noop Identification value specified by the last MI_NOOP instruction
that enabled this field to be updated

Programming Notes Project

This register is expected to be used for debug purposes to keep track of the execution
of the command buffer

All

236

8.8 Interrupt Control Registers

The Interrupt Control Registers described below all share the same bit definition. The
bit definition is as follows:

Table 8-1. Bit Definition for Interrupt Control Registers

Bit Description

31:26 Reserved. These bits may be assigned to interrupts on future products/steppings.

25 Reserved.

24 Reserved.

23 Reserved.

22 Reserved.

21 Reserved.

20 Reserved.

19 Reserved.

18 PIPE_CONTROL Notify Interrupt: The Pipe Control packet (Fences) specified in 3D pipeline
document may optionally generate an Interrupt. The Store QW associated with a fence is completed
ahead of the MSI. This ordering is not guaranteed if PCI Line Intr# mechanism is used.

17 Display Port Interrupt: This status bit is set when a port hotplug/unplug event has been detected.
The specific trigger of this interrupt can be read in the port hotplug status register.

16 Reserved. MBZ

15 Render Command Parser Master Error: When this status bit is set, it indicates that the hardware
has detected an error. It is set by the device upon an error condition and cleared by a CPU write of a
one to the appropriate bit contained in the Error ID register followed by a write of a one to this bit in
the IIR. Further information on the source of the error comes from the “Error Status Register” which
along with the “Error Mask Register” determine which error conditions will cause the error status bit to
be set and the interrupt to occur.

Page Table Error: Indicates a page table error.

Instruction Parser Error: The Renderer Instruction Parser encounters an error while parsing an
instruction.

14 GMCH Thermal Sensor Event: This bit is set on “thermal events” detected by the Thermal Sensor
logic.

13 Reserved. MBZ

12 Sync Status: This bit is toggled when the Instruction Parser completes a flush with the sync enable
bit active in the INSTPM register. The toggle event will happen after all the graphics engines are
flushed. The HW Status DWord write resulting from this toggle will cause the CPU’s view of graphics
memory to be coherent as well (flush and invalidate the render cache).

11 Display Plane A Flip Pending: This status bit is set on a Display Plane A pending flip (i.e., resulting
from the execution of an MI_DISPLAY_BUFFER_INFO instruction). This is only used when the
MI_DISPLAY_BUFFER _INFO instruction is being used. See that instruction for additional information.

10 Display Plane B Flip Pending: Flip Pending status for Display B. See Display Plane A Flip
Pending

 237

Bit Description

9 Overlay Plane Flip Pending: This status bit is set to reflect a pending overlay plane flip (i.e.,
resulting from the execution of an MI_OVERLAY_FLIP instruction). This is only affected by the use of
MI_OVERLAY_FLIP instructions and not through the manual method.

8 Display Plane C Flip Pending:

Flip Pending status for Display Plane C. See Display Plane A Flip Pending

7 Display Pipe A VBLANK: This status bit is set at leading edge of Display Pipe A VBLANK, though
delayed to allow all internal hardware VBLANK events to occur before the interrupt is generated (to
avoid race conditions). These events include the update of the display and overlay status bits and
loading of the overlay registers.

[DevCL] If trunk clock gating is enabled, this interrupt should never be used.

6 Display Pipe A Event: This status bit is set by the device on the active-going edge of the OR of
unmasked Display Pipe A event bits. The specific cause of the event can be determined by reading
the display status register.

Note that the display line compare status can also be observed through the instruction interface.

5 Display Pipe B VBLANK: This status bit is set at leading edge of Display B VBLANK. This is actually
delayed to allow all VBLANK events to occur before the interrupt is generated. These events include
the update of the overlay registers.

[DevCL] If trunk clock gating is enabled, this interrupt should never be used.

4 Display Pipe B Event: This status bit is set by the device on the active-going edge of the OR of
unmasked Display Pipe A event bits. The specific cause of the event can be determined by reading
the display status register.

Note that the display line compare status can also be observed through the instruction interface.

3 Reserved. MBZ

2 Debug Interrupt: When this bit is set, the EU is indicating that it has encountered an interrupt in the
kernel program.

Refer to the Gen4 Debug PRM for more details

1 Render Command Parser User Interrupt: This status bit is set when an MI_USER_INTERRUPT
instruction is executed on the Render Command Parser. Note that instruction execution is not halted
and proceeds normally. A mechanism such as an MI_STORE_DATA instruction is required to associate
a particular meaning to a user interrupt.

0 ASLE Interrupt: This status bit is set when ASLE (PCI Configuration register Device 2, Function 0,
E4) is written by the System BIOS (any byte or all). The meaning of the interrupt is determined by
the contents written.

238

The following table specifies the settings of interrupt bits stored upon a “Hardware
Status Write” due to ISR changes:

Bit Interrupt Bit ISR bit Reporting via Hardware Status
Write (when unmasked via HWSTAM)

25 Reserved. MBZ

24 Reserved. MBZ

23 Reserved. MBZ

22 Reserved. MBZ

21 Reserved. MBZ

20 Reserved. MBZ

19 Reserved. MBZ

18 PIPE_CONTROL packet - Notify Enable 0

17 Display Port Interrupt Set when event occurs, cleared when event
cleared

16 Reserved. MBZ 0

15 Master Error Set when error occurs, cleared when error
cleared

14 GMCH Thermal Sensor Event Should always be disabled for Hardware
Status Write reporting.

13 Reserved. MBZ 0

12 Sync Status Toggled every SyncFlush Event

11 Display Plane A Flip Pending Set when flip is pending

10 Display Plane B Flip Pending Set when flip is pending

9 Overlay Flip Pending Set when flip is pending

8 Display Plane C Flip Pending Set when Flip requested, cleared when flip
occurs.

7 Display Pipe A VBlank 0

6 Display Pipe A Event Set when event occurs, cleared when event
cleared

5 Display Pipe B VBlank 0

4 Display Pipe B Event Set when event occurs, cleared when event
cleared

3 Reserved. MBZ 0

2 Debug Interrupt Set when debug interrupt occurs.

1 User Interrupt 0

0 ASLE Interrupt 0

 239

8.8.1 HWS_PGA — Hardware Status Page Address Register

HWS_PGA — Hardware Status Page Address Register
Register Type: MMIO
Address Offset: 2080h
Project: All
Default Value: 1FFFF000h
Access: R/W
Size (in bits): 32

This register is used to program the 4 KB-aligned System Memory address of the Hardware Status Page used to
report hardware status into (typically cacheable) System Memory.

Bit Description

31:12 Address

Project: All

Security: None

Address: PhysicalAddress[31:12]

Surface Type: U32

Range 0..2^32-1

This field is used by SW to specify Bits 31:12 of the 4 KB-aligned System Memory address of the
4 KB page known as the “Hardware Status Page”. The system address space is expected to be
cacheable in memory.

12:8 Reserved Project: All Format: MBZ

7:4 Physical Start Address Extension

Project: All

Security: None

Address: PhysicalAddress[35:32]

This field specifies Bits 35:32 of the starting physical address.

3:0 Reserved Project: All Format: MBZ

240

The following table defines the layout of the Hardware Status Page:

DWord
Offset

Description

0 Interrupt Status Register Storage: The content of the ISR register is written to this location
whenever an “unmasked” bit of the ISR (as determined by the HWSTAM register) changes state.

3:1 Reserved. Must not be used.

4 Ring Head Pointer Storage: The contents of the Ring Buffer Head Pointer register (register
DWord 1) are written to this location either as result of an MI_REPORT_HEAD instruction or as the
result of an “automatic report” (see RINGBUF registers).

Fh:5h Reserved. Must not be used.

10h-1Bh Reserved. Must not be used.

C1 h-1Eh Reserved. Must not beused .
1Fh Reserved. Must not be used.

20h-3FFh These locations can be used for general purpose via the MI_STORE_DATA_INDEX or
MI_STORE_DATA_IMM instructions.

8.8.2 PWRCTXA — Power Context Register Address ([DevCL]
Only)

PWRCTXA — Power Context Register Address
Register Type: MMIO
Address Offset: 2088h
Project: DevCL
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

The PWRCTXA register has the address of the Global GTT translated memory location which stores the hardware
context if the voltage is removed from the render clock well. The format of the hardware “power” context is
specified in the Memory Data Formats.

Bit Description

31:12 Power Context Address

Project: DevCL

Default Value: 0h

Address: GraphicsAddress[31:12]

This field is used by SW to specify Bits 31:12 of the 4 KB-aligned Graphics Memory address. The
graphics memory address is translated using the Global GTT.

11:5 Reserved Project: DevCL Format: MBZ

 241

PWRCTXA — Power Context Register Address
4:1 Power Context Size

Project: DevCL

Default Value: 0h

Format: U4

Field specifies the size of the power context allocated by the software. The size is in
terms of 4K pages

This field is ReadOnly

Value Name Description Project

001-111 Reserved Reserved All

000 4KB DevCL

0 Power Context Enable

Project: DevCL

Default Value: 0h

Format: Enable

This field determines whether the power context is enabled. If enabled, the Power Context
Address specifies the starting address of the hardware context in memory. If the power context
is not enabled, the hardware will disable reducing the render voltage.

Value Name Description Project

0h Disable DISABLED DevCL

1h Enable ENABLED DevCL

8.8.3 HWSTAM — Hardware Status Mask Register

Hardware Status Mask Register
Register Type: MMIO
Address Offset: 2098h
Project: All
Default Value: FFFE DFFFh
Access: R/W
Size (in bits): 32

The HWSTAM register has the same format as the Interrupt Control Registers. The bits in this register are
“mask” bits that prevent the corresponding bits in the Interrupt Status Register from generating a “Hardware
Status Write” (PCI write cycle). Any unmasked interrupt bit (HWSTAM bit set to 0) will allow the Interrupt
Status Register to be written to the ISR location (within the memory page specified by the Hardware Status
Page Address Register) when that Interrupt Status Register bit changes state.

Bit Description

31:13 Reserved Project: All Format: MB1

242

Hardware Status Mask Register
12 Sync Status

Project: All

Security: None

Default Value: 1h Masked by default

When this mask bit is clear, a change in the corresponding ISR bit will trigger a DWord write of the
ISR contents to the “ISR location” in the Hardware Status Page. When a bit in this mask is set, a
write will not be triggered by a change in the corresponding ISR bit.

Programming Notes Project

This bit is toggled when the Instruction Parser completes a flush with the sync enable
bit active in the INSTPM register. The toggle event will happen after all the graphics
engines are flushed. The HW Status DWord write resulting from this toggle will cause
the CPU’s view of graphics memory to be coherent as well (flush and invalidate the
render cache).

All

11 Display Plane A Flip Pending

Project: All

Security: None

Default Value: 1h Masked by default

When this mask bit is clear, a change in the corresponding ISR bit will trigger a DWord write of
the ISR contents to the “ISR location” in the Hardware Status Page. When a bit in this mask is
set, a write will not be triggered by a change in the corresponding ISR bit.

Programming Notes Project

This status bit is set on a Display Plane A pending flip (i.e., resulting from the
execution of an MI_DISPLAY_BUFFER_INFO instruction). This is only used when the
MI_DISPLAY_BUFFER _INFO instruction is being used. See that instruction for
additional information.

All

10 Display Plane B Flip Pending

Project: All

Security: None

Default Value: 1h Masked by default

When this mask bit is clear, a change in the corresponding ISR bit will trigger a DWord write of
the ISR contents to the “ISR location” in the Hardware Status Page. When a bit in this mask is
set, a write will not be triggered by a change in the corresponding ISR bit.

Programming Notes Project

This status bit is set on a Display Plane B pending flip (i.e., resulting from the
execution of an MI_DISPLAY_BUFFER_INFO instruction). This is only used when the
MI_DISPLAY_BUFFER _INFO instruction is being used. See that instruction for
additional information.

All

 243

Hardware Status Mask Register
9 Overlay Plane Flip Pending

Project: All

Security: None

Default Value: 1h Masked by default

When this mask bit is clear, a change in the corresponding ISR bit will trigger a DWord write of
the ISR contents to the “ISR location” in the Hardware Status Page. When a bit in this mask is
set, a write will not be triggered by a change in the corresponding ISR bit.

Programming Notes Project

This status bit is set to reflect a pending overlay plane flip (i.e., resulting from the
execution of an MI_OVERLAY_FLIP instruction). This is only affected by the use of
MI_OVERLAY_FLIP instructions and not through the manual method.

All

8 Display Plane C Flip Pending

Project: All

Security: None

Default Value: 1h Masked by default

When this mask bit is clear, a change in the corresponding ISR bit will trigger a DWord write of
the ISR contents to the “ISR location” in the Hardware Status Page. When a bit in this mask is
set, a write will not be triggered by a change in the corresponding ISR bit.

Programming Notes Project

Flip Pending status for Display Plane C. See Display Plane A Flip
Pending

All

7:0 Reserved Project: All Format: MB1

244

8.8.4 IER — Interrupt Enable Register

IER — Interrupt Enable Register
Register Type: MMIO
Address Offset: 20A0h
Project: All
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

The IER register contains an interrupt enable bit for each interrupt bit in the IIR register. A disabled interrupt
will still appear in the Interrupt Identity Register to allow polling of interrupt sources.

Bit Description

31:0 Interrupt Enable Bits

Project: All

Default Value: 0h

Format: Array of Enables refer to Table 8-1 in Interrupt Control Register
section for bit definitions

The bits in this register enable a CPU interrupt to be generated whenever the corresponding bit in
the Interrupt Identity Register becomes set.

Value Name Description Project

0h Disable DISABLED All

1h Enable ENABLED All

 245

8.8.5 IIR — Interrupt Identity Register

IIR — Interrupt Identity Register
Register Type: MMIO
Address Offset: 20A4h
Project: All
Default Value: 0000 0000h
Access: R/WC
Size (in bits): 32

The IIR register contains the interrupt bits that are “unmasked” by the IMR and thus can generate CPU bits (if
enabled via the IER). When a CPU interrupt is generated, this should be the first register to be interrogated to
determine the source of the interrupt. Writing a ‘1’ into the appropriate bit position within this register
clears interrupts.

Programming Note: Prior to clearing a Display Pipe-sourced interrupt (e.g., Display Pipe A VBLANK) in the IIR,
the corresponding interrupt (source) status in the PIPEASTAT register (e.g., Pipe A VBLANK Interrupt Status bit
of PIPEASTAT) must first be cleared. Note that clearing these status bits requires writing a ‘1’ to the
appropriate bit position.

Bit Description

31:0 Interrupt Identity Bits

Project: All

Default Value: 0h

Format: Array of unmasked Persistent interrupt bits (refer to Table 9-1 in
Interrupt Control Register section for bit
definitions)

This field holds the persistent values of the interrupt bits from the ISR which are “unmasked” by
the IMR. If enabled by the IER, bits set in this register will generate a CPU interrupt. Bits set in
this register will remain set (persist) until the interrupt condition is “cleared” via software by
writing a ‘1’ to the appropriate bit(s).

Value Name Description Project

1h Interrupt
Condition
Detected

Interrupt Condition Detected (may or may not
have actually generated a CPU interrupt)

All

Programming Notes

Bit 12 of the Interrupt Identity register is used for the sync status flush. The hardware toggles
the bit at the completion of the flush. It is not expected that this bit will be used to generate
interrupt. In case an interrupt is desired, software needs to toggle the bit back to 0 (by
programming another sync flush) before clearing the IIR.

246

8.8.6 IMR—Interrupt Mask Register

IMR—Interrupt Mask Register
Register Type: MMIO
Address Offset: 20A8h
Project: All
Default Value: FFFE DFFFh
Access: R/W
Size (in bits): 32

The IMR register is used by software to control which Interrupt Status Register bits are “masked” or
“unmasked”. “Unmasked” bits will be reported in the IIR, possibly triggering a CPU interrupt, and will persist in
the IIR until cleared by software. “Masked” bits will not be reported in the IIR and therefore cannot generate
CPU interrupts.

Bit Description

31:0 Interrupt Mask Bits

Project: All

Default Value: FFFE DFFFh

Format: Array of interrupt
mask bits

Refer to Table 9-1 in Interrupt Control Register
section for bit definitions

This field contains a bit mask which selects which interrupt bits (from the ISR) are reported in the
IIR.

Value Name Description Project

0h Not Masked Will be reported in the IIR All

1h Masked Will not be reported in the IIR All

 247

8.8.7 ISR — Interrupt Status Register

ISR — Interrupt Status Register
Register Type: MMIO
Address Offset: 20ACh
Project: All
Default Value: 0000 0000h
Access: RO
Size (in bits): 32

The ISR register contains the non-persistent value of all interrupt status bits. The IMR register selects which of
these interrupt conditions are reported in the persistent IIR (i.e., set bits must be cleared by software). Bits in
the IER are used to selectively enable IIR bits to cause CPU interrupts.

Programming Note: The User Interrupt bit in this register is a short pulse therefore software should not
expect to use this register to sample these conditions.

Bit Description

31:0 Interrupt Status Bits

Project: All

Default Value: 0h

Format: Array of interrupt
status bits

Refer to Table 9-1 in Interrupt Control Register
section for bit definitions

This field contains the non-persistent values of all interrupt status bits.

Value Name Description Project

1h Interrupt
Condition Exists

Interrupt Condition currently exists All

11BMemory Interface Registers

248

8.9 Hardware-Detected Error Bit Definitions (for EIR,
EMR, ESR)

This section defines the Hardware-Detected Error bit definitions and ordering that is
common to the EIR, EMR and ESR registers. The EMR selects which error conditions
(bits) in the ESR are reported in the EIR. Any bit set in the EIR will cause the Master
Error bit in the ISR to be set. EIR bits will remain set until the appropriate bit(s) in
the EIR is cleared by writing the appropriate EIR bits with ‘1’.

The following table describes the Hardware-Detected Error bits:

Table 8-2. Hardware-Detected Error Bits

Bit Description

15:10 Reserved: MBZ

9 Reserved.

8 Reserved.

7:6 Reserved: MBZ

5 Reserved.

4 Page Table Error: This bit is set when a Graphics Memory Mapping Error is detected. The cause of
the error is indicated (to some extent) in the PGTBL_ER register.

Note: This error indications cannot be cleared except by reset (i.e., it is a fatal error).

1 = Page table error

3 Reserved.

2 Reserved.

1 Main Memory Refresh Timer Error: This bit is set when the device detects a timeout related to
refreshing Main Memory.

[DevBW]: Reserved.

0 Instruction Error: This bit is set when the Renderer Instruction Parser detects an error while parsing
an instruction.

Instruction errors include:

1) Client ID value (Bits 31:29 of the Header) is not supported (only MI, 2D and 3D are supported).

2) Defeatured MI Instruction Opcodes:

The (debug) INSTPS register may provide more information as to the cause of the error. The (debug)
IPEHR register contains the header (DWord 0) of the faulting instruction. The (debug) IPEIR,
BBP_PTR, ABB_PTR, ABB_END and DMA_FADD registers provide an indication of where the faulting
instruction is located and which instruction stream mechanism caused the instruction to be executed.

1: Instruction Error detected

Programming Note:

The bit for the error mask of this register is reserved. The mask should be set to a value of 1.

 249

8.9.1 EIR — Error Identity Register

EIR — Error Identity Register
Register Type: MMIO
Address Offset: 20B0h
Project: All
Default Value: 0000 0000h
Access: R/WC
Size (in bits): 32

The EIR register contains the persistent values of Hardware-Detected Error Condition bits. Any bit set in this
register will cause the Master Error bit in the ISR to be set. The EIR register is also used by software to clear
detected errors (by writing a ‘1’ to the appropriate bit(s)).

Bit Description

31:16 Reserved Project: All Format: MBZ

15:0 Error Identity Bits

Project: All

Default Value: 0h

Format: Array of Error
condition bits

See Table 9-5. Hardware-Detected Error Bits

This register contains the persistent values of ESR error status bits that are unmasked via the
EMR register. (See Table 8-2. Hardware-Detected Error Bits). The logical OR of all (defined) bits
in this register is reported in the Master Error bit of the Interrupt Status Register. In order to
clear an error condition, software must first clear the error by writing a ‘1’ to the appropriate
bit(s) in this field. If required, software should then proceed to clear the Master Error bit of the
IIR.

Value Name Description Project

1h Error occurred Error occurred All

Programming Notes Project

Writing a ‘1’ to a set bit will cause that error condition to be cleared. However, the
Page Table Error bit (Bit 4) cannot be cleared except by reset (i.e., it is a fatal
error).

All

250

8.9.2 EMR—Error Mask Register

EMR—Error Mask Register
Register Type: MMIO
Address Offset: 20B4h
Project: All
Default Value: FFFF FFDFh
Access: R/W
Size (in bits): 32

The EMR register is used by software to control which Error Status Register bits are “masked” or “unmasked”.
“Unmasked” bits will be reported in the EIR, thus setting the Master Error ISR bit and possibly triggering a CPU
interrupt, and will persist in the EIR until cleared by software. “Masked” bits will not be reported in the EIR and
therefore cannot generate Master Error conditions or CPU interrupts.

Bit Description

31:16 Reserved Project: All Format: MBZ

15:0 Error Mask Bits

Project: All

Default Value: FFFF FFDFh

Format: Array of error
condition mask bits

See Table 9-5. Hardware-Detected Error Bits

This register contains a bit mask that selects which error condition bits (from the ESR) are
reported in the EIR.

Value Name Description Project

0h Not Masked Will be reported in the EIR All

1h Masked Will not be reported in the EIR All

 251

8.9.3 ESR—Error Status Register

ESR—Error Status Register
Register Type: MMIO
Address Offset: 20B8h
Project: All
Default Value: 0000 0000h
Access: RO
Size (in bits): 32

The ESR register contains the current values of all Hardware-Detected Error condition bits (these are all by
definition “persistent”). The EMR register selects which of these error conditions are reported in the persistent
EIR (i.e., set bits must be cleared by software) and thereby causing a Master Error interrupt condition to be
reported in the ISR.

Bit Description

31:16 Reserved Project: All Format: MBZ

15:0 Error Status Bits

Project: All

Default Value: 0h

Format: Array of error
condition bits

See Table 9-5. Hardware-Detected Error Bits

This register contains the non-persistent values of all hardware-detected error condition bits.

Value Name Description Project

1h Error Condition
Detected

Error Condition detected All

252

8.10 Register Definitions for Context Save

8.10.1 INSTPM—Instruction Parser Mode Register

INSTPM—Instruction Parser Mode Register
Register Type: MMIO
Address Offset: 20C0h
Project: All
Default Value: 00000000h
Access: R/W
Size (in bits): 32

The INSTPM register is used to control the operation of the Instruction Parser. Certain classes of instructions
can be disabled (ignored) – often useful for detecting performance bottlenecks. Also, “Synchronizing Flush”
operations can be initiated – useful for ensuring the completion (vs. only parsing) of rendering instructions.

Programming Notes:

• If an instruction type is disabled, the parser will read those instructions but not process them.

• Error checking will be performed even if the instruction is ignored.

• All Reserved bits are implemented.

• This Register is saved and restored as part of Context.

Bit Description

31:16 Mask Bits

Format: Mask[15:0]

Masks: These bits serve as write enables for bits 15:0. If this register is written with any of these
bits clear the corresponding bit in the field 15:0 will not be modified. Reading these bits always
returns 0s.

15:11 Reserved Project: All Format: MBZ

10 Reserved. MBZ

9:8 Reserved Project: All Format: MBZ

7 CONSTANT_BUFFER Surface
Address Offset Enable

Project: All Format: U1

When this bit is set, the CONSTANT_BUFFER Buffer Starting Address is used as a
SurfaceStateOffset. I.e., it serves as an offset from the Surface State Base Address. Accesses
will be subject to Surface State bounds checking.

When this bit is not set, the CONSTANT_BUFFER Buffer Starting Address is based on bit 6 of the
address. No bounds checking will be performed during access.

Format = Enable

 253

INSTPM—Instruction Parser Mode Register
6 CONSTANT_BUFFER Address

Offset Disable
Project: All Format: U1

When this bit is clear, the CONSTANT_BUFFER Buffer Starting Address is used as a
GeneralStateOffset. I.e., it serves as an offset from the General State Base Address. Accesses
will be subject to General State bounds checking.

When this bit is set, the CONSTANT_BUFFER Buffer Starting Address is used as a true
GraphicsAddress (not an offset). No bounds checking will be performed during access.

Format = Disable

5 Sync Flush Enable Project: All Format: U1

This field is used to request a Sync Flush operation. The device will automatically clear this bit
before completing the operation. See Sync Flush (Programming Environment).

Programming Note:

• The command parser must be stopped prior to issuing this command by setting the Stop
Rings bit in register MI_MODE. Only after observing Rings Idle set in MI_MODE can a
Sync Flush be issued by setting this bit. Once this bit becomes clear again, indicating flush
complete, the command parser is re-enabled by clearing Stop Rings.

• Errata: Sync Flush cannot be used while a media scoreboard kernel is running.

Format = Enable (cleared by HW)

4 Global Debug Enable Project: All Format: U1

This field is used to enable the debug capability. Setting this bit allows the hardware to start
incrementing the registers corresponding to the debug feature.

Format = Enable

3 Blt Instruction Disable Project: All Format: U1

This bit instructs the Renderer instruction parser to parse and error-check BLT instructions, but
not execute them.

Format = Disable

2 3D Rendering Instruction Disable Project: All Format: U1

This bit instructs the Renderer instruction parser to parse and error-check 3D Rendering
instructions, but not execute them. This bit must always be set by software if 3D State
Instruction Disable is set. Setting this bit without setting 3D State Instruction Disable is
allowed.

Format = Disable

1 3D State Instruction Disable Project: All Format: U1

This bit instructs the Renderer instruction parser to parse and error-check 3D State
instructions, but not execute them. This bit should not be set unless 3D Rendering
Instruction Disable (bit 2) is also set.

Format = Disable

0 Texture Palette Load Instruction
Disable

Project: All Format: U1

This bit instructs the Renderer instruction parser to parse and error-check Texture Palette Load
instructions, but not execute them.

Format = Disable

254

8.10.2 Cache_Mode_0— Cache Mode Register 0

Cache_Mode_0— Cache Mode Register 0
Register Type: MMIO
Address Offset: 2120h
Project: All
Default Value: 0000 6820h
Access: R/W
Size (in bits): 32

This register is used to control the operation of the Render and Sampler L2 Caches. All reserved bits are
implemented as read/write.

This Register is saved and restored as part of Context.

Bit Description

31:16 Masks

Format: Mask[15:0]

A “1” in a bit in this field allows the modification of the corresponding bit in Bits 15:0.

15 Sampler L2 Disable

Project: All

Default Value: 0h

Format: Disable

Value Name Description Project

0h Sampler L2 Cache Enabled. All

1h Sampler L2 Cache Disabled all accesses are treated
as misses.

All

Errata Description Project

BWT012 Setting this bit is UNDEFINED. DevBW-A,B

 255

Cache_Mode_0— Cache Mode Register 0
14:13 Sampler L2 Page Gathering Fifo Modes

Project: All

Default Value: 3h

Format: U3

Value Name Description Project

00 No Page Gathering, No Interleaving. All

01 On Page Gathering based on Page Size described in
Low Priority Grace Period Page Size. No Interleaving.

All

10 Interleaved based on Tile Type and address bits A6,
A9 and A10.

All

11 Interleaved on page gathering as combination of
modes 1 and 2.

All

12:10 Page Gather Limit

Project: All

Default Value: 2h

Format: U3

Used when bits 14:13 are set to 1 or 3. Determines the maximum number of on page requests
gathered.

Value Name Description Project

000 4 Requests. All

001 6 Requests. All

010 8 Requests. All

011 10 Requests. All

100 12 Requests. All

101 14 Requests. All

110 16 Requests. All

111 As much as the FIFO allows. All

9 Sampler L2 TLB Prefetch Enable

Project: All

Default Value: 0h

Format: Enable

Value Name Description Project

0h TLB Prefetch Disabled All

1h TLB Prefetch Enabled All

256

Cache_Mode_0— Cache Mode Register 0
8 Reserved Project: All Format: MBZ

7:6 Sampler L2 Request Arbitration

Project: All

Default Value: 0h

Format: U2

Value Name Description Project

00 Round Robin All

01 Fetch are Highest Priority All

10 Constants are Highest Priority All

11 Reserved All

5 Reserved. This bit must be 0. Note that it defaults to 1.

4:3 Reserved Project: All Format: MBZ

2 Reserved Project: All Format: MBZ

1 Reserved Project: All Format: MBZ

0 Render Cache Operational Flush Enable

Project: All

Default Value: 0h

Format: Enable

Value Name Description Project

0h Disable Operational Flush Disabled (recommended for
performance when not rendering to the front buffer)

All

1h Enable Operational Flush Enabled (required when rendering
to the front buffer)

All

Errata Description Project

BWT006 This bit must be clear; Operational Flush cannot be enabled. DevBW-A,B

 257

8.10.3 Cache_Mode_1— Cache Mode Register 1

Cache_Mode_1— Cache Mode Register 1
Register Type: MMIO
Address Offset: 2124h
Project: All
Default Value: 0000 0180h
Access: Read/32 bit Write
Size (in bits): 32

This Register is saved and restored as part of Context.

Bit Description

31:16 Mask Bits for 15:0

Format: Mask[15:0]

Must be set to modify corresponding data bit. Reads to this field returns zero.

15:13 Reserved Project: All Format: MBZ

12 Enable the indirect load of Data through the Vertex Fetch

Project: All

Default Value: 0h

Format: U1

Value Name Description Project

0h Media Object Data transferred through the
command streamer

All

1 Media Object Data transferred through the
Vertex Fetch

All

258

Cache_Mode_1— Cache Mode Register 1
11 Instruction and State Cache Invalidate

Project: All

Default Value: 0h

Format: U1

When this field is set, all instruction and state caches (level 1 and level 2) are invalidated.

It is intended for debug use. For example, it may be used in conjunction with EU breakpoint
control to provide single stepping kernel debugging capability and dynamic breakpoint capability.

Before setting this field, host (debug) software must make sure that the graphics render engine
has reached idle state – there is no activity to/from the instruction and state caches. For
example, during kernel debug, upon a breakpoint exception, host debug software may delay for a
sufficiently long period and then check the EU done signals to make sure that all EUs other than
the one(s) causing the breakpoint exception are set. It can then set this field to invalidate the
instruction and state caches. This field generates a level control signal. Host software must clear
this field, before letting execution to continue (e.g. by clearing the host notification MMIO
registers to let the kernel under debug to proceed).

Value Name Description Project

0h Normal Cache operation. All

1 Invalidate will be sent to Level 1 and Level 2 caches.
(DEBUG ONLY)

All

10 Instruction Level 1 Cache and In-Flight Queue Disable

Project: All

Default Value: 0h

Format: Disable

Value Name Description Project

0h Cache is enabled. All

1h Cache is disabled and all accesses to this cache are
treated as misses and sent to L2 cache. Setting this
bit overrides the setting of bit 0. (DEBUG ONLY)

All

9 Instruction and State Level 2 Cache Fill Buffers Disable

Project: All

Default Value: 0h

Format: Disable

Value Name Description Project

0h Fill Buffers are enabled. All

1h Fill Buffers are disabled. (DEBUG ONLY) All

 259

Cache_Mode_1— Cache Mode Register 1
8:7 Sampler Cache Set XOR selection

Project: All

Default Value: 3h

Format: U2

These bits have an impact only when the Sampler cache is configured in 16 way set associative
mode. If the cache is being used for immediate data or for blitter data these bits have no effect.

Value Name Description Project

00 Default value Default behavior to calculate set address, no XOR. All

01 Scheme 1 New_set_mask[3:0] = Tiled_address[16:13]

New_set[3:0] <= New_set_mask[3:0] ^ Old_set[3:0]

Rationale: These bits can distinguish among 16 different
equivalent classes of virtual pages. These bits also
represent the lsb for tile rows ranging from a pitch of 1
tile to 16 tiles.

All

10 Scheme 2 New_set_mask[3] = Tiled_address[17] ^
Tiled_address[16]

New_set_mask[2] = Tiled_address[16] ^
Tiled_address[15]

New_set_mask[1] = Tiled_address[15] ^
Tiled_address[14

New_set_mask[0] = Tiled_address[14] ^
Tiled_address[13]

New_set[3:0] <= New_set_mask[3:0] ^ Old_set[3:0]

Rationale: More bits on each XOR can give better
statistical uniformity on sets and since two lsbs are
taken for each tile row size, it reduces the chance of
aliasing on sets.

All

11 Scheme 3 New_set_mask[3] = Tiled_address[22] ^
Tiled_address[21] ^ Tiled_address[20] ^
Tiled_address[19]

New_set_mask[2] = Tiled_address[18] ^
Tiled_address[17] ^ Tiled_address[16]

New_set_mask[1] = Tiled_address[15] ^
Tiled_address[14]
New_set_mask[0] = Tiled_address[13]

New_set[3:0] <= New_set_mask[3:0] ^ Old_set[3:0]

Rationale: More bits on each XOR can give better
statistical uniformity on sets and since each XOR has
different bits, it reduces the chance of aliasing on sets
even more.

All

6:5 Reserved Project: All Format: MBZ

4 Reserved Project: All Format: MBZ

260

Cache_Mode_1— Cache Mode Register 1
3 Reserved Project: DevCL Format: MBZ

3 A-step bug fix bit for rcc allocation

Project: DevBW-A, DevBW-B

Default Value: 0h

Format: U1

This bit should always be set for proper operation on BW-A,B

Value Name Description Project

0h This bug fix is disabled. DevBW-A,
DevBW-B

1h Bug fix is active and will solve random pixel
corruption issues due to this bug. It slows down
allocation to one allocation every 4 clock. In the A
and B-steps, 3d performance will not be
bottlenecked by this bug fix. Media performance
impact will be minor.

DevBW-A,
DevBW-B

2 Reserved Project: All Format: MBZ

1 Instruction and State Level 2 Cache Disable

Project: All

Default Value: 0h

Format: Disable

Value Name Description Project

0h Cache is enabled. All

1h Cache is disabled and all accesses to this cache are
treated as misses. (DEBUG ONLY)

All

0 Instruction Level 1 Cache Disable

Project: All

Default Value: 0h

Format: Disable

Value Name Description Project

0h Cache is enabled. All

1h Cache is disabled and all accesses to this cache are
treated as misses, but only requests with unique
addresses are sent to the L2. (DEBUG ONLY)

All

 261

8.10.4 BB_ADDR—Batch Buffer Head Pointer Register

BB_ADDR—Batch Buffer Head Pointer Register
Register Type: MMIO
Address Offset: 2140h
Project: All
Default Value: 0000 0000 0000 0000h
Access: RO
Size (in bits): 64

This register contains the current DWord Graphics Memory Address of the last-initiated batch buffer.

Bit Description

63:32 Reserved Project: All Format: MBZ

31:2 Batch Buffer Head
Pointer

Project: All Format: GraphicsAddress[31:2]

This field specifies the DWord-aligned Graphics Memory Address where the last initiated Batch
Buffer is currently fetching commands. If no batch buffer is currently active, the Valid bit will be 0
and this field will be meaningless.

1 Reserved Project: All Format: MBZ

0 Valid

Project: All

Default Value: 0h

Format: U1

Value Name Description Project

0h Invalid Batch buffer Invalid All

1h Valid Batch buffer Valid All

262

8.10.5 BB_STATE – Batch Buffer State Register

BB_STATE – Batch Buffer State Register
Register Type: MMIO
Address Offset: 2110h
Project: All
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

This register contains the attributes of the last batch buffer initiated from the Ring Buffer. These include the
memory space select and security indicator.

This register should not be written by software. These fields should only get written by a context restore.
Software should always set these fields via the MI_BATCH_BUFFER_START command when initiating a batch
buffer.

This register is saved and restored with context.

Bit Description

31:6 Reserved Project: All Format: MBZ

5 Buffer Security Indicator

Project: All

Default Value: 0h

Format: MI_BufferSecurityType

If set, this batch buffer is non-secure and cannot execute privileged commands nor access
privileged (GGTT) memory. It will be accessed via the PPGTT. If clear, this batch buffer is secure
and will be accessed via the GGTT.

Note: This field reflects the effective security level and may not be the same as the Buffer Security
Indicator written using MI_BATCH_BUFFER_START.

Value Name Description Project

0h MIBUFFER_SECURE Located in GGTT memory All

1h MIBUFFER_NONSECURE Located in PPGTT memory All

4:0 Reserved Project: All Format: MBZ

 263

8.10.6 CTXT_SR_CTL – Context Save/Restore Control Register

CTXT_SR_CTL – Context Save/Restore Control Register
Register Type: MMIO
Address Offset: 2714h
Project: All
Default Value: 0000 0000h
Access: R/W (Debug Only)
Size (in bits): 32

This register is saved and restored with context.

Bit Description

31:2 Reserved Project: All Format: MBZ

1 Extended Context Enable

Project: All

Default Value: 0h

Format: Enable

If this bit is set, the extended portion of the render context will be saved and restored with the current
context. If clear, extended context will not be a part of this context. Note that since this register is
part of ring context, each context can have its own setting for this bit. Extended context can thus be
selected on a per-context basis. Note that extended context is part of render context, so that if Render
Context Restore Inhibit is set in the context image, extended context will not be restored (the first
time) even if this bit is set.

Value Name Description Project

0h Disable The current context does not include extended
context

All

1h Enable The current context does include extended context. All

0 Render Context Restore
Inhibit

Project: All Format: U1

This is not a true register bit. This bit should be set in the context image of a ring context that is
being submitted for the first time. Setting this bit will inhibit the restoring of render context
(including extended context if applicable) so that restoring of an uninitialized render context can
be prevented. This bit will always be set on a context save (since the render context cannot be
uninitialized on context save – it will always contain at least default values.)

264

8.11 Logical Context Support

8.11.1 CCID—Current Context ID Register

CCID—Current Context ID Register
Register Type: MMIO
Address Offset: 2180h
Project: All
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

This register contains the current “logical rendering context address” associated with the ring buffer.

Programming Note: The CCID register must not be written directly (via MMIO) unless the Command Streamer is
completely idle (i.e., the Ring Buffer is empty and the pipeline is idle). Note that, under normal conditions, the
CCID register should only be updated from the command stream using the MI_SET_CONTEXT command.

Bit Description

31:11 Logical Render Context Address (LRCA)

Project: All

Default Value: 0h

Address: GraphicsAddress[31:11]

This field contains the 4 KB-aligned Graphics Memory Address of the current Logical Rendering
Context. Bit 11 MBZ.

It will point to a Logical Pipeline Context (a subset of a Logical Rendering Context) if loaded using
MI_SET_CONTEXT.

If this register was set using MI_SET_CONTEXT with the Memory Space Select set to Physical
Main Memory, this field contains the 2 KB-aligned “Effective Local Memory” physical Main
Memory address of the current Logical Pipeline Context.

10:8 Reserved Project: All Format: MBZ

7:4 Physical Start Address Extension

Project: All

Default Value: 0h

Address: GraphicsAddress[35:32]

This field specifies Bits 35:32 of the starting physical address if Memory Space Select of the last
MI_SET_CONTEXT command was set to Physical Main Memory.

3 Extended State Save Enable Project: All Format: Enable

If set, the extended state identified in the Logical Context Data section of the Memory Data Formats
chapter, is saved as part of switching away from this logical context.

 265

CCID—Current Context ID Register
2 Extended State Restore

Enable
Project: All Format: Enable

If set, the extended state identified in the Logical Context Data section of the Memory Data Formats
chapter, was loaded (or restored) as part of switching to this logical context.

1 Reserved Project: All Format: MBZ

0 Valid

Project: All

Default Value: 0h

Format: U1

Value Name Description Project

0h Invalid The other fields of this register are invalid. A switch
away from the context will not invoke a context save
operation.

All

1h Valid The other fields of this register are valid, and a switch
from the context will invoke the normal context
save/restore operations.

All

266

8.11.2 CXT_SIZE—Context Size with Extended State

CXT_SIZE—Context Size with Extended State
Register Type: MMIO
Address Offset: 21A0h
Project: All
Default Value: 0000 0013h
Access: Read/32 bit Write
Size (in bits): 32

Bit Description

31:5 Reserved Project: All Format: MBZ

4:0 Size

Project: All

Default Value: 13h

Format: U5-1

Size of pipeline logical rendering context including the extended state in 64B quantities minus
one.

8.11.3 CXT_SIZE_NOEXT—Context Size without the Extended
State

CXT_SIZE_NOEXT—Context Size without the Extended State
Register Type: MMIO
Address Offset: 21A4h
Project: All
Default Value: 0000 000Fh
Access: Read/32 bit Write
Size (in bits): 32

Bit Description

31:5 Reserved Project: All Format: MBZ

4:0 Size

Project: All

Default Value: Fh

Format: U5-1

Size of pipeline logical rendering context excluding the extended state in 64B quantities minus
one.

 267

8.12 Arbitration Control, and Scratch Bits

8.12.1 MI_DISPLAY_POWER_DOWN—Display Power Down
([DevCL] Only)

MI_DISPLAY_POWER_DOWN—Display Power Down
Register Type: MMIO
Address Offset: 20E0h
Project: DevCL
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

The MI_DISPLAY_POWER_DOWN register contains the Display Power Down Enable bit which is used to enable
display power down prior to entering C3SR state.

This Register is NOT saved and restored as part of Context.

Bit Description

31:16 Reserved Project: DevCL Format: MBZ

15 Display Power Down Enable Project: DevCL Format: Enable

The bit enables the chipset to put the DIMMs in self refresh when the display conditions are right
(No VGA or Overlay, only 1 display pipe enabled) and the CPU is in the C3+ state. Note that
setting this bit is not required for DIMMs to enter self-refresh for any device state higher than
D0.

14:0 Reserved Project: DevCL Format: MBZ

268

8.12.2 MI_ARB_STATE—Memory Interface Arbitration State
Register

MI_ARB_STATE—Memory Interface Arbitration State Register
Register Type: MMIO
Address Offset: 20E4h
Project: All
Default Value: 0000 0040h
Access: R/W
Size (in bits): 32

The MI_ARB_STATE register contains state information that controls arbitration aspects of the Memory Interface
function.

Bit Description

31:16 Mask Bits

Format: Mask[15:0]

Must be set to modify corresponding bit in Bits 15:0. (All bits implemented)

15 Render/Sampler TLB Request Priority

Project: All

Default Value: 0h

Format: U1

Value Name Description Project

0h TLBs are above the corresponding data requests in
priority. That is Render TLB fetch is above Render
reads and writes, Sampler TLB fetches are above
Sampler Fetches. This is the default setting and
used for normal operation.

All

1h TLBs are at the lowest priority (above FBC) with
Sampler TLB fetches higher than render.

All

14:9 Reserved Project: All Format: MBZ

Read/Write (SW must maintain setting)

 269

MI_ARB_STATE—Memory Interface Arbitration State Register
8 Suppress Cacheable indicator from Render Command Stream write requests

Project: All

Default Value: 0h

Format: U1

Value Name Description Project

0h Snooped Cacheable write cycles from Render Command
Stream are snooped on the FSB.

All

1h Non-Snooped Cacheable write cycles from Render Command
Stream are not snooped on the FSB. These writes are
processed as non-snoop.

All

Errata Description Project

BWT010 Setting this bit may cause UNDEFINED behavior (extra cycles
issued to different addresses in addition to the specified
address.)

DevBW-A

7:5 Time Slice

Project: All

Default Value: 2h

Format: U3

Applicable to Render Cache, Sampler Cache, Pixel Shader, Frame Buffer, Command stream and
Host Requests. Time Slice is fixed at 1 for TLB and snoop requests, and not applicable to
Isochronous Streams.

The (value programmed –1) determines the number of Page Hits before arbitration switch for a
low priority stream interrupted by a higher priority stream as long as the lower priority stream is
active.

If set to ‘000’ the arbiter does apply a page hit grace period.

In 64B Requests

Value Name Description Project

000 1 Request 1 Requests (This setting implies that the grace period
is disabled)

All

001 2 Requests 2 Requests All

010 4 Requests 4 Requests All

011 6 Requests 6 Requests All

100 8 Requests 8 Requests All

101 10 Requests 10 Requests All

110 14 Requests 14 Requests All

111 16 Requests 16 Requests All

270

MI_ARB_STATE—Memory Interface Arbitration State Register
4 Low Priority Grace Period Page Size

Project: All

Default Value: 0h

Format: U1

Value Name Description Project

0h Grace period on-page indicator uses 4KB pages in the
command streams and caches. (Default)

All

1h Grace period on-page indicator uses 8KB pages in the
command streams and caches.

All

3 Reserved Project: All Format: MBZ

Read/Write (SW must maintain setting)

2 Display A/B Trickle Feed Disable

Project: All

Default Value: 0h

Format: Disable

Value Name Description Project

0h Enable All

1h Disable (Turn off trickle feed Display request) All

Programming Notes Project

For mobile devices ([DevCL]), this bit should always be set to disable trickle
feed.

DevCL

[DevBW] must always set to disable trickle feed DevBW

1 Reserved Project: All Format: MBZ

Read/Write (SW must maintain setting)

0 Display A/B Priority Select

Project: All

Default Value: 0h

Format: U1

This bit determines the arbitration priority of accesses among the high priority streams.

Value Name Description Project

0h DA/DB/Others Set this when Display Plane A is the Primary All

1h DB/DA/Others Set this when Display Plane B is the Primary All

 271

8.12.3 MI_RDRET_STATE—Memory Interface Read Return State
Register

MI_RDRET_STATE—Memory Interface Read Return State Register
Register Type: MMIO
Address Offset: 20FCh [DevCL] 20E0h [DevBW]
Project: All
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

The MI_RDRET_STATE register contains state information that controls data return aspects of the Memory
Interface function. This register is used strictly for HVM testing. Any functional usage of this register is
undefined. None of the TLB read returns from memory are impacted by this register.

This Register is NOT saved and restored as part of Context.

Bit Description

31:16 Mask Bits

Format: Mask[15:0]

Must be set to a 1 to allow modification of corresponding bit in Bits 15:0. (All implemented bits)

15 HVM Enable Bit Project: All Format: Enable

This bit must be set to ‘1’ to enable HVM loopback mode and enable random internal data returns
from CI. This bit must be programmed after the other client specific bits are programmed to
desired values.

14:9 Reserved Project: All Format: MBZ

8 Vertex Fetch Cache select

Project: All

Default Value: 0h

Format: U1

This bit determines the read return for Vertex Fetch Reads

Value Name Description Project

0h Return Data from memory All

1h Return data from a random data generator on-chip All

7 Reserved Project: All Format: MBZ

Was Read Only Cache select

272

MI_RDRET_STATE—Memory Interface Read Return State Register
6 Overlay return Select

Project: DevCL

Default Value: 0h

Format: U1

This bit determines the read return for Overlay streamer Reads

Value Name Description Project

0h Return Data from memory DevCL

1h Return data from a random data generator on-chip DevCL

6 Reserved Project: DevBW Format: MBZ

5 Color/Z return Select

Project: All

Default Value: 0h

Format: U1

This bit determines the read return for Low Priority Reads

Value Name Description Project

0h Return Data from memory All

1h Return data from a random data generator on-chip All

4 Sampler Read return Select

Project: All

Default Value: 0h

Format: U1

This bit determines the read return for Low Priority Reads

Value Name Description Project

0h Return Data from memory All

1h Return data from a random data generator on-chip All

3 Cursor (A and B) Read return Select

Project: All

Default Value: 0h

Format: U1

This bit determines the read return for Display Reads

Value Name Description Project

0h Return Data from memory All

1h Return data from a random data generator on-chip All

 273

MI_RDRET_STATE—Memory Interface Read Return State Register
2 Display C Read return Select

Project: All

Default Value: 0h

Format: U1

This bit determines the read return for Display C Reads

Value Name Description Project

0h Return Data from memory All

1h Return data from a random data generator on-chip All

1 Display B Read return Select

Project: All

Default Value: 0h

Format: U1

This bit determines the read return for Display Reads

Value Name Description Project

0h Return Data from memory All

1h Return data from a random data generator on-chip All

0 Display A Read return Select

Project: All

Default Value: 0h

Format: U1

This bit determines the read return for Display Reads

Value Name Description Project

0h Return Data from memory All

1h Return data from a random data generator on-chip All

274

8.12.4 MI_MODE — Mode Register for Software Interface

MI_MODE — Mode Register for Software Interface
Register Type: MMIO
Address Offset: 209Ch
Project: All
Default Value: 00000000h
Access: R/W
Size (in bits): 32

The MI_MODE register contains information that controls software interface aspects of the Memory Interface
function.

Bit Description

31:16 Masks

Format: Mask[15:0]

A “1” in a bit in this field allows the modification of the corresponding bit in Bits 15:0

15 Reserved Project: All Format: MBZ

Read/Write

14 Reserved Project: All Format: MBZ

Read/Write

13 Flush Performance mode

Project: DevCL

Default Value: 0h

Format: U1

Value Name Description Project

0h run fast restore No NonPipelined SV flush. DevCL

1h run slow legacy
restore

With NonPipelined SV flush. DevCL

13 Reserved Project: DevBW Format: MBZ

Read/Write

12 Reserved Project: All Format: MBZ

11 Invalidate UHPTR enable Project: All Format: Enable

If bit set H/W clears the valid bit of UHPTR (2134h, bit 0) when current active head pointer is
equal to UHPTR.

10 Power of 2 Fences Enable Project: All Format: Enable

This field is used to indicate to the hardware that the fences in use currently are for Power of 2
tile pitch. This bit is used by the chipset for performance enhancement.

 275

MI_MODE — Mode Register for Software Interface
9 Rings Idle

Project: All

Default Value: 0h

Format: U1

Read Only Status bit

Value Name Description Project

0h Not Idle Parser not Idle or Ring Arbiter not Idle. All

1h Idle Parser Idle and Ring Arbiter Idle. All

Programming Notes Project

Writes to this bit are not allowed. All

8 Stop Rings

Project: All

Default Value: 0h

Format: U1

Value Name Description Project

0h Normal Operation. All

1h Parser is turned off and Ring arbitration is turned off. All

Programming Notes Project

Software must set this bit to force the Rings and Command Parser to Idle. Software
must read a “1” in Ring Idle bit after setting this bit to ensure that the hardware is
idle.

All

Software must clear this bit for Rings to resume normal operation. All

7 Vertex Shader Cache Mode

Project: All

Default Value: 0h

Format: U1

Value Name Description Project

0h Non-LRA Non-LRA mode of allocation. Vertex shader cache is
allocated on the basis of the reference count of
individual vertices

All

1h LRA LRA mode of allocation. Used for validation purposes. All

276

MI_MODE — Mode Register for Software Interface
6 Vertex Shader Timer Dispatch Enable

Project: All

Default Value: 0h

Format: Enable

Value Name Description Project

0h Disable Disable the timer for dispatch of single vertices from
the vertex shader. Vertex shader will try to collect 2
vertices before a dispatch

All

1h Enable Enable the timer for dispatch of single vertices.
Dispatch a single vertex shader thread after the timer
expires.

All

Programming Notes Project

To avoid deadlock conditions in hardware this bit needs to be set for normal
operation.

All

5 FBC2 Modification Enable

Project: All

Default Value: 0h

Format: Enable

Value Name Description Project

0h Disable FBC logic does not look at the modifications to the
frame buffer.

All

1h Enable FBC logic looks at the modifications into the frame
buffer.

All

4 Reserved: MBZ

3 Physical Batch Buffer 4K size limit disable (test mode)

Project: All

Default Value: 0h

Format: Disable

Value Name Description Project

0h Disable Physical batch buffers more than 4K in size are not
permitted.

All

1h Enable Physical batch buffers more than 4K in size are
permitted.

All

2 Reserved Project: All Format: MBZ

Read/Write

 277

MI_MODE — Mode Register for Software Interface
1 Dummy Read

Disable
Project: All Format: Disable

Nominally a command stream flush is completed with a dummy read to memory to push all
pending writes. Setting this bit to a “1” disables the dummy read.

0 Mask IIR disable Project: All Format: Disable

Mask IIR disable. Nominally the Interrupt controller masks interrupts in the IIR register if an
interrupt acknowledge from the 3gio interface is pending. Setting this bit to a “1” allows
interrupts to be visible to the interrupt controller while an interrupt acknowledge is pending.

278

8.12.5 ECOSKPD—ECO Scratch Pad (DEBUG)

ECOSKPD—ECO Scratch Pad (DEBUG)
Register Type: MMIO
Address Offset: 21D0h
Project: All
Default Value: 00000307h
Access: R/W
Size (in bits): 32

Bit Description

31:16 Mask Bits

Format: Mask[15:0]

Must be set to modify corresponding bit in Bits 15:0. (All implemented bits)

15 Reserved Project: All Format: MBZ

14 Vertex Shader Dual dispatch disable

Project: DevBW-E

Security: None

Default Value: 0h Enable the dual dispatch

Mask: MMIO(0x21D0)#30

Value Name Description Project

0h Enable HW implements the fix for the enhanced dual
dispatch. Dual dispatch is triggered only when the top
entry in the tracking FIFO is a

DevBW-E

1h Disable Disable the HW fix for the enhanced dual dispatch.
Vertex shader will be dispatched as a single vertex
everytime the tracking FIF becomes full.

DevBW-E

13 Clipper Performance Fix Disable

Project: DevBW-E

Security: None

Default Value: 0h DefaultVaueDesc

Mask: MMIO(0x21D0)#29

Value Name Description Project

0h Disable Desc All

1h Enable Desc All

 279

ECOSKPD—ECO Scratch Pad (DEBUG)
12 Clipper software workaround for DX10 Enable

Project: DevBW-E

Security: None

Default Value: 0h DefaultVaueDesc

Mask: MMIO(0x21D0)#28

Value Name Description Project

0h Disable Desc DevBW-E

1h Enable Desc DevBW-E

Programming Notes Project

Notes

This bit is expected to be used with bit 9 in this register:

bit9 bit12

0 0 PerformanceEC0. No software workaround in vs0.

1 0 Not valid.

0 1 Software workaround for Dx10

1 1 No ECO. Will need Software workaround for Dx9.

DevBW-E

11 PL Unit bug fix Project: All Format: U1

Unspecified ECO disable in the PL unit

10 RCC Unit Bug fix Project: All Format: U1

Unspecified ECO disable in the RCC unit

9 Clipper fix for definition of Bad vertex

Project: DevCL, DevBW-E

Security: None

Default Value: 0h DefaultVaueDesc

Mask: MMIO(0x21D0)#25

Value Name Description Project

0h Disable BAD vertex is dealt as a trivial reject DevCL,
DevBW-E

1h Enable BAD vertex is dealt as a must clip instead of trivial
reject

DevCL,
DevBW-E

8 Clock gating for the RCC (Disable one clock gate cell)

Project: DevCL

Default Value: 0h DefaultVaueDesc

Format: U1 FormatDesc

0 = Disable Clock gating

1 = Enable clock gating

280

ECOSKPD—ECO Scratch Pad (DEBUG)
7 Clock gating for the MAWB

Project: DevCL

Default Value: 0h DefaultVaueDesc

Format: U1 FormatDesc

0 = Disable Clock gating

1 = Enable clock gating

6 Reserved Project: All Format: MBZ

5 Reserved Project: All Format: MBZ

4 Constant Buffer Save/Restore Disable

Project: DevBW-C1+

Default Value: 0h DefaultVaueDesc

Format: U1 FormatDesc

“0” : constant buffer should part of context save/restore

“1”: constant buffer should not be part of context save/restore

3 WIZunit Scratch Space ECO

Project: DevBW-C+

Default Value: 0h DefaultVaueDesc

Format: U1 FormatDesc

Enable ECO: Max scratch space (indicated by Per Thread Scratch Space set to 11) is 256KB.
256KB scratch base must be 8M aligned.

Disable ECO: Max scratch space is 12KB.

2:0 Reserved Project: All Format: MBZ

 281

8.13 Debug Registers

These registers are used to reflect internal hardware state. The intention is to be used
for silicon debug

8.13.1 CSFLFSM — Flush FSM (Debug)

CSFLFSM — Flush FSM (Debug)
Register Type: MMIO
Address Offset: 2200h
Project: All
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

Bit Description

31:16 Reserved: 0x0 Project: All Format: MBZ

15:13 Project: All Format: U3

“000” * (CSFLSHFIFOIDLE_s == ‘1’) +

“001” * (CSFLSHFIFOVIRXPHY_s == ‘1’) +

“010” * (CSFLSHFIFOWT4ACK_s == ‘1’) +

“011” * (CSFLSHFIFOLDSTDW_s == ‘1’) +

“100” * (CSFLSHFIFOISCFLUSH_s == ‘1’) +

“101” * (CSFLSHFIFOMSI_s == ‘1’) +

“110” * (CSFLSHFIFODMYRD_s == ‘1’) +

“111”

12:10 Project: All Format: U3

“000” * (CS3DCNTRLIDLE_s == ‘1’) +

“001” * (CS3DCNTRLDW1_s == ‘1’) +

“010” * (CS3DCNTRLDW2_s == ‘1’) +

“011” * (CS3DCNTRLDFIFO_s == ‘1’) +

“100” * (CS3DCNTRLWT4DONE_s == ‘1’) +

“101” * (CS3DCNTRLNULL_s == ‘1’) +

“111”

9:8 Project: All Format: U2

“00” * (URBIDLE_s == ‘1’) +

“01” * (URBPIPESEL_s == ‘1’) +

“10” * (URBCURBECLEAR_s == ‘1’) +

“11” * (URBDEALLOC_s == ‘1’)

282

CSFLFSM — Flush FSM (Debug)
7:4 Project: All Format: U4

“0000” * (URBNIDLE_s == ‘1’) +

“0001” * (URBNCLR_s == ‘1’) +

“0010” * (URBNCLRS_s == ‘1’) +

“0011” * (URBNSET_s == ‘1’) +

“0100” * (URBNRPLC_s == ‘1’) +

“0101” * (URBNRPLC_W_s == ‘1’) +

“0110” * (URBCLRWT_s == ‘1’) +

“0111” * (URBNPRIM_s == ‘1’) +

“1000” * (URBNRPLC_WVS0_s == ‘1’) +

“1111”

3:0 Project: All Format: U4

“0000” * (IDLE_S == ‘1’)+

“0001” * (NF3DADDR_S == ‘1’)+

“0010” * (NF3DADDR_URB_S == ‘1’)+

“0011” * (NFNPRIM_URBCLR_S == ‘1’)+

“0100” * (NFMDADDR_S == ‘1’)+

“0101” * (NF3DNPRIM_S == ‘1’)+

“0110” * (NFMDNPRIM_S == ‘1’)+

“0111” * (NFURBNPRIM_S == ‘1’)+

“1000” * (NFURBWALLOC_S == ‘1’)+

“1111”

 283

8.13.2 CSFLFLAG — Flush FLAG (Debug)

CSFLFLAG — Flush FLAG (Debug)
Register Type: MMIO
Address Offset: 2204h
Project: All
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

Bit Description

31:17 Reserved: 0x0 Project: All Format: MBZ

16:9 Project: All Format: U8
csprsrallflsh& csctxlcflsh& csynclcflush &fi_write & fi_depth & fi_timestamp &
fi_iscflush & fi_globalcnt_rst

8 cs_media_select Project: All Format: U1

7:0 Project: All Format: U8
fi_MURB_chng & fi_MSP_flag &
fi_URB_chng & fi_PSP_flag & fi_BTP_flag &
fi_curbe_opcodes & fi_only_one_curbe_avail &
cs_curbe_set

284

8.13.3 CSFLTRK — Flush Track (Debug)

CSFLTRK — Flush Track (Debug)
Register Type: MMIO
Address Offset: 2208h
Project: All
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

Bit Description

31:13 Reserved: 0x0 Project: All Format: MBZ

12:8 Project: All Format: U5

fi_3dcntrl_ldfifo &

fi_3dcntrlfifo_full &

fi_3dcntrl_ram_wren &

fi_3dcntrl_ram_wraddr[1:0]

7:0 Project: All Format: U8

fi_3dcntrl_rdptr[1:0] & fi_fiford & fi_3dcntrl_ramwrptr[1:0] &

fi_3dcntrl_completeptr_crb2clk[2:0]

8.13.4 CSCMDOP — Instruction DWORD (Debug)

CSCMDOP — Instruction DWORD (Debug)
Register Type: MMIO
Address Offset: 220Ch
Project: All
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

Bit Description

31:0 Command Buffer
Data

Project: All Format: U32

This field represents the data being parsed by the command streamer currently

 285

8.13.5 CSCMDVLD — Instruction DWORD Valid (Debug)

CSCMDVLD — Instruction DWORD Valid (Debug)
Register Type: MMIO
Address Offset: 2210h
Project: All
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

Bit Description

31:1 Reserved Project: All Format: MBZ

0 Command Buffer
Valid

Project: All Format: U1

Command buffer currently has valid data

8.13.6 CLKCMP — Compare count clock stop (Debug)

CLKCMP — Compare count clock stop (Debug)
Register Type: MMIO
Address Offset: 2360h
Project: All
Default Value: 0000 0000 0000 0000h
Access: R/W This register is not set by the context restore.
Size (in bits): 64

This register stores the value of the count of clock ticks that should cause the clock to stop. An internal hardware
counter keeps track of the clock ticks. The internal hardware counter is reset when this register is written.

The reference clock used by this counter is the core render clock (crclk). Crclk is chosen here specifically
because it is the operating frequency for a majority of the logic in the 3D pipeline. See the EDS for details for the
frequency of the crclk. See section 1.21.

Bit Description

63:0 Clock Stop Value Project: All Format: U64

This register reflects the total number of crclk ticks that need to pass before the crclk is stopped.
A write to this register causes the internal clock counter to reset.

286

8.13.7 VFDC—Set Value of Draw Count (DEBUG)

VFDC—Set Value of Draw Count (DEBUG)
Register Type: MMIO
Address Offset: 2450h
Project: All
Default Value: UUUU UUUUh
Access: R/W
Size (in bits): 32

The VFDC register is to set the initial DRAW count starting point. This is needed to be able to reset and start at
different draw counts.

Bit Description

31:24 Reserved Project: All Format: MBZ

23:0 Set Value of Draw
Count

Project: All Format: U24

This value must be set before enabling the Skip Initial Primitive or Max Primitives Limit
Enable. If not then the start of the Draw Count is undefined.

8.13.8 VFSKPD—VF Scratch Pad (DEBUG)

VFSKPD—VF Scratch Pad (DEBUG)
Register Type: MMIO
Address Offset: 2470h
Project: All
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

Bit Description

31:16 Mask Bits

Format: Mask[15:0]

Must be set to modify corresponding bit in Bits 15:0. (All bits implemented)

15 SnapShot Continue Project: All Format: U1

Write a ‘1’ to this field with the mask will allow VF to continue once a SnapShot occurs. Writing a
‘0’ has no effect.

14:3 Reserved Project: All Format: MBZ

 287

VFSKPD—VF Scratch Pad (DEBUG)
2 Vertex Cache Implicit Disable Inhibit

Project: All

Default Value: 0h

Format: U1

Value Name Description Project

0h Allow VF to disable VS0 when Sequential index or
Prim ID is a valid Element.

All

1h VF never implicitly disables the vertex cache.
Software must disable the VS0 Cache when required.

All

1 Disable Over Fetch Cache

Project: All

Default Value: 0h

Format: Disable

Value Name Description Project

0h Cache will check for data in cache before making a
request to memory

All

1h Always re-fetch new data from memory. All

0 Disable Pending FIFO

Project: All

Default Value: 0h

Format: Disable

Value Name Description Project

0h Allow VFunit to request TLB data without waiting for
pending TLB data to return.

All

1h Only allow one pending TLB request at a time All

288

8.14 Software Visible Counter Registers

These registers keep continuous count of time and pixels passing the depth test. They
are saved and restored with context but should not be changed by software except to
reset them to 0 at context creation time. These registers may be read at any time;
however, to obtain a meaningful result, a pipeline flush just prior to reading the
registers is necessary in order to synchronize the counts with the primitive stream.

8.14.1 PS_DEPTH_COUNT — Reported Pixels Passing Depth Test
Counter

PS_DEPTH_COUNT
Register Type: MMIO
Address Offset: 2350h
Project: All
Default Value: 00000000h; 00000000h;
Access: R/W
Size (in bits): 64

This register stores the value of the count of pixels that have passed the depth test. This register is part of the
context save and restore. Note that the value of this register can be obtained in a pipeline-synchronous fashion
without a pipeline flush by using the 3DCONTROL command. See 3D Overview in the 3D volume.

Bit Description

63:0 Depth Count

This register reflects the total number of pixels that have passed the depth test (i.e., will be visible).
All pixels are counted when Statistics Enable is set in the Windower State. See the Windower
chapter of the 3D volume for details. Pixels that pass the depth test but fail the stencil test will not
be counted.

 289

8.14.2 TIMESTAMP — Reported Timestamp Count

TIMESTAMP — Reported Timestamp Count
Register Type: MMIO
Address Offset: 2358h
Project: All
Default Value: 0000 0000 0000 0000h
Access: R/W. This register is not set by the context restore.
Size (in bits): 64

This register stores the value of the count of clock ticks that have passed since it was last reset. Note that the
value of this register can be obtained in a 3D pipeline-synchronous fashion without a pipeline flush by using the
3DCONTROL command. See 3D Pipeline in the 3D and Media volume.

The reference clock used by this counter is the GMCH core and Processor-Side Bus (PSB) clock referred to as
“hclk”. Hclk is not used elsewhere in the graphics device and is chosen here specifically because it is not subject
to throttling as the graphics device clock is. The hclk used is not gated, throttled or selectively powered down so
that the TIMESTAMP can remain accurate even during power management activity (as long as the GMCH does not
have all of its clocks stopped, as when it is fully powered down.)

The frequency of hclk is determined externally to the GMCH and can be discovered through the “Clocking
Configuration” (“CLKCFG”) MCHBAR register. See the EDS for details. Note that the MCHBAR registers can be
accessed through the MCHBAR aperture in MMIO space. See section 8.20.

TIMESTAMP is not reset by a graphics reset. It will maintain its value unless a full chipset reset is performed.

Bit Description

63:0 TIMESTAMP Project: All Format: U64

This register reflects the total number of ticks that have passed since reset or the last time 0000
0000 0000 0000h was written to this register. SW should not write a non-zero value to this
register. The value in this register increments once every 16 hclks. A full GMCH reset is required to
reset this register; since this register is in the hclk domain it is not reset by a graphics reset alone.

290

8.15 MTCH_CID_RST – Matched Context ID Reset
Register

MTCH_CID_RST – Matched Context ID Reset Register
Register Type: MMIO
Address Offset: 2524h
Project: All
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

This register is used to generate a Context ID specific reset (Render Only). To initiate a reset, the register is
written with the pending bit set. Hardware compares the current context ID with the register and on match
generates a Render Only reset. After reset is complete, HW clears the pending bit and can be programmed to
generate an interrupt. The match bit is set. If the current context ID does not match this register, the pending
bit is reset and an interrupt is generated. The match bit is reset.

The match indicates the result of the last comparison, and its valid only when pending bit is zero.

Please see MCIDRST interrupt bit assignment in the Interrupt Control Registers.

Bit Description

31:12 Reserved Project: All Format: MBZ

11:2 Reserved Project: All Format: MBZ

1 Reserved Project: All Format: MBZ

0 Reserved Project: All Format: MBZ

 291

8.16 Interrupt Control Registers

The Interrupt Control Registers described below all share the same bit definition. The
bit definition is as follows:

Table 8-3. Bit Definition for Interrupt Control Registers

Bit Description

31:4 Reserved. MBZ: These bits may be assigned to interrupts on future products/steppings.

7 Timeout Counter Expired: Set when the VCS timeout counter has reached the timeout thresh-hold
value.

6:4 Reserved: MBZ

3 Reserved: MBZ

2 Render Command Parser Master Error: When this status bit is set, it indicates that the hardware
has detected an error. It is set by the device upon an error condition and cleared by a CPU write of a
one to the appropriate bit contained in the Error ID register followed by a write of a one to this bit in
the IIR. Further information on the source of the error comes from the “Error Status Register” which
along with the “Error Mask Register” determines which error conditions will cause the error status bit
to be set and the interrupt to occur.

Page Table Error: Indicates a page table error.

Instruction Parser Error: The Renderer Instruction Parser encounters an error while parsing an
instruction.

1 Sync Status: This bit is toggled when the Instruction Parser completes a flush with the sync enable
bit active in the INSTPM register. The toggle event will happen after all the graphics engines are
flushed. The HW Status DWord write resulting from this toggle will cause the CPU’s view of graphics
memory to be coherent as well (flush and invalidate the render cache).

0 Render Command Parser User Interrupt: This status bit is set when an MI_USER_INTERRUPT
instruction is executed on the Render Command Parser. Note that instruction execution is not halted
and proceeds normally. A mechanism such as an MI_STORE_DATA instruction is required to associate
a particular meaning to a user interrupt.

292

8.16.1.1 BCS_IPEIR—Instruction Parser Error Identification Register
(Debug)
Address Offset: 04064h–04067h
Default Value: 0000 0000h
Access: Read Only
Size: 32 bits

The IPEIR register identifies the general location of instructions that generated an
Invalid Instruction Errors for the Renderer IP. (Note: The header (DWord 0) of the
offending instruction will be stored in the IPEHR register).

Bit Description

31:4 Reserved. Read as zero

3 Batch Buffer Error: If this bit is set the faulting instruction was executed from a batch buffer. If this
bit is clear the faulting instruction was executed directly from a ring buffer.

2:0 Reserved. Read as zero

8.16.1.2 BCS_IPEHR—Instruction Parser Error Header Register (Debug)
Address Offset: 04068h–0406Bh
Default Value: 0000 0000h
Access: Read Only
Size: 32 bits

The IPEHR register is used to identify the instructions that generate Invalid Instruction
Errors. This register is loaded with the header (DWord 0) of each instruction that is
executed. It will therefore hold the header of an instruction that generates an Invalid
Instruction Error.

Bit Description

31:0 Header: This field will contain the header (DWord 0) of a Media Decode IP instruction that generates
an Invalid Instruction Error.

8.16.1.3 BCS_ACTHD — Active Head Pointer Register (Debug)
Address Offset: 04074h–04077h
Default Value: 0000 0000h
Access: Read Only
Size: 32 bits

This register contains the Head “Pointer” (DWord Graphics Memory Address) of the
ring buffer.

Bit Description

31:2 Head Pointer: DWord Graphics Address corresponding to the Head Pointer of the ring or batch
buffer.

1:0
Reserved: MBZ

 293

8.16.1.4 BCS_DMA_FADD —DMA Engine Fetch Address (Debug)
Address Offset: 04078h – 0407Bh
Default Value: 0000 0000h
Access: Read Only
Size: 32 bits

This register contains the QWord offset from the start address of the instruction being
fetched by the DMA engine.

Bit Description

31:3 Current DMA QWord Offset: This field contains the offset of the QWord (from the start of the ring
buffer or batch buffer) that the “Video Decode” instruction parser DMA engine is currently accessing
(fetching). Note that this offset will typically lead the Head offset (as instructions must be fetched
before execution).

2:0 Reserved: MBZ

8.16.1.5 BCS_HWS_PGA — Hardware Status Page Address Register
Address Offset: 04080h–04083h
Default Value: 1FFF F000h
Access: Read/Write
Size: 32 bits

This register is used to program the 4 KB-aligned System Memory address of the
Hardware Status Page used to report hardware status into (typically cacheable)
System Memory.

Bit Description

31:12 Address: This field is used by SW to specify Bits 31:12 of the 4 KB-aligned System Memory address
of the 4 KB page known as the “Hardware Status Page”.

Bits 11:0 of the address MBZ.

Format = Bits 31:12 of Graphics Memory Address

11:0 Reserved: MBZ

The following table defines the layout of the Hardware Status Page:

DWord
Offset

Description

3:0 Reserved. Must not be used.

4 Head Pointer Storage: The contents of the Ring Buffer Head Pointer register (register DWord 1)
are written to this location either as result of an MI_REPORT_HEAD instruction or as the result of
an “automatic report” (see RINGBUF registers).

0Fh:05h Reserved. Must not be used.

(3FFh –
010h)

These locations can be used for general purpose via the MI_STORE_DATA_INDEX or
MI_STORE_DATA_IMM instructions.

294

8.16.1.6 BCS_NOPID — NOP Identification Register
Address Offset: 04094h–04097h
Default Value: 0000 0000h
Access: Read Only
Size: 32 bits

The BCS_NOPID register contains the Noop Identification value specified by the last
MI_NOOP instruction that enabled this register to be updated.

Bit Description

31:22 Reserved: MBZ

21:0 Identification Number: This field contains the 22-bit Noop Identification value specified by the last
MI_NOOP instruction that enabled this field to be updated.

8.16.1.7 BCS_MI_MODE — Mode Register for Software Interface
Address Offset: 0409Ch–0409Fh
Default Value: 0000 0000h
Access: Read/Write
Size: 32 bits

The MI_MODE register contains information that controls software interface aspects of
the command parser.

Bit Description

31:16 Masks: A “1” in a bit in this field allows the modification of the corresponding bit in Bits 15:0

15:12 Reserved Read/Write

11 Invalidate UHPTR enable: If bit set H/W clears the valid bit of BCS_UHPTR (4134h, bit 0) when
current active head pointer is equal to UHPTR.

10 Reserved Read/Write

9 Ring Idle (Read Only Status bit)

0 = Parser not Idle

1 = Parser Idle

Writes to this bit are not allowed.

8 Stop Ring

0 = Normal Operation.

1 = Parser is turned off.

Software must set this bit to force the Ring and Command Parser to Idle. Software must read a “1”
in Ring Idle bit after setting this bit to ensure that the hardware is idle.

Software must clear this bit for Ring to resume normal operation.

7:2 Reserved Read/Write

1 Dummy Read Disable. Nominally a command stream flush is completed with a dummy read to
memory to push all pending writes. Setting this bit to a “1” disables the dummy read.

0 Reserved Read/Write

 295

8.16.1.8 BCS_INSTPM—Instruction Parser Mode Register
Address Offset: 040C0h–040C3h
Default Value: 0000 0000h
Access: Read/Write
Size: 32 bits

The BCS_INSTPM register is used to control the operation of the BCS Instruction
Parser. Certain classes of instructions can be disabled (ignored) – often useful for
detecting performance bottlenecks. Also, “Synchronizing Flush” operations can be
initiated – useful for ensuring the completion (vs. only parsing) of rendering
instructions.
Programming Notes:

• All Reserved bits are implemented.

Bit Description

31:16 Masks: These bits serve as write enables for bits 15:0. If this register is written with any of these
bits clear the corresponding bit in the field 15:0 will not be modified. Reading these bits always
returns 0s.

15:6 Reserved: MBZ

5 Sync Flush Enable: This field is used to request a Sync Flush operation. The device will
automatically clear this bit before completing the operation. See Sync Flush (Programming
Environment).

Programming Note:

• The command parser must be stopped prior to issuing this command by setting the Stop Ring bit
in register BCS_MI_MODE. Only after observing Ring Idle set in BCS_MI_MODE can a Sync
Flush be issued by setting this bit. Once this bit becomes clear again, indicating flush complete,
the command parser is re-enabled by clearing Stop Ring.

Format = Enable (cleared by HW)

4:0 Reserved: MBZ

296

8.16.1.9 BCS_UHPTR — Pending Head Pointer Register
Address Offset: 04134h–04137h
Default Value: 0000 0000h
Access: Read/Write
Size: 32 bits

Bit Description

31:3 Head Pointer Address: This register represents the GFX address offset where execution should
continue in the ring buffer following execution of an MI_ARB_CHECK command.

Format = MI_Graphics_Offset

2:1 Reserved: MBZ

0 Head Pointer Valid:

1 = Indicates that there is an updated head pointer programmed in this register

0 = No valid updated head pointer register, resume execution at the current location in the ring
buffer

This bit is set by the software to request a pre-emption. It is reset by hardware after the head
pointer in this register is read. The hardware uses the head pointer programmed in this register at
the time the reset is generated.

8.16.1.10 BCS_CNTR—Counter for the Bit Stream Decode Engine
Address Offset: 04178h–0417Bh
Default Value: FFFF FFFFh
Access: Read/Write
Size: 32 bits

Bit Description

31:0 Count Value:

Writing a Zero value to this register starts the counting.

Writing a Value of FFFF FFFF to this counter stops the counter

8.16.1.11 BCS_THRSH—Threshold for the Counter of Bit Stream Decode
Engine
Address Offset: 0417Ch–0417Fh
Default Value: 00014500h
Access: Read/Write
Size: 32 bits

Bit Description

31:0 Threshold Value: The value in this register reflects the number of clocks the bit stream decode
engine is expected to run. If the value is exceeded the counter is reset and an interrupt may be
enabled in the device.

 297

8.16.1.12 BCS_BB_ADDR—Batch Buffer Head Pointer Register
Address Offset: 04140h–04147h
Default Value: 0000 0000 0000 0000h
Access: Read-Only
Size: 64 bits

This register contains the current QWord Graphics Memory Address of the last-
initiated batch buffer.

Bit Description

63:32 Reserved: MBZ

31:3 Batch Buffer Head Pointer: This field specifies the QWord-aligned Graphics Memory Address where
the last initiated Batch Buffer is currently fetching commands. If no batch buffer is currently active,
the Valid bit will be 0 and this field will be meaningless. .

2:1 Reserved: MBZ

0 Valid:

1 = Batch buffer Valid

0 = Batch buffer Invalid

8.16.1.13 BCS_RCCID—Ring Buffer Current Context ID Register
Address Offset: 04190h–04193h
Default Value: 00 00 00 00h
Access: Read/Write
Size: 32 bits

This register contains the current “ring context ID” associated with the ring buffer.

Programming Notes:

• The current context registers must not be written directly (via MMIO). The
RCCID register should only be updated indirectly from RNCID.

Bit Description

31:12 Logical Ring Context Address (LRCA): This field contains the 4 KB-aligned Memory address of the
current Ring Context Descriptor associated with this ring buffer. See the RNCID register for the
Descriptor format.

Format = GlobalGraphicsVirtualAddress[31:12]

11:1 Reserved: MBZ

0 Valid:

1 = The other field of this register is valid. A ring context is executing and the LRCA field contains the
address of its context descriptor.

0 = The other field of this register is invalid. No ring context is executing. This streamer is idle or it is
being used in Basic Scheduler mode where the ring buffer registers are manipulated directly and
no ring context is used.

298

8.16.1.14 BCS_RNCID—Ring Buffer Next Context ID Register
Address Offset: 04194h–04197h
Default Value: 00 00 00 00h
Access: Read/Write
Size: 32 bits

This register contains the next “ring context ID” associated with the ring buffer.
Programming Notes:

• The current context (RCCID) register can be updated indirectly from this register
on a context switch event. Note that this can only be triggered by executing an
MI_ARB_CHECK command in the current context or if the current context runs dry
(head pointer becomes equal to tail pointer).

Bit Description

31:12 Logical Ring Context Address (LRCA):

This field contains the 4 KB-aligned Memory address of the next Ring Context Descriptor associated
with this ring buffer.

Format = GlobalGraphicsVirtualAddress[31:12]

11:1 Reserved: MBZ

0 Valid:

1 = The other field of this register is valid. A valid ring context is pointed at by the LRCA field of this
register.

0 = The other field of this register is invalid. No next context is available to run should the current one
execute MI_ARB_CHECK or run out of instructions.

This bit is reset by HW when the current context ends and the “next” context becomes the current
one. Once that happens, SW may submit a new “next” context.

8.17 Software Control Bit Definitions

Registers in the range 22XX are not protected from the load register immediate
instruction if the command is executed in the non-secure batch buffer.

 299

8.18 Frame Buffer Compression Control ([DevCL]
Only)

This section describes the registers associated with the Frame Buffer Compression
function. The primary motivation of FBC is power savings and thus it is only
applicable to the Mobile Product.

Programming Notes:

• Frame buffer compression has to be disabled (via FBC_CONTROL[31] = 0), and
software has to wait until compression not in progress (FBC_STATUS[31] == 0)
before changing any of the following fields:
⎯ FBC_CFB_BASE
⎯ FBC_LL_BASE
⎯ FBC_CONTROL[Mode Select]
⎯ FBC_CONTROL[Compressed Frame Buffer Stride]
⎯ FBC_CONTROL[Fence Number]

8.18.1 FBC_CFB_BASE — Compressed Frame Buffer Base Address

FBC_CFB_BASE — Compressed Frame Buffer Base Address
Register Type: MMIO
Address Offset: 3200h
Project: DevCL
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

This register specifies the physical memory address at which the Compressed Frame Buffer is
located. Note that the Compressed Frame Buffers must be in Non Cacheable memory and not relocated while
FBC is active.

Bit Description

31:12 Compressed Frame Buffer Address

Project: DevCL

Default Value: 0h

Address: PhysicalAddress[31:12]

This register specifies Bits 31:12 of the physical address of the Compressed Frame Buffer.

Programming Notes

Software must guarantee that the Compressed Frame Buffer is stored in contiguous physical
memory. The buffer must be 4K byte aligned. This field should not be changed unless FBC is
inactive (the first VBlank start after Enable Frame Buffer Compression has been cleared.)

11:0 Reserved Project: DevCL Format: MBZ

300

8.18.2 FBC_LL_BASE — Compressed Frame Line Length Buffer
Address

FBC_LL_BASE — Compressed Frame Line Length Buffer Address
Register Type: MMIO
Address Offset: 3204h
Project: DevCL
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

This register specifies the physical memory address at which the Compressed Frame Line Length Buffer is
located. Note that the Compressed Frame Buffers must be in Non Cacheable memory and not
relocated while FBC is active.

Bit Description

31:12 Compressed Frame Line Length Buffer Address

Project: DevCL

Default Value: 0h

Address: PhysicalAddress[31:12]

This register specifies Bits 31:12 of the physical address of the Compressed Frame Line Length
Buffer.

Programming Notes

Software must guarantee that the Compressed Frame Line Length Buffer is stored in contiguous
physical memory. The buffer must be 4K byte aligned. This field should not be changed unless
FBC is inactive (the first VBlank start after Enable Frame Buffer Compression has been
cleared.)

11:0 Reserved Project: DevCL Format: MBZ

 301

8.18.3 FBC_CONTROL — Frame Buffer Compression Control
Register

FBC_CONTROL — Frame Buffer Compression Control Register
Register Type: MMIO
Address Offset: 3208h
Project: DevCL
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

This register is used to control the operation of RLE-FBC.

Bit Description

31 Enable Frame Buffer Compression

Project: DevCL

Default Value: 0h

Format: Enable

This bit is used to globally enable or disable the RLE-FBC function (compression and
decompression) at the next VBlank start.

Value Name Description Project

0h Disable Disable frame buffer compression. DevCL

1h Enable Enable frame buffer compression. DevCL

30 Mode Select

Project: DevCL

Default Value: 0h

Format: U1

Value Name Description Project

0h Single Pass Single Pass mode DevCL

1h Periodic Pass Periodic mode DevCL

29:16 Interval

Project: DevCL

Default Value: 0h

Format: U14

Range [1,16383]

This is interval for which the compressor waits between passes. In Periodic Mode this field
determines the interval length, in terms of frames (VBlanks).

Zero is an illegal value.

302

FBC_CONTROL — Frame Buffer Compression Control Register
15 Stop Compressing on

Modification (DEBUG ONLY)
Project: DevCL Format: Enable

If set to ‘1’ the compressor will abort a subsequent compressing pass when any modification to
the source frame buffer is detected.

14 Uncompressible Enable Project: DevCL Format: Enable

If set to a ‘1’ the compressor marks as "Uncompressible 10" (see the FBC_TAG register) if any
scanline in a pair cannot be compressed. In Default mode Uncompressible mode is turned off.

13 Reserved Project: DevCL Format: MBZ

12:5 Compressed Frame
Buffer Stride

Project: DevCL Format: (Stride in 64Byte units) – 1

This is the stride for the compressed frame buffer. This value is used to determine the line-to-
line increment for the compressed frame buffer. Lines that cannot be compressed to a stride size
or less are not compressed at all.

This field must be set to a value less than or equal to the stride of the source (uncompressed)
frame buffer.

00h = 64B stride

4 Reserved Project: DevCL Format: MBZ

3:0 Fence Number Project: DevCL Format: U3

This field specifies the FENCE number corresponding to the placement of the uncompressed
frame buffer. (Note that only tiled frame buffers can be compressed). This field is double
buffered in hardware. Only the host accesses the uncompressed frame buffer using a fence.

8.18.4 FBC_COMMAND — Frame Buffer Compression Command
Register

FBC_COMMAND — Frame Buffer Compression Command Register
Register Type: MMIO
Address Offset: 320Ch
Project: DevCL
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

This register is used to request a frame buffer compression pass while in Single Pass mode.

Bit Description

31:1 Reserved Project: DevCL Format: MBZ

0 Compress Enable Project: DevCL Format: Enable

Software can set this bit to trigger compression in Single Pass mode. The compressor clears this
bit after the compression pass is completed. This bit is ignored in Periodic Mode (i.e., it will not
cause a compression pass and will always read as ‘0’).

 303

8.18.5 FBC_STATUS — Frame Buffer Compression Status Register

FBC_STATUS — Frame Buffer Compression Status Register
Register Type: MMIO
Address Offset: 3210h
Project: DevCL
Default Value: 2000 0000h
Access: RO / R/W
Size (in bits): 32

This register contains status information associated with the RLE-FBC function. The information is read-only in
normal operation, though some fields can be programmed as a TEST MODE.

Bit Description

31 Compressing

Project: DevCL

Security: RO

Default Value: 0h

Format: Flag

This status bit indicates that the device is currently within a compression pass.

30 Compressed

Project: DevCL

Security: RO normally, R/W TEST MODE

Default Value: 0h

Format: Flag

This bit indicates that a compressed frame buffer is available at the address contained in the
FB_CFB_BASE register.

In normal operation the compressor sets this bit when it has completed the compression pass.
During compression this bit is not set.

As a test mode this bit can be set if there is a software-created compressed buffer available at
the address in the FB_CFB_BASE register. Test-Mode software must check that compression is
not in progress before setting this bit. If RLE-FBC is enabled, the compressor will clear this bit
when it starts the next recompression pass.

304

FBC_STATUS — Frame Buffer Compression Status Register
29 Any Modified

Project: DevCL

Security: RO normally, R/W TEST MODE

Default Value: 1h

Format: Flag

1 = (default) Indicates that the frame buffer has been modified since the last compression pass.
The compressor sets this bit on the first write to the frame buffer from the application/driver
or upon an allocation within the render cache (e.g., as a result of Blt, 3D or MPEG activity).
The fence number and frame buffer base address are used to determine if a write modified
the frame buffer. The bit is cleared by the compressor at the start of the next compression
pass.

In normal operation this bit is read only (software must not write this bit) and defaults to a “1”.

As a test mode this bit can be set if there is a software-created compressed buffer with modified
lines available at the address contained the FB_CFB_BASE register. SW must check that
compression is not in progress before setting this bit. If enabled, the compressor will clear this
bit when it initiates the next compression pass. This test mode is used for continuous-mode
compression testing.

28:11 Reserved Project: DevCL Format: MBZ

10:0 Current Line Compressing

Project: DevCL

Security: RO

Default Value: 0h

Format: U11

This read only field indicates the line number that the compressor is currently processing.

If this field is 0 and the Compressing bit (Bit 31) is set, the compressor is currently on display
frame line 1.

 305

8.18.6 FBC_CONTROL2— Frame Buffer Compression 2nd Control
Register

FBC_CONTROL2— Frame Buffer Compression 2nd Control Register
Register Type: MMIO
Address Offset: 3214h
Project: DevCL
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

This register is used to control the operation of RLE-FBC.

Bit Description

31:3 Reserved Project: DevCL Format: MBZ

4 Double Buffer FBC Fence and Fence_DisplayY Offset Register Fields

Project: DevCL

Default Value: 0h

Format: Disable

Value Name Description Project

0h Double buffer DevCL

1h Don’t double buffer DevCL

3:2 FBC C3 Mode

Project: DevCL

Default Value: 0h

Format: U2

Value Name Description Project

00 FBC IDLENESS is not looked at in order to enter Self
Refresh

DevCL

01
FBC IDLENESS is looked at in order to enter
Self Refresh

DevCL

10 FBC IDLENESS is looked at in order to enter Self
Refresh. But FBC enters IDLE as it finishes
compressing the current scanline pair and enters
IDLE as soon as csunit asserts the inc3 signal.

DevCL

11 Reserved Reserved DevCL

306

FBC_CONTROL2— Frame Buffer Compression 2nd Control Register
1 CPU Fence enable

Project: DevCL

Default Value: 0h

Format: Enable

Value Name Description Project

0h Display Buffer is not in a CPU fence. No modifications
are expected from CPU to the Display Buffer.

DevCL

1h Display Buffer exists in a CPU fence. DevCL

0 Frame Buffer Compression Display Plane Select A/B

Project: DevCL

Default Value: 0h

Format: Flag

Value Name Description Project

0h Enable frame buffer compression on Plane A. All

1h Enable frame buffer compression on Plane B. All

Programming Notes Project

Before changing this bit s/w needs to make sure that FBC is disabled and the
“COMPRESSING” bit in the FBC_CONTROL register comes to a “0”.

DevCL

8.18.7 FBC_DISPYOFF — FBC Fence Display Buffer Y Offset

FBC_DISPYOFF — FBC Fence Display Buffer Y Offset
Register Type: MMIO
Address Offset: 321Bh
Project: DevCL
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

Bit Description

31:12 Reserved Project: DevCL Format: MBZ

11:0 Fence_YDisp Project: DevCL Format: U12

Y offset from the fence to the Display Buffer base

 307

8.18.8 FBC_MOD_NUM— FBC Number of Modifications for
Recompression

FBC_MOD_NUM— FBC Number of Modifications for Recompression
Register Type: MMIO
Address Offset: 3220h
Project: DevCL
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

The purpose of this register is to avoid SR exit unless the programmed number of modifications have been
made to the Display buffer.

Bit Description

31:1 FBC_Mod_Num Project: DevCL Format: U12

Number of modifications to the display buffer required before recompression is attempted.

If the number of modifications to the Frame Buffer is not equal to the programmed count value
at the end of the interval, re-compression is not attempted.

0 FBC_Mod_Num_Valid Project: DevCL Format: Flag

Only if this bit is set will the above count value be looked at.

308

8.18.9 FBC_TAG — Frame Buffer Compression TAG Interface
(DEBUG)

FBC_TAG — Frame Buffer Compression TAG Interface (DEBUG)
Register Type: MMIO
Address Offset: 3300h
Project: All
Default Value: 00000000h;
Access: R/W
Size (in bits): 49x32

The device implements 49 DWords of Tag data for RLE-FBC compression. Each DWord contains storage for a 2-
bit Tag value associated with a frame buffer line pair.

49 DWords are required to support the required 1536 display lines (= 48 x 32), as an extra DWord may be
required due to the alignment of the source (uncompressed) frame buffer. I.e., if the source frame buffer
starts on an odd tile line, line 0 corresponds to bit 1 of 3300 (bit 0 is unused) and the 49th DWord may be
required. If the source frame buffer starts on an even tile line, line 0 corresponds to bit 0 of 3300.

DWord Bit Description

0..48 31:30 Tag for lines
30&31

Project: All Format: FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

29:28 Tag for lines
29&28

Project: All Format: FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

27:26 Tag for lines
27&26

Project: All Format: FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

25:24 Tag for lines
25&24

Project: All Format: FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

23:22 Tag for lines
23&22

Project: All Format: FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

21:20 Tag for lines
21&20

Project: All Format: FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

19:18 Tag for lines
19&18

Project: All Format: FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

17:16 Tag for lines
17&16

Project: All Format: FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

 309

FBC_TAG — Frame Buffer Compression TAG Interface (DEBUG)
15:14 Tag for lines

15&14
Project: All Format: FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

13:12 Tag for lines
13&12

Project: All Format: FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

11:10 Tag for lines
11&10

Project: All Format: FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

9:8 Tag for lines 9&8 Project: All Format: FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

7:6 Tag for lines 7&6 Project: All Format: FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

5:4 Tag for lines 5&4 Project: All Format: FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

3:2 Tag for lines 3&2 Project: All Format: FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

1:0 Tag for lines 1&0 Project: All Format: FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

31:0 Tag for lines DW# + 1&0

Project: All

Format: FBC Tag See below

For lines: (DWord) + 30 and (DWord) + 31

Value Name Description Project

00 Modified At least one of the associated lines was
modified since the last compression pass
started.

All

01 Uncompressed The associated lines are uncompressed and
are candidate for compression in the next
pass

All

10 Uncompressible The associated lines are uncompressible and
are not candidate for compression in the
next pass.

All

11 Compressed The associated lines are compressed All

310

8.19 Fence Registers

8.19.1 FENCE — Graphics Memory Fence Table Registers

FENCE — Graphics Memory Fence Table Registers
Register Type: MMIO
Address Offset: 3000h
Project: All
Default Value: 00000000h;
Access: R/W
Size (in bits): 16x64

Address Offset: 03000h – 03007h: FENCE_0

 :
 :
 0307Ch – 0307Fh: FENCE_15
The graphics device performs address translation from linear space to tiled space for a CPU access to graphics
memory (See Memory Interface Functions chapter for information on these memory layouts) using the fence
registers. Note that the fence registers are used only for CPU accesses to gfx memory. Graphics
rendering/display pipelines use Per Surface Tiling (PST) parameters (found in SURFACE_STATE – see the
Sampling Engine chapter) to access tiled gfx memory.

The intent of tiling is to locate graphics data that are close (in X and Y surface axes) in one physical memory
page while still locating some amount of line oriented data sequentially in memory for display efficiency. All 3D
rendering is done such that the QWords of any one span are all located in the same memory page, improving
rendering performance. Applications view surfaces as linear, hence when the cpu access a surface that is tiled,
the gfx hardware must perform linear to tiled address conversion and access the correct physical memory
location(s) to get the data.

Tiled memory is supported for rendering and display surfaces located in graphics memory. A tiled memory
surface is a surface that has a width and height that are subsets of the tiled region’s pitch and height. The
device maintains the constants required by the memory interface to perform the address translations. Each tiled
region can have a different pitch and size. The CPU-memory interface needs the surface pitch and tile height to
perform the address translation. It uses the GMAddr (PCI-BAR) offset address to compare with the fence start
and end address, to determine if the rendering surface is tiled. The tiled address is generated based on the tile
orientation determined from the matching fence register. Fence ranges are at least 4 KB aligned. Note that the
fence registers are used only for CPU accesses to graphics memory.

A Tile represents 4 KB of memory. Tile height is 8 rows for X major tiles and 32 rows for Y major tiles. Tile
Pitch is 512Bs for X major tiles and 128Bs for Y major tiles. The surface pitch is programmed in 128B units
such that the pitch is an integer multiple of “tile pitch”.

Engine restrictions on tile surface usage are detailed in Surface Placement Restrictions (Memory Interface
Functions). Note that X major tiles can be used for Sampler, Color, Depth, motion compensation references and
motion compensation destination, Display, Overlay, GDI Blt source and destination surfaces. Y major tiles can
be used for Sampler, depth, color and motion compensation assuming they do not need to be displayed. GDI
Blit operations, overlay and display cannot used Tiled Y orientations.

A “PST” graphics surface that will also be accessed via fence needs its base address to be tile row aligned.

Hardware handles the flushing of any pending cycles when software changes the fence upper/lower bounds.

Fence Table Registers occupy the address range specified above. Each Fence Table Register has the following
format.

FENCE registers are not reset by a graphics reset. They will maintain their values unless a full chipset reset is
performed.

 311

FENCE — Graphics Memory Fence Table Registers
DWord Bit Description

0..15 63:44 Fence Upper Bound

Project: All

Address: GraphicsAddress[31:12]

Bits 31:12 of the ending Graphics Address of the fence region. Fence regions must be
aligned to a 4KB page. This address represents the last 4KB page of the fence region
(Upper Bound is included in the fence region).

Graphics Address is the offset within GMADR space.

45:32 Reserved Project: All Format: MBZ

31:12 Fence Lower Bound

Project: All

Address: GraphicsAddress[31:12]

Bits 31:12 of the starting Graphics Address of the fence region. Fence regions must
be aligned to 4KB. This address represents the first 4KB page of the fence region
(Lowe Bound is included in the fence region).

Graphics Address is the offset within GMADR space.

11:2 Fence Pitch

Project: All

Default Value: 0h DefaultVaueDesc

Format: U10-1 Width in 128 bytes

This field specifies the width (pitch) of the fence region in multiple of “tile width”. For
Tile X this field must be programmed to a multiple of 512B (“003” is the minimum
value) and for Tile Y this field must be programmed to a multiple of 128B (“000” is
the minimum value).

000h = 128B
001h = 256B
...
3FFh = 128KB

1 Tile Walk

Project: All

Format: MI_TileWalk

This field specifies the spatial ordering of QWords within tiles.

Value Name Description Project

0h MI_TILE_XMAJOR Consecutive SWords (32 Bytes)
sequenced in the X direction

All

1h MI_TILE_YMAJOR Consecutive OWords (16 Bytes)
sequenced in the Y direction

All

312

FENCE — Graphics Memory Fence Table Registers
0 Fence Valid

Project: All

Format: MI_ FenceValid

This field specifies whether or not this fence register defines a fence region.

Value Name Description Project

0h MI_FENCE_INVALID All

1h MI_FENCE_VALID All

8.20 GFX MMIO – MCHBAR Aperture
Address Offset: 10000h – 13FFFh
Default Value: Same as MCHBAR
Access: Aligned Word, Dword or Qword Read/Write

This range defined in the graphics MMIO range is an alias with which graphics driver
can read and write registers defined in the MCHBAR MMIO space claimed thru Device
#0. Attributes for registers defined within the MCHBAR space are preserved when the
same registers are accessed via this space. Registers that the graphics driver requires
access to are Rank Throttling, GMCH Throttling, Thermal Sensor etc. Product specific
EDS has the details of MCHBAR register set.

The Alias functions works for MMIO access from the CPU only. A command stream
load register immediate will drop the data and store register immediate will return all
Zeros.

Graphics MMIO registers can be accessed thru MMIO BARs in function #0 and function
#1 in Device #2. The aliasing mechanism is turned off if memory access to the
corresponding function is turned off via software or in certain power states.

§§

 313

314

9 Memory Interface Commands
for Rendering Engine

9.1 Introduction

This chapter describes the formats of the “Memory Interface” commands, including
brief descriptions of their use. The functions performed by these commands are
discussed fully in the Memory Interface Functions Device Programming Environment
chapter.

This chapter describes MI Commands for the original graphics processing engine. The
term “for Rendering Engine” in the title has been added to differentiate this chapter
from a similar one describing the MI commands for the Media Decode Engine.

The commands detailed in this chapter are used across products within the Gen4
family. However, slight changes may be present in some commands (i.e., for features
added or removed), or some commands may be removed entirely. Refer to the
Preface chapter for product specific summary.

9.2 MI_ARB_CHECK

MI_ARB_CHECK
Project: All Length Bias: 1

The MI_ARB_CHECK instruction is used to check the ring buffer double buffered head pointer (register UHPTR).
This instruction can be used to pre-empt the current execution of the ring buffer. Note that the valid bit in the
updated head pointer register needs to be set for the command streamer to be pre-empted.

Programming Note:

• The current head pointer is loaded with the updated head pointer register independent of the location of the
updated head

• If the current head pointer and the updated head pointer register are equal, hardware will automatically
reset the valid bit corresponding to the UHPTR

• This instruction can be placed only in a ring buffer, never in a batch buffer.

• For pre-emption, the wrap count in the ring buffer head register is no longer maintained by hardware. The
hardware updates the wrap count to the value in the UHPTR register.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default Value: 05h MI_ARB_CHECK Format: OpCode

22:0 Reserved Project: All Format: MBZ

 315

9.3 MI_BATCH_BUFFER_END

MI_BATCH_BUFFER_END
Project: All Length Bias: 1

The MI_BATCH_BUFFER_END command is used to terminate the execution of commands stored in a batch
buffer initiated using a MI_BATCH_BUFFER_START command.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default Value: 0Ah MI_ BATCH_BUFFER_END Format: OpCode

22:0 Reserved Project: All Format: MBZ

9.4 MI_BATCH_BUFFER_START

MI_BATCH_BUFFER_START
Project: All Length Bias: 2

The MI_BATCH_BUFFER_START command is used to initiate the execution of commands stored in a batch
buffer. For restrictions on the location of batch buffers, see Batch Buffers in the Device Programming Interface
chapter of MI Functions.

The batch buffer can be specified as secure or non-secure, determining the operations considered valid when
initiated from within the buffer and any attached (chained) batch buffers. See Batch Buffer Protection in the
Device Programming Interface chapter of MI Functions.

Programming Notes:

• Batch buffers referenced with physical addresses must not extend beyond the end of the starting physical
page (can’t span physical pages). However, a batch buffer initiated using a physical address can chain to
another buffer in another physical page.

• A batch buffer initiated with this command must end either with a MI_BATCH_BUFFER_END command or by
chaining to another batch buffer with an MI_BATCH_BUFFER_START command.

• For virtual batch buffers, it is essential that the address location beyond the current page be populated
inside the GTT. HW performs over-fetch of the command addresses and any over-fetch requires a valid TLB
entry. A single extra page beyond the batch buffer is sufficient.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default Value: 31h MI_BATCH_BUFFER_START Format: OpCode

22:12 Reserved Project: All Format: MBZ

11 Reserved Project: All Format: MBZ

316

MI_BATCH_BUFFER_START
10:9 Command Arbitration Control

This field controls where command arbitration can occur during the batch buffer.

Value Name Description Project

0h Arbitrate only
at chain points

Legacy Mode. Overridden by
MI_ARB_ON_OFF = Off

All

1h Arbitrate
between
commands

Arbitration can occur between any pair of
commands, or during execution of a primitive
command. Overridden by MI_ARB_ON_OFF
= Off

All

2h Reserved All

3h No Arbitration The Batch Buffer execution cannot be pre-
empted until control returns to the initiating
ring. I.e., command arbitration does not
occur during or between batch buffer chains.
This avoids software from having to place
MI_ARB_ON_OFF packets around batch
buffers to prevent interruption.

All

8 Reserved Project: All Format: MBZ

Although Buffer Security Indicator is implemented, there is no usage model for it
and it need not be validated.

7 Memory Space Select

Project: All

Specifies memory space associated with the Buffer Start Address.

Value Name Description Project

0h Physical
Memory

Physical Main (unsnooped) Memory. The 4
bits of the Batch Buffer Start Address
Extension are prefixed to bits 31:6 of
Buffer Start Address to specify an address
within physical main memory. In this mode
the hardware must not fetch data beyond a
4KB boundary.

All

1h Graphics
Memory

(GTT-mapped) Bits 31:2 of a graphics
memory address. The GGTT is used to
translate this address.

All

Programming Notes Project

Batch buffers referenced with physical addresses must not extend
beyond the end of the starting physical page (can’t span physical pages).
However, a batch buffer initiated using a physical address can chain to
another buffer in another physical page.

All

Batch buffers can chain between (but cannot span) memory spaces. All

6 Reserved Project: All Format: MBZ

 317

MI_BATCH_BUFFER_START
5:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total - Bias

1 31:6 Batch Buffer Start Address

Project: All

Address: SelectableAddress(Memory Space Select)[31:6]

Surface Type: BatchBuffer

This field specifies Bits 31:6 of the starting address of the 64B aligned batch buffer.

The address space used depends on Memory Space Select (see above).

5:4 Reserved Project: All Format: MBZ

3:0 Batch Buffer Start Address Extension

Project: All

Address: PhysicalAddressExtension[35:32]

This field specifies bits 35:32 of the starting address of the 64B-aligned physical batch
buffer. This field must be zero for non-physical Batch Buffers.

318

9.5 MI_DISPLAY_FLIP

MI_DISPLAY_FLIP
Project: All Length Bias: 2

The MI_DISPLAY_FLIP command is used to request a specific display plane to switch (flip) to display a new
buffer. The buffer is specified with a starting address and pitch. The tiled attribute of the buffer start address is
programmed as part of the packet.

The operation this command performs is also known as a “display flip request” operation – in that the flip
operation itself will occur at some point in the future. This command specifies when the flip operation is to
occur: either synchronously with vertical retrace to avoid tearing artifacts (possibly on a future frame), or
asynchronously (as soon as possible) to minimize rendering stalls at the cost of tearing artifacts.

Programming Notes:

1. Prior to a display flip operation being requested, software must ensure that the new display
buffer is coherent in memory. This will typically require MI_DISPLAY_FLIP to be included in
a PIPE_CONTROL command to flush pending rendering operations and any pending write
buffers/caches, although the use of an MI_FLUSH command will also suffice albeit with
greater performance penalty. (Note that completion of the MI_FLUSH command does not
guarantee that previous outstanding flip operations have completed).

2. This command simply requests a display flip operation -- command execution then continues
normally. There is no guarantee that the flip (even if asynchronous) will occur prior to
subsequent commands being executed. (Note that completion of the MI_FLUSH command
does not guarantee that outstanding flip operations have completed). The
MI_WAIT_FOR_EVENT command can be used to provide this synchronization – by pausing
command execution until a pending flip has actually completed. This synchronization can
also be performed by use of the Display Flip Pending hardware status. See Display Flip
Synchronization in the Device Programming Interface chapter of MI Functions.

3. After a display flip operation is requested, software is responsible for initiating any required
synchronization with subsequent buffer clear or rendering operations. For multi-buffering
(e.g., double buffering) operations, this will typically require updating SURFACE_STATE or
the binding table to change the rendering (back) buffer. In addition, prior to any
subsequent clear or rendering operations, software must typically ensure that the new
rendering buffer is not actively being displayed. Again, the MI_WAIT_FOR_EVENT command
or Display Flip Pending hardware status can be used to provide this synchronization. See
Display Flip Synchronization in the Device Programming Interface chapter of MI Functions.

4. The display buffer command uses the X and Y offset for the tiled buffers from the Display
Interface registers. Software is allowed to change the offset via the MMIO interface
irrespective of the flip commands enqueued in the command stream. For tiled buffers, the
display subsystem uses the X and Y offset in generation of the final request to memory. The
offset is always updated on the next vblank for both Synchronous and Asynch Flips. It is not
necessary to have a flip enqueued to update the X and Y offset

5. The display buffer command uses the linear dword offset for the linear buffers from the
Display Interface registers. Software is allowed to change the offset via the MMIO interface
irrespective of the flip commands enqueued in the command stream. For linear buffers, the
display subsystem uses the dword offset in generation of the final request to memory.

• For synchronous flips the offset is updated on the next vblank. It is not necessary to
have a sync flip enqueued to update the dword offset.

• Linear memory does not support asynchronous flips

 319

MI_DISPLAY_FLIP
6. DWord 3 (panel fitter flip) must not be sent with asynchronous flips. It is only allowed to be

sent with synchronous flips.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default Value: 14h MI_DISPLAY_FLIP Format: OpCode

22 Asynchronous Flip

Project: All

Format: Boolean

This field specifies whether the flip operation should be performed asynchronously to
vertical retrace.

If FALSE, the flip will occur during the vertical blanking interval – thus avoiding any
tearing artifacts.

If TRUE, the flip will occur “as soon as possible” – and may exhibit tearing artifacts

Value Name Description Project

0h Asynchronous Flip All

1h Synchronous Flip All

Programming Notes Project

• This command must not be used to perform an Asynchronous Flip to
the same address as specified in the previously executed
Asynchronous Flip, or the device operation is UNDEFINED.

• The Display Buffer Pitch and Tile parameter fields are ignored for
asynchronous flips (i.e., the new buffer must have the same pitch/tile
format as the previous buffer).

• Supported on X-Tiled Frame buffers only.

• For Asynch Flips the Buffers used must be 32KB aligned.

• The display stride must be >=8KB when doing Asynch Flips together
with 180 display rotation.

• The display stride must be power of 2 when doing Asynch Flips.

• Supported on Display Planes A and B only

• Not supported via the flip queue (if this bit is set, Flip Queue Select
must be 0)

All

320

MI_DISPLAY_FLIP
21:20 Display (Plane) Select

Project: All

Format: U2

This field selects which display plane is to perform the flip operation.

Value Name Description Project

0h Display Plane A All

1h Display Plane A All

2h Display Plane C All

3h Display Sprite A Reserved

3h Reserved All

3h Display Sprite B Reserved

19:6 Reserved Project: All Format: MBZ

5:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

1

31:30 Reserved Project: All Format: MBZ

29 Flip Queue Select

Project: All

This field selects whether this flip is placed in the flip queue or is a standard (legacy)
flip request.

Value Name Description Project

0h Standard Flip Use standard (legacy) synchronous or
asynchronous flipping

All

1h Enqueue Flip Enqueue Flip (see Display Functions for a
description of the Flip Queue)

All

Programming Notes Project

Performing a legacy synchronous or asynchronous flip will drop any
outstanding flips in the flip queue as well as any previous synchronous flip
that has not yet completed.

All

28:15 Reserved Project: All Format: MBZ

 321

MI_DISPLAY_FLIP
14:3 Display Buffer Pitch

Project: All

Default Value: 0h DefaultVaueDesc

Format: U12 Quad Words

For Synchronous or Queued Flips only, this field specifies the QWord pitch of the new
display buffer.

For Asynchronous Flips, this parameter is ignored. All the flips in a flip chain should
maintain the same pitch as programmed with the last synchronous flip or direct thru
mmio.

2:0 Reserved Project: All Format: MBZ

2 31:12 Display Buffer Base Address

Project: All

Address: GraphicsAddress[31:12]

This field specifies Bits 31:12 of the Graphics Address of the new display buffer. The
display buffer must be pixel aligned within the Graphics Address space. (Refer to the
Display Address Start Address Register description in the Display Registers chapter).

Programming Notes

• The Display buffer must reside completely in Main Memory
• This address is always translated via the global (rather than per-process)

GTT

11:1 Reserved Project: All Format: MBZ

0 Tile Parameter

Project: All

Default Value: 0h DefaultVaueDesc

Address: GraphicsAddress[31:0]

For Asynchronous Flips, this parameter is ignored. All the flips in a flip chain should
maintain the same tile parameter as programmed with the last synchronous flip or
direct thru mmio.

For Synchronous Flips, tile parameter can change for different flips in the flip chain

Value Name Description Project

0h Linear For Syncronous Flips Only All

1h Tiled X All

3 31 Enable Panel
Fitter

Project: All Format: Enable

Enables the panel fitter on the pipe attached to the plane selected for this flip.

322

MI_DISPLAY_FLIP
30 Panel Fitter Select

Project: All

Value Name Description Project

0h 7x5 Select 7x5 capable panel fitter All

1h 3x3 Select 3x3 capable panel fitter All

29:28 Reserved Project: All Format: MBZ

27:16 Pipe Horizontal Source Image Size Project
:

All Format: U32

This 12-bit field specifies Horizontal source image size up to 4096. This determines
the size of the image created by the display planes sent to the blender. The value
programmed should be the source image size minus one.

This field obeys all the rules of the Horizontal Source Image Size registers.

The pipe affected will be the pipe attached to the plane selected for this flip.

15:12 Reserved Project: All Format: MBZ

11:0 Pipe Vertical Source Image ReSize Project
:

All Format: U32

This 12-bit field specifies the new vertical source image size up to 4096 lines. This
determines the size of the image created by the display planes sent to the blender.
The value programmed should be the source image size minus one.

 This field obeys all the rules of the Vertical Source Image Size registers.

The pipe affected will be the pipe attached to the plane selected for this flip.

 323

9.6 MI_FLUSH

MI_FLUSH
Project: All Length Bias: 1

The MI_FLUSH command is used to perform an internal “flush” operation. The parser pauses on an internal
flush until all drawing engines have completed any pending operations and the read caches are invalidated
including the texture cache accessed via the Sampler or the data port. In addition, this command can also be
used to:

1. Flush any dirty data in the Render Cache to memory. This is done by default, however this
can be inhibited.

2. Invalidate the state and command cache.
Usage note: After this command is completed and followed by a Store DWord-type command, CPU access to
graphics memory will be coherent (assuming the Render Cache flush is not inhibited).

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default Value: 04h MI_FLUSH Format: OpCode

22:6 Reserved Project: All Format: MBZ

5:4 Reserved Project: All Format: MBZ

3 Global Snapshot Count Reset Project: All Format: Boolean

If set, the snapshot registers defined for the Gen4 debug capability are reset after the
flush completes. The Statistics Counters are also reset; SW should never set this bit
during normal operation since the Statistics Counters are intended to be free running.

Programming Notes Project

PS_DEPTH_COUNT and TIMESTAMP are not reset by MI_FLUSH with this bit
set. TIMESTAMP and PS_DEPTH_COUNT can be reset by writing 0 to them

All

Value Name Description Project

0h Don’t Reset Do not reset the snapshot counts or Statistics
Counters.

All

1h Reset Reset the snapshot count in Gen4 for all the
units and reset the Statistics Counters except
as noted above.

All

2 Render Cache Flush Inhibit Project
:

All Format: Boolean

If set, the Render Cache is not flushed as part of the processing of this command.

Value Name Description Project

0h Flush Flush the Render Cache All

1h Don’t Flush Do not flush the Render Cache All

324

MI_FLUSH
1 State/Instruction Cache Invalidate Project

:
All Format: Boolean

If set, Invalidates the State and Instruction Cache

Value Name Description Project

0h Don’t
Invalidate

Leave State/Instruction Cache unaffected All

1h Invalidate Invalidate State/Instruction Cache All

0 Reserved Project: All Format: MBZ

9.7 MI_LOAD_REGISTER_IMM

MI_LOAD_REGISTER_IMM
Project: All Length Bias: 2

The MI_LOAD_REGISTER_IMM command requests a write of up to a DWord constant supplied in the command
to the specified Register Offset (i.e., offset into Memory-Mapped Register Range). The register is loaded before
the next command is executed.

Programming Notes:

The behavior of this command is controlled by Dword 3, Bit 8 (Disable Register Access) of the RINGBUF
register. If this command is disallowed then the command stream converts it to a NOOP.

If this command is executed from a BB then the behavior of this command is controlled by Dword 0, Bit 8
(Security Indicator) of the BATCH_BUFFER_START Command. If the batch buffer is insecure then the command
stream converts this command to a NOOP. Note that the corresponding ring buffer must allow a register update
for this command to execute.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default Value: 22h MI_ Format: OpCode

22:12 Reserved Project: All Format: MBZ

11:8 Byte Write Disables

Format: Enable[4] Bit 8 corresponds to Data DWord
[7:0]

Range Must specify a valid register write operation

This field specifies which bytes of the Data DWord are not to be written to the
DWord offset specified in Register Offset.

7:6 Reserved Project: All Format: MBZ

 325

MI_LOAD_REGISTER_IMM
5:0 DWord Length

Default Value: 1h Excludes DWord (0,1)

Format: =n Total Length - 2

1 31:2 Register Offset

Format: U30

Address: MmioAddress[31:2]

This field specifies bits [31:2] of the offset into the Memory Mapped Register Range
(i.e., this field specifies a DWord offset).

1:0 Reserved Project: All Format: MBZ

2 31:0 Data DWord

Mask: Bytes Write Disables

Format: U32

This field specifies the DWord value to be written to the targeted location.

9.8 MI_LOAD_SCAN_LINES_EXCL

MI_LOAD_SCAN_LINES_EXCL
Project: All Length Bias: 2

The MI_LOAD_SCAN_LINES_EXCL command is used to initialize the Scan Line Window registers for a specific
Display Pipe. If the display refresh is outside this window the Display Engine asserts a signal that is used by
the command parser to process the WAIT_FOR_EVENT command (i.e., the parser will wait while outside). This
command overrides the Scan Line Window defined by any previous MI_LOAD_SCAN_LINES_INCL or
MI_LOAD_SCAN_LINES_EXCL commands targeting the specific display pipe.

Note: The two scan-line numbers are inclusive. If programmed to the same values, that single line defines the
region in question.

Always place an even number of MI_LOAD_SCAN_LINES_EXCL/INCL at a time into the ring buffer. If only a
single MI_LOAD_SCAN_LINES_EXCL/INCL is desired, just add a second identical
MI_LOAD_SCAN_LINES_EXCL/INCL command.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default Value: 13h MI_LOAD_SCAN_LINES_EXCL Format: OpCode

22 Reserved Project: All Format: MBZ

326

MI_LOAD_SCAN_LINES_EXCL
21:20 Display Pipe Select

Project: All

Format: U2

This field selects which Display Engine (pipe) this command is targeting.

Value Name Description Project

0h Display Pipe A All

1h Display Pipe B All

19:6 Reserved Project: All Format: MBZ

5:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

1 31:16 Start Scan Line Number

Project: All

Format: U16 In scan lines, where scan line 0 is the first line of the
display frame.

Range [0,Display Buffer height in lines-1]

This field specifies the starting scan line number of the Scan Line Window.

31:16 End Scan Line Number

Project: All

Format: U16 In scan lines, where scan line 0 is the first line of the
display frame.

Range [0,Display Buffer height in lines-1]

This field specifies the ending scan line number of the Scan Line Window.

 327

9.9 MI_LOAD_SCAN_LINES_INCL

MI_LOAD_SCAN_LINES_INCL
Project: All Length Bias: 2

The MI_LOAD_SCAN_LINES_INCL command is used to initialize the Scan Line Window registers for a specific
Display Engine. If the display refresh is within this window the Display Engine asserts a signal that is used by
the command parser to process the WAIT_FOR_EVENT command (i.e., the parser will wait while inside of the
window). This command overrides the Scan Line Window defined by any previous MI_LOAD_SCAN_LINES_INCL
or MI_LOAD_SCAN_LINES_EXCL commands targeting the specific display.

Always place an even number of MI_LOAD_SCAN_LINES_EXCL/INCL at a time into the ring buffer. If only a
single MI_LOAD_SCAN_LINES_EXCL/INCL is desired, just add a second identical

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default Value: 12h MI_LOAD_SCAN_LINES_INCL Format: OpCode

22 Reserved Project: All Format: MBZ

21:20 Display Pipe Select

Project: All

Format: U2

This field selects which Display Engine (pipe) this command is targeting.

Value Name Description Project

0h Display Pipe A All

1h Display Pipe B All

19:6 Reserved Project: All Format: MBZ

5:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

1 31:16 Start Scan Line Number

Project: All

Format: U16 In scan lines, where scan line 0 is the first line of the
display frame.

Range [0,Display Buffer height in lines-1]

This field specifies the starting scan line number of the Scan Line Window.

328

MI_LOAD_SCAN_LINES_INCL
31:16 End Scan Line Number

Project: All

Format: U16 In scan lines, where scan line 0 is the first line of the
display frame.

Range [0,Display Buffer height in lines-1]

This field specifies the ending scan line number of the Scan Line Window.

9.10 MI_NOOP

MI_NOOP
Project: All Length Bias: 1

The MI_NOOP command basically performs a “no operation” in the command stream and is typically used to
pad the command stream (e.g., in order to pad out a batch buffer to a QWord boundary). However, there is
one minor (optional) function this command can perform – a 22-bit value can be loaded into the MI NOPID
register. This provides a general-purpose command stream tagging ("breadcrumb") mechanism (e.g., to
provide sequencing information for a subsequent breakpoint interrupt).

Performance Note: The process time to execute a NOP command is min of 6 clock cycles. One example usage
of the improved NOP throughput is for some multi-pass media application whereas some unwanted media
object commands are replaced by MI_NOOP without repacking the commands in a batch buffer.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default Value: 0h MI_NOOP Format: OpCode

22 Identification Number Register Write Enable

Project: All

Format: Enable

This field enables the value in the Identification Number field to be written into the MI
NOPID register. If disabled, that register is unmodified – making this command an
effective “no operation” function.

Value Name Description Project

0h Disable Do not write the NOP_ID register. All

1h Enable Write the NOP_ID register. All

31:0 Identification Number Project
:

All Format: U22

This field contains a 22-bit number which can be written to the MI NOPID register.

 329

9.11 MI_OVERLAY_FLIP

MI_OVERLAY_FLIP
Project: All Length Bias: 2

The MI_OVERLAY_FLIP command is used to specify memory buffers that will (optionally) be used during the
next Vertical Blank period to update the specified Overlay control register set and Overlay filter coefficients
(respectively). The update of the Overlay registers is referred to as an “Overlay Flip”, making this command an
“Overlay Flip Request”.

Programming Notes:

1. Prior to an overlay flip operation being requested, software must ensure that the memory
buffer used to update the overlay registers is coherent (i.e., there are no outstanding
buffered writes to that memory buffer).

2. Prior to an overlay flip operation being requested, software must ensure that the new
overlay buffer is coherent in memory. This will typically require the use of an MI_FLUSH
command to flush pending rendering operations and any pending write buffers/caches.

3. This command simply requests an overlay flip operation -- command execution then
continues normally. There is no mechanism to prevent a new flip request from overriding
any outstanding flip request. (Note that completion of the MI_FLUSH command does not
guarantee that outstanding flip operations have completed). The MI_WAIT_FOR_EVENT
command can be used to provide this synchronization – by pausing command execution
until a pending overlay flip has actually completed or that the display refresh has proceeded
past a specific scan line window. This synchronization can also be performed by use of the
Overlay Flip Pending hardware status. See Overlay Flip Synchronization in the Device
Programming Interface chapter of MI Functions.

4. After an overlay flip operation is requested, software is responsible for initiating any required
synchronization with subsequent buffer clear or rendering operations targeting the previous
(“flipped-from”) overlay buffer.

5. Registers and Coefficients are located in Main memory.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default Value: 11h MI_OVERLAY_FLIP Format: OpCode

330

MI_OVERLAY_FLIP
22:21 Mode Flags

Project: All

Format: U2

Value Name Description Project

00b Flip Continue Do not flush or change the state of the
Render Cache or Overlay.

All

01b Flip On Flush Render Cache, drawing pipeline and
then set render cache in overlay Mode before
executing the Flip. The Flip turns on the
overlay engine. This Render Cache flush is
not applicable in a Mobile Gfx controller which
has an independent overlay data buffer.

All

10b Flip Off Flush Render Cache, drawing pipeline and
then clear Overlay Mode and turn off the
overlay engine. Do not update registers and
coefficients from memory. This Render Cache
flush is required because overlay shares the
render cache in desktop graphics controllers.
This bit is generally not applicable in a Mobile
graphics controller which has an independent
overlay data buffer.

All

11b Reserved All

20:6 Reserved Project: All Format: MBZ

5:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

1 31:12 Register and Coefficient Update Address

Project: All

Address: GlobalGraphicsAddress[31:12]

Surface Type: U32

This field specifies the memory buffer used to update the overlay registers and
Coefficients. The Overlay Update Address Register specifies a Global GTT address
used by the Overlay at the next VBLANK event to start requesting overlay control
register and Coefficient data from memory. Software should ensure that the Global
GTT address is page-aligned, so that the entire overlay control registers and
coefficients are within one 4K page.

11:1 Reserved Project: All Format: MBZ

 331

MI_OVERLAY_FLIP
0 Overlay Filter Coefficient Register Update Flag (OFC_UPDATE)

Project: All

This field indicates if hardware should load overlay filter coefficients from memory.

Turning overlay off without loading the Overlay Filter Coefficient registers via
MI_OVERLAY_FLIP can lead to a hang.

Value Name Description Project

0h Don’t Update Do not update overlay filter coefficients. All

1h Update Hardware loads the overlay filter coefficients
from memory to on-chip registers.

All

9.11.1 Turning the Overlay Off

The Overlay Engine is turned off by issuing an MI_OVERLAY_FLIP with the Mode
Flags set to ‘10’b (aka “Flip Off), thereby flushing and reconfiguring the internal
caches and putting the Overlay Engine into a low-power state. Software must ensure
that the subsequent Overlay Flip has occurred at the next associated VBlank, typically
by use of the Overlay Flip Pending Wait Enable bit of the MI_WAIT_FOR_EVENT
command. In addition, the Display Pipe to which the overlay is attached must
continue running until the sequence completes, or device operation is UNDEFINED.

In order to completely shutdown the Overlay Engine, and additional step is required
before the use of the “Flip Off” sequence (as described above). The Overlay Enable
(OV_ENBL) bit of the Overlay Command (OCOMD) Register must be cleared via a
normal Overlay Register load accomplished via issuance of an MI_OVERLAY_FLIP with
Mode Flags = ‘00’b (aka Flip Continue). This operation will effectively turn off the
display of the overlay. Note that a wait-for-overlay-VBlank must be used to ensure
this Flip Continue has completed. The subsequent Flip-Off sequence (above) will
reconfigure the cache for non-overlay operation and gracefully power down the
Overlay Engine.

9.11.2 Valid Overlay Flip Sequences

The only architecturally valid Overlay Flip sequence is shown below:

• FlipOn

• some number of FlipContinues

• FlipOff

For example, multiple FlipOn commands (without intervening FlipOff commands) are
invalid; multiple FlipOff commands (without intervening FlipOn commands) are
invalid; FlipContinue without a preceding FlipOn is invalid.

332

9.12 MI_REPORT_HEAD

MI_REPORT_HEAD
Project: All Length Bias: 1

The MI_REPORT_HEAD command causes the Head Pointer value of the active ring buffer to be written to a
cacheable (snooped) system memory location.

The location written is relative to the address programmed in the Hardware Status Page Address Register.

Programming Notes:

This command must not be executed from a Batch Buffer (Refer to the description of the HSW_PGA register).

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default Value: 07h MI_REPORT_HEAD Format: OpCode

22:0 Reserved Project: All Format: MBZ

9.13 MI_SET_CONTEXT

MI_SET_CONTEXT
Project: All Length Bias: 2

The MI_SET_CONTEXT command is used to specify the logical context associated with the hardware context. A
logical context is an area in memory used to store hardware context information, and the context is referenced
via a 2KB-aligned pointer. If the (new) logical context is different (i.e., at a different memory address), the
device will proceed to save the current HW context values to the current logical context address, and then
restore (load) the new logical context by reading the context from the new address and loading it into the
hardware context state. If the logical context address specified in this command matches the current logical
context address, this command is effectively treated as a NOP.

This command also includes some controls over the context save/restore process.

• The Force Restore bit can be used to refresh the on-chip device state from the same memory address if
the indirect state buffers have been modified.

• The Restore Inhibit bit can be used to prevent the new context from being loaded at all. This must be
used to prevent an uninitialized context from being loaded. Once software has initialized a context (by
setting all state variables to initial values via commands), the context can then be stored and restored
normally.

• This command needs to be always followed by a single MI_NOOP instruction to workaround a Gen4 silicon
issue.

 333

MI_SET_CONTEXT
DWord Bit Description

0 31:29 Command Type

Default
Value:

0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default
Value:

18h MI_SET_CONTEXT Format: OpCode

22:6 Reserved Project: All Format: MBZ

5:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

1 31:11 Logical Context Address

Project: All

Address: PhysicalAddress[31:11]

Surface Type: Logical Context

This field contains the 2KB-aligned physical address of the Logical Context that is to
be loaded into the hardware context. If this address is equal to the CCID register
associated with the current ring, no load will occur. Prior to loading this new context,
the device will save the existing context as required. After the context switch
operation completes, this address will be loaded into the associated CCID register.

10 Reserved Project: All Format: MBZ

9 HD DVD Context

Project: All

Value Name Description Project

0h Regular Context All

1h HD DVD Context Special considerations for TDP allow for
higher voltage and frequency.

All

334

MI_SET_CONTEXT
8 Memory Space Select

Project: All

BitFieldDesc

Value Name Description Project

0h Physical Memory Physical Main (unsnooped) Memory. The
4 bits of Physical Start Address
Extension are prefixed to bits 31:11 to
specify a 2KB aligned address within
physical main memory. In this mode the
hardware must not fetch data beyond a
4KB boundary.

All

1h Global Graphics
Memory

Global Graphics (GTT-mapped) Memory.
Bits 31:11 of a graphics memory address.
The GTT whose address is contained in
the PGTBL_CTL register is used to
translate this address.

All

7:4 Logical Context Address Extension

Project: All

Address: PhysicalAddressExtension[35:32]

Surface Type: Logical Context

This field specified Bits 35:32 of the starting address of the 2KB-aligned physical
logical context address. This field must be zero for global gtt context address.

3 Extended State Save Enable Project: All Format: U32

If set, the extended state identified in the Logical Context Data section of the Memory
Data Formats chapter is saved as part of switching away from this logical context.
This bit will be stored in the associated CCID register to control the context save
operation when switching away from this context (as part of a subsequent
MI_SET_CONTEXT command).

2 Extended State Restore
Enable

Project: All Format
:

U32

If set, the extended state identified in the Logical Context Data section of the Memory
Data Formats chapter is loaded (or restored) as part of switching to this logical context.
This method can be used to restore things such as filter coefficients using the indirect
state restore followed by a restore of the extended logical context data. This bit affects
the switch (if required) to the context specified in Logical Context Address. This bit
will also be stored in the associated CCID register to control a subsequent context save
operation when switching to this context (as part of a subsequent ring buffer switch).

1 Force Restore Project: All Format: U32

When switching to this logical context a comparison between Logical Context Address
and the contests of the CCID register is performed. Normally, matching addresses
prevent a context restore from occurring; however, when this bit is set a context
restore is forced to occur. This bit cannot be set with Restore Inhibit.

Note: This bit is not saved in the associated CCID register. It only affects the
processing of this command.

 335

MI_SET_CONTEXT
0 Restore Inhibit Project: All Format: U32

If set, the restore of the HW context from the logical context specified by Logical
Context Address is inhibited (i.e., the existing HW context values are maintained).
This bit must be used to prevent the loading of an uninitialized logical context. If
clear, the context switch proceeds normally. This bit cannot be set with Force Restore.

Note: This bit is not saved in the associated CCID register. It only affects the
processing of this command.

9.14 MI_STORE_DATA_IMM

MI_STORE_DATA_IMM
Project: All Length Bias: 2

The MI_STORE_DATA_IMM command requests a write of the QWord constant supplied in the packet to the
specified Memory Address. As the write targets a System Memory Address, the write operation is coherent with
the CPU cache (i.e., the processor cache is snooped).

Programming Notes:

• This command should not be used within a “non-secure” batch buffer to access per-process virtual space.
Doing so will cause the command parser to perform the write with byte enables turned off. This command
can be used within ring buffers and/or “secure” batch buffers.

• This command can be used for general software synchronization through variables in cacheable memory
(i.e., where software does not need to poll un-cached memory or device registers).

• This command simply initiates the write operation with command execution proceeding normally. Although
the write operation is guaranteed to complete “eventually”, there is no mechanism to synchronize command
execution with the completion (or even initiation) of these operations.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default Value: 20h MI_STORE_DATA_IMM Format: OpCode

336

MI_STORE_DATA_IMM
22 Memory Address Type

Project: All

Value Name Description Project

0h Physical Address All

1h Graphics Address Hardware will translate this address
using the operating GTT. The GTT
(global or per-process) used for the
translation will be the same GTT used
to access the buffer executing this
command.

All

21 BitFieldName

Project: All

This bit will be ignored and treated as if clear when executing from a non-privileged
batch buffer. It is allowed for this bit to be clear when executing this command from
a privileged (secure) batch buffer.

Value Name Description Project

0h Per Process
Graphics
Address

 All

1h Global
Graphics
Address

This command will use the global GTT to
translate the Address and this command
must be executing from a privileged
(secure) batch buffer.

All

Programming Notes

Notes

20:6 Reserved Project: All Format: MBZ

5:0 DWord Length

Default Value: 2h Excludes DWord (0,1) =
2 for DWord, 3 for QWord

Format: =n Total Length - 2

1 31:4 Reserved Project: All Format: MBZ

3:0 Physical Start Address Extension

Project: All

Address: PhysicalAddressExtension[35:32]

Surface Type: U64

This field specifies bits 35:32 of the physical address where the data will be stored.
This field must be zero for a virtual address.

 337

MI_STORE_DATA_IMM
2 31:2 Address

Project: All

Address: SelectableAddress(Memory Address Type) [31:2]

Surface Type: U32(2)

This field specifies Bits 31:2 of the Address where the DWord will be stored. As the
store address must be DWord-aligned, Bits 1:0 of that address MBZ. This address
must be 8B aligned for a store “QW” command.

Format = U30, Range = valid System Memory Address (not mapped by GTT) if
Physical

Format = Bits[31:2] of a Graphics Memory Address If Virtual

1:0 Reserved Project: All Format: MBZ

3 31:0 Data DWord 0 Project: All Format: U32

This field specifies the DWord value to be written to the targeted location.
For a QWord write this DWord is the lower DWord of the QWord to be reported (DW
0).

4 31:0 Data DWord 1 Project: All Format: U32

This field specifies the upper DWord value to be written to the targeted QWord
location (DW 1).

9.15 MI_STORE_DATA_INDEX

MI_STORE_DATA_INDEX
Project: All Length Bias: 2

• The MI_STORE_DATA_INDEX command requests a write of the data constant supplied in the packet to the
specified offset from the System Address defined by the Hardware Status Page Address Register. As the
write targets a System Address, the write operation is coherent with the CPU cache (i.e., the processor
cache is snooped).

• Programming Notes:

• Use of this command with an invalid or uninitialized value in the Hardware Status Page Address Register is
UNDEFINED.

• This command can be used for general software synchronization through variables in cacheable memory
(i.e., where software does not need to poll uncached memory or device registers).

• This command simply initiates the write operation with command execution proceeding normally. Although
the write operation is guaranteed to complete “eventually”, there is no mechanism to synchronize
command execution with the completion (or even initiation) of these operations.

338

MI_STORE_DATA_INDEX
DWord Bit Description

0 31:29 Command Type

Default
Value:

0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default
Value:

21h MI_STORE_DATA_INDEX Format: OpCode

22:21 Reserved Project: All Format: MBZ

20:6 Reserved Project: All Format: MBZ

5:0 DWord Length

Default Value: 1h Excludes DWord (0,1)
= 1 for DWord, 2 for QWord

Format: =n Total Length - 2

1 31:12 Reserved Project: All Format: MBZ

11:2 Offset

Project: All

Format: U10 zero-based DWord offset into the HW status page.

Address: HardwareStatusPageOffset[11:2]

Surface Type: U32

Range [16, 1023]

This field specifies the offset (into the hardware status page) to which the data will be
written. Note that the first few DWords of this status page are reserved for special-
purpose data storage – targeting these reserved locations via this command is
UNDEFINED.

1:0 Reserved Project: All Format: MBZ

2 31:0 Data DWord 0 Project: All Format: U32

This field specifies the DWord value to be written to the targeted location.
For a QWord write this DWord is the lower DWord of the QWord to be reported (DW
0).

3 31:0 Data DWord 1 Project: All Format: U32

This field specifies the upper DWord value to be written to the targeted QWord
location (DW 1).

 339

9.16 MI_STORE_REGISTER_MEM

MI_STORE_REGISTER_MEM
Project: All Length Bias: 2

The MI_STORE_REGISTER_MEM command requests a register read from a specified memory mapped register
location in the device and store of that DWord to memory. The register address is specified along with the
command to perform the read.

Programming Notes:

• The command temporarily halts command execution.

• The memory address for the write is snooped on the host bus.

• This command should not be used within a “non-secure” batch buffer to access per-process virtual space.
Doing so will cause the command parser to perform the write with byte enables turned off. This command
can be used within ring buffers and/or “secure” batch buffers.

• This command will cause undefined data to be written to memory if given register addresses for the
PGTBL_CTL_0 or FENCE registers

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default Value: 24h MI_STORE_REGISTER_MEM Format: OpCode

22 Reserved Project: DevBW-A,B Format: MBZ

22 Memory Address Type

Project: All, except DevBW-A,B

Value Name Description Project

0h Physical Address All

1h Graphics Address Hardware will translate this address using
the operating GTT. The GTT (global or
per-process) used for the translation will
be the same GTT used to access the
buffer executing this command.

All

21:6 Reserved Project: All Format: MBZ

5:0 DWord Length

Default Value: 1h Excludes DWord (0,1)

Format: =n Total Length - 2

340

MI_STORE_REGISTER_MEM
1 31:28 Physical Start Address Extension

Project: All

Address: PhysicalAddressExtension[35:32]

Surface Type: MMIO Register

This field specifies bits 35:32 of the starting address of the physical address.

27:19 Reserved Project: All Format: MBZ

18:1 Register Address

Project: All

Address: MMIO Address[18:2]

Surface Type: MMIO Register

This field specifies Bits 18:2 of the Register offset the DWord will be read from. As
the register address must be DWord-aligned, Bits 1:0 of that address MBZ.

Programming Notes Project

Storing a VGA register is not permitted and will store an UNDEFINED
value.

All

The values of PGTBL_CTL0 or any of the FENCE registers cannot be stored
to memory; UNDEFINED values will be written to memory if the addresses
of these registers are specified.

All

1 Reserved Project: All Format: MBZ

0 Reserved Project: All Format: MBZ

2 31:2 Memory Address

Project: All

Address: SelectableAddress(Memory Address Type)[31:2]

Surface Type: MMIO Register

This field specifies the address of the memory location where the register value
specified in the DWord above will be written. The address specifies the DWord location
of the data.

If Memory Address Type = 0, Range = Physical_Address [31:2]

If Memory Address Type = 1, Range = GraphicsMemoryAddress[31:2]

1:0 Reserved Project: All Format: MBZ

 341

9.17 MI_USER_INTERRUPT

MI_USER_INTERRUPT
Project: All Length Bias: 1

The MI_USER_INTERRUPT command is used to generate a User Interrupt condition. The parser will continue
parsing after processing this command. See User Interrupt.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default Value: 02h MI_USER_INTERRUPT Format: OpCode

22:0 Reserved Project: All Format: MBZ

9.18 MI_WAIT_FOR_EVENT

MI_WAIT_FOR_EVENT
Project: All Length Bias: 1

The MI_WAIT_FOR_EVENT command is used to pause command stream processing until a specific event occurs
or while a specific condition exists. See Wait Events/Conditions, Device Programming Interface in MI Functions.
Only one event/condition can be specified -- specifying multiple events is UNDEFINED.

The effect of the wait operation depends on the source of the command. If executed from a batch buffer, the
parser will halt (and suspend command arbitration) until the event/condition occurs. If executed from a ring
buffer, further processing of that ring will be suspended, although command arbitration (from other rings) will
continue. Note that if a specified condition does not exist (the condition code is inactive) at the time the parser
executes this command, the parser proceeds, treating this command as a no-operation.

If execution of this command from a primary ring buffer causes a wait to occur, the active ring buffer will
effectively give up the remainder of its time slice (required in order to enable arbitration from other primary ring
buffers).

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default Value: 03h MI_WAIT_FOR_EVENT Format: OpCode

22:19 Reserved Project: All Format: MBZ

342

MI_WAIT_FOR_EVENT
18 Display Pipe B Start of V Blank Wait

Enable
Project: All Format: Enable

This field enables a wait until the start of next Display Pipe B “Vertical Blank” event
occurs. This event is defined as the start of the next Display B Vertical blank period.
Note that this can cause a wait for up to a frame. See Start of Vertical Blank Event in
the Device Programming Interface chapter of MI Functions.

Errata Description Project

BWT013 MBZ DevBW

17 Display Pipe A Start of V Blank
Wait Enable

Project: All Format: Enable

This field enables a wait until the start of next Display Pipe A “Vertical Blank” event
occurs. This event is defined as the start of the next Display A Vertical blank period.
Note that this can cause a wait for up to a frame. See Start of Vertical Blank Event in
the Device Programming Interface chapter of MI Functions.

Programming Notes Project

Notes All

Errata Description Project

BWT013 MBZ DevBW

16 Overlay Flip Pending Wait
Enable

Project: All Format: Enable

This field enables a wait for the duration of an Overlay “Flip Pending” condition. If a
flip request is pending, the parser will wait until the flip operation has completed (i.e.,
the new overlay address has been loaded into the corresponding overlay registers).
See Overlay Flip Pending Condition in the Device Programming Interface chapter of MI
Functions.

15 Reserved Project: All Format: MBZ

14 Display Pipe B H Blank Wait Enable Project: All Format: Enable

This field enables a wait until the start of next Display Pipe B “Horizontal Blank” event
occurs. This event is defined as the start of the next Display B Horizontal blank
period. Note that this can cause a wait for up to a line. See Horizontal Blank Event in
the Device Programming Interface chapter of MI Functions.

13 Display Pipe A H Blank Wait Enable Project: All Format: Enable

This field enables a wait until the start of next Display Pipe A “Horizontal Blank” event
occurs. This event is defined as the start of the next Display A Horizontal blank
period. Note that this can cause a wait for up to a line. See Horizontal Blank Event in
the Device Programming Interface chapter of MI Functions.

 343

MI_WAIT_FOR_EVENT
12:9 Condition Code Wait Select

Project: All

This field enables a wait for the duration that the corresponding condition code is
active. These enable select one of 15 condition codes in the EXCC register, that cause
the parser to wait until that condition-code in the EXCC is cleared.

Value Name Description Project

0h Not Enabled Condition Code Wait not enabled All

1h-5h Enabled Condition Code select enabled; selects one of
5 codes, 0 – 4

All

6h-15h Reserved All

Programming Notes Project

Note that not all condition codes are implemented. The parser operation
is UNDEFINED if an unimplemented condition code is selected by this field.
The description of the EXCC register (Memory Interface Registers) lists the
codes that are implemented.

All

8 Display Plane C Flip Pending Wait
Enable

Project: All Format: Enable

This field enables a wait for the duration of a Display Plane C “Flip Pending” condition.
If a flip request is pending, the parser will wait until the flip operation has completed
(i.e., the new front buffer address has now been loaded into the active front buffer
registers). See Display Flip Pending Condition in the Device Programming Interface
chapter of MI Functions.

7 Display Pipe B Vertical Blank Wait Enable Project: All Format: Enable

This field enables a wait until the next Display Pipe B “Vertical Blank” event occurs.
This event is defined as the start of the next Display Pipe B vertical blank period. Note
that this can cause a wait for up to an entire refresh period. See Vertical Blank Event
(See Programming Interface).

Programming Notes Project

Prior to using the MI_WAIT_FOR_EVENT command to wait on Display Pipe
A/B VBlank events, the corresponding Vertical Blank Interrupt Enable (bit
17) of the corresponding PIPEASTAT (70024h) or PIPEBSTAT (71024h)
register must be set. Note that this does not require an actual VBlank
interrupt to be enabled.

All

6 Display Plane B Flip Pending Wait Enable Project: All Format: Enable

This field enables a wait for the duration of a Display Plane B “Flip Pending” condition.
If a flip request is pending, the parser will wait until the flip operation has completed
(i.e., the new front buffer address has now been loaded into the active front buffer
registers). See Display Flip Pending Condition (in the Device Programming Interface
chapter of MI Functions.

344

MI_WAIT_FOR_EVENT
5 Display Pipe B Scan Line Window Wait

Enable
Project: All Format: Enable

This field enables a wait while a Display B “In Scan Line Window” condition exists.
This condition is defined as the period of time the Display B refresh is inside the scan
line window as specified by a previous MI_LOAD_SCAN_LINES_INCL or
MI_LOAD_SCAN_LINES_EXCL command. If the Display B refresh is outside this
window, or a window has not been specified, the parser proceeds, treating this
command as a no-op. If the Display B refresh is currently inside this window, the
parser will wait until the refresh exits the window. See Scan Line Window Condition in
the Device Programming Interface chapter of MI Functions.

4 Frame Buffer Compression Idle Wait
Enable

Project: All Format: Enable

This field enables a wait while the Frame Buffer compressor is busy. The ring that this
command got executed from is removed from arbitration for the wait period and is
inserted into arbitration as soon as the frame buffer compressor is idle.

3 Display Pipe A Vertical Blank Wait
Enable

Project: All Format: Enable

This field enables a wait until the next Display Pipe A “Vertical Blank” event occurs.
This event is defined as the start of the next Display A vertical blank period. Note
that this can cause a wait for up to an entire refresh period. See Vertical Blank Event
in the Device Programming Interface chapter of MI Functions.

Programming Notes Project

Prior to using the MI_WAIT_FOR_EVENT command to wait on Display Pipe
A/B VBlank events, the corresponding Vertical Blank Interrupt Enable (bit
17) of the corresponding PIPEASTAT (70024h) or PIPEBSTAT (71024h)
register must be set. Note that this does not require an actual VBlank
interrupt to be enabled.

All

2 Display Plane A Flip Pending Wait Enable Project: All Format: Enable

This field enables a wait for the duration of a Display Plane A “Flip Pending” condition.
If a flip request is pending, the parser will wait until the flip operation has completed
(i.e., the new front buffer address has now been loaded into the active front buffer
registers). See Display Flip Pending Condition in the Device Programming Interface
chapter of MI Functions.

1 Display Pipe A Scan Line Window
Wait Enable

Project: All Format: Enable

This field enables a wait while a Display Pipe A “In Scan Line Window” condition
exists. This condition is defined as the period of time the Display A refresh is inside
the scan line window as specified by a previous MI_INCLUSIVE_SCAN_WINDOW or
MI_EXCLUSIVE_SCAN_WINDOW command. If the Display A refresh is outside this
window, or a window has not been specified, the parser proceeds, treating this
command as a no-op. If the Display A refresh is currently inside this window, the
parser will wait until the refresh exits the window. See Scan Line Window Condition
in the Device Programming Interface chapter of MI Functions.

0 Reserved Project: All Format: MBZ

 345

§§

346

10 Memory Interface Commands
for Blitter Engine

10.1 Introduction

This chapter describes the formats of the “Memory Interface” commands, including
brief descriptions of their use. The functions performed by these commands are
discussed fully in the Memory Interface Functions Device Programming Environment
chapter.

This chapter describes MI Commands for the blitter graphics processing engine. The
term “for Blitter Engine” in the title has been added to differentiate this chapter from a
similar one describing the MI commands for the Media Decode Engine and the
Rendering Engine.

The commands detailed in this chapter are used across products within the Gen4
family. However, slight changes may be present in some commands (i.e., for features
added or removed), or some commands may be removed entirely. Refer to the
Preface chapter for product specific summary.

 347

10.2 MI_LOAD_REGISTER_IMM

MI_LOAD_REGISTER_IMM
Project: All Length Bias: 2

The MI_LOAD_REGISTER_IMM command requests a write of up to a DWord constant supplied in the command
to the specified Register Offset (i.e., offset into Memory-Mapped Register Range). The register is loaded before
the next command is executed.

Programming Notes:

The behavior of this command is controlled by Dword 3, Bit 8 (Disable Register Access) of the RINGBUF
register. If this command is disallowed then the command stream converts it to a NOOP.

If this command is executed from a BB then the behavior of this command is controlled by Dword 0,
Bit 8 (Security Indicator) of the BATCH_BUFFER_START Command. If the batch buffer is insecure then
the command stream converts this command to a NOOP. Note that the corresponding ring buffer
must allow a register update for this command to execute.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default Value: h MI_ Format: OpCode

22:12 Reserved Project: All Format: MBZ

11:8 Byte Write Disables

Format: Enable[4] Bit 8 corresponds to Data DWord [7:0]

Range Must specify a valid register write operation

This field specifies which bytes of the Data DWord are not to be written to the
DWord offset specified in Register Offset.

7:6 Reserved Project: All Format: MBZ

5:0 DWord Length

Default Value: 1h Excludes DWord (0,1)

Format: =n Total Length - 2

1 31:2 Register Offset

Format: U30

Address: MmioAddress[31:2]

This field specifies bits [31:2] of the offset into the Memory Mapped Register Range
(i.e., this field specifies a DWord offset).

1:0 Reserved Project: All Format: MBZ

2 31:0 Data DWord

Mask: Bytes Write Disables

Format: U32

This field specifies the DWord value to be written to the targeted location.

348

10.3 MI_NOOP

MI_NOOP
Project: All Length Bias: 1

The MI_NOOP command basically performs a “no operation” in the command stream and is typically used to pad
the command stream (e.g., in order to pad out a batch buffer to a QWord boundary). However, there is one
minor (optional) function this command can perform – a 22-bit value can be loaded into the MI NOPID register.
This provides a general-purpose command stream tagging ("breadcrumb") mechanism (e.g., to provide
sequencing information for a subsequent breakpoint interrupt).

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default Value: 0h MI_NOOP Format: OpCode

22 Identification Number Register Write Enable

Project: All

Format: Enable

This field enables the value in the Identification Number field to be written into the MI
NOPID register. If disabled, that register is unmodified – making this command an
effective “no operation” function.

Value Name Description Project

0h Disable Do not write the NOP_ID register. All

1h Enable Write the NOP_ID register. All

31:0 Identification Number Project
:

All Format: U22

This field contains a 22-bit number which can be written to the MI NOPID register.

 349

10.4 MI_STORE_DATA_IMM

MI_STORE_DATA_IMM
Project: All Length Bias: 2

The MI_STORE_DATA_IMM command requests a write of the QWord constant supplied in the packet to the
specified Memory Address. As the write targets a System Memory Address, the write operation is coherent with
the CPU cache (i.e., the processor cache is snooped).

Programming Notes:

• This command can be used for general software synchronization through variables in cacheable memory
(i.e., where software does not need to poll un-cached memory or device registers). However, the
cacheable nature of the transaction is determined by the setting of the “mapping type” in the GTT entry.

• This command simply initiates the write operation with command execution proceeding normally. Although
the write operation is guaranteed to complete “eventually”, there is no mechanism to synchronize command
execution with the completion (or even initiation) of these operations. All writes to memory generated using
this command are expected to finish in order.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default Value: 20h MI_STORE_DATA_IMM Format: OpCode

22 Memory Address Type

Project: All

Value Name Description Project

0h Reserved Physical address All

1h Reserved Virtual address. Hardware will translate
this address using the GTT. The GTT
(global or per-process) used for the
translation will be the same GTT used
to access the buffer executing this
instruction translate this address using
the GTT. The GTT (global or per-
process) used for the translation will be
the same GTT used to access the buffer
executing this instruction.

All

21:6 Reserved Project: All Format: MBZ

5:0 DWord Length

Default Value: 2h Excludes DWord (0,1) =
2 for DWord, 3 for QWord

Format: =n Total Length - 2

1 31:0 Reserved Project: All Format: MBZ

2 31:0 Reserved Project: All Format: MBZ

350

MI_STORE_DATA_IMM

3 31:0 Data DWord 0 Project: All Format: U32

This field specifies the DWord value to be written to the targeted location.
For a QWord write this DWord is the lower DWord of the QWord to be reported (DW
0).

4 31:0 Data DWord 1 Project: All Format: U32

This field specifies the upper DWord value to be written to the targeted QWord location
(DW 1).

10.5 MI_STORE_DATA_INDEX

MI_STORE_DATA_INDEX
Project: All Length Bias: 2

The MI_STORE_DATA_INDEX command requests a write of the data constant supplied in the packet to the
specified offset from the System Address defined by the Hardware Status Page Address Register. As the write
targets a System Address, the write operation is coherent with the CPU cache (i.e., the processor cache is
snooped).

Programming Notes:

• Use of this command with an invalid or uninitialized value in the Hardware Status Page Address Register is
UNDEFINED.

• This command can be used for general software synchronization through variables in cacheable memory
(i.e., where software does not need to poll uncached memory or device registers).

• This command simply initiates the write operation with command execution proceeding normally. Although
the write operation is guaranteed to complete “eventually”, there is no mechanism to synchronize
command execution with the completion (or even initiation) of these operations.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default Value: 21h MI_STORE_DATA_INDEX Format: OpCode

22 Reserved Project: All Format:

Setting this bit will cause this command to offset in the Surface Probe List instead of
the hardware status page. This is intended to be used internally only (it is
UNDEFINED to set this bit in a command in a ring or batch buffer.)

21:6 Reserved Project: All Format: MBZ

5:0 DWord Length

Default Value: 1h Excludes DWord (0,1)
= 1 for DWord, 2 for QWord

Format: =n Total Length - 2

 351

MI_STORE_DATA_INDEX
1 31:12 Reserved Project: All Format: MBZ

11:2 Offset

Project: All

Format: U10 zero-based DWord offset into the HW status page.

Address: HardwareStatusPageOffset[11:2]

Surface Type: U32

Range [16, 1023]

This field specifies the offset (into the hardware status page) to which the data will be
written. Note that the first few DWords of this status page are reserved for special-
purpose data storage – targeting these reserved locations via this command is
UNDEFINED.

1:0 Reserved Project: All Format: MBZ

2 31:0 Data DWord 0 Project: All Format: U32

This field specifies the DWord value to be written to the targeted location.
For a QWord write this DWord is the lower DWord of the QWord to be reported (DW
0).

3 31:0 Data DWord 1 Project: All Format: U32

This field specifies the upper DWord value to be written to the targeted QWord
location (DW 1).

352

10.6 MI_USER_INTERRUPT

MI_USER_INTERRUPT
Project: All Length Bias: 1

The MI_USER_INTERRUPT command is used to generate a User Interrupt condition. The parser will continue
parsing after processing this command. See User Interrupt.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default Value: 02h MI_USER_INTERRUPT Format: OpCode

22:0 Reserved Project: All Format: MBZ

10.7 MI_WAIT_FOR_EVENT

MI_WAIT_FOR_EVENT
Project: All Length Bias: 1

The MI_WAIT_FOR_EVENT command is used to pause command stream processing until a specific event occurs
or while a specific condition exists. See Wait Events/Conditions, Device Programming Interface in MI Functions.
Only one event/condition can be specified -- specifying multiple events is UNDEFINED.

The effect of the wait operation depends on the source of the command. If executed from a batch buffer, the
parser will halt (and suspend command arbitration) until the event/condition occurs. If executed from a ring
buffer, further processing of that ring will be suspended, although command arbitration (from other rings) will
continue. Note that if a specified condition does not exist (the condition code is inactive) at the time the parser
executes this command, the parser proceeds, treating this command as a no-operation.

If execution of this command from a primary ring buffer causes a wait to occur, the active ring buffer will
effectively give up the remainder of its time slice (required in order to enable arbitration from other primary ring
buffers).

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND Format: OpCode

28:23 MI Command Opcode

Default Value: 03h MI_WAIT_FOR_EVENT Format: OpCode

22:0 Reserved Project: All Format: MBZ

 353

§§

354

11 Graphics Memory Interface
Functions

11.1 Introduction

The major role of an integrated graphics device’s Memory Interface (MI) function is to
provide various client functions access to “graphics” memory used to store commands,
surfaces, and other information used by the graphics device. This chapter describes
the basic mechanisms and paths by which graphics memory is accessed.

Information not presented in this chapter includes:

• Microarchitectural and implementation-dependent features (e.g., internal
buffering, caching and arbitration policies).

• MI functions and paths specific to the operation of external (discrete) devices
attached via external connections.

• MI functions essentially unrelated to the operation of the internal graphics devices,
e.g., traditional “chipset functions” (refer to the device’s C-Spec for this
information).

11.2 Graphics Memory Clients

The MI function provides memory access functionality to a number of external and
internal graphics memory clients, as described in Table 11-1.

Table 11-1. Graphics Memory Clients

MI Client Access Modes

Host Processor Read/Write of Graphics Operands located in Main Memory. Graphics
Memory is accessed using Device 2 Graphics Memory Range
Addresses

External PEG Graphics
Device

Write-Only of Graphics Operands located in Main Memory via the
Graphics Aperture. (This client is not described in this chapter).

Peer PCI Device Write-Only of Graphics Operands located in Main Memory. Graphics
Memory is accessed using Device 2 Graphics Memory Range
Addresses (i.e., mapped by GTT). Note that DMI access to Graphics
registers is not supported.

Snooped Read/Write
(internal)

Internally-generated snooped reads/writes.

Command Stream
(internal)

DMA Read of graphics commands and related graphics data.

 355

MI Client Access Modes

Vertex Stream
(internal)

DMA Read of indexed vertex data from Vertex Buffers by the 3D
Vertex Fetch (VF) Fixed Function.

Instruction/State
Cache (internal)

Read of pipelined 3D rendering state used by the 3D/Media Functions
and instructions executed by the EUs.

Render Cache
(internal)

Read/Write of graphics data operated upon by the graphics rendering
engines (Blt, 3D, MPEG, etc.) Read of render surface state.

Sampler Cache
(internal)

Read of texture (and other sampled surface) data stored in graphics
memory.

Display/Overlay
Engines (internal)

Read of display, overlay, cursor and VGA data.

11.3 Graphics Memory Addressing Overview

The Memory Interface function provides access to graphics memory (GM) clients. It
accepts memory addresses of various types, performs a number of optional operations
along address paths, and eventually performs reads and writes of graphics memory
data using the resultant addresses. The remainder of this subsection will provide an
overview of the graphics memory clients and address operations.

11.3.1 Graphics Address Path

Figure 11-1 shows the internal graphics memory address path, connection points, and
optional operations performed on addresses. Externally-supplied addresses are
normalized to zero-based Graphics Memory (GM) addresses (GM_Address). If the GM
address is determined to be a tiled address (based on inclusion in a fenced region or
via explicit surface parameters), address tiling is performed. At this point the address
is considered a Logical Memory address, and is translated into a Physical Memory
address via the GTT and associated TLBs. The physical memory location is then
accessed.

CPU accesses to graphics memory are not snooped on the front side bus post GTT
translation. Hence pages that are mapped cacheable in the GTT will not be coherent
with the CPU cache if accessed through graphics memory aperture. Also, such
accesses may have side effects in the hardware.

356

Figure 11-1. Graphics Memory Paths

Address Tiling
Logic

Tiled Address
Determination Surface

Parameters

Logical Memory
Mapping TLBs

Graphics
Memory
Address

(0-based)

Graphics Memory -capable
Internal Functions/

Caches

CPU / Ext. Gfx
Device

Device 2 PCI
Graphics

Memory Range

Main
Memory

GM Range Offset
Removal

Snoop
Logic

Physical Address-based
Internal

Functions

PTE
Fetch

Fence
Registers

Logical
Memory
Address

(0-based)

Physical
Memory
Address

Graphics Addr Paths

GTT

The remainder of this chapter describes the basic features of the graphics memory
address pipeline, namely Address Tiling, Logical Address Mapping, and Physical
Memory types and allocation considerations.

 357

11.4 Graphics Memory Address Spaces

Table 11-2 lists the five supported Graphics Memory Address Spaces. Note that the
Graphics Memory Range Removal function is automatically performed to transform
system addresses to internal, zero-based Graphics Addresses.

Table 11-2. Graphics Memory Address Types

Address Type Description Range

Dev2_GM_Address Address range allocated via the Device 2
(integrated graphics device) GMADR register. The
processor and other peer (DMI) devices utilize
this address space to read/write graphics data
that resides in Main Memory. This address is
internally converted to a GM_Address.

Some 64MB,
128MB, 256MB or
512MB address
range normally
above TOM

GM_Address Zero-based logical Graphics Address, utilized by
internal device functions to access GTT-mapped
graphics operands. GM_Addresses are typically
passed in commands and contained in state to
specify operand location.

[0, 64MB-1],

[0, 128MB-1],

[0, 256MB-1] or

[0, 512MB-1]

PGM_Address Zero-based logical Per-Process Graphics Address,
utilized by internal device functions to access
render GTT (PPGTT) mapped graphics operands.
Memory in this space is not accessible by the
processor and other peer (DMI) devices unless
aliased to a GM_Address.

[0, 64MB-1],

[0,128MB-1],

[0,256MB-1],

[0,512MB-1] or

[0, 1GB – 1]

11.5 Address Tiling Function

When dealing with memory operands (e.g., graphics surfaces) that are inherently
rectangular in nature, certain functions within the graphics device support the
storage/access of the operands using alternative (tiled) memory formats in order to
increase performance. This section describes these memory storage formats,
why/when they should be used, and the behavioral mechanisms within the device to
support them.

11.5.1 Linear vs. Tiled Storage

Regardless of the memory storage format, “rectangular” memory operands have a
specific width and height, and are considered as residing within an enclosing
rectangular region whose width is considered the pitch of the region and surfaces
contained within. Surfaces stored within an enclosing region must have widths less
than or equal to the region pitch (indeed the enclosing region may coincide exactly
with the surface). Figure 11-2 shows these parameters.

358

Figure 11-2. Rectangular Memory Operand Parameters

Surface

Surface Start Address

W idth

H
eight

P itch

Enclosing Region

Region Start Address

Rect Mem Operand

The simplest storage format is the linear format (see Figure 11-3), where each row of
the operand is stored in sequentially increasing memory locations. If the surface width
is less than the enclosing region’s pitch, there will be additional memory storage
between rows to accommodate the region’s pitch. The pitch of the enclosing region
determines the distance (in the memory address space) between vertically-adjacent
operand elements (e.g., pixels, texels).

Figure 11-3. Linear Surface Layout

Surface

Increasing
Linear

Memory
Addresses

Pitch

Enclosing Region

Linar Surface

The linear format is best suited for 1-dimensional row-sequential access patterns
(e.g., a display surface where each scanline is read sequentially). Here the fact that
one object element may reside in a different memory page than its vertically-adjacent
neighbors is not significant; all that matters is that horizontally-adjacent elements are
stored contiguously. However, when a device function needs to access a 2D subregion

 359

within an operand (e.g., a read or write of a 4x4 pixel span by the 3D renderer, a read
of a 2x2 texel block for bilinear filtering), having vertically-adjacent elements fall
within different memory pages is to be avoided, as the page crossings required to
complete the access typically incur increased memory latencies (and therefore lower
performance).

One solution to this problem is to divide the enclosing region into an array of smaller
rectangular regions, called memory tiles. Surface elements falling within a given tile
will all be stored in the same physical memory page, thus eliminating page-crossing
penalties for 2D subregion accesses within a tile and thereby increasing performance.

Tiles have a fixed 4KB size and are aligned to physical DRAM page boundaries. They
are either 8 rows high by 512 bytes wide or 32 rows high by 128 bytes wide (see
Figure 11-4). Note that the dimensions of tiles are irrespective of the data contained
within – e.g., a tile can hold twice as many 16-bit pixels (256 pixels/row x 8 rows =
2K pixels) than 32-bit pixels (128 pixels/row x 8 rows = 1K pixels).

Figure 11-4. Memory Tile Dimensions

Tile = 4K Bytes

512 Bytes

8 R
ow

s

X Tile Dimensions

Tile = 4K
Bytes

128 Bytes

32 R
ow

s

Y Tile Dimensions

360

The pitch of a tiled enclosing region must be an integral number of tile widths. The
4KB tiles within a tiled region are stored sequentially in memory in row-major order.

Figure 11-5 shows an example of a tiled surface located within a tiled region with a
pitch of 8 tile widths (512 bytes * 8 = 4KB). Note that it is the enclosing region that is
divided into tiles – the surface is not necessarily aligned or dimensioned to tile
boundaries.

Figure 11-5. Tiled Surface Layout

Tile 0

Tiled Region

Tile 1 Tile 2 Tile 3 Tile 4 Tile 5 Tile 6 Tile 7

Tile 8 Tile 9 Tile 10 Tile 11 Tile 12 Tile 13 Tile 14 Tile 15

Tile 16 Tile 17 Tile 18 Tile 19 Tile 20 Tile 21 Tile 22 Tile 23

Tile 24 Tile 25 Tile 26 Tile 27 Tile 28 Tile 29 Tile 30 Tile 31

Tile 32 Tile 33 Tile 34 Tile 35 Tile 36 Tile 37 Tile 38 Tile 39

Tile 40 Tile 41 Tile 42 Tile 43 Tile 44 Tile 45 Tile 46 Tile 47

Tile 48 Tile 49 Tile 50 Tile 51 Tile 52 Tile 53 Tile 54 Tile 55

Tile 56 Tile 57 Tile 58 Tile 59 Tile 60 Tile 61 Tile 62 Tile 63

Tiled Surface

Pitch = 8 tiles = 8 * 512B = 4KB

4KB Page

Tiled Surf Layout

11.5.2 Tile Formats

The device supports both X-Major (row-major) and Y-Major (column major) storage of
tile data units, as shown in the following figures. A 4KB tile is subdivided into an 8-
high by 32-wide array of 16-byte OWords for X-Major Tiles (X Tiles for short), and 32-
high by 8-wide array of OWords for Y-Major Tiles (Y Tiles). The selection of tile
direction only impacts the internal organization of tile data, and does not affect how
surfaces map onto tiles. Note that the diagrams are not to scale – the first format
defines the contents of an 8-high by 512-byte wide tile, and the 2nd a 32-high by
128-byte wide tile. The storage of tile data units in X-Major or Y-Major fashion is
sometimes refer to as the walk of the tiling.

 361

Table 11-3. X-Major Tile Layout

OW
0 1 2 29 30 31

X-Major Tile
32 16B OWord Columns

8 R
ow

s

...

... ...

...

32 33 34

224 225 226

61 62 63

254 255

X-Major Tile

OWOW

OWOWOWOWOW

OW OWOWOWOWOW

OW OWOW OW

253

Note that an X-major tiled region with a tile pitch of 1 tile is actually stored in a linear
fashion.

Figure 11-6. Y-Major Tile Layout

OW
0

OW
32

OW
192

OW
224

Y-Major Tile
8 16B OWord Columns

32 R
ow

s

... ...

OW
1

OW
33

OW
31

OW
63

193 225

223 255

OW OW

OW OW

YMajorTileInt

...

...

362

11.5.3 Tiling Algorithm

The following pseudocode describes the algorithm for translating a tiled memory
surface in graphics memory to an address in logical space.

Inputs: LinearAddress(offset into aperture in terms of bytes),

Pitch(in terms of tiles),
 WalkY (1 for Y and 0 for X)

Static Parameters: TileH (Height of tile, 8 for X and 32 for Y),
TileW (Width of Tile in bytes, 512 for X and
128 for Y)

TileSize = TileH * TileW;
RowSize = Pitch * TileSize;

If (Fenced) {

LinearAddress = LinearAddress – FenceBaseAddress
LinearAddrInTileW = LinearAddress div TileW;
Xoffset_inTile = LinearAddress mod TileW;
Y = LinearAddrInTileW div Pitch;
X = LinearAddrInTileW mod Pitch + Xoffset_inTile;

}

// Internal graphics clients that access tiled memory already have
the X, Y
// coordinates and can start here
YOff_Within_Tile = Y mod TileH;
XOff_Within_Tile = X mod TileW;

TileNumber_InY = Y div TileH;
TileNumber_InX = X div TileW;

TiledOffsetY = RowSize * TileNumber_InY + TileSize *

TileNumber_InX + TileH * XOff_Within_Tile +
YOff_Within_Tile * 16 + (XOff_Within_Tile mod 16);

TiledOffsetX = RowSize * TileNumber_InY + TileSize *

TileNumber_InX + TileW * YOff_Within_Tile +
XOff_Within_Tile;

TiledOffset = WalkY? TiledOffsetY : TiledOffsetX;

TiledAddress = Tiled? (BaseAddress + TiledOffset): (BaseAddress +

Y*LinearPitch + X);
}

The Y-Major tile formats have the characteristic that a surface element in an even row
is located in the same aligned 64-byte cacheline as the surface element immediately
below it (in the odd row). This spatial locality can be exploited to increase
performance when reading 2x2 texel squares for bilinear texture filtering, or reading
and writing aligned 4x4 pixel spans from the 3D Render pipeline.

 363

On the other hand, the X-Major tile format has the characteristic that horizontally-
adjacent elements are stored in sequential memory addresses. This spatial locality is
advantageous when the surface is scanned in row-major order for operations like
display refresh. For this reason, the Display and Overlay memory streams only
support linear or X-Major tiled surfaces (Y-Major tiling is not supported by these
functions). This has the side effect that 2D- or 3D-rendered surfaces must be stored in
linear or X-Major tiled formats if they are to be displayed. Non-displayed surfaces,
e.g., “rendered textures”, can also be stored in Y-Major order.

11.5.4 Tiling Support

The rearrangement of the surface elements in memory must be accounted for in
device functions operating upon tiled surfaces. (Note that not all device functions that
access memory support tiled formats). This requires either the modification of an
element’s linear memory address or an alternate formula to convert an element’s X,Y
coordinates into a tiled memory address.

However, before tiled-address generation can take place, some mechanism must be
used to determine whether the surface elements accessed fall in a linear or tiled
region of memory, and if tiled, what the tile region pitch is, and whether the tiled
region uses X-Major or Y-Major format. There are two mechanisms by which this
detection takes place: (a) an implicit method by detecting that the pre-tiled (linear)
address falls within a “fenced” tiled region, or (b) by an explicit specification of tiling
parameters for surface operands (i.e., parameters included in surface-defining
instructions).

The following table identifies the tiling-detection mechanisms that are supported by
the various memory streams.

Access Path Tiling-Detection Mechanisms Supported

Processor access through the Graphics
Memory Aperture

Fenced Regions

3D Render (Color/Depth Buffer access) Explicit Surface Parameters

Sampled Surfaces Explicit Surface Parameters

Blt operands Explicit Surface Parameters

Display and Overlay Surfaces Explicit Surface Parameters

11.5.4.1 Tiled (Fenced) Regions

The only mechanism to support the access of surfaces in tiled format by the host or
external graphics client is to place them within “fenced” tiled regions within Graphics
Memory. A fenced region is a block of Graphics Memory specified using one of the
sixteen FENCE device registers. (See Memory Interface Registers for details). Surfaces
contained within a fenced region are considered tiled from an external access point of
view. Note that fences cannot be used to untile surfaces in the PGM_Address space
since external devices cannot access PGM_Address space. Even if these surfaces (or
any surfaces accessed by an internal graphics client) fall within a region covered by an
enabled fence register, that enable will be effectively masked during the internal
graphics client access. Only the explicit surface parameters described in the next
section can be used to tile surfaces being accessed by the internal graphics clients.

364

Each FENCE register (if its Fence Valid bit is set) defines a Graphics Memory region
ranging from 4KB to the aperture size. The region is considered rectangular, with a
pitch in tile widths from 1 tile width (128B or 512B) to 256 tile X widths (256 * 512B
= 128KB) and 1024 tile Y widths (1024 * 128B = 128KB). Note that fenced regions
must not overlap, or operation is UNDEFINED.

Also included in the FENCE register is a Tile Walk field that specifies which tile format
applies to the fenced region.

11.5.4.2 Tiled Surface Parameters

Internal device functions require explicit specification of surface tiling parameters via
information passed in commands and state. This capability is provided to limit the
reliance on the fixed number of fence regions.

The following table lists the surface tiling parameters that can be specified for 3D
Render surfaces (Color Buffer, Depth Buffer, Textures, etc.) via SURFACE_STATE.

Surface Parameter Description

Tiled Surface If ENABLED, the surface is stored in a tiled format. If DISABLED, the
surface is stored in a linear format.

Tile Walk If Tiled Surface is ENABLED, this parameter specifies whether the
tiled surface is stored in Y-Major or X-Major tile format.

Base Address Additional restrictions apply to the base address of a Tiled Surface vs.
that of a linear surface.

Pitch Pitch of the surface. Note that, if the surface is tiled, this pitch must
be a multiple of the tile width.

11.5.4.3 Tiled Surface Restrictions

Additional restrictions apply to the Base Address and Pitch of a surface that is tiled. In
addition, restrictions for tiling via SURFACE_STATE are subtly different from those for
tiling via fence regions. The most restricted surfaces are those that will be accessed
both by the host (via fence) and by internal device functions. An example of such a
surface is a tiled texture that is initialized by the CPU and then sampled by the device.

The tiling algorithm for internal device functions is different from that of fence regions.
Internal device functions always specify tiling in terms of a surface. The surface must
have a base address, and this base address is not subject to the tiling algorithm. Only
offsets from the base address (as calculated by X, Y addressing within the surface) are
transformed through tiling. The base address of the surface must therefore be 4KB-
aligned. This forces the 4KB tiles of the tiling algorithm to exactly align with 4KB
device pages once the tiling algorithm has been applied to the offset. The width of a
surface must be less than or equal to the surface pitch. There are additional
considerations for surfaces that are also accessed by the host (via a fence region).

Fence regions have no base address per se. Host linear addresses that fall in a fence
region are translated in their entirety by the tiling algorithm. It is as if the surface
being tiled by the fence region has a base address in graphics memory equal to the
fence base address, and all accesses of the surfaces are (possibly quite large) offsets
from the fence base address. Fence regions have a virtual “left edge” aligned with the

 365

fence base address, and a “right edge” that results from adding the fence pitch to the
“left edge”. Surfaces in the fence region must not straddle these boundaries.

Base addresses of surfaces that are to be accessed both by an internal graphics client
and by the host have the tightest restrictions. In order for the surface to be accessed
without GTT re-mapping, the surface base address (as set in SURFACE_STATE) must
be a “Tile Row Start Address” (TRSA). The first address in each tile row of the fence
region is a Tile Row Start Address. The first TRSA is the fence base address. Each
TRSA can be generated by adding an integral multiple of the row size to the fence
base address. The row size is simply the fence pitch in tiles multiplied by 4KB (the
size of a tile.)

Figure 11-7. Tiled Surface Placement

Til
eTile

Tile

Til
eTile

Tile

Til
eTile

Tile
Til
eTile

Tile

Til
eTile

Tile

Til
eTile

Tile

32B SW =
2 16B OWs

Pitch

Tiled Surface Placement

Linear (pre-tiled) Addresses Increase

Tile Placement Rules

Tiled
Surface

Tiled
Surface

Requires
Remapping for

Access by
Host and Gfx

Directly
Accessible
by Host and

Gfx (if
Surface Pitch

= Fence
Pitch)

Surface Base
Address = Tile
Start Address

Surface Base
Address =
Tile Row

Start Address

Fence Region
“Left Edge”

Fence
Region
“Right
Edge”Fence Base

Address

The pitch in SURFACE_STATE must be set equal to the pitch of the fence that will be
used by the host to access the surface if the same GTT mapping will be used for each
access. If the pitches differ, a different GTT mapping must be used to eliminate the
“extra” tiles (4KB memory pages) that exist in the excess rows at the right side of the
larger pitch. Obviously no part of the surface that will be accessed can lie in pages
that exist only in one mapping but not the other. The new GTT mapping can be done
manually by SW between the time the host writes the surface and the device reads it,
or it can be accomplished by arranging for the client to use a different GTT than the
host (the PPGTT -- see Logical Memory Mapping below).

366

The width of the surface (as set in SURFACE_STATE) must be less than or equal to
both the surface pitch and the fence pitch in any scenario where a surface will be
accessed by both the host and an internal graphics client. Changing the GTT mapping
will not help if this restriction is violated.

Surface
Access

Base
Address

Pitch Width Tile “Walk”

Host only No
restrictio
n

Integral
multiple of
tile size <=
128KB

Must be <=
Fence Pitch

No restriction

Client only 4KB-
aligned

Integral
multiple of
tile size <=
256KB

Must be <=
Surface
Pitch

Restrictions
imposed by
the client (see
Per-Stream
Tile Format
Support)

Host and
Client, No
GTT
Remappin
g

Must be
TRSA

Fence Pitch =
Surface Pitch
= integral
multiple of
tile size <=
256KB

Width <=
Pitch

Surface Walk
must meet
client
restriction,
Fence Walk =
Surface Walk

Host and
Client,
GTT
Remappin
g

4KB-
aligned
for client
(will be
tile-
aligned
for host)

Both must be
Integral
multiple of
tile size
<=128KB,
but not
necessarily
the same

Width <=
Min(Surface
Pitch, Fence
Pitch)

Surface Walk
must meet
client
restriction,
Fence Walk =
Surface Walk

 367

11.5.5 Per-Stream Tile Format Support

MI Client Tile Formats Supported

CPU Read/Write All

Display/Overlay Y-Major not supported.

X-Major required for Async Flips

Blt Linear and X-Major only

No Y-Major support

3D Sampler All Combinations of TileY, TileX and Linear are supported. TileY is the
fastest, Linear is the slowest.

3D Color,Depth

Rendering Mode
Color-vs-Depth bpp

Buffer Tiling Supported

Classical

Same Bpp

Both Linear
Both TileX
Both TileY

Linear & TileX
Linear & TileY
TileX & TileY

Classical

Mixed Bpp

Both Linear
Both TileX
Both TileY

Linear & TileX
Linear & TileY
TileX & TileY

NOTE: 128BPE Format Color buffer (render target) MUST be either TileX
or Linear.

11.6 Logical Memory Mapping

In order to provide a contiguous address space for graphics operands (surfaces, etc.)
yet allow this address space to be mapped onto possibly discontiguous physical
memory pages, the internal graphics device supports a Logical Memory Space (see
Figure 11-10). A global Graphics Translation Table (GTT) is provided to map zero-
based (and post-tiled) Logical Memory Addresses into a set of 4KB physical memory
pages. (This mapping is also used for external PEG devices.)

There is another logical mapping function available local to each graphics process; this
works identically to the global GTT with some additional restrictions. The base
address for this per-process GTT (PPGTT) is determined by the PGTBL_CTL2 register.
This register is saved and restored with ring context, thus providing each graphics
context with its own local translation table and protected memory space (see
Rendering Context Management later in this chapter).

The GTT and PPGTT are arrays of 4-byte Page Table Entries (PTEs) physically located
in Main Memory. The GTT and PPGTT are comprised of a number of locked (non-

368

swappable) physically-contiguous 4KB memory pages, with a maximum size (each) of
128 4KB pages (128K DWords map 128K*4KB = 512MB max) for Global GTT, and up
to 512 4KB pages for PPGTT, for total up to 2GB max. GTT and PPGTT base addresses
must be 4KB-aligned.

Note that the PTEs within the global GTT must be written only through GTTADDR (see
the Device #2 Config registers for a description of this range), as the MI function
needs to snoop PTE updates in order to invalidate TLBs, which cache PTEs. The
PGTBL_CTL register also contains a Page Table Enable bit used to enable/disable
Logical Memory mapping. With the exception of processor Read, Cursor and VGA
clients, access to graphics memory is not permitted when the Page Table Enable bit is
clear (i.e., disabled). The PGTBL_ER debug register provides information pertaining to
HW-detected errors in the Logical Memory Mapping function (e.g., invalid PTEs, invalid
mappings, etc.).

The PPGTT base address is also 4KB aligned, but it is programmed directly in physical
memory space rather than through an alias mechanism like GTTADDR. Note that not
all clients may use the PPGTT; only the global GTT is available for processor accesses
as well as graphics accesses from display engines (including overlay and cursor). Any
per-process access that occurs while the PPGTT is disabled (via a bit in PGTBL_CTL2)
will default to a translation via the global GTT.

11.6.1 Logical Memory Space Mappings

Each valid PTE maps a 4KB page of Logical Memory to an independent 4KB page of:

• MM: Main Memory (unsnooped), or

• SM: System Memory (snooped, therefore coherent with the processor cache, must
not be accessed through the Dev2_GM_Address range by the CPU)

PTEs marked as invalid have no backing physical memory, and therefore the
corresponding Logical Memory Address pages must not be accessed in normal
operation.

 369

Figure 11-8. Global and Render GTT Mapping

Physical system
memory allocated to gfx

Physical
Address space

Per-Process
Graphics Virtual
Address Space

Global Graphics
Aperture

(Over top of
memory)

Top of Memory (TOM)

Per Process Translation

(divided in 4KB pages)

(divided in 4KB pages)

Gfx System Memory
Translation

Allocation

Gfx Device

CPU

MIFTranslationDiagram

Allocation

370

The following table lists the memory space mappings valid for each MI client:

MI Client Logical Memory
Space Mappings

Supported

xGTT Usage

External Clients

Host Processor MM GTT only

External PEG Device None n/a

Snooped Read/Write None n/a

Internal GPU Clients

Render Command Ring
Buffers

MM GTT/PGTT, selected by
PGTBL_STR2<2>

Render Command Batch
Buffers

MM GTT/PGTT, selected by
PGTBL_STR2<5>

Indirect State Buffers MM GTT/PGTT, selected by
PGTBL_STR2<4>

CURBE Constant Data MM Same xGTT used to fetch the
CONSTANT_BUFFER command.

Media Object Indirect Data MM Same xGTT used to fetch the
MEDIA_OBJECT command.

Vertex Fetch Data MM, SM GTT/PGTT, selected by
PGTBL_STR2<3>

Sampler Cache (RO) MM, SM GTT/PGTT, selected by
PGTBL_STR2<1>

DataPort Render Cache (R/W) MM, SM GTT/PGTT, selected by
PGTBL_STR2<0>

Depth Buffer Cache (R/W) MM GTT/PGTT, selected by
PGTBL_STR2<0>

Blit Engine MM, SM GTT/PGTT, selected by
PGTBL_STR2<0>

MI_STORE_DATA_IMM
Destination (if virtual
addressed)

MM, SM Same xGTT used to fetch the
command.

PIPE_CONTROL Write
Destination

MM, SM GTT/PGTT, selected by the
command

Display/Overlay Engines
(internal)

MM GTT only

Usage Note: Since the CPU cannot directly access memory pages mapped through a
Graphics Process’ local GTT (PPGTT), these pages must also be mapped though the
global GTT (at least temporarily) in order for the CPU to initialize graphics data for a
Graphics Process.

 371

The PPGTT mechanism can be used by a client to access a surface with a pitch that is
smaller than that of the fence region used by the host to initialize the surface, without
having to physically move the data in memory.

Figure 11-9. GTT Re-mapping to Handle Differing Pitches

Refer to the “Graphics Translation Table (GTT) Range (GTTADR) & PTE Description“ in
Memory Interface Registers for details on PTE formats and programming information.
Refer to the Memory Data Formats chapter for device-specific details/restrictions
regarding the placement/storage of the various data objects used by the graphics
device.

Figure 11-10. Logical-to-Physical Graphics Memory Mapping

Logical Page Number Offset into 4KB Page

GTT/
PGTT TLB

Physical Page Number36-bit Addressing
Extension Offset into 4KB Page

012 1131

012 11313235

Physical Memory Address

Logical Memory Address

Graphics Mem Mapping

0

1

5

4

3

2

0

5 4 3

2 1
Address of 0

Address of 5 Address of 4 Address of 3 Address of 2 Address of 1

0

4 3

1
Address of 0

Address of 4 Address of 3 Address of 1

Fence Pitch = 3 Tile

Surface Pitch = 2 Tile

GTT
Translation

Table 1

GTT
Translation

Table 2

4 KB Pages of
Image Data in

Memory

2 D View of Images in
Linear Address Space

Host View
via Fence

Client View
via Surface
Parameters

MIF Pitch Remapping

372

11.7 Physical Graphics Memory

The integrated graphics device satisfies all of its memory requirements using portions
of main system memory. The integrated graphics device operates without any
dedicated local memory, in a lower-cost configuration typically (though not necessarily
officially) known as Unified Graphics Memory (UMA).

Figure 11-11 shows how the Main Memory is interfaced to the device.

Figure 11-11. Memory Interfaces

Integrated
Graphics
Device

Processor

Main
Memory

Processor
Side Bus

PEG Port DMI

Cache

CPU Cache
Snoops

MIF UMA Mem Int

11.7.1 Physical Graphics Address Types

Table 11-4 lists the various physical address types supported by the integrated
graphics device. Physical Graphics Addresses are either generated by Logical Memory
mappings or are directly specified by graphics device functions. These physical
addresses are not subject to tiling or GTT re-mappings.

Table 11-4. Physical Memory Address Types

Address Type Description Range

MM_Address Main Memory Address. Offset into physical,
unsnooped Main Memory.

[0,TopOfMemory-1]

SM_Address System Memory Address. Accesses are snooped in
processor cache, allowing shared graphics/ processor
access to (locked) cacheable memory data.

[0,4GB]

 373

11.7.2 Main Memory
The integrated graphics device is capable of using 4KB pages of physical main
(system) memory for graphics functions. Some of this main memory can be “stolen”
from the top of system memory during initialization (e.g., for a VGA buffer).
However, most graphics operands are dynamically allocated to satisfy application
demands. To this end the graphics driver will frequently need to allocate locked-down
(i.e., non-swappable) physical system memory pages – typically from a cacheable
non-paged pool. The locked pages required to back large surfaces are typically non-
contiguous. Therefore a means to support “logically-contiguous” surfaces backed by
discontiguous physical pages is required. The Graphics Translation Table (GTT) that
was described in previous sections provides the means.

11.7.2.1 Optimizing Main Memory Allocation

This section includes information for software developers on how to allocate SDRAM
Main Memory (SM) for optimal performance in certain configurations. The general
idea is that these memories are divided into some number of page types, and careful
arrangement of page types both within and between surfaces (e.g., between color and
depth surfaces) will result in fewer page crossings and therefore yield somewhat
higher performance.

The algorithm for allocating physical SDRAM Main Memory pages to logical graphics
surfaces is somewhat complicated by (1) permutations of memory device technologies
(which determine page sizes and therefore the number of pages per device row), (2)
memory device row population options, and (3) limitations on the allocation of
physical memory (as imposed by the OS).

However, the theory to optimize allocation by limiting page crossing penalties is
simple: (a) switching between open pages is optimal (again, the pages do not need to
be sequential), (b) switching between memory device rows does not in itself incur a
penalty, and (c) switching between pages within a particular bank of a row incurs a
page miss and should therefore be avoided.

11.7.2.2 Application of the Theory (Page Coloring)
This section provides some scenarios of how Main Memory page allocation can be
optimized.

11.7.2.2.1 3D Color and Depth Buffers

Here we want to minimize the impact of page crossings (a) between corresponding
pages (1-4 tiles) in the Color and Depth buffers, and (b) when moving from a page to
a neighboring page within a Color or Depth buffer. Therefore corresponding pages in
the Color and Depth Buffers, and adjacent pages within a Color or Depth Buffer should
be mapped to different page types (where a page’s “type” or “color” refers to the row
and bank it’s in).

374

Figure 11-12. Memory Pages backing Color and Depth Buffers

 Color Buffer

Page
Type 0

Page
Type 1

Page
Type 0

Page
Type 1

Page
Type 2

Page
Type 3

Page
Type 2

Page
Type 3...

Page
Type 0

Page
Type 1

Page
Type 0

Page
Type 1

Page
Type 2

Page
Type 3

Page
Type 2

Page
Type 3

...
...

...
...

...

Depth Buffer

Page
Type 3

Page
Type 2

Page
Type 3

Page
Type 2

Page
Type 1

Page
Type 0

Page
Type 1

Page
Type 0...

...

...

...
Page

Type 3
Page

Type 2
Page

Type 3
Page

Type 2

Page
Type 1

Page
Type 0

Page
Type 1

Page
Type 0

...
...

...
...

...

For higher performance, the Color and Depth Buffers could be allocated from different
memory device rows.

11.7.2.2.2 Media/Video

The Y surfaces can be allocated using 4 page types in a similar fashion to the Color
Buffer diagram above. The U and V surfaces would split the same 4 page types as
used in the Y surface.

§§

 375

376

12 Device Programming
Environment

The graphics device contains an extensive set of registers and commands (also
referred to as “commands” or “packets”) for controlling 2D, 3D, video I/O, and other
operations. This chapter describes the programming environment and software
interface to these registers/commands. The registers and commands themselves are
described elsewhere in this document.

12.1 Programming Model

The graphics device is programmed via the following three basic mechanisms:

POST-Time Programming of Configuration Registers

These registers are the graphics device registers residing in PCI space. A majority of
these registers are programmed once during POST of the video device. Configuration
registers are not covered in this section. For details on accessing the graphics
device’s configuration space see the EDS.

Direct (Physical I/O and/or Memory-Mapped I/O) Access of Graphics
Registers

Various graphics functions can only be controlled via direct register access. In
addition, direct register access is required to initiate the (asynchronous) execution of
graphics command streams. This programming mechanism is “direct” and
synchronous with software execution on the CPU.

Command Stream DMA (via the Command Ring Buffer and Batch Buffers)

This programming mechanism utilizes the indirect and asynchronous execution of
graphics command streams to control certain graphics functions, e.g., all 2D, 3D
drawing operations. Software writes commands into a command buffer (either a Ring
Buffer or Batch Buffer) and informs the graphics device (using the Direct method
above) that the commands are ready for execution. The graphics device’s Command
Parser (CP) will then, or at some point in the future, read the commands from the
buffer via DMA and execute them.

12.2 Graphics Device Register Programming
The graphics device registers (except for the Configuration registers) are memory
mapped. The base address of this 512 KB memory block is programmed in the
MMADR Configuration register. For a detailed description of the register map and
register categories, refer to the Register Maps chapter.

Programming Note:

Software must only access GR06, MSR0, MSR1, and Paging registers (see Register
Maps) via Physical I/O, never via Memory Mapped I/O.

 377

12.3 Graphics Device Command Streams

This section describes how command streams can be used to initiate and control
graphics device operations.

12.3.1 Command Use

Memory-resident commands are used to control drawing engines and other graphics
device functional units:

• Memory Interface (MI) Commands. The MI commands can be used to control and
synchronize the command stream as well as perform various auxiliary functions
(e.g., perform display/overlay flips, etc.)

• 2D Commands (BLT). These commands are used to perform various 2D (Blt)
operations.

• 3D Commands. 3D commands are used to program the 3D pipeline state and
perform 3D rendering operations. There are also a number of 3D commands that
can be used to accelerate 2D and video operations, e.g., “StretchBlt” operations,
2D line drawing, etc.

• Video (MPEG, WMV, etc.) Decode Commands. A set of commands are supported to
perform video decode acceleration including Motion Compensation operations via
the Sampling Engine of the 3D pipeline.

12.3.2 Command Transport Overview

Commands are not written directly to the graphics device – instead they are placed in
memory by software and later read via DMA by the graphics device’s Command Parser
(CP) within the Memory Interface function. The primary mechanism used to transport
commands is through the use of a Ring Buffer.

An additional, indirect mechanism for command transport is through the use of Batch
Buffers initiated from the Ring buffer.

The Command Parser uses a set of rules to determine the order in which commands
are executed. Following sections in this chapter provide descriptions of the Ring
Buffer, Batch Buffers, and Command Parser arbitration rules.

378

12.3.3 Command Parser

The graphics device’s Command Parser (CP) is responsible for:

• Detecting the presence of commands (within the Ring Buffer).
• Reading commands from the Ring Buffer and Batch Buffers via DMA. This includes

support of the automatic head report function.
• Parsing the common "Command Type" (destination) field of commands.
• Execution of Memory Interface commands that control CP functionality, provide

synchronization functions, and provide display and overlay flips as well as other
miscellaneous control functions.

• Redirection of 2D, 3D and Media commands to the appropriate destination (as
qualified by the INSTPM register) while enforcing drawing engine concurrency and
coherency rules.

• Performing the “Sync Flush” mechanism
• Enforcing the Batch Buffer protection mechanism

Figure 12-1 is a high-level diagram of the graphics device command interface.

Figure 12-1. Graphics Controller Command Interface

DMA
FIFO

Command
Parser

3D Commands (3D state,
3D Primitives, Media)

2D Commands

MIF Ring Parsing

3D/Media
Engine

BLT
Engine

Command access and decoding

Primary Ring Buffers
(Graphics Memory)

Command

Batch Buff Strt

Batch Buffers

Command

- Parser Control
 (e.g., Batch Buffer Commands,
 NOP, Flush)

- Memory Interface Control
 (e.g., Store Data to memory)

- Display/Overlay Control
 (e.g., Front Buffer, Scan

 Lines, Overlay Flip)

Memory Interface Commands

Display
Engine

Overlay
Engine

DMA

12.3.4 The Ring Buffer

The ring buffer is defined by a set of Ring Buffer registers and a memory area that is
used to hold the actual commands. The Ring Buffer registers (described in full below)
define the start and length of the memory area, and include two “offsets” (head and
tail) into the memory area. Software uses the Tail Offset to inform the CP of the
presence of valid commands that must be executed. The Head Offset is incremented
by the CP as those commands are parsed and executed. The list of commands can
wrap from the bottom of the buffer back to the top. Also included in the Ring Buffer
registers are control fields that enable the ring and allow the head pointer to be
reported to cacheable memory for more efficient flow control algorithms.

 379

Figure 12-2. Ring Buffer

Buffer
Length

Starting Address

Ring Buffer

Valid
Instructions

Head
Offset

Tail
Offset

Graphics Memory

Ring_Buf

12.3.4.1 The Ring Buffer (RB)

Ring Buffer support:

• Batch Buffer initiation

• Indirect Data (operand access)

12.3.4.2 Ring Buffer Registers

A Ring Buffer is defined by a set of 4 Ring Buffer registers. Before a Ring Buffer can
be used for command transport, software needs to program these registers. The
fields contained within these registers are as follows:

• Ring Buffer Valid: This bit controls whether the Ring Buffer is included in the
command arbitration process. Software must program all other Ring Buffer
parameters before enabling a Ring Buffer. Although a Ring Buffer can be enabled
in the non-empty state, it must not be disabled unless it is empty. Attempting to
disable a Ring Buffer in the non-empty state is UNDEFINED. Enabling or disabling
a Ring Buffer does not of itself change any other Ring Buffer register fields.

• Start Address: This field points to a contiguous, 4KB-aligned, linear (i.e., must
not be tiled), mapped graphics memory region which provides the actual
command buffer area. Writing the Start Address has the side effect of clearing
the Head Offset and Head Wrap Count fields.

• Buffer Length: The size of the buffer, in 4KB increments, up to 2MB.
• Head Offset: This is the DWord offset (from Start Address) of the next command

that the CP will parse (i.e., it points one DWord past the last command parsed).
The CP will update this field as commands are parsed – the CP typically continues
parsing new commands before the previous command operations complete. (Note
that, if commands are pending execution, the CP will likely have prefetched
commands past the Head Offset). As the graphics device does not "reset" the
Head Offset when a Ring Buffer is enabled, software must program the Head
Offset field before enabling the Ring Buffer. Software can enable a Ring Buffer
with any legal values for Head/Tail (i.e., can enable the Ring Buffer in an non-
empty state). It is anticipated, but not required, that software enable The Ring

380

Buffer with Head and Tail Offsets of 0. Once the Head Offset reaches the QWord
specified by the Tail Offset (i.e., the offsets are equal), the CP considers the Ring
Buffer "empty".

• Head Wrap Count: This field is incremented by the CP every time the Head
Offset wraps back to the start of the buffer. As it is included in the DWord written
in the "report head" process, software can use this field to track CP progress as if
the Ring Buffer had a "virtual" length of 2048 times the size of the actual physical
buffer (up to 4GB).

• Tail Offset: This is the offset (from Start Address) of the next QWord of
command data that software will request to be executed (i.e., it points one DWord
past the last command DWord submitted for execution). The Tail Offset can only
point to an command boundary – submitting partial commands is UNDEFINED. As
the Tail Offset is a QWord offset, this requires software to submit commands in
multiples of QWords (both DWords of the last QWord submitted must contain valid
command data). Software may therefore need to insert a “pad” command to
meet this restriction. After writing commands into the Ring Buffer, software
updates the Tail Offset field in order to submit the commands for execution (by
setting it to the QWord offset past the last command). The commands submitted
can wrap from the end of the buffer back to the top, in which case the Tail Offset
written will be less than the previous value. As the “empty” condition is defined
as “Head Offset == Tail Offset”, the largest amount of data that can be submitted
at any one time is one QWord less than the Ring Buffer length.

• IN USE Semaphore Bit: This bit (included in the Tail Pointer register) is used to
provide a HW semaphore that SW can use to manage access to the individual The
Ring Buffer. See the Ring Buffer Semaphore section below.

• Automatic Report Head Enable: Software can request to have the hardware
Head Pointer register contents written ("reported") to snooped system memory on
a periodic basis. Auto-reports can be programmed to occur whenever the Head
Offset crosses either a 64KB or 128KB boundary. (Note therefore that a Ring
Buffer must be at least 64KB in length for the auto-report mechanism to be
useful). The complete Head Pointer register will be stored at a Ring Buffer-specific
DWord offset into the "hardware status page" (defined by the HWSTAM register).
The auto-report mechanism is desirable as software needs to use the Head Offset
to determine the amount of free space in the Ring Buffer -- and having the Head
Pointer periodically reported to system memory provides a fairly up-to-date Head
Offset value automatically (i.e., without having to explicitly store a Head Pointer
value via the MI_REPORT_HEAD command).

Table 12-1. Ring Buffer Characteristics

Characteristic Description

Alignment 4 KB page aligned.

Max Size 2 MB

Length Programmable in numbers of 4 KB pages.

Start Pointer Programmable 4KB page-aligned address of the buffer

Head pointer Hardware maintained DWord Offset into the ring buffer. Commands can
wrap.

Programmable to initially set up ring.

Tail pointer Programmable QWord Offset into the ring buffer – indicating the next
QWord where software can insert new commands.

 381

12.3.4.3 Ring Buffer Placement

Ring Buffer memory buffers are defined via a Graphics Address and must physically
reside in (uncached) Main Memory. There is no support for The Ring Buffer in
cacheable system memory.

12.3.4.4 Ring Buffer Initialization

Before initializing a Ring Buffer, software must first allocate the desired number of
4KB pages for use as buffer space. Then the Ring Buffer registers associated with the
Ring Buffer can be programmed. Once the Ring Buffer Valid bit is set, the Ring Buffer
will be considered for command arbitration, and the Head and Tail Offsets will either
indicate an empty Ring Buffer (i.e., Head Offset == Tail Offset), or will define some
amount of command data to be executed.

12.3.4.5 Ring Buffer Use

Software can write new commands into the "free space" of the Ring Buffer, starting at
the Tail Offset QWord and up to the QWord prior to the QWord indicated by the Head
Offset. Note that this "free space" may wrap from the end of the Ring Buffer back to
the start (hence the “ring” in the name).

While the “free space” wrap may allow commands to be wrapped around the end of
the Ring Buffer, the wrap should only occur between commands. Padding (with NOP)
may be required to follow this restriction.

Software is required to use some mechanism to track command parsing progress in
order to determine the "free space" in the Ring Buffer. This can be accomplished in
one of the following ways:

1. A direct read (poll) of the Head Pointer register. This gives the most accurate
indication but is expensive due to the uncached read.

2. The automatic reporting of the Head Pointer register in the Hardware Status
Page. This has low impact as no uncached reads or command overhead is
involved. However, given the 64KB/128KB granularity of auto-reports, this
mechanism only works well on fairly large The Ring Buffer.

3. The explicit reporting of the Head Pointer register via the MI_REPORT_HEAD
command. This allows for flexible and more accurate reporting but comes at
the cost of command bandwidth and execution time, in addition to the software
overhead to determine how often to report the head.

4. Some other "implicit" means by which software can determine how far the CP
has progressed in retiring commands from a Ring Buffer. This could include
the use of "Store DWORD" commands to write sequencing data to system
memory. This has similar characteristics to using the MI_REPORT_HEAD
mechanism.

Once the commands have been written and, if necessary, padded out to a QWord,
software can write the Tail Pointer register to submit the new commands for
execution. The uncached write of the Tail Pointer register will ensure that any
pending command writes are flushed from the processor.

If the Ring Buffer Head Pointer and the Tail Pointer are on the same cacheline, the
Head Pointer must not be greater than the Tail Pointer.

382

12.3.4.6 Ring Buffer Semaphore

When the Ring Buffer Mutex Enable (RBME) bit if the INSTPM MI register is clear,
all Tail Pointer IN USE bits are disabled (read as zero, writes ignored). When RBME is
enabled, the IN USE bit acts as a Ring Buffer semaphore. If the Tail Pointer is read,
and IN USE is clear, it is immediately set after the read. Subsequent Tail Pointer
reads will return a set IN USE bit, until IN USE is cleared by a Tail Pointer write.

This allows SW to maintain exclusive ring access through the following protocol: A SW
agent needing exclusive ring access must read the Tail Pointer before accessing the
Ring Buffer: if the IN USE bit is clear, the agent gains access to the Ring Buffer; if the
IN USE bit is set, the agent has to wait for access to the Ring Buffer (as some other
agent has control). The mechanism to inform pending agents upon release of the IN
USE semaphore is unspecified (i.e., left up to software).

12.3.5 Batch Buffers

The graphics device provides for the execution of command sequences external to the
Ring buffer. These sequences are called "Batch Buffers", and are initiated through the
use of various Batch Buffer commands described below. When a Batch Buffer
command is executed, a batch buffer sequence is initiated, where the graphics device
fetches and executes the commands sequentially via DMA from the batch buffer
memory.

12.3.5.1 Batch Buffer Chaining

What happens when the end of the Batch Buffer is reached depends on the final
command in the buffer. Normally, when a Batch Buffer is initiated from a Ring Buffer,
the completion of the Batch Buffer will cause control to pass back to the Ring Buffer at
the command following the initiating Batch Buffer command.

However, the final command of a Batch Buffer can be another Batch Buffer-initiating
command (MI_BATCH_BUFFER_START). In this case control will pass to the new
Batch Buffer. This process, called chaining, can continue indefinitely, terminating with
a Batch Buffer that does not chain to another Batch Buffer (ends with
MI_BATCH_BUFFER_END) – at which point control will return to the Ring Buffer.

Figure 12-3. Batch Buffer Chaining

Buffer
Chaining

From Ring Buffer

Return to Ring Buffer

Command

Batch Buffer Start

Buffer
Chaining

Command

Command

Batch Buffer End

Command

Command

Batch Buffer Start

Command

MIF Batch Chain

 383

12.3.5.2 Ending Batch Buffers

The end of the Batch Buffer is determined as the buffer is being executed: either by
(a) an MI_BATCH_BUFFER_END command, or (b) a “chaining”
MI_BATCH_BUFFER_START command. There is no explicit limit on the size of a Batch
Buffer that uses GTT-mapped memory. Batch buffers in physical space cannot exceed
one physical page (4KB).

12.3.6 Indirect Data

In addition to Ring Buffer and Batch Buffers, the MI supports the access of indirect
data for some specific command types. (Normal read/write access to surfaces isn’t
considered indirect access for this discussion).

12.3.6.1 Logical Contexts

Logical Contexts, indirectly referenced via the MI_SET_CONTEXT command, must
reside in (unsnooped) Main Memory.

12.3.7 Command Arbitration

The command parser employs a set of rules to arbitrate among these command
stream sources. This section describes these rules and discusses the reasoning
behind the algorithm.

12.3.7.1 Arbitration Policies and Rationale

The Ring buffer (RB) is considered the primary mechanism by which drivers will pass
commands to the graphics device.

The insertion of command sequences into the Ring Buffer must be a "synchronous"
operation, i.e., software must guarantee mutually exclusive access to the Ring Buffer
among contending sources (drivers). This ensures that one driver does not corrupt
another driver's partially-completed command stream. There is currently no support
for unsynchronized multi-threaded insertion of commands into ring buffer.

Another requirement for asynchronous command generation arises from competing
(and asynchronous) drivers (e.g., "user-mode" driver libraries). In this case, the
desire is to allow these entities to construct command sequences in an asynchronous
fashion, via batch buffers. Synchronization is then only required to "dispatch" the
batch buffers via insertion of Batch Buffer commands inserted into the Ring Buffer.

Software retains some control over this arbitration process. The MI_ARB_ON_OFF
command disables all other sources of command arbitration until re-enabled by a
subsequent MI_ARB_ON_OFF command from the same command stream. This can be
used to define uninterruptible "critical sections" in an command stream (e.g., where
some device operation needs to be protected from interruption). Disabling arbitration
from a batch buffer without re-enabling before the batch is complete is UNDEFINED.

Batch Buffers can be (a) interruptible at command boundaries, (b) interruptible only
at chain points, or (c) non-interruptible. See MI_BATCH_BUFFER_START in Memory
Interface Commands for programming details.

384

12.3.7.2 Wait Commands

The MI_WAIT_EVENT command is provided to allow command streams to be held
pending until an asynchronous event occurs or condition exists. An event is defined as
occurring at a specific point in time (e.g., the leading edge of a signal, etc.) while a
condition is defined as a finite period of time. A wait on an event will (for all intents
and purposes) take some non-zero period of time before the subsequent command
can be executed. A wait on a condition is effectively a noop if the condition exists
when the MI_WAIT_EVENT command is executed.

A Wait in the Ring Buffer or batch buffer will cause the CP to treat the Ring Buffer as if
it were empty until the specific event/condition occurs. This will temporarily stall the
Ring Buffer.

While the Ring Buffer is waiting, the RB Wait bit of the corresponding RBn_CTL
register will be set. Software can cancel the wait by clearing this bit (along with
setting the RB Wait Write Enable bit). This will terminate the wait condition and the
Ring Buffer will be re-enabled. This sequence can be included when software is
required to flush all pending device operations and pending Ring Buffer waits cannot
be tolerated.

12.3.7.3 Wait Events/Conditions

This section describes the wait events and conditions supported by the
MI_WAIT_EVENT command. Only one event or condition can be specified in an
MI_WAIT_EVENT, though different command streams can be simultaneously waiting
on different events.

12.3.7.3.1 Display Pipe A,B Vertical Blank Event

The Vertical Blank event is defined as “shortly after” the leading edge of the next
display VBLANK period of the corresponding display pipe. The delay from the leading
edge is provided to allow for internal device operations to complete (including the
update of display and overlay status bits, and the update of overlay registers).

12.3.7.3.2 Display Pipe A,B Horizontal Blank Event

The Horizontal Blank event is defined as “shortly after” the leading edge of the next
display HBLANK period of the corresponding display pipe.

12.3.7.3.3 Display Plane A, B, C , Flip Pending Condition

The Display Flip Pending condition is defined as the period starting with the execution
of a “flip” (MI_DISPLAY_BUFFER_INFO) command and ending with the completion of
that flip request. Note that the MI_DISPLAY_BUFFER_INFO command can specify
whether the flip should be synchronized to vertical refresh or completed “as soon as
possible” (likely some number of horizontal refresh cycles later).

 385

12.3.7.3.4 Overlay Flip Pending Condition

The Overlay Flip Pending condition is similar to the Display Flip Pending condition, with
the exception that overlay flips are only performed synchronously with display refresh.

12.3.7.3.5 Display Pipe A,B Scan Line Window Conditions

The graphics device supports two conditions relating to the progress of refresh within
a particular display stream. A “Scan Line Window” is defined as the period of time
between the refresh of two specific display scan lines. The MI_WAIT_ON_EVENT
command can be used to pause an command stream while a particular display refresh
is inside or outside the Scan Line Window. (Actually, the MI_WAIT_EVENT command
only supports waiting on the Scan Line Window condition, and the
MI_LOAD_SCAN_LINES_INCL or MI_LOAD_SCAN_LINES_EXCL are used to define an
“inclusive” or “exclusive” window).

If no Scan Line Window has been defined for the particular display stream, the
MI_WAIT_EVENT specifying the Scan Line Window event will never introduce a wait.

12.3.7.3.6 Semaphore Wait Condition

One of the 8 defined condition codes contained within the Execute Condition Code
(EXCC) Register can be selected as the source of a wait condition. While the selected
condition code bit is set, the initiating command stream will be removed from
arbitration (i.e., paused). Arbitration of that command stream will resume once the
condition code bit is clear. If the selected condition code is clear when the
WAIT_ON_EVENT is executed, the command is effectively ignored.

12.3.7.4 Command Arbitration Points

The CP performs arbitration for command execution at the following points:

• Upon execution of an MI_ARB_CHECK command

• When the ring buffer becomes empty

12.3.7.5 Command Arbitration Rules

• At an arbitration point, the CP will switch to the new head pointer contained in the
UHPTR register if it is valid. Otherwise it will idle if empty, or continue execution
in the current command flow if it arbitrated due to an MI_ARB_CHECK command.

12.3.7.6 Batch Buffer Protection

The CP employs a protection mechanism to help prevent random writes to system
memory from occurring as a result of the execution of a batch buffer generated by a
“non-secure” agent (e.g., client-mode library). Commands executed directly from a
ring buffer, along with batch buffers initiated from a ring buffer and marked as
“secure”, will not be subject to this protection mechanism as it is assumed they can
only be generated by “secure” driver components.

This protection mechanism is enabled via a field in a Batch Buffer command that
indicates whether the associated batch buffer is “secure” or “non-secure”. When the

386

CP processes a non-secure batch buffer from the ring buffer it does not allow any
MI_STORE_DATA_IMM commands that reference physical addresses, as that would
allow the non-secure source to perform writes to any random DWord in the system.
(Note that graphics engines will only write to graphics memory ranges, which by
definition are virtual memory ranges mapped into physical memory pages using the
GTT hardware). Placing an MI_STORE_DATA in a non-secure batch buffer will instead
cause a Command Error. The CP will store the header of the command, the origin of
the command, and an error code. In addition, such a Command Error can generate an
interrupt or a hardware write to system memory (if these actions are enabled and
unmasked in the IER and IMR registers respectively.) At this point the CP can be
reactivated only by a full reset.

The security indication field of Batch Buffer instructions placed in batch buffers (i.e.,
“chaining” batch buffers) is ignored and the chained batch buffer will therefore inherit
the security indication of the first Batch Buffer in the chain (i.e. the batch buffer that
was initiated by an MI_BATCH_BUFFER_START command in the Ring Buffer).

12.3.8 Graphics Engine Synchronization

This table lists the cases where engine synchronization is required, and whether
software needs to ensure synchronization with an explicit MI_FLUSH command or
whether the device performs an implicit (automatic) flush instead. Note that a
pipeline flush can be performed without flushing the render cache, but not vice versa.

Event Implicit Flush or Requires Explicit
Flush?

PIPELINE_SELECT Requires explicit pipeline flush

Any Non-pipelined State Command Device implicitly stalls the command until
the pipeline has drained sufficiently to
allow the state update to be performed
without corrupting work-in-progress

MI_SET_CONTEXT Device performs implicit flush

MI_DISPLAY_BUFFER_INFO

(“display flip”)

Requires explicit render cache flush

MI_OVERLAY_FLIP Requires explicit render cache flush

3D color destination buffer (render target) used as
texture (i.e., “rendered texture”)

Requires explicit render cache flush

MEDIA_STATE_POINTERS Requires explicit pipeline flush

MEDIA_OBJECT Requires explicit pipeline flush

Media: Previous Destination Used as Source Requires explicit render cache flush

 387

12.3.9 Graphics Memory Coherency

Table 12-2 lists the various types of graphics memory coherency provided by the
device, specifically where the CPU writes to a 64B cacheline, and the device then
accesses that same cacheline. Note that the coherency policy depends on the address
type (GM or MM) involved in the accesses.

Table 12-2. Graphics Memory Coherency

CPU Access Subsequent
Device Access

Example
Operand

Coherency

Write GM Read GM TBD

Write MM Read MM Batch
Buffer

TBD

Write GM Write GM Device ensures coherency following every
Ring Buffer Tail Pointer write. (This can
be made optional via a bit in the Tail
Pointer data).

Write MM Write MM TBD

“assumed to exclusive byte” ?

Write GM Read MM Device ensures coherency following every
Ring Buffer Tail Pointer write. (This can
be made optional via a bit in the Tail
Pointer data).

12.3.10 Graphics Cache Coherency

There are several caches employed within the graphics device implementation. This
section describes the impact of these caches on the programming model (i.e., if/when
does software need to be concerned).

12.3.10.1 Rendering Cache

The rendering (frame buffer) cache is used by the blit and 3D rendering engines and
caches portions of the frame buffer color and depth buffers. This cache is guaranteed
to be flushed under the following conditions (note that the implementation may flush
the cache under additional, implementation-specific conditions):

• Execution of an MI_FLUSH command with the Render Flush Cache Inhibit bit
clear

• Execution of a PIPE_CONTROL instruction with the Write Cache Flush Enable bit
set (Depth Stall must be clear).

• A SyncFlush handshake operation

• A change of rendering engines (e.g., going from 2D to 3D, 3D to 2D, etc.)

• Logical Context switch (via MI_SET_CONTEXT)
⎯ The render cache must be explicitly flushed using one of these mechanisms

under certain conditions. See Graphics Engine Synchronization above.

388

12.3.10.2 Sampler Cache

The read-only sampler cache is used to cache texels and other data read by the
Sampling Engine in the 3D pipeline. This cache can be enabled or disabled via the
Texture L2 Disable bit of the Cache_Mode_0 register (see Memory Interface
Registers). Note that, although there may be more than one level of sampler cache
within the implementation, the sampler cache is exposed as a single entity at the
programming interface.

The sampler cache is guaranteed to be invalidated under the following conditions
(note that the implementation may invalidate the cache under additional,
implementation-specific conditions):

• Execution of an MI_FLUSH command with the Map Cache Invalidate bit set

• Execution of PIPE_CONTROL with the Depth Stall Enable bit clear.

• A SyncFlush handshake operation

The sampler cache must be invalidated prior to reallocation of physical texture
memory (i.e., software must guarantee that stale texture data is invalidated before
reusing physical texture memory for a new or modified texture).

12.3.10.3 Instruction/State Cache

The read-only ISC is used to cache pipelined state and EU instructions read in from
memory. It also functions as a prefetch cache by reading in additional state
information and instructions beyond those immediately requested in order to decrease
latency and improve performance. As with the sampler cache, there may be more
than one level of ISC within the implementation. The ISC is exposed as a single entity
at the programming interface.

The instruction/state cache is guaranteed to be invalidated under the following
conditions (note that the implementation may invalidate the cache under additional,
implementation-specific conditions):

• Execution of an MI_FLUSH command with the State/Instruction Cache
Invalidate bit set

• Execution of PIPE_CONTROL with the Instruction/State Cache Flush Enable bit set.

• A SyncFlush handshake operation

The instruction/state cache must be invalidated prior to reallocation of physical
state/instruction memory (i.e., software must guarantee that stale state/instruction
data is invalidated before reusing physical state/instruction memory for new or
modified state or instructions).

 389

12.3.10.4 Vertex Cache

The vertex cache consists of 2 sub-caches: one that caches vertex buffer data based
on address, and another that caches (possibly shaded) vertex attribute data based on
index (see the Vertex Fetch chapter for vertex index details). The latter cache is
always invalidated between primitive topologies.

Both vertex caches are guaranteed to be invalidated under the following conditions
(note that the implementation may invalidate the cache under additional,
implementation-specific conditions):

• Execution of an MI_FLUSH command

• Execution of a PIPE_CONTROL command

• A SyncFlush handshake operation

• Logical Context switch (via MI_SET_CONTEXT)

12.3.10.5 GTT TLBs

The following table summarizes when the various TLBs are invalidated.

TLB Normal Invalidation
Mechanism

Display Refreshed on Vsync

Overlay Refreshed on Vsync

Render/Blit Internal Flush*

Host Through a Page Table PTE write

Sampler Cache Internal Flush*

Command Stream Through a Page Table PTE write

NOTE: * -- Includes MI_FLUSH, Engine switch, and Context switch.

12.3.11 Command Synchronization

This section describes the hardware mechanisms that can be used by software to
provide synchronization with command stream parsing and execution.

The key point here is distinguishing between command parsing and retirement – in
that, for most commands, there is some finite delay between the parsing of a
command and the retirement (coherent completion) of the operation it specifies.

Interrogation of the Ring Buffer Head Pointer only gives an indication of the progress
of command parsing. This information is required to discern the availability of
command data within the Ring Buffer or Batch Buffers. If the Head Pointer indicates
the command data has been parsed, those locations can be reused; otherwise the
commands must be considered still pending parsing and left alone.

Given the CP rules for command execution, it is possible to use the indication of
command parsing progress to infer the retirement status of parsed commands. The

390

only indication of instruction retirement available from instruction parsing is that
parsing of an MI instruction implies retirement of previous MI instructions with the
following exceptions:

• The parsing of a Memory Interface (MI) command implies that all previously-
parsed MI commands have completed, with the following exceptions:
- Display and Overlay Flip commands: Only the submission of the flip request is
guaranteed. The flip operation will occur some time later. Mechanisms to detect
the actual completion of a flip operation are described below.
⎯ “Store-Data” type commands: Only the submission of the store operation is

guaranteed. The write result will be complete (coherent) some time later (this
is practically a finite period but there is no guaranteed latency).

⎯ Batch Buffer commands: There is no guarantee that the operations performed
by the batch buffer have completed.

Other than the cases described above, additional measures must be taken to discern
the progress of command retirement. These measures are described in the following
subsections.

12.3.11.1 MI_FLUSH

The MI_FLUSH command pauses further command parsing until all drawing engines
become idle and any internal rendering cache is flushed and invalidated. All previous
rendering commands can therefore be considered retired.

This flush operation is considered complete once command parsing proceeds to the
next command. Software can, for example, follow an MI_FLUSH command with an
MI_STORE_DATA_IMM or MI_STORE_DATA_INDEX command – where the completion
of the store operation implies that the flush operation has completed. (Note that if
the last DWord in a ring buffer is an MI_FLUSH instruction, there is no way by simply
looking at the Ring Buffer registers to determine whether the flush operation is
complete or still pending.)

The successful completion of an MI_FLUSH command does not guarantee that all
previous operations have completed. Operations that may still be pending include:

• Store Data type commands (MI_STORE_DATA_IMM, MI_STORE_DATA_INDEX,
MI_REPORT_HEAD)

• Display or Overlay Flip operations

See section 12.3.10.2 for more information on when the sampler cache should be
invalidated.

12.3.11.2 Sync Flush

Inserting MI_FLUSH commands, while effective at determining or forcing the
retirement of previous rendering commands, may negatively impact performance if
not absolutely required. For example, if the knowledge of rendering command
retirement is not known a priori, it is likely undesirable to insert MI_FLUSH commands
at intervals in the command stream. However, it may not be acceptable to insert an
MI_FLUSH command (and wait for its completion) at the point that rendering
command retirement is required – as there may be a large number of commands
pending in ring/batch buffers at that point and flushing the entire device (including
waiting for completion of pending commands that have not yet been parsed) may be
prohibitive. There is a mechanism, however, where command stream synchronization

 391

can be performed on demand, without requiring earlier submitted commands and
batch buffers to complete – it is called the “Sync Flush” mechanism.

Here’s how it works:

• Software must (preferably at driver initialization time) unmask the Sync Status bit
in the Hardware Status Mask Register (HWSTAM). This should be done
unconditionally (at least whenever HW status writes are enabled), as any
bandwidth increase due to Sync Status-initiated writes is negligible.

• At the point that synchronization is required, software must guarantee that
command parsing has progressed past the point of interest in the command
stream (i.e., past the last command whose retirement is required). Note that this
step is required in any scheme.

• Software then reads the location where the Interrupt Status is reported in the
Hardware Status Page (DWord offset 0) and saves that DWord in a temporary
variable.

• Software then sets the Sync Enable bit of the Command Parser Mode Register
(INSTPM) via an uncached write.

• The Command Parser will detect the Sync Enable bit set before it proceeds to the
very next command (or immediately if the CP is idle). It will then perform an
internal flush operation. This flush is identical to that performed by an MI_FLUSH
command with all flush types enabled.

• Once this flush operation is complete, the CP will clear the Sync Enable bit of the
INSTPM register and then toggle the Sync Status bit of the ISR register. This will
initiate a write of the ISR register contents (with the toggled Sync Status) to
DWord 0 of the Hardware Status page (as part the normal hardware status write
mechanism).

• Software, following the write of the INSTPM register, should periodically poll the
Hardware Status location. By comparing the current versus saved value of the
Sync Status bit, software can then detect when the flush operation is complete.
Note that the latency of this operation is typically small, as it will be initiated
either immediately or at least before the next command is parsed (regardless of
arbitration conditions).

12.4 Hardware Status

The graphics device supports a number of internal hardware status bits which can be
used to detect and monitor hardware status conditions via polling or interrupts. This
section will describe each hardware status bit. The following section describes the
hardware status reporting (polling) mechanism. The mechanism to allow these status
bits to generate interrupts is described in the Interrupts section. Note that the
hardware status bits are actually reported in the Interrupt Status Register, so
“hardware status” and “interrupt status” are used interchangeably here (though many
hardware status bits won’t necessarily ever be used to generate interrupts).

The following subsections describe the various hardware (interrupt) status bits, as
defined in the Interrupt Status Register.

392

12.4.1 Hardware-Detected Errors (Master Error bit)

This interrupt status bit is generated whenever an “unmasked” hardware-detected
error status is detected. See Errors.

12.4.2 Thermal Sensor Event

This interrupt status bit is generated by “thermal events” detected by the Thermal
Sensor logic. The bit corresponding to this event in the HWSTAM register must always
be masked (i.e., set to ‘1’) so that thermal sensor events do not generate HW status
DWord writes. See Hardware Status Writes.

12.4.3 Sync Status

This bit should only be used as described in Sync Flush, and should not be used to
generate interrupts (i.e., the corresponding interrupt should not be enabled in the
IER).

12.4.4 Display Plane A, B, Flip Pending

These bits are used to report the status of “flip” operations on the corresponding
Display Plane. Display Flip operations are requested via the
MI_DISPLAY_BUFFER_INFO command. When that command is executed, the
corresponding Display Flip Pending status in the ISR register will be set to ‘1’
indicating that a display flip has been requested but has not yet been performed.
(Requesting a flip operation when one is already pending is UNDEFINED). This
indicates that a flip is “pending”. At the appropriate time during the next vertical
blank period (for that display stream), the flip operation will be performed (i.e., the
display will switch to refreshing from the new display buffer). This causes the Display
Flip Pending status to reset to ‘0’. When this occurs, and the Display Flip Pending
status bit is unmasked by the Interrupt Mask Register (IMR), the Display Flip Pending
status bit of the Interrupt Identity Register (IIR) is set. Note that this setting of an
interrupt identity bit on the falling edge of the status bit is contrary to the general
definition of interrupt status bits.

12.4.5 Overlay Flip Pending

This bit is similar to the Display Flip Pending bits. It is set to ‘1’ when the
MI_OVERLAY_FLIP command is executed. It is cleared to ‘0’ after the overlay
registers are read from memory during the next vertical blanking period.

12.4.6 Display Pipe A,B VBLANK

These bits are set on the leading edge of the selected Display Pipe’s VBLANK signal.

 393

12.4.7 User Interrupt

This bit is set in response to the execution of an MI_USER_INTERRUPT command. The
Command Parser will continue parsing after processing that command. If a user
interrupt is currently outstanding (set in the ISR) this packet has no effect.

Programming Note: User interrupts can be used to notify software of the progress
of instruction parsing past the MI_USER_INTERRUPT instruction. In particular, user
interrupts can be inserted into the command stream but effectively disabled for
“normal operation” via the IMR and HWSTAM registers. Whenever software requires
the notification afforded by the user interrupts, it can unmask this bit.

12.4.8 PIPE_CONTROL Notify Interrupt

This bit is set when a PIPE_CONTROL command with the Notify Enable bit set
reaches the end of the pipeline and all required cache flushes have occurred.

12.4.9 Display Port Interrupt

This bit is set on a hot plug event. See the Display Registers chapter for details.

12.5 Hardware Status Writes

The graphics device supports the writing of the hardware status (ISR) bits into
memory for optimized access from software. Software can select which (if any) status
bits will trigger the write of the ISR contents to memory using the Hardware Status
Mask (HWSTAM) register. Writing a ‘0’ to a defined bit position in the HWSTAM
register will cause any change (0 1 or 1 0) in the corresponding ISR bit to trigger
the write. The complete ISR contents will be written to DWord offset 0 of the
hardware status page, located at the address programmed via the Hardware Status
Page Address Register (HWS_PGA).

12.6 Interrupts

The graphics device supports the generation of an interrupt. This interrupt can be
raised in response to one or more internal interrupt status conditions. Which interrupt
status conditions are allowed to raise an interrupt is programmed via the Interrupt
Mask Register (IMR) and Interrupt Enable Register (IER). The IMR is used to
selectively “unmask” hardware status bits as to allow them to be reported in the
Interrupt Identity Register (IIR). The IER holds a set of interrupt enable bits
corresponding to each bit of the IIR – setting bits in the IER will allow interrupts to be
generated by the corresponding bits in the IIR.

394

12.7 Errors

The graphics device supports the hardware detection of a number of operational and
debug-only errors. Operational errors occur out of the immediate control of driver
software and must be anticipated and tolerated to the extent required by the relevant
APIs. Software must therefore support the detection and proper handling of all
relevant operational errors. The (more numerous) debug-only errors are just that –
detected to facilitate initial system debug but not intended to be tolerated during
normal system operation. In many cases, debug-only errors are not recoverable.
They require the use of debug registers to detect and diagnose.

12.7.1 Error Reporting

Regardless of the error classification, all errors funnel through the Master Error bit of
the Interrupt Control Registers. This bit can be used to raise a device interrupt or
trigger a hardware status write operation. (Needless to say it can also be polled
directly, though this is clearly discouraged). Refer to Interrupt Control Registers in
the Memory Interface Registers chapter for more information.

There are three registers dedicated to control, detect, and clear hardware error status
conditions in a similar fashion to the Interrupt Control Registers. All three error
registers share a common error status bit definition.

The Error Status Register (ESR) holds the actual error status bits (each of which may
be the logical OR of “source” error bits in various functional registers). The Error Mask
Register (EMR) is used to select which error status bit(s) are reported in the Error
Identity Register (EIR). The EIR holds the “persistent” values of the unmasked error
status bits, and is also used to clear error status conditions. Any bits set in the EIR
will raise the Master Error interrupt status condition.

The error conditions corresponding to the error status bits include:

• Page Table Error (Debug only) – This is a summary of a number of possible
errors associated with the mapping function of the GTT. See Table 12-3 for more
information.

• Display or Overlay Underrun (Debug only) – This error is raised when a FIFO
underrun condition is detected in the display or overlay isochronous streams.
See the description of the Display/Overlay Status Register in the Display Registers
chapter.

• Command Error (Debug Only) – This is a summary of a number of command
data errors detected by the Command Parser. See Command Errors below for
more information.

 395

12.7.2 Page Table Errors

The following tables describe the various sources and types of Page Table Errors.
Refer to the description of the PGTBL_ERR register in Memory Interface Registers for
more details.

Table 12-3. Page Table Error Types

Error Description Streams

Invalid GTT PTE In the process of mapping an address, the MI
encountered a GTT PTE that was marked “Invalid”. This
would be the result of a programming error.

All (See Table
 11-1)

Invalid TLB Miss An unexpected TLB miss (detected at GTT request time)
was encountered (e.g., during Display/Overlay/Sprite
access).

Display,
Overlay

Invalid PTE
Data

Mapping to the physical page specified in the PTE is not
permitted (e.g., a page in PAM, SMM or over the top of
memory, etc.). This is the result of a programming error.

Host

Invalid Tiling A tiling parameter was found inconsistent with the current
operation. This includes the use of Y-Major tiling in the
Render/Display/Overlay streams. This is the result of a
programming error. This is detected during GTT request.

Blt, Display,
Overlay

NOTE: Note that Page Table Errors cannot be cleared. A device reset is required.

12.7.3 Clearing Errors

For operational errors, software is responsible for taking the proper steps to recover
from the error and then clearing the error indication. The actions required to recover
from operational errors may be discussed in the various functional areas (not here).
See the Hardware-detected Error Bit Definitions in Memory Interface Registers for
more details. This subsection describes the actions required to clear the error
indication.

In order to clear operational errors, software is responsible for clearing the error
condition from the source, working back to the Master Error bit. Typically this will
entail the following sequence.

• First the primary source of the error must be cleared. This requires clearing the
functional register(s) containing the source error indication.

• Next, clear the particular error status bit by writing a ‘1’ to the appropriate bit of
the Error Identity Register (EIR). This will clear the error status bit in the Error
Status Register (ESR). If multiple errors are present, all error status bits should
be cleared simultaneously.

• Next, clear the Master Error interrupt status bit by writing a ‘1’ to the Master Error
bit of the Interrupt Identity Register (IIR).

Note: Page Table Errors cannot be cleared.

396

12.8 Rendering Context Management

The graphics device operation (rendering, etc.) is controlled via the settings of
numerous hardware state variables. These state variables are divided into global
state and context state.

There is only one copy of global state variables, and changing the settings of these
variables requires explicit programming of the state variables. Examples of global
state include:

• MI registers (HWSTAM, Ring Buffer, etc.) with the exception of those listed in the
next paragraph (i.e, registers listed there are saved/restored)

• Configuration registers

• Display programming registers

On the other hand, context state is associated with a specific context, where switching
to that context causes that context’s state to be restored. While the associated
context is active, the state variables and registers can be programmed via the
command stream. Examples of context state include the PIPELINE_STATE_POINTERS
command and most non-pipelined state. The following MI registers are considered
part of context state and thus saved/restored with context:

• INSTPM

• CACHE_MODE_0

• CACHE_MODE_1

• MI_ARB_STATE

• 3D Software Visible Counter Registers

The graphics device supports both a hardware context and logical contexts. The
multiple logical context support provides robust rendering context support by
swapping contexts to/from memory.

12.8.1 Multiple Logical Rendering Contexts

The graphics device supports multiple logical rendering contexts stored in Main
Memory. Logical rendering contexts are referenced via a 2KB-aligned Logical Context
Address.

The maximum size of a logical context entry (which is information required by the
driver to allocate contexts) is currently 2K bytes. For forward compatibility, the
maximum size of a logical context entry should be supplied to the drivers via a VBIOS
mechanism as opposed to being hardcoded in the driver.

The actual size of a logical rendering context is the amount of data stored/restored
during a context switch and is measured in 64B cache lines. There is a debug
mechanism that allows software/BIOS to program the actual size of the logical
rendering context via the CXT_SIZE register. Note that this register will default to the
correct value, so software should not have to modify it.

 397

The format of the logical rendering context in memory is considered device-
dependent; software must not attempt to modify the contents of a logical
rendering context directly. This restriction is motivated by forward
compatibility concerns because the location and definition of fields may
change between implementations.

12.8.1.1 Current Context IDs

The ring buffer has an associated Current Context ID (CCID) register. The CCID
includes a Logical Pipeline Context Address (LPCA).

The CCID for a ring buffer is set during the processing of the new MI_SET_CONTEXT
command from that ring. The MI_SET_CONTEXT command provides a new CCID value
(LPCA) to be loaded into the CCID register for the associated ring buffer. The
MI_SET_CONTEXT command also contains a Restore Inhibit bit used to optionally
inhibit the restoration (loading) of the new rendering context. This bit must be used
during context initialization to avoid the loading of uninitialized (garbage) context data
from memory. Failure to do so leads to UNDEFINED operation.

The initial values of the CCIDs are UNDEFINED. The first time a valid CCID is set from
a ring buffer, the normal context save operation will be suppressed, as the previous
CCID is invalid.

12.8.1.2 Intra-Ring Context Switch

Within a specific ring buffer, a new logical rendering context is specified via the
MI_SET_CONTEXT command. Note that MI_SET_CONTEXT commands are permitted
only within a ring buffer (not within a batch buffer).

As part of the execution of the MI_SET_CONTEXT command from within a ring buffer,
the Logical Pipeline Context Address fields of the CCID register and MI_SET_CONTEXT
command are compared. If they differ (or the CCID register is uninitialized), a
rendering context switch operation will be performed, which includes:

1. If the CCID contents are valid, a context save operation will be performed. The
contents of the HW context will be saved in memory starting at the Logical
Pipeline Context Address specified in the CCID.

2. If the Restore Inhibit command field is not set, a context restore operation will
be performed. Here the logical context values are read starting from the
Logical Pipeline Context Address field of the command and used to set the
internal HW context.

3. The relevant contents of the command will be loaded into the appropriate CCID
register. (This occurs irrespective of the LPCA comparison result). At this
point, the ring buffer has switched to using the new logical rendering context.

398

12.8.1.3 Logical Rendering Context Creation and Initialization

12.8.1.3.1 Rendering Context Creation Rules

1. Software only knows the size of the logical rendering context (2KB), for
allocation purposes.

2. Given (1), software does not know the format of the context, and therefore is
not allowed to write any portion of a logical rendering context. Software can,
however, copy/move entire logical context blocks.

3. Given (2), software must never restore (load) a logical rendering context from
memory that has not been previously stored by HW. I.e., software must
never attempt to initialize a context itself and then cause it to be loaded.
Breaking this rule causes UNDEFINED operation (as in the hang seen in BDG
validation).

4. Initialization software must write all HW context variables with legal values
before the first rendering context can be saved (this must be done before you
can perform any rendering anyways). Given this, and the obvious rule that
software must never program illegal state values, guarantees that the HW
context will forever remain valid (and therefore be available to store into a
logical rendering context). Note that software-visible context variables include
3D state, Blt register state, etc.

12.8.1.3.2 Context Initialization

Logical Rendering Contexts can be initialized (in memory) by software in the following
way:

1. Issue an MI_SET_CONTEXT command w/ the Restore Inhibit bit set and the
about-to-be-initialized logical pipeline context address. This will save the
current rendering context and then change the LPCA to the new context
(without loading it).

2. Use state commands to modify the context as desired.
3. Issue another MI_SET_CONTEXT command specifying some other LPCA (e.g.,

the previous one). This will cause the new context to be stored (initialized) in
memory

12.8.1.4 Context Save

A context save will occur anytime all of the following apply:

• A rendering context switch occurs as a result of the execution of
MI_SET_CONTEXT

• the CCID of the current context (CCID register of current ring) and the new CCID
(the CCID register of the newly selected ring or the new CCID in the
MI_SET_CONTEXT command) differ OR an MI_SET_CONTEXT with the “Force
Restore” bit set initiated the context switch

• the current CCID is valid (has been previously set)

The current rendering context will be written out to memory starting at the LPCA in
the format described by Logical Context Layout in Memory Data Formats. Note that
this includes a limited number of Memory Interface Registers whose values are saved
by embedding them in an MI_LOAD_REGISTER_IMM command that is written out to
memory.

 399

The Optional Extended Context will also be written if the Extended Save Enable bit is
set in the current CCID register. Context saves DO NOT modify pipelined state stored
in memory.

12.9 Reset State

This section describes the state of the programming interface following a hardware
reset. Refer to the individual register definitions for details on reset (default)
settings.

• The settings of the hardware context state variables are UNDEFINED. Software
must program all state variables prior to their use in rendering.

• The ring buffer is disabled.

• All interrupts and error status bits are “masked” (disabled). All interrupts are
disabled via IER. There will be no HW activity to cause any hardware/interrupt
status bits to be set.

• The Hardware Status Page is located at 1FFFF000h (though HW status writes are
effectively disabled)

• All FENCE registers are INVALID

• The GTT is disabled (accesses other than CPU reads, cursor and VGA reads will
generate an error).

• All INSTDONE bits are set (“DONE”).

• The NOPID register is 0.

• All command groupings are enabled (via INSTPM)

400

13 Frame Buffer Compression
([DevCL] Only)

13.1 Overview

The Run-Length Encoded Frame Buffer Compression (RLE-FBC) function is a
mechanism to reduce display refresh memory traffic. By reducing memory reads
required for display refresh, power consumption is reduced (thus extending battery
life for mobile systems).

The conditions under which the RLE-FBC is most effective are:

• Display images that are well suited to RLE compression. Good examples are text
windows, slide shows, etc. Poor examples are 3D games - rich in textured and
smooth-shaded objects.

• Screens that are fairly static. Good examples are screens with significant portions
of the background showing, 2D apps (reading mail, etc.), CPU benchmarks, etc.,
or conditions when the CPU is idle. Poor examples are full-screen 3D games and
benchmarks that flip the display image at or near display refresh rates.

Note that this compression function is different from, and mutually exclusive with,
Discard Alpha Frame Buffer Compression – which is effective for 32bpp 3D
environments.

The RLE-FBC function is comprised of three subfunctions:

• A Compressor that attempts to compress the display buffer as a background
task.

• A Decompressor in the Display engine that uses compressed lines for display
refresh, if available.

• A Frame Buffer Write Detector that snoops writes to the uncompressed frame
buffer and invalidates the corresponding compressed lines.

The RLE-FBC Compressor periodically compresses lines of Display Plane A (an
uncompressed display source image) using run-length encoding and stores the results
into a pre-allocated compressed frame buffer. During subsequent display refreshes,
the Display engine Decompressor attempts to refresh Display A from the
compressed frame buffer. Lines that were not compressed or lines that were
modified since the last compression – as detected by the Frame Buffer Write
Detector – are displayed from the uncompressed buffer.

 401

13.2 Programming Interface

13.2.1 FBC unit programming interface

The following table summarizes the register programming interface to the RLE-FBC
function. Refer to the Memory Interface Registers chapter for details on the individual
registers provided in the programming interface.

Register Field(s) Description

FBC_CFB_BASE Compressed Frame Buffer
Address

Specifies the location of the
compressed frame buffer

FBC_LL_BASE Compressed Line Length Buffer
Address

Specifies the location of the
compressed line length buffer

FBC_CONTROL Enable Turns the RLE-FBC function on/off

 Mode Select Specifies Single or Periodic
compression mode

 Interval Specifies time period (in display
refreshes) used in periodic mode

 Stop Compressing on
Modification (DEBUG)

Specifies that the compression pass
should be aborted if a line is
modified during compression.

 Uncompressible Enable Enable Uncompressible state for the
tag RAM. if ENABLE compressor will
mark the uncompressible scan line
to prevent future compressing
attempt

 Compressed Frame Buffer
Stride

Specifies the stride (pitch) of the
compressed frame buffer 64-byte
unit

 Fence Number Specifies the FENCE register
associated with the uncompressed
source frame buffer

FBC_CONTROL2

 FBC Cx state mode Specifies FBC behavior when PM
signals CPU goes to Cx (non C0)

 CPU Fence Enable If ENABLE the display buffer is
existed within CPU fence

 Display Plane Select Select Plane A or B for Frame Buffer
Compression

FBC_YFENCE_DISP Fence Display Buffer Y offset Y offset from the CPU fence to the
Display Buffer base

FBC_MOD_CTR FBC modification Counter for
Recompression

Recompress the Display Buffer only
after the programmed number of
modifications to the display buffer

402

Register Field(s) Description

FBC_COMMAND Compression Request Used to request compression passes
in Single compression mode

FBC_STATUS Compressing (RO) Status indicating if the compressor
is running.

 Compressed (RO, R/W for
DEBUG)

Status indicating if the compressed
frame buffer is available for display

 Any Modified (RO, R/W for
DEBUG)

Indicates whether any lines of the
uncompressed frame buffer have
been modified since the last
compression pass.

 Current Line Compressing (RO) Indicates the progress of the
compressor

FBC_TAG[0..N] Tag[i+0..i+48]

 (DEBUG)

Status indication for each pair of
display lines.

13.2.2 Programming interface from Display Engine

The following table summarizes the indirect register programming interface to the
RLE-FBC function from Display Engine. These registers are programmed in Display
Engine for Display function, but they are passed to FBC unit to use for Frame Buffer
Compression operation. Depend on how FBC_CONTROL2< Display Plane Select> is
set Display Plane A or B registers are passed to FBC unit. Refer to the Memory
Interface Registers chapter for details on the individual registers provided in the
programming interface.

FBC used these registers when reading uncompressed frame buffer and building a
compressed buffer that is identical to uncompressed buffer of Display Plane A or B.

Register Field(s) Description

DSPA(B)CNTR Display A(B) Source Pixel
Format

4-bit source Pixel format- FBC can
only works with 16-bit or 32-bit
Source pixel format that organize in
8-bit chunk (not 10:10:10:2 format)

DSPA(B)STRIDE Display A (B) Stride

This value is used to determine the
line to line increment for the display.
FBC can work with non-power-of-two
stride from 2KB to 16KB with
increment of 512bytes

DSPA(B)SURF Display A (B) Surface Base
Address

This address specifies the surface
base address. When the surface is
tiled, panning is specified using (x, y)
offsets in the DSPA (B) TILEOFF
register. This address must be 4K
aligned.

 403

Register Field(s) Description

DSPA(B)LINOFF Plane Start Y-Position These 12 bits specify the vertical
position in lines of the beginning of
the active display plane relative to
the display surface.

 Plane Start X-Position These 12 bits specify the horizontal
offset in pixels of the beginning of the
active display plane relative to the
display surface.

HTOTAL(B) Pipe A (B) Horizontal Active
Display Pixels

This 12-bit field provides Horizontal
Active Display resolutions up to 4096
pixels. Note that the first horizontal
active display pixel is considered pixel
number 0. The value programmed
should be the (active pixels/line – 1).

VTOTAL(B) Pipe A (B)Vertical Active
Display Lines

This 12-bit field provides vertical
active display resolutions up to 4096
lines. It should be programmed with
the desired number of lines minus
one.

13.3 Operating Modes

13.3.1 RLE-FBC Function Modes

The RLE-FBC function (compression and decompression) is enabled or disabled via the
Enable bit of the FBC_CONTROL register.

In order to request the disabling of the function software must set Enable to
DISABLED. The function does not subsequently become disabled until the
Compressing status bit of FBC_STATUS is clear. Software must ensure that the
function is in fact disabled (via interrogation of the Compressing status bit) before
re-enabling the RLE-FBC function and under the following conditions:

• Prior to changing the contents of the FBC_CFB_BASE or FBC_LL_BASE registers

• Prior to changing the contents of the following fields of the FBC_CONTROL
register:
⎯ Mode Select
⎯ Interval
⎯ Stop Compressing on Modification
⎯ Uncompressible Enable
⎯ Compressed Frame Buffer Stride
⎯ Fence Number

• Prior to changing the contents of the following fields of the FBC_CONTROL2
register:
⎯ FBC Cx state mode
⎯ CPU fence Enable
⎯ Frame Buffer Compression Display Plane Select A/B

• Prior to changing the contents of the FBC_Fence_Display_Y_Offset register:

404

• Prior to changing the contents of the following fields of the FBC_MOD_CTR
register:
⎯ FBC_mod_ctr
⎯ FBC_mod_ctr_valid

• Prior to changing the display mode of the source frame buffer (Display Plane A)
including display pixel format, dimensions, and pitch (stride).

• Prior to entering/use of any modes listed under Restrictions below

Modification of DEBUG-mode controls is implementation dependent.

13.3.2 Compression Modes

The RLE-FBC compressor is capable of operating in one of two modes, Single or
Periodic Compression, as specified by the Mode Select field of the FBC_CONTROL
register.

13.3.2.1 Single Compression Mode

In this mode software can request a single compression pass via the Compression
Request bit of the FBC_COMMAND register. The compression results will be used
until another compression is requested or the RLE-FBC function is disabled. Note that
subsequent modifications to the uncompressed frame buffer will invalidate
corresponding compressed lines – diminishing the benefits of the function.

Single compression mode is preferred when software has knowledge that significant
portions of the frame buffer lines will remain static for a period of time – where
memory bandwidth would not be wasted further recompressing the static frame buffer
data.

13.3.2.2 Periodic Compression Mode

In Periodic mode, recompression is attempted at a programmed rate in units of
display refreshes. The time period is programmed via the Interval field of the
FBC_CONTROL register. The RLE-FBC compressor will not initiate a periodic
compression if there have been no modifications to the source frame buffer since the
last compression.

This mode is preferred when software expects significant portions of the frame buffer
line to be written on a frequent basis (or at least cannot guarantee that this will not
occur). The time period can be adjusted according to the refresh rate and/or
frequency and extent of (expected) frame buffer modifications.

If Uncompressible Enable is set to ENABLED the compressor will mark a tag line
uncompressible if both scan lines of a tag line are uncompressible so compressor
won’t attempt to compress these scan lines again in subsequent compression run
unless these lines are modified by CPU or RC.

If FBC_mod_ctr_valid is SET the compressor will only attempt to recompress if the
number of tag lines were modified since last compression run is greater or equal the
value of FBC_mod_ctr.

 405

13.4 Usage Restrictions

RLE Frame Buffer compression must not be enabled unless the following conditions
are met:

1. If Display A is selected DSPACNTR—Display A Plane Control Register[Pixel
Multiply] = No line duplication and Display A Plane Control
Register[Horizontal Pixel Multiply] = 1x

2. If Display B is selected DSPBCNTR—Display B Plane Control Register[Pixel
Multiply] = No line duplication and Display B Plane Control
Register[Horizontal Pixel Multiply] = 1x

3. Panning of Selected Display Plane is permitted. If FBC is enabled and a
compressed buffer is available when a panning event happened FBC will
invalidate the current compressed buffer and recompress if necessary using
the current FBC control parameters. If new uncompressed buffer required a
new set of FBC control parameters then RLE-FBC must be first disabled.

4. Sync flips of Selected Display Plane are permitted. If FBC is enabled and a
compressed buffer is available when sync flips event happened FBC will
invalidate the current compressed buffer and recompress if necessary using
the current FBC control parameters. If new uncompressed buffer required a
new set of FBC control parameters then RLE-FBC must be first disabled

5. The display pixel format is 15-bit, 16-bit or 32-bit xRGB_8888 mode (as the
alpha channel is removed as part of the compression).

6. Discard Alpha Frame Buffer Compression is DISABLED.

7. The uncompressed frame buffer is tiled with pitch from 2KB to 16KB in step of
0.5KB

8. The Line Width (in pixels) of the uncompressed frame buffer is a multiple of 8
in the range [640, 2048].

9. Number of lines of the uncompressed frame buffer is a multiple of 2 in the
range [480, 1536].

10. Dual-wide display is not active.

11. If the pipe A is selected (i.e., DSPACNTR—Display A Plane Control Register
[Display Pipe A Select] = Select Pipe A), then Pipe A Configuration Register
[Interlaced modes] must be in Progressive mode.

12. If the pipe B is selected (i.e., DSPBCNTR—Display B Plane Control Register
[Display Pipe B Select] = Select Pipe B), then Pipe B Configuration Register
[Interlaced modes] must be in Progressive mode.

13. Compressed Frame Buffer Stride in bytes is equal or smaller than
Uncompressed Frame Buffer Stride in bytes to prevent unintended buffer
expansion in 16bpp frame.

14. Both Regular and SR display watermarks for 16bpp must equal 32bpp as
calculated

406

15. Compressed Frame Buffer and Line Length buffers must reside entirely in
stolen memory segment. If hardware tried to access compressed buffer or line
length buffer outside of stolen memory FBC unit will be invalidate compressed
buffers and makes unavailable to DISPLAY.

16. Display 180 degree rotation using gen4 hardware is turned off. This feature is
not compatible with FBC scanline addressing. Software rotation can be
enabled at the same time with FBC.

17. Async Flips are not permitted. FBC must be disabled when async flips are in
use.

13.5 Power Management Interface

At the system level the amount of saving power of Frame Buffer Compression may be
offset by power consumed by other units including CPU and memory subsystem when
waiting for Frame Buffer Compression complete its pass. Device-specific power
management modes need to add in to basic Frame Buffer Compression operation.

For [DevCL], different Cx state modes are used to provide a tuning mechanism
between CPU low-power states (or Cx state) and FBC operation. Power Management
Unit will signal to FBC that CPU is in low power state and wait for FBC to signal back
that FBC is idle and no longer accessing external memory. Power Management unit
then can implement global power saving scheme like putting external memory in self-
refresh or clock gating FBC and/or other related units.

In DevCL, Cx state mode are specified as following:

• FBC_CONTROL2<Cx state mode>=IMMEDIATE IDLENESS. FBC blocks its
requests to memory (read and write) and waits for all read returns to complete
before asserting FBC-idle (default)

• FBC_CONTROL2<Cx state mode>=NORMAL IDLENESS. FBC finishes current
compression pass before asserting FBC-idle

• FBC_CONTROL2<Cx state mode>=SCANLINE IDLENESS FBC completes the
current line/line pair and skips remaining lines and makes the compressed buffer
available for display before asserting FBC-idle.

• FBC_CONTROL2<Cx state mode>=IMMEDIATE DEBUG IDLENESS. FBC asserting
FBC-idle immediately, more memory transactions may be still underway. This
allows PM to find the fastest path to go to lower power state regardless of FBC
operation.

 407

13.6 Memory Data Structures

13.6.1 RLE Pixel Runs

A compressed line contains one or more pixel runs of identical pixel values. A pixel
run is stored as a DWord containing (1) an RGB pixel value and (2) a run length that
specifies the number of times (minus one) that the pixel value is to be replicated.

For 32bpp pixel formats, the run length is encoded in Bits 31:24 of the run Dword.
This permits run lengths of 1 to 256 pixels. Any alpha value stored in Bits 31:24 is
discarded. The remaining 24-bit RGB pixel value is left in place (in Bits 23:0).

Figure 13-1. 32bpp Pixel Run

31 24 23 16 15 08 07 00

Run
Length

Red Green Blue

For 16bpp pixel formats, the run length is encoded in Bits 26:16 of the run Dword.
This permits run lengths of 1 to 2048 pixels. The 16-bit RGB pixel value is stored in
Bits 15:0 (for 15bpp formats, Bit 15 is Reserved).

Figure 13-2. 16bpp Pixel Run

31 27 26 16 15 00

Reserved Run
Length

Pixel Value

13.6.2 RLE Pixel Run Sets

The RLE-FBC function groups 8 consecutive pixel runs into 32-byte (Sword) pixel run
sets. This matches the granularity used to read the compressed frame buffer.

Figure 13-3. Pixel Run Set

Dword 0 Dword 1 Dword 2 Dword 3 ... Dword 7

Run 0 Run 1 Run 2 Run 3 ... Run 7

13.6.3 RLE-Compressed Line

An RLE-compressed line is comprised of a horizontal series of pixel run sets
corresponding to a scan line in the uncompressed frame buffer.

Note that there is no encoding for “unused” Dwords in the last pixel run set. During
display the Display engine will end the decompression of pixel runs when the number
of decompressed pixels per line is satisfied.

408

13.6.4 RLE Compressed Frame and Line Length Buffers

The RLE-compressed frame buffer and the Compressed Line Length Buffer must be in
locked, fixed, contiguous, and uncacheable physical memory.

The RLE-Compressed Frame Buffer is a 4KB-aligned rectangular array of pixel run sets
residing in physically contiguous memory (it is not mapped by the GTT). The physical
address of the buffer is programmed via the FBC_CFB_BASE register.

The stride (width) of the buffer in Swords (run sets) is programmed via the
Compressed Frame Buffer Stride field of the FBC_CONTROL register.

Different lines will typically compress to a different number of Pixel Runs. In order to
record how many Swords needs to be fetched from the RLE-Compressed Frame
Buffer, a Compressed Line Length Buffer is used. The Compressed Line Length Buffer
is a (1536+32)-byte, 4KB-aligned list in physically contiguous memory (it is not
mapped by the GTT). The physical address of the buffer is programmed via the
FBC_LL_BASE register. Each byte in the buffer specifies the number of Swords (minus
one) valid for the corresponding line in the RLE-Compressed Frame Buffer.

Figure 13-4. RLE-Compression Buffers

Run Set Run Set Run Set Run Set

SW 0 SW 1 SW 2 SW T-1

Run Set Run Set Run Set Run Set

Run Set Run Set Run Set Run Set

Run Set Run Set Run Set Run Set

Run Set Run Set Run Set Run Set

Run Set Run Set Run Set Run Set

Line 0

Line 1

Line 2

Line 3

Line N-2

Line N-1

... ...

...

...

Stride (in 64-byte unit)

SWs

Compressed Frame Buffer Line Length Buffer

SWs

SWs

SWs

SWs

SWs

alignment
padding

The byte in the Compressed Line Length Buffer that corresponds to Line 0 of the
Compressed Frame Buffer is offset according to the alignment of the uncompressed
display buffer. The Compressor and Decompressor both use the 6 least significant bit
of y offset from Display Base as starting offset for line 0.

 409

13.7 Tuning Parameters

13.7.1 Stride

The Compressed Frame Buffer Stride field of the FBC_CONTROL register specifies
the distance (in 64-byte unit) between consecutive lines in the compressed frame
buffer. If a source line cannot be compressed to fit within a compressed line, it will
remain uncompressed.

The maximum compression ratio can be achieved by setting the compressed frame
buffer stride to correspond with the uncompressed frame buffer line length. The
stride can be set to a smaller number if there is not enough memory available for the
compressed frame buffer.

13.7.2 Interval

As previously mentioned, the interval with which periodic compression passes are
attempted can be adjusted as desired (e.g., as a function of refresh rate and/or
expected frequency/extent of frame buffer modifications. The interval is programmed
via the Interval field of the FBC_CONTROL register.

13.7.3 FBC Modification Counter

As previously mentioned, the FBC modification Counter can be used to reduce the
number of recompression attempts if the number of modification since last attempt is
small. At Interval expiry compressor will compare the number of accumulated tag
line modifications (tag line modification counter) with the value of FBC_mod_ctr if
the latter is larger the compressor will be back to sleep and tag line modification
counter will continue counting.

410

13.8 Implementation (DEBUG)

This section describes the implementation of RLE_FBC function. Information in this
section is not required for operational drivers – it is only required for debug activities.

13.8.1 Tag Array

A tag associated with every two sequential lines and indicates the current status of the
lines. The tag states are defined as follows:

Tag
Encoding

Definition Description

‘00’ Modified At least one of the lines of the pair has been modified since
the last compression pass, or a compression pass has not
been made since (a) the source buffer address has
changed, (b) RLE-FBC has been enabled, or (c) Reset

‘01’ Uncompressed One of the lines has not been compressed successfully.

‘10’ Uncompressible Both of the lines are uncompressible (compressed length is
larger than compressed stride)

‘11’ Compressed Both of the lines are compressed

If the first line of the uncompressed source frame buffer is in an odd address, the first
tag entry is associated with only one line, the first line; the second entry is associated
with the second and third frame buffer line and so on. The last line will be also alone
in this case.

13.8.1.1 Transitions

The following table describes the valid transitions of the Tag value. All tags start at
the Modified state upon reset.

From To Conditions

Modified Uncompressed Unconditionally at the start of a compression pass.

Uncompressed Modified One of the lines is modified, or the source frame
buffer base address was changed, or when
compression becomes enabled.

Uncompressed Compressed Both lines were successfully compressed.

Uncompressed Uncompressible Both lines were unsuccessfully compressed in the
previous pass

Compressed Modified Line was modified, or the source frame buffer base
address was changed, or when compression
becomes enabled.

Uncompressible Modified Line was modified, or the source frame buffer base
address was changed, or when compression
becomes enabled.

 411

13.8.2 Compressor

The compressor will compress only if the display is on.

START:
if (Display Plane)
 return
on (Start of Display Vblank)
 Sample the FBC address and configuration registers
 if (Mode == Periodic)
 Interval counter = interval counter-- % Interval

 if ((Mode == Periodic AND Interval == 0) OR Compression Request)
AND
 Display is ON AND
 (At least one line pair is Modified) AND
 (!Compressing) AND
 (Local cache and write posting buffers are empty) AND
 (Display buffer is tiled)
 goto COMPRESSION
 else goto START

COMPRESSION:
 {
 Change Modified to Uncompressed // One cycle
 Set FBC_CONTROL<Compressing>
 Reset FBC_CONTROL<Compressed>
 Reset FBC_CONTROL<Modified>

 for (each and every Uncompressed line pair)
 {

/* By first marking and then compressing we guarantee that
modification to this line will be marked as Modified and will
not be overridden when compression is completed */

 Mark the pair as Compressed
 Compress first line
 if (Stride exceeded)
 Mark pair as Uncompressed
 else
 Write the compressed line length to the
line-length buffer
 Compress second line
 if (Stride exceeded)
 Mark pair as
Uncompressed
 else
 Write the
compressed line length to the line-length buffer
 Mark pair as
Compressed
 Set FBC_CONTROL<Compressed>
 } // end for each uncompressed line pair
 Reset the “Compression in progress” bit
 Set Compressed-buffer-avail bit
 } // end compression

// If we succeeded to compress or not
if (Mode == Periodic)
 Reset the interval-counter
goto START

412

13.8.3 Decompressor

When the display streamer gets the first line request it checks for the following
condition:

• FBC_CONTROL<Enable> is set

• FBC_CONTROL<Compressing> is clear (compression not in progress)

• FBC_CONTROL<Compressed> is set (a compression pass has completed)

If any of these conditions are not met, only the uncompressed source buffer will be
used for refresh.

If all these conditions are met, the Decompressor will, for every line:

• If the line marked as Compressed the display streamer will read the compressed
line length from the compressed line length buffer, and then read the compressed
line data according to this length. If the line is not marked as Compressed, the
display streamer reads the line from the uncompressed frame buffer. In both
cases the pixel data is posted to the display FIFO.

• If the line is Compressed the Decompressor reads Dwords from the FIFO and
sends on the pixel data multiple times according to the run length, 1 – 256 in 32-
bit mode and 1 – 2048 in 16-bit modes. The Decompressor keeps track of the
number of pixels and stops when it reaches the line width (in pixels) and discards
any remaining Dwords.

13.8.4 Frame Buffer Write Detector

The Frame Buffer Write Detector snoops all frame buffers writes from the CPU and
render engines, and marks the modified line pairs as Modified.

• If Display buffer is a subset of the render buffer and cpu path is enabled via a
fence, where the fence is a superset of the render buffer then frame buffers lines
might be modified by both cpu write and render cache write.

• If Display buffer is a subset of render buffer and fence cpu path is disable then
frame buffers might be modified by render cache line only.

• If CPU path is disabled and Render and Display are independent buffers then no
modified should be happened.

In order to detect CPU write the following FBC registers need to be programmed
before the FBC is enable

• FBC_CONTROL2 <CPU Fence Enable> is set.

• FBC_CONTROL <Fence Number> set to match the fence that render target and
Frame Buffer reside in.

• FBC_YFENCE_DISP is set to the distance from fence base address to
DSPA(B)SURF

Chipset unit passes CPU writes that are within Graphic Aperture to FBC. FBC write
detector decode the line number and marked affected line as modified.

 413

There are no register programming needed for render cache write monitor. Render
cache unit pass each write to its cache to FBC. If Render Target Address match with
DSPA (B) SURF, and the render cache line has the same offset with active display then
the affected line pair is marked as Modified.

All lines will be marked as modified whenever:

• The uncompressed source Frame Buffer base address changes (this is only
permitted to happen as a result of a direct register write – flips of Selected Display
Plane are not allowed when RLE-FBC is enabled)

• RLE-FBC is enabled

• Reset

If the FBC_CONTROL<Stop Compressing on Modification> (DEBUG) bit is set, and
a source frame buffer write is detected during a compression pass, the compression is
aborted and the current line pair is marked as Modified. Compression will be
reattempted at the next periodic compression or when the next single compression
pass is requested.

13.8.5 Coherency

The display coherency is kept by keeping the following rules:

• The compressed frame buffer is not displayed during compression.

• The Compressor will only compress lines that are marked as Uncompressed.

• Lines state changes from Modified to Uncompressed can only when there are
no display reads or pending display writes. This is achieved by waiting for Vblank
start and then starting the compression only if the render cache is empty.

• Marking a line as Modified takes precedence over the (simultaneous) transition
from Modified to Uncompressed.

• Before a line pair is compressed, the tag is changed from Uncompressed to
Compressed. This will guarantee that if a line is modified while being
compressed it will transition to the Modified state.

• Compressor frame buffer reads push CPU writes to memory.

• At the end of each compression path FBC issues dummy reads to push
Compressed Buffer writes to memory.

414

14 BLT Engine

14.1 Introduction

2D Rendering can be divided into 2 categories: classical BLTs, described here, and 3D
BLTs. 3D BLTs are operations which can take advantage of the 3D drawing engine’s
functionality and access patterns.

Functions such as Alpha BLTs, arithmetic (bilinear) stretch BLTs, rotations,
transposing pixel maps, color space conversion, and DIBs are all considered 3D BLTs
and are covered in the 3D rendering section. DIBs can be thought of as an indexed
texture which uses the texture palette for performing the data translation. All drawing
engines have swappable context. The same hardware can be used by multiple driver
threads where the current state of the hardware is saved to memory and the
appropriate state is loaded from memory on thread switches.

All operands for both 3D and classical BLTs can be in graphics aperture or cacheable
system memory. Some operands can be immediates which are sent through the
command stream. Immediate operands are: patterns, monochrome sources, DIB
palettes, and DIB source operands. All non-monochrome operands which are not tiled
have a stride granularity of a double-word (4 bytes).

The classical BLT commands support both linear addressing and X, Y coordinates with
and without clipping. All X1 and Y1 destination and clipping coordinates are inclusive,
while X2 and Y2 are exclusive. Currently, only destination coordinates can be
negative. The source and clipping coordinates must be positive. If clipping is disabled,
but a negative destination coordinate is specified, the negative coordinate is clipped to
0. Linear address BLT commands must supply a non-zero height and width. If either
height or width = 0, then no accesses occur.

14.2 Classical BLT Engine Functional Description

The graphics controller provides a hardware-based BLT engine to off load the work of
moving blocks of graphics data from the host CPU. Although the BLT engine is often
used simply to copy a block of graphics data from the source to the destination, it also
has the ability to perform more complex functions. The BLT engine is capable of
receiving three different blocks of graphics data as input as shown in the figure below.
The source data may exist in the frame buffer or the Graphics aperture. The pattern
data always represents an 8x8 block of pixels that can be located in the frame buffer,
Graphics aperture, or passed through a command packet. The pattern data must be
located in linear memory.. The data already residing at the destination may also be
used as an input. The destination data can also be located in the frame buffer or
graphics aperture.

 415

Figure 14-1. Block Diagram and Data Paths of the BLT Engine

128 bit ROP
(8 to 1 Mux)

Src or Dst
Transparency

Range
Comparison

128 bit Reg

Color Pattern
Scan Line
32 bytes = 4
Q

128 bit Reg

128 bit Reg

Mono SRC
& Pattern
Expansion

Logic

Texture L2 Cache (128 bits)

128 bit Reg

Src/Dst (C/Z)
Render Cache

Mono Source: memory based
&Immediate (512 byte

Color Patterns: memory based
&Immediate (256 byte Max =

) 128 bit Reg

128 bit Reg

128 bit Reg

128 bit Reg

128 bit Reg

Destination
Registers

Color
Source

Registers

128 to 128 bit
Byte
G Rotator

Almador Family
Classical BLT

Data Path

128 bit Reg

128 bit 2 to 1
Mux

Color Patterns
Pass thru

Expansion Logic

Color Sources,
Color Patterns,

Expanded
Mono Sources

Mono Patterns
are rotated through

Rotation Logic
to the Dst

128 bit Reg

Src/Dst (C/Z)
Render Cache

Mono Sources
Mono Patterns

expanded to a bit per
depending on DST
and rotated to the

Salignment for

The BLT engine may use any combination of these three different blocks of graphics
data as operands, in both bit-wise logical operations to generate the actual data to be
written to the destination, and in per-pixel write-masking to control the writing of data
to the destination. It is intended that the BLT engine will perform these bit-wise and
per-pixel operations on color graphics data that is at the same color depth that the
rest of the graphics system has been set. However, if either the source or pattern data
is monochrome, the BLT engine has the ability to put either block of graphics data
through a process called “color expansion” that converts monochrome graphics data to
color. Since the destination is often a location in the on-screen portion of the frame
buffer, it is assumed that any data already at the destination will be of the appropriate
color depth.

14.2.1 Basic BLT Functional Considerations

14.2.1.1 Color Depth Configuration and Color Expansion

The graphics system and BLT engine can be configured for color depths of 8, 16, and
32 bits per pixel.

The configuration of the BLT engine for a given color depth dictates the number of
bytes of graphics data that the BLT engine will read and write for each pixel while
performing a BLT operation. It is assumed that any graphics data already residing at

416

the destination which is used as an input is already at the color depth to which the
BLT engine is configured. Similarly, it is assumed that any source or pattern data used
as an input has this same color depth, unless one or both is monochrome. If either the
source or pattern data is monochrome, the BLT engine performs a process called
“color expansion” to convert such monochrome data to color at the color depth to
which the BLT engine has been set.

During “color expansion” the individual bits of monochrome source or pattern data
that correspond to individual pixels are converted into 1, 2, or 4 bytes (which ever is
appropriate for the color depth to which the BLT engine has been set). If a given bit of
monochrome source or pattern data carries a value of 1, then the byte(s) of color data
resulting from the conversion process are set to carry the value of a specified
foreground color. If a given bit of monochrome source or pattern data carries a value
of 0, the resulting byte(s) are set to the value of a specified background color or not
written if transparency is selected.

The BLT engine is set to a default configuration color depth of 8, 16, or 32 bits per
pixel through BLT command packets. Whether the source and pattern data are color
or monochrome must be specified using command packets. Foreground and
background colors for the color expansion of both monochrome source and pattern
data are also specified through the command packets. The source foreground and
background colors used in the color expansion of monochrome source data are
specified independently of those used for the color expansion of monochrome pattern
data.

14.2.1.2 Graphics Data Size Limitations

The BLT engine is capable of transferring very large quantities of graphics data. Any
graphics data read from and written to the destination is permitted to represent a
number of pixels that occupies up to 65,536 scan lines and up to 32,768 bytes per
scan line at the destination. The maximum number of pixels that may be represented
per scan line’s worth of graphics data depends on the color depth.

Any source data used as an input must represent the same number of pixels as is
represented by any data read from or written to the destination, and it must be
organized so as to occupy the same number of scan lines and pixels per scan line.

The actual number of scan lines and bytes per scan line required to accommodate
data read from or written to the destination are set in the destination width & height
registers or using X and Y coordinates within the command packets. These two values
are essential in the programming of the BLT engine, because the engine uses these
two values to determine when a given BLT operation has been completed.

14.2.1.3 Bit-Wise Operations

The BLT engine can perform any one of 256 possible bit-wise operations using various
combinations of the three previously described blocks of graphics data that the BLT
engine can receive as input.

The choice of bit-wise operation selects which of the three inputs will be used, as well
as the particular logical operation to be performed on corresponding bits from each of
the selected inputs. The BLT engine automatically foregoes reading any form of
graphics data that has not been specified as an input by the choice of bit-wise
operation. An 8-bit code written to the raster operation field of the command packets

 417

chooses the bit-wise operation. The following table lists the available bit-wise
operations and their corresponding 8-bit codes.

Table 14-1. Bit-Wise Operations and 8-Bit Codes (00-3F)

Code Value Written to Bits at Destination Code Value Written to Bits at Destination

00 writes all 0’s 20 D and (P and (notS))
01 not(D or (P or S))) 21 not(S or(D xor P))
02 D and (not(P or S)) 22 D and (notS)
03 not(P or S) 23 not(S or (P and (notD)))
04 S and (not(D or P)) 24 (S xor P) and (D xor S)
05 not(D or P) 25 not(P xor (D and (not(S and P))))
06 not(P or (not(D xor S))) 26 S xor (D or (P and S))
07 not(P or (D and S)) 27 S xor (D or (not(P xor S)))
08 S and (D and (notP)) 28 D and (P xor S)
09 not(P or (D xor S)) 29 not(P xor (S xor (D or (P and S))))
0A D and (notP) 2A D and (not(P and S))
0B not(P or (S and (notD))) 2B not(S xor ((S xor P) and (P xor D)))
0C S and (notP) 2C S xor (P and (D or S))
0D not(P or (D and (notS))) 2D P xor (S or (notD))
0E not(P or (not(D or S))) 2E P xor (S or (D xor P))
0F notP 2F not(P and (S or (notD)))
10 P and (not(D or S)) 30 P and (notS)
11 not(D or S) 31 not(S or (D and (notP)))
12 not(S or (not(D xor P))) 32 S xor (D or (P or S))
13 not(S or (D and P)) 33 notS
14 not(D or (not(P xor S))) 34 S xor (P or (D and S))
15 not(D or (P and S)) 35 S xor (P or (not(D xor S)))
16 P xor (S xor (D and (not(P and S)))) 36 S xor (D or P)
17 not(S xor ((S xor P) and (D xor S))) 37 not(S and (D or P))
18 (S xor P) and (P xor D) 38 P xor (S and (D or P))
19 not(S xor (D and (not(P and S)))) 39 S xor (P or (notD))
1A P xor (D or (S and P)) 3A S xor (P or (D xor S))
1B not(S xor (D and (P xor S))) 3B not(S and (P or (notD)))
1C P xor (S or (D and P)) 3C P xor S
1D not(D xor (S and (P xor D))) 3D S xor (P or (not(D or S)))
1E P xor (D or S) 3E S xor (P or (D and (notS)))
1F not(P and (D or S)) 3F not(P and S)

Notes: S = Source Data
P = Pattern Data
D = Data Already Existing at the Destination

418

Table 14-2. Bit-Wise Operations and 8-bit Codes (40 - 7F)

Code Value Written to Bits at Destination Code Value Written to Bits at
Destination

40 P and (S and (notD)) 60 P and (D xor S)
41 not(D or (P xor S)) 61 not(D xor (S xor (P or (D and S))))
42 (S xor D) and (P xor D) 62 D xor (S and (P or D))
43 not(S xor (P and (not(D and S)))) 63 S xor (D or (notP))
44 S and (notD) 64 S xor (D and (P or S))
45 not(D or (P and (notS))) 65 D xor (S or (notP))
46 D xor (S or (P and D)) 66 D xor S
47 not(P xor (S and (D xor P))) 67 S xor (D or (not(P or S)))
48 S and (D xor P) 68 not(D xor (S xor (P or (not(D or S

)))))
49 not(P xor (D xor (S or (P and D)))) 69 not(P xor (D xor S))
4A D xor (P and (S or D)) 6A D xor (P and S)
4B P xor (D or (notS)) 6B not(P xor (S xor (D and (P or S))))
4C S and (not(D and P)) 6C S xor (D and P)
4D not(S xor ((S xor P) or (D xor S))) 6D not(P xor (D xor (S and (P or D))))
4E P xor (D or (S xor P)) 6E S xor (D and (P or (notS)))
4F not(P and (D or (notS))) 6F not(P and (not(D xor S)))
50 P and (notD) 70 P and (not(D and S))
51 not(D or (S and (notP))) 71 not(S xor ((S xor D) and (P xor D)))
52 D xor (P or (S and D)) 72 S xor (D or (P xor S))
53 not(S xor (P and (D xor S))) 73 not(S and (D or (notP)))
54 not(D or (not(P or S))) 74 D xor (S or (P xor D))
55 notD 75 not(D and (S or (notP)))
56 D xor (P or S) 76 S xor (D or (P and (notS)))
57 not(D and (P or S)) 77 not(D and S)
58 P xor (D and (S or P)) 78 P xor (D and S)
59 D xor (P or (notS)) 79 not(D xor (S xor (P and (D or S))))
5A D xor P 7A D xor (P and (S or (notD)))
5B D xor (P or (not(S or D))) 7B not(S and (not(D xor P)))
5C D xor (P or (S xor D)) 7C S xor (P and (D or (notS)))
5D not(D and (P or (notS))) 7D not(D and (not(P xor S)))
5E D xor (P or (S and (notD))) 7E (S xor P) or (D xor S)
5F not(D and P) 7F not(D and (P and S))

Notes: S = Source Data
P = Pattern Data
D = Data Already Existing at the Destination

 419

Table 14-3. Bit-Wise Operations and 8-bit Codes (80 - BF)

Code Value Written to Bits at Destination Code Value Written to Bits at
Destination

80 D and (P and S) A0 D and P
81 not((S xor P) or (D xor S)) A1 not(P xor (D or (S and (notP))))
82 D and (not(P xor S)) A2 D and (P or (notS))
83 not(S xor (P and (D or (notS)))) A3 not(D xor (P or (S xor D)))
84 S and (not(D xor P)) A4 not(P xor (D or (not(S or P))))
85 not(P xor (D and (S or (notP)))) A5 not(P xor D)
86 D xor (S xor (P and (D or S))) A6 D xor (S and (notP))
87 not(P xor (D and S)) A7 not(P xor (D and (S or P)))
88 D and S A8 D and (P or S)
89 not(S xor (D or (P and (notS)))) A9 not(D xor (P or S))
8A D and (S or (notP)) AA D
8B not(D xor (S or (P xor D))) AB D or (not(P or S))
8C S and (D or (notP)) AC S xor (P and (D xor S))
8D not(S xor (D or (P xor S))) AD not(D xor (P or (S and D)))
8E S xor ((S xor D) and (P xor D)) AE D or (S and (notP))
8F not(P and (not(D and S))) AF D or (notP)
90 P and (not(D xor S)) B0 P and (D or (notS))
91 not(S xor (D and (P or (notS)))) B1 not(P xor (D or (S xor P)))
92 D xor (P xor (S and (D or P))) B2 S xor ((S xor P) or (D xor S))
93 not(S xor (P and D)) B3 not(S and (not(D and P)))
94 P xor (S xor (D and (P or S))) B4 P xor (S and (notD))
95 not(D xor (P and S)) B5 not(D xor (P and (S or D)))
96 D xor (P xor S) B6 D xor (P xor (S or (D and P)))
97 P xor (S xor (D or (not(P or S)))) B7 not(S and (D xor P))
98 not(S xor (D or (not(P or S)))) B8 P xor (S and (D xor P))
99 not(D xor S) B9 not(D xor (S or (P and D)))
9A D xor (P and (notS)) BA D or (P and (notS))
9B not(S xor (D and (P or S))) BB D or (notS)
9C S xor (P and (notD)) BC S xor (P and (not(D and S)))
9D not(D xor (S and (P or D))) BD not((S xor D) and (P xor D))
9E D xor (S xor (P or (D and S))) BE D or (P xor S)
9F not(P and (D xor S)) BF D or (not(P and S))

Notes: S = Source Data
P = Pattern Data
D = Data Already Existing at the Destination

420

Table 14-4. Bit-Wise Operations and 8-bit Codes (C0 - FF)

Code Value Written to Bits at Destination Code Value Written to Bits at
Destination

C0 P and S E0 P and (D or S)
C1 not(S xor (P or (D and (notS)))) E1 not(P xor (D or S))
C2 not(S xor (P or (not(D or S)))) E2 D xor (S and (P xor D))
C3 not(P xor S) E3 not(P xor (S or (D and P)))
C4 S and (P or (notD)) E4 S xor (D and (P xor S))
C5 not(S xor (P or (D xor S))) E5 not(P xor (D or (S and P)))
C6 S xor (D and (notP)) E6 S xor (D and (not(P and S)))
C7 not(P xor (S and (D or P))) E7 not((S xor P) and (P xor D))
C8 S and (D or P) E8 S xor ((S xor P) and (D xor S))
C9 not(S xor (P or D)) E9 not(D xor (S xor (P and (not(D and

S)))))
CA D xor (P and (S xor D)) EA D or (P and S)
CB not(S xor (P or (D and S))) EB D or (not(P xor S))
CC S EC S or (D and P)
CD S or (not(D or P)) ED S or (not(D xor P))
CE S or (D and (notP)) EE D or S
CF S or (notP) EF S or (D or (notP))
D0 P and (S or (notD)) F0 P
D1 not(P xor (S or (D xor P))) F1 P or (not(D or S))
D2 P xor (D and (notS)) F2 P or (D and (notS))
D3 not(S xor (P and (D or S))) F3 P or (notS)
D4 S xor ((S xor P) and (P xor D)) F4 P or (S and (notD))
D5 not(D and (not(P and S))) F5 P or (notD)
D6 P xor (S xor (D or (P and S))) F6 P or (D xor S)
D7 not(D and (P xor S)) F7 P or (not(D and S))
D8 P xor (D and (S xor P)) F8 P or (D and S)
D9 not(S xor (D or (P and S))) F9 P or (not(D xor S))
DA D xor (P and (not(S and D))) FA D or P
DB not((S xor P) and (D xor S)) FB D or (P or (notS))
DC S or (P and (notD)) FC P or S
DD S or (notD) FD P or (S or (notD))
DE S or (D xor P) FE D or (P or S)
DF S or (not(D and P)) FF writes all 1’s

Notes: S = Source Data
P = Pattern Data
D = Data Already Existing at the Destination

 421

14.2.1.4 Per-Pixel Write-Masking Operations

The BLT engine is able to perform per-pixel write-masking with various data sources
used as pixel masks to constrain which pixels at the destination are to be written to by
the BLT engine. As shown in the figure below, either monochrome source or
monochrome pattern data may be used as pixel masks. Color pattern data cannot be
used. Another available pixel mask is derived by comparing a particular color range
per color channel to either the color already specified for a given pixel at the
destination or source.

Figure 14-2. Block Diagram and Data Paths of the BLT Engine

128 bit ROP
(8 to 1 Mux)

Src or Dst
Transparency

Range
Comparison

128 bit Reg

Color Pattern
Scan Line Storage
32 bytes = 4 QWs

128 bit Reg

128 bit Reg

Mono SRC
& Pattern

Expansion
Logic

Texture L2 Cache (128 bits)

128 bit Reg

Src/Dst (C/Z)
Render Cache

Mono Source:memory based &
Immediate (512 byte Max)
Color Patterns:memory based &
Immediate (256 byte Max = 32bpp)

128 bit Reg

128 bit Reg

128 bit Reg

128 bit Reg

128 bit Reg

Destination
Registers

Color
Source

Registers

128 to 128 bit
Byte Granularity

Rotator

Almador Family
Classical BLT

Data Path

128 bit Reg

128 bit 2 to 1
Mux

Color Patterns
Pass thru

Expansion Logic

Color Sources,
Color Patterns,

Expanded
Mono Sources and

Mono Patterns
are rotated through shared

Rotation Logic
to the Dst alignment

128 bit Reg

Src/Dst (C/Z)
Render Cache

Mono Sources and
Mono Patterns are

expanded to a bit per byte
depending on DST bpp
and rotated to the DST

alignment for transparency

The command packets can specify the monochrome source or the monochrome
pattern data as a pixel mask. When this feature is used, the bits that carry a value of
0 cause the bytes of the corresponding pixel at the destination to not be written to by
the BLT engine, thereby preserving whatever data was originally carried within those
bytes. This feature can be used in writing characters to the display, while also
preserving the pre-existing backgrounds behind those characters. When both
operands are in the transparent mode, the logical AND of the 2 operands are used for
the write enables per pixel.

422

The 3-bit field, destination transparency mode, within the command packets can
select per-pixel write-masking with a mask based on the results of color comparisons.
The monochrome source background and foreground are range compared with either
the bytes for the pixels at the destination or the source operand. This operation is
described in the BLT command packet and register descriptions.

14.2.1.5 When the Source and Destination Locations Overlap

It is possible to have BLT operations in which the locations of the source and
destination data overlap. This frequently occurs in BLT operations where a user is
shifting the position of a graphical item on the display by only a few pixels. In these
situations, the BLT engine must be programmed so that destination data is not written
into destination locations that overlap with source locations before the source data at
those locations has been read. Otherwise, the source data will become corrupted. The
XY commands determine whether there is an overlap and perform the accesses in the
proper direction to avoid data corruption.

The following figure shows how the source data can be corrupted when a rectangular
block is copied from a source location to an overlapping destination location. The BLT
engine typically reads from the source location and writes to the destination location
starting with the left-most pixel in the top-most line of both, as shown in step (a). As
shown in step (b), corruption of the source data has already started with the copying
of the top-most line in step (a) — part of the source that originally contained lighter-
colored pixels has now been overwritten with darker-colored pixels. More source data
corruption occurs as steps (b) through (d) are performed. At step (e), another line of
the source data is read, but the two right-most pixels of this line are in the region
where the source and destination locations overlap, and where the source has already
been overwritten as a result of the copying of the top-most line in step (a). Starting in
step (f), darker-colored pixels can be seen in the destination where lighter-colored
pixels should be. This errant effect occurs repeatedly throughout the remaining steps
in this BLT operation. As more lines are copied from the source location to the
destination location, it becomes clear that the end result is not what was originally
intended.

 423

Figure 14-3. Source Corruption in BLT with Overlapping Source and Destination
Locations

(i)

Source

Destination

(a)

Source

Destination

b_blt2.vsd

(e)

(b)

(c)

(d)

(f)

(g)

(h)

The BLT engine can alter the order in which source data is read and destination data is
written when necessary to avoid source data corruption problems when the source
and destination locations overlap. The command packets provide the ability to change
the point at which the BLT engine begins reading and writing data from the upper left-
hand corner (the usual starting point) to one of the other three corners. The BLT
engine may be set to read data from the source and write it to the destination starting
at any of the four corners of the panel.

The XY command packets perform the necessary comparisons and start at the proper
corner of each operand which avoids data corruption.

424

Figure 14-4. Correctly Performed BLT with Overlapping Source and Destination
Locations

(i)

Source

Destination

(a)

Source

Destination

b_blt3.vsd

(e)

(b)

(c)

(d)

(f)

(g)

(h)

 425

The following figure illustrates how this feature of the BLT engine can be used to
perform the same BLT operation as was illustrated in the figure above, while avoiding
the corruption of source data. As shown in the figure below, the BLT engine reads the
source data and writes the data to the destination starting with the right-most pixel of
the bottom-most line. By doing this, no pixel existing where the source and
destination locations overlap will ever be written to before it is read from by the BLT
engine. By the time the BLT operation has reached step (e) where two pixels existing
where the source and destination locations overlap are about to be over written, the
source data for those two pixels has already been read.

Figure 14-5. Suggested Starting Points for Possible Source and Destination Overlap
Situations

b_blt4.vsd

Destination Source

Destination Source

OR

DestinationSource

DestinationSource

OR

Destination Destination

Source Source

OR

Source

Destination

Source

Destination

Destination Destination

Source Source

OR

Source

Destination

Source

Destination

The figure above shows the recommended lines and pixels to be used as starting
points in each of 8 possible ways in which the source and destination locations may
overlap. In general, the starting point should be within the area in which the source
and destination overlap.

426

14.2.2 Basic Graphics Data Considerations

14.2.2.1 Contiguous vs. Discontinuous Graphics Data

Graphics data stored in memory, particularly in the frame buffer of a graphics system,
has organizational characteristics that often distinguish it from other varieties of data.
The main distinctive feature is the tendency for graphics data to be organized in a
discontinuous block of graphics data made up of multiple sub-blocks of bytes, instead
of a single contiguous block of bytes.

Figure 14-6. Representation of On-Screen Single 6-Pixel Line in the Frame Buffer

Note: Drawing is not to scale

28100h

256, 256 261, 256

256th Scan Line

(0, 0)

(0, 479) (639, 479)

(639, 0)

270F8h

28108h

63 32 31 0

b_blt5.vsd

The figure above shows an example of contiguous graphics data — a horizontal line
made up of six adjacent pixels within a single scan line on a display with a resolution
of 640x480. Presuming that the graphics system driving this display has been set to 8
bits per pixel and that the frame buffer’s starting address of 0h corresponds to the
upper left-most pixel of this display, then the six pixels that make this horizontal line
starting at coordinates (256, 256) occupies the six bytes starting at frame buffer
address 28100h, and ending at address 28105h.

In this case, there is only one scan line’s worth of graphics data in this single
horizontal line, so the block of graphics data for all six of these pixels exists as a
single, contiguous block comprised of only these six bytes. The starting address and
the number of bytes are the only pieces of information that a BLT engine would
require to read this block of data.

The simplicity of the above example of a single horizontal line contrasts sharply to the
example of discontinuous graphics data depicted in the figure below. The simple six-
pixel line of the figure above is now accompanied by three more six-pixel lines placed
on subsequent scan lines, resulting in the 6x4 block of pixels shown.

 427

Figure 14-7. Representation of On-Screen 6x4 Array of Pixels in the Frame Buffer

Note: Drawing is not to scale

(0, 0)

(0, 479) (639, 479)

(639, 0)

b_blt6.vsd

256th Scan Line

257th Scan Line

258th Scan Line

259th Scan Line

256, 256 261, 256

256, 259 261, 259

63 32 31 0

28100h
270F8h

28108h

28100h
270F8h

28108h

28100h
270F8h

28108h

28100h
270F8h

28108h

Since there are other pixels on each of the scan lines on which this 6x4 block exists
that are not part of this 6x4 block, what appears to be a single 6x4 block of pixels on
the display must be represented by a discontinuous block of graphics data made up of
4 separate sub-blocks of six bytes apiece in the frame buffer at addresses 28100h,
28380h, 28600h, and 28880h. This situation makes the task of reading what appears
to be a simple 6x4 block of pixels more complex. However, there are two
characteristics of this 6x4 block of pixels that help simplify the task of specifying the
locations of all 24 bytes of this discontinuous block of graphics data: all four of the
sub-blocks are of the same length, and the four sub-blocks are separated from each
other at equal intervals.

The BLT engine is designed to make use of these characteristics of graphics data to
simplify the programming required to handle discontinuous blocks of graphics data.
For such a situation, the BLT engine requires only four pieces of information: the
starting address of the first sub-block, the length of a sub-block, the offset (in bytes),
pitch, of the starting address of each subsequent sub-block, and the quantity of sub-
blocks.

14.2.2.2 Source Data

The source data may exist in the frame buffer or elsewhere in the graphics aperture
where the BLT engine may read it directly, or it may be provided to the BLT engine by
the host CPU through the command packets. The block of source graphics data may
be either contiguous or discontinuous, and may be either in color (with a color depth
that matches that to which the BLT engine has been set) or monochrome.

The source select bit in the command packets specifies whether the source data exists
in the frame buffer or is provided through the command packets. Monochrome source
data is always specified as being supplied through an immediate command packet.

428

If the color source data resides within the frame buffer or elsewhere in the graphics
aperture, then the Source Address Register, specified in the command packets is used
to specify the address of the source.

In cases where the host CPU provides the source data, it does so by writing the source
data to ring buffer directly after the BLT command that requires the data or uses an
IMMEDIATE_INDIRECT_BLT command packet which has a size and pointer to the
operand in Graphics aperture.

The block of bytes sent by the host CPU through the command packets must be
quadword-aligned and the source data contained within the block of bytes must also
be aligned.

To accommodate discontinuous source data, the source and destination pitch registers
can be used to specify the offset in bytes from the beginning of one scan line’s worth
source data to the next. Otherwise, if the source data is contiguous, then an offset
equal to the length of a scan line’s worth of source data should be specified.

14.2.2.3 Monochrome Source Data

The opcode of the command packet specifies whether the source data is color or
monochrome. Since monochrome graphics data only uses one bit per pixel, each byte
of monochrome source data typically carries data for 8 pixels which hinders the use of
byte-oriented parameters when specifying the location and size of valid source data.
Some additional parameters must be specified to ensure the proper reading and use of
monochrome source data by the BLT engine. The BLT engine also provides additional
options for the manipulation of monochrome source data versus color source data.

The various bit-wise logical operations and per-pixel write-masking operations were
designed to work with color data. In order to use monochrome data, the BLT engine
converts it into color through a process called color expansion, which takes place as a
BLT operation is performed. In color expansion the single bits of monochrome source
data are converted into one, two, or four bytes (depending on the color depth) of color
data that are set to carry value corresponding to either the foreground or background
color that have been specified for use in this conversion process. If a given bit of
monochrome source data carries a value of 1, then the byte(s) of color data resulting
from the conversion process will be set to carry the value of the foreground color. If a
given bit of monochrome source data carries a value of 0, then the resulting byte(s)
will be set to the value of the background color. The foreground and background
colors used in the color expansion of monochrome source data can be set in the
source expansion foreground color register and the source expansion background
color register.

The BLT Engine requires that the bit alignment of each scan line’s worth of
monochrome source data be specified. Each scan line’s worth of monochrome source
data is word aligned but can actually start on any bit boundary of the first byte.
Monochrome text is special cased and it is bit or byte packed, where in bit packed
there are no invalid pixels (bits) between scan lines. There is a 3 bit field which
indicates the starting pixel position within the first byte for each scan line, Mono
Source Start.

The BLT engine also provides various clipping options for use with specific BLT
commands (BLT_TEXT) with a monochrome source. Clipping is supported through:
Clip rectangle Y addresses or coordinates and X coordinates along with scan line

 429

starting and ending addresses (with Y addresses) along with X starting and ending
coordinates.

The maximum immediate source size is 128 bytes.

14.2.2.4 Pattern Data

The color pattern data must exist within the frame buffer or Graphics aperture where
the BLT engine may read it directly or it can be sent through the command stream.
The pattern data must be located in linear memory. Monochrome pattern data is
supplied by the command packet when it is to be used. As shown in figure below, the
block of pattern graphics data always represents a block of 8x8 pixels. The bits or
bytes of a block of pattern data may be organized in the frame buffer memory in only
one of three ways, depending upon its color depth which may be 8, 16, or 32 bits per
pixel (whichever matches the color depth to which the BLT engine has been set), or
monochrome.

The maximum color pattern size is 256 bytes.

Figure 14-8. Pattern Data -- Always an 8x8 Array of Pixels

b_blt7.vsd

Pixel (0, 0)

Pixel (0, 7)

Pixel (7, 0)

Pixel (7, 7)

b_blt8.vsd

0

Pixel
(0, 7)

Pixel
(7, 7)

Pixel
(0, 0)

Pixel
(7, 0)

63 57 56 48 47 40 39 24 2332 31 16 15 8 7

The Pattern Address Register is used to specify the address of the color pattern data
at which the block of pattern data begins. The three least significant bits of the
address written to this register are ignored, because the address must be in terms of
quadwords. This is because the pattern must always be located on an address
boundary equal to its size. Monochrome patterns take up 8 bytes, or a single
quadword of space, and are loaded through the command packet that uses it.
Similarly, color patterns with color depths of 8, 16, and 32 bits per pixel must start on
64-byte, 128-byte and 256-byte boundaries, respectively. The next 3 figures show
how monochrome, 8bpp, 16bpp, and 32bpp pattern data , respectively, is organized in
memory.

430

Figure 14-9. 8bpp Pattern Data -- Occupies 64 Bytes (8 quadwords)

b_blt9.vsd

0

Pixel (0, 7)

Pixel (7, 7)

Pixel (0, 0)

Pixel (7, 0)

63 57 56 48 47 40 39 24 2332 31 16 15 8 7

00h

28h

08h

10h

18h

20h

30h

38h

Figure 14-10. 16bpp Pattern Data -- Occupies 128 Bytes (16 quadwords)

b_blt10.vsd

0

Pixel (7, 0)

Pixel (7, 7)

Pixel (0, 0)

Pixel (0, 7)

63 48 47 32 31 16 15

00h

70h

08h

68h

78h

Figure 14-11. 32bpp Pattern Data -- Occupies 256 Bytes (32 quadwords)

b_blt10.vsd

0

Pixel (3, 0)

Pixel (7, 7)

Pixel (0, 0)

Pixel (4, 7)

63 48 47 32 31 16 15

00h

70h

08h

68h

78h

The opcode of the command packet specifies whether the pattern data is color or
monochrome. The various bit-wise logical operations and per-pixel write-masking
operations were designed to work with color data. In order to use monochrome
pattern data, the BLT engine is designed to convert it into color through a process
called “color expansion” which takes place as a BLT operation is performed. In color
expansion, the single bits of monochrome pattern data are converted into one, two, or
four bytes (depending on the color depth) of color data that are set to carry values

 431

corresponding to either the foreground or background color that have been specified
for use in this process. The foreground color is used for pixels corresponding to a bit
of monochrome pattern data that carry the value of 1, while the background color is
used where the corresponding bit of monochrome pattern data carries the value of 0.
The foreground and background colors used in the color expansion of monochrome
pattern data can be set in the Pattern Expansion Foreground Color Register and
Pattern Expansion Background Color Register.

14.2.2.5 Destination Data

There are actually two different types of “destination data”: the graphics data already
residing at the location that is designated as the destination, and the data that is to be
written into that very same location as a result of a BLT operation.

The location designated as the destination must be within the frame buffer or Graphics
aperture where the BLT engine can read from it and write to it directly. The blocks of
destination data to be read from and written to the destination may be either
contiguous or discontinuous. All data written to the destination will have the color
depth to which the BLT engine has been set. It is presumed that any data already
existing at the destination which will be read by the BLT engine will also be of this
same color depth — the BLT engine neither reads nor writes monochrome destination
data.

The Destination Address Register is used to specify the address of the destination.

To accommodate discontinuous destination data, the Source and Destination Pitch
Registers can be used to specify the offset in bytes from the beginning of one scan
line’s worth of destination data to the next. Otherwise, if the destination data is
contiguous, then an offset equal to the length of a scan line’s worth of destination
data should be specified.

432

14.2.3 BLT Programming Examples

14.2.3.1 Pattern Fill — A Very Simple BLT

In this example, a rectangular area on the screen is to be filled with a color pattern
stored as pattern data in off-screen memory. The screen has a resolution of 1024x768
and the graphics system has been set to a color depth of 8 bits per pixel.

Figure 14-12. On-Screen Destination for Example Pattern Fill BLT

b_blt20.vsd

Scan Lines 128 Through 191

Rectangular
Area to be Filled

(Destination)

128, 128

Note: Drawing is not to scale

(0, 0)

(0, 767)

(1023, 0)

(1023, 767)

191, 128

128, 191 191, 191

63 0 128, 128

20080h
20088h
20090h
20098h
200A0h
200A8h
200B0h
200B8h

On
128th
Scan
Line

(191, 128)

(128, 191)

2FC80h
2FC88h
2FC90h
2FC98h
2FCA0h
2FCA8h
2FCB0h
2FCB8h

On
191th
Scan
Line

(191, 191)

As shown in the figure above, the rectangular area to be filled has its upper left-hand
corner at coordinates (128, 128) and its lower right-hand corner at coordinates (191,
191). These coordinates define a rectangle covering 64 scan lines, each scan line’s
worth of which is 64 pixels in length — in other words, an array of 64x64 pixels.
Presuming that the pixel at coordinates (0, 0) corresponds to the byte at address 00h
in the frame buffer memory, the pixel at (128, 128) corresponds to the byte at
address 20080h.

 433

Figure 14-13. Pattern Data for Example Pattern Fill BLT

b_blt22.vsd

63 0

100000h
100008h
100010h
100018h
100020h
100028h
100030h
100038h

(0, 0)

(0, 7)

(7, 0)

(7, 7)

Pattern Data
(0, 0)(7, 0)

(0, 7)(7, 7)

As shown in figure above, the pattern data occupies 64 bytes starting at address
100000h. As always, the pattern data represents an 8x8 array of pixels.

The BLT command packet is used to select the features to be used in this BLT
operation, and must be programmed carefully. The vertical alignment field should be
set to 0 to select the top-most horizontal row of the pattern as the starting row used
in drawing the pattern starting with the top-most scan line covered by the destination.
The pattern data is in color with a color depth of 8 bits per pixel, so the dynamic color
enable should be asserted with the dynamic color depth field should be set to 0. Since
this BLT operation does not use per-pixel write-masking (destination transparency
mode), this field should be set to 0. Finally, the raster operation field should be
programmed with the 8-bit value of F0h to select the bit-wise logical operation in
which a simple copy of the pattern data to the destination takes place. Selecting this
bit-wise operation in which no source data is used as an input causes the BLT engine
to automatically forego either reading source data from the frame buffer.

The Destination Pitch Register must be programmed with number of bytes in the
interval from the start of one scan line’s worth of destination data to the next. Since
the color depth is 8 bits per pixel and the horizontal resolution of the display is 1024,
the value to be programmed into these bits is 400h, which is equal to the decimal
value of 1024.

Bits [31:3] of the Pattern Address Register must be programmed with the address of
the pattern data.

Similarly, bits [31:0] of the Destination Address Register must be programmed with
the byte address at the destination that will be written to first. In this case, the
address is 20080h, which corresponds to the byte representing the pixel at
coordinates (128, 128).

This BLT operation does not use the values in the Source Address Register or the
Source Expansion Background or Foreground Color Registers.

The Destination Width and Height Registers (or the Destination X and Y Coordinates)
must be programmed with values that describe to the BLT engine the 64x64 pixel size
of the destination location. The height should be set to carry the value of 40h,
indicating that the destination location covers 64 scan lines. The width should be set
to carry the value of 40h, indicating that each scan line’s worth of destination data

434

occupies 64 bytes. All of this information is written to the ring buffer using the
PAT_BLT (or XY_PAT_BLT) command packet.

Figure 14-14. Results of Example Pattern Fill BLT

b_blt21.vsd

Scan Lines 128 Through 191

128, 128

Note: Drawing is not to scale

(0, 0)

(0, 767)

(1023, 0)

(1023, 767)

191, 128

63 0128, 128

20080h
20088h
20090h
20098h
200A0h
200A8h
200B0h
200B8h

On
128th
Scan
Line

(191, 128)

(128, 191)

2FC80h
2FC88h
2FC90h
2FC98h
2FCA0h
2FCA8h
2FCB0h
2FCB8h

On
191th
Scan
Line

(191, 191)

128, 191 191, 191

The figure above shows the end result of performing this BLT operation. The 8x8
pattern has been repeatedly copied (“tiled”) into the entire 64x64 area at the
destination.

 435

14.2.3.2 Drawing Characters Using a Font Stored in System Memory

In this example BLT operation, a lowercase letter “f” is to be drawn in black on a
display with a gray background. The resolution of the display is 1024x768, and the
graphics system has been set to a color depth of 8 bits per pixel.

Figure 14-15. On-Screen Destination for Example Character Drawing BLT

63

b_blt12.vsd

0
128, 128

20080h
 (128th Scan Lin

20480h
 (129th Scan Lin

20880h
 (130th Scan Lin

20C80h
 (131th Scan Lin

21080h
 (132nd Scan Lin

21480h
 (133rd Scan Lin

21880h
 (134th Scan Lin

21C80h
 (135th Scan Lin

Scan Lines 128 Through 135

Destination

(135, 135)

128, 128

Note: Drawing is not to scale

(0, 0)

(0, 767)

(1023, 0)

(1023, 767)

135, 135

The figure above shows the display on which this letter “f” is to be drawn. As shown in
this figure, the entire display has been filled with a gray color. The letter “f” is to be
drawn into an 8x8 region on the display with the upper left-hand corner at the
coordinates (128, 128).

Figure 14-16. Source Data in System Memory for Example Character Drawing BLT

b_blt13.vsd

063 57 56 48 47 40 39 24 2332 31 16 15 8 7

Pixel (0, 0)

Pixel (0, 7)

Pixel (7, 0)

Pixel (7, 7)

00000000 00010000 00010000 00111100 00010000 00010000 00001100 00000000

(0, 7) (7, 7) (7, 0) (0, 0)

Source Data

The figure above shows both the 8x8 pattern making up the letter “f” and how it is
represented somewhere in the host’s system memory — the actual address in system
memory is not important. The letter “f” is represented in system memory by a block of

436

monochrome graphics data that occupies 8 bytes. Each byte carries the 8 bits needed
to represent the 8 pixels in each scan line’s worth of this graphics data. This type of
pattern is often used to store character fonts in system memory.

During this BLT operation, the host CPU will read this representation of the letter “f”
from system memory, and write it to the BLT engine by performing memory writes to
the ring buffer as an immediate monochrome BLT operand following the BLT_TEXT
command. The BLT engine will receive this data through the command stream and use
it as the source data for this BLT operation. The BLT engine will be set to the same
color depth as the graphics system ⎯ 8 bits per pixel, in this case. Since the source
data in this BLT operation is monochrome, color expansion must be used to convert it
to an 8 bpp color depth. To ensure that the gray background behind this letter “f” is
preserved, per-pixel write masking will be performed, using the monochrome source
data as the pixel mask.

The BLT Setup and Text_immediate command packets are used to select the features
to be used in this BLT operation. Only the fields required by these two command
packets must be programmed carefully. The BLT engine ignores all other registers and
fields. The source select field in the Text_immediate command must be set to 1, to
indicate that the source data is provided by the host CPU through the command
packet. Finally, the raster operation field should be programmed with the 8-bit value
CCh to select the bit-wise logical operation that simply copies the source data to the
destination. Selecting this bit-wise operation in which no pattern data is used as an
input, causes the BLT engine to automatically forego reading pattern data from the
frame buffer.

The Setup Pattern/Source Expansion Foreground Color Register to specify the color
with which the letter “f” will be drawn. There is no Source address. All scan lines of
the glyph are bit packed and the clipping is controlled by the ClipRect registers from
the SETUP_BLT command and the Destination Y1, Y2, X1, and X2 registers in the
TEXT_BLT command. Only the pixels that are within (inclusive comparisons) the clip
rectangle are written to the destination surface.

The Destination Pitch Register must be programmed with a value equal to the number
of bytes in the interval between the first bytes of each adjacent scan line’s worth of
destination data. Since the color depth is 8 bits per pixel and the horizontal resolution
of the display is 1024 pixels, the value to be programmed into these bits is 400h,
which is equal to the decimal value of 1024. Since the source data used in this BLT
operation is monochrome, the BLT engine will not use a byte-oriented pitch value for
the source data.

Since the source data is monochrome, color expansion is required to convert it to
color with a color depth of 8 bits per pixel. Since the Setup Pattern/Source Expansion
Foreground Color Register is selected to specify the foreground color of black to be
used in drawing the letter “f”, this register must be programmed with the value for
that color. With the graphics system set for a color depth of 8 bits per pixel, the actual
colors are specified in the RAMDAC palette, and the 8 bits stored in the frame buffer
for each pixel actually specify the index used to select a color from that palette. This
example assumes that the color specified at index 00h in the palette is black, and
therefore bits [7:0] of this register should be set to 00h to select black as the
foreground color. The BLT engine ignores bits [31:8] of this register because the
selected color depth is 8 bits per pixel. Even though the color expansion being
performed on the source data normally requires that both the foreground and
background colors be specified, the value used to specify the background color is not
important in this example. Per-pixel write-masking is being performed with the

 437

monochrome source data as the pixel mask, which means that none of the pixels in
the source data that will be converted to the background color will ever be written to
the destination. Since these pixels will never be seen, the value programmed into the
Pattern/Source Expansion Background Color Register to specify a background color is
not important.

The Destination Width and Height Registers are not used. The Y1, Y2, X1, and X2 are
used to describe to the BLT engine the 8x8 pixel size of the destination location. The
Destination Y1 and Y2 address (or coordinate) registers must be programmed with the
starting and ending scan line address (or Y coordinates) of the destination data. This
address is specified as an offset from the start of the frame buffer of the scan line at
the destination that will be written to first. The destination X1 and X2 registers must
be programmed with the starting and ending pixel offsets from the beginning of the
scan line.

This BLT operation does not use the values in the Pattern Address Register, the
Source Expansion Background Color Register, or the Source Expansion Foreground
Color Register.

Figure 14-17. Results of Example Character Drawing BLT

63

b_blt12.vsd

0
128, 128

20080h
 (128th Scan Lin

20480h
 (129th Scan Lin

20880h
 (130th Scan Lin

20C80h
 (131th Scan Lin

21080h
 (132nd Scan Lin

21480h
 (133rd Scan Lin

21880h
 (134th Scan Lin

21C80h
 (135th Scan Lin

Scan Lines 128 Through 135

Destination

135, 135

128, 128

Note: Drawing is not to scale

(0, 0)

(0, 767)

(1023, 0)

(1023, 767)

135, 135

The preceding shows the end result of performing this BLT operation. Only the pixels
that form part of the actual letter “f” have been drawn into the 8x8 destination
location on the display, leaving the other pixels within the destination with their
original gray color.

438

14.3 BLT Instruction Overview

This chapter defines the instructions used to control the 2D (BLT) rendering function.

The instructions detailed in this chapter are used across devices. However, slight
changes may be present in some instructions (i.e., for features added or removed), or
some instructions may be removed entirely. Refer to the Device Dependencies
chapter for summary information regarding device-specific
behaviors/interfaces/features.

The XY instructions offload the drivers by providing X and Y coordinates and taking
care of the access directions for overlapping BLTs without fields specified by the
driver.

Color pixel sizes supported are 8, 16, and 32 bits per pixel (bpp). All pixels are
naturally aligned.

14.4 BLT Engine State

Most of the BLT instructions are state-free, which means that all states required to
execute the command is within the instruction. If clipping is not used, then there is
no shared state for many of the BLT instructions. This allows the BLT Engine to be
shared by many drivers with minimal synchronization between the drivers.

Instructions which share state are:

• All instructions that are X,Y commands and use the Clipping Rectangle by
asserting the Clip Enable field

• All XY_Setup Commands (XY_SETUP_BLT and
XY_SETUP_MONO_PATTERN_SL_BLT) load the shared state for the following
commands:
⎯ XY_PIXEL_BLT (Negative Stride (=Pitch) Not Allowed)
⎯ XY_SCANLINES_BLT
⎯ XY_TEXT_BLT (Negative Stride (=Pitch) Not Allowed)
⎯ XY_TEXT_IMMEDIATE_BLT (Negative Stride (=Pitch) Not Allowed)

State registers that are saved & restored in the Logical Context:

BR1+ Setup Control (Solid Pattern Select, Clipping Enable, Mono Source
Transparency Mode, Mono Pattern Transparency Mode, Color
Depth[1:0], Raster Operation[7:0], & Destination Pitch[15:0]) +
32bpp Channel Mask[1:0], Mono / Color Pattern

BR05 Setup Background Color
BR06 Setup Foreground Color
BR07 Setup Pattern Base Address
BR09 Setup Destination Base Address
BR20 DW0 for a Monochrome Pattern
BR21 DW1 for a Monochrome Pattern
BR24 ClipRectY1’X1
BR25 ClipRectY2’X2

 439

14.5 Cacheable Memory Support

The BLT Engine can be used to transfer data between cacheable (“system”) memory
and uncached (“main”, or “UC”) graphics memory using the BLT instructions. The GTT
must be properly programmed to map memory pages as cacheable or UC. Only
linear-mapped (not tiled) surfaces can be mapped as cacheable.

Transfers between cacheable sources and cacheable destinations are not supported.
Patterns and monochrome sources cannot be located in cacheable memory.

Cacheable write operands do not snoop the processor’s cache nor update memory
until evicted from the render cache. Cacheable read or write operands are not
snooped (nor invalidated) from either internal cache by external (processor,
hublink,…) accesses.

14.6 Device Cache Coherency: Render and Texture
Caches

Software must initiate cache flushes to enforce coherency between the render and
texture caches, i.e., both the render and texture caches must be flushed before a BLT
destination surface can be reused as a texture source. Color sources and destinations
use the render cache, while patterns and monochrome sources use the texture cache.

440

14.7 BLT Engine Instructions

The Instruction Target field is used as an opcode by the BLT Engine state machine to
qualify the control bits that are relevant for executing the instruction. The descriptions
for each DWord and bit field are contained in the BLT Engine Instruction Field
Definition section. Each DWord field is described as a register, but none of these
registers can be written of read through a memory mapped location – they are
internal state only.

14.7.1 Blt Programming Restrictions

• Overlapping Source/Destination BLTs: The following condition must be
avoided when programming the Blt engine: Linear surfaces with a cache line in
scan line Y for the source stream overlapping with a cache line in scan line Y-1 for
the dest stream (=> non-aligned surface pitches). The cache coherency rules
combined with the Blitter data consumption rules result in UNDEFINED operation.
(Note that this restriction will likely follow forward to future products due to
architectural complexities.) There are two suggested software workarounds:
⎯ In order to perform coherent overlapping Blts, (a) the Source and Destination

Base Address registers must hold the same value (without alignment
restriction), and (b) the Source and Destination Pitch registers (BR11,BR13)
must both be a multiple of 64 bytes.

⎯ If (a) isn’t possible, do overlapping source copy BLTs as two blits, using a
separate intermediate surface.

• All reserved fields must be programmed to 0s.

• When using monosource or text data (bit/byte/word aligned): do not program
pixel widths greater than 32,745 pixels.

14.8 Fill/Move Instructions

These instructions use linear addresses with width and height. BLT clipping is not
supported.

 441

14.8.1 COLOR_BLT (Fill)

COLOR_BLT is the simplest BLT operation. It performs a color fill to the destination
(with a possible ROP). The only operand is the destination operand which is written
dependent on the raster operation. The solid pattern color is stored in the pattern
background register.

This instruction is optimized to run at the maximum memory write bandwidth.

The typical Raster operation code = F0 which performs a copy of the pattern
background register to the destination.

DWord Bit Description

0 = BR00 31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode) : 40h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB channels)

 19:05 Reserved. Note no tiling specification allowed for this non-XY blit command. Only linear
blits are allowed.

 04:00 DWord Length: 03h

1 = BR13 31:26 Reserved.

 25:24 Color Depth:

00 = 8 bit color.
01 = 16 bit color (656).
10 = 16 bit color (1555).
11 = 32 bit color

 23:16 Raster Operation:

 15:00 Destination Pitch (signed): Destination pitch in bytes (Same as before).

2 = BR14 31:16 Destination Height (in scan lines):

 15:00 Destination Width (in bytes):

3 = BR09 31:00 Destination Address: Address of the first byte to be written

4 = BR16 31:00 Solid Pattern Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

442

14.8.2 SRC_COPY_BLT (Move)

This BLT instruction performs a color source copy where the only operands involved is
a color source and destination of the same bit width.

The source and destination operands may overlap. The command must indicate the
horizontal and vertical directions: either forward or backwards to avoid data
corruption. The X direction (horizontal) field applies to both the destination and source
operands. The source and destination pitches (stride) are signed.

DWord Bit Description

0 = BR00 31:29 Client: 02h – 2D Processor

 28:22 Instruction Target (Opcode) : 43h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB channels)

 19:05 Reserved. Note no tiling specification allowed for this non-XY blit command. Only linear
blits are allowed.

 04:00 Dword Length: 04h

1 = BR13 31 Reserved.

 30 X Direction (1 = written from right to left (decrementing = backwards); 0 = incrementing)

 29:26 Reserved.

 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:

 15:00 Destination Pitch (signed): Destination pitch in bytes (Same as before).

2 = BR14 31:16 Destination Height (in scan lines):

 15:00 Destination Width (in bytes):

3 = BR09 31:00 Destination Address: Address of the first byte to be written

 31:14 Reserved.

4 = BR11 15:00 Source Pitch: (double word aligned and signed)

5 = BR12 31:00 Source Address: Address of the first byte to be read.

 443

14.9 2D (X,Y) BLT Instructions

Most BLT instructions (prefixed with “XY_”) use 2D X,Y coordinate specifications vs.
lower-level linear addresses. These instructions also support simple 2D clipping
against a clip rectangle.

The top and left Clipping coordinates are inclusive. The bottom and right coordinates
are exclusive. The BLT Engine performs a trivial reject for all CLIP BLT instructions
before performing any accesses.

Negative destination and source coordinates are supported. In the case of negative
source coordinates, the destination X1 and Y1 are modified by the absolute value of
the negative source coordinate before the destination clip checking and final drawing
coordinates are calculated. The absolute value of the source negative coordinate is
added to the corresponding destination coordinate. The BLT engine clipping also
checks for (DX2 [or = DX1) or (DY2 [or = DY1) after this calculation and if true, then
the BLT is totally rejected.

D(X1 Y1)

C(X2 Y2)

DBA
(DX=0,DY=0)

SBA
(SX=0,SY=0)

S(X1 Y1)

Dest. PitchSource Pitch

Source Surface

Destination Surface

Some Equal ities & Inequali ties for Source Clipping:

Src. TD = Dst. TD (Top discard in SL)
Src LD = LD (Left Discard in Pixels)
Src Height = Dst. Height in SL
Src Width = Dst. Width in Pixels

Note: Src. Pitch is not equal to Dst. Pitch

Src. TD

Src. LD Src. Width

Src. Height

Lower SL

Upper SL
C(X1 Y1)

Dst. WidthLD

Dst. TD

Dst. Height

D(X2 Y2)

Left Pixel

Right Pixel

Destination, Source and Clipping Surface Parameters

444

DX1, DY1, CX1, and CY1 are inclusive, while DX2, DY2, CX2, and CY2 are exclusive.

Destination pixel address = (Destination Base Address + (Destination Y coordinate *
Destination pitch) + (Destination X coordinate * bytes per pixel)).

Source pixel address = (Source Base Address + (Source Y coordinate * Source pitch)
+ (Source X coordinate * bytes per pixel)).

Since there is 1 set of Clip Rectangle registers, the Interrupt Ring BLT commands
either MUST NEVER enable clipping with these command and never use the
XY_Pixel_BLT, XY_Scanline_BLT, nor XY_Text_BLT commands or it must use context
switching. The Interrupt rings can also use the non-clipped, linear address commands
specified before this section.

The base addresses plus the X and Y coordinates determine if there is an overlap
between the source and destination operands. If the base addresses of the source and
destination are the same and the Source X1 is less than Destination X1, then the BLT
Engine performs the accesses in the X-backwards access pattern. There is no need to
look for an actual overlap. If the base addresses are the same and Source Y1 is less
than Destination Y1, then the scan line accesses are performed backwards.

b_blt4.vsd

Destination Source

Destination Source

OR

DestinationSource

DestinationSource

OR

Destination Destination

Source Source

OR

Source

Destinati

Source

Destination

Destination Destination

Source Source

OR

Source

Destination

Source

Destination

 445

14.9.1 XY_SETUP_BLT

This setup instruction supplies common setup information including clipping
coordinates used by the XY commands: XY_PIXEL_BLT, XY_SCANLINE_BLT,
XY_TEXT_BLT, and XY_TEXT_BLT_IMMEDIATE.

These are the only instructions that require that state be saved between instructions
other than the Clipping parameters. There are 5 dedicated registers to contain the
state for these 3 instructions. All other BLTs use a temporary version of these. The 5
double word registers are: DW1 (Setup Control), DW6 (Setup Foreground color), DW5
(Setup Background color), DW7 (Setup Pattern address), and DW4 (Setup Destination
Base Address).

DWord Bit Description

0 = BR00 31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 01h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB channels)

 19:12 Reserved.

 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)
1 = Tiling enabled (Tile-X only)

 10: 08 Reserved

 07:00 Dword Length: 06h

1 = BR01 31 Reserved.

 30 Clipping Enable: (1 = enabled; 0 = disabled)

 29 Mono Source Transparency Mode: (1 = transparency enabled; 0 = use background)

 28:26 Reserved.

 25:24 Color Depth: All

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:

 15:00 Destination Pitch in DWords: [15:00] 2’s complement (Negative Pitch Not allowed for
Pixel nor Text)

For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte granularity and can be upto
128Kbytes (or 32KDwords).

2 = BR24 31:16 ClipRect Y1 Coordinate (Top): (30:16 = 15 bit positive number)

 15:00 ClipRect X1 Coordinate (Left): (14:00 = 15 bit positive number)

3 = BR25 31:16 ClipRect Y2 Coordinate (Bottom): (30:16 = 15 bit positive number)

 15:00 ClipRect X2 Coordinate (Right): (14:00 = 15 bit positive number)

4 = BR09 31:00 Setup Destination Base Address: (base address of the destination surface: X=0, Y=0)

When Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes.

5 = BR05 31:00 Setup Background Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0] All

6 = BR06 31:00 Setup Foreground Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0] (SLB & TB only)

7 = BR07 31:00 Setup Pattern Base Address for Color Pattern: (26:06 are implemented) (SLB only)

(Note no NPO2 change here). The pattern data must be located in linear memory.

446

14.9.2 XY_SETUP_MONO_PATTERN_SL_BLT

This setup instruction supplies common setup information including clipping
coordinates used exclusively with the following instruction: XY_SCANLINE_BLT (SLB)
- 1 scan line of monochrome pattern and destination are the only operands allowed.

DWord Bit Description

0 = BR00 31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 11h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB channels)

 19:12 Reserved.

 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)

1 = Tiling enabled (Tile-X only)

 10: 08 Reserved

 07:00 Dword Length: 07h

1 = BR01 31 Solid Pattern Select: (1 = solid pattern; 0 = no solid pattern) - (SLB & Pixel only)

 30 Clipping Enable: (1 = enabled; 0 = disabled)

 29 Reserved.

 28 Mono Pattern Transparency Mode: (1 = transparency enabled; 0 = use background)

 27:26 Reserved.

 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:

 15:00 Destination Pitch in DWords: [15:00] 2’s complement (Negative Pitch Not allowed for
Pixel nor Text)

For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte granularity and can be upto
128Kbytes (or 32KDwords).

2 = BR24 31:16 ClipRect Y1 Coordinate (Top): (30:16 = 15 bit positive number)

 15:00 ClipRect X1 Coordinate (Left): (14:00 = 15 bit positive number)

3 = BR25 31:16 ClipRect Y2 Coordinate (Bottom): (30:16 = 15 bit positive number)

 15:00 ClipRect X2 Coordinate (Right): (14:00 = 15 bit positive number)

4 = BR09 31:00 Setup Destination Base Address: (base address of the destination surface: X=0, Y=0)

When Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes.

5 = BR05 31:00 Setup Background Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

6 = BR06 31:00 Setup Foreground Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

7 = BR20 31:00 DW0 (least significant) for a Monochrome Pattern:

8 = BR21 31:00 DW1 (most significant) for a Monochrome Pattern:

 447

14.9.3 XY_SETUP_CLIP_ BLT

This command is used to only change the clip coordinate registers. These are the
same clipping registers as the Setup clipping registers above.

DWord Bit Description

0 = BR00 31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 03h

 21:12 Reserved.

 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)

1 = Tiling enabled (Tile-X only)

 10: 08 Reserved

 07:00 Dword Length: 01h

1 = BR24 31:16 ClipRect Y1 Coordinate (Top): (30:16 = 15 bit positive number)

 15:00 ClipRect X1 Coordinate (Left): (14:00 = 15 bit positive number)

2 = BR25 31:16 ClipRect Y2 Coordinate (Bottom): (30:16 = 15 bit positive number)

 15:00 ClipRect X2 Coordinate (Right): (14:00 = 15 bit positive number)

14.9.4 XY_PIXEL_BLT

The Destination X coordinate and Destination Y coordinate is compared with the
ClipRect registers. If it is within all 4 comparisons, then the pixel supplied in the
XY_SETUP_BLT instruction is written with the raster operation to (Destination Y
Address + (Destination Y coordinate * Destination pitch) + (Destination X coordinate
* bytes per pixel)).

ROP field must specify pattern or fill with 0’s or 1’s. There is no source operand.

Negative Stride (= Pitch) specified in the Setup command is Not Allowed

DWord Bit Description

0 = BR00 31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 24h

 21:12 Reserved.

 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)

1 = Tiling enabled (Tile-X only)

 10: 08 Reserved

 07:00 Dword Length : 00h

1 = BR22 31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

448

14.9.5 XY_SCANLINES_BLT

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written.
Only pixels within the ClipRectX coordinates and the Destination X coordinates are
written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical).
The alignment is relative to the destination coordinates. The pixel of the pattern used
/ scan line is the (destination X coordinate + horizontal seed) modulo 8. The scan line
of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

Solid pattern should use the XY_SETUP_MONO_PATTERN_SL_BLT instruction.

ROP field must specify pattern or fill with 0’s or 1’s. There is no source operand.

DWord Bit Description

0 = BR00 31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 25h

 21:15 Reserved.

 14:12 Pattern Horizontal Seed: (pixel of the scan line to start on corresponding to DST X=0)

 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)

1 = Tiling enabled (Tile-X only)

 10:08 Pattern Vertical Seed: (scan line of the 8x8 pattern to start on corresponding to DST
Y=0)

 07:00 Dword Length: 01h

1 = BR22 31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

2 = BR23 31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed number)

 449

14.9.6 XY_TEXT_BLT

All source scan lines and pixels that fall within the ClipRect Y and X coordinates are
written. The source address corresponds to Destination X1 and Y1 coordinate.

Text is either bit or byte packed. Bit packed means that the next scan line starts 1
pixel after the end of the current scan line with no bit padding. Byte packed means
that the next scan line starts on the first bit of the next byte boundary after the last
bit of the current line.

Source expansion color registers are always in the SETUP_BLT.

Negative Stride (= Pitch) is NOT ALLOWED.

DWord Bit Description

0 = BR00 31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 26h

 21:17 Reserved.

 16 Bit (0) / Byte (1) packed: Byte packed is for the NT driver

 15:12 Reserved.

 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)

1 = Tiling enabled (Tile-X only)

 10: 08 Reserved

 07:00 Dword Length: 02h

1 = BR22 31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

2 = BR23 31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed number)

3 = BR12 31:00 Source Address: (address of the first byte on scan line corresponding to Dst X1,Y1)

(Note no NPO2 change here)

450

14.9.7 XY_TEXT_IMMEDIATE_BLT

This instruction allows the Driver to send data through the instruction stream that
eliminates the read latency of reading a source from memory. If an operand is in
system cacheable memory and either small or only accessed once, it can be copied
directly to the instruction stream versus to graphics accessible memory.

The IMMEDIATE_BLT data MUST transfer an even number of doublewords. The BLT
engine will hang if it does not get an even number of doublewords.

All source scan lines and pixels that fall within the ClipRect X and Y coordinates are
written. The source data corresponds to Destination X1 and Y1 coordinate.

Source expansion color registers are always in the SETUP_BLT.

NEGATIVE STRIDE (= PITCH) IS NOT ALLOWED.

DWord Bit Description

0 = BR00 31:29 Client: 02h – 2D Processor

 28:22 Instruction Target (Opcode): 31h

 21:17 Reserved.

 16 Bit (0) / Byte (1) packed: Byte packed is for the NT driver

 15:12 Reserved.

 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)

1 = Tiling enabled (Tile-X only)

 10: 08 Reserved

 07:00 Dword Length : 01+ DWL = (Number of Immediate double words)h

1 = BR22 31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

2 = BR23 31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed number)

3 31:00 Immediate Data DW 0:

4 31:00 Immediate Data DW 1:

5 thru
DWL+3

S Immediate Data DWs 2 through DWORD_LENGTH (DWL):

 451

14.9.8 XY_COLOR_BLT

COLOR_BLT is the simplest BLT operation. It performs a color fill to the destination
(with a possible ROP). The only operand is the destination operand which is written
dependent on the raster operation. The solid pattern color is stored in the pattern
background register.

This instruction is optimized to run at the maximum memory write bandwidth.

The typical (and fastest) Raster operation code = F0 which performs a copy of the
pattern background register to the destination.

DWord Bit Description

0 = BR00 31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 50h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB channels)

 19:12 Reserved.

 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)

1 = Tiling enabled (Tile-X only)

 10: 08 Reserved

 07:00 Dword Length: 04h

1 = BR13 31 Reserved.

 30 Clipping Enable: (1 = enabled; 0 = disabled)

 29:26 Reserved.

 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:

 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte granularity and can be upto
128Kbytes (or 32KDwords).

2 = BR22 31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

3 = BR23 31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed number)

4 = BR09 31:00 Destination Base Address: (base address of the destination surface: X=0, Y=0)

When Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes.

5 = BR16 31:00 Solid Pattern Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

452

14.9.9 XY_PAT_BLT

PAT_BLT is used when there is no source and the color pattern is not trivial (is not a
solid color only).

If clipping is enabled, all scan lines and pixels that fall within the ClipRect Y and X
coordinates are written. Only pixels within the ClipRectX coordinates and the
Destination X coordinates are written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical).
The alignment is relative to the destination coordinates. The pixel of the pattern used
/ scan line is the (destination X coordinate + horizontal seed) modulo 8. The scan line
of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

DWord Bit Description

0 = BR00 31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 51h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB channels)

 19:15 Reserved.

 14:12 Pattern Horizontal Seed (pixel of the scan line to start on corresponding to DST X=0)

 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)
1 = Tiling enabled (Tile-X only)

 10:08 Pattern Vertical Seed: (Starting Scan line of the 8x8 pattern corresponding to DST Y=0)

 07:00 Dword Length: 04h

1 = BR13 31 Reserved.

 30 Clipping Enable: (1 = enabled; 0 = disabled)

 29:26 Reserved.

 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:

 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte granularity and can be upto
128Kbytes (or 32KDwords).

2 = BR22 31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

3 = BR23 31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed number)

4 = BR09 31:00 Destination Base Address: (base address of the destination surface: X=0, Y=0)

When Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes.

5 = BR15 31:00 Pattern Base Address: (28:06 are implemented) (Note no NPO2 change here). The
pattern data must be located in linear memory.

 453

14.9.10 XY_PAT_CHROMA_BLT

PAT_BLT is used when there is no source and the color pattern is not trivial (is not a
solid color only).

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written.
Only pixels within the ClipRectX coordinates and the Destination X coordinates are
written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical).
The alignment is relative to the destination coordinates. The pixel of the pattern used
/ scan line is the (destination X coordinate + horizontal seed) modulo 8. The scan line
of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

DWord Bit Description

0 = BR00 31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 76h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB channels)

 19:17 Transparency Range Mode: (chroma-key) – Dst Chroma-key modes ONLY (SRC ILLEGAL)

 16:15 Reserved.

 14:12 Pattern Horizontal Seed (pixel of the scan line to start on corresponding to DST X=0)

 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)
1 = Tiling enabled (Tile-X only)

 10:08 Pattern Vertical Seed: (Starting Scan line of the 8x8 pattern corresponding to DST Y=0)

 07:00 Dword Length: 06h

1 = BR13 31 Reserved.

 30 Clipping Enable: (1 = enabled; 0 = disabled)

 29:26 Reserved.

 25:24 Color Depth:

00 = 8 bit color

01 = 16 bit color (565)

10 = 16 bit color (1555)

11 = 32 bit color

 23:16 Raster Operation:

 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte granularity and can be upto
128Kbytes (or 32KDwords).

2 = BR22 31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

3 = BR23 31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed number)

4 = BR09 31:00 Destination Base Address: (base address of the destination surface: X=0, Y=0)

When Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes.

5 = BR15 31:00 Pattern Base Address: (26:06 are used, other bits are ignored) (Note no NPO2 change
here). The pattern data must be located in linear memory.

6 = BR18 31:00 Transparency Color Low: (Chroma-key Low = Pixel Greater or Equal)

7 = BR19 31:00 Transparency Color High: (Chroma-key High = Pixel Less or Equal)

454

14.9.11 XY_PAT_BLT_IMMEDIATE

PAT_BLT_IMMEDIATE is used when there is no source and the color pattern is not
trivial (is not a solid color only) and the pattern is pulled through the command
stream. The immediate data sizes are 64 bytes (16 DWs), 128 bytes (32 DWs), or 256
(64DWs) for 8, 16, and 32 bpp color patterns.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written.
Only pixels within the ClipRectX coordinates and the Destination X coordinates are
written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical).
The alignment is relative to the destination coordinates. The pixel of the pattern used
/ scan line is the (destination X coordinate + horizontal seed) modulo 8. The scan line
of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

DWord Bit Description

0 = BR00 31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 72h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB channels)

 19:15 Reserved.

 14:12 Pattern Horizontal Seed (pixel of the scan line to start on corresponding to DST X=0)

 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)

1 = Tiling enabled (Tile-X only)

 10:08 Pattern Vertical Seed: (starting scan line of the 8x8 pattern corresponding to DST Y=0)

 07:00 Dword Length: 03+ DWL = (Number of Immediate double)h

1 = BR13 31 Reserved

 30 Clipping Enable: (1 = enabled; 0 = disabled)

 29:26 Reserved.

 25:24 Color Depth:

00 = 8 bit color

01 = 16 bit color (565)

10 = 16 bit color (1555)

11 = 32 bit color

 23:16 Raster Operation:

 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte granularity and can be upto
128Kbytes (or 32KDwords).

2 = BR22 31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

3 = BR23 31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed number)

4 = BR09 31:00 Destination Base Address: (base address of the destination surface: X=0, Y=0)

When Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes.

5 31:00 Immediate Data DW 0:

6 31:00 Immediate Data DW 1:

7 thru
DWL+3

S Immediate Data DWs 2 through DWORD_LENGTH (DWL):

 455

14.9.12 XY_PAT_CHROMA_BLT_IMMEDIATE
PAT_BLT_IMMEDIATE is used when there is no source and the color pattern is not
trivial (is not a solid color only) and the pattern is pulled through the command
stream. The immediate data sizes are 64 bytes (16 DWs), 128 bytes (32 DWs), or 256
(64DWs) for 8, 16, and 32 bpp color patterns.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written.
Only pixels within the ClipRectX coordinates and the Destination X coordinates are
written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical).
The alignment is relative to the destination coordinates. The pixel of the pattern used
/ scan line is the (destination X coordinate + horizontal seed) modulo 8. The scan line
of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

DWord Bit Description

0 = BR00 31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 77h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB channels)

 19:17 Transparency Range Mode: (chroma-key) – Dst Chroma-key modes ONLY (SRC ILLEGAL)

 16:15 Reserved.

 14:12 Pattern Horizontal Seed (pixel of the scan line to start on corresponding to DST X=0)

 11 Tiling Enable:
0 = Tiling Disabled (Linear blit)
1 = Tiling enabled (Tile-X only)

 10:08 Pattern Vertical Seed: (starting scan line of the 8x8 pattern corresponding to DST Y=0)

 07:00 Dword Length: 05+ DWL = (Number of Immediate double)h

1 = BR13 31 Reserved.

 30 Clipping Enable (1 = enabled; 0 = disabled)

 29:26 Reserved.

 25:24 Color Depth:
00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:

 15:00 Destination Pitch in DWords: [15:00] 2’s complement
For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte granularity and can be upto
128Kbytes (or 32KDwords).

2 = BR22 31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

3 = BR23 31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed number)

4 = BR09 31:00 Destination Base Address: (base address of the destination surface: X=0, Y=0)
When Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes.

5 = BR18 31:00 Transparency Color Low: (Chroma-key Low = Pixel Greater or Equal)

6 = BR19 31:00 Transparency Color High: (Chroma-key High = Pixel Less or Equal)

7 31:00 Immediate Data DW 0:

8 31:00 Immediate Data DW 1:

9 thru
DWL+3

S Immediate Data DWs 2 through DWORD_LENGTH (DWL):

456

14.9.13 XY_MONO_PAT_BLT
MONO_PAT_BLT is used when we have no source and the monochrome pattern is not
trivial (is not a solid color only). The monochrome pattern is loaded from the
instruction stream.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written.
Only pixels within the ClipRectX coordinates and the Destination X coordinates are
written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical).
The alignment is relative to the destination coordinates. The pixel of the pattern used
/ scan line is the (destination X coordinate + horizontal seed) modulo 8. The scan line
of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

The monochrome pattern transparency mode indicates whether to use the pattern
background color or de-assert the write enables when the bit in the pattern is 0. When
the pattern bit is 1, then the pattern foreground color is used in the ROP operation.

DWord Bit Description

0 = BR00 31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode) : 52h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB channels)

 19:15 Reserved.

 14:12 Pattern Horizontal Seed: (pixel of the scan line to start on corresponding to DST X=0)

 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)

1 = Tiling enabled (Tile-X only)

 10:08 Pattern Vertical Seed: (starting scan line of the 8x8 pattern corresponding to DST Y=0)

 07:00 Dword Length: 07h

1 = BR13 31 Reserved.

 30 Clipping Enable (1 = enabled; 0 = disabled)

 29 Reserved.

 28 Mono Pattern Transparency Mode: (1 = transparency enabled; 0 = use background)

 27:26 Reserved.

 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:

 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte granularity and can be upto
128Kbytes (or 32KDwords).

2 = BR22 31:16 Destination Y1 Coordinate (Top): 31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

 457

DWord Bit Description

3 = BR23 31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed number)

4 = BR09 31:00 Destination Base Address: (base address of the destination surface: X=0, Y=0)

When Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes.

5 = BR16 31:00 Pattern Background Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

6 = BR17 31:00 Pattern Foreground Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

7 = BR20 31:00 Pattern Data 0: (least significant DW)

8 = BR21 31:00 Pattern Data 1: (most significant DW)

458

14.9.14 XY_MONO_PAT_FIXED_BLT
MONO_PAT_FIXED_BLT is used when we have no source and the monochrome pattern
is not trivial (is not a solid color only). The monochrome pattern is one of 10 fixed
patterns described below. The pattern seeds can still be used with the fixed patterns,
creating even more fixed patterns. This eliminates 2 doublewords compared to the
XY_MONO_PAT_BLT command packet.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written.
Only pixels within the ClipRectX coordinates and the Destination X coordinates are
written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical).
The alignment is relative to the destination coordinates. The pixel of the pattern used
/ scan line is the (destination X coordinate + horizontal seed) modulo 8. The scan line
of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

The monochrome pattern transparency mode indicates whether to use the pattern
background color or de-assert the write enables when the bit in the pattern is 0. When
the pattern bit is 1, then the pattern foreground color is used in the ROP operation.

DWord Bit Description

0 = BR00 31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 59h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB channels)

 19 Reserved.

 18:15 Fixed Pattern:

0000 HS_HORIZONTAL
0001 HS_VERTICAL
0010 HS_FDIAGONAL
0011 HS_BDIAGONAL
0100 HS_CROSS
0101 HS_DIAGCROSS
0110 Reserved
0111 Reserved
1000 Screen Door
1001 SD Wide
1010 Walking Bit (one)
1011 Walking Zero
1100 Reserved
1101 Reserved
1110 Reserved

 14:12 Pattern Horizontal Seed: (pixel of the scan line to start on corresponding to DST X=0)

 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)

1 = Tiling enabled (Tile-X only)

 10:08 Pattern Vertical Seed: (starting scan line of the 8x8 pattern corresponding to DST Y=0)

 07:00 Dword Length: 05h

1 = BR13 31 Reserved.

 459

DWord Bit Description

 30 Clipping Enable (1 = enabled; 0 = disabled)

 29 Reserved.

 28 Mono Pattern Transparency Mode: (1 = transparency enabled; 0 = use background)

 27 Bit Mask Enable: (1 = use bit mask register for bit writes; 0 = disabled)

 27:26 Reserved.

 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:

 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte granularity and can be upto
128Kbytes (or 32KDwords).

2 = BR22 31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

3 = BR23 31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed number)

4 = BR09 31:00 Destination Base Address: (base address of the destination surface: X=0, Y=0)

When Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes.

5 = BR16 31:00 Pattern Background Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

6 = BR17 31:00 Pattern Foreground Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

460

14.9.14.1 Monochrome Pattern Memory Format

The monochrome pattern is made of 8 bytes that correspond to the 8 pixels per scan
line and 8 scan lines. Byte 0 corresponds to scan line 0, byte 1 corresponds to scan
line 1,…, and byte 7 corresponds to scan line 7. The bits within each byte are
transposed. Pixel 0 is bit 7, pixel 1 is bit 6,…, pixel 7 is bit 0. The diagram below
illustrates the byte and bit relationship to the pixels of the pattern.

Pixel (0, 0)

Pixel (0, 7)

Pixel (7, 0)

Pixel (7, 7)

Pixel
(0, 7)

Pixel
(7, 7)

Pixel
(0, 0)

63 57 56 48 47 40 39 24 2332 31 16 15 8 7

 461

14.9.14.2 HS_HORIZONTAL 0
Bit 7 0
0,0 7,0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

14.9.14.3 HS_VERTICAL 1

Bit 7 0
0,0 7,0

0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0

14.9.14.4 HS_FDIAGONAL 2

Bit 7 0
0,0 7,0

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

14.9.14.5 HS_BDIAGONAL 3

Bit 7 0
0,0 7,0

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

462

14.9.14.6 HS_CROSS 4

Bit 7 0
0,0 7,0

0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
1 1 1 1 1 1 1 1
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0

14.9.14.7 HS_DIAGCROSS 5

Bit 7 0
0,0 7,0

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1

14.9.14.8 Screen Door 8

Bit 7 0
0,0 7,0

0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0

14.9.14.9 SD Wide 9

Bit 7 0
0,0 7,0

1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1

 463

14.9.14.10 Walking Bit (One) A

Bit 7 0
0,0 7,0

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

14.9.14.11 Walking Zero B

Bit 7 0
0,0 7,0

0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0
0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0

14.9.15 XY_SRC_COPY_BLT
This BLT instruction performs a color source copy where the only operands involved is
a color source and destination of the same bit width.

The source and destination operands may overlap, which means that the X and Y
directions can be either forward or backwards. The BLT Engine takes care of all
situations. The base addresses plus the X and Y coordinates determine if there is an
overlap between the source and destination operands. If the base addresses of the
source and destination are the same and the Source X1 is less than Destination X1,
then the BLT Engine performs the accesses in the X-backwards access pattern. There
is no need to look for an actual overlap. If the base addresses are the same and
Source Y1 is less than Destination Y1, then the scan line accesses start at Destination
Y2 with the corresponding source scan line and the strides are subtracted for every
scan line access.

The ROP value chosen must involve source and no pattern data in the ROP operation.

DWord Bit Description

0 = BR00 31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 53h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB channels)

 19:16 Reserved.

464

DWord Bit Description

 15 Src Tiling Enable:

0 = Tiling Disabled (Linear)

1 = Tiling enabled (Tile-X only)

 14:12 Reserved

 11 Dest Tiling Enable:

0 = Tiling Disabled (Linear)

1 = Tiling enabled (Tile-X only)

 10: 8 Reserved

 7:0 Dword Length: 06h

1 = BR13 31 Reserved.

 30 Clipping Enable: (1 = enabled; 0 = disabled)

 29:26 Reserved.

 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:

 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled Dest (bit 11 enabled) this ptich is of 512Byte granularity and can be up
to 128Kbytes (or 32KDwords).

2 = BR22 31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

3 = BR23 31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed number)

4 = BR09 31:00 Destination Base Address: (base address of the destination surface: X=0, Y=0)

When Dest Tiling is enabled (Bit 11 enabled), this address is limited to 4Kbytes.

5 = BR26 31:16 Source Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Source X1 Coordinate (Left): (15:00 = 16 bit signed number)

 31:16 Reserved

6 = BR11 15:00 Source Pitch (double word aligned) and in DWords: [15:00] 2’s complement.

For Tiled Src (bit 15 enabled) this ptich is of 512Byte granularity and can be upto
128Kbytes (or 32KDwords).

7 = BR12 31:00 Source Base Address: (base address of the source surface: X=0, Y=0)

When Src Tiling is enabled (Bit 15 enabled), this address is limited to 4Kbytes.

 465

14.9.16 XY_SRC_COPY_CHROMA_BLT

This BLT instruction performs a color source copy with chroma-keying where the only
operands involved is a color source and destination of the same bit width.

The source and destination operands may overlap, which means that the X and Y
directions can be either forward or backwards. The BLT Engine takes care of all
situations. The base addresses plus the X and Y coordinates determine if there is an
overlap between the source and destination operands. If the base addresses of the
source and destination are the same and the Source X1 is less than Destination X1,
then the BLT Engine performs the accesses in the X-backwards access pattern. There
is no need to look for an actual overlap. If the base addresses are the same and
Source Y1 is less than Destination Y1, then the scan line accesses start at Destination
Y2 with the corresponding source scan line and the strides are subtracted for every
scan line access.

The ROP value chosen must involve source and no pattern data in the ROP operation.

DWord Bit Description

0 = BR00 31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 73h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB channels)

 19:17 Transparency Range Mode: (chroma-key)

 16 Reserved

 15 Src Tiling Enable:

0 = Tiling Disabled (Linear)

1 = Tiling enabled (Tile-X only)

 14:12 Reserved

 11 Dest Tiling Enable:

0 = Tiling Disabled (Linear)

1 = Tiling enabled (Tile-X only)

 10: 08 Reserved

 07:00 Dword Length: 08h

1 = BR13 31 Reserved.

 30 Clipping Enable: (1 = enabled; 0 = disabled)

 29:26 Reserved.

 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:

466

DWord Bit Description

 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled Dest (bit 11 enabled) this ptich is of 512Byte granularity and can be upto
128Kbytes (or 32KDwords).

2 = BR22 31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

3 = BR23 31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed number)

4 = BR09 31:00 Destination Base Address: (base address of the destination surface: X=0, Y=0)

When Dest Tiling is enabled (Bit 11 enabled), this address is limited to 4Kbytes.

5 = BR26 31:16 Source Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Source X1 Coordinate (Left): (15:00 = 16 bit signed number)

 31:16 Reserved.

6 = BR11 15:00 Source Pitch (double word aligned) and in DWords: [15:00] 2’s complement.

For Tiled Src (bit 15 enabled) this ptich is of 512Byte granularity and can be upto
128Kbytes (or 32KDwords).

7 = BR12 31:00 Source Base Address: (base address of the source surface: X=0, Y=0)

When Src Tiling is enabled (Bit 15 enabled), this address is limited to 4Kbytes.

8 = BR18 31:00 Transparency Color Low: (Chroma-key Low = Pixel Greater or Equal)

9 = BR19 31:00 Transparency Color High: (Chroma-key High = Pixel Less or Equal)

14.9.17 XY_MONO_SRC_COPY_BLT

This BLT instruction performs a monochrome source copy where the only operands
involved is a monochrome source and destination. The source and destination
operands cannot overlap therefore the X and Y directions are always forward.

All non-text monochrome sources are word aligned. At the end of a scan line of
monochrome source, all bits until the next word boundary are ignored. The
monochrome source data bit position field [2:0] indicates the bit position within the
first byte of the scan line that should be used as the first source pixel which
corresponds to the destination X1 coordinate.

The monochrome source transparency mode indicates whether to use the source
background color or de-assert the write enables when the bit in the source is 0. When
the source bit is 1, then the source foreground color is used in the ROP operation. The
ROP value chosen must involve source and no pattern data in the ROP operation.
Negative Stride (= Pitch) is NOT ALLOWED.

 467

DWord Bit Description

0 = BR00 31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 54h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB channels)

 19:17 Monochrome source data bit position of the first pixel within a byte per scan line.

 16:12 Reserved.

 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)

1 = Tiling enabled (Tile-X only)

 10: 08 Reserved

 07:00 Doubleword Length: 06h

1 = BR13 31 Reserved.

 30 Clipping Enable: (1 = enabled; 0 = disabled)

 29 Mono Source Transparency Mode: (1 = transparency enabled; 0 = use background)

 28:26 Reserved.

 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:

 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte granularity and can be upto
128Kbytes (or 32KDwords).

2 = BR22 31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

3 = BR23 31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed number)

4 = BR09 31:00 Destination Base Address: (base address of the destination surface: X=0, Y=0)

When Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes.

5 = BR12 31:00 Source Address: (address corresponding to DST X1,Y1) (Note no NPO2 change here)

6 = BR18 31:00 Source Background Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

7 = BR19 31:00 Source Foreground Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

468

14.9.18 XY_MONO_SRC_COPY_ IMMEDIATE_BLT
This instruction allows the Driver to send monochrome data through the instruction
stream, eliminating the read latency of the source during command execution.

The IMMEDIATE_BLT data MUST transfer an even number of doublewords and the
exact number of quadwords.

All non-text monochrome sources are word aligned. At the end of a scan line of
monochrome source, all bits until the next word boundary are ignored. The
Monochrome source data bit position field [2:0] indicates the bit position within the
first byte of the scan line that should be used as the first source pixel which
corresponds to the destination X1 coordinate.

The monochrome source transparency mode indicates whether to use the source
background color or de-assert the write enables when the bit in the source is 0. When
the source bit is 1, then the source foreground color is used in the ROP operation. The
ROP value chosen must involve source and no pattern data in the ROP operation.

The monochrome source data supplied corresponds to the Destination X1 and Y1
coordinates.

Negative Stride (= Pitch) is NOT ALLOWED.

DWord Bit Description

0 = BR00 31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 71h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB channels)

 19:17 Monochrome source data bit position of the first pixel within a byte per scan line.

 16:12 Reserved.

 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)

1 = Tiling enabled (Tile-X only)

 10: 08 Reserved

 07:00 Dword Length: 05+ DWL = (Number of Immediate double words)h

1 = BR13 31 Reserved.

 30 Clipping Enable: (1 = enabled; 0 = disabled)

 29 Mono Source Transparency Mode: (1 = transparency enabled; 0 = use background)

 28:26 Reserved.

 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:

 469

DWord Bit Description

 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte granularity and can be upto
128Kbytes (or 32KDwords).

2 = BR22 31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

3 = BR23 31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed number)

4 = BR09 31:00 Destination Base Address: (base address of the destination surface: X=0, Y=0)

When Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes.

5 = BR18 31:00 Source Background Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

6 = BR19 31:00 Source Foreground Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

7 31:00 Immediate Data DW 0:

8 31:00 Immediate Data DW 1:

9 thru
DWL+4

S Immediate Data DWs 2 through DWORD_LENGTH (DWL):

470

14.9.19 XY_FULL_BLT
The full BLT is the most comprehensive BLT instruction. It provides the ability to
specify all 3 operands: destination, source, and pattern. The source and pattern
operands are the same bit width as the destination operand.

The source and destination operands may overlap, which means that the X and Y
directions can be either forward or backwards. The BLT Engine takes care of all
situations. The base addresses plus the X and Y coordinates determine if there is an
overlap between the source and destination operands. If the base addresses of the
source and destination are the same and the Source X1 is less than Destination X1,
then the BLT Engine performs the accesses in the X-backwards access pattern. There
is no need to look for an actual overlap. If the base addresses are the same and
Source Y1 is less than Destination Y1, then the scan line accesses start at Destination
Y2 with the corresponding source scan line and the strides are subtracted for every
scan line access.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written.
Only pixels within the ClipRectX coordinates and the Destination X coordinates are
written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical).
The alignment is relative to the destination coordinates. The pixel of the pattern used
/ scan line is the (destination X coordinate + horizontal seed) modulo 8. The scan line
of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

DWord Bit Description

0 = BR00 31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 55h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB channels)

 19:16 Reserved.

 15 Src Tiling Enable:

0 = Tiling Disabled (Linear)

1 = Tiling enabled (Tile-X only)

 14:12 Pattern Horizontal Seed (pixel of the scan line to start on corresponding to DST X=0)

 11 Dest Tiling Enable:

0 = Tiling Disabled (Linear blit)

1 = Tiling enabled (Tile-X only)

 10:08 Pattern Vertical Seed: (starting scan line of the 8x8 pattern corresponding to DST Y=0)

 07:00 Doubleword Length: 07h

1 = BR13 31 Reserved.

 30 Clipping Enable: (1 = enabled; 0 = disabled)

 29:26 Reserved.

 471

DWord Bit Description

 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:

 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled Dest (bit 11 enabled) this ptich is of 512Byte granularity and can be upto
128Kbytes (or 32KDwords).

2 = BR22 31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

3 = BR23 31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed number)

4 = BR09 31:00 Destination Base Address: (base address of the destination surface: X=0, Y=0)

When Dest Tiling is enabled (Bit 11 enabled), this address is limited to 4Kbytes.

 31:16 Reserved.

5 = BR11 15:00 Source Pitch (double word aligned and signed) and in DWords: [15:00] 2’s
complement.

For Tiled Src (bit 15 enabled) this ptich is of 512Byte granularity and can be upto
128Kbytes (or 32KDwords).

6 = BR26 31:16 Source Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Source X1 Coordinate (Left): (15:00 = 16 bit signed number)

7 = BR12 31:00 Source Base Address: (base address of the source surface: X=0, Y=0)

When Src Tiling is enabled (Bit 15 enabled), this address is limited to 4Kbytes.

8 = BR15 31:00 Pattern Base Address: (28:06 are implemented) (Note no NPO2 change here). The
pattern data must be located in linear memory.

472

14.9.20 XY_FULL_IMMEDIATE_PATTERN_BLT
The full BLT is the most comprehensive BLT instruction. It provides the ability to
specify all 3 operands: destination, source, and pattern. The source and immediate
pattern operands are the same bit width as the destination operand. The immediate
data sizes are 64 bytes (16 DWs), 128 bytes (32 DWs), or 256 (64 DWs) for 8, 16,
and 32 bpp color patterns.

The source and destination operands may overlap, which means that the X and Y
directions can be either forward or backwards. The BLT Engine takes care of all
situations. The base addresses plus the X and Y coordinates determine if there is an
overlap between the source and destination operands. If the base addresses of the
source and destination are the same and the Source X1 is less than Destination X1,
then the BLT Engine performs the accesses in the X-backwards access pattern. There
is no need to look for an actual overlap. If the base addresses are the same and
Source Y1 is less than Destination Y1, then the scan line accesses start at Destination
Y2 with the corresponding source scan line and the strides are subtracted for every
scan line access.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written.
Only pixels within the ClipRectX coordinates and the Destination X coordinates are
written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical).
The alignment is relative to the destination coordinates. The pixel of the pattern used
/ scan line is the (destination X coordinate + horizontal seed) modulo 8. The scan line
of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

DWord Bit Description

0 = BR00 31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 74h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB channels)

 19:16 Reserved.

 15 Src Tiling Enable:

0 = Tiling Disabled (Linear)

1 = Tiling enabled (Tile-X only)

 14:12 Pattern Horizontal Seed: (pixel of the scan line to start on corresponding to DST X=0)

 11 Dest Tiling Enable:

0 = Tiling Disabled (Linear)

1 = Tiling enabled (Tile-X only)

 10:8 Pattern Vertical Seed: (starting scan line of the 8x8 pattern corresponding to DST Y=0)

 7:0 Doubleword Length: 06+ DWL = (Number of Immediate double words)h

1 = BR13 31 Reserved.

 30 Clipping Enable: (1 = enabled; 0 = disabled)

 29:26 Reserved.

 473

DWord Bit Description

 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:

 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled Dest (bit 11 enabled) this ptich is of 512Byte granularity and can be upto
128Kbytes (or 32KDwords).

2 = BR22 31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

3 = BR23 31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed number)

4 = BR09 31:00 Destination Base Address: (base address of the destination surface: X=0, Y=0)

When Dest Tiling is enabled (Bit 11 enabled), this address is limited to 4Kbytes.

 31:16 Reserved.

5 = BR11 15:00 Source Pitch (double word aligned and signed) and in DWords: [15:00] 2’s
complement.

For Tiled Src (bit 15 enabled) this ptich is of 512Byte granularity and can be upto
128Kbytes (or 32KDwords).

6 = BR26 31:16 Source Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Source X1 Coordinate (Left): (15:00 = 16 bit signed number)

7 = BR12 31:00 Source Base Address: (base address of the source surface: X=0, Y=0)

When Src Tiling is enabled (Bit 15 enabled), this address is limited to 4Kbytes.

8 31:00 Immediate Data DW 0:

9 31:00 Immediate Data DW 1:

A thru
DWL+4

S Immediate Data DWs 2 through DWORD_LENGTH (DWL):

474

14.9.21 XY_FULL_MONO_SRC_BLT
The full BLT is the most comprehensive BLT instruction. It provides the ability to
specify all 3 operands: destination, source, and pattern. The source operand is
monochrome and the pattern operand is the same bit width as the destination.

The monochrome source transparency mode indicates whether to use the source
background color or de-assert the write enables when the bit in the source is 0. When
the source bit is 1, then the source foreground color is used in the ROP operation.

All non-text and non-immediate monochrome sources are word aligned. At the end of
a scan line the monochrome source, the remaining bits until the next word boundary
are ignored. The Monochrome source data bit position field [2:0] indicates which bit
position within the first byte should be used as the first source pixel which
corresponds to the Destination X1 coordinate.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written.
Only pixels within the ClipRectX coordinates and the Destination X coordinates are
written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical).
The alignment is relative to the destination coordinates. The pixel of the pattern used
/ scan line is the (destination X coordinate + horizontal seed) modulo 8. The scan line
of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

Negative Stride (= Pitch) is NOT ALLOWED

DWord Bit Description

0 = BR00 31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 56h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB channels)

 19:17 Monochrome source data bit position of the first pixel within a byte per scan line.

 16:15 Reserved.

 14:12 Pattern Horizontal Seed: (pixel of the scan line to start on corresponding to DST X=0)

 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)

1 = Tiling enabled (Tile-X only)

 10:08 Pattern Vertical Seed: (starting address of the 8x8 pattern corresponding to DST Y=0)

 07:00 Doubleword Length : 07h

1 = BR13 31 Reserved.

 30 Clipping Enable: (1 = enabled; 0 = disabled)

 29 Mono Source Transparency Mode: (1 = transparency enabled; 0 = use background)

 28:27 Reserved.

 26 Reserved.

 475

DWord Bit Description

 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster operation:

 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte granularity and can be upto
128Kbytes (or 32KDwords).

2 = BR22 31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

3 = BR23 31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed number)

4 = BR09 31:00 Destination Base Address: (base address of the destination surface: X=0, Y=0)

When Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes.

5 = BR12 31:00 Mono Source Address: (address corresponds to DST X1, Y1) (Note no NPO2 change here)

6 = BR18 31:00 Source Background Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

7 = BR19 31:00 Source Foreground Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

8 = BR15 31:00 Pattern Base Address: (28:06 are implemented) (Note no NPO2 change here). The
pattern data must be located in linear memory.

476

14.9.22 XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT

The full BLT is the most comprehensive BLT instruction. It provides the ability to
specify all 3 operands: destination, source, and pattern. The source operand is a
monochrome and the immediate pattern operand is the same bit width as the
destination. The immediate data sizes are 64 bytes (16 DWs), 128 bytes (32 DWs), or
256 (64DWs) for 8, 16, and 32 bpp color patterns.

The monochrome source transparency mode indicates whether to use the source
background color or de-assert the write enables when the bit in the source is 0. When
the source bit is 1, then the source foreground color is used in the ROP operation.

All non-text monochrome sources are word aligned. At the end of a scan line the
monochrome source, the remaining bits until the next word boundary are ignored. The
Monochrome source data bit position field [2:0] indicates which bit position within the
first byte should be used as the first source pixel which corresponds to the destination
X1 coordinate.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written.
Only pixels within the ClipRectX coordinates and the Destination X coordinates are
written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical).
The alignment is relative to the destination coordinates. The pixel of the pattern used
/ scan line is the (destination X coordinate + horizontal seed) modulo 8. The scan line
of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

Negative Stride (= Pitch) is NOT ALLOWED.

DWord Bit Description

0 = BR00 31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 75h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB channels)

 19:17 Monochrome source data bit position of the first pixel within a byte per scan line.

 16:15 Reserved.

 14:12 Pattern Horizontal Seed: (pixel of the scan line to start on corresponding to DST X=0)

 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)

1 = Tiling enabled (Tile-X only)

 10:08 Pattern Vertical Seed: (starting address of the 8x8 pattern corresponding to DST Y=0)

 07:00 Doubleword Length : 06+ DWL = (Number of Immediate double words)h

1 = BR13 31 Reserved.

 30 Clipping Enable: (1 = enabled; 0 = disabled)

 29 Mono Source Transparency Mode: (1 = transparency enabled; 0 = use background)

 477

DWord Bit Description

 28:26 Reserved.

 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster operation:

 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte granularity and can be upto
128Kbytes (or 32KDwords).

2 = BR22 31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

3 = BR23 31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed number)

4 = BR09 31:00 Destination Base Address: (base address of the destination surface: X=0, Y=0)

When Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes.

5 = BR12 31:00 Mono Source Address: (address corresponds to DST X1, Y1) (Note no NPO2 change here)

6 = BR18 31:00 Source Background Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

7 = BR19 31:00 Source Foreground Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

8 31:00 Immediate Data DW 0:

9 31:00 Immediate Data DW 1:

A thru
DWL+4

S Immediate Data DWs 2 through DWORD_LENGTH (DWL):

478

14.9.23 XY_FULL_MONO_PATTERN_BLT

The full BLT is the most comprehensive BLT instruction. It provides the ability to
specify all 3 operands: destination, source, and pattern. The pattern operand is
monochrome and the source operand is the same bit width as the destination
operand.

The source and destination operands may overlap, which means that the X and Y
directions can be either forward or backwards. The BLT Engine takes care of all
situations. The base addresses plus the X and Y coordinates determine if there is an
overlap between the source and destination operands. If the base addresses of the
source and destination are the same and the Source X1 is less than Destination X1,
then the BLT Engine performs the accesses in the X-backwards access pattern. There
is no need to look for an actual overlap. If the base addresses are the same and
Source Y1 is less than Destination Y1, then the scan line accesses start at Destination
Y2 with the corresponding source scan line and the strides are subtracted for every
scan line access.

The monochrome pattern transparency mode indicates whether to use the pattern
background color or de-assert the write enables when the bit in the source is 0. When
the source bit is 1, then the pattern foreground color is used in the ROP operation.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written.
Only pixels within the ClipRectX coordinates and the Destination X coordinates are
written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical).
The alignment is relative to the destination coordinates. The pixel of the pattern used
/ scan line is the (destination X coordinate + horizontal seed) modulo 8. The scan line
of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

Setting both Solid Pattern Select =1 & Mono Pattern Transparency = 1 is mutually
exclusive. The device implementation results in NO PIXELs DRAWN.

DWord Bit Description

0 = BR00 31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 57h

 21:20 32 bpp byte mask: (21 =1= write alpha channel; 20=1= write RGB channels)

 19:16 Reserved.

 15 Src Tiling Enable:

0 = Tiling Disabled (Linear)

1 = Tiling enabled (Tile-X only)

 14:12 Pattern Horizontal Seed: (pixel of the scan line to start on corresponding to DST X=0)

 11 Dest Tiling Enable:

0 = Tiling Disabled (Linear)

1 = Tiling enabled (Tile-X only)

 10:08 Pattern Vertical Seed: (starting scan line of the 8x8 pattern corresponding to DST Y=0)

 07:00 Dword Length : 0Ah

 479

DWord Bit Description

1 = BR13 31 Solid Pattern Select: (1 = solid pattern; 0 = no solid pattern)

 30 Clipping Enable: (1 = enabled; 0 = disabled)

 29 Reserved.

 28:27 Mono Pattern Transparency Mode: (1 = transparency enabled; 0 = use background)

 26 Reserved.

 25:24 Color Depth:
00 = 8 bit color
01 = 16 bit color
10 = 16 bit color (1555)

11 = 32 bit color (565)

 23:16 Raster Operation:

 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled Dest (bit 11 enabled) this ptich is of 512Byte granularity and can be upto
128Kbytes (or 32KDwords).

2 = BR22 31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

3 = BR23 31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed number)

4 = BR09 31:00 Destination Base Address: (base address of the destination surface: X=0, Y=0)

When Dest Tiling is enabled (Bit 11 enabled), this address is limited to 4Kbytes.

 31:16 Reserved.

5 = BR11 15:00 Source Pitch (double word aligned and signed) and in DWords: [15:00] 2’s
complement.

For Tiled Src (bit 15 enabled) this ptich is of 512Byte granularity and can be upto
128Kbytes (or 32KDwords).

6 = BR26 31:16 Source Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Source X1 Coordinate (Left): (15:00 = 16 bit signed number)

7 = BR12 31:00 Source Base Address: (base address of the source surface: X=0, Y=0)

When Src Tiling is enabled (Bit 15 enabled), this address is limited to 4Kbytes.

 8 = BR16 31:00 Pattern Background Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

9 = BR17 31:00 Pattern Foreground Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

A = BR20 31:00 Pattern Data 0: (least significant DW)

B = BR21 31:00 Pattern Data 1: (most significant DW)

480

14.9.24 XY_FULL_MONO_PATTERN_MONO_SRC_BLT

The full BLT provides the ability to specify all 3 operands: destination, source, and
pattern. The pattern and source operands are monochrome.

The monochrome source transparency mode indicates whether to use the source
background color or de-assert the write enables when the bit in the source is 0. When
the source bit is 1, then the source foreground color is used in the ROP operation.

All non-text monochrome sources are word aligned. At the end of a scan line the
monochrome source, the remaining bits until the next word boundary are ignored. The
Monochrome source data bit position field [2:0] indicates which bit position within the
first byte should be used as the first source pixel which corresponds to the destination
X1 coordinate.

The monochrome pattern transparency mode indicates whether to use the pattern
background color or de-assert the write enables when the bit in the pattern is 0. When
the source bit is 1, then the pattern foreground color is used in the ROP operation.
The monochrome source transparency mode works identical to the pattern
transparency mode.

All scan lines and pixels that fall within the ClipRect Y and X coordinates are written.
Only pixels within the ClipRectX coordinates and the Destination X coordinates are
written using the raster operation.

The Pattern Seeds correspond to Destination X = 0 (horizontal) and Y = 0 (vertical).
The alignment is relative to the destination coordinates. The pixel of the pattern used
/ scan line is the (destination X coordinate + horizontal seed) modulo 8. The scan line
of the pattern used is the (destination Y coordinate + vertical seed) modulo 8.

Setting both Solid Pattern Select =1 & Mono Pattern Transparency = 1 is mutually
exclusive. The device implementation results in NO PIXELs DRAWN.

Negative Stride (= Pitch) is NOT ALLOWED.

DWord Bit Description

0 = BR00 31:29 Client: 02h - 2D Processor

 28:22 Instruction Target (Opcode): 58h

 21:20 32 bpp byte mask: (21 = 1 = write alpha channel; 20 = 1 = write RGB channels)

 19:17 Monochrome source data bit position of the first pixel within a byte per scan line.

 16:15 Reserved.

 14:12 Pattern Horizontal Seed: (pixel of the scan line to start on corresponding to DST X = 0)

 11 Tiling Enable:

0 = Tiling Disabled (Linear blit)

1 = Tiling enabled (Tile-X only)

 10:08 Pattern Vertical Seed: (starting scan line of the 8x8 pattern corresponding to DST Y = 0)

 07:00 Doubleword Length : 0Ah

 481

DWord Bit Description

1 = BR13 31 Solid Pattern Select: (1 = solid pattern; 0 = no solid pattern)

 30 Clipping Enable (1 = enabled; 0 = disabled)

 29 Mono Source Transparency Mode: (1 = transparency enabled; 0 = use background)

 28 Mono Pattern Transparency Mode: (1 = transparency enabled; 0 = use background)

 27:26 Reserved.

 25:24 Color Depth:

00 = 8 bit color
01 = 16 bit color (565)
10 = 16 bit color (1555)
11 = 32 bit color

 23:16 Raster Operation:

 15:00 Destination Pitch in DWords: [15:00] 2’s complement

For Tiled surfaces (bit_11 enabled) this ptich is of 512Byte granularity and can be upto
128Kbytes (or 32KDwords).

2 = BR22 31:16 Destination Y1 Coordinate (Top): (31:16 = 16 bit signed number)

 15:00 Destination X1 Coordinate (Left): (15:00 = 16 bit signed number)

3 = BR23 31:16 Destination Y2 Coordinate (Bottom): (31:16 = 16 bit signed number)

 15:00 Destination X2 Coordinate (Right): (15:00 = 16 bit signed number)

4 = BR09 31:00 Destination Base Address: (base address of the destination surface: X=0, Y=0)

When Tiling is enabled (Bit_11 enabled), this address is limited to 4Kbytes.

5 = BR12 31:00 Source Address: (address corresponding to Dst X1,Y1) (Note no NPO2 change here)

6 = BR18 31:00 Source Background Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

7 = BR19 31:00 Source Foreground Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

8 = BR16 31:00 Pattern Background Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

9 = BR17 31:00 Pattern Foreground Color: 8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]

A =BR20 31:00 Pattern Data 0: (least significant DW)

B =BR21 31:00 Pattern Data 1: (most significant DW)

482

14.10 BLT Engine Instruction Field Definitions

This section describes the BLT Engine instruction fields. These descriptions are in the
format of register descriptions. These registers are internal and are not readable.
Some of these registers are state that is saved and restored for supporting separate
software threads.

14.10.1 BR00—BLT Opcode & Control
Memory Offset Address: none
Default: 0000 0000
Attributes: not accessible

BR00 is the last executed instruction DWord 0. Bits [22:5] are written by every DW0
of every instruction. Bits [31:30] and [4:0] are status bits. Bits [28:27] are written
from the DW0 [15:14] of a Setup instruction and Bit 29 is written with a 1 when ever
a Setup instruction is written. Bit 29 is a decode of the Setup instruction Opcode.

31 30 29 28 24

Rsvd Clip
Inst

Setup
Mono

Pattern

Instruction Target (Opcode)

23 22 21 20 19 17 16

Instruction Target
(Opcode)

32 bpp byte mask Monochrome Source Start Bit (0) /
Byte (1)
Packed

15 14 12 11 10 8

Rsvd Pattern Horizontal Seed Tiling
Enable

Transparency Range Mode

7 5 4 3 2 1 0

PatternVertical Seed DST
RMW

Color
Source

Mono
Source

Color
Pattern

Mono
Pattern

 483

Bit Descriptions

31 BLT Engine Busy. This bit indicates whether the BLT Engine is busy (1) or idle (0). This bit is replicated
in the SETUP BLT Opcode & Control register.

1 = Busy
0 = Idle

30 Setup Instruction Instruction. The current instruction performs clipping (1).

29 Setup Monochrome Pattern. This bit is decoded from the Setup instruction opcode to identify whether a
color (0) or monochrome (1) pattern is used with the SCANLINE_BLT instruction.

1 = Monochrome
0 = Color

28:22 Instruction Target (Opcode). This is the contents of the Instruction Target field from the last BLT
instruction. This field is used by the BLT Engine state machine to identify the BLT instruction it is to
perform. The opcode specifies whether the source and pattern operands are color or monochrome.

21:20 32 bpp byte mask: 21 = 1 = write alpha channel [31:24]; 20 = 1 = write RGB channels [23:00]. This
field is only used for 32bpp.

19:17 Monochrome Source Start. This field indicates the starting monochrome pixel bit position within a byte
per scan line of the source operand. The monochrome source is word aligned which means that at the end
of the scan line all bits should be discarded until the next word boundary.

16 Bit/Byte Packed. Byte packed is for the NT driver

0 = Bit
1 = Byte

15 Src Tiling Enable:

0 = Tiling Disabled (Linear)

1 = Tiling enabled (Tile-X only)

14:12 Horizontal Pattern Seed. This field indicates the pattern pixel position which corresponds to X = 0.

11 Dest Tiling Enable:

0 = Tiling Disabled (Linear blit)

1 = Tiling enabled (Tile-X only)

When set to '1', this means that Blitter is executing in Tiled-X mode. If '0' it means that Blitter is in Linear
mode. Blitter never executes in Tiled-Y mode. On reset, this bit will be '0'. This definition applies to only
X,Y Blits. Non-XY blits (COLOR_BLT, SRC_COPY_BLT), will support only linear mode and will not support
tiling and for them this bit will remain reserved.

484

Bit Descriptions

10:8 Transparency Range Mode. These bits control whether or not the byte(s) at the destination
corresponding to a given pixel will be conditionally written, and what those conditions are. This feature
can make it possible to perform various masking functions in order to selectively write or preserve
graphics data already at the destination.

XX0 = No color transparency mode enabled. This causes normal operation with regard to writing data to
the destination.

001 = [Source color transparency] The Transparency Color Low: (Pixel Greater or Equal) (source
background register) and the Transparency Color High: (Pixel Less or Equal) (source foreground
register) are compared to the source pixels. The range comparisons are done on each component
(R,G,B) and then logically ANDed. If the source pixel components are not within the range defined
by the Transparency Color registers, then the byte(s) at the destination corresponding to the
current pixel are written with the result of the bit-wise operation.

011 = [Source and Alpha color transparency] The Transparency Color Low: (Pixel Greater or
Equal) (source background register) and the Transparency Color High: (Pixel Less or Equal)
(source foreground register) are compared to the source pixels. The range comparisons are done
on each component (A,R,G,B) and then logically ANDed. If the source pixel components are not
within the range defined by the Transparency Color registers, then the byte(s) at the destination
corresponding to the current pixel are written with the result of the bit-wise operation.

101 = [Destination and Alpha color transparency] The Transparency Color Low: (Pixel Greater or
Equal) (source background register) and the Transparency Color High: (Pixel Less or Equal)
(source foreground register) are compared to the destination pixels. The range comparisons are
done on each component (A,R,G,B) and then logically ANDed. If the destination pixels are within
the range, then the byte(s) at the destination corresponding to the current pixel are written with
the result of the bit-wise operation.

111 = [Destination color transparency] The Transparency Color Low: (Pixel Greater or Equal)
(source background register) and the Transparency Color High: (Pixel Less or Equal) (source
foreground register) are compared to the destination pixels. The range comparisons are done on
each component (R,G,B) and then logically ANDed. If the destination pixels are within the range,
then the byte(s) at the destination corresponding to the current pixel are written with the result of
the bit-wise operation.

7:5 Pattern Vertical Seed. This field specifies the pattern scan line which corresponds to Y=0.

4 Destination Read Modify Write. This bit is decoded from the last instruction’s opcode field and
Destination Transparency Mode to identify whether a Destination read is needed.

3 Color Source. This bit is decoded from the last instructions opcode field to identify whether a color (1)
source is used.

2 Monochrome Source. This bit is decoded from the last instructions opcode field to identify whether a
monochrome (1) source is used.

1 Color Pattern. This bit is decoded from the last instructions opcode field to identify whether a color (1)
pattern is used.

0 Monochrome Pattern. This bit is decoded from the last instructions opcode field to identify whether a
monochrome (1) pattern is used.

 485

14.10.2 BR01—Setup BLT Raster OP, Control, and Destination
Offset
Memory Offset Address: none
Default: 0000 xxxx
Attributes: State accessible

BR01 contains the contents of the last Setup instruction DWord 1. It is identical to the
BLT Raster OP, Control, and Destination Offset definition, but it is used with the
following instructions: PIXEL_BLT, SCANLINE_BLT, and TEXT_BLT.

31 30 29 28 27 26 25 24

Solid
Pattern

Clipping
Enable

Mono Src
Trans

Mono Pat
Trans

32 bpp byte mask Color Depth

23 16

Raster Operation

15 0

Destination Pitch (Offset)

Bit Descriptions

31 Solid Pattern Select. This bit applies only when the pattern data is monochrome. This bit determines
whether or not the BLT Engine actually performs read operations from the frame buffer in order to load
the pattern data. Use of this feature to prevent these read operations can increase BLT Engine
performance, if use of the pattern data is indeed not necessary. The BLT Engine is configured to accept
either monochrome or color pattern data via the opcode field.

0 = This causes normal operation with regard to the use of the pattern data. The BLT Engine proceeds
with the process of reading the pattern data, and the pattern data is used as the pattern operand
for all bit-wise operations.

1 = The BLT Engine forgoes the process of reading the pattern data, the presumption is made that all
of the bits of the pattern data are set to 0, and the pattern operand for all bit-wise operations is
forced to the background color specified in the Color Expansion Background Color Register.

30 Clipping Enabled: 1 = Enabled; 0 = Disabled

486

Bit Descriptions

29 Monochrome Source Transparency Mode. This bit applies only when the source data is in
monochrome. This bit determines whether or not the byte(s) at the destination corresponding to the
pixel to which a given bit of the source data also corresponds will actually be written if that source data
bit has the value of 0. This feature can make it possible to use the source as a transparency mask. The
BLT Engine is configured to accepted either monochrome or color source data via the opcode field.

0 = This causes normal operation with regard to the use of the source data. Wherever a bit in the
source data has the value of 0, the color specified in the background color register is used as the
source operand in the bit-wise operation for the pixel corresponding to the source data bit, and the
bytes at the destination corresponding to that pixel are written with the result.

1 = Wherever a bit in the source data has the value of 0, the byte(s) at the destination corresponding
to the pixel to which the source data bit also corresponds are simply not written, and the data at
those byte(s) at the destination are allowed to remain unchanged.

28 Monochrome Pattern Transparency Mode. This bit applies only when the pattern data is
monochrome. This bit determines whether or not the byte(s) at the destination corresponding to the
pixel to which a given bit of the pattern data also corresponds will actually be written if that pattern data
bit has the value of 1. This feature can make it possible to use the pattern as a transparency mask. The
BLT Engine is configured to accepted either monochrome or color pattern data via the opcode field.

0 = This causes normal operation with regard to the use of the pattern data. Wherever a bit in the
pattern data has the value of 0, the color specified in the background color register is used as the
pattern operand in the bit-wise operation for the pixel corresponding to the pattern data bit, and
the bytes at the destination corresponding to that pixel are written with the result.

1 = Wherever a bit in the pattern data has the value of 0, the byte(s) at the destination corresponding
to the pixel to which the pattern data bit also corresponds are simply not written, and the data at
those byte(s) at the destination are allowed to remain unchanged.

27:26 32 bpp byte mask. 21 = 1 = write alpha channel [31:24]; 20 = 1 = write RGB channels [23:00]. This
field is only used for 32bpp.

25:24 Color Depth.

00 = 8 Bit Color Depth
01 = 16 Bit Color Depth
10 = 16 Bit Color Depth
11 = 32 Bit Color Depth

23:16 Raster Operation Select. These 8 bits are used to select which one of 256 possible raster operations is
to be performed by the BLT Engine. The opcode field must indicate a monochrome source if ROP = F0.

 487

Bit Descriptions

15:0 Destination Pitch (Offset).

For non-XY Blits, the signed 16bit field allows for specifying upto + 32Kbytes signed pitches in bytes
(same as before).

For X, Y Blits with tiled (X) surfaces, the pitch for Destination will be 512Byte aligned and should be
programmable upto + 128Kbytes. In this case, this 16bit signed pitch field is used to specify upto +
32KDWords. For X, Y blits with nontiled surfaces (linear surfaces), this 16bit field can be programmed
to byte specification of upto + 32Kbytes (same as before).

These 16 bits store the signed memory address offset value by which the destination address originally
specified in the Destination Address Register is incremented or decremented as each scan line’s worth of
destination data is written into the frame buffer by the BLT Engine, so that the destination address will
point to the next memory address to which the next scan line’s worth of destination data is to be
written.

If the intended destination of a BLT operation is within on-screen frame buffer memory, this offset is
normally set so that each subsequent scan line’s worth of destination data lines up vertically with the
destination data in the scan line, above. However, if the intended destination of a BLT operation is
within off-screen memory, this offset can be set so that each subsequent scan line’s worth of destination
data is stored at a location immediately after the location where the destination data for the last scan
line ended, in order to create a single contiguous block of bytes of destination data at the destination.

14.10.3 BR05—Setup Expansion Background Color
Memory Offset Address: none
Default: None
Attributes: State accessible

31 0

Setup Expansion Background Color Bits [31:0]

Bit Descriptions

31:0 Setup Expansion Background Color Bits [31:0]. These bits provide the one, two, or four bytes worth
of color data that select the background color to be used in the color expansion of monochrome pattern or
source data for either the SCANLINE_BLT or TEXT_BLT instructions. BR05 is also used as the solid pattern
for the PIXEL_BLT instruction.

Whether one, two, or three bytes worth of color data is needed depends upon the color depth to which the
BLT Engine has been set. For a color depth of 32bpp, 16bpp and 8bpp, bits [31:0], [15:0] and [7:0],
respectively, are used.

488

14.10.4 BR06—Setup Expansion Foreground Color
Memory Offset Address: none
Default: None
Attributes: State accessible

31 0

Setup Expansion Foreground Color Bits [31:0]

Bit Descriptions

31:24 Reserved.

31:0 Setup Expansion Foreground Color Bits [31:0]. These bits provide the one, two, or four bytes worth
of color data that select the foreground color to be used in the color expansion of monochrome pattern
or source data for either the SCANLINE_BLT or TEXT_BLT instructions.

Whether one, two, or three bytes worth of color data is needed depends upon the color depth to which
the BLT Engine has been set. For a color depth of 32bpp, 16bpp and 8bpp, bits [31:0], [15:0] and [7:0],
respectively, are used.

 489

14.10.5 BR07—Setup Color Pattern Address
Memory Offset Address: none
Default: None
Attributes: State accessible

31 29 28 16

Reserved Setup Color Pattern Address Bits [28:16]

15 6 5 0

Setup Color Pattern Address Bits [15:6] Reserved

Bit Descriptions

31:2
9

Reserved. The maximum GC graphics address is 512 MBs.

28:6 Pattern Address. These 23 bits specify the starting address of the color pattern from the SETUP_BLT
instruction. This register works identically to the Pattern Address register, but this version is only used
with the SCANLINE_BLT instruction execution. The pattern data must be located in linear memory.

The pattern data must be located on a pattern-size boundary. The pattern is always of 8x8 pixels, and
therefore, its size is dependent upon its pixel depth. The pixel depth may be 8, 16, or 32 bits per pixel if
the pattern is in color (the pixel depth of a color pattern must match the pixel depth to which the graphics
system has been set). Monochrome patterns require 8 bytes and are supplied through the instruction.
Color patterns of 8, 16, and 32 bits per pixel color depth must start on 64-byte, 128-byte and 256-byte
boundaries, respectively.

5:0 Reserved. These bits always return 0 when read.

490

14.10.6 BR09—Destination Address
Memory Offset Address: None
Default: None
Attributes: State accessible

31 29 28 0

Reserved Destination and Destination Y1 and Y Address Bits [28:0]

Bit Descriptions

31:29 Reserved.

28:0 Destination Address Bits. When tiling is enabled for XY-blits, this base address should be limited to
4KB. Otherwise for XY blits, there is no restriction and it is same as before.

These 29 bits specify the starting pixel address of the destination data. This register is also the working
destination address register and changes as the BLT Engine performs the accesses.

Used as the scan line address (Destination Y Address & Destination Y1 Address) for BLT instructions:
PIXEL_BLT, SCANLINE_BLT, and TEXT_BLT. In this case the address points to the first pixel in a scan line
and is compared with the ClipRect Y1 & Y2 address registers to determine whether the scan line should be
written or not. The Destination Y1 address is the top scan line to be written for text.

Note that for non-XY blits (COLOR_BLT, SRC_COPY_BLT), this address points to the first byte to be
written.

This register is always the last register written for a BLT drawing instruction. Writing BR09 starts the BLT
engine execution.

Note:
Some instructions affect only one scan line (requiring only one coordinate); other instructions affect
multiple scan lines and need both coordinates.

 491

14.10.7 BR11—BLT Source Pitch (Offset)
Memory Offset Address: None
Default: None
Attributes: Not accessible

31 16 15 0

BLT Engine Status - TBS Source Pitch (Offset)

Bit Descriptions

31:16 BLT Engine Status. This field is used to read back important debug status. It will be specified in the
future.

15:0 Source Pitch (Offset)

For non-XY Blits with color source operand (SRC_COPY_BLT), the signed 16bit field allows for specifying
upto + 32Kbytes signed pitch in bytes (same as before).

For X, Y Blits with tiled (X) surfaces, the pitch for Color Source will be 512Byte aligned and should be
programmable upto + 128Kbytes. In this case, this 16bit signed pitch field is used to specify upto +
32KDWords. For X, Y blits with nontiled color source surfaces (linear surfaces), this 16bit field can be
programmed to byte specification of upto + 32Kbytes (same as before).

When the color source data is located within the frame buffer or AGP aperture, these signed 16 bits
store the memory address offset (pitch) value by which the source address originally specified in the
Source Address Register is incremented or decremented as each scan line’s worth of source data is read
from the frame buffer by the BLT Engine, so that the source address will point to the next memory
address from which the next scan line’s worth of source data is to be read.

Note that if the intended source of a BLT operation is within on-screen frame buffer memory, this offset
is normally set to accommodate the fact that each subsequent scan line’s worth of source data lines up
vertically with the source data in the scan line, above. However, if the intended source of a BLT
operation is within off-screen memory, this offset can be set to accommodate a situation in which the
source data exists as a single contiguous block of bytes where in each subsequent scan line’s worth of
source data is stored at a location immediately after the location where the source data for the last scan
line ended.

492

14.10.8 BR12—Source Address
Memory Offset Address: None
Default: None
Attributes: Not accessible

31 29 28 0

Reserved Source Address Bits [28:0]

Bit Descriptions

31:29 Reserved. The maximum GC Graphics address is 512 MBs.

28:0 Source Address Bits [28:0]. When tiling is enabled for XY-blits with Color source surfaces, this base
address should be limited to 4KB. Otherwise for XY blits, there is no restriction and it is same as before,
including for monosource and text blits.

Note that for non-XY blit with Color Source (SRC_COPY_BLT), this address points to the first byte to be
read.

These 29 bits are used to specify the starting pixel address of the color source data. The lower 3 bits are
used to indicate the position of the first valid byte within the first Quadword of the source data.

14.10.9 BR13—BLT Raster OP, Control, and Destination Pitch
Memory Offset Address: None
Default: 0000 xxxx
Attributes: Not accessible

31 30 29 28 27 26 25 24

Solid
Pattern

Clipping
Enable

Mono Src
Trans

Mono Pat
Trans

32 bpp byte mask Color Depth

23 16

Raster Operation

15 0

Destination Pitch (Offset)

 493

Bit Descriptions

31 Solid Pattern Select. This bit applies only when the pattern data is monochrome. This bit determines
whether or not the BLT Engine actually performs read operations from the frame buffer in order to load
the pattern data. Use of this feature to prevent these read operations can increase BLT Engine
performance, if use of the pattern data is indeed not necessary. The BLT Engine is configured to accept
either monochrome or color pattern data via the opcode field.

0 = This causes normal operation with regard to the use of the pattern data. The BLT Engine proceeds
with the process of reading the pattern data, and the pattern data is used as the pattern operand for
all bit-wise operations.

1 = The BLT Engine forgoes the process of reading the pattern data, the presumption is made that all of
the bits of the pattern data are set to 0, and the pattern operand for all bit-wise operations is forced
to the background color specified in the Color Expansion Background Color Register.

30 Clipping Enabled: 1 = Enabled; 0 = Disabled

29 Monochrome Source Transparency Mode. This bit applies only when the source data is in
monochrome. This bit determines whether or not the byte(s) at the destination corresponding to the
pixel to which a given bit of the source data also corresponds will actually be written if that source data
bit has the value of 0. This feature can make it possible to use the source as a transparency mask. The
BLT Engine is configured to accepted either monochrome or color source data via the opcode field.

0 = This causes normal operation with regard to the use of the source data. Wherever a bit in the
source data has the value of 0, the color specified in the background color register is used as the
source operand in the bit-wise operation for the pixel corresponding to the source data bit, and the
bytes at the destination corresponding to that pixel are written with the result.

1 = Where a bit in the source data has the value of 0, the byte(s) at the destination corresponding to
the pixel to which the source data bit also corresponds are simply not written, and the data at those
byte(s) at the destination are allowed to remain unchanged.

28 Monochrome Pattern Transparency Mode. This bit applies only when the pattern data is
monochrome. This bit determines whether or not the byte(s) at the destination corresponding to the
pixel to which a given bit of the pattern data also corresponds will actually be written if that pattern data
bit has the value of 1. This feature can make it possible to use the pattern as a transparency mask. The
BLT Engine is configured to accepted either monochrome or color pattern data via the opcode in the
Opcode and Control register.

0 = This causes normal operation with regard to the use of the pattern data. Where a bit in the pattern
data has the value of 0, the color specified in the background color register is used as the pattern
operand in the bit-wise operation for the pixel corresponding to the pattern data bit, and the bytes
at the destination corresponding to that pixel are written with the result.

1= Wherever a bit in the pattern data has the value of 0, the byte(s) at the destination corresponding
to the pixel to which the pattern data bit also corresponds are simply not written, and the data at
those byte(s) at the destination are allowed to remain unchanged.

25:24 Color Depth.

00 = 8 Bit Color Depth
01 = 16 Bit Color Depth
10 = 24 Bit Color Depth
11 = Reserved

23:16 Raster Operation Select. These 8 bits are used to select which one of 256 possible raster operations is
to be performed by the BLT Engine. The opcode must indicate a monochrome source operand if ROP =
F0.

494

Bit Descriptions

15:0 Destination Pitch (Offset). These 16 bits store the signed memory address offset value by which the
destination address originally specified in the Destination Address Register is incremented or
decremented as each scan line’s worth of destination data is written into the frame buffer by the BLT
Engine, so that the destination address will point to the next memory address to which the next scan
line’s worth of destination data is to be written.

If the intended destination of a BLT operation is within on-screen frame buffer memory, this offset is
normally set so that each subsequent scan line’s worth of destination data lines up vertically with the
destination data in the scan line, above. However, if the intended destination of a BLT operation is
within off-screen memory, this offset can be set so that each subsequent scan line’s worth of destination
data is stored at a location immediately after the location where the destination data for the last scan
line ended, in order to create a single contiguous block of bytes of destination data at the destination.

14.10.10 BR14—Destination Width & Height
Memory Offset Address: None
Default: None
Attributes: Not accessible

BR14 contains the values for the height and width of the data to be BLT. If these
values are not correct, such that the BLT Engine is either expecting data it does not
receive or receives data it did not expect, the system can hang.

31 29 28 16

Reserved Destination Height

15 13 12 0

Reserved Destination Byte Width

Bit Descriptions

31:2
9

Reserved.

28:1
6

Destination Height. These 13 bits specify the height of the destination data in terms of the number of
scan lines. This is a working register.

15:1
3

Reserved.

12:0 Destination Byte Width. These 13 bits specify the width of the destination data in terms of the number
of bytes per scan line. The number of pixels per scan line into which this value translates depends upon
the color depth to which the graphics system has been set.

 495

14.10.11 BR15—Color Pattern Address
Memory Offset Address: None
Default: None
Attributes: Not accessible

31 29 28 16

Reserved Color Pattern Address Bits [28:16]

15 6 5 0

Color Pattern Address Bits [15:6] Reserved

.

Bit Descriptions

31:2
9

Reserved. The maximum GC graphics address is 512 MBs.

28:6 Color Pattern Address. There is no change to the Color Pattern address specification due to Non-Power-
of-2 change. It remains the same as before. The pattern data must be located in linear memory.

These 23 bits specify the starting address of the pattern.

The pattern data must be located on a pattern-size boundary. The pattern is always of 8x8 pixels, and
therefore, its size is dependent upon its pixel depth. The pixel depth may be 8, 16, or 32 bits per pixel if
the pattern is in color (the pixel depth of a color pattern must match the pixel depth to which the graphics
system has been set). Monochrome patterns require 8 bytes and are applied through the instruction.
Color patterns of 8, 16, and 32 bits per pixel color depth must start on 64-byte, 128-byte and 256-byte
boundaries, respectively.

5:0 Reserved. These bits always return 0 when read.

496

14.10.12 BR16—Pattern Expansion Background & Solid Pattern
Color
Memory Offset Address: 40040h
Default: None
Attributes: RO; DWord accessible

31 0

Pattern Expansion Background Color Bits [31:0]

.

Bit Descriptions

31:0 Pattern Expansion Background Color Bits [31:0]. These bits provide the one, two, or four bytes
worth of color data that select the background color to be used in the color expansion of monochrome
pattern data during BLT operations.

Whether one, two, or four bytes worth of color data is needed depends upon the color depth to which the
BLT Engine has been set. For a color depth of 32bpp, 16bpp and 8bpp, bits [31:0], [15:0] and [7:0],
respectively, are used.

14.10.13 BR17—Pattern Expansion Foreground Color
Memory Offset Address: None
Default: None
Attributes: Not accessible

31 0

Pattern Expansion Foreground Color Bits [31:0]

Bit Descriptions

31:0 Pattern Expansion Foreground Color Bits [31:0]. These bits provide the one, two, or four bytes
worth of color data that select the foreground color to be used in the color expansion of monochrome
pattern data during BLT operations.

Whether one, two, or four bytes worth of color data is needed depends upon the color depth to which the
BLT Engine has been set. For a color depth of 32bpp, 16bpp and 8bpp, bits [31:0], [15:0] and [7:0],
respectively, are used.

 497

14.10.14 BR18—Source Expansion Background, and Destination
Color
Memory Offset Address: None
Default: None
Attributes: Not accessible

31 0

Source Expansion Background Color Bits [31:0]

Bit Descriptions

31:0 Source Expansion Background Color Bits [31:0]. These bits provide the one, two, or four bytes
worth of color data that select the background color to be used in the color expansion of monochrome
source data during BLT operations.

This register is also used to support destination transparency mode and Solid color fill.

Whether one, two, three, or four bytes worth of color data is needed depends upon the color depth to
which the BLT Engine has been set. For a color depth of 32bpp, 16bpp and 8bpp, bits [31:0], [15:0]
and [7:0], respectively, are used.

14.10.15 BR19—Source Expansion Foreground Color
Memory Offset Address: None
Default: None
Attributes: Not accessible

31 0

Pattern Expansion Foreground Color Bits [31:0]

Bit Descriptions

31:0 Pattern/Source Expansion Foreground Color Bits [31:0]. These bits provide the one, two, or four
bytes worth of color data that select the foreground color to be used in the color expansion of
monochrome source data during BLT operations.

Whether one, two, or four bytes worth of color data is needed depends upon the color depth to which
the BLT Engine has been set. For a color depth of 32bpp, 16bpp and 8bpp, bits [31:0], [15:0] and
[7:0], respectively, are used.

	Contents
	Figures
	Tables
	Revision History
	1 Introduction
	1.1 Notations and Conventions
	1.1.1 Reserved Bits and Software Compatibility

	1.2 Terminology

	Graphics Device Overview
	2.1 Graphics Memory Controller Hub (GMCH)
	2.2 Graphics Processing Unit (GPU)

	3 Graphics Processing Engine (GPE)
	3.1 Introduction
	3.2 Overview
	3.2.1 Block Diagram
	3.2.2 Command Stream (CS) Unit
	3.2.3 3D Pipeline
	3.2.4 Media Pipeline
	3.2.5 GEN4 Subsystem
	3.2.5.1 Execution Units (EUs)

	3.2.6 GPE Function IDs

	3.3 Pipeline Selection
	3.4 URB Allocation
	3.4.1 URB_FENCE

	3.5 Constant URB Entries (CURBEs)
	3.5.1 Overview
	3.5.2 Multiple CURBE Allocation
	3.5.3 CS_URB_STATE
	3.5.4 CONSTANT_BUFFER

	3.6 Memory Access Indirection
	3.6.1 STATE_BASE_ADDRESS

	3.7 Instruction and State Prefetch
	3.7.1 STATE_PREFETCH

	3.8 System Thread Configuration
	3.8.1 STATE_SIP

	3.9 Command Ordering Rules
	3.9.1 PIPELINE_SELECT
	3.9.2 PIPE_CONTROL
	3.9.3 URB-Related State-Setting Commands
	3.9.4 Common Pipeline State-Setting Commands
	3.9.5 3D Pipeline-Specific State-Setting Commands
	3.9.6 Media Pipeline-Specific State-Setting Commands
	3.9.7 URB_FENCE (URB Fencing & Entry Allocation)
	3.9.8 CONSTANT_BUFFER (CURBE Load)
	3.9.9 3DPRIMITIVE
	3.9.10 MEDIA_OBJECT

	4 Graphics Command Formats
	4.1 Command Formats
	4.1.1 Memory Interface Commands
	4.1.2 2D Commands
	4.1.3 3D/Media Commands
	4.1.4 Video Codec Commands
	4.1.5 Command Header

	4.2 Command Map
	4.2.1 Memory Interface Command Map
	4.2.2 2D Command Map
	4.2.3 3D/Media Command Map

	5 Register Address Maps
	5.1 Graphics Register Address Map
	5.1.1 Memory and I/O Space Registers
	5.1.2 PCI Configuration Space
	5.1.3 Graphics Register Memory Address Map

	5.2 VGA and Extended VGA Register Map
	5.2.1 VGA and Extended VGA I/O and Memory Register Map

	5.3 Indirect VGA and Extended VGA Register Indices

	6 Memory Data Formats
	6.1 Memory Object Overview
	6.1.1 Memory Object Types

	6.2 Channel Formats
	6.2.1 Unsigned Normalized (UNORM)
	6.2.2 Gamma Conversion (SRGB)
	6.2.3 Signed Normalized (SNORM)
	6.2.4 Unsigned Integer (UINT/USCALED)
	6.2.5 Signed Integer (SINT/SSCALED)
	6.2.6 Floating Point (FLOAT)
	6.2.6.1 32-bit Floating Point
	6.2.6.2 64-bit Floating Point

	6.3 Non-Video Surface Formats
	6.3.1 Surface Format Naming
	6.3.2 Intensity Formats
	6.3.3 Luminance Formats
	6.3.4 P4A4_UNORM
	6.3.5 A4P4_UNORM

	6.4 Compressed Surface Formats
	6.4.1 FXT Texture Formats
	6.4.1.1 Overview of FXT1 Formats
	6.4.1.2 FXT1 CC_HI Format
	6.4.1.2.1 CC_HI Block Encoding
	6.4.1.2.2 CC_HI Block Decoding

	6.4.1.3 FXT1 CC_CHROMA Format
	6.4.1.3.1 CC_CHROMA Block Encoding
	6.4.1.3.2 CC_CHROMA Block Decoding

	6.4.1.4 FXT1 CC_MIXED Format
	6.4.1.4.1 CC_MIXED Block Encoding
	6.4.1.4.2 CC_MIXED Block Decoding

	6.4.1.5 FXT1 CC_ALPHA Format
	6.4.1.5.1 CC_ALPHA Block Encoding
	6.4.1.5.2 CC_ALPHA Block Decoding

	6.4.2 BC Texture Formats
	6.4.2.1 Opaque and One-bit Alpha Textures (BC1)
	6.4.2.2 Opaque Textures (BC1_RGB)
	6.4.2.3 Compressed Textures with Alpha Channels (BC2-3)

	6.5 Video Pixel/Texel Formats
	6.5.1 Packed Memory Organization
	6.5.2 Planar Memory Organization

	6.6 Surface Memory Organizations
	6.7 Graphics Translation Tables
	6.8 Hardware Status Page
	6.9 Instruction Ring Buffers
	6.10 Instruction Batch Buffers
	6.11 Display, Overlay, Cursor Surfaces
	6.12 2D Render Surfaces
	6.13 2D Monochrome Source
	6.14 2D Color Pattern
	6.15 3D Color Buffer (Destination) Surfaces
	6.16 3D Depth Buffer Surfaces
	6.17 Surface Layout
	6.17.1 Buffers
	6.17.2 1D Surfaces
	6.17.3 2D Surfaces
	6.17.3.1 Computing MIP level sizes
	6.17.3.2 Base Address for LOD Calculation
	6.17.3.3 Minimum Pitch
	6.17.3.4 Alignment Unit Size
	6.17.3.5 Cartesian to Linear Address Conversion
	6.17.3.6 Compressed Mipmap Layout
	6.17.3.7 Surface Arrays

	6.17.4 Cube Surfaces
	6.17.4.1 Hardware Cube Map Layout
	6.17.4.2 Restrictions

	6.17.5 3D Surfaces
	6.17.5.1 Minimum Pitch

	6.18 Surface Padding Requirements
	6.18.1 Sampling Engine Surfaces
	6.18.2 Render Target and Media Surfaces

	6.19 Logical Context Data
	6.19.1 Overall Context Layout
	6.19.1.1 Per-Process GTT and Run Lists Disabled

	6.19.2 Register/State Context
	6.19.2.1.1 Power Context Memory Layout ([DevCL] Only)
	6.19.2.1.2 Logical Context Initialization

	6.19.3 The Probe List
	6.19.4 Pipelined State Page
	6.19.5 Ring Buffer
	6.19.6 The Per-Process Hardware Status Page

	7 Device 2 Configuration Registers
	7.1 Introduction
	7.2 Device 2, Function 0
	7.2.1 VID2 — Vendor Identification
	7.2.2 DID2 — Device Identification
	7.2.3 PCICMD2 — PCI Command
	7.2.4 PCISTS2 — PCI Status
	7.2.5 RID2 — Revision Identification
	7.2.6 CC — Class Code
	7.2.7 CLS — Cache Line Size
	7.2.8 MLT2 — Master Latency Timer
	7.2.9 HDR2 — Header Type
	7.2.10 BIST — Built In Self Test
	7.2.11 GTTMMADR — Graphics Translation Table Range Address
	7.2.12 GMADR — Graphics Memory Range Address
	7.2.13 IOBAR — I/O Base Address
	7.2.14 SVID2 — Subsystem Vendor Identification
	7.2.15 SID2 — Subsystem Identification
	7.2.16 ROMADR — Video BIOS ROM Base Address
	7.2.17 CAPPOINT — Capabilities Pointer
	7.2.18 INTRLINE — Interrupt Line
	7.2.19 INTRPIN — Interrupt Pin
	7.2.20 MINGNT — Minimum Grant
	7.2.21 MAXLAT — Maximum Latency
	7.2.22 MCAPPTR — Capabilities Pointer (to Mirror of Dev0 CAPID)
	7.2.23 MCAPID — Mirror of Dev 0 Capability Identification.
	7.2.24 MGGC — Mirror of Dev0 GMCH Graphics Control
	7.2.25 MDEVENdev0F0 — Mirror of Dev0 DEVEN
	7.2.26 SSRW — Software Scratch Read Write
	7.2.27 BSM — Base of Stolen Memory
	7.2.28 HSRW — Hardware Scratch Read Write
	7.2.29 MSAC — Multi Size Aperture Control
	7.2.30 SCWBFC — Secondary CWB Flush Control ([DevBW] Only)
	7.2.31 CAPL — Capabilities List Control
	7.2.32 MSI_CAPID — Message Signaled Interrupts Capability ID
	7.2.33 MC — Message Control
	7.2.34 MA — Message Address
	7.2.35 MD — Message Data
	7.2.36 GDRST — Graphics Device Reset
	7.2.37 GMBUSFREQ — GMBUS frequency binary encoding
	7.2.38 PMCAPID — Power Management Capabilities ID
	7.2.39 PMCAP — Power Management Capabilities
	7.2.40 PMCS — Power Management Control/Status
	7.2.41 SWSMI — Software SMI
	7.2.42 ASLE — System Display Event Register
	7.2.43 SWSCI — Software SCI
	7.2.44 LBB — Legacy Backlight Brightness ([DevCL] Only)
	7.2.45 MID2 — Manufacturing ID
	7.2.46 ASLS — ASL Storage

	7.3 Device 2, Function 1
	7.3.1 VID2 — Vendor Identification
	7.3.2 DID2 — Device Identification
	7.3.3 PCICMD2 — PCI Command
	7.3.4 PCISTS2 — PCI Status
	7.3.5 RID2 — Revision Identification
	7.3.6 CC — Class Code
	7.3.7 CLS — Cache Line Size
	7.3.8 MLT2 — Master Latency Timer
	7.3.9 HDR2 — Header Type
	7.3.10 BIST — Built In Self Test
	7.3.11 MMADR — Memory Mapped Range Address
	7.3.12 SVID2 — Subsystem Vendor Identification
	7.3.13 SID2 — Subsystem Identification
	7.3.14 ROMADR — Video BIOS ROM Base Address
	7.3.15 CAPPOINT — Capabilities Pointer
	7.3.16 MINGNT — Minimum Grant
	7.3.17 MAXLAT — Maximum Latency
	7.3.18 MCAPPTR — Capabilities Pointer (to Mirror of Dev0 CAPID)
	7.3.19 MCAPID — Mirror of Dev 0 Capability Identification.
	7.3.20 MGGC — Mirror of Dev0 GMCH Graphics Control
	7.3.21 MDEVENdev0F0 — Mirror of Dev0 DEVEN
	7.3.22 SSRW — Software Scratch Read Write
	7.3.23 BSM — Base of Stolen Memory
	7.3.24 HSRW — Hardware Scratch Read Write
	7.3.25 MSAC — Multi Size Aperture Control

	8 Memory Interface Registers
	8.1 Introduction
	8.2 Virtual Memory Control
	8.2.1 Global Virtual Memory
	8.2.1.1 PGTBL_CTL—Page Table Control Register
	8.2.1.2 PGTBL_ER—Page Table Error Register (Debug)
	8.2.1.3 Graphics Translation Table (GTT) Range (GTTADR)
	8.2.1.4 GTT Page Table Entries (PTEs)

	8.2.2 Single-Level (Flat) Per-Process Virtual Memory
	8.2.2.1 PGTBL_CTL2— Per Process Page Table Control Register
	8.2.2.2 PGTBL_STR2—Page Table Steer Register (Per Process)

	8.2.3 TLB Read Interface
	8.2.3.1 TLB_RD_EXT — TLB Read Extent
	8.2.3.2 Instruction/State Cache (ISC)
	8.2.3.3 Vertex Fetch (VF)
	8.2.3.4 Command Streamer (CS)
	8.2.3.5 Texture Cache (MT)
	8.2.3.6 Render Cache (RC)

	8.3 GFX_MODE – Graphics Mode Register
	8.4 EXCC—Execute Condition Code Register
	8.5 RINGBUF—Ring Buffer Registers
	8.5.1 UHPTR — Pending Head Pointer Register

	8.6 Debug Registers Control
	8.6.1 HW_MEMRD—Memory Read Sync Register (Debug)
	8.6.2 IPEIR—Instruction Parser Error Identification Register (Debug)
	8.6.3 IPEHR—Instruction Parser Error Header Register (Debug)
	8.6.4 INSTDONE—Instruction Stream Interface Done Register (Debug)
	8.6.5 INSTPS—Instruction Parser State Register (Debug)
	8.6.6 ACTHD — Active Head Pointer Register (Debug)
	8.6.7 DMA_FADD_P — Primary DMA Engine Fetch Address (Debug)
	8.6.8 INSTDONE_1 — Additional Instruction Stream Interface Done (Debug)
	8.6.9 GFX_FLSH_CNTL — Graphics Flush Control

	8.7 NOPID — NOP Identification Register
	8.8 Interrupt Control Registers
	8.8.1 HWS_PGA — Hardware Status Page Address Register
	8.8.2 PWRCTXA — Power Context Register Address ([DevCL] Only)
	8.8.3 HWSTAM — Hardware Status Mask Register
	8.8.4 IER — Interrupt Enable Register
	8.8.5 IIR — Interrupt Identity Register
	8.8.6 IMR—Interrupt Mask Register
	8.8.7 ISR — Interrupt Status Register

	8.9 Hardware-Detected Error Bit Definitions (for EIR, EMR, ESR)
	8.9.1 EIR — Error Identity Register
	8.9.2 EMR—Error Mask Register
	8.9.3 ESR—Error Status Register

	8.10 Register Definitions for Context Save
	8.10.1 INSTPM—Instruction Parser Mode Register
	8.10.2 Cache_Mode_0— Cache Mode Register 0
	8.10.3 Cache_Mode_1— Cache Mode Register 1
	8.10.4 BB_ADDR—Batch Buffer Head Pointer Register
	8.10.5 BB_STATE – Batch Buffer State Register
	8.10.6 CTXT_SR_CTL – Context Save/Restore Control Register

	8.11 Logical Context Support
	8.11.1 CCID—Current Context ID Register
	8.11.2 CXT_SIZE—Context Size with Extended State
	8.11.3 CXT_SIZE_NOEXT—Context Size without the Extended State

	8.12 Arbitration Control, and Scratch Bits
	8.12.1 MI_DISPLAY_POWER_DOWN—Display Power Down ([DevCL] Only)
	8.12.2 MI_ARB_STATE—Memory Interface Arbitration State Register
	8.12.3 MI_RDRET_STATE—Memory Interface Read Return State Register
	8.12.4 MI_MODE — Mode Register for Software Interface
	8.12.5 ECOSKPD—ECO Scratch Pad (DEBUG)

	8.13 Debug Registers
	8.13.1 CSFLFSM — Flush FSM (Debug)
	8.13.2 CSFLFLAG — Flush FLAG (Debug)
	8.13.3 CSFLTRK — Flush Track (Debug)
	8.13.4 CSCMDOP — Instruction DWORD (Debug)
	8.13.5 CSCMDVLD — Instruction DWORD Valid (Debug)
	8.13.6 CLKCMP — Compare count clock stop (Debug)
	8.13.7 VFDC—Set Value of Draw Count (DEBUG)
	8.13.8 VFSKPD—VF Scratch Pad (DEBUG)

	8.14 Software Visible Counter Registers
	8.14.1 PS_DEPTH_COUNT — Reported Pixels Passing Depth Test Counter
	8.14.2 TIMESTAMP — Reported Timestamp Count

	8.15 MTCH_CID_RST – Matched Context ID Reset Register
	8.16 Interrupt Control Registers
	8.16.1.1 BCS_IPEIR—Instruction Parser Error Identification Register (Debug)
	8.16.1.2 BCS_IPEHR—Instruction Parser Error Header Register (Debug)
	8.16.1.3 BCS_ACTHD — Active Head Pointer Register (Debug)
	8.16.1.4 BCS_DMA_FADD —DMA Engine Fetch Address (Debug)
	8.16.1.5 BCS_HWS_PGA — Hardware Status Page Address Register
	8.16.1.6 BCS_NOPID — NOP Identification Register
	8.16.1.7 BCS_MI_MODE — Mode Register for Software Interface
	8.16.1.8 BCS_INSTPM—Instruction Parser Mode Register
	8.16.1.9 BCS_UHPTR — Pending Head Pointer Register
	8.16.1.10 BCS_CNTR—Counter for the Bit Stream Decode Engine
	8.16.1.11 BCS_THRSH—Threshold for the Counter of Bit Stream Decode Engine
	8.16.1.12 BCS_BB_ADDR—Batch Buffer Head Pointer Register
	8.16.1.13 BCS_RCCID—Ring Buffer Current Context ID Register
	8.16.1.14 BCS_RNCID—Ring Buffer Next Context ID Register

	8.17 Software Control Bit Definitions
	8.18 Frame Buffer Compression Control ([DevCL] Only)
	8.18.1 FBC_CFB_BASE — Compressed Frame Buffer Base Address
	8.18.2 FBC_LL_BASE — Compressed Frame Line Length Buffer Address
	8.18.3 FBC_CONTROL — Frame Buffer Compression Control Register
	8.18.4 FBC_COMMAND — Frame Buffer Compression Command Register
	8.18.5 FBC_STATUS — Frame Buffer Compression Status Register
	8.18.6 FBC_CONTROL2— Frame Buffer Compression 2nd Control Register
	8.18.7 FBC_DISPYOFF — FBC Fence Display Buffer Y Offset
	8.18.8 FBC_MOD_NUM— FBC Number of Modifications for Recompression
	8.18.9 FBC_TAG — Frame Buffer Compression TAG Interface (DEBUG)

	8.19 Fence Registers
	8.19.1 FENCE — Graphics Memory Fence Table Registers

	8.20 GFX MMIO – MCHBAR Aperture

	9 Memory Interface Commands for Rendering Engine
	9.1 Introduction
	9.2 MI_ARB_CHECK
	9.3 MI_BATCH_BUFFER_END
	9.4 MI_BATCH_BUFFER_START
	9.5 MI_DISPLAY_FLIP
	9.6 MI_FLUSH
	9.7 MI_LOAD_REGISTER_IMM
	9.8 MI_LOAD_SCAN_LINES_EXCL
	9.9 MI_LOAD_SCAN_LINES_INCL
	9.10 MI_NOOP
	9.11 MI_OVERLAY_FLIP
	9.11.1 Turning the Overlay Off
	9.11.2 Valid Overlay Flip Sequences

	9.12 MI_REPORT_HEAD
	9.13 MI_SET_CONTEXT
	9.14 MI_STORE_DATA_IMM
	9.15 MI_STORE_DATA_INDEX
	9.16 MI_STORE_REGISTER_MEM
	9.17 MI_USER_INTERRUPT
	9.18 MI_WAIT_FOR_EVENT

	10 Memory Interface Commands for Blitter Engine
	10.1 Introduction
	10.2 MI_LOAD_REGISTER_IMM
	10.3 MI_NOOP
	10.4 MI_STORE_DATA_IMM
	10.5 MI_STORE_DATA_INDEX
	10.6 MI_USER_INTERRUPT
	10.7 MI_WAIT_FOR_EVENT

	Graphics Memory Interface Functions
	11.1 Introduction
	11.2 Graphics Memory Clients
	11.3 Graphics Memory Addressing Overview
	11.3.1 Graphics Address Path

	11.4 Graphics Memory Address Spaces
	11.5 Address Tiling Function
	11.5.1 Linear vs. Tiled Storage
	11.5.2 Tile Formats
	11.5.3 Tiling Algorithm
	11.5.4 Tiling Support
	11.5.4.1 Tiled (Fenced) Regions
	11.5.4.2 Tiled Surface Parameters
	11.5.4.3 Tiled Surface Restrictions

	11.5.5 Per-Stream Tile Format Support

	11.6 Logical Memory Mapping
	11.6.1 Logical Memory Space Mappings

	11.7 Physical Graphics Memory
	11.7.1 Physical Graphics Address Types
	11.7.2 Main Memory
	11.7.2.1 Optimizing Main Memory Allocation
	11.7.2.2 Application of the Theory (Page Coloring)
	11.7.2.2.1 3D Color and Depth Buffers
	11.7.2.2.2 Media/Video

	12 Device Programming Environment
	12.1 Programming Model
	12.2 Graphics Device Register Programming
	12.3 Graphics Device Command Streams
	12.3.1 Command Use
	12.3.2 Command Transport Overview
	12.3.3 Command Parser
	12.3.4 The Ring Buffer
	12.3.4.1 The Ring Buffer (RB)
	12.3.4.2 Ring Buffer Registers
	12.3.4.3 Ring Buffer Placement
	12.3.4.4 Ring Buffer Initialization
	12.3.4.5 Ring Buffer Use
	12.3.4.6 Ring Buffer Semaphore

	12.3.5 Batch Buffers
	12.3.5.1 Batch Buffer Chaining
	12.3.5.2 Ending Batch Buffers

	12.3.6 Indirect Data
	12.3.6.1 Logical Contexts

	12.3.7 Command Arbitration
	12.3.7.1 Arbitration Policies and Rationale
	12.3.7.2 Wait Commands
	12.3.7.3 Wait Events/Conditions
	12.3.7.3.1 Display Pipe A,B Vertical Blank Event
	12.3.7.3.2 Display Pipe A,B Horizontal Blank Event
	12.3.7.3.3 Display Plane A, B, C , Flip Pending Condition
	12.3.7.3.4 Overlay Flip Pending Condition
	12.3.7.3.5 Display Pipe A,B Scan Line Window Conditions
	12.3.7.3.6 Semaphore Wait Condition

	12.3.7.4 Command Arbitration Points
	12.3.7.5 Command Arbitration Rules
	12.3.7.6 Batch Buffer Protection

	12.3.8 Graphics Engine Synchronization
	12.3.9 Graphics Memory Coherency
	12.3.10 Graphics Cache Coherency
	12.3.10.1 Rendering Cache
	12.3.10.2 Sampler Cache
	12.3.10.3 Instruction/State Cache
	12.3.10.4 Vertex Cache
	12.3.10.5 GTT TLBs

	12.3.11 Command Synchronization
	12.3.11.1 MI_FLUSH
	12.3.11.2 Sync Flush

	12.4 Hardware Status
	12.4.1 Hardware-Detected Errors (Master Error bit)
	12.4.2 Thermal Sensor Event
	12.4.3 Sync Status
	12.4.4 Display Plane A, B, Flip Pending
	12.4.5 Overlay Flip Pending
	12.4.6 Display Pipe A,B VBLANK
	12.4.7 User Interrupt
	12.4.8 PIPE_CONTROL Notify Interrupt
	12.4.9 Display Port Interrupt

	12.5 Hardware Status Writes
	12.6 Interrupts
	12.7 Errors
	12.7.1 Error Reporting
	12.7.2 Page Table Errors
	12.7.3 Clearing Errors

	12.8 Rendering Context Management
	12.8.1 Multiple Logical Rendering Contexts
	12.8.1.1 Current Context IDs
	12.8.1.2 Intra-Ring Context Switch
	12.8.1.3 Logical Rendering Context Creation and Initialization
	12.8.1.3.1 Rendering Context Creation Rules
	12.8.1.3.2 Context Initialization

	12.8.1.4 Context Save

	12.9 Reset State

	13 Frame Buffer Compression ([DevCL] Only)
	13.1 Overview
	13.2 Programming Interface
	13.2.1 FBC unit programming interface
	13.2.2 Programming interface from Display Engine

	13.3 Operating Modes
	13.3.1 RLE-FBC Function Modes
	13.3.2 Compression Modes
	13.3.2.1 Single Compression Mode
	13.3.2.2 Periodic Compression Mode

	13.4 Usage Restrictions
	13.5 Power Management Interface
	13.6 Memory Data Structures
	13.6.1 RLE Pixel Runs
	13.6.2 RLE Pixel Run Sets
	13.6.3 RLE-Compressed Line
	13.6.4 RLE Compressed Frame and Line Length Buffers

	13.7 Tuning Parameters
	13.7.1 Stride
	13.7.2 Interval
	13.7.3 FBC Modification Counter

	13.8 Implementation (DEBUG)
	13.8.1 Tag Array
	13.8.1.1 Transitions

	13.8.2 Compressor
	13.8.3 Decompressor
	13.8.4 Frame Buffer Write Detector
	13.8.5 Coherency

	14 BLT Engine
	14.1 Introduction
	14.2 Classical BLT Engine Functional Description
	14.2.1 Basic BLT Functional Considerations
	14.2.1.1 Color Depth Configuration and Color Expansion
	14.2.1.2 Graphics Data Size Limitations
	14.2.1.3 Bit-Wise Operations
	14.2.1.4 Per-Pixel Write-Masking Operations
	14.2.1.5 When the Source and Destination Locations Overlap

	14.2.2 Basic Graphics Data Considerations
	14.2.2.1 Contiguous vs. Discontinuous Graphics Data
	14.2.2.2 Source Data
	14.2.2.3 Monochrome Source Data
	14.2.2.4 Pattern Data
	14.2.2.5 Destination Data

	14.2.3 BLT Programming Examples
	14.2.3.1 Pattern Fill — A Very Simple BLT
	14.2.3.2 Drawing Characters Using a Font Stored in System Memory

	14.3 BLT Instruction Overview
	14.4 BLT Engine State
	14.5 Cacheable Memory Support
	14.6 Device Cache Coherency: Render and Texture Caches
	14.7 BLT Engine Instructions
	14.7.1 Blt Programming Restrictions

	14.8 Fill/Move Instructions
	14.8.1 COLOR_BLT (Fill)
	14.8.2 SRC_COPY_BLT (Move)

	14.9 2D (X,Y) BLT Instructions
	14.9.1 XY_SETUP_BLT
	14.9.2 XY_SETUP_MONO_PATTERN_SL_BLT
	14.9.3 XY_SETUP_CLIP_ BLT
	14.9.4 XY_PIXEL_BLT
	14.9.5 XY_SCANLINES_BLT
	14.9.6 XY_TEXT_BLT
	14.9.7 XY_TEXT_IMMEDIATE_BLT
	14.9.8 XY_COLOR_BLT
	14.9.9 XY_PAT_BLT
	14.9.10 XY_PAT_CHROMA_BLT
	14.9.11 XY_PAT_BLT_IMMEDIATE
	14.9.12 XY_PAT_CHROMA_BLT_IMMEDIATE
	14.9.13 XY_MONO_PAT_BLT
	14.9.14 XY_MONO_PAT_FIXED_BLT
	14.9.14.1 Monochrome Pattern Memory Format
	14.9.14.2 HS_HORIZONTAL 0
	14.9.14.3 HS_VERTICAL 1
	14.9.14.4 HS_FDIAGONAL 2
	14.9.14.5 HS_BDIAGONAL 3
	14.9.14.6 HS_CROSS 4
	14.9.14.7 HS_DIAGCROSS 5
	14.9.14.8 Screen Door 8
	14.9.14.9 SD Wide 9
	14.9.14.10 Walking Bit (One) A
	14.9.14.11 Walking Zero B

	14.9.15 XY_SRC_COPY_BLT
	14.9.16 XY_SRC_COPY_CHROMA_BLT
	14.9.17 XY_MONO_SRC_COPY_BLT
	14.9.18 XY_MONO_SRC_COPY_ IMMEDIATE_BLT
	14.9.19 XY_FULL_BLT
	14.9.20 XY_FULL_IMMEDIATE_PATTERN_BLT
	14.9.21 XY_FULL_MONO_SRC_BLT
	14.9.22 XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT
	14.9.23 XY_FULL_MONO_PATTERN_BLT
	14.9.24 XY_FULL_MONO_PATTERN_MONO_SRC_BLT

	14.10 BLT Engine Instruction Field Definitions
	14.10.1 BR00—BLT Opcode & Control
	14.10.2 BR01—Setup BLT Raster OP, Control, and Destination Offset
	14.10.3 BR05—Setup Expansion Background Color
	14.10.4 BR06—Setup Expansion Foreground Color
	14.10.5 BR07—Setup Color Pattern Address
	14.10.6 BR09—Destination Address
	14.10.7 BR11—BLT Source Pitch (Offset)
	14.10.8 BR12—Source Address
	14.10.9 BR13—BLT Raster OP, Control, and Destination Pitch
	14.10.10 BR14—Destination Width & Height
	14.10.11 BR15—Color Pattern Address
	14.10.12 BR16—Pattern Expansion Background & Solid Pattern Color
	14.10.13 BR17—Pattern Expansion Foreground Color
	14.10.14 BR18—Source Expansion Background, and Destination Color
	14.10.15 BR19—Source Expansion Foreground Color

