

Intel® 965 Express Chipset
Family and Intel® G35 Express
Chipset Graphics Controller PRM

Programmer’s Reference Manual (PRM)

Volume 2: 3D/Media

January 2008

Revision 1.0b

Technical queries: ilg@linux.intel.com

www.intellinuxgraphics.org

2

Creative Commons License

You are free:

to Share — to copy, distribute,display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any
way that suggests that they endorse you or your use of the work).

No Derivative Works. You may not alter, transform, or build upon this work.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended
for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them.

The Intel® 965 Express Chipset family and Intel® G35 Express Chipset may contain design defects or errors known as errata
which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was
developed by Intel. Implementations of the I2C bus/protocol may require licenses from various entities, including Philips
Electronics N.V. and North American Philips Corporation.

Intel and the Intel are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2008, Intel Corporation. All rights reserved.

http://creativecommons.org/licenses/by-nd/3.0/us/�

 3

Contents
1 Introduction ...13

1.1 Notations and Conventions ..15
1.1.1 Reserved Bits and Software Compatibility15

1.2 Terminology ..15
2 3D Pipeline ..26

2.1 Introduction ..26
2.2 3D Pipeline Overview ..26

2.2.1 3D Pipeline Stages ..27
2.3 3D Primitives Overview ...27
2.4 3D Command Overview...34
2.5 3D Pipeline State Overview..37

2.5.1 3D State Model ...37
2.5.2 3DSTATE_PIPELINED_POINTERS ...38
2.5.3 3DSTATE_BINDING_TABLE_POINTERS40

2.6 Vertex Data Overview ...42
2.6.1 Vertex URB Entry (VUE) Formats ...42
2.6.2 Vertex Positions ..44

2.6.2.1 Clip Space Position..45
2.6.2.2 NDC Space Position...45
2.6.2.3 Screen-Space Position ...47

2.7 3D Pipeline Stage Overview ...47
2.7.1 Generic 3D FF Unit Block Diagram ...47
2.7.2 Common 3D FF Unit Functions ..48
2.7.3 Pipeline Stage Input ..49
2.7.4 Pipelined State Commands ...50

2.7.4.1 URB_FENCE ...50
2.7.4.2 3DSTATE_PIPELINED_POINTERS.................................50
2.7.4.3 3DSTATE_BINDING_TABLE_POINTERS.........................51
2.7.4.4 CONSTANT_BUFFER ..51

2.7.5 Bypass Mode ..52
2.7.6 URB Entry Management ...52
2.7.7 Thread Initiation Management...54

2.7.7.1 Thread Input Buffering ..55
2.7.7.2 Thread Resource Allocation ..55

2.7.8 Thread Request Generation...57
2.7.8.1 Thread Control Information ..57
2.7.8.2 Thread Payload Generation ..59

2.7.9 Thread Output Handling ...66
2.7.9.1 URB Entry Output (VS, GS, CLIP, SF)67
2.7.9.2 VUE Allocation (GS, CLIP) ..67
2.7.9.3 VUE Dereference (GS, CLIP).......................................68
2.7.9.4 Thread Termination...68

2.7.10 VUE Readback ..68
2.8 Synchronization of the 3D Pipeline ..69

2.8.1 End-of-Pipe Synchronization ...69
2.8.2 Write Synchronization ..69

4

2.8.3 Synchronization Actions ...69
2.8.3.1 Writing a Value to Memory ...69
2.8.3.2 Generating an Interrupt...70
2.8.3.3 Invalidating of Caches ...70

2.8.4 PIPE_CONTROL Command ..70
3 Vertex Fetch (VF) Stage...75

3.1 Vertex Fetch (VF) Stage Overview ..75
3.1.1 Input Assembly...75

3.1.1.1 Vertex Assembly...75
3.1.2 Vertex Cache ..76

3.2 VF Stage Input...76
3.3 Index Buffer (IB)..78

3.3.1 3DSTATE_INDEX_BUFFER...78
3.3.2 Index Buffer Access ...80

3.4 Vertex Buffers (VBs) ...82
3.4.1 3DSTATE_VERTEX_BUFFERS...82
3.4.2 VERTEX_BUFFER_STATE Structure...84
3.4.3 VERTEXDATA Buffers – SEQUENTIAL Access................................86
3.4.4 VERTEXDATA Buffers – RANDOM Access86

3.5 Input Vertex Definition..87
3.5.1 3DSTATE_VERTEX_ELEMENTS...88
3.5.2 VERTEX_ELEMENT_STATE Structure...89
3.5.3 Vertex Element Data Path...91

3.6 3D Primitive Processing...92
3.6.1 3DPRIMITIVE Command...92
3.6.2 Functional Overview ..95
3.6.3 VertexLoop...95
3.6.4 VertexIndexGeneration ..95
3.6.5 VertexCacheLookup ...96
3.6.6 VertexElementLoop ...97
3.6.7 SourceElementFetch ..97
3.6.8 FormatConversion ...97
3.6.9 DestinationFormatSelection .. 100
3.6.10 URBWrite ... 100
3.6.11 OutputBufferedVertex .. 101

3.7 Dangling Vertex Removal .. 101
4 Vertex Shader (VS) Stage .. 103

4.1 VS Stage Overview... 103
4.1.1 Vertex Caching ... 103

4.2 VS Stage Input .. 105
4.2.1 State... 105

4.2.1.1 URB_FENCE ... 105
4.2.1.2 VS_STATE ... 105

4.2.2 Input Vertices... 110
4.3 VS Thread Request Generation ... 110

4.3.1 Thread Payload ... 112
4.4 VS Thread Execution... 114

4.4.1 Vertex Output... 114
4.4.2 Thread Termination ... 114

4.5 Primitive Output... 114

 5

5 Geometry Shader (GS) Stage ... 116
5.1 GS Stage Overview... 116
5.2 GS Stage Input .. 116

5.2.1 State... 117
5.2.1.1 GS_STATE ... 117

5.3 Object Staging... 123
5.4 GS Thread Request Generation... 123

5.4.1 Object Vertex Ordering .. 123
5.4.2 GS Thread Payload .. 123

5.5 GS Thread Execution .. 126
5.5.1 Vertex Output... 126
5.5.2 Thread Termination ... 128

5.6 Vertex Header Readback ... 128
5.7 Primitive Output... 128

6 Clip Stage.. 129
6.1 CLIP Stage Overview .. 129

6.1.1 Clip Stage – General-Purpose Processing 129
6.1.2 Clip Stage – 3D Clipping... 129

6.2 Concepts... 130
6.2.1 The Clip Volume.. 130

6.2.1.1 View Volume.. 130
6.2.2 User-Specified Clipping .. 133

6.2.2.1 User Clip Planes.. 133
6.2.3 Negative-W Clipping Errata... 133

6.2.3.1 W Clipping Errata (DevBW, DevCL-A) 135
6.2.3.2 W Clipping Errata (DevCL-B) 136

6.2.4 Tristrip Clipping Errata [Pre-DevBW-E1], [DevCL] 138
6.2.5 Guard Band .. 139

6.2.5.1 NDC Guardband Parameters 142
6.2.5.2 Screen Space Guardband Parameters 142

6.2.6 Vertex-Based Clip Testing & Considerations............................... 143
6.2.6.1 Triangle Objects ... 143
6.2.6.2 Non-Wide Line Objects .. 143
6.2.6.3 Wide Line Objects ... 144
6.2.6.4 Wide Points.. 144
6.2.6.5 RECTLIST .. 145

6.2.7 3D Clipping .. 145
6.3 CLIP Stage Input.. 146

6.3.1 State... 146
6.3.1.1 CLIP_STATE... 146
6.3.1.2 CLIP_VIEWPORT... 153

6.4 VertexClipTest Function... 155
6.5 Object Staging... 159

6.5.1 Partial Object Removal... 159
6.5.2 ClipDetermination Function... 160
6.5.3 ClipMode.. 163

6.5.3.1 NORMAL ClipMode... 164
6.5.3.2 CLIP_ALL ClipMode ... 164
6.5.3.3 CLIP_NON_REJECT ClipMode 164
6.5.3.4 REJECT_ALL ClipMode ... 164
6.5.3.5 ACCEPT_ALL ClipMode... 164

6.6 Object Pass-Through... 165

6

6.7 CLIP Thread Request Generation .. 166
6.7.1 Object Vertex Ordering .. 166
6.7.2 CLIP Thread Payload.. 168

6.8 CLIP Thread Execution .. 170
6.8.1 Vertex Output... 171
6.8.2 Thread Termination ... 171

6.9 Thread-Generated Vertex Readback .. 172
6.10 Primitive Output... 172
6.11 Other Functionality ... 173

6.11.1 Statistics Gathering ... 173
6.11.1.1 CL_INVOCATION_COUNT ... 173
6.11.1.2 GS_PRIMITIVES_COUNT .. 173

7 Strips and Fans (SF) Stage... 175
7.1 Overview .. 175

7.1.1 Inputs from CLIP... 175
7.1.2 Attribute Setup/Interpolation Process 176
7.1.3 Outputs to WM.. 177

7.2 Primitive Assembly ... 177
7.2.1 Point List Decomposition .. 181
7.2.2 Line List Decomposition.. 182
7.2.3 Line Strip Decomposition.. 182
7.2.4 Triangle List Decomposition .. 184
7.2.5 Triangle Strip Decomposition .. 185
7.2.6 Triangle Fan Decomposition .. 186
7.2.7 Polygon Decomposition .. 186
7.2.8 Rectangle List Decomposition.. 187

7.3 Object Setup ... 187
7.3.1 Invalid Position Culling (Pre/Post-Transform)............................. 187
7.3.2 Viewport Transformation .. 188
7.3.3 Destination Origin Bias... 188
7.3.4 Point Rasterization Rule Adjustment... 189
7.3.5 Drawing Rectangle Offset Application 191

7.3.5.1 3DSTATE_DRAWING_RECTANGLE 193
7.3.6 Point Width Application .. 195
7.3.7 Rectangle Completion .. 196
7.3.8 Vertex X,Y Clamping and Quantization...................................... 196
7.3.9 Degenerate Object Culling .. 197
7.3.10 Degenerate Triangle Culling .. 197
7.3.11 Triangle Orientation (Face) Culling... 197
7.3.12 Scissor Rectangle Clipping .. 198
7.3.13 Line Rasterization.. 199

7.3.13.1 Zero-Width (Cosmetic) Line Rasterization................... 199
7.3.13.2 Diamond Exit Sampling Rules – Legacy Mode.............. 200
7.3.13.3 Diamond Exit Sampling Rules – New Mode 203
7.3.13.4 Non-Antialiased Wide Line Rasterization..................... 204
7.3.13.5 Anti-aliased Line Rasterization 205

7.4 SF Pipeline State Summary.. 207
7.4.1 SF_STATE .. 207
7.4.2 SF_VIEWPORT .. 215

7.5 The SF Thread -- Interpolation Coefficient Calculation.............................. 216
7.5.1 SF Setup Parameters Passed to SF Thread 216

7.5.1.1 TRIANGLE Parameters ... 216

 7

7.5.1.2 RECTANGLE Parameters... 216
7.5.1.3 POINT Parameters .. 216
7.5.1.4 LINE Parameters... 217

7.5.2 SF (Setup) Thread Payload ... 217
7.5.3 SF Thread Execution .. 220
7.5.4 SF Thread Output.. 220

7.6 Other SF Functions ... 222
7.6.1 Statistics Gathering ... 222

8 Windower (WM) Stage ... 224
8.1 Overview .. 224

8.1.1 Inputs from SF to WM.. 225
8.2 Windower Pipelined State .. 225

8.2.1 WM_STATE... 225
8.3 Rasterization ... 232

8.3.1 Drawing Rectangle Clipping .. 232
8.3.2 Line Rasterization.. 233

8.3.2.1 Coverage Values for Anti-Aliased Lines....................... 233
8.3.2.2 Line Stipple.. 233
8.3.2.3 3DSTATE_LINE_STIPPLE.. 234

8.3.3 Polygon (Triangle and Rectangle) Rasterization.......................... 235
8.3.3.1 Polygon Stipple .. 236
8.3.3.2 3DSTATE_POLY_STIPPLE_OFFSET 237
8.3.3.3 3DSTATE_POLY_STIPPLE_PATTERN 238
8.3.3.4 3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP 239

8.4 Early Depth/Stencil Processing ... 240
8.4.1 Depth Coefficient Read-Back ... 240
8.4.2 Depth Offset... 240
8.4.3 Early Depth Test / Stencil Test/Write.. 241

8.4.3.1 Software-Provided PS Kernel Info.............................. 241
8.4.3.2 Early Depth Test Cases.. 242

8.4.4 Depth/Stencil Buffer State .. 249
8.4.4.1 3DSTATE_DEPTH_BUFFER.. 249

8.5 Pixel Shader Thread Generation.. 257
8.5.1 Pixel Grouping (Dispatch Size) Control 258
8.5.2 PS Thread Payload for Normal Dispatch 260

8.6 Other WM Functions ... 269
8.6.1 Statistics Gathering ... 269

9 Color Calculator (Output Merger)... 270
9.1.1 Alpha Test.. 271
9.1.2 Depth Buffer Coordinate Offset Disable..................................... 271
9.1.3 Stencil Test .. 273
9.1.4 Depth Test ... 273
9.1.5 Pre-Blend Color Clamping ... 274
9.1.6 Color Buffer Blending ... 275

9.1.6.1 3DSTATE_CONSTANT COLOR 278
9.1.7 Post-Blend Color Clamping.. 279
9.1.8 Color Quantization... 279
9.1.9 Dithering.. 279
9.1.10 Buffer Update ... 280

9.1.10.1 Stencil Buffer Updates ... 280
9.1.10.2 Depth Buffer Updates .. 281
9.1.10.3 Color Gamma Correction.. 282

8

9.1.10.4 Color Buffer Updates ... 282
9.2 Pixel Pipeline State Summary... 283

9.2.1 COLOR_CALC_STATE ... 283
9.2.2 CC_VIEWPORT.. 293

9.3 Other Pixel Pipeline Functions... 293
9.3.1 Statistics Gathering ... 293

10 Media and General Purpose Pipeline... 295
10.1 Introduction .. 295

10.1.1 Terminologies ... 296
10.2 Media Pipeline Overview.. 298
10.3 Programming Media Pipeline .. 299

10.3.1 Command Sequence .. 299
10.3.2 Interrupt Latency .. 304

10.4 Video Front End Unit... 305
10.4.1 Interfaces .. 306

10.4.1.1 Interface to Command Streamer 306
10.4.1.2 Interface to Thread Spawner 306
10.4.1.3 Interface to State Variable Manager 306
10.4.1.4 Interface to Global URB Manager............................... 306
10.4.1.5 Interface to URB... 307

10.4.2 Mode of Operations ... 307
10.4.2.1 Generic Mode ... 307
10.4.2.2 IS Mode .. 308
10.4.2.3 VLD Mode.. 308

10.4.3 Debug Counter ... 318
10.5 Thread Spawner Unit .. 320

10.5.1 Basic Functions ... 320
10.5.1.1 Root Threads Lifecycle... 320
10.5.1.2 URB Handles .. 321
10.5.1.3 Root to Child Responsibilities.................................... 321
10.5.1.4 Multiple Simultaneous Roots..................................... 322
10.5.1.5 Synchronized Root Threads 323
10.5.1.6 Deadlock Prevention.. 323
10.5.1.7 Child Thread Lifecycle.. 324
10.5.1.8 Arbitration between Root and Child Threads................ 325

10.5.2 Interfaces .. 325
10.5.2.1 Interface to VFE ... 325
10.5.2.2 Interface to Thread Dispatcher 325

10.6 Media State ... 326
10.6.1 Media State Model ... 326
10.6.2 VFE_STATE .. 327
10.6.3 VLD_STATE .. 329
10.6.4 INTERFACE_DESCRIPTOR... 331

10.7 Media State and Primitive Commands.. 333
10.7.1 MEDIA_STATE_POINTERS Command.. 333
10.7.2 MEDIA_OBJECT Command.. 335

10.7.2.1 Inline and Indirect Data Format in Generic Mode 337
10.7.2.2 Inline and Indirect Data Format in IS Mode 337
10.7.2.3 Inline and Indirect Data Format in VLD Mode 343

10.8 Media Messages ... 344
10.8.1 Thread Payload Messages ... 344

10.8.1.1 Generic Mode Root Thread 345

 9

10.8.1.2 IS-Mode Root Thread .. 346
10.8.1.3 VLD-Mode Root Thread.. 351
10.8.1.4 Child Thread .. 356

10.8.2 Thread Spawn Message.. 357
10.8.2.1 Message Descriptor ... 358
10.8.2.2 Message Payload .. 359

10.9 Media Applications with Specific Hardware Support.................................. 360
10.9.1 Full MPEG-2 Decode... 360

10.9.1.1 Theory of Operation .. 360
10.9.1.2 Performance .. 364

10.10 Media Kernel Design Guide .. 364
10.10.1 MPEG-2 HWMC.. 364
10.10.2 Deinterlace Filter... 366
10.10.3 Video Encode.. 366

10

Figures

Figure 6-1. SW Workaround Summary ... 135
Figure 6-2. Normal Guardband Operation .. 140
Figure 6-3. Very Large Viewport Case .. 141
Figure 7-1. 3DPRIM_POINTLIST Primitive ... 181
Figure 7-2. 3DPRIM_LINELIST Primitive ... 182
Figure 7-3. 3DPRIM_LINESTRIP_xxx Primitive... 183
Figure 7-4. 3DPRIM_TRILIST Primitive ... 184
Figure 7-5. 3DPRIM_TRISTRIP[_REVERSE] Primitive .. 185
Figure 7-6. 3DPRIM_TRIFAN Primitive .. 186
Figure 7-7. 3DPRIM_RECTLIST Primitive... 187
Figure 7-8. Destination Origin Bias .. 189
Figure 7-9. RASTRULE_UPPER_LEFT .. 190
Figure 7-10. RASTRULE_UPPER_RIGHT .. 191
Figure 7-11. Onscreen Draw Rectangle... 192
Figure 7-12. Partially-offscreen Draw Rectangle... 192
Figure 7-13. Point Width Application .. 195
Figure 7-14. Rectangle Completion .. 196
Figure 7-15. Triangle Winding Order .. 198
Figure 7-16. Non-Antialiased Line Rasterization ... 205
Figure 7-17. Anti-aliased Line Rasterization .. 206
Figure 8-1. Pixels with a SubSpan .. 232
Figure 8-2. TRIANGLE and RECTANGLE Edge Types.. 236
Figure 9-1. Drawing Rectangle Offset... 272
Figure 9-2. Dithering Process (5-Bit Example) ... 280
Figure 10-1. Top level block diagram of the Media Pipeline.................................. 299
Figure 10-2. VFE Functional Blocks and Modes of Operations 305
Figure 10-3. Prediction for a P field picture that is a first field, which is (a) a top field,

or (b) a bottom field.. 311
Figure 10-4. Prediction for a P field picture that is a second field, which is (a) a top

field, or (b) a bottom field .. 311
Figure 10-5. Thread Spawner block diagram ... 320
Figure 10-6. Examples of thread relationship .. 322
Figure 10-7. An example of thread relationship with root sibling dependency......... 322
Figure 10-8. Media State Model.. 326
Figure 10-9. Structure of the IDCT Compressed Data Buffer 342
Figure 10-10. Indirect data buffer for a slice .. 344
Figure 10-11. Thread payload message formats for root and child threads............. 344
Figure 10-12. MPEG-2 decode flow chart ... 361
Figure 10-13. MPEG-2 compressed bitstream syntax ... 362
Figure 10-14. Functional mapping of MPEG-2 decode hardware acceleration with off-

host VLD ... 363
Figure 10-15. Functional mapping of MPEG-2 decode hardware acceleration with

HWMC... 365

 11

Tables

Table 1-1. Supported Chipsets ..13
Table 2-1. 3D Primitive Topology Types...28
Table 2-2. VUE Vertex HeaderVUE Vertex Header ..43
Table 2-3. State Variables Included in Thread Control Information58
Table 2-4. Payload Sizes ...59
Table 2-5. Fixed Payload Header Fields (non-FF-specific)62
Table 2-6. State Variables Controlling Payload URB Data65
Table 2-7. Caches Invalidated/Flushed by PIPE_CONTROL Bit Settings....................71
Table 3-1. 3D Primitive Topology Type Encoding..94
Table 3-2. Source Element Formats supported in VF Unit97
Table 4-1. VS Thread Payload ... 112
Table 5-1. GS Thread Payload... 123
Table 6-1. CLIP Thread Payload... 168
Table 7-1. SF’s Vertex Pipeline Inputs .. 175
Table 7-2. SF-Supported Primitive Types & Vertex Count Restrictions 178
Table 7-3. 3D Object Types .. 178
Table 7-4. Primitive Decomposition Outputs.. 179
Table 7-5. VPIndex/RTAIndex Selection.. 180
Table 7-6. Degenerate Objects.. 197
Table 7-7. Cull Mode ... 198
Table 8-1. Variable Pixel Dispatch ... 259
Table 9-1. Color Buffer Blend Color Factors... 277
Table 9-2. Color Buffer Blend Functions.. 278
Table 9-3. Stencil Buffer Operations .. 281
Table 10-1. Summary of Motion Types .. 312
Table 10-2. Motion Comp Operation for Pictures with Frame Motion Type 313
Table 10-3. Motion Comp Operation with Field Motion Type................................. 314
Table 10-4. Converting Frame-Dual Prime Motion to 4MV.................................... 315
Table 10-5. Converting Field-Dual Prime Motion to 2MV..................................... 315
Table 10-6. Macroblock indices for frame picture destination 317
Table 10-7. Macroblock indices for field picture destination 317
Table 10-8. TS Resource Available in Device Hardware 324
Table 10-9. Inline data in IS mode ... 337
Table 10-10. Subblock coding (bits [7:6] are reserved). 341
Table 10-11. Structure of a DCT coefficient unit ... 342
Table 10-12. R0 header of a generic mode root thread 345
Table 10-13. Format of a block of DCT coefficients in GRF registers..................... 355
Table 10-14. Use of GEN4 shared resources for post-VLD kernels........................ 363
Table 10-15. Use of GEN4 shared resources for HWMC kernels 365

12

Revision History

Document
Number

Revision
Number

Description Revision Date

2 1.0b Initial release. January 2008

§§

 13

1 Introduction

This Programmer’s Reference Manual (PRM) describes the architectural behavior and
programming environment of the Intel® 965 Chipset family and Intel® G35 Express
Chipset GMCH graphics devices (see Table 1-1). The GMCH’s Graphics Controller (GC)
contains an extensive set of registers and instructions for configuration, 2D, 3D, and
Video systems. The PRM describes the register, instruction, and memory interfaces
and the device behaviors as controlled and observed through those interfaces. The
PRM also describes the registers and instructions and provides detailed bit/field
descriptions.

Note: The term “Gen4” is used throughout the PRM to refer to the Generation 4 family of
graphics devices. The devices listed in Table 1-1 are Gen4 devices.

Table 1-1. Supported Chipsets

Chipset Family Name Device Name Device Tag

Intel® Q965 Chipset
Intel® Q963 Chipset
Intel® G965 Chipset

82Q965 GMCH
82Q963 GMCH
82G965 GMCH

[DevBW]

Intel® G35 Chipset 82G35 GMCH [DevBW-E]

Intel® GM965 Chipset
Intel® GME965 Chipset

GM965 GMCH
GME965 GMCH

[DevCL]

NOTES:
1. Unless otherwise specified, the information in this document applies to all of the devices

mentioned in Table 1-1. For Information that does not apply to all devices, the Device
Tag is used.

2. Throughout the PRM, references to “All” in a project field refters to all devices in
Table 1-1

3. Throughout the PRM, references to [DevBW] apply to both [DevBW] and [DevBW-E].
[DevBW-E] is referenced specifically for information that is [DevBW-E] only.

4. Stepping info is sometimes appended to the device tag (e.g., [DevBW-C]). Information
without any device tagging is applicable to all devices/steppings.

The PRM is intended for hardware, software, and firmware designers who seek to
implement or use the graphic functions of the 965 Express Chipset family and G35
Express Chipset. Familiarity with 2D and 3D graphics programming is assumed.

14

The Programmer’s Reference Manual is organized into four volumes:

• PRM, Volume 1: Graphics Core
Volume 1 covers the overall Graphics Processing Unit (GPU), without much detail
on 3D, Media, or the core subsystem. Topics include the command streamer,
context switching, and memory access (including tiling). The Memory Data
Formats can also be found in this volume.

The volume also contains a chapter on the Graphics Processing Engine (GPE). The
GPE is a collective term for 3D, Media, the subsystem, and the parts of the
memory interface that are used by these units. Display, blitter and their memory
interfaces are not included in the GPE.

• PRM, Volume 2; 3D/Media
Volume 2 covers the 3D and Media pipelines in detail. This volume is where details
for all of the “fixed functions” are covered, including commands processed by the
pipelines, fixed-function state structures, and a definition of the inputs (payloads)
and outputs of the threads spawned by these units.

This volume also covers the single Media Fixed Function, VLD. It describes how to
initiate generic threads using the thread spawner (TS). It is generic threads which
will be used for doing the majority of media functions. Programmable kernels will
handle the algorithms for media functions such IDCT, Motion Compensation, and
even Motion Estimation (used for encoding MPEG streams).

• PRM, Volume 3: Display Registers
Volume 3 describes the control registers for the display. The overlay registers and
VGA registers are also cover in this volume.

• PRM, Volume 4: Subsystem and Cores
Volume 4 describes the GMCH programmable cores, or EUs, and the “shared
functions”, which are shared by more than one EU and perform functions such as
I/O and complex math functions.

The shared functions consist of the sampler, extended math unit, data port (the
interface to memory for 3D and media), Unified Return Buffer (URB), and the
Message Gateway which is used by EU threads to signal each other. The EUs use
messages to send data to and receive data from the subsystem; the messages are
described along with the shared functions, although the generic message send EU
instruction is described with the rest of the instructions in the Instruction Set
Architecture (ISA) chapters.

This latter part of this volume describes the GMCH core, or EU, and the associated
instructions that are used to program it. The instruction descriptions make up
what is referred to as an Instruction Set Architecture, or ISA. The ISA describes
all of the instructions that the GMCH core can execute, along with the registers
that are used to store local data.

 15

1.1 Notations and Conventions

1.1.1 Reserved Bits and Software Compatibility

In many register, instruction and memory layout descriptions, certain bits are marked
as “Reserved”. When bits are marked as reserved, it is essential for compatibility with
future devices that software treat these bits as having a future, though unknown,
effect. The behavior of reserved bits should be regarded as not only undefined, but
unpredictable. Software should follow these guidelines in dealing with reserved bits:

Do not depend on the states of any reserved bits when testing values of registers that
contain such bits. Mask out the reserved bits before testing. Do not depend on the
states of any reserved bits when storing to instruction or to a register.

When loading a register or formatting an instruction, always load the reserved bits
with the values indicated in the documentation, if any, or reload them with the values
previously read from the register.

1.2 Terminology

Term Abbr. Definition

3D Pipeline — One of the two pipelines supported in the GPE. The 3D
pipeline is a set of fixed-function units arranged in a
pipelined fashion, which process 3D-related commands
by spawning EU threads. Typically this processing
includes rendering primitives. See 3D Pipeline.

Application IP AIP Application Instruction Pointer. This is part of the
control registers for exception handling for a thread.
Upon an exception, hardware moves the current IP into
this register and then jumps to SIP.

Architectural
Register File

ARF A collection of architecturally visible registers for a
thread such as address registers, accumulator, flags,
notification registers, IP, null, etc. ARF should not be
mistaken as just the address registers.

Array of Cores — Refers to a group of Gen4 EUs, which are physically
organized in two or more rows. The fact that the EUs
are arranged in an array is (to a great extent)
transparent to CPU software or EU kernels.

Binding Table — Memory-resident list of pointers to surface state blocks
(also in memory).

Binding Table
Pointer

BTP Pointer to a binding table, specified as an offset from
the Surface State Base Address register.

Bypass Mode — Mode where a given fixed function unit is disabled and
forwards data down the pipeline unchanged. Not
supported by all FF units.

Byte B A numerical data type of 8 bits, B represents a signed
byte integer.

16

Term Abbr. Definition

Child Thread — A branch-node or a leaf-node thread that is created by
another thread. It is a kind of thread associated with the
media fixed function pipeline. A child thread is
originated from a thread (the parent) executing on an
EU and forwarded to the Thread Dispatcher by the TS
unit. A child thread may or may not have child threads
depending on whether it is a branch-node or a leaf-node
thread. All pre-allocated resources such as URB and
scratch memory for a child thread are managed by its
parent thread.

Clip Space — A 4-dimensional coordinate system within which a
clipping frustum is defined. Object positions are
projected from Clip Space to NDC space via
“perspecitive divide” by the W coordinate, and then
viewport mapped into Screen Space

Clipper — 3D fixed function unit that removes invisible portions of
the drawing sequence by discarding (culling) primitives
or by “replacing” primitives with one or more primitives
that replicate only the visible portion of the original
primitive.

Color Calculator CC Part of the Data Port shared function, the color
calculator performs fixed-function pixel operations (e.g.,
blending) prior to writing a result pixel into the render
cache.

Command — Directive fetched from a ring buffer in memory by the
Command Streamer and routed down a pipeline.
Should not be confused with instructions which are
fetched by the instruction cache subsystem and
executed on an EU.

Command Streamer CS or CSI Functional unit of the Graphics Processing Engine that
fetches commands, parses them and routes them to the
appropriate pipeline.

Constant URB Entry CURBE A UE that contains “constant” data for use by various
stages of the pipeline.

Control Register CR The read-write registers are used for thread mode
control and exception handling for a thread.

Data Port DP Shared function unit that performs a majority of the
memory access types on behalf of Gen4 programs. The
Data Port contains the render cache and the constant
cache and performs all memory accesses requested by
Gen4 programs except those performed by the Sampler.
See DataPort.

Degenerate Object — Object that is invisible due to coincident vertices or
because does not intersect any sample points (usually
due to being tiny or a very thin sliver).

Destination — Describes an output or write operand.

Destination Size — The number of data elements in the destination of a
Gen4 SIMD instruction.

 17

Term Abbr. Definition

Destination Width — The size of each of (possibly) many elements of the
destination of a Gen4 SIMD instruction.

Double Quad word
(DQword)

DQ A fundamental data type, DQ represents 16 bytes.

Double word
(DWord)

D or DW A fundamental data type, D or DW represents 4 bytes.

Drawing Rectangle — A screen-space rectangle within which 3D primitives are
rendered. An objects screen-space positions are
relative to the Drawing Rectangle origin. See Strips and
Fans.

End of Block EOB A 1-bit flag in the non-zero DCT coefficient data
structure indicating the end of an 8x8 block in a DCT
coefficient data buffer.

End Of Thread EOT a message sideband signal on the Output message bus
signifying that the message requester thread is
terminated. A thread must have at least one SEND
instruction with the EOT bit in the message descriptor
field set in order to properly terminate.

Exception — Type of (normally rare) interruption to EU execution of a
thread’s instructions. An exception occurrence causes
the EU thread to begin executing the System Routine
which is designed to handle exceptions.

Execution Channel — Gen4 EU instructions typically operate on multiple data
values in parallel (i.e., in “SIMD” fashion). The data is
processed in parallel “execution channels” (e.g., a
SIMD8 instruction uses 8 execution channels to perform
8 operations in parallel).

Execution Size ExecSize Execution Size indicates the number of data elements
processed by a GEN4 SIMD instruction. It is one of the
GEN4 instruction fields and can be changed per
instruction.

Execution Unit EU Execution Unit. An EU is a multi-threaded processor
within the GEN4 multi-processor system. Each EU is a
fully-capable processor containing instruction fetch and
decode, register files, source operand swizzle and SIMD
ALU, etc. An EU is also referred to as a GEN4 Core.

Execution Unit
Identifier

EUID The 4-bit field within a thread state register (SR0) that
identifies the row and column location of the EU a
thread is located. A thread can be uniquely identified by
the EUID and TID.

Execution Width ExecWidth The width of each of several data elements that may be
processed by a single Gen4 SIMD instruction.

Extended Math Unit EM A Shared Function that performs more complex math
operations on behalf of several EUs.

FF Unit -- A Fixed-Function Unit is the hardware component of a
3D Pipeline Stage. A FF Unit typically has a unique FF
ID associated with it.

4

18

Term Abbr. Definition

Fixed Function FF Function of the pipeline that is performed by dedicated
(vs. programmable) hardware.

Fixed Function ID FFID Unique identifier for a fixed function unit.

FLT_MAX fmax The magnitude of the maximum representable single
precision floating number according to IEEE-754
standard. FLT_MAX has an exponent of 0xFE and a
mantissa of all one’s.

Gateway GW See Message Gateway.

GEN4 Core — Alternative name for an EU in the GEN4 multi-processor
system.

General Register File GRF Large read/write register file shared by all the EUs for
operand sources and destinations. This is the most
commonly used read-write register space organized as
an array of 256-bit registers for a thread.

General State Base
Address

— The Graphics Address of a block of memory-resident
“state data”, which includes state blocks, scratch space,
constant buffers and kernel programs. The contents of
this memory block are referenced via offsets from the
contents of the General State Base Address register.
See Graphics Processing Engine.

Geometry Shader GS Fixed-function unit between the vertex shader and the
clipper that (if enabled) dispatches “geometry shader”
threads on its input primitives. Application-supplied
geometry shaders normally expand each input primitive
into several output primitives in order to perform 3D
modeling algorithms such as fur/fins. See Geometry
Shader.

Graphics Address — The GPE virtual address of some memory-resident
object. This virtual address gets mapped by a GTT or
PGTT to a physical memory address. Note that many
memory-resident objects are referenced not with
Graphics Addresses, but instead with offsets from a
“base address register”.

Graphics Processing
Engine

GPE Collective name for the Subsystem, the 3D and Media
pipelines, and the Command Streamer.

Guardband GB Region that may be clipped against to make sure
objects do not exceed the limitations of the renderer’s
coordinate space.

Horizontal Stride HorzStride The distance in element-sized units between adjacent
elements of a Gen4 region-based GRF access.

Immediate floating
point vector

VF A numerical data type of 32 bits, an immediate floating
point vector of type VF contains 4 floating point
elements with 8-bit each. The 8-bit floating point
element contains a sign field, a 3-bit exponent field and
a 4-bit mantissa field. It may be used to specify the
type of an immediate operand in an instruction.

 19

Term Abbr. Definition

Immediate integer
vector

V A numerical data type of 32 bits, an immediate integer
vector of type V contains 8 signed integer elements with
4-bit each. The 4-bit integer element is in 2’s
complement form. It may be used to specify the type of
an immediate operand in an instruction.

Index Buffer IB Buffer in memory containing vertex indices.

In-loop Deblocking
Filter

ILDB The deblocking filter operation in the decoding loop. It is
a stage after MC in the video decoding pipe.

Instruction — Data in memory directing an EU operation. Instructions
are fetched from memory, stored in a cache and
executed on one or more Gen4 cores. Not to be
confused with commands which are fetched and parsed
by the command streamer and dispatched down the 3D
or Media pipeline.

Instruction Pointer IP The address (really an offset) of the instruction currently
being fetched by an EU. Each EU has its own IP.

Instruction Set
Architecture

ISA The GEN4 ISA describes the instructions supported by a
GEN4 EU.

Instruction State
Cache

ISC On-chip memory that holds recently-used instructions
and state variable values.

Interface Descriptor — Media analog of a State Descriptor.

Intermediate Z IZ Completion of the Z (depth) test at the front end of the
Windower/Masker unit when certain conditions are met
(no alpha, no pixel-shader computed Z values, etc.)

Inverse Discrete
Cosine Transform

IDCT the stage in the video decoding pipe between IQ and MC

Inverse
Quantization

IQ A stage in the video decoding pipe between IS and
IDCT.

Inverse Scan IS A stage in the video decoding pipe between VLD and IQ.
In this stage, a sequence of none-zero DCT coefficients
are converted into a block (e.g. an 8x8 block) of
coefficients. VFE unit has fixed functions to support IS
for MPEG-2.

Jitter — Just-in-time compiler.

Kernel — A sequence of Gen4 instructions that is logically part of
the driver or generated by the jitter. Differentiated
from a Shader which is an application supplied program
that is translated by the jitter to Gen4 instructions.

Least Significant Bit LSB Least Significant Bit

MathBox — See Extended Math Unit

Media — Term for operations such as video decode and encode
that are normally performed by the Media pipeline.

Media Pipeline — Fixed function stages dedicated to media and “generic”
processing, sometimes referred to as the generic
pipeline.

20

Term Abbr. Definition

Message — Messages are data packages transmitted from a thread
to another thread, another shared function or another
fixed function. Message passing is the primary
communication mechanism of GEN4 architecture.

Message Gateway — Shared function that enables thread-to-thread message
communication/synchronization used solely by the
Media pipeline.

Message Register
File

MRF Write-only registers used by EUs to assemble messages
prior to sending and as the operand of a send
instruction.

Most Significant Bit MSB Most Significant Bit

Motion
Compensation

MC Part of the video decoding pipe.

Motion Picture
Expert Group

MPEG MPEG is the international standard body
JTC1/SC29/WG11 under ISO/IEC that has defined audio
and video compression standards such as MPEG-1,
MPEG-2, and MPEG-4, etc.

Motion Vector Field
Selection

MVFS A four-bit field selecting reference fields for the motion
vectors of the current macroblock.

Multi Render Targets MRT Multiple independent surfaces that may be the target of
a sequence of 3D or Media commands that use the
same surface state.

Normalized Device
Coordinates

NDC Clip Space Coordinates that have been divided by the
Clip Space “W” component.

Object — A single triangle, line or point.

Parent Thread — A thread corresponding to a root-node or a branch-node
in thread generation hierarchy. A parent thread may be
a root thread or a child thread depending on its position
in the thread generation hierarchy.

Pipeline Stage — A abstracted element of the 3D pipeline, providing
functions performed by a combination of the
corresponding hardware FF unit and the threads
spawned by that FF unit.

Pipelined State
Pointers

PSP Pointers to state blocks in memory that are passed
down the pipeline.

Pixel Shader PS Shader that is supplied by the application, translated by
the jitter and is dispatched to the EU by the Windower
(conceptually) once per pixel.

Point — A drawing object characterized only by position
coordinates and width.

Primitive — Synonym for object: triangle, rectangle, line or point.

Primitive Topology — A composite primitive such as a triangle strip, or line
list. Also includes the objects triangle, line and point as
degenerate cases.

 21

Term Abbr. Definition

Provoking Vertex — The vertex of a primitive topology from which vertex
attributes that are constant across the primitive are
taken.

Quad Quad word
(QQword)

QQ A fundamental data type, QQ represents 32 bytes.

Quad Word (QWord) QW A fundamental data type, QW represents 8 bytes.

Rasterization — Conversion of an object represented by vertices into the
set of pixels that make up the object.

Region-based
addressing

— Collective term for the register addressing modes
available in the EU instruction set that permit
discontiguous register data to be fetched and used as a
single operand.

Render Cache RC Cache in which pixel color and depth information is
written prior to being written to memory, and where
prior pixel destination attributes are read in preparation
for blending and Z test.

Render Target RT A destination surface in memory where render results
are written.

Render Target Array
Index

— Selector of which of several render targets the current
operation is targeting.

Root Thread — A root-node thread. A thread corresponds to a root-
node in a thread generation hierarchy. It is a kind of
thread associated with the media fixed function pipeline.
A root thread is originated from the VFE unit and
forwarded to the Thread Dispatcher by the TS unit. A
root thread may or may not have child threads. A root
thread may have scratch memory managed by TS. A
root thread with children has its URB resource managed
by the VFE.

Sampler — Shared function that samples textures and reads data
from buffers on behalf of EU programs.

Scratch Space — Memory allocated to the subsystem that is used by EU
threads for data storage that exceeds their register
allocation, persistent storage, storage of mask stack
entries beyond the first 16, etc.

Shader — A Gen4 program that is supplied by the application in a
high level shader language, and translated to Gen4
instructions by the jitter.

Shared Function SF Function unit that is shared by EUs. EUs send messages
to shared functions; they consume the data and may
return a result. The Sampler, Data Port and Extended
Math unit are all shared functions.

Shared Function ID SFID Unique identifier used by kernels and shaders to target
shared functions and to identify their returned
messages.

4

22

Term Abbr. Definition

Single Instruction
Multiple Data

SIMD The term SIMD can be used to describe the kind of
parallel processing architecture that exploits data
parallelism at instruction level. It can also be used to
describe the instructions in such architecture.

Source — Describes an input or read operand

Spawn — To initiate a thread for execution on an EU. Done by the
thread spawner as well as most FF units in the 3D
pipeline.

Sprite Point — Point object using full range texture coordinates. Points
that are not sprite points use the texture coordinates of
the point’s center across the entire point object.

State Descriptor — Blocks in memory that describe the state associated
with a particular FF, including its associated kernel
pointer, kernel resource allowances, and a pointer to its
surface state.

State Register SR The read-only registers containing the state information
of the current thread, including the EUID/TID,
Dispatcher Mask, and System IP.

State Variable SV An individual state element that can be varied to change
the way given primitives are rendered or media objects
processed. On Gen4 state variables persist only in
memory and are cached as needed by
rendering/processing operations except for a small
amount of non-pipelined state.

Stream Output — A term for writing the output of a FF unit directly to a
memory buffer instead of, or in addition to, the output
passing to the next FF unit in the pipeline. Currently
only supported for the Geometry Shader (GS) FF unit.

Strips and Fans SF Fixed function unit whose main function is to decompose
primitive topologies such as strips and fans into
primitives or objects.

Sub-Register — Subfield of a SIMD register. A SIMD register is an
aligned fixed size register for a register file or a register
type. For example, a GRF register, r2, is 256-bit wide,
256-bit aligned register. A sub-register, r2.3:d, is the
fourth dword of GRF register r2.

Subsystem — The Gen4 name given to the resources shared by the FF
units, including shared functions and EUs.

Surface — A rendering operand or destination, including textures,
buffers, and render targets.

Surface State — State associated with a render surface including

Surface State Base
Pointer

— Base address used when referencing binding table and
surface state data.

Synchronized Root
Thread

— A root thread that is dispatched by TS upon a ‘dispatch
root thread’ message.

 23

Term Abbr. Definition

System IP SIP There is one global System IP register for all the
threads. From a thread’s point of view, this is a virtual
read only register. Upon an exception, hardware
performs some bookkeeping and then jumps to SIP.

System Routine — Sequence of Gen4 instructions that handles exceptions.
SIP is programmed to point to this routine, and all
threads encountering an exception will call it.

Thread — An instance of a kernel program executed on an EU. The
life cycle for a thread starts from the executing the first
instruction after being dispatched from Thread
Dispatcher to an EU to the execution of the last
instruction – a send instruction with EOT that signals the
thread termination. Threads in GEN4 system may be
independent from each other or communicate with each
other through Message Gateway share function.

Thread Dispatcher TD Functional unit that arbitrates thread initiation requests
from Fixed Functions units and instantiates the threads
on EUs.

Thread Identifier TID The field within a thread state register (SR0) that
identifies which thread slots on an EU a thread occupies.
A thread can be uniquely identified by the EUID and
TID.

Thread Payload — Prior to a thread starting execution, some amount of
data will be pre-loaded in to the thread’s GRF (starting
at r0). This data is typically a combination of control
information provided by the spawning entity (FF Unit)
and data read from the URB.

Thread Spawner TS The second and the last fixed function stage of the
media pipeline that initiates new threads on behalf of
generic/media processing.

Topology — See Primitive Topology.

Unified Return
Buffer

URB The on-chip memory managed/shared by GEN4 Fixed
Functions in order for a thread to return data that will
be consumed either by a Fixed Function or other
threads.

Unsigned Byte
integer

UB A numerical data type of 8 bits.

Unsigned Double
Word integer

UD A numerical data type of 32 bits. It may be used to
specify the type of an operand in an instruction.

Unsigned Word
integer

UW A numerical data type of 16 bits. It may be used to
specify the type of an operand in an instruction.

Unsynchronized
Root Thread

— A root thread that is automatically dispatched by TS.

URB Dereference — See URB Reference

4

24

Term Abbr. Definition

URB Entry UE URB Entry: A logical entity stored in the URB (such as a
vertex), referenced via a URB Handle.

URB Entry Allocation
Size

— Number of URB entries allocated to a Fixed Function
unit.

URB Fence Fence Virtual, movable boundaries between the URB regions
owned by each FF unit.

URB Handle — A unique identifier for a URB entry that is passed down
a pipeline.

URB Reference — For the most part, data is passed down the fixed
function pipeline in an indirect fashion. The data is
typically stored in the URB and accessed via a URB
handle. When a pipeline stage passes the handle of a
URB data entry to a downstream stage, it is said to
make a URB reference. Note that there may be several
references to the same URB data entry in the pipeline at
any given time. When a downstream stage accesses the
URB data entry via a URB handle, it is said to
“dereference” the URB data entry. When there are no
longer any references to a URB data entry within the
pipeline, the URB storage can be reclaimed.

Variable Length
Decode

VLD The first stage of the video decoding pipe that consists
mainly of bit-wide operations. GEN4 supports hardware
VLD acceleration in the VFE fixed function stage.

Vertex Buffer VB Buffer in memory containing vertex attributes.

Vertex Cache VC Cache of Vertex URB Entry (VUE) handles tagged with
vertex indices. See the VS chapter for details on this
cache.

Vertex Fetcher VF The first FF unit in the 3D pipeline responsible for
fetching vertex data from memory. Sometimes referred
to as the Vertex Formatter.

Vertex Header — Vertex data required for every vertex appearing at the
beginning of a Vertex URB Entry.

Vertex ID — Unique ID for each vertex that can optionally be
included in vertex attribute data sent down the pipeline
and used by kernel/shader threads.

Vertex Index — Offset (in vertex-sized units) of a given vertex in a
vertex buffer. Available in the VF and VS units for
debugging purposes.

Vertex Sequence
Number

— Unique ID for each vertex sent down the south bus that
may be used to identify vertices for debugging
purposes.

Vertex Shader VS An API-supplied program that calculates vertex
attributes. Also refers to the FF unit that dispatches
threads to “shade” (calculate attributes for) vertices.

Vertex URB Entry VUE A URB entry that contains data for a specific vertex.

 25

Term Abbr. Definition

Vertical Stride VertStride The distance in element-sized units between 2
vertically-adjacent elements of a Gen4 region-based
GRF access.

Video Front End VFE The first fixed function in the GEN4 generic pipeline;
performs fixed-function media operations.

Viewport VP Post-clipped geometry is mapped to a rectangular
region of the bound rendertarget(s). This rectangular
region is called a viewport. Typically, the viewport is set
to the full extent of the rendertarget(s), but any
subregion can be used as well.

Windower IZ WIZ Term for Windower/Masker that encapsulates its early
(“intermediate”) depth test function.

Windower/Masker WM Fixed function triangle/line rasterizer.

Word W A numerical data type of 16 bits, W represents a signed
word integer.

26

2 3D Pipeline

2.1 Introduction

This section covers the programming details for the 3D fixed functions.

2.2 3D Pipeline Overview

Command
Buffers

Memory
Buffers

URB Readback Data

CS

VF

D
is

pa
tc

he
r

VS

GS

CLIP

SF

WM

G
E

N
4

E
U

s

Message Snoop

URB

Sampler

MathBox

DataPort

Source
Surfaces

Surfaces

R/W Cache

ColorCalc

MsgGW

3D

P
IP

E
LI

N
E

GEN4
SUBSYSTEM

 27

2.2.1 3D Pipeline Stages

The following table lists the various stages of the 3D pipeline and describes their
major functions.

Pipeline Stage Functions Performed

• Command
Stream

• (CS)

• The Command Stream stage is responsible for managing the 3D
pipeline and passing commands down the pipeline. In addition,
the CS unit reads “constant data” from memory buffers and
places it in the URB.

• Note that the CS stage is shared between the 3D and Media
pipelines.

• Vertex Fetch

• (VF)

• The Vertex Fetch stage, in response to 3D Primitive Processing
commands, is responsible for reading vertex data from memory,
reformatting it, and writing the results into Vertex URB Entries.
It then outputs primitives by passing references to the VUEs
down the pipeline.

• Vertex Shader
(VS)

• The Vertex Shader stage is responsible for processing (shading)
incoming vertices by passing them to VS threads.

• Geometry Shader
(GS)

• The Geometry Shader stage is responsible for processing
incoming objects by passing each object’s vertices to a GS
thread.

• Clipper

• (CLIP)

• The Clipper stage performs clip test on incoming objects and, if
required, clips objects via CLIP threads.

• Strip/Fan

• (SF)

• The Strip/Fan stage performs object setup via use of spawned
SF threads (aka Setup threads).

• Windower/Masker

• (WM)

• The Windower/Masker performs object rasterization and spawns
WM thread (aka PS thread) to process (shade) the object pixels.

2.3 3D Primitives Overview

The 3DPRIMITIVE command (defined in the VF Stage chapter) is used to submit 3D
primitives to be processed by the 3D pipeline. Typically the processing results in the
rendering of pixel data into the render targets, but this is not required.

Note: Terminology Note: There is considerable confusion surrounding the term ‘primitive’,
e.g., is a triangle strip a ‘primitive’, or is a triangle within a triangle strip a ‘primitive’?
The D3D10 Spec introduces the term ‘topology’ to describe the higher-level construct
(e.g., a triangle strip), and uses the term ‘primitive’ when discussing a triangle within
a triangle strip. In this spec, we will try to avoid ambiguity by using the term ‘object’
to represent the basic shapes (point, line, triangle), and ‘topology’ to represent input
geometry (strips, lists, etc.). Unfortunately, terms like ‘3DPRIMITIVE’ must remain
for legacy reasons.

28

The following table describes the basic primitive topology types supported in the 3D
pipeline.

Notes:

• There are several variants of the basic topologies. These have been introduced to
allow slight variations in behavior without requiring a state change.

• Number of vertices:
⎯ Dangling Vertices: Topologies have an “expected” number of vertices in

order to form complete objects within the topologies (e.g., LINELIST is
expected to have an even number of vertices). The actual number of vertices
specified in the 3DPRIMITIVE command, and as output from the GS unit, is
allowed to deviate from this expected number --- in which case any “dangling”
vertices are discarded. The removal of dangling vertices is initially performed
in the VF unit. In order to filter out dangling vertices emitted by GS threads,
the CLIP unit also performs dangling-vertex removal at its input. However,
the CLIP unit is required to output the expected number (based on the
assumption that the clipping kernel is thoroughly validated). If a CLIP thread
violates this restriction, behavior is UNDEFINED.

Table 2-1. 3D Primitive Topology Types

3D Primitive
Topology Type

(ordered
alphabetically)

Description

LINELIST A list of independent line objects (2 vertices per line).

Programming Restrictions:

• Normal usage expects a multiple of 2 vertices, though
incomplete objects are silently ignored.

LINELOOP Similar to a 3DPRIM_LINESTRIP, though the last vertex is
connected back to the initial vertex via a line object.

Programming Restrictions:

• Normal usage expects at least 2 vertices, though incomplete
objects are silently ignored. (The 2-vertex case is required by
OGL).

• Not valid after the GS stage (i.e., must be converted by a GS
thread to some other primitive type).

LINESTRIP A list of vertices connected such that, after the first vertex, each
additional vertex is associated with the previous vertex to define a
connected line object.

Programming Restrictions:

• Normal usage expects at least 2 vertices, though incomplete
objects are silently ignored.

LINESTRIP_BF Similar to LINESTRIP, except treated as “backfacing’ during
rasterization (stencil test).

This can be used to support “line” polygon fill mode when two-sided
stencil is enabled.

 29

3D Primitive
Topology Type

(ordered
alphabetically)

Description

LINESTRIP_CONT Similar to LINESTRIP, except LineStipple (if enabled) is continued
(vs. reset) at the start of the primitive topology.

This can be used to support line stipple when the API-provided
primitive is split across multiple tolopologies.

LINESTRIP_CONT_BF Combination of LINESTRIP_BF and LINESTRIP_CONT variations.

POINTLIST A list of point objects (1 vertex per point).

POINTLIST_BF Similar to POINTLIST, except treated as “backfacing’ during
rasterization (stencil test).

This can be used to support “point” polygon fill mode when two-
sided stencil is enabled.

POLYGON Similar to TRIFAN, though the first vertex always provides the “flat-
shaded” values (vs. this being programmable through state).

Programming Restrictions:

• Normal usage expects at least 3 vertices, though incomplete
objects are silently ignored.

QUADLIST A list of independent quad objects (4 vertices per quad).

Programming Restrictions:

• Normal usage expects a multiple of 4 vertices, though
incomplete objects are silently ignored.

• Not valid after the GS stage (i.e., must be converted by a GS
thread to some other primitive type).

QUADSTRIP A list of vertices connected such that, after the first two vertices,
each additional pair of vertices are associated with the previous two
vertices to define a connected quad object.

Programming Restrictions:

• Normal usage expects an even number (4 or greater) of
vertices, though incomplete objects are silently ignored.

• Not valid after the GS stage (i.e., must be converted by a GS
thread to some other primitive type).

5

30

3D Primitive
Topology Type

(ordered
alphabetically)

Description

RECTLIST A list of independent rectangles, where only 3 vertices are provided
per rectangle object, with the fourth vertex implied by the
definition of a rectangle. V0=LowerRight, V1=LowerLeft,
V2=UpperLeft. Implied V3 = V0-V1+V2.

Programming Restrictions:

• Normal usage expects a multiple of 3 vertices, though
incomplete objects are silently ignored.

• The RECTLIST primitive is supported specifically for 2D
operations (e.g., BLTs and “stretch” BLTs) and not as a general
3D primitive. Due to this, a number of restrictions apply to the
use of RECTLIST:

⎯ Must utilize “screen space” coordinates
(VPOS_SCREENSPACE) when the primitive reaches the
CLIP stage. The W component of position must be 1.0 for
all vertices. The 3 vertices of each object should specify a
screen-aligned rectangle (after the implied vertex is
computed).

⎯ Clipping: Must not require clipping or rely on the CLIP
unit’s ClipTest logic to determine if clipping is required.
Either the CLIP unit should be DISABLED, or the CLIP
unit’s Clip Mode should be set to a value other than
CLIPMODE_NORMAL.

⎯ Viewport Mapping must be DISABLED (as is typical with
the use of screen-space coordinates).

TRIFAN Triangle objects arranged in a fan (or polygon). The initial vertex
is maintained as a common vertex. After the second vertex, each
additional vertex is associated with the previous vertex and the
common vertex to define a connected triangle object .

Programming Restrictions:

• Normal usage expects at least 3 vertices, though incomplete
objects are silently ignored.

TRIFAN_NOSTIPPLE Similar to TRIFAN, but poylgon stipple is not applied (even if
enabled).

This can be used to support “point” polygon fill mode, under the
combination of the following conditions: (a) when the frontfacing
and backfacing polygon fill modes are different (so the final fill
mode is not known to the driver), (b) one of the fill modes is
“point” and the other is “solid”, (c) point mode is being emulated
by converting the point into a trifan, (d) polygon stipple is enabled.
In this case, polygon stipple should not be applied to the points-
emulated-as-trifans.

TRILIST A list of independent triangle objects (3 vertices per triangle).

Programming Restrictions:

• Normal usage expects a multiple of 3 vertices, though
incomplete objects are silently ignored.

 31

3D Primitive
Topology Type

(ordered
alphabetically)

Description

TRISTRIP A list of vertices connected such that, after the first two vertices,
each additional vertex is associated with the last two vertices to
define a connected triangle object.

Programming Restrictions:

• Normal usage expects at least 3 vertices, though incomplete
objects are silently ignored.

TRISTRIP_REVERSE Similar to TRISTRIP, though the sense of orientation (winding
order) is reversed – this allows SW to break long tristrips into
smaller pieces and still maintain correct face orientations.

5

32

The following diagrams illustrate the basic 3D primitive topologies. (Variants are not
shown if they have the same definition with respect to the information provided in the
diagrams).

0 1 2 3 n-2 n-1

POINTLIST

LINELIST

0 1 2 3 n-2 n-1

LINESTRIP

0 1 2 3 n-2 n-1

LINELOOP
0

1 2

3

n-2n-1

LINELIST_ADJ

0 1 2 3 4 5 6 7

n-4 n-3 n-2 n-1

LINESTRIP_ADJ

0 1 2 3 4 5 n-2 n-1

 33

A note on the arrows you see below: These arrows are intended to show the vertex
ordering of triangles that are to be considered having “clockwise” winding order in
screen space. Effectively, the arrows show the order in which vertices are used in the
cross-product (area, determinant) computation. Note that for TRISTRIP, this requires
that either the order of odd-numbered triangles be reversed in the cross-product or
the sign of the result of the normally-ordered cross-product be flipped (these are
identical operations).

0

1

2TRILIST 3

4

5 n-3

n-2

n-1

TRILIST_ADJ

6

8

10

7 9

11

n-6

n-4

n-2

n-5 n-3

n-1

0

1

2

TRISTRIP

3

4

5

n-3

n-2

n-1

0

1

2

TRISTRIP_REVERSE

3

4

5

n-3

n-2

n-1

0

2

4

TRISTRIP_ADJ

6

8

n-8

n-6

n-4

n-2

1

3 7

5 9

n-7

n-5

n-3

n-1

0

2

4

1 3

5

0

1

TRIFAN
POLYGON

2

3

n-1

n-2

4

5

5

34

0

QUADLIST

1 2

3 4

5 6

7 n-4

n-3 n-2

n-1

0

QUADSTRIP

1

2

3

4

5

n-2

n-1

1

RECTLIST

2

0 4

5

3 n-2

n-1

n-3

(implied) (implied) (implied)

2.4 3D Command Overview

The following table lists and summarizes the commands supported by the 3D Pipeline.

Command Description

Processing Commands

3DPRIMITIVE This primitive command is used to inject primitives
into the 3D pipeline, where they will be processed
according to the current context state settings.
Most typically this processing will result in
rendering to destination surfaces, though this is
not required.

This command is defined in the VF Stage chapter
(as it is executed there), though the processing of
this command includes the entire 3D pipeline.

 35

Command Description

Control Operation Commands

PIPE_CONTROL This control operation command allows software to
synchronize 3D pipeline operations as seen by the
CPU. For example, this command can be used to
inform the CPU (via a CPU-snoopable memory
write or CPU interrupt) when previously-issued
commands have reached a certain point, such as
read operations complete or results coherent in
memory.

This command is described later in this chapter.

STATE_PREFETCH This control operation command allows software to
initiate the prefetch of memory data into the
pipeline’s Instruction and State Cache. This
command is provided solely for performance
optimization.

See Graphics Processing Engine chapter.

Pipelined State Commands

URB_FENCE This pipelined state command is used to allocate
regions of the URB between the FF units of the 3D
and Media Pipelines.

3DSTATE_PIPELINED_POINTERS This pipelined state command is used to provide
the 3D FF units with offsets to Pipeline State Blocks
stored in memory. These state blocks are read by
the FF units and supply the bulk of the state
variable settings which control the operation of the
units.

This command is described later in this chapter.

3DSTATE_BINDING_TABLE_POINTERS This pipelined state command is used to provide
the 3D FF units with offsets to Binding Tables
stored in memory. The Binding Tables are not
directly accessed by the FF units, instead the
pointers are passed in thread payloads and
eventually routed to the GEN4 shared functions
where they are used to access memory surfaces.

This command is described later in this chapter.

CS_URB_STATE This pipelined state command is used to define the
number and size of URB entries owned by the CS
stage (for use as Constant URB Entries).

See Graphics Processing Engine chapter.

CONSTANT_BUFFER This pipelined state command is used to define a
region of memory that contains “constant”
parameters to be passed to threads. The
constants are read from memory, stored in the
URB, and supplied in thread payloads.

See Graphics Processing Engine chapter.

5

36

Command Description

3DSTATE_INDEX_BUFFER This pipelined state command is used to specify
Index Buffer parameters used in the VF unit’s
InputAssembly function. An Index Buffer can be
used to provide vertex indices when processing
subsequent 3DPRIMITIVE commands.

This command does not travel past the VF stage.

See VF Stage chapter.

3DSTATE_VERTEX_BUFFERS This pipelined state command is used to specify
Vertex Buffer parameters used in the VF unit’s
InputAssembly function. Vertex Buffers provide
vertex data when processing subsequent
3DPRIMITIVE commands.

This command does not travel past the VF stage.

See VF Stage chapter.

3DSTATE_VERTEX_ELEMENTS This pipelined state command is used to specify
Vertex Element parameters used in the VF unit’s
InputAssembly function. Vertex Element
parameters specify how vertex data, extracted
from Vertex Buffers, are format converted and
stored in VUEs.

This command does not travel past the VF stage.

See VF Stage chapter.

3DSTATE_SAMPLER_CACHE_DISABLE This pipelined state command is used to control
Texture Cache operation.

See Sampler chapter.

Non-Pipelined State Commands

STATE_BASE_ADDRESS This pipelined state command is used to supply
base memory addresses used by various functions
to access non-surface memory operands (e.g.,
GEN4 instructions, pipeline state, binding tables,
sampler state, etc.)

See Graphics Processing Engine chapter.

3DSTATE_SAMPLER_PALETTE_LOAD This non-pipelined state command is used to load
the Texture Palette state used by the Sampler
shared function.

See Sampler chapter.

 37

2.5 3D Pipeline State Overview

2.5.1 3D State Model

Primitive
Instructions

Ring Buffer

Binding Table
Ptr Instruction

kernel pointer

State Descriptors

kernel resources

Fixed Function
Unit State

Kernel
Instructions

SampState ptr
Sampler StatePipeline State

Ptr Instruction

Non-Pipelined
State

Instructions

VS
GS
CLP

SF
WM

V
V

VS
GS
CLP

WM

16
Entries

Binding Table Surface State

Surface State

Surface State

kernel pointer

kernel resources
Fixed Function

Unit State

kernel pointer

kernel resources

Fixed Function
Unit State

SampState ptr

Surface State

ColorCalc State

Surface State

Surface State

Surface State includes:
⎠ sampling engine

surfaces
⎠ render targets
⎠ constant buffers
⎠ streamed shader

output buffers

CC

viewport state ptr

Viewport State
16

Entries

viewport state ptr

Viewport State
16

Entries

SF

128+16+8
+32

Entries

5

38

2.5.2 3DSTATE_PIPELINED_POINTERS

The 3DSTATE_PIPELINED_POINTERS command is used to set up the pointers to the
3D fixed function state. It is also used to disable the GS and/or CLIP units and make
them pass-through (input flows through to output). The other units are (by definition)
“enabled”, meaning they will fetch and use the associated pipelined state to control
the unit’s functions.

[DevBW-A,B] Errata BWT007: State data pointed at by offsets from General State
Base must be contained within 32-bit physical address space (that is, must entirely
map to memory pages under 4GB.)

3DSTATE_PIPELINED_POINTERS
Project: All Length Bias: 2

The 3DSTATE_PIPELINED_POINTERS command is used to set up the pointers to the 3D fixed function state. It
is also used to disable the GS and/or CLIP units and make them pass-through (input flows through to output).
The other units are (by definition) “enabled”, meaning they will fetch and use the associated pipelined state to
control the unit’s functions.

[DevBW-A,B] Errata BWT007: State data pointed at by offsets from General State Base must be contained
within 32-bit physical address space (that is, must entirely map to memory pages under 4GB.)

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 00h 3DSTATE_PIPELINED_POINTERS Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 5h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:5 Pointer to VS_STATE

Project: All

Format: GeneralStateOffset[31:5] FormatDesc

Specifies the 32-byte aligned offset of the VS_STATE. This offset is relative to the
General State Base Address.

4:0 Reserved Project: All Format: MBZ

 39

3DSTATE_PIPELINED_POINTERS
2 31:5 Pointer to GS_STATE

Project: All

Format: GeneralStateOffset[31:5] FormatDesc

Specifies the 32-byte aligned offset of the GS_STATE. This offset is relative to the
General State Base Address.

4:1 Reserved Project: All Format: MBZ

0 GS Enable

Project: All

Format: Enable FormatDesc

Specifies whether the GS function is enabled or disabled (pass-through). If this bit is
set to DISABLED, the pointer to GS_STATE is ignored.

Programming Note: When enabling the GS stage that may generate incomplete
objects, the CLIP stage also needs to be ENABLED in order to filter out any incomplete
objects. See Clipper chapter.

3 31:5 Pointer to CLIP_STATE

Project: All

Format: GeneralStateOffset[31:5] FormatDesc

Specifies the 32-byte aligned offset of the CLIP_STATE. This offset is relative to the
General State Base Address.

4:1 Reserved Project: All Format: MBZ

0 CLIP Enable

Project: All

Format: Enable FormatDesc

Specifies whether the CLIP function is enabled or disabled (pass-through). If this bit
is set to ENABLED, the pointer to CLIP_STATE is ignored.

Programming Note: When enabling the GS stage that may generate incomplete
objects, the CLIP stage also needs to be ENABLED in order to filter out any incomplete
objects. See Clipper chapter.

4 31:5 Pointer to SF_STATE

Project: All

Format: GeneralStateOffset[31:5] FormatDesc

Specifies the 32-byte aligned offset of the SF_STATE. This offset is relative to the
General State Base Address.

4:0 Reserved Project: All Format: MBZ

5

40

3DSTATE_PIPELINED_POINTERS
5 31:5 Pointer to WM_STATE

Project: All

Format: GeneralStateOffset[31:5] FormatDesc

Specifies the 32-byte aligned offset of the WM_STATE. This offset is relative to the
General State Base Address.

4:0 Reserved Project: All Format: MBZ

6 31:6 Pointer to COLOR_CALC_STATE

Project: All

Format: GeneralStateOffset[31:6] FormatDesc

Specifies the 64-byte aligned offset of the COLOR_CALC_STATE. This offset is
relative to the General State Base Address.

5:0 Reserved Project: All Format: MBZ

2.5.3 3DSTATE_BINDING_TABLE_POINTERS

3DSTATE_BINDING_TABLE_POINTERS
Project: All Length Bias: 2

The 3DSTATE_BINDING_TABLE_POINTERS command is used to define the location of fixed functions’
BINDING_TABLE_STATE. Only some of the fixed functions utilize binding tables.

[DevBW-A,B] Errata BWT007: Surface State data pointed at by offsets from Surface State Base must be
contained within 32-bit physical address space (that is, must entirely map to memory pages under 4G.)

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 01h 3DSTATE_BINDING_TABLE_POINTERS Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 4h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

 41

3DSTATE_BINDING_TABLE_POINTERS
1 31:5 Pointer to VS Binding Table

Project: All

Format: SurfaceStateOffset[31:5] FormatDesc

Specifies the 32-byte aligned address offset of the VS function’s
BINDING_TABLE_STATE. This offset is relative to the Surface State Base Address.

4:0 Reserved Project: All Format: MBZ

2 31:5 Pointer to GS Binding Table

Project: All

Format: SurfaceStateOffset[31:5] FormatDesc

Specifies the 32-byte aligned address offset of the GS function’s
BINDING_TABLE_STATE. This offset is relative to the Surface State Base Address.

4:0 Reserved Project: All Format: MBZ

3 31:5 Pointer to CLIP Binding Table

Project: All

Format: SurfaceStateOffset[31:5] FormatDesc

Specifies the 32-byte aligned address offset of the CLIP function’s
BINDING_TABLE_STATE. This offset is relative to the Surface State Base Address.

4:0 Reserved Project: All Format: MBZ

4 31:5 Pointer to SF Binding Table

Project: All

Format: SurfaceStateOffset[31:5] FormatDesc

Specifies the 32-byte aligned address offset of the SF function’s
BINDING_TABLE_STATE. This offset is relative to the Surface State Base Address.

4:0 Reserved Project: All Format: MBZ

5 31:5 Pointer to PS Binding Table

Project: All

Format: SurfaceStateOffset[31:5] FormatDesc

Specifies the 32-byte aligned address offset of the PS (Windower) function’s
BINDING_TABLE_STATE. This offset is relative to the Surface State Base Address.

4:0 Reserved Project: All Format: MBZ

5

42

2.6 Vertex Data Overview

The 3D pipeline FF stages (past VF) receive input 3D primitives as a stream of vertex
information packets. (These packets are not directly visible to software). Much of the
data associated with a vertex is passed indirectly via a VUE handle. The information
provided in vertex packets includes:

• The URB Handle of the VUE: This is used by the FF unit to refer to the VUE and
perform any required operations on it (e.g., cause it to be read into the thread
payload, dereference it, etc.).

• Primitive Topology Information: This information is used to identify/delineate
primitive topologies in the 3D pipeline. Initially, the VF unit supplies this
information, which then passes thru the VS stage unchanged. GS and CLIP
threads must supply this information with each vertex they produce (via the
URB_WRITE message). If a FF unit directly outputs vertices (that were not
generated by a thread they spawned), that FF unit is responsible for providing this
information.
⎯ PrimType: The type of topology, as defined by the corresponding field of the

3DPRIMITIVE command.
⎯ StartPrim: TRUE only for the first vertex of a topology.
⎯ EndPrim: TRUE only for the last vertex of a topology.

• Debug information (refer to Debugging chapter)
⎯ The FF unit which owns the VUE
⎯ Sequence numbers which uniquely identify (with some limits) the VUE output

by the owning FF unit. (This data can be used to trap on a specific vertex)

• (Possibly, depending on FF unit) Data read back from the Vertex Header of the
VUE.

2.6.1 Vertex URB Entry (VUE) Formats

In general, vertex data is stored in Vertex URB Entries (VUEs) in the URB, processed
by CLIP threads, and only referenced by the pipeline stages indirectly via VUE
handles. Therefore (for the most part) the contents/format of the vertex data is not
exposed to 3D pipeline hardware – the FF units are typically only aware of the handles
and sizes of VUEs.

VUEs are written in two ways:

• At the top of the 3D Geometry pipeline, the VF’s InputAssembly function creates
VUEs and initializes them from data extracted from Vertex Buffers as well as
internally-generated data.

• VS, GS, and CLIP threads can compute, format and write new VUEs as thread
output.

There are only two points in the 3D FF pipeline where the FF units are exposed to the
VUE data. Otherwise the VUE remains opaque to the 3D pipeline hardware.

• Just prior to the CLIP stage, all VUEs are read-back:
⎯ Readback of the Vertex Header (first 256 bits of the VUE)

• Just after the CLIP stage, on clip-generated VUEs are read-back:
⎯ Readback of the Vertex Header (first 256 bits of the VUE)

 43

Software must ensure that any VUEs subject to readback by the 3D pipeline start with
a valid Vertex Header. This extends to all VUEs with the following exceptions listed
below:

• If the VS function is enabled, the VF-written VUEs are not required to have Vertex
Headers, as the VS-incoming vertices are guaranteed to be consumed by the VS
(i.e., the VS thread is responsible for overwriting the input vertex data).

• If the GS FF is enabled, neither VF-written VUEs nor VS thread-generated VUEs
are required to have Vertex Headers, as the GS will consume all incoming
vertices.

• (There is a pathological case where the CLIP state can be programmed to
guarantee that all CLIP-incoming vertices are consumed – regardless of the data
read back prior to the CLIP stage – and therefore only the CLIP thread-generated
vertices would require Vertex Headers).

The folllowing table defines the Vertex Header. The Position fields are described in
further detail below.

Table 2-2. VUE Vertex HeaderVUE Vertex Header

DWord Bit Description

D0 31:0 Reserved: MBZ

D1 31:0 Reserved: MBZ

D2 31:0 Reserved: MBZ

D3 31:19 Reserved: MBZ

 18:8 Point Width. This field specifies the width of POINT objects in screen-space pixels. It is
used only for vertices within POINTLIST and POINTLIST_BF primitive topologies, and is
ignored for vertices associated with other primitive topologies.

This field is read back by both the GS and Clip units.

Format: U8.3 pixels

 7:0 User Clip Codes. These are ‘outside’ status bits associated with the vertex element
components marked as CullDistance or ClipDistance. The JITTER is required to generate
code to compute and pack these bits. If a Cull/ClipDistance value is negative or a NaN
value, its corresponding User Clip Code bit should be set. Up to eight values/bits are
supported.

The CLIP unit supports the UserClipFlag ClipTest Enable Bitmask (CLIP_STATE)
which is applied to this field before being used in ClipTest.

This field is read back only by the GS unit. This field is ignored for CLIP thread-
generated vertices, as this information is only relevant to CLIP input vertices.

Format: BITMASK8

D4 31:0 Vertex Position X Coordinate. If this is a PREMAPPED vertex, this field contains the X
component of the vertex’s screen space position.

If this is an UNMAPPED vertex, this field contains the X component of the vertex’s NDC
space position (i.e., the clip space X component divided by the clip space W component).

Format: FLOAT32

5

44

DWord Bit Description

D5 31:0 Vertex Position Y Coordinate. If this is a PREMAPPED vertex, this field contains the Y
component of the vertex’s screen space position.

If this is an UNMAPPED vertex, this field contains the Y component of the vertex’s NDC
space position (i.e., the clip space Y component divided by the clip space W component).

Format: FLOAT32

D6 31:0 Vertex Position Z Coordinate. If this is a PREMAPPED vertex, this field contains the Z
component of the vertex’s screen space position.

If this is an UNMAPPED vertex, this field contains the Z component of the vertex’s NDC
space position (i.e., the clip space Z component divided by the clip space W component).

Format: FLOAT32

D7 31:0 Vertex Position RHW Coordinate. This field contains the reciprocal of the vertex’s clip
space W coordinate.

Format: FLOAT32

(D8-Dn) 31:0 (Remainder of Vertex Elements). While DWords D0-D7 are exposed to the device
(i.e., read back by FF units), DWords D8-Dn of vertices written (by threads) are opaque
to the device. Software is free to format/use these DWords as desired.

The absolute maximum size limit on this data is specified via a maximum limit on the
amount of data that can be read from a VUE (including the Vertex Header) (Vertex
Entry URB Read Length has a maximum value of 63 256-bit units). Therefore the
Remainder of Vertex Elements has an absolute maximum size of 62 256-bit units. Of
course the actual allocated size of the VUE can and will limit the amount of data in a
VUE.

2.6.2 Vertex Positions

 (For the sake of brevity, the following discussion will use the term map as a
shorthand for “compute screen space coordinate via perspective divide followed by
viewport transform”.)

The “Position” fields of the Vertex Header are the only vertex position coordinates
exposed to the 3D Pipeline. The CLIP and SF units are the only FF units which
perform operations using these positions. The VUE will likely contain other position
attributes for the vertex outside of the Vertex Header, though this information is not
directly exposed to the FF units. For example, the Clip Space position will likely be
required in the VUE (outside of the Vertex Header) in order to perform correct and
robust 3D Clipping in the CLIP thread.

In the CLIP unit, the read-back Position fields are interpreted as being in one of two
coordinate systems, depending on the CLIP_STATE.VertexPositionSpace bit. The
CLIP unit will modify its VertexClipTest function depending on the coordinate space of
the incoming vertices.

• VPOS_NDCSPACE (Normalized Device Coordinate Space position, post-
perspective division): This is the typical coordinate space in which vertex
positions are defined upon input to the CLIP unit. A speculative perspective-
division will have been performed, though the viewport map transformation will
not have been applied (as this is provided by the downstream SF FF unit). An
advantage of clip-testing in NDC space is that the View Volume has canonical unit

 45

dimensions (i.e., it’s cheap to test against). The “speculative” nature of the
perspective divide is discussed below.

• VPOS_SCREENSPACE (Screen Space position): Under certain circumstances,
the position in the Vertex Header will contain the screen-space (pixel) coordinates
(post viewport mapping).

The SF unit does not have a state bit defining the coordinate space of the incoming
vertex positions. Software must use the Viewport Mapping function of the SF unit in
order to ensure that screen-space coordinates are available after that function. If
screen space coordinates are passed into SF, then software will likely turn off the
Viewport Mapping function.

The following subsections briefly describe the three relevant coordinate spaces.

2.6.2.1 Clip Space Position

The clip-space position of a vertex is defined in a homogeneous 4D coordinate space
where, after perspective projection (division by W), the visible “view volume” is some
canonical (3D) cuboid. Typically the X/Y extents of this cuboid are [-1,+1], while the
Z extents are either [-1,+1] or [0,+1]. The API’s VS or GS shader program will
include geometric transforms in the computation of this clip space position such that
the resulting coordinate is positioned properly in relation to the view volume (i.e., it
will include a “view transform” in this computation path).

Note that, under typical perspective projections, the clip-space W coordinate is equal
to the view-space Z coordinate.

A vertex’s clip-space coordinates must be maintained in the VUE up to 3D clipping, as
this clipping is performed in clip space.

• Clip-space position are stored outside of (beyond) the Vertex Header. VS/GS/Clip
kernels must perform perspective projection internally and subsequently store the
post-projected (NDC-space, see below) position in the Vertex Header for use by
the FF pipeline.

2.6.2.2 NDC Space Position

A perspective divide operation performed on a clip-space position yields a
[X,Y,Z,RHW] NDC (Normalized Device Coordinates) space position. Here “normalized”
means that visible geometry is located within the [-1,+1] or [0,+1] extent view
volume cuboid (see clip-space above).

• The NDC X,Y,Z coordinates are the clip-space X,Y,Z coordinates (respectively)
divided by the clip-space W coordinate (or, more correclty, the clip-space X,Y,Z
coordinates are multiplied by the reciprocal of the clip space W coordinate).
⎯ Note that the X,Y,Z coordinates may contain INFINITY or NaN values (see

below).

• The NDC RHW coordinate is the reciprocal of the clip-space W coordinate and
therefore, under normal perspective projections, it is the reciprocal of the view-
space Z coordinate. Note that NDC space is really a 3D coordinate space, where
this RHW coordinate is retained in order to perform perspective-correct
interpolation, et al. Note that, under typical perspective projections.
⎯ Note that the RHW coordinate make contain an INFINITY or NaN value (see

below).

5

46

2.6.2.2.1 Speculative Perspective Divide

When operating in VPOS_NDCSPACE mode, the CLIP stage requires a ‘speculative’
PerspectiveDivide to have been performed on all incoming vertices. This places a
requirement on software (the JITTER) to cause the NDC coordinates to be computed
and stored prior to the CLIP stage, in addition to any shader functions which may be
required. In the case where the application simply inputs clip space positions without
any intervening processing prior to the CLIP stage, software must cause the
speculative PerspectiveDivide function to be performed in the VS thread.

This PerspectiveDivide function is considered speculative in that the results may not
be used, i.e., in the case where the vertex lies outside the clipping boundaries. Note
that, when performing PerspectiveDivide before 3DClipping, the resulting NDC
coordinates may not even be representable. For example, the clip-space W coordinate
may be zero or close enough to zero to cause the X/W, Y/W or Z/W operation to result
in an INFINITE value. However, in these cases, the PerspectiveDivide results will not
be used, and instead the corresponding clip-space coordinates will be used as input to
the 3DClipping function (assuming the object is not trivially rejected).

NaN Values in NDC Coordinate Components

There are cases where a speculative PerspectiveDivide can produce NaN results. The
following table shows these cases for the computation of X/W (same holds true for
Y/W and Z/W).

W RHW Clip X NDC X
=

X*RHW

Comments

NaN NaN d/c NaN Clip space position not
representable (W is NaN)

d/c d/c NaN NaN Clip space position not
representable (X is NaN)

+/-INF +/-0 +/-INF NaN Clip space position is representable,
but 3D clipping will not yield valid
results.

+/-0
or

denorm

+/-INF +/-0 or
denorm

NaN Clip space postiion is representable.
This is a case where a NDC X,Y,Z
component can be NaN even when
the Clip space position is
representable. 3D Clipping can
yield valid results.

+/-INF +/-0 Not +/-
INF

+/-0 This is the case of infinite
perspective, where the vertex
collapses to the NDC origin.

+/-0
or

denorm

+/-INF Not (+/-
0 or

denorm)

+/-INF This is a case where an infinite NDC
coordinate is generated, though 3D
Clipping will be able to produce
valid results.

During VertexClipTest, any vertex with an NaN NDC RHW coordinate will be marked as
“BAD”. During ClipDetermination, any object containing a ‘BAD’ vertex will be trivially
rejected.

 47

2.6.2.3 Screen-Space Position

Screen-space coordinates are defined as:

• X,Y coordinates are in absolute screen space (pixel coordinates, upper left origin).
See Vertex X,Y Clamping and Quantization in the SF section for a discussion of the
limitations/restrictions placed on screenspace X,Y coordinates.

• Z coordinate has been mapped into the range used for DepthTest.
⎯ D3D allows the visible Z range ([0,1] NDC) to be mapped into some subrange

within [0,1]. However, by definition, pre-mapping in D3D disables Z clipping.
(If mapped Z coordinates outside of [0,1] are presented, rendering results are
undefined.) Software must explicitly disable Z clipping via Viewport Z
ClipTest Enable (CLIP_STATE) whenever positions are pre-mapped.

• RHW coordinate is actually the reciprocal of clip-space W coordinate (typically the
reciprocal of the view-space Z coordinate). D3D requires RHW to be positive, or
rendering results are undefined.

2.7 3D Pipeline Stage Overview

The fixed-function (FF) stages of the 3D pipeline share some common functionality,
specifically related to the creation and management of threads. This chapter is
intended to describe the behavior and programming model of these common
functions, in an effort to not replicate this information for each pipeline stage. Stage-
specific exceptions to the information provided here will be included in the stage-
specific chapters to follow.

2.7.1 Generic 3D FF Unit Block Diagram

The following block diagram, in general, applies to the VS, GS and CLIP stages.

GEN4
SUBSYSTEMURB

Entry
Manager

Object Staging Buffer

State
Manager

Global
URB
Mgr.

URB

Thread Request Generator

Thread Output Handling

URB Readback
Statistics
Gathering

Vertex Clip Test (CLIP)

FF Unit

Previous Stage

Next Stage

5

48

2.7.2 Common 3D FF Unit Functions

A major role of the FF stages is in managing the GEN4 threads that perform the
majority of the processing on the vertex/pixel data. (In general, the amount of non-
thread processing performed by the 3DPIPE stages increases towards the end of the
pipeline.) In a generic sense, the key functions included are:

• Bypass Mode

• URB Entry Management

• Thread Initiation Management

• Thread Request Data Generation
⎯ Thread Control Information Generation
⎯ Thread Payload Header Generation
⎯ Thread Payload Data Generation

• Thread Output Handling

• URB Entry Readback

• Statistics Gathering

The following table lists the various state variables used to control the common FF
functions:

State Variable Programmed Via Generic Functions
Affected

<stage> Enable 3DSTATE_PIPELINED_POIN
TERS

Bypass Mode

Kernel Start Pointer Pipeline State Descriptor Thread Request Data Gen.

GRF Register Block Count Pipeline State Descriptor Thread Request Data Gen.

Single Program Flow Pipeline State Descriptor Thread Request Data Gen.

Thread Priority Pipeline State Descriptor Thread Request Data Gen.

Floating Point Mode Pipeline State Descriptor Thread Request Data Gen.

Exceptions Enable Pipeline State Descriptor Thread Request Data Gen.

Scratch Space Base Pointer Pipeline State Descriptor Thread Request Data Gen.

Per Thread Scratch Space Pipeline State Descriptor Thread Request Data Gen.

Constant URB Entry Read
Length

Pipeline State Descriptor Payload Data Gen.

Constant URB Entry Read
Offset

Pipeline State Descriptor Payload Data Gen.

Vertex URB Entry Read
Length

Pipeline State Descriptor Payload Data Gen.

Vertex URB Entry Read
Offset

Pipeline State Descriptor Payload Data Gen.

Dispatch GRF Start Register
for URB Data

Pipeline State Descriptor Payload Data Gen.

 49

State Variable Programmed Via Generic Functions
Affected

Maximum Number of
Threads

Pipeline State Descriptor Thread Resource Alloc.

Scratch Space Mgt.

<stage> Fence URB_FENCE_POINTER URB Entry Mgt.

URB Entry Allocation Size Pipeline State Descriptor URB Entry Mgt.

Number of URB Handles Pipeline State Descriptor URB Entry Mgt.

Sampler State Pointer Pipeline State Descriptor Payload Header Gen.

Sampler Count Pipeline State Descriptor Thread Request Data Gen.

<stage> Binding Table
Pointer

3DSTATE_BINDING_TABLE_
POINTERS

This gets routed directly to
shared functions (transparent
to software).

Binding Table Entry Count Pipeline State Descriptor Thread Request Data Gen.

Statistics Enable Pipeline State Descriptor Statistics Gathering

2.7.3 Pipeline Stage Input

In general, each stage of the 3D pipeline receives inputs from the previous stage. The
following table summarizes these types of input and how they are handled by a stage.

Input Operation

• Pipelined State
Commands

• All stages: The stage receives the various pipelined state
commands, extracts the stage-specific information (if applicable), and
then forwards the command down the pipeline.

• 3D Control
Operations

• All stages: The stage receives the various pipelined 3D control
operations, performs any stage-specific actions (see definition below),
and then forwards the operation down the pipeline.

• Refer to 3D Control Operations.

• 3D Primitives • CS: The CS unit receives 3DPRIMITIVE commands directly from its
Command Input function, and passes the relevant parameters to the VF
stage.

• VF: The VF stage receives 3DPRIMITIVE command information from
the CS unit, executes that command, stores the resultant vertex data in
the URB and passes corresponding vertex information packets down the
pipeline.

• VS, GS, CLIP, SF, WM: The stage receives 3D primitive topologies
as sequences of vertex information packets. These vertices are the
result of a 3DPRIMITIVE command, where the source vertices may have
undergone processing by previous pipeline stages.

5

50

2.7.4 Pipelined State Commands

2.7.4.1 URB_FENCE

The URB_FENCE command is used to reallocate the URB amongst the various pipeline
stages. The actual fence values are passed from the CS to a Global URB Manager
function, and only an indication of a fence change is propagated down the pipeline.
(See Graphics Processing Engine for a description of this command).

FF Stage Support

VF N/A. The VF unit uses the UEs allocated to the VS unit.

CS
VS
GS

CLIP
SF

WM

When a FF unit detects a URB fence change, it first waits for any current tasks
to complete. It then proceeds to initiate the deallocation of the UE handles it
currently owns. It will then request reallocation of its new handles and
proceed to use those new handles for subsequent activities. (Implementation
Note: The deallocation of UE handles that are currently “free” (not in flight) is
immediate. The deallocation of UE handles that are in flight will occur
sometime after those handles are dereferenced (consumed by the pipeline).
This trailing deallocation occurs while the FF unit proceeds onto new work.)

2.7.4.2 3DSTATE_PIPELINED_POINTERS

The state variables that control FF unit operations are primarily specified indirectly via
the 3DSTATE_PIPELINED_POINTERS command. The table below summarizes each
stage’s handling of this command. Refer to the description of the
3DSTATE_PIPELINED_POINTERS command for a general description of that command.
Refer to the stage-specific chapters for a definition and description of the various state
blocks referenced by this command.

FF Stage Support

CS N/A

VF N/A (its state is programmed directly with other pipelined state commands)

VS
GS

CLIP
SF

WM

Each stage extracts the pointer to its state block, and will start using that
new state information for subsequent operations. The command is sent
down the pipeline in order with all other pipeline traffic.

The GS and CLIP units also extract a specific Enable bit from this command.
If the unit is disabled, the corresponding state pointer is ignored, as the unit
does not require this state while disabled.

 51

2.7.4.3 3DSTATE_BINDING_TABLE_POINTERS

All stages that support the spawning of threads are required to pass a stage-specific
Binding Table Pointer in the thread payload. The thread will subsequently pass this
pointer in messages to several Shared Functions in order for those functions to access
and process memory operands correctly.

The 3DSTATE_BINDING_TABLE_POINTERS command is used to pass these stage-
specific pointers down the pipeline. The table below summarizes each stage’s
handling of this command. Refer to the description of the
3DSTATE_BINDING_TABLE_POINTERS command for a general description of that
command, and the Shared Functions chapter for a description of the Binding Tables
and their use.

FF Stage Support

CS N/A

VF N/A (its state is programmed directly with other pipelined state commands)

VS
GS

CLIP
SF

WM

Each stage extracts its specific Binding Table Pointer, which it will start using
for subsequent thread payloads. The command is sent down the pipeline in
order with all other pipeline traffic.

2.7.4.4 CONSTANT_BUFFER

The CONSTANT_BUFFER command is used to read “constant” data from a memory
buffer into a special Constant URB Entry (CURBE), and then pass the CURBE handle
down the pipeline for optional inclusion in subsequent thread payloads. All stages that
support the spawning of threads will extract the CURBE Handle from the command as
it passes down the pipeline.

The table below summarizes each stage’s handling of this command. Refer to the
description of the CONSTANT_BUFFER command (Graphics Processing Engine) for a
general description of that command, and below for a description of Constant URB
Entries.

FF Stage Support

CS The CS unit executes the command, reading the data from the memory buffer
into a CURBE, and then passes the handle of the CURBE down the pipeline (as a
manifestation of this command).

VF As the VF unit does not spawn threads, it simply passes this command down the
pipeline.

VS
GS

CLIP
SF

WM

Each stage extracts the common Constant URB Entry Handle, which it will
start using for subsequent thread payloads. The command is send down the
pipeline in order with all other pipeline traffic.

5

52

2.7.5 Bypass Mode

For some (GS, CLIP) FF stages, if the associated <FF> Enable bit of the
3DSTATE_PIPELINED_POINTERS command is DISABLED, the stage goes into Bypass
mode. In this mode, the incoming vertex and control packets are directly streamed to
the next stage. Changes to binding table pointers and URB fences changes are still
processed – this allows a single PIPELINE_STATE_POINTER command to enable the FF
stage and commence normal operation.

Exceptions to this generic function are listed below. Refer to the FF stage’s PRM
chapter for details.

FF Stage Exceptions

CS Cannot be explicitly disabled; Bypass mode not supported.

VF Cannot be explicitly disabled; Bypass mode not supported.

VS While the VS stage cannot be explicitly disabled, the VS shading “function” can
be disabled, causing the VF-generated VUEs to pass down the pipeline
“unshaded”.

GS Supports Bypass mode, though always performs URB readback of vertices prior
to CLIP stage

CLIP Supports Bypass mode. Note that there are conditions underwhich the Clip
stage must be enabled.

SF Cannot be explicitly disabled; Bypass mode not supported.

WM Cannot be explicitly disabled; Bypass mode not supported.

2.7.6 URB Entry Management

Note: See Graphics Processing Engine for a discussion of URB Allocation Requirements and
Guidelines, as well as Command Ordering Rules.

Most FF stages can be allocated a number (possibly zero) of URB entries. These URB
entries store the output of threads that the FF unit spawns. The following table lists
which stages support URB Entry allocation:

FF Stage URB Allocation

CS Allocated entries used to pass constants to threads. (Optional)

VF Not allocated entries – writes to entries (VUEs) allocated to VS. If VS is
enabled, these are input to the VS thread. If VS is disabled, these entries will
pass down the pipeline.

VS Allocated entries (VUEs) used as vertex input-to and output-from a VS thread
(if the VS Function is enabled) or to send raw VF-generated vertex data down
the pipe (if the VS Function is disabled). (Required, as the VS stage cannot be
DISABLED)

GS Allocated entries (VUEs) to store vertex output from the GS threads (Only
required if GS stage is ENABLED)

 53

FF Stage URB Allocation

CLIP Allocated entries (VUEs) to store vertex output from the CLIP threads (Only
required if CLIP stage is ENABLED)

SF Allocated entries (PUEs) to store per-primitive setup results from SETUP
threads. (Required)

WM Not allocated any entries (does not store results in the URB).

The following table lists the state variables controlling the URB Entry Management for
a 3D pipeline FF stage:

State Variable Programmed Via

<stage> Fence URB_FENCE_POINTER

URB Entry Allocation Size Pipeline State Descriptor

Number of URB Entries Pipeline State Descriptor

The Number of URB Handles state variable specifies how many URB entries are
allocated for output by the FF unit.

All URB entries allocated to a particular FF stage has a size in even multiples of 256-
bit URB rows (i.e, 512-bit granularity), and is specified by the URB Entry Allocation
Size state variable. This size is for allocation purposes only. Threads may read/write
less than this amount, in 256-bit units.

Where the FF stage’s URB entries reside within the URB is defined via the URB_FENCE
instruction. See URB Allocation (Graphics Programming Engine) for a description of
this command.For each stage, a <stage> Fence state variable is specified, where the
fence value for a stage specifies the ending address of that stage’s allocation. Here
the ending address is defined as the 512-bit row # following the stage’s allocation.

If a stage does not require any URB allocation, its fence value should be set equal to
the fence value of the preceding stage. The URB fence programming must
accommodate the amount of URB space each enabled stage requires, i.e., (URB Entry
Allocation Size * Number of URB Entries). A stage may be allocated more than
this required amount, though that storage will effectively be wasted. Note that
changing either the URB Entry Allocation Size or Number of URB Entries state
variables requires a subsequent URB_FENCE command (see Graphics Processing
Engine for Command Ordering Rules).

Note: One possible reason for allocating more space than required in a fenced URB region is
to allow for some expansion/contraction of URB entries within that region without
requiring reprogramming of adjacent regions (and the related performance impact).

5

54

URB Entry Y.0 URB Entry
Allocation Size

URB Entry Y.1

...

URB Entry Y.n-1

Fence X

Fence Y

Number of
URB Handles

256 bits

2.7.7 Thread Initiation Management

Those FF stages that can spawn threads must have buffered the input (URB entries)
available to supply a thread, and then ensure that there are sufficient resources
(within the domain of the 3D pipeline) to make the thread request.

Once a FF stage determines a thread request can be submitted, (a) all input data
required to initiate the thread is generated, (b) this information is submitted to the
common thread dispatcher, (c) the thread dispatcher will spawn the thread as soon as
an EU with sufficient GRF resources becomes available, and finally (d) the thread will
start execution. With respect to concurrent threads, steps (c) and (d) can proceed out
of order (i.e., a threads are not necessarily dispatched in the order that the thread
requests are submitted to the thread dispatcher).

 55

2.7.7.1 Thread Input Buffering

Each FF stage varies with regard to thread input requirements, and so this will not be
discussed in this chapter other than the overview information provided in the following
table:

FF Stage Thread Input Requirements

CS N/A (does not spawn threads)

VF N/A (does not spawn threads)

VS Normally, two vertices are buffered before a VS thread is spawned to shade the
pair in parallel. Under some circumstances (e.g., a flush, state change, etc.) a
single vertex will be shaded.

GS All the vertices associated with an object must be buffered before a GS thread
can be initiated to process the object.

CLIP All the vertices associated with an object must be buffered before a CLIP thread
can be initiated to process the object.

SF All the vertices associated with an object must be buffered before a SETUP
thread can be initiated to process the object.

WM Threads spawned as required by the rasterization algorithm.

2.7.7.2 Thread Resource Allocation

Once a FF stage that spawn threads has sufficient input to initiate a thread, it must
guarantee that it is safe to request the thread initiation. For all these FF stages, this
check is based on :

• The availability of output URB entries:
o VS: For each input URB entry, an output URB entry must be available.
o GS: At least one output URB entry must be available to serve as the

initial output vertex from the GS thread. However, software must
guarantee that additional URB entries will eventually become available
to allow the pipeline to make forward progress and not deadlock.
There are two considerations here:

 Single GS Threads (Maximum Number of Threads == 1):
There must be enough GS output URB entries allocated to
allow the GS thread to make progress (call this number P). P
must include enough vertices to allow the next enabled stage
to make progress, i.e., must contain enough vertices for the
worst-case object within a primitive. For example, the system
would hang if the GS stage was only allocated 2 URB entries
and the GS thread tried to output a TRILIST. In this case the
GS stage would need to be allocated at least 3 URB entries –
the GS thread would output the first 3 vertices, then would
stall on the allocation of the 4th vertex until the rest of the
pipeline consumed that first triangle and dereferenced the first
vertex. The clipper, when enabled, imposes additional
requirements on the number of output URB entries allocated
to the GS. Because of the way the clipper processes strip/fan

5

56

primitives, it will not release the URB entries for the vertices of
a given object until it has finished processing the next object
in the primitive. The minimum number of handles that must
be allocated to the GS for strip/fan –type primitives is thus
increased according to the following table:

Topology Minimum GS Handles

LINESTRIP, LINESTRIP_BF,
LINESTRIP_CONT,

LINESTRIP_CONT_BF

3

POLYGON, TRIFAN,
TRIFAN_NOSTIPPLE

4

TRISTRIP, TRISTRIP_REV 5

 Concurrent GS threads: If more than one concurrent GS
thread is permitted, software must account for the possibility
that all subsequent GS threads complete before the preceding
GS thread outputs its first vertex. Therefore, if N concurrent
threads are permitted, and each GS requires P URB handles,
there must be enough GS URB entries allocated to
accommodate (N-1)*P entries for the subsequent threads plus
P entries to ensure the preceding thread can make progress,
for a total of N*P entries.

o CLIP: Same considerations as GS (above)
o SF: An output URB entry must be available to store the results of the

SETUP thread.
o WM: N/A (does not output to URB)

• The Maximum Number of Threads state variable. This state variable limits
the number of concurrent threads a FF stage can have executing. As long as
the FF stage is operating below this limit, it can make additional thread
initiation requests.

• In addition, the WM unit utilizes a scoreboard mechanism to ensure proper
ordering of operations – and this mechanism can postpone the initiation of
new threads. (See Windower chapter).

Software is responsible for programming of Maximum Number of Threads to
ensure the correct and optimal operation of the 3D pipeline.

 57

The considerations for programming Maximum Number of Threads are summarized
below:

1. URB Allocation: (See discussion above)

2. Scratch Space Allocation: When the current kernel of an enable stage
requires use of scratch space (for API-defined temporary storage, register
spill/fill, overflow stacks, etc.), software must limit the number of concurrent
threads (via Maximum Number of Threads) such that the total scratch
space requirement is satisfied by the amount of scratch space memory
allocated to the FF stage.

3. Stream Output Serialization: If a kernel is required to output a serialized
stream of data to a memory buffer (e.g., a GS thread supporting D3D10’s
Stream Output function), threads for that stage must be serialized by SW only
allowing (Maximum Number of Threads == 1).

4. Performance: In general, a larger number of possibly-concurrent threads
will better ensure the GEN4 cores are fully utilized.

Note: The 3D pipeline can function correctly with (Maximum Number of Threads == 1)
set at each enabled stage, given that there are sufficient resources to run this single
thread (scratch space, etc). However, this will certainly not be an optimal
configuration. See Graphics Processing Engine for a discussion of URB Allocation
Requirements and Guidelines which includes information on programming the Number
Of Threads for the various FF units.

2.7.8 Thread Request Generation

Once a FF unit determines that a thread can be requested, it must gather all the
information required to submit the thread request to the Thread Dispatcher. This
information is divided into several categories, as listed below and subsequently
described in detail.

• Thread Control Information: This is the information required (from the FF
unit) to establish the execution environment of the thread. Note that some
information affecting the thread execution state is programmed external to the 3D
pipeline (e.g., Exception Handler IP, Breakpoint IP, etc.) See Debugging chapter.

• Thread Payload Header: This is the first portion of the thread payload passed
in the GRF, starting at GRF R0. This is information passed directly from the FF
unit. It precedes the Thread Payload Input URB Data.

• Thread Payload Input URB Data: This is the second portion of the thread
payload. It is read from the URB using entry handles supplied by the FF unit.

2.7.8.1 Thread Control Information

The following table describes the various state variables that a FF unit uses to provide
information to the Thread Dispatcher and which affect the thread execution
environment. Note that this information is not directly passed to the thread in the
thread payload (though some fields may be subsequently accessed by the thread via
architectural registers).

5

58

Table 2-3. State Variables Included in Thread Control Information

State Variable Usage FFs

Kernel Start Pointer This field, together with the General State
Pointer, specifies the starting location (1st GEN4
core instruction) of the kernel program run by
threads spawned by this FF unit. It is specified
as a 64-byte-granular offset from the General
State Pointer.

All FFs spawning
threads (VS, GS,
CLIP, SF, WM)

GRF Register Block
Count

Specifies, in 16-register blocks, how many GRF
registers are required to run the kernel. The
Thread Dispatcher will only seek candidate EUs
that have a sufficient number of GRF register
blocks available. Upon selecting a target EU, the
Thread DIspatcher will generate a logical-to-
physical GRF mapping and provide this to the
target EU.

All FFs spawning
threads (VS, GS,
CLIP, SF, WM)

Single Program
Flow (SPF)

Specifies whether the kernel program has a
single program flow (SIMDnxm with m = 1) or
multiple program flows (SIMDnxm with m > 1).
See CR0 description in ISA Execution
Environment.

All FFs spawning
threads (VS, GS,
CLIP, SF, WM)

Thread Priority The Thread Dispatcher will give priority to those
thread requests with Thread Priority of
HIGH_PRIORITY over those marked as
LOW_PRIORITY. Within these two classes of
thread requests, the Thread Dispatcher applies a
priority order (e.g., round-robin --- though this
algorithm is considered a device implementation-
dependent detail).

All FFs spawning
threads (VS, GS,
CLIP, SF, WM)

Floating Point Mode This determines the initial value of the Floating
Point Mode bit of the EU’s CR0 architectural
register that controls floating point behavior in
the EU core. (See ISA.)

All FFs spawning
threads (VS, GS,
CLIP, SF, WM)

Exceptions Enable This bitmask controls the exception hanlding
logic in the EU. (See ISA.)

All FFs spawning
threads (VS, GS,
CLIP, SF, WM)

Sampler Count This is a hint which specifies how many indirect
SAMPLER_STATE structures should be
prefetched concurrent with thread initiation. It
is recommended that software program this field
to equal the number of samplers, though there
may be some minor performance impact if this
number gets large.

This value should not exceed the number of
samplers accessed by the thread as there would
be no performance advantage. Note that the
data prefetch is treated as any other memory
fetch (with respect to page faults, etc.).

All stages
supporting
sampling (VS,
GS, WM)

Binding Table Entry
Count

This is a hint which specifies how many indirect
BINDING_TABLE_STATE structures should be
prefetched concurrent with thread initiation.
(The comments included in Sampler Count
(above) also apply to this field).

All FFs spawning
threads (VS, GS,
CLIP, SF, WM)

 59

2.7.8.2 Thread Payload Generation

FF units are responsible for generating a thread payload – the data pre-loaded into the
target EU’s GRF registers (starting at R0) that serves as the primary direct input to a
thread’s kernel. The general format of these payloads follow a similar structure,
though the exact payload size/content/layout is unique to each stage. This subsection
describes the common aspects – refer to the specific stage’s chapters for details on
any differences.

The payload data is divided into two main sections: the payload header followed by
the payload URB data. The payload header contains information passed directly from
the FF unit, while the payload URB data is obtained from URB locations specified by
the FF unit.

Note: The first 256 bits of the thread payload (the initial contents of R0, aka “the R0
header”) is specially formatted to closely match (and in some cases exactly match)
the first 256 bits of thread-generated messages (i.e., the message header) accepted
by shared functions. In fact, the send instruction supports having a copy of a GR’s
contents (such as R0) used as the message header. Software must take this intention
into account (i.e., “don’t muck with R0 unless you know what you’re doing”). This is
especially important given the fact that several fields in the R0 header are considered
opaque to SW, where use or modification of their contents might lead to UNDEFINED
results.

The payload header is further (loosely) divided into a leading fixed payload header
section and a trailing, variable-sized extended payload header section. In general the
size, content and layout of both payload header sections are FF-specific, though many
of the fixed payload header fields are common amongst the FF stages. The extended
header is used by the FF unit to pass additional information specific to that FF unit.
The extended header is defined to start after the fixed payload header and end at the
offset defined by Dispatch GRF Start Register for URB Data. Software can cause
use the Dispatch GRF Start Register for URB Data field to insert padding into the
extended header in order to maintain a fixed offset for the start of the URB data.

Following the payload header is the payload URB data. The FF unit provides the
information (handles, etc.) used by the GEN4 subsystem to read specific portions of
the URB and subsequently load this data as part of the thread payload.

Table 2-4. Payload Sizes

FF
Stage

Fixed Payload
Header Size

(# GRF Regs)

Extended Payload Header
Size

(# GRF Regs)

URB Data

CS N/A N/A N/A

VF N/A N/A N/A

VS 1 (R0 only) 0 (typically, can be non-zero if
padding requried)

Optional Constant URB data
+ 2 (interleaved) Vertex
URB Entries

GS 1 (R0 only) 0 (typically, can be non-zero if
padding requried)

Optional Constant URB data
+ 1-6 Vertex URB Entries

CLIP 1 (R0 only) 0 (typically, can be non-zero if
padding requried)

Optional Constant URB data
+ 1-3 Vertex URB Entries

5

60

FF
Stage

Fixed Payload
Header Size

(# GRF Regs)

Extended Payload Header
Size

(# GRF Regs)

URB Data

SF 3 (R0-R2) 0 (typically, can be non-zero if
padding requried)

Optional Constant URB data
+ 1-3 Vertex URB Entries

WM 2 (R0-R1) Variable (see WM chapter) Optional Constant URB data
+ 1 Primitive URB Entries

The following diagrams show the general layout of the various thread payloads. Refer
to the specific FF stage chapters for details.

Extended Header
(optional)

Fixed Size/Format
 (FF-specific)

Constant URB data
(optional)

Vertex URB Entry
Data (optional)

Payload Header

GR Width = 256 bits

R0

Dispatch GRF
Start Register
for URB Data

Variable Size/Format
 (FF-specific)

Constant URB Entry Read
Length

Vertex URB Entry Read
Length * 2

 Vertex URB
Entry Data

...

Thread Payload
(VS)

Vertex Data
interleaved into

High/Low GR halves

M

 61

Extended Header
(optional)

Fixed Size/Format (FF-specific)

Constant URB data
(optional)

Vertex URB Entry Data

Payload Header

GR Width = 256 bits

R0

Variable Size/Format (FF-specific)

Constant URB Entry Read
 Length

Vertex URB Entry Read
 Length

 Vertex URB Entry Data

 Vertex URB Entry Data

...

Number of Vertex URB
Entries determined by
Object PrimType

Thread Payload Layout
(GS, CLIP, SF)

Dispatch GRF
Start Register
for URB Data

Vertex URB Entry Read
 Length

Vertex URB Entry Read
 Length

Extended Header
(optional)

Fixed Size/Format (FF-specific)

Constant URB data
(optional)

Payload Header

GR Width = 256 bits

R0

Variable Size/Format (FF-specific)

Constant URB Entry Read
 Length

URB Entry Read Length Primitive URB Entry Data

...

Thread Payload
(WM)

Dispatch GRF
Start Register
for URB Data

5

62

2.7.8.2.1 Fixed Payload Header

The payload header is used to pass FF pipeline information required as thread input
data. This information is a mixture of SW-provided state information (state table
pointers, etc.), primitive information received by the FF unit from the FF pipeline, and
parameters generated/computed by the FF unit. most of the fields of the fixed header
are common between the FF stages. These non-FF-specific fields are described in
Table 2-5. Note that a particular stage’s header may not contain all these fields, so
they are not “common” in the strictest sense.

Table 2-5. Fixed Payload Header Fields (non-FF-specific)

Fixed Payload
Header Field

(non-FF-specific)

Description FFs

FF Unit ID Function ID of the FF unit. This value identifies the FF
unit within the GEN4 subsystem. The FF unit will use
this field (when transmitted in a Message Header to
the URB Function) to detect messages emanating
from its spawned threads.

All FFs
spawning
threads

Snapshot Flag Set when the FF unit detects when this thread
dispatch matches certain debug criteria.

All FFs
spawning
threads

Thread ID This field uniquely identifies this thread within the FF
unit over some period of time. See Debugging
chapter.

All FFs
spawning
threads

Scratch Space
Pointer

This is the starting location of the thread’s allocated
scratch space, specified as an offset from the
General State Base Address. Note that scratch
space is allocated by the FF unit on a per-thread
basis, based on the Scratch Space Base Pointer
and Per-Thread Scratch Space Size state
variables. FF units will assign a thread an arbitrarily-
positioned region within this space. The scratch
space for multiple (API-visible) entities (vertices,
pixels) will be interleaved within the thread’s scratch
space.

All FFs
spawning
threads

Dispatch ID This field identifies this thread within the outstanding
threads spawned by the FF unit. This field does not
uniquely identify the thread over any significant
period of time.

Implementation Note: This field is effectively an
“active thread index”. It is used on a thread’s URB
allocation request to identify which thread’s handle
pool is to source the allocation. It is used upon
thread termination to free up the thread’s scratch
space allocation.

All FFs
spawning
threads

 63

Fixed Payload
Header Field

(non-FF-specific)

Description FFs

Binding Table
Pointer

This field, together with the Surface State Base
Pointer, specifies the starting location of the Binding
Table used by threads spawned by the FF unit. It is
specified as a 64-byte-granular offset from the
Surface State Base Pointer.

See Shared Functions for a description of a Binding
Table.

All FFs
spawning
threads

Sampler State
Pointer

This field, together with the General State Base
Pointer, specifies the starting location of the Sampler
State Table used by threads spawned by the FF unit.
It is specified as a 64-byte-granular offset from the
General State Base Pointer.

See Shared Functions for a description of a Sampler
State Table.

All FFs
spawning
threads which
sample (VS,
GS, WM)

Per Thread
Scratch Space

This field specifies the amount of scratch space
allocated to each thread spawned by the FF unit.

The driver must allocate enough contiguous scratch
space, starting at the Scratch Space Base Pointer,
to ensure that the Maximum Number of Threads
can each get Per-Thread Scratch Space size
without exceeding the driver-allocated scratch space.

All FFs
spawning
threads

Handle ID <n> This ID is assigned by the FF unit and links the thread
to a specific entry within the FF unit. The FF unit will
use this information upon detecting a URB_WRITE
message issued by the thread.

Threads spawned by the GS, CLIP, and SF units are
provided with a single Handle ID / URB Return Handle
pair. Threads spawned by the VS are provided with
one or two pairs (depending on how many vertices
are to be processed). Threads spawned by the WM
do not write to URB entries, and therefore this info is
not supplied.

VS,GS,CLIP,
SF

URB Return
Handle <n>

This is an initial destination URB handle passed to the
thread. If the thread does output URB entries, this
identifies the destination URB entry.

hreads spawned by the GS, CLIP, and SF units are
provided with a single Handle ID / URB Return Handle
pair. Threads spawned by the VS are provided with
one or two pairs (depending on how many vertices
are to be processed). Threads spawned by the WM
do not write to URB entries, and therefore this info is
not supplied.

VS,GS,CLIP,
SF

5

64

Fixed Payload
Header Field

(non-FF-specific)

Description FFs

Primitive
Topology Type

As part of processing an incoming primitive, a FF unit
is often required to spawn a number of threads (e.g.,
for each individual triangle in a TRIANGLE_STRIP).
This field identifies the type of primitive which is
being processed by the FF unit, and which has lead to
the spawning of the thread.

GEN4 kernels written to process different types of
objects can use this value to direct that processing.
E.g., when a CLIP kernel is to provide clipping for all
the various primitive types, the kernel would need to
examine the Primitive Topology Type to distinguish
between point, lines, and triangle clipping requests.

NOTE: In general, this field is identical to the
Primitive Topology Type assoociated with the
primitive vertices as received by the FF unit. Refer to
the individual FF unit chapters for cases where the FF
unit modifies the value before passing it to the
thread. (E.g., certain units perform toggling of
TRIANGLESTRIP and TRIANGLESTRIP_REV).

GS, CLIP, SF,
WM

2.7.8.2.2 Extended Payload Header

The extended header is of variable-size, where inclusion of a field is determined by FF
unit state programming. Only the WM stage supports extended headers. Refer to the
Windower (WM) chapter for the size/content/layout of the extended headers.

In order to permit the use of common kernels (thus reducing the number of kernels
required), the Dispatch GRF Start Register for URB Data state variable is
supported in all FF stages. This SV is used to place the payload URB data at a specific
starting GRF register, irrespective of the size of the extended header. A kernel can
therefore reference the payload URB data at fixed GRF locations, while conditionally
referencing extended payload header information.

2.7.8.2.3 Payload URB Data

In each thread payload, following the payload header, is some amount of URB-sourced
data required as input to the thread. This data is divided into an optional Constant
URB Entry (CURBE), following either by a Primitive URB Entry (WM) or a number of
Vertex URB Entries (VS, GS, CLIP, SF). A FF unit only knows the location of this data
in the URB, and is never exposed to the contents. For each URB entry, the FF unit will
supply a sequence of handles, read offsets and read lengths to the GEN4 subsystem.
The subsystem will read the appropriate 256-bit locations of the URB, optionally
perform swizzling (VS only), and write the results into sequential GRF registers
(starting at Dispatch GRF Start Register for URB Data).

 65

Table 2-6. State Variables Controlling Payload URB Data

State Variable Usage FFs

Dispatch GRF
Start Register
for URB Data

This SV identifies the starting GRF register receiving payload
URB data.

Software is responsible for ensuring that URB data does not
overwrite the Fixed or Extended Header portions of the
payload.

VS, GS,
CLIP,
SF, WM

Constant URB
Entry Read
Offset

This SV determines the starting offset with the CURBE from
which constant URB data to be read and supplied in this
stage’s payloads. It is specified as a 256-bit offset into the
current CURBE. As the CURBE is (optionallly) used by all
pipeline stages to supply constant data, this SV is used by SW
to select the constants to be used for a particular stage.

The sources of constant data within the CURBE for different
stages can overlap.

Specifying a constant data source extending beyond the end of
the CURBE is UNDEFINED.

VS, GS,
CLIP,
SF, WM

Constant URB
Entry Read
Length

This SV determines the amount of data (starting from
Constant URB Entry Read Offset) to be read from the
CURBE and passed into the payload URB data. It is specified
in 256-bit units.

If zero, no constant data is read. SW must program a zero
value whenever the Constant Buffer is invalid (i.e., the CURBE
is unspecified).

Specifying a constant data source extending beyond the end of
the CURBE is UNDEFINED.

VS, GS,
CLIP,
SF, WM

Vertex URB
Entry Read
Offset

This SV specifies the starting offset within VUEs from which
vertex data is to be read and supplied in this stage’s payloads.
It is specified as a 256-bit offset into any and all VUEs passed
in the payload.

This SV can be used to skip over leading data in VUEs that is
not required by the stage’s threads (e.g., skipping over the
Vertex Header data at the SF stage, as that information is not
required for setup calculations). Skipping over irrelevant data
can only help to improve performance.

Specifying a vertex data source extending beyond the end of a
vertex entry is UNDEFINED.

VS, GS,
CLIP,
SF

Vertex URB
Entry Read
Length

This SV determines the amount of vertex data (starting at
Vertex URB Entry Read Offset) to be read from each VUEs
and passed into the payload URB data. It is specified in 256-
bit units.

A zero value is INVALID (at very least one 256-bit unit must
be read).

Specifying a vertex data source extending beyond the end of a
VUE is UNDEFINED.

VS, GS,
CLIP,
SF

5

66

Programming Restrictions: (others may already been mentioned)

• The maximum size payload for any thread is limited by the number of GRF
registers available to the thread, as determined by min(128, 16 * GRF
Register Block Count). Software is responsible for ensuring this maximum
size is not exceeded, taking into account:

o The size of the Fixed and Extended Payload Header associated with
the FF unit.

o The Dispatch GRF Start Register for URB Data SV.
o The amount of CURBE data included (via Constant URB Entry Read

Length)
o The number of VUEs included (as a function of FF unit, it’s state

programming, and incoming primitive types)
o The amount of VUE data included for each vertex (via Vertex URB

Entry Read Length)
o (For WM-spawned PS threads) The amount of Primitive URB Entry

data.

• For any type of URB Entry reads:
o Specifying a source region (via Read Offset, Read Length) that goes

past the end of the URB Entry allocation is illegal.
 The allocated size of Vertex/Primitive URB Entries is

determined by the URB Entry Allocation Size value provided
in the pipeline state descriptor of the FF unit owning the
VUE/PUE.

 The allocated size of CURBE entries is determined by the URB
Entry Allocation Size value provided in the CS_URB_STATE
command.

2.7.9 Thread Output Handling

Those FF units spawning threads (VS, GS, CLIP, SF, WM) are responsible for
monitoring and responding to certain events generated by their spawned threads.
Such events are indirectly detected by these FF units monitoring messages sent from
threads to the URB Shared Function. By snooping the Message Bus Sideband and
Header information, a FF can detect when a particular spawned thread sends a
message to the URB function. A subset of this information is then captured and acted
upon. Refer to the URB chapter for more details (including a table of valid/invalid
combinations of the Complete, Used, Allocate, and EOT bits)

The following subsections describe functions that FF units perform as part of Thread
Output Handling.

 67

2.7.9.1 URB Entry Output (VS, GS, CLIP, SF)

(The following description is applicable only to the VS, GS, CLIP and SF stages.)

For VS, GS, CLIP, and SF threads the main (if not only) output of the thread takes the
form of data written to one or more destination VUEs. At very least this is the only
form of thread output visible to the FF units.

When a thread sends a URB_WRITE message to the URB function with the Complete
and Used bits set in the Message Description, the spawning FF unit recognizes this as
the thread having completely written a destination UE. (In the typical case of a VS
thread, a pair of UEs will be written in parallel). The thread must not target any
additional URB messages to this UE (unless it gets reallocated to the thread). The FF
unit marks this UE as complete and available for output.

In the case where multiple concurrent threads are supported at a given stage, the FF
unit is responsible for outputing UEs down the pipeline in order. I.e., all VUE outputs
of a spawned thread must be sent down the pipeline (in order of allocation to the
thread) prior to any outputs from a subsequently-spawned thread. This is required
even if the subsequent threads perform any/all of their output prior to the preceding
thread producing any/some output.

2.7.9.2 VUE Allocation (GS, CLIP)

 (The following description is applicable only to the GS, CLIP stages.)

The GS and CLIP threads are passed a single, initial destination VUE handle. These
threads may be required to output more than one destination VUE, and therefore they
are provided with a mechanism to request additional handles.

When a GS or CLIP thread issues a URB_WRITE message with the Allocate bit set,
the spawning FF unit will consider this a request for the allocation of an additional VUE
handle. The thread must specify a destination GRF register for the message writeback
data. The spawning FF unit will perform the allocation, and provide the writeback
data (containing Handle ID and URB Return Handle) to the GEN4 subsystem, which
will in turn deliver that data to the appropriate GRF register. (See the URB chapter for
the definition of this writeback data).

The thread is allowed to proceed while the allocation is taking place (it is guaranteed
to complete at some point). If the thread attempts to reference the writeback data
before the allocation has completed, execution will be stalled in the same fashion any
unfulfilled dependency is handled. It is therefore recommended that SW (a) request
the additional allocation as soon as possible, and (b) reference the writeback data as
late as possible in order to keep the thread in a runnable state. (Refer to the
following subsection to see how the thread is allowed to “allocate ahead” and give
back unused VUE handles).

Note: GS and CLIP threads must write VUEs in the order they are allocated by the FF unit (in
response to an allocation request from the thread), starting with the initial destination
handle passed in the thread payload.

A GS or CLIP thread is restricted as to the number of URB handles it can retain. Here
a “retained” handle refers to a URB handle that (a) has been pre-allocated or allocated

5

68

and returned to the thread via the Allocate bit in the URB_WRITE message, and (b)
has yet to be returned to the pipeline via the Complete bit in the URB_WRITE
message.

• When operating in single-thread mode (Maximum Number of Threads == 1),
the number of retained handles must not exceed min(16, Number of URB
Entries).

• When operating in dual-thread mode (Maximum Number of Threads == 2), the
number of retained handles must not exceed (Number of URB Entries/2).

This restriction is not expected to be significant in that most/all GS/CLIP threads are
expected to retain only a few (<=4) handles.

2.7.9.3 VUE Dereference (GS, CLIP)

(The following description is applicable only to the GS, CLIP stages.)

It is possible and legal for a GS or CLIP thread to produce no output or subsequently
allocate a destination VUE that was not required (e.g., the thread allocated ahead).
Therefore, there is a mechanism by which a GS/CLIP thread can “give back”
(dereference) an allocated VUE. This mechanism must be used if the VUE is not
written before the thread terminates.

A GS/CLIP kernel can explicitly dereference a VUE by issuing a URB_WRITE message
(specifying the to-be-dereference handle) with the Complete bit set and the Used bit
clear.

2.7.9.4 Thread Termination

All threads must explicitly terminate by executing a SEND instruction with the EOT bit
set. (See EU chapters). When a thread spawned by a 3D FF unit terminates, the
spawning FF unit detects this termination as a part of Thread Management. This
allows the FF units to manage the number of concurrent threads it has spawned and
also manage the resources (e.g., scratch space) allocated to those threads.

Programming Note: GS and Clip threads must terminate by sending a URB_WRITE
message (with EOT set) with the Complete bit also set (therein returning a URB
handle marked as either used or un-used).

2.7.10 VUE Readback

Starting with the CLIP stage, the 3D pipeline requires vertex information in addition to
the VUE handle. For example, the CLIP unit’s VertexClipTest function needs the
vertex position, as does the SF unit’s functions. This information is obtained by the
3D pipeline reading a portion of each vertex’s VUE data directly from the URB. This
readback (effectively) occurs immediately before the CLIP VertexClipTest function,
and immediately after a CLIP thread completes the output of a destination VUE.

The Vertex Header (first 256 bits) of the VUE data is read back. (See the previous
VUE Formats subsection (above) for details on the content and format of the Vertex
Header.)

 69

This readback occurs automatically and is not under software control. The only
software implication is that the Vertex Header must be valid at the readback points,
and therefore must have been previously loaded or written by a thread.

2.8 Synchronization of the 3D Pipeline

Two types of synchronization are supported for the 3D pipe: end-of-pipe and write
synchronization. These are used to implement read and write fences as well as to
write out certain statistics deterministically with respect to progress of primitives
through the pipeline (and without requiring the pipeline to be flushed.) The
PIPE_CONTROL command (see details below) is used to perform this synchronization.

2.8.1 End-of-Pipe Synchronization

The driver can use end-of-pipe synchronization to know that rendering is complete
(although not necessarily in memory) so that it can de-allocate in-memory rendering
state, read-only surfaces, instructions, and constant buffers. An end-of-pipe
synchronization point is also sufficient to guarantee that all pending depth tests have
completed so that the visible pixel count is complete prior to storing it to memory.
End-of-pipe completion is sufficient (although not necessary) to guarantee that read
events are complete (a “read fence” completion). Read events are still pending if
work in the pipeline requires any type of read except a render target read (blend) to
complete.

2.8.2 Write Synchronization

Write synchronization is a superset of end-of-pipe synchronization that requires that
the render cache itself is flushed to memory, where the data will become globally
visible. This type of synchronization is required prior to SW (CPU) actually reading the
result data from memory, or initiating an operation that will use as a read surface
(such as a texture surface) a previous render target.

2.8.3 Synchronization Actions

In order for the driver to act based on a synchronization point (usually the whole
point), the reaching of the synchronization point must be communicated to the driver.
This section describes the actions that may be taken upon completion of a
synchronization point which can achieve this communication.

2.8.3.1 Writing a Value to Memory

The most common action to perform upon reaching a synchronization point is to write
a value out to memory. An immediate value (included with the synchronization
command) may be written. In lieu of an immediate value, the 64-bit value of the
PS_DEPTH_COUNT (visible pixel count) or TIMESTAMP register may be written out to
memory. The captured value will be the value at the moment all primitives parsed
prior to the synchronization commands have been completely rendered, and optionally
after all said primitives have been pushed to memory. It is not required that a value
be written to memory by the synchronization command.

Visible pixel or TIMESTAMP information is only useful as a delta between 2 values,
because these counters are free-running and are not to be reset except at
initialization. To obtain the delta, two PIPE_CONTROL commands should be initiated

5

70

with the command sequence to be measured between them. The resulting pair of
values in memory can then be subtracted to obtain a meaningful statistic about the
command sequence.

2.8.3.1.1 PS_DEPTH_COUNT

If the selected operation is to write the visible pixel count (PS_DEPTH_COUNT
register), the synchronization command should include the Depth Stall Enable
parameter. There is more than one point at which the global visible pixel count can
be affected by the pipeline; once the synchronization command reaches the first point
at which the count can be affected, any primitives following it are stalled at that point
in the pipeline. This prevents the subsequent primitives from affecting the visible
pixel count until all primitives preceding the synchronization point reach the end of the
pipeline, the visible pixel count is accurate and the synchronization is completed. This
stall has a minor effect on performance and should only be used in order to obtain
accurate “visible pixel” counts for a sequence of primitives.

The PS_DEPTH_COUNT count can be used to implement an (API/DDI) “Occlusion
Query” function.

2.8.3.2 Generating an Interrupt

The synchronization command may indicate that a “Sync Completion” interrupt is to
be generated (if enabled by the MI Interrupt Control Registers – see Memory Interface
Registers) once the rendering of all prior primitives is complete. Again, the
completion of rendering can be considered to be when the internal render cache has
been updated, or when the cache contents are visible in memory, as selected by the
command options.

2.8.3.3 Invalidating of Caches

If software wishes to use the notification that a synchronization point has been
reached in order to reuse referenced structures (surfaces, state, or instructions), it is
not sufficient just to make sure rendering is complete. If additional primitives are
initiated after new data is laid over the top of old in memory following a
synchronization point, it is possible that stale cached data will be referenced for the
subsequent rendering operation. In order to avoid this, the PIPE_CONTROL command
must be used. (See PIPE_CONTROL description below).

2.8.4 PIPE_CONTROL Command

The PIPE_CONTROL command is used to effect the synchronization described above.
Parsing of a PIPE_CONTROL command does not stall the 3D pipe. Commands after
PIPE_CONTROL will continue to be parsed and processed in the 3D pipeline. This may
include additional PIPE_CONTROL commands. The implementation does enforce a
practical upper limit (4) on the number of PIPE_CONTROL commands that may be
outstanding at once. Parsing of a PIPE_CONTROL command that causes this limit to be
reached will stall the parsing of new commands until the first of the outstanding
PIPE_CONTROL commands reaches the end of the pipe and retires.

Note that although PIPE_CONTROL is intended for use with the 3D pipe, it is legal to
issue PIPE_CONTROL when the Media pipe is selected. In this case PIPE_CONTROL
will stall at the top of the pipe until the Media FFs finish processing commands parsed
before PIPE_CONTROL. Post-synchronization operations, flushing of caches and

 71

interrupts will then occur if enabled via PIPE_CONTROL parameters. Due to this
stalling behavior, only one PIPE_CONTROL command can be outstanding at a time on
the Media pipe.

PIPE_CONTROL will invalidate the Sampler and constant read caches unless the
Depth Stall Enable bit is set. It will invalidate the Instruction/State cache if the
Instruction/State Cache Flush Enable is set. Once notification is observed, new
data may then be loaded (potentially “on top of” the old data) without fear of stale
cache data being referenced for subsequent rendering.

If software wishes to access the rendered data in memory (for analysis by the
application or to copy it to a new location to use as a texture, for examples), it must
also ensure that the write cache (render cache) is flushed after the synchronization
point is reached so that memory will be updated. This can be accomplished by setting
the Write Cache Flush Enable bit. Note that the Depth Stall Enable bit must be
clear in order for the flush of the render cache to occur. Depth Stall Enable is
intended only for accurate reporting of the PS_DEPTH counter; the render cache
cannot be flushed nor can the read caches be invalidated (except for the
instruction/state cache) in conjunction with this operation.

Both of the vertex caches will be flushed at the end of any PIPE_CONTROL operation
regardless of how the control bits are set. Note that the index-based vertex cache is
always flushed between primitive topologies and of course PIPE_CONTROL can only be
issued between primitive topologies. Therefore only the VF (“address-based”) cache is
uniquely affected by PIPE_CONTROL.

Table 2-7. Caches Invalidated/Flushed by PIPE_CONTROL Bit Settings

Depth
Stall

Enable

Write
Cache
Flush

Enable

Inst/State
Cache
Flush

Enable

Read
(Sampler/
Constant)

Caches
Inv’ed?

Write
(Render)

Cache
Flushed?

Inst/State
Cache

Inv’ed?

Index-
Based
Vertex
Cache

Inv’ed?

VF
Cache

Inv’ed?

Stall Next
Prim at
Depth
Stage?

0 0 0 Yes No No Yes Yes No

0 0 1 Yes No Yes Yes Yes No

0 1 0 Yes Yes No Yes Yes No

0 1 1 Yes Yes Yes Yes Yes No

1 X 0 No No No Yes Yes Yes

1 X 1 No No Yes Yes Yes Yes

5

72

PIPE_CONTROL
Project: All Length Bias: 2

The PIPE_CONTROL command is used to effect the synchronization described above.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 2h PIPE_CONTROL Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 00h Format: OpCode

15:8 Reserved Project: All Format: MBZ

15:14 Post-Sync Operation

Project: All

This field specifies an optional action to be taken upon completion of the synchronization
operation.

Value Name Description Project

0h No write occurs as a result of this instruction.
This can be used to implement a “trap”
operation, etc.

All

1h Write the QWord containing Immediate Data
Low, High DWs to the Destination Address

All

2h Write the 64-bit PS_DEPTH_COUNT register
to the Destination Address

All

3h Write the 64-bit TIMESTAMP register to the
Destination Address

All

Errata Description Project

PS_DEPTH_COUNT cannot be accurately sampled using this
command. Setting this field to 2 will write an UNDEFINED
value rather than the accurate PS_DEPTH_COUNT.

BW-A,B

 73

PIPE_CONTROL
13 Depth Stall Enable Project: All Format: Enable

If ENABLED, the 3D pipeline will stall any subsequent primitives at the Depth Test
stage until the Sync and Post-Sync operations complete.

If DISABLED, the 3D pipeline will not stall subsequent primitives at the Depth Test
stage.

This bit should be set when obtaining a “visible pixel” count to preclude the possible
inclusion in the PS_DEPTH_COUNT value written to memory of some fraction of pixels
from objects initiated after the PIPE_CONTROL command.

Programming Notes:

• This bit should be DISABLED for operations other than writing PS_DEPTH_COUNT.

• This bit will have no effect (besides preventing write cache flush) if set in a
PIPE_CONTROL command issued to the Media pipe.

12 Write Cache Flush
Enable

Project: All Format: Enable

Setting this bit will force Render Cache to be flushed to memory prior to this
synchronization point completing. This bit should be set for all write fence Sync
operations to assure that results from operations initiated prior to this command are
visible in memory once software observes this synchronization.

This bit should be DISABLED for End-of-pipe (Read) fences, PS_DEPTH_COUNT or
TIMESTAMP queries. This bit is ignored if Depth Stall Enable is set; the Render
Cache will not be flushed even if Write Cache Flush Enable is set.

11 Instruction/State
Cache Flush Enable

Project: All Format: Enable

Setting this bit is independent of any other bit in this packet. This bit controls the
invalidation of the L1 and L2 instruction/state caches after the completion of the flush.

10 Reserved Project: All Format: MBZ

9 Reserved Project: All Format: MBZ

8 Notify Enable Project: All Format: Enable

If ENABLED, a Sync Completion Interrupt will be generated (if enabled by the MI Interrupt
Control registers) once the sync operation is complete. See Interrupt Control Registers in
Memory Interface Registers for details.

7:0 DWord Length

Default Value: 2h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:3 Destination Address

Project: All

Address: GraphicsAddress[31:3]

QW-aligned graphics memory address at which data will be written when sync point
occurs. Ignored if Post-Sync Operation is “No write”.

5

74

PIPE_CONTROL
2 Destination Address Type

Project: All

Defines address space of Destination Address.

Value Name Description Project

0h Use process local PGTT All

1h Use Global GTT; valid only for privileged
commands

All

Programming Notes Project

Ignored if “No write” is the selected in Operation. All

1:0 Reserved Project: All Format: MBZ

2 31:0 Immediate Data
Low DW

Project: All Format: U32

Low DW of QW value to write to memory at synchronization point. Ignored if Post-
Sync Operation is “No write”, “Write PS_DEPTH_COUNT” or “Write TIMESTAMP”.

3 31:0 Immediate Data
High DW

Project: All Format: U32

High DW of QW value to write to memory at synchronization point. Ignored if Post-
Sync Operation is “No write”, “Write PS_DEPTH_COUNT” or “Write TIMESTAMP”.

 75

3 Vertex Fetch (VF) Stage

3.1 Vertex Fetch (VF) Stage Overview

The VF stage performs one major function: executing 3DPRIMITIVE commands. This
is handled by the VF’s InputAssembly function. The InputAssembly process is closely
matched to the Input Assembly function described in the D3D10 specification. Minor
enhancements have been included to better support legacy D3D APIs as well as
OpenGL. Refer to the D3D10 Specification for additional information, including
expected usage models.

The following subsections describe some high-level concepts associated with the VF
stage.

3.1.1 Input Assembly

The VF’s InputAssembly function includes (for each vertex generated):

• Generation of VertexIndex for each vertex, possibly via use of an Index Buffer.

• Lookup of the VertexIndex in the Vertex Cache (if enabled)

• If a cache miss is detected:
⎯ Use of computed indices to fetch data from memory-resident vertex buffers
⎯ Format conversion of the fetched vertex data
⎯ Assembly of the format conversion results (and possibly some internally

generated data) to form the complete “input” (raw) vertex
⎯ Storing the input vertex data in a Vertex URB Entry (VUE) in the URB
⎯ Output of the VUE handle of the input vertex to the VS stage

• If a cache hit is detected, the VUE handle from the Vertex Cache is passed to the
VS stage (marked as a cache hit to prevent any VS processing).

3.1.1.1 Vertex Assembly

The VF utilizes a number of VERTEX_ELEMENT state structures to define the contents
and format of the vertex data to be stored in Vertex URB Entries (VUEs) in the URB.
See below for a detailed description of the command used to define these structures
(3DSTATE_VERTEX_ELEMENTS).

Each active VERTEX_ELEMENT structure defines up to 4 contiguous DWords of VUE
data, where each DWord is considered a “component” of the vertex element. The
starting destination DWord offset of the vertex element in the VUE is specified, and
the VERTEX_ELEMENT structures must be defined with monotonically increasing VUE
offsets. For each component, the source of the component is specified. The source
may be a constant (0, 0x1, or 1.0f), or a component of a structure in memory (e.g,.
the Y component of an XYZW position in memory). In the case of a memory source,
the Vertex Buffer sourcing the data, and the location and format of the source data
with that VB are specified.

6

76

The VF’s Vertex Assembly process can be envisioned as the VF unit stepping through
the VERTEX_ELEMENT structures in order, fetching and format-converting the source
information (if memory resident), and storing the results in the destination VUE.

3.1.2 Vertex Cache

The VF stage communicates with the VS stage in order to implement a Vertex Cache
function in the 3D pipeline. The Vertex Cache is strictly a performance-enhancing
feature and has no impact on 3D pipeline results (other than a few statistics
counters).

The Vertex Cache contains the VUE handles of VS-output (shaded) vertices if the VS
function is enabled, and the VUE handles of VF-output (raw) vertices if the VS function
is disabled. (Note that the actual vertex data is held in the URB, and only the handles
of the vertices are stored in the cache). In either case, the contents of the cache
(VUE handles) are tagged with the VertexIndex value used to fetch the input vertex
data. The rationale for using the VertexIndex as the tag is that (assuming no other
state or parameters change) a vertex with the same VertexIndex as a previous
vertex will have the same input data, and therefore the same result from the VF+VS
function.

Note that any change to the state controlling the InputAssembly function (e.g., vertex
buffer definition), or any change to the state controlling the VS function (if enabled)
(e.g., VS kernel), will result in the Vertex Cache being invalidated. See Vertex
Caching in Vertex Shader for more information on the Vertex Cache (e.g., when it is
implicitly disabled, etc.)

3.2 VF Stage Input

As a stage of the GEN4 3D pipeline, the VF stage receives inputs from the previous
(CS) stage.

The VF stage gets its state programmed directly via pipelined state commands. It
does not support indirect state descriptors.

The following table lists the 3D pipeline commands processed by the VF stage. Other
commands (not listed) are simply passed down the pipeline. Refer to 3D Overview for
an overview of the various types of input to a 3D Pipeline stage.

Command Description

Processing Commands

3DPRIMITIVE This primitive command is used to inject primitives into the
3D pipeline, where they will be processed according to the
current context state settings. Most typically this processing
will result in rendering to destination surfaces, though this is
not required.

This command is defined in the VF Stage chapter (as it is
executed there), though the processing of this command
includes the entire 3D pipeline.

 77

Command Description

Pipelined State Commands

3DSTATE_INDEX_BUFFER This pipelined state command is used to specify Index Buffer
parameters used in the VF unit’s InputAssembly function. An
Index Buffer can be used to provide vertex indices when
processing subsequent 3DPRIMITIVE commands.

This command does not travel past the VF stage.

See Index Buffer below for details on this command.

3DSTATE_VERTEX_BUFFERS This pipelined state command is used to specify Vertex Buffer
parameters used in the VF unit’s InputAssembly function.
Vertex Buffers provide vertex data when processing
subsequent 3DPRIMITIVE commands.

This command does not travel past the VF stage.

See Vertex Buffers below for details on this command.

3DSTATE_VERTEX_ELEMENTS This pipelined state command is used to specify Vertex
Element parameters used in the VF unit’s InputAssembly
function. Vertex Element parameters specify how vertex
data, extracted from Vertex Buffers, are format converted
and stored in VUEs.

This command does not travel past the VF stage.

See Input Vertex Data below for details on this command.

3DSTATE_VF_STATISTICS This pipelined state command is used to turn pipeline
statistics gathering by the VF stage on or off.

This command does not travel past the VF stage.

See Error! Reference source not found. below for details
on this command.

The VF stage also receives input directly from memory, in the form of Index Buffers
and Vertex Buffers.

6BVertex Fetch (VF) Stage

78

3.3 Index Buffer (IB)

The 3DSTATE_INDEX_BUFFER command is used to define an Index Buffer (IB) used in
subsequent 3DPRIMITIVE commands.

The RANDOM access mode of the 3DPRIMITIVE command involves the use of a
memory-resident IB. The IB, defined via the 3DSTATE_INDEX_BUFFER command
described below, contains a 1D array of 8, 16 or 32-bit index values. These index
values will be fetched by the InputAssembly function, and subsequently used to
compute locations in VERTEXDATA buffers from which the actual vertex data is to be
fetched. (This is opposed to the SEQUENTIAL access mode were the vertex data is
simply fetched sequentially from the buffers).

Software is responsible for ensuring that accesses outside the IB do not occur. This
is possible as software can compute the range of IB values referenced by a
3DPRIMITIVE command (knowing the StartVertexLocation, and Vertices values)
and can then compare this range to the IB extent.

3.3.1 3DSTATE_INDEX_BUFFER

3DSTATE_INDEX_BUFFER
Project: All Length Bias: 2

This command is used to specify the current IB state used by the VF function. At most one IB is defined and
active at any given time.

NOTES:
• The IB must be specified before any RANDOM 3D_PRIMITIVE commands are issued

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 0Ah 3DSTATE_INDEX_BUFFER Format: OpCode

15:11 Reserved Project: All Format: MBZ

 77

Command Description

Pipelined State Commands

3DSTATE_INDEX_BUFFER This pipelined state command is used to specify Index Buffer
parameters used in the VF unit’s InputAssembly function. An
Index Buffer can be used to provide vertex indices when
processing subsequent 3DPRIMITIVE commands.

This command does not travel past the VF stage.

See Index Buffer below for details on this command.

3DSTATE_VERTEX_BUFFERS This pipelined state command is used to specify Vertex Buffer
parameters used in the VF unit’s InputAssembly function.
Vertex Buffers provide vertex data when processing
subsequent 3DPRIMITIVE commands.

This command does not travel past the VF stage.

See Vertex Buffers below for details on this command.

3DSTATE_VERTEX_ELEMENTS This pipelined state command is used to specify Vertex
Element parameters used in the VF unit’s InputAssembly
function. Vertex Element parameters specify how vertex
data, extracted from Vertex Buffers, are format converted
and stored in VUEs.

This command does not travel past the VF stage.

See Input Vertex Data below for details on this command.

3DSTATE_VF_STATISTICS This pipelined state command is used to turn pipeline
statistics gathering by the VF stage on or off.

This command does not travel past the VF stage.

See Error! Reference source not found. below for details
on this command.

The VF stage also receives input directly from memory, in the form of Index Buffers
and Vertex Buffers.

6

80

3DSTATE_INDEX_BUFFER
2 31:0 Buffer Ending Address

Project: All

Format: GraphicsAddress[31:0] FormatDesc

This field contains the address of the last valid byte in the index buffer. Any index
buffer reads past this address returns 0 for all vertex elements (as if the buffer was
zero-extended).

Software must guarantee that the buffer ends on an index boundary (e.g., for an
INDEX_DWORD buffer, Bits [1:0] == 11b)

The following table lists which primitive topology types support the presence of Cut
Indicies. When the Index Buffer has Cut Index Enable set, it is UNDEFINED to issue
a 3DPRIMITIVE with a primitive topology type not supporting a Cut Index (even if no
cut indicies are actually present in the index buffer).

Definition Cut Index?

3DPRIM_POINTLIST Y

3DPRIM_LINELIST Y

3DPRIM_LINESTRIP Y

3DPRIM_TRILIST Y

3DPRIM_TRISTRIP Y

3DPRIM_TRIFAN N

3DPRIM_QUADLIST N

3DPRIM_QUADSTRIP N

3DPRIM_TRISTRIP_REVERSE Y

3DPRIM_POLYGON N

3DPRIM_RECTLIST N

3DPRIM_LINELOOP N

3DPRIM_POINTLIST_BF Y

3DPRIM_LINESTRIP_CONT Y

3DPRIM_LINESTRIP_BF Y

3DPRIM_LINESTRIP_CONT_BF Y

3DPRIM_TRIFAN_NOSTIPPLE N

3.3.2 Index Buffer Access

The figure below illustrates how the Index Buffer is accessed.

 81

IBState.StartingBufferAddress

PitchInBytes
(function of IBState.IndexFormat)

3DPRIM.StartingVertexLocation
x PitchInBytes

Index[v0]

Index[v1]

...

Index[vn-1]

IBInstanceRestartAddress

3DPRIM.VertexCountPerInstance

(restart here each instance)

6

82

3.4 Vertex Buffers (VBs)

The 3DSTATE_VERTEX_BUFFERs command is used to define Vertex Buffers (VBs) used
in subsequent 3DPRIMITIVE commands.

Most input vertex data is sourced from memory-resident VBs. A VB is a 1D arrays of
structures, where the size of the structure as defined by the VB’s BufferPitch. VBs
are accessed either as VERTEXDATA buffers, as defined by the VB’s
BufferAccessType. The VB’s access type will determine whether the VF-computed
VertexIndex is used to access data in the VB.

Given that the RANDOM access mode of the 3DPRIMITIVE command utilizes an IB
(possibly provided by an application) to compute VB index values, VB definitions
contain a MaxIndex value used to detect accesses beyond the end of the VBs. Any
access outside the extent of a VB returns 0.

3.4.1 3DSTATE_VERTEX_BUFFERS

This command is used to specify VB state used by the VF function. From 1 to 17 VBs
can be specified, where the VertexBufferID field within the VERTEX_BUFFER_STATE
structure(s) indicate the specific VB. If a VB definition is not included in this
command, its associated state is left unchanged and available for use if previously
defined.

NOTES:

• For any 3DSTATE_VERTEX_BUFFERS command, at least one
VERTEX_BUFFER_STATE structure must be included.

• VERTEX_BUFFER_STATE structures are 4 DWords for VERTEXDATA.

• Inclusion of partial VERTEX_BUFFER_STATE structures is UNDEFINED.

The order in which VBs are defined within this command can be arbitrary, though a
vertex buffer must be defined only once in any given command (otherwise operation
is UNDEFINED).

 83

DWord Bit Description

0 31:29 Command Type = GFXPIPE = 03h

 28:16 GFXPIPE Opcode = 3DSTATE_VERTEX_BUFFERS

GFXPIPE[28:27 = 3h, 26:24 = 0h, 23:16 = 08h] (Pipelined)

 15:8 Reserved : MBZ

 7:0 DWord Length (excludes DWords 0,1)

4n-1 (where n = # of buffer states included)

1-4 Vertex Buffer State [0]

Format: VERTEX_BUFFER_STATE

5-8 Vertex Buffer State [1]

… …

(4n-3)-
(4n)

 Vertex Buffer State [..]

6

84

3.4.2 VERTEX_BUFFER_STATE Structure

This structure is used in 3DSTATE_VERTEX_BUFFERS to set the state associated with
a VB. The VF function will use this state to determine how/where to extract vertex
element data for all vertex elements associated with the VB.

The VERTEX_BUFFER_STATE structure is 4 DWords for VERTEXDATA buffers.

A VB is defined as a 1D array of vertex data structures, accessed via a computed
index value. The VF function therefore needs to know the starting address of the first
structure (index 0) and size of the vertex data structure. If an index value outside of
the range [0,Max Index] is used to access this vertex buffer, the value 0 is returned.

DWord Bits(#) Description

0 31:27 Vertex Buffer Index: This field contains an index value which selects the VB state
being defined.

Format: U5 index

Range: [0,16]

 26 Buffer Access Type: This field determines how vertex element data is extracted from
this VB. This control applies to all vertex elements associated with this VB.

0 = VERTEXDATA – For SEQUENTIAL vertex access, each vertex is sourced from
sequential structures within the VB. For RANDOM vertex access, each vertex is looked
up (separately) via a computed index value.

 25:11 Reserved: MBZ

 10:0 Buffer Pitch: This field specifies the pitch in bytes of the structures accessed within
the VB. This information is required in order to access elements in the VB via a
structure index.

Programming Notes:

• Different VERTEX_BUFFER_STATE structures can refer to the same memory region
using different Buffer Pitch values.

• See note on 64-bit float alignment in Buffer Starting Address.

Format: U11 count of Bytes

Range: [0,2047] Bytes

 85

DWord Bits(#) Description

1 31:0 Buffer Starting Address: This field contains the byte-aligned Graphics Address of the
first element of interest within the VB. Software must program this value with the
combination (sum) of the base address of the memory resource and the byte offset
from the base address to the starting structure within the buffer.

Programming Notes:

• 64-bit floating point values must be 64-bit aligned in memory, or UNPREDICTABLE
data will be fetched. When accessing an element containing 64-bit floating point
values, the Buffer Starting Address and Source Element Offset values must
add to a 64-bit aligned address, and BufferPitch must be a multiple of 64-bits.

• VBs can only be allocated in linear (not tiled) graphics memory.

• VBs can only be mapped to Main Memory (UC). They must not be mapped to
snooped System Memory, or UNPREDICTABLE values may be read.

• As computed index values are, by definition, interpreted as unsigned values, there
is no issue with accesses to locations before (lower address value) the start of the
buffer. However, these wrapped indices are subject to Max Index checking (see
below).

Format: GraphicsAddress[31:0]

2 31:0 Max Index: This field defines the maximum (inclusive) structure index accessible for
this particular VB.

Programming Notes:

• Use of an index larger than the Max Index returns 0. This includes a “negative”
computed index which, when viewed as an unsigned value, exceeds Max Index.

Format: U32

3

31:0 Reserved: MBZ

6

86

3.4.3 VERTEXDATA Buffers – SEQUENTIAL Access

VBState.StartingBufferAddress

VBState.BufferPitch

3DPRIM.StartingVertexLocation
x VBState.BufferPitch

VertexData[v0]

VertexData[v1]

...

VertexData[vn-1]

VBInstanceRestartAddress

3DPRIM.VertexCountPerInstance

(restart here each instance)

VBState.MaxIndex
x VBState.BufferPitch

3.4.4 VERTEXDATA Buffers – RANDOM Access

VBState.StartingBufferAddress

VBState.BufferPitch

(VertexIndex +
3DPRIM.BaseVertexLocation)

x VBState.BufferPitch

VertexData[vn]

...

VBState.MaxIndex
x VBState.BufferPitch

 87

3.5 Input Vertex Definition

The 3DSTATE_VERTEX_ELEMENTS command is used to define the source and format
of input vertex data and the format of how it is stored in the destination VUE as part
of 3DPRIMITIVE processing in the VF unit.

Refer to 3DPRIMITIVE Processing below for the general flow of how input vertices are
input and stored during processing of the 3DPRIMITIVE command.

6

88

3.5.1 3DSTATE_VERTEX_ELEMENTS

This is a variable-length command used to specify the active vertex elements (up to
18). Each VERTEX_ELEMENT_STATE structure contains a Valid bit which determines
which elements are used.

RESTRICTIONS/NOTES:
• At least one VERTEX_ELEMENT_STATE structure must be included.

• Vertex elements must be ordered by increasing Destination Element Offset.

• Inclusion of partial VERTEX_ELEMENT_STATE structures is UNDEFINED.

• SW must ensure that at least one vertex element is defined prior to issuing a
3DPRIMTIVE command, or operation is UNDEFINED.

• There are no ‘holes’ allowed in the destination vertex: NOSTORE components
must be overwritten by subsequent components unless they are the trailing
DWords of the vertex. Software must explicitly chose some value (probably 0) to
be written into DWords that would otherwise be ‘holes’.

• (See additional restrictions listed in the command fields and
VERTEX_ELEMENT_STATE description).

DWord Bit Description

0 31:29 Command Type = GFXPIPE = 03h

 28:16 GFXPIPE Opcode = 3DSTATE_VERTEX_ELEMENTS

GFXPIPE[28:27 = 3h, 26:24 = 0h, 23:16 = 09h] (Pipelined)

 15:8 Reserved : MBZ

 7:0 DWord Length (excludes DWords 0,1)

Vertex Element Count = (DWord Length + 1) / 2

1-2 Element[0]

Format: VERTEX_ELEMENT_STATE

[3-4] Element[1]

… …

[35-36] Element[17]

 89

3.5.2 VERTEX_ELEMENT_STATE Structure

This structure is used in 3DSTATE_VERTEX_ELEMENTS to set the state associated with
a vertex element. A vertex element is defined as an entity supplying from 1 to 4
DWord vertex components to be stored in the vertex URB entry. Up to 18 vertex
elements are supported. The VF function will use this state, and possibly the state of
the associated vertex buffer, to fetch/generate the source vertex element data,
perform any required format conversions, padding with zeros, and store the resulting
destination vertex element data into the vertex URB entry.

DWord Bits(#) Description

0 31:27 Vertex Buffer Index: This field specifies which vertex buffer the element is sourced
from.

Format: U5

Range: [0,16] (Up to 17 VBs are supported)

 26 Valid:

If TRUE, this vertex element is used in vertex assembly

If FALSE, this vertex element is not used.

Format: Boolean

 25 Reserved: MBZ

 24:16 Source Element Format: This field specifies the format in which the memory-resident
source data for this particular vertex element is stored in the memory buffer. This only
applies to elements stored with VFCOMP_STORE_SRC component control. (All other
component types have an explicit format).

Format: The encoding of this field is identical the Surface Format field of the
SURFACE_STATE structure, as described in the Sampler chapter.

Range: Valid encodings are those marked as “Y” in the “Vertex Buffer” column of the
table of Surface Format encodings in the Sampler chapter.

 15:12 Reserved: MBZ

 10:0 Source Element Offset (in bytes)

Byte offset of the source vertex element data in the structures comprising the vertex
buffer.

Programming Notes:

• See note on 64-bit float alignment in Buffer Starting Address.

Format: U11 byte offset

Range: [0,2047]

1 31 Reserved: MBZ

6

90

DWord Bits(#) Description

 30:28 Component 0 Control: This field specifies which value is stored for component 0 of
this particular vertex element.

0: VFCOMP_NOSTORE: Don’t store this component. (Not valid for Component 0, but
can be used for Component 1-3). Once this setting is used for a component, all higher-
numbered components (if any) MUST also use this setting. (I.e., no holes within any
particular vertex element). Also, there are no ‘holes’ allowed in the destination vertex:
NOSTORE components must be overwritten by subsequent components unless they are
the trailing DWords of the vertex. Software must explicitly chose some value (probably
0) to be written into DWords that would otherwise be ‘holes’.

1: VFCOMP_STORE_SRC: Store corresponding component from format-converted
source element. Storing a component that is not included in the Source Element
Format results in an UNPREDICTABLE value being stored. Software should used the
STORE_0 or STORE_1 encoding to supply default components.

2: VFCOMP_STORE_0: Store 0 (interpreted as 0.0f if accessed as a float value)

3: VFCOMP_STORE_1_FP: Store 1.0f

4: VFCOMP_STORE_1_INT: Store 0x1

5: VFCOMP_STORE_VID: Store Vertex ID (as U32)

 27 Reserved: MBZ

 26:24 Component 1 Control

 23 Reserved: MBZ

 22:20 Component 2 Control

 19 Reserved: MBZ

 18:16 Component 3 Control

 15:8 Reserved: MBZ

 7:0 Destination Element Offset: This field specifies a DWord offset into the target URB
Entry into which the converted vertex element is to be written.

NOTES:

• Element Alignment: Elements must be size-aligned within the URB entry.
E.g., it is valid to pack two 2-component elements within one 128-bit region,
but it is not valid to have a 4-component element to span two 128-bit regions.
This restriction is imposed as a result of limitations on how logical elements
can be accessed from GRF registers by the GEN4 EUs (it is not an restriction
imposed by the VF unit).

• The data written to the URB will be padded (with 0) to a 256-bit boundary.

 91

3.5.3 Vertex Element Data Path

The following diagram shows the path by which a vertex element within the
destination VUE is generated and how the fields of the VERTEX_ELEMENT_STATE
structure are used to control the generation.

D
W... ...

Component Select 0..3

VertexID

InstanceID

0x1
0

Format Conversion

Destination Element Offset

Write Enables

Destination VUE Handle

Component 0 Component 1 Component 2 Component 3

... ...

Source Element Offset

Source Element Format

Vertex Buffer Index

VertexIndex

InstanceIndex

...
VB State

...
...

VB0 VBi VBN

Structure from VB

D
W

D
W

D
W

1.0f

PrimitiveID

6

92

3.6 3D Primitive Processing

3.6.1 3DPRIMITIVE Command

The 3DPRIMITIVE command is used to submit 3D primitives to be processed by the 3D
pipeline. Typically the processing results in the rendering of pixel data into the render
targets, but this is not required.

The parameters passed in this command are forwarded to the Vertex Fetch function.
The Vertex Fetch function will use this information to generate vertex data structures
and store them in the URB. These vertices are then passed down the 3D pipeline for
possible processing by the Vertex Shader, Geometry Shader, and Clipper. If rendering
is required, the computed vertices are passed down to the StripFan and
WindowerMasker units.

DWord Bit Description

0 31:29 Command Type = GFXPIPE = 3h

 28:16 3D Command Opcode = 3DPRIMITIVE

3D[28:27 = 3h; 26:24 = 3h; 23:16 = 00h]

 15 Vertex Access Type: This field specifies how data held in vertex buffers marked as
VERTEXDATA is accessed by Vertex Fetch.

Format = VertexAccessType =

0 = SEQUENTIAL VERTEXDATA buffers are accessed sequentially.

1 = RANDOM VERTEXDATA buffers are accessed randomly via an index obtained
from the Index Buffer.

 14:10 Primitive Topology Type: This field specifies the topology type of 3D primitive
generated by this command. Note that a single primitive topology (list/strip/fan/etc.)
can contain a number of basic objects (lines, triangles, etc.).

Format = 3D_PrimTopoType (see table below for encoding, see 3D Overview for
diagrams and general comments)

 9 Reserved: MBZ

 8 Reserved: MBZ

 7:0 DWord Length (excludes DWords 0,1) = 4

1 31:0 Vertex Count: This field specifies how many vertices are to be generated for the
primitive topology.

Programming Notes:

• This value should specify a valid number of vertices for the primitive topology type.
However, in cases where too few or too many vertices are provided, the unused
vertices will be silently discarded by the pipeline.

• A 0 value is this field effectively makes the command a ‘no-operation’.

If Internal Vertex Count is clear):

Format = U32 count of vertices

Range = [0, 2^32-1] (upper limit probably constrained by VB size)

 93

DWord Bit Description

2 31:0 Start Vertex Location: This field specifies the “starting vertex”. This allows skipping
over part of the vertices in a buffer if, for example, a previous 3DPRIMITIVE command
had already drawn the primitives associated with the earlier entries.

For SEQUENTIAL access, this field specifies a starting structure index into the vertex
buffers

For RANDOM access, this field specifies a starting index into the Index Buffer.

Programming Note:

• Access of any data outside of the valid extent of a vertex or index buffer will return
the value 0 (i.e., appears as if the data stored at the invalid location was 0).

Format = U32 structure index

3 31:0 Reserved: Must be set to 1

4 31:0 Reserved: MBZ

5 31:0 Base Vertex Location: This field specifies a signed bias to be added to values read
from the index buffer. This allows the same index buffer values to access different
vertex data for different commands.

This field applies only to RANDOM access mode. This field is ignored for SEQUENTIAL
access mode, where there Start Vertex Location can be used to specify different regions
in the vertex buffers.

Programming Note:

• Access of any data outside of the valid extent of a vertex or index buffer will return
the value 0 (i.e., appears as if the data stored at the invalid location was 0).

Format = S31 structure index bias

6

94

The following table defines the encoding of the Primitive Topology Type field. See 3D
Pipeline for details, programming restrictions, diagrams and a discussion of the basic
primitive types.

Table 3-1. 3D Primitive Topology Type Encoding

Encoding Definition

00h Reserved

01h 3DPRIM_POINTLIST

02h 3DPRIM_LINELIST

03h 3DPRIM_LINESTRIP

04h 3DPRIM_TRILIST

05h 3DPRIM_TRISTRIP

06h 3DPRIM_TRIFAN

07h 3DPRIM_QUADLIST

08h 3DPRIM_QUADSTRIP

09h-0Ch Reserved

0Dh 3DPRIM_TRISTRIP_REVERSE

0Eh 3DPRIM_POLYGON

0Fh 3DPRIM_RECTLIST

10h 3DPRIM_LINELOOP

11h 3DPRIM_POINTLIST_BF

12h 3DPRIM_LINESTRIP_CONT

13h 3DPRIM_LINESTRIP_BF

14h 3DPRIM_LINESTRIP_CONT_BF

15h Reserved

16h 3DPRIM_TRIFAN_NOSTIPPLE

17h-1Fh Reserved

 95

3.6.2 Functional Overview

The following pseudocode summarizes the general flow of 3D Primitive Processing.

 VertexLoop {
 VertexIndexGeneration
 OutputBufferedVertex
 VertexCacheLookup
 if (miss) {
 VertexElementLoop {
 SourceElementFetch
 FormatConversion
 DestinationComponentSelection
 PrimitiveInfoGeneration
 URBWrite
 }
 }
 }
 TerminatePrimitive

3.6.3 VertexLoop

The VertexLoop iterates VertexNumber through the VertexCount vertices.

For each iteration, a number of processing steps are performed (see below) to
generate the information that comprises a vertex. When a vertex is to be output, the
following information is generated for that vertex:

• PrimitiveType associated with the vertex. This is simply a copy of the
PrimitiveTopologyType field of the 3DPRIMITIVE

• VUE handle at which the vertex data is stored
⎯ For a Vertex Cache hit, the VUE handle is marked with a VCHit boolean, so

that the VS unit will not attempt to process (shade) that vertex.
⎯ Otherwise, the VertexLoop will generate and store the input vertex data into

the VUE referenced by this handle.

• PrimStart and PrimEnd booleans associated with the vertex. See
PrimitiveInfoGeneration.

(Note that a single vertex of buffering is required in order to associate PrimEnd with a
vertex, as this information may not be known until the next iteration through the
VertexLoop (see OutputPrimitiveDelimiter).

VertexNumber value is incremented by 1 at the end of the loop.

3.6.4 VertexIndexGeneration

A VertexIndex value needs to be derived for each vertex. This index value is used as
the vertex cache tag and will be used as a structure index into all VERTEXDATA VBs.

For SEQUENTIAL accessing, the VertexIndex value is derived as shown below:

VertexIndex = StartVertexLocation + VertexNumber

6

96

For RANDOM access, the VertexIndex is derived from an IBValue read from the IB,
as shown below:

IBIndex = StartVertexLocation + VertexNumber
VertexIndex = IB[IBIndex] + BaseVertexLocation

3.6.5 VertexCacheLookup

The VertexIndex value is used as the tag value for the VertexCache (see Vertex
Cache, above). If the Vertex Cache is enabled and the VertexIndex value hits in the
cache, the VUE handle is read from the cache and inserted into the vertex stream. It
is marked with a VCHit Boolean to surpress processing (shading) in the VS unit.

Otherwise, for Vertex Cache misses, a VUE handle is obtained to provide storage for
the generated vertex data. VertexLoop processing then proceeds to iterate through
the VEs to generate the destination VUE data.

 97

3.6.6 VertexElementLoop

The VertexElementLoop generates and stores vertex data in the destination VUE one
VE at a time.

Note that VEs must be defined (via 3DSTATE_VERTEX_ELEMENTS) in order of
increasing Destination Element Offset, though architecturally the order by which
VEs are processed is arbitrary (has no impact on the results).

3.6.7 SourceElementFetch

The following assumes the VE requires data from a VB, which is the typical case.

The structure index within the VE’s selected VB is computed as follows:

VBIndex = VertexIndex

If VBIndex is invalid (i.e., negative or past Max Index), the data returned from the
VB fetch is defined to be zero. Otherwise, the address of the source data required for
the VE is then computed and the data is read from the VB. The amount of data read
from the VB is determined by the Source Element Format.

if ((VBIndex<0) || (VBIndex>VB.MaxIndex))
srcData = 0

else
pSrcData = VB.BufferStartingAddress + (VBIndex *

VB.BufferPitch) + VE.SourceElementOffset
srcData = MemoryRead(pSrcData, VE.SourceElementFormat)

endif

3.6.8 FormatConversion

Once the VE source data has been fetched, it is subjected to format conversion. The
output of format conversion is up to 4 32-bit components, each either integer or
floating-point (as specified by the Source Element Format). See Sampler for
conversion algorithms.

The following table lists the valid Source Element Format selections, along with the
format and availability of the converted components (if a component is listed as “-“, it
cannot be used as source of a VUE component). Note: This table is a subset of the list
of supported surface formats defined in the Sampler chapter. Please refer to that table
as the “master list”. This table is here only to identify the components available (per
format) and their format.

Table 3-2. Source Element Formats supported in VF Unit

Source Element Format Converted Component

 Format 0 1 2 3

256 bits

6

98

Source Element Format Converted Component

 Format 0 1 2 3

R64G64B64A64_FLOAT FLOAT R G B A

192 bits

R64G64B64_FLOAT FLOAT R G B A

128 bits
R32G32B32A32_FLOAT FLOAT R G B A

R32G32B32A32_SNORM FLOAT R G B A

R32G32B32A32_UNORM FLOAT R G B A

R32G32B32A32_SINT SINT R G B A

R32G32B32A32_UINT UINT R G B A

R32G32B32A32_SSCALED FLOAT R G B A

R32G32B32A32_USCALED FLOAT R G B A

R64G64_FLOAT FLOAT R G - -

96 bits
R32G32B32_FLOAT FLOAT R G B -

R32G32B32_SNORM FLOAT R G B -

R32G32B32_UNORM FLOAT R G B -

R32G32B32_SINT SINT R G B -

R32G32B32_UINT UINT R G B -

R32G32B32_SSCALED FLOAT R G B -

R32G32B32_USCALED FLOAT R G B -

64 bits
R16G16B16A16_FLOAT FLOAT R G B A

R16G16B16A16_SNORM FLOAT R G B A

R16G16B16A16_UNORM FLOAT R G B A

R16G16B16A16_SINT SINT R G B A

R16G16B16A16_UINT UINT R G B A

R16G16B16A16_SSCALED FLOAT R G B A

R16G16B16A16_USCALED FLOAT R G B A

R32G32_FLOAT FLOAT R G - -

R32G32_SNORM FLOAT R G - -

R32G32_UNORM FLOAT R G - -

R32G32_SINT SINT R G - -

R32G32_UINT UINT R G - -

R32G32_SSCALED FLOAT R G - -

R32G32_USCALED FLOAT R G - -

R64_FLOAT FLOAT R - - -

48 bits

 99

Source Element Format Converted Component

 Format 0 1 2 3

R16G16B16_SNORM FLOAT R G B -

R16G16B16_UNORM FLOAT R G B -

R16G16B16_SSCALED FLOAT R G B -

R16G16B16_USCALED FLOAT R G B -

32 bits
R10G10B10A2_UNORM FLOAT R G B A

R10G10B10A2_UINT UINT R G B A

R10G10B10X2_USCALED FLOAT R G B -

R10G10B10_SNORM_A2_UNORM FLOAT R G B A

B8G8R8A8_UNORM FLOAT B G R A

R8G8B8A8_SNORM FLOAT R G B A

R8G8B8A8_UNORM FLOAT R G B A

R8G8B8A8_SINT SINT R G B A

R8G8B8A8_UINT UINT R G B A

R8G8B8A8_SSCALED FLOAT R G B A

R8G8B8A8_USCALED FLOAT R G B A

R11G11B10_FLOAT FLOAT R G B -

R16G16_FLOAT FLOAT R G - -

R16G16_SNORM FLOAT R G - -

R16G16_UNORM FLOAT R G - -

R16G16_SINT SINT R G - -

R16G16_UINT UINT R G - -

R16G16_SSCALED FLOAT R G - -

R16G16_USCALED FLOAT R G - -

R32_FLOAT FLOAT R - - -

R32_SINT SINT R - - -

R32_UINT UINT R - - -

R32_SSCALED FLOAT R - - -

R32_USCALED FLOAT R - - -

R32_SNORM FLOAT R - - -

R32_UNORM FLOAT R - - -

24 bits
R8G8B8_SNORM FLOAT R G B -

R8G8B8_UNORM FLOAT R G B -

R8G8B8_SSCALED FLOAT R G B -
R8G8B8_USCALED FLOAT R G B -

16 bits

100

Source Element Format Converted Component

 Format 0 1 2 3

R8G8_SNORM FLOAT R G - -

R8G8_UNORM FLOAT R G - -

R8G8_SINT SINT R G - -

R8G8_UINT UINT R G - -

R8G8_SSCALED FLOAT R G - -

R8G8_USCALED FLOAT R G - -

R16_FLOAT FLOAT R - - -

R16_SNORM FLOAT R - - -

R16_UNORM FLOAT R - - -

R16_SINT SINT R - - -

R16_UINT UINT R - - -

R16_SSCALED FLOAT R - - -

R16_USCALED FLOAT R - - -

8 bits
R8_SNORM FLOAT R - - -

R8_UNORM FLOAT R - - -

R8_SINT SINT R - - -

R8_UINT UINT R - - -

R8_SSCALED FLOAT R - - -

R8_USCALED FLOAT R - - -

3.6.9 DestinationFormatSelection

The Component Select 0..3 bits are then used to select, on a per-component basis,
which destination components will be written and with which value. The supported
selections are the converted source component, ,the constants 0 or 1.0f, or nothing
(VFCOMP_NO_STORE). If a converted component is listed as ‘-‘ (not available) in
Table 3-2, it must not be selected (via VFCOMP_STORE_SRC), or an UNPREDICTABLE
value will be stored in the destination component.

The selection process sequences from component 0 to 3. Once a Component Select
of VFCOMP_NO_STORE is encountered, all higher-numbered Component Select
settings must also be programmed as VFCOMP_NO_STORE. It is therefore not
permitted to have ‘holes’ in the destination VE.

3.6.10 URBWrite

The selected destination components are written into the destination VUE starting at
Destination Offset Select. See the description of 3DPRIMITIVE for restrictions on
this field.

 101

3.6.11 OutputBufferedVertex

In order to accommodate ‘cut’ processing, the VF unit buffers one output vertex. The
generation of a new vertex or the termination of a primitive causes the buffered
vertex to be output to the pipeline.

3.7 Dangling Vertex Removal

The last functional stage of processing of the 3DPRIMITIVE command is the removal of
“dangling” vertices. This includes the discarding of primitive topologies without
enough vertices for a single object (e.g., a TRISTRIP with only two vertices), as well
as the discarding of trailing vertices that do not form a complete primitive (e.g., the
last two vertices of a 5-vertex TRILIST).

This function is best described as a filter operating on the vertex stream emitted from
the processing of the 3DPRIMITIVE. The filter inputs the PrimType, PrimStart and
PrimEnd values associated with the generated vertices. The filter only outputs
primitive topologies without dangling vertices. This requires the filter to (a) be able to
buffer some number of vertices, and (b) be able to remove dangling vertices from the
pipeline and dereference the associated VUE handles.

§§

102

 103

4 Vertex Shader (VS) Stage

4.1 VS Stage Overview

The VS stage of the GEN4 3D Pipeline is used to perform processing (“shading”) of
vertices after being assembled and written to the URB by the VF function. The
primary function of the VS stage is to pass vertices that miss in the Vertex Cache to
VS threads, and then pass the VS thread-generated vertices down the pipeline.
Vertices that hit in the Vertex Cache are passed down the pipeline unmodified.

When the VS stage is disabled, vertices flow through the unit unmodified (i.e., as
written by the VF unit).

Refer to the Common 3D FF Unit Functions subsection in the 3D Overview chapter for
a general description of a 3D pipeline stage, as much of the VS stage operation and
control falls under these “common” functions. I.e., most stage state variables and VS
thread payload parameters are described in 3D Overview, and although they are listed
here for completeness, that chapter provides the detailed description of the associated
functions.

Refer to this chapter for an overall description of the VS stage, and any exceptions the
VS stage exhibits with respect to common FF unit functions.

4.1.1 Vertex Caching

The 3D Pipeline employs a Vertex Cache that is shared between the VF and VS units.
(See Vertex Fetch chapter for additional information). The Vertex Cache may be
explicitly DISABLED via the Vertex Cache Disable bit in VS_STATE. Even when
explicitly ENABLED, the VS unit can (by default) implicitly disable and invalidate the
Vertex Cache when it detects the following condition:

1. Sequential indices are used in the 3DPRIMITIVE command (though
this is effectively a don’t care as there wouldn’t be any hits anyway).

The implicit disable will persist as long as one of these conditions persist. The Vertex
Cache Implicit Disable Inhibit bit in the VFSKPD MI register is provided to inhibit
the VS unit’s implicit cache disable. If inhibited, software is responsible for explicitly
enabling/disabling the vertex cache as required for correct operation.

Note: Software can allow the implicit cache disable (the default action) and live with some
possible performance penalty due to the too-often-disabled cache.

The following table summarizes the modes of operation of the Vertex Cache:

104

Vertex
Cache

VS
Function
Enable

Mode of Operation

DISABLED
(implicitly or
explicitly)

DISABLED Vertex Cache is not used. VF unit will assemble all vertices and write them into
the URB entry supplied by the VS unit. VS unit will pass references to these
VUEs down the pipeline unmodified.

DISABLED

(implicitly or
explicitly)

ENABLED Vertex Cache is not used. VF unit will assemble all vertices and write them into
the URB entry supplied by the VS unit. VS unit will spawn VS threads to process
all vertices, overwriting the input data with the results. The VS unit pass
references to these VUEs down the pipeline.

Usage Model: This mode is only used when the VS function is required, but the
VS kernel produces a side effect (e.g., writes to a memory buffer) which requires
every vertex to be processed by a VS thread.

ENABLED DISABLED Vertex Cache is used to provide reuse of VF-generated vertices. The VF unit will
check the cache and only process (assemble/write) vertices that miss in the
cache. In either case, the VS unit will pass references to vertices (that hit or
miss) down the pipeline without spawning any VS threads.

Usage Model: Normal operation when the VS function is not required. Note that
there may be situations which require the VS function to be used even when not
explicitly required by the API. E.g., perspective divide may be required for clip
testing.

ENABLED ENABLED Vertex Cache is used to provide reuse of VS-processed vertices. The VF unit will
check the cache and only process (assemble/write) vertices that miss in the
cache. The VS unit will only process (shade) the vertices that missed in the
cache. The VS unit sends references to hit or missed vertices down the pipeline
in the correct order.

Usage Model: Normal operation when the VS function is required and use of the
Vertex Cache is permissible.

 105

4.2 VS Stage Input

As a stage of the GEN4 3D pipeline, the VS stage receives inputs from the previous
(VF) stage. Refer to 3D Overview for an overview of the various types of input to a
3D Pipeline stage. The remainder of this subsection describes the inputs specific to
the VS stage.

4.2.1 State

4.2.1.1 URB_FENCE

Refer to 3D Overview for a description of how the VS stage processes this command.

4.2.1.2 VS_STATE

The following table describes the format and contents of the VS_STATE structure
referenced by the Pointer to VS State field of the 3DSTATE_PIPELINED_POINTERS
command.

DWord Bit Description

0 31:6 Kernel Start Pointer: This field specifies the starting location (1st GEN4 core
instruction) of the kernel program run by threads spawned by this FF unit. It is specified
as a 64-byte-granular offset from the General State Base Address.

This field is ignored if VS Function Enable is DISABLED.

[DevBW-A,B] Errata BWT007: Instructions pointed at by offsets from General State
must be contained within 32-bit physical address space (that is, must map to memory
pages under 4G.)
Format = GeneralStateOffset[31:6]

 5:4 Reserved: MBZ

 3:1 GRF Register Count: Defines the number of GRF Register Blocks used by the kernel. A
register block contains 16 registers. A kernel using a register count that is not a multiple
of 16 must round up to the next multiple of 16.

This field is ignored if VS Function Enable is DISABLED.

Format = U3 register block count - 1

Range = [0,7] = [16,128] GRF registers

 0 Reserved: MBZ

106

DWord Bit Description

1 31 Single Program Flow (SPF) : Specifies whether the kernel program has a single
program flow (SIMDnxm with m = 1) or multiple program flows (SIMDnxm with m > 1).
If set, the VS unit will only dispatch 1-vertex thread payloads. See CR0 description in
ISA Execution Environment.

This field is ignored if VS Function Enable is DISABLED.

0 = Multiple Program Flows (1- or 2-vertex threads spawned, operating under normal
(SIMD4x2) mode)

1 = Single Program Flow (only 1-vertex threads spawned, operating under SPF EU
mode)

 30:26 Reserved: MBZ

 25:18 Binding Table Entry Count: Specifies how many binding table entries the kernel uses.
Used only for prefetching of the binding table entries and associated surface state.

Note: For kernels using a large number of binding table entries, it may be wise to set
this field to zero to avoid prefetching too many entries and thrashing the state cache.

This field is ignored if VS Function Enable is DISABLED.

Format = U8

Range = [0,255]

 17 Thread Priority: Specifies the priority of the thread for dispatch:

This field is ignored if VS Function Enable is DISABLED.

0 = Normal Priority

1 = High Priority

Programming Notes:

• This field must be zero.

 16 Floating Point Mode: Specifies the initial floating point mode used by the dispatched
thread.

This field is ignored if VS Function Enable is DISABLED.

0 = Use IEEE-754 Rules

1 = Use alternate rules

 15:14 Reserved: MBZ

 13 Illegal Opcode Exception Enable. This bit gets loaded into EU CR0.1[12] (note the bit
difference). See Exceptions and ISA Execution Environment.

This field is ignored if VS Function Enable is DISABLED.

Format: Enable

 12 Reserved: MBZ

 11 MaskStack Exception Enable. This bit gets loaded into EU CR0.1[11]. See Exceptions
and ISA Execution Environment.

This field is ignored if VS Function Enable is DISABLED.

Format: Enable

 10:8 Reserved: MBZ

 107

DWord Bit Description

 7 Software Exceptio Enable. This bit gets loaded into EU CR0.1[13] (note the bit #
difference). See Exceptions and ISA Execution Environment.

This field is ignored if VS Function Enable is DISABLED.

Format: Enable

 6:0 Reserved: MBZ

2 31:10 Scratch Space Base Offset: Specifies the starting location of the scratch space area
allocated to this FF unit as a 1K-byte aligned offset from the General State Base
Address. If required, each thread spawned by this FF unit will be allocated some
portion of this space, as specified by Per-Thread Scratch Space. The computed offset
of the thread-specific portion will be passed in the thread payload as Scratch Space
Offset. The thread is expected to utilize “stateless” DataPort read/write requests to
access scratch space, where the DataPort will cause the General State Base Address
to be added to the offset passed in the request header.

This field is ignored if VS Function Enable is DISABLED.

Format = GeneralStateOffset[31:10]

 9:4 Reserved: MBZ

 3:0 Per-Thread Scratch Space: Specifies the amount of scratch space to be allocated to
each thread spawned by this FF unit.

The driver must allocate enough contiguous scratch space, starting at the Scratch
Space Base Pointer, to ensure that the Maximum Number of Threads can each get
Per-Thread Scratch Space size without exceeding the driver-allocated scratch space.

This field is ignored if VS Function Enable is DISABLED.

Format = U4 power of 2 Bytes over 1K Bytes

Range = [0,11] indicating [1K Bytes, 2M Bytes]

Programming Notes:

This amount is available to the kernel for information only. It will be passed verbatim (if
not altered by the kernel) to the Data Port in any scratch space access messages, but
the Data Port will ignore it.

3 31 Reserved : MBZ

 30:25 Constant URB Entry Read Length: Specifies the amount of URB data read and passed
in the thread payload for the Constant URB entry, in 256-bit register increments.

This field is ignored if VS Function Enable is DISABLED.

Format = U6

Range = [0,63]

 24 Reserved : MBZ

 23:18 Constant URB Entry Read Offset: Specifies the offset (in 256-bit units) at which
Constant URB data is to be read from the URB before being included in the thread
payload.

This field is ignored if VS Function Enable is DISABLED.

Format = U6

Range = [0,63]

108

DWord Bit Description

 17 Reserved : MBZ

 16:11 Vertex URB Entry Read Length: Specifies the amount of URB data read and passed in
the thread payload for each Vertex URB entry, in 256-bit register increments.

This field is ignored if VS Function Enable is DISABLED.

Programming Notes:

• It is UNDEFINED to set this field to 0 indicating no Vertex URB data to be read
and passed to the thread.

Format = U6

Range = [1,63]

 10 Reserved : MBZ

 9:4 Vertex URB Entry Read Offset: Specifies the offset (in 256-bit units) at which Vertex
URB data is to be read from the URB before being included in the thread payload. This
offset applies to all Vertex URB entries passed to the thread.

This field is ignored if VS Function Enable is DISABLED.

Format = U6

Range = [0,63]

 3:0 Dispatch GRF Start Register for URB Data: Specifies the starting GRF register
number for the URB portion (Constant + Vertices) of the thread payload.

This field is ignored if VS Function Enable is DISABLED.

Format = U4

Range = [0,15] indicating GRF [R0,R15]

4 31 Reserved : MBZ

 30:25 Maximum Number of Threads: Specifies the maximum number of simultaneous
threads allowed to be active. Used to avoid using up the scratch space, or to avoid
potential deadlock.

This field is ignored if VS Function Enable is DISABLED.

Format = U5 representing thread count - 1

Range = [0,15] indicating thread count of [1,16]

 24 Reserved : MBZ

 23:19 URB Entry Allocation Size: Specifies the length of each URB entry owned by this FF
unit.

This field is always used (even if VS Function Enable is DISABLED).

Programming Note: Changing this value requires a subsequent URB_FENCE
command. See Graphics Processing Engine for Command Ordering Rules and a
description of URB_FENCE.

Format = U5 count (of 512-bit units) – 1

Range = [0,31] = [1,32] 512-bit units = [2,64] 256-bit URB rows

 18 Reserved: MBZ

 109

DWord Bit Description

 17:11 Number of URB Entries: Specifies the number of URB entries that are used by this FF
unit.

This field is always used (even if VS Function Enable is DISABLED).

Programming Notes:

Changing this value requires a subsequent URB_FENCE command. See Graphics
Processing Engine for Command Ordering Rules and a description of URB_FENCE.

Format = U6, see valid settings below

Range = [8,12, 16, 32] (see restriction above)

DevBW-A,B Restriction:

Format = U6, see valid settings below

Range = [8,12, 16]

 10 Statistics Enable: If ENABLED, this FF unit will engage in statistics gathering. See the
Error! Reference source not found. section later in this chapter. If DISABLED,
statistics information associated with this FF stage will be left unchanged.

This field is effectively if VS Function Enable is DISABLED.

Format: Enable

 9:0 Reserved : MBZ

5 31:5 Sampler State Offset: This field, together with the General State Base Address,
specifies the starting location of the Sampler State Table used by threads spawned by
this FF unit. It is specified as a 32-byte-granular offset from the General State Base
Address. The Sampler will apply the offset to the General State Base Address when
accessing Sampler State data.

This field is ignored if VS Function Enable is DISABLED.

[DevBW-A,B] Errata BWT007: Sampler state pointed at by offsets from General State
must be contained within 32-bit physical address space (that is, must map to memory
pages under 4G.)

Format = GeneralStateOffset[31:5]

 4:3 Reserved : MBZ

 2:0 Sampler Count: Specifies how many samplers (in multiples of 4) the vertex shader 0
kernel uses. Used only for prefetching the associated sampler state entries.

This field is ignored if VS Function Enable is DISABLED.

Format = U3

Range = [0,4]

0 = no samplers used

1 = between 1 and 4 samplers used

2 = between 5 and 8 samplers used

3 = between 9 and 12 samplers used

4 = between 13 and 16 samplers used

6 31:2 Reserved : MBZ

110

DWord Bit Description

 1 Vertex Cache Disable: This bit controls the operation of the Vertex Cache. This field is
always used.

If the Vertex Cache is DISABLED and the VS Function is ENABLED, the Vertex Cache is
not used and all incoming vertices will be passed to VS threads.

If the Vertex Cache is ENABLED and the VS Function is ENABLED, incoming vertices that
do not hit in the Vertex Cache will be passed to VS threads.

If the Vertex Cache is ENABLED and the VS Function is DISABLED, input vertices that
miss in the Vertex Cache will be assembled and written to the URB, though pass thru the
VS stage unmodified (not shaded).

The Vertex Cache is invalidated whenever the Vertex Cache becomes DISABLED ,
whenever the VS Function Enable toggles, between 3DPRIMITIVE commands.

Programming Notes:

• See the Vertex Caching section (above) for details on implicit vertex cache
disabling and the enable/disable bit available to turn of any implicit disable.

Format: Disable

 0 VS Function Enable

If ENABLED, VS threads may be spawned to process VF-generated vertices before the
resulting vertices are passed down the pipeline.

If DISABLED, VF-generated vertices will pass thru the VS function and sent down the
pipeline unmodified. The Vertex Cache is still available in this mode, if enabled.

This field is always used.

Format: Enable

4.2.2 Input Vertices

Refer to 3D Overview for a description of the vertex information input to the VS stage.

4.3 VS Thread Request Generation

The following discussion assumes the VS Function is ENABLED.

When the Vertex Cache is disabled, the VS unit will pass each pair of incoming
vertices to a VS thread. Under certain circumstances (e.g., prior to a state change or
pipeline flush) the VS unit will spawn a VS thread to process a single vertex. Note
that, in this case, the “unused” vertex slot will be “disabled” via the Execution Mask
provided by the VS unit to the GEN4 subsystem as part of the thread dispatch (See
ISA doc). The VS thread will in itself be unaware of the single-vertex case, and
therefore a single VS kernel can be used to process one or two vertices. (The
performance of single-vertex processing will roughly equal the two-vertex case).

When the Vertex Cache is enabled, the VF unit will detect vertices that hit in the cache
and mark these vertices so that they will bypass VS thread processing and be output
via a reference to the cached VUE. The VS unit will keep track of these cache-hit
vertices as it proceeds to process cache-miss vertices. The VS unit guarantees that
vertices will exit the unit in the order they are received. This may require the VS unit

 111

to issue single-vertex VS threads to process a cache-miss vertex that has yet to be
paired up with another cache-miss vertex (if this condition is preventing the VS unit
from producing any output).

112

4.3.1 Thread Payload

The following table describes the payload delivered to VS threads.

Table 4-1. VS Thread Payload

DWord Bit Description

R0.7 31 Snapshot Flag

If set, this thread has matched some debug criteria.

(See Debug for further description).

 30:0 Reserved

R0.6 31:24 Reserved

 23:0 Thread ID: This field uniquely identifies this thread within the threads spawned by this
FF unit, over some period of time.

(See Debug for further description).

Format: Reserved for HW Implementation Use.

R0.5 31:10 Scratch Space Offset: Specifies the of the scratch space allocated to the thread,
specified as a 1KB-granular offset from the General State Base Address. See Scratch
Space Base Offset description in VS_STATE.

(See 3D Pipeline for further description on scratch space allocation).

Format = GeneralStateOffset[31:10]

 9:4 Reserved

 3:0 FFTID: This ID is assigned by the FF unit and used to identify the thread within the set
of outstanding threads spawned by the FF unit.

Format: Reserved for HW Implementation Use.

R0.4 31:5 Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It
is specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

 4:0 Reserved

R0.3 31:5 Sampler State Pointer. Specifies the location of the Sampler State Table to be used by
this thread, specified as a 32-byte granular offset from the General State Base
Address or Dynamic State Base Address.

Format = GeneralStateOffset[31:5]

 4 Reserved

 3:0 Per Thread Scratch Space: Specifies the amount of scratch space allowed to be used
by this thread. The value specifies the power that two will be raised to (over determine
the amount of scratch space).

(See 3D Pipeline for further description).

Format = U4 power of two (in excess of 10)

Range = [0,11] indicating [1K Bytes, 2M Bytes]

R0.2 31:0 Reserved : delivered as zeros (reserved for message header fields)

R0.1 31:25 Reserved

 113

DWord Bit Description

 24:16 Handle ID 1: This ID is assigned by the FF unit and used to identify the URB Return
Handle 1 to the FF unit (as FF-specific index value, not a URB address).

If only one vertex is to be processed (shaded) by the thread, this field will effectively be
ignored (no results are stored for these channels, as controlled by the thread’s Channel
Mask).

(See Generic FF Unit for further description).

Format = Reserved for HW Implementation Use.

 15:9 Reserved

 8:0 URB Return Handle 1: This is the URB handle where the EU’s upper channels (DWords
7:4) results are to be stored.

If only one vertex is to be processed (shaded) by the thread, this field will effectively be
ignored (no results are stored for these channels, as controlled by the thread’s Channel
Mask).

(See Generic FF Unit for further description).

Format: U9 opaque handle

R0.0 31:25 Reserved

 24:16 Handle ID 0: This ID is assigned by the FF unit and used to identify the URB Return
Handle 0 to the FF unit (as FF-specific index value, not a URB address).

(See Generic FF Unit for further description).

Format = Reserved for HW Implementation Use.

 15:9 Reserved

 8:0 URB Return Handle 0: This is the URB handle where the EU’s lower channels (DWords
3:0) results are to be stored.

(See Generic FF Unit for further description).

Format: U9 opaque handle

[Varies]
optional

31:0 Constant Data (optional) :

Some amount of constant data (possible none) can be extracted from the URB and
passed to the thread following the R0 Header. The data is read from the Constant URB
Entry at some offset (Constant URB Entry Read Offset state) from the handle. The
amount of data provided is defined by the Constant URB Entry Read Length state.

The Constant Data arrives in a non-interleaved format.

Varies 31:0 Vertex Data : Data from (possibly) one or (more typically) two Vertex URB Entries is
passed to the thread in the thread payload. The Vertex URB Entry Read Offset and
Vertex URB Entry Read Length state variables define the regions of the URB entries
that are read from the URB and passed in the thread payload. These SVs can be used to
provide a subset of the URB data as required by SW.

The vertex data is laid out in the thread header in an interleaved format. The lower
DWords (0-3) of these GRF registers always contain data from a Vertex URB Entry. The
upper DWords (4-7) may contain data from another Vertex URB Entry. This allows two
vertices to be processed (shaded) in parallel SIMD8 fashion. The VS kernel is not aware
of the validity of the upper vertex.

7

114

4.4 VS Thread Execution

A VS kernel (with one exception mentioned below) assumes it is to operate on two
vertices in parallel. Input data is either passed directly in the thread payload
(including the input vertex data) or indirectly via pointers passed in the payload.

Refer to ISA chapters for specifics on writing kernels that operate in SIMD4x2 fashion.

Refer to 3D Pipeline Stage Overview (3D Overview) for information on FF-unit/Thread
interactions.

In the (unlikely) event that the VS kernel needs to determine whether it is processing
one or two vertices, the kernel can compare the URB Return Handle 0 and URB
Return Handle 1 fields of the thread payload. These fields will be different if two
vertices are being processed and identical if one vertex is being processed. An
example of when this test may be required is if the kernel outputs some vertex-
dependent results into a memory buffer – without the test the single vertex case
might incorrectly output two sets of results. Note that this is not the case for writing
the URB destinations, as the Execution Mask will prevent the write of an undefined
output.

4.4.1 Vertex Output

VS threads must always write the destination URB handles passed in the payload. VS
threads are not permitted to request additional destination handles. Refer to 3D
Pipeline Stage Overview (3D Overview) for details on how destination vertices are
written and any required contents/formats.

4.4.2 Thread Termination

VS threads must signal thread termination, in all likelihood on the last message output
to the URB shared function. Refer to the ISA doc for details on End-Of-Thread
indication.

4.5 Primitive Output

The VS unit will produce an output vertex reference for every input vertex reference
received from the VF unit, in the order received. The VS unit simply copies the
PrimitiveType, StartPrim, and EndPrim information associated with input vertices to
the output vertices, and does not use this information in any way. Neither does the
VS unit perform any readback of URB data.

§§

 115

116

5 Geometry Shader (GS) Stage

5.1 GS Stage Overview

The GS stage of the GEN4 3D Pipeline is used to convert objects within incoming
primitives into new primitives through use of a spawned GEN4 thread. When enabled,
the GS unit buffers incoming vertices, assembles the vertices of each individual object
within the primitives, and passes these object vertices (along with other data) to the
GEN4 subsystem for processing by a GS thread.

When the GS stage is disabled, vertices flow through the unit unmodified, with the
exception that the Vertex Header of each vertex is read back from the URB and
passed along with the vertex to the next (CLIP) stage.

Refer to the Common 3D FF Unit Functions subsection in the 3D Pipeline chapter for a
general description of a 3D Pipeline stage, as much of the GS stage operation and
control falls under these “common” functions. I.e., most stage state variables and GS
thread payload parameters are described in 3D Pipeline, and although they are listed
here for completeness, that chapter provides the detailed description of the associated
functions.

Refer to this chapter for an overall description of the GS stage, and any exceptions the
GS stage exhibits with respect to common FF unit functions.

5.2 GS Stage Input

As a stage of the GEN4 3D pipeline, the GS stage receives inputs from the previous
(VS) stage. Refer to 3D Pipeline for an overview of the various types of input to a 3D
Pipeline stage. The remainder of this subsection describes the inputs specific to the
GS stage.

 117

5.2.1 State

5.2.1.1 GS_STATE

The following table describes the format and contents of the GS_STATE structure
referenced by the Pointer to GS State field of the 3DSTATE_PIPELINED_POINTERS
command.

GS_STATE
Project: All
Controls the GS stage hardware.

DWord Bit Description

0 31:6 Kernel Start
Pointer

Project: All Format: GeneralStateOffset[31:6]

This field specifies the starting location (1st GEN4 core instruction) of the kernel program
run by threads spawned by this FF unit. It is specified as a 64-byte-granular offset from
the General State Base Address

[DevBW-A,B] Errata BWT007: Instructions pointed at by offsets from General State
Base must be contained within 32-bit physical address space (that is, must map to
memory pages under 4G.)

5:4 Reserved Project: All Format: MBZ

3:1 GRF Register
Count

Project: All Format: U3 register block count - 1

Defines the number of GRF Register Blocks used by the kernel. A register block contains
16 registers. A kernel using a register count that is not a multiple of 16 must round up to
the next multiple of 16.

0 Reserved Project: All Format: MBZ

1 31 Single Program Flow (SPF)

Project: All

Specifies whether the kernel program has a single program flow (SIMDnxm with m = 1)
or multiple program flows (SIMDnxm with m > 1).

Value Name Description Project

0h Reserved All

1h Enable Single Program Flow enabled All

30:26 Reserved Project: All Format: MBZ

118

GS_STATE
25:18 Binding Table

Entry Count
Project: All Format: U8

Specifies how many binding table entries the kernel uses. Used only for prefetching of
the binding table entries and associated surface state.

Note: For kernels using a large number of binding table entries, it may be wise to set
this field to zero to avoid prefetching too many entries and thrashing the state cache.

17 Reserved. MBZ

16 Floating Point Mode

Project: All

Specifies the initial floating point mode used by the dispatched thread.

Value Name Description Project

0h Use IEEE-754 Rules All

1h Use alternate rules All

15:14 Reserved Project: All Format: MBZ

13 Illegal Opcode
Exception Enable

Project: All Format: Enable

This bit gets loaded into EU CR0.1[12] (note the bit # difference). See Exceptions and
ISA Execution Environment.

12 Reserved Project: All Format: MBZ

11 Mask Stack
Exception Enable

Project: All Format: Enable

This bit gets loaded into EU CR0.1[11]. See Exceptions and ISA Execution Environment.

10:8 Reserved Project: All Format: MBZ

7 Software
Exception Enable

Project: All Format: Enable

This bit gets loaded into EU CR0.1[13] (note the bit # difference). See Exceptions and
ISA Execution Environment.

6:0 Reserved Project: All Format: MBZ

2 31:10 Scratch Space
Base Pointer

Project: All Format: GeneralStateOffset[31:10]

Specifies the location of the scratch space area allocated to this FF unit, specified as a
1KB-granular offset from the General State Base Address. If required, each thread
spawned by this FF unit will be allocated some portion of this space, as specified by Per-
Thread Scratch Space.

9:4 Reserved Project: All Format: MBZ

 119

GS_STATE
3:0 Per-Thread Scratch Space

Project: All

Format: U4 power of 2 Bytes over 1K Bytes FormatDesc

Range [0,11] indicating [1K Bytes, 2M Bytes]

Specifies the amount of scratch space to be allocated to each thread spawned by this FF
unit.

The driver must allocate enough contiguous scratch space, starting at the Scratch Space
Base Pointer, to ensure that the Maximum Number of Threads can each get Per-
Thread Scratch Space size without exceeding the driver-allocated scratch space.

3 31 Reserved Project: All Format: MBZ

30:25 Constant URB Entry Read Length

Project: All

Format: U6 FormatDesc

Range [0,63]

Specifies the amount of URB data read and passed in the thread payload for the Constant
URB entry, in 256-bit register increments.

24 Reserved Project: All Format: MBZ

23:18 Constant URB Entry Read Offset

Project: All

Format: U6 FormatDesc

Range [0,63]

Specifies the offset (in 256-bit units) at which Constant URB data is to be read from the
URB before being included in the thread payload.

17 Reserved Project: All Format: MBZ

16:11 Vertex URB Entry Read Length

Project: All

Format: U6 FormatDesc

Range [1,63]

Specifies the amount of URB data read and passed in the thread payload for each Vertex
URB entry, in 256-bit register increments.

It is UNDEFINED to set this field to 0 indicating no Vertex URB data to be read and passed
to the thread.

10 Reserved Project: All Format: MBZ

120

GS_STATE
9:4 Vertex URB Entry Read Offset

Project: All

Format: U6 FormatDesc

Range [0,63]

Specifies the offset (in 256-bit units) at which Vertex URB data is to be read from the URB
before being included in the thread payload. This offset applies to all Vertex URB entries
passed to the thread.

3:0 Dispatch GRF Start Register for URB Data

Project: All

Format: U4 FormatDesc

Range [0,15] indicating GRF [R0,R15]

Specifies the starting GRF register number for the URB portion (Constant + Vertices) of
the thread payload.

4 31:30 Reserved Project: All Format: MBZ

29:25 Maximum Number of Threads

Project: All

Format: U5 thread count – 1

Range

Specifies the maximum number of simultaneous threads allowed to be active. Used to
avoid using up the scratch space, or to avoid potential deadlock.

Programming Notes:

• When running in dual-thread mode, the Number of URB Entries field must
contain an even number. Each thread will be allocated one half the total number
of entries.

• A URB_FENCE command must be issued subsequent to any change to the value
in this field (via PIPELINE_STATE_POINTERS) and before any subsequent
pipeline processing (e.g., via 3DPRIMITIVE or CONSTANT_BUFFER). See
Graphics Processing Engine (Command Ordering Rules)

Format = U5 representing thread count – 1

Range = [0,1] indicating thread count of [1,2]

24 Reserved Project: All Format: MBZ

 121

GS_STATE
23:19 URB Entry Allocation Size

Project: All

Format: U5 count (of 512-bit units) –
1

Range [0,31] = [1,32] 512-bit units = [2,64] 256-bit URB rows

Specifies the length of each URB entry owned by this FF unit.

Programming Notes Project

Changing this value requires a subsequent URB_FENCE command. See
Graphics Processing Engine for Command Ordering Rules and a description of
URB_FENCE.

All

18 Reserved Project: All Format: MBZ

17:11 Number of URB Entries

Project: All

Format: U7 Count of URB entries

Range [1,32] if GS enabled, otherwise ignored.

Specifies the number of URB entries that are used by this FF unit.

Programming Notes Project

When running in dual-thread mode, the Number of URB Entries field must
contain an even number. Each thread will be allocated one half the total
number of entries.

All

If ENABLED, the GS stage must be allocated at least one URB entry All

Changing this value requires a subsequent URB_FENCE command. See
Graphics Processing Engine for Command Ordering Rules and a description of
URB_FENCE.

All

9:10 Reserved Project: All Format: MBZ

8 Reserved Project: All Format: MBZ

7:0 Reserved Project: All Format: MBZ

5 31:5 Sampler State Pointer

Project: All

Format: GeneralStateOffset[31:5]

This field specifies the starting location of the Sampler State Table used by threads
spawned by this FF unit. It is specified as a 32-byte-granular offset from the General
State Pointer.

Errata Description Project

 Sampler state pointed at by offsets from General State Base
must be contained within 32-bit physical address space (that
is, must map to memory pages under 4G.)

BW-A,B

4:3 Reserved Project: All Format: MBZ

122

GS_STATE
2:0 Sampler Count

Project: All

Format: U3

Specifies how many samplers (in multiples of 4) the geometry shader kernel uses. Used
only for prefetching the associated sampler state entries.

Value Name Description Project

0h no samplers used All

1h between 1 and 4 samplers used All

2h between 5 and 8 samplers used All

3h between 9 and 12 samplers used All

4h between 13 and 16 samplers used All

5h-7h Reserved All

6 31 Reserved Project: All Format: Enable

30 Reorder Enable Project: All Format: Enable

This bit controls whether the GS unit reorders TRISTRIP/TRISTRIP_REV vertices passed in
the GS thread payload.

If ENABLED, the GS unit will reorder the vertices for “odd-numbered” triangles originating
from TRISTRIP topologies and “even-numbered” triangles originating from TRISTRIP_REV
topologies. (Note that the first triangle is considered “triangle 0”, which is even-
numbered).

With respect to the PrimType passed in the GS thread payload, the GS unit passes
TRISTRIP when the vertices are not reordered, and TRISTRIP_REV when the vertices are
reordered (regardless of whether a TRISTRIP or TRISTRIP_REV topology was being
processed)

If DISABLED, TRISTRIP/TRISTRIP_REV vertices are not reordered, and always passed in
the order they are received from the pipeline. The GS unit will still toggle PrimType on
alternating (as described above) so that the GS thread can perform the reordering
internally (or do whatever is necessary to account for the non-reordering of its input).

29 Reserved Project: All Format: MBZ

28 Reserved

27:4 Reserved Project: All Format: MBZ

3:0 Maximum VPIndex Project: All Format: U4 index value (# of viewports -1)

This field specifies the maximum valid VPIndex value, corresponding to the number of
active viewports. If the source of the VPIndex exceeds this maximum value, a VPIndex
value of 0 is passed down the pipeline. Note that this clamping does not affect a VPIndex
value stored in the URB.

 123

5.3 Object Staging

The GS unit’s Object Staging Buffer (OSB) accepts primitive topologies as a stream of
incoming vertices, and spawns a thread for each individual object within the topology.

5.4 GS Thread Request Generation

5.4.1 Object Vertex Ordering

The following table defines the number and order of object vertices passed in the
Vertex Data portion of the GS thread payload, assuming an input topology with N
vertices. The ObjectType passed to the thread is, by default, the incoming
PrimTopologyType. Exceptions to this rule (for the TRISTRIP variants) are called out.

5.4.2 GS Thread Payload

Table 5-1 shows the layout of the payload delivered to GS threads.

Refer to 3D Pipeline Stage Overview (3D Pipeline) for details on those fields that are
common amongst the various pipeline stages.

Table 5-1. GS Thread Payload

GRF
DWord

Bit Description

R0.7 31 Snapshot Flag. If set, this thread has matched some debug criteria.

(See Debug for further description).

 30:0 Reserved

R0.6 31:24 Reserved

 23:0 Thread ID. This field uniquely identifies this thread within the threads spawned by this
FF unit, over some period of time.

(See Debug for further description).

Format: Reserved for HW Implementation Use.

R0.5 31:10 Scratch Space Pointer. Specifies the location of the scratch space allocated to this
thread, specified as a 1KB-aligned offset from the General State Base Address.

Format = GeneralStateOffset[31:10]

 9:1 Reserved

 0 FFTID. This ID is assigned by the fixed function unit and is relative identifier for the
thread. It is used to free up resources used by the thread upon thread completion.

Format: Reserved for Implementation Use

124

GRF
DWord

Bit Description

R0.4 31:5 Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding Table. It
is specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

 4:0 Reserved

R0.3 31:5 Sampler State Pointer. Specifies the location of the Sampler State Table to be used by
this thread, specified as a 32-byte granular offset from the General State Base
Address or Dynamic State Base Address.

Format = GeneralStateOffset[31:5]

 4 Reserved

 3:0 Per Thread Scratch Space. Specifies the amount of scratch space allowed to be used
by this thread. The value specifies the power that two will be raised to (over determine
the amount of scratch space).

(See Generic Pipeline Stage for further description).

Programming Notes:

• This amount is available to the kernel for information only. It will be passed
verbatim (if not altered by the kernel) to the Data Port in any scratch space
access messages, but the Data Port will ignore it.

Format = U4 power of two (in excess of 10)

Range = [0,11] indicating [1K Bytes, 2M Bytes]

R0.2 31:10 Reserved : delivered as zeros (reserved for message header fields)

 9 Edge Indicator [1]. For POLYGON primitive objects, this bit indicates whether the edge
from Vertex2 to Vertex0 is an exterior edge of the polygon (i.e., this is the last or only
triangle of the polygon). If clear, that edge is an interior edge. The kernel can use this
bit to control operations such as generating wireframe representations of polygon
primitives.

 For all other Primitive Topology Types, this bit is Reserved

 8 Edge Indicator [0]. For POLYGON primitive objects, this bit indicates whether the edge
from Vertex0 to Vertex1 is an exterior edge of the polygon (i.e., this is the first or only
triangle of the polygon). If clear, that edge is an interior edge. The kernel can use this
bit to control operations such as generating wireframe representations of polygon
primitives.

 For all other Primitive Topology Types, this bit is Reserved

 7 Reserved: MBZ

 6:5 Reserved

 4:0 Primitive Topology Type. This field identifies the Primitive Topology Type associated
with the primitive containing this object. It indirectly specifies the number of input
vertices included in the thread payload. Note that the GS unit may toggle this value
between TRISTRIP and TRISTRIP_REV, as described in 5.4.1.

Format: See 3D Pipeline

R0.1 31:0 Reserved

R0.0 31:23 Reserved

 125

GRF
DWord

Bit Description

 22:16 Handle ID. This ID is assigned by the FF unit and links the thread to a specific entry
within the FF unit.

Format: Reserved for Implementation Use

 15:9 Reserved

 8:0 URB Return Handle. This is the initial destination URB handle passed to the thread. If
the thread does output URB entries, this identifies the first destination URB entry.

[Varies]
optional

31:0 Constant Data (optional) :

Some amount of constant data (possible none) can be extracted from the URB and
passed to the thread following the R0 Header. The data is read from the Constant URB
Entry at some offset (Constant URB Entry Read Offset state) from the handle. The
amount of data provided is defined by the Constant URB Entry Read Length state.

The Constant Data arrives in a non-interleaved format.

Varies 31:0 Vertex Data. There can be up to 6 vertices supplied, each with a size defined by the
Vertex URB Entry Read Length state. The amount of data provided for each vertex is
defined by the Vertex URB Entry Read Length state

Vertex 0 DWord 0 is located at Rn.0, Vertex 0 DWord 1 is located at Rn.1, etc. Vertex 1
DWord 0 immediately follows the last DWord of Vertex 0, and so on.

126

5.5 GS Thread Execution

A GS thread is capable of performing arbritrary algorithms given the thread payload
(especially vertex) data and associated data structures (binding tables, sampler state,
etc.) as input. Output can take the form of vertices output to the FF pipeline (at the
GS unit) and/or data written to memory buffers via the DataPort.

The primary usage models for GS threads include (possible combinations of):

• Compiled application-provided “GS shader” programs, specifying an algorithm to
convert the vertices of an input object into some output primitives. For example,
a GS shader may convert lines of a line strip into polygons representing a
corresponding segment of a blade of grass centered on the line. Or it could output
absolutely nothing, effectively terminating the pipeline at the GS stage.

• Driver-generated instructions used to write pre-clipped vertices into memory
buffers (see Stream Output below). This may be required whether or not an app-
provided GS shader is enabled.

• Driver-generated instructions used to emulate API functions not supported by
specialized hardware. These functions might include (but are not limited to):
⎯ Conversion of API-defined topologies into topologies that can be rendered

(e.g., LINELOOP LINESTRIP, POLYGON TRIFAN, QUADs TRIFAN, etc.)
⎯ Emulation of “Polygon Fill Mode”, where incoming polygons can be converted

to points, lines (wireframe), or solid objects.
⎯ Emulation of wide/sprite points.

5.5.1 Vertex Output

The GS kernel will typically use the URB_WRITE message to output vertices and
request additional handles. (Refer to the 3D Pipeline chapter for a general discussion
of how FF units output vertices, and the URB chapter for details on the use of the
URB_WRITE message.)

The following table lists which primitive topology types are valid for output by a GS
thread.

PrimTopologyType Supported for GS
Thread Output?

LINELIST Yes

LINESTRIP Yes

LINESTRIP_BF Yes

LINESTRIP_CONT Yes

LINESTRIP_CONT_BF Yes

LINELOOP No

POINTLIST Yes

POINTLIST_BF Yes

 127

PrimTopologyType Supported for GS
Thread Output?

POLYGON Yes

QUADLIST No

QUADSTRIP No

RECTLIST Yes

TRIFAN Yes

TRIFAN_NOSTIPPLE Yes

TRILIST Yes

TRISTRIP Yes

TRISTRIP_REV Yes

The GS thread is responsible for providing correct PrimType, PrimStart and PrimEnd
information for each vertex output, in the same fashion as the Vertex Fetch unit.
Given that the GS thread is likely performing an algorithm as specified by an
application “geometry shader” program, where the algorithm dictates when and if a
vertex is to be output, the GS thread is allowed to output incomplete primitives (too
few or too many vertices). The downstream FF units will correctly handle any
dangling vertices.

However, the PrimStart and PrimEnd indicators must be correct for all vertices, e.g.,
the last vertex of a topology must have PrimEnd set. This may require the GS thread
to postpone completion of a vertex output operation until either the next vertex is
encountered or the algorithm (not the thread) completes.

Take for example a GS shader that outputs tristrips and uses a “cut” instruction in
some conditionally-executed code. When outputting a vertex, the thread can’t predict
whether or not a subsequent “cut” will cause the vertex to be the last one of the
tristrip topology. And so, the PrimEnd status of that vertex can’t be ascertained until
a subsequent “cut” or “emit” or algorithm termination is encountered. On the other
hand, depending on the robustness of the compiler, the output from simple shaders
(no looping, or conditional operations relating to vertex output) could permit a priori
knowledge of the PrimStart/PrimEnd values. (For example, a simple GS shader that
unconditionally converts an input point to a 2-triangle tristrip.)

Note that, through use (clearing) of the Complete bit in the URB_WRITE message, is
it possible to write a vertex to the URB yet delay the “complete” indication until later.
The PrimType, PrimStart, and PrimEnd indications are not sampled by the FF pipeline
until Complete is set. This relieves the GS thread from actually having to buffer the
pending vertex.

A GS or CLIP thread is restricted as to the number of URB handles it can retain. Here
a “retained” handle refers to a URB handle that (a) has been pre-allocated or allocated
and returned to the thread via the Allocate bit in the URB_WRITE message, and (b)
has yet to be returned to the pipeline via the Complete bit in the URB_WRITE
message.

128

• When operating in single-thread mode (Maximum Number of Threads == 1),
the number of retained handles must not exceed min(16, Number of URB
Entries).

• When operating in dual-thread mode (Maximum Number of Threads == 2), the
number of retained handles must not exceed (Number of URB Entries/2).

This restriction is not expected to be significant in that most/all GS/CLIP threads are
expected to retain only a few (<=4) handles.

5.5.2 Thread Termination

GS threads must terminate by sending a URB_WRITE message with the EOT and
Complete bits set. The Used bit can be set (if outputting a VUE) or clear (if freeing a
used VUE).

5.6 Vertex Header Readback

The GS unit performs a readback of the Vertex Header of each vertex exiting the GS
stage (either passed through or generated by a GS thread) as this information is
required by the next FF stage (CLIP). Software is responsible for ensuring that any
required Vertex Header fields are valid at this point in the pipeline. See Vertex Data
Overview for a description of the Vertex Header fields and how they are read-back and
used by the GS unit.

5.7 Primitive Output

This section refers to output from the GS unit to the pipeline, not output from the GS
thread.

The GS unit will output primitives (either passed-through or generated by a GS
thread) in the proper order. This includes the buffering of a concurrent GS thread’s
output until the preceding GS thread terminates. Note that the requirement to buffer
subsequent GS thread output until the preceding GS thread terminates has
ramifications on determining the number of VUEs allocated to the GS unit and the
number of concurrent GS threads allowed.

 129

6 Clip Stage

6.1 CLIP Stage Overview

The CLIP stage of the GEN4 3D Pipeline is similar to the GS stage in that it can be
used to perform general processing on incoming 3D objects via spawned GEN4
threads. However, the CLIP stage also includes specialized logic to perform a ClipTest
function on incoming objects. These two usage models of the CLIP stage are outlined
below.

Refer to the Common 3D FF Unit Functions subsection in the 3D Overview chapter for
a general description of a 3D Pipeline stage, as much of the CLIP stage operation and
control falls under these “common” functions. I.e., many of the CLIP stage state
variables and CLIP thread payload parameters are described in 3D Overview, and
although they are listed here for completeness, that chapter provides the detailed
description of the associated functions.

Refer to this chapter for an overall description of the CLIP stage, details on the
ClipTest function, and any exceptions the CLIP stage exhibits with respect to common
FF unit functions.

6.1.1 Clip Stage – General-Purpose Processing

Numerous state variable controls are provided to tailor the ClipTest function as
required by the API or primitive characteristics. These controls allow a mode where
all objects are passed to CLIP threads, and in this regard the CLIP stage can be used
as a second GS stage. However, unlike the GS stage, primitives output by CLIP
threads will not be subject to 3D Clipping, and therefore any clip-testing/clipping of
these primitives (if required) would need to be performed by the CLIP thread itself.

6.1.2 Clip Stage – 3D Clipping

The ClipTest fixed function is provided to optimize the CLIP stage for support of
generalized 3D Clipping. The CLIP FF unit examines the position of incoming vertices,
performs a fixed function VertexClipTest on these positions, and then examines the
results for the vertices of each independent object in ClipDetermination.

The results of ClipDetermination indicate whether an object is to be processed by a
thread (MustClip), discarded (TrivialReject) or passed down the pipeline unmodified
(TrivialAccept). In the MustClip case, the spawned thread is responsible for
performing the actual 3D Clipping algorithm. The CLIP thread is passed the source
object vertex data and is able to output a new, arbitrary 3D primitive (e.g., the
clipped primitive), or no output at all. Note that the output primitive is independent in
that it is comprised of newly-generated VUEs, and does not share vertices with the
source primitive or other CLIP-generated primitives.

130

New vertices produced by the CLIP threads are stored in the URB. Their Vertex
Headers are then read from the VUEs in order to insert the relevant information into
the 3D pipeline. The CLIP unit maintains the proper ordering of CLIP-generated
primitives and any surrounding trivially-accepted primitives. The CLIP unit also
supports multiple concurrent CLIP threads and maintains the proper ordering of the
thread outputs as dictated by the order of the source objects.

The outgoing primitive stream is sent down the pipeline to the Strip/Fan (SF) FF stage
(now including the read-back VUE Vertex Header data such as Vertex Rosition (NDC or
screen space), RTAIndex, VPIndex, PointWidth) and control information (PrimType,
PrimStart, PrimEnd) while the remainder of the vertex data remains in the VUE in the
URB.

6.2 Concepts

This section provides an overview of 3D clip-testing and clipping concepts. It is
provided as background material: some of the concepts impact HW functionality while
others impact CLIP kernel functionality.

6.2.1 The Clip Volume

3D objects are optionally clipped to the clip volume. The clip volume is defined as the
intersection of a set of clip half-spaces. Six of these half-spaces define the view
volume, while additional, user-defined half-spaces can be employed to perform
clipping (or at least culling) within the view volume.

The CLIP stage design will permit the enable/disable of certain subsets of these clip
half-spaces. This capability can be used, for example, to disable viewport, guardband,
and near and far clipping as required by the API and other conditions.

6.2.1.1 View Volume

The intersection of the six view half-spaces defines the view volume. The view
volume is defined in 4D clip space coordinates as:

 131

‘Outside’ Condition View Clip Plane

 4D Clip Space NDC space, positive w

XMIN

(NDC Left)

clip.x < -clip.w ndc.x < -1

XMAX

(NDC Right)

clip.w < clip.x ndc.x > 1

YMIN

(NDC Bottom)

clip.y < -clip.w ndc.y < -1

YMAX

(NDC top)

clip.w < clip.y ndc.y > 1

ZMIN

(NDC Near)

clip.z < -clip.w ndc.z < -1.0

ZMAX

(NDC Far)

clip.w < clip.z ndc.z > 1.0

Note that, since the 2D (X,Y) extent of the projected view volume is subsequently
mapped to the 2D pixel space viewport, the terms “viewport” and “view volume” are
used somewhat interchangeably in this discussion.

The CLIP unit will perform view volume clip test using NDC coordinates (the results of
the speculative PerspectiveDivide). The treatment of negative ndc.w and invalid
(NaN, +/-INF) coordinates is clarified below.

Negative W Coordinates

Consider for a moment vertices with a negative clip.w coordinate. Examination of the
API definitions for “outside” shows that it is impossible for that vertex to be
considered inside both the XMIN (NDC Left) and XMAX (NDC Right) planes. The clip.x
coordinate would need to be greater than or equal to some positive value (-clip.w) to
be considered inside the XMIN plane, while also being less than or equal to the
negative (clip.w) value to be considered inside the XMAX plane. Obviously both these
conditions cannot be met simultaneously, so a vertex with a negative clip.w
coordinate will always appear outside.

Surprisingly, it is possible for a vertex to be outside both the XMIN and XMAX planes
(and likewise for the Y axis). This arises when clip.w is negative and clip.x falls
between clip.w and -clip.w. Note, however, that in NDC space (post perspective-
divide), this same vertex would be considered inside. This disparity arises from the
loss of information from the perspective divide operation, specifically the signs of the
input operands. The CLIP stage will avoid this artifact by supporting an additional
clip.w=0 clip plane – a negative ndc.rhw value indicates the point is outside of the
clip.w=0 plane. (See sections below for related errata in DevBW and DevCL devices)

The assumption made in the Clip stage is that only the w>0 portion of clip space is
considered visible. The VertexClipTest function tests each incoming 1/w value and, if

132

negative, the vertex is tagged as being outside the w=0 plane. These vertex outcodes
are combined in ClipDetermination to determine TA/TR/MC status.

A negative w coordinate poses an additional issue due to the fact that VertexClipTest
is performed using post-perspection-projection coordinates (NDC or screen space).
This disparity arises from the loss of information from the perspective divide
operation, specifically the signs of the input operands. For example, to test for (x>w)
using NDC coordinates, (x/w>1) must be used when w>0, and (x/w<1) must be used
when w<0. The VertexClipTest function therefore uses the sign of the incoming 1/w
coordinate to select the appropriate comparison function for each of the VP and GB
clip planes.

As the CLIP thread performs clipping in 4D clip space, only the truly visible portions of
objects (i.e, meeting the 4D clip space visibility criteria) will be considered. The CLIP
thread should not output negative w (clip or NDC) coordinates.

Outs
ide

Le
ft

InsideOutside
Right x

w

x=
w

(V
P Le

ft)
x=-w

(VP Right)

w=1.0

???

Points on this line
project to an inside

point

Points on this line
project to an outside

point

Perspective Divide
maps a 4D point to

the intersection of the
W=1 line and a line

from the point to thru
the origin

 133

6.2.2 User-Specified Clipping

The various APIs define mechanisms by which objects can be clipped or culled
according to some user-specified parameter(s) in addition to the implied viewport
clipping. In GEN4, the HW support of these mechanisms is restricted to use of the 8
UserClipFlags (UCFs) of the VUE Vertex Header. Software is required to provide the
remaining support (e.g., the JITTER including GEN4 instructions to cause a distance
value to be computed, tested for visibility, and generation of the appropriate UCF bit.)

6.2.2.1 User Clip Planes

Up to 6 user clip planes can be defined and enabled. These planes define half-spaces
that are intersected with the view volume (and each other) to form a final clip volume.
Each user clip plane is specified by four coefficients of a plane equation in clip space
coordinates (UserClipPlane[n].xyzw). A point is not visible if it has a negative
distance to the plane. Therefore, points P that satisfy the following equation are
considered to lie in the half-space and therefore may be visible:

 (P.xyzw dot UCP[n].xyzw) >= 0, 0<=n<=5

There is no direct HW support for this distance computation. The driver/JITTER is
required to cause the distances to be correctly computed/compared in a shader, with
the comparison result (Boolean) placed in the proper location in the Vertex Header.

6.2.3 Negative-W Clipping Errata

In DevBW and DevCL-A devices there is a bug in the definition of the handling of
negative RHW (1/w) coordinates in the Clip unit’s trivial reject logic. The fault may
cause line and triangle objects to be erroneously trivially rejected and therefore be
manifested as occasional missing geometry.

This section also describes a partial fix (ECO) that is incorporated into DevCL-B, and
an additional ECO HW change for DevBW-E0.

DevCL-B ECO (partial fix)

The DevCL-B ECO parallels the PreDevBW-E0, DevCL-A SW workaround in that it uses
UC7 logic to provide full trivial-accept (TA), trivial-reject (TR) and mustclip (MC)
support for the w=0 clip plane. The pre-clipper shader kernel will have to be modified
to set NDC x/w, y/w, z/w to 0.0 if w<0. However, this ECO allows all 8 UserClipFlags
to be supported (with limitations).

Note that this ECO is suboptimal due to constraints on the location and extent of the
ECO. A bit (ECOSKPD[9]) is included to revert back to the DevCL-A behavior;
therefore, providing driver (SW-workaround) compatibility

DevBW-E0 ECO (partial fix)

This ECO extends the DevCL-B ECO described above. In VertexClipTest, if the vertex
has a negative W coordinate, the VP & GB outcodes are inverted (if enabled). (In
addition, a bug related to mis-handling of z = -0 is resolved, but that is unrelated to
neg-w handling). Note that the inversion of the outcodes is not entirely correct in that

134

it mis-handles the ‘=’ condition. As a result, the clip boundaries will be treated as
“outside” in the negative-w regions. (Unfortunately correct handling the ‘=’ case
made the ECO untenable).

On the bright side, this ECO:

• Removes the need for any VS/GS software workaround. The HW will detect a
negative w and compute the (almost-correct) VP & GB outcodes.

• Removes the need to set UserClipFlagsMustClipEnable. There is no reason to
force a clip thread specifically for UC7 (which is set if w<0). As the outcodes are
set correctly even when w<0, clip threads will be spawned as required. In
addition, objects completely in w<0 space will be correctly TR’d against UC7
(assuming that UC is enabled).

However, UC7) will still be routed to the BAD outcode and subsequently will cause a
clip thread to be spawned – therefore spawning clip threads for objects with any
vertex having UC7 set.

 135

The following table summarizes the software workarounds required for the various
devices

Figure 6-1. SW Workaround Summary

Device VS/GS
Kernel

Clip State Clip Kernel Notes

DevBW

DevCL-A

If (w<0) {

 npc.xyzw=0

 UC7=1

}

Enable UC7

Set
UCFMustClipEnable to
force clips for mixed
NEGW cases.

If UC7 set,
other outcodes
are undefined
and must be
recomputed.

UC7
unavailable
for normal use

DevCL-B+ If (w<0) {

 npc.xyz=0

}

Enable UC7

Set
UCFMustClipEnable to
force clips for mixed
NEGW cases.

If UC7 set,
other outcodes
are undefined
and must be
recomputed.

Will see “BAD”
objects due to
BAD UC7 hack.

UC7 is
supported
(routed to
BAD before
being used for
NEGW).

DevBW-E0+

No WA
required

Enable UC7 in order
to allow TR against
w<0.

No need to set
UCFMustClipEnable.

Will see “BAD”
objects due to
BAD UC7 hack.

UC7 is
supported
(routed to
BAD before
being used for
NEGW).

6.2.3.1 W Clipping Errata (DevBW, DevCL-A)

The DevBW and DevCL-A devices contain a definitional error in that a separate
clip.w=0 clip plane was not implemented, and instead a negative ndc.rhw value
caused all clip outcodes (except for BAD and UCs) to get set in VertexClipTest. This
behavior can lead to false trivial rejects for line and triangle objects. The Trivial
Reject function is therefore UNDEFINED under the following conditions:

1. Line or triangle object

2. At least one vertex has a negative RHW component

3. At least one vertex has a non-negative RHW component

4. All vertices straddle one or more common VP/GB clip planes

5. All vertices are not outside of a common enabled clip plane (including UCFs) –
i.e., the object should not be trivially rejected

Software must prevent these conditions from occuring whenever it uses a Clip Mode
which uses the trivial reject function (NORMAL or CLIP_NON_REJECTED). A suggested
workaround is to have the previous shader (VS or GS) detect negative w coordinates,
and if seen, set all NDC coordinates (x/w, y/w, z/w, 1/w) in the Vertex Header with
0.0, and set/utilize a UserClipFlag to cliptest against w=0.

136

6.2.3.2 W Clipping Errata (DevCL-B)

The DevCL-B device includes a partial fix for the errata (previous section). The fix
parallels the suggested Dev-BW,Dev-CL-A SW workaround in that it uses UC7 logic to
provide full trivial-accept (TA), trivial-reject (TR) and mustclip (MC) support for the
w=0 clip plane (thus correctly handling negative RHW components). The pre-clipper
shader kernel will have to be modified to set NDC x/w, y/w, z/w to 0.0 if w<0.
However, this ECO allows all 8 UserClipFlags to be supported (with limitations) and
therefore is applicable to a D3D10 driver.

A bit (ECOSKPD[9]) is included to revert back to the DevCL-A behavior, therefore
providing driver (SW-workaround) compatibility (though posing an issue for D3D10
support).

The fix consists of 4 parts:

(1) Reroute UserClipFlag[7] into BAD

In VertexClipTest, instead of

outcode[BAD] = ISNAN(rhw)

the fix adds

outcode[BAD] = ISNAN(rhw) || UserClipFlag[7]

In concert with (4) (BAD Forces SPAWN, below), this change will force SPAWN
whenever a vertex has rhw==NaN or has UserClipFlag[7] set, assuming REJECT_ALL
mode is not in effect. Previously, only rhw==NAN lead to a BAD object, and all BAD
objects were discarded except in CLIP_ALL mode. This change allows a D3D10 driver
to use all 8 UserClipFlags for clipDistance and cullDistance, an improvement over the
previous SW workaround. However, there are limitations and ramifications (see
below).

(2) Prevent Setting of All Outcodes upon Negative RHW

In VertexClipTest, the fix removes the following logic (which was the source of the
original problem):

⎯
⎯ if (0 rhw_neg)
⎯ {

⎯ outCode[VP_XMIN] = 1
⎯ outCode[VP_XMAX] = 1
⎯ outCode[VP_YMIN] = 1
⎯ outCode[VP_YMAX] = 1
⎯ outCode[VP_ZMIN] = 1
⎯ outCode[VP_ZMAX] = 1
⎯ outCode[GB_XMIN] = 1
⎯ outCode[GB_XMAX] = 1
⎯ outCode[GB_YMIN] = 1
⎯ outCode[GB_YMAX] = 1
⎯ goto UserClipFlags

⎯ }

 137

This change prevents some false trivial rejects. However, it is not a complete fix in
that the computed VP,GB outcodes are still not correct when w<0. In order to
completely remove false TRs, the pre-clipper kernel must set x/w, y/w and z/w (the
NDC coordinates in the vertex header) to 0.0 whenever w<0. Note that 1/w must be
passed normally (not forced to 0.0 as in the DevBW,DevCL-A workaround) – as the
sign of 1/w is used to set UC7 (see below).

 (3) Reroute rhw_neg into UCF7

In VertexClipTest, instead of

outcode[UC7] = UserClipFlag[7] && UserClipFlagClipTestEnable[7]

the fix adds

outcode[UC7] = rhw_neg && UserClipFlagClipTestEnable[7]

This change routes UserClipFlag[7] into BAD, thus using UC7 logic to perform
TA/TR/MC determination for the w=0 clip plane. Note that UCFClipTestEnableMask[7]
still applies to UC7, though UC7 is now sourced from rhw_neg instead of
UserClipFlag[7].

(4) BAD Forces SPAWN except in REJECT_ALL Mode

In the application of ClipMode, a BAD object (any vertex has rhw=NaN or
UserClipFlag[7] set) will force a SPAWN unless ClipMode is REJECT_ALL. This is what
provides support for cliptest/clipping against UserClipFlag[7]. Performance-wise,
neither of these BAD cases are expected to occur very often (at least compared to
negative W).

6.2.3.2.1 Support for Clip-Testing Against W=0

Software must set UserClipFlagsClipTestEnable[7] to enable clip-testing against the
w=0 plane. If set, the rhw_neg bit will be routed to UC7, therefore permitting trivial
reject, trivial accept and must clip determination like the other seven UCFs.

As the rhw_neg bit is handled as a UCF, it is subject to the
UserClipFlagsMustClipEnable state bit. If this state bit is set, UCFs (by themselves)
can lead to a mustclip determination (for the assumed purpose of 3D clipping against
that plane). This is the expected setting for D3D9 and OGL use of the UCFs. If clear,
the UCFs (by themselves) will not lead to a mustclip determination. This is the
expected setting for D3D10, where the cullDistance/clipDistance functions do not
require 3D clipping (only accept/reject). Unfortunately, as 3D clipping against w=0
will be required and rhw_neg appears as a UCF, this effectively forces the D3D10
driver to set this state bit. This will likely cause some objects to be routed to a clip
thread that otherwise could have been passed down the pipeline as a trivial accept
(e.g., the object is inside of all clip planes except for straddling UserClipFlag[4]). The
clip kernel can be modified to detect these cases and pass (copy) the input object as
output.

138

6.2.3.2.2 Support for UserClipFlag[7]

This flag should only be required in support of the maximum complement of eight
cullDistance/clipDistance values. When any vertex of an object has this bit set, the
object will be sent to a clip thread (unless in REJECT_ALL mode when all objects are
discarded). Note that since the object is considered “BAD”, the ObjectOutcode[BAD]
bit in the payload will be set. The clip kernel would need to examine each vertex’s
rhw value and UserClipFlag[7] bit to distinguish between the (now) two causes of BAD
objects.

Trivial Reject: Unfortunately, the HW does not support trivial-reject against
UserClipFlag[7]. Instead, the clip kernel can detect that a set UserClipFlag[7] was
what caused the object to be considered BAD, and do an early discard of the object if
all vertices had UserClipFlag[7] set. It is assumed that normal operation of the clip
kernel would also lead to the discard of these objects, albeit in a less optimal fashion.

Clipping: Once the clip kernel determines that (a) the object was not BAD due to
rhw==NaN, and (b) the object cannot be rejected against the UserClipFlag[7] bit,
then it has determined that the object straddles the clip plane associated with
UserClipFlag[7]. For D3D10 cullDistance, the API specifies that non-culled primitives
are not subject to clipping. For D3D10 clipDistance, the API specifies that the clipping
should be done at the pixel level (for GEN4.x, in the PS). In either case, the clip
kernel can simply copy the input object to its output and send the object down the
pipeline – no 3D clipping is required.

Enable: As opposed to the UserClipPlanes there are no state “enables” associated
with cullDistance/clipDistance values – the app must match up the generation and PS
use of these values in the shader declarations. Therefore the use of
UserClipFlagsClipTestEnable[7] to control use of rhw_neg as UC7 should pose no
direct issue to the driver. The shader which computes the cullDistance/clipDistance
value associated with UserClipFlag[7] should only cause the UCF7 bit to be set when
the appropriate criteria is met (i.e., the associated cullDistance/clipDistance value is
negative or NaN).

6.2.4 Tristrip Clipping Errata [Pre-DevBW-E1],
[DevCL]

The HW clip unit has an implementation bug in the ClipDetermination logic related to
the processing of tristrip primitives (TRISTRIP and TRISTRIP_REV). If an object in the
tristrip is determined to be a trivial reject case (TR), and the next object in the strip is
determined to be a trivial accept (TA) case, a primitive topology can be emitted (for
that TA object and possibly subsequent objects) with an incorrect primitive topology
type. More specifically, instead of emitting a TRISTRIP_REV primtype, a TRISTRIP
primtype may be omitted, and vice versa. This will lead to incorrect face culling (if
enabled) downstream in the SF unit and be manifested by missing/extra triangles
rendered.

TR to TA transitions can occur with when the tristrip crosses a viewport XY or UCF clip
boundary. Note that this is not an issue with the VPZ or GBXY boundaries, as crossing
one of those boundaries would cause at least one MustClip (MC) object between TR
and TA objects and therefore the fault is not encountered. The same applies to VPXY

 139

when the GBXY cliptest is disabled (as there objects will get clipped against the VPXY
boundaries).

There is a way for software to work around this problem, assuming that avoiding the
use of trsitrips in the first place is not practical. Software can disable cliptest against
the VPXY (assuming GBXY is disabled) and UCF flags prior to submitting tristrip
primitives. This will likely incur a performance penalty as objects that could be
trivially rejected against these boundaries will be sent down the pipe. Note that
objects that would have been TR-ed against VPXY will likely be discarded in the SF
unit’s 2D clipping logic, so only partial SF processing will be incurred.

The same is not true for the UCF flags. When used for “ClipDistance”, the could-have-
been-TRed objects will be completely set-up and rasterized, with the PS kernel
eventually killing all pixels. When used for ‘CullDistance”, the feature will appear to
be non-functionaly as no culling will occur. One way to avoid some of this
performance penalty would be for software to to leave the UCF ClipTest Enable
Bitmask bits set, but also set the UserClipFlags MustClip Enable bit. This would
(a) permit trivial reject against the UCFs, and (b) avoid the fault condition by forcing a
MustClip case between TR and TA objects. The clip kernel would simply need to pass
through any UCF-clipped only objects (which should be the default operation of the
clip kernel).

6.2.5 Guard Band

3DClipping is time consuming. For cases where 2DClipping is sufficient, we are
willing to forgo 3DClipping and instead apply 2DClipping during rendering. In the
general case, this is possible only when an object is totally within the ZMin and ZMax
planes, and only clipping to the view volume X/Y MIN/MAX clip planes is required, as
2DClipping is restricted to a screen-aligned 2D rectangle.

However, we must ensure that the 2D extent of these objects do not exceed the
limitations of the renderer’s coordinate space (see Vertex X,Y Clamping and
Quantization in the SF section). Therefore we define a 2D guardband region
corresponding to (though likely somewhat smaller than) the maximum 2D extent
supported by the renderer. During VertexClipTest, vertices are (optionally) subjected
to an additional visibility test based on the 2D guardband region.

During ClipDetermination, if an object is not trivially-rejected from the 2D viewport,
the XMIN_GB, XMAX_GB, YMIN_GB and YMAX_GB guardband outcodes are used
instead of the XMIN, XMAX, YMIN, YMAX view volume outcodes to determine trivial-
accept. This will allow objects that fall within the guardband and possibly intersect the
viewport to be trivially-accepted and passed down the pipeline.

The diagram below shows some examples of objects (triangles) in relation to the
viewport and guardband. The shaded triangles are examples of triangles that are not
trivially accepted to the viewport but trivially accepted to the guardband and therefore
passed to down the pipeline. Without the guardband, these triangles would have to
be submitted to a CLIP thread.

140

Figure 6-2. Normal Guardband Operation

Trivial
Reject (VP)Trivial

Accept
(VP)

MustClip,
partially visible

Trivial Reject
(VP and GB)

Trivial
Accept
(GB) MustClip,

not visible

GuardBand

Viewport

Trivial
Accept
(GB)

Trivial
Accept
(GB)

Screen X

Screen Y

Trivial Reject (VP)

The CLIP stage needs to handle the case where the viewport XY is larger than the
screen space coordinate range supported by the SF and WM units. This condition may
arise when the API defines an implicit 2D clip between the viewport XY extent and the
rendertarget. In the GEN4 3D pipeline, the guardband must used to force explicit
clipping in order to ensure legal coordinates are passed out of the CLIP stage.
Therefore the CLIP unit supports a guardband that can be larger or smaller than the
viewport (in any particular direction). The following diagram illustrates a case with a
very large viewport, extending well beyond the guardband. Note that the only trivial
accept case is where objects are completely within the guardband.

 141

Figure 6-3. Very Large Viewport Case

Trivial
Reject
(GB)Trivial

Accept
(GB)

MustClip,
partially visible

Trivial Reject
(VP and GB)

MustClip
partially
visible MustClip,

not visible

GuardBand

Viewport

MustClip
not visible

MustClip
partially
visible

Screen X

Screen Y

Trivial Reject (GB)

Programming Restriction: Varying ViewportIndex within Strip-based
Primitives

The forementioned case, where objects must be clip-tested and clipped against the
guardband, leads to an somewhat obscure CLIP unit programming restriction. The
fundamental issue is that the CLIP unit does not natively support clip-testing of strip
topologies where the ViewportIndex can vary from vertex to vertex. The proper
handling of this (i.e., applying the ViewportIndex from the leading vertex of the object
to all object vertices) would require clip-testing on a per-object, not a per-vertex,
basis. As the CLIP unit only uses the ViewportIndex to access the corresponding
viewport-normalized guardband parameters, this exceptional condition could be
ignored by turning off the guardband and thereby ignoring the incorrect results
provided by the guardband cliptest. (Note that the viewport cliptest is performed
against fixed values and therefore not dependent on the ViewportIndex). This leads
to the conflict where the guardband needs to be enabled (to handle a very large
guardband) but disabled (to ignore the incorrect cliptest results for strips with varying
ViewportIndex). In this case, software will likely have to resort to use of the
CLIP_ALL Clip Mode. This will pass all objects to a CLIP thread, where the correct clip-
testing and clipping can be performed.

9

142

6.2.5.1 NDC Guardband Parameters

When the CLIP unit performs VertexClipTest in NDC space, the guardband limits must
be provided as NDC coordinates. The diagram below shows how the guardband NDC
coordinates are derived. Specifically, the XMIN_GB NDC coordinate is simply the ratio
of the (screen space) distance from the screen space VP center to the screen space GB
XMin boundary over the distance from the VP center to the VP XMin (left) boundary.
A similar computation yields the XMAX_GB (right), YMIN_GB (bottom) and YMAX_GB
(top) guardband NDC coordinates.

As these guardband parameters are defined relative to the viewport, each of the up-
to-16 sets of viewport specifications supported in the 3D pipeline will require a
corresponding set of guardband parameters. These guardband parameters are
provided as a separate memory-resident state structure (CLIP_VIEWPORT), and
referenced via the Clipper Viewport State Pointer contained in the CLIP_STATE
structure. Note that the CLIP_VIEWPORT structure has a different definition than the
SF_VIEWPORT structure used by the SF unit.

6.2.5.2 Screen Space Guardband Parameters

When the CLIP unit performs VertexClipTest in screen space, the guardband limits
must be provided as screen space coordinates. Note that YMIN_GB will correspond to
the screen space GB top, and YMAX_GB will correspond to the screen space GB
bottom, which is opposite from the NDC case.

0 +1

VP Center VP XMax GB XMax VP XMin GB XMin

-1 XMIN_GB (NDC) XMAX_GB (NDC)

NDC Space

Screen Space

 143

6.2.6 Vertex-Based Clip Testing & Considerations

The CLIP unit performs clip test and determines whether objects need to be clipped
based solely on information (position, UserClipFlags) provided at the vertices of the
object as they arrive at the clip stage. Issues arise if and when the corresponding
rendered object is not constrained to the convex hull of the object. Different APIs
impose different treatment of these conditions.

In addition and in the more general case, a CLIP thread could be used to convert the
object (as defined by its vertices) into some arbitrary output primitive. In this case,
the CLIP unit’s ClipTest/ClipDetermination logic may not be suitable for determination
of when to reject/accept/clip objects. In this case the ClipMode can be used to route
all (or all non-rejected) objects to CLIP threads, where the proper clip-test and
clipping can occur in the CLIP kernel.

One issue that arises is whether a trivial-reject to the VPXY is suitable. If this were
allowed, an object might be discarded even if it would have been partially visible in
the viewport. A second issue is whether a TA against the GB is suitable. If this were
allowed, portions of the rendered object might be visible in the VP even if the object
should have been clipped out of the VP.

6.2.6.1 Triangle Objects

In the normal processing of triangle-based primitives (tristrip/trilist/polygon/etc.), the
footprint of each triangle is constrained to the 2D convex hull. I.e., the rendering of
these triangles will not produce pixels outside of the triangle. Therefore the normal
operation of the CLIP unit functions will support the proper clip testing and clip
determination for triangle objects:

• Both the VPXY and GB clip boundaries can be utilized (as described above). If the
triangle is TR against the VP, it can be discarded. Otherwise, if the triangle is TA
against the GB, it can be passed down the pipeline (assuming it is TA against VPZ,
UCFs, etc.) and properly handled by 2DClipping.

• The GB parameters can be programmed to coincide with the maximum allowable
screen space extent (though making the GB marginally smaller than this max
extent is highly recommended).

6.2.6.2 Non-Wide Line Objects

In the normal processing of non-wide, line-based primitives (linestrip/linelist/etc.), the
footprint of each line is constrained to the 2D convex hull. I.e., the rendering of these
lines will not produce pixels off of the line. Therefore the normal operation of the CLIP
unit functions will support the proper clip testing and clip determination for non-wide
line objects. (See Triangle Objects above).

144

6.2.6.3 Wide Line Objects

The GEN4 rendering hardware supports wide lines (solid lines with a line width or anti-
aliased lines). When rendered, pixels outside of the convex hull will be generated.

The following diagram shows an example of a wide line that normally would be TA
against the GB. If the TA is allowed, the partially-visible region of the line would be
rendered.

Viewport

Partially-visible
region?

Guardband

In general, OpenGL dictates that the partially-visible region must not be rendered. In
this case the line must be clipped-out against the VPXY (not TA against the GB). To
accomplish this, SW could disable the GB when drawing wide lines.

6.2.6.4 Wide Points

The GEN4 rendering hardware supports a width parameter for native line objects.
When rendered, pixels surrounding the point (center) vertex will be generated.

The following diagram shows an example wide point that normally would be TR
against the VPXY. If the TR is allowed, the partially-visible region of the point would
not be rendered.

 145

Viewport

Partially-visible
region?

Point
Vertex

Guardband

In general, OpenGL dictates that the partially-visible region must not be rendered. In
this case the point must be TR against the VPXY (not TA against the GB). To
accomplish this, SW could disable the GB when drawing wide points.

6.2.6.5 RECTLIST

The CLIP unit treats RECTLIST exactly like TRILIST. No special consideration is made
for the implied 4th vertex of each rectangle (although ViewportXY and Guardband
VertexClipTest theoretically should be sufficient to drive ClipDetermination). Given
this, and the fact that RECTLIST is primarily intended for driver-generated “BLT”
functions, there are number of restrictions on the use of RECTLIST, especially
regarding the CLIP unit. Refer to the RECTLIST definition in 3D Pipeline.

6.2.7 3D Clipping

If an object needs to be clipped, it will be passed to the CLIP thread. The CLIP thread
will perform some (arbitrary) algorithm to clip the primitive, and subsequently output
“new” vertices as a primitive defining the visible region of the input object (assuming
there is a visible region). In the process of spawning the CLIP thread, the input
vertices may be considered “consumed” and therefore dereferenced. Therefore the

146

CLIP thread will need to copy (if required) any input VUE data to a new output VUE –
there is no mechanism to “output” input vertices other than copying.

6.3 CLIP Stage Input

As a stage of the GEN4 3D pipeline, the CLIP stage receives inputs from the previous
(GS) stage. Refer to 3D Overview for an overview of the various types of input to a
3D Pipeline stage. The remainder of this subsection describes the inputs specific to
the CLIP stage.

6.3.1 State

6.3.1.1 CLIP_STATE

The following table describes the format and contents of the CLIP_STATE structure
referenced by the Pointer to CLIP State field of the 3DSTATE_PIPELINED_POINTERS
command.

CLIP_STATE
Project: All

Controls the CLIP stage hardware.

DWord Bit Description

0 31:6 Kernel Start
Pointer

Project: All Format: GeneralStateOffset[31:6]

This field specifies the starting location (1st GEN4 core instruction) of the kernel program
run by threads spawned by this FF unit. It is specified as a 64-byte-granular offset from
the General State Base Address

[DevBW-A,B] Errata BWT007: Instructions pointed at by offsets from General State
Base must be contained within 32-bit physical address space (that is, must map to
memory pages under 4G.)

5:4 Reserved Project: All Format: MBZ

3:1 GRF Register
Count

Project: All Format: U3 register block count - 1

Defines the number of GRF Register Blocks used by the kernel. A register block contains
16 registers. A kernel using a register count that is not a multiple of 16 must round up to
the next multiple of 16.

0 Reserved Project: All Format: MBZ

 147

CLIP_STATE
1 31 Single Program Flow (SPF)

Project: All

Specifies whether the kernel program has a single program flow (SIMDnxm with m = 1)
or multiple program flows (SIMDnxm with m > 1).

Value Name Description Project

0h Reserved All

1h Enable Single Program Flow enabled All

30:26 Reserved Project: All Format: MBZ

25:18 Binding Table
Entry Count

Project: All Format: U8

Specifies how many binding table entries the kernel uses. Used only for prefetching of
the binding table entries and associated surface state.

Note: For kernels using a large number of binding table entries, it may be wise to set
this field to zero to avoid prefetching too many entries and thrashing the state cache.

17 Thread Priority

Project: All

Specifies the priority of the thread for dispatch

Value Name Description Project

0h Normal Priority All

16 Floating Point Mode

Project: All

Specifies the initial floating point mode used by the dispatched thread.

Value Name Description Project

0h Use IEEE-754 Rules All

1h Use alternate rules All

15:14 Reserved Project: All Format: MBZ

13 Illegal Opcode
Exception Enable

Project: All Format: Enable

This bit gets loaded into EU CR0.1[12] (note the bit # difference). See Exceptions and
ISA Execution Environment.

12 Reserved Project: All Format: MBZ

11 Mask Stack
Exception Enable

Project: All Format: Enable

This bit gets loaded into EU CR0.1[11]. See Exceptions and ISA Execution Environment.

10:8 Reserved Project: All Format: MBZ

148

CLIP_STATE
7 Software

Exception Enable
Project: All Format: Enable

This bit gets loaded into EU CR0.1[13] (note the bit # difference). See Exceptions and
ISA Execution Environment.

6:0 Reserved Project: All Format: MBZ

2 31:10 Scratch Space
Base Pointer

Project: All Format: GeneralStateOffset[31:10]

Specifies the location of the scratch space area allocated to this FF unit, specified as a
1KB-granular offset from the General State Base Address. If required, each thread
spawned by this FF unit will be allocated some portion of this space, as specified by Per-
Thread Scratch Space.

9:4 Reserved Project: All Format: MBZ

3:0 Per-Thread Scratch Space

Project: All

Format: U4 power of 2 Bytes over 1K Bytes FormatDesc

Range [0,11] indicating [1K Bytes, 2M Bytes]

Specifies the amount of scratch space to be allocated to each thread spawned by this FF
unit.

The driver must allocate enough contiguous scratch space, starting at the Scratch Space
Base Pointer, to ensure that the Maximum Number of Threads can each get Per-
Thread Scratch Space size without exceeding the driver-allocated scratch space.

3 31 Reserved Project: All Format: MBZ

30:25 Constant URB Entry Read Length

Project: All

Format: U6 FormatDesc

Range [0,63]

Specifies the amount of URB data read and passed in the thread payload for the Constant
URB entry, in 256-bit register increments.

24 Reserved Project: All Format: MBZ

23:18 Constant URB Entry Read Offset

Project: All

Format: U6 FormatDesc

Range [0,63]

Specifies the offset (in 256-bit units) at which Constant URB data is to be read from the
URB before being included in the thread payload.

17 Reserved Project: All Format: MBZ

 149

CLIP_STATE
16:11 Vertex URB Entry Read Length

Project: All

Format: U6 FormatDesc

Range [1,63]

Specifies the amount of URB data read and passed in the thread payload for each Vertex
URB entry, in 256-bit register increments.

Programming Notes

It is UNDEFINED to set this field to 0 indicating no Vertex URB data to be read and
passed to the thread.

10 Reserved Project: All Format: MBZ

9:4 Vertex URB Entry Read Offset

Project: All

Format: U6 FormatDesc

Range [0,63]

Specifies the offset (in 256-bit units) at which Vertex URB data is to be read from the URB
before being included in the thread payload. This offset applies to all Vertex URB entries
passed to the thread.

3:0 Dispatch GRF Start Register for URB Data

Project: All

Format: U4 FormatDesc

Range [0,15] indicating GRF [R0,R15]

Specifies the starting GRF register number for the URB portion (Constant + Vertices) of
the thread payload.

4 31:30 Reserved Project: All Format: MBZ

29:25 Maximum Number of Threads

Project: All

Format: U5 thread count – 1

Range [0,1] indicating thread count of [1,2]

Specifies the maximum number of simultaneous threads allowed to be active. Used to
avoid using up the scratch space, or to avoid potential deadlock.

Programming Notes Project

When running in dual-thread mode, the Number of URB Entries field must
contain an even number. Each thread will be allocated one half the total
number of entries.

All

A URB_FENCE command must be issued subsequent to any change to the
value in this field (via PIPELINE_STATE_POINTERS) and before any
subsequent pipeline processing (e.g., via 3DPRIMITIVE or
CONSTANT_BUFFER). See Graphics Processing Engine (Command Ordering
Rules)

All

150

CLIP_STATE
24 Reserved Project: All Format: MBZ

23:19 URB Entry Allocation Size

Project: All

Format: U5 count (of 512-bit units) –
1

Range [0,31] = [1,32] 512-bit units = [2,64] 256-bit URB rows

Specifies the length of each URB entry owned by this FF unit.

Programming Notes Project

Changing this value requires a subsequent URB_FENCE command. See
Graphics Processing Engine for Command Ordering Rules and a description of
URB_FENCE.

All

18 Reserved Project: All Format: MBZ

17:11 Number of URB Entries

Project: All

Format: U7 Count of URB entries

Range [1,32] if GS enabled, otherwise ignored.

Specifies the number of URB entries that are used by this FF unit.

Programming Notes Project

When running in dual-thread mode, the Number of URB Entries field must
contain an even number. Each thread will be allocated one half the total
number of entries.

All

If ENABLED, the GS stage must be allocated at least one URB entry All

Changing this value requires a subsequent URB_FENCE command. See
Graphics Processing Engine for Command Ordering Rules and a description of
URB_FENCE.

All

10:0 Reserved Project: All Format: MBZ

5 31:30 Reserved Project: All Format: MBZ

29 Vertex Position Space

Project: All

This field specifies the coordinate system within which the incoming Vertex Position X,Y,Z
values are defined. The setting affects VertexClipTest.

Value Name Description Project

0h VPOS_NDCSP
ACE

Vertex Position is in NDC space All

1h VPOS_SCREEN
SPACE

Vertex Position is in Screen space All

 151

CLIP_STATE
28 Viewport XY

ClipTest Enable
Project: All Format: Enable

This field is used to control whether the Viewport X,Y extents are considered in
VertexClipTest. See Tristrip Clipping Errata subsection.

27 Viewport Z
ClipTest Enable

Project: All Format: Enable

This field is used to control whether the Viewport Z extents (near, far) are considered in
VertexClipTest.

26 Guardband
ClipTest Enable

Project: All Format: Enable

This field is used to control whether the Guardband X,Y extents are considered in
VertexClipTest for non-point objects.

If the Guardband ClipTest is DISABLED but the Viewport XY ClipTest is ENABLED,
ClipDetermination operates as if the Guardband were coincident with the Viewport.

If both the Guardband and Viewport XY ClipTest are DISABLED, all vertices are
considered “visible” with respect to the XY directions.

25 Reserved: MBZ

24 UserClipFlags
MustClip Enable

Project: All Format: Enable

This field is used to include the UserClipFlags in MustClip determination, in order to
support clipping to User Clip Planes. If ENABLED, the setting of enabled UserClipFlag bits
can cause a CLIP thread to be spawned. If the enabled UCF values at the object vertices
do not indicate a trivial accept or reject with relation to the UCFs, then a CLIP thread will
be spawned (unless the object is trivially rejected for other reasons).

If DISABLED, the UserClipFlags are only used for trivial accept or reject determination,
and will not lead to a CLIP thread being spawned unless indicated by other cliptest results
(or SV bits).

23:16 UserClipFlags
ClipTest Enable
Bitmask

Project: All Format: Enable

This field is used to include the UserClipFlags in MustClip determination, in order to
support clipping to User Clip Planes. If ENABLED, the setting of enabled UserClipFlag bits
can cause a CLIP thread to be spawned. If the enabled UCF values at the object vertices
do not indicate a trivial accept or reject with relation to the UCFs, then a CLIP thread will
be spawned (unless the object is trivially rejected for other reasons).

If DISABLED, the UserClipFlags are only used for trivial accept or reject determination,
and will not lead to a CLIP thread being spawned unless indicated by other cliptest results
(or SV bits).

152

CLIP_STATE
15:13 Clip Mode

Project: All

This field specifies a general mode of the CLIP unit, when the CLIP unit is ENABLED.

Value Name Description Project

0h CLIPMODE_NORMAL TrivialAccept objects are
passed down the pipeline,
MustClip objects are passed
to CLIP threads, TrivialReject
and BAD objects are
discarded

All

1h CLIPMODE_ALL All objects (including BAD
objects & TrivReject) are
passed to CLIP threads,
regardless of classification

All

2h CLIPMODE_CLIP_NON_REJE
CTED

TrivialAccept and MustClip
objects are passed to CLIP
threads, TrivReject and BAD
objects are discarded

All

3h CLIPMODE_REJECT_ALL All objects are discarded All

4h CLIPMODE_ACCEPT_ALL All objects (except BAD
objects) are trivially
accepted. This effectively
disables the clip-test/clip-
determination function.

All

5h CLIPMODE_NORMAL_FFCLIP Reserved All

6h-7h Reserved All

Errata Description Project

See previous sections (W Clipping Errata) for the
description of errata regarding negative W and trivial
reject. These errata impact the programming of Clip
Mode.

DevBW, DevCL-
A, DevCL-B

12:0 Reserved Project: All Format: MBZ

6 31:5 Clipper Viewport
State Pointer

Project: All Format: GeneralStateOffset[31:5]

Specifies the location of the current CLIP_VIEWPORT data structure, as a 32-byte aligned
offset from General State Base Pointer). The CLIP unit accesses the viewport state
throught it’s Instruction/State Cache (ISC).

4:0 Reserved Project: All Format: MBZ

7 31:0 Screen Space
Viewport X Min

Project: All Format: FLOAT32

This field contains the XMin (left) extent of the screen-space viewport. This field is only
used when Vertex Position Space = VPOS_SCREENSPACE.

 153

CLIP_STATE
8 31:0 Screen Space

Viewport X Max
Project: All Format: FLOAT32

This field contains the XMax (right) extent of the screen-space viewport. This field is only
used when Vertex Position Space = VPOS_SCREENSPACE.

9 31:0 Screen Space
Viewport Y Min

Project: All Format: FLOAT32

This field contains the YMin (top) extent of the screen-space viewport. This field is only
used when Vertex Position Space = VPOS_SCREENSPACE.

10 31:0 Screen Space
Viewport Y Max

Project: All Format: FLOAT32

This field contains the YMax (bottom) extent of the screen-space viewport. This field is
only used when Vertex Position Space = VPOS_SCREENSPACE.

6.3.1.2 CLIP_VIEWPORT

The viewport-related state is stored as an array of up to 16 elements, each of which
contains the DWords described here. The start of each element is spaced 4 DWords
apart. The first element of the viewport state array is aligned to a 32-byte boundary,
and is located at (General State Base Pointer + Clipper Viewport State Pointer).

Note that the definition of the CLIP_VIEWPORT structure differs from the
SF_VIEWPORT structure used by the SF unit.

154

CLIP_VIEWPORT
Project: All

Viewport data used by the Clip unit.

DWord Bit Description

0 31:0 XMin Clip
Guardband

Project: All Format: FLOAT32

For VPOS_NDCSPACE:

This 32-bit float represents the XMin guardband boundary (normalized to Viewport.XMin
== -1.0f). This corresponds to the left boundary of the NDC guardband.

For: VPOS_SCREENSPACE

This 32-bit float represents the XMin guardband boundary in screen space coordinates.
This corresponds to the left boundary of the screen space guardband.

1 31:0 XMax Clip
Guardband

Project: All Format: FLOAT32

For VPOS_NDCSPACE:

This 32-bit float represents the XMax guardband boundary (normalized to Viewport.XMax
== 1.0f). This corresponds to the right boundary of the NDC guardband.

For: VPOS_SCREENSPACE

This 32-bit float represents the XMax guardband boundary in screen space coordinates.
This corresponds to the right boundary of the screen space guardband.

2 31:0 YMin Clip
Guardband

Project: All Format: FLOAT32

For VPOS_NDCSPACE:

This 32-bit float represents the YMin guardband boundary (normalized to Viewport.YMin
== -1.0f). This corresponds to the bottom boundary of the NDC guardband.

For: VPOS_SCREENSPACE

This 32-bit float represents the YMin guardband boundary in screen space coordinates.
This corresponds to the top boundary of the screen space guardband.

3 31:0 YMax Clip
Guardband

Project: All Format: FLOAT32

For VPOS_NDCSPACE:

This 32-bit float represents the YMax guardband boundary (normalized to Viewport.YMax
== 1.0f). This corresponds to the top boundary of the NDC guardband.

For: VPOS_SCREENSPACE

This 32-bit float represents the YMax guardband boundary in screen space coordinates.
This corresponds to the bottom boundary of the screen space guardband.

 155

6.4 VertexClipTest Function

The VertexClipTest function compares each incoming vertex position (x,y,z,w) with
various viewport and guardband parameters (either hard-coded values or specified by
state variables).

The RHW component of the incoming vertex position is tested for NaN value, and if a
NaN is detected, the vertex is marked as “BAD” by setting the outcode[BAD]. In
general, any object containing a BAD vertex will be discarded, as (a) how to
clip/render such objects is undefined, and (b) D3D10 specifies that such objects are to
be silently discarded. However, in the case of CLIP_ALL mode, a CLIP thread will be
spawned even for objects with “bad” RHW components. The CLIP kernel is required to
handle this case, and can examine the Object Outcode [BAD] payload bit to detect
the condition. (Note that the VP and GB Object Outcodes are UNDEFINED when BAD is
set).

If the incoming RHW coordinate is negative (including negative 0) the NEGW outcode
is set. Also, this condition is used to select the proper comparison functions for the VP
and GB outcode tests (below).

Next, the VPXY and GB outcodes are computed, depending on the corresponding
enable SV bits. If one of VPXY or GB is disabled, the enabled set of outcodes are
copied to the disabled set of outcodes. This effectively defines the disabled
boundaries to coincide with the enabled boundaries (i.e., disabling the GB is just like
setting it to the VPXY values, and vice versa.).

The VPZ outcode is computed as required by the API mode SV.

Finally, the incoming UserClipFlags are masked and copied to corresponding outcodes.

The following algorithm is used by VertexClipTest:
⎯
⎯ //
⎯ // Vertex ClipTest
⎯ //
⎯ // On input:
⎯ // if (CLIP.PreMapped)
⎯ // x,y are viewport mapped
⎯ // z is NDC ([0,1] is visible)
⎯ // else
⎯ // x,y,z are NDC (post-perspective divide)
⎯ // w is always 1/w
⎯
⎯ //
⎯ // Initialize outCodes to “inside”
⎯ //
⎯ outCode[*] = 0
⎯
⎯ //
⎯ // Check if w is NaN
⎯ // Any object containing one of these “bad” vertices
⎯ // will likely be discarded

⎯ //

156

⎯ #ifdef (DevBW-E0 || DevCL-B)
⎯ if (ISNAN(w)|| UserClipFlag[7])
⎯ #else
⎯ if (ISNAN(w))
⎯ #endif

⎯ {
⎯ outCode[BAD] = 1

⎯ }
⎯

⎯ //
⎯ // If 1/w is negative, w is negative and therefore
⎯ // outside of the w=0 plane
⎯ //
⎯ //
⎯ rhw_neg = ISNEG(rhw)
⎯ if (rhw_neg)
⎯ {
⎯ #ifdef (PreDevBW-E0 || DevCL-A)

⎯ outCode[VP_XMIN] = 1
⎯ outCode[VP_XMAX] = 1
⎯ outCode[VP_YMIN] = 1
⎯ outCode[VP_YMAX] = 1
⎯ outCode[VP_ZMIN] = 1
⎯ outCode[VP_ZMAX] = 1
⎯ outCode[GB_XMIN] = 1
⎯ outCode[GB_XMAX] = 1
⎯ outCode[GB_YMIN] = 1
⎯ outCode[GB_YMAX] = 1
⎯ goto UserClipFlags

⎯ #endif
⎯ }
⎯
⎯ //
⎯ // View Volume Clip Test
⎯ // If Premapped, the 2D viewport is defined in screen
⎯ // space
⎯ // otherwise the canonical NDC viewvolume applies
⎯ // ([-1,1])
⎯ //
⎯ if (CLIP_STATE.PreMapped)
⎯ {
⎯ vp_XMIN = CLIP_STATE.VP_XMIN
⎯ vp_XMAX = CLIP_STATE.VP_XMAX
⎯ vp_YMIN = CLIP_STATE.VP_YMIN
⎯ vp_YMAX = CLIP_STATE.VP_YMAX
⎯ } else {
⎯ vp_XMIN = -1.0f
⎯ vp_XMAX = +1.0f
⎯ vp_YMIN = -1.0f
⎯ vp_YMAX = +1.0f
⎯ }

⎯ if (CLIP_STATE.ViewportXYClipTestEnable) {

 157

⎯ outCode[VP_XMIN] = (x < vp_XMIN)
⎯ outCode[VP_XMAX] = (x > vp_XMAX)
⎯ outCode[VP_YMIN] = (y < vp_YMIN)
⎯ outCode[VP_YMAX] = (y > vp_YMAX)

⎯ #ifdef (DevBW-E0)
⎯ if (rhw_neg) {

⎯ outCode[VP_XMIN] = (x >= vp_XMIN)
⎯ outCode[VP_XMAX] = (x <= vp_XMAX)
⎯ outCode[VP_YMIN] = (y >= vp_XMIN)
⎯ outCode[VP_YMAX] = (y <= vp_XMAX)
⎯ }

⎯ #endif
⎯ #endif
⎯ }
⎯ if (CLIP_STATE.ViewportZClipTestEnable) {
⎯ if (CLIP_STATE.APIMode == APIMODE_D3D) {

⎯ vp_ZMIN = 0.0f
⎯ vp_ZMAX = 1.0f

⎯ } else { // OGL
⎯ vp_ZMIN = -1.0f
⎯ vp_ZMAX = 1.0f

⎯ }
⎯ outCode[VP_ZMIN] = (z < vp_ZMIN)
⎯ outCode[VP_ZMAX] = (z > vp_ZMAX)
⎯ #ifdef (DevBW-E0)
⎯ if (rhw_neg) {

⎯ outCode[VP_ZMIN] = (z >= vp_ZMIN)
⎯ outCode[VP_ZMAX] = (z <= vp_ZMAX)
⎯ }

⎯ #endif
⎯

⎯ //
⎯ // Guardband Clip Test
⎯ //
⎯ if {CLIP_STATE.GuardbandClipTestEnable) {

⎯ gb_XMIN = CLIP_STATE.Viewport[vpindex].GB_XMIN
⎯ gb_XMAX = CLIP_STATE.Viewport[vpindex].GB_XMAX
⎯ gb_YMIN = CLIP_STATE.Viewport[vpindex].GB_YMIN
⎯ gb_YMAX = CLIP_STATE.Viewport[vpindex].GB_YMAX

⎯ outCode[GB_XMIN] = (x < gb_XMIN)
⎯ outCode[GB_XMAX] = (x > gb_XMAX)
⎯ outCode[GB_YMIN] = (y < gb_YMIN)
⎯ outCode[GB_YMAX] = (y > gb_YMAX)

⎯ #ifdef (DevBW-E0)
⎯ if (rhw_neg) {

⎯ outCode[GB_XMIN] = (x >= gb_XMIN)
⎯ outCode[GB_XMAX] = (x <= gb_XMAX)
⎯ outCode[GB_YMIN] = (y >= gb_YMIN)
⎯ outCode[GB_YMAX] = (y <= gb_YMAX)
⎯ }

⎯ #endif
⎯

158

⎯ //
⎯ // Handle case where either VP or GB disabled (but not
⎯ // both)
⎯ // In this case, the disabled set take on the outcodes
⎯ // of the enabled set
⎯ //
⎯ if (CLIP_STATE.ViewportXYClipTestEnable &&

!CLIP_STATE.GuardbandClipTestEnable) {
⎯ outCode[GB_XMIN] = outCode[VP_XMIN]
⎯ outCode[GB_XMAX] = outCode[VP_XMAX]
⎯ outCode[GB_YMIN] = outCode[VP_YMIN]
⎯ outCode[GB_YMAX] = outCode[VP_YMAX]
⎯ } else if (!CLIP_STATE.ViewportXYClipTestEnable &&

CLIP_STATE.GuardbandClipTestEnable) {
⎯ outCode[VP_XMIN] = outCode[GB_XMIN]
⎯ outCode[VP_XMAX] = outCode[GB_XMAX]
⎯ outCode[VP_YMIN] = outCode[GB_YMIN]
⎯ outCode[VP_YMAX] = outCode[GB_YMAX]
⎯ }
⎯
⎯ //
⎯ // X/Y/Z NaN Handling
⎯ //
⎯ xyorgben = (CLIP_STATE.ViewportXYClipTestEnable ||

CLIP_STATE.GuardbandClipTestEnable)
⎯ if (isNAN(x)) {
⎯ outCode[GB_XMIN] = xyorgben
⎯ outCode[GB_XMAX] = xyorgben
⎯ outCode[VP_XMIN] = xyorgben
⎯ outCode[VP_XMAX] = xyorgben
⎯ }
⎯
⎯ if (isNAN(y)) {
⎯ outCode[GB_YMIN] = xyorgben
⎯ outCode[GB_YMAX] = xyorgben
⎯ outCode[VP_YMIN] = xyorgben
⎯ outCode[VP_YMAX] = xyorgben
⎯ }
⎯
⎯ if (isNaN) {
⎯ outCode[VP_ZMIN] =

CLIP_STATE.ViewportZClipTestEnable
⎯ outCode[VP_ZMAX] =

CLIP_STATE.ViewportZClipTestEnable
⎯ }
⎯
⎯ //
⎯ // UserClipFlags
⎯ //
⎯ ExamineUCFs
⎯ for (i=0; i<7; i++)
⎯ {

 159

⎯ outCode[UC0+i] = userClipFlag[i] &
CLIP_STATE.UserClipFlagsClipTestEnableBitmask[i]

⎯ }
⎯ #ifdef (DevBW-E0 || DevCL-B)

⎯ outCode[UC7] = rhw_neg &
CLIP_STATE.UserClipFlagsClipTestEnableBitmask[7]

⎯ #else
⎯ outCode[UC7] = userClipFlag[i] &

CLIP_STATE.UserClipFlagsClipTestEnableBitmask[7]
⎯ #endif
⎯

⎯

6.5 Object Staging

The CLIP unit’s Object Staging Buffer (OSB) accepts streams of input vertex
information packets, along with each vertex’s VertexClipTest result (outCode). This
information is buffered until a complete object or the last vertex of the primitive
topology is received. The OSB then performs the ClipDetermination function on the
object vertices, and takes the actions required by the results of that function.

6.5.1 Partial Object Removal

The OSB is responsible for removing incomplete LINESTRIP and TRISTRIP objects that
it may receive from the preceding stage (GS). Partial object removal is not supported
for other primitive types due to either (a) the GS is not permitted to output those
primitive types, and the VF unit will have removed the partial objects as part of
3DPRIMITIVE processing, or (b) although the GS thread is allowed to output the
primitive type (e.g., LINELIST), it is assumed that the GS kernel will be correctly
implemented to avoid outputting partial objects (or pipeline behavior is UNDEFINED).
In short, CLIP unit partial object removal is only provided for the cases where the
D3D10 GS shader programmer is able to generate partial objects.

An object is considered ‘partial’ if the last vertex of the primitive topology is
encountered (i.e., PrimEnd is set) before a complete set of vertices for that object
have been received. Given that only LINESTRIP and TRISTRIP primitive types are
subject to CLIP unit partial object removal, the only supported cases of partial objects
are 1-vertex LINESTRIPs and 1 or 2-vertex TRISTRIPs.

Partial Object Removal is performed only when the CLIP stage is ENABLED. If there is
a possibility that the GS kernel can output incomplete objects, the CLIP stage must be
ENABLED (as the SF stage does not tolerate incomplete objects). This may lead to a
case where the CLIP stage needs to be ENABLED only to perform Partial Object
Removal. In this case, if clipping is not desired, the Clip Mode may be set to
ACCEPT_ALL.

160

6.5.2 ClipDetermination Function

In ClipDetermination, the vertex outcodes of the primitive are combined in order to
determine the clip status of the object (TR: trivially reject; TA: trivial accept; MC:
must clip; BAD: invalid coordinate). Only those vertices included in the object are
examined (3 vertices for a triangle, 2 for a line, and 1 for a point). The outcode bit
arrays for the vertices are separately ANDed (intersection) and ORed (union) together
(across vertices, not within the array) to yield objANDCode and objORCode bit arrays.

TR/TA against interesting boundary subsets are then computed. The TR status is
computed as the logical OR of the appropriate objANDCode bits, as the vertices need
only be outside of one common boundary to be trivially rejected. The TA status is
computed as the logical NOR of the appropriate objORCode bits, as any vertex being
outside of any of the boundaries prevents the object from being trivially accepted.

If any vertex contains a BAD coordinate, the object is considered BAD and any
computed TR/TA results will effectively be ignored in the final action determination.

Next, the boundary subset TR/TA results are combined to determine an overall status
of the object. If the object is TR against any viewport or enabled UC plane, the object
is considered TR. Note that, by definition, being TR against a VPXY boundary implies
that the vertices will be TR agains the corresponding GB boundary, so computing
TR_GB is unnecessary.

The treatment of the UCF outcodes is conditional on the UserClipFlags MustClip Enable
state. If DISABLED, an object that is not TR against the UCFs is considered TA
against them. Put another way, objects will only be culled (not clipped) with respect
to the UCFs. If ENABLED, the UCF outcodes are treated like the other outcodes, in
that they are used to determine TR, TA or MC status, and an object can be passed to a
CLIP thread simply based on it straddling a UCF.

Finally, the object is considered MC if it is neither TR or TA.

 161

The following logic is used to compute the final TR, TA, and MC status.

⎯ //
⎯ // ClipDetermination
⎯ //
⎯
⎯ //
⎯ // Compute objANDCode and objORCode
⎯ //
⎯ switch (object type) {
⎯ case POINT:
⎯ {

⎯ objANDCode[…] = v0.outCode[…]
⎯ objORCode[…] = v0.outCode[…]

⎯ } break
⎯ case LINE:
⎯ {
⎯ objANDCode[…] = v0.outCode[…] & v1.outCode[…]
⎯ objORCode[…] = v0.outCode[…] | v1.outCode[…]
⎯ } break
⎯ case TRIANGLE:
⎯ {
⎯ objANDCode[…] = v0.outCode[…] & v1.outCode[…] &

v2.outCode[…]
⎯ objORCode[…] = v0.outCode[…] | v1.outCode[…] |

v2.outCode[…]
⎯ } break
⎯
⎯ //
⎯ // Determine TR/TA against interesting boundary subsets
⎯ //
⎯ TR_VPXY = (objANDCode[VP_L] | objANDCode[VP_R] |

objANDCode[VP_T] | objANDCode[VP_B])
⎯ TR_GB = (objANDCode[GB_L] | objANDCode[GB_R] |

objANDCode[GB_T] | objANDCode[GB_B])
⎯ TA_GB = !(objORCode[GB_L] | objORCode[GB_R] |

objORCode[GB_T] | objORCode[GB_B])
⎯ TA_VPZ = !(objORCode[VP_N] | objORCode[VP_Z])
⎯ TR_VPZ = (objANDCode[VP_N] | objANDCode[VP_Z])
⎯ TA_UC = !(objORCode[UC0] | objORCode[UC1] | … |

objORCode[UC7])
⎯ TR_UC = (objANDCode[UC0] | objANDCode[UC1] | … |

objANDCode[UC7])
⎯ BAD = objORCode[BAD]
⎯
⎯ //
⎯ // Trivial Reject
⎯ //
⎯ // An object is considered TR if all vertices are TR
⎯ // against any common boundary
⎯ // Note that this allows the case of the VPXY being

outside the GB

162

⎯ //
⎯
⎯ //
⎯ // Trivial Accept
⎯ //
⎯ // For an object to be TA, it must be TA against the
⎯ // VPZ and GB, not TR,
⎯ // and considered TA against the UC planes
⎯ // If the UCMC mode is disabled, an object is
⎯ // considered TA against the UC
⎯ // as long as it isn’t TR against the UC.
⎯ // If the UCMC mode is enabled, then the object really
⎯ // has to be TA against the UC to be considered TA
⎯ // In this way, enabling the UCMC mode will force
⎯ // clipping if the object is neither
⎯ // TA or TR against the UC
⎯ //
⎯ #ifdef
⎯ TA = !TR && TA_GB && TA_VPZ
⎯ #endif
⎯ UCMC = CLIP_STATE.UserClipFlagsMustClipEnable
⎯ TA = TA && ((UCMC && TA_UC) || (!UCMC && !TR_UC))

⎯
⎯ //
⎯ // MustClip
⎯ // This is simply defined as not TA or TR
⎯ // Note that exactly one of TA, TR and MC will be set
⎯ //
⎯ MC = !(TA || TR)
⎯

 163

6.5.3 ClipMode

The ClipMode state determines what action the CLIP unit takes given the results of
ClipDetermination. The possible actions are:

• PASSTHRU: Pass the object directly down the pipeline. A CLIP thread is not
spawned.

• DISCARD: Remove the object from the pipeline and dereference object vertices
as required (i.e., dereferencing will not occur if the vertices are shared with other
objects).

• SPAWN: Pass the object to a CLIP thread. In the process of initiating the
thread, the object vertices may be dereferenced.

The following logic is used to determine what to do with the object (PASSTHRU or
DISCARD or SPAWN).

DevBW-E0, DevCL-B Errata: SPAWN is forced if the object is BAD and ClipMode is
not REJECT_ALL

⎯ //
⎯ // Use the ClipMode to determine the action to take

⎯ //
⎯ switch (CLIP_STATE.ClipMode) {
⎯ case NORMAL: {
⎯ PASSTHRU = TA && !BAD
⎯ DISCARD = TR || BAD
⎯ SPAWN = MC && !BAD
⎯ }
⎯ case CLIP_ALL: {
⎯ PASSTHRU = 0
⎯ DISCARD = 0
⎯ SPAWN = 1
⎯ }
⎯ case CLIP_NOT_REJECT: {
⎯ PASSTHRU = 0
⎯ DISCARD = TR || BAD
⎯ SPAWN = !(TR || BAD)
⎯ }
⎯ case REJECT_ALL: {
⎯ PASSTHRU = 0
⎯ DISCARD = 1
⎯ SPAWN = 0
⎯ }
⎯ case ACCEPT_ALL: {
⎯ PASSTHRU = !BAD
⎯ DISCARD = BAD
⎯ SPAWN = 0
⎯ }
⎯ } endswitch
⎯

164

⎯ #ifdef (DevBW-E0 || DevCL-B)
⎯ if (BAD && CLIP_STATE.ClipMode != REJECT_ALL) {
⎯ DISCARD = 0
⎯ SPAWN = 1
⎯ }
⎯ #endif

6.5.3.1 NORMAL ClipMode

In NORMAL mode, objects will be discarded if TR or BAD, passed through if TA, and
passed to a CLIP thread if MC. This mode is typically used when the CLIP kernel is
only used to perform 3D Clipping (the expected usage model).

6.5.3.2 CLIP_ALL ClipMode

In CLIP_ALL mode, all objects (regardless of classification) will be passed to CLIP
threads. Note that this includes BAD objects. This mode can be used to perform
arbritrary processing in the CLIP thread, or as a backup if for some reason the CLIP
unit fixed functions (VertexClipTest, ClipDetermination) are not sufficient for
controlling 3D Clipping.

6.5.3.3 CLIP_NON_REJECT ClipMode

This mode is similar to CLIP_ALL mode, but TR and BAD objects are discarded an all
other (TA, MC) objects are passed to CLIP threads. Usage of this mode assumes that
the CLIP unit fixed functions (VertexClipTest, ClipDetermination) are sufficient at least
in respect to determining trivial reject.

6.5.3.4 REJECT_ALL ClipMode

In REJECT_ALL mode, all objects (regardless of classification) are discarded. This
mode effectively clips out all objects.

6.5.3.5 ACCEPT_ALL ClipMode

In ACCEPT_ALL mode, all non-BAD objects are passed directly down the pipeline. This
mode partially disables the CLIP stage. BAD objects will still be discarded, and
incomplete primitives (generated by a GS thread) will be discarded.

 165

6.6 Object Pass-Through

Depending on ClipMode, objects may be passed directly down the pipeline. The
PrimTopologyType associated with the output objects may differ from the input
PrimTopologyType, as shown in the table below.

Input

PrimTopologyType
Pass-Through Output

PrimTopologyType
 Notes

POINTLIST POINTLIST

POINTLIST_BF POINTLIST_BF

LINELIST LINELIST

LINESTRIP LINESTRIP

LINESTRIP_BF LINESTRIP_BF

LINESTRIP_CONT LINESTRIP_CONT

LINESTRIP_CONT_BF LINESTRIP_CONT_BF

LINELOOP N/A Not supported after GS.

TRILIST TRILIST

RECTLIST RECTLIST

TRISTRIP TRISTRIP or TRISTRIP_REV Depends on where the incoming
strip is broken (if at all) by
discarded or clipped objects

See Tristrip Clipping Errata
subsection.

TRISTRIP_REV TRISTRIP or TRISTRIP_REV Depends on where the incoming
strip is broken (if at all) by
discarded or clipped objects

See Tristrip Clipping Errata
subsection.

TRIFAN TRIFAN

TRIFAN_NOSTIPPLE TRIFAN_NOSTIPPLE

POLYGON POLYGON

QUADLIST N/A Not supported after GS.

QUADSTRIP N/A Not supported after GS.

166

6.7 CLIP Thread Request Generation

6.7.1 Object Vertex Ordering

The following table defines the number and order of object vertices passed in the
Vertex Data portion of the CLIP thread payload, assuming an input topology with N
vertices. The ObjectType passed to the thread is, by default, the incoming
PrimTopologyType. Exceptions to this rule (for the TRISTRIP variants) are called out.

PrimTopologyType Order of Vertices in Payload Notes

<PRIMITIVE_TOPOLOGY> [<object#>] = (<vert#>,…);

POINTLIST [0] = (0);

[1] = (1); …;

[N-2] = (N-2);

POINTLIST_BF Same as POINTLIST Handled same as
POINTLIST

LINELIST

(N is multiple of 2)

[0] = (0,1);

[1] = (2,3); …;

[(N/2)-1] = (N-2,N-1)

LINESTRIP

(N >= 2)

[0] = (0,1);

[1] = (1,2); …;

[N-2] = (N-2,N-1)

LINESTRIP_BF Same as LINESTRIP Handled same as
LINESTRIP

LINESTRIP_CONT Same as LINESTRIP Handled same as
LINESTRIP

LINESTRIP_CONT_BF Same as LINESTRIP Handled same as
LINESTRIP

LINELOOP N/A Not supported after GS.

TRILIST

(N is multiple of 3)

[0] = (0,1,2);

[1] = (3,4,5); …;

[(N/3)-1] = (N-3,N-2,N-1)

RECTLIST Same as TRILIST Handled same as
TRILIST

TRISTRIP

(N >= 3)

[0] = (0,1,2) {TRISTRIP}

[1] = (1,2,3)
{TRISTRIP_REVERSE}; …

[N-3] = (N-3,N-2,N-1) {TRISTRIP
or TRISTRIP_REVERSE}

“Odd” triangles do not
have vertices
reordered, though
identified as
TRISTRIP_REVERSE so
the thread knows this

 167

PrimTopologyType Order of Vertices in Payload Notes

TRISTRIP_REV

(N >= 3)

[0] = (0,1,2) {TRISTRIP_REVERSE}

[1] = (1,2,3) {TRISTRIP}; …;

[N-3] = (N-3,N-2,N-1) {TRISTRIP
or TRISTRIP_REVERSE}

“Odd” triangles do not
have vertices
reordered, though
identified as TRISTRIP
so the thread knows
this

TRIFAN

(N > 2)

[0] = (0,1,2);

[1] = (0,2,3); …;

[N-3] = (0, N-2, N-1);

Only used by OGL

TRIFAN_NOSTIPPLE Same as TRIFAN

POLYGON Same as TRIFAN

QUADLIST N/A Not supported after GS.

QUADSTRIP N/A Not supported after GS.

168

6.7.2 CLIP Thread Payload

Table 6-1 shows the layout of the payload delivered to CLIP threads.

Refer to 3D Pipeline Stage Overview (3D Overview) for details on those fields that are
common amongst the various pipeline stages.

Table 6-1. CLIP Thread Payload

DWord Bit Description

R0.7 31 Snapshot Flag. If set, this thread has matched some debug criteria.

(See Debug for further description).

 30:0 Reserved

R0.6 31:24 Reserved

 23:0 Thread ID. This field uniquely identifies this thread within the threads spawned by this
FF unit, over some period of time.

(See Debug for further description).

Format: Reserved for HW Implementation Use.

R0.5 31:10 Scratch Space Pointer. Specifies the location of the Scratch Space allocated to this
thread, as an 1KB-aligned offset from the General State Base Address.

Format = GeneralStateOffset[31:10]

 9:1 Reserved

 0 FFTID. This ID is assigned by the fixed function unit and is a relative identifier for the
thread. It is used to free up resources used by the thread upon thread completion.

Format: Reserved for Implementation Use

R0.4 31:5 Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding Table. It
is specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

 4:0 Reserved

R0.3 31:4 Reserved

 3:0 Per Thread Scratch Space. Specifies the amount of Scratch Space allocated to this
thread, as a power of 2 bytes in excess of 1KB.

Format = U4

Range = [0,11] indicating [1KB, 2MB] in powers of two

R0.2 31 Object Outcode [VP.XMin]. This bit contains the logical OR of the VP.XMin vertex
outcode over all the vertices of the object. It can be used as a hint to the 3D Clip
algorithm (if zero, the object vertices are all on the visible side of the VP.XMin clip
plane).

Pre-DevBW-E0, DevCL-A Errata: All VP and GB ObjectOutcodes are UNDEFINED if
any vertex of the object has a negative RHW component. See W Clipping Errata sections
above for more information.

 30 Object Outcode [VP.XMax]

 169

DWord Bit Description

 29 Object Outcode [VP.YMin]

 28 Object Outcode [VP.YMax]

 27 Object Outcode [VP.ZMin]

 26 Object Outcode [VP.ZMax]

 25 Object Outcode [GB.XMin]. This bit contains the logical OR of the GB.XMin vertex
outcode over all the vertices of the object. It can be used as a hint to the 3D Clip
algorithm (if zero, the object vertices are all on the visible side of the GB.XMin clip
plane).

 24 Object Outcode [GB.XMax]

 23 Object Outcode [GB.YMin]

 22 Object Outcode [GB.YMax]

 21 Object Outcode [UserClip7]. This bit contains the logical OR of the UserClip7 vertex
outcode over all the vertices of the object. It can be used as a hint to the 3D Clip
algorithm (if zero, the object vertices are all on the visible side of the UserClip7 clip
plane).

Pre-DevBW-E0,DevCL-B Errata: This bit is the logical OR of the NEGW outcodes over
all the vertices of the object.

 20 Object Outcode [UserClip6]

 19 Object Outcode [UserClip5]

 18 Object Outcode [UserClip4]

 17 Object Outcode [UserClip3]

 16 Object Outcode [UserClip2]

 15 Object Outcode [UserClip1]

 14 Object Outcode [UserClip0]

 13 Object Outcode [BAD]

Note: If set, all VP and GB-related Object Outcodes are UNDEFINED.

 12 Reserved

 11:10 Reserved

 9 Edge Indicator [1]. For POLYGON primitive objects, this bit indicates whether the edge
from Vertex2 to Vertex0 is an exterior edge of the polygon (i.e., this is the last or only
triangle of the polygon). If clear, that edge is an interior edge. The CLIP kernel can use
this bit to control operations such as generating wireframe representations of polygon
primitives.

For all other Primitive Topology Types, this bit is Reserved

0 = V2 V0 is not an outside edge

1 = V2 V0 is an outside edge

170

DWord Bit Description

 8 Edge Indicator [0]. For POLYGON primitive objects, this bit indicates whether the edge
from Vertex0 to Vertex1 is an exterior edge of the polygon (i.e., this is the first or only
triangle of the polygon). If clear, that edge is an interior edge. The CLIP kernel can use
this bit to control operations such as generating wireframe representations of polygon
primitives.

 For all other Primitive Topology Types, this bit is Reserved

0 = V0 V1 is not an outside edge

1 = V0 V1 is an outside edge

 7:5 Reserved

 4:0 Primitive Topology Type. This field identifies the “basic” Primitive Topology Type
associated with the primitive spawning this object. It indirectly specifies the number of
input vertices included in the thread payload. Note that the CLIP unit may toggle this
value between TRISTRIP and TRISTRIP_REV, as described in 6.7.1.

Format: (See 3DPRIMITIVE command in 3D Pipeline)

R0.1 31:0 Reserved

R0.0 31:23 Reserved

 22:16 Handle ID. This ID is assigned by the FF unit and links the thread to a specific entry
within the FF unit.

Format: Reserved for Implementation Use

 15:9 Reserved

 8:0 URB Return Handle. This is the initial destination URB handle passed to the thread. If
the thread does output URB entries, this identifies the first destination URB entry.

Format: U9 URB Handle

[Varies]
optional

31:0 Constant Data (optional). Some amount of constant data (possible none) can be
extracted from the URB and passed to the thread following the R0 Header. The data is
read from the Constant URB Entry at some offset (Constant URB Entry Read Offset
state) from the handle. The amount of data provided is defined by the Constant URB
Entry Read Length state.

Varies 31:0 Vertex Data. There can be up to 3 vertices supplied, each with a size defined by the
Vertex URB Entry Read Length state. The amount of data provided for each vertex is
defined by the Vertex URB Entry Read Length state

Vertex 0 DWord 0 is located at Rn.0, Vertex 0 DWord 1 is located at Rn.1, etc. Vertex 1
DWord 0 immediately follows the last DWord of Vertex 0, and so on.

See Object Vertex Ordering (above) for a definition of the number and order of vertices
passed in the payload.

6.8 CLIP Thread Execution

A CLIP kernel can perform arbitrary operations on the input object. Input data is
either passed directly in the thread payload (including the input object vertex data) or
indirectly via pointers passed in the payload. It is anticipated that the CLIP kernel

 171

implement a 3D clipping algorithm though this is not strictly required. Definition of
candidate algorithms is beyond the scope of this document.

Refer to Jitter Requirements for any other system requirements on the CLIP kernel.
Refer to 3D Pipeline Stage Overview (3D Overview) for further information on FF-
unit/Thread interactions.

6.8.1 Vertex Output

The CLIP thread can output a number (possibly zero) of destination VUEs. Refer to
Thread Output Handling (3D Overview).

A GS or CLIP thread is restricted as to the number of URB handles it can retain. Here
a “retained” handle refers to a URB handle that (a) has been pre-allocated or allocated
and returned to the thread via the Allocate bit in the URB_WRITE message, and (b)
has yet to be returned to the pipeline via the Complete bit in the URB_WRITE
message.

• When operating in single-thread mode (Maximum Number of Threads == 1),
the number of retained handles must not exceed min(16, Number of URB
Entries).

• When operating in dual-thread mode (Maximum Number of Threads == 2), the
number of retained handles must not exceed (Number of URB Entries/2).

This restriction is not expected to be significant in that most/all GS/CLIP threads are
expected to retain only a few (<=4) handles.

6.8.2 Thread Termination

CLIP threads must signal thread termination by issuing a URB_WRITE message to the
URB shared function with the EOT and Complete bits set.

172

6.9 Thread-Generated Vertex Readback

The CLIP unit performs a readback of the Vertex Header of each vertex output by a
CLIP thread, as this information is required by the next stage (SF). Note that trivially-
accepted vertices (not generated by a CLIP thread) already have been readback in the
GS stage. See Vertex Data Overview for a description of the Vertex Header fields and
how they are read-back and used by the CLIP unit.

The CLIP unit will extract the following per-vertex readback data and associate it with
the generated vertex as it is sent down the pipeline:

• PrimTopologyType

• PrimStart

• PrimEnd

• Viewport Index

• RenderTarget Array Index

• PointWidth

• Vertex Position X,Y,Z,RHW (NDC coordinates only)

Note that the UserClipFlags are not read back as they are not relevant past the clip
stage.

6.10 Primitive Output

(This section refers to output from the CLIP unit to the pipeline, not output from the
CLIP thread)

The CLIP unit will output primitives (either passed-through or generated by a CLIP
thread) in the proper order. This includes the buffering of a concurrent CLIP thread’s
output until the preceding CLIP thread terminates. Note that the requirement to
buffer subsequent CLIP thread output until the preceding CLIP thread terminates has
ramifications on determining the number of VUEs allocated to the CLIP unit and the
number of concurrent CLIP threads allowed.

 173

6.11 Other Functionality

6.11.1 Statistics Gathering

The CLIP unit includes logic to assist in the gathering of certain pipeline statistics,
primarily in support of the Asynchronous Query function of the D3D APIs. The
statistics take the form of MI counter registers (see Memory Interface Registers),
where the CLIP unit provides signals causing those counters to increment.

Software is responsible for controlling (enabling) these counters in order to provide
the required statistics at the DDI level. For example, software might need to disable
the statistics gathering before submitting non-API-visible objects (e.g., RECTLISTs) for
processing.

The CLIP unit must be ENABLED (via the CLIP Enable bit of
PIPELINED_STATE_POINTERS) in order to it to affect the statistics counters. This
might lead to a pathological case where the CLIP unit needs to be ENABLED simply to
provide statistics gathering. If no clipping functionality is desired, Clip Mode can be
set to ACCEPT_ALL to effectively inhibit clipping while leaving the CLIP stage
ENABLED.

The two statistics the CLIP unit affects (if enabled) are:

• CL_INVOCATION_COUNT: Incremented for every CLIP thread spawned.

• GS_PRIMITIVES_COUNT: Incremented for every object received from the GS
stage.

Implementation Note: The reason the CLIP unit counts GS-produced objects (and,
similarly, why the SF unit counts CLIP-produced objects) is that a downstream Object
Staging Buffer is an opportunistic place to count objects generated by threads in an
upstream unit.

6.11.1.1 CL_INVOCATION_COUNT

If the Statistics Enable bit (CLIP_STATE) is set, the CLIP unit increments the
CL_INVOCATION_COUNT register each time a CLIP thread is spawned.

6.11.1.2 GS_PRIMITIVES_COUNT

If GS Output Object Statistic Enable is set (CLIP_STATE), the CLIP stage
increments GS_PRIMITIVES_COUNT for every complete object received from the GS
stage.

In order to maintain a count of objects generated by the API’s Geometry Shader
function (presumably the number of objects output by GS threads), software will need
to clear the CLIP unit’s GS Output Object Statistic Enable whenever the GS unit is
DISABLED.

§§

174

 175

7 Strips and Fans (SF) Stage

7.1 Overview

The Strips and Fan (SF) stage of the GEN4 3D pipeline is responsible for performing
“setup” operations required to rasterize 3D objects.

This functionality is split between fixed-function hardware in the SF unit and SF (aka
Setup) threads spawned to compute plane equations required for attribute
interpolation.

7.1.1 Inputs from CLIP

The following table describes the per-vertex inputs passed to the SF unit from the
previous (CLIP) stage of the pipeline.

Table 7-1. SF’s Vertex Pipeline Inputs

Variable Type Description

primType enum Type of primitive topology the vertex belongs to. See Table 7-2 for a list of
primitive types supported by the SF unit. See 3D Pipeline for descriptions of
these topologies.

QUADLIST, QUADSTRIP, LINELOOP primitives are not supported by the SF
unit. Software must use a GS thread to convert these to some other
(supported) primitive type.

primStart,primEnd boolean Indicate vertex’s position within the primitive topology

vInX[] float Vertex X position (screen space or NDC space)

vInY[] float Vertex Y position (screen space or NDC space)

vInZ[] float Vertex Z position (screen space or NDC space)

vInInvW[] float Reciprocal of Vertex homogeneous (clip space) W

hVUE[] URB
address

Points to the vertex’s data stored in the URB (one VUE handle per vertex)

renderTargetArrayI
ndex

uint Index of the render target (array element or 3D slice), clamped to 0 by the
GS unit if the max value was exceeded.

If this vertex is the leading vertex of an object within the primitive topology,
this value will be associated with that object in subsequent processing.

176

Variable Type Description

viewPortIndex uint Index of a viewport transform matrix within the SF_VIEWPORT structure used
to perform Viewport Transformation on object vertices and scissor operations
on an object.

If this vertex is the leading vertex of an object within the primitive topology,
this value will be associated with that object in the Viewport Transform and
Scissor subfunctions, otherwise the value is ignored. Note that for primitive
topologies with vertices shared between objects, this means a shared vertex
may be subject to multiple Viewport Transformation operations if the
viewPortIndex varies within the topology.

pointSize uint If this vertex is within a POINTLIST[_BF] primitive topology, this value
specifies the screen space size (width,height) of the square point to be
rasterized about the vertex position. Otherwise the value is ignored.

7.1.2 Attribute Setup/Interpolation Process

Required inputs to API Pixel Shader programs are the pixel’s position and interpolated
vertex attributes sampled at the pixel position. In order to produce these per-pixel
parameters, certain setup calculations need to be performed within the SF stage to
provide inputs for the subsequent interpolation process at in the WM stage. Where
and how the setup calculations and interpolation are performed varies by attribute
(due to various cost/performance tradeoffs), as outlined below:

• Position X,Y: The SF unit performs the position X,Y setup computations in fixed
function hardware and passes these results directly to the WM stage. The WM
unit interpolates position (i.e., rasterizes the object) in fixed-function hardware
and passes pixel X,Y information to the WM (PS) thread in the thread’s payload.

• Position Z: The handling of the position Z attribute is more complicated. The SF
unit performs operations to compute Z at object vertices (e.g., viewport map,
etc.). The object vertex’s position Z values are then passed to the SF (Setup)
thread in the fixed header portion of the thread payload. The SF thread is
responsible for performing the setup computations for position Z and storing the
required result values (plane equation coefficients) in the PUE. Subsequently the
WM unit will directly read the position Z plane equation coefficients from the PUE
(at a location programmed via WM_STATE). The WM unit will then perform
interpolation of position Z (along with some other computations like Depth Offset,
etc.) to derive per-pixel position Z. This value is then used for Early Depth Test, if
applicable. The per-pixel position Z value (“source depth”) can be optionally
included in WM thread payloads for use by the thread.

• Position 1/W: This attribute could be handled like “other vertex attributes”, but
as an optimization it is treated slightly differently. The position 1/W values of the
object vertices are passed from the SF unit to the SF thread in the fixed header
portion of the thread payload. These values are unmodified copies of the postion
1/W values read back from the object’s VUEs – so in theory the SF thread could
use the values from the VUEs like it does for other attributes. However, having
the SF unit insert them into the payload allows software to avoid having the 256-
bit Vertex Headers read from the VUEs and placed in the SF thread payload, thus
removing this traffic from the thread dispatch process. The SF thread performs
setup computations on the position 1/W attributes and stores the results in the
output PUE. Subsequently, the WM thread will use the position 1/W setup
parameters to interpolate position 1/W to the pixel location. This is likely one of

 177

the first operations in the PS thread, as the pixel’s interpolated 1/W value is
required to perform perspective-correct interpolation of other vertex attributes.

• Other Vertex Attributes: The handling of non-position vertex attributes (e.g.,
texture coordinates, colors, etc.) is straightforward. The SF unit is not directly
involved with the setup computations for these attributes, and the WM unit is not
directly involved with their interpolation. The SF thread will use the object’s
vertex attributes provided in the VUE data in the thread payload, perform the
setup computations as required, and store the results in the output PUE. The WM
thread will use this PUE data to interpolate the attributes to the pixel location.

7.1.3 Outputs to WM

The outputs from the SF stage to the WM stage are mostly comprised of
implementation-specific information required for the rasterization of objects. The
types of information is summarized below, but as the interface is not exposed to
software a detailed discussion is not relevant to this specification.

• PrimType of the object

• VPIndex, RTAIndex associated with the object

• Handle of the Primitive URB Entry (PUE) that was written by the SF (Setup)
thread. This handle will be passed to all WM (PS) threads spawned from the WM’s
rasterization process.

• Information regarding the X,Y extent of the object (e.g., bounding box, etc.)

• Edge or line interpolation information (e.g., edge equation coefficients, etc.)

• Information on where the WM is to start rasterization of the object

• Object orientation (front/back-facing)

• Last Pixel indication (for line drawing)

7.2 Primitive Assembly

The first subfunction within the SF unit is Primitive Assembly. Here 3D primitive
vertex information is buffered and, when a sufficient number of vertices are received,
converted into basic 3D objects which are then passed to the Viewport Transformation
subfunction.

The number of vertices passed with each primitive is constrained by the primitive type
and must conform to Table 7-2. Passing any other number of vertices results in
UNDEFINED behavior. Note that this restriction only applies to primitive output by GS
threads (which is under control of the GS kernel). See the Vertex Fetch chapter for
details on how the VF unit automatically removes incomplete objects resulting from
processing a 3DPRIMITIVE command.

178

Table 7-2. SF-Supported Primitive Types & Vertex Count Restrictions

primType VertexCount Restriction

3DPRIM_TRILIST nonzero multiple of 3

3DPRIM_TRISTRIP

3DPRIM_TRISTRIP_REVERSE

>=3

3DPRIM_TRIFAN

3DPRIM_TRIFAN_NOSTIPPLE

3DPRIM_POLYGON

>=3

3DPRIM_LINELIST nonzero multiple of 2

3DPRIM_LINESTRIP

3DPRIM_LINESTRIP_CONT

3DPRIM_LINESTRIP_BF

3DPRIM_LINESTRIP_CONT_BF

>=2

3DPRIM_RECTLIST nonzero multiple of 3

3DPRIM_POINTLIST

3DPRIM_POINTLIST_BF

nonzero

The 3D object types are listed in Table 7-3.

Table 7-3. 3D Object Types

objectType generated by primType Vertices/Object

3DOBJ_POINT 3DPRIM_POINTLIST

3DPRIM_POINTLIST_BF

1

3DOBJ_LINE 3DPRIM_LINELIST

3DPRIM_LINESTRIP

3DPRIM_LINESTRIP_CONT

3DPRIM_LINESTRIP_BF

3DPRIM_LINESTRIP_CONT_BF

2

3DOBJ_TRIANGLE 3DPRIM_TRILIST

3DPRIM_TRISTRIP

3DPRIM_TRISTRIP_REVERSE

 3DPRIM_TRIFAN

3DPRIM_TRIFAN_NOSTIPPLE

3DPRIM_POLYGON

3

3DOBJ_RECTANGLE 3DPRIM_RECTLIST

3 (expanded to 4 in
RectangleCompletion)

 179

The outputs of Primitive Decomposition are listed in Table 7-4.

Table 7-4. Primitive Decomposition Outputs

Variable Type Description

objectType enum Type of object. See Table 7-3

nV uint The number of object vertices passed to Object Setup. See Table 7-3

v[0..nV-1] various Data arrays associated with object vertices. Data in the array consists of X,
Y, Z, invW and a pointer to the other vertex attributes. These additional
attributes are not used by directly by the 3D fixed functions but are made
available to the SF thread. The number of valid vertices depends on the
object type. See Table 7-3

invertOrientation enum Indicates whether the orientation (CW or CCW winding order) of the vertices
of a triangle object should be inverted. Ignored for non-triangle objects.

backFacing enum Valid only for points and line objects, indicates a back facing object. This is
used later for culling.

provokingVtx uint Specifies the index (into the v[] arrays) of the vertex considered the
“provoking” vertex (for flat shading). The selection of the provoking vertex
is programmable via SF_STATE (xxx Provoking Vertex Select state
variables.)

polyStippleEnable boolean TRUE if Polygon Stippling is enabled. FALSE for TRIFAN_NOSTIPPLE.
Ignored for non-triangle objects.

continueStipple boolean Only applies to line objects. TRUE if Line Stippling should be continued (i.e.,
not reset) from where the previous line left off. If FALSE, Line Stippling is
reset for each line object.

renderTargetIndex uint Index of the render target (array element or 3D slice), clamped to 0 by the
GS unit if the max value was exceeded. This value is simply passed in SF
thread payloads and not used within the SF unit.

viewPortIndex uint Index of a viewport transform matrix within the SF_VIEWPORT structure
used to perform Viewport Transformation on object vertices and scissor
operations on an object.

pointSize unit For point objects, this value specifies the screen space size (width,height) of
the square point to be rasterized about the vertex position. Otherwise the
value is ignored.

180

The following table defines, for each primitive topology type, which vertex’s
VPIndex/RTAIndex applies to the objects within the topology.

 Table 7-5. VPIndex/RTAIndex Selection

PrimTopologyType Viewport Index Usage

POINTLIST
POINTLIST_BF

Each vertex supplies the VPIndex for the corresponding point
object

LINELIST The leading vertex of each line supplies the VPIndex for the
corresponding line object.

V0.VPIndex Line(V0,V1)

V2.VPIndex Line(V2,V3)

…

LINESTRIP

LINESTRIP_BF

LINESTRIP_CONT

LINESTRIP_CONT_BF

The leading vertex of each line segment supplies the VPIndex for
the corresponding line object.

V0.VPIndex Line(V0,V1)

V1.VPIndex Line(V1,V2)

…

NOTE: If the VPIndex changes within the topology, shared
vertices will be processed (mapped) multiple times.

TRILIST

RECTLIST

The leading vertex of each triangle/rect supplies the VPIndex for
the corresponding triangle/rect objects.

V0.VPIndex Tri(V0,V1,V2)

V3.VPIndex Tri(V3,V4,V5)

…

TRISTRIP

TRISTRIP_REVERSE

The leading vertex of each triangle supplies the VPIndex for the
corresponding triangle object.

V0.VPIndex Tri(V0,V1,V2)

V1.VPIndex Tri(V1,V2,V3)

…

NOTE: If the VPIndex changes within the primitive, shared
vertices will be processed (mapped) multiple times.

TRIFAN

TRIFAN_NOSTIPPLE

POLYGON

The first vertex (V0) supplies the VPIndex for all triangle objects.

 181

7.2.1 Point List Decomposition

The 3DPRIM_POINTLIST and 3DPRIM_POINTLIST_BACKFACING primitives specify a
list of independent points.

Figure 7-1. 3DPRIM_POINTLIST Primitive

v0

v1

v2

v3

The decomposition process divides the list into a series of basic 3DOBJ_POINT objects
that are then passed individually and in order to the Object Setup subfunction. The
provokingVertex of each object is, by definition, v[0].

Points have no winding order, so the primitive command is used to explicitly state
whether they are back-facing or front-facing points. Primitives of type
3DPRIM_POINTLIST_BACKFACING are decomposed exactly the same way as
3DPRIM_POINTLIST primitives, but the backFacing variable is set for resulting point
objects being passed on to object setup.

PointListDecomposition() {
 objectType = 3DOBJ_POINT
 nV = 1

provokingVtx = 0
 if (primType == 3DPRIM_POINTLIST)
 backFacing = FALSE
 else // primType == 3DPRIM_POINTLIST_BACKFACING
 backFacing = TRUE

for each (vertex I in [0..vertexCount-1]) {
 v[0] vIn[i] // copy all arrays (e.g., v[]X, v[]Y, etc.)
 ObjectSetup()
 }
}

182

7.2.2 Line List Decomposition

The 3DPRIM_LINELIST primitive specifies a list of independent lines.

Figure 7-2. 3DPRIM_LINELIST Primitive

v0
v1

v2

v3

The decomposition process divides the list into a series of basic 3DOBJ_LINE objects
that are then passed individually and in order to the Object Setup stage. The lines are
generated with the following object vertex order: v0, v1; v2, v3; and so on. The
provokingVertex of each object is taken from the Line List/Strip Provoking Vertex
Select state variable, as programmed via SF_STATE.

LineListDecomposition() {
 objectType = 3DOBJ_LINE
 nV = 2

provokingVtx = Line List/Strip Provoking Vertex Select
continueStipple = FALSE

 for each (vertex I in [0..vertexCount-2] by 2) {
 v[0] arrays vIn[i] arrays
 v[1] arrays vIn[i+1] arrays
 ObjectSetup()
 }
}

7.2.3 Line Strip Decomposition

The 3DPRIM_LINESTRIP, 3DPRIM_LINESTRIP_CONT, 3DPRIM_LINESTRIP_BF, and
3DPRIM_LINESTRIP_CONT_BF primitives specify a list of connected lines.

 183

Figure 7-3. 3DPRIM_LINESTRIP_xxx Primitive

v0
v1

v2

v3

The decomposition process divides the strip into a series of basic 3DOBJ_LINE objects
that are then passed individually and in order to the Object Setup stage. The lines are
generated with the following object vertex order: v0,v1; v1,v2; and so on. The
provokingVertex of each object is taken from the Line List/Strip Provoking Vertex
Select state variable, as programmed via SF_STATE.

Lines have no winding order, so the primitive command is used to explicitly state
whether they are back-facing or front-facing lines. Primitives of type
3DPRIM_LINESTRIP[_CONT]_BF are decomposed exactly the same way as
3DPRIM_LINESTRIP[_CONT] primitives, but the backFacing variable is set for the
resulting line objects being passed on to object setup. Likewise
3DPRIM_LINESTRIP_CONT[_BF] primitives are decomposed identically to basic line
strips, but the continueStipple variable is set to true so that the line stipple pattern
will pick up from where it left off with the last line primitive, rather than being reset.

LineStripDecomposition() {
 objectType = 3DOBJ_LINE
 nV = 2

provokingVtx = Line List/Strip Provoking Vertex Select
 if (primType == 3DPRIM_LINESTRIP) {
 backFacing = FALSE
 continueStipple = FALSE
 } else if (primType == 3DPRIM_LINESTRIP_BF) {
 backFacing = TRUE
 continueStipple = FALSE
 } else if (primType == 3DPRIM_LINESTRIP_CONT) {
 backFacing = FALSE
 continueStipple = TRUE
 } else if (primType == 3DPRIM_LINESTRIP_CONT_BF) {
 backFacing = TRUE
 continueStipple = TRUE
 }

for each (vertex I in [0..vertexCount-1]) {
 v[0] arrays vIn[i] arrays
 v[1] arrays vIn[i+1] arrays
 ObjectSetup()
 continueStipple = TRUE
 }
}

184

7.2.4 Triangle List Decomposition

The 3DPRIM_TRILIST primitive specifies a list of independent triangles.

Figure 7-4. 3DPRIM_TRILIST Primitive

v0
v1

v2

v4

v5 v3

The decomposition process divides the list into a series of basic 3DOBJ_TRIANGLE
objects that are then passed individually and in order to the Object Setup stage. The
triangles are generated with the following object vertex order: v0,v1,v2; v3,v4,v5;
and so on. The provokingVertex of each object is taken from the Triangle
List/Strip Provoking Vertex Select state variable, as programmed via SF_STATE.

TriangleListDecomposition() {
 objectType = 3DOBJ_TRIANGLE
 nV = 3

invertOrientation = FALSE
 provokingVtx = Triangle List/Strip Provoking Vertex Select

polyStippleEnable = TRUE
for each (vertex I in [0..vertexCount-3] by 3) {

 v[0] arrays vIn[i] arrays
 v[1] arrays vIn[i+1] arrays
 v[2] arrays vIn[i+2] arrays
 ObjectSetup()
 }
}

 185

7.2.5 Triangle Strip Decomposition

The 3DPRIM_TRISTRIP and 3DPRIM_TRISTRIP_REVERSE primitives specify a series of
triangles arranged in a strip, as illustrated below.

Figure 7-5. 3DPRIM_TRISTRIP[_REVERSE] Primitive

v0
v2

v1

v4

v3 v5

The decomposition process divides the strip into a series of basic 3DOBJ_TRIANGLE
objects that are then passed individually and in order to the Object Setup stage. The
triangles are generated with the following object vertex order: v0,v1,v2; v1,v2,v3;
v2,v3,v4; and so on. Note that the winding order of the vertices alternates between
CW (clockwise), CCW (counter-clockwise), CW, etc. The provokingVertex of each
object is taken from the Triangle List/Strip Provoking Vertex Select state
variable, as programmed via SF_STATE.

The 3D pipeline uses the winding order of the vertices to distinguish between front-
facing and back-facing triangles (see Triangle Orientation (Face) Culling below).
Therefore, the 3D pipeline must account for the alternation of winding order in strip
triangles. The invertOrientation variable is generated and used for this purpose.

To accommodate the situation where the driver is forced to break an input strip
primitive into multiple tristrip primitive commands (e.g., due to ring or batch buffer
size restrictions), two tristrip primitive types are supported. 3DPRIM_TRISTRIP is
used for the initial section of a strip, and wherever a continuation of a strip starts with
a triangle with a CW winding order. 3DPRIM_TRISTRIP_REVERSE is used for a
continuation of a strip that starts with a triangle with a CCW winding order.

TriangleStripDecomposition() {
 objectType = 3DOBJ_TRIANGLE
 nV = 3

provokingVtx = Triangle List/Strip Provoking Vertex Select
 if (primType == 3DPRIM_TRISTRIP)
 invertOrientation = FALSE
 else // primType == 3DPRIM_TRISTRIP_REVERSE
 invertOrientation = TRUE
 polyStippleEnable = TRUE

for each (vertex I in [0..vertexCount-3]) {
 v[0] arrays vIn[i] arrays
 v[1] arrays vIn[i+1] arrays
 v[2] arrays vIn[i+2] arrays
 ObjectSetup()
 invertOrientation = ! invertOrientation
 }
}

186

7.2.6 Triangle Fan Decomposition

The 3DPRIM_TRIFAN and 3DPRIM_TRIFAN_NOSTIPPLE primitives specify a series of
triangles arranged in a fan, as illustrated below.

Figure 7-6. 3DPRIM_TRIFAN Primitive

v5
v0

v4

v1

v3 v2

The decomposition process divides the fan into a series of basic 3DOBJ_TRIANGLE
objects that are then passed individually and in order to the Object Setup stage. The
triangles are generated with the following object vertex order: v0,v1,v2; v0,v2,v3;
v0,v3,v4; and so on. As there is no alternation in the vertex winding order, the
invertOrientation variable is output as FALSE unconditionally. The provokingVertex of
each object is taken from the Triangle Fan Provoking Vertex state variable, as
programmed via SF_STATE.

Primitives of type 3DPRIM_TRIFAN_NOSTIPPLE are decomposed exactly the same
way, except the polyStippleEnable variable is FALSE for the resulting objects being
passed on to object setup. This will inhibit polygon stipple for these triangle objects.

TriangleFanDecomposition() {
objectType = 3DOBJ_TRIANGLE

 nV = 3
invertOrientation = FALSE

 provokingVtx = Triangle Fan Provoking Vertex Select
 if (primType == 3DPRIM_TRIFAN)
 polyStippleEnable = TRUE
 else // primType == 3DPRIM_TRIFAN_NOSTIPPLE
 polyStippleEnable = FALSE
 v[0] arrays vIn[0] arrays // the 1st vertex is common

for each (vertex I in [1..vertexCount-2]) {
 v[1] arrays vIn[i] arrays
 v[2] arrays vIn[i+1] arrays
 ObjectSetup()
 }
}

7.2.7 Polygon Decomposition

The 3DPRIM_POLYGON primitive is identical to the 3DPRIM_TRIFAN primitive with the
exception that the provokingVtx is overridden with 0. This support has been added
specifically for OpenGL support, avoiding the need for the driver to change the
provoking vertex selection when switching between trifan and polygon primitives.

 187

7.2.8 Rectangle List Decomposition

The 3DPRIM_RECTLIST primitive command specifies a list of independent, axis-aligned
rectangles. Only the lower right, lower left, and upper left vertices (in that order) are
included in the command – the upper right vertex is derived from the other vertices
(in Object Setup).

Figure 7-7. 3DPRIM_RECTLIST Primitive

v0v1

v2

v4

v5

v3

Implied Vertices

The decomposition of the 3DPRIM_RECTLIST primitive is identical to the
3DPRIM_TRILIST decomposition, with the exception of the objectType variable.

RectangleListDecomposition() {
 objectType = 3DOBJ_RECTANGLE
 nV = 3

invertOrientation = FALSE
 provokingVtx = 0

for each (vertex I in [0..vertexCount-3] by 3) {
 v[0] arrays vIn[i] arrays
 v[1] arrays vIn[i+1] arrays
 v[2] arrays vIn[i+2] arrays
 ObjectSetup()
 }
}

7.3 Object Setup

The Object Setup subfunction of the SF stage takes the post-viewport-transform data
associated with each vertex of a basic object and computes various parameters
required for scan conversion. This includes generation of implied vertices,
translations and adjustments on vertex positions, and culling (removal) of certain
classes of objects. The final object information is passed to the Windower/Masker
(WM) stage where the object is rasterized into pixels.

7.3.1 Invalid Position Culling (Pre/Post-Transform)

At input the the SF stage, any objects containing a floating-point NaN value for
Position X, Y, Z, or RHW will be unconditionally discarded. Note that this occurs on an
object (not primitive) basis.

If Viewport Transformation is enabled, any objects containing a floating-point NaN
value for post-transform Position X, Y or Z will be unconditionally discarded.

188

7.3.2 Viewport Transformation

If the Viewport Transform Enable bit of SF_STATE is ENABLED, a viewport
transformation is applied to each vertex of the object.

The VPIndex associated with the leading vertex of the object is used to obtain the
Viewport Matrix Element data from the corresponding element of the
SF_VIEWPORT structure in memory. For each object vertex, the following scale and
translate transformation is applied to the position coordinates:

 x’ = m00 * x + m30

 y’ = m11 * y + m31

 z’ = m22 * z + m32

Software is responsible for computing the matrix elements from the viewport
information provided to it from the API.

7.3.3 Destination Origin Bias

The positioning of the pixel sampling grid is programmable and is controlled by the
Destination Origin Horizontal/Vertical Bias state variables (set via SF_STATE). If
these bias values are both 0, pixels are sampled on an integer grid. Pixel (0,0) will be
considered inside the object if the sample point at XY coordinate (0,0) falls within the
primitive. This positioning of the sample grid corresponds with the rasterization rules
where “pixel centers are on an integer grid”.

If the bias values are both 0.5, pixels are sampled on a “half” integer grid (i.e., X.5,
Y.5). Pixel (0,0) will be considered inside the object if the sample point at XY
coordinate (0.5,0.5) falls within the primitive. This positioning of the sample grid
corresponds with the OpenGL rasterization rules, where “fragment centers” lay on a
half-integer grid. It also corresponds with the Intel740 rasterizer (though that device
did not employ “top left” rules).

Note that subsequent descriptions of rasterization rules for the various objects will be
with reference to the pixel sampling grid.

 189

Figure 7-8. Destination Origin Bias

0 1 2 3 4
0

1

2

3

4

Sample Point
for Pixel 0,0

Point Width = 2.0

1,1 Lit

1,2 Lit

2,1 Lit

2,2 Lit

DX7
MODE

Rastrule_UL

7.3.4 Point Rasterization Rule Adjustment

POINT objects are rasterized as square RECTANGLEs, with one exception: The Point
Rasterization Rule state variable (in SF_STATE) controls the rendering of point
object edges that fall directly on pixel sample points, as the treatment of these edge
pixels varies between APIs.

The following diagram shows the rasterization of a 2-pixel wide point centered at (2,2)
Here the pixel sample grid coincides with the integer pixel coordinates, and the Point
Rasterization Rule is set to RASTRULE_UPPER_LEFT. Note that the pixels which lie
only on the upper and/or left edges are lit.

190

Figure 7-9. RASTRULE_UPPER_LEFT

0 1 2 3 4

0

1

2

3

4

Sample Point
for Pixel 0,0

Point Width = 2.0

1,1 Lit

1,2 Lit

2,1 Lit

2,2 Lit

LEGACY

MODE

Rastrule_UL

 191

The following diagram shows the rasterization of a 2-pixel wide point centered at (2,2)
given “OpenGL” rasterization rules. Here the pixel sample grid coincides with half-
integer pixel coordinates, and the Point Rasterization Rule is set to
RASTRULE_UPPER_RIGHT. Note that the pixels which lie only on the upper and/or
right edges are lit.

Figure 7-10. RASTRULE_UPPER_RIGHT

OPENGL
MODE

Sample Point
for Pixel 0,0

0 1 2 3 4
0

1

2

3

4

2,0 Lit

2,1 Lit

1,0 Lit

1,1 Lit

Point Width = 2.0

Rastrule_UR

7.3.5 Drawing Rectangle Offset Application

The Drawing Rectangle Offset subfunction offsets the object’s vertex X,Y positions by
the pixel-exact, unclipped drawing rectangle origin (as programmed via the Drawing
Rectangle Origin X,Y values in the 3DSTATE_DRAWING_RECTANGLE command).
The Drawing Rectangle Offset subfunction (at least with respect to Color Buffer
access) is unconditional, and therefore to (effectively) turn off the offset function the
origin would need to be set to (0,0). A non-zero offset is typically specified when
window-relative or viewport-relative screen coordinates are input to the device. Here
the drawing rectangle origin would be loaded with the absolute screen coordinates of
the window’s or viewport’s upper-left corner.

Clipping of objects which extend outside of the Drawing Rectangle occurs later in the
pipeline. Note that this clipping is based on the “clipped” draw rectangle (as
programmed via the Clipped Drawing Rectangle values in the
3DSTATE_DRAWING_RECTANGLE command), which must be clamped by software to
the rendertarget boundaries. The unclipped drawing rectangle origin, however, can
extend outside the screen limits in order to support windows whose origins are moved
off-screen. This is illustrated in the following diagrams.

192

Figure 7-11. Onscreen Draw Rectangle

Color Buffer

DrawRectOrigin

DrawRectClipped

Figure 7-12. Partially-offscreen Draw Rectangle

Color Buffer

DrawRectOrigin

DrawRectClipped

 193

7.3.5.1 3DSTATE_DRAWING_RECTANGLE

3DSTATE_DRAWING_RECTANGLE
Project: All Length Bias: 2
The 3DSTATE_DRAWING_RECTANGLE command is used to set the 3D drawing rectangle and related state.
DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 00h 3DSTATE_DRAWING_RECTANGLE Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 2h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:16 Clipped Drawing Rectangle Y Min

Project: All

Format: U16 in Pixels from Color Buffer origin
(upper left corner)

FormatDesc

Range [0,8191] (Device ignores bits 31:29)

Specifies Ymin value of (inclusive) intersection of Drawing rectangle with the Color
(Destination) Buffer, used for clipping. Pixels with Y coordinates less than Ymin will be
clipped out.

Programming Notes

This value must be less than or equal to Clipped Drawing Rectangle Y Max. If
Ymin==Ymax, the clipped drawing rectangle is 1 pixel wide in the Y direction.

194

3DSTATE_DRAWING_RECTANGLE
15:0 Clipped Drawing Rectangle X Min

Project: All

Format: U16 in Pixels from Color Buffer origin
(upper left corner)

FormatDesc

Range [0,8191] (Device ignores bits 15:13)

Specifies Xmin value of (inclusive) intersection of Drawing rectangle with the Color
(Destination) Buffer, used for clipping. Pixels with X coordinates less than Xmin will be
clipped out.

Programming Notes Project

This value must be less than or equal to Clipped Drawing Rectangle X
Max. If Xmin==Xmax, the clipped drawing rectangle is 1 pixel wide in the X
direction.

All

2 31:16 Clipped Drawing Rectangle Y Max

Project: All

Format: U16 in Pixels from Color Buffer origin
(upper left corner)

FormatDesc

Range [0,8191] (Device ignores bits 31:29)

Specifies Ymax value of (inclusive) intersection of Drawing rectangle with the Color
(Destination) Buffer, used for clipping. Pixels with coordinates greater than Ymax will be
clipped out.

Programming Notes

This value must be greater than or equal to Clipped Drawing Rectangle Y Min. If
Ymin==Ymax, the clipped drawing rectangle is 1 pixel wide in the Y direction.

15:0 Clipped Drawing Rectangle X Max

Project: All

Format: U16 in Pixels from Color Buffer origin
(upper left corner)

FormatDesc

Range [0,8191] (Device ignores bits 15:13)

Specifies Xmax value of (inclusive) intersection of Drawing rectangle with the Color
(Destination) Buffer, used for clipping. Pixels with coordinates greater than Xmax will be
clipped out.

Programming Notes Project

This value must be greater than or equal to Clipped Drawing Rectangle X
Min. If Xmin==Xmax, the clipped drawing rectangle is 1 pixel wide in the X
direction.

All

 195

3DSTATE_DRAWING_RECTANGLE
3 31:16 Drawing Rectangle Origin Y

Project: All

Format: S15 in Pixels from Color Buffer origin
(upper left corner).

FormatDesc

Range [-8192,8191] (Bits 31:30 should be a sign extension)

Specifies Y origin of Drawing Rectangle (in whole pixels) relative to origin of the Color
Buffer, used to map incoming (Draw Rectangle-relative) vertex positions to the Color
Buffer space.

15:0 Drawing Rectangle Origin X

Project: All

Format: S15 in Pixels from Color Buffer origin
(upper left corner).

FormatDesc

Range [-8192,8191] (Bits 15:14 should be a sign extension)

Specifies X origin of Drawing Rectangle (in whole pixels) relative to origin of the Color
Buffer, used to map incoming (Draw Rectangle-relative) vertex positions to the Color
Buffer space.

7.3.6 Point Width Application

This stage of the pipeline applies only to 3DOBJ_POINT objects. Here the point object
is converted from a single vertex to four vertices located at the corners of a square
centered at the point’s X,Y position. The width and height of the square are specified
by a point width parameter. The Use Point Width State value in SF_STATE
determines the source of the point width parameter: the point width is either taken
from the Point Width value programmed in SF_STATE or the PointWidth specified
with the vertex (as read back from the vertex VUE earlier in the pipeline).

The corner vertices are computed by adding and subtracting one half of the point
width, as shown in Figure 7-13.

Figure 7-13. Point Width Application

× Width/2

Width/2

Point
Vertex

× ×

× ×

Z and W vertex attributes are copied from the single point center vertex to each of the
four corner vertices.

196

7.3.7 Rectangle Completion

This stage of the pipeline applies only to 3DOBJ_RECTANGLE objects. Here the X,Y
coordinates of the 4th (upper right) vertex of the rectangle object is computed from
the first 3 vertices as shown in the following diagram. The other vertex attributes
assigned to the implied vertex (v[3]) are UNDEFINED as they are not used. The
Object Setup subfunction will use the values at only the first 3 vertices to compute
attribute interpolants used across the entire rectangle.

Figure 7-14. Rectangle Completion

v0v1

v2 Implied Vertex
= v2 + v0 – v1

7.3.8 Vertex X,Y Clamping and Quantization

At this stage of the pipeline, vertex X and Y positions are in continuous screen (pixel)
coordinates. These positions are quantized to subpixel precision by rounding the
incoming values to the nearest subpixel (using round-to-nearest-or-even rules). The
device supports rasterization with either 4 or 8 fractional (subpixel) position bits, as
specified by the Vertex SubPixel Precision Select bit of SF_STATE.

The vertex X and Y screenspace coordinates are also clamped to the range [-8K,8K).
Note that this clamping occurs after the Drawing Rectangle Origin has been applied
and objects have been expanded (i.e., points have been expanded to squares, etc.).
In almost all circumstances, if an object’s vertices are actually modified by this
clamping (i.e., had X or Y coordinates outside of [-8K,8K)) the rendered object will not
match the intended result. Therefore software should take steps to ensure that this
does not happen – e.g., by clipping objects such that they do not exceed these limits
after the Drawing Rectangle is applie.

In addition, in order to be correctly rendered, objects must have a screenspace
bounding box not exceeding 8K in the X or Y direction. This additional restriction
must also be comprehended by software, i.e., enforced by use of clipping.

 197

7.3.9 Degenerate Object Culling

At this stage of the pipeline, “degenerate” objects are discarded. This operation is
automatic and cannot be disabled. (The object rasterization rules would by definition
cause these objects to be “invisible” – this culling operation is mentioned here to
reinforce that the device implementation optimizes these degeneracies as early as
possible).

Degenerate objects are defined in Table 7-6.

Table 7-6. Degenerate Objects

objType Degenerate Object Definition

3DOBJ_POINT Two or more corner vertices are coincident (i.e., the radius
quantized to zero)

3DOBJ_LINE The endpoints are coincident

3DOBJ_TRIANGLE All three vertices are collinear or any two vertices are
coincident

3DOBJ_RECTANGLE Two or more corner vertices are coincident

7.3.10 Degenerate Triangle Culling

The DEBUG ONLY state variable Zero Pixel Triangle Filter Disable in SF_STATE
controls the removal of triangles that cannot generate any pixels due to the fact that
their vertices fall between pixel sample points. Disabling this culling function will not
impact the rendered image, though there may be some negative impact on
performance.

The DEBUG ONLY state variable 2x2 Pixel Triangle Filter Disable in SF_STATE
controls a more aggressive removal of triangles that cannot generate any pixels. The
vertices of very small triangles are examined to see if they will generate any pixels. If
not, they are discarded. Disabling this culling function will not impact the rendered
image, though there may be some negative impact on performance.

7.3.11 Triangle Orientation (Face) Culling

At this stage of the pipeline, 3DOBJ_TRIANGLE objects can be optionally discarded
based on the “face orientation” of the object. This culling operation does not apply to
the other object types.

This operation is typically called “back face culling”, though front facing objects (or all
3DOBJ_TRIANGLE objects) can be selected to be discarded as well. Face culling is
typically used to eliminate triangles facing away from the viewer, thus reducing
rendering time.

The “winding order” of a triangle is defined by the the triangle vertex’s 2D (X,Y)
screen space position when traversed from v0 to v1 to v2. That traversal will

198

proceed in either a clockwise (CW) or counter-clockwise (CCW) direction, as shown in
Figure 7-15. (A degenerate triangle is considered to have a CW winding order).

Figure 7-15. Triangle Winding Order

CW CCW

V0

V2

V1

V0

V2

V1

The Front Winding state variable in SF_STATE controls whether CW or CCW triangles
are considered as having a “front-facing” orientation (at which point non-front-facing
triangles are considered “back-facing”). The internal variable invertOrientation
associated with the triangle object is then used to determine whether the orientation
of a triangle should be inverted. Recall that this variable is set in the Primitive
Decomposition stage to account for the alternating orientations of triangles in strip
primitives resulting form the ordering of the vertices used to process them.

The Cull Mode state variable in SF_STATE specifies how triangles are to be discarded
according to their resultant orientation, as defined in Table 7-6.

Table 7-7. Cull Mode

CullMode Definition

CULLMODE_NONE The face culling operation is disabled

CULLMODE_FRONT Triangles with “front facing” orientation are discarded

CULLMODE_BACK Triangles with “back facing” orientation are discarded

CULLMODE_BOTH All triangles are discarded

7.3.12 Scissor Rectangle Clipping

A scissor operation can be used to restrict the extent of rendered pixels to a screen-
space aligned rectangle. If the scissor operation is enabled, portions of objects falling
outside of the intersection of the scissor rectangle and the clipped draw rectangle are
clipped (pixels discarded).

The scissor operation is enabled by the Scissor Rectangle Enable state variable in
SF_STATE. If enabled, the VPIndex associated with the leading vertex of the object is
used to select the corresponding SF_VIEWPORT structure. Up to 16 structures are
supported. The Scissor Rectangle X,Y Min,Max fields of the SF_VIEWPORT
structure defines a scissor rectangle as a rectangle in integer pixel coordinates relative
to the (unclipped) origin of the Drawing Rectangle. The scissor rectangle is defined

 199

relative to the Drawing Rectangle to better support the OpenGL API. (OpenGL
specifies the “Scissor Box” in window-relative coordinates). This allows instruction
buffers with embedded Scissor Rectangle definitions to remain valid even after the
destination window (drawing rectangle) moves.

Drawing
Rectangle

Scissor Rectangle
Color Buffer

Discarded
Pixels

The (DEBUG ONLY) Fast Scissor Clip Disable state variable in SF_STATE controls
how scissor clipping is implemented (though this does not affect the rendered image).
If ENABLED (i.e., fast clipping is enabled), only those pixels within the scissor
rectangle are rasterized. If DISABLED, the entire object will be rasterized, with object
pixels falling outside the scissor rectangle being discarded.

Specifying either scissor rectangle xmin > xmax or ymin > ymax will cause all
polygons to be discarded for a given viewport (effectively a null scissor rectangle).

7.3.13 Line Rasterization

The device supports three styles of line rendering: zero-width (cosmetic) lines, non-
antialiased lines, and antialiased lines. Zero-Width lines are rendered according to the
”diamond line rules” Non-antialiased lines are rendered as a polygon having a
specified width as measured parallel to the major axis of the line. Antialiased lines
are rendered as a rectangle having a specified width measured perpendicular to the
line connecting the vertices.

The functions required to render lines is split between the SF and WM units. The SF
unit is responsible for computing the overall geometry of the object to be rendered,
including the pixel-exact bounding box, edge equations, etc., and therefore is
provided with the screen-geometry-related state variables. The WM unit performs the
actual scan conversion, determining the exact pixel included/excluded and coverage
value for anti-aliased lines.

7.3.13.1 Zero-Width (Cosmetic) Line Rasterization

(The specification of zero-width line rasterization would be more correctly included in
the WM Unit chapter, though is being included here to keep it with the rasterization
details of the other line types).

When the Line Width is set to zero, the device will use special rules to rasterize zero-
width (“cosmetic”) lines. The Anti-Aliasing Enable state variable is ignored when
Line Width is zero.

200

When the LineWidth is set to zero, the device will use special rules to rasterize
“cosmetic” lines. The diamond exit rasterization rules comply with the OpenGL
conformance requirements (for 1-pixel wide non-smooth lines). Refer to the
appropriate API specifications for details on these requirements.

The diamond exit rules basically intersect the directed, ideal line connecting two
endpoints with an array of diamond-shaped areas surrounding pixel sample points.
Wherever the line exits a diamond (including passing through a diamond), the
corresponding pixel is lit. Special rules are used to define the subpixel locations which
are considered interior to the diamonds, as a function of the slope of the line. When a
line ends in a diamond (and therefore does not exit that diamond), the corresponding
pixel is not drawn. When a line starts in a diamond and exits that diamond, the
corresponding pixel is drawn.

The following diagram shows some examples of diamond exit rendered lines.

End Pixel not
drawn

Pixel Lit
(starts in and
exits this
diamond)

End Pixel not
drawn

Pixel Lit
(starts in and
exits this
diamond)

The following subsections describe the diamond exit rules in more detail.

7.3.13.2 Diamond Exit Sampling Rules – Legacy Mode

When the Legacy Line Rasterization Enable bit in WM_STATE is ENABLED, zero-
width lines are rasterized according to the algorithm presented in this subsection.
Also note that the Last Pixel Enable bit of SF_STATE controls whether the last pixel

 201

of the last line in a LINESTRIP_xxx primitive or the last pixel of each line in a
LINELIST_xxx primitive is rendered.

Refer to the following figure, which shows the neighborhood of subpixels around a
given pixel sample point. Note that the device divides a pixel into a 16x16 array of
subpixels, referenced by their upper left corners.

0 1
0

1

0.5

0.5

Left corner
inclusive
if slope = 1

Right corner
inclusive
if slope ≠ 1

Bottom corner
always inclusive

Bottom left edge
inclusive
if slope = 1

Bottom right edge
inclusive
if slope = -1

Interior subpixels
always inclusive

The solid-colored subpixels are considered “interior” to the diamond centered on the
pixel sample point. Here the Manhattan distance to the pixel sample point (center) is
less than ½.

The subpixels falling on the edges of the diamond (Manhattan distance = ½) are
exclusive, with the following exceptions:

1. The bottom corner subpixel is always inclusive. This is to ensure that
lines with slopes in the open range (-1,1) touch a diamond even when they
cross exactly between pixel diamonds.

2. The right corner subpixel is inclusive as long as the line slope is not
exactly one, in which case the left corner subpixel is inclusive.
Including the right corner subpixel ensures that lines with slopes in the range
(1, +infinity] or [-infinity, -1) touch a diamond even when they cross exactly
between pixel diamonds. Including the left corner on slope=1 lines is required
for proper handling of slope=1 lines (see (3) below) – where if the right corner

202

was inclusive, a slope=1 line falling exactly between pixel centers would wind
up lighting pixel on both sides of the line (not desired).

3. The subpixels along the bottom left edge are inclusive only if the line
slope = 1. This is to correctly handle the case where a slope=1 line falls
enters the diamond through a left or bottom corner and ends on the bottom
left edge. One does not consider this “passing through” the diamond (where
the normal rules would have us light the pixel). This is to avoid the following
case: One slope=1 line segment enters through one corner and ends on the
edge, and another (continuation) line segments starts at that point on the edge
and exits through the other corner. If simply passing through a corner caused
the pixel to be lit, this case would case the pixel to be lit twice – breaking the
rule that connected line segments should not cause double-hits or missing
pixels. So, by considering the entire bottom left edge as “inside” for slope=1
lines, we will only light the pixel when a line passes through the entire edge, or
starts on the edge (or the left or bottom corner) and exits the diamond.

4. The subpixels along the bottom right edge are inclusive only if the line
slope = -1. Similar case as (3), except slope=-1 lines require the bottom
right edge to be considered inclusive.

The following equation determines whether a point (point.x, point.y) is inside the
diamond of the pixel sample point (sample.x, sample.y), given additional information
about the slope (slopePosOne, slopeNegOne).

 delta_x = point.x – sample.x
 delta_y = point.y – sample.y
 distance = abs(delta_x) + abs(delta_y)
 interior = (distance < 0.5)
 bottom_corner = (delta_x == 0.0) && (delta_y == 0.5)
 left_corner = (delta_x == –0.5) && (delta_y == 0.0)
 right_corner = (delta_x == 0.5) && (delta_y == 0.0)
 bottom_left_edge = (distance == 0.5) && (delta_x < 0) && (delta_y > 0)
 bottom_right_edge = (distance == 0.5) && (delta_x > 0) && (delta_y > 0)
 inside = interior ||

bottom_corner ||
(slopePosOne ? left_corner : right_corner) ||
(slopePosOne && left_edge) ||
(slopeNegOne && right_edge)

 203

7.3.13.3 Diamond Exit Sampling Rules – New Mode

When the Legacy Line Rasterization Enable bit in WM_STATE is DISABLED, zero-
width lines are rasterized according to the algorithm presented in this subsection. Also
note that the Last Pixel Enable bit of SF_STATE controls whether the last pixel of the
last line in a LINESTRIP_xxx primitive or the last pixel of each line in a LINELIST_xxx
primitive is rendered.

Refer to the following figure, which shows the neighborhood of subpixels around a
given pixel sample point. Note that the device divides a pixel into a 16x16 array of
subpixels, referenced by their upper left corners.

The solid-colored subpixels are considered “interior” to the diamond centered on the
pixel sample point. Here the Manhattan distance to the pixel sample point (center) is
less than ½.

The subpixels falling on the edges of the diamond (Manhattan distance = ½) are
exclusive, with the following exceptions:

1. The bottom corner subpixel is always inclusive. This is to ensure that
lines with slopes in the open range (-1,1) touch a diamond even when they
cross exactly between pixel diamonds.

2. The right corner subpixel is inclusive as long as the line is not X
Major (X Major is defined as -1 <= slope <= 1). Including the right
corner subpixel ensures that lines with slopes in the range (>1, +infinity]
or [-infinity, <-1) touch a diamond even when they cross exactly between
pixel diamonds.

204

3. The left corner subpixel is never inclusive. For Y Major lines, having
the right corner subpixel as always inclusive requires that the left corner
subpixel should never be inclusive, since a line falling exactly between pixel
centers would wind up lighting pixel on both sides of the line (not desired).

4. The subpixels along the bottom left edge are always inclusive. This
is to correctly handle the case where a line enters the diamond through a
left or bottom corner and ends on the bottom left edge. One does not
consider this “passing through” the diamond (where the normal rules would
have us light the pixel). This is to avoid the following case: One line
segment enters through one corner and ends on the edge, and another
(continuation) line segments starts at that point on the edge and exits
through the other corner. If simply passing through a corner caused the
pixel to be lit, this case would case the pixel to be lit twice – breaking the
rule that connected line segments should not cause double-hits or missing
pixels. So, by considering the entire bottom left edge as “inside”, we will
only light the pixel when a line passes through the entire edge, or starts on
the edge (or the left or bottom corner) and exits the diamond.

5. The subpixels along the bottom right edge are always inclusive.
Same as case as (4), except slope=-1 lines require the bottom right edge
to be considered inclusive.

The following equation determines whether a point (point.x, point.y) is inside the
diamond of the pixel sample point (sample.x, sample.y), given additional information
about the slope (XMajor).

 delta_x = point.x – sample.x
 delta_y = point.y – sample.y
 distance = abs(delta_x) + abs(delta_y)
 interior = (distance < 0.5)
 bottom_corner = (delta_x == 0.0) && (delta_y == 0.5)
 left_corner = (delta_x == –0.5) && (delta_y == 0.0)
 right_corner = (delta_x == 0.5) && (delta_y == 0.0)
 bottom_left_edge = (distance == 0.5) && (delta_x < 0) && (delta_y > 0)
 bottom_right_edge = (distance == 0.5) && (delta_x > 0) && (delta_y > 0)
 inside = interior ||

bottom_corner ||
(!XMajor && right_corner) ||
(bottom_left_edge) ||
(bottom_right_edge)

7.3.13.4 Non-Antialiased Wide Line Rasterization

Non-anti-aliased, non-zero-width lines are rendered as parallelograms that are
centered on, and aligned to, the line joining the endpoint vertices. Pixels sampled
interior to the parallelogram are rendered; pixels sampled exactly on the
parallelogram edges are rendered according to the polygon “top left” rules.

The parallelogram is formed by first determining the major axis of the line (diagonal
lines are considered x-major). The corners of the parallelogram are computed by
translating the line endpoints by +/-(Line Width / 2) in the direction of the minor
axis, as shown in the following diagram.

 205

Figure 7-16. Non-Antialiased Line Rasterization

LineWidth/2

Y Major

X Major

7.3.13.5 Anti-aliased Line Rasterization

Anti-aliased lines are rendered as rectangles that are centered on, and aligned to, the
line joining the endpoint vertices. For each pixel in the rectangle, a fractional
coverage value (referred to as Antialias Alpha) is computed – this coverage value will
normally be used to attenuate the pixel’s alpha in the pixel shader thread. The
resultant alpha value is therefore available for use in those downstream pixel pipeline
stages in order to generate the desired effect (e.g., use the attenuated alpha value to
modulate the pixel’s color, and add the result to the destination color, etc.). Note
that software is required to explicitly program the pixel shader and pixel pipeline to
obtain the desired anti-aliasing effect – the device will simply make the coverage-
attenuated pixel alpha values available for use in the pixel shader.

The dimensions of the rendered rectangle, and the parameters controlling the
coverage value computation, are programmed via the Line Width, Line AA Region,
and Line Cap AA Region state variables, as shown below. The edges parallel to the
line are located at the distance (LineWidth/2) from the line (measured in screen pixel
units perpendicular to the line). The end-cap edges are perpendicular to the line and
located at the distance (LineCapAARegion) from the endpoints.

206

Figure 7-17. Anti-aliased Line Rasterization

LineCapAARegion

LineCapAARegion

LineWidth/2

LineWidth/2

LineAARegion/2

LineAARegion/2

Coverage=1

Coverage=0

Coverage=1

Coverage=0

Line Endpoint

Along the parallel edges, the coverage values ramp from the value 0 at the very edges
of the rectangle to the value 1 at the perpendicular distance (LineAARegion/2) from a
given edge (in the direction of the line). A pixel’s coverage value is computed with
respect to the closest edge. In the cases where (LineAARegion/2) < (LineWidth/2),
this results in a region of fractional coverage values near the edges of the rectangle,
and a region of “fully-covered” coverage values (i.e., the value 1) at the interior of
the line. When (LineAARegion/2) == (LineWidth/2), only pixel sample points falling
exactly on the line can generate fully-covered coverage values. If (LineAARegion/2) >
(LineWidth/2), no pixels can be fully-covered (it is expected that this case is not
typically desired).

Along the end cap edges, the coverage values ramp from the value 1 at the line
endpoint to the value 0 at the cap edge – itself at a perpendicular distance
(LineCapAARegion) from the endpoint. Note that, unlike the line-parallel edges, there
is only a single parameter (LineCapAARegion) controlling the extension of the line at
the end caps and the associated coverage ramp.

The regions near the corners of the rectangle have coverage values influenced by
distances from both the line-parallel and end cap edges – here the two coverage
values are multiplied together to provide a composite coverage value.

 207

The computed coverage value for each pixel is passed through the Windower Thread
Dispatch payload. The Pixel Shader kernel should be passed (unmodified) by the
shader to the Render Cache as part of it’s output message.

7.3.13.5.1 Anti-aliased Line Distance Mode

The distance from a pixel to the line is approximated by the “Manhattan Distance”:

(abs(delta_x)+abs)delta_y

7.4 SF Pipeline State Summary

7.4.1 SF_STATE

The SF_STATE structure defines the layout and function of the data referenced by the
Pointer to SF State field of the PIPELINE_STATE_POINTERS command.

Note: The majority of the fields in DWords 0-4 have a common definition among the various
3D pipeline FF units. Refer to 3D Pipeline for a general description of these fields.

DWord Bit Description

0 31:6 Kernel Start Pointer: This field specifies the starting location (1st GEN4 core
instruction) of the kernel program run by threads spawned by this FF unit. It is specified
as a 64-byte-granular offset from the General State Base Address.

See 3D Pipeline for more information.

[DevBW-A] Errata BWT007: Instructions pointed at by offsets from General State
Base must be contained within 32-bit physical address space (that is, must map to
memory pages under 4G.)

Format = GeneralStateOffset[31:6]

 5:4 Reserved : MBZ

 3:1 GRF Register Count: Defines the number of GRF Register Blocks used by the kernel. A
register block contains 16 registers. A kernel using a register count that is not a multiple
of 16 must round up to the next multiple of 16.

See 3D Pipeline for more information.

Format = U3 register block count - 1

Range = [0,7] = [16,128] GRF registers

 0 Reserved : MBZ

208

DWord Bit Description

1 31 Single Program Flow (SPF): Specifies whether the kernel program has a single
program flow (SIMDnxm with m = 1) or multiple program flows (SIMDnxm with m > 1).

The setting of this field must agree with how the kernel program was generated (i.e.,
single-vs-multiple program flow must be comprehended in the kernel programming, and
cannot be accomplished simply through control of this bit.. See CR0 description in ISA
Execution Environment for more information.

0 = Multiple Program Flows

1 = Single Program Flow

 30:26 Reserved : MBZ

 25:18 Binding Table Entry Count: Specifies how many binding table entries the kernel uses.
Used only for prefetching of the binding table entries and associated surface state.

Note: For kernels using a large number of binding table entries, it may be
advantageous to set this field to zero to avoid prefetching too many entries and
thrashing the state cache.

See 3D Pipeline for more information.

Format = U8

Range = [0,255]

 17 Thread Priority: Specifies the priority of the thread for dispatch.

0 = Normal Priority

1 = High Priority

Programming Notes:

• this field must be zero.

 16 Floating Point Mode: Specifies the floating point mode used by the dispatched thread.

0 = Use IEEE-754 Rules

1 = Use alternate rules

 15:14 Reserved: MBZ

 13 Illegal Opcode Exception Enable. This bit gets loaded into EU CR0.1[12] (note the bit
difference). See Exceptions and ISA Execution Environment.

Format: Enable

 12 Reserved: MBZ

 11 MaskStack Exception Enable. This bit gets loaded into EU CR0.1[11]. See Exceptions
and ISA Execution Environment.

Format: Enable

 10:8 Reserved: MBZ

 7 Software Exception Enable. This bit gets loaded into EU CR0.1[13] (note the bit #
difference). See Exceptions and ISA Execution Environment.

Format: Enable

 6:0 Reserved: MBZ

 209

DWord Bit Description

2 31:10 Scratch Space Base Pointer: Specifies the 1K-byte aligned offset of the scratch space
area allocated to this FF unit. If required, each thread spawned by this FF unit will be
allocated some portion of this space, as specified by Per-Thread Scratch Space. It is
specified as a 1K-byte-granular offset from the General State Pointer.

Format = GeneralStateOffset[31:10]

 9:4 Reserved : MBZ

 3:0 Per Thread Scratch Space: Specifies the amount of scratch space allowed to be used
by each thread spawned by this FF unit. The driver must allocate enough contiguous
scratch space, starting at the Scratch Space Base Pointer, to ensure that the
Maximum Number of Threads each get Per Thread Scratch Space size without
exceeding the driver-allocated scratch space.

Format = U4

Range = [0,11] indicating [1k bytes, 2M bytes] in powers of two

Programming Notes:

• This amount is available to the kernel for information only. It will be passed
verbatim (if not altered by the kernel) to the Data Port in any scratch space
access messages, but the Data Port will ignore it.

3 31 Reserved : MBZ

 30:25 Constant URB Entry Read Length: Specifies the amount of URB data read and passed
in the thread payload for the Constant URB entry, in 256-bit register increments.

Format = U6

Range = [0,63]

 24 Reserved : MBZ

 23:18 Constant URB Entry Read Offset: Specifies the offset (in 256-bit units) at which
Constant URB data is to be read from the URB before being included in the thread
payload.

Format = U6

Range = [0,63]

 17 Reserved : MBZ

 16:11 Vertex URB Entry Read Length: Specifies the amount of URB data read and passed in
the thread payload for each Vertex URB entry, in 256-bit register increments.

Programming Notes:

It is UNDEFINED to set this field to 0 indicating no Vertex URB data to be read and
passed to the thread.

Format = U6

Range = [1,63]

 10 Reserved : MBZ

210

DWord Bit Description

 9:4 Vertex URB Entry Read Offset: Specifies the offset (in 256-bit units) at which Vertex
URB data is to be read from the URB before being included in the thread payload. This
offset applies to all Vertex URB entries passed to the thread.

Format = U6

Range = [0,63]

 3:0 Dispatch GRF Start Register for URB Data: Specifies the starting GRF register
number for the URB portion (Constant + Vertices) of the thread payload.

Format = U4

Range = [0,15]

4 31 Reserved : MBZ

 30:25 Maximum Number of Threads: Specifies the maximum number of simultaneous
threads allowed to be active. Used to avoid using up the scratch space, or to avoid
potential deadlock.

Format = U6 representing thread count - 1

Range = [0,23] indicating thread count of [1,24]

 24 Reserved : MBZ

 23:19 URB Entry Allocation Size: Specifies the length of each URB entry used by the unit, in
512-bit register increments - 1.

Programming Note: Any change to this value requires a subsequent URB_FENCE
command (see Graphics Processing Engine).

Format = U5

Range = [0,31] indicating [1,32] 512-bit register increments

 18:11 Number of URB Entries: Specifies the number of URB entries that are used by the unit.

Programming Note: Any change to this value requires a subsequent URB_FENCE
command (see Graphics Processing Engine).

Format = U8

Range = [1,64]

 10:0 Reserved : MBZ

5 31:5 Setup Viewport State Offset: Specifies the 32-byte aligned offset of SF_VIEWPORT.
This offset is relative to the General State Base Address.

[DevBW-A] Errata BWT007: SF_VIEWPORT data pointed at by offsets from General
State Base must be contained within 32-bit physical address space (that is, must map to
memory pages under 4G.)

Format = GeneralStateOffset[31:5]

 4:2 Reserved : MBZ

 1 Viewport Transform Enable: This bit controls the Viewport Transform function.

Format = Enable

 211

DWord Bit Description

 0 Front Winding: Determines whether a triangle object is considered “front facing” if the
screen space vertex positions, when traversed in the order, result in a clockwise (CW)
or counter-clockwise (CCW) winding order. Does not apply to points or lines.

0 = FRONTWINDING_CW

1 = FRONTWINDING_CCW

6 31 Anti-aliasing Enable: This field enables “alpha-based” line antialiasing.

Format = Enable

Programming Notes:

This field must be disabled if any of the render targets have integer (UINT or SINT)
surface format.

 30:29 Cull Mode: Controls removal (culling) of triangle objects based on orientation. The cull
mode only applies to triangle objects and does not apply to lines, points or rectangles.

Programming Notes:

Orientation determination is based on the setting of the Front Winding state.

Format = 3D_CullMode:

0 = CULLMODE_BOTH All triangles are discarded (i.e., no triangle objects are drawn)

1 = CULLMODE_NONE No triangles are discarded due to orientation

2: CULLMODE_FRONT Triangles with a front-facing orientation are discarded

3: CULLMODE_BACK Triangles with a back-facing orientation are discarded

 28 Fast Scissor Clip Disable (DEBUG ONLY) : This DEBUG ONLY bit can be used to
disable the “Fast Scissor Clip” function. When disabled, scissor operations are
performed, albeit at lower performance.

Format: Disable

 27:24 Line Width: Controls width of line primitives.

Setting a Line Width of 0.0 specifies the rasterization of the “thinnest” (one-pixel-wide),
non-antialiased lines. Note that this effectively overrides the effect of AAEnable (though
the AAEnable state variable is not modified). Lines rendered with zero Line Width are
rasterized using Diamond Exit rules.

Format = U3.1 (Units: pixels)

Range = [0.0, 7.5]

 23:22
Line End Cap Antialiasing Region Width: This field specifies the distances
over which the coverage of anti-aliased line end caps are computed.
Format =

0 = 0.5 pixels

1= 1.0 pixels

2 = 2.0 pixels

3 = 4.0 pixels

Note: this state is duplicated in the windower state descriptor

212

DWord Bit Description

 21:20 Point Rasterization Rule: This field specifies the rasterization rules to be applied
whenever the edges of a point primitive fall exactly on a pixel sampling point.

Format = 3D_RasterizationRule

0 = RASTRULE_UPPER_LEFT – To match “normal” upper left rules for surface primitives

1 = RASTRULE_UPPER_RIGHT – To match OpenGL point rasterization rules (round to +
infinity, where this is the upper right direction wrt OpenGL screen origin of lower left).

2 = Reserved (RASTRULE_LOWER_LEFT not seen as useful)

3 = Reserved (RASTRULE_LOWER_RIGHT not seen as useful)

 19 Zero Pixel Triangle Filter Disable (DEBUG ONLY) : Disables the culling of some
primitives that cannot generate any pixels (otherwise the culling of these primitives is
performed when possible).

Programming Notes:

Disabling this filter should not affect the image rendered – only the performance of the
device should be impacted.

Format = Disable

 18 2x2 Pixel Triangle Filter Disable (DEBUG ONLY) : Disables the culling of some zero-
pixel triangles that otherwise might be discarded by the “Small Triangle Filter”. The 2x2
Triangle Filter attempts to remove triangles with bounding boxes of 2x2 pixels or less
and that do not light any pixels.

Programming Notes:

Disabling this filter should not affect the image rendered – only the performance of the
device should be impacted.

Format = Disable

 17 Scissor Rectangle Enable: Enables operation of Scissor Rectangle.

Format = Enable

 16:13 Destination Origin (Pixel Sample Point) Horizontal Bias: This value is used to
specify the horizontal subpixel position of the pixel sampling points (grid) used during
rasterization. It is used in conjunction with the vertical bias (below) to position the
pixel-sampling grid to provide the rasterization required by the API or the operation at
hand. E.g., when rendering triangles, pixels will only be lit when their corresponding
sample points fall within the triangle or exactly along certain edges of the triangle – and
repositioning the sampling grid will yield somewhat different results.

The unbiased sampling points (i.e., when this bias is (0.0,0.0)) are located at the upper-
left corner of each screen space pixel. This places the sampling points at the
intersections of the integer screen space coordinate grid.

Biasing by (0.5.,0.5) positions the pixel sampling points at the center of each screen
space pixel (halfway between the integer coordinate grid) – which is typically required to
meet OpenGL rasterization rules.

Format = U0.4

Range = 0.0 (ox0) or 0.5 (0x8)

 213

DWord Bit Description

 12:9 Destination Origin (Pixel Sample Point) Vertical Bias: This value is used to specify
the vertical position of the pixel sampling points (grid) used during rasterization. (See
above description of the horizontal bias).

Format = U0.4

Range = 0.0 (ox0) or 0.5 (0x8)

 8:0 Reserved : MBZ

7 31 Last Pixel Enable: If ENABLED, the last pixel of a diamond line will be lit. This state
will only affect the rasterization of Diamond lines (will not affect wide lines or anti-aliased
lines).

Programming Notes:

Last pixel is applied to all lines of a LINELIST, and only the last line of a LINESTRIP.

Format = Enable

30:29 Triangle Strip/List Provoking Vertex Select: Selects which vertex of a triangle (in a

triangle strip or list primitive) is considered the “provoking vertex”. Used for flat shading
of primitives.

Format = 0-based vertex index

0h = Vertex 0

1h = Vertex 1

2h = Vertex 2

3h = Reserved

28:27 Line Strip/List Provoking Vertex Select: Selects which vertex of a line (in a line strip

or list primitive) is considered the “provoking vertex”.

Format = 0-based vertex index

0h – Vertex 0

1h – Vertex 1

2h – Reserved

3h – Reserved

26:25 Triangle Fan Provoking Vertex Select: Selects which vertex of a triangle (in a

triangle fan primitive) is considered the “provoking vertex”.

Format = 0-based vertex index

0h = Vertex 0

1h = Vertex 1

2h = Vertex 2

3h = Reserved

 24:15 Reserved : MBZ

 14 Reserved: MBZ

214

DWord Bit Description

 13 Sprite Point Enable: This bit is passed into the Setup thread payload for use by the
Setup kernel as a hint to the setup kernel to overload texture coordinate setup to map
some/all texture coordinates to full range (though there is no hardware requirement to
do so). Software is free to use this bit for other purposes – it is simply inserted into SF
thread payloads.

Format: Enable

 12 Vertex Sub Pixel Precision Select: Selects the number of fractional bits maintained in
the vertex data

Format:

0 = 8 sub pixel precision bits maintained

1 = 4 sub pixel precision bits maintained

 11 Use Point Width State: Controls whether the point width passed on the vertex or from
state is used for rendering point primitives.

0 = Use Point Width on Vertex

1 = Use Pointwidth from State

 10:0 Point Width: This field specifies the size (width) of point primitives in pixels. This field
is overridden (though not overwritten) whenever point width information is passed in the
FVF.

Format = U8.3

Range = [0.125, 255.875] pixels

 215

7.4.2 SF_VIEWPORT

The viewport-specific state used by the SF unit (SF_VIEWPORT) is stored as an array
of up to 16 elements, each of which contains the DWords described below. The start
of each element is spaced 8 DWords apart. The location of first element of the array,
as specified by Setup Viewport State Offset, is aligned to a 32-byte boundary.

DWord Bit Description

0 31:0 Viewport Matrix Element m00

Format = IEEE_Float

1 31:0 Viewport Matrix Element m11

Format = IEEE_Float

2 31:0 Viewport Matrix Element m22

Format = IEEE_Float

3 31:0 Viewport Matrix Element m30

Format = IEEE_Float

4 31:0 Viewport Matrix Element m31

Format = IEEE_Float

5 31:0 Viewport Matrix Element m32

Format = IEEE_Float

6 31:16 Scissor Rectangle Y Min: Specifies Y Min coordinate of (inclusive) Scissor Rectangle
used for scissor test. Pixels with (Draw Rectangle-relative) Y coordinates less than Y Min
will be clipped out if Scissor Rectangle is enabled. NOTE: If Y Min is set to a value
greater than Y Max, all primitives will be discarded for this viewport.

Format = U16 in Pixels from Drawing Rectangle origin (upper left corner).

 Range = [0,8191]

 15:0 Scissor Rectangle X Min: Specifies X Min coordinate of (inclusive) Scissor Rectangle
used for scissor test. Pixels with (Draw Rectangle-relative) X coordinates less than X Min
will be clipped out if Scissor Rectangle is enabled. NOTE: If X Min is set to a value
greater than X Max, all primitives will be discarded for this viewport.

Format = U16 in Pixels from Drawing Rectangle origin (upper left corner).

 Range = [0,8191]

7 31:16 Scissor Rectangle Y Max: Specifies Y Max coordinate of (inclusive) Scissor Rectangle
used for scissor test. Pixels with (Draw Rectangle-relative) Y coordinates greater than Y
Max will be clipped out if Scissor Rectangle is enabled.

Format = U16 in Pixels from Drawing Rectangle origin (upper left corner).

Range = [0,8191]

 15:0 Scissor Rectangle X Max: Specifies X Max coordinate of (inclusive) Scissor Rectangle
used for scissor test. Pixels with (Draw Rectangle-relative) Y coordinates greater than X
Max will be clipped out if Scissor Rectangle is enabled.

Format = U16 in Pixels from Drawing Rectangle origin (upper left corner).

 Range = [0,8191]

216

7.5 The SF Thread -- Interpolation Coefficient
Calculation

The final step in object setup is to calculate the interpolation coefficients. This must
be done separately (though hopefully in parallel) for each vertex attribute, and is
performed by a thread running on an execution unit.

7.5.1 SF Setup Parameters Passed to SF Thread

This section describes some of the parameters computed by the SF unit and passed to
SF threads.

7.5.1.1 TRIANGLE Parameters

The SF unit reorders triangle vertices prior to setup computation. The “start vertex”
(V0) is defined as being the top-most (least positive Y position) vertex. If more than
one vertex shares this Y position, the left-most (least positive Z position) vertex is
selected. Once the start vertex is determined, V1 is the next vertex in the clockwise
direction, and V2 is the remaining vertex. (Note that degenerate triangles will have
been removed by this point, therefore there is no ambiguity in vertex reordering.)

Once the vertices are reordered into V0,V1,V2, the SF unit computes the Y2-Y0, Y1-
Y0, X2-X0, X1-X0, and Determinant values (described in the thread payload
below).

The SF unit will use the V0,V1,V2 ordering for the VUE data that follows the thread
payload (and possibly the CURBE portion of the payload).

7.5.1.2 RECTANGLE Parameters

With regard to SF thread payload, RECTANGLE objects are handled just like TRIANGLE
objects. The 3 vertices supplied for the object are subject to reordering and used in
SF unit setup computations. The same parameters are passed in the thread payload
as for TRIANGLE objects, and the 3 (possibly reordered) VUEs are included in the
payload.

7.5.1.3 POINT Parameters

Point width is applied to POINT objects, expanding them to screen-aligned squares.
The SF unit selects the following vertices for the normal setup computations: Upper-
left = V0, Lower-right = V1, Lower-left = V2. In this respect they appear as
RECTANGLES in the SF thread payload. However, only the single original object
vertex (the center) is passed as VUE data.

The Sprite Point Enable bit from SF_STATE is passed in the SF thread header to
assist in the support of API “sprite points,” where some/all texture coordinates are set
to full-range over the point square vs. all corners being assigned the constant value
provided by the object (center) vertex.

 217

7.5.1.4 LINE Parameters

The SF unit reorders line vertices prior to setup computation. The “start vertex” (V0)
is defined as being the top-most (least positive Y position) vertex. If the other vertex
shares this Y position, the left-most (least positive Z position) vertex is selected.
Once the start vertex is determined, V1 is the remaining vertex. (Note that
degenerate lines will have been removed by this point, therefore there is no ambiguity
in vertex reordering.)

Once the vertices are reordered into V0,V1, the SF unit computes the Y1-Y0, X1-X0,
and Determinant values (described in the thread payload below).

The SF unit will use the V0,V1 ordering for the VUE data that follows the thread
payload (and possibly the CURBE portion of the payload).

7.5.2 SF (Setup) Thread Payload

DWord Bit Description

R0.7 31 Snapshot Flag: If set, this thread has matched some debug criteria.

(See Debug for further description).

 30:0 Reserved

R0.6 31:24 Reserved

 23:0 Thread ID:This field uniquely identifies this thread within the threads spawned by this
FF unit, over some period of time.

(See Debuging for further description).

Format: Reserved for HW Implementation Use.

R0.5 31:10 Scratch Space Pointer:Specifies the 1K-byte aligned offset (from the General State
Base Address) to the scratch space allocated to this thread.

Format = GeneralStateOffset[31:10]

 9:8 Reserved

 7:0 FFTID: This ID is assigned by the fixed function unit and is a unique identifier for the
thread. It is used to free up resources used by the thread upon thread completion.

Format: U8

R0.4 31:5 Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding Table. It
is specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

 4:0 Reserved

R0.3 31:4 Reserved

 3:0 Per Thread Scratch Space: Specifies the amount of scratch space allowed to be used
by this thread.

Format = U4

Range = [0,11] indicating [1k bytes, 2M bytes] in powers of two

R0.2 31:0 Reserved

218

DWord Bit Description

R0.1 31:0 Reserved

R0.0 31:16 Handle ID: This ID is assigned by the fixed function unit and links the thread to a
specific entry within the fixed function unit.

 15:0 URB Return Handle: This is the URB handle where the thread’s results are to be placed
(aka the Primitive URB Entry, or PUE).

R1.7 31:0 Reserved

R1.6 31:0 Y2-Y0 (aka dY2) :

For TRIANGLE, RECT and POINT objects: This field contains the value (Y2 – Y0) , where
the indices are relative to the “start” vertex. This value is also known as “dY2” , where
the “2” is the relative order of the delta term around a triangle, not a vertex index.

For LINE objects: Reserved

Format: FLOAT32

R1.5 31:0 Y1-Y0 (aka dY0) : For all objects: This field contains the value (Y1 – Y0) , where the
indices are relative to the “start” vertex. This value is also known as “dY0” , where the
“0” is the relative order of the delta term around a triangle, not a vertex index.

Format: FLOAT32

R1.4 31:0 X2-X0 (aka dX2) :

For TRIANGLE, RECT and POINT objects: This field contains the value (X2 – X0) , where
the indices are relative to the “start” vertex. This value is also known as “dX2” , where
the “2” is the relative order of the delta term around a triangle, not a vertex index.

For LINE objects: Reserved

Format: FLOAT32

R1.3 31:0 X1-X0 (aka dX0) :

For all objects: This field contains the value (X1 – X0) , where the indices are relative to
the “start” vertex. This value is also known as “dX0” , where the “0” is the relative
order of the delta term around a triangle, not a vertex index.

Format: FLOAT32

R1.2 31:0 Determinant

For TRIANGLE, RECT and POINT objects: (X1-X0)(Y2-Y0) – (X2-X0)(Y1-Y0)

For LINE objects: (X1-X0)(X1-X0) + (Y1-Y0)(Y1-Y0)

Format: FLOAT32

R1.1 31:0 Provoking Vertex: This field contains the relative index (0-2) of the reordered vertex
considered the “provoking” vertex, given the PrimType and related SF_STATE state
variables (xxx Provoking Vertex Select). The SF thread can use this value when
performing setup computations for “constant-interpolated” vertex attributes.

0 = V0

1 = V1

2 = V2

R1.0 31:18 Reserved

 219

DWord Bit Description

 17 Front/Back Facing Polygon: Determines whether the polygon is front or back facing.
Used by the render cache to determine which stencil test state to use.

0 = Front Facing

1 = Back Facing

 16 Sprite Point Enable:This a copy of the Sprite Point Enable bit in SF_STATE. It is
passed in the payload strictly for use by the SF (Setup) thread – there is no other
hardware function involved. For example (and the expected usage model), a setup
kernel processing a point object could overload texture coordinate setup to map texture
to full range, thus mapping a texture to the sprite point.

Format: Enable

 15:0 Primitive Type: This is the unmodified PrimType of the primitive topology containing
the object, as received from the 3D pipeline. E.g., a point object within a POINTLIST will
have POINTLIST passed in this field even though the point is expanded to a square.

Format: See 3DPRIMITIVE description in Vertex Fetch for encoding

R2.7 31:0 Reserved

R2.6 31:0 Reserved

R2.5 31:0 Inverse W2:

For TRIANGLE, RECTANGLE and POINT objects: This is the position 1/W value
associated with V2. The SF thread can use this value (passed directly from the SF unit)
in order to avoid having to have the Vertex Header portions of the object vertex VUEs
from being included in the VUE portion of the SF thread payload.

For LINE objects: Reserved

Format: FLOAT32

R2.4 31:0 Z2:

For TRIANGLE, RECTANGLE and POINT objects: This is the position Z value associated
with V2. The SF unit computes this value given the position Z value from the VUE Vertex
Header and state information, etc.

For LINE objects: Reserved

Format: FLOAT32

R2.3 31:0 Inverse W1 :

For all objects: This is the position 1/W value associated with V1. See Inverse W2.

Format: FLOAT32

R2.2 31:0 Z1

For all objects: This is the position Z value associated with V1. See Z2.

Format: FLOAT32

R2.1 31:0 Inverse W0

For all objects: This is the position 1/W value associated with V0. See Inverse W2.

Format: FLOAT32

220

DWord Bit Description

R2.0 31:0 Z0

For all objects: This is the position Z value associated with V0. See Z2.

Format: FLOAT32

[varies] 31:0 Constant Data from CURBE URB Entry (optional)

[varies] 31:0 V0 Vertex Attribute (VUE) Data from URB (for all objects)

[varies] 31:0 V1 Vertex Attribute (VUE) Data from URB (for all objects except POINTs)

[varies] 31:0 V2 Vertex Attribute (VUE) Data from URB (for TRIANGLE and RECTANGLE objects only)

7.5.3 SF Thread Execution

The kernel that performs coefficient interpolation must be supplied by the jitter. As a
usage note, it generally needs to loop through the entire set of vertex attributes,
calculating a C0, Cx and Cy for each. It must take into account whether or not “wrap
shortest” mode is on, if flat (rather than gouraud) shading has been selected, whether
(separately for each attribute) interpolation should be done in a perspective correct
manner, if point sprites are enabled, and must operate appropriately for the primitive
type (triangle, line or point.)

7.5.4 SF Thread Output

The SF thread must send a URB_WRITE to the URB shared function in order to pass
results for use in subsequent PS threads spawned in the rasterization of the object.
This information will be read from the URB as part of WM thread dispatch and thus
included in the WM thread payload.

DWord Bit Description

M1.7 31:0 Cx[7]

Gradient in X for attribute 7.

Format = IEEE_Float

M1.6 31:0 Cx[6]

M1.5 31:0 Cx[5]

M1.4 31:0 Cx[4]

M1.3 31:0 Cx[3]

M1.2 31:0 Cx[2]

M1.1 31:0 Cx[1]

M1.0 31:0 Cx[0]

M2.7 31:0 Cy[7]

Gradient in Y for attribute 7.

Format = IEEE_Float

M2.6 31:0 Cy[6]

M2.5 31:0 Cy[5]

 221

DWord Bit Description

M2.4 31:0 Cy[4]

M2.3 31:0 Cy[3]

M2.2 31:0 Cy[2]

M2.1 31:0 Cy[1]

M2.0 31:0 Cy[0]

M3.7 31:0 Co[7]

Value of attribute 7 at the start vertex (V0)

Format = IEEE_Float

M3.6 31:0 Co[6]

M3.5 31:0 Co[5]

M3.4 31:0 Co[4]

M3.3 31:0 Co[3]

M3.2 31:0 Co[2]

M3.1 31:0 Co[1]

M3.0 31:0 Co[0]

M4… Additional attributes

Additional attributes beyond the first 8 are sent in subsequent message registers
following the same format as the first 8.

The message descriptor of this URB_WRITE message should set Swizzle Control to
URB_TRANSPOSE in order to re-arrange the interpolation coefficients by attribute
instead of by coefficient type (C0, Cx and Cy) as shown above. See URB chapter. This
functionality is provided as a performance enhancement; the coefficient interpolation
code could send the coefficients in the desired format, but having it re-arrange the
coefficients is not as efficient as relying on this hardware mechanism.

Assuming the interpolation coefficient generation thread sent the preceding message
with SF to Windower transpose swizzle, the resulting URB contents would look like
this:

Cx1Cy1nullCo1 Cx0Cy0nullCo0Cx2Cy2nullCo2Cx3Cy3nullCo3

Cx4Cy4nullCo4Cx5Cy5nullCo5Cx6Cy6nullCo6Cx7Cy7nullCo7

This is the most efficient arrangement for the windower interpolation code (“jitted”
code placed before the pixel shader).

Note: In order for the WM unit to read back Z plane equation coefficients (as it interpolates
Z), the Setup thread must have those coefficients stored in the low-order 4 DWs of a
URB row (corresponding to an even-numbered attribute in the diagram above).

222

7.6 Other SF Functions

7.6.1 Statistics Gathering

The SF stage itself does not have any associated pipeline statistics; however, it counts
the number of objects being output by the clipper on the clipper’s behalf, since it less
feasible to have the CLIP unit figure out how many objects have been output by a clip
thread. It is easy for the SF unit to count the number of objects it receives from the
CLIP stage since it is decomposing the output primitive topologies into objects
anyway.

If the Statistics Enable bit is set in SF_STATE, then SF will increment the
CL_PRIMITIVES_COUNT Register (see Memory Interface Registers in Volume Ia, GPU)
once for each object in each primitive topology it receives from the CLIP stage. This
bit should always be set if clipping is enabled and pipeline statistics are desired.

Software should always clear the Statistics Enable bit in SF_STATE if the clipper is
disabled since objects SF receives are not considered “primitives output by the
clipper” unless the clipper is enabled. Note that the clipper can be disabled either
using bypass mode via a PIPELINE_STATE_POINTERS command with Clip Enable
clear or by setting Clip Mode in CLIP_STATE to CLIPMODE_ACCEPT_ALL.

§§

 223

224

8 Windower (WM) Stage

8.1 Overview

As mentioned in the SF Unit chapter, the SF stage prepares an object for scan
conversion by the Window/Masker (WM) unit. Refer to the SF Unit chapter for details
on the screen-space geometry of objects to be rendered. The WM unit uses the
parameters provided by the SF unit in the object-specific rasterization algorithms.

The WM stage of the GEN4 3D pipeline performs the following operations (at a high
level)

• Pre-scan-conversion modification of some primitive attributes, including
⎯ Application of Depth Offset to the position Z attribute

• Scan-conversion of the various primitive types, including
⎯ 2D clipping to the scissor/draw rectangle intersection

• Spawning of Pixel Shader (PS) threads to process the pixels resulting from scan-
conversion

The spawned Pixel Shader (PS) threads are responsible for the following (high-level)
operations

• Interpolating vertex attributes (other than X,Y,Z) to the pixel location

• Performing any “Pixel Shader” operations dictated by the API PS program
⎯ Using the Sampler shared function to sample data from “texture” surfaces
⎯ Using the DataPort to perform general memory I/O

• Submitting the shaded pixel results to the DataPort for any subsequent “blending”
(aka Output Merger) operation and write to the RenderCache.

The WM unit keeps a scoreboard of pixels being processed in outstanding PS threads
in order to guarantee in-order rasterization results. This allows the WM unit to
overlap processing of several objects.

 225

8.1.1 Inputs from SF to WM

The outputs from the SF stage to the WM stage are mostly comprised of
implementation-specific information required for the rasterization of objects. The
types of information is summarized below, but as the interface is not exposed to
software a detailed discussion is not relevant to this specification.

• PrimType of the object

• VPIndex, RTAIndex associated with the object

• Handle of the Primitive URB Entry (PUE) that was written by the SF (Setup)
thread. This handle will be passed to all WM (PS) threads spawned from the WM’s
rasterization process.

• Information regarding the X,Y extent of the object (e.g., bounding box, etc.)

• Edge or line interpolation information (e.g., edge equation coefficients, etc.)

• Information on where the WM is to start rasterization of the object

• Object orientation (front/back-facing)

• Last Pixel indication (for line drawing)

8.2 Windower Pipelined State

8.2.1 WM_STATE

DWord Bit Description

0 31:6 Kernel Start Pointer[0]: Specifies the 64-byte aligned address offset of the first
instruction in the kernel[0]. This pointer is relative to the General State Base
Address.

[DevBW-A] Errata BWT007: Instructions pointed at by offsets from General State
Base must be contained within 32-bit physical address space (that is, must map to
memory pages under 4G.)

Format = GeneralStateOffset[31:6]

 5:4 Reserved : MBZ

 3:1 GRF Register Count[0]: Defines the number of GRF Register Blocks used by the
kernel[0]. A register block contains 16 registers. A kernel using a register count that is
not a multiple of 16 must round up to the next multiple of 16.

Format = U3 register block count - 1

Range = [0,7] corresponding to [1,8] 16-register blocks

 0 Reserved : MBZ

226

DWord Bit Description

1 31 Single Program Flow (SPF) : Specifies whether the kernel program has a single
program flow (SIMDnxm with m = 1) or multiple program flows (SIMDnxm with m > 1).
See CR0 description in ISA Execution Environment.

0 = Multiple Program Flows

1 = Single Program Flow

 30:26 Reserved : MBZ

 25:18 Binding Table Entry Count: Specifies how many binding table entries the kernel uses.
Used only for prefetching of the binding table entries and associated surface state.

Note: for kernels using a large number of binding table entries, it may be wise to set
this field to zero to avoid prefetching too many entries and thrashing the state cache.

Format = U8

Range = [0,255]

 17 Thread Priority: Specifies the priority of the thread for dispatch

0 = Normal Priority

1 = High Priority

Programming Notes:

• this field must be zero.

 16 Floating Point Mode: Specifies the floating point mode used by the dispatched thread.

0 = Use IEEE-754 Rules

1 = Use alternate rules

 15:14 Reserved : MBZ

 13:8 Depth Coefficient URB Read Offset: Specifies the offset (in 256-bit units) at which the
depth coefficient URB data is to be read from the URB and used by the FF to interpolate
depth.

The WM unit interprets the low order 128 bits of this URB row as containing the plane
coefficients of Z depth. This places a restriction on the Setup thread to write the URB in
such a way as to place these coefficients in the low order DWords of a URB row. See
Strip and Fan Unit and URB chapters for details on Setup threads and the TRANSPOSED
URB write operation.

Format = U6

Range = [0,63]

 7:5 Reserved : MBZ

 4 Illegal Opcode Exception Enable. This bit gets loaded into EU CR0.1[12] (note the bit
difference). See Exceptions and ISA Execution Environment.

Format: Enable

 3 Reserved : MBZ

 2 MaskStack Exception Enable. This bit gets loaded into EU CR0.1[11]. See Exceptions
and ISA Execution Environment.

Format: Enable

 227

DWord Bit Description

 1 Software Exception Enable. This bit gets loaded into EU CR0.1[13] (note the bit #
difference). See Exceptions and ISA Execution Environment.

Format: Enable

 0 Reserved : MBZ

2 31:10 Scratch Space Base Pointer: Specifies the 1k-byte aligned address offset to scratch
space for use by the kernel. This pointer is relative to the General State Base
Address.

Programming Note:

• [DevBW-A] A0 Erratum BWT005: If Per Thread Scratch Space is
programmed to 256KB, this pointer must be 8M-aligned.

Format = GeneralStateOffset[31:10]

 9:4 Reserved : MBZ

 3:0 Per Thread Scratch Space: Specifies the amount of scratch space allowed to be used
by each thread. The driver must allocate enough contiguous scratch space, pointed to
by the Scratch Space Pointer, to ensure that the Maximum Number of Threads each get
Per Thread Scratch Space size without exceeding the driver-allocated scratch space.

Range = [0,11] indicating [1k bytes, 2M bytes] in powers of two

Programming Note:

• [DevBW-A] A0 Erratum BWT005: The range [0,11] for this register
indicates [1KB, 12KB] in 1K byte increments. If MMIO register 21D0h bit 3 is
set, then value 11 is an exception and indicates a 256KB space instead of
12KB. Note that Scratch Space Base Pointer must be 8MB-aligned in order to
set the 256KB scratch space.

Format = U4

3 31 Reserved : MBZ

 30:25 Constant URB Entry Read Length: Specifies the amount of URB data read and passed
in the thread payload for the Constant URB entry, in 256-bit register increments.

Format = U6

Range = [0,63]

 24 Reserved : MBZ

 23:18 Constant URB Entry Read Offset: Specifies the offset (in 256-bit units) at which
Constant URB data is to be read from the URB before being included in the thread
payload.

Format = U6

Range = [0,63]

228

DWord Bit Description

 17:11 Setup URB Entry Read Length: Specifies the amount of URB data read and passed in
the thread payload for each Setup URB entry, in 256-bit register increments.

Programming Notes:

• It is UNDEFINED to set this field to 0 indicating no Setup URB data to be read
and passed to the PS thread.

Format = U7

Range = [1,63]

 10 Reserved : MBZ

 9:4 Setup URB Entry Read Offset: Specifies the offset (in 256-bit units) at which Setup
URB data is to be read from the URB before being included in the thread payload. This
offset applies to all Setup URB entries passed to the thread.

Format = U6

Range = [0,63]

 3:0 Dispatch GRF Start Register for URB Data: Specifies the starting GRF register
number for the URB portion (Constant + Setup) of the thread payload.

Format = U4

Range = [0,15] [DevBW,DevCL]: If 32 pixel dispatch is enabled, the maximum range
is [0,7]

4 31:5 Sampler State Pointer: Specifies the 32-byte aligned address offset of the sampler
state table. This pointer is relative to the General State Base Address.

[DevBW-A] Errata BWT007: Sampler state pointed at by offsets from General State
Base must be contained within 32-bit physical address space (that is, must map to
memory pages under 4G.)

Format = GeneralStateOffset[31:5]

 4:2 Sampler Count: Specifies how many samplers (in multiples of 4) the vertex shader 0
kernel uses. Used only for prefetching the associated sampler state entries.

Format = U3

Range = [0,4]

0 = no samplers used

1 = between 1 and 4 samplers used

2: between 5 and 8 samplers used

3: between 9 and 12 samplers used

4: between 13 and 16 samplers used

 1 Reserved : MBZ

 229

DWord Bit Description

 0 Statistics Enable: If ENABLED, the Windower will engage in statistics gathering. If
DISABLED, statistics information associated with this FF stage will be left unchanged.
See Statistics Gathering.

Programming Notes:

• If this field is enabled, Statistics Enable in CC_STATE should also be set, and
when this field is disabled, Statistics Enable in CC_STATE should also be
clear. Both functions contribute to the PS_DEPTH_COUNT, so having either one
set without the other set will result in an UNPREDICTABLE value for
PS_DEPTH_COUNT.

• [DevBW-A] A0 Erratum BWT004: If no pixel shader is desired (a “null” pixel
shader), this bit must be cleared so that PS_INVOCATIONS will not be
incremented for the “dummy” PS dispatches.

Format = Enabled

5 31:25 Maximum Number of Threads: Specifies the maximum number of simultaneous
threads allowed to be active. Used to avoid using up the scratch space, or to avoid
potential deadlock.

Format = U7 representing (thread count – 1)

Range = [0, n-1] where n = (# EUs) * (# threads/EU). See Graphics Processing Engine
for listing of #EUs and #threads in each device.

 24 Reserved : MBZ

 23 Legacy Diamond Line Rasterization: This bit, if ENABLED, indicates that the
Windower will rasterize zero width lines using the legacy rasterization rules. If
DISABLED, the Windower will rasterize zero width lines using the new rasterization rules
(see Strips Fans chapter).

Format = Enable

 22 Pixel Shader Kill Pixel: This bit, if ENABLED, indicates that the PS kernel has the ability
to kill (discard) pixels, e.g., as required by the presence of a “killpix” or “discard”
instruction in the API PS program, or JITTER-introduced code to kill pixels due to
ClipDistance clipping. If DISABLED, the PS kernel may not, under any circumstances, kill
pixels. This bit must also be ENABLED if a sampler has chroma key enabled with kill
pixel mode.

Format = Enable

 21 Pixel Shader Computed Depth: This bit, if ENABLED, indicates that the PS kernel
computes a depth value. It is used to disable the depth/stencil test in the Early Depth
Test function.

Format = Enable

Programming Notes:

• If a NULL Depth Buffer is selected, the Pixel Shader Computed Depth field
must be set to disabled.

• [DevBW-A] Errata: If both Depth Test Enable and Depth Write Enable
are disabled, this field must be disabled.

 20 Pixel Shader Uses Source Depth: This bit, if ENABLED, indicates that the PS kernel
requires the source depth value (vPos.z) to be passed in the payload.

Format = Enable

230

DWord Bit Description

 19 Thread Dispatch Enable: This bit, if set, indicates that it is possible for a PS thread to
modify a render target, i.e., at least one render target is enabled (is not of type
SURFTYPE_NULL and has at least one channel enabled for writes) and the PS kernel
contains a code path that may issue a write to that/those enabled RTs.

Programming Notes:

• This bit is used for performance optimizations and does not directly control
writing to render targets. If this bit is DISABLED, no pixel shader threads will
be dispatched..

• For correct behavior, this bit must be set consistently with the behavior of the
PS kernel, i.e. if this bit is DISABLED the PS kernel must not write color or
depth to any render targets.

Format = Enable

 18 Early Depth Test Enable: This bit enables the Early Depth Test (aka Intermediate Z, or
IZ) function.

Note: This bit should always be ENABLED – at least there are no known conditions
underwhich disabling the Early Depth Test is required.

Format = Enable

 17:16 Line End Cap Antialiasing Region Width: This field specifies the distances over which
the coverage of anti-aliased line end caps are computed.

Format =

0 = 0.5 pixels

1 = 1.0 pixels

2 = 2.0 pixels

3 = 4.0 pixels

Note: This state is duplicated in the SF_STATE state descriptor

 15:14 Line Antialiasing Region Width: This field specifies the distance over which the anti-
aliased line coverage is computed.

Format =

0 = 0.5 pixels

1 = 1.0 pixels

2 = 2.0 pixels

3 = 4.0 pixels

 13 Polygon Stipple Enable: Enables the Polygon Stipple function.

Format = Enable

 12 Global Depth Offset Enable: Enables computation and application of Global Depth
Offset.

Format = Enable

 11 Line Stipple Enable: Enables the Line Stipple function.

Format = Enable

 231

DWord Bit Description

 10 Legacy Global Depth Bias Enable: Enables the Windower to use the Global Depth
Offset Constant state unmodified. If this bit is not set, the Windower will scale the
Global Depth Offset Constant as described in section 1.4.2 of this document.

Format = Enable

 9 Reserved : MBZ

 8 Reserved : MBZ

 7 Reserved : MBZ

 6:5 Reserved : MBZ

 4 Reserved : MBZ

 3 Reserved : MBZ

 2 32 Pixel Dispatch Enable: Enables the Windower to dispatch 8 subspans in one
payload

0 = 32 pixel dispatch disabled

1 = 32 pixel dispatch enabled

Note: See Table 8-1 for valid pixel dispatch combinations.

 1 16 Pixel Dispatch Enable: Enables the Windower to dispatch 4 subspans in one
payload (typical operation)

0 = 16 pixel dispatch disabled

1 = 16 pixel dispatch enabled

Note: See Table 8-1 for valid pixel dispatch combinations.

 0 8 Pixel Dispatch Enable: Enables the Windower to dispatch 2 subspans in one payload

0 = 8 pixel dispatch disabled

1 = 8 pixel dispatch enabled

Note: See Table 8-1 for valid pixel dispatch combinations.

6 31:0 Global Depth Offset Constant: Specifies the constant term in the GlobalDepthOffset
function.

Format = IEEE_FP

7 31:0 Global Depth Offset Scale: This field specifies the GlobalDepthOffsetScale term used in
the Global Depth Offset Function

 Format = IEEE_FP

232

8.3 Rasterization

The WM unit uses the setup computations performed by the SF unit to rasterize
objects into the corresponding set of pixels. Most of the controls regarding the
screen-space geometry of rendered objects are programmed via the SF unit.

The rasterization process generates pixels in 2x2 groups of pixels called subspans (see
Figure 8-1) which, after being subjected to various inclusion/discard tests, are
grouped and passed to spawned Pixel Shader (PS) threads for subsequent processing.
Once these PS threads are spawned, the WM unit provides only bookkeeping functions
on the pixels. Note that the WM unit can proceed on to rasterize subsequent objects
while PS threads from previous objects are still executing.

Figure 8-1. Pixels with a SubSpan

Pixel
0

Pixel
1

Pixel
2

Pixel
3

8.3.1 Drawing Rectangle Clipping

The Drawing Rectangle defines the maximum extent of pixels which can be rendered.
Portions of objects falling outside the Drawing Rectangle will be clipped (pixels
discarded). Implementations will typically discard objects falling completely outside of
the Drawing Rectangle as early in the pipeline as possible. There is no control to turn
off Drawing Rectangle clipping – it is unconditional.

For the purposes of clipping, the Drawing Rectangle must itself be clipped to the
destination buffer extents. (The Drawing Rectangle Origin, used to offset relative X,Y
coordinates earlier in the pipeline, is permitted to lie offscreen). The Clipped
Drawing Rectangle X,Y Min,Max state variables (programmed via
3DSTATE_DRAWING_RECTANGLE – See SF Unit) defines the intersection of the
Drawing Rectangle and the Color Buffer. It is specified with non-negative integer pixel
coordinates relative to the Destination Buffer upper-left origin.

Pixels with coordinates outside of the Drawing Rectangle cannot be rendered (i.e., the
rectangle is inclusive). For example, to render to a full-screen 1280x1024 buffer, the
following values would be required: Xmin=0, Ymin=0, Xmax=1279 and Ymax=1023.

For “full screen” rendering, the Drawing Rectangle coincides with the screen-sized
buffer. For “front-buffer windowed” rendering it coincides with the destination
“window”.

 233

8.3.2 Line Rasterization

See SF Unit chapter for details on the screen-space geometry of the various line
types.

8.3.2.1 Coverage Values for Anti-Aliased Lines

The WM unit is provided with both the Line Anti-Aliasing Region Width and Line
End Cap Anti-aliasing Region Width state variables (in WM_STATE) in order to
compute the coverage values for anti-aliased lines.

8.3.2.2 Line Stipple

Line stipple, controlled via the Line Stipple Enable state variable in WM_STATE,
discards certain pixels that are produced by non-AA line rasterization.

The line stipple rule is specified via the following state variables programmed via
3DSTATE_LINE_STIPPLE: the 16-bit Line Stipple Pattern (p), Line Stipple Repeat
Count I, and Line Stipple Inverse Repeat Count. Sofware must compute Line
Stipple Inverse Repeat Count as 1.0f / Line Stipple Repeat Count and then
converted from float to the required fixed point encoding (see
3STATE_LINE_STIPPLE).

The WM unit maintains an internal Line Stipple Counter state variable (s). The initial
value of s is zero; s is incremented after production of each pixel of a line segment
(pixels are produced in order, beginning at the starting point and working towards the
ending point). s is reset to 0 whenever a new primitive is processed (unless the
primitive type is LINESTRIP_CONT or LINESTRIP_CONT_BF), and before every line
segment in a group of independent segments (LINELIST primitive).

During the rasterization of lines, the WM unit computes:

A pixel is rendered if the bth bit of p is 1, otherwise it is discarded. The bits of p are
numbered with 0 being the least significant and 15 being the most significant.

234

8.3.2.3 3DSTATE_LINE_STIPPLE

3DSTATE_LINE_STIPPLE
Project: All Length Bias: 2
The 3DSTATE_LINE_STIPPLE command is used to specify state variables used in the Line Stipple function.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 08h 3DSTATE_LINE_STIPPLE Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 1h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31 Modify Enable (Current Repeat Counter, Current Stipple Index)

Project: All

Format: Enable FormatDesc

Modify enable for Current Repeat Counter and Current Stipple Index fields.

Programming Notes

Software should never set this field to enabled. It is provided only for HW-generated
commands as part of context save/restore.

30 Reserved Project: All Format: MBZ

29:21 Current Repeat Counter

Project: All

Format: U9 FormatDesc

This field sets the HW-internal repeat counter state.

Note: Software should never attempt to set this value – this state is only provided for
HW-generated commands as part of context save/restore.

20 Reserved Project: All Format: MBZ

 235

3DSTATE_LINE_STIPPLE
19:16 Current Stipple Index

Project: All

Format: U4 FormatDesc

This field sets the HW-internal stipple pattern index.

Note: Software should never attempt to set this value – this state is only provided for
HW-generated commands as part of context save/restore.

15:0 Line Stipple Pattern

Project: All

Format: 16 bit mask. Bit 15 = most significant
bit, Bit 0 = least significant bit

FormatDesc

Specifies a pattern used to mask out bit specific pixels while rendering lines.

2 31:16 Line Stipple Inverse Repeat Count

Project: All

Format: U1.13 FormatDesc

Range [0.00390625, 1.0]

Specifies the inverse (truncated) of the repeat count for the line stipple function.

15:9 Reserved Project: All Format: MBZ

8:0 Line Stipple Repeat Count

Project: All

Format: U9 FormatDesc

Range [1, 256]

Specifies the repeat count for the line stipple function.

8.3.3 Polygon (Triangle and Rectangle) Rasterization

The rasterization of LINE, TRIANGLE, and RECTANGLE objects into pixels requires a
“pixel sampling grid” to be defined. This grid is defined as an axis-aligned array of
pixel sample points spaced exactly 1 pixel unit apart. If a sample point falls within
one of these objects, the pixel associated with the sample point is considered “inside”
the object, and information for that pixel is generated and passed down the pipeline.

For TRIANGLE and RECTANGLE objects, if a sample point intersects an edge of the
object, the associated pixel is considered “inside” the object if the intersecting edge is
a “left” or “top” edge (or, more exactly, the intersected edge is not a “right” or
“bottom” edge). Note that “top” and “bottom” edges are by definition exactly
horizontal. The following diagram identifies the edge types for representative
TRIANGLE and RECTANGLE objects (solid edges are inclusive, dashed edges are
exclusive).

236

Figure 8-2. TRIANGLE and RECTANGLE Edge Types

Top Edge

Left Edge Right Edge

Bottom Edge

Right Edge
Left Edge

Left Edge

Left Edge

Right Edge Left Edge
Right Edge

Right Edge

Top Edge

Left Edge Right Edge

Bottom Edge

8.3.3.1 Polygon Stipple

The Polygon Stipple function, controlled via the Polygon Stipple Enable state
variable in WM_STATE, allows only selected pixels of a repeated 32x32 pixel pattern
to be rendered. Polygon stipple is applied only to the following primitive types:

3DPRIM_POLYGON

3DPRIM_TRIFAN

3DPRIM_TRILIST

3DPRIM_TRISTRIP

3DPRIM_TRISTRIP_REVERSE

Note that the 3DPRIM_TRIFAN_NOSTIPPLE object is never subject to polygon stipple.

The stipple pattern is defined as a 32x32 bit pixel mask via the
3DSTATE_POLY_STIPPLE_PATTERN command. This is a non-pipelined command
which incurs an implicit pipeline flush when executed.

The origin of the pattern is specified via Polygon Stipple X,Y Offset state variables
programmed via the 3DSTATE_POLY_STIPPLE_OFFSET command. The offsets are
pixel offsets from the Color Buffer origin to the upper left corner of the stipple pattern.
This is a non-pipelined command which incurs an implicit pipeline flush when
executed.

 237

8.3.3.2 3DSTATE_POLY_STIPPLE_OFFSET

3DSTATE_POLY_STIPPLE_OFFSET
Project: All Length Bias: 2
The 3DSTATE_POLY_STIPPLE_OFFSET command is used to specify the origin of the repeated screen-space Polygon
Stipple Pattern as an X,Y offset from the Color Buffer origin.
DWord Bit Description

0 31:29 Command Type

Default
Value:

3h GFXPIPE Format: OpCode

28:27 Command SubType

Default
Value:

3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default
Value:

1h 3DSTATE_NONPIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default
Value:

06h 3DSTATE_POLY_STIPPLE_OFFSET Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:13 Reserved Project: All Format: MBZ

12:8 Polygon Stipple X Offset

Project: All

Format: U5 FormatDesc

Range [0,31]

Specifies a 5 bit x address offset in the poly stipple pattern

7:5 Reserved Project: All Format: MBZ

4:0 Polygon Stipple Y Offset

Project: All

Format: U5 FormatDesc

Range [0,31]

Specifies a 5 bit y address offset in the poly stipple pattern

238

8.3.3.3 3DSTATE_POLY_STIPPLE_PATTERN

3DSTATE_POLY_STIPPLE_PATTERN
Project: All Length Bias: 2

The 3DSTATE_POLY_STIPPLE_PATTERN command is used to specify the 32x32 Polygon Stipple Pattern used in the
Polygon Stipple function of the WM unit.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 07h 3DSTATE_POLY_STIPPLE_PATTERN Format
:

OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 1Fh Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:0 Polygon Stipple Pattern Row 1 (top most)

Project: All

Format: 32 bit mask. Bit 31 = upper left
corner, Bit 0 = upper right corner of
first row.

FormatDesc

Specifies a pattern used by Polygon Stipple to mask out specific pixels of every 32x32
area rendered.

2..32 31:0 Polygon Stipple Pattern Rows 2-32 (bottom most)

Project: All

Format: 32 bit mask. Bit 31 = upper left
corner, Bit 0 = upper right corner of
first row.

FormatDesc

Specifies a pattern used by Polygon Stipple to mask out specific pixels of every 32x32
area rendered.

 239

8.3.3.4 3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP

3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP
Project: All Length Bias: 2

The 3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP command is used to specify the clamp used in the depth bias
function of the WM unit.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 09h 3DSTATE_GLOBAL_DEPTH_OFFSET_
CLAMP

Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:0 Global Depth Offset Clamp

Project: All

Format: IEEE_FP FormatDesc

This field specifies the GlobalDepthOffsetClamp term used in the Global Depth Offset
Function

240

8.4 Early Depth/Stencil Processing

The Windower/IZ unit provides the Early Depth Test function, a major performance-
optimization feature where an attempt is made to remove pixels that fail the Depth
and Stencil Tests prior to pixel shading. This requires the WM unit to perform the
interpolation of pixel (“source”) depth values, read the current (“destination”) depth
values from the cached depth buffer, and perform the Depth and Stencil Tests. As the
WM unit has per-pixel source and destination Z values, these values are passed in the
PS thread payload, if required.

8.4.1 Depth Coefficient Read-Back

The WM unit must read back the depth coefficients from the URB entry containing the
output of the Setup kernel. The value to program into the Depth Coefficient URB
Read Offset state variable (in WM_STATE) should be computed as follows:

Depth Coefficient URB Read Offset = element_entry * 2 + 1

where element_entry is the location of the position element in the vertex data
(ignoring the vertex header). For most applications, the position element will be in
element 0.

8.4.2 Depth Offset

There are occasions where the Z position of some objects need to be slightly offset in
order to reduce artifacts due to coplanar or near-coplanar primitives. A typical
example is drawing the edges of triangles as wireframes – the lines need to be drawn
slightly closer to the viewer to ensure they will not be occluded by the underlying
polygon. Another example is drawing objects on a wall – without a bias on the z
positions, they might be fully or partially occluded by the wall.

The device supports global depth offset, applied only to triangles, that bases the offset
on the object’s z slope. Note that there is no clamping applied at this stage after the
Z position is offset – clamping to [0,1] can be performed later after the Z position is
interpolated to the pixel. This is preferable to clamping prior to interpolation, as the
clamping would change the Z slope of the entire object.

The Global Depth Offset function is controlled by the Global Depth Offset Enable
state variable in WM_STATE. Global Depth Offset is only applied to 3DOBJ_TRIANGLE
objects.

When Global Depth Offset Enable is ENABLED, the pipeline will compute:
MaxDepthSlope = max(abs(dZ/dX),abs(dz/dy)) // approximation of max depth slope
for polygon
When UNORM Depth Buffer is at Output Merger (or no Depth Buffer):

Bias = GlobalDepthOffsetConstant * r +
GlobalDepthOffsetScale * MaxDepthSlope

 241

Where r is the minimum representable value > 0 in the depth buffer format,
converted to float32. (note: If state bit Legacy Global Depth Bias Enable is set,
the r term will be forced to 1.0)

When Floating Point Depth Buffer at Output Merger:
Bias = GlobalDepthOffsetConstant * 2^(exponent(max z in primitive)

- r) + GlobalDepthOffsetScale * MaxDepthSlope

Where r is the # of mantissa bits in the floating point representation (excluding the
hidden bit), e.g. 23 for float32. (note: If state bit Legacy Global Depth Bias Enable is
set, no scaling is applied to the GobalDepthOffsetConstant).

Adding Bias to z:

 if (GlobalDepthOffsetClamp > 0)
Bias = min(DepthBiasClamp, Bias)

else if(GlobalDepthOffsetClamp < 0)
Bias = max(DepthBiasClamp, Bias)

// else if GlobalDepthOffsetClamp == 0, no clamping occurs
z = z + Bias

Biasing is constant for a given primitive. The biasing formulas are performed with
float32 arithmetic. Global Depth Bias is not applied to any point or line primitives.

8.4.3 Early Depth Test / Stencil Test/Write

When Early Depth Test Enable is ENABLED, the WM unit will attempt to discard
depth-occluded pixels during scan conversion (before processing them in the Pixel
Shader). Pixels are only discarded when the WM unit can ensure that they would
have no impact to the ColorBuffer or DepthBuffer. This function is therefore only a
performance feature.

If some pixels within a subspan are discarded, only the pixel mask is affected
indicating that the discarded pixels are not active. If all pixels within a subspan are
discarded, that subspan will not even be dispatched.

8.4.3.1 Software-Provided PS Kernel Info

In order for the WM unit to properly perform Early Depth Test and supply the proper
information in the PS thread payload (and even determine if a PS thread needs to be
dispatched), it requires information regarding the PS kernel operation. This
information is provided by a number of state bits in WM_STATE, as summarized in the
following table.

242

State Bit Description

Pixel Shader Kill Pixel This must be set when there is a chance that valid pixels passed to a PS thread may
be discarded. This includes the discard of pixels by the PS thread resulting from a
“killpixel” or “alphatest” function or as dictated by the results of the sampling of a
“chroma-keyed” texture. The WM unit needs this information to prevent early
depth/stencil writes for pixels which might be killed by the PS thread, etc.

See WM_STATE/3DSTATE_WM for more information.

Pixel Shader
Computed Depth

This must be set when the PS thread computes the “source” depth value (i.e., from
the API POV, writes to the “oDepth” output). In this case the WM unit can’t make
any decisions based on the WM-interpolated depth value.

See WM_STATE/3DSTATE_WM for more information.

Pixel Shader Uses
Source Depth

Must be set if the PS thread requires the WM-interpolated source depth value. This
will force the source depth to be passed in the thread payload where otherwise the
WM unit would not have seen it as required.

See WM_STATE/3DSTATE_WM for more information.

8.4.3.2 Early Depth Test Cases

There are cases, however, where the early depth test cannot be completed without
information that will be generated by the pixel shader thread. The cases of depth test
are divided as follows:

• Computed depth (C) is active whenever depth test and depth write (if enabled)
needs to be performed post pixel shader. Most commonly, this includes cases
where the pixel shader program writes to oDepth, emitting a “source depth” value
which overrides the interpolated depth value. For these cases, the depth test
cannot be done early, as the source depth is not available. Stencil test could be
done early, but because the depth test cannot be done, the stencil write cannot be
completed. Therefore, there is no advantage to doing the stencil test early. This
includes cases where the pixel shader can kill pixels, including via sampler chroma
key, as well as cases where the alpha test function is enabled, which kills pixels
based on a programmable alpha test. In this case, even if the depth test fails, the
pixel cannot be killed if a stencil write is indicated. Whether or not the stencil
write happens depends on whether or not the pixel is killed later.

• Non-promoted depth (N) is active whenever the depth test can be done early
but it cannot determine whether or not to write source depth to the depth buffer,
therefore the depth write must be performed post pixel shader. This includes
cases where the pixel shader can kill pixels, including via sampler chroma key, as
well as cases where the alpha test function is enabled, which kills pixels based on
a programmable alpha test. In this case, even if the depth test fails, the pixel
cannot be killed if a stencil write is indicated. Whether or not the stencil write
happens depends on whether or not the pixel is killed later. In these cases if
stencil test fails and stencil writes are off, the pixels can also be killed early. If
stencil writes are enabled, the pixels must be treated as Computed depth
(described above).

• Promoted depth (P) is active whenever both the depth test and the conditional
depth write can be performed before the pixel shader is executed. In this case,
the entire depth/stencil operation is completed pre pixel shader. This includes all
cases where depth test is disabled and stencil test is either disabled or no write is
indicated.

 243

The following logic equations define the test signals used by the following table. Also
defined are the read enables that control reading of the depth/stencil buffer. Note
that the depth_test_en, stencil_test_en and depth_write_en signals are qualified
with a non-null depth buffer surface type (as specified in 3DSTATE_DEPTH_BUFFER).

depth_test_en = state_depth_test_en && !depth_surface_type_null

depth_read_en = depth_test_en

stencil_test_en = state_stencil_test_en && !depth_surface_type_null

stencil_read_en = state_stencil_test_en

depth_buffer_read_en = depth_read_en || stencil_read_en

depth_buffer_write_enable = state_depth_buffer_write_enable &&
!depth_surface_type_null

stencil_buffer_write_en = state_stencil_buffer_write_enable &&
stencil_test_en

The following table indicates how the hardware determines which of the three above
modes is active based on the above inputs. Note that cases where the stencil buffer
write enable is active without the stencil test enable are not possible based on the
equation above.

Clarify below text:

If statistics are enabled, windower (and Jitter) will need to detect when alpha test or
killpix is on and the IZ Table output is Promoted (early depth test enabled or
disabled). If these conditions are met, windower must force a write only depth
allocation. In addition the windower / Jitter will force the result to be NONPROMOTED
and force Source Depth to Render Target signal to be set. If Pixel Shader
Computed Depth is not set, windower / Jitter must force the Source Depth
Present To EU signal to be set and include the source depth data in the dispatch
payload.

244

Behavior for Early Depth Test enabled:

Stencil
Test

Enable

Stencil
Buffer
Write

Enable

Depth
Test

Enable

Depth
Buffer
Write
Enable

Pixel
Shader

Compute
d Depth

Pixel
Shader

Kill
Pixel OR

Alpha
Test

Enable

Early
Depth
Mode

Source
Depth

Present
(to EU)

Source
Depth

to
Render
Target

Destinatio
n Depth
Present

(to EU and
RT)

Destinat
ion

Stencil
Present
(to EU

and RT)

0 0 0 0 0 0 P 0 0 0 0

0 0 0 0 0 1 P 0 0 0 0

0 0 0 0 1 0 P 0 0(1)1 0 0

0 0 0 0 1 1 P 0 0(1)1 0 0

0 0 0 1 0 0 P 0 0 0 0

0 0 0 1 0 1 N 1 1 0 0

0 0 0 1 1 0 N 0 1 0 0

0 0 0 1 1 1 N 0 1 0 0

0 0 1 0 0 0 P 0 0 0 0

0 0 1 0 0 1 P 0 0 0 0

0 0 1 0 1 0 C 0 1 1 0

0 0 1 0 1 1 C 0 1 1 0

0 0 1 1 0 0 P 0 0 0 0

0 0 1 1 0 1 N 1 1 0 0

0 0 1 1 1 0 C 0 1 1 0

0 0 1 1 1 1 C 0 1 1 0

1 0 0 0 0 0 P 0 0 0 0

1 0 0 0 0 1 P 0 0 0 0

1 0 0 0 1 0 P 0 0(1)1 0 0

1 0 0 0 1 1 P 0 0(1)1 0 0

1 0 0 1 0 0 P 0 0 0 0

1 0 0 1 0 1 N 1 1 0 1

1 0 0 1 1 0 N 0 1 0 1

1 0 0 1 1 1 N 0 1 0 1

1 0 1 0 0 0 P 0 0 0 0

1 0 1 0 0 1 P 0 0 0 0

1 0 1 0 1 0 C 0 1 1 1

1 0 1 0 1 1 C 0 1 1 1

1 0 1 1 0 0 P 0 0 0 0

1 0 1 1 0 1 N 1 1 0 1

1 0 1 1 1 0 C 0 1 1 1

 245

Stencil
Test

Enable

Stencil
Buffer
Write

Enable

Depth
Test

Enable

Depth
Buffer
Write
Enable

Pixel
Shader

Compute
d Depth

Pixel
Shader

Kill
Pixel OR

Alpha
Test

Enable

Early
Depth
Mode

Source
Depth

Present
(to EU)

Source
Depth

to
Render
Target

Destinatio
n Depth
Present

(to EU and
RT)

Destinat
ion

Stencil
Present
(to EU

and RT)

1 0 1 1 1 1 C 0 1 1 1

1 1 0 0 0 0 P 0 0 0 0

1 1 0 0 0 1 C 0 0 0 1

1 1 0 0 1 0 P 0 0(1)1 0 0

1 1 0 0 1 1 C 0 1 0 1

1 1 0 1 0 0 P 0 0 0 0

1 1 0 1 0 1 C 1 1 0 1

1 1 0 1 1 0 C(N)1 0 1 0 1

1 1 0 1 1 1 C 0 1 0 1

1 1 1 0 0 0 P 0 0 0 0

1 1 1 0 0 1 C 1 1 1 1

1 1 1 0 1 0 C 0 1 1 1

1 1 1 0 1 1 C 0 1 1 1

1 1 1 1 0 0 P 0 0 0 0

1 1 1 1 0 1 C 1 1 1 1

1 1 1 1 1 0 C 0 1 1 1

1 1 1 1 1 1 C 0 1 1 1

NOTES:

1. The value in parenthesis is for [DevBW-A] only.

246

Behavior for Early Depth Test disabled:

Stencil
Test

Enable

Stencil
Buffer
Write

Enable

Depth
Test

Enable

Depth
Buffer
Write
Enable

Pixel
Shader

Computed
Depth

Pixel
Shader

Kill
Pixel
OR

Alpha
Test

Enable

Early
Depth
Mode

Source
Depth

Present
(to EU)

Source
Depth

to
Render
Target

Destination
Depth

Present (to
EU and RT)

Destination
Stencil

Present (to
EU and RT)

0 0 0 0 0 0 P 0 0 0 0

0 0 0 0 0 1 P 0 0 0 0

0 0 0 0 1 0 C 0 1 0 0

0 0 0 0 1 1 C 0 1 0 0

0 0 0 1 0 0 C 1 1 0 0

0 0 0 1 0 1 C 1 1 0 0

0 0 0 1 1 0 C 0 1 0 0

0 0 0 1 1 1 C 0 1 0 0

0 0 1 0 0 0 C 1 1 1 0

0 0 1 0 0 1 C 1 1 1 0

0 0 1 0 1 0 C 0 1 1 0

0 0 1 0 1 1 C 0 1 1 0

0 0 1 1 0 0 C 1 1 1 0

0 0 1 1 0 1 C 1 1 1 0

0 0 1 1 1 0 C 0 1 1 0

0 0 1 1 1 1 C 0 1 1 0

1 0 0 0 0 0 C 0 0 0 1

1 0 0 0 0(1)1 1(0)1 C 0 0 0 1

1 0 0 0 1(0)1 0(1)1 C 0 1 0 1

1 0 0 0 1 1 C 0 1 0 1

1 0 0 1 0 0 C 1 1 0 1

1 0 0 1 0 1 C 1 1 0 1

1 0 0 1 1 0 C 0 1 0 1

1 0 0 1 1 1 C 0 1 0 1

1 0 1 0 0 0 C 1 1 1 1

1 0 1 0 0 1 C 1 1 1 1

1 0 1 0 1 0 C 0 1 1 1

1 0 1 0 1 1 C 0 1 1 1

1 0 1 1 0 0 C 1 1 1 1

1 0 1 1 0 1 C 1 1 1 1

 247

Stencil
Test

Enable

Stencil
Buffer
Write

Enable

Depth
Test

Enable

Depth
Buffer
Write
Enable

Pixel
Shader

Computed
Depth

Pixel
Shader

Kill
Pixel
OR

Alpha
Test

Enable

Early
Depth
Mode

Source
Depth

Present
(to EU)

Source
Depth

to
Render
Target

Destination
Depth

Present (to
EU and RT)

Destination
Stencil

Present (to
EU and RT)

1 0 1 1 1 0 C 0 1 1 1

1 0 1 1 1 1 C 0 1 1 1

1 1 0 0 0 0 C 0 0 0 1

1 1 0 0 0 1 C 0 0 0 1

1 1 0 0 1 0 C 0 1 0 1

1 1 0 0 1 1 C 0 1 0 1

1 1 0 1 0 0 C 1 1 0 1

1 1 0 1 0 1 C 1 1 0 1

1 1 0 1 1 0 C 0 1 0 1

1 1 0 1 1 1 C 0 1 0 1

1 1 1 0 0 0 C 1 1 1 1

1 1 1 0 0 1 C 1 1 1 1

1 1 1 0 1 0 C 0 1 1 1

1 1 1 0 1 1 C 0 1 1 1

1 1 1 1 0 0 C 1 1 1 1

1 1 1 1 0 1 C 1 1 1 1

1 1 1 1 1 0 C 0 1 1 1

1 1 1 1 1 1 C 0 1 1 1

NOTE:
1. The value in parenthesis is for [DevBW-A] only.

Note: Source depth present (to EU) will also be set in cases in which the pixel shader uses
source depth (vPos.z) regardless of any other condition.

248

The specific actions for each case are as follows.

Early Depth
Mode Pixel Depth Stencil

Depth sent to
Pixel Shader

Depth sent
to Render

Target
Stencil sent

to PS/RT

Computed
Depth

conditionally
killed based on

depth/stencil test
post-shader

tested and
written

post-shader

tested and
written

post-shader

source depth
for vPos.z if

used

dest depth
passed
through

source
depth from

oDepth

dest depth
passed
through

dest stencil
passed

through if
stencil test

enabled

Non-promoted pixel killed pre-
shader if depth
test fails and no

stencil write
indicated

test pre-and
post-shader,

written
post-shader

tested and
written

post-shader

source depth
for vPos.z if

used

source depth
always

source
depth from

vPos.z

dest stencil
passed

through if
stencil test

enabled

Promoted pixel killed pre-
shader on fail

tested and
written pre-

shader

tested and
written pre-

shader

source depth
for vPos.z if

used

none none

The following psuedocode describes the logic that determines whether color, depth,
and stencil are written depending on results of alpha, depth, and stencil tests.

alpha_test_pass = TRUE
depth_test_pass = TRUE
stencil_test_pass = TRUE

if (alpha_test_enable) alpha_test_pass = TestAlpha();
if (depth_test_enable) depth_test_pass = TestDepth();
if (stencil_test_enable) stencil_test_pass = TestStencil();

stencil_update = (new_stencil_value != dst_stencil_value) &&

(stencil_test_enable == TRUE)

pass_color_depth = (alpha_test_pass == TRUE) && (depth_test_pass == TRUE)

&& (stencil_test_pass == TRUE) && (pixel_enabled == TRUE)
pass_stencil = (alpha_test_pass == TRUE) && (stencil_update == TRUE) &&

(pixel_enabled == TRUE)

pixel_color_write = pass_color_depth && (color_component_write_disables

!= 0xf)
pixel_depth_write = pass_color_depth && (depth_buffer_write_enable ==

TRUE)
pixel_stencil_write = pass_stencil && (stencil_buffer_write_enable ==

TRUE)

 249

8.4.4 Depth/Stencil Buffer State

8.4.4.1 3DSTATE_DEPTH_BUFFER

3DSTATE_DEPTH_BUFFER
Project: All Length Bias: 2
The depth buffer surface state is delivered as a non-pipelined state packet.
DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 05h 3DSTATE_DEPTH_BUFFER Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 3h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1

250

3DSTATE_DEPTH_BUFFER
1 31:29 Surface Type

Project: All

Format: U3 Enumerated Type

This field defines the type of the surface.

Value Name Description Project

0h SURFTYPE_1D Defines a 1-dimensional map or array of
maps

All

1h SURFTYPE_2D Defines a 2-dimensional map or array of
maps

All

2h SURFTYPE_3D Defines a 3-dimensional (volumetric)
map

All

3h SURFTYPE_CUBE Defines a cube map All

4h-6h Reserved All

7h SURFTYPE_NULL Defines a null surface All

Programming Notes

The Surface Type of the depth buffer must be the same as the Surface Type of the
render target(s) (defined in SURFACE_STATE), unless either the depth buffer or render
targets are SURFTYPE_NULL.

28 Reserved Project: All Format: MBZ

27 Tiled Surface

Project: All

Format: U1 enumerated type FormatDesc

Specifies if the surface is tiled.

Value Name Description Project

0h TRUE Tiled All

1h FALSE Linear All

Programming Notes Project

Linear surfaces can be mapped to Main Memory (uncached) or System
Memory (cacheable, snooped). Tiled surfaces can only be mapped to Main
Memory.

All

The corresponding cache(s) must be invalidated before a previously accessed
surface is accessed again with an altered state of this bit.

All

Errata Description Project

BWT014 The Depth Buffer Must be Tiled, it cannot be linear. This field
must be set to 1 on DevBW-A.

[DevBW
-A,B

 251

3DSTATE_DEPTH_BUFFER
26 Tile Walk

Project: All

Format: U1 enumerated type FormatDesc

This field specifies the type of memory tiling (XMajor or YMajor) employed to tile this
surface. The Depth Buffer, if tiled, must use Y-Major tiling. See Memory Interface
Functions for details on memory tiling and restrictions.

This field is ignored when the surface is linear.

Value Name Description Project

0h Reserved All

1h TILEWALK_YMAJOR Y major tiled All

25 Depth Buffer Coordinate Offset Disable

Project: All

Format: Disable FormatDesc

Disables the application (addition) of the “upper bits” of the Drawing Rectangle Origin to
Depth Buffer coordinates. (This does not affect the application of the Drawing Rectangle
Origin to the Color Buffer coordinates). This control is provided to better support “Front
Buffer Rendering”. By disabling the Draw Rectangle adjustment of Depth Buffer
coordinates, software can utilize a “window-sized” Depth Buffer while rendering to a
window within the Color Buffer. Without this control, use of the Draw Rectangle
adjustment would require the Depth Buffer to be dimensioned to match the Color Buffer
(screen) vs. the target window.

Programming Notes Project

The device still applies some small coordinate offset in order to provide the
required alignment of color and depth memory/cache accesses. Software
needs to consider this alignment when allocating depth buffers.

All

This bit must not be set when rendering to field-mode (interlaced) Color
Buffers (i.e., when Surface State’s VerticalLineStride==1).

All

This bit can only be set when rendering to surfaces of type SURFTYPE_1D and
SURFTYPE_2D with Depth = 0 (non-array) and LOD = 0 (non-mip mapped)

All

252

3DSTATE_DEPTH_BUFFER
24:23 Software Tiled Rendering Mode

Project: All

Format: U2 enumerated type FormatDesc

This field is intended to enable software tiled rendering (STR). If certain restrictions are
met, performance can be improved by reducing memory bandwidth to the render target
and depth buffer.

Normal mode: Rendering behaves normally.

STR1 mode: Only pixels within a particular 64x32 block (aligned relative to the upper
left corner of the render target) are rendered between pixel shader serializations.
Generally the alignment is guaranteed via a scissor rectangle. A write to a given pixel in
the render target must occur before a read from the same pixel.

STR2 mode: The restrictions of STR1 mode applies, and in addition each pixel must be
rendered with depth write enabled and depth test disabled before it can be rendered with
depth test enabled. The depth buffer in memory is not updated, even on a render cache
flush. Depth buffer data is contained only within the render cache during rendering.

Value Name Description Project

0h NORMAL Normal mode All

1h STR1 STR1 mode Reserved

2h Reserved All

3h STR2 STR2 mode Reserved

Programming Notes Project

only normal mode is supported All

The render cache must be flushed when this field is modified from its
previous state

All

For both STR modes, the depth buffer (if used) must be tiled Y with
D16_UNORM format, and the render target surface must be tiled X or Y

All

For both STR modes, the only data port messages allowed that use the
render cache are the Render Target UNORM Read and Write messages.

All

Performance considerations: Both STR modes eliminate all memory
read traffic from the render target. The STR2 mode additionally
eliminates all memory traffic to the depth buffer.

All

When STR2 mode is used in conjunction with the advanced scheduler,
context switches can only occur on the boundaries between the 64x32
blocks, as the depth buffer contents are not saved for restore when the
context is restarted.

All

22 Reserved: MBZ

21 Reserved: MBZ

 253

3DSTATE_DEPTH_BUFFER
20:18 Surface Format

Project: All

Format: U3 enumerated type FormatDesc

Specifies the format of the depth buffer.

Value Name Description Project

0h D32_FLOAT_S8X24_UINT All

1h D32_FLOAT All

2h D24_UNORM_S8_UINT All

3h D24_UNORM_X8_UINT Reserved

4h Reserved All

5h D16_UNORM All

6h-7h Reserved All

17 Reserved Project: All Format: MBZ

16:0 Surface Pitch

Project: All

Format: U17 pitch in (Bytes – 1) FormatDesc

Range if linear: [63, 128K-1] corresponding to [64B, 128KB]

 also restricted to a multiple of 64B

if tiled: [127, 128K-1] corresponding to [128B, 128KB]

 also restricted to a multiple of 128B

This field specifies the pitch of the depth buffer in (#Bytes – 1).

Programming Notes Project

If this surface is tiled, the pitch specified must be a multiple of the tile pitch,
in the range [128B, 128KB].

All

If the surface is linear, the pitch can be any multiple of 64 bytes up to 128KB. All

2 31:0 Surface Base Address

Project: All

Address: GraphicsAddress[31:0]

This field specifies the starting DWord address of the buffer in mapped Graphics Memory.

Programming Notes

The Depth Buffer can only be mapped to Main Memory (uncached).

If the surface is tiled, the base address must conform to the Per-Surface Tiling Alignment
Rules as documented in TBD.

If the buffer is linear, the surface must be 64-byte aligned.

254

3DSTATE_DEPTH_BUFFER
3 31:19 Height

Project: All

Format: U13 FormatDesc

Range SURFTYPE_1D: must be zero

SURFTYPE_2D: height of surface – 1 (y/v dimension) [0,8191]

SURFTYPE_3D: height of surface – 1 (y/v dimension) [0,2047]

SURFTYPE_CUBE: height of surface – 1 (y/v dimension) [0,8191]

This field specifies the height of the surface. If the surface is MIP-mapped, this field
contains the height of the base MIP level.

Programming Notes

The Height of the depth buffer must be the same as the Height of the render target(s)
(defined in SURFACE_STATE), unless Surface Type is SURFTYPE_1D or SURFTYPE_2D
with Depth = 0 (non-array) and LOD = 0 (non-mip mapped).

18:6 Width

Project: All

Format: U13 FormatDesc

Range SURFTYPE_1D: width of surface – 1 (x/u dimension) [0,8191]

SURFTYPE_2D: width of surface – 1 (x/u dimension) [0,8191]

SURFTYPE_3D: width of surface – 1 (x/u dimension) [0,2047]

SURFTYPE_CUBE: width of surface – 1 (x/u dimension) [0,8191]

This field specifies the width of the surface. If the surface is MIP-mapped, this field
specifies the width of the base MIP level. The width is specified in units of pixels.

Programming Notes Project

The Width specified by this field must be less than or equal to the surface
pitch (specified in bytes via the Surface Pitch field).

All

For cube maps, Width must be set equal to Height. All

The Width of the depth buffer must be the same as the Width of the render
target(s) (defined in SURFACE_STATE), unless Surface Type is
SURFTYPE_1D or SURFTYPE_2D with Depth = 0 (non-array) and LOD = 0
(non-mip mapped).

All

5:2 LOD

Project: All

Format: U4 in LOD units FormatDesc

Range [0, 13]

This field defines the MIP level that is currently being rendered into.

Programming Notes Project

The LOD of the depth buffer must be the same as the LOD of the render
target(s) (defined in SURFACE_STATE).

All

 255

3DSTATE_DEPTH_BUFFER
1 MIP Map Layout Mode

Project: All

Format: U1 enumerated type FormatDesc

For 1D and 2D Surfaces:

This field specifies which MIP map layout mode is used, whether the map for LOD 1 is
stored to the right of the LOD 0 map, or stored below it. See Memory Data Formats for
details on the specifics of each layout mode.

For Other Surfaces:
This field is reserved : MBZ

Value Name Description Project

0h MIPLAYOUT_BELOW All

1h MIPLAYOUT_RIGHT All

Programming Notes Project

MIPLAYOUT_RIGHT is legal only for 2D non-array surfaces All

0 Reserved Project: All Format
:

MBZ

4 31:21 Depth

Project: All

Format: U11 FormatDesc

Range SURFTYPE_1D: number of array elements – 1 [0,511]

SURFTYPE_2D: number of array elements – 1 [0,511]

SURFTYPE_3D: depth of surface – 1 (r/z dimension) [0,2047]

SURFTYPE_CUBE: must be zero

This field specifies the total number of levels for a volume texture or the number of array
elements allowed to be accessed starting at the Minimum Array Element for arrayed
surfaces. If the volume texture is MIP-mapped, this field specifies the depth of the base
MIP level.

Programming Notes

The Depth of the depth buffer must be the same as the Depth of the render target(s)
(defined in SURFACE_STATE).

256

3DSTATE_DEPTH_BUFFER
20:10 Minimum Array Element

Project: All

Format: U11 FormatDesc

Range SURFTYPE_1D/2D: [0,511]

SURFTYPE_3D: [0,2047]

For 1D and 2D Surfaces:

This field indicates the minimum array element that can be accessed as part of this
surface. The delivered array index is added to this field before being used to address the
surface.

For 3D Surfaces:

This field indicates the minimum ‘R’ coordinate on the LOD currently being rendered to.
This field is added to the delivered array index before it is used to address the surface.

For Other Surfaces:

This field is ignored.

Programming Notes Project

[DevBW-A]: this field must be zero. [DevBW-A]

9:1 Render Target View Extent

Project: All

Format: U9 FormatDesc

Range SURFTYPE_1D/2D: same value as Depth field

SURFTYPE_3D: [0,511] to indicate extent of [1,512]

For 3D Surfaces:

This field indicates the extent of the accessible ‘R’ coordinates minus 1 on the LOD
currently being rendered to.

For 1D and 2D Surfaces:

This field must be set to the same value as the Depth field.

For Other Surfaces:

This field is ignored.

Programming Notes Project

[DevBW-A]: this field must be zero [DevBW-A]

0 Reserved Project: All Format: MBZ

 257

8.5 Pixel Shader Thread Generation

After a group of object pixels have been rasterized, the Pixel Shader function is
invoked to further compute pixel color/depth information and cause results to be
written to rendertargets and/or depth buffers. For each pixel, the Pixel Shader
calculates the values of the various vertex attributes that are to be interpolated across
the object using the interpolation coefficients. It then executes an API-supplied Pixel
Shader Program. Instructions in this program permit the accessing of texture map
data, where Texture Samplers are employed to sample and filter texture maps (see
the Shared Functions chapter). Arithmetic operations can be performed on the
texture data, input pixel information and Pixel Shader Constants in order to compute
the resultant pixel color/depth. The Pixel Shader program also allows the pixel to be
discarded from further processing. For pixels that are not discarded, the pixel shader
must send messages to update one or more render targets with the pixel results.

258

8.5.1 Pixel Grouping (Dispatch Size) Control

The WM unit can pass a grouping of 2 subspans (8 pixels), 4 subspans (16 pixels) or 8
subspans (32 pixels) to a Pixel Shader thread. Software should take into account the
following considerations when determining which groupings to support/enable during
operation. This determination involves a tradeoff of these likely conflicting issues.
Note that the size of the dispatch has significant impact on the kernel program (it is
certainly not transparent to the kernel). Also note that there is no implied spatial
relationship between the subspans passed to a PS thread, other than the fact that
they come from the same object.

1. Thread Efficiency: In general, there is some amount of overhead involved
with PS thread dispatch, and if this can be amortized over a larger number of
pixels, efficiency will likely increase. This is especially true for very short PS
kernels, as may be used for desktop composition, etc.

2. GRF Consumption: Processing more pixels per thread will require a larger
thread payload and likely more temporary register usage, both of which
translate into a requirement for a larger GRF register allocation for the
threads. If this increased GRF usage could lead to increased use of scratch
space (for spill/fill, etc.) and possibly less efficient use of the EUs (as it would
be less likely to find an EU with enough free physical GRF registers to service
the thread).

3. Object Size: If the number of very small objects (e.g., covering 2 subspans
or fewer) is expected to comprise a significant portion of the workload,
supporting the 8-pixel dispatch mode may be advantageous. Otherwise there
could be a large number of 16-pixel dispatches with only 1 or 2 valid
subspans, resulting in low efficiency for those threads.

4. Intangibles: Kernel footprint & Instruction Cache impact; Complexity; ….

The groupings of subspans that the WM unit is allowed to include in a PS thread
payload are controlled by the 32,16,8 Pixel Dispatch Enable state variables
programmed in WM_STATE. Using these state variables, the WM unit will attempt to
dispatch the largest allowed grouping of subspans. The following table lists the
possible combinations of these state variables.

Note: In the following table, the Valid column indicates which products that combination is
supported on. Combinations of dispatch enables not listed in the table are not
available on any product.

A: Valid on all products

There is only one kernel start pointer (KSP) specified in WM_STATE, with other kernels
being entered via an offset from the single KSP as follows:

KSP[0] = KSP

KSP[1] = KSP+1

KSP[2] = KSP+2

KSP[3] = KSP+3

All kernels share the same GRF register count field, with the one with the maximum
register count required applying to all.

 259

Table 8-1. Variable Pixel Dispatch

IP for n-pixel
Contiguous

Dispatch

IP for n-pixel Dispatch

(KSP offsets are in 128-bit
instruction units)

Contiguous
64 Pixel
Dispatch
Enable

Contiguous
32 Pixel
Dispatch
Enable

32 Pixel
Dispatch
Enable

16 Pixel
Dispatch
Enable

8 Pixel
Dispatch
Enable

Valid

n=64 n=32 n=32 n=16 n=8

0 0 0 0 1 A KSP[0]

0 0 0 1 0 A KSP[0]

0 0 0 1 1 A KSP[2] KSP[0]

0 0 1 0 0 B KSP[0]

0 0 1 1 0 A KSP[1] KSP[2]

0 0 1 1 1 A KSP[1] KSP[2] KSP[0]

0 1 0 0 0 B KSP[0]

0 1 1 0 0 B KSP[1] KSP[0]

0 1 1 1 0 B KSP[2] KSP[1] KSP[0]

1 0 0 0 0 B KSP[0]

1 0 1 0 0 B KSP[1] KSP[0]

1 0 1 1 0 B KSP[2] KSP[1] KSP[0]

1 1 0 0 0 B KSP[1] KSP[0]

1 1 1 0 0 B KSP[2] KSP[1] KSP[0]

1 1 1 1 0 B KSP[3] KSP[2] KSP[1] KSP[0]

The WM unit will select the optimal dispatch size given the enabled modes and the
number of subspans remaining in the object (n), via the following algorithm: (note:
This algorithm assumes a valid set of state variables, as listed in Table 8-1).

if (32PixelDispatchEnable && n>7)

 Dispatch 32 Pixels
else if (16PixelDispatchEnable && (n>2 || !8PixelDispatchEnable))

 Dispatch 16 Pixels
else

 Dispatch 8 Pixels

Depending on the subspan grouping selected, the WM unit will modify the starting PS
Instruction Pointer (derived from the Kernel Start Pointer in WM_STATE) as a means
to inform the PS kernel of the number of subspans included in the payload. The
modified IP is a function of the enabled modes and the dispatch size, as shown in
Table 8-1. The driver must ensure that the PS kernel begins with a corresponding
jump table to properly handle the number of subspans dispatched. The WM unit will
“OR” in the two lsbs of the Kernel Pointer (bits 5:4) to create an instruction level
address (note that the pointer from WM_STATE is 64 byte aligned which correpsonds
to four instructions).

260

If only one dispatch mode is enabled, the Jitter should not include any jump table
entries at the beginning of the PS kernel. If multiple dispatch modes are enabled, a
two entry jump table should always be inserted, regardless of which modes are
enabled (jump table entry for 8 pixel dispatch, followed by jump table entry for 32
pixel dispatch).

Note that for a 32 pixel dispatch, the Windower will mulitply the Dispatch GRF Start
Register for URB Data state by 2 to account for the extra payload data required.
The Pixel Shader kernel needs to comprehend this modification for the 32 pixel kernel
code.

8.5.2 PS Thread Payload for Normal Dispatch

The following table lists all possible contents included in a PS thread payload, in the
order they are provided. Certain portions of the payload are optional, in which case
the corresponding phase is skipped.

All registers are numbered starting at 0, but many registers are skipped depending on
configuration. This causes all registers below to be renumbered to fill in the skipped
locations. The only case where actual registers may be skipped is immediately before
the CURBE data and again before the setup URB data.

DWord Bit Description

R0.7 31 Snapshot Flag: If set, this thread has matched some debug criteria.

(See Debug for further description).

 30:24 Reserved

 23:0 Primitive Thread ID: This field contains the primitive thread count passed to the
Windower from the Strips Fans Unit.

(See Debug for further description).

Format: Reserved for HW Implementation Use.

R0.6 31:24 Reserved

 23:0 Thread ID: This field contains the thread count which is incremented by the Windower
for every thread that is dispatched.

(See Debug for further description).

Format: Reserved for HW Implementation Use.

R0.5 31:10 Scratch Space Pointer: Specifies the 1K-byte aligned pointer to the scratch space
available for this PS thread. This is specified as an offset to the General State Base
Address.

Format = GeneralStateOffset[31:10]

 9:8 Color Code: This ID is assigned by the Windower unit and is used to track synchronizng
events.

Format: Reserved for HW Implementation Use.

 7:0 FFTID: This ID is assigned by the WM unit and is a identifier for the thread. It is used to
free up resources used by the thread upon thread completion.

Format: Reserved for HW Implementation Use.

 261

DWord Bit Description

R0.4 31:5 Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding Table. It
is specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

 4:0 Reserved

R0.3 31:5 Sampler State Pointer: Specifies the 32-byte aligned pointer to the Sampler State
table. It is specified as an offset from the General State Base Address.

Format = GeneralStateOffset[31:5]

 4 Reserved

 3:0 Per Thread Scratch Space: Specifies the amount of scratch space allowed to be used
by this thread.

Programming Notes:

• [DevBW-A] A0 Erratum BWT005: The range [0,11] for this register indicates
[1KB, 12KB] in 1K byte increments. If MMIO register 21D0h bit 3 is set, then
value 11 is an exception and indicates a 256KB space instead of 12KB. Note
that Scratch Space Base Pointer must be 8MB-aligned in order to set the 256KB
scratch space.

• This amount is available to the kernel for information only. It will be passed
verbatim (if not altered by the kernel) to the Data Port in any scratch space
access messages, but the Data Port will ignore it.

Format = U4

Range = [0,11] indicating [1k bytes, 2M bytes] in powers of two

R0.2 31:0 Reserved : delivered as zeros (reserved for message header fields)

R0.1 31:6 Color Calculator State Pointer:Specifies the 64-byte aligned pointer to the Color
Calculator state (CC_STATE structure in memory). It is specified as an offset from the
General State Base Address. This value is eventually passed to the ColorCalc function
in the DataPort and is used to fetch the corresponding CC_STATE data.

Format = GeneralStateOffset[31:5]

 5:0 Reserved

R0.0 31:16 Pixel Mask (SubSpan[3:0]) : Indicates which pixels within the four subspans are lit.
If 32 pixel dispatch is enabled, this field contains the pixel mask for the first four
subspans.

Note: This is not a duplicate of the Dispatch Mask that is delivered to the thread. The
dispatch mask has all pixels within a subspan as active if any of them are lit to enable
LOD calculations to occur correctly.

This field must not be modified by the Pixel Shader kernel.

 15:0 Pixel Mask Copy (SubSpan[3:0]) : This is a duplicate copy of the pixel mask. This
copy can be modified as the pixel shader thread executesin order to turn off pixels based
on kill instructions.

R1.7 31 Reserved

 30:27 Viewport Index: Specifies the index of the viewport currently being used.

Format = U4

Range = [0,15]

262

DWord Bit Description

 26:16 Render Target Array Index:Specifies the array index to be used for the following
surface types:

SURFTYPE_1D: specifies the array index. Range = [0,511]

SURFTYPE_2D: specifies the array index. Range = [0,511]

SURFTYPE_3D: specifies the “r” coordinate. Range = [0,2047]

SURFTYPE_CUBE: specifies the face identifier. Range = [0,5]

face Render Target Array Index

+x 0

-x 1

+y 2

-y 3

+z 4

-z 5

Format = U11

 15:0 Reserved

R1.6 31 Front/Back Facing Polygon:Determines whether the polygon is front or back facing.
Used by the render cache to determine which stencil test state to use.

0 = Front Facing

1 = Back Facing

 30 Source Depth Present:Indicates that source depth is included in the dispatch

 29 Source Depth to Render Target: Indicates that source depth will be sent to the render
target

 28 Destination Depth Present: Indicates that destination depth is included in the dispatch
and sent to the render target

 27 Destination Stencil Present: Indicates that destination stencil is included in the
dispatch and sent to the render target

 26 Antialias Alpha to Render Target: Indicates to the PS thread that antialias alpha data
must be included in render target writes (i.e., included in the DataPort RT Write message
payload). The WM unit generates this control bit based on object type and state
settings. This indication is required as the PS kernel is likely shared between anti-aliased
and non-anti-aliased objects.

This bit applies to all subspans (i.e., both sets of 4 subspans for 32-pixel dispatches).

By definition, Antialias Alpha Present will also be set.

Format: Enable

 25 Antialias Alpha Present: Indicates that antialias alpha data is included in this PS
thread payload.

This bit applies to all subspans (i.e., both sets of 4 subspans for 32-pixel dispatches).

Format: Enable

 24:5 Reserved

 4:0 Primitive Topology Type:This field identifies the Primitive Topology Type associated
with the primitive spawning this object. The WM unit does not modify this value (e.g.,
objects within POINTLIST topologies see POINTLIST).

Format: (See 3DPRIMITIVE command in 3D Pipeline)

 263

DWord Bit Description

R1.5 31:16 Y3: Y coordinate (screen space) for upper-left pixel of subspan 3

Format = U16

 15:0 X3: X coordinate (screen space) for upper-left pixel of subspan 3

Format = U16

R1.4 31:16 Y2 : Y coordinate (screen space) for upper-left pixel of subspan 2

Format = U16

 15:0 X2 : X coordinate (screen space) for upper-left pixel of subspan 2

Format = U16

R1.3 31:16 Y1 : Y coordinate (screen space) for upper-left pixel of subspan 1

Format = U16

 15:0 X1 : X coordinate (screen space) for upper-left pixel of subspan 1

Format = U16

R1.2 31:16 Y0 : Y coordinate (screen space) for upper-left pixel of subspan 0

Format = U16

 15:0 X0 : X coordinate (screen space) for upper-left pixel of subspan 0

Format = U16

R1.1 31:0 Ystart : Y coordinate (screen space) for the start vertex (V0, upper left vertex of the
object, as selected by the SF unit)

Format = IEEE_Float

R1.0 31:0 Xstart: X coordinate (screen space) for the start vertex (V0, upper left vertex of the
object, as selected by the SF unit)

Format = IEEE_Float

 The following data is optional depending on the state relating to depth / stencil / alpha
present flags above. Phases including only data for subspans 2 and 3 are included for 8-
pixel dispatches, even though they do not contain valid data.

Following the optional data is the attribute interpolation coefficient data

 R2-R3: delivered only if Source Depth Present is set.

R2.7 31:0 Interpolated Depth for Subspan 1, Pixel 3 (lower right)

Format = IEEE_Float

R2.6 31:0 Interpolated Depth for Subspan 1, Pixel 2 (lower left)

R2.5 31:0 Interpolated Depth for Subspan 1, Pixel 1 (upper right)

R2.4 31:0 Interpolated Depth for Subspan 1, Pixel 0 (upper left)

R2.3 31:0 Interpolated Depth for Subspan 0, Pixel 3 (lower right)

R2.2 31:0 Interpolated Depth for Subspan 0, Pixel 2 (lower left)

R2.1 31:0 Interpolated Depth for Subspan 0, Pixel 1 (upper right)

R2.0 31:0 Interpolated Depth for Subspan 0, Pixel 0 (upper left)

R3.7 31:0 Interpolated Depth for Subspan 3, Pixel 3 (lower right)

R3.6 31:0 Interpolated Depth for Subspan 3, Pixel 2 (lower left)

R3.5 31:0 Interpolated Depth for Subspan 3, Pixel 1 (upper right)

R3.4 31:0 Interpolated Depth for Subspan 3, Pixel 0 (upper left)

264

DWord Bit Description

R3.3 31:0 Interpolated Depth for Subspan 2, Pixel 3 (lower right)

R3.2 31:0 Interpolated Depth for Subspan 2, Pixel 2 (lower left)

R3.1 31:0 Interpolated Depth for Subspan 2, Pixel 1 (upper right)

R3.0 31:0 Interpolated Depth for Subspan 2, Pixel 0 (upper left)

 R4: delivered only if Antialias Alpha Present or Destination Stencil Present is set.
The Antialias Alpha data is only valid if Antialias Alpha Present is set, and likewise the
Destination Stencil data is only valid if Destination Stencil Present is set.

 [DevBW, DevCL]

R4.7 31:28 Antialias Alpha for Subspan 3, Pixel 3 (lower right)

This field contains the coverage value associated with Pixel 3 of Subspan 7.

Format = U0.4

 27:24 Antialias Alpha for Subspan 3, Pixel 2 (lower left)

 23:20 Antialias Alpha for Subspan 3, Pixel 1 (upper right)

 19:16 Antialias Alpha for Subspan 3, Pixel 0 (upper left)

 15:12 Antialias Alpha for Subspan 2, Pixel 3 (lower right)

 11:8 Antialias Alpha for Subspan 2, Pixel 2 (lower left)

 7:4 Antialias Alpha for Subspan 2, Pixel 1 (upper right)

 3:0 Antialias Alpha for Subspan 2, Pixel 0 (upper left)

R4.6 31:28 Antialias Alpha for Subspan 1, Pixel 3 (lower right)

 27:24 Antialias Alpha for Subspan 1, Pixel 2 (lower left)

 23:20 Antialias Alpha for Subspan 1, Pixel 1 (upper right)

 19:16 Antialias Alpha for Subspan 1, Pixel 0 (upper left)

 15:12 Antialias Alpha for Subspan 0, Pixel 3 (lower right)

 11:8 Antialias Alpha for Subspan 0, Pixel 2 (lower left)

 7:4 Antialias Alpha for Subspan 0, Pixel 1 (upper right)

 3:0 Antialias Alpha for Subspan 0, Pixel 0 (upper left)

R4.5:4 Reserved

R4.3 31:24 Destination Stencil for Subspan 3, Pixel 3 (lower right)

Format = U8

 23:16 Destination Stencil for Subspan 3, Pixel 2 (lower left)

 15:8 Destination Stencil for Subspan 3, Pixel 1 (upper right)

 7:0 Destination Stencil for Subspan 3, Pixel 0 (upper left)

R4.2 31:24 Destination Stencil for Subspan 2, Pixel 3 (lower right)

 23:16 Destination Stencil for Subspan 2, Pixel 2 (lower left)

 15:8 Destination Stencil for Subspan 2, Pixel 1 (upper right)

 7:0 Destination Stencil for Subspan 2, Pixel 0 (upper left)

R4.1 31:24 Destination Stencil for Subspan 1, Pixel 3 (lower right)

 23:16 Destination Stencil for Subspan 1, Pixel 2 (lower left)

 265

DWord Bit Description

 15:8 Destination Stencil for Subspan 1, Pixel 1 (upper right)

 7:0 Destination Stencil for Subspan 1, Pixel 0 (upper left)

R4.0 31:24 Destination Stencil for Subspan 0, Pixel 3 (lower right)

 23:16 Destination Stencil for Subspan 0, Pixel 2 (lower left)

 15:8 Destination Stencil for Subspan 0, Pixel 1 (upper right)

 7:0 Destination Stencil for Subspan 0, Pixel 0 (upper left)

 R5-R6: delivered only if Destination Depth Present is set.

R5.7 31:0 Destination Depth for Subspan 1, Pixel 3 (lower right)

Format depends on depth buffer surface format, and is intended to be passed through to
the render target without modification by software.

R5.6 31:0 Destination Depth for Subspan 1, Pixel 2 (lower left)

R5.5 31:0 Destination Depth for Subspan 1, Pixel 1 (upper right)

R5.4 31:0 Destination Depth for Subspan 1, Pixel 0 (upper left)

R5.3 31:0 Destination Depth for Subspan 0, Pixel 3 (lower right)

R5.2 31:0 Destination Depth for Subspan 0, Pixel 2 (lower left)

R5.1 31:0 Destination Depth for Subspan 0, Pixel 1 (upper right)

R5.0 31:0 Destination Depth for Subspan 0, Pixel 0 (upper left)

R6.7 31:0 Destination Depth for Subspan 3, Pixel 3 (lower right)

R6.6 31:0 Destination Depth for Subspan 3, Pixel 2 (lower left)

R6.5 31:0 Destination Depth for Subspan 3, Pixel 1 (upper right)

R6.4 31:0 Destination Depth for Subspan 3, Pixel 0 (upper left)

R6.3 31:0 Destination Depth for Subspan 2, Pixel 3 (lower right)

R6.2 31:0 Destination Depth for Subspan 2, Pixel 2 (lower left)

R6.1 31:0 Destination Depth for Subspan 2, Pixel 1 (upper right)

R6.0 31:0 Destination Depth for Subspan 2, Pixel 0 (upper left)

 R7: delivered only if this is a 32-pixel dispatch.

R7.7 31:0 Reserved

R7.6 31:0 Reserved

R7.5 31:0 Reserved

R7.5 31:16 Y7: Y coordinate (screen space) for upper-left pixel of subspan 7

Format = U16

 15:0 X7: X coordinate (screen space) for upper-left pixel of subspan 7

Format = U16

R7.4 31:16 Y6

 15:0 X6

R7.3 31:16 Y5

 15:0 X5

R7.2 31:16 Y4

 15:0 X4

266

DWord Bit Description

R7.1 31:0 Reserved

R7.0 31:16 Pixel Mask (SubSpan[7:4]) : Indicates which pixels within the upper four subspans
are lit. This field is valid only when the 32 pixel dispatch state is enabled. This field
must not be modified by the pixel shader thread.

Note: This is not a duplicate of the dispatch mask that is delivered to the thread. The
dispatch mask has all pixels within a subspan as active if any of them are lit to enable
LOD calculations to occur correctly.

This field must not be modified by the Pixel Shader kernel.

 15:0 Pixel Mask Copy (SubSpan[7:4]) : This is a duplicate copy of pixel mask for the upper
16 pixels. This copy will be modified as the pixel shader thread executes to turn off
pixels based on kill instructions.

 R8-R9: delivered only if Source Depth Present is set and this is a 32-pixel dispatch.

R8.7 31:0 Interpolated Depth for Subspan 5, Pixel 3 (lower right)

Format = IEEE_Float

R8.6 31:0 Interpolated Depth for Subspan 5, Pixel 2 (lower left)

R8.5 31:0 Interpolated Depth for Subspan 5, Pixel 1 (upper right)

R8.4 31:0 Interpolated Depth for Subspan 5, Pixel 0 (upper left)

R8.3 31:0 Interpolated Depth for Subspan 4, Pixel 3 (lower right)

R8.2 31:0 Interpolated Depth for Subspan 4, Pixel 2 (lower left)

R8.1 31:0 Interpolated Depth for Subspan 4, Pixel 1 (upper right)

R8.0 31:0 Interpolated Depth for Subspan 4, Pixel 0 (upper left)

R9.7 31:0 Interpolated Depth for Subspan 7, Pixel 3 (lower right)

R9.6 31:0 Interpolated Depth for Subspan 7, Pixel 2 (lower left)

R9.5 31:0 Interpolated Depth for Subspan 7, Pixel 1 (upper right)

R9.4 31:0 Interpolated Depth for Subspan 7, Pixel 0 (upper left)

R9.3 31:0 Interpolated Depth for Subspan 6, Pixel 3 (lower right)

R9.2 31:0 Interpolated Depth for Subspan 6, Pixel 2 (lower left)

R9.1 31:0 Interpolated Depth for Subspan 6, Pixel 1 (upper right)

R9.0 31:0 Interpolated Depth for Subspan 6, Pixel 0 (upper left)

 R10: delivered only if Antialias Alpha Present or Destination Stencil Present is set
and this is a 32-pixel dispatch. The Antialias Alpha data is only valid if Antialias Alpha
Present is set, and likewise the Destination Stencil data is only valid if Destination
Stencil Present is set.

 [DevBW, DevCL]

R10.7 31:28 Antialias Alpha for Subspan 7, Pixel 3 (lower right)

This field contains the coverage value associated with Pixel 3 of Subspan 7.

Format = U0.4

 27:24 Antialias Alpha for Subspan 7, Pixel 2 (lower left)

 23:20 Antialias Alpha for Subspan 7, Pixel 1 (upper right)

 19:16 Antialias Alpha for Subspan 7, Pixel 0 (upper left)

 15:12 Antialias Alpha for Subspan 6, Pixel 3 (lower right)

 267

DWord Bit Description

 11:8 Antialias Alpha for Subspan 6, Pixel 2 (lower left)

 7:4 Antialias Alpha for Subspan 6, Pixel 1 (upper right)

 3:0 Antialias Alpha for Subspan 6, Pixel 0 (upper left)

R10.6 31:28 Antialias Alpha for Subspan 5, Pixel 3 (lower right)

 27:24 Antialias Alpha for Subspan 5, Pixel 2 (lower left)

 23:20 Antialias Alpha for Subspan 5, Pixel 1 (upper right)

 19:16 Antialias Alpha for Subspan 5, Pixel 0 (upper left)

 15:12 Antialias Alpha for Subspan 4, Pixel 3 (lower right)

 11:8 Antialias Alpha for Subspan 4, Pixel 2 (lower left)

 7:4 Antialias Alpha for Subspan 4, Pixel 1 (upper right)

 3:0 Antialias Alpha for Subspan 4, Pixel 0 (upper left)

R10.5:4 Reserved

R10.3 31:24 Destination Stencil for Subspan 7, Pixel 3 (lower right) : This field contains the
destination stencil value associated with Pixel 3 of Subspan 7.

Format = U8

 23:16 Destination Stencil for Subspan 7, Pixel 2 (lower left)

 15:8 Destination Stencil for Subspan 7, Pixel 1 (upper right)

 7:0 Destination Stencil for Subspan 7, Pixel 0 (upper left)

R10.2 31:24 Destination Stencil for Subspan 6, Pixel 3 (lower right)

 23:16 Destination Stencil for Subspan 6, Pixel 2 (lower left)

 15:8 Destination Stencil for Subspan 6, Pixel 1 (upper right)

 7:0 Destination Stencil for Subspan 6, Pixel 0 (upper left)

R10.1 31:24 Destination Stencil for Subspan 5, Pixel 3 (lower right)

 23:16 Destination Stencil for Subspan 5, Pixel 2 (lower left)

 15:8 Destination Stencil for Subspan 5, Pixel 1 (upper right)

 7:0 Destination Stencil for Subspan 5, Pixel 0 (upper left)

R10.0 31:24 Destination Stencil for Subspan 4, Pixel 3 (lower right)

 23:16 Destination Stencil for Subspan 4, Pixel 2 (lower left)

 15:8 Destination Stencil for Subspan 4, Pixel 1 (upper right)

 7:0 Destination Stencil for Subspan 4, Pixel 0 (upper left)

 R11-R12: delivered only if Destination Depth Present is set and this is a 32-pixel
dispatch.

R11.7 31:0 Destination Depth for Subspan 5, Pixel 3 (lower right)

Format = IEEE_Float

R11.6 31:0 Destination Depth for Subspan 5, Pixel 2 (lower left)

R11.5 31:0 Destination Depth for Subspan 5, Pixel 1 (upper right)

R11.4 31:0 Destination Depth for Subspan 5, Pixel 0 (upper left)

R11.3 31:0 Destination Depth for Subspan 4, Pixel 3 (lower right)

R11.2 31:0 Destination Depth for Subspan 4, Pixel 2 (lower left)

268

DWord Bit Description

R11.1 31:0 Destination Depth for Subspan 4, Pixel 1 (upper right)

R11.0 31:0 Destination Depth for Subspan 4, Pixel 0 (upper left)

R12.7 31:0 Destination Depth for Subspan 7, Pixel 3 (lower right)

R12.6 31:0 Destination Depth for Subspan 7, Pixel 2 (lower left)

R12.5 31:0 Destination Depth for Subspan 7, Pixel 1 (upper right)

R12.4 31:0 Destination Depth for Subspan 7, Pixel 0 (upper left)

R12.3 31:0 Destination Depth for Subspan 6, Pixel 3 (lower right)

R12.2 31:0 Destination Depth for Subspan 6, Pixel 2 (lower left)

R12.1 31:0 Destination Depth for Subspan 6, Pixel 1 (upper right)

R12.0 31:0 Destination Depth for Subspan 6, Pixel 0 (upper left)

 Optional Padding before the Start of URB-Sourced Data

The locations between the end of the Optional Payload Header and the location
programmed via Dispatch GRF Start Register for URB Data (if any) are considered
“padding” and Reserved. (see below)

optional,
multiple

of 8 DWs

31:0 Reserved

 URB DATA STARTS HERE

The Dispatch GRF Start Register for URB Data state variable in WM_STATE is used
to define the starting location of URB-sourced data within the PS thread payload. This
control is provided to allow the URB-sourced data to be located at a fixed location within
thread payloads, regardless of the amount of data in the Optional Payload Header. This
permits the kernel to use direct GRF addressing to access the URB-sourced data,
regardless of the optional parameters being passed (as these are determined on-the-fly
by the WM unit).

 Constant URB Entry (CURBE) Data

Optionally, some amount of data (multiples of 8 DWs) can be read from the CURBE URB
entry and placed in the thread payload at this point (after the variable payload header
and prior to the Setup URB data). The amount of CURBE data provided is specified by
Constant URB Entry Read Length in WM_STATE, and the starting read offset in that
URB entry is specified by Constant URB Entry Read Offset in WM_STATE.

optional,
multiple

of 8 DWs

31:0 Constant Data

 Setup URB Data

(Attribute Interpolation Coeffcients)

Some amount of data (multiples of 8 DWs) can be read from the Setup URB entry and
placed in the thread payload at this point (after the variable payload header and any
CURBE data – i.e., the end of the payload). This data is read from the Setup URB entry
based on the URB Handle associated with the object being rendered (as received from
the SF unit). The amount of Setup URB data provided is specified by Setup URB Entry
Read Length in WM_STATE, and the starting read offset in that URB entry is specified
by Setup URB Entry Read Offset in WM_STATE.

The order/content/format of this data is actually determined by the Setup kernel which is
executed from the Strips Fans Unit. The following DWords are labelled assuming the
typical/expected definition.

 269

DWord Bit Description

Rp.7 31:0 Co[1] – Co Coefficient for Attribute [1] (optional)

Rp.6 31:0 Reserved

Rp.5 31:0 Cy[1] – Cy Coefficient for Attribute [1] (optional)

Rp.4 31:0 Cx[1] – Cx Coefficient for Attribute [1] (optional)

Rp.3 31:0 Co[0] – Co Coefficient for Attribute [0]

Rp.2 31:0 Reserved

Rp.1 31:0 Cy[0] – Cy Coefficient for Attribute [0]

Rp.0 31:0 Cx[0] – Cx Coefficient for Attribute [0]

R(p+1):R
q

 Coefficients for additional attributes (optional)

See definition of Rp for formats.

8.6 Other WM Functions

8.6.1 Statistics Gathering

If Statistics Enable is set in WM_STATE, the Windower increments the
PS_INVOCATIONS_COUNT register once for each unmasked pixel that is dispatched to
a Pixel Shader thread. If Early Depth Test Enable is set it is possible for pixels to
be discarded prior to reaching the Pixel Shader due to failing the depth or stencil test.
PS_INVOCATIONS_COUNT will still be incremented for these pixels since the depth
test occurs after the pixel shader from the point of view of SW.

[DevBW] A0 Erratum BWT004 states that there is no way to indicate a true “null”
pixel shader (in the sense that the pixel shader dispatch will be skipped.) The
“dummy” PS thread required for a “null” pixel shader will still cause
PS_INVOCATIONS_COUNT to increment on pixel dispatches; if the “null” pixel
dispatches are not to be counted (D3D10 expects them not to be counted), Statistics
Enable must be cleared when changing to a “null” pixel shader. Clearing Statistics
Enable may also prevent PS_DEPTH_COUNT from incrementing properly. Therefore,
in certain pipeline configurations, it may be impossible to maintain both
PS_INVOCATIONS_COUNT and PS_DEPTH_COUNT accurately.

270

9 Color Calculator (Output
Merger)

Note: The Color Calculator logic resides in the Render Cache backing Data Port
(DAP) shared function. It is described in this chapter as the Color Calc functions
are naturally an extension of the 3D pipeline past the WM stage. See the DataPort
chapter for details on the messages used by the Pixel Shader to invoke Color
Calculator functionality.

The Color Calculator function within the Data Port shared function completes the
processing of rasterized pixels after the pixel color and depth have been computed by
the Pixel Shader. This processing is initiated when the pixel shader thread sends a
Render Target Write message (see Shared Functions) to the Render Cache. (Note that
a single pixel shader thread may send multiple Render Target Write messages, with
the result that multiple render targets get updated). The pixel variables pass through
a pipeline of fixed (yet programmable) functions, and the results are conditionally
written into the appropriate buffers.

Pipeline Stage Description

Alpha Test Compare pixel alpha with reference alpha and conditionally
discard pixel

Stencil Test Compare pixel stencil value with reference and forward result
to Buffer Update stage

Depth Test Compare pix.Z with corresponding Z value in the Depth Buffer
and forward result to Buffer Update stage

Color Blending Combine pixel color with corresponding color in color buffer
according to programmable function

Gamma Correction Adjust pixel’s color according to gamma function for SRGB
destination surfaces.

Color Quantization Convert “full precision” pixel color values to fixed precision of
the color buffer format

Logic Ops Combine pixel color logically with existing color buffer color
(mutually exclusive with Color Blending)

Buffer Update Write final pixel values to color and depth buffers or discard
pixel without update

 271

The following logic describes the high-level operation of the Pixel Processing pipeline:

PixelProcessing() {
 AlphaTest()
 DepthBufferCoordinateOffsetDisable
 StencilTest()
 DepthTest()
 ColorBufferBlending()
 GammaCorrection()
 ColorQuantization()
 LogicalOps()
 BufferUpdate()
}

9.1.1 Alpha Test

The Alpha Test function can be used to discard pixels based on a comparison between
the incoming pixel’s alpha value and the Alpha Test Reference state variable in
COLOR_CALC_STATE. This operation can be used to remove transparent or nearly-
transparent pixels, though other uses for the alpha channel and alpha test are
certainly possible.

This function is enabled by the Alpha Test Enable state variable in
COLOR_CALC_STATE. If ENABLED, this function compares the incoming pixel’s alpha
value (pixColor.Alpha) and the reference alpha value specified by via the Alpha Test
Reference state variable in COLOR_CALC_STATE. The comparison performed is
specified by the Alpha Test Function state variable in COLOR_CALC_STATE.

The Alpha Test Format state variable is used to specify whether Alpha Test is
performed using fixed-point (UNORM8) or FLOAT32 values. Accordingly, it determines
whether the Alpha Reference Value is passed in a UNORM8 or FLOAT32 format. If
UNORM8 is selected, the pixel’s alpha value will be converted from floating-point to
UNORM8 before the comparison.

Pixels that pass the Alpha Test proceed for further processing. Those that fail are
discarded at this point in the pipeline.

If Alpha Test Enable is DISABLED, this pipeline stage has no effect.

9.1.2 Depth Buffer Coordinate Offset Disable

There is a capability to effectively disable the application of the Drawing Rectangle
coordinate offset for accesses to the Depth Buffer. This is controlled via the Depth
Buffer Coordinate Offset Disable state variable in the 3DSTATE_DEPTH_BUFFER
command. This capability exists in order to better support “front buffer rendering”
where the Color Buffer is screen-sized (by definition) while the Depth Buffer does not
have to be (i.e., it may be desired to have window-sized Depth Buffer to match a
window-sized back buffer). Therefore the ability to offset only the Color (front)
Buffer coordinate – and not the Depth Buffer coordinate – by the Drawing
Rectangle Origin X,Y is desired. However, due to Color/Depth Buffer access
alignment issues, the offset of the Depth Buffer X,Y coordinates can not be completely
disabled – a few low-order bits of the Drawing Rectangle Origin must still be
applied to provide some alignment of Color/Depth Buffer accesses.

272

The alignment restrictions require:

• 2 LSBs (when rendering 32-bit color) or 3 LSBs (when rendering 16-bit color) of
the Drawing Rectangle Origin X are unconditionally applied to the Depth Buffer
X coordinate. This corresponds to one 4x4 span or two 4x4 span alignment,
respectively.

• 2 LSBs of Drawing Rectangle Origin Y are unconditionally applied to the Depth
Buffer Y coordinate (i.e., 4-row co-alignment in Y)

Figure 9-1. Drawing Rectangle Offset

Color Buffer

Draw Rect
Offset

Depth Buffer

Depth Offset Disable

Depth Buffer
base addr
has similar
alignment

requirements

Device
makes color

requests
relative to
aligned
buffer

(DQW in X
4-row in Y)

Software must size Depth Buffer to allow for
HW alignment, i.e.,

 allocate Depth Buffer one DQWord wider and
one span higher than Drawing Rectangle

(unless Drawing Rectangle is itself aligned)

Draw-Rect
relative

vtx coords

DQWord width = 1 span @ 32bpp
 = 2 spans @ 16bpp

DQWord

 Draw Rect
(pixel aligned)

 273

9.1.3 Stencil Test

The Stencil Test function can be used to discard pixels based on a comparison
between the [Backface] Stencil Test Reference state variable and the pixel’s stencil
value. This is a general purpose function used for such effects as shadow volumes,
per-pixel clipping, etc. The result of this comparison is used in the Stencil Buffer
Update function later in the pipeline.

This function is enabled by the Stencil Test Enable state variable. If ENABLED, the
current stencil buffer value for this pixel is read.

Programming Notes:

• If the Depth Buffer is either undefined or does not have a surface format of
D32_FLOAT_S8X24_UINT or D24_UNORM_S8_UINT, Stencil Test Enable must
be DISABLED.

A 2nd set of the stencil test state variables is provided so that pixels from back-facing
objects, assuming they are not culled, can have a stencil test performed on them
separate from the test for normal front-facing objects. The separate stencil test for
back-facing objects can be enabled via the Double Sided Stencil Enable state
variable. Otherwise, non-culled back-facing objects will use the same test function,
mask and reference value as front-facing objects. The 2nd stencil state for back-facing
objects is most commonly used to improve the performance of rendering shadow
volumes which require a different stencil buffer operation depending on whether pixels
rendered are from a front-facing or back-facing object. The backface stencil state
removes the requirement to render the shadow volumes in 2 passes or sort the
objects into front-facing and back-facing lists.

The remainder of this subsection describes the function in term of [Backface] <state
variable name>. The Backface set of state variables are only used if Double Sided
Stencil Enable is ENABLED and the object is considered back-facing. Otherwise the
normal (front-facing) state variables are used.

This function then compares the [Backface] Stencil Test Reference value and the
pixel’s stencil value value after logically ANDing both values by [Backface] Stencil
Test Mask. The comparison performed is specified by the [Backface] Stencil Test
Function state variable. The result of the comparison is passed down the pipeline for
use in the Stencil Buffer Update function. The Stencil Test function does not in itself
discard pixels.

If Stencil Test Enable is DISABLED, a result of “stencil test passed” is propagated
down the pipeline.

9.1.4 Depth Test

The Depth Test function can be used to discard pixels based on a comparison between
the incoming pixel’s depth value and the current depth buffer value associated with
the pixel. This function is typically used to perform the “Z Buffer” hidden surface
removal. The result of this pipeline function is used in the Stencil Buffer Update
function later in the pipeline.

This function is enabled by the Depth Test Enable state variable. If enabled, the
pixel’s (“source”) depth value is first computed. After computation the pixel’s depth

274

value is clamped to the range defined by Minimum Depth and Maximum Depth in
the selected CC_VIEWPORT state. Then the current (“destination”) depth buffer value
for this pixel is read.

This function then compares the source and destination depth values. The comparison
performed is specified by the Depth Test Function state variable.

The result of the comparison is propogated down the pipeline for use in the
subsequent Depth Buffer Update function. The Depth Test function does not in itself
discard pixels.

If Depth Test Enable is DISABLED, a result of “depth test passed” is propagated
down the pipeline.

Programming Notes:

• Enabling the Depth Test function without defining a Depth Buffer is UNDEFINED.

9.1.5 Pre-Blend Color Clamping

Pre-Blend Color Clamping, controlled via Pre-Blend Color Clamp Enable and Color
Clamp Range states in COLOR_CALC_STATE, is affected by the enabling of Color
Buffer Blend as described below.

The following table summarizes the requirements involved with Pre-/Post-Blend Color
Clamping.

Blending RT Format Pre-Blend Color
Clamp

Post-Blend Color
Clamp

Off UNORM,
UNORM_SRGB,YCRCB

Must be enabled with
range = RT range or
[0,1] (same function)

n/a, state ignored

 SNORM Must be enabled with
range = RT range or [-
1,1] (same function)

n/a, state ignored

 FLOAT (except for
R11G11B10_FLOAT)

Must be enabled (with
any desired range)

n/a, state ignored

 R11G11B10_FLOAT Must be enabled with
either [0,1] or RT range

n/a, state ignored

 UINT, SINT State ignored, implied
clamp to RT range

n/a, state ignored

On

(where
permitted)

UNORM, UNORM_SRGB Must be enabled with
range = RT range or
[0,1] (same function)

Must be enabled with
range = RT range or
[0,1] (same function)

 SNORM Must be enabled with
range = RT range or [-
1,1] (same function)

Must be enabled with
range = RT range or [-
1,1] (same function)

 275

Blending RT Format Pre-Blend Color
Clamp

Post-Blend Color
Clamp

 FLOAT (except for
R11G11B10_FLOAT)

Can be disabled or
enabled (with any
desired range)

Must be enabled (with
any desired range)

 R11G11B10_FLOAT Can be disabled or
enabled (with any
desired range)

Must be enabled with
either [0,1] or RT range

Note regarding Multiple RenderTargets (MRTs): There is only one set of
Pre/Post-Blend Color Clamp state variables, and therefore they apply to all RTs (i.e.,
for each separate RT-Write DataPort message). If all RTs have the same format, then
these controls can be programmed with the same flexibility as if there was only one
RT. However, if the RTs can have differing formats, then software must ensure that
the shared control settings make sense for each RT format. For example, specifying a
pre-blend and post-blend clamp to RT-range will work for any combination of RT
formats, while specifying a pre-blend clamp to [-1,1] when using a UNORM+SNORM
MRT likely won’t produce meaningful results in the UNORM RT.

9.1.5.1.1 Pre-Blend Color Clamping when Blending is Disabled

The clamping of source color components is controlled by Pre-Blend Color Clamp
Enable. If ENABLED, all source color components are clamped to the range specified
by Color Clamp Range. If DISABLED, no clamping is performed.

Programming Notes:

• Given the possibility of writing UNPREDICTABLE values to the Color Buffer, it is
expected and highly recommended that, when blending is disabled, software set
Pre-Blend Color Clamp Enable to ENABLED and select an appropriate Color
Clamp Range.

• When using SINT or UINT rendertarget surface formats, Blending must be
DISABLED. The Pre-Blend Color Clamp Enable and Color Clamp Range fields
are ignored, and an implied clamp to the rendertarget surface format is
performed.

9.1.5.1.2 Pre-Blend Color Clamping when Blending is Enabled

The clamping of source, destination and constant color components is controlled by
Pre-Blend Color Clamp Enable. If ENABLED, all these color components are
clamped to the range specified by Color Clamp Range. If DISABLED, no clamping is
performed on these color components prior to blending.

9.1.6 Color Buffer Blending

The Color Buffer Blending function is used to combine one or two incoming “source”
pixel color+alpha values with the “destination” color+alpha read from the
corresponding location in a RenderTarget.

Blending is enabled on a global basis by the Color Buffer Blend Enable state
variable (in COLOR_CALC_STATE). If DISABLED, Blending and Post-Blend Clamp

276

functions are disabled for all RenderTargets, and the pixel values (possibly subject to
Pre-Blend Clamp) are passed through unchanged.

If the Color Buffer Blend Enable state variable (in COLOR_CALC_STATE) is
ENABLED, then the RenderTarget’s Color Blend Enable bit (in SURFACE_STATE) is
used to determine if Blending is enabled or disabled. Note that each RenderTarget
has its own “local” Color Blend Enable state, so in Multi-RenderTarget scenarios some
RTs may have Blending enabled and other RTs may have Blending disabled.

DevBW-A,B Errata: The Color Blend Enable bit in SURFACE_STATE is not used, and
acts as if it is ENABLED for each RenderTarget. Blending is enabled or disabled only a
a global basis by Color Buffer Blend Enable state variable (in COLOR_CALC_STATE)

Programming Notes:

• Color Buffer Blending and Logic Ops must not be enabled simultaneously, or
behavior is UNDEFINED.

• Dual source blending:
⎯ [DevBW, DevCL-A] Not supported
⎯ [DevCL-B]: The DataPort only supports dual source blending with a SIMD8-

style message.

• Only certain surface formats support Color Buffer Blending. Refer to the Surface
Format tables in Sampling Engine. Blending must be disabled on a RenderTarget
if blending is not supported.

The incoming “source” pixel values are modulated by a selected “source” blend factor,
and the possibly gamma-decorrected “destination” values are modulated by a
“destination” blend factor. These terms are then combined with a “blend function”. In
general:

src_term = src_blend_factor * src_color

dst_term = dst_blend_factor * dst_color

color output = blend_function(src_term, dst_term)

If there is no alpha value contained in the Color Buffer, a default value of 1.0 is used
and, correspondingly, there is no alpha component computed by this function.

[DevCL-B]: Dual Source Blending: When using “Dual Source” Render Target Write
messages, the Source1 pixel color+alpha passed in the message can be selected as a
src/dst blend factor. See Table 9-1. In single-source mode, those blend factor
selections are invalid. If SRC1 is included in a src/dst blend factor and a DualSource
RT Write message is not utilized, results are UNDEFINED. Also, it is UNDEFINED to
utilize a DualSource RT Write message when Blending is disabled.

The blending of the color and alpha components is controlled with two separate (color
and alpha) sets of state variables. However, if the Independent Alpha Blend
Enable state variable in COLOR_CALC_STATE is DISABLED, then the “color” (rather
than “alpha”) set of state variables is used for both color and alpha. Note that this is
the only use of the Independent Alpha Blend Enable state – it does not control
whether Blending occurs, only how.

The following table describes the color source and destination blend factors controlled
by the Source [Alpha] Blend Factor and Destination [Alpha] Blend Factor state
variables in COLOR_CALC_STATE. Note that the blend factors applied to the R,G,B
channels are always controlled by the Source/Destination Blend Factor, while the

 277

blend factor applied to the alpha channel is controlled either by Source/Destination
Blend Factor or Source/Destination Alpha Blend Factor.

Table 9-1. Color Buffer Blend Color Factors

Blend Factor Selection Blend Factor Applied for R,G,B,A channels
(oN = output from PS to RT#N)

(o1 = 2nd output from PS in Dual-Souce mode
only)

(rtN = destination color from RT#N)
(CC = Constant Color)

BLENDFACTOR_ZERO 0.0, 0.0, 0.0, 0.0

BLENDFACTOR_ONE 1.0, 1.0, 1.0, 1.0

BLENDFACTOR_SRC_COLOR oN.r, oN.g, oN.b, oN.a

BLENDFACTOR_INV_SRC_COLOR 1.0-oN.r, 1.0-oN.g, 1.0-oN.b, 1.0-oN.a

BLENDFACTOR_SRC_ALPHA oN.a, oN.a, oN.a, oN.a

BLENDFACTOR_INV_SRC_ALPHA 1.0-oN.a, 1.0-oN.a, 1.0-oN.a, 1.0-oN.a

BLENDFACTOR_DST_COLOR rtN.r, rtN.g, rtN.b, rtN.a

BLENDFACTOR_INV_DST_COLOR 1.0-rtN.r, 1.0-rtN.g, 1.0-rtN.b, 1.0-rtN.a

BLENDFACTOR_DST_ALPHA rtN.a, rtN.a, rtN.a, rtN.a

BLENDFACTOR_INV_DST_ALPHA 1.0-rtN.a, 1.0-rtN.a, 1.0-rtN.a, 1.0-rtN.a

BLENDFACTOR_CONST_COLOR CC.r, CC.g, CC.b, CC.a

BLENDFACTOR_INV_CONST_COLOR 1.0-CC.r, 1.0-CC.g, 1.0-CC.b, 1.0-CC.a

BLENDFACTOR_CONST_ALPHA CC.a, CC.a, CC.a, CC.a

BLENDFACTOR_INV_CONST_ALPHA 1.0-CC.a, 1.0-CC.a, 1.0-CC.a, 1.0-CC.a

BLENDFACTOR_SRC_ALPHA_SATURATE f,f,f,1.0 where f = min(1.0 – rtN.a, oN.a)

The following table lists the supported blending operations defined by the Color Blend
Function state variable and the Alpha Blend Function state variable (when in
independent alpha blend mode).

278

Table 9-2. Color Buffer Blend Functions

Blend Function Operation (for each color component)

BLENDFUNCTION_ADD SrcColor*SrcFactor + DstColor*DstFactor

BLENDFUNCTION_SUBTRACT SrcColor*SrcFactor - DstColor*DstFactor

BLENDFUNCTION_REVERSE_SUBT
RACT

DstColor*DstFactor - SrcColor*SrcFactor

BLENDFUNCTION_MIN min (SrcColor*SrcFactor, DstColor*DstFactor)

Programming Note: This is a superset of the OpenGL
“min” function.

BLENDFUNCTION_MAX max (SrcColor*SrcFactor, DstColor*DstFactor)
Programming Note: This is a superset of the OpenGL
“max” function.

9.1.6.1 3DSTATE_CONSTANT COLOR

3DSTATE_CONSTANT_COLOR
Project: All Length Bias: 2

The 3DSTATE_CONSTANT_COLOR command is used to specify the Constant Color used in Color Buffer Blending. It is
a non-pipelined command.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 01h 3DSTATE_CONSTANT_COLOR Format: OpCode

15:8 Reserved Project: All Format: MBZ

7:0 DWord Length

Default Value: 3h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:0 Blend Constant Color Red

Project: All

Format: IEEE_Float FormatDesc

This field specifies the Red channel of the Constant Color used in Color Buffer Blending.

 279

3DSTATE_CONSTANT_COLOR
2 31:0 Blend Constant Color Green

Project: All

Format: IEEE_Float FormatDesc

This field specifies the Green channel of the Constant Color used in Color Buffer Blending.

3 31:0 Blend Constant Color Blue

Project: All

Format: IEEE_Float FormatDesc

This field specifies the Blue channel of the Constant Color used in Color Buffer Blending.

4 31:0 Blend Constant Color Alpha

Project: All

Format: IEEE_Float FormatDesc

This field specifies the Alpha channel of the Constant Color used in Color Buffer Blending.

9.1.7 Post-Blend Color Clamping

(See Pre-Blend Color Clamping above for a summary table regarding clamping)

Post-Blend Color clamping is available only if Blending is enabled.

If Blending is enabled, the clamping of blending output color components is controlled
by Post-Blend Color Clamp Enable. If ENABLED, the color components output from
blending are clamped to the range specified by Color Clamp Range. If DISABLED,
no clamping is performed at this point.

Regardless of the setting of Post-Blend Color Clamp Enable, when Blending is
enabled color components will be automatically clamped to (at least) the rendertarget
surface format range at this stage of the pipeline.

9.1.8 Color Quantization

[This is considered an implementation-specific topic, covered in the detailed hardware
design documents.]

9.1.9 Dithering

Dithering is used to give the illusion of a higher resolution when using low-bpp
channels in color buffers (e.g., with 16bpp color buffer). By carefully choosing an
arrangement of lower resolution colors, colors otherwise not representable can be
approximated, especially when seen at a distance where the viewer’s eyes will
average adjacent pixel colors. Color dithering tends to diffuse the sharp color bands
seen on smooth-shaded objects.

280

A four-bit dither value is obtained from a 4x4 Dither Constant matrix depending on
the pixel’s X and Y screen coordinate. The pixel’s X and Y screen coordinates are first
offset by the Dither Offset X and Dither Offset Y state variables (these offsets are
used to provide window-relative dithering). Then the two LSBs of the pixel's screen X
coordinate are used to address a column in the dither matrix, and the two LSBs of the
pixel's screen Y coordinate are used to address a row. This way, the matrix repeats
every four pixels in both directions.

The value obtained is appropriately shifted to align with (what would be otherwise)
truncated bits of the component being dithered. It is then added with the component
and the result is truncated to the bit depth of the component given the color buffer
format.

Figure 9-2. Dithering Process (5-Bit Example)

S S S S S D D D D

Significant Bits Bits for Dithering

Z Z Z Z

T T T T T X X X X

Truncated
Bits

Dithered Value
(either SSSSS
or SSSSS+1

Component Being Dithered (e.g., RGBA)

Value From Dither Matrix

14
0 8 2 10

12 4 6
3 11 1

15

9
7 13 5

Pixel y mod 4

0

1

2

3

0 1 2 3
Pixel x mod 4

Dither Matrix
addressed by 2 LSBs of

pixel x and y

dither_m.vsd

9.1.10 Buffer Update

The Buffer Update function is responsible for updating the pixel’s Stencil, Depth and
Color Buffer contents based upon the results of the Stencil and Depth Test functions.
Note that Kill Pixel and/or Alpha Test functions may have already discarded the pixel
by this point.

9.1.10.1 Stencil Buffer Updates

If and only if stencil testing is enabled, the Stencil Buffer is updated according to the
Stencil Fail Op, Stencil Pass Depth Fail Op, and Stencil Pass Depth Pass Op
state (or their backface counterparts if Double Sided Stencil Enable is ENABLED

 281

and the pixel is from a back-facing object) and the results of the Stencil Test and
Depth Test functions.

Stencil Fail Op and Backface Stencil Fail Op specify how/if the stencil buffer is
modified if the stencil test fails. Stencil Pass Depth Fail Op and Backface Stencil
Pass Depth Fail Op specify how/if the stencil buffer is modified if the stencil test
passes but the depth test fails. Stencil Pass Depth Pass Op and Backface Stencil
Pass Depth Pass Op specify how/if the stencil buffer is modified if both the stencil
and depth tests pass. The operations (on the stencil buffer) that are to be performed
under one of these (mutually exclusive) conditions is summarized in the following
table.

Table 9-3. Stencil Buffer Operations

Stencil Operation Description

STENCILOP_KEEP Do not modify the stencil buffer

STENCILOP_ZERO Store a 0

STENCILOP_REPLACE Store the StencilTestReference reference value

STENCILOP_INCRSAT Saturating increment (clamp to max value)

STENCILOP_DECRSAT Saturating decrement (clamp to 0)

STENCILOP_INCR Increment (possible wrap around to 0)

STENCILOP_DECR Decrement (possible wrap to max value)

STENCILOP_INVERT Logically invert the stencil value

Any and all writes to the stencil portion of the depth buffer are enabled by the Stencil
Buffer Write Enable state variable.

When writes are enabled, the Stencil Buffer Write Mask and Backface Stencil
Buffer Write Mask state variables provide an 8-bit mask that selects which bits of
the stencil write value are modified. Masked-off bits (i.e., mask bit == 0) are left
unmodified in the Stencil Buffer.

Programming Notes:
• If the Depth Buffer does not have a surface format of D32_FLOAT_S8X24_UINT or

D24_UNORM_S8_UINT, Stencil Buffer Write Enable must be DISABLED.
• The Stencil Buffer can be written even if depth buffer writes are disabled via

Depth Buffer Write Enable.

9.1.10.2 Depth Buffer Updates

Any and all writes to the Depth Buffer are enabled by the Depth Buffer Write
Enable state variable. If there is no Depth Buffer, writes must be explicitly disabled
with this state variable, or operation is UNDEFINED.

If depth testing is disabled or the depth test passed, the incoming pixel’s depth value
is written to the Depth Buffer. If depth testing is enabled and the depth test failed, the
pixel is discarded – with no modification to the Depth or Color Buffers (though the
Stencil Buffer may have been modified).

282

9.1.10.3 Color Gamma Correction

Computed RGB (not A) channels can be gamma-corrected prior to update of the Color
Buffer.

This function is automatically invoked whenever the destination surface (render
target) has an SRGB format (see surface formats in Sampling Engine). For these
surfaces, the computed RGB values are converted from gamma=1.0 space to
gamma=2.4 space by applying a ^(2.4) exponential function.

9.1.10.4 Color Buffer Updates

Finally, if the pixel has not been discarded by this point, the incoming pixel color is
written into the Color Buffer. The Surface Format of the color buffer indicates which
channel(s) are written (e.g., R8G8_UNORM are written with the Red and Green
channels only). The Color Buffer Component Write Disables from the Color
Buffer’s SURFACE_STATE provide an independent write disable for each channel of the
Color Buffer.

 283

9.2 Pixel Pipeline State Summary

9.2.1 COLOR_CALC_STATE

The following COLOR_CALC_STATE definition applies to devices.

Dword Bit Description

0 31 Stencil Test Enable: Enables StencilTest function of the Pixel Processing pipeline.

[DevBW,DevCL-A] Errata: See relevant errata in Depth Test Enable below.

Programming Notes:

• It is UNDEFINED to enable stencil test if a Stencil Buffer is not defined (i.e.,
when operating in 16bpp Depth mode)

• If any of the render targets are YUV format, this field must be disabled.

Format = Enable

 30:28 Stencil Test Function: This field specifies the comparison function used in the (front
face) StencilTest function.

Format = 3D_CompareFunction

0h: COMPAREFUNCTION_ALWAYS:

1h: COMPAREFUNCTION_NEVER:

2h: COMPAREFUNCTION_LESS:

3h: COMPAREFUNCTION_EQUAL:

4h: COMPAREFUNCTION_LEQUAL:

5h: COMPAREFUNCTION_GREATER:

6h: COMPAREFUNCTION_NOTEQUAL:

7h: COMPAREFUNCTION_GEQUAL:

 27:25 Stencil Fail Op: This field specifies the operation to perform on the Stencil Buffer when
the (front face) stencil test fails.

Note: if all three stencil ops (Stencil Fail, Stencil Pass Depth Fail, and Stencil Pass Depth
Pass) are KEEP, ZERO, or REPLACE, the stencil buffer is not read.

Format = 3D_StencilOperation =

0 = STENCILOP_KEEP

1 = STENCILOP_ZERO

2 = STENCILOP_REPLACE

3 = STENCILOP_INCRSAT

4 = STENCILOP_DECRSAT

5 = STENCILOP_INCR

6 = STENCILOP_DECR

7 = STENCILOP_INVERT

 24:22 Stencil Pass Depth Fail Op : This field specifies the operation to perform on the Stencil
Buffer when the (front face) stencil test passes but the depth pass fails.

Format = 3D_StencilOperation (see Stencil Fail Op)

284

Dword Bit Description

 21:19 Stencil Pass Depth Pass Op : This field specifies the operation to perform on the
Stencil Buffer when the (front face) stencil test passes and the depth pass passes (or is
disabled).

Format = 3D_StencilOperation (see Stencil Fail Op)

 18 Stencil Buffer Write Enable: Enables writes to the Stencil Buffer. If Stencil Test
Enable is disabled, writes to the stencil buffer are disabled independent of the setting of
this field.

[DevBW,DevCL-A] Errata: See relevant errata in Depth Test Enable below.

Programming Notes:

• When operating without a Stencil Buffer (i.e., when operating in 16bpp Depth
mode), it is UNDEFINED to enable stencil writes via this field.

Format = Enable

 17:16 Reserved : MBZ

 15 Double Sided Stencil Enable: Enable doubled sided stencil operations.

Programming Notes:

• Back-facing primitives have a vertex winding order opposite to the
currently selected Front Winding state.

• Culling of primitives is not affected by the double sided stencil state

• Back-facing primitives will be rendered, honoring all current device state,
as though it were a front-facing primitive with no implicitly overloaded
state.

Format = Boolean

0 = FALSE: Double Sided Stencil Disabled

1 = TRUE: Double Sided Stencil Enabled

 14:12 BackFace Stencil Test Function: This field specifies the comparison function used in
the StencilTest function.

Format = 3D_CompareFunction

0h: COMPAREFUNCTION_ALWAYS:

1h: COMPAREFUNCTION_NEVER:

2h: COMPAREFUNCTION_LESS:

3h: COMPAREFUNCTION_EQUAL:

4h: COMPAREFUNCTION_LEQUAL:

5h: COMPAREFUNCTION_GREATER:

6h: COMPAREFUNCTION_NOTEQUAL:

7h: COMPAREFUNCTION_GEQUAL:

 285

Dword Bit Description

 11:9 Backface Stencil Fail Op: This field specifies the operation to perform on the Stencil
Buffer when the stencil test fails.

Format = 3D_StencilOperation =

0 = STENCILOP_KEEP

1 = STENCILOP_ZERO

2 = STENCILOP_REPLACE

3 = STENCILOP_INCRSAT

4 = STENCILOP_DECRSAT

5 = STENCILOP_INCR

6 = STENCILOP_DECR

7 = STENCILOP_INVERT

 8:6 Backface Stencil Pass Depth Fail Op : This field specifies the operation to perform on
the Stencil Buffer when the stencil test passes but the depth pass fails.

Format = 3D_StencilOperation (see Stencil Fail Op)

 5:3 Backface Stencil Pass Depth Pass Op: This field specifies the operation to perform on
the Stencil Buffer when the stencil test passes and the depth pass passes (or is
disabled).

Format = 3D_StencilOperation (see Stencil Fail Op)

 2:0 Reserved : MBZ

1 31:24 Stencil Reference Value: This field specifies the stencil reference value to compare
against in the (front face) StencilTest function.

Format = U8.0

 23:16 Stencil Test Mask: This field specifies a bit mask applied to stencil test values. Both the
stencil reference value and value read from the stencil buffer will be logically ANDed with
this mask before the stencil comparison test is performed.

Format = U8

 15:8 Stencil Write Mask: This field specifies a bit mask applied to stencil buffer writes. Only
those stencil buffer bits corresponding to bits set in this mask will be modified.

Format = U8

 7:0 BackFace Stencil Reference Value: This field specifies the stencil reference value to
compare against in the StencilTest function.

Format = U8.0

2 31:24 Backface Stencil Test Mask: This field specifies a bit mask applied to backface stencil
test values. Both the stencil reference value and value read from the stencil buffer will
be logically ANDed with this mask before the stencil comparison test is performed.

Format = U8

 23:16 Backface Stencil Write Mask: This field specifies a bit mask applied to backface stencil
buffer writes. Only those stencil buffer bits corresponding to bits set in this mask will be
modified.

Format = U8

286

Dword Bit Description

 15 Depth Test Enable: Enables the DepthTest function of the Pixel Processing pipeline.

[DevBW,DevCL-A] Errata: Software must issue a PIPE_CONTROL command with the
Write Cache Flush Enable set before transitioning from write-only depth/stencil mode
(Depth Test Enable and Stencil Test Enable both DISABLED and Depth Buffer
Write Enable or Stencil Buffer Write Enable ENABLED) to read/write depth/stencil
mode (Depth Test Enable or Stencil Test Enable ENABLED), otherwise operation is
UNDEFINED.

Programming Notes:

• If any of the render targets are YUV format, this field must be disabled.

Format = Enable

 14:12 Depth Test Function: Specifies the comparison function used in DepthTest function.

Note: if the Depth Test Function is ALWAYS or NEVER, the depth buffer is not read.

Format = 3D_DepthTestFunction

0h: COMPAREFUNCTION_ALWAYS

1h: COMPAREFUNCTION_NEVER

2h: COMPAREFUNCTION_LESS

3h: COMPAREFUNCTION_EQUAL

4h: COMPAREFUNCTION_LEQUAL

5h: COMPAREFUNCTION_GREATER

6h: COMPAREFUNCTION_NOTEQUAL

7h: COMPAREFUNCTION_GEQUAL

 11 Depth Buffer Write Enable: Enables writes to the Depth Buffer.

[DevBW,DevCL-A] Errata: See relevant errata in Depth Test Enable above.

Programming Notes:

• A Depth Buffer must be defined before enabling writes to it, or operation is
UNDEFINED.

Format = Enable

 10:1 Reserved : MBZ

 0 Logic Op Enable: Enables the LogicOp function of the Pixel Processing pipeline.

[DevBW,DevCL-A] Errata: See relevant errata in Color Buffer Blend Enable
description below.

Programming Notes:

• Enabling LogicOp and Color Buffer Blending at the same time is UNDEFINED

Format = Enable

3 31:16 Reserved : MBZ

 15 Alpha Test Format

This field selects the format for Alpha Reference Value and the format in which Alpha
Test is performed.

Programming Notes:

• If the render target format is UNORM, this field must be set to
ALPHATEST_UNORM8.

0 = ALPHATEST_UNORM8

1 = ALPHATEST_FLOAT32

 287

Dword Bit Description

 14 Reserved : MBZ

 13 Independent Alpha Blend Enable: When enabled, the other fields in this instruction
control the combination of the alpha components in the Color Buffer Blend stage. When
disabled, the alpha components are combined in the same fashion as the color
components.

Note: See Source Blend Factor for a [DevBW,DevCL] Erratum which may require
this field to be ENABLED

Format = Enable

 12 Color Buffer Blend Enable: Enables the ColorBufferBlending (nee “alpha blending”)
function of the Pixel Processing Pipeline on a global basis. For Blending to be enabled,
the Color Blend Enable bit of the RenderTarget’s SURFACE_STATE must also be
ENABLED. (See Color Buffer Blending).

[DevBW-A,B] Errata: The Color Blend Enable bit in SURFACE_STATE is not used,
and acts as if it is ENABLED for each RenderTarget. Blending is enabled or disabled only
a a global basis by this Color Buffer Blend Enable state variable.

[DevBW,DevCL-A] Errata: Software must issue a PIPE_CONTROL command with the
Write Cache Flush Enable set before transitioning from write-only color mode (Color
Buffer Blend Enable and LogicOp Enable both DISABLED) to read/write color mode
(Color Buffer Blend Enable or LogicOp Enable ENABLED), otherwise operation is
UNDEFINED.

Programming Notes:

• Enabling LogicOp and ColorBufferBlending at the same time is UNDEFINED

Format = Enable

 11 Alpha Test Enable: Enables the AlphaTest function of the Pixel Processing pipeline.

Programming Notes:

• Alpha Test can only be enabled if all render targets have a surface format of a
UNORM or FLOAT type.

• Alpha Test is applied independently on each render target by comparing that
render target’s alpha value against the alpha reference value. If the alpha test
fails, the corresponding pixel write will be supressed only for that render target.
The depth/stencil update will occur if alpha test passes for any render target.

Format = Enable

 10:8 Alpha Test Function : This field specifies the comparison function used in the AlphaTest
function

Format = 3D_CompareFunction

0h: COMPAREFUNCTION_ALWAYS: Always pass

1h: COMPAREFUNCTION_NEVER: Never pass

2h: COMPAREFUNCTION_LESS: Pass if the value is less than the reference

3h: COMPAREFUNCTION_EQUAL: Pass if the value is equal to the reference

4h: COMPAREFUNCTION_LEQUAL: Pass if the value is less than or equal to the
 reference

5h: COMPAREFUNCTION_GREATER: Pass if the value is greater than the
 reference

6h: COMPAREFUNCTION_NOTEQUAL: Pass if the value is not equal to the
 reference

7h: COMPAREFUNCTION_GEQUAL: Pass if the value is greater than or equal to
 the reference

288

Dword Bit Description

 7:0 Reserved : MBZ

4 31:5 Color Calculator Viewport State Pointer: Specifies the 32-byte aligned address offset
of CC_VIEWPORT. This pointer is relative to the General State Base Address.

[DevBW-A] Errata BWT007: CC_VIEWPORT data pointed at by offsets from General
State Base must be contained within 32-bit physical address space (that is, must map to
memory pages under 4G.)

Format = GeneralStateOffset[31:5]

 4:0 Reserved : MBZ

5 31 Color Dither Enable: Enables dithering of colors (including any alpha component)
before they are written to the Color Buffer.

Format = Enable

 30 Round Disable Function Disable: Disables the round-disable function of the color
calculator. If this bit is zero, dithering is cancelled based on the data used by blend to
avoid drift. If this bit is one, this is not done.

Format = Disable

[DevBW]: this bit must be set to zero.

 29:20 Reserved : MBZ

 19:16 Logic Op Function: This field specifies the function to be performed (when enabled) in
the Logic Op stage of the Pixel Processing pipeline. Note that the encoding of this field is
one less than the corresponding “R2_” ROP code defined in WINGDI.H, and is a rather
contorted mapping of the OpenGL LogicOp encodings. However, this field was defined
such that, when the 4 bits are replicated to 8 bits, they coincide with the ROP codes used
in the Blter.

Note: if the Logic Op Function does not depend on “D”, the dest buffer is not read.

Format = 3D_LogicOpFunction:

0h: LOGICOP_CLEAR BLACK; all 0’s

1h: LOGICOP_NOR NOTMERGEPEN; NOT (S OR D)

2h: LOGICOP_AND_INVERTED MASKNOTPEN; (NOT S) AND D

3h: LOGICOP_COPY_INVERTED NOTCOPYPEN; NOT S

4h: LOGICOP_AND_REVERSE MASKPENNOT; S AND NOT D

5h: LOGICOP_INVERT NOT; NOT D

6h: LOGICOP_XOR XORPEN; S XOR D

7h: LOGICOP_NAND NOTMASKPEN; NOT (S AND D)

8h: LOGICOP_AND MASKPEN; S AND D

9h: LOGICOP_EQUIV NOTXORPEN; NOT (S XOR D)

Ah: LOGICOP_NOOP NOP; D

Bh: LOGICOP_OR_INVERTED MERGENOTPEN; (NOT S) OR D

Ch: LOGICOP_COPY COPYPEN; S

Dh: LOGICOP_OR_REVERSE MERGEPENNOT; S OR NOT D

Eh: LOGICOP_OR MERGEPEN; S OR D

Fh: LOGICOP_SET WHITE; all 1’s

 289

Dword Bit Description

 15 Statistics Enable: If ENABLED, the pixel pipeline will engage in statistics gathering. If
DISABLED, statistics information associated with this FF stage will be left unchanged.

Programming Notes:

• If this field is enabled, Statistics Enable in WM_STATE should also be set, and
when this field is disabled, Statistics Enable in WM_STATE should also be
clear. Both functions contribute to the PS_DEPTH_COUNT, so having either
one set without the other set will result in an UNPREDICTABLE value for
PS_DEPTH_COUNT.

Format = Enabled

 14:12 Alpha Blend Function: This field specifies the function used to combine the alpha
components in the Color Buffer blend stage of the Pixel Pipeline when the
IndependentAlphaBlend state is enabled.

Format = 3D_ColorBufferBlendFunction :

0 = BLENDFUNCTION_ADD

1 = BLENDFUNCTION_SUBTRACT

2 = BLENDFUNCTION_REVERSE_SUBTRACT

3 = BLENDFUNCTION_MIN

4 = BLENDFUNCTION_MAX

5-7 = Reserved

290

Dword Bit Description

 11:7 Source Alpha Blend Factor: Controls the “source factor” in alpha Color Buffer Blending
stage.

Note: For the source/destination alpha blend factors, the encodings indicating “COLOR”
are the same as the encodings indicating “ALPHA”, as the alpha component of the color
is selected.

See Source Blend Factor for [DevBW,DevCL] Errata

Format = 3D_ColorBufferBlendFactor

00h: Reserved

01h: BLENDFACTOR_ONE

02h: BLENDFACTOR_SRC_COLOR

03h: BLENDFACTOR_SRC_ALPHA

04h: BLENDFACTOR_DST_ALPHA

05h: BLENDFACTOR_DST_COLOR

06h: BLENDFACTOR_SRC_ALPHA_SATURATE (See Source Blend Factor for
[DevBW,DevCL] Errata)

07h: BLENDFACTOR_CONST_COLOR

08h: BLENDFACTOR_CONST_ALPHA

09h: Reserved

0Ah: Reserved

11h: BLENDFACTOR_ZERO

12h: BLENDFACTOR_INV_SRC_COLOR

13h: BLENDFACTOR_INV_SRC_ALPHA

14h: BLENDFACTOR_INV_DST_ALPHA

15h: BLENDFACTOR_INV_DST_COLOR

17h: BLENDFACTOR_INV_CONST_COLOR

18h: BLENDFACTOR_INV_CONST_ALPHA

19h: Reserved

1Ah: Reserved

 6:2 Destination Alpha Blend Factor: Controls the “destination factor” in alpha Color Buffer
Blending stage.

Format = 3D_ColorBufferBlendFactor

See Source Blend Factor for [DevBW,DevCL] Errata

Refer to Source Alpha Blend Factor for encodings.

 1:0 Reserved : MBZ

 291

Dword Bit Description

6 31:29 Color Blend Function: This field specifies the function used to combine the color
components in the ColorBufferBlending function of the Pixel Processing Pipeline. If
Independent Alpha Blend Enable is disabled, this field will also control the blending of
the alpha components in the ColorBufferBlending function.

Format = 3D_ColorBufferBlendFunction

0 = BLENDFUNCTION_ADD

1 = BLENDFUNCTION_SUBTRACT

2 = BLENDFUNCTION_REVERSE_SUBTRACT

3 = BLENDFUNCTION_MIN

4 = BLENDFUNCTION_MAX

 28:24 Source Blend Factor: Controls the “source factor” in the ColorBufferBlending function.

Format = 3D_ColorBufferBlendFactor

[DevBW,DevCL] Erratum: Use of BLENDFACTOR_SRC_ALPHA_SATURATE for a source
or dest blend factor yields an incorrect Alpha blend factor for R32G32B32A32_FLOAT
RTs. The suggested SW workaround is (for at least R32G32B32A32_FLOAT RTs) to set
Independent Alpha Blend Enable to ENABLED and program the Alpha Blend factor(s)
to BLENDFACTOR_ONE as required – offering the same functionality.

[DevBW,DevCL] Erratum: If (a) BLENDFACTOR_SRC_ALPHA_SATURATE is specified,
and (b) either src or dest is contains a NaN value, then the R/G/B channels of the blend
output are UNDEFINED.

Refer to Source Alpha Blend Factor for encodings.

 23:19 Destination Blend Factor: Controls the “destination factor” in the ColorBufferBlending
function.

Format = 3D_ColorBufferBlendFactor

See Source Blend Factor for [DevBW,DevCL] Errata

Refer to Source Alpha Blend Factor for encodings.

 18:17 X Dither Offset: Specifies offset to apply to pixel X coordinate LSBs when accessing
dither table.

Format = U2

 16:15 Y Dither Offset: Specifies offset to apply to pixel Y coordinate LSBs when accessing
dither table.

Format = U2

 14:4 Reserved : MBZ

292

Dword Bit Description

 3:2 Color Clamp Range: Specifies the clamped range used in Pre-Blend and Post-Blend
Color Clamp functions if one or both of those functions are enabled. Note that this range
selection is shared between those functions. This field is ignored if both of the Color
Clamp Enables are disabled.

0 = COLORCLAMP_UNORM: Clamp Range [0,1]

1 = COLORCLAMP_SNORM: Clamp Range [-1,1]

2 = COLORCLAMP_RTFORMAT: Clamp to the range of the RT surface format (Note: The
Alpha component is clamped to FLOAT16 for R11G11B10_FLOAT format).

3 = Reserved

[DevBW,DevCL] Erratum: If (a) Post-Blend Color Clamp Enable is set, and (b)
COLORCLAMP_UNORM ([0,1]) or COLORCLAMP_SNORM ([-1,1]) range is specified, and
(c) the rendertarget has a less-than-32-bit floating point format (float16 or
R11G11B10_FLOAT), and (d) one of the color channels contains a NaN value, then the
output is UNDEFINED (at very least the NaN is not preserved in the output).

 1 Pre-Blend Color Clamp Enable: This field specifies whether the source, destination
and constant color channels are clamped prior to blending, regardless of whether
blending is enabled.

If DISABLED, no clamping is performed prior to blending.

If ENABLED, all inputs to the blend function are clamped prior to the blend to the range
specified by Color Clamp Range.

Programming Notes:

• See table in Pre-Blending Color Clamp subsection for programming restrictions
as a function of RT format.

• This field is ignored (treated as DISABLED) for UINT and SINT RT surface
formats. Blending is not supported for those RT surface formats. The device
will automatically clamp source color channels to the respective RT surface
range.

Format = Enable

 0 Post-Blend Color Clamp Enable: If blending is enabled, this field specifies whether the
blending output channels are first clamped to the range specified by Color Clamp
Range. Regardless of whether this clamping is enabled, the blending output channels
will be clamped to the RT surface format just prior to being written.

Programming Notes:

• See table in Pre-Blending Color Clamp subsection for programming restrictions
as a function of RT format.

• This field is ignored (treated as DISABLED) for UINT and SINT RT surface
formats. Blending is not supported for those RT surface formats. The device
will automatically clamp source color channels to the respective RT surface
range.

• See Color Clamp Range for a [DevBW,DevCL] Erratum

Format = Enable

7 31:0 Alpha Reference Value: This field specifies the alpha reference value to compare
against in the Alpha Test function.

If Alpha Test Format == ALPHATEST_UNORM8

Format = UNORM8 (upper 24 bits MBZ)

If Alpha Test Format == ALPHATEST_FLOAT32

Format = IEEE_FP

 293

9.2.2 CC_VIEWPORT

The viewport state is stored as an array of up to 16 elements, each of which contains
the DWords described here. The start of each element is spaced 2 DWords apart. The
first element of the viewport state array is aligned to a 32-byte boundary.

DWord Bit Description

0 31:0 Minimum Depth: Indicates the minimum depth. The interpolated or computed depth is
clamped to this value prior to the depth test.

Format = IEEE_Float

1 31:0 Maximum Depth: Indicates the maximum depth. The interpolated or computed depth
is clamped to this value prior to the depth test.

Format = IEEE_Float

9.3 Other Pixel Pipeline Functions

9.3.1 Statistics Gathering

If Statistics Enable is set in WM_STATE and in CC_STATE, the PS_DEPTH_COUNT
register (see Memory Interface Registers in Volume Ia, GPU) will be incremented once
for each pixel that passes the depth, stencil and alpha tests. Note that each of these
tests is treated as passing if disabled. This count is accurate regardless of whether
Early Depth Test Enable is set. In order to obtain the value from this register at a
deterministic place in the primitive stream without flushing the pipeline, however, the
3DCONTROL command must be used. See the 3D Pipeline chapter in this volume for
details on 3DCONTROL.

[DevBW-A] Errata BWT008: PS_DEPTH_COUNT cannot be accurately read using
PIPE_CONTROL. Attempting to do so will result in an UNDEFINED value being written
out to the PIPE_CONTROL target address.

§§

294

 295

10 Media and General Purpose
Pipeline

10.1 Introduction

This section covers the programming details for the media (general purpose) fixed
function pipeline. The media pipeline is positioned in parallel with the 3D fixed
function pipeline. It is so named as its initial (and primary) usage is to provide media
functionalities and it does have media specific fixed function capability. However, the
fixed functions are designed to have the general capability of controlling the shared
functions and resources, feeding generic threads to the Execution Units to be
executed, and interacting with such generic threads during run time. The media
pipeline can be used for non-media applications, and therefore, can also be referred to
as the general purpose pipeline. For the rest of this chapter, we will refer this fixed
function pipeline as the media pipeline, keeping in mind its general purpose capability.

Concurrency of the media pipeline and the 3D pipeline is not supported. In other
words, only one pipeline can be activated at a given time. Switching between the two
pipelines within a single context is supported using the MI_PIPELINE_SELECT
command.

The followings are some media application examples that can be mapped onto the
media pipeline. All these applications are functional; however, what level of
performance can be achieved depends on the hardware configuration and is beyond
the scope of this document.

• MPEG-2 decode acceleration with HWMC

• MPEG-2 decode acceleration with IS/IDCT and forward

• MPEG-2 decode acceleration with VLD and forward

• AVC decode acceleration with HWMC and forward including Loop Filter

• VC1 decode acceleration with HWMC and forward including Loop Filter

• Advanced deinterlace filter (motion detected or motion compensated deinterlace
filter)

• Video encode acceleration (with various level of hardware assistant)

296

10.1.1 Terminologies

Term Definition

AVC Advanced Video Coding. An international video coding standard jointly
developed by MPEG and ITU. It is also known as H.264 (ITU), or
MPEG-4 Part 10 (MPEG).

Child Thread A thread corresponding to a leaf-node or a branch-node in a thread
generation hierarchy. All thread originated from kernels running on the
GEN4 execution units are child threads.

EOB End of Block. It is a 1-bit flag in the non-zero DCT coefficient data
structure indicating the end of an 8x8 block in a DCT coefficient data
buffer.

IDCT Inverse Discrete Cosine Transform. It is the stage in the video
decoding pipe between IQ and MC.

ILDB In-loop Deblocking Filter – the deblocking filter operation in the
decoding loop. It is a stage after MC in the video decoding pipe

IQ Inverse Quantization. It is a stage in the video decoding pipe between
IS and IDCT.

IS Inverse Scan. It is a stage in the video decoding pipe between VLD
and IQ. In this stage, a sequence of none-zero DCT coefficients are
converted into a block (e.g. an 8x8 block) of coefficients. VFE unit has
fixed functions to support IS for MPEG-2.

IT Inverse Integer Transform. It is the stage in AVC or VC1 video
decoding pipe between IQ and MC.

MPEG Motion Picture Expert Group. MPEG is the international standard body
JTC1/SC29/WG11 under ISO/IEC that has defined audio and video
compression standards such as MPEG-1, MPEG-2, and MPEG-4, etc.

MC Motion Conpensation. It is part of the video decoding pipe.

MVFS Motion Vector Field Selection – a four-bit field selecting reference fields
for the motion vectors of the current macroblock.

PRT Persistent Root Thread is in the context of Advanced Scheduler, where
the thread supports midstream interruptability for fine grain context
switch. A persistent root thread in general stays in the system for a
long period of time. It is normally a parent thread. Only one PRT is
allowed in the system. Upon context switch interrupt, instead of
proceeding to completion, a PRT can save its software context and
terminate. Hardware is responsible of re-dispatching the incomplete
PRT at context restore, and a PRT can continue operations from that
previously left-over state.

Parent Thread A thread corresponding to a root-node or a branch-node in thread
generation hierarchy. A parent thread may be a root thread or a child
thread depending on its position in the thread generation hierarchy.

Root Thread A thread corresponding to a root-node in a thread generation
hierarchy. In the GEN4 general-purpose pipeline, all threads originated
from VFE unit are root threads.

Synchronized Root
Thread

A root thread that is dispatched by TS upon a ‘dispatch root thread’
message.

 297

Term Definition

TS Thread Spawner. It is the second (and the last) fixed function in the
GEN4 general-purpose pipeline.

Unsynchronized
Root Thread

A root thread that is automatically dispatched by TS.

VFE Video Front End. It is the first fixed function in the GEN4 general-
purpose pipeline.

VLD Variable Length Decode. It is the first stage of the video decoding pipe
that consists mainly of bit-wide operations. GEN4 supports hardware
MPEG-2 VLD acceleration in the VFE fixed function stage.

298

10.2 Media Pipeline Overview

The media (general purpose) pipeline consists of two fixed function units: Video Front
End (VFE) unit and Thread Spawner (TS) unit. VFE unit interfaces with the Command
Streamer (CS), writes thread payload data into the Unified Return Buffer (URB) and
prepares threads to be dispatched through TS unit. VFE unit also contains a hardware
Variable Length Decode (VLD) engine for MPEG-2 video decode. TS unit is the only
unit of the media pipeline that interfaces to the Thread Dispatcher (TD) unit for new
thread generation. It is responsible of spawning root threads (short for the root-node
parent threads) originated from VFE unit and spawning child threads (can be either a
leaf-node child thread or a branch-node parent thread) originated from the Execution
Units (EU) by a parent thread (can be a root-node or a branch-node parent thread).

The fixed functions, VFE and TS, in the media pipeline, in most cases, share the same
basic building blocks as the fixed functions in the 3D pipeline. However, there are
some unique features in media fixed functions as highlighted by the followings.

• VFE manages URB and only has write access to URB; TS does not interface to
URB.

• When URB Constant Buffer is enabled, VFE forwards TS the URB Handler for the
URB Constant Buffer received from CS.

• TS interfaces to TD; VFE does not.

• TS can have a message directed to it like other shared functions (and thus TS has
a shared function ID), and it does not snoop the Output Bus as some other fixed
functions in the 3D pipeline do.

• A root thread generated by the media pipeline can only have up to one URB return
handle.

• If a root thread has a URB return handle, VFE creates the URB handle for the
payload to initiating the root thread and also passes it alone to the root thread as
the return handle. The root thread then uses the same URB handle for child thread
generation.

• If URB Constant Buffer is enabled and an interface descriptor indicates that it is
also used for the kernel, TS requests TD to load constant data directly to the
thread’s register space. For root thread, constant data are loaded after R0 and
before the data from the other URB handle. For child thread, as the R0 header is
provided by the parent thread, Thread Spawner splits the URB handles from the
parent thread into two and inserts the constant data after the R0 header.

• A root thread must terminate with a message to TS. A child thread should also
terminate with a message to TS.

• High streaming performance of indirect media object load is achieved by utilizing
the large vertex cache available in the Vertex Fetch unit (of the 3D pipeline).

[DevBW] Erratum: DevBW doesn’t not have MPEG-2 VLD hardware. Therefore,
software cannot use the VLD mode of the Media_Object command.

[DevBW-A] Erratum: Using vertex cache in Vertex Fetch unit to speed up streaming
of indirect media data load is not available on DevBW-A. On DevBW-A, indirect media
data are loaded directly from CS to VFE.

 299

Figure 10-1. Top level block diagram of the Media Pipeline

To EU’s

Output Bus (From EU’s)

Command
Streamer

Video Front
End

Thread
Spawner Thread

Dispatcher

Sideband S
ignals

Unified Return
Buffering

Vertex Fetch

Indirect Data*

10.3 Programming Media Pipeline

10.3.1 Command Sequence

Media pipeline uses a simple programming model. Unlike the 3D pipeline, it does not
support pipelined state changes. Any state change requires an MI_FLUSH or
PIPE_CONTROL command. When programming the media pipeline, it should be
cautious to not use the pipelining capability of the commands described in the
Graphics Processing Engine chapter.

The basic steps in programming the media pipeline are listed below. Some of the
steps are optional; however, the order must be followed strictly. Some usage
restrictions are highlighted for illustration purpose. For details, reader should refer to
the respective chapters for these commands.

• Special Requirements for Each Context Initialization

o Always initialize the URB fence (with a URB_FENCE command) before
the first pipeline select command (PIPELINE_SELECT).

o Always initialize the pipeline state pointer (with a
STATE_BASE_ADDRESS command) before the first pipeline select
command.

300

• Step 1: MI_FLUSH/PIPE_CONTROL

o This step is mandatory.

o Programmer may choose not to flush certain caches to improve
performance.

o Multiple such commands in step 1 are allowed, but not recommended
for performance reason.

o [DevBW-B, DevBW-C, DevCLN]

 MI_LOAD_REGISTER_IMM

 It is used to load an MMIO register to disable the vertex cache
for indirect media object load. The register is 0x2124 and the
bit is 15.

• Address = 0x2124

• Data = 0x10000000

 MI_FLUSH

 MI_LOAD_REGISTER_IMM

 This command is optional for this step. It is only required
when indirect object load is used subsequently by
MEDIA_OBJECT commands.

 IF present, it is used to load an MMIO register to enable the
vertex cache for indirect media object load. The register is
0x2124 and the bit is 15.

• Address = 0x2124

• Data = 0x10001000

• Step 1.5: SF_STATE + URB_FENCE Errata

o When switching from 3D context to Media context, the following
sequence must be sent before the PIPE_SELECT command.

 SF_STATE command must be sent down to set the “Number of
URB Entries” to “0”.

 URB_FENCE command must be sent down to set the “URB
Fence” for all 3D units to “0”, including CS, VS, GS, CL, ans
SF.

• Step 2: PIPELINE_ SELECT

o This step is optional. This command can be omitted if it is known that
within the same context media pipeline was selected before Step 1.

o Multiple such commands in step 2 are allowed, but not recommended
for performance reason.

o If this command is issued, it must be followed by a URB_FENCE
command (step 3).

• Step 3: URB_FENCE

o This step is optional. This command can be omitted if URB fence needs
not to be changed. However, as mentioned above, if a
PIPELINE_SELECT command is issued, this command is then required.

o If present, only one URB_FENCE command in step 3 is allowed.
Hardware behavior is undefined if more than one URB_FENCE
commands are issued in this step.

 301

• Step 4: Configuring pipeline states

o STATE_BASE_ADDRESS

 This command is mandatory for this step (i.e. at least one).

 Multiple such commands in this step are allowed. The last one
overwrites previous ones.

 This command must precede any other state commands
below.

 Particularly, the fields Indirect Object Base Address and
Indirect Object Access Upper Bound are used to control
indirect object load.

 Note: This command may be inserted before (and after) any
commands listed in the previous steps (Step 1 to 3). For
example, this command may be placed in the ring buffer while
the others are put in a batch buffer.

o The following state commands can be issued in arbitrary order.

o MEDIA_STATE_POINTERS

 This command is mandatory for this step (i.e. at least one).

 Multiple such commands in this step are allowed. The last one
overwrites previous ones.

o CS_URB_STATE

 This command is optional for this step. Note that if
CS_URB_STATE command is present, there will be at least one
MEDIA_STATE_POINTERS command in this step (as mentioned
above).

 Multiple such commands in this step are allowed. The last one
overwrites previous ones.

 If present, “Number of URB Entries” must be 0 if no URB entry
is allowed to CS by URB_FENCE command.

 “Number of URB Entries” must be set to 1 as media pipeline
does not support pipelined CONSTANT_BUFFER command (see
step 5).

o STATE_PREFETCH

 This command is optional for this step.

o STATE_SIP

 This command is optional for this step. It is only required
when SIP is used by the kernels.

o 3DSTATE_VERTEX_ELEMENTS ([DevBW-B, DevBW-C, DevCLN]
only. For other products, this command cannot be issued as indirect
object load is fully described by each MEDIA_OBJECT command.)

 This command is optional for this step. It is only required
when indirect object load is used subsequently by
MEDIA_OBJECT commands.

302

 If present, only the following programming is allowed.
Hardware behavior with other programming is undefined,

• Two elements need to be programmed

• Vertex Element 0

o Vertex Buffer Index = 0

o Valid = True

o Surface Format = 0x002

o Source Element Offset = 0x0

o Component Control 0,1,2,3 = 0x1

o Destination Offset = 0x0

• Vertex Element 1

o Vertex Buffer Index = 0

o Valid = True

o Surface Format = 0x002

o Source Element Offset = 0x10

o Component Control 0,1,2,3 = 0x1

o Destination Offset = 0x10

o 3DSTATE_VERTEX_BUFFERS ([DevBW-B, DevBW-C, DevCLN] only.
For other products, this command cannot be issued as indirect object
load is fully described by each MEDIA_OBJECT command.)

 This command is optional for this step. It is only required
when indirect object load is used subsequently by
MEDIA_OBJECT commands.

 If present, only the following programming is allowed.
Hardware behavior with other programming is undefined,

• Only 1 vertex buffer

• Buffer Access Type : Vertex Data

• Buffer Pitch : 0x20

• Buffer Start Address : <Indirect Data Address>

o When VFE is in Generic Mode, the vertex
buffer base address can be byte aligned. The
restriction is that indirect data size of each
MEDIA_OBJECT command must be a multiple
of 32 bytes.

o When VFE is either in VLD mode or IS mode,
the indirect data size may not be multiple of
32 bytes (that’s OK). However, it is required
that the vertex buffer to be programmed to be
32-byte aligned. All indirect data must be
included in the vertex buffer programmed.

• Max index is always set to 0 (i.e., disabled)

• Step 5: CONSTANT_BUFFER

o This step is optional. However, it is required (as a software
workaround) when 3DPRIMITIVE commands are used subsequently to
load indirect object data.

 303

o If present, only one such command is allowed. Hardware behavior is
undefined if more than one CONSTANT_BUFFER commands are issued
in the program sequence without a FLUSH in between.

• Step 6: Primitive commands

o 3DPRIMITIVE ([DevBW-B, DevBW-C, DevCLN] only. For other
products, this command cannot be issued as indirect object load is
fully described by each MEDIA_OBJECT command.)

 This command is optional for this step. It is only required
when indirect object load is used subsequently by
MEDIA_OBJECT commands.

 If present, this command must precede one or many
MEDIA_OBJECT commands. If more than one MEDIA_OBJECT
commands are followed, the indirect object data for these
commands must be stored in memory contiguously (with
certain 32-byte aligned overlaps allowed, see XXX for details).

 If present, only the following programming is allowed.
Hardware behavior with other programming is undefined,

• Sequential access for the Vertex Buffer
• Primitive topology type is 0x01h = PointList
• Vertex Count = Size of the block to transfer for the

media indirect command in 32 byte quantities.
• Start Vertex Location = 0
• Base Vertex Location = 0

o MEDIA_OBJECT

 This step is optional, but it doesn’t make practical sense not
issuing media primitive commands after being through
previous steps to set up the media pipeline.

 Multiple such commands in step 6 can be issued to continue
processing media primitives.

Programming Notes on Improving Indirect Media Object Load Performance
[DevBW-C, DevCL]: The large vertex cache is used to stream indirect media object
loads for one or many MEDIA_OBJECT commands. By grouping multiple such
commands together significant streaming performance can be achieve. Here is an
example.

• 1 Vertex Buffer programmed with 2 Vertex components
• Vertex format is fixed to A32R32B32G32_UINT, this format is left untouched by

the vertex fetch

Here the number of vertices equal to the total size to be transferred for
MEDIA_OBJECT commands in 32-byte chunks If the first MEDIA_OBJECT command
transfers indirect data size of 4 64 byte quantities, the number of vertices would be 8,
If the second MEDIA_OBJECT command to be transferred and the total size is 8 64
byte quantities, number of vertices is 16.

However, using the Vertex Buffer in sequential mode as described above does post a
restriction that data for multiple MEDIA_OBJECT commands sharing the same
3DPRIMITIVE command must be stored in memory sequentially. When data are not
stored sequentially in memory, there are several approaches as listed below. Certain
experiments may be required in order to find which approach provides the best
performance for a given application.

• Preceding each MEDIA_OBJECT command with one 3DPRIMITIVE command.

304

• Grouping several 3DPRIMITIVE commands together followed by the
MEDIA_OBJECT commands using the fetched data from the 3DPRIMITIVE
commands.

• Using indexed vertex buffer to gather indirect media object data from non-
contiguous memory locations.

As a side effect, when vertex cache is used for media indirect object load, the
statistical counters in the VF unit may be affected during media operations. When 3D
operations and media operations are from different contexts, this side effect is not an
issue as the statistical counters are context save/restored. However, if 3D and media
operations are mixed within one context, it is advisable to turn off the statistical
counters before entering media operation (using vertex cache for indirect object load)
and turn them back on before returning to 3D operations. This can be achieved using
the 3DSTATE_VF_STATISTICS command.

10.3.2 Interrupt Latency

Command Streamer is capable of context switching between primitive commands.

For all independent threads, it is not much a problem. The interrupt latency is dictated
by the longest command that is likely to have the largest number of threads. For VLD
mode, such a command may be corresponding to a largest slice in a high definition
video frame. This is application dependent, there are not much host software can do.
For Generic mode, programmer should consider to constrain the compute workload
size of each thread.

In modes with child threads, a root thread may be persist in the system for long
period of time – staying until its child threads are all created and terminated.
Therefore, the corresponding primitive command may also last for long time. Software
designer should partition the workload to restrict the duration of each root thread. For
example, this may be achieved by partitioning a video frame and assigning separate
primitive commands for different data partitions.

In modes with synchronized root threads, a synchronized root thread is dependent on
a previous root or child thread. This means context switch is not allowed between the
primitive command for the synchronized root thread and the one for the depending
thread. So no command queue arbitration should be allowed between them. Software
designer should also restrict the duration of such non-interruptible primitive command
segments.

 305

10.4 Video Front End Unit

The Video Front End unit is the first fixed function unit in the media pipeline. It
processes MEDIA_OBJECT commands to generate root threads by preparing the
control (including interface descriptor pointers) and payload (data pushed into the
GRF) for the root threads.

VFE supports three modes of operation: Generic mode, Inverse Scan mode and VLD
mode.

• Generic mode: In the Generic mode, VFE serves as a conduit for general-purpose
kernels fully configured by the host software. There is no application specific
hardware enabled in this mode.

• IS (Inverse Scan) mode: The IS mode is a special mode for video decoding
when off-host IDCT acceleration is supported by kernels running on GEN4
execution units.

• VLD mode: It is a special mode for video decoding when MPEG-2 off-host VLD
acceleration is supported by GEN4 hardware.

The following figure illustrates the three modes of operation. The details can be found
in the rest of the sections.

Figure 10-2. VFE Functional Blocks and Modes of Operations

VLD
IS

VFE unit

“Generic mode”

“IS mode”

“VLD mode”

From CS
(or VF)

To TS

To CS
From TS

URB Entry
Manager URB Write

To URB
To/From
Global URB
Manager

State

From
State Variable
Manager

IS IT
“AVC-IT or
VC1-IT mode”

MEDIA_STATE_POINTERS command configures VFE in one of the three modes using.
Mode switching requires media pipeline state change.

306

10.4.1 Interfaces

VFE unit acquires its states from Sate Variable Manager, accesses URB handles from
the Global URB Manager, receives state and primitive commands from CS unit, writes
thread payloads to URB, and sends new thread to TS unit. It does not directly
interface to Thread Dispatcher. When VFE is ready for a thread, it sends the interface
descriptor pointer for the thread to TS.

10.4.1.1 Interface to Command Streamer

VFE interfaces to CS to acquire the control data, inline data and indirect data of
MEDIA_OBJECT commands. The interface supports the throughput of a given mode of
operation of VFE. For example, in VLD mode and IS mode, VFE consumes one dword
at a time, one dword to the variable length decoder or one dword to the inverse-scan
operator. In Generic mode, VFE is capable of a much higher throughput to push
indirect data (as thread payload data) into URB. As throughput for indirect data is
much higher than that of inline data, when large amount of user data need to be
passed through VFE unit, if applicable, it is encouraged to use indirect object load.

10.4.1.2 Interface to Thread Spawner

When a new root thread is fully assembled by VFE, VFE passes to TS the interface
descriptor pointer, the URB handle information, the debug information, etc. In
response to this, TS processes the thread information and sends a thread request to
TD.

VFE also transmits scratch memory base address received from State Variable
Manager to TS, and passes on the Constant URB handle received from CS.

VFE receives URB handle dereference signal from TS.

10.4.1.3 Interface to State Variable Manager

State Variable Manager is responsible of fetching media state structure from memory.
VFE only acquires its state variable upon the first primitive command. Therefore, host
software is allowed to change media states before issuing primitive commands. As
media pipeline does not support pipelined state change, a pipeline flush is required
before any state change to make sure that there are no outstanding primitive
commands in the pipeline.

10.4.1.4 Interface to Global URB Manager

VFE is responsible for managing URB handles for all root threads. Upon state change,
VFE allocates URB handles through the Global URB Manager. VFE manages the URB
handles in a circular buffer. URB handle referencing is in a strict order (taking from
the head of the circular buffer), even though the handle dereferencing may occur out
of order.

When starting a root thread, VFE reference one and only one URB handle, forwarding
it to TS. TS then forwards this handle to TD for thread dispatching.

 307

The URB handle for a root thread is used in two ways: (1) serving as buffer space for
VFE to assemble thread payload, and (2) serving as the return URB buffer for the root
thread to assemble child threads and their payload.

TS sends an indication to VFE when it is safe to dereference the URB handle, and VFE
dereferences it. After a URB handle has been dereferenced, VFE can assign it to a
new thread.

10.4.1.5 Interface to URB

VFE sends the assembled root thread payload to URB via a wide data bus. In Generic
mode, the data comes from the command as inline or indirect data objects. In IS
mode, the inline data is directly assembled as URB register wide payloads, and the
indirect data are assembled through the Inverse Scan logic. In VLD mode, the data is
decoded from the indirect object (i.e. bitstream data).

10.4.2 Mode of Operations

10.4.2.1 Generic Mode

In the Generic mode, VFE serves as a conduit for general-purpose kernels fully
configured by the host software. As there is no special fixed function logic used, the
Generic mode can also be viewed as a ‘pass-through’ mode. In this mode, VFE
generates a new thread for each MEDIA_OBJECT command. The payload contained in
the MEDIA_OBJECT command (inline and/or indirect) is streamed into URB. The
interface descriptor pointer is computed by VFE based on the interface descriptor
offset value and the interface descriptor base pointer stored in the VFE state. VFE then
forwards the interface descriptor pointer and the URB handle to TS to generate a new
root thread. Many media processing applications can be supported using the Generic
mode: MPEG-2 HWMC, frame rate conversion, advanced deinterface filter, to name a
few.

10.4.2.1.1 Interface Descriptor Selection

After populating the URB with the data, VFE notifies TS to initiate the thread. TS
needs an interface descriptor pointer to fetch the information for thread initiation. A
list of interface descriptors is arranged by the host software as a descriptor array in
memory, as shown in the media state model in Figure 10-8.

VFE obtains the interface descriptor base pointer from the VFE state structure. The
offset into the list of interface descriptors comes from MEDIA_OBJECT command.
Each interface descriptor has a fixed size. VFE uses a multiple of the fixed size and
the offset to add to the base pointer, and creates the final interface descriptor pointer
to be sent to TS.

TS fetches the interface descriptor through the Instruction State Cache (ISC) using
the interface descriptor pointer. TS then initializes the thread through the Thread
Dispatcher. The interface descriptor pointer is given to TS by VFE for a root thread and
by a thread for a child thread. The R0 header is formed by TS for a root thread and is
stored in URB by the parent thread for a child thread.

308

10.4.2.1.2 Scratch Space Allocation

TS handles the allocation of scratch space. Since TS does not have a normal state
interface, VFE receives the scratch space configuration with the VFE state, then
forwards the configuration to TS with the interface descriptor pointer.

10.4.2.2 IS Mode

In Inverse Scan (IS) mode, the Inverse Scan unit, designed to support MPEG-2
standard, is used. In particular, GEN4 architecture can be used to support off-host
IDCT acceleration for MPEG-2.

In this mode, a new thread is generated for each MEDIA_OBJECT command. One
MEDIA_OBJECT command corresponds to a macroblock. The indirect payload in the
command contains the non-zero DCT coefficients for all coded blocks in the
macroblock. Detailed data format can be found in section 10.7.2.2.

The indirect payload is streamed into the IS unit. IS unit process the non-zero DCT
coefficients on a block-by-block basis. The 16-bit non-zero coefficients are placed in
its location within an 8x8 block according to the (x,y) addresses. Hardware fills the
rest of the coefficients in the block to zero. The assembled DCT data blocks are then
written into URB.

Note that the index for a non-zero coefficient is in row-major order (x, y) address.
Host software is responsible of converting the coding scan order to this unified row-
major order (e.g. zig-zag scan or alternative scan order such as vertical scan found in
MPEG-2 or other coding standard).

Blocks that are not coded will not have coefficient data in the message to the kernel,
and the coded blocks are packed back to back. As the message size is variable, VFE
calculates the final message size according to the coded block pattern field before
sending it to TS.

Interface descriptor select and scratch memory allocation are handled in the same
way as in Generic mode.

10.4.2.3 VLD Mode

In VLD mode, both the VLD unit and the IS unit in VFE are used. The VLD unit is
specifically designed to support MPEG-2 variable length decoding. Each
MEDIA_OBJECT command contains compressed bitstream data associated with a slice.
A slice, according to MPEG-2 compressed video bitstream syntax show in Figure
 10-13, is the smallest unit that marked by byte-aligned start-code, allowing easy
parsing by host software. A slice contains one or more macroblocks. Unlike the other
two modes, one or many threads may be generated for each MEDIA_OBJECT
command. Each thread corresponds to a macroblock. The indirect payload in the
MEDIA_OBJECT command contains the bitstream data for a slice. The indirect payload
is streamed into the VLD unit. The decoded non-zero coefficients are then sent to the
IS unit. And then the IDCT data blocks (8x8 size) output from the IS unit are then
written into URB. For each macroblock, VFE generates the interface descriptor pointer
based the decoded macroblock type.

VFE partially decodes (VLD and IS) the MPEG-2 bitstream for a slice and assembles
resulting data on a macroblock by macroblock basis for threads running on EUs to

 309

complete the rest of the work. The macroblock-based thread (referred to as a post-
VLD thread hereafter) performs inverse quantization, inverse DCT, and motion
compensation in order to generate the final output picture. VFE also handles skipped
macroblocks so that each post-VLD thread operates on one and only one macroblock.

For bitstreams that are MPEG-2 standard compliant, the output from the VFE fixed
function hardware is bit accurate. Bit precision difference may be caused by the IDCT
implementation in the kernel. The IDCT kernel must meet the IEEE standard
requirement for IDCT.

For bitstreams that are not MPEG-2 standard compliant due to, for example, data
corruption, output from VFE fixed function may be unpredictable. That may result in
data corruption in the destination buffer after kernel operation. However, VFE fixed
function will continue functioning (without hanging).

VFE decodes the slice through the following three major stages: variable length
decode, inverse scan and output formatting.

10.4.2.3.1 Variable Length Decode

Variable Length Decode (VLD) stage contains the following sub-stages: data parser,
symbol decoder, and motion vector (MV) predictor.

Data Parser

Slice data are processed a dword at a time. Using the byte offset and bit offset
provided by the MEDIA_OBJECT command, data parser determines the start bit and
sends the slice data to the decoding stage.

Data parser tracks the length of the slice, which is provided by the MEDIA_OBJECT
command. Data parser uses the slice length and the starting offsets to calculate the
end of slice. When the end of slice is reached, data parser indicates end of slice to
symbol decoder and does not pass on any more data that comes from the command
stream until a new slice begins.

Symbol Decoder

Symbol decoder performs variable length decoding of the slice bitstream according to
the MPEG-2 standard. The decoder analyzes symbols in the bitstream and separates
them for further processing. For example, motion vector differentials are sent to
motion vector predictor but DCT coefficients are sent directly to IS stage.

Motion Vector Predictor

Motion Vector (MV) Predictor calculates the motion vectors based on the motion vector
differentials received from symbol decoder and the motion vector prediction values
maintained within MV Predictor, updates the motion vector prediction values
accordingly and performs additional arithmetic for dual prime motion vectors to
convert them to uni/bi-directional motion vectors. The output motion vectors are
relative to the current macroblock position.

310

10.4.2.3.2 Inverse Scan

IS unit process the non-zero DCT coefficients with their (x, y) location within an 8x8
block received from VLD on a block by block basis. For each new block of data, IS
initializes the 8x8 block storage to zero. For each non-zero coefficient received from
VLD, IS first sign-extend it to a 16-bit signed value and then place it in the block
storage at the location identified by its (x, y) address. When the end of block signal is
received from VLD, IS writes the assembled DCT data block into URB.

Only the coded blocks are assembled in the URB, and they are assembled back to
back. As the thread payload size is variable, VFE calculates the final message size
according to the coded block pattern field before sending the payload size to TS.

10.4.2.3.3 Output Formatting

Additional functionality after inverse scan formats the data that is sent as thread
payload to the kernel. Some of this functionality, such as expansion of skip
macroblocks and determination of second P field, is done by hardware to make the
kernel more efficient.

Skip Macroblocks

VFE processes skip macroblocks by separating them into individual macroblocks and
forming one thread for one macroblock. For each skip macroblock, hardware sets its
coded block pattern to 0, indicating that no error data is present. All contiguous skip
macroblocks have the same relative motion vector. Hardware also handles the
difference of skipped macroblocks in a P picture or a B picture as defined by MPEG-2
specification. According to MPEG-2 specification, skip macroblocks cannot extend
beyond the end of the current line.

Second Field

According to MPEG-2 specification, field prediction for a P field picture uses the most
recently decoded two fields as reference, namely, the most recently decoded reference
top field and the most recently decoded reference bottom field. As shown in
Figure 10-3, when the current P field is the first field of a frame, both of its reference
fields come from the same frame. When the current P field is the second field of a
frame, one of its reference fields comes from the same frame. This is illustrated in
Figure 10-4.

Detecting second field is important if reference frame selection is required. This is no
longer true for GEN4 as each reference field is specified by unique binding table index.
Each binding table index contains the pointer to the surface state, which contains not
only the field indication but also the base address of the frame buffer. Therefore, it is
up to the kernel developer to determine whether to use the Second Field information
provided by the hardware.

 311

VFE sets the second field indicator under the following conditions:

• Picture coding type is P picture

• Destination format is field

• Motion type may be field, 16x8 or dual prime

• Either:
⎯ Top field is first, and
⎯ Current field is field 1, and

OR
⎯ Top field is not first, and
⎯ Current field is field 0, and

Figure 10-3. Prediction for a P field picture that is a first field, which is (a) a top field,
or (b) a bottom field.

(a) (b)

Bottom
reference

field

Top
reference

field

Current
field

Top
reference

field

Current
field

Bottom
reference

field

Figure 10-4. Prediction for a P field picture that is a second field, which is (a) a top
field, or (b) a bottom field

(a) (b)

Bottom
reference

field

Top
reference

field

Current
field

Top
reference

field

Current
field

Bottom
reference

field

312

10.4.2.3.4 Handling Motion Vectors

Table 10-1 provides a summary of different motion types and associated properties.
For Frame_Motion_Type, there are three types of Prediction_Type: frame-based
prediction, field-based prediction and dual-prime prediction. For Field_Motion_Type,
there are three types of Prediction_Type: field-based prediction, dual-prime prediction
and 16x8 prediction.

Table 10-2 details the motion compensation operations for various frame motion types
and Table 10-3 depicts the motion compensation operations for various field motion
types.

Table 10-1. Summary of Motion Types

*_Motion_Type Prediction_Type Vector [r][s] Possible MV
Combinations in

Bitstream

Uses Motion
Vertical Field

Select

Frame Frame-based

[0][0] – 0
[0][1] – 1
[1][0] – 2
[1][1] – 3

None,0,1,0+1

No

Frame Field-based

[0][0] – 0
[0][1] – 1
[1][0] – 2
[1][1] – 3

0+2,1+3,
0+1+2+3

Yes

Frame Dual-Prime

[0][0] – 0
[0][1] – 1
[1][0] – 2
[1][1] – 3
[2][0] – 4
[3][0] – 6

0+4+6

(See Frame-Dual Prime
table) No

Field Field-based

[0][0] – 0
[0][1] – 1
[1][0] – 2
[1][1] – 3

None,
0,
1,
0+1

Yes

Field Dual-Prime

[0][0] – 0
[0][1] – 1
[1][0] – 2
[1][1] – 3
[2][0] – 4

0+4

(See Field-Dual Prime
table)

Yes

Field 16x8

[0][0] – 0
[0][1] – 1
[1][0] – 2
[1][1] – 3

0+2, 1+3,0+1+2+3

Yes

*Vectors 4 and 6 are the derived motion vectors (DMVs) for dual-prime prediction that are calculated by PR and placed in the
thread payload in the specified MVector position.

 313

Table 10-2. Motion Comp Operation for Pictures with Frame Motion Type

frame_motion
_type

forw
ard

backw
ard

intra

Motion vector
(v'[r][s][t])

C
om

m
and

HW
Mvector
(MV[r][s])

Prediction M
ap Prediction formed for MVFS

Frame-based‡ - - 1 v'[0][0][1:0] 0 - - None (motion vector is for concealment) -
v'[0][0][1:0] MV[0][0] Fwd frame, forward -
v'[0][1][1:0] MV[0][1] Back frame, backward -

Frame-based 1 0 0 v'[0][0][1:0] 2 MV[0][0] Fwd frame, forward -
Frame-based 0 1 0 v'[0][1][1:0] 2 MV[0][1] Back frame, backward -

Frame-based‡ 0
(1) 0 0 v'[0][0][1:0]*§ 2 MV[0][1] Fwd frame, forward -

v'[0][0][1:0] MV[0][0] Fwd top field, forward [0][0]
v'[1][0][1:0] MV[1][0] Fwd bottom field, forward [1][0]
v'[0][1][1:0] MV[0][1] Back top field, backward [0][1]
v'[1][1][1:0] MV[1][1] Back bottom field, backward [1][1]

Field-based 1 0 0 v'[0][0][1:0] MV[0][0] Fwd top field, forward [0][0]
v'[1][0][1:0] MV[1][0] Fwd bottom field, forward [1][0]

Field-based 0 1 0 v'[0][1][1:0] MV[0][1] Back top field, backward [0][1]
v'[1][1][1:0] MV[1][1] Back bottom field, backward [1][1]
v'[0][0][1:0] MV[0][0] Fwd top field, from same parity, forward [0][0] = 0
v'[0][0][1:0] MV[1][0] Fwd bottom field, from same parity, forward [1][0] = 1
v'[2][0][1:0]*† MV[0][1] Fwd top field, from opposite parity, forward [0][1] = 1
v'[3][0][1:0]*† MV[1][1] Fwd bottom field, from opposite parity, forward [1][1] = 0

NOTE - Motion vectors are listed in the order they appear in the bitstream
 ? the motion vector is only present if concealment_motion_vectors is one
 ‡ frame_motion_type is not present in the bitstream but is assumed to be Frame-based
 * These motion vectors are not present in the bitstream
 † These motion vectors are derived from vector’[0][0][1:0] as described in 7.6.3.6
 § The motion vector is taken to be (0; 0) as explained in 7.6.3.5

2

Field-based 1 1 0 4

Frame-based 1 1 0

4

4

Dual prime 1 0
(1) 0 4

314

Table 10-3. Motion Comp Operation with Field Motion Type

backw
ard

intra M otion vector

C
om

m
and

HW
M Vector 00 01 10 11 Prediction form ed for

- 1 v'[0][0][1:0]? None N/A - - -

None (m otion
vector is for
concealm ent)

v'[0][0][1:0] M V[0][0] Fwd Fwd x x whole fie ld,
forward

v'[0][1][1:0] M V[0][1] Back Back x x whole fie ld,
backward

Fwd (M 0) if
M VFS[0][0]=0

Dst (M 1) if
M VFS [0][0]=0

Dst (M 1) if
M VFS[0][0]=1

Fwd (M 0) if
M VFS [0][0]=1

1 0 v'[0][1][1:0] 2 M V[0][1] Back Back x x whole fie ld,
backward B -P ict only

0 0 v'[0][0][1:0]*§ 2 M V[0][0] Fwd Fwd Fwd w/
M VFS[0][0]=0

Fwd w/
M VFS [0][0]=1

whole fie ld,
forward

P -P ict only,
S am e parity.

v'[0][0][1:0] M V[0][0] Fwd Fwd x x upper 16x8
fie ld, forward

v'[1][0][1:0] M V[1][0] Fwd Fwd x x lower 16x8
fie ld, forward

v'[0][1][1:0] M V[0][1] Back Back x x upper 16x8
fie ld, backward

v'[1][1][1:0] M V[1][1] Back Back x x lower 16x8
fie ld, backward

Fwd (M 0) if
M VFS[0][0]=0

Dst (M 1) if
M VFS [0][0]=0

Dst (M 1) if
M VFS[0][0]=1

Fwd (M 0) if
M VFS [0][0]=1

Fwd (M 0) if
M VFS[1][0]=0

Dst (M 1) if
M VFS [1][0]=0

Dst (M 1) if
M VFS[1][0]=1

Fwd (M 0) if
M VFS [1][0]=1

v'[0][1][1:0] M V[0][1] Back Back x x upper 16x8
fie ld, backward

v'[1][1][1:0] M V[1][1] Back Back x x lower 16x8
fie ld, backward

v'[0][0][1:0] M V[0][0] Fwd
(M 0)

Fwd
(M 0)

Fwd (M 0) w/
M VFS [0][0]=0

Fwd (M 0) w/
M VFS[0][0]=1

whole fie ld,
from sam e
parity, forward

v'[2][0][1:0]*† M V[0][1] Fwd
(M 1)

Fwd
(M 1)

Dest (M 1) w/
M VFS [0][1]=1

Dest (M 1) w/
M VFS[0][1]=0

whole fie ld,
from opposite
parity, forward

P -P ict only
(SW forces
M V FS[0][0],
M V FS[0][1])

B -P ict only

B -P ict only

Prediction M ap (SecondPField |Bottom Field)

1 0 2 B -P ict only

0 0 v'[0][0][1:0] 2 M V[0][0] Fwd
(M 0)

Fwd
(M 0)

whole fie ld,
forward

0 0 v'[0][0][1:0] 2 M V[0][0] Fwd Fwd x x whole fie ld,
forward

1 0 4

Fwd

0 0

upper 16x8
fie ld, forward

v'[1][0][1:0] M V[1][0] Fwd
(M 0)

Fwd
(M 0)

lower 16x8
fie ld, forward

Fwdv'[0][0][1:0]

4

M V[0][0]

2

1 0

0
(1)
%

0

4

Notes: Motion vectors are listed in the order they appear in the bitstream.
? — The motion vector is only present if concealment_motion_vectors is one.
‡ — Field_motion_type is not present in the bitstream but is assumed to be Field-based.
* — These motion vectors are not present in the bitstream.
† — These motion vectors are derived from vector’[0][0][1:0] as described in 7.6.3.6.
§ — The motion vector is taken to be (0; 0) as explained in 7.6.3.5.

 315

% — Software converts the motion type. For Dual-prime case, software converts it to a bidirectional
prediction.

Remarks:
• Forward, Backward MV pairs always used for combined prediction (Bi-dir or Dual-Prime)
• MVs [0][0] and [0][1] can be to Fwd reference, Backward reference, or Destinsation buffer (for 2nd field case)
• MV [1][0] can be to a Fwd or Dest
• MV [1][1] is always to a Back
• (M0), (M1) stands for MIP_INFO setting for the first reference picture and the second reference picture. It is

particularly important to set correct M1 for P-pictures to deal with SecondField and DualPrime cases.
• Software converts the dual-prime case to a field-based bidirectional prediction with 2 MVs.

10.4.2.3.5 Dual Prime Handling

Dual prime prediction is only valid for a P-picture. In dual prime mode, each field will
have two predictions similar to the forward and backward predictions in a B-picture,
as the final prediction value for the field is the average of the two. One of the motion
vectors is provided by the bitstream and the other one is derived. Motion Vector
Predictor unit is responsible for converting all dual prime predictions to a forward and
backward field prediction according the Table 10-4 for P frame picture and Table 10-5
for P field picture.

Table 10-4. Converting Frame-Dual Prime Motion to 4MV

Prediction formed for:
Field / Parity

MPEG-2
MV[r][s]

Thread Payload
MV[r][s]

Motion Vertical Field Select (MVFS)

Top / Same [0][0] [0][0] Bit 0 = 0

Bottom / Same [0][0] [1][0] Bit 2 = 1

Not Used [0][1] -

Not Used [1][0] -

Not Used [1][1] -

Top / Opposite [2][0] [0][1] Bit 1 = 1

Bottom / Opposite [3][0] [1][1] Bit 3 = 0

MVFS = 6h

Table 10-5. Converting Field-Dual Prime Motion to 2MV

MotionVerticalFieldSelect Prediction formed for:
Field / Parity

MPEG-2
MV[r][s]

Thread Payload
MV[r][s]

Top Field Bottom Field

Whole field / Same [0][0] [0][0] Bit 0 = 0 Bit 0 = 1

Whole field / Opposite [2][0] [0][1] Bit 1 = 1 Bit 1 = 0

316

10.4.2.3.6 Interface Descriptor Selection

In VLD mode, the Interface Descriptor Offset field in the MEDIA_OBJECT command is
ignored by hardware. Instead, the interface descriptor offset is computed by hardware
based on the decoded macroblock parameters and a remapping table.

First a macroblock index is computed based on parameters such as picture structure,
motion type, prediction type, DCT type, intra-coding type and motion vector present
information. Table 10-6 provides the macroblock index table for a frame-picture
destination buffer (with Picture Structure = 11). Table 10-7 shows macroblock indices
for a field-picture destination buffer (with Picture Structure = 01 or 10). As Picture
Structure is a state variable that will not be changed until a pipeline flush, the
macroblock indices can be computed separately for different Picture Structure.

After the macroblock index is computed, it is used as the index into the Interface
Descriptor Remap Table to derive the final interface descriptor offset value. The
Interface Descriptor Remap Table is provided as part of the VLD state.

The interface descriptor offset value multiplied by the interface descriptor size is then
added to the interface descriptor base pointer to generate the interface descriptor
pointer for the post-VLD thread.

The last three columns in Table 10-6 and Table 10-7 indicate whether a macroblock
index is applicable for a given Picture Coding type (I, P or B). A ‘Y’ (or a ‘N’) means
the macroblock index on the row is valid (or invalid) for the Picture Type shown on the
column. Taking a frame picture destination for example, only macroblock indices 0
and 8 are valid for an I-picture; indices 0-3 and 8-11 are valid for a P-picture; and for
a B-picture, only indices 3 and 11 are not valid.

Developers can use the remap table for kernel development to fine-tune system
performance and reduce software complexity. For example, if the destination is a
frame picture, the kernel for a macroblock with dual-prime motion in a P-picture
(macroblock index = 3) may be identical to that for a macroblock with bidirection field
motion in a B picture (macroblock index = 7). A common set of interface descriptors
can be configured once for frame picture destinations, and reused without change
when the destination is of I-, P- and B- picture coding type.

In another case, if it is determined that kernel software will be responsible of handling
DCT types for a frame picture destination, then macroblock index i and i+8 , for i = 0
to 7, can be mapped to the same interface descriptor.

 317

Table 10-6. Macroblock indices for frame picture destination

Macroblock
Index

Interface Descriptor Kernel Function
(Frame Picture Destination)

I P B

0 I macroblock Y Y Y

1 Forward frame motion N Y Y

2 Forward field motion N Y Y

3 P picture, dual-prime motion N Y N

4 Backward frame motion N N Y

5 Backward field motion N N Y

6 Bidirectional frame motion N N Y

7 Bidirectional field motion N N Y

8 I macroblock w/ field DCT Y Y Y

9 Forward frame motion w/ field DCT N Y Y

10 Forward field motion w/ field DCT N Y Y

11 P picture, dual-prime motion w/ field DCT N Y N

12 Backward frame motion w/ field DCT N N Y

13 Backward field motion w/ field DCT N N Y

14 Bidirectional frame motion w/ field DCT N N Y

15 Bidirectional field motion w/ field DCT N N Y

Table 10-7. Macroblock indices for field picture destination

Macroblock
Index

Interface Descriptor Kernel Function
(Field Picture Destination)

I P B

0 I macroblock Y Y Y

1 Forward field motion N Y Y

2 Forward 16x8 motion N Y Y

3 P picture, dual-prime motion N Y N

4 Backward field motion N N Y

5 Backward 16x8 motion N N Y

6 Bidirectional field motion N N Y

7 Bidirectional 16x8 motion N N Y

318

10.4.3 Debug Counter

VFE contains a counter for software debug. This is a 24-bit free running counter that
increments each time a new root thread is delivered from VFE to TS, regardless
whether the thread is passed to VFE from Command Streamer (as in Generic mode or
IS mode) or created by VFE (as in VLD mode).

Software can choose to reset (initialize to the object ID) this free-running counter
upon a new primitive command or upon a state change. Software can also choose to
leave the Debug Counter value unchanged (frozen).

The Debug Counter is initialized to 0 after power up and hardware/software reset.

The following table shows the usage of the state fields controlling the debug counter –
Debug Counter Control field in VFE state.

Debug
Counter
Control

In Generic Mode or IS Mode In VLD Mode

00

Free Running Counter:

Debug counter maintains its value from
the previous VFE state and increment
by 1 for each new MEDIA_OBJECT
command.

It is used as a free running root thread
counter.

Free Running Counter:

Debug counter maintains its value from the
previous state and increment by 1 for each new
macroblock thread generated by the VLD/IS
hardware functions (e.g. may increment by many
for a MEDIA_OBJECT command).

As the media pipeline may be used for different
applications within the same context, the debug
counter is treated here as a free-running counter.

01 Frozen Counter:

Debug counter maintains its value from the previous VFE state and is unchanged by
subsequent MEDIA_OBJECT commands.

It may be used by a context that is not debugged.

10 Initialized Once:

Debug counter is initialized to the
Object_ID number in the first
MEDIA_OBJECT command after the
media pipeline state change. It is then
incremented by one for each
subsequent MEDIA_OBJECT command.

Properly setting the OBJECT_ID field
for the first MEDIA_OBJECT command
allows uniquely tracking of all the
threads in groups based on state
changes.

Initialized Once:

Debug counter is reset to the Object_ID number for
the first macroblock of the first slice after the media
pipeline state change and then increment for
subsequent macroblocks in the slice and for these
in subsequent slices.

Assuming VFE state change is at the beginning of
each frame, the debug counter is then the
macroblock count for a video frame. When new
OBJECT_ID is used for each frame, the debug
counter for a thread can be used to uniquely
determine a macroblock in a decoding video frame
sequence.

 319

Debug
Counter
Control

In Generic Mode or IS Mode In VLD Mode

11 Always Initialized:

Debug counter is reset to the
Object_ID number for every
MEDIA_OBJECT command.

Host software is in full control of the
debug counter field – unique number
should be assigned to the Object_ID
field for each command.

Reserved.

(This configuration is not allowed in VLD mode. In
VLD mode, the Debug counter can only be reset
after state change.)

Debug
Counter
Control

In AVC-IT, AVC-MC or VC1-IT mode

00

Free Running Counter:

Debug counter maintains its value from the previous VFE state and increment by 1 for each
new media primitive command.

It is used as a free running root thread counter.

01 Frozen Counter:

Debug counter maintains its value from the previous VFE state and is unchanged by
subsequent media primitive commands.

It may be used by a context that is not debugged.

10 Initialized Once:

Debug counter is initialized to the Object_ID number in the state field in VFE_STATE_EX after
the media pipeline state change. It is then incremented by one for each subsequent media
primitive command.

Properly setting the OBJECT_ID field in the VFE_STATE_EX field allows uniquely tracking of all
the threads in groups based on state changes.

11 Reserved.

(The Debug counter can only be reset after state change.)

The Debug Counter is saved/restored during context switch.

The Debug Counter is not saved/restored during context switch.

The Debug Counter is not saved/restored during context switch. Therefore, when the
media pipe is used by multiple contexts, debug counter may only be used by a single
context. In order to not interfere the context being debugged, the debug counter
should be left unchanged by software in other contexts.

320

10.5 Thread Spawner Unit

The Thread Spawner (TS) unit is responsible for making thread requests (root and
child) to the Thread Dispatcher, managing scratch memory, maintaining outstanding
root thread counts, and monitoring the termination of threads.

Figure 10-5. Thread Spawner block diagram

Root Thread
Request Queue

Spawn Thread
Request Queue

Thread Dispatch
Queue To TD

Root thread

Child thread

Interface
Descriptor

Fetch

To Interface Descriptor Cache

From EU

From VFE

Synchronization

Constant URB
Handle

Thread
Generation

Scratch Buffer
Manager

URB Handle
Dereference

Dereference

To VFE

10.5.1 Basic Functions

10.5.1.1 Root Threads Lifecycle

Thread requests sourced from VFE are called root threads, since these threads may
be creating subsequent (child) threads. A root thread may a macroblock thread
created by VFE as in VLD mode, or may be a general-purpose thread assembled by
VFE according to full description provided by host software in Generic mode.

Thread requests are stored in the Root Thread Queue. TS keeps everything needed to
get the root threads ready for dispatch and then tracks dispatched threads until their
retirement.

TS arbitrates between root thread and child thread. The root thread request queue is
in the arbitration only if the number of outstanding threads does not exceed the
maximum root thread state variable. Otherwise, the root thread request queue is
stalled until some other root threads retire/terminate.

 321

Once a root thread is selected to be dispatched, its lifecycle can be described by the
following steps:

1. TS forwards the interface descriptor pointer to the L1 interface descriptor
cache (a small fully associated cache containing up to 4 interface descriptors).
The interface descriptor is either found in the cache or a corresponding
request is forwarded to the L2 cache. Interface descriptors return back to TS
in requesting order.
• Once TS receives the interface descriptor, it checks whether maximum

concurrent root thread number has reached to determine whether to make
a thread dispatch request or to stall the request until some other root
threads retire. If the thread requests the use of scratch memory, it also
generates a pointer into the scratch space.

2. TS then builds the transparent header and the R0 header.
3. Finally, TS makes a thread request to the Thread Dispatcher.
4. TS keeps track of dispatched thread, and monitors messages from the thread

(resource dereference and/or thread termination). When it receives a root
thread termination message, it can recover the scratch space and thread slot
allocated to it. The URB handle may also be dereferenced for a terminated
root thread for future reuse. It should be noted that URB handle dereference
may occur before a root thread terminates. See detailed description in the
Media Message section.
• It is the root thread’s responsibility (software) to guarantee that all its

children have retired before the root thread can retire.

10.5.1.2 URB Handles

VFE is in charge of allocating URB handles for root threads. One URB handle is
assigned to each root thread. The handle is used for the payload into the root thread.

If Children Present state variable is not set (root-without-child mode), TS signals VFE
to dereference the URB handle immediately after it receives acknowledgement from
TD that the thread is dispatched.

If Children Present state variable is set (root-with-child mode), the URB handle is
forwarded to the root thread and serves as the return URB handle for the root thread.
TS does not signal deference at the time of dispatch. TS signals URB handle
deference only when it receives a resource dereference message from the thread.

10.5.1.3 Root to Child Responsibilities

Any thread created by another thread running in an EU is called a child thread. Child
threads can create additional threads, all under the tree of a root which was requested
via the VFE path.

A root thread is responsible of managing pre-allocated resources such as URB space
and scratch space for its direct and indirect child threads. For example, a root thread
may split its URB space into sections. It can use one section for delivering payload to
one child thread as well as forwarding the section to the child thread to be used as
return URB space. The child thread may further subdivide the URB section into
subsections and use these subsections for its own child threads. Such process may be
iterated. Similarly, a root thread may split its scratch memory space into sections and
give one scratch section for one child thread.

322

TS unit only enforces limitation on number of outstanding root threads. It is the root
threads’ responsibility to limit the number of child threads in their respected trees to
balance performance and avoid deadlock.

10.5.1.4 Multiple Simultaneous Roots

Multiple root threads are allowed concurrently running in GEN4 execution units. As
there is only one scratch space state variable shared for all root threads, all
concurrent root thread requiring scratch space share the same scratch memory size.
Figure 10-6 depicts two examples of thread-thread relationship. The left graph shows
one single tree structure. This tree starts with a single root thread that generates
many child threads. Some child threads may create subsequent child threads. The
right graph shows a case with multiple disconnected trees. It has multiple root
threads, showing sibling roots of disconnected trees. Some roots may have child
threads (branches and leafs) and some may not.

There is another case (as shown in Figure 10-7) where multiple trees may be
connected. If a root is a synchronized root thread, it may be dependent on a
preceding sibling root thread or on a child thread.

Figure 10-6. Examples of thread relationship

root

leaf branch

leaf leaf

root/sibling root/sibling root/sibling

leaf leaf

Figure 10-7. An example of thread relationship with root sibling dependency

root

leaf branch

leaf leaf

root/sibling root/sibling root/sibling

leaf leaf leaf

 323

10.5.1.5 Synchronized Root Threads

A synchronized root thread (SRT) originates from a MEDIA_OBJECT command with
Thread Synchronization field set. Synchronized root threads share the same root
thread request queue with the non-synchronized roots. A SRT is not automatically
dispatched. Instead, it stays in the root thread request queue until a spawn-root
message is at the head of the child thread request queue. Conversely, a spawn-root
message in the child thread request queue will block the child thread request queue
until the head of root thread request queue is a SRT. When they are both at the head
of queues, they are taken out from the queue at the same time.

A spawn-root message may be issued by a root thread or a child thread. There is no
restriction. However, the number of spawn-root messages and the number of SRT
must be identical between state changes. Otherwise, there can be a deadlock.
Furthermore, as both requests are blocking, synchronized root threads must be used
carefully to avoid deadlock.

When Scoreboard Control is enabled, the dispatch of a SRT originated from a
MEDIA_OBJECT_EX command is still managed by the same way in addition to the
hardware scoreboard control.

10.5.1.6 Deadlock Prevention

Root threads must control deadlock within their own child set. Each root is given a set
of preallocated URB space; to prevent deadlock it must make sure that all the URB
space is not allocated to intermediate children who must create more children before
they can exit.

There are limits to the number of concurrent threads. The upper bound is determined
by the number of execution units and the number of threads per EU. The actual upper
bound on number of concurrent threads may be smaller if the GRF requirement is
large. Deadlock may occur if a root or intermediate parent cannot exit until it has
started its children but there is no space (for example, available thread slot in
execution units) for its children to start.

To prevent deadlock, the maximum number of root threads is provided in VFE state.
The Thread Spawner keeps track of how many roots have been spawned and prevents
new roots if the maximum has been reached. When child threads are present, it is
software’s responsible of constraining child thread generation, particularly the
generation of child threads that may also spawn more child threads.

Child thread dispatch queue in TS is another resource that needs to be considered in
preventing deadlock. The child thread dispatch queue in TS is used for (1) message to
spawn a child thread, (2) message to spawn a synchronized root thread, and (3)
thread termination message. If this queue is full, it will prevent any thread to
terminate, causing deadlock.

For example, if an application only has one root thread (max # of root threads is
programmed to be one). This root thread spawns child threads. In order to avoid
deadlock, the maximum number of outstanding child thread that this root thread can
spawn is the sum of the maximum available thread slots plus the depth of the child
thread dispatch queue minus one.

324

 Max_Outstanding_Child_Threads = (Thread Slot Number – 1) + (TS Child Queue
Depth – 1)

Adding other root threads (synchronized and/or non-synchronized) to the above
example, the situation is more complicated. A conservative measure may have to use
to prevent deadlock. For example, the root thread spawning child threads may have to
exclude the max number of root threads as in the following equation to compute the
maximum number of outstanding child threads to be dispatched.

 Max_Outstanding_Child_Threads = (Thread Slot Number – 1) + (TS Child Queue
Depth – 1) – (Max Root Threads-1)

Table 10-8. TS Resource Available in Device Hardware

Device Child Thread Dispatch
Queue Depth

[DevBW] 8

[DevCL] 8

10.5.1.7 Child Thread Lifecycle

When a (parent) thread creates a child thread, the parent thread behaves like a fixed
function. It provides all necessary information to start the child thread, by assembling
the payload in URB (including R0 header) and then sending a spawn thread message
to TS with following data:

• An interface descriptor pointer for the child thread.
• A pointer for URB data

The interface descriptor for a child may be different from the parent – how the parent
determines the child interface descriptor is up to the parent, but it must be one from
the interface descriptor array on the same interface descriptor base address.

The URB pointer is not the same as a URB handle. It does not have an URB handle
number and does not appear in any handle table. This is acceptable because the URB
space is never reclaimed by TS after a child is dispatched, but rather when the parent
releases its original handles and/or retires.

The R0 header for a child, as part of the URB payload, also includes debug fields for
the child, consisting of the 32-bit field from the parent and a parent created field to
uniquely identify the child.

The child request is stored in the child thread queue. The depth of the queue is
limited to 8, overrun is prevented by the message bus arbiter which controls the
message bus. The arbiter knows the depth of the queue and will only allow 8 requests
to be outstanding until the TS signals an entry has been removed.

 325

As mentioned previously, child threads have higher priority over root threads. Once TS
selects a child thread to dispatch, it follows these steps:

1. TS forwards the interface descriptor pointer to the L1 interface descriptor
cache (a small fully associated cache containing up to 4 interface descriptors).
The interface descriptor is either found in the cache or a corresponding
request is forwarded to the L2 cache. Interface descriptors return back to TS
in requesting order.

2. TS then builds the transparent header but not the R0 header.
3. Finally, TS makes a thread request to the Thread Dispatcher.
4. Once the dispatch is done, TS can forget the child – unlike roots, no

bookkeeping is done that has to be updated when the child retires.

If more data needs to be transferred between a parent thread and its child thread
than that can fit in a single URB payload, extra data must be communicated via
shared memory through data port.

10.5.1.8 Arbitration between Root and Child Threads

When both root thread queue and child thread queue are both non-empty, TS serves
the child thread queue. In other words, child threads have higher priority over root
threads. The only condition that the child thread queue is stalled by the root thread
queue is that the head of child thread queue is a root-synchronization message and
the head of root thread queue is not a synchronized root thread.

10.5.2 Interfaces

10.5.2.1 Interface to VFE

TS receives an interface descriptor pointer and a URB handle from VFE. It uses the
interface descriptor pointer to fetch the interface descriptor. TS uses the information
in the interface descriptor along with the URB handle to fill out the transparent header
in the message to TD for all threads. For root thread, TS also generate the R0 header.

TS transmits URB handle dereference signal to VFE. As described previously, the
derefernce signal may be at dispatch time or at later time depending on Children
Present state variable. No matter which case, there is one and only one URB handle
dereference for a thread.

10.5.2.2 Interface to Thread Dispatcher

TS creates the transparent header, assembles the URB handles and calls TD to
dispatch a new thread. For an unsynchronized root thread, there is one URB handle
managed by VFE and optionally one Constant URB handle managed by CS. For a
synchronized root thread, there is one URB handle managed by VFE, a URB handle
created by the synchronizing thread (the one that sends the ‘spawn root thread’
message, and optionally one Constant URB handle managed by CS. For a child thread,
there is one URB handle managed by the parent thread plus an optional Constant URB
handle.

326

10.6 Media State

10.6.1 Media State Model

The media state model is based on an indirect state fetching mechanism. State
Descriptors provide state information for fixed function units of the media pipeline.
Interface Descriptors provide state information for kernels (threads) dispatched from
the media pipeline. There are organized in different memory locations.

VFE State Descriptor contains states for both VFE unit and TS unit. The special
purpose VLD state information is provided by a separate VLD State Descriptor.

All Interface Descriptors have the same size and are organized as a contiguous array
in memory. They can be selected by Interface Descriptor Index for a given kernel.
This allows different kinds of kernels to coexist in the system.

The MEDIA_STATE_POINTERS command provides the memory pointers to the
Descriptors.

Figure 10-8. Media State Model

Primitive Commands

Ring Buffer

VLD State

Interface/State
Descriptors

Media_State_Pointers
Command

Non-Pipelined State
Commands

kernel pointer

kernel resources
Kernel

InstructionsSampState ptr
Sampler State

16

Binding Table
256

Surface State

Surface State

Surface State

BindingTable ptr
kernel pointer

kernel resources

SampState ptr

BindingTable ptr

kernel pointer

kernel resources

SampState ptr

BindingTable ptr

Surface State

kernel pointer

kernel resources

SampState ptr

BindingTable ptr

kernel pointer

kernel resources

SampState ptr

BindingTable ptr

VFE State

VLD State
Descriptor

V

 VFE State
Descriptor
Interface

Descriptor Base
Pointer

 327

10.6.2 VFE_STATE

Dword Bit Description

0 31:10 Scratch Space Base Pointer. Specifies the 1k-byte aligned address offset to scratch
space for use by the kernel. This pointer is relative to the General State Base
Address.

Format = GeneralStateOffset[31:10]

 9:8 Reserved: MBZ

 7 Extended VFE State Present. This field specifies whether extended VFE state is
present or not. It must be programmed with the same value as the Extended VFE
State Enable field in MEDIA_STATE_POINTERs command.

0 = Disabled. No extended VFE state (and Extension State Pointer is ignored).

1 = Enabled. The extended VFE state pointed by Extended State Pointer is loaded

[DevBW, DevCL] This field is reserved and MBZ.

 6:4 Reserved : MBZ

 3:0 Per Thread Scratch Space. Specifies the amount of scratch space allowed to be used
by each thread. The driver must allocate enough contiguous scratch space, pointed to
by the Scratch Space Pointer, to ensure that the Maximum Number of Threads each get
Per Thread Scratch Space size without exceeding the driver-allocated scratch space.

Note: The definition of this field is different from that in 3D fixed functions, where the
per-thread scratch space is specified in powers of 2.

Format = U4

Range = [0,11] indicating [1k bytes, 12k bytes]

1 31:25 Maximum Number of Threads. Specifies the maximum number of simultaneous root
threads allowed to be active. Used to avoid using up the scratch space, or to avoid
potential deadlock. Note that MSB will be zero due to the range limit below.

Format = U7 representing (thread count – 1)

Range = [0, n-1] where n = (# EUs) * (# threads/EU). See Graphics Processing Engine
for listing of #EUs and #threads in each device.

 24:16 URB Entry Allocation Size. Specifies the length of each URB entry used by the unit, in
512-bit register increments - 1.

Format = U9

Range = [0,255] indicating [1,256] 512-bit register increments

 15:9 Number of URB Entries. Specifies the number of URB entries that are used by the unit.

Format = U7

Range = [1,64]

 8:7 Reserved : MBZ

328

Dword Bit Description

 6:3 VFE Mode

0000 – Generic Mode

0001 – VLD Mode (MPEG-2 only)

0010 – IS Mode

0100 – AVC-MC Mode

0111 – AVC-IT Mode

1011 – VC1-IT Mode

All other encodings are reserved

[DevBW, DevCL] AVC-MC, AVC-IT and VC1-IT modes are not supported

[DevBW] VLD mode is not supported

 2 Children Present. Indicates that the root thread may send spawn messages to spawn
child threads and/or synchronized root threads.

In VLD Mode, this field must be 0.

Format = Enable

 1:0 Debug Counter Control. This field controls the Debug Counter in VFE. See Section
 10.4.3 for more details.

00 – Free Running Debug Counter

01 – Frozen Debug Counter

10 – Debug Counter Initialized Once

11 – Debug Counter Initialized Always (Reserved in VLD mode)

2 31:4 Interface Descriptor Base Pointer. Specifies the 16-byte aligned address of the
interface descriptor base pointer. This pointer is relative to the General State Base
Address.

Format = GeneralStateOffset[31:4]

 3:0 Reserved : MBZ

 329

10.6.3 VLD_STATE

Dword Bit Description

0 31:28 f_code[1][1]. Used for backward motion vector prediction. See ISO/IEC 13818-2
§7.6.3.1 for details

 27:24 f_code[1][0]. Used for backward motion vector prediction. See ISO/IEC 13818-2
§7.6.3.1 for details

 23:20 f_code[0][1]. Used for forward motion vector prediction. See ISO/IEC 13818-2
§7.6.3.1 for details

 19:16 f_code[0][0]. Used for forward motion vector prediction. See ISO/IEC 13818-2
§7.6.3.1 for details

 15:14 Intra DC Precision. See ISO/IEC 13818-2 §6.3.10 for details.

 13:12 Picture Structure. This field specifies whether the picture is encoded in the form of a
frame picture or one field (top or bottom) picture. See ISO/IEC 13818-2 §6.3.10 for
details.

Format = MPEG_PICTURE_STRUCTURE
00 = Reserved
01 = MPEG_TOP_FIELD
10 = MPEG_BOTTOM_FIELD
11 = MPEG_FRAME

 11 TFF (Top Field First). When two fields are stored in a picture, this bit indicates if the
top field is the first field.

For a frame P picture, the value 1 indicates that the top field of the reconstructed frame
is the first field output by the decoding process, the same as defined in ISO/IEC 13818-2
§6.3.10. Particularly, it is used by the hardware to calculate derivative motion vectors
from the dual-prime motion vectors.

For a field P picture, hardware uses this bit together with the Picture Structure to
determine if the current picture is the Second Field. In this case, the definition of this bit
differs from ISO/IEC 13818-2 §6.3.10 – software must derive the value for this bit
according to the following relation:

 Picture Structure
= top field

Picture Structure =
bottom field

Second Field = 0 TFF = 1 TFF = 0

Second Field = 1 TFF = 0 TFF = 1
 10 Frame Prediction Frame DCT. This field provides constraints on the DCT type and

prediction type. It affects the syntax of the bitstream.

 9 Concealment Motion Vector Flag. This field indicates if the concealment motion
vectors are coded in intra macroblocks. It affects the syntax of the bitstream.

 8 Quantizer Scale Type. This field specifies the quantizer scaling type.

Format = MPEG_Q_SCALE_TYPE
0 = MPEG_QSCALE_LINEAR

1 = MPEG_QSCALE_NONLINEAR

 7 Intra VLC Format. This field is used by VLD.

330

Dword Bit Description

 6 Scan Order. This field specifies the Inverse Scan method for the DCT-domain
coefficients in the blocks of the current picture.

Format = MPEG_INVERSESCAN_TYPE

0 = MPEG_ZIGZAG_SCAN

1 = MPEG_ALTERNATE_VERTICAL_SCAN

 5:0 Reserved.

1 31:14 Reserved.

 13 Reserved (was Concealment Enable)

 12 Reserved (was Concealment Reference)

 11 Reserved (was Concealment Type)

10:9 Picture Coding Type. This field identifies whether the picture is an intra-coded picture

(I), predictive-coded picture (P) or bi-directionally predictive-coded picture (B). See
ISO/IEC 13818-2 §6.3.9 for details.

Format = MPEG_PICTURE_CODING_TYPE
00 = Reserved
01 = MPEG_I_PICTURE
10 = MPEG_P_PICTURE
11 = MPEG_B_PICTURE

8:1 Reserved (was Slice Error Control)

 0 Reserved. (was Disable Mismatch)

2 31:0 Interface Descriptor Remap Table [7:0]. This field contains the interface descriptor
remap table entries for the first 8 kernel indices. Each table entry has 4 bits, providing a
remapping range of [0, 15].

This field is applicable to both frame picture destination (Picture Structure = 11) and
field picture destination (Picture Structure = 01 or 10).

Bits 31:28: Remap for index = 7

Bits 27:24: Remap for index = 6

Bits 23:20: Remap for index = 5

Bits 19:16: Remap for index = 4

Bits 15:12: Remap for index = 3

Bits 11:8: Remap for index = 2

Bits 7:4: Remap for index = 1

Bits 3:0: Remap for index = 0

[DevCL] Errata: This field is reserved.

3 31:0 Interface Descriptor Remap Table [15:8]. This field contains the interface descriptor
remap table entries for the last 8 kernel indices. Each table entry has 4 bits, providing a
remapping range of [0, 15].

This field is only applicable to frame destination. It is ignored when the destination is a
field picture.

[DevCL] Errata: This field is reserved.

 331

10.6.4 INTERFACE_DESCRIPTOR

DWord Bit Description

0 31:6 Kernel Start Pointer. Specifies the 64-byte aligned address offset of the first
instruction in the kernel. This pointer is relative to the General State Base Address.

[DevBW-A] Errata BWT007: Instructions pointed at by offsets from General State
Base must be contained within 32-bit physical address space (that is, must map to
memory pages under 4G.)

Format = GeneralStateOffset[31:6]

 5:4 Reserved : MBZ

 3:0 GRF Register Blocks. Defines the number of GRF Register Blocks used by the kernel. A
register block contains 8 registers. A kernel using a register count that is not a multiple
of 8 must round up to the next multiple of 8.

Format = U4 register block count - 1

Range = [0,15] corresponding to [1,16] 8-register blocks

Restriction: LSB must be zero, indicating that GRF assignment is in granularity of 16 GRF
registers.

1 31:26 Constant URB Entry Read Length. Specifies the amount of URB data read and passed
in the thread payload for the Constant URB entry, in 8-DW register increments.

A value 0 means that no Constant URB Entry will be loaded. The Constant URB Entry
Read Offset field will then be ignored.

Format = U6

Range = [0,63]

 25:20 Constant URB Entry Read Offset. Specifies the offset (in 8-DW units) at which
Constant URB data is to be read from the URB before being included in the thread
payload.

Format = U6

Range = [0,63]

 19 Reserved : MBZ

 18 Single Program Flow (SPF). Specifies whether the kernel program has a single
program flow (SIMDnxm with m = 1) or multiple program flows (SIMDnxm with m > 1).

0 = Multiple Program Flows

1 = Single Program Flow

 17 Thread Priority. Specifies the priority of the thread for dispatch

0 = Normal Priority

1 = High Priority

Programming Notes:

• This field must be set to zero.

 16 Floating Point Mode. Specifies the floating point mode used by the dispatched thread.

0 = Use IEEE-754 Rules

1 = Use alternate rules

 15:14 Reserved: MBZ

332

DWord Bit Description

 13 Illegal Opcode Exception Enable. This bit gets loaded into EU CR0.1[12] (note the bit
difference). See Exceptions and ISA Execution Environment.

Format: Enable

 12 Reserved: MBZ

 11 MaskStack Exception Enable. This bit gets loaded into EU CR0.1[11]. See Exceptions
and ISA Execution Environment.

Format: Enable

 10:8 Reserved: MBZ

 7 Software Exception Enable. This bit gets loaded into EU CR0.1[13] (note the bit #
difference). See Exceptions and ISA Execution Environment.

Format: Enable

 6:0 Reserved: MBZ

2 31:5 Sampler State Pointer. Specifies the 32-byte aligned address offset of the sampler
state table. This pointer is relative to the General State Base Address.

[DevBW-A] Errata BWT007: Sampler state pointed at by offsets from General State
Base must be contained within 32-bit physical address space (that is, must map to
memory pages under 4G.)

Format = GeneralStateOffset[31:5]

This field is ignored for child threads.

 4:2 Sampler Count. Specifies how many samplers (in multiples of 4) the kernel uses. Used
only for prefetching the associated sampler state entries.

Format = U3

Range = [0,4]

0 = no samplers used
1 = between 1 and 4 samplers used
2 = between 5 and 8 samplers used
3 = between 9 and 12 samplers used
4 = between 13 and 16 samplers used

This field is ignored for child threads.

If this field is not zero, sampler state is prefetched for the first instance of a root thread
upon the startup of the media pipeline.

 1:0 Reserved : MBZ

3 31:5 Binding Table Pointer. Specifies the 32-byte aligned address of the binding table. This
pointer is relative to the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

This field is ignored for child threads.

 333

DWord Bit Description

 4:0 Binding Table Entry Count. Specifies how many binding table entries the kernel uses.
Used only for prefetching of the binding table entries and associated surface state.

Note: The maximum number of prefetched binding table entries is limited to 31. For
kernels using a large number of binding table entries, it may be wise to set this field to
zero to avoid prefetching too many entries and thrashing the state cache.

Format = U5

Range = [0,31]

This field is ignored for child threads.

If this field is not zero, binding table and surface state are prefetched for the first
instance of a root thread upon the startup of the media pipeline.

10.7 Media State and Primitive Commands

10.7.1 MEDIA_STATE_POINTERS Command

The MEDIA_STATE_POINTERS command is used to set up the pointers to the VFE
states (VFE state, VLD state or VFE state extension). This command is issued prior to
a set of media primitive commands, and points to the Generic mode VFE state and
VLD decode mode VLD state (or VFE extended state).

[DevBW-A] Errata BWT007: State data pointed at by offsets from General State
Base must be contained within 32-bit physical address space (that is, must map to
memory pages under 4G.)

DWord Bit Description

31:29 Command Type = GFXPIPE = 3h

28:16 Media Command Opcode = MEDIA_STATE_POINTERS

Pipeline[28:27] = Media = 2h; Opcode[26:24] = 0h; Subopcode[23:16] = 0h

0

15:0 DWord Length (Excludes DWords 0,1) = 01h

1 31:5 Extended State Pointer. Specifies the 32-byte aligned address of the extended VFE
state (either VLD_STATE or VFE_STATE_EX). This pointer is relative to the General
State Base Address.

Which extended VFE state is used depends on VFE Mode. If VFE Mode is set to VLD
Mode (0001), VLD_STATE is used. Otherwise, VFE_STATE_EX is used.

Format = GeneralStateOffset[31:5]

[DevBW, DevCL] Note that VFE_STATE_EX is reserved

 4:1 Reserved : MBZ

334

DWord Bit Description

 0 Extended VFE State Enable (was VLD Enable). This field specifies whether extended
VFE state is loaded.

0 = Disabled. No extended VFE state (and Extension State Pointer is ignored).

1 = Enabled. The extended VFE state pointed by Extended State Pointer is loaded

 [DevBW, DevCL] Note that VFE_STATE_EX is reserved

2 31:5 Pointer to VFE_STATE. Specifies the 32-byte aligned address of the VFE_STATE. This
pointer is relative to the General State Base Address.

Format = GeneralStateOffset[31:5]

 4:0 Reserved : MBZ

 335

10.7.2 MEDIA_OBJECT Command

The MEDIA_OBJECT command is the basic media primitive command for the media
pipeline. It supports loading of inline data as well as indirect data.

The MEDIA_OBJECT command can be used in the following three VFE modes: Generic
mode, IS mode and VLD mode.

The MEDIA_OBJECT command cannot be used in the following VFE modes: AVC-IT,
AVC-MC, and VC1-IT.

Dword Bits Description

0 31:29 Command Type = GFXPIPE = 3h

 28:16 Media Command Opcode = MEDIA_OBJECT

Pipeline[28:27] = Media = 2h; Opcode[26:24] = 1h; Subopcode[23:16] = 0h

 15:0 DWord Length (Excludes DWords 0,1)

VLD Mode: DWord Length = 4. There are 2 DW of inline data in this mode.

IS Mode: DWord Length = N+2, where N is the number of DW of inline data
(N>= 10). According to the inline format table shown in the following section, N
is 10. However, hardware must be able to handle different size of N, as
software may determine later to transfer additional driver/kernel information
inline.

Generic Mode: DWord Length = N+2, where N is in the range of [0,504]. The
maximum is 504 DW (equivalent to 63 8-DW registers). When both inline and
indirect data are fetched for this command, the total size in 8-DW registers
must be less than or equal to 63 (with both inline data length N and indirect
data length rounded up to 8-DW aligned individually). If indirect data are
fetched, the minimal inline data length is 0. If indirect data are not fetched, the
minimal inline data is 1DW.

Note: Regardless of the mode, inline data must be present in this command.

1 31:8 Debug: Object ID. This field is used to initialize the VFE debug counter controlled by
the VFE state.

 7 Reserved. MBZ

 6:0 Interface Descriptor Offset. This field specifies the offset from the interface descriptor
base pointer to the interface descriptor which will be applied to this object. It is
specified in units of interface descriptors.

In VLD mode, this field is ignored by hardware.

Format = U7

2 31:29 Reserved. MBZ

 28 Retain Bit. The hardware will keep the last 256-bit quantity of this indirect object in-use
after the object transfer is complete. A subsequent Indirect object packet will use the
retained 256bit quantity as the first piece of data.

Format = Enable (1) /Disable (0)

[DevBW-A] Erratum: this field is reserved: MBZ

 27:25 Reserved. MBZ

336

Dword Bits Description

 24 Thread Synchronization. This field when set indicates that the dispatch of the thread
originated from this command is based on the “spawn root thread” message.

In VLD mode, this field must be programmed as 0, because the Children Present field
in VFE_STATE must be 0 in this mode.

0 = No thread synchronization

1 = Thread dispatch is synchronized by the “spawn root thread” message

 23:17 Reserved. MBZ

 16:0 Indirect Data Length. This field provides the length in bytes of the indirect data. A
value zero indicates that indirect data fetching is disabled – subsequently, the Indirect
Data Start Address field is ignored.

This field must have the same alignment as the Indirect Object Data Start Address.

VLD Mode: It is the length in bytes of the bitstream data for the current slice.
It includes the first byte of the first macroblock and the last non-zero byte of
the last macroblock in the slice. Specifically, the zero-padding bytes (if present)
and the next start-code are excluded. Hardware ignores the contents after the
last non-zero byte. This field is sized to support MPEG-2 MP@HL bitstream.
According to Table 8-6 of ISO/IEC 13818-2, the maximum number of bits per
macroblock for 4:2:0 is 4608. So the maximum slice size for MP@HL (e.g.
1080i) is 4608 * 120 / 8 = 69120 bytes (0x10E00), which requires 17 bits.

IS Mode: It must be DWord aligned.

Generic Mode: It must be DQWord (32-byte) aligned. As the indirect data are
sent directly to URB, range is limited to 496 DW. When both inline and indirect
data are fetched for this command, the total size in 8-DW registers must be less
than or equal to 63 (with both inline data length and indirect data length
rounded up to 8-DW aligned).

[DevBW-A] Erratum: In Generic Mode, the length alignment restrict is relaxed to be
DWord alignment..

Format = U17 in bytes

3 31:0 Indirect Data Start Address. This field specifies the Graphics Memory starting address
of the data to be loaded into the kernel for processing. This pointer is relative to the
Indirect Object Base Address.

Hardware ignores this field if indirect data is not present.

Alignment of this address depends on the mode of operation.

VLD Mode: It is the byte aligned address for the VLD bitstream data.

IS Mode: It is the DWord aligned address for the first IDCT coefficients.

Generic Mode: It is the DWord aligned address of the indirect data.

Range = [0 - 512MB] (Bits 31:29 MBZ)

4..N 31:0 Inline Data

IS and VLD Modes: Hardware interprets this data in the specified format.

Generic Mode: The format of this data is specified by software. Hardware does not
interpret this data; it merely passes it to the kernel for processing. The total size for the
inline data and indirect data must not exceed the URB allocation size.

 337

10.7.2.1 Inline and Indirect Data Format in Generic Mode

In Generic mode, inline data must be present. All inline data will be delivered to the
thread’s payload starting and ending on the 8-DW aligned register boundary. Inline
data starts on dword 4 of the MEDIA_OBJECT command. If the dword length field of
the MEDIA_OBJECT command is N+2, the size of the inline data will N. VFE always
zero-pads inline data into 8-DW before delivering to URB. If N is multiple of 8-DW,
the inline data corresponds to exactly N/8 GRF registers. If N is not multiple of 8-DW,
there will be (N/8 + 1) registers written for the inline data with the last register
containing the last a few dwords of inline data with remaining dwords zeroed out by
VFE.

Indirect data, if present, will be written into GRF registers immediately following the
inline data in the thread’s payload. Alignment and padding for indirect data are the
same as that for inline data. In short, indirect data are also starting and ending on 8-
DW aligned register boundary. If indirect data length is not multiple of 8-DW, VFE
hardware will zero pad the last GRF register.

10.7.2.2 Inline and Indirect Data Format in IS Mode

Each MEDIA_OBJECT command in “IS mode” corresponds to the processing of one
macroblock. Macroblock parameters are passed in as inline data and the non-zero DCT
coefficient data for the macroblock is passed in as indirect data.

Table 10-9 depicts the inline data format in IS mode. All fields in inline data are
forwarded to the thread as thread payload. Alignment and padding is identical to that
described for Generic mode. Some fields are merely forwarded. Some fields are also
used by VFE as indicated in the following table by a mark of [Used by VFE]. As shown,
inline data starts at dword 4 of MEDIA_OBJECT command. There are 10 dwords total.

Table 10-9. Inline data in IS mode

DWord Bit Description

4+0 31:28 Motion Vertical Field Select. A bit-wise representation of a long [2][2] array as
defined in §6.3.17.2 of the ISO/IEC 13818-2 (see also §7.6.4).

Bit MVector

[r]
MVector

[s]
MotionVerticalFieldSelec

t Index
28 0 0 0
29 0 1 1
30 1 0 2
31 1 1 3

 Format = MC_MotionVerticalFieldSelect.
0 = The prediction is taken from the top reference field.

1 = The prediction is taken from the bottom reference field.

338

DWord Bit Description

 27 Second Field. This bit indicates that this is the second field in the current frame. The
prediction for this macroblock, if it belongs to a field P-picture, should use this bit to
determine which frame contains the reference field as described in §7.6.2.1 of the
ISO/IEC 13818-2.

When the picture type is not P or the prediction type is not field, this value should be 0.

Format = MC_SecondPField
0 = This is not the second field.

1 = This is the second field.

 26 Reserved. (HWMC mode)

 25:24 Motion Type. When combined with the destination picture type (field or frame) this
Motion Type field indicates the type of motion to be applied to the macroblock. See
ISO/IEC 13818-2 §6.3.17.1, Tables 6-17, 6-18. In particular, the device supports dual-
prime motion prediction (11) in both frame and field picture type.

Format = MC_MotionType

Value Destination = Frame

Picture_Structure =
11

Destination = Field

Picture_Structure !=
11

‘00’ Reserved Reserved
‘01’ Field Field
‘10’ Frame 16x8
‘11’ Dual-Prime Dual-Prime

 23:22 Reserved. (Scan method)

 21 DCT Type. This field specifies the DCT type of the current macroblock. The kernel should
ignore this field when processing Cb/Cr data. See ISO/IEC 13818-2 §6.3.17.1. This field
is zero if Coded Block Pattern is also zero (no coded blocks present).

0 = MC_FRAME_DCT (Macroblock is frame DCT coded).

1 = MC_FIELD_DCT (Macroblock is field DCT coded).

 20 Overlap Transform (H261 Loop Filter). This field, when set, indicates that overlap
smoothing filter is performed after motion compensation and before in-loop deblocking.

 19 4MV Mode: (H263)

This field indicates if the current macroblock is coded with 4 motion vectors, one for each
8x8 block.

 18 Macroblock Motion Backward. This field specifies if the backward motion vector is
active. See ISO/IEC 13818-2 Tables B-2 through B-4.

0 = No backward motion vector.

1 = Use backward motion vector(s).

 17 Macroblock Motion Forward. This field specifies if the forward motion vector is active.
See ISO/IEC 13818-2 Tables B-2 through B-4.

0 = No forward motion vector.

1 = Use forward motion vector(s).

 339

DWord Bit Description

 16 Macroblock Intra Type. This field specifies if the current macroblock is intra-coded.
When set, Coded Block Pattern is ignored and no prediction is performed (i.e., no motion
vectors are used). See ISO/IEC 13818-2 Tables B-2 through B-4.

0 = Non-intra macroblock.

1 = Intra macroblock.

 15:0 Reserved. (MB address)

4+1 31:24 Reserved. (Skip Macroblocks)

 23:0 Reserved. (Offset into error data)

4+2 31:24 Subblock Coding for Block Y1

 23:16 Subblock Coding for Block Y0. This field specifies the subblock partition and subblock
coding pattern for the block. The definition of the 8 bits of this field is listed below.
Detailed coding can be found in Table 10-10.

Bits [7:6]: reserved

Bits [5:2]: Subblock present

Bits [1:0]: Subblock partitioning

 15:12 Reserved.

 11:6 Coded Block Pattern. This field specifies whether blocks are present or not.

Format = 6-bit mask.

Bit 11: Y0

Bit 10: Y1

Bit 9: Y2

Bit 8: Y3

Bit 7: Cb4

Bit 6: Cr5

[Used by VFE]

 5:0 Reserved. (Quantization Scale Code)

4+3 31:24 Subblock Coding for Block Cr5

 23:16 Subblock Coding for Block Cb4

 15:8 Subblock Coding for Block Y3

 7:0 Subblock Coding for Block Y2

4+4 31:16 Motion Vectors – Field 0, Forward, Vertical Component. Each vector component is
a 16-bit two’s-complement value. The vector is relative to the current macroblock
location. According to ISO/IEC 13818-2 Table 7-8, the valid range of each vector
component is [-2048, +2047.5], implying a format of s11.1. However, it should be
noted that motion vector values are sign extended to 16 bits.

 15:0 Motion Vectors – Field 0, Forward, Horizontal Component

4+5 31:16 Motion Vectors – Field 0, Backward, Vertical Component

 15:0 Motion Vectors – Field 0, Backward, Horizontal Component

340

DWord Bit Description

4+6 31:16 Motion Vectors – Field 1, Forward, Vertical Component

 15:0 Motion Vectors – Field 1, Forward, Horizontal Component

4+7 31:16 Motion Vectors – Field 1, Backward, Vertical Component

 15:0 Motion Vectors – Field 1, Backward, Horizontal Component

4+8 31:30 Reserved.

 29 Reserved

 28 Reserved

 27:20 Reserved.

 19:18 Picture Coding Type. This field identifies whether the picture is an intra-coded picture
(I), predictive-coded picture (P) or bi-directionally predictive-coded picture (B). See
ISO/IEC 13818-2 §6.3.9 for details.

Format = MPEG_PICTURE_CODING_TYPE
00 = Reserved
01 = MPEG_I_PICTURE
10 = MPEG_P_PICTURE

11 = MPEG_B_PICTURE

 17:16 Picture Structure. This field specifies whether the picture is encoded in the form of a
frame picture or one field (top or bottom) picture. See ISO/IEC 13818-2 §6.3.10 for
details.

Format = MPEG_PICTURE_STRUCTURE
00 = Reserved
01 = MPEG_TOP_FIELD
10 = MPEG_BOTTOM_FIELD

11 = MPEG_FRAME

 15 Reserved. (8-bit Intra)

 14:13 Reserved. (Intra DC Precision)

 12:0 Reserved.

4+9 31:27 Reserved.

 26:20 Vertical Origin. Set the vertical origin of the next macroblock in the destination picture
in units of macroblocks. (Valid range is 0 to 120).

Format = U7 in macroblock units.

Range = [0, 120]

 19:11 Reserved: MBZ

 10:4 Horizontal Origin. Set the horizontal origin of the next macroblock in the destination
picture in units of macroblocks.

Format = U7 in macroblock units.

Range = [0, 127]

 3:0 Reserved.

 341

The control parameters for inverse-scan are carried in the inline data packet. In
particular, the Coded Block Pattern field in DW6 is used to determine how many blocks
are coded and therefore how many blocks will be output from the inverse-scan.

Besides that dword 6 (containing Coded Block Pattern field) is used by VFE hardware
as control parameter for inverse-scan, the rest of the inline data are determined
between the host software and the kernel software. Therefore, the exact format and
size of the inline data may differ, as long as the Coded Block Pattern field in dword 6
remains the same.

Table 10-9 shows a ‘recommended’ inline data format. Support for other video coding
standard may take a similar format. For each block, the subblock coding occupies one
byte with only the lower 6 bits utilized according to Table 10-10. For MPEG-2 IDCT
support, as there is no block subdivision, these fields may be reserved, or used to
carry other information.

Table 10-10. Subblock coding (bits [7:6] are reserved).

Subblock Partitioning (Bits [1:0]) Subblock Present (0 means not present, 1 means present)

Code Meaning Bit 2 Bit 3 Bit 4 Bit 5

00 Single 8x8 block (sb0) Sb0 Don’t care Don’t care Don’t care

01 Two 8x4 subblocks (sb0-1) Sb0 Sb1 Don’t care Don’t care

10 Two 4x8 subblocks (sb0-1) Sb0 Sb1 Don’t care Don’t care

11 Four 4x4 subblocks (sb0-3) Sb0 Sb1 Sb2 Sb3

The block data output from the inverse scan will follow immediately after the inline
data in the thread’s payload, again, aligning to GRF register. Block data output by
nature is 8-DW aligned. The actual size depends on the coded block pattern. As each
block contains 8x8 16-bit DCT coefficients, if the total number of coded block is M, the
block data will take 8 * 8 * 2 * M / 32 = 4 * M GRE registers.

As VFE performs inverse-scan on the indirect data, the indirect data must follow the
exact format described in Figure 10-9 and Table 10-11.

The indirect data start address in MEDIA_OBJECT specifies the doubleword aligned
address of the first non-zero DCT coefficient of the first block of the macroblock. Only
the non-zero DCT coefficients are present in the data buffer and they are packed in
the block sequence of Y0, Y1, Y2, Y3, Cb4 and Cr5, as shown in Figure 10-9. The
indirect data length in MEDIA_OBJECT includes all the non-zero coefficients for the
macroblock. It must be doubleword aligned.

342

Figure 10-9. Structure of the IDCT Compressed Data Buffer

...Dword Coeff[0] Coeff[0] Coeff[0] Dword

DCT coefficients in a macroblock
Indirect Data Length (in multiple of 4-byte)

Next
macroblockBuffer address

Indirect Data Start Address (dword aligned)

Each non-zero coefficient in the indirect data buffer is contained in a doubleword-size
data structure containing the coefficient index, end of block (EOB) flag and the fixed-
point coefficient value in 2’s complement form. As shown in Table 10-11, index is the
row major 'raster' index of the coefficient within an 8x8 block. DCT coefficient is a 16-
bit value in 2's complement, which is clamped to a 12-bit signed value by the host.
Effectively, bit 27 is the sign bit. However, as the kernel software consumes these
data as 16-bit quantities any way, VFE simply forwards these exact 16-bit DCT
coefficients to the thread’s payload.

Table 10-11. Structure of a DCT coefficient unit

DWord Bit Description

0 31:16 DCT Coefficient Value. This field contains the value of the non-zero DCT coefficient in
2’s complement.

 15:7 Reserved: MBZ

 6:1 Index. This field specifies the raster-scan address (raw address) of the DCT coefficient
within the 8x8 block. For example, coefficient at location (row, column) = (0, 0) has an
index of 0; that at (2, 3) has an index of 2*8 + 3 = 19.

Format = U6

Range = [0, 63]

 0 EOB (End of Block). This field indicates whether the DCT coefficient is the last one of
the current block.

 343

10.7.2.3 Inline and Indirect Data Format in VLD Mode

A MEDIA_OBJECT command in “VLD mode” is used to process a slice using the VFE
hardware. Slice header parameters are passed in as inline data and the bitstream data
for the slice is passed in as indirect data. Of the inline data, slice_horizontal_position
and slice_vertical_position determines the location within the destination picture of
the first macroblock in the slice.

DWord Bits Description

4 31 Reserved. MBZ

 30:24 Slice Horizontal Position. This 7-bit field indicates the horizontal position (in
macroblock units) of the first macroblock in the slice.

Format = U7 in macroblocks

 23 Reserved. MBZ

 22:16 Slice Vertical Position. This 7-bit field indicates the vertical position (in macroblock
units) of the first macroblock in the slice.

Format = U7 in macroblocks

 15 Reserved. MBZ

 14:8 Macroblock Count. This 7-bit field indicates the number of macroblocks in the slice,
including skipped macroblocks.

 7:3 Reserved. MBZ.

 2:0 First Macroblock Bit Offset. This field provides the bit offset of the first macroblock in
the first byte of the input bitstream.

Format = U3

5 31:29 Reserved. MBZ.

 28:24 Quantizer Scale Code. This field sets the quantizer scale code of the inverse quantizer.
It remains in effect until changed by a decoded quantizer scale code in a macroblock.
This field is decoded from the slice header by host software.

Format = U5 (0 is Reserved)

 23:0 Reserved. MBZ.

The indirect data start address in MEDIA_OBJECT specifies the starting Graphics
Memory address of the bitstream data that follows the slice header. It provides the
byte address for the first macroblock of the slice. Together with the First Macroblock
Bit Offset field in the inline data, it provides the bit location of the macroblock within
the compressed bitstream.

The indirect data length in MEDIA_OBJECT provides the length in bytes of the
bitstream data for this slice. It includes the first byte of the first macroblock and the
last non-zero byte of the last macroblock in the slice. Specifically, the zero-padding
bytes (if present) and the next start-code are excluded. Hardware ignores the
contents after the last non-zero byte. Figure 10-10 illustrates these parameters for a
slice data.

344

Figure 10-10. Indirect data buffer for a slice

 ...byte byte byte byte byte byte byte

MEDIA_OBJECT.Indirect_Data_Start_Address[28:0]
(in bytes)

MEDIA_OBJECT.Inline_Data.First_Macroblock_Bit_Offset[2:0]
(in bits)

Bitstream data of the Slice

MEDIA_OBJECT.
Indirect_Data_Length[16:0]

(in bytes)

byte

10.8 Media Messages

All message formats are given in terms of dwords (32 bits) using the following
conventions which are detailed in GEN4 Subsystem Chapter.

Dispatch Messages: Rp.d

SEND Instruction Messages: Mp.d

10.8.1 Thread Payload Messages

The root thread’s register contents differ from that of child threads, as shown in Figure
 10-11. The register contents for a synchronized root thread (also referred to as
‘spawned root thread’) and an unsynchronized one are also different. Whether the
URB Constant data field is present or not is determined by the interface descriptor of a
given thread. This applies to both root and child threads. When URB Constant data
field is present for a synchronized root thread, URB constant data field is before the
data field received from the spawning thread, which is also before the URB payload
data.

Figure 10-11. Thread payload message formats for root and child threads

R0 Header created by TS

URB Constant written by CS
(optional)

URB Payload data written by VFE

R0 Header created Parent Thread

URB Constant data written by CS
(optional)

Remaining URB Payload data written
by Parent Thread

(if present)

(a) Unsynchronized Root Threads (c) Child Threads

R0 Header created by TS

URB Constant written by CS
(optional)

URB Payload data written by VFE

(b) Synchronized Root Threads

Payload received from Spawning
Thread

 345

10.8.1.1 Generic Mode Root Thread

The following table shows the R0 register contents for a Generic mode root thread,
which is generated by TS. The remaining payloads are application dependent.

Table 10-12. R0 header of a generic mode root thread

DWord Bit Description

R0.7 31 Debug : Snapshot Flag. This field is used by the Thread Dispatcher to set the snapshot
flag upon a snapshot condition.

 27:24 Debug : Reserved

 23:0 Debug : Reserved for Parent Thread Count.

Root threads should have zero in this field.

R0.6 31:24 Debug : Reserved for software debug. This field is reserved for the system debug
routine, for example, to assemble the debug scratch memory offset for the thread. Fixed
function hardware and application routine must not use this field.

 23:0 Debug : Thread Count. This field is generated by VFE based on a debug counter that is
controlled by host software.

R0.5 31:10 Scratch Space Pointer. Specifies the 1k-byte aligned pointer to the scratch space. This
field is only valid when Scratch Space is enabled.

Format = GeneralStateOffset[31:10]

 9:8 Reserved : MBZ

 7:0 FFTID. This ID is assigned by TS and is a unique identifier for the thread in comparison to
other concurrent root threads. It is used to free up resources used by the thread upon
thread completion.

R0.4 31:5 Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding Table. It
is specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

 4:0 Reserved : MBZ

R0.3 31:5 Sampler State Pointer. Specifies the 32-byte aligned pointer to the sampler state table.

Format = GeneralStateOffset[31:5]

 4 Reserved : MBZ

 3:0 Per Thread Scratch Space. Specifies the amount of scratch space, in 16-byte
quantities, allowed to be used by this thread. The value specifies the power that two will
be raised to, to determine the amount of scratch space.

Format = U4

Range = [0,11] indicating [1k bytes, 2M bytes] in powers of two

R0.2 31:4 Interface Descriptor Pointer. Specifies the 16-byte aligned pointer to this thread’s
interface descriptor. Can be used as a base from which to offset child thread’s interface
descriptor pointers from.

Format = GeneralStateOffset[31:4]

 3:0 Reserved : MBZ

R0.1 31:28 Reserved : MBZ

346

DWord Bit Description

 27:26 Reserved : MBZ

 25 Reserved. MBZ

 24:16 Reserved : MBZ

 15:12 Reserved : MBZ

 11:9 Reserved. MBZ

 8:0 Reserved : MBZ

R0.0 31:24 Reserved : MBZ

 23:16 Reserved : MBZ

 15:0 URB Handle. This is the URB handle where indicating the URB space for use by the root
thread and its children.

10.8.1.2 IS-Mode Root Thread

The following table shows the root thread payload messages when VFE is in IS mode
and URB push constant is not enabled.

DWord Bit Description

R0.7 31 Debug : Snapshot Flag. This field is used by the Thread Dispatcher to set the snapshot
flag upon a snapshot condition.

 27:24 Debug : Reserved

 23:0 Debug : MBZ.

R0.6 31:24 Debug : Reserved for software debug. This field is reserved for the system debug
routine, for example, to assemble the debug scratch memory offset for the thread. Fixed
function hardware and application routine must not use this field.

 23:0 Debug : Thread Count. This field is generated by VFE based on a debug counter that is
controlled by host software.

R0.5 31:10 NOT USED (was Scratch Space Pointer).

 9:8 Reserved : MBZ

 7:0 FFTID. This ID is assigned by TS and is a unique identifier for the thread in comparison
to other concurrent root threads. It is used to free up resources used by the thread
upon thread completion.

Note: Nothing to free up in this case.

R0.4 31:5 Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding Table. It
is specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

 4:0 Reserved : MBZ

R0.3 31:5 NOT USED (was Sampler State Pointer).

 4 Reserved : MBZ

 347

DWord Bit Description

 3:0 NOT USED (was Per Thread Scratch Space)

R0.2 31:5 Interface Descriptor Pointer. Specifies the 32-byte aligned pointer to this thread’s
interface descriptor. Can be used as a base from which to offset child thread’s interface
descriptor pointers from.

Format = GeneralStateOffset[31:5]

 4:0 Reserved : MBZ

R0.1 31:0 Reserved : MBZ

R0.0 31:16 Reserved : MBZ

 15:0 URB Handle. This is the URB handle where indicating the URB space for use by the root
thread and its children.

This may be used if child threads and/or synchronized root threads are present in IS
mode.

R1.7 31:16 Motion Vectors – Field 1, Backward, Vertical Component. Each vector component
is a 16-bit two’s-complement value. The vector is relative to the current macroblock
location. According to ISO/IEC 13818-2 Table 7-8, the valid range of each vector
component is [-2048, +2047.5], implying a format of s11.1. However, it should be
noted that motion vector values are sign extended to 16 bits.

 15:0 Motion Vectors – Field 1, Backward, Horizontal Component

R1.6 31:16 Motion Vectors – Field 1, Forward, Vertical Component

 15:0 Motion Vectors – Field 1, Forward, Horizontal Component

R1.5 31:16 Motion Vectors – Field 0, Backward, Vertical Component

 15:0 Motion Vectors – Field 0, Backward, Horizontal Component

R1.4 31:16 Motion Vectors – Field 0, Forward, Vertical Component

 15:0 Motion Vectors – Field 0, Forward, Horizontal Component

R1.3 31:24 Subblock Coding for Block Cr5

 23:16 Subblock Coding for Block Cb4

 15:8 Subblock Coding for Block Y3

 7:0 Subblock Coding for Block Y2

R1.2 31:24 Subblock Coding for Block Y1

 23:16 Subblock Coding for Block Y0. This field specifies the subblock partition and subblock
coding pattern for the block. The definition of the 8 bits of this field is listed below.
Detailed coding can be found in Table 10-10.

Bits [7:6]: reserved

Bits [5:2]: Subblock present

Bits [1:0]: Subblock partitioning

 15:12 Reserved.

348

DWord Bit Description

 11:6 Coded Block Pattern. This field specifies whether blocks are present or not.

Format = 6-bit mask.

Bit 11: Y0

Bit 10: Y1

Bit 9: Y2

Bit 8: Y3

Bit 7: Cb5

Bit 6: Cr5

 5:0 Reserved.

R1.1 31:24 Reserved. (Skip Macroblocks)

 23:0 Reserved. (Offset into error data)

R1.0 31:28 Motion Vertical Field Select. A bit-wise representation of a long [2][2] array as
defined in §6.3.17.2 of the ISO/IEC 13818-2 (see also §7.6.4).

Bit MVector

[r]
MVector

[s]
MotionVerticalFieldSelect

Index
28 0 0 0
29 0 1 1
30 1 0 2
31 1 1 3

Format = MC_MotionVerticalFieldSelect.
0 = The prediction is taken from the top reference field.

1 = The prediction is taken from the bottom reference field.

 27 Second Field. This bit indicates that this is the second field in the current frame. The
prediction for this macroblock, if it belongs to a field P-picture, should use this bit to
determine which frame contains the reference field as described in §7.6.2.1 of the
ISO/IEC 13818-2.

When the picture type is not P or the prediction type is not field, this bit is set to 0.

Format = MC_SecondPField
0 = This is not the second field.

1 = This is the second field.

 26 Reserved. (HWMC mode)

 349

DWord Bit Description

 25:24 Motion Type. When combined with the destination picture type (field or frame) this
Motion Type field indicates the type of motion to be applied to the macroblock. See
ISO/IEC 13818-2 §6.3.17.1, Tables 6-17, 6-18. In particular, the device supports dual-
prime motion prediction (11) in both frame and field picture type.

Format = MC_MotionType

Value Destination = Frame

Picture_Structure =
11

Destination = Field

Picture_Structure !=
11

‘00’ Reserved Reserved
‘01’ Field Field
‘10’ Frame 16x8
‘11’ Dual-Prime Dual-Prime

 23:22 Reserved. (Scan method)

 21 DCT Type. This field specifies the DCT type of the current macroblock. The kernel
should ignore this field when processing Cb/Cr data. See ISO/IEC 13818-2 §6.3.17.1.
This field is zero if Coded Block Pattern is also zero (no coded blocks present).

0 = MC_FRAME_DCT (Macroblock is frame DCT coded).

1 = MC_FIELD_DCT (Macroblock is field DCT coded).

 20 Reserved. (H261 Loop Filter)

 19 Reserved. (H263)

 18 Macroblock Motion Backward. This field specifies if the backward motion vector is
active. See ISO/IEC 13818-2 Tables B-2 through B-4.

0 = No backward motion vector.

1 = Use backward motion vector(s).

 17 Macroblock Motion Forward. This field specifies if the forward motion vector is active.
See ISO/IEC 13818-2 Tables B-2 through B-4.

0 = No forward motion vector.

1 = Use forward motion vector(s).

 16 Macroblock Intra Type. This field specifies if the current macroblock is intra-coded.
When set, Coded Block Pattern is ignored and no prediction is performed (i.e., no motion
vectors are used). See ISO/IEC 13818-2 Tables B-2 through B-4.

0 = Non-intra macroblock.

1 = Intra macroblock.

 15:0 Reserved.

R2.7 31:0 Reserved.

R2.6 31:0 Reserved.

R2.5 31:0 Reserved.

R2.4 31:0 Reserved.

R2.3 31:0 Reserved.

R2.2 31:0 Reserved.

350

DWord Bit Description

R2.1 31:27 Reserved.

 26:20 Vertical Origin. Set the vertical origin of the next macroblock in the destination picture
in units of macroblocks. (Valid range is 0 to 120).

Format = U7 in macroblock units.

Range = [0, 120]

 19:11 Reserved: MBZ

 10:4 Horizontal Origin. Set the horizontal origin of the next macroblock in the destination
picture in units of macroblocks.

Format = U7 in macroblock units.

Range = [0, 127]

 3:0 Reserved.

R2.0 31:30 Reserved.

 29 Reserved

 28 Reserved

 27:20 Reserved.

 19:18 Picture Coding Type. This field identifies whether the picture is an intra-coded picture
(I), predictive-coded picture (P) or bi-directionally predictive-coded picture (B). See
ISO/IEC 13818-2 §6.3.9 for details.

Format = MPEG_PICTURE_CODING_TYPE
00 = Reserved
01 = MPEG_I_PICTURE
10 = MPEG_P_PICTURE

11 = MPEG_B_PICTURE

 17:16 Picture Structure. This field specifies whether the picture is encoded in the form of a
frame picture or one field (top or bottom) picture. See ISO/IEC 13818-2 §6.3.10 for
details.

Format = MPEG_PICTURE_STRUCTURE
00 = Reserved
01 = MPEG_TOP_FIELD
10 = MPEG_BOTTOM_FIELD
11 = MPEG_FRAME

 15 Reserved. (8-bit Intra)

 14:13 Reserved. (Intra DC Precision)

 12:0 Reserved.

 351

DWord Bit Description

None

(0
blocks
coded)

or

R3-
R[2+4x]

where

x =
number
of coded
blocks

 DCT Coefficients. These are the DCT values of the coefficients for the macroblock.
Only coded blocks have coefficients present in the array. Beginning in R3, the order of
the coefficients for the coded blocks is Y0, Y1, Y2, Y3, Cb4, and Cr5. For each coded
block, the 8x8 DCT coefficients, with 1 word each coefficient, are organized in row-major
order, occupying four GRF registers. This is shown in Table 10-13, where the index-pair
for a DCT coefficient is (Column_Index, Row_Index).

10.8.1.3 VLD-Mode Root Thread

The following table shows the root thread payload messages when VFE is in VLD mode
and URB push constant is not enabled. When URB push constant is enabled, it will
start at R1. Subsequently, macroblock data starting with motion vectors will be put in
GRF registers after the URB push constants.

DWord Bit Description

R0.7 31 Debug : Snapshot Flag. This field is used by the Thread Dispatcher to set the snapshot
flag upon a snapshot condition.

 27:24 Debug : Reserved

 23:0 Debug : MBZ.

R0.6 31:24 Debug : Reserved for software debug. This field is reserved for the system debug routine,
for example, to assemble the debug scratch memory offset for the thread. Fixed function
hardware and application routine must not use this field.

 23:0 Debug : Thread Count. This field is generated by VFE based on a debug counter that is
controlled by host software.

R0.5 31:10 NOT USED (was Scratch Space Pointer).

 9:8 Reserved : MBZ

 7:0 FFTID. This ID is assigned by TS and is a unique identifier for the thread in comparison to
other concurrent root threads. It is used to free up resources used by the thread upon
thread completion.

Note: Nothing to free up in this case.

R0.4 31:5 Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding Table. It is
specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

 4:0 Reserved : MBZ

352

DWord Bit Description

R0.3 31:5 NOT USED (was Sampler State Pointer).

 4 Reserved : MBZ

 3:0 NOT USED (was Per Thread Scratch Space)

R0.2 31:5 Interface Descriptor Pointer. Specifies the 32-byte aligned pointer to this thread’s
interface descriptor. Can be used as a base from which to offset child thread’s interface
descriptor pointers from.

Format = GeneralStateOffset[31:5]

 4:0 Reserved : MBZ

R0.1 31:0 Reserved : MBZ

R0.0 31:16 Reserved : MBZ

 15:0 NOT USED (was URB Handle)

R1.7 31:16 Motion Vectors – Field 1, Backward, Vertical Component. Each vector component is
a 16-bit two’s-complement value. The vector is relative to the current macroblock
location. According to ISO/IEC 13818-2 Table 7-8, the valid range of each vector
component is [-2048, +2047.5], implying a format of s11.1. However, it should be noted
that motion vector values are sign extended to 16 bits.

 15:0 Motion Vectors – Field 1, Backward, Horizontal Component

R1.6 31:16 Motion Vectors – Field 1, Forward, Vertical Component

 15:0 Motion Vectors – Field 1, Forward, Horizontal Component

R1.5 31:16 Motion Vectors – Field 0, Backward, Vertical Component

 15:0 Motion Vectors – Field 0, Backward, Horizontal Component

R1.4 31:16 Motion Vectors – Field 0, Forward, Vertical Component

 15:0 Motion Vectors – Field 0, Forward, Horizontal Component

R1.3 31:27 Reserved.

 26:20 Vertical Origin. Set the vertical origin of the next macroblock in the destination picture
in units of macroblocks. (Valid range is 0 to 120).

Format = U7 in macroblock units.

Range = [0, 120]

 19:11 Reserved: MBZ

 10:4 Horizontal Origin. Set the horizontal origin of the next macroblock in the destination
picture in units of macroblocks.

Format = U7 in macroblock units.

Range = [0, 127]

 3:0 Reserved.

R1.2 31:30 Reserved.

 29 Reserved. (Interpolation Rounder Control)

 28 Reserved. (Bidirectional Averaging Control)

 353

DWord Bit Description

 27:20 Reserved.

19:18 Picture Coding Type. This field identifies whether the picture is an intra-coded picture

(I), predictive-coded picture (P) or bi-directionally predictive-coded picture (B). See
ISO/IEC 13818-2 §6.3.9 for details.

Format = MPEG_PICTURE_CODING_TYPE
00 = Reserved
01 = MPEG_I_PICTURE
10 = MPEG_P_PICTURE
11 = MPEG_B_PICTURE

 17:16 Picture Structure. This field specifies whether the picture is encoded in the form of a
frame picture or one field (top or bottom) picture. See ISO/IEC 13818-2 §6.3.10 for
details.

Format = MPEG_PICTURE_STRUCTURE
00 = Reserved
01 = MPEG_TOP_FIELD
10 = MPEG_BOTTOM_FIELD
11 = MPEG_FRAME

 15 Reserved. (8-bit Intra)

 14:13 Intra DC Precision. See ISO/IEC 13818-2 §6.3.10 for details.

 12 Disable Mismatch. This bit is used to disable the mismatch control performed after the
inverse quantization operation, as described in ISO/IEC 13818-2 §7.4.4

 11:6 Coded Block Pattern. This field specifies whether blocks are present or not.

Format = 6-bit mask.

Bit 11: Y0

Bit 10: Y1

Bit 9: Y2

Bit 8: Y3

Bit 7: Cb5

Bit 6: Cr5

 5 Quantizer Scale Type: This field specifies the quantizer scaling type.

Format = MPEG_Q_SCALE_TYPE
0 = MPEG_QSCALE_LINEAR
1 = MPEG_QSCALE_NONLINEAR

 4:0 Quantization Scale Code. Combined with the quantization scale type, this value selects
the quantizer scale table according to ISO/IEC 13818-2 Table 7-6

R1.1 31:24 Reserved. (Skip Macroblocks)

 23:0 Reserved. (Offset into error data)

354

DWord Bit Description

R1.0 31:28 Motion Vertical Field Select. A bit-wise representation of a long [2][2] array as defined
in §6.3.17.2 of the ISO/IEC 13818-2 (see also §7.6.4).

Bit MVector

[r]
MVector

[s]
MotionVerticalFieldSelec

t Index
28 0 0 0
29 0 1 1
30 1 0 2
31 1 1 3

Format = MC_MotionVerticalFieldSelect.
0 = The prediction is taken from the top reference field.

1 = The prediction is taken from the bottom reference field.

 27 Second Field. This bit indicates that this is the second field in the current frame. The
prediction for this macroblock, if it belongs to a field P-picture, should use this bit to
determine which frame contains the reference field as described in §7.6.2.1 of the
ISO/IEC 13818-2.

When the picture type is not P or the prediction type is not field, this bit is set to 0.

Format = MC_SecondPField
0 = This is not the second field.

1 = This is the second field.

 26 Reserved. (HWMC mode)

 25:24 Motion Type. When combined with the destination picture type (field or frame) this
Motion Type field indicates the type of motion to be applied to the macroblock. See
ISO/IEC 13818-2 §6.3.17.1, Tables 6-17, 6-18. In particular, the device supports dual-
prime motion prediction (11) in both frame and field picture type.

Format = MC_MotionType

Value Destination = Frame
Picture_Structure =

11

Destination = Field
Picture_Structure !=

11

‘00’ Reserved Reserved
‘01’ Field Field
‘10’ Frame 16x8
‘11’ Dual-Prime Dual-Prime

 23:22 Reserved. (Scan method)

 21 DCT Type. This field specifies the DCT type of the current macroblock. The kernel should
ignore this field when processing Cb/Cr data. See ISO/IEC 13818-2 §6.3.17.1. This field
is zero if Coded Block Pattern is also zero (no coded blocks present).

0 = MC_FRAME_DCT (Macroblock is frame DCT coded).

1 = MC_FIELD_DCT (Macroblock is field DCT coded).

 20 Reserved. (H261 Loop Filter)

 19 Reserved. (H263)

 355

DWord Bit Description

 18 Macroblock Motion Backward. This field specifies if the backward motion vector is
active. See ISO/IEC 13818-2 Tables B-2 through B-4.

0 = No backward motion vector.

1 = Use backward motion vector(s).

 17 Macroblock Motion Forward. This field specifies if the forward motion vector is active.
See ISO/IEC 13818-2 Tables B-2 through B-4.

0 = No forward motion vector.

1 = Use forward motion vector(s).

 16 Macroblock Intra Type. This field specifies if the current macroblock is intra-coded.
When set, Coded Block Pattern is ignored and no prediction is performed (i.e., no motion
vectors are used). See ISO/IEC 13818-2 Tables B-2 through B-4.

0 = Non-intra macroblock.

1 = Intra macroblock.

 15:0 Reserved.

None

(0 block
coded)

or

R2-
R[1+4x]

where

x =
number
of coded
blocks

 DCT Coefficients. These are the DCT values of the coefficients for the macroblock. Only
coded blocks have coefficients present in the array. Beginning in R2, the order of the
coefficients for the coded blocks is Y0, Y1, Y2, Y3, Cb4, and Cr5. For each coded block,
the 8x8 DCT coefficients, with 1 word each coefficient, are organized in row-major order,
occupying four GRF registers. This is shown in Table 10-13, where the index-pair for a
DCT coefficient is (Column_Index, Row_Index).

Table 10-13. Format of a block of DCT coefficients in GRF registers

Reg. /
Words

W15 W14 W13 W12 W11 W10 W9 W8 W7 W6 W5 W4 W3 W2 W1 W0

R[n] (7,1) (6,1) (5,1) (4,1) (3,1) (2,1) (1,1) (0,1) (7,0) (6,0) … … … … (1,0) (0,0)

R[n+1] (7,3) … … … … … … (0,3) (7,2) (6,2) … … … … (1,2) (0,2)

R[n+2] (7,5) … … … … … … (0,5) (7,4) (6,4) … … … … (1,4) (0,4)

R[n+3] (7,7) (7,7) (5,7) (4,7) (3,7) (2,7) (1,7) (0,7) (7,6) (6,6) … … … … (1,6) (0,6)

* W# (# from 0 to 15) represents WORD location # within an 8-DW register.

356

10.8.1.4 Child Thread

The tread initiation for the child thread is determined by the data stored in the URB by
the parent that spawns it. No hardware-defined header is generated. Besides the
debug fields, all other fields are software defined according to application specific
needs. However, software should follow the header field definition similar to that for a
root thread, when the same fields are used, to be consistent and to reduce message
header assemble overhead.

As the parent thread is responsible of generating the debug fields, it should follow the
same general principle used by fixed function hardware. The Parent Thread Count field
should be the Thread Count field of the parent thread itself (e.g. copying R0.6[23:0]
to R0.7[23:0]). The Thread Count field should have a unique value for each child
thread and the unique value should not be dependent on the execution order. This is
mostly important for the cases when the child thread generation order may vary
depending on the thread completion order. For example, when generating child
threads for macroblock-based processing, the Thread Count field for a child thread
should be deterministic for a macroblock position.

The following table shows the R0 register contents for a child thread, which is
generated by its parent thread. The remaining payloads are application dependent.

DWord Bit Description

R0.7 31 Debug: Snapshot Flag. This field is used by the Thread Dispatcher to set the snapshot
flag upon a snapshot condition.

 27:24 Debug: Reserved

 23:0 Debug: Parent Thread Count. This field is the thread count of the parent thread that
can be used to uniquely identify the parent thread that generates this child thread.

R0.6 31:24 Debug: Reserved for software debug. This field is reserved for the system debug
routine, for example, to assemble the debug scratch memory offset for the thread. Fixed
function hardware and application routine must not use this field.

 23:0 Debug: Thread Count. This field is generated by the parent thread to uniquely identify
the child thread.

R0.5-
R0.0

31:0 Software defined

 357

10.8.2 Thread Spawn Message

The thread spawn message is issued to the TS unit by a thread running on an EU. This
message contains only one 8-DW register. The thread spawn message may be used to

• Spawn a child thread

• Spawn a root thread (start dispatching a synchronized root thread)

• Dereference URB handle

• Indicate a thread termination, dereference other TS managed resource and may
or may not dereference URB handle

In order to end a root thread, the end of thread message must be targeted at the
thread spawner. In this case, the root thread sends a message with a “dereference
resource” in the Opcode field. The thread spawner does not snoop the messages
sideband to determine when a root thread has ended. Thread Spawner does not track
when a child thread terminates, to be consistent a child thread should also terminate
with a “dereference resource” message to the Thread Spawner. Software must set the
Requester Type (root or child thread) field correctly.

As TS dispatches one synchronized root thread upon receiving a ‘spawn root thread’
message (from a synchronization thread). The synchronizing thread must send the
number of ‘spawn root thread’ message exactly the same as the subsequent
‘synchronized root thread’. No more, no less. Otherwise, hardware behavior is
undefined.

URB Handle Offset field in this message (in M0.4) has 10 bits, allowing addressing of a
large URB space. However, when a parent thread writes into the URB, it subjects to
the maximum URB offset limitation of the URB write message, which is only 6 bits
(see Unified Return Buffer Chapter for details). In this case, the parent thread may
have to modify the URB Return Handle 0 field of the URB write message in order to
subdivide the large URB space that the thread manages.

358

10.8.2.1 Message Descriptor

The following table shows the lower 16 bits of the message descriptor within the SEND
instruction for a thread spawn message.

Bit Description

19 This bit is not part of the shared function specific message descriptor.

18:5 Reserved: MBZ. Bits 18:16 are not part of the shared function specific message descriptor.

4 Resource Select. This field specifies the resource associated with the action taken by the Opcode.

If Opcode is “Spawn thread”, this field selects whether it is a child thread or a root thread.

0 = spawn a child thread

1 = spawn a root thread

If Opcode == “Dereference Resource”, this field indicates whether the URB handle is to be
dereferenced. The URB handle can only be dereferenced once.

0 = The URB handle is dereferenced

1 = The URB handle is NOT dereferenced

3:2 Reserved: MBZ

1 Requester Type. This field indicates whether the requesting thread is a root thread or a child thread. If
it is a root thread, when Opcode is 0, FF managed resources will be dereferenced. If it is a child thread
and Opcode is 0, no resource will be dereferenced – basically no action is required by the TS.

0 = Root thread

1 = Child thread

0 Opcode. Indicates the operation performed by the message. A root thread must terminate with a
message to TS (Opcode == 0 and EOT == 1). A child thread should also terminate with such a
message. A thread cannot terminate with an Opcode of “spawn thread”.

0 = dereference resource (also used for end of thread)

1 = spawn thread

 359

10.8.2.2 Message Payload

DWord Bit Description

M0.7 31:0 Debug: Identical to DW7 of R0 of the requesting thread.

Exception: If Opcode (and Requester Type) is “spawn a child thread”, this field must
be identical to DW7 of R0 of the child thread to be spawned in order for TS to generate
debug snapshot for the child thread.

M0.6 31:0 Debug: Identical to DW6 of R0 of the requesting thread.

Exception: If Opcode (and Requester Type) is “spawn a child thread”, this field must
be identical to DW6 of R0 of the child thread to be spawned in order for TS to generate
debug snapshot for the child thread.

M0.5 31:8 Ignored

 7:0 FFTID. This ID is assigned by TS and is a unique identifier for the thread in comparison
to other concurrent root threads. It is used to free up resources used by a root thread
upon thread completion.

This field is valid only if the Opcode is “dereference resource”, and is ignored by
hardware otherwise.

M0.4 31:16 Ignored

 15:10 Dispatch URB Length. Indicates the number of 8-DW URB entries contained in the
Dispatch URB Handle that will be dispatched. When spawning a child thread, the URB
handle contains most of the child thread’s payload including R0 header. When spawning
a root thread, the URB handle contains the message passed from the requesting thread
to the spawned “peer” root thread. The number of GRF registers that will be initialized at
the start of the spawned child thread is the addition of this field and the number of URB
constants if present. The number of GRF registers that will be initialized at the start of a
spawned root thread is the addition of this field, the number of URB constants if present,
and the URB handle received from VFE.

This field is ignored if the Opcode is “dereference resource”.

Length of 0 can be used only while spawning child threads to indicate that there is no
payload beyond the required R0 header. It is UNDEFINED to set this field to 0 when
spawning a root thread.

Format = U6

Range = [0,63] for child threads
Range = [1,63] for root threads

 9:0 URB Handle Offset. Specifies the 8-DW URB entry offset into the URB handle that
determines where the associated dispatch payload will be retrieved from when the
spawned child or root thread is dispatched.

This field is ignored if the Opcode is “dereference resource”.

Format = U10

Range = [0,1023]

M0.3 31:0 Ignored

360

DWord Bit Description

M0.2 31:4 Interface Descriptor Pointer. Specifies the 16-byte aligned pointer to the child
thread’s interface descriptor. This pointer is used by TS to fetch the interface descriptor
for the child thread, and it is also passed to the child thread in its R0 header.

This field is ignored if the Opcode is “dereference resource” or “spawn a root thread”.

Format = GeneralStateOffset[31:4]

 3:0 Ignored

M0.1 31:0 Ignored

M0.0 31:24 Ignored

 23:16 Reserved : MBZ

 15:0 Dispatch URB Handle

If Opcode (and Requester Type) is “spawn a child thread”: Specifies the URB handle
for the child thread.

If Opcode (and Requester Type) is “spawn a root thread”: Specifies the URB handle
containing message (e.g. requester’s gateway information) from the requesting thread to
the spawned root thread.

If Opcode is “dereference resource”: This field is required on end of thread messages if
the Children Present bit is set, as the handle must be dereferenced, otherwise this field
is ignored.

10.9 Media Applications with Specific Hardware
Support

10.9.1 Full MPEG-2 Decode

10.9.1.1 Theory of Operation

In this section, we start with an introduction of MPEG-2 decode pipeline and the
structure of MPEG-2 bitstream. We then discuss the host (CPU) and the graphics
accelerator partition with reference to common API definitions. This leads to the VLD
hardware acceleration and the VLD Command interface. Next, we discuss the partition
between the VLD hardware (part of the VFE fixed function unit) and the kernel
software running on GEN4 execution unit. This leads to the definition of the Post-VLD
kernel descriptors. Another host-graphics-accelerator partition, HWMC, will be covered
in the next Section. Yet another host-graphics-accelerator partition, HW-IDCT, can
also be supported using the Inverse Scan mode of VFE. However, as it is a less
interesting usage model, we will not cover it in this document. MPEG-2 is a video
compression standard based on block coding, exploiting spatial and temporal data
redundancy in natural video data. Temporal redundancy is reduced by inter-picture
motion estimation; spatial redundancy is reduced by applied Discrete Cosine
Transform (DCT). The DCT transformed motion prediction residue if inter-predicted (or
the pixel data if intra-coded) is compressed using (run-length) Huffman Variable
Length Coding (VLC). Decoding a compressed MPEG-2 video stream follows the
reverse of this process. As shown in Figure 10-12, MPEG-2 video decoding includes
the following steps:

 361

• Variable Length Decode (VLD): A process that uses inverse Huffman table loop-up
to convert a compressed bitstream into picture structure parameters, motion
information and quantized DCT coefficients.

• Inverse Scan (IS): A process that converts run-length location based on a selected
scan order of the quantized DCT coefficients into block coordinates.

• Inverse Quantization (IQ): A process that restores the DCT coefficients based on
selected (inverse) quantization table.

• Inverse DCT (IDCT): An inverse transform to restore the motion prediction residue
(for predicted macroblocks) or the pixel data (for non-predicated macroblocks).

• Motion Compensation (MC): A process that includes motion prediction, residual
data addition and the final clipping. Motion prediction process uses the motion
vectors to reconstruct predicted data from the reference pictures. If present, the
predicted data is added to the residue data. The final clipping process converts the
pixel data from 9-bit signed precision into 8-bit unsigned range [0, 255] before
storing into memory or presenting for display.

Figure 10-12. MPEG-2 decode flow chart

Reference
Picture(s)

Variable
Length
Decode

Inverse
Quantization

Inverse
Discrete
Cosine

Transform

Motion
Prediction

Compressed
Video Data

Inverse
Scan

Motion Compensation

+

Reference
Picture(s)

Clip

Uncompressed
Picture

Quant
Table

Compressed
Picture

Uncompressed
Video Data

MPEG-2 Decode Flow

In order to reduce hardware complexity while maximizing the host acceleration, a
proper host/hardware partition is desired. According to the MPEG-2 compressed
bitstream syntax shown in Figure 10-13, the compressed bitstream is organized in a
hierarchical structure. We observe that:

• All layers above slice layer start with unique byte aligned header start-code. The
start codes can be easily found within the bitstream without decoding all the
symbols in between.

• Majority of bits spent in the macroblock and block layer and there is no start code
for these two layers. This indicates that most of bitstream parsing and VLD
compute are spent in these two layers.

Based on these two observations, natural partition between host software and the
graphics acceleration hardware is at the Slice layer if the hardware performs off-host

362

VLD operations. This partition provides the maximal host acceleration while also
replying on host for high level bitstream syntax decoding to simplify the graphics
accelerator’s complexity. This host/accelerator partition is fully supported by common
API interfaces.

Figure 10-13. MPEG-2 compressed bitstream syntax

MPEG2 video sequence

sequence
header

sequence
extension

GOP header
and pictures

sequence
header

sequence
extension

GOP header
and pictures

GOP header user data picture ... picture

...

picture
header

picture coding
extension

extension and
user data slice ... slice

slice header macroblock ... macroblock

macroblock
header block(0) block(1) block(2) block(3) block(4) block(5)

differential
DC coef

run-level
VLC ... end_of_block

* Slice has byte aligned start code.

run-level
VLC

(if block coded)

(if intra macroblock)

picture layer

slice layer

macroblock
layer

block layer

group of
picture layer

sequence
layer

The types of computation required for different MPEG-2 decoding stages are
significantly different, calling for different hardware implementation. As VLD consists
of a bit-wide variable length operation with table look up in the very inner loop, it is
best suited for ASIC implementation – VLD hardware in the Video Front End (VFE)
fixed function unit. In contrary, the rest of IQ, IDCT and MC stages are very well fitted
for SIMD type programmable hardware – GEN4 Execution Unit. Inverse Scan fails in
between. As it is a process of converting unstructured data into well-structured block
data, performing it in VFE unit significantly reduces the burden of the kernels running
on GEN4 EU. The mapping of the MPEG-2 decode process flow into GEN4 hardware is
illustrated in Figure 10-14. This mapping can be summarized by the following points.

• VLD hardware performs Slice VLD and Inverse Scan. It takes Slice commands and
compressed bitstream data from the Command Streamer. It outputs the decoded
macroblock parameters and the quantized coefficient blocks into the URB as part
of the post-VLD kernel descriptors. Upon the completion of a macroblock, VFE unit
signals the TS unit that a new kernel is ready to be dispatched for execution.

• The per-macroblock post-VLD kernel descriptors in URB are then forward by the
TS unit to the GEN4 Thread Dispatcher to be dispatched as GEN4 threads on GEN4
Execution Units.

• The post-VLD threads running on GEN4 EU performs IQ, IDCT and MC. The
quantized IDCT block data is preloaded to the thread. The quantization tables and
IDCT transform coefficients. mapped to the Data Cached are loaded from the Data

 363

Port similar to the Constants used in 3D graphics. The reference blocks in the
reference pictures mapped to the Texture Cache are loaded from the Data Port
using Media Block Read message. The final resulting macroblock data are written
via the Data Port using Media Block Write message to the uncompressed picture
buffer that is mapped to the Render Cache.

• There are two ways of delivering quantization tables and IDCT transform
coefficients: pulled in from data port, or pushed in via Constant URB buffer.

⎯ As shown in Figure 10-14, both quantization table and IDCT transform
coefficient matrices may be mapped to the data cache and be loaded from
data port by the thread. In this usage mode, data cache should be large
enough to hold the data. Performance penalty for a thread is the round trip
latency for cache hit case.

⎯ Alternatively and preferably, both quantization table and IDCT transform
coefficient matrices may be pushed in the thread payload as Constant URB
buffer. As both quantized IDCT block data and quantization tables are ready
in the thread payload, thread program can proceed right away without any
data due to data load. In addition, post-VLD kernels are relatively long
kernels. They are not dispatch limited. Pushing these data via Constant URB
buffer should not impact performance.

Figure 10-14. Functional mapping of MPEG-2 decode hardware acceleration with off-
host VLD

Reference
Picture(s)

Slice
VLD

Inverse
Quantization

Inverse
Discrete
Cosine

Transform

Motion
Prediction

Inverse
Scan

Motion Compensation

+

Reference
Buffer(s)

Clip

Uncompressed
Picture Buffer

Quant
Table

Bitstream
Parsing

Compressed
Buffer

Data Port /
Data Cache

Data Port /
Texture Cache

Data Port /
Render CacheCommend

Streamer

Threads on
Gen4 EUs

VLD hardware

Host
Software

MPEG
Bitstream

URB

Slice
Commands

IDCT
Coefficients

Table 10-14 shows the usage of GEN4 shared resource in this mode of operation.

Table 10-14. Use of GEN4 shared resources for post-VLD kernels

Shared Resources Usage

VFE VLD hardware to perform VLD and Inverse Scan.

TS To dispatch root threads per macroblock.

364

Shared Resources Usage

URB For VFE to store macroblock data as payload of the root threads.

Data Port – Texture Cache For reference data reads pointed by the motion vectors. Buffers
support frame and field formats.

Data Port – Data Cache For quantization matrix and DCT coefficient matrix reads.

Data Port – Render Cache For render target writes. Buffers support frame and field
formats.

10.9.1.2 Performance

This section covers the performance of the VLD fixed function and the estimated
performance of the post-VLD kernel software.

The VLD hardware has a throughput of 1 symbol/clock but operates at half of the
GEN4 execution core frequency. Assume the average symbol size is about 6 bits; it
corresponds to a throughput of about 7 symbols/block for SD (standard resolution)
MPEG-2 bitstream (MP@ML) at 10mbps rate or about 2.5 symbols/block for HD (high
definition) MPEG-2 bitstream (MP@HL) at 20mbps. Therefore, the VLD hardware
throughput is about 14 GEN4 clocks per SD block or 5 clocks per HD block.

Based on initial (rough) estimation of the post-VLD kernel code analysis, on a 16-EU
configuration, it takes the EUs about 16 clocks to generate one block of data.

Therefore, for the 16-EU configuration, VLD hardware matches with the EU’s
performance for SD contents. There is sufficient performance headroom for HD
contents. For configuration with less EUs, VLD hardware has sufficient performance
headroom for both SD and HD contents.

10.10 Media Kernel Design Guide

As there is no fixed function specifically for other media functions, this section would
outline the high level structure of support for each media feature. The detailed kernel
descriptors will not be present in this document as they may be changed during
driver/kernel co-development. The rest of the sections are kept brief.

10.10.1 MPEG-2 HWMC

Another commonly supported host-accelerator partition for MPEG-2 video decodes is
Hardware Motion Compensation (HWMC) as shown in Figure 10-15. In this partition,
the graphics accelerator only performs the last stage of the decode pipeline – motion
compensation. This mapping can be summarized by the following points.

• Graphics driver assembles the per-macroblock HWMC kernel descriptors in
memory. VFE unit takes the HWMC macroblock commands from the Command
Streamer and stores the kernel descriptors into URB. Upon the completion of a
macroblock, VFE unit signals TS unit that a new kernel is ready to be dispatched
for execution.

• The per-macroblock HWMC kernel descriptors in URB are then forward by the TS
unit to the GEN4 Thread Dispatcher to be dispatched as GEN4 threads on GEN4
Execution Units.

 365

• The HWMC threads running on GEN4 EU performs MC. The IDCT block data (error
data) is loaded by the thread from the Data Cache (or Texture Cache) via the Data
Port using OWord Block Read message. The reference blocks in the reference
pictures mapped to the Texture Cache are loaded from the Data Port using Media
Block Read message. The final resulting macroblock data are written via the Data
Port to the uncompressed picture buffer that is mapped to the Render Cache using
Media Block Write message.

Figure 10-15. Functional mapping of MPEG-2 decode hardware acceleration with
HWMC

Reference
Picture(s)

Slice
VLD

Inverse
Quantization

Inverse
Discrete
Cosine

Transform

Motion
Prediction

Inverse
Scan

Motion Compensation

+

Reference
Buffer(s)

Clip

Uncompressed
Picture Buffer

Quant
Table

Bitstream
Parsing

Data Port /
Texture Cache

Data Port /
Render Cache

Commend
Streamer

Threads on
Gen4 EU’s

Host
Software

MPEG
Bitstream

macroblock
Commands

IDCT
Coefficients

Compressed
Buffer

Data Port /
Data Cache
(or Texture Cache)

Table 10-15 shows the usage of GEN4 shared resource in this mode of operation.

Table 10-15. Use of GEN4 shared resources for HWMC kernels

Shared Resources Usage

VFE Simply forwarding macroblock kernel descriptor to TS.

TS To dispatch root threads per macroblock.

URB For VFE to store the payload of the root threads.

Data Port – Texture Cache For reference data reads pointed by the motion vectors. Buffers
support frame and field formats.

Data Port – Data Cache For streaming of the correct data. (note: the correct data may
also be mapped to the Texture Cache)

Data Port – Render Cache For render target writes. Buffers support frame and field
formats.

366

10.10.2 Deinterlace Filter

Computers commonly use a non-interlaced video display format, also called a
progressive scan format, where an entire frame is scanned line-by-line. In contrast,
many sources of consumer video such as NTSC/PAL television signals use an
interlaced display format. Interlaced systems interleave two fields to display an entire
frame. In order to display this interlaced material on a progressive scan computer
display there is a need for deinterlacing.

A simple deinterlacing method is to apply a vertical filter to scale up a field to
construct a frame for display. This method is called a line doubler in a progressive
scan television set or called the ‘Bob’ method in PC graphics industry as different
vertical offsets of the odd and even fields are adjusted as part of the up scaling. Due
to the loss of vertical resolution within one interlaced field, flickering artifacts can be
observed. This is more pronounced in relatively static areas that contain high vertical
frequency details. Better deinterlacing methods are desirable.

Multi-frame pixel adaptive deinterlacing algorithms have been developed. As the
implementations of these algorithms on GEN4 do not require specific hardware logic,
descriptions of these algorithms are outside the scope of this Specification.

10.10.3 Video Encode

Various video encoding applications may also be realized on GEN4. Descriptions of
these are outside the scope of this Specification.

	Contents
	Figures
	Tables
	Revision History
	1 Introduction
	1.1 Notations and Conventions
	1.1.1 Reserved Bits and Software Compatibility

	1.2 Terminology

	2 3D Pipeline
	Introduction
	2.2 3D Pipeline Overview
	2.2.1 3D Pipeline Stages

	2.3 3D Primitives Overview
	2.4 3D Command Overview
	2.5 3D Pipeline State Overview
	2.5.1 3D State Model
	2.5.2 3DSTATE_PIPELINED_POINTERS
	2.5.3 3DSTATE_BINDING_TABLE_POINTERS

	2.6 Vertex Data Overview
	2.6.1 Vertex URB Entry (VUE) Formats
	2.6.2 Vertex Positions
	2.6.2.1 Clip Space Position
	2.6.2.2 NDC Space Position
	2.6.2.2.1 Speculative Perspective Divide
	NaN Values in NDC Coordinate Components

	2.6.2.3 Screen-Space Position

	2.7 3D Pipeline Stage Overview
	2.7.1 Generic 3D FF Unit Block Diagram
	2.7.2 Common 3D FF Unit Functions
	2.7.3 Pipeline Stage Input
	2.7.4 Pipelined State Commands
	2.7.4.1 URB_FENCE
	2.7.4.2 3DSTATE_PIPELINED_POINTERS
	2.7.4.3 3DSTATE_BINDING_TABLE_POINTERS
	2.7.4.4 CONSTANT_BUFFER

	2.7.5 Bypass Mode
	2.7.6 URB Entry Management
	2.7.7 Thread Initiation Management
	2.7.7.1 Thread Input Buffering
	2.7.7.2 Thread Resource Allocation

	2.7.8 Thread Request Generation
	2.7.8.1 Thread Control Information
	2.7.8.2 Thread Payload Generation
	2.7.8.2.1 Fixed Payload Header
	2.7.8.2.2 Extended Payload Header
	2.7.8.2.3 Payload URB Data

	2.7.9 Thread Output Handling
	2.7.9.1 URB Entry Output (VS, GS, CLIP, SF)
	2.7.9.2 VUE Allocation (GS, CLIP)
	2.7.9.3 VUE Dereference (GS, CLIP)
	2.7.9.4 Thread Termination

	2.7.10 VUE Readback

	2.8 Synchronization of the 3D Pipeline
	2.8.1 End-of-Pipe Synchronization
	2.8.2 Write Synchronization
	2.8.3 Synchronization Actions
	2.8.3.1 Writing a Value to Memory
	2.8.3.1.1 PS_DEPTH_COUNT

	2.8.3.2 Generating an Interrupt
	2.8.3.3 Invalidating of Caches

	2.8.4 PIPE_CONTROL Command

	3 Vertex Fetch (VF) Stage
	3.1 Vertex Fetch (VF) Stage Overview
	3.1.1 Input Assembly
	3.1.1.1 Vertex Assembly

	3.1.2 Vertex Cache

	3.2 VF Stage Input
	3.3 Index Buffer (IB)
	3.3.1 3DSTATE_INDEX_BUFFER
	3.3.2 Index Buffer Access

	3.4 Vertex Buffers (VBs)
	3.4.1 3DSTATE_VERTEX_BUFFERS
	3.4.2 VERTEX_BUFFER_STATE Structure
	3.4.3 VERTEXDATA Buffers – SEQUENTIAL Access
	3.4.4 VERTEXDATA Buffers – RANDOM Access

	3.5 Input Vertex Definition
	3.5.1 3DSTATE_VERTEX_ELEMENTS
	3.5.2 VERTEX_ELEMENT_STATE Structure
	3.5.3 Vertex Element Data Path

	3.6 3D Primitive Processing
	3.6.1 3DPRIMITIVE Command
	3.6.2 Functional Overview
	3.6.3 VertexLoop
	3.6.4 VertexIndexGeneration
	3.6.5 VertexCacheLookup
	3.6.6 VertexElementLoop
	3.6.7 SourceElementFetch
	3.6.8 FormatConversion
	3.6.9 DestinationFormatSelection
	3.6.10 URBWrite
	3.6.11 OutputBufferedVertex

	3.7 Dangling Vertex Removal

	4 Vertex Shader (VS) Stage
	4.1 VS Stage Overview
	4.1.1 Vertex Caching

	4.2 VS Stage Input
	4.2.1 State
	4.2.1.1 URB_FENCE
	4.2.1.2 VS_STATE

	4.2.2 Input Vertices

	4.3 VS Thread Request Generation
	4.3.1 Thread Payload

	4.4 VS Thread Execution
	4.4.1 Vertex Output
	4.4.2 Thread Termination

	4.5 Primitive Output

	5 Geometry Shader (GS) Stage
	5.1 GS Stage Overview
	5.2 GS Stage Input
	5.2.1 State
	5.2.1.1 GS_STATE

	5.3 Object Staging
	5.4 GS Thread Request Generation
	5.4.1 Object Vertex Ordering
	5.4.2 GS Thread Payload

	5.5 GS Thread Execution
	5.5.1 Vertex Output
	5.5.2 Thread Termination

	5.6 Vertex Header Readback
	5.7 Primitive Output

	6 Clip Stage
	6.1 CLIP Stage Overview
	6.1.1 Clip Stage – General-Purpose Processing
	6.1.2 Clip Stage – 3D Clipping

	6.2 Concepts
	6.2.1 The Clip Volume
	6.2.1.1 View Volume

	6.2.2 User-Specified Clipping
	6.2.2.1 User Clip Planes

	6.2.3 Negative-W Clipping Errata
	6.2.3.1 W Clipping Errata (DevBW, DevCL-A)
	6.2.3.2 W Clipping Errata (DevCL-B)
	6.2.3.2.1 Support for Clip-Testing Against W=0
	6.2.3.2.2 Support for UserClipFlag[7]

	6.2.4 Tristrip Clipping Errata [Pre-DevBW-E1], [DevCL]
	6.2.5 Guard Band
	6.2.5.1 NDC Guardband Parameters
	6.2.5.2 Screen Space Guardband Parameters

	6.2.6 Vertex-Based Clip Testing & Considerations
	6.2.6.1 Triangle Objects
	6.2.6.2 Non-Wide Line Objects
	6.2.6.3 Wide Line Objects
	6.2.6.4 Wide Points
	6.2.6.5 RECTLIST

	6.2.7 3D Clipping

	6.3 CLIP Stage Input
	6.3.1 State
	6.3.1.1 CLIP_STATE
	6.3.1.2 CLIP_VIEWPORT

	6.4 VertexClipTest Function
	6.5 Object Staging
	6.5.1 Partial Object Removal
	6.5.2 ClipDetermination Function
	6.5.3 ClipMode
	6.5.3.1 NORMAL ClipMode
	6.5.3.2 CLIP_ALL ClipMode
	6.5.3.3 CLIP_NON_REJECT ClipMode
	6.5.3.4 REJECT_ALL ClipMode
	6.5.3.5 ACCEPT_ALL ClipMode

	6.6 Object Pass-Through
	6.7 CLIP Thread Request Generation
	6.7.1 Object Vertex Ordering
	6.7.2 CLIP Thread Payload

	6.8 CLIP Thread Execution
	6.8.1 Vertex Output
	6.8.2 Thread Termination

	6.9 Thread-Generated Vertex Readback
	6.10 Primitive Output
	6.11 Other Functionality
	6.11.1 Statistics Gathering
	6.11.1.1 CL_INVOCATION_COUNT
	6.11.1.2 GS_PRIMITIVES_COUNT

	7 Strips and Fans (SF) Stage
	7.1 Overview
	7.1.1 Inputs from CLIP
	7.1.2 Attribute Setup/Interpolation Process
	7.1.3 Outputs to WM

	7.2 Primitive Assembly
	7.2.1 Point List Decomposition
	7.2.2 Line List Decomposition
	7.2.3 Line Strip Decomposition
	7.2.4 Triangle List Decomposition
	7.2.5 Triangle Strip Decomposition
	7.2.6 Triangle Fan Decomposition
	7.2.7 Polygon Decomposition
	7.2.8 Rectangle List Decomposition

	7.3 Object Setup
	7.3.1 Invalid Position Culling (Pre/Post-Transform)
	7.3.2 Viewport Transformation
	7.3.3 Destination Origin Bias
	7.3.4 Point Rasterization Rule Adjustment
	7.3.5 Drawing Rectangle Offset Application
	7.3.5.1 3DSTATE_DRAWING_RECTANGLE

	7.3.6 Point Width Application
	7.3.7 Rectangle Completion
	7.3.8 Vertex X,Y Clamping and Quantization
	7.3.9 Degenerate Object Culling
	7.3.10 Degenerate Triangle Culling
	7.3.11 Triangle Orientation (Face) Culling
	7.3.12 Scissor Rectangle Clipping
	7.3.13 Line Rasterization
	7.3.13.1 Zero-Width (Cosmetic) Line Rasterization
	7.3.13.2 Diamond Exit Sampling Rules – Legacy Mode
	7.3.13.3 Diamond Exit Sampling Rules – New Mode
	7.3.13.4 Non-Antialiased Wide Line Rasterization
	7.3.13.5 Anti-aliased Line Rasterization
	7.3.13.5.1 Anti-aliased Line Distance Mode

	7.4 SF Pipeline State Summary
	7.4.1 SF_STATE
	7.4.2 SF_VIEWPORT

	7.5 The SF Thread -- Interpolation Coefficient Calculation
	7.5.1 SF Setup Parameters Passed to SF Thread
	7.5.1.1 TRIANGLE Parameters
	7.5.1.2 RECTANGLE Parameters
	7.5.1.3 POINT Parameters
	7.5.1.4 LINE Parameters

	7.5.2 SF (Setup) Thread Payload
	7.5.3 SF Thread Execution
	7.5.4 SF Thread Output

	7.6 Other SF Functions
	7.6.1 Statistics Gathering

	8 Windower (WM) Stage
	8.1 Overview
	8.1.1 Inputs from SF to WM

	8.2 Windower Pipelined State
	8.2.1 WM_STATE

	8.3 Rasterization
	8.3.1 Drawing Rectangle Clipping
	8.3.2 Line Rasterization
	8.3.2.1 Coverage Values for Anti-Aliased Lines
	8.3.2.2 Line Stipple
	8.3.2.3 3DSTATE_LINE_STIPPLE

	8.3.3 Polygon (Triangle and Rectangle) Rasterization
	8.3.3.1 Polygon Stipple
	8.3.3.2 3DSTATE_POLY_STIPPLE_OFFSET
	8.3.3.3 3DSTATE_POLY_STIPPLE_PATTERN
	8.3.3.4 3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP

	8.4 Early Depth/Stencil Processing
	8.4.1 Depth Coefficient Read-Back
	8.4.2 Depth Offset
	8.4.3 Early Depth Test / Stencil Test/Write
	8.4.3.1 Software-Provided PS Kernel Info
	8.4.3.2 Early Depth Test Cases

	8.4.4 Depth/Stencil Buffer State
	8.4.4.1 3DSTATE_DEPTH_BUFFER

	8.5 Pixel Shader Thread Generation
	8.5.1 Pixel Grouping (Dispatch Size) Control
	8.5.2 PS Thread Payload for Normal Dispatch

	8.6 Other WM Functions
	8.6.1 Statistics Gathering

	9 Color Calculator (Output Merger)
	9.1.1 Alpha Test
	9.1.2 Depth Buffer Coordinate Offset Disable
	9.1.3 Stencil Test
	9.1.4 Depth Test
	9.1.5 Pre-Blend Color Clamping
	9.1.5.1.1 Pre-Blend Color Clamping when Blending is Disabled
	9.1.5.1.2 Pre-Blend Color Clamping when Blending is Enabled
	9.1.6 Color Buffer Blending
	9.1.6.1 3DSTATE_CONSTANT COLOR

	9.1.7 Post-Blend Color Clamping
	9.1.8 Color Quantization
	9.1.9 Dithering
	9.1.10 Buffer Update
	9.1.10.1 Stencil Buffer Updates
	9.1.10.2 Depth Buffer Updates
	9.1.10.3 Color Gamma Correction
	9.1.10.4 Color Buffer Updates

	9.2 Pixel Pipeline State Summary
	9.2.1 COLOR_CALC_STATE
	9.2.2 CC_VIEWPORT

	9.3 Other Pixel Pipeline Functions
	9.3.1 Statistics Gathering

	10 Media and General Purpose Pipeline
	10.1 Introduction
	10.1.1 Terminologies

	10.2 Media Pipeline Overview
	10.3 Programming Media Pipeline
	10.3.1 Command Sequence
	10.3.2 Interrupt Latency

	10.4 Video Front End Unit
	10.4.1 Interfaces
	10.4.1.1 Interface to Command Streamer
	10.4.1.2 Interface to Thread Spawner
	10.4.1.3 Interface to State Variable Manager
	10.4.1.4 Interface to Global URB Manager
	10.4.1.5 Interface to URB

	10.4.2 Mode of Operations
	10.4.2.1 Generic Mode
	10.4.2.1.1 Interface Descriptor Selection
	10.4.2.1.2 Scratch Space Allocation

	10.4.2.2 IS Mode
	10.4.2.3 VLD Mode
	10.4.2.3.1 Variable Length Decode
	Data Parser
	Symbol Decoder
	Motion Vector Predictor

	10.4.2.3.2 Inverse Scan
	10.4.2.3.3 Output Formatting
	Skip Macroblocks
	Second Field

	10.4.2.3.4 Handling Motion Vectors
	10.4.2.3.5 Dual Prime Handling
	10.4.2.3.6 Interface Descriptor Selection

	10.4.3 Debug Counter

	10.5 Thread Spawner Unit
	10.5.1 Basic Functions
	10.5.1.1 Root Threads Lifecycle
	10.5.1.2 URB Handles
	10.5.1.3 Root to Child Responsibilities
	10.5.1.4 Multiple Simultaneous Roots
	10.5.1.5 Synchronized Root Threads
	10.5.1.6 Deadlock Prevention
	10.5.1.7 Child Thread Lifecycle
	10.5.1.8 Arbitration between Root and Child Threads

	10.5.2 Interfaces
	10.5.2.1 Interface to VFE
	10.5.2.2 Interface to Thread Dispatcher

	10.6 Media State
	10.6.1 Media State Model
	10.6.2 VFE_STATE
	10.6.3 VLD_STATE
	10.6.4 INTERFACE_DESCRIPTOR

	10.7 Media State and Primitive Commands
	10.7.1 MEDIA_STATE_POINTERS Command
	10.7.2 MEDIA_OBJECT Command
	10.7.2.1 Inline and Indirect Data Format in Generic Mode
	10.7.2.2 Inline and Indirect Data Format in IS Mode
	10.7.2.3 Inline and Indirect Data Format in VLD Mode

	10.8 Media Messages
	10.8.1 Thread Payload Messages
	10.8.1.1 Generic Mode Root Thread
	10.8.1.2 IS-Mode Root Thread
	10.8.1.3 VLD-Mode Root Thread
	10.8.1.4 Child Thread

	10.8.2 Thread Spawn Message
	10.8.2.1 Message Descriptor
	10.8.2.2 Message Payload

	10.9 Media Applications with Specific Hardware Support
	10.9.1 Full MPEG-2 Decode
	10.9.1.1 Theory of Operation
	10.9.1.2 Performance

	10.10 Media Kernel Design Guide
	10.10.1 MPEG-2 HWMC
	10.10.2 Deinterlace Filter
	10.10.3 Video Encode

