

Open Graphics

Programming Manual

Chrome9 HC3
Graphics Processor

VX800 / VX820 Series
Part II: 3D / Video

Preliminary Revision 1.0
November 19, 2008
VIA TECHNOLOGIES, INC.

Copyright Notice:

Copyright © 2007-2008 VIA Technologies Incorporated.

Creative Commons License: Free to copy and distribute. Not allow to modify. Retain the identity of authorship.

Trademark Notices:

VEA is a registered trademark of VIA Technologies, Incorporated.
VX800, VX800UT, VX820 and VX820UT may only be used to identify products of VIA Technologies.
Windows Vista ${ }^{\text {TM }}$, XP $^{\text {TM }}$, $\mathrm{VMR}^{\text {TM }}, 2000^{\text {TM }}, \mathrm{ME}^{\text {TM }}, 98^{\text {TM }}$ and Plug and Play ${ }^{\text {TM }}$ are registered trademarks of Microsoft Corp.
$\mathrm{PCI}^{T M}$ and PCI Express ${ }^{\text {TM }}$ are a registered trademarks of the PCI Special Interest Group.
SPI is a trademark of Motorola Incorporated.
$\mathrm{PS} / 2^{\mathrm{TM}}$ is a registered trademark of International Business Machines Corp.
All trademarks are the properties of their respective owners.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies. VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. VIA Technologies assumes no responsibility for any errors in this document. Furthermore, VIA Technologies assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

VIA Technologies Incorporated Taiwan Office:
$1^{\text {st }}$ Floor, No. 531
Chung-Cheng Road, Hsin-Tien
Taipei, Taiwan ROC
Tel: 886-2-2218-5452
FAX: 886-2-2218-5453
Home page: http://www.via.com.tw

VIA Technologies Incorporated
USA Office:
940 Mission Court
Fremont, CA 94539
USA
Tel: 510-683-3300
FAX: 510-683-3301 or 510-687-4654
Home Page: http://www.viatech.com

Revision History

Document Release	Date	Revision	Initials
1.0	$11 / 19 / 08$	Initial public release	LW

VX800 / VX820 Series Chrome9 HC3 Programming Manual

Table of Contents

REVISION HISTORY I
TABLE OF CONTENTS II
LIST OF TABLES III
INTRODUCTION 1
About This Programming Guide 1
VIDEO REGISTERS 2
Video Registers 2
Video Display Engine Register Descriptions (200-12F0h) 9
Video Capture Engine Register Descriptions (300-37Ch) 34
HQV Engine Register Descriptions (380-3FFh) 41
3D REGISTERS 51
DEFINITION OF I/O REGISTER 51
For Write Mode 51
For Read Mode 55
CR Reading Back Registers (30h-9Fh) 59
HParatype 00h: Primitive Vertex data or Vertex Index 64
HParatype 01H: Attribute Other Than Texture 64
HParatype 02H: Attribute of Texture Stage n (HPARASubType 00h to 0Fh) 100
HParatype 02h: Attribute of Texture Sample Stage n (HParaSubType 20h to 2Fh) 106
HParatype 02h: Attribute of Texture Stage n (HParaSubType FEh) 110
HParatype 03H: Palette (HParaSubType 00H-22H) 119
HParaType 04h: Vertex and Primitive Setting 130
HParatype 10h: Commands for Command Regulator 143
HParatype 11h: Commands for Frame Buffer Swapping and CR’s Miscellaneous Setting 147
CR Registers in 2D Register Space (60-6Ch) 151
CR Registers in Video Control Register Space (3260-326CH) 152

List of Tables

TABLE 1. VIDEO DISPLAY ENGINE REGISTERS .. 2
TABLE 2. VIDEO CAPTURE ENGINE AND HIGH QUALITY VIDEO REGISTERS.. 5
TABLE 3. GRAPHICS HARDWARE COLOR CURSOR OPERATION... 27

INTRODUCTION

This document contains detailed graphics registers descriptions and other general information for the Chrome9 HC3 graphic engine. The graphics registers for the Chrome9 HC3 main features and its underlying subsystems are described explicitly in the following chapters.

About This Programming Guide

The programming manual is organized into 2 volumes (Part I \& Part II). A brief description of each chapter is given below:

Part I:

Introduction

An overview of the Chrome9 HC3 design features is given in this chapter, along with block diagram and reference list.

Register Overview

Register specifications for register addressing and I/O space division are shown in this chapter.

PCI Interface Register Descriptions

PCI interface summary table and detailed register descriptions are presented in this chapter.

VGA I/O Register Descriptions

This chapter provides detailed VGA-related register summary and descriptions. The various video modes support by the Chrome 9 HC3 controller are also included in the configuration section.

2D Engine Register Descriptions

In this chapter provides detailed 2D Engine register summary and descriptions.

DMA Register Descriptions

In this chapter provides detailed DMA register summary and descriptions.

CBU Rotation Register Descriptions

In this chapter provides detailed CBU rotation register summary and descriptions.

LVDS Register Descriptions

In this chapter provides detailed LVDS register summary and descriptions.

Part II:

Video Register Descriptions

This chapter provides detailed video register summary and descriptions.

3D Engine Register Descriptions

In this chapter provides detailed 3D Engine register summary and descriptions.

Video Registers

This chapter provides detailed video register summary table. Register descriptions on video play back, blending, engine capture and high quality video registers are provided in the sequent sections.

Video Registers

The Chrome9 HC3 Graphic Engine has an integrated video playback and blending engine. The video playback engine can simultaneously support up to three live video windows, and each video window can be independently scaled. Two blending engines support the graphics-to-video blending, followed by video-to-video blending effect. The blending factor is from constant, alpha stream or is combined with graphics data. Table 1 summarizes the video playback and blending engine registers. Detail register description follows.

These video register tables document the I/O port, I/O index and attribute ("Attribute") for each register. Attribute definitions being used are RW (Read/Write), RO (Read/Only), and RWC (or just WC) (Read / Write 1's to Clear individual bits). Registers indicated as RW may have some read/only bits that always read back a fixed value (usually 0 if unused); registers designated as RWC or WC may have some read-only or read write bits (see individual register descriptions for details). All offset and default values are shown in hexadecimal unless otherwise indicated.

Table 1. Video Display Engine Registers

Offset	Register Name	Attribute
Video Related Engines Register Space 1 (0x00000200 ~ 0x000003FF)		
203-200	Interrupt Flags \& Masks Control	RW
207-204	Address Flip Status	RO
20B-208	Alpha Window / HI (For Second Display) Horizontal and Vertical Location Start	RW
20F-20C	Alpha Window Horizontal and Vertical End \& HI (For Second Display) Center Offset	RW
213-210	Alpha Window Control	RW
217-214	CRT Starting Address	RW
21B-218	The Second Display Starting Address	RW
21F-21C	Alpha Stream Frame Buffer Stride	RW
223-220	Primary Display Color Key	RW
227-224	Alpha Window \& HI (For Second Display) Frame Buffer Starting Address	RW
23B-228	Chroma Key Lower Bound	RW
22F-22C	Chroma Key Upper Bound	RW
233-230	Video Stream 1 Control	RW
237-234	Video Window 1 Fetch Count	RW
23B-238	Video Window 1 Frame Buffer Y Starting Address 1	RW
23F-23C	Video Window 1 Frame Buffer Stride	RW
243-240	Video Window 1 Horizontal and Vertical Start Location	RW
247-244	Video Window 1 Horizontal and Vertical Ending Location	RW
24B-248	Video Window 1 Frame Buffer Y Starting Address 2	RW
24F-24C	Video Window 1 Display Zoom Control	RW
253-250	Video Window 1 Minify and Interpolation Control	RW
257-254	Video Window 1 Frame Buffer Y Starting Address 0	RW
25B-258	Video 1 FIFO Depth and Threshold Control	RW
25F-25C	Video Window 1 Horizontal and Vertical Starting Location Offset	RW
263-260	HI Control For Second Display	RW
267-264	The Second Display Color Key	RW
26B-268	V3 and Alpha Window FIFO Pre-threshold Control	RW
26F-26C	Video Window 1 Display Count On Screen Control	RW
273-270	HI Transparent Color For Second Display	RW

Technologies, Inc. we connect

VX800 / VX820 Series Chrome9 HC3 Programming Manual

277-274	HI Inverse Color For Second Display	RW
27B-278	V3 and Alpha Window FIFO Depth and Threshold Control	RW
27F-27C	V3 Display Count On Screen Control	RW
283-280	Primary Display Second Color Key	RW
287-284	V1 Color Space Conversion \& Enhancement Control 1	RW
28B-288	V1 Color Space Conversion \& Enhancement Control 2	RW
28F-28C	P Signature Adder Result 1	RW
293-290	Alpha Window/Color Cursor Ending Position (For Primary Display)	RW
297-294	3D AGP Pause Address MMIO Port	WO
29B-298	Compose Output Modes Select	RW
29F-29C	V3 Frame Buffer Starting Address 2	RW
$2 \mathrm{~A} 3-2 \mathrm{~A} 0$	V3 Control	RW
2A7-2A4	V3 Frame Buffer Starting Address 0	RW
2AB-2A8	V3 Frame Buffer Starting Address 1	RW
$2 \mathrm{AF}-2 \mathrm{AC}$	V3 Frame Buffer Stride	RW
2B3-2B0	V3 Horizontal and Vertical Start	RW
2B7-2B4	V3 Horizontal and Vertical End	RW
2BB-2B8	V3 and Alpha Window Fetch Count	RW
2BF-2BC	V3 Display Zoom Control	RW
2C3-2C0	V3 Minify \& Interpolation Control	RW
2C7-2C4	V3 Color Space Conversion \& Enhancement Control 1	RW
2CB-2C8	V3 Color Space Conversion \& Enhancement Control 2	RW
2CF-2CC	T Signature Adder Result 1	RW
2D3-2D0	Graphics Hardware Cursor Mode Control	RW
2D7-2D4	Graphics Hardware Cursor Position	RW
2DB-2D8	Graphics Hardware Cursor Origin	RW
2DF-2DC	Graphics Hardware Cursor Background Color	RW
2E3-2E0	Graphics Hardware Cursor Foreground Color	RW
2E7-2E4	T Signature Data Result 1	RW
2EB-2E8	HI for Primary Display FIFO Control Signal	RW
2EF-2EC	HI for Primary Display Transparent color	RW
2F3-2F0	HI for Primary Display Control Signal	RW
2F7-2F4	HI for Primary Display Frame Buffer Starting Address	RW
2FB-2F8	HI for Primary Display Horizontal and Vertical Start	RW
2FF-2FC	HI for Primary Display Center Offset	RW
Video Related Engines Register Space 2 (0x00001200 ~ 0x000013FF)		
1203-1200	Video 1Gamma R Correction Control	RW
1207-1204	Video 1Gamma G Correction Control	RW
120B-1208	Video 1Gamma B Correction Control	RW
120F-120C	HI for Primary Display Inverse Color	RW
1213-1210	PCIe Shadow Register 1	RW
1217-1214	PCIe Shadow Register 2	RW
121B-1218	PCIe Shadow Register 3	RW
$121 \mathrm{~F}-121 \mathrm{C}$	PCIe Shadow Register 4	RW
1223-1220	Video 3 Gamma R Correction Control	RW
1227-1224	Video 3 Gamma G Correction Control	RW
122B-1228	Video 3 Gamma B Correction Control	RW
$122 \mathrm{~F}-122 \mathrm{C}$	Video 3 Position Offset	RW
127C-1230	Reserved	RO
1283-1280	Interrupt Flags and Masks Control	RW
1287-1284	Logic Signature Setting	RW
128B-1288	P Logic Signature Address Result 0	RW

128F-128C	T Logic Signature Address Result 0	RW
1293-1290	IGA1 Display Position Counter 0	RO
1297-1294	IGA1 Display Position Counter 1	RO
129B-1298	IGA1 Display Position Counter 2	RW
$129 \mathrm{~F}-129 \mathrm{C}$	T Logic Signature Data Result 0	RW
12A3-12A0	IGA2 Display Position Counter 0	RO
12A7-12A4	IGA2 Display Position Counter 1	RO
$12 \mathrm{AB}-12 \mathrm{~A} 8$	IGA2 Display Position Counter 2	RW
12B3-12B0	Primary Display Data Color Space Conversion and Enhancement Control 1	RW
12B7-12B4	Primary Display Data Color Space Conversion and Enhancement Control 2	RW
12BB-12B8	Primary Display Data Color Space Conversion and Enhancement Control 3	RW
12BF-12BC	Primary Display Data Color Space Conversion and Enhancement Control 4	RW
12F0-12C0	Reserved	RO
Extended Video Engines Register Space 2 (0x00003200 ~ 0x000033FF)		
3260	Video ID Control	
326 C	Video Wait Control Register	

Note: 1) Port Address: MB1 + Offset Address
MB1 is declared in the register with offset address $18 \mathrm{~h} \sim 1 \mathrm{Fh}$ in the PCI configuration space.
2) There is additional register space to match the above register definition. When write a register to this space, it will be sent to "command regulator" first and then pass to video display engine. However, register read will be same as the original action. The relationship between the additional register space and original register space is:
$($ The additional register address $)=($ The original register address $)+16^{\prime} \mathrm{h} 2000$.

Table 2. Video Capture Engine and High Quality Video Registers

Offset	Register Name	Attribute
Video Capture Engine Register	RW	
$303-300$	Capture Interrupt Control and Flags	RO
$307-304$	Reserved	RW
30 B-308	Transport Stream Control	RO
$30 F-30 \mathrm{C}$	Reserved	RW
$313-310$	Capture Interface Control	RW
$317-314$	Active Video Horizontal Range (CCIR601 only)	RW
31 B-318	Active Video Vertical Range (CCIR601 only)	RW
31 F-31C	Active Video Scaling Control	RW
$323-320$	VBI Data Horizontal Range	RW
$327-324$	VBI Data Vertical Range	RW
$32 B-328$	First VBI Buffer Starting Address	RW
32 F-32C	VBI Buffer Stride	RW
$333-330$	Ancillary Data Count Setting	RW
$337-334$	Maximum Data Count of Active Video	RW
$33 B-338$	Maximum Data Count of VBI or ANC	RO
$33 F-33 C$	Capture Data Count	RW
$343-340$	First Active Video Frame Buffer Starting Address	RW
$347-344$	Second Active Video Frame Buffer Starting Address	RW
$34 B-348$	Third Active Video Frame Buffer Starting Address	RW
34 F-34C	Second VBI Buffer Starting Address	RW
$353-350$	Stride of Active Video Buffer and Coring Function Control	RO
$357-354$	TS Buffer 0 Error Packet Indicator	RO
$35 B-358$	TS Buffer 1 Error Packet Indicator	RO
$35 F-35 C$	TS Buffer 2 Error Packet Indicator	RO
$360-37 C$	Reserved	

Offset	Register Name	Attribute
HQV (High Quality Video) Engine Registers		RW
383-380	HQV Source Data Offset Control 1	RW
387-384	HQV Source Data Offset Control 2	RW
38B-388	HQV Source Data Offset Control 3	RW
38F-38C	HQV Source Data Offset Control 4	RW
393-390	HQV Parameters of Hardware Tuning Performance/Quality	RW
397-394	HQV Extended Control	RW
39B-398	HQV Static Record Frame Buffer Starting Address	RW
39F-39C	HQV Static Record Frame Buffer Stride	RW
3A3-3A0	HQV Color Adjustment Control 1	RW
3A7-3A4	HQV Color Adjustment Control 2	RW
3AB-3A8	HQV Color Adjustment Control 3	RW
3AF-3AC	HQV Color Adjustment Control 4	RW
3B3-3B0	HQV Horizontal Scale Control	RW
3B7-3B4	HQV Vertical Scale Control	RW
3BB-3B8	HQV Default Video Color	RW
3BF-3BC	HQV De-blocking Factor	RW
3C3-3C0	HQV Sub-picture Frame Buffer Stride and Control	RW
3C7-3C4	HQV Sub-picture Frame Buffer Starting Address	RW
3CB-3C8	HQV Sub-picture 4 x 16 RAM Table Write Control	RW
3D3-3D0	HQV Stream Control and Status	RW
3D7-3D4	HQV SW Source Data -Luma or Packed Starting Address	RW
3DB-3D8	HQV SW Source Data - Chroma Starting Address	RW
3DF-3DC	HQV Linear/Tile Address Mode, Color Space Conversion, Gamma and De-blocking Control	
3E3-3E0	HQV Source Data Line Count and Fetch Count Per Line	RW
3E7-3E4	HQV Motion Adaptive De-interlace Control \& Threshold	RW
3EF-3EC	HQV Destination Frame Buffer Starting Address 0	RW
3F3-3F0	HQV Destination Frame Buffer Starting Address 1	RW
3F7-3F4	HQV Destination Frame Buffer Stride	RW
3FB-3F8	HQV Source Frame Buffer Stride	RW
3FF-3FC	HQV Destination Data Starting Address 2	RW

VX800 / VX820 Series Chrome9 HC3 Programming Manual

Offset	Register Name	Attribute
Second Capture Engine Registers (Refer to Rx300-37C register descriptions for detail.)		
1303-1300	Capture Interrupt Control and Flags	RW
1307-1304	Reserved	RO
130B-1308	Transport Stream Control	RW
130F-130C	Reserved	RO
1313-1310	Capture Interface Control	RW
1317-1314	Active Video Horizontal Range (CCIR601 only)	RW
131B-1318	Active Video Vertical Range (CCIR601 only)	RW
131F-131C	Active Video Scaling Control	RW
1323-1320	VBI Data Horizontal Range	RW
1327-1324	VBI Data Vertical Range	RW
132B-1328	First VBI Buffer Starting Address	RW
132F-132C	VBI Buffer Stride	RW
1333-1330	Ancillary Data Count Setting	RW
1337-1334	Maximum Data Count of Active Video	RW
133B-1338	Maximum Data Count of VBI or ANC	RW
133F-133C	Capture Data Count	RO
1343-1340	First Active Video Frame Buffer Starting Address	RW
1347-1344	Second Active Video Frame Buffer Starting Address	RW
134B-1348	Third Active Video Frame Buffer Starting Address	RW
134F-134C	Second VBI Buffer Starting Address	RW
1353-1350	Stride of Active Video Buffer and Coring Function Control	RW
1357-1354	TS Buffer0 Error Packet Indicator	RO
135B-1358	TS Buffer1 Error Packet Indicator	RO
135F-135C	TS Buffer2 Error Packet Indicator	RO
1360-137C	Reserved	RO

Offset	Register Name	Attribute
Second HQV Engine Registers (Refer to Rx380-3FF register descriptions for detail.)		
1380-13B8	Reserved	RO
13BF-13BC	De-blocking Factor	RW
13C3-13C0	Subpicture Frame Buffer Stride and Control	RW
13C7-13C4	Subpicture Frame Buffer Starting Address	RW
13CB-13C8	Subpicture 4 X 16 RAM Table Write Control	RW
13CF-13CC	HQV Source Data Offset Control	RW
13D3-13D0	HQV Stream Control and Status	RW
13D7-13D4	HQV SW Source Data -Luma or Packed Starting Address	RW
13DB-13D8	HQV SW Source Data - Chroma Starting Address	RW
13DF-13DC	HQV Linear/Tile Address Mode and Color Space Conversion First Control	RW
13E3-13E0	HQV Source Data Line Count and Fetch Count Per Line	RW
13E7-13E4	HQV Motion Adaptive De-interlace Control and Threshold	RW
13EB-13E8	HQV Scale Control	RW
13EF-13EC	HQV Destination Data Starting Address 0	RW
13F3-13F0	HQV Destination Data Starting Address 1	RW
13F7-13F4	HQV Destination Frame Buffer Stride	RW
13FB-13F8	HQV Source Frame Buffer Stride	RW
13FF-13FC	HQV Destination Data Starting Address 2	RW

Note:1) Port Address: MB1 + Offset Address
MB1 is declared in the register with offset address $18 \mathrm{~h} \sim 1 \mathrm{Fh}$ in the PCI configuration space.
2) There is additional register space to match the above register definition. When write a register to this space, it will be sent to "command regulator" first and then pass to video display engine. However, register read will be same as the original action. The relationship between the additional register space and original register space is
$($ The additional register address $)=($ The original register address $)+16$ 'h2000

Technologies, Inc. we connect

VX800 / VX820 Series Chrome9 HC3 Programming Manual

Video Display Engine Register Descriptions (200-12F0h)

Offset Address: 203-200h
Interrupt Flags and Masks Control
Default Value: 0000 0000h

Bit	Attribute	Default	Description
31	RW	0	Interrupt Enable 0: Disable
30	RW	0	LVDS Sense Interrupt Enable 0: Disable 1: Enable
29	RW	0	Capture 0 VBI Capture End Interrupt Enable 0 : Disable
28	RW	0	Capture 0 Active Video Data Capture End Enable 0: Disable 1: Enable
27	RW1C	0	LVDS Sense Interrupt Status
26	RW	0	Capture 1 VBI Capture End Interrupt Enable 0: Disable
25	RW	0	First HQV Engine Interrupt Enable 0: Disable
24	RW	0	Capture 1 Active Video Data Capture End Enable 0: Disable 1: Enable
23	RW	0	DMA1 Transfer Done Interrupt Enable 0: Disable 1: Enable
22	RW	0	DMA1 Descriptor Done Interrupt Enable 0: Disable 1: Enable
21	RW	0	DMA0 Transfer Done Interrupt Enable 0: Disable 1: Enable
20	RW	0	DMA0 Descriptor Done Interrupt Enable 0: Disable
19	RW	0	VGA VSYNC Interrupt Mask Enable 0: Disable
18	RW	0	MC Complete Frame Interrupt Mask Enable 0: Disable 1: Enable
17	RW	0	Secondary Display VSYNC Interrupt Enable 0: Disable
16	RW	0	Reserved
15	RW1C	0	Secondary Display VSYNC Interrupts Status
14	RW1C	0	Capture 1 VBI Capture End Interrupt Status
13	RW1C	0	Capture 0 VBI Capture End Interrupt Status
12	RW1C	0	Capture 0 Active Video Data Capture End Interrupt Status
11	RW	0	Second HQV Engine Interrupt Enable 0: Disable 1: Enable (Refer to 13D0h for more detail.)
10	RW	0	Second HQV Engine Interrupt Status (Refer to 13D0h for more detail.)
9	RW1C	0	First HQV Engine Interrupt Status (Refer to 03D0h for more detail.)
8	RW1C	0	Capture 1 Active Video Data Capture End Interrupt Status
7	RW1C	0	DMA 1 Transfer Done Interrupt Status
6	RW1C	0	DMA 1 Descriptor Done Interrupt Status
5	RW1C	0	DMA 0 Transfer Done Interrupt Status
4	RW1C	0	DMA 0 Descriptor Done Interrupt Status
3	RW1C	0	VGA VSYNC Interrupt Status
2	RW1C	0	MC Complete Frame Interrupt Status
1	RO	0	Vertical Blanking Status
0	RW1C	0	Reserved

Offset Address: 207-204h
Address Flip Status
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 12$	RO	0	Description
11	RO	0	Video Window 1 SW Flip Status (R) Write B0+254'h port to clear this bit.
10	RO	0	Video Window 3 SW Flip Status (R) Write B0+2A4'h port to clear this bit.
$9: 6$	RO	0	Reserved

Offset Address: 20B-208h
Alpha Window / Hardware Icon (HI) Horizontal and Vertical Location Start
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 27$	RO	0	Reserved
$26: 16$	WO	0	Depend on Hardware Icon Enable (Rx260[0]) 0: Alpha window horizontal (X) starting location 1: Hardware icon horizontal (X) starting location Unit: Pixel
$15: 11$	RO	0	Reserved
$10: 0$	WO	0	Write Depend on Hardware Icon Enable (Rx260[0]) 0: Alpha window vertical (Y) starting location $1:$ Hardware icon vertical (Y) starting location Unit: Line

Offset Address: 20F-20Ch
Alpha Window Horizontal and Vertical Location End / Hardware Icon (HI) Center Offset Default Value: 0000 0000h

Bit	Attribute	Default	Description
$31: 27$	RW	0	Reserved
$26: 16$	RW	0	Depend on Hardware Icon Enable (Rx260[0]) $0:[26: 16]$ Alpha window horizontal (X) ending location $1:[22: 16]$ Hardware icon horizontal (X) center offset Unit: Pixel
$15: 11$	RO	0	Reserved
$10: 0$	RW	0	Depend on Hardware ICon Enable (Rx260[0]) $0:[10: 0]$ Alpha window vertical (Y) ending location $1:[6: 0]$ Hardware icon vertical (Y) enter offset Unit: Line

VX800 / VX820 Series Chrome9 HC3 Programming Manual

Offset Address: 213-210h
Alpha Window Control
Default Value: 0000 FF00h

Bit	Attribute	Default	
$31: 21$	RO	0	Reserved
$20: 16$	RW	0	Alpha Stream Request Expire Number Unit: 4 Requests
$15: 8$	RW	FFh	Constant Alpha Factor Setting For Graphics Blending
$7: 2$	RO	0	Reserved
$1: 0$	RW	00 b	Graphics Blending Alpha Select (Alpha*VID+(1-Alpha)*GRA) $00:$ Blending using constant alpha factor [15:8]
		01: Alpha is from alpha stream $10:$ Alpha is from graphics stream $11:$ Reserved	

Offset Address: 217-214h
CRT Starting Address Shadow
Default Value: 0000 0000h

Bit	Attribute	Default	
31	RW	0	IGA1 Down Scaling Flip Address equivalent to 3X5.EC[1]
30	RW	0	Description
29	RO	0	Reserved
$28: 0$	RW	0	Primary Display Starting Address or IGA1 Down Scaling Source Starting Address (Valid when 3X5.EC[0] = 1)
			Address equivalent to: 3X5.48 [4:0]
			3X5.34 [7:0]
		$3 X 5.0 \mathrm{C}$ [7:0]	
			3X5.0D [7:0]

Note: In monochrome mode, the " X " in the above table stands for " B ". In color mode, the " X " in the above table stands for " D ".

Offset Address: 21B-218h
The Second Display Starting Address
Default Value: 0000 0000h

Bit	Attribute	Default	Description
$31: 29$	RO	0	Display Address Selection 00: S.L Others are not supported
$28: 3$	RW	0	The Second Display Starting Address or IGA2 Down Scaling Source Starting Address (Valid when 3X5.E8[4] = 1) Unit: 8 bytes
2	RO	0	Reserved
1	RW	0	IGA2 Down Scaling Line Flip Enable
0	RW	0	IGA2 Down Scaling Flip Address equivalent to 3X5.E8[5].

Note: This register should be the same with 3X5.5E, 5D and 5C registers.

VX800 / VX820 Series Chrome9 HC3 Programming Manual

Offset Address: 21F-21Ch
Alpha Stream Frame Buffer Stride
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 13$	RO	0	Description
$12: 4$	RW	0	Alpha Stream Frame Buffer Stride Unit: 16 bytes
$3: 0$	RO	0	Reserved

Offset Address: 223-220h
Primary Display Color Key
Default Value: 0000 0000h

Bit	Attribute	Default	
31	RW	0	CRT Color Key For RGB10 color mode [29].
30	RW	0	CRT Color Key Enable 0: Disable $1:$ Enable
29	RW	0	CRT Color Key Inverse Control 0: Display video if color key match $1:$ Display video if not color key match
$28: 0$	RW	0	CRT Color Key Bits [28:0]: For RGB10 color mode [28:0] Bits [23:0]: For 32-bit true color mode Bits [15:0]: For 565 Hi color mode Bits [14:0]: For 555 Hi color mode Bits [7:0]: For 256 color mode

Offset Address: 227-224h
Alpha Window / Hardware Icon Frame Buffer Starting Address
Default Value: 0000 0000h

Bit	Attribute	Default	
31	RO	0	Description
$30: 29$	RW	00 b	Target of Frame Buffer Starting Address
		00: S.L 01: S.F 1x: Reserved	
$28: 4$	RW	0	Depend On Hardware Icon Enable (Rx260[0]) 0: Frame buffer starting address for alpha window 1: Frame buffer starting address for hardware icon Unit: 16 bytes
$3: 0$	RO	0	Reserved

Offset Address: 22B-228h
Chroma Key Lower Bound
Default Value: 0000 0000h

Bit	Attribute	Default	Description
31	RW	0	Chroma Key Lower for Y/G Bit [1]
30	RW	0	Chroma Key Enable 0: Disable 1: Enable
29	RW	0	Chroma Key Inverse Control 0 : Display video if chroma key not match 1: Display video if chroma key match
28:0	RW	0	$\begin{aligned} & \text { Chroma Key Lower } \\ & \{[23: 16],[31],[28]\}: Y / \mathrm{G} \\ & \{[15: 8],[27: 26]\}: \mathrm{U} / \mathrm{R} \\ & \{[7: 0],[25: 24]\}: \mathrm{V} / \mathrm{B} \\ & \hline \hline \end{aligned}$

VX800 / VX820 Series Chrome9 HC3 Programming Manual

Offset Address: 22F-22Ch
Chroma Key Upper Bound
Default Value: 0000 0000h

Bit	Attribute	Default	
31	RO	0	Reserved
30	RW	0	Chroma Key Select
			$1:$ Select Video 3
		$0:$ Select Video 1	
$29: 0$	RO	0	Chroma Key Upper
			$\{[23: 16],[29: 28]\}$ Y/G
			$\{[15: 8],[27: 26]\}: \mathrm{U} / \mathrm{R}$
			$\{[7: 0],[25: 24]\}: \mathrm{V} / \mathrm{B}$

Offset Address: 233-230h
Video Stream 1 Control
Default Value: 0000 0000h

Bit	Attribute	Default	Description
31	RW	0	V1 Display to CRT or the Second Display 0: CRT
30	RW	0	V1 Window Pre-fetch Enable
29	RW	0	V1 Window Gamma Function Enable
28	RW	0	V1 Window De-Gamma Function Enable
27	RW	0	V1 Window Adder Tile Mode Enable
26:25	RW	00b	V1 Flip Control 00: SW Flip 01: HW Flip and triggle by the HQV engine. 10: HW Flip and triggle by the Capture Port 0. 11: HW Flip and triggle by the Capture Port 1.
24	RW	0	V1 Frame to Field Enable 0: Disable 1: Enable If enabled, the stride will 2 times of original values. This bit is valid at 1. Software flip. 2. HQV flip. 3. Capture frame mode flip. 4. MC frame mode flip.
23	RO	0	Reserved
22	RW	0	V1 De-interlace Mode If enabled hardware will add one line to the top of odd (bottom) field. 0: Disable 1: Enable
21	RW	0	V1 Line Flip Only in Non Video Active Period Enable 0: Disable 1: Enable
20:16	RW	0	V1 Request Expire Number (Unit: 4 requests)
15:10	RO	0	Reserved
9	RW	0	Divided V1 Flip for HQV Engine VSYNC Number to Half Enable 0: Disable 1: Enable
8	RW	0	V1 Color Space Conversion Disable 0: Enable 1: Disable
7	RW	0	V1 Color Space Conversion Chroma Sign Bits Conversion
6:5	RO	0	Reserved
4:2	RW	000b	V1 Stream Data Format 000: YUV422 001: RGB32 010: RGB15 011: RGB16 100: YUV411 101: RGB10 Other : reserved
1	RO	0	Reserved
0	RW	0	V1 Enable 0: Disable

Offset Address: 237-234h
Video Window 1 Fetch Count
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 30$	RO	0	Description
$29: 20$	RW	0	Veserved It is equal, no-sizing line fetch count / minify times (Unit: 16 bytes)
$19: 0$	RO	0	Reserved

Offset Address: 23B-238h
Video Window 1 Fetch Buffer Y Starting Address 1
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 26$	RO	0	Description
$30: 29$	RW	00 b	Taserved
			Target of The Second Frame Buffer Starting Address
			00: S.L.
		$01:$ S.F	
		1x: Reserved	
$28: 3$	RW	V1 Packed Mode	
		The second frame buffer starting address.	
$2: 0$	RO	Reserved	

Offset Address: 23F-23Ch
Video Window 1 Frame Buffer Stride
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 14$	RO	0	Reserved
$13: 4$	RW	0	V1 Packed Mode Frame buffer stride (Unit: 16 bytes)
$3: 0$	RO	0	Reserved

Offset Address: 243-240h
Video Window 1 Horizontal and Vertical Starting Location
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 27$	RO	0	Deserved
$26: 16$	RW	0	Dideo Window 1 Horizontal (X) Starting Location (-1). (Unit: pixel)
$15: 11$	RO	0	Reserved
$10: 0$	RW	0	Video Window 1 Vertical (Y) Starting Location (-1). (Unit: Line)

Offset Address: 247-244h
Video Window 1 Horizontal and Vertical Ending Location
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 27$	RO	0	Deserved
$26: 16$	RW	0	Video Window 1 Horizontal (X) Ending Location (-1). (Unit: pixel)
$15: 11$	RO	0	Reserved
$10: 0$	RW	0	Video Window 1 Vertical (Y) Ending Location (-1). (Unit: Line)

Offset Address: 24B-248h
Video Window 1 Frame Buffer Y Starting Address 2
Default Value: 0000 0000h

Bit	Attribute	Default	
31	RO	0	Reserved
$30: 29$	RW	00 b	Target of The Third Frame Buffer Starting Address
		00: S.L. 01: S.F 1x: Reserved	
$28: 3$	RW	0	V1 Packed Mode The third frame buffer starting address. (Unit: 16 bytes)
$2: 0$	RO	0	Reserved

Offset Address: 24F-24Ch
Video Window 1 Display Zoom Control
Default Value: 0000 0000h

Bit	Attribute	Default	Description
31	RW	0	Video Window 1 Horizontal (X) Zoom Enable $0:$ Disable 1: Enable
$30: 27$	RO	0	Reserved
$26: 16$	RW	0	Video Window 1 Horizontal (X) Zoom Factor
15	RW	0	Video Window 1 Vertical (Y) Zoom Enable $0:$ Disable 1: Enable
$14: 10$		RO	0
$9: 0$	RW	0	Reserved

Offset Address: 253-250h
Video Window 1 Minify \& Interpolation Control
Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:27	RO	0	Reserved
26:24	RW	000b	V1 Horizontal (X) Minify Control 000: No minify; 001: Minify by a factor of 2 010: Reserved 011: Minify by a factor of 4 101: Minify by a factor of 8 111: Minify by a factor of 16 Other cases: reserved
23:19	RO	0	Reserved
18:16	RW	000b	V1 Vertical (Y) Minify Control 000: No minify 001: Minify by a factor of 2 010: Reserved 011: Minify by a factor of 4 101: Minify by a factor of 8 111: Minify by a factor of 16 Other cases: reserved
15:3	RO	0	Reserved
2	RW	0	V1 Luma-only Interpolation When the Vertical Interpolation Is Enabled 0 : Only luma values interpolated. 1: All YUV/YcbCr values interpolated.
1	RW	0	V1 Horizontal (X) Interpolation Mode Select 0 : Pixel is replicated 1: Enable interpolation
0	RW	0	V1 Vertical (Y) Interpolation Mode Select 0 : Pixel is replicated 1: Enable interpolation

Offset Address: 257-254h
Video Window 1 Frame Buffer Y Starting Address 0
Default Value: 0000 0000h

Bit	Attribute	Default	
31	RO	0	V1 Play Odd (1) / Even (0) Field When SW Playback And Field Base Picture Are Selected 1: Odd field
$30: 29$	RO	00 b	Target of The First Frame Buffer Starting Address 00: S.L. 01: S.F 1x: Reserved
$28: 2$	RO	0	V1 Packed Mode The first frame buffer starting address. (Unit : 4 bytes)
$1: 0$	RO	0	Reserved

Note: In packed mode, we could use Rx254[3:2] to get
1.No minify: 4 bytes alignment. Rx254[3:2] are valid
2. (Minify $=2$): 8 bytes alignment. Rx 254 [3] is valid, and $\mathrm{Rx} 254[2]$ is omitted.
3. (Minify >2): 16 bytes alignment. a Rx254[3:2] are omitted.

Offset Address: 25B-258h
Video 1 FIFO Depth and Threshold Control
Default Value: 0000 0000h

Bit	Attribute	Default	Description
$31: 24$	RW	0	V1 FIFO Pre-threshold Let V1 to issue request early. Normally, this value is more or equal than V1 FIFO threshold (Rx258[15:8]). (Unit : level)
$23: 26$	RO	0	Reserved
$15: 8$	RW	0	V1 FIFO Threshold Let V1 request priority from low to high. (Unit: level)
$7: 0$	RW	0	V1 FIFO Depth (-1) (Unit: level)

Note: One level is equal to 16 bytes.

Offset Address: 25F-25Ch
Video Window 1 Horizontal and Vertical Starting Location Offset
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 27$	RO	0	Deserved
$26: 16$	RW	0	Dideo Window 1 Horizontal (X) Starting Location Offset (Unit: 16 bytes)
$15: 11$	RO	0	Reserved
$10: 0$	RW	0	Video Window 1 Vertical (Y) Starting Location Offset (Unit: Line)

VX800 / VX820 Series Chrome9 HC3 Programming Manual

Offset Address: 263-260h
Hardware Icon (HI) Control (Only for Second Display)
Default Value: 000F 00F0h

Bit	Attribute	Default	Description
31	RW	0	V4 Displays to CRT (0) or Secondary Display (1) 0: CRT 1: Secondary Display
30	RW	0	V4 Window Pre-fetch Enable
29	RW	0	HWI + (1-aplha)*Graphics Mode 0 Disable 1 Enable
28	RW	0	Alpha Value Come From Where (Only for the true color Hardware icon) 0 : From bit [23:16] 1: From the bit [31:24] of Hardware icon
27:26	RW	00b	HI Window Size 00: 32×32 01: 64×64 1x: 128 x 128 Unit: Pixel X line
25:24	RW	00b	HI Data Stream Format 00: RGB555 01: RGB565 10: RGB32 11: RGB10
23:20	RO	0	Reserved
19:16	RW	Fh	HI Constant Alpha [3:0] (HIAPA)
15:12	RW	0	Alpha Changed Value (HICV) Per Frame As HI Fan In/Out Turn on Rx260[8] ALPHAn[7:0] = ALPHAn-1[7:0] +/- HICV[3:0], where just ALPHAn[7:4] is valid alpha value and ALPHA0 $=\{$ HIAPA $\}$.
11:10	RW	0	DMA1 Descriptor Done Interrupt Enable 0: Disable 1: Enable
9	RW	0	HI Fan In / Out Selector 0: Default 1: Fan in (+)
8	RW	0	HI Fan In / Out Enable 0: Disable 1: Enable
7:4	RW	Fh	HI Constant Alpha[7:4] (HIAPA) The reset bits are put on [19:16].
3	RO	0	Reserved
2	RW	0	HI Blending Enable 0: Disable 1: Enable
1	RO	0	Reserved
0	RW	0	HI Enable 0: Disable 1: Enable

VX800 / VX820 Series Chrome9 HC3 Programming Manual

Offset Address: 267-264h
The Second Display Color Key
Default Value: 0000 0000h

Bit	Attribute	Default	Description
31	RW	0	The Second Display Color Key Bit [29] For RGB10 True Color Mode See also bits [28:0] for detail.
30	RW	0	Second Display Color Key Enable 0: Disable 1: Enable
29	RW	0	Second Display Color Key Inverse Control 0: Display video if color key match 1: Display video if not color key match
$28: 0$	RW	0	The Second Display Color Key Bits [31], [28:0]: For RGB10 true color mode Bits [23:0]: For 32-bit true color mode Btis [15:0]: For 565 Hi color mode
		Bits [14:0]: For 555 Hi color mode Bits [7:0]: For 256 color mode	

Offset Address: 26B-268h
V3 and Alpha Window FIFO Pre-Threshold Control
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 23$	RO	0	Description
$22: 16$	RW	0	Alpha Window FIFO Pre-threshold Let alpha engine issues request early. This value is normally more than or equal to the alpha engine FIFO threshold (Rx278[30:24]). Unit : Level
$15: 8$	RO	0	Reserved
$7: 0$	RW	0	V3 FIFO Pre-threshold Let V3 issues request early. This value is normally more than or equal to V3 FIFO threshold (Rx278[15:8]). Unit: Level

Offset Address: $26 \mathrm{~F}-26 \mathrm{Ch}$
Video Window 1 Display Count On Screen Control
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 28$	RO	0	Description
$27: 26$	RW	0	V1 Vertical Line Count That Shows On Screen (Unit: Line)
$25: 12$	RO	0	Reserved
$11: 0$	RW	0	V1 Horizontal Pixel Count That Shows On Screen (-1) (unit: pixel)

Offset Address: 273-270h
Hardware Icon (HI) Transparent Color (Only For Second Display)
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 30$	RO	0	Reserved
$29: 0$	RW	0	HI Transparent Color
			Bits [29:0]: For RGB10
		Bits [23:0]: For RGB32	
		Bits [15:0]: For RGB565	
		Bits [14:0]: For RGB555	

VX800 / VX820 Series Chrome9 HC3 Programming Manual

Offset Address: 277-274h
Hardware Icon (HI) Inverse Color (Only For Second Display)
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 30$	RO	0	Reserved
$29: 0$	RW	0	HI Inverse Color
			Bits [29:0]: For RGB10
		Bits [23:0]: For RGB32 Bits [15:0]: For RGB565 Bits [14:0]: For RGB555	

Offset Address: 27B-278h
V3 and Alpha Window FIFO Depth and Threshold Contorl
Default Value: 0000 0000h

Bit	Attribute	Default	
31	RO	0	Description
$30: 24$	RW	0	Alpha Window FIFO Threshold Unit: Level
23	RO	0	Reserved
$22: 16$	RW	0	Alpha Window FIFO Depth (-1) Unit: Level
$15: 8$	RW	0	Video Window 3 FIFO Threshold Unit: Level
$7: 0$	RW	0	Video Window 3 FIFO Depth (-1) Unit: Level

Note: One level is equal to 16 bytes.

Offset Address: 27F-27Ch

Video Window 3 Display Count On Screen Control
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 28$	RO	0	Reserved
$27: 26$	RW	0	Description
$15: 12$	RO	0	Reserved
$11: 0$	RW	0	V1 Horizontal Pixel Count That Shows On Screen (-1) (Unit: pixel)

Offset Address: 283-280h
Primary Display Second Color Key
Default Value: 0000 0000h

Bit	Attribute	Default	
31	RO	0	Reserved
30	RW	0	CRT Color Key Enable 0: Disable $1:$ Enable
29	RW	0	CRT Color Key Inverse Control $0:$ Display video if color key match 1: Display video if not color key match
$28: 24$	RO	0	Reserved
$23: 0$	RW	0	Primary Display Color Key Bits [23:0]: For 32-bit true color mode Bits [15:0]: For 565 Hi color mode Bits [14:0]: For 555 Hi color mode Bits [7:0]: For 256 color mode

Offset Address: 287-284h
Video Window 1 Color Space Conversion and Enhancement Control 1
Default Value: 0000 0000h

Bit	Attribute	Default	
31	RW	0	SDTV (BT601) Coefficient Enable 0: Disable 1: Enable
30	RW	0	HDTV (BT709) Coefficient Enable 0: Disable 1: Enable
29	RO	0	Reserved
$28: 24$	RW	0	Coefficient A X.XXXX From 0 to 1.9375
$23: 22$	RO	0	Reserved
$21: 16$	RW	0	Coefficient B1 SXX.XXX S=1 negative S=0 positive, from -2.125 to 2.125
$15: 14$	RO	0	Reserved
$13: 8$	RW	0	Coefficient C1 SXXXXX S=1 negative S=0 positive, from -2.125 to 2.125
$7: 0$	RW	0	Coefficient D 2's complement integer from -128 to 127

Note: $\mathrm{R}=\mathrm{AY}+\mathrm{B}_{1} \mathrm{Cb}+\mathrm{C}_{1} \mathrm{C}_{\mathrm{r}}+\mathrm{D}$

Offset Address: 28B-288h

Video Window 1 Color Space Conversion and Enhancement Control 2
Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:29	RO	0	Reserved
28:24	RW	0	Coefficient B2 SX.XXX $\quad \mathrm{S}=1$ negative $\mathrm{S}=0$ positive, from -1.875 to 1.875
23:21	RO	0	Reserved
20:16	RW	0	Coefficient C2 SX.XXX S=1 negative $\mathrm{S}=0$ positive, from -1.875 to 1.875
15:14	RO	0	Reserved
13:8	RW	0	Coefficient B3 SXX.XXX $\mathrm{S}=1$ negative $\mathrm{S}=0$ positive, from -3.875 to 3.875
7:6	RO	0	Reserved
5:0	RW	0	Coefficient C3 SXX.XXX S=1 negative $\mathrm{S}=0$ positive, from -3.875 to 3.875

Note: $\mathrm{G}=\mathrm{AY}+\mathrm{B}_{2} \mathrm{Cb}+\mathrm{C}_{2} \mathrm{C}_{\mathrm{r}}+\mathrm{D}$

$$
\mathrm{B}=\mathrm{AY}+\mathrm{B}_{3} \mathrm{Cb}+\mathrm{C}_{3} \mathrm{C}_{\mathrm{r}}+\mathrm{D}
$$

Offset Address: 28F-28Ch
P Logic Adder Result 1
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 0$	RW	0	P Logic Adder Result 1

Offset Address: 293-290h
Alpha Window / Color Cursor Ending (Only For Primary Display)
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 28$	RO	0	Description
$27: 16$	RW	0	Haserved
$15: 11$	RO	0	Reserved
$10: 0$	RW	0	Hardware Icon Vertical (Y) Ending Position Unit: Line

VX800 / VX820 Series Chrome9 HC3 Programming Manual

Offset Address: 297-294h
3D AGP Pause Address MMIO Port
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 0$	RW	0	3D AGP Pause Address MMIO Port

Offset Address: 29B-298h
Compose Output Mode Select
Default Value: 0300 0000h

Bit	Attribute	Default	Description
31	RW	0	Video 1 Command End, V1 Load New Register Setting 1: Fire If registers are updated to engine, this bit will be cleared to 0 and the deafault is set at 0 .
30	RW	0	Video 3 Command End, V3 Load New Register Setting 1: Fire If registers are updated to engine, this bit will be cleared to 0 and the deafault is set at 0 .
29	RW	0	Video Register Always Loaded For hardware simulation and the default is set at 0 .
28	RW	0	Video Register Loaded at Vertical Blanking Without Waiting Source Flip Need to write [31] or [30] and default is set at 0 .
27	RW	0	Video 3 Register Always Loaded For hardware simulation and the default is set at 0 .
26	RW	0	Video 3 Register Loaded at Vertical Blanking Without Waiting Source Flip Need to write [31] or [30] and default is set at 0 .
25:24	RW	11b	Interpolation FIFO Clock Select 00: Not in use 01: V1 HDTV 10: V3 HDTV 11: V1 SDTV and V3 SDTV
23:21	RO	0	Reserved
20	RW	0	Video Output Overlap Control 0 : V1 is on top 1: V3 is on top
19:8	RO	0	Reserved
7	RW	0	MCK Bypass Enable 0: Disable 1: Enable
6	RO	0	Reserved
5	RW	0	Bypass LCD Horizontal Magnify Function
4	RW	0	Bypass LCD Vertical Magnify Function
3	RW	0	Video 3 Line Flip Enable 0: Disable 1: Enable
2	RW	0	Video 1 Line Flip Enable 0: Disable 1: Enable
1	RO	0	Reserved
0	RW	0	Video 1 Round Control Enable 0: Disable 1: Enable

Offset Address: 29F-29Ch
Video Window 3 Frame Buffer Starting Address 2
Default Value: 0000 0000h

Bit	Attribute	Default	
31	RO	0	Description
$30: 29$	RW	00 b	Target of The Third Frame Buffer Starting Address 00: S.L. 01: S.F. 1x: Reserved
$28: 3$	RW	0	The Third Frame Buffer Starting Address of V3 Unit: 16 bytes
$2: 0$	RO	0	Reserved

Offset Address: 2A3-2A0h
Video Stream 3 Control
Default Value: 0000 0000h

Bit	Attribute	Default	Description
31	RO	0	Reserved
30	RW	0	V3 Window Pre-fetch Enable 0: Disable 1: Enable
29	RW	0	V3 Window Gamma Function Enable 0: Disable 1: Enable
28:27	RO	0	Reserved
26:25	RW	00b	V3 Flip Control 00: SW flip 01: HW flip and triggle by the HQV engine 10: Reserved 10: HW flip and triggle by the Capture Port 0 11: Reserved 11: HW flip and triggle by the Capture Port 1
24	RW	0	V3 Frame to Field Enable 0: Disable 1: Enable If enabled, the stride will be 2 times of original values. This bit is valid at: Software flip, HQV flip.
23	RO	0	Reserved
22	RW	0	V3 De-interlace Mode 0: Disable 1: Enable If enabled, hardware will add one line to the top of odd (bottom) field
21	RW	0	V3 Line Flip Only in Non Video Active Period Enable 0: Disable 1: Enable
20:16	RW	0	V3 Request Expire Number Unit: 4 requests
15:10	RO	0	Reserved
9	RW	0	Divided V3 Flip for HQV Engine VSYNC Number to Half Enable 0: Disable 1: Enable
8	RW	0	V3 Color Space Conversion Disable 0: Enable 1: Disable
7	RW	0	V3 Color Space Conversion Chroma Sign Bits Conversion 1: Inverse
6:5	RO	0	Reserved
4:2	RW	000b	V3 Stream Data Format x00: YUV422 001: RGB32 x10: RGB15 011: RGB16
1	RO	0	Reserved
0	RW	0	V3 Enable 0: Disable

Offset Address: 2A7-2A4h

Video Window 3 Frame Buffer Starting Address 0
Default Value: 0000 0000h

Bit	Attribute	Default			
31	RW	0	Description		
$30: 29$	RO	00 b	Tay Odd (1) / Even (0) Field When SW Playback and Field Base Picture Are Selected 00: S.L.		
$28: 2$	RW First Frame Buffer Starting Address				
01: S.F.					
1x: Reserved				\quad	The First Frame Buffer Starting Address of V3
:---					
Unit: 16 bytes					

Offset Address: 2AB-2A8h
Video Window 3 Frame Buffer Starting Address 1
Default Value: 0000 0000h

Bit	Attribute	Default	
31	RO	0	Description
$30: 29$	RW	00 b	Taraget of The Second Frame Buffer Starting Address
		00: S.L. 01: S.F. 1x: Reserved	
$28: 3$	RW	0	The Second Frame Buffer Starting Address of V3 Unit: 16 bytes
$2: 0$	RO	0	Reserved

Offset Address: 2AF-2ACh
Video Window 3 Frame Buffer Stride
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 14$	RO	0	Reserved
$13: 4$	RW	0	V3 Frame Buffer Stride Unit: 16 bytes
$3: 0$	RO	0	Reserved

Offset Address: 2B3-2B0h
Video Window 3 Horizontal and Vertical Start
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 27$	RO	0	Description
$26: 16$	RW	0	V3 Horizontal (X) Starting Location Unit: Pixel
$15: 11$	RO	0	Reserved
$10: 0$	RW	0	V3 Vertical (Y) Starting Location Unit: Line

Offset Address: 2B7-2B4h
Video Window 3 Horizontal and Vertical End
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 27$	RO	0	Description
$26: 16$	RW	0	V3 Horizontal (X) Ending Location Unit: Pixel
$15: 11$	RO	0	Reserved
$10: 0$	RW	0	V3 Vertical (Y) Ending Location Unit: Line

Offset Address: 2BB-2B8h
Video Window 3 and Alpha Window Fetch Count
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 30$	RO	0	Description
$29: 20$	RW	0	V3 Per Line Fetch Count Unit: Pixel
$19: 10$	RO	0	Reserved
$9: 0$	RW	0	Alpha Window Per Line Fetch Count Unit: Line

Offset Address: 2BF-2BCh
Video Window 3 Display Zoom Control
Default Value: 0000 0000h

Bit	Attribute	Default	
31	RW	0	Description
			V3 Horizontal (X) Zoom Enable $0:$ Disable $1:$ Enable
$30: 27$	RO	0	Reserved
$26: 16$	RW	0	V3 Horizontal (X) Zoom Factor
15	RW	0	V3 Vertical (Y) Zoom Enable
		$0:$ Disable	
		$1:$ Enable	
$14: 10$	RO	0	Reserved
$9: 0$	RW	0	V3 Vertical (Y) Zoom Factor

Offset Address: 2C3-2C0h
Video Window 3 Minify and Interpolation Control
Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:27	RW	0	Reserved
26:24	RW	000b	V3 Horizontal (X) Minify Control 000: No minify 001: Minify by a factor of 2 010: Reserved 011: Minify by a factor of 4 101: Minify by a factor of 8 111: Minify by a factor of 16 Other cases are reserved.
23:19	RO	0	Reserved
18:16	RW	000b	V3 Vertical (Y) Minify Control 000: No minify 001: Minify by a factor of 2 010: Reserved 011: Minify by a factor of 4 101: Minify by a factor of 8 111: Minify by a factor of 16 Other cases are reserved.
15:3	RO	0	Reserved
2	RW	0	V3 Luma-only Interpolation When The Vertical Interpolation Is Enabled 0: Only luma values interpolated 1: All YUV/YcbCr values interpolated
1	RW	0	V3 Horizontal (X) Interpolation Mode Select 0 : Pixel is replicated 1: Enable interpolation
0	RW	0	V3 Vertical (Y) Interpolation Mode Select 0 Pixel is replicated 1 Enable interpolation Note: V1 and V3 can support interpolation simultaneously when both video source resolutions are lower than 800×600. If anyone exceeds the 800×600 resolution, only one of them can support interpolation. The control bit is defined at $0 \times 298[25: 24]$.

VX800 / VX820 Series Chrome9 HC3 Programming Manual

Offset Address: 2C7-2C4h

Video Window 3 Color Space Conversion and Enhancement Control 1
Default Value: 0000 0000h

Bit	Attribute	Default	Description
31	RW	0	SDTV (BT601) Coefficient Enable 0 : Disable 1: Enable
30	RW	0	HDTV (BT709) Coefficient Enable 0: Disable 1: Enable
29	RO	0	Reserved
28:24	RW	0	Coefficient A X.XXXX from 0 to 1.9375
23:22	RO	0	Reserved
21:16	RW	0	Coefficient B1 SXX.XXX S=1 negative $\mathrm{S}=0$ positive From -2.125 to 2.125
15:14	RO	0	Reserved
13:8	RW	0	Coefficient C1 SXX.XXX S=1 negative S $=0$ positive From -2.125 to 2.125
7:0	RW	0	Coefficient D[10:3] 2's complement integer from -128 to 127

Note: $\mathrm{R}=\mathrm{AY}+\mathrm{B} 1 \mathrm{Cb}+\mathrm{C} 1 \mathrm{Cr}+\mathrm{D}$

Offset Address: 2CB-2C8h
Video Window 3 Color Space Conversion and Enhancement Control 2
Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:29	RW	0	Coefficient D[2:0] 2's complement integer from - 128 to 127
28:24	RW	0	Coefficient B2 SX.XXX $\mathrm{S}=1$ negative $\mathrm{S}=0$ positive, from -1.875 to 1.875
23:21	RO	0	Reserved
20:16	RW	0	Coefficient C2 SX.XXX S=1 negative $\mathrm{S}=0$ positive, from -1.875 to 1.875
15:14	RO	0	Reserved
13:8	RW	0	Coefficient B3 SXX.XX S=1 negative $\mathrm{S}=0$ positive, from 0 to 3.75
7:6	RO	0	Reserved
5:0	RW	0	Coefficient C3 SX.XX S=1 negative S=0 positive, from -3.875 to 3.875

Note: $\mathrm{G}=\mathrm{AY}+\mathrm{B} 2 \mathrm{Cb}+\mathrm{C} 2 \mathrm{Cr}+\mathrm{D}, \mathrm{B}=\mathrm{AY}+\mathrm{B} 3 \mathrm{Cb}+\mathrm{C} 3 \mathrm{Cr}+\mathrm{D}$

Offset Address: 2CF-2CCh
T Logic Adder Result 1
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 0$	RW	0	T Logic Adder Result 1

VX800 / VX820 Series Chrome9 HC3 Programming Manual

Offset Address: 2D3-2D0h
Graphic Hardware Cursor Mode Control
Default Value: 0000 0000h

Bit	Attribute	Default	Description
31	RW	0	Mono Cursor Display Path 0: Primary 1: Secondary
30:29	RW	00b	Target of The Hardware Cursor Buffer Starting Address 00: S.L. 01: S.F. 1x: Reserved
28:26	RO	0	Reserved
25:8	RW	0	Hardware Cursor Base Address Up to 64 M bytes For $32 \times 32 \times 2$ pattern: Bits [25:8] define the base address For $64 \times 64 \times 2$ pattern: Bits [25:10] define the base address
7:2	RO	0	Reserved
1	RW	0	Hardware Cursor Size 0: $64 \times 64 \times 2$ 1: $32 \times 32 \times 2$
0	RW	0	Hardware Cursor Enable 0: Disable 1: Enable

Offset Address: 2D7-2D4h

Graphic Hardware Cursor Position
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 27$	RO	0	Description
$26: 16$	RW	0	Hardware Cursor Position in the X-coordinate
$15: 11$	RO	0	Reserved
$10: 0$	RW	0	Hardware Cursor Position in the Y-coordinate

Offset Address: 2DB-2D8h

Graphic Hardware Cursor Origin
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 27$	RO	0	Description
$26: 16$	RW	0	Hardware Cursor Origin in the X-coordinate
$15: 11$	RO	0	Reserved
$10: 0$	RW	0	Hardware Cursor Origin in the Y-coordinate

Offset Address: 2DF-2DCh
Graphic Hardware Cursor Background
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 24$	RO	0	Reserved
$23: 0$	RW	0	For 256 Color Mode
			Bits [7:0] specify hardware cursor background color
			For 555 Hi Color Mode
			Bits [14:0] specify hardware cursor background color
			For 555 Hi Color Mode
		Bits [15:0] specify hardware cursor background color	
		For 32-bits True Color Mode	
		Bits [23:0] specify hardware cursor background color	

VX800 / VX820 Series Chrome9 HC3 Programming Manual

Offset Address: 2E3-2E0h
Graphic Hardware Cursor Foreground
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 24$	RO	0	Reserved
$23: 0$	RW	0	For 256 Color Mode
			Bits [7:0] specify hardware cursor foreground color.
			For 555 Hi Color Mode
			Bits [14:0] specify hardware cursor foreground color.
			For 565 Hi Color Mode
			Bits [15:0] specify hardware cursor foreground color.
			For 32-bits True Color Mode
			Bits [23:0] specify hardware cursor foreground color.

Table 3 below shows the hardware color cursor operation. Please be noted this table is only applicable to the graphics modes. For the text modes, the VGA registers control the hardware color cursor.

Table 3. Graphics Hardware Color Cursor Operation

Pixel Operation	AND Plane	XOR Plane
Choose graphics hardware color cursor background color	0	0
Choose graphics hardware color cursor foreground color	0	1
Transparent	1	0
VGA data is inverted	1	1

Offset Address: 2E7-2E4h
T Logic Data Result 1
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 0$	RW	0	T Logic Data Result 1

Offset Address: 2EB-2E8h

HI FIFO Depth and Threshold Control (Only For Primary Display)
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 24$	RW	0	HI FIFO Pre-threshold Let HI to issue request early. Normally, this value is more than or equal to HI FIFO threshold (Rx2E8[14:8]). (Unit: level)
$23: 16$	RO	0	Reserved
$15: 8$	RW	0	HI FIFO Threshold Let HI request priority from low to high. (Unit: level)
$7: 0$	RO	0	HI FIFO Depth (-1) Unit: level

Offset Address: 2EF-2ECh

Hardware Icon (HI) Transparent Color (Only For Primary Display)
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 30$	RO	0	Reserved
$29: 0$	RW	0	HI Transparent Color
		Bits [29:0]: For RGB10 Bits [23:0]: For RGB32 Bits [15:0]: For RGB565 Bits [14:0]: For RGB555	

VX800 / VX820 Series Chrome9 HC3 Programming Manual

Offset Address: 2F3-2F0h
Hardware Icon (HI) Control (Only for Primary Display)
Default Value: 000F 00F0h

Bit	Attribute	Default	Description
31	RO	0	Reserved
30	RW	0	HI Window Pre-fetch Enable
29	RW	0	HWI + (1-aplha)*Graphics Mode 0 Disable 1 Enable
28	RW	0	Alpha Value Come From Where Only for the true color hardware icon. 0 : From bit [23:16] 1: From the bit [31:24] of hardware icon
27:26	RW	00b	HI Window Size $00: 32 \times 32$ 01: 64×64 1x: 128×128 Unit: Pixel x line
25:24	RW	00b	HI Data Stream Format 00: RGB555 01: RGB565 10: RGB32 11: RGB10
23:20	RO	0	Reserved
19:16	RW	Fh	HI Constant Alpha [3:0] (HIAPA)
15:12	RW	0	Alpha Changed Value (HICV) Per Frame as HI Fan In / Out Turn On Rx260[8] ALPHAn[7:0] = ALPHAn-1[7:0] +/- HICV[3:0], where just ALPHAn[7:4] is valid alpha value and ALPHA0 $=\{$ HIAPA $\}$.
11:10	RO	0	Reserved
9	RW	0	HI Fan In / Out Selector 0 : Default 1: Fan in (+)
8	RW	0	HI Fan In / Out Enable 0: Disable 1: Enable
7:4	RW	Fh	HI Constant Alpha[7:4] (HIAPA) The Rest Bits are put on bits [19:16]
3	RO	0	Reserved
2	RW	0	HI Blending Enable 0: Default 1: Enable
1	RO	0	Reserved
0	RW	0	HI Enable 0: Default 1: Enable

Offset Address: 2F7-2F4h

Hardware Icon Frame Buffer Starting Address (Only For Primary Display)
Default Value: 0000 0000h

Bit	Attribute	Default	
31	RO	0	Description
$30: 29$	RW	00 b	Reserved
		Target of The Frame Buffer Starting Address	
		00: S.L.	
01: S.F.			
		0	1x: Reserved
$28: 4$	RW	Frame Buffer Starting Address for Hardware Icon	
		Unit: 16 bytes	
$3: 0$	RO	0	Reserved

Offset Address: 2FB-2F8h
Hardware Icon (HI) Horizontal and Vertical Location Start (Only For Primary Display) Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 27$	RO	0	Description
$26: 16$	RW	0	Reserved Unitsware Icon Horizontal (X) Starting Location Unixel
$15: 11$	RO	0	Reserved
$10: 0$	RW	0	Hardware Icon Vertical (Y) Starting Location Unit: Line

Offset Address: 2FF-2FCh
Hardware Icon (HI) Center Offset (Only For Primary Display)
Default Value: 0000 0000h

Bit	Attribute	Default	Description
$31: 23$	RO	0	Reserved
$22: 16$	RW	0	Hardware Icon Horizontal (X) Center Offset Unit: Pixel
$15: 7$	RO	0	Reserved
$6: 0$	RW	0	Hardware Icon Horizontal (Y) Center Offset Unit: Line

Offset Address: 1203-1200h
Video Gamma Color R Register for Video 1
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 26$	RO	0	Reserved
$25: 16$	RW	0	Color Value After Gamma Function
$15: 5$	RO	0	Reserved
$4: 0$	RW	0	Color Index Number for Gamma Function Division

Offset Address: 1207-1204h
Video Gamma Color G Register for Video 1
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 26$	RO	0	Reserved
$25: 16$	RW	0	Color Value After Gamma Function
$15: 5$	RO	0	Reserved
$4: 0$	RW	0	Color Index Number for Gamma Function Division

Offset Address: 120B-1208h
Video Gamma Color B Register for Video 1
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 26$	RO	0	Deserved
$25: 16$	RW	0	Color Value After Gamma Function
$15: 5$	RO	0	Reserved
$4: 0$	RW	0	Color Index Number for Gamma Function Division

Offset Address: 120F-120Ch
Hardware Icon (HI) Inverse Color (Only For Primary Display)
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 30$	RO	0	Reserved
$29: 0$	RW	0	HI Inverse Color
		Bits [29:0]: For RGB10 Bits [23:0]: For RGB32 Biti [15:0] For RGB565 Bits [14:0]: For RGB555	

Offset Address: 1223-1220h
Video Gamma Color R Register for Video 3
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 26$	RO	0	Description
$25: 16$	RW	0	Color Value After Gamma Function
$15: 5$	RO	0	Reserved
$4: 0$	RW	0	Color Index Number for Gamma Function Division

Offset Address: 1227-1224h
Video Gamma Color G Register for Video 3
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 26$	RO	0	Description
$25: 16$	RW	0	Color Value After Gamma Function
$15: 5$	RO	0	Reserved
$4: 0$	RW	0	Color Index Number for Gamma Function Division

Offset Address: 122B-1228h
Video Gamma Color B Register for Video 3
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 26$	RO	0	Deserved
$25: 16$	RW	0	Color Value After Gamma Function
$15: 5$	RO	0	Reserved
$4: 0$	RW	0	Color Index Number for Gamma Function Division

Offset Address: 122F-122Ch
Video Window 3 Horizontal and Vertical Starting Location Offset
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 27$	RO	0	Reserved
$26: 16$	RW	0	Description
$15: 11$	RO	0	Reserved
$10: 0$	RW	0	Video Window 3 Vertical (Y) Starting Location Offset (Unit: Line)

VX800 / VX820 Series Chrome9 HC3 Programming Manual

Offset Address: 1283-1280h
Interrupt Flags and Masks Control
Default Value: 0000 0000h

Bit	Attribute	Default	
31	RW1C	0	MSI Pending Interrupt Re-trigger Bit When SW wants to exit interrupt service, please clear the bit. HW may send out interrupt again if pending interrupt exists. The function is enabled when MSI Enable $=1$ 'b1.
$30: 20$	RO	0	Reserved
19	RW	0	DMA3 Transfer Done Interrupt Enable $0:$ Disable $1:$ Enable
18	RW	0	DMA3 Descriptor Done Interrupt Enable $0:$ Disable $1:$ Enable
17	RW	0	DMA2 Transfer Done Interrupt Enable $0:$ Disable 16
RW Enable			

Note: Write 1 to bit [4:0] to clear bits

Offset Address: 1287-1284h
Logic Signature Setting
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 8$	RO	0	Reserved
7	RW	0	T Signature RD Disable 1
6	RW	0	P \& T Select Signal 1
5	RW	0	T Signature Enable 1
4	RW	0	P Signature Enbale 1
3	RW	0	T Signature RD Disable 0
2	RW	0	P \& T Select Signal 0
1	RW	0	T Signature Enable 0
0	RW	0	P Signature Enbale 0

Offset Address: 128B-1288h

P Logic Adder Result 0
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 0$	RW	0	P Logic Adder Result 0

Offset Address: 128F-128Ch

T Logic Adder Result 0
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 0$	RW	0	T Logic Adder Result 0

Offset Address: 1293-1290h
IGA1 Display Position Counter 0
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 16$	RO	0	IGA1 Display Line Counter
$15: 0$	RO	0	IGA1 Display Frame Counter

Offset Address: 1297-1294h

IGA1 Display Position Counter 1
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 16$	RO	0	Reserved
$15: 0$	RO	0	Description

Offset Address: 129B-1298h
IGA1 Display Position Counter 2
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 16$	RO	0	Reserved
$15: 0$	RW	0	IGA1 Display Frame Counter Enable $0:$ Disable 1: Enable When this bit is disabled, frame counter always gets 16'h 0.

Offset Address: 129F-129Ch
T Logic Data Result 0
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 0$	RW	0	T Logic Data Result 0

Offset Address: 12A3-12A0h
IGA2 Display Position Counter 0
Default Value: 0000 0000h

Bit	Attribute	Default		Description
$31: 16$	RO	0	IGA2 Display Line Counter	
$15: 0$	RO	0	IGA2 Display Frame Counter	

Offset Address: 12A7-12A4h

IGA2 Display Position Counter 1
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 16$	RO	0	Reserved
$15: 0$	RO	0	IGA2 Display Frame Counter

Offset Address: 12AB-12A8h

IGA2 Display Position Counter 2
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 16$	RO	0	Reserved
$15: 0$	RW	0	Description
			IGA2 Display Frame Counter Enable
			0: Disable
		1: Enable	
		When this bit is disabled, frame counter always gets 16'h0.	

Offset Address: 12B3-12B0h
Primary Display Data Color Space Conversion and Enhancement Control 1
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 30$	RO	0	Reserved
$29: 20$	RW	0	A1 $==$ XXXXXXXXXX
$19: 10$	RW	0	B1 $==$ XXXXXXXXXX
$9: 0$	RW	0	$\mathbf{C} 1<=$ XXXXXXXXXX

Note: $\mathrm{Y}=\mathrm{A} 1 \mathrm{R}+\mathrm{B} 1 \mathrm{G}+\mathrm{C} 1 \mathrm{~B}+\mathrm{D}$
Coefficient A1, B1, C1: 10 bits, $0 . \mathrm{XXXXXXXX}$ from 0 to 0.99903 Coefficient D: 8 bit positive integer from 16 to 255

Offset Address: 12B7-12B4h
Primary Display Data Color Space Conversion and Enhancement Control 2
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 30$	RO	0	Reserved
$29: 20$	RW	0	A2[9:0] <= XXXXXXXXXXX
$19: 10$	RW	0	B2[9:0] $<=$ XXXXXXXXXX
$9: 0$	RW	0	C2[9:0] $<=$ XXXXXXXXXX

Note: $\mathrm{Cr}=\mathrm{A} 2 \mathrm{R}+\mathrm{B} 2 \mathrm{G}+\mathrm{C} 2 \mathrm{~B}+128$
Coefficient A2, B2, C2: 11 bits S.XXXXXXXX 2's complement from -0.99903 to 0.99903

Offset Address: 12BB-12B8h
Primary Display Data Color Space Conversion and Enhancement Control 3
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 30$	RO	0	Reserved
$29: 20$	RW	0	$\mathbf{A 3}[9: 0]<=$ XXXXXXXXXX
$19: 10$	RW	0	B3[9:0] <= XXXXXXXXXX
$9: 0$	RW	0	$\mathbf{C 3}[9: 0]<=$ XXXXXXXXXX

Note: $\mathrm{Cr}=\mathrm{A} 3 \mathrm{R}+\mathrm{B} 3 \mathrm{G}+\mathrm{C} 3 \mathrm{~B}+128$
Coefficient A3, B3, C3: 11 bits. S.XXXXXXXX 2's complement from -0.99903 to 0.99903

Offset Address: 12BF-12BCh
Primary Display Data Color Space Conversion and Enhancement Control 4
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 14$	RO	0	Reserved
13	RW	0	$\mathbf{A 2}[10]<=\mathbf{S}$
12	RW	0	$\mathbf{B 2}[\mathbf{1 0}]<=\mathbf{S}$
11	RW	0	$\mathbf{C} 2[10]<=\mathbf{S}$
10	RW	0	$\mathbf{A 3}[\mathbf{1 0}]<=\mathbf{S}$
9	RW	0	$\mathbf{B 3}[10]<=\mathbf{S}$
8	RW	0	$\mathbf{C 3}[10]<=\mathbf{S}$
$7: 0$	RW	0	\mathbf{D}

Video Capture Engine Register Descriptions (300-37Ch)

Offset Address: 303-300h
Capture Interrupt Control and Flags
Default Value: 0000 0000h

Bit	Attribute	Default				
$31: 11$	RO	0	Description			
10	RW	0	Ceserved			
9	RW	0	End of VBI Interrupt Enable			
8	RW	0	End of Active Video Interrupt Enable If TS (Transport Stream) is enabled, it defines as TS data over a buffer interrupt enable.			
7	RO	0	Video Capture Port Internal FIFO Full Status	$	$	Current Active Video Input Field Status
:---						
$0:$ Top field						
$1:$ Bottom field						

Note: Write 1 to clear bits [1:0] and [7]

Offset Address: 30B-308h
Transport Stream Control
Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:23	RO	0	Reserved
22	RW	0	Serial Input Enable 0: Enable parallel TS input 1: Enable serial TS input
21	RW	0	Bit Alignment Serial input mode only 0: LSB first 1: MSB first
20	RW	0	Packet Starting Signal Disable 0 :Enable 1:Disable
19	RW	0	Change Buffer Mode 0 : According to count packet number 1: According to byte count
18:4	RW	0	When bit 19 = 0 Packet_Number_Minus_One There are (Packet_Number_Minus_One + 1) packets per buffer. When bit $19=1$ KBytes_Count There are KBytes_Count Kbytes per buffer.
3:2	RW	00b	Method to Move Received TS Data 0x: Capture engine write data to FB. After fill a buffer, trigger an interrupt to driver. 10: Capture engine write data to FB. After fill a buffer, trigger an interrupt to DMA. 11: Capture engine control DMA to move data. (not via frame buffer) (In mode $=2$ 'b11, set FIFO Threshold Rx310[27:24] to 1)
1	RW	0	Drop Error Packet This bit is only valid when TS_DERR pin is available 0 : Write all received data out. 1: Drop the data of error packet
0	RW	0	Transport Stream Input Enable 0: Disable 1: Enable Turn on this bit before enabling capture engine $\mathrm{Rx} 310[0]$.

VX800 / VX820 Series Chrome9 HC3 Programming Manual

Offset Address: 313-310h
Capture Interface Control
Default Value: 0000 0000h

Bit	Attribute	Default	Description
31	RW	0	Capture CLK Enable 0: Disable 1: Enable This bit should be turned on before $\mathrm{Rx} 310[0]$.
30	RW	0	Capture FIELD Signal Output Inverted Select 1: Inverted
29	RW	0	Vertical Count Starting Reference 0: Negative edge of VREF 1: Positive edge of VREF
28	RW	0	Horizontal Count Starting Reference 0: Negative edge of HREF 1: Positive edge of HREF
27:24	RW	0	Capture FIFO Threshold (Unit: level) Once the queuing captured data is more than the threshold, it starts to write data out. Unit of the 1st capture engine is 4-levels, the FIFO size is 64 level $\times 64$ bit. Unit of the 2nd capture engine is 2-levels, the FIFO size is 32 level $\times 64$ bit.
23	RW	0	Switch Capture Clock Source Since there are two capture clock sources, use this bit to switch it. In VIP2.0 while using task bit to differentiate video stream, it needs to switch the clock source as the same one. For 1st Capture Engine: 0 : Clock from 1st capture CLK pin 1: Clock from 2nd capture CLK pin For 2nd Capture Engine: 0: Clock from 2nd capture CLK pin 1: Clock from 1st capture CLK pin
22	RW	0	Capture FIELD Input Inverted Select 1: Inverted
21	RW	0	Capture HREF Input Inverted Select 1: Inverted
20	RW	0	Capture VREF Input Inverted Select 1: Inverted
19	RW	0	Capture CLK Input Inverted Select 1: Inverted
18:16	RW	000b	```Capture Horizontal Filter Mode Select (2P) 000: No filtering 001: 2 tap (1,1)/2 010: 3 tap (1,2,1)/4 011:4 tap (1,3,3,1)/8 100: 5 tap (1,2,2,2,1)/8 101~111:Reserved```
15	RW	0	Capture Flipping Control When Rx310[13:12] Is Set to 2'b11 0 : Capture engine flips to HQV or video engine after captured a frame. 1: Capture engine flips to HQV or video engine after captured a field (HQV or Video should set to frame_to_field).
14	RW	0	4:2:2 to 4:4:4 Cb, Cr Type Select 0: Duplication 1: Interpolation
13:12	RW	00b	Capture De-interlace Mode Select 00: Capture odd field only, 30 fps 01: Capture even field only, 30 fps 10: Capture odd / even field, 60 fps ; place on the same location 11: Capture odd / even field, 30 fps ; place in interlace fashion doubling the storage space
11	RW	0	Input FIELD Signal Enable If TS is enabled, it defines as TS_DERR signal enable. 0: Disable 1: Enable
10	RW	0	VIP Type 0 : VIP 1.1, VBI data region specify by task bit. 1: VIP2, VBI data region specify by SAV / EAV during vertical blanking period.

(Continued for Rx310h)

Bit	Attribute	Default	Description
9:8	RW	00b	Byte Swapping Control 00: 0123 (no swap: YUYV) 01: 1032 (C, Y swap: UYVY) 10: 0321 (Cr, Cb swap: YVYU) 11: 3012 (Cr, Cb swap and Y swap: VYUY)
7	RW	0	16 Bit Input Low/High Swap 1: Low/high byte inverted
6	RW	0	CCIR656-16 Bit Header Decode Mode 0: Low 8bit 1: 16bit all
5:4	RW	00b	Input Stream Type 00: CCIR601-8bit 01: CCIR656-8bit 10: CCIR601-16bit 11: CCIR656-16bit
3	RW	0	VIP Enable 0: Disable 1: Enable
2	RW	0	Buffer Mode 0 : Double buffers, use starting address 1 and 2 1: Triple buffers, use starting address 1,2 and 3
1	RW	0	Bit Stream Selection of VIP2.0 In VIP2.0, task bit to differentiate video stream. For the 1st capture engine: 0 : Capture the data of task bit is 0 1: Capture the data of task bit is 1 For the 2nd capture engine: 0 : Capture the data of task bit is 1 1: Capture the data of task bit is 0
0	RW	0	Capture Enable 0: Disable 1: Enable

Offset Address: 317-314h
Active Video Horizontal Range
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 30$	RO	0	Description
$27: 16$	RW	0	Horizontal Ending Line (CCIR601 only). (Unit: Line)
$15: 12$	RO	0	Reserved
$11: 0$	RW	0	Horizontal Starting Line (CCIR601 only). (Unit: Line)

Offset Address: 31B-318h
Active Video Vertical Range
Default Value: 0000 0000h

Bit	Attribute	Default	Description
$31: 30$	RO	0	Reserved
$27: 16$	RW	0	Vertical Ending Line (CCIR601 only). (Unit: Line)
$15: 11$	RO	0	Reserved
$10: 0$	RW	0	Vertical Starting Line (CCIR601 only). (Unit: Line)

Offset Address: 31F-31Ch Active Video Scaling Control

Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 28$	RO	0	Description
26	RW	0	Reserved $0:$ Disable 1: Enable
$25: 16$	RW	0	Vertical Minify Factor Enable
$15: 12$	RO	0	Reserved
11	RW	0	Horizontal Minify Enable $0:$ Disable $1:$ Enable
$10: 0$	RW	0	Horizontal Minify Factor

Offset Address: 323-320h
VBI Data Horizontal Range
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 28$	RO	0	Description
$27: 16$	RW	0	Horizontal Ending Line (Unit: Line)
$15: 12$	RO	0	Reserved
$11: 0$	RW	0	Horizontal Starting Line (Unit: Line)

Offset Address: 327-324h
VBI Data Vertical Range
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 27$	RO	0	Description
$26: 16$	RW	0	Veserved
$15: 11$	RO	0	Restical Ending Line (Unit: Line)
$10: 0$	RW	0	Vertical Starting Line (Unit: Line)

Offset Address: 32B-328h
First VBI Buffer Starting Address
Default Value: 0000 0000h

Bit	Attribute	Default	Description
31	RW	0	VBI Data Enable 0: Disable 1: Enable
30	RW	0	VBI Mode Select 0: Range depend on SAV/EAV 1: Capture by specify range (define by register $320 \mathrm{~h}, 324 \mathrm{~h}$)
29	RO	0	Reserved
28:4	RW	0	VBI or ANC Buffer 0 Starting Address (Unit: 16 bytes)
3:2	RO	0	Reserved
1:0	RW	00b	Buffer Selection 00: S.L 01: S.F 10: S.M 11: Reserved

Offset Address: 32F-32Ch

VBI Buffer Stride

Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 14$	RO	0	Reserved
13	RW	0	VBI Data Placement Method 0: Linear, no stride needed 1: With stride
$12: 4$	RW	0	VBI Buffer Stride (Unit: 16 bytes)
$3: 0$	RO	0	Reserved

Offset Address: 333-330h
Ancillary Data Count Setting
Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:15	RO	0	Reserved
14	RW	0	Ancillary Data Type 0: Type2 - $00-$ FF-FF-DID-SDID-NN-...-....-CheckSumByte-FillBytes. Total captured data are (8Bytes + NN $* 4 B y t e s$). 1: Type 1 - 00-FF-FF-DID-DBN-NN-....-...-CheckSumByte-FillBytes. Total captured data are (8Bytes + (DBN+NN)*4Bytes).
13	RW	0	Ancillary Data Enable 0: Disable 1: Enable
12	RW	0	Ancillary Data Count Reference Select 0 : By header decoder 1: By register (define by Rx 330 [11:0]).
11:0	RW	0	Ancillary Data Should Be Capture Length (Unit: Double-word)

Offset Address: 337-334h

Maximum Data Count of Active Video
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 26$	RO	0	Description
$26: 16$	RW	0	Maximum Active Video Line Count In A Field (Unit: Line) If TS enable, it defines as the maximum TS data count of a packet (Unit: Byte)
$15: 9$	RO	0	Reserved
$8: 0$	RW	0	Maximum Active Video QW Count In A Line (Unit: 8 bytes)

Offset Address: 33B-338h

Maximum Data Count of VBI or ANC
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 26$	RO	0	Description
$26: 16$	RW	0	Maximum VBI or ANC Line Count In A Field (Unit: Line)
$15: 9$	RO	0	Reserved
$8: 0$	RW	0	Maximum VBI or ANC QW Count In A Line (Unit: 8 bytes)

Offset Address: 33F-33Ch
Capture Data Count
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 27$	RO	0	Description
$26: 16$	RW	0	Current Active Video Line Counter (Unit: Line)
$15: 13$	RO	0	Reserved
$12: 0$	RW	0	VBI or ANC Data Length That Has Been Captured (Unit: 8 bytes)

VX800 / VX820 Series Chrome9 HC3 Programming Manual

Offset Address: 343-340h
First Active Video Frame Buffer Starting Address
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 29$	RO	0	Description
$28: 4$	RW	0	Active Video Frame Buffer 0 Starting Address (Unit: 16 bytes) If TS is enabled, it defines as frame buffer 0 starting address for TS data.
$3: 2$	RO	0	Reserved
$1: 0$	RW	00 b	Buffer Selection
		00: S.L	
		01: S.F	
		10: S.M	
		11: Reserved	

Offset Address: 347-344h
Second Active Video Frame Buffer Starting Address
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 29$	RO	0	Description
$28: 4$	RW	0	Active Video Frame Buffer 1 Starting Address (Unit: 16 bytes) If TS is enabled, it defines as frame buffer 1 starting address for TS data.
$3: 2$	RO	0	Reserved
$1: 0$	RW	00 b	Buffer Selection 00: S.L 01: S.F 10: S.M 11: Reserved

Offset Address: 34B-348h
Third Active Video Frame Buffer Starting Address
Default Value: 0000 0000h

Bit	Attribute	Default	Description
$31: 29$	RO	0	Reserved
$28: 4$	RW	0	Active Video Frame Buffer 2 Starting Address (Unit: 16 bytes) If TS is enabled, it defines as frame buffer 2 starting address for TS data.
$3: 2$	RO	0	Reserved
$1: 0$	RW	00 b	Buffer Selection
		00: S.L	
		01: S.F	
		10: S.M	
		11: Reserved	

Offset Address: 34F-34Ch
Second VBI Buffer Starting Address
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 29$	RO	0	Reserved
$28: 4$	RW	0	Description
$3: 2$	RO	0	Reserved ANC Buffer 1 Starting Address (Unit: 16 bytes)
$1: 0$	RW	00 b	Buffer Selection
			00: S.L
		$01:$ S.F	
		10: S.M	
		$11:$ Reserved	

Offset Address: 353-350h
Stride of Active Video Buffer \& Coring Function Control
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 24$	RO	0	Reserved
23	RW	0	Coring Function Enable
$22: 16$	RW	0	Coring Function Compare Data (CCD) If coring function enable (Rx350[23]) and (-(CCD +1$)<=\mathrm{U}, \mathrm{V}<=\mathrm{CCD})$, then all of these U and V will be truncated to zero)
$15: 13$	RO	0	Reserved
$12: 4$	RW	0	Stride of Active Video Buffer (Unit: 8 bytes)
$3: 0$	RO	0	Reserved

Offset Address: 357-354h
TS Buffer 0 Error Packet Indicator
Default Value: 0000 0000h

Bit	Attribute	Default	
31	RO	0	Description
		Last Error Packet Indicator $0:$ Less than one error packet in this buffer, defined at bits [15:0] $1:$ More than two error packets, the last error packet ID defined at bits [30:16]	
$30: 16$	RO	0	Last Error Packet ID
15	RO	0	First Error Packet Indicator $0:$ No error packet in this buffer $1:$ More than one error packet, the first error packet ID defined at bits [14:0]
$14: 0$	RO	0	First Error Packet ID

Offset Address: 35B-358h
TS Buffer 1 Error Packet Indicator
Default Value: 0000 0000h

Bit	Attribute	Default	Description
31	RO	0	Last Error Packet Indicator 0: Less than one error packet in this buffer, defined at bits [15:0] 1: More than two error packets, the last error packet ID defined at bits [30:16]
$30: 16$	RO	0	Last Error Packet ID
15	RO	0	First Error Packet Indicator 0: No error packet in this buffer 1: More than one error packet, the first error packet ID defined at bits [14:0]
$14: 0$	RO	0	First Error Packet ID

Offset Address: 35F-35Ch

TS Buffer 2 Error Packet Indicator
Default Value: 0000 0000h

Bit	Attribute	Default	Description
31	RO	0	Last Error Packet Indicator 0: Less than one error packet in this buffer, defined at bits [15:0] 1: More than two error packets, the last error packet ID defined at bits [30:16]
30:16	RO	0	Last Error Packet ID
15	RO	0	First Error Packet Indicator 0 : No error packet in this buffer 1: More than one error packet, the first error packet ID defined at bits [14:0]
14:0	RO	0	First Error Packet ID

Note: Capture supports 2 input interface; therefore, an additional register space is provided to match the above registers definition.
Writing a register to this space, it will write to the second Capture Engine.
The relationship between the additional register space and original register space is
$($ The additional register address $)=($ The original register address $)+16^{\prime} \mathrm{h} 1000$.

Technologies, Inc. we connect

HQV Engine Register Descriptions (380-3FFh)

Offset Address: 383-380h
HQV Source Data Offset Control 1
Default Value: 0000 0000h

Bit	Attribute	Default	Description
$31: 27$	RO	0	Reserved
$26: 16$	RW	0	Horizontal Offset of Start Point for Video Location In Destination Picture Unit: pixel (2P) Either video or sub-picture destination data horizontal offset of start point should be set to zero.
$15: 11$	RO	0	Reserved
$10: 0$	RW	0	Vertical Offset of Start Point for Video Location In Destination Picture Unit: line (2P) Either video or sub-picture destination data vertical offset of start point should be set to zero.

Offset Address: 387-384h
HQV Source Data Offset Control 2
Default Value: 0000 0000h

Bit	Attribute	Default	Description
$31: 27$	RO	0	Reserved
$26: 16$	RW	0	Horizontal Offset of Start Point for Sub-picture Location In Destination Picture Unit: pixel (2P) Either video or sub-picture destination data horizontal offset of start point should be set to zero.
$15: 11$	RO	0	Reserved
$10: 0$	RW	0	Vertical Offset of Start Point for Sub-picture Location In Destination Picture Unit: line (2P) Either video or sub-picture destination data vertical offset of start point should be set to zero.

Offset Address: 38B-388h

HQV Source Data Offset Control 3
Default Value: 0000 0000h

Bit	Attribute	Default	Description
$31: 27$	RO	0	Reserved
$26: 16$	RW	0	Horizontal Offset of End Point for Video Location In Destination Picture Unit: pixel (2P)
$15: 11$	RO	0	Reserved
$10: 0$	RW	0	Vertical Offset of End Point for Video Location In Destination Picture Unit: line (2P)

Offset Address: 38F-38Ch
HQV Source Data Offset Control 4
Default Value: 0000 0000h

Bit	Attribute	Default	Description
$31: 27$	RO	0	Reserved
$26: 16$	RW	0	Horizontal Offset of End Point for Sub-picture Location In Destination Picture Unit: byte (2P)
$15: 11$	RO	0	Reserved
$10: 0$	RW	0	Vertical Offset of End Point for Sub-picture Location In Destination Picture Unit: line (2P)

Offset Address: 393-390h
HQV Parameters of Hardware Tuning Performance / Quality
Default Value: 4664 8688h

Bit	Attribute	Default	Description
31	RO	0	Reserved
30:28	RW	100b	Threshold of Inter-Field Complexity for Pull Down Detection (x4) Calculate the difference between current \& previous field.
27	RO	0	Reserved
26:25	RW	11b	Factor of Calculating Threshold of Intra-Field Complexity 00: Threshold $=390[30: 28] * 4+390[30: 28] * 1$ 01: Threshold $=390[30: 28] * 4+390[30: 28] * 2$ 10: Threshold $=390[30: 28] * 4+390[30: 28] * 3$ 11: Threshold $=390[30: 28] * 4+390[30: 28] * 4$
24:23	RO	0	Reserved
22:21	RW	11b	Static Judgment Number (SJN) As static record number is equal to SJN, then static flag is asserted
20	RW	0	The Field Number for The Increment of Static Record 0: 1 field / (static record) 1:2 fields / (static record)
19:18	RW	01 b	Pull-down Factor 2 Apply this factor while pull-down detected 00: 3/8 01: 4/8 10: 5/8 11: 6/8
17:16	RW	00b	Pull-down Factor 1 Apply this factor while pull-down not yet detected. $00: 2 / 8$ 01: $3 / 8$ 10: 4/8 11: 5/8
15:14	RW	10b	Threshold for Pull Down Detection (Rx3DC.[10:0]<<Rx390.[15:14]) as the minimum threshold for valid pull down detection
13:12	RO	0	Reserved
11:8	RW	6h	Threshold for Motion Detection (x2)
7:4	RW	8h	Edge Detection Threshold: for Degree 90 (x2)
3:0	RW	8h	Maximum Difference between Block Boundary (x4) Apply de-blocking with $\sin (\mathrm{x})$ function while the difference between block boundary is greater than this setting.

VX800 / VX820 Series Chrome9 HC3 Programming Manual

Offset Address: 397-394h
HQV Extended Control
Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:8	RO	0	Reserved
7	RW	0	Color Adjustment Enable 0: Disable 1: Enable
6	RW	0	Bob de-interlacing method 0 : Line average 1: Line duplication (for TV output)
5	RW	0	```YUV Output Format Control \({ }_{(2 p)}\) 0: YUV422 out 1: YUV444 out This bit is effective when (H or V scaling size) \(<(1 / 2 \mathrm{H}\) or V original) size. For the other cases, it just uses YUV422 out```
4	RW	0	Color Space Conversion Method 0: BT601 1: BT709
3	RW	0	Color Format Convert Method (from YUV420 \rightarrow YUV422) 0: 4-tap interpolation 1: Method 1 (-1 99-1).
2:1	RW	00b	Color Format Convert Method (from YUV422 $\boldsymbol{\rightarrow}$ YUV444) 00: Method 1 (WMV9 and H.264) 01: Reserved 1x: Method 3 (-1 99-1).
0	RW	0	```Color Format Convert Method (from YUV444 }\boldsymbol{->}\mathrm{ YUV422) 0: Method 1 (1 1) 1: Method 2 (Drop) This bit is effective as (no scaling) or (scaling size) > (1/2 original size). For the other cases, it just uses method 2 .```

Offset Address: 39B-398h
HQV Static Record Frame Buffer Starting Address
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 29$	RO	0	Description
$28: 4$	RW	0	Static Record Frame Buffer Starting Address Unit: 16 bytes
$3: 2$	RO	0	Reserved
$1: 0$	RW	0	Memory Location

Offset Address: 39F-39Ch

HQV Static Record Frame Buffer Stride
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 14$	RO	0	Reserved
$9: 4$	RW	0	Static Record Frame Buffer Stride Unit: 16 bytes
$3: 0$	RO	0	Reserved

Offset Address: 3A3-3A0h
HQV Color Adjustment Control 1
Default Value: 0000 0000h

Bit	Attribute	Default	
Description			
$31: 30$	RO	0	Reserved
$29: 20$	RW	0	Coefficient C1(s[28:27].[26:20]) $(2 \mathrm{p})$
$19: 10$	RW	0	Coefficient B1(s[18:17].[16:10]) $(2 \mathrm{p})$
$9: 0$	RW	0	Coefficient A1(s[8:7].[6:0]) (2p)

Note: $\mathrm{Y}^{\prime}\left(\mathrm{R}^{\prime}\right)=\mathrm{A} 1 * \mathrm{Y}(\mathrm{R})+\mathrm{B} 1 * \mathrm{Cb}(\mathrm{G})+\mathrm{C} 1 * \mathrm{Cr}(\mathrm{B})+\mathrm{D} 1$

Offset Address: 3A7-3A4h
HQV Color Adjustment Control 2
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 30$	RO	0	Description
$29: 20$	RW	0	Coesficient C2(s[28:27].[26:20]) (2p)
$19: 10$	RW	0	Coefficient B2(s[18:17].[16:10]) (2p)
$9: 0$	RW	0	Coefficient A2(s[8:7].[6:0])(2p)

Note: $\mathrm{Cb}^{\prime}\left(\mathrm{G}^{\prime}\right)=\mathrm{A} 2 * \mathrm{Y}(\mathrm{R})+\mathrm{B} 2 * \mathrm{Cb}(\mathrm{G})+\mathrm{C} 2 * \mathrm{Cr}(\mathrm{B})+\mathrm{D} 2$

Offset Address: 3AB-3A8h
HQV Color Adjustment Control 3
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 30$	RO	0	Description
$29: 20$	RW	0	Coefficient C3(s[28:27].[26:20]) $(2 \mathrm{p})$
$19: 10$	RW	0	Coefficient B3(s[18:17].[16:10]) $(2 \mathrm{p})$
$9: 0$	RW	0	Coefficient A3(s[8:7].[6:0]) $(2 \mathrm{p})$

Note: $\mathrm{Cr}^{\prime}\left(\mathrm{B}^{\prime}\right)=\mathrm{A} 3 * \mathrm{Y}(\mathrm{R})+\mathrm{B} 3 * \mathrm{Cb}(\mathrm{G})+\mathrm{C} 3 * \mathrm{Cr}(\mathrm{B})+\mathrm{D} 3$

Offset Address: 3AF-3ACh

HQV Color Adjustment Control 4
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 30$	RO	0	Reserved
$29: 20$	RW	0	Coefficient D3(s[28:21].[20]) (2p)
$19: 10$	RW	0	Coefficient D2(s[18:11].[10]) (2p)
$9: 0$	RW	0	Coefficient D1(s[8:1].[0]) (2p)

Offset Address: 3B3-3B0h
HQV Horizontal Scale Control
Default Value: 0000 0000h

Bit	Attribute	Default	Description
31	RW	0	Horizontal Scale Enable 1: Enable (2p)
30	RO	0	Reserved
29:28	RW	00b	Horizontal Scale Function (2p) 00: Scale up. 01: 1~1/4 10: $1 / 4 \sim 1 / 8^{+}$ 11: $<1 / 8$
27:15	RO	0	Reserved
14:0	RW	0	Horizontal Scale Factor [14:12].[11:0] (2p)

Note: Scale factor:

1. Scale up: source/destination
2. $1 \sim 1 / 4$: source/(destination +0.5)
3. $1 / 4^{\sim} \sim 1 / 8^{+}$: source/destination.
4. <1/8: destination/source

VX800／VX820 Series Chrome9 HC3 Programming Manual

Offset Address：3B7－3B4h
HQV Vertical Scale Control
Default Value： 0000 0000h

Bit	Attribute	Default	Description
31	RW	0	Vertical Scale Enable $1:$ Enable（2p）
$30: 29$	RO	0	Reserved
28	RW	0	Vertical Scale Function（2p） O：Scale up． $1:$ Scale down
$27: 17$	RO	0	Reserved
$16: 0$	RW	0	Vertical Scale Factor［16：12］．［11：0］（2p）

Note：Scale factor
1．Scale up：source／destination；
2．Scale down：source／（destination +0.5 ）
PS：
For all scaling calculation，the final results should be rounded to the nearest integer（四捨五入）．
For bi－linear factor，please use 6 binary fraction of factor（need be rounded to the nearest $6^{\text {th }}$ fraction）to do the calculation．

Offset Address：3BB－3B8h
HQV Default Video Color
Default Value：0000 0000h

Bit	Attribute	Default	
$31: 30$	RO	0	Description
$29: 20$	RW	0	Luma（Y）or Red Color Value
$19: 10$	RW	0	Chroma（Cb）or Green Color Value
$9: 0$	RW	0	Chroma（Cr）or Blue Color Value

Offset Address：3BF－3BCh
HQV De－blocking Factor
Default Value： 0000 0000h

Bit	Attribute	Default	Description
$31: 20$	RO	0	Reserved
$19: 18$	RO	0	HQV Current Process Destination Buffer ID
17	RW	0	HQV Output Field 1：Bottom field
16	RW	0	HQV Current Process Field 1：Bottom field
$15: 0$	RO	0	Reserved

VX800 / VX820 Series Chrome9 HC3 Programming Manual

Offset Address: 3C3-3C0h
HQV Sub-picture Frame Buffer Stride and Control
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 24$	RW	0	MC Flipping Count For MC flip to HQV path: Read only For SW flip path: R/W HQV update read out register data at the beginning of HQV processing a frame.
$23: 20$	RO	0	Reserved
19	RW	0	Sub-picture Format $0:$ AI44 or IA44 $1:$ AYUV (MSB A(8)-Y(8)-U(8)-V(8) LSB)
18	RW	0	Inverse Alpha Value in AI44 Mode $1:$ Inverse (One's Complement)
17	RW	0	Alpha, Index Exchange in AI44 Mode 0: AI44 $1:$ IA44
16	RW	0	HQV Sub-picture Enable $1:$ Enable 0: Disable Only active at HQV source format is YUV.
$15: 14$	RO	0	Reserved
$13: 4$	RW	0	Subpicture Frame Buffer Stride Unit: 16 bytes
$3: 0$	RO	0	Reserved

Offset Address: 3C7-3C4h

HQV Sub-picture Frame Buffer Starting Address
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 29$	RO	0	Description
$28: 4$	RW	0	Sub-picture Frame Buffer Starting Address (Unit: 16 bytes)
$3: 2$	RO	0	Reserved
$1: 0$	RW	0	Memory Location

Offset Address: 3CB-3C8h
HQV Sub-picture 4x16 RAM Table Write Control
Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:8	RW	0	RAM Table Write Data V: Bits [31:24] U: Bits [23:16] Y: Bits [15:8]
7:4	RW	0	RAM Table Read / Write Address Indicate which entry of palette table will be written or read. Palette table contains 16 entries of palette data. $(\operatorname{HQV} 3 \mathrm{C} 8[7: 4]=0 \times 0000 \sim \mathrm{HQV} 3 \mathrm{C} 8[7: 4]=0 \times 1111)$ Need to program HQV3C8[31:8] and HQV3C8[7:4] 16 times to fill the subpicture palette table.
3	RO	0	Reserved
2	RW	0	V Write Enable 0: Disable 1: Enable
1	RW	0	U Write Enable 0: Disable 1: Enable
0	RW	0	Y Write Enable 0: Disable 1: Enable

Offset Address: 3D3-3D0h

HQV Stream Control and Status
Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:28	RW	0	Video Data Stream Format [3:0] 0000: RGB32 - (X8R8G8B8) 0001: RGB32 - (X2R10G10B10) 0010: RGB16 - (R5G6B5) 0011: RGB15 - (X1R5G5B5) 0100: YUV444 - (X8Y8U8V8) 0101: V410 - (V10Y10U10X2) 1000: YUV422 - (V8Y 18 8 $\left.8 \mathrm{Y}_{0} 8\right)$ 1100: YUV420 - (NV12; planar mode) Others:reserved
27	RW	0	High Quality Video Enable 0: Disable 1: Enable
26	RW	0	Buffer Mode 0: Double destination buffers 1: Triple destination buffers
25:24	RW	00b	```Video Stream Source [1:0] 00: SW 01: Reserved 10: Capture 0 11: Capture 1```
23	RW	0	Advanced De-interlace Mode Enable (reference more than one field)
22	RW	0	Vertical Low Pass Filter Enable 0: Disable 1: Enable
21	RO	0	Reserved
20	RW	0	Planar Mode Chrominance Source Data Format 0 : Source Chrominance is saved by frame picture 1: Source Chrominance is saved by field picture
19	RW	0	Inverse Input Field 1: Inversed
18	RW	0	Frame To Field 1: Frame base source, extract a field from a frame.
17	RW	0	Field To Frame 1: Field source, de-interlace to progressive frame.
16	RO	0	Reserved
15	RW	0	Sub-Picture Flip Software writes 1 to this bit indicates a new sub-picture need to blend. After blending completes, hardware clears it to 0 . Software can read this bit to check the status if hardware completes blending.
14:13	RO	0	Reserved
12	RO	0	HQV Flip FIFO Full Status The FIFO depth defined in Rx3F8 [17:16]
11	RO	0	Reserved
10:8	RO	0	State Machine Status of HQV Flip Module
7	RW	0	HQV Interrupt Enable 0: Disable HQV interrupt. 1: HQV send interrupt signal after done a frame. Relative setting: Rx3D0[0].
6	RW	0	Single Destination Buffer 1: Single buffer used Rx3D0[26] would be ignored.
5	RW	0	Field of Software Source Input 0: Top 1: Bottom
4	RW	0	Software Source Flip Software writes 1 to flip a image to HQV. (Rx3D0[25:24] should be 00b) After processing completes, hardware clears it to 0 . Software reads this bit to check flip status.
3	RO	0	HQV Engine Idle State 1: Idle
2:1	RO	0	HQV Output Buffer ID HQV destination buffer ID
0	RW	0	HQV End of Frame Status 1:HQV has been output an image. (Software writes 1 to clear this bit) After HQV done an image, this bit will be pulled high, and it will be pulled down only whent software writes 1 b to it.

Offset Address: 3D7-3D4h
HQV SW Source Data - Luma or Packed Starting Address
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 29$	RO	0	Deserved
$28: 4$	RW	0	SW Source Data Y or Packed Mode Starting Address (Unit: 16 bytes)
$3: 2$	RO	0	Reserved
$1: 0$	RW	0	Memory Location

Offset Address: 3DB-3D8h
HQV SW Source Data - Chroma Starting Address
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 29$	RO	0	Description
$28: 4$	RW	0	SW Source Buffer U, V Starting Addresses (Unit: 16 bytes)
$3: 2$	RO	0	Reserved
$1: 0$	RW	0	Memory Location

Offset Address: 3DF-3DCh

HQV Linear / Tile Address Mode, Color Space Conversion, Gamma, De-blocking Control Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:30	RW	00b	Linear / Tile Address Mode Control (Tile address only enable at source data from $\mathrm{MC}, 3 \mathrm{D} 0[25: 24]=01$) 00: Linear 01: Reserved 10: 256 bits tile mode $\left(\mathrm{Addr}=\mathrm{SA}+\left(\mathrm{Y}[10: 4] * \mathrm{PTH}^{*} 16\right)+\{\mathrm{X}[6: 1], \mathrm{Y}[3: 0], \mathrm{X}[0]\}\right)$ 11: 512 bits tile mode $\left(\mathrm{Addr}=\mathrm{SA}+\left(\mathrm{Y}[10: 4] * \mathrm{PTH}^{*} 16\right)+\{\mathrm{X}[6: 2], \mathrm{Y}[3: 0], \mathrm{X}[1: 0]\}\right)$. Where unit of X is 128 -bit; unit of Y is line.
29	RW	0	HQV Output Data Pack In 32-bits Mode. 0:16 bits (RGB565). 1:32 bits (RGB888) Only valid when the source is YUV and color space conversion is enabled.
28	RW	0	Color Space Conversion Enable 0: Disable 1: Enable
27	RW	0	De-blocking Enable
26:25	RO	0	Reserved
24:20	RW	0	HQV Output FIFO Threshold for Write Request Control (Unit: level) HQV output FIFO has 64 levels, once the data in output FIFO touch the threshold (32+3DC.[24:20]), the write request would be triggered.
19:16	RO	0	Reserved
15	RW	0	Constant Alpha of RGB32 Format 0: Alpha $=00$ 1: Alpha = FF
14	RW	0	Enable Synchronization Flipping Field with Interlaced IGA 1: Enable
13	RW	0	IGA Field Inverse 1: Inverse
12:11	RO	0	Reserved
10:0	RW	0	Image Size / 1024 Pull-down detection use.

Offset Address: 3E3-3E0h
HQV Source Data Line Count and Fetch Count Per Line
Default Value: 0000 0000h

Bit	Attribute	Default	Description
$31: 29$	RO	0	Reserved
$28: 16$	RW	0	Video Source Data Fetch Count Per Line (-1) Unit: Bytes
$15: 11$	RO	0	Reserved
$10: 0$	RW	0	Video Source Data Line Number (-1) Unit: Line

VX800 / VX820 Series Chrome9 HC3 Programming Manual

Offset Address: 3E7-3E4h
HQV Motion Adaptive De-interlace Control \& Threshold
Default Value: 0000 0000h

Bit	Attribute	Default	Description
31	RW	0	2:2 Pull Down Sequence Detection Enable 0: Disable 1: Enable Relative setting: Rx3DC[10:0]
30:28	RO	0	Reerved
27	RW	0	3:2 Pull Down Sequence Detection Enable 0: Disable 1: Enable Relative setting: Rx3DC[10:0]
26:25	RO	0	Reerved
24	RW	0	2:3:3:2 Pull Down Sequence Detection Enable 0: Disable 1: Enable Relative setting: Rx3DC[10:0]
23:13	RO	0	Reserved
12:8	RW	0	Motion Detection Enable
7	RO	0	2:2 Pull Down Detection Status
6	RO	0	3:2 Pull Down Detection Status
5	RO	0	2:3:3:2 Pull Down Detection Status
4:1	RO	0	Reserved
0	RW	0	Edge Detection Enable 0: Disable 1: Enable

Offset Address: 3EF-3ECh
HQV Destination Frame Buffer Starting Address 0
Default Value: 0000 0000h

Bit	Attribute	Default	Description
31	RW	0	HQV Output Data Pack In 32 Bits xRGB2-10-10-10 Format After HQV's Color Space Conversion 1: Enable Note: Only one of $\{\operatorname{Rx} 3 \mathrm{EC}[31], \mathrm{Rx} 3 \mathrm{DC}[29]\}$ can be set to 1 .
30	RW	0	Enable Output In Tile Mode 1:Enable. Addr $=$ ST_ADDR[28:4] $+\mathrm{Y}[10: 3]^{*}\left\{\operatorname{PITCH}[10: 0], 3^{\prime} \mathrm{b} 0\right\}+\{\mathrm{X}[10: 1], \mathrm{Y}[2: 0], \mathrm{X}[0]\}$
29	RO	0	Reserved
28:4	RW	0	Destination Frame Buffer Starting Address 0 Unit: 16 bytes
3:2	RO	0	Reserved
1:0	RW	0	Memory Location

Offset Address: 3F3-3F0h

HQV Destination Frame Buffer Starting Address 1
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 29$	RO	0	Description
$28: 4$	RW	0	Destination Frane Buffer Starting Address 1 Unit: 16 bytes
$3: 2$	RO	0	Reserved
$1: 0$	RW	0	Memory Location

Offset Address: 3F7-3F4h
HQV Destination Frame Buffer Stride
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 14$	RO	0	Description
$13: 4$	RW	0	Destination Frame Buffer Stride $(2 \mathrm{p})$ Unit: 16 bytes
$3: 0$	RO	0	Reserved

VX800 / VX820 Series Chrome9 HC3 Programming Manual

Offset Address: 3FB-3F8h
HQV Source Frame Buffer Stride
Default Value: 0000 0000h

Bit	Attribute	Default	Description
31	RW	0	Load Starting Address Rx3D4[25:4], Rx3D8[25:4] for Advanced De-interlacing 0 : Not used. Hardware keep starting address 1: Load starting address to current field Note: Command sequence Step1: Write Rx3D4, Rx3D8 Step2: Write Rx3F8; new address to PN Step3: Write Rx3D4, Rx3D8 Step4: Write Rx3F8; PN to PC; new address to PN Step5: Write Rx3D4, Rx3D8 Step6: Write Rx3F8; PC to PP; PN to PC; new address to PN
30	RW	0	SJN Reset 1: Reset static judgment number
29	RW	0	Pull Down Detection Low-Threshold Value For fixing bug: Spare register.
28	RW	0	Pull Down Detection Error Sequence Check One Time
27:26	RW	0	For Fixing Bug: Spare Register
25	RW	0	Not Check Size 0: Check size 1: Not check size
24:21	RW	0	For Fixing Bug. Spare Register
20	RW	0	Software Flip Queue Enable 0: Pull Rx3D0[4] low at frame done. 1: Pull Rx3D0[4] low at beginning of processing frame
19	RW	0	Read Debugging Register
18	RO	0	Reserved
17:16	RW	00b	FIFO Depth of HQV Flip Control Engine For hardware flip only. Rx3D0[25:24] ! = 00b. Only supports 2 stages FIFO queuing hardware flipping. 00: Pull "FIFO full status Rx3D0[12]" high, while both two stage are queuing. Drop current processing frame while both two stage are queuing. 01: Pull "FIFO full status Rx3D0[12]" high, while one stage is queuing. Drop current processing frame while both two stage are queuing. 10: Pull "FIFO full status Rx3D0[12]" high, while both two stage are queuing. Never drop current processing frame. 11: Pull "FIFO full status Rx3D0[12]" high, while one stage is queuing. Never drop current processing frame.
15:14	RO	0	Reserved
13:4	RW	0	Source Frame Buffer Stride (Unit: 16 bytes)
3:0	RO	0	Reserved

Offset Address: 3FF-3FCh
HQV Destination Data Starting Address 2
Default Value: 0000 0000h

Bit	Attribute	Default	
$31: 29$	RO	0	Description
$28: 4$	RW	0	Deserved Unit: 16 bytes
$3: 2$	RO	0	Reserved
$1: 0$	RW	0	Memory Location

Note: HQV supports 2 Video Streams; therefore, an additional register space is provided to match the above registers definition. Writing a register to this space, it will write to the second HQV, which output to V3 and source is from the second MC engine.

The relationship between the additional register space and the original register space is
$($ The additional register address $)=($ The original register address $)+16^{\prime} \mathrm{h} 1000$.

3D REGISTERS

This chapter provides detailed 3D register descriptions are followed in the sequent sections. Offsets Rx1Ch to Rx3Bh can both be used for setting the Command Regulator registers with the same HParaType 10h and HparaType 11h. Settings through Rx1Ch would not enable the 3D Engine clock, while settings through Rx3Ch would enable the 3D Engine clock.

Definition of I/O Register

The I/O Register Base Address for 3D is 400h.

For Write Mode

Setting of Command Regulator

Scope	Offset	Description		Mnemonic
Transmission Setting	1Ch	The Beginning of Internal Address for Parameter Programming		HParaAdr
	1Dh	Offset Setting for Some Special Parameter Types		HParaOS
	1Eh	Parameter Type		HParaType
		HParaType	Description	
		$00000000 \sim 00001111$	Reserved	
		00010000	Command Decoded in front of Command Regulator	
		$00010001 \sim 11111101$	Reserved	
		11111110	Frame Swapping	
		11111111	Reserved	
		For more details for the parameters, please refer to Definition of Parameter section.		
	1Fh	Parameter Type Sub-code		HParaSubType
Transmission Space	23h-20h	Parameter 0		Hpara0
	27h-24h	Parameter 1		Hpara1
	2Bh-28h	Parameter 2		Hpara2
		
	3Bh-38h	Parameter 7		Hpara7

Setting of 3D Engine

Scope	Offset		Description
Transmission Setting	3Ch	The Beginning of Internal Address for Parameter Programming	Mnemonic
	3Dh	Offset Setting for Some Special Parameter Types	HParaAdr

VX800 / VX820 Series Chrome9 HC3 Programming Manual

	3Fh	Parameter Type Sub-code	HParaSubType
Transmission Space	43h-40h	Parameter 0	Hpara0
	47h-44h	Parameter 1	Hpara1
	4Bh-48h	Parameter 2	Hpara2
	$\ldots \ldots .$.	$\ldots \ldots .$.	Hpara6D
	1F7h-1F4h	Parameter 109	Hpara6E
	1FBh-1F8h	Parameter 110	Hpara6F
	1FFh-1FCh	Parameter 111	
	$\ldots \ldots .$.	$\ldots \ldots .$.	HparaAF

For Read Mode

IO Address 400 h to 41 Ch are used for general purpose Reading-Back registers.
IO Address 420h to 42Ch are used for Reading-Back registers of E32CR_WBREG subset which is addressed by HSetRBGAdr.
IO Address 430 h to 5 FCh are used for Reading-Back registers of specific sub-engine set by HSetRGBID which could be read-back as "HRRGBID".
Definition of HSetRGBID

Bit [7:0]	HSetRBGID	ID for Reading-Back Register
$00000000:$	Reading the RB registers from CR	
$00000001:$	Reading the RB registers from FE(including VP, CL and SE)	
$00000010:$	Reading the RB registers from PE(including RZ and CZ)	
$00000011:$	Reading the RB registers from RC	
$00000100:$	Reading the RB registers from PS	
$00000101:$	Reading the RB registers from XE	
$00000110:$	Reading the RB registers from BE(including GEMI)	
Others:	Reserved	

General Purpose Reading Back Registers (00h-2Fh)

Offset Address: 00-03h
Engine Status

Bit	Description	Mnemonic
Engine Status		
31:24	ID for Reading-Back Register 0000 0000: Reading the RB registers from CR 0000 0001: Reading the RB registers from FE(including VP, CL and SE) 0000 0010: Reading the RB registers from PE(including RZ) 0000 0011: Reading the RB registers from RC 0000 0100: Reading the RB registers from PS 0000 0101: Reading the RB registers from XE 0000 0110: Reading the RB registers from BE(including GEMI) Others: Reserved	HRRBGID
23	Reserved	
22	CR AutoFBSW Status0: Idle1: Busy	HRCRFBSWST
21	LCD DN Status 1 1: Busy 0: Idle	HRLCDDNST
20	DMA(4channel) Status 0 : Idle Busy	HRDMAST
19	Reserved	
18	HQV-V1 Engine Status 0: Idle	HRHQV1St
17	$\begin{array}{ll}\text { HQV-V3 Engine Status } \\ \text { 0: Idle } & \text { 1: Busy }\end{array}$	HRHQV3St
16	Sequencer Status (T_Arbiter 0)$0:$ Idle 1: Busy	HRSEQ0St
15	Sequencer Status (T_Arbiter 1) 0: Idle 1: Busy	HRSEQ1St
14	Reserved	
3D Status		
13	GEMI(including GEMI0 and GEMI1) Status$0:$ Idle 1: Busy	HRGEMIst
12	Burst Engine Status $0:$ Idle 1: Busy	HRBESt
11	Pixel Engine Status 0: Idle 1: Busy	HRXESt
10	Pixel Shader Status 0 : Idle 1: Busy	HRPSSt
9	Reading Color Engine Status 0 : Idle	HRRCSt
8	Primitive Engine(including RZ engine) Status 0 : Idle 1: Busy	HRPESt
7	Setup Engine Status 0 : Idle 1: Busy	HRSESt

6	Clipping Engine Status 0: Idle	1: Busy	HRCLSt
5	Vertex Processor Status 0: Idle	1: Busy	HRVPSt
4	Command Regulator Status 0 : Idle	1: Busy	HRCRSt
3	Reserved		HRMPGSt
2	CMDQ Status 0: Idle	1: Busy	HRVQSt
1	2D Engine Status 0 : Idle	1: Busy	HRE2St
0	3D Engine Status 0 : Idle	1: Busy	HRE3St

Offset Address: 04-07h

Current Command SW Flag

Bit	Description	Mnemonic
$31: 0$	SW Inspect Flag of Current Command Header	HRCRFlag

Offset Address: 08-0Bh

3D Command SW Flag

Bit	Description	Mnemonic
$31: 0$	SW Inspect Flag of 3D Command	HRE3Flag

Offset Address: 0C-0Fh
2D Command SW Flag

Bit	Description	Mnemonic
$31: 0$	SW Inspect Flag of 2D Command	HRE2Flag

VX800 / VX820 Series Chrome9 HC3 Programming Manual

Offset Address: 10-13h

MC Command SW Flag

Bit	Description	Mnemonic
$31: 0$	SW Inspect Flag of MC Command	HRMCFlag

Offset Address: 14-17h

Read Global Register Address

Bit	Description	Mnemonic
$31: 24$	Reserved	
$23: 0$	Read Global Register Address	HRRBGAdr

Offset Address: 18-1Bh

Status and Result of Latched FIFO Auto Testing

Bit	Description	Mnemonic
31	Error for Latched FIFO Auto Testing 0: Pass	HRFIFOATError
30:24	Reserved	
23	GEMI's Auto Testing Result 0: Pass	HRATFGEMI
22	BE's Auto Testing Result 0 : Pass 1: Fail	HRATFBE
21	XE's Auto Testing Result 0: Pass 1: Fail	HRATFXE
20	PS's Auto Testing Result 0 : Pass 1: Fail	HRATFPS
19	RC's Auto Testing Result 0: Pass	HRATFRC
18	PE's Auto Testing Result (Including RZ\&HZ) 0 : Pass 1: Fail	HRATFPE
17	FE's Auto Testing Result 0 : Pass 1: Fail	HRATFFE
16	Reserved	
15	Busy for Latched FIFO Auto Testing \quad 1: Busy, be testing 0 : Finished	HRFIFOATBusy
14:8	Reserved	
7	Busy for GEMI's Auto Testing 0: Finished 1: Busy, be testing	HRATFGEMIBusy
6	Busy for BE's Auto Testing 0 : Finished 1: Busy, be testing	HRATFBEBusy
5	Busy for XE's Auto Testing 0 : Finished 1: Busy, be testing	HRATFXEBusy
4	Busy for PS's Auto Testing 0: Finished 1: Busy, be testing	HRATFPSBusy
3	Busy for RC's Auto Testing 0: Finished 1: Busy, be testing	HRATFRCBusy
2	Busy for PE's Auto Testing 0: Finished 1: Busy, be testing	HRATFPE
1	Busy for FE's Auto Testing 0: Finished 1: Busy, be testing	HRATFFEBUSY
0	Reserved	

Offset Address: 1C-1Fh

Command Head SW Flag from E3's BE

Bit	Description	Mnemonic
$31: 0$	SW Inspect Flag of Command Header from E3's BE	HRCMDHFlagBE

Offset Address: 20-23h
3D Global Register 0

Bit	Description	Mnemonic
$31: 0$	E32CR_WBREG[31:0]	HE3WBReg0

Offset Address: 24-27h
3D Global Register 1

Bit	Description	Mnemonic
$31: 0$	E32CR_WBREG[63:32]	HE3WBReg1

Offset Address: 28-2Bh
3D Global Register 2

Bit	Description	Mnemonic
$31: 0$	E32CR_WBREG[95:64]	HE3WBReg2

Offset Address: 2C-2Fh
3D Global Register 3

Bit	Description	Mnemonic
$31: 0$	E32CR_WBREG[127:96]	HE3WBReg3

VX800 / VX820 Series Chrome9 HC3 Programming Manual

CR Reading Back Registers (30h-9Fh)

Offset Address: 30-33h
CR Miscellaneous Status 0

Bit	Description	
31	CR Clock Enable $0:$ Gating clock $1:$ Enable	Mnemonic E2 Clock Enable $1:$ Enable clock
30	E3 Clock Enable $0:$ Gating clock $1:$ Enable	CR_CLK_EN
28	VIDEO Clock Enable $0:$ Gating clock $1:$ Enable	E2_CLK_EN
27	Command Acceptable	E3_CLK_EN
26	CR4 ACK	MC_CLK_EN
25	CR4 E-pip ACK	CR_ACTIVE
24	CR4 V-pip ACK	CR4_ACK
23	CR3 FMTDEC ACK	CR4E_ACK
22	CR3 FMTDEC Ready	CR4V_ACK
21	Interrupt State On	FMTDEC_ACK
20	Fence State On	FMTDEC_RDY
19	Lock E2 Request	INT_CMD
18	Lock E3 Request	FENCE_CMD
17	F2 Empty	E2CMD_LOCK
16	F1 Empty	E3CMD_LOCK
15	F2 Full	HRCRF2Empty
14	F1 Full	HRCRF1Empty
$13: 7$	F2 Ready Counter Output	HRCRF2Full
$6: 0$	F1 Ready Counter Output	HRCRF1Full

Offset Address: 34-37h
CR Miscellaneous Status 1

Bit	Description	Mnemonic
31	Fence Command Interrupt Flag	CR_INT
30	3D to CR Interrupt Enable	E32CR_INTEN
29	CR to E3 Interrupt Request	CR2E3_INTR
28	MC to CR ACK	MC2CR_GOTREG
27	E2 to CR ACK	E22CR_RDY
26	E3 to CR ACK	E32CR_RDY
25	CR to Video Ready	CR2V_W
24	CR to MC Ready	CR2MC_W
23	CR to E2 Ready	CR2E2_W
22	CR to E3 Ready	CR2E3_RDY
21	CR to E3 AGP Flag	CR2E3_AGP
$20: 10$	CR to Video Address	CR2V_WADR[12:2]
$9: 0$	CR to E3 Address	CR2E3_WADR[11:2]

Offset Address: 38-3Bh

CR Miscellaneous Status 2

Bit	Description	Mnemonic
31	Branch Request Cycle	BRANCH_REQ_CYC
30	Branch Get Data Cycle	BRANCH_DAT_CYC
29	Branch Request for Channel 0	BRANCH_CRRCMREQ0
28	Branch Request for Channel 1	BRANCH_CRRCMREQ1
$27: 21$	Number of Branch Data Have Requested But None Back	BRANCH_AGP_RB_CNT[6:0]
$20: 19$	Fence Command Status	FENCE_STATE[1:0]
$18: 16$	Reserved	HRSTBRANCH
15	Branch for Re-store Enable	BRANCH_LOCK
14	Branch for Re-store Lock	LOCK6C_V
13	Lock V-pip with 326C	LOCK6C_E
12	Lock E-pip with 6C	WAIT_BUS_V3[5:0]
$11: 6$	V3 Lock Register	WAIT_BUS_V1[5:0]
$5: 0$	V1 Lock Register	

Offset Address: 3C-3Fh

AGP Status

Bit	Description	Mnemonic
$31: 4$	Current Executed AGP Command	HRAGPBCUR
$3: 0$	Reserved	

Offset Address: 40-43Fh

AGP Status

Bit	Description	Mnemonic	
$31: 4$	Current AGP Command Request Address	HRAGPBCUR	
$3: 2$	Reserved	CR_ERR1	
1	AGP Test Mode (Header 6) Command Error on CR0	CR_ERR0	
0	AGP Test Mode (Header 6) Command Error on CR3	CR_\|	

Offset Address: 44-47h
AGP Status \& VQ Status

Bit		Description
31	AGP_PAUSE \&(HAGPBPID == 2'b00)	Mnemonic
30	AGP Command Cycle Flag	HRAGPCYCPause
29	AGP Command Cycle Active	AGP_CYC
28	AGP Command Same Pause Address	AGP_SEL
27	AGP Command Same End Address	SAME_BP
26	AGP Command Same Jump Address	SAME_BEND
25	Pause AGP Cycle	SAME_BJUMP
24	AGP Command Request	AGP_PAUSE
23	AGP Command ACK	AGP_CRRCMREQ
22	AGP Request Hold	CRRCMACK
21	AGP Request VQ Stop	AGP_HOLD
20	AGP Cycle Last Request Command	VQ_AGP_STOP
19	Stop to Read AGP Command	LAST_REQ
$18: 10$	Number of AGP Data Have Requested But None Back	AGP_REQ_STOP
$9: 0$	Virtual Queue V cnt in Frame Buffer	AGP_RB_CNT[8:0]

Offset Address: 48-4Bh
 VQ Status

Bit	Description	Mnemonic
31	Virtual Queue V Cycle	VQ_CYC
30	Virtual Queue V Full	VQ_FULL
29	Virtual Queue V has Valid Data	VQ_RDY
$28: 4$	Virtual Queue V Address	CRCMDQ_ADR[28:4]
3	Virtual Queue V Enable	HENCMDQ
2	Virtal Queue V for AGP	HCMDQ4AGP
1	Virtual Queue \mathbf{V} MI to CR Acknowledge	MI2CRTCM_ACK
0	HENVQ_V \& MI2CR_ACK_V	MI2CR_ACK

Offset Address: 4C-4Fh
Interrupt Status

Bit	Description	Mnemonic
$31: 29$	Interrupt Status	INT_STATE[2:0]
28	Stop 3D Vertex	STOP_VERTEX
$27: 24$	Number of Restore Data have Requested but None Back	RST_REG_CNT[3:0]
$23: 0$	Number of CR3 Data have Requested but None Back The Left Vertex number within one DIP.	AGPFD_CNT[23:0]

Offset Address: 50-53h

Flip Count

Bit	Description	Mnemonic
$31: 16$	Frame Buffer Switching Count R Register for IGA2	HFLIPCNT2[15:0]
$15: 0$	Frame Buffer Switching Count R Register for IGA1	HFLIPCNT1[15:0]

Offset Address: 54-57h
FBSW Control 1 Status

Bit	Description	Mnemonic
$31: 0$	FBSW Control 1 Status \{CRFBSW2IGA, FBSW_IDLE, VLD2IGA, DP_BAS_LCD[28:3], DP2FBSWACK, DP_LOC[1:0] \}	HRDISPLAYBST1[31:0]

Offset Address: 58-5Bh
FBSW Control 2 Status

Bit	Description	Mnemonic
$31: 0$	FBSW Control 1 Status \{CRFBSW2IGA, FBSW_IDLE, VLD2IGA, DP_BAS_LCD[28:3], DP2FBSWACK, DP_LOC[1:0] \}	HRDISPLAYBST2[31:0]

Offset Address: 5C-5Fh
AGP Pause Address

Bit	Description	Mnemonic
$31: 4$	AGP Pause Address	HAGPBP[31:4]

Offset Address: 60-63h
AGP Jump Address

Bit	Description	Mnemonic
$31: 4$	AGP Jump Address	HAGPBJUMP[31:4]

Offset Address: 64-67h
 AGP Start Address

Bit	Description	Mnemonic	
$31: 4$	AGP Buffer Start Address	HAGPBST[31:4]	
$3: 2$	Reserved	HAGPBLOC	
$1: 0$	AGP Buffer Start Address Location	Her\|	

Offset Address: 68-6Bh

AGP End Address

Bit	Description	Mnemonic
$31: 4$	AGP End Address	HAGPBEnd[31:4]
$3: 0$	Reserved	

Offset Address: 6C-6Fh

SW Event Tag AA

Bit	Description	Mnemonic
$31: 24$	Reserved	
$23: 0$	SW Event Tag AA	HRSWFLAGAA

Offset Address: 70-73h
SW Event Tag AB

Bit	Description	Mnemonic
$31: 24$	Reserved	
$23: 0$	SW Event Tag AB	HRSWFLAGAB

Offset Address: 74-77h
Fence Command ID Valid

Bit	Description	Mnemonic
$31: 4$	Reserved	
$3: 0$	Fence Command ID Valide	HRFC_VLD

Offset Address: 78-7Bh
CR's Miscellaneous Status 3

Bit		Description
31	F3 Full	Mnemonic
30	F3 Empty	HRCRF3Full
$29: 23$	F3 Ready Counter Output	HRCRF3Empty
$22: 13$	Virtual Queue E cnt in Frame Buffer	F3_CNT_RDY[6:0]
12	Virtual Queue E Cycle	VQ_CNT_E[9:0]
11	Virtual Queue E Full	VQ_CYC_E
10	Virtual Queue E has Valid Data	VQ_FULL_E
9	Virtual Queue E Enable	VQ_RDY_E
8	Virtual Queue E for AGP	HENCMDQ_E
7	CR6 FMTDEC ACK	HCMDQ4AGP_E
6	CR6 FMTDEC Ready	FMTDEC_ACK_E
5	CR7ACK	FMTDEC_RDY_E
4	Lock V-pip with 326C \& VMR Lock	CR7_ACK
3	Lock E-pip with 6C \& VMR Lock	LOCK_V
2	CR_VQ_REQFIFO EMPTY	LOCK_E
1	CR_VQ_REQFIFO Full	RF_EMPTY
0	Virtual Queue E MI to CR Acknowledge	RF_FULL

Offset Address: 7C-7Fh
 Lock Control 1

Bit	Description	Mnemonic
$31: 8$	Read Command Stream0 Buf Status	HRCS1FSM
7	For VMR Path HQV Busy Status	HQV_BUSY
6	VMR Lock V-pip	VMR_LOCK_V
5	Lock V-pip with 326C	LOCK6C_V
4	VMR Lock E-pip	VMR_LOCK_E
3	Lock E-pip with 6C	LOCK6C_E
2	Lock, Wait V-Blank	LOCK_VBLK
1	Video Command Start	V_START
0	2D $/$ 3D Command Start	E_START

Offset Address: 80-83h
Lock Control 2

Bit	Description	Mnemonic
$31: 8$	Read Command Stream 1 Buf Status	HRCS2FSM
$7: 0$	Start_ID of Output Command	START_ID

Offset Address: 84-87h
Lock Control 3

Bit	Description	Mnemonic
$31: 16$	For VMR Path, V Buffer Lock Status	HRLOCK_V
$15: 0$	For VMR Path, E Buffer Lock Status	HRLOCK_E

Offset Address: 88-8Bh

Lock Control 4

Bit	Description	Mnemonic
$31: 16$	For VMR Path, V Buffer Working ID	V_WORKINGID
$15: 0$	For VMR Path, E Buffer Working ID	E_WORKINGID

Offset Address: 90-93h
Fence Command ID A

Bit	Description	Mnemonic
$31: 0$	Fence Command ID A	HRFC_PCIADD_A

Offset Address: 94-97h

Fence Command ID A

Bit	Description	Mnemonic
$31: 0$	Fence Command ID A	HRFC_ID_A

Offset Address: 98-9Bh

Fence Command ID B

Bit	Description	Mnemonic
$31: 0$	Fence Command ID B	HRFC_PCIADD_B

Offset Address: 9C-9Fh
Fence Command ID B

Bit	Description	Mnemonic
$31: 0$	Fence Command ID B Fence Queue read by mmio read address by mmioRead_490 and mmioRead_498 to add read point.	HRFC_ID_B

Technologies, Inc. we connect

HParaType 00h: Primitive Vertex Data or Vertex Index

HParaTye 00h is used for Primitive Vertex Data (for Vertex Command Mode) or Vertex Index (for Vertex Buffer Index Mode). There is no sub-address in this ParaType, and the steps of how to fire 3D Engine are followed:

Step 1: Set the correct value to all the related 3D globe registers through ParaType 01h, 02h, 03h, 04h, 10h, 11h and FEh.
Step 2: Sent Vertex Data or Vertex Index (according to HVertexMode) through ParaType 00h. CR would configure the vertex (according HVFVLEN and HnFVF) and generate fire signal automatically whenever all the vertices of a primitive are ready (according to HVCycle, H2and1VT and HPMType). CR would also generate the PLEND (Primitive List End) signal whenever the entire listed vertexes are finished (according to HVTXnum), or receive a "Stop Command".
For next primitive list, repeat the above two steps.

HParaType 01h: Attribute Other Than Texture

HParaType $=01 \mathrm{~h}$
Sub-Address 00h-0Fh: Enable Setting

Bit [31:24] Sub-Address	Bit [23:0]	Description	Mnemonic
00h	23	Reserved	
	22	Inverse Enable (disable) BE's 32-byte (adiacent 128-bit) Packing 0: Enable 1: Disable	Hen32BytePack_N
	21	Inverse Enable (disable) BE's Smart Packing 0 : Enable 1: Disable	HenSMRTPack_N
	20	Enable Alpha Test Result of RT0 for all Render Targets 0: If Alpha Test pass or fail of RTn depends on its own alpha test result and HenATMRTn. $\mathrm{n}=0,1,2$ and 3 1: Do the alpha test of RT0 and all render targets depend on the result to be killed or not. HenATMRT0, HenATMRT1, HenATMRT3 \& HenATMRT3 are ignored	HenAT4allRT
	19	Enable Alpha Test for Render Target 3 0: Disable 1: Enable	HenATMRT3
	18	Enable Alpha Test for Render Target 2 0: Disable 1: Enable	HenATMRT2
	17	Enable Alpha Test for Render Target $1 \quad 1$ Enable 0: Disable	HenATMRT1
	16	Enable Alpha Test for Render Target 0 0: Disable	HenATMRT0
	15	Enable Specula Color for Render Target 3 0: Disable 1: Enable	HenSCMRT3
	14	Enable Specula Color for Render Target 2 0: Disable 1: Enable	HenSCMRT2
	13	Enable Specula Color for Render Target 1 0: Disable	HenSCMRT1
	12	Enable Specula Color for Render Target 0 0: Disable	HenSCMRT0
	11	Enable Fog for Render Target 3 0 : Disable 1: Enable	HenFOGMRT3
	10	Enable Fog for Render Target 2 0: Disable 1: Enable	HenFOGMRT2
	9	Enable Fog for Render Target 1 0: Disable 1: Enable	HenFOGMRT1
	8	Enable Fog for Render Target 0 0: Disable 1: Enable	HenFOGMRT0
	7	Enable Alpha Blending for Render Target 3 0: Disable 1: Enable	HenABLMRT3
	6	Enable Alpha Blending for Render Target 2 0: Disable	HenABLMRT2
	5	Enable Alpha Blending for Render Target 1 0: Disable	HenABLMRT1
	4	Enable Alpha Blending for Render Target 0 0 : Disable	HenABLMRT0
	3	Enable Dither for Render Target 3 0: Disable 1: Enable	HendTMRT3
	2	Enable Dither for Render Target 2 0: Disable 1: Enable	HendTMRT2
	1	Enable Dither for Render Target 1 0 : Disable 1: Enable	HendTMRT1
	0	Enable Dither for Render Target 0 0: Disable 1: Enable	HendTMRT0

VX800 / VX820 Series Chrome9 HC3 Programming Manual

VX800 / VX820 Series Chrome9 HC3 Programming Manual

HParaType $=01 \mathrm{~h}$

Sub-Address 10h-22h: Z Setting

Bit [31:24] Sub-Address	Bit [23:0]	Description	Mnemonic
10h	23:0	ZW Buffer Base Address In unit of 256 bytes.	HZWBBas
11h	23	Reserved	
	22:13	ZW Buffer Pitch In unit of 32 bytes for linear mode. In unit of tile (256 bytes) for tile mode.	HZWBPit
	12	Enable Reading-Z Cache 0: Disable 1: Enable	HZenRZCache
	11	Clear Reading-Z Cache	HZRZCCIr
	10	Mode of Reading-Z Cache 0: 128-bit Mode 1: 256-bit Mode	HZRZCMode
	9	Z and Stencil Value are written through to BE directly	HZSTWTH2BE
	8:2	Reserved	
	1:0	Location Setting of Z Buffer 00: System Local Frame Buffer (S.L.) 01: System Dynamic Frame Buffer (S.F.) 10: Reserved (System Memory) 11: Reserved	HZWBLoc
12h	23	ZW Buffer Type 0: ZW buffer stores Z value 1: ZW buffer stores W value ($\mathbf{P P}$ replaces Z by W)	HZWBType
	22	Reserved	
	21	Force the Z Value from 1.0 to 1.0- (from 1.00000000h to 0.FFFFFFFFh) 0 : Keep the original 1.0 1: Force to 1.0 - whenever Z equal to 1.0 This register is only useful for fixed-point format.	HZONEasFF
	20	Clamp the Z Value is over 1.0 to 1.0 - (from 1.xxxxxxxxh to 0.FFFFFFFFh) 0 : Keep the original value over 1.0 1: Clamp to 1.0 - whenever Z is over 1.0 This register is only useful for fixed-point format.	HZOONEasFF
	19	Clamp the Z Value is Negative to Zero- (from-x.xxxxxxxxh to $\mathbf{0 . 0 0 0 0 0 0 0 0} \mathbf{h}$) 0 : Keep the original negative value 1: Clamp to 0.0 - whenever Z is negative Note: These clamping registers do not influence the test of nearby or distant plane. The tests of the nearby or distant plane is by the original biased and un-clamped Z value with floating format.	HZNEGasZERO
	18:16	ZW Buffer Format For Z Buffer 000: 16-bit fix point format, $0.0 \leq \mathrm{Z}<1.0$ 001: 16-bit floating format s[5]. 10 from $+2^{\wedge} 31 * 1$.FFFF to $-2^{\wedge} 31 * 1$.FFFF 010: Reserved 011: Reserved 100: 32-bit fix point format, $0.0 \leq \mathrm{Z}<1.0$ 101: 32-bit fix point format s[8]. 23 110: 24-bit fix point format $Z, 0.0 \leq Z<1.0$, and Stencil Z is located in bit [31:8], Stencil is located in bit [7:0]	HZWBFM
	15:7	Reserved	
	6:5	Location Setting of Separated Stencil Buffer 00: Syntem Local Frame Buffer (S.L.) 01: System Dynamic Frame Buffer (S.F.) 10: Reserved (System Memory) 11: Reserved	HZWBLoc
	4	Write Stencil Value of the Separated Stencil Buffer to the Z Buffer 0 : Normal 1: Force "STVALID" as true and stencil operation as "Keep", so the stencil value in the separated buffer can be filled into Z buffer.	HSTB2ZB

	3	Synchronized with the Separated Stencil Value in Z Buffer If the stencil value in the separated stencil buffer is synchronized with the stencil value in Z buffer 0: No synchronization. HW just update the stencil value in the separated stencil buffer, which may not be synchronized to the stencil value in Z buffer. 1: The stencil value in the separated stencil buffer is synchronized to the stencil value in Z buffer. HW would update the separated stencil buffer and Z buffer.	HSTBSync2ZB
	2	If there is a Separated Stencil Buffer 0 : No separated stencil buffer 1: There is a separated stencil buffer	HSTBSeperated
	1	Extend for Z Format Transformation 0 : Do nothing Consider Z with 32-bit floating s[8].23, its mantissa 1.Z[22:0]. We extend it to $1 .\{\mathrm{Z}[22: 0]$, $\left.8{ }^{\prime} \mathrm{h} 00\right\}$ and the transformed to fix format. 1: Extend mantissa to 32 bits before format transformation Consider Z with 32 -bit floating $\mathrm{s}[8] .23$, its mantissa $1 . \mathrm{Z}[22: 0]$. We extend it to $1 .\{\mathrm{Z}[22: 0]$, 1 ' $b 1, Z[22: 16]\}$ and the transformed to fix format.	HZWExtend
	0	```Memory Mode of ZW Buffer 0 : Linear mode 1: Tile mode```	HZWMMode
13h	23	Source \mathbf{Z} is generated by Pixel Shader instead of Shading 0 : Source Z is generated by normal shading 1: Source Z is generated in PS, RZ module should pipe the Zdst to PE. The Zdst and Zsrc for depth test come from BE.	HZSrcPS
	22:19	Reserved	
	18:16	ZW Test Mode 000: Z or W Test Never Pass 001: Z or W Test Pass if Znew $<$ Zdst 010: Z or W Test Pass if Znew $=$ Zdst 011: Z or W Test Pass if Znew \leq Zdst 100: Z or W Test Pass if Znew $>$ Zdst 101: Z or W Test Pass if Znew \neq Zdst 110: Z or W Test Pass if Znew \geq Zdst 111: Z or W Test Always Pass Where Znew is the calculated Z value and Zdst is the Z stored in the Z buffer.	HZWTMD
	15:8	Reserved	
	7:0	Z Normalization Factor The range is from 0 to 255 . We define that Z can be divided by a value of power of 2 . Thus, it allows the input Z free from the constrain of $Z<1$. Z Normalization is $\mathrm{Z}=\mathrm{Zin} / 2^{\mathrm{HZNF}}$	HZNF
14h	23:0	Lower 3 Bytes of ZW Clear Data	HZWCDL
15h	23:8	Negative of Mask to the Zsrc's last 16-bit Mantissa Note that this mask is just implemented to the rendered Z value for format transformation, then a Z test is conducted and wrote-back to Z buffer Consider the generated Z value " $\mathrm{Zsrc}[31: 0]$ " with floating s[8]. 23 Step $1: Z \operatorname{src}[15: 0]=$ Zsrc[15:0] \& \sim HZWMMSK_N[15:0] Step2: Format transform Zsrc according to HZWFM Step3: Z test Step4: Updated Z buffer with the format transformed Zsrc if Z test is passed	HZWMMSK_N
	7:0	Highest Byte of ZW Clear Data	HZWCDH
16h	23:0	Lower 3 Bytes of Z Bias Offset With 32-bit floating format, since Z format transformation is between fix and floating, and HZBiasOffset description is suggested to be modified as below: If (HZWBFM == 32-bit fix) HZBiasOffset $=$ HZBiasOffset * $\left(2^{\wedge} 32-1\right) / 2^{\wedge} 32$ Else if (HZWBFM ==24-bit fix) HZBiasOffset $=$ HZBiasOffset * $\left(2^{\wedge} 24-1\right) / 2^{\wedge} 24$ Else if (HZWBFM ==16-bit fix) HZBiasOffset $=$ HZBiasOffset * $\left(2^{\wedge} 16-1\right) / 2^{\wedge} 16$	HZBiasOffsetL
17h	23:16	Bias Scale with 32-bit Floating Format	HZBiasScaleHZ
	15:8	Reserved	
	7:0	Highest Byte of Z Bias Offset SEZbias $=\max (Z d x$, Zdy $) *$ HZBiasScale + HZBias Offset	HZBiasOffsetH
18h	23:0	Z Bias Scale With 32-bit Floating Format	HZBiasScaleL
19h	23:0	Low 23 Bits of Low Boundary to Clamp the Z Bias With format of 32-bit floating.	HZBiasLClampL
1Ah	23:0	Low 23 Bits of High Boundary to Clamp the Z Bias With format of 32-bit floating.	HZBiasHClampL

1Bh	23	Enhance Z's Precision during PE Rendering 0: Disable 1: Enable	HZPrecisionEnhance
	22:16	Reserved	
	15:8	High 8 Bits of High Boundary to Clamp the Z Bias With format of 32-bit floating.	HZBiasHClampH
	7:0	High 8 Bits of Low Boundary to Clamp the Z Bias With format of 32-bit floating.	HZBiasLClampH
1Ch	23:0	Low 24 Bits Occlusion Count of both Z Test and Stencil Test Result	HZOcclusionCNTL
1Dh	23:8	Reserved	
	7:0	High 8 Bits Occlusion Count of both Z Test and Stencil Test Result	HZOcclusionCNTH
1Eh	23:0	Lower 24 Bits of Clip Plane's Far Value	HZClipFarL
1Fh	23:0	Lower 24 Bits of Clip Plane's Near Value	HZClipNearL
20h	23:16	Reserved	
	15:8	Higher 8 Bits of Clip Plane's Far Value With format of 32-bit floating.	HZClipFarH
	7:0	Higher 8Bits of Clip Plane's Near Value With format of 32-bit floating. Check each pixel's Z value before depth testing, and remove this pixel if it's out of the range. If ($\mathrm{Z}>$ HZClipFar $\mid \mathrm{Z}<$ HZClipNear) Drop this pixel Else Do Depth Testing Note that this check is in higher priority than "Z Window".	HZClipNearH
21h	23:0	Low 24 Bits of Video Memory Address to Address to write the "HZOcclusionCNT" In a unit of 4 bytes. Note for Driver: Whenever a non-zero value is set to this register , the "HZOcclusionCNT" would be written back to the video memory with the address of "HZOcclusionAdr". Since the address is separated into 2 sub-addresses, please set driver "HZOcclusionAdrL" and then "HZOcclusionAdrH" in order. Whenever decoding the "HZOcclusionAdrH", HW would check if the address (HZOcclusionAdrH and HZOcclusionAdrL cascaded) is zero or not	HZOcclusionAdrL
22h	23:22	Location Setting of Z Occlusion Counter (HZOcclusionCNT) 00: Syntem Local Frame Buffer (S.L.) 01: System Dynamic Frame Buffer (S.F.) 10: Reserved (System Memory) 11: Reserved	HZOcclusionLoc
	21:8	Reserved	
	7:0	High 8 Bits of Video Memory Address to Address For writing the "HZOcclusionCNT", in the unit of 4 bytes.	HZOcclusionAdrH

HParaType $=01 \mathrm{~h}$

Sub-Address 23h-26h: Stencil Setting

$\begin{aligned} & \text { Bit [31:24] } \\ & \text { Sub-Address } \end{aligned}$	Bit [23:0]	Description	Mnemonic
23h	23:16	Stencil Test Reference Value for Clock-Wise Face A positive 8-bit fix point number with range from 0 to 255 . We will use this value for Stencil Test: A comparison between Stencil and HSTCWREF.	HSTCWREF
	15:8	Stencil Test Operation Mask for Clock-Wise Face The usage is a comparison between (Stencil \& HSTCWOPMSK) and (HSTCWREF \& HSTCWBMSK)	HSTCWOPMSK
	7:0	Stencil Buffer Bit Mask for Clock-Wise Face If a bit $=0$, the relative bit in the stencil buffer cannot be changed. Otherwise, it can be changed.	HSTCWBMSK
24h	23:19	Reserved	
	18:16	Stencil Test Mode for Clock-Wise Face 000: Stencil Test Never Pass 001: Stencil Test Pass if (HSTCWREF \& HSTCWOPMSK) < (Stencil \& HSTCWOPMSK) 010: Stencil Test Pass if (HSTCWREF \& HSTCWOPMSK) $=$ (Stencil \& HSTCWOPMSK) 011: Stencil Test Pass if (HSTCWREF \& HSTCWOPMSK) \leq (Stencil \& HSTCWOPMSK) 100: Stencil Test Pass if (HSTCWREF \& HSTCWOPMSK) > (Stencil \& HSTCWOPMSK) 101: Stencil Test Pass if (HSTCWREF \& HSTCWOPMSK) \neq (Stencil \& HSTCWOPMSK) 110: Stencil Test Pass if (HSTCWREF \& HSTCWOPMSK) \geq (Stencil \& HSTCWOPMSK) 111: Stencil Test Always Pass	HSTCWMD
	15:9	Reserved	

VX800 / VX820 Series Chrome9 HC3 Programming Manual

	8:6	Stencil Operation for Stencil Test Fail for Clock-Wise Face 000: KEEP 001: ZERO 010: REPLACE 011: INCRSAT 100: DECRSAT 101: INVERT 110: INCR 111: DECR	HSTCWOPSF
	5:3	Stencil Operation for Stencil Test Pass and Z Test Fail for Clock-Wise Face 000: KEEP 001: ZERO 010: REPLACE 011: INCRSAT 100: DECRSAT 101: INVERT 110: INCR 111: DECR	HSTCWOPSPZF
	2:0	Stencil Operation for Stencil Test Pass and Z Test Pass for Clock-Wise Face 000: KEEP 001: ZERO 010: REPLACE 011: INCRSAT 100: DECRSAT 101: INVERT 110: INCR 111: DECR	HSTCWOPSPZP
25h	23:16	Stencil Test Reference Value for Counter-Clock-Wise Face A positive 8-bit fix point number with range from 0 to 255 . We will use this value for Stencil Test: A comparison between Stencil and HSTCCWREF.	HSTCCWREF
	15:8	Stencil Test Operation Mask for Counter-Clock-Wise Face The usage is a comparison between (Stencil \& HSTCCWOPMSK) and (HSTCCWREF \& HSTCCWBMSK)	HSTCCWOPMSK
	7:0	Stencil Buffer Bit Mask for Counter-Clock-Wise Face If a bit $=0$, the relative bit in the stencil buffer cannot be changed. Otherwise, it can be changed.	HSTCCWBMSK
26h	23:19	Reserved	
	18:16	```Stencil Test Mode for Counter-Clock-Wise Face 000: Stencil Test Never Pass 001: Stencil Test Pass if (HSTCCWREF & HSTCCWOPMSK) < (Stencil & HSTCCWOPMSK) 010: Stencil Test Pass if (HSTCCWREF & HSTCCWOPMSK) = (Stencil & HSTCCWOPMSK) 011: Stencil Test Pass if (HSTCCWREF & HSTCCWOPMSK) \leq (Stencil & HSTCCWOPMSK) 100: Stencil Test Pass if (HSTCCWREF & HSTCCWOPMSK) > (Stencil & HSTCCWOPMSK) 101: Stencil Test Pass if (HSTCCWREF & HSTCCWOPMSK) }=\mathrm{ (Stencil & HSTCCWOPMSK) 110: Stencil Test Pass if (HSTCCWREF & HSTCCWOPMSK) }\geq\mathrm{ (Stencil & HSTCCWOPMSK) 111: Stencil Test Always Pass```	HSTCCWMD
	15:9	Reserved	
	8:6	Stencil Operation for Stencil Test Fail for Counter-Clock-Wise Face 000: KEEP 001: ZERO 010: REPLACE 011: INCRSAT 100: DECRSAT 101: INVERT 110: INCR 111: DECR	HSTCCWOPSF
	5:3	Stencil Operation for Stencil Test Pass and Z Test Fail for Counter-Clock-Wise Face 000: KEEP 001: ZERO 010: REPLACE 011: INCRSAT 100: DECRSAT 101: INVERT 110: INCR 111: DECR	HSTCCWOPSPZF

	2:0	Stencil Operation for Stencil Test Pass and Z Test Pass for Counter-Clock-Wise Face 000: KEEP 001: ZERO 010: REPLACE 011: INCRSAT 100: DECRSAT 101: INVERT 110: INCR 111: DECR	HSTCCWOPSPZP

VX800 / VX820 Series Chrome9 HC3 Programming Manual

HParaType $=01 \mathrm{~h}$

Sub-Address 29h-2Ah: Setting for Coarse Z Test Function

$\begin{gathered} \hline \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
29h	23	Force CZ Retest if Original is "Reject" and the Related Primitive is Clock-Wise Force the CZ result as "ReTEST" if original is "REJECT" and the related primitive is Clock-Wise. 0: Normal CZ test 1: Never reject	HCZMskREJECT_CW
	22	Force CZ Retest if Original is "Pass" and the Related Primitive is Clock-Wise Force the CZ result as "ReTEST" if original is "Pass" and the related primitive is Clock-Wise. 0: Normal CZ test 1: Never pass	HCZMskPASS_CW
	21:20	Coarse Z Buffer Location Setting 00: System Local Frame Buffer (S.L.) 01: System Dynamic Frame Buffer (S.F.) 10: Reserved (System Memory) 11: Reserved	HCZLoc
	19:18	Reserved	
	17	Inverse Mode for CZ Test 0 : Smaller Z value as nearer and larger Z value as farer, for HZWTMD is LESS or LESSEQUAL 1: Larger Z value as nearer and smaller Z value as farer, for HZWTMD is GREATER or GREATEREQUAL	HCZTInvMD
	16	Coarse Z Write Back Mode 0 : Whenever the CZTAG_CNT is " 0 " and CZTAG_UPDATED, then write back the CZ in cache back to video memory 1: Whenever the cell is selected for new CZ value and CZTAG_UPDATED, then write back the old CZ in cache back to video memory, and then read the new CZ value	HCZWBMD
	15	Reset of CZ Cache's TAG Instead of SW to clear this setting, it would be auto-cleared by HW itself. 0: Normal 1: Rest	HCZRST
	14	Reserved	
	13:12	Coarse Z Test by Using Conservative Mode 00 : Use optimized merging rule (HCZTMDRrAa) 01: Use Conservative Merging Rule and only update both "MIN" value and "MAX" value 10: Use Conservative Merging Rule and only update "MIN" value 11: Reserved	HCZTCsrvR
	11	Force CZ Retest if Original is "Reject" and the Related Primitive is Counter-Clock-Wise Force the CZ result as "ReTEST" if original is "REJECT" and the related primitive is Counter-Clock-Wise. 0: Normal CZ test 1: Never reject	HCZMskREJECT_CCW
	10	Force CZ Retest if Original is "Pass" and the Related Primitive is Counter-Clock-Wise Force the CZ result as "ReTEST" if original is "PASS" and the related primitive is Counter-Clock-Wise. 0: Normal CZ test 1: Never reject	HCZMskPASS_CCW
	9	Force ReTest as the result of HZ Test 0: Normal 1: Force	HCZForceRT
	8:0	Coarse Z Buffer's Pitch In unit of 32 bytes.	HCZPit
2Ah	23:0	Coarse Z Buffer's Base Address In unit of 256 bytes. $\text { E3R }(\mathrm{W}) \mathrm{CZADR}=\mathrm{HCZBas} * 256+\mathrm{Y} * \mathrm{HCZPit} * 32+(2 * \mathrm{X}) * 16$	HCZBas

HParaType $=01 \mathrm{~h}$

Sub-Address 33h-4Fh: Alpha Setting

Bit [31:24] Sub-Address	Bit [23:0]	Descr	iption		Mnemonic
33h	23:15	Reserved			
	14:12	Alpha Test Mode 000: Alpha Test Never Pass 001: Alpha Test Pass if Anew < HATREF 010: Alpha Test Pass if Anew = HATREF 011:A lpha Test Pass if Anew \leq HATREF 100: Alpha Test Pass if Anew > HATREF 101: Alpha Test Pass if Anew \neq HATREF 110: Alpha Test Pass if Anew \geq HATREF 111: Alpha Test Always Pass			HATMD
	11	Reserved			
	10:0	Alpha Test Reference Value Positive fix-point from 0.0 to 1.0 .			HATREF
34h		Alpha Blending Equation of RGB: Equation of RGB: Equation of RGB: Cout $=\left(\left(\mathrm{AB}_{-} \mathrm{FCa} * \mathrm{AB}_{-} \mathrm{Ca}\right) \mathrm{AB}_{-} \mathrm{Cop}\left(\mathrm{AB}_{-} \mathrm{FCb} * \mathrm{AB}_{-} \mathrm{Cb}\right)\right)$ If (HABLCsat $=$ false $)$ Clamp Cout to 1.0 to 0.0			
	23:17	Reserved			
	16	RGB Saturation Control of Alpha Blending Calculation 0 : Cout will be clamp to $0.0 \sim 1.0$ 1: Cout will not be clamp to $0.0 \sim 1.0$			HABLCsat
	15:10				HABLCa
	9:4				HABLFCa
	3:0	Reserved			
35h	23:16	Reserved			
	15:14	Cop of Alpha Blending Equation HABLCop Cop 00 + 01 - 10 Max 11 Min			HABLCop

VX800 / VX820 Series Chrome9 HC3 Programming Manual

	13:8	```Cb of Alpha Blend HABLCb[5:4] 00 01 10 11 HABLCb[3:0] 0000 0001 0010 0011 0100 0101 0110 0111 1xxx```	```g Equation R of AB_Cb Reserved Reserved Reserved Reserved R_of_OPCb Rsrc Rdst Reserved Reserved Reserved R of HABLRCb Reserved Reserved Reserved```	\quad G of AB_Cb Reserved Reserved Reserved Reserved $\quad \mathbf{G}$ G_of_OPCb Gsrc Gdst Reserved Reserved Reserved G of HABLRCb Reserved Reserved Reserved		HABLCb
	7:2	```FCb of Alpha Blen HAB_FCb[5:4] 00 01 10 11 HAB_FCb[3:0] 0000 0001 0010 0011 0100 0101 0110 0111 1000 1111-1001```	ng Equation R of AB_FCb R_of OPFCb $1.0-\left(\mathrm{R} _\right.$of_OPFCb) Reserved Reserved R_of_OPFCb Rsrc Rdst Asrc Adst Reserved R of HABLRFCb Reserved Reserved min (Asrc, 1-Adst) Reserved	$\left.\quad \begin{array}{l}\text { G of AB_FCb } \\ \text { G_of_OPFCb } \\ 1.0-\left(G _o f _O P F C b\right.\end{array}\right)$ Reserved Reserved $\quad \mathbf{G}$ _of_OPFCb Gsrc Gdst Asrc Adst Reserved G of HABLRFCb Reserved Reserved min (Asrc, 1-Adst) Reserved	B of AB_FCb B_of_OPFCb $1 . \overline{0}-\overline{\text { (B_of_OPFCb }}$) Reserved Reserved B_of_OPFCb Bsrc Bdst Asrc Adst Reserved B of HABLRFCb Reserved Reserved min (Asrc, 1-Adst) Reserved	HABLFCb
	1:0	Reserved				
36h		Equation of A: Aout $=\left(\left(A B _F A a * A B _A a\right) A B _A o p\left(A B _F A b * A B _A b\right)\right)$ If $($ HABLAsat $=$ false $)$ Clamp Aout to 1.0 to 0.0				
	23:17	Reserved				
	16	Alpha Saturation Control of Alpha Blending Calculation 0 : Aout will be clamped to $0.0 \sim 1.0$ 1: Aout will not be clamped to $0.0 \sim 1.0$				HABLAsat
	15:10					HABLAa

VX800 / VX820 Series Chrome9 HC3 Programming Manual

VX800 / VX820 Series Chrome9 HC3 Programming Manual

	22:12	R of HABLRFCa This is a 11-bit positive fix-point number from 0.0 to 1.0 .	
	11	Reserved	
	10:0	R of HABLRCa This is a 11-bit positive fix-point number from 0.0 to 1.0 .	
3Ah	23	Reserved	
	22:12	G of HABLRFCa This is a 11-bit positive fix-point number from 0.0 to 1.0 .	
	11	Reserved	
	10:0	B of HABLRFCa This is a 11-bit positive fix-point number from 0.0 to 1.0 .	
3Bh	23	Reserved	
	22:12	G of HABLRCb This is a 11-bit positive fix-point number from 0.0 to 1.0 .	
	11	Reserved	
	10:0	B of HABLRCb This is a 11-bit positive fix-point number from 0.0 to 1.0 .	
3Ch	23	Reserved	
	22:12	R of HABLRFCb This is a 11-bit positive fix-point number from 0.0 to 1.0 .	
	11	Reserved	
	10:0	R of HABLRCb This is a 11-bit positive fix-point number from 0.0 to 1.0 .	
3Dh	23	Reserved	
	22:12	G of HABLRFCb This is a 11-bit positive fix-point number from 0.0 to 1.0 .	
	11	Reserved	
	10:0	B of HABLRFCb This is a 11-bit positive fix-point number from 0.0 to 1.0 .	
3Eh	23	Reserved	
	22:12	Constant Register of Aa This is a 11-bit positive fix-point number from 0.0 to 1.0 .	HABLRAa
	11	Reserved	
	10:0	Constant Register of FAa This is a 11-bit positive fix-point number from 0.0 to 1.0 .	HABLRFAa
3Fh	23	Reserved	
	22:12	Constant Register of Ab This is a 11-bit positive fix-point number from 0.0 to 1.0 .	HABLRAb
	11	Reserved	
	10:0	Constant Register of FAb This is a 11-bit positive fix-point number from 0.0 to 1.0 .	HABLRFAb
40-4Fh	23:0	Reserved	

HParaType $=01 \mathrm{~h}$

Sub-Address 50h-57h: Destination Setting - Render Target 0

Bit [31:24] Sub-Address	Bit [23:0]	Description	Mnemonic
50h	23:0	Render Target0's Base Address In unit of 256 bytes.	HMRT0Bas
51h	23	Memory Mode of Render Target 0 0: Linear mode 1: Tile Mode	HMRT0MMode
	22	Render Target0's Tile is 16-texel high 0 : Normal 8-pixel high 1: 16-pixel high	HMRT0TileH16
	21:20	Location Setting of Render Target 0 00: System Local Frame Buffer (S.L.) 01: System Dynamic Frame Buffer (S.F.) 10: Reserved (System Memory) 11: Reserved	HMRT0Loc
	19:0	Reserved	

VX800 / VX820 Series Chrome9 HC3 Programming Manual

	15		HRT0CExtend
	14:13	Reserved	
	12	Saturate of PS's Output for Render Target "M" 0: Clamp PS's output color oCm to related render tager format's range For format ARGB and Luminance: MINVALUE $=0.0$, MAXVALUE $=1.0$ For 16-bit floating color format: MINVALUE $=16^{\prime}$ 'hFBFF, MAXVALUE $=16^{\prime}$ 'h7BFF For 32-bit floating color format: MINVALUE = 32'h7F7FFFFF, MAXVALUE = 32 'hFF7FFFFF Clamped Value $=\min ($ MAXVALUE, $\max (o \mathrm{Cm}$, MINVALUE $))$ Note if oCm is "NAN", clamped value is MINVALUE 1: oCm doesn't clamp	HMRT0PSOsat
	11:10	Reserved	
	9:0	Render Target0's Pitch In unit of 32 bytes for linear mode In unit of tile(256 bytes or 512 byte depend on HMRT0TileH16) for tile mode	HMRT0Pit
53h	23	Render Target0's Y Inverse for Dither 0 : Not inverse 1: Inverse	HMRT0DTYInverse
	22:21	Render Target0's Y Bias for Dither	HMRT0DTYBias

VX800 / VX820 Series Chrome9 HC3 Programming Manual

	20	Render Target0's X Inverse for Dither 0 : Not inverse 1: Inverse		HMRT0DTXInverse
	19:18	Render Target0's X Bias for Dither		HMRT0DTXBias
	17	Reserved		
	16:15	Render Target0's Dither Mode 00 : Dither Table with multiplied by $\left(2^{\wedge} \mathrm{n}-1\right)$ 10: Rounding with multiplied by $\left(2^{\wedge} \mathrm{n}-1\right)$ 01: Dither Table without multiplied by $\left(2^{\wedge} \mathrm{n}-1\right)$ 11: Rounding without multiplied by $\left(2^{\wedge} \mathrm{n}-1\right)$		HMRT0DTMode
	14:12	Reserved		
	11:8	Render Target0's Raster Operation 0000: BLACK 0 0001: NOT_MERGE_PEN DPon 0010: MASK_NOT_PEN DPna 0011: NOT_COPY_PEN Pn 0100: MASK_PEN_NOT PDna 0101: NOT Dn 0110: XOR_PEN DPx 0111: NOT_MASK_PEN DPan 1000: MASK_PEN DPa 1001: NOT_XOR_PEN DPxn 1010: NOP D 1011: MERGE_NOT_PEN DPno 1100: COPY_PEN P 1101: MERGE_PEN_NOT PDno 1110: MERGE_PEN DPo 1111: WHITE 1		HMRT0ROP
	7	Reserved		
	6	DeGamma for Render Target0's Reading Color 0: Disable 1: Enable. Use one-by-one mapping to deGamma the readen color from 2.2 to 1.0 color field before alpha blending operation.		HMRT0RDG
	5:4	Render Target0 is SRGB 00: Gamma 1.0 field. Disable Gamma correction of writing back color 01: Gamma correction enable. Use one-by-one mapping to transform the color to gamma 2.2 field before wroten back to color buffer 10: Gamme correction enable. Use Gamma Table "HGTWC" to transform each color channel to a specific color field before wroten back to color buffer 11: Reserved		HMRT0SRGB
	3	Mask of Render Target0's Alpha Channel If the bit value is 0 , the relative data bit will remain the same value in Frame Buffer. If the bit value is 1 , the relative data bit will be updated by a new calculated number.		HMRT0AMSK
	2	Mask of Render Target0's Red Channel If the bit value is 0 , the relative data bit will remain the same value in Frame Buffer. If the bit value is 1 , the relative data bit will be updated by a new calculated number.		HMRT0RMSK
	1	Mask of Render Target0's Green Channel If the bit value is 0 , the relative data bit will remain the same value in Frame Buffer. If the bit value is 1 , the relative data bit will be updated by a new calculated number.		HMRT0GMSK
	0	Mask of Render Target0's Blue Channel If the bit value is 0 , the relative data bit will remain the same value in Frame Buffer. If the bit value is 1 , the relative data bit will be updated by a new calculated number.		HMRT0BMSK
54-57h	23:0	Reserved		

HParaType $=01 \mathrm{~h}$

Sub-Address 58h-5Fh: Destination Setting - Render Target 1

$\begin{gathered} \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
58h	23:0	Render Target1's Base Address In unit of 256 bytes.	HMRT1Bas
59h	23	Memory Mode of Render Target 1 0: Linear mode 1: Tile Mode	HMRT1MMode
	22	Render Target1's Tile is 16-texel high 0 : Normal 8-pixel high 1: 16-pixel high	HMRT1TileH16
	21:20	Location Setting of Render Target 1 00: System Local Frame Buffer (S.L.) 01: System Dynamic Frame Buffer (S.F.) 10: Reserved (System Memory) 11: Reserved	HMRT1Loc
	19:0	Reserved	

For ARGB_16bpp Format
000: RGB555 $(\operatorname{Bit}[14: 10]=\mathrm{R}, \operatorname{Bit}[9: 5]=\mathrm{G}, \operatorname{Bit}[4: 0]=\mathrm{B})$
001: RGB565 ($\operatorname{Bit}[15: 11]=\mathrm{R}, \operatorname{Bit}[10: 5]=\mathrm{G}, \operatorname{Bit}[4: 0]=\mathrm{B})$
010: ARGB1555 ($\operatorname{Bit}[15]=\mathrm{A}, \operatorname{Bit}[14: 10]=\mathrm{R}, \operatorname{Bit}[9: 5]=\mathrm{G}, \operatorname{Bit}[4: 0]=\mathrm{B})$
011: ARGB4444 (Bit[15:12] = A, $\operatorname{Bit}[11: 8]=\mathrm{R}, \operatorname{Bit}[7: 4]=\mathrm{G}, \operatorname{Bit}[3: 0]=\mathrm{B})$
100: Reserved
101: RGB565 for write color, $\operatorname{Bit}[15: 11]=\mathrm{B}, \operatorname{Bit}[10: 5]=\mathrm{G}, \operatorname{Bit}[4: 0]=\mathrm{R}$
But for read color, $\operatorname{Bit}[15: 11]=\mathrm{B}, \operatorname{Bit}[10: 6]=\mathrm{G}, \operatorname{Bit}[4: 0]=\mathrm{R}$
11x: Reserved

For ARGB_32bpp Format

000: ARGB0888 ($\operatorname{Bit}[23: 16]=\mathrm{R}, \operatorname{Bit}[15: 8]=\mathrm{G}, \operatorname{Bit}[7: 0]=\mathrm{B})$
001: $\operatorname{ARGB} 8888(\operatorname{Bit}[31: 24]=\mathrm{A}, \operatorname{Bit}[23: 16]=\mathrm{R}, \operatorname{Bit}[15: 8]=\mathrm{G}, \operatorname{Bit}[7: 0]=\mathrm{B})$
010: ARGB2_10_10_10 $(\operatorname{Bit}[31: 30]=\mathrm{A}, \operatorname{Bit}[29: 20]=\mathrm{R}, \operatorname{Bit}[19: 10]=\mathrm{G}, \operatorname{Bit}[9: 0]=\mathrm{B})$
011-1xx: Reserved

For ABGR_16bpp Format

000: BGR555 (Bit[14:10] = B, Bit[9:5] = G, $\operatorname{Bit}[4: 0]=\mathrm{R})$
001: $\operatorname{BGR} 565(\operatorname{Bit}[15: 11]=\mathrm{B}, \operatorname{Bit}[10: 5]=\mathrm{G}, \operatorname{Bit}[4: 0]=\mathrm{R})$
010: ABGR1555 (Bit[15] = A, $\operatorname{Bit}[14: 10]=\operatorname{B}, \operatorname{Bit}[9: 5]=\mathrm{G}, \operatorname{Bit}[4: 0]=\mathrm{R})$
011: $\operatorname{ABGR} 4444(\operatorname{Bit}[15: 12]=\mathrm{A}, \operatorname{Bit}[11: 8]=\mathrm{B}, \operatorname{Bit}[7: 4]=\mathrm{G}, \operatorname{Bit}[3: 0]=\mathrm{R})$
100: Reserved
101: $\operatorname{BGR} 565$ for write color, $\operatorname{Bit}[15: 11]=\mathrm{B}, \operatorname{Bit}[10: 5]=\mathrm{G}, \operatorname{Bit}[4: 0]=\mathrm{R}$
But for read color, $\operatorname{Bit}[15: 11]=\mathrm{B}, \operatorname{Bit}[10: 6]=\mathrm{G}, \operatorname{Bit}[4: 0]=\mathrm{R}$
11x: Reserved

For ABGR_32bpp Format

000: ABGR0888 ($\operatorname{Bit}[23: 16]=\mathrm{B}, \operatorname{Bit}[15: 8]=\mathrm{G}, \operatorname{Bit}[7: 0]=\mathrm{R})$
001: ABGR8888 ($\operatorname{Bit}[31: 24]=\mathrm{A}, \operatorname{Bit}[23: 16]=\mathrm{B}, \operatorname{Bit}[15: 8]=\mathrm{G}, \operatorname{Bit}[7: 0]=\mathrm{R})$
010: ABGR2_10_10_10 ($\operatorname{Bit}[31: 30]=\mathrm{A}, \operatorname{Bit}[29: 20]=\mathrm{B}, \operatorname{Bit}[19: 10]=\mathrm{G}, \operatorname{Bit}[9: 0]=\mathrm{R})$

VX800 / VX820 Series Chrome9 HC3 Programming Manual

	15	```Color Extending Mode (Excluding Alpha) 0 : Extending with high color bit Translate to 1.10 format \(10=11\) \(\frac{10}{\mathrm{C}_{11}=\mathrm{C}_{10}} *(1024 / 1023)=\mathrm{C}_{10}+(1 / 1023) * \mathrm{C}_{10}\) \(\mathrm{C}_{10}<1023, \quad \mathrm{C}_{11}=0 . \operatorname{xxxxxxxxxx}\left(\mathrm{C}_{10}\right)\) \(\mathrm{C}_{10}=1023, \quad \mathrm{C}_{11}=1.0000000000\) \(\frac{\mathbf{8}=>\mathbf{1 1}}{\mathrm{C}_{11}=\mathrm{C}_{8}} *(1024 / 255)=4 * \mathrm{C}_{8}+(4 / 255) * \mathrm{C}_{8}\) \(\mathrm{C}_{8}<64\), \(\mathrm{C}_{11}=0 . \mathrm{C}_{8} 00\) \(64 \leqq \mathrm{C}_{8}<128, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{8} 01\) \(128 \leqq \mathrm{C}_{8}<192, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{8} 10\) \(192 \leqq \mathrm{C}_{8}<255, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{8} 11\) \(\mathrm{C}_{8}=255, \quad \mathrm{C}_{11}=1.0000000000\) \(\frac{\mathbf{6}=>\mathbf{1 1}}{\mathrm{C}_{11}=\mathrm{C}_{6}} *(1024 / 63)=16 * \mathrm{C}_{6}+(16 / 63) * \mathrm{C}_{6}\) \(\mathrm{C}_{6}<4, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 0000\) \(4 \leqq \mathrm{C}_{6}<8, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 0001\) \(8 \leqq \mathrm{C}_{6}<12, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 0010\) \(12 \leqq \mathrm{C}_{6}<16, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 0011\) \(16 \leqq \mathrm{C}_{6}<20, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 0100\) \(20 \leqq \mathrm{C}_{6}<24, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 0101\) \(24 \leqq \mathrm{C}_{6}<28, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 0110\) \(28 \leqq \mathrm{C}_{6}<32, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 0111\) \(32 \leqq \mathrm{C}_{6}<36, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 1000\) \(36 \leqq \mathrm{C}_{6}<40, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 1001\) \(40 \leqq \mathrm{C}_{6}<44, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 1010\) \(44 \leqq \mathrm{C}_{6}<48, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 1011\) \(48 \leqq \mathrm{C}_{6}<52, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 1100\) \(52 \leqq \mathrm{C}_{6}<56, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 1101\) \(56 \leqq \mathrm{C}_{6}<60, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 1110\) \(60 \leqq \mathrm{C}_{6}<63, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 1111\) \(\mathrm{C}_{6}=63, \quad \mathrm{C}_{11}=1.0000000000\) \(\frac{\mathbf{5}=>\mathbf{1 1}}{\mathrm{C}_{11}=\mathrm{C}_{5}} *(1024 / 31)=33 \mathrm{C}_{5}+(1 / 31) * \mathrm{C}_{5}=32 * \mathrm{C}_{5}+\mathrm{C}_{5}+(1 / 31) * \mathrm{C}_{5}\) \(\mathrm{C}_{5}<31, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{5} \mathrm{C}_{5}\) \(\mathrm{C}_{5}=31, \quad \mathrm{C}_{11}=1.0000000000\) \(4=>11\) \(\mathrm{C}_{11}=\mathrm{C}_{4} *(1024 / 15)=68 * \mathrm{C}_{4}+(4 / 15) * \mathrm{C}_{4}=64 * \mathrm{C}_{4}+4 * \mathrm{C}_{4}+(4 / 15) * \mathrm{C}_{4}\) \(\mathrm{C}_{4}<4, \quad \mathrm{C}_{11}=\mathrm{C}_{4} \mathrm{C}_{4} 00\) \(4 \leqq \mathrm{C}_{4}<8\), \(\mathrm{C}_{11}=\mathrm{C}_{4} \mathrm{C}_{4} 01\) \(8 \leqq \mathrm{C}_{4}<12, \quad \mathrm{C}_{11}=\mathrm{C}_{4} \mathrm{C}_{4} 10\) \(12 \leqq \mathrm{C}_{4}<15, \quad \mathrm{C}_{11}=\mathrm{C}_{4} \mathrm{C}_{4} 11\) \(\mathrm{C}_{4}==15, \quad \mathrm{C}_{11}=1.0000000000\) 1: Extending with zero Considering \(6=>11\) as example: \(\mathrm{C} 11=0 . \mathrm{C}_{6} 0000\)```	HRT1CExtend
	14:13	Reserved	
	12	Saturate of PS's Output for Render Target "M" 0: Clamp PS's output color oCm to related render tager format's range For format ARGB and Luminance: MINVALUE $=0.0$, MAXVALUE $=1.0$ For 16-bit floating color format: MINVALUE $=16^{\prime}$ 'hFBFF, MAXVALUE $=16^{\prime}$ 'h7BFF For 32-bit floating color format: MINVALUE = 32'h7F7FFFFF, MAXVALUE = 32 'hFF7FFFFF Clamped Value $=\min ($ MAXVALUE, $\max (o \mathrm{Cm}$, MINVALUE $))$ Note if oCm is "NAN", clamped value is MINVALUE 1: oCm doesn't clamp	HMRT1PSOsat
	11:10	Reserved	
	9:0	Render Target1's Pitch In unit of 32 bytes for linear mode In unit of tile(256 bytes or 512 byte depend on HMRT1TileH16) for tile mode	HMRT1Pit
5Bh	23	Render Target1's Y Inverse for Dither 0 : Not inverse 1: Inverse	HMRT1DTYInverse
	22:21	Render Target1's Y Bias for Dither	HMRT1DTYBias

VX800 / VX820 Series Chrome9 HC3 Programming Manual

	20	Render Target1's X Inverse for Dither 0 : Not inverse 1: Inverse		HMRT1DTXInverse
	19:18	Render Target1's X Bias for Dither		HMRT1DTXBias
	17	Reserved		
	16:15	Render Target1's Dither Mode 00 : Dither Table with multiplied by $\left(2^{\wedge} \mathrm{n}-1\right)$ 10: Rounding with multiplied by $\left(2^{\wedge} \mathrm{n}-1\right)$ 01: Dither Table without multiplied by $\left(2^{\wedge} \mathrm{n}-1\right)$ 11: Rounding without multiplied by $\left(2^{\wedge} \mathrm{n}-1\right)$		HMRT1DTMode
	14:12	Reserved		
	11:8	Render Target1's Raster Operation 0000: BLACK 0 0001: NOT_MERGE_PEN DPon 0010: MASK_NOT_PEN DPna 0011: NOT_COPY_PEN Pn 0100: MASK_PEN_NOT PDna 0101: NOT Dn 0110: XOR_PEN DPx 0111: NOT_MASK_PEN DPan 1000: MASK_PEN DPa 1001: NOT_XOR_PEN DPxn 1010: NOP D 1011: MERGE_NOT_PEN DPno 1100: COPY_PEN P 1101: MERGE_PEN_NOT PDno 1110: MERGE_PEN DPo 1111: WHITE 1		HMRT1ROP
	7	Reserved		
	6	DeGamma for Render Target1's Reading Color 0: Disable 1: Enable. Use one-by-one mapping to deGamma the readen color from 2.2 to 1.0 color field before alpha blending operation.		HMRT1RDG
	5:4	Render Target 1 is SRGB 00: Gamma 1.0 field. Disable Gamma correction of writing back color 01: Gamma correction enable. Use one-by-one mapping to transform the color to gamma 2.2 field before wroten back to color buffer 10: Gamme correction enable. Use Gamma Table "HGTWC" to transform each color channel to a specific color field before wroten back to color buffer 11: Reserved		HMRT1SRGB
	3	Mask of Render Target1's Alpha Channel If the bit value is 0 , the relative data bit will remain the same value in Frame Buffer. If the bit value is 1 , the relative data bit will be updated by a new calculated number.		HMRT1AMSK
	2	Mask of Render Target1's Red Channel If the bit value is 0 , the relative data bit will remain the same value in Frame Buffer. If the bit value is 1 , the relative data bit will be updated by a new calculated number.		HMRT1RMSK
	1	Mask of Render Target1's Green Channel If the bit value is 0 , the relative data bit will remain the same value in Frame Buffer. If the bit value is 1 , the relative data bit will be updated by a new calculated number.		HMRT1GMSK
	0	Mask of Render Target1's Blue Channel If the bit value is 0 , the relative data bit will remain the same value in Frame Buffer. If the bit value is 1 , the relative data bit will be updated by a new calculated number.		HMRT1BMSK
5C-5Fh	23:0	Reserved		

HParaType $=01 \mathrm{~h}$

Sub-Address 60h-67h: Destination Setting - Render Target 2

Bit [31:24] Sub-Address	Bit [23:0]	Description	Mnemonic
60h	23:0	Render Target2's Base Address In unit of 256 bytes.	HMRT2BasL
61h	23	Memory Mode of Render Target 2 0 : Linear mode 1: Tile Mode	HMRT2MMode
	22	Render Target2's Tile is 16-texel high 0 : Normal 8-pixel high 1: 16-pixel high	HMRT2TileH16
	21:20	Location Setting of Render Target 2 00: System Local Frame Buffer (S.L.) 01: System Dynamic Frame Buffer (S.F.) 10: Reserved (System Memory) 11: Reserved	HMRT2Loc
	19:0	Reserved	

VX800 / VX820 Series Chrome9 HC3 Programming Manual

	15	```Color Extending Mode (Excluding Alpha) 0 : Extending with high color bit Translate to 1.10 format \(10=11\) \(\frac{10}{\mathrm{C}_{11}=\mathrm{C}_{10}} *(1024 / 1023)=\mathrm{C}_{10}+(1 / 1023) * \mathrm{C}_{10}\) \(\mathrm{C}_{10}<1023, \quad \mathrm{C}_{11}=0 . \operatorname{xxxxxxxxxx}\left(\mathrm{C}_{10}\right)\) \(\mathrm{C}_{10}=1023, \quad \mathrm{C}_{11}=1.0000000000\) \(\frac{\mathbf{8}=>\mathbf{1 1}}{\mathrm{C}_{11}=\mathrm{C}_{8}} *(1024 / 255)=4 * \mathrm{C}_{8}+(4 / 255) * \mathrm{C}_{8}\) \(\mathrm{C}_{8}<64\), \(\mathrm{C}_{11}=0 . \mathrm{C}_{8} 00\) \(64 \leqq \mathrm{C}_{8}<128, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{8} 01\) \(128 \leqq \mathrm{C}_{8}<192, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{8} 10\) \(192 \leqq \mathrm{C}_{8}<255, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{8} 11\) \(\mathrm{C}_{8}=255, \quad \mathrm{C}_{11}=1.0000000000\) \(\frac{\mathbf{6}=>\mathbf{1 1}}{\mathrm{C}_{11}=\mathrm{C}_{6}} *(1024 / 63)=16 * \mathrm{C}_{6}+(16 / 63) * \mathrm{C}_{6}\) \(\mathrm{C}_{6}<4, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 0000\) \(4 \leqq \mathrm{C}_{6}<8, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 0001\) \(8 \leqq \mathrm{C}_{6}<12, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 0010\) \(12 \leqq \mathrm{C}_{6}<16, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 0011\) \(16 \leqq \mathrm{C}_{6}<20, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 0100\) \(20 \leqq \mathrm{C}_{6}<24, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 0101\) \(24 \leqq \mathrm{C}_{6}<28, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 0110\) \(28 \leqq \mathrm{C}_{6}<32, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 0111\) \(32 \leqq \mathrm{C}_{6}<36, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 1000\) \(36 \leqq \mathrm{C}_{6}<40, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 1001\) \(40 \leqq \mathrm{C}_{6}<44, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 1010\) \(44 \leqq \mathrm{C}_{6}<48, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 1011\) \(48 \leqq \mathrm{C}_{6}<52, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 1100\) \(52 \leqq \mathrm{C}_{6}<56, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 1101\) \(56 \leqq \mathrm{C}_{6}<60, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 1110\) \(60 \leqq \mathrm{C}_{6}<63, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 1111\) \(\mathrm{C}_{6}=63, \quad \mathrm{C}_{11}=1.0000000000\) \(\frac{\mathbf{5}=>\mathbf{1 1}}{\mathrm{C}_{11}=\mathrm{C}_{5}} *(1024 / 31)=33 \mathrm{C}_{5}+(1 / 31) * \mathrm{C}_{5}=32 * \mathrm{C}_{5}+\mathrm{C}_{5}+(1 / 31) * \mathrm{C}_{5}\) \(\mathrm{C}_{5}<31, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{5} \mathrm{C}_{5}\) \(\mathrm{C}_{5}=31, \quad \mathrm{C}_{11}=1.0000000000\) \(4=>11\) \(\frac{\mathrm{C}_{11}=\mathrm{C}_{4}}{} *(1024 / 15)=68 * \mathrm{C}_{4}+(4 / 15) * \mathrm{C}_{4}=64 * \mathrm{C}_{4}+4 * \mathrm{C}_{4}+(4 / 15) * \mathrm{C}_{4}\) \(\mathrm{C}_{4}<4, \quad \mathrm{C}_{11}=\mathrm{C}_{4} \mathrm{C}_{4} 00\) \(4 \leqq \mathrm{C}_{4}<8\), \(\mathrm{C}_{11}=\mathrm{C}_{4} \mathrm{C}_{4} 01\) \(8 \leqq \mathrm{C}_{4}<12, \quad \mathrm{C}_{11}=\mathrm{C}_{4} \mathrm{C}_{4} 10\) \(12 \leqq \mathrm{C}_{4}<15, \quad \mathrm{C}_{11}=\mathrm{C}_{4} \mathrm{C}_{4} 11\) \(\mathrm{C}_{4}==15, \quad \mathrm{C}_{11}=1.0000000000\) 1: Extending with zero Considering \(6=>11\) as example: \(\mathrm{C} 11=0 . \mathrm{C}_{6} 0000\)```	HRT2CExtend
	14:13	Reserved	
	12	Saturate of PS's Output for Render Target "M" 0: Clamp PS's output color oCm to related render tager format's range For format ARGB and Luminance: MINVALUE $=0.0$, MAXVALUE $=1.0$ For 16-bit floating color format: MINVALUE $=16^{\prime}$ 'hFBFF, MAXVALUE $=16^{\prime}$ 'h7BFF For 32-bit floating color format: MINVALUE = 32'h7F7FFFFF, MAXVALUE = 32 'hFF7FFFFF Clamped Value $=\min ($ MAXVALUE, $\max (o \mathrm{Cm}$, MINVALUE $))$ Note if oCm is "NAN", clamped value is MINVALUE 1: oCm doesn't clamp	HMRT2PSOsat
	11:10	Reserved	
	9:0	Render Target2's Pitch In unit of 32 bytes for linear mode In unit of tile(256 bytes or 512 byte depend on HMRT2TileH16) for tile mode	HMRT2Pit
63h	23	Render Target2's Y Inverse for Dither 0 : Not inverse 1: Inverse	HMRT2DTYInverse
	22:21	Render Target2's Y Bias for Dither	HMRT2DTYBias

VX800 / VX820 Series Chrome9 HC3 Programming Manual

	20	Render Target2's X Inverse for Dither 0 : Not inverse 1: Inverse		HMRT2DTXInverse
	19:18	Render Target2's X Bias for Dither		HMRT2DTXBias
	17	Reserved		
	16:15	Render Target2's Dither Mode 00 : Dither Table with multiplied by $\left(2^{\wedge} \mathrm{n}-1\right)$ 10: Rounding with multiplied by $\left(2^{\wedge} \mathrm{n}-1\right)$ 01: Dither Table without multiplied by $\left(2^{\wedge} \mathrm{n}-1\right)$ 11: Rounding without multiplied by $\left(2^{\wedge} \mathrm{n}-1\right)$		HMRT2DTMode
	14:12	Reserved		
	11:8	Render Target2's Raster Operation 0000: BLACK 0 0001: NOT_MERGE_PEN DPon 0010: MASK_NOT_PEN DPna 0011: NOT_COPY_PEN Pn 0100: MASK_PEN_NOT PDna 0101: NOT Dn 0110: XOR_PEN DPx 0111: NOT_MASK_PEN DPan 1000: MASK_PEN DPa 1001: NOT_XOR_PEN DPxn 1010: NOP D 1011: MERGE_NOT_PEN DPno 1100: COPY_PEN P 1101: MERGE_PEN_NOT PDno 1110: MERGE_PEN DPo 1111: WHITE 1		HMRT2ROP
	7	Reserved		
	6	DeGamma for Render Target2's Reading Color 0: Disable 1: Enable. Use one-by-one mapping to deGamma the readen color from 2.2 to 1.0 color field before alpha blending operation.		HMRT2RDG
	5:4	Render Target 2 is SRGB 00: Gamma 1.0 field. Disable Gamma correction of writing back color 01: Gamma correction enable. Use one-by-one mapping to transform the color to gamma 2.2 field before wroten back to color buffer 10: Gamme correction enable. Use Gamma Table "HGTWC" to transform each color channel to a specific color field before wroten back to color buffer 11: Reserved		HMRT2SRGB
	3	Mask of Render Target2's Alpha Channel If the bit value is 0 , the relative data bit will remain the same value in Frame Buffer. If the bit value is 1 , the relative data bit will be updated by a new calculated number.		HMRT2AMSK
	2	Mask of Render Target2's Red Channel If the bit value is 0 , the relative data bit will remain the same value in Frame Buffer. If the bit value is 1 , the relative data bit will be updated by a new calculated number.		HMRT2RMSK
	1	Mask of Render Target2's Green Channel If the bit value is 0 , the relative data bit will remain the same value in Frame Buffer. If the bit value is 1 , the relative data bit will be updated by a new calculated number.		HMRT2GMSK
	0	Mask of Render Target2's Blue Channel If the bit value is 0 , the relative data bit will remain the same value in Frame Buffer. If the bit value is 1 , the relative data bit will be updated by a new calculated number.		HMRT2BMSK
64-67h	23:0	Reserved		

HParaType $=01 \mathrm{~h}$

Sub-Address 68h-6Fh: Destination Setting - Render Target 3

| $\begin{array}{c}\text { Bit [31:24] } \\ \text { Sub-Address }\end{array}$ | Bit [23:0] | | Description |
| :---: | :---: | :--- | :--- |$]$ Mnemonic | (68h |
| :--- |
| $\mathbf{6 9 h}$ |

Preliminary Revision 1.0, November 6R1.6490rat, post-rendering muse 8 e disabled.
For ARGB_16bpp Format
000: RGB555 (Bit[14:10] $=\mathrm{R}, \operatorname{Bit}[9: 5]=\mathrm{G}, \operatorname{Bit}[4: 0]=\mathrm{B})$
001: RGB565 ($\operatorname{Bit}[15: 11]=\mathrm{R}, \operatorname{Bit}[10: 5]=\mathrm{G}, \operatorname{Bit}[4: 0]=\mathrm{B})$
010: $\operatorname{ARGB} 1555(\operatorname{Bit}[15]=\mathrm{A}, \operatorname{Bit}[14: 10]=\mathrm{R}, \operatorname{Bit}[9: 5]=\mathrm{G}, \operatorname{Bit}[4: 0]=\mathrm{B})$
011: ARGB4444 ($\operatorname{Bit}[15: 12]=\mathrm{A}, \operatorname{Bit}[11: 8]=\mathrm{R}, \operatorname{Bit}[7: 4]=\mathrm{G}, \operatorname{Bit}[3: 0]=\mathrm{B})$
100: Reserved
101: RGB565 for write color, $\operatorname{Bit}[15: 11]=\mathrm{B}, \operatorname{Bit}[10: 5]=\mathrm{G}, \operatorname{Bit}[4: 0]=\mathrm{R}$
But for read color, $\operatorname{Bit}[15: 11]=\mathrm{B}, \operatorname{Bit}[10: 6]=\mathrm{G}, \operatorname{Bit}[4: 0]=\mathrm{R}$
11x: Reserved

For ARGB_32bpp Format

000: ARGB0888 ($\operatorname{Bit}[23: 16]=\mathrm{R}, \operatorname{Bit}[15: 8]=\mathrm{G}, \operatorname{Bit}[7: 0]=\mathrm{B})$
001: $\operatorname{ARGB} 8888(\operatorname{Bit}[31: 24]=\mathrm{A}, \operatorname{Bit}[23: 16]=\mathrm{R}, \operatorname{Bit}[15: 8]=\mathrm{G}, \operatorname{Bit}[7: 0]=\mathrm{B})$
010: ARGB2_10_10_10 ($\operatorname{Bit}[31: 30]=\mathrm{A}, \operatorname{Bit}[29: 20]=\mathrm{R}, \operatorname{Bit}[19: 10]=\mathrm{G}, \operatorname{Bit}[9: 0]=\mathrm{B})$
011-1xx: Reserved
For ABGR_16bpp Format
000: BGR555 ($\operatorname{Bit}[14: 10]=\operatorname{B}, \operatorname{Bit}[9: 5]=\mathrm{G}, \operatorname{Bit}[4: 0]=\mathrm{R})$
001: $\operatorname{BGR} 565(\operatorname{Bit}[15: 11]=\mathrm{B}, \operatorname{Bit}[10: 5]=\mathrm{G}, \operatorname{Bit}[4: 0]=\mathrm{R})$
010: ABGR1555 ($\operatorname{Bit}[15]=\mathrm{A}, \operatorname{Bit}[14: 10]=\mathrm{B}, \operatorname{Bit}[9: 5]=\mathrm{G}, \operatorname{Bit}[4: 0]=\mathrm{R})$
011: $\operatorname{ABGR} 4444(\operatorname{Bit}[15: 12]=\mathrm{A}, \operatorname{Bit}[11: 8]=\mathrm{B}, \operatorname{Bit}[7: 4]=\mathrm{G}, \operatorname{Bit}[3: 0]=\mathrm{R})$
100: Reserved
101: BGR565 for write color, $\operatorname{Bit}[15: 11]=\mathrm{B}, \operatorname{Bit}[10: 5]=\mathrm{G}, \operatorname{Bit}[4: 0]=\mathrm{R}$
But for read color, $\operatorname{Bit}[15: 11]=\mathrm{B}, \operatorname{Bit}[10: 6]=\mathrm{G}, \operatorname{Bit}[4: 0]=\mathrm{R}$
11x: Reserved

For ABGR_32bpp Format

000: ABGR0888 ($\operatorname{Bit}[23: 16]=\mathrm{B}, \operatorname{Bit}[15: 8]=\mathrm{G}, \operatorname{Bit}[7: 0]=\mathrm{R})$
001: $\operatorname{ABGR} 8888(\operatorname{Bit}[31: 24]=\mathrm{A}, \operatorname{Bit}[23: 16]=\mathrm{B}, \operatorname{Bit}[15: 8]=\mathrm{G}, \operatorname{Bit}[7: 0]=\mathrm{R})$
010: ABGR2_10_10_10 ($\operatorname{Bit}[31: 30]=\mathrm{A}, \operatorname{Bit}[29: 20]=\mathrm{B}, \operatorname{Bit}[19: 10]=\mathrm{G}, \operatorname{Bit}[9: 0]=\mathrm{R})$
11. G1GR16 (Bit[31.16]-G, Bit[15.0]-R)
1xx: Reserved

VX800 / VX820 Series Chrome9 HC3 Programming Manual

	15	```Color Extending Mode (Excluding Alpha) 0 : Extending with high color bit Translate to 1.10 format \(10=11\) \(\frac{10}{\mathrm{C}_{11}=\mathrm{C}_{10}} *(1024 / 1023)=\mathrm{C}_{10}+(1 / 1023) * \mathrm{C}_{10}\) \(\mathrm{C}_{10}<1023, \quad \mathrm{C}_{11}=0 . \operatorname{xxxxxxxxxx}\left(\mathrm{C}_{10}\right)\) \(\mathrm{C}_{10}=1023, \quad \mathrm{C}_{11}=1.0000000000\) \(\frac{\mathbf{8}=>\mathbf{1 1}}{\mathrm{C}_{11}=\mathrm{C}_{8}} *(1024 / 255)=4 * \mathrm{C}_{8}+(4 / 255) * \mathrm{C}_{8}\) \(\mathrm{C}_{8}<64\), \(\mathrm{C}_{11}=0 . \mathrm{C}_{8} 00\) \(64 \leqq \mathrm{C}_{8}<128, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{8} 01\) \(128 \leqq \mathrm{C}_{8}<192, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{8} 10\) \(192 \leqq \mathrm{C}_{8}<255, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{8} 11\) \(\mathrm{C}_{8}=255, \quad \mathrm{C}_{11}=1.0000000000\) \(\frac{\mathbf{6}=>\mathbf{1 1}}{\mathrm{C}_{11}=\mathrm{C}_{6}} *(1024 / 63)=16 * \mathrm{C}_{6}+(16 / 63) * \mathrm{C}_{6}\) \(\mathrm{C}_{6}<4, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 0000\) \(4 \leqq \mathrm{C}_{6}<8, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 0001\) \(8 \leqq \mathrm{C}_{6}<12, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 0010\) \(12 \leqq \mathrm{C}_{6}<16, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 0011\) \(16 \leqq \mathrm{C}_{6}<20, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 0100\) \(20 \leqq \mathrm{C}_{6}<24, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 0101\) \(24 \leqq \mathrm{C}_{6}<28, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 0110\) \(28 \leqq \mathrm{C}_{6}<32, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 0111\) \(32 \leqq \mathrm{C}_{6}<36, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 1000\) \(36 \leqq \mathrm{C}_{6}<40, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 1001\) \(40 \leqq \mathrm{C}_{6}<44, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 1010\) \(44 \leqq \mathrm{C}_{6}<48, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 1011\) \(48 \leqq \mathrm{C}_{6}<52, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 1100\) \(52 \leqq \mathrm{C}_{6}<56, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 1101\) \(56 \leqq \mathrm{C}_{6}<60, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 1110\) \(60 \leqq \mathrm{C}_{6}<63, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{6} 1111\) \(\mathrm{C}_{6}=63, \quad \mathrm{C}_{11}=1.0000000000\) \(\frac{\mathbf{5}=>\mathbf{1 1}}{\mathrm{C}_{11}=\mathrm{C}_{5}} *(1024 / 31)=33 \mathrm{C}_{5}+(1 / 31) * \mathrm{C}_{5}=32 * \mathrm{C}_{5}+\mathrm{C}_{5}+(1 / 31) * \mathrm{C}_{5}\) \(\mathrm{C}_{5}<31, \quad \mathrm{C}_{11}=0 . \mathrm{C}_{5} \mathrm{C}_{5}\) \(\mathrm{C}_{5}=31, \quad \mathrm{C}_{11}=1.0000000000\) \(4=>11\) \(\frac{\mathrm{C}_{11}=\mathrm{C}_{4}}{} *(1024 / 15)=68 * \mathrm{C}_{4}+(4 / 15) * \mathrm{C}_{4}=64 * \mathrm{C}_{4}+4 * \mathrm{C}_{4}+(4 / 15) * \mathrm{C}_{4}\) \(\mathrm{C}_{4}<4, \quad \mathrm{C}_{11}=\mathrm{C}_{4} \mathrm{C}_{4} 00\) \(4 \leqq \mathrm{C}_{4}<8\), \(\mathrm{C}_{11}=\mathrm{C}_{4} \mathrm{C}_{4} 01\) \(8 \leqq \mathrm{C}_{4}<12, \quad \mathrm{C}_{11}=\mathrm{C}_{4} \mathrm{C}_{4} 10\) \(12 \leqq \mathrm{C}_{4}<15, \quad \mathrm{C}_{11}=\mathrm{C}_{4} \mathrm{C}_{4} 11\) \(\mathrm{C}_{4}==15, \quad \mathrm{C}_{11}=1.0000000000\) 1: Extending with zero Considering \(6=>11\) as example: \(\mathrm{C} 11=0 . \mathrm{C}_{6} 0000\)```	HRT3CExtend
	14:13	Reserved	
	12	Saturate of PS's Output for Render Target "M" 0: Clamp PS's output color oCm to related render tager format's range For format ARGB and Luminance: MINVALUE $=0.0$, MAXVALUE $=1.0$ For 16-bit floating color format: MINVALUE $=16^{\prime}$ 'hFBFF, MAXVALUE $=16^{\prime}$ 'h7BFF For 32-bit floating color format: MINVALUE = 32'h7F7FFFFF, MAXVALUE = 32 'hFF7FFFFF Clamped Value $=\min ($ MAXVALUE, $\max (o \mathrm{Cm}$, MINVALUE $))$ Note if oCm is "NAN", clamped value is MINVALUE 1: oCm doesn't clamp	HMRT3PSOsat
	11:10	Reserved	
	9:0	Render Target3's Pitch In unit of 32 bytes for linear mode In unit of tile(256 bytes or 512 byte depend on HMRT3TileH16) for tile mode	HMRT3Pit
6Bh	23	Render Target3's Y Inverse for Dither 0 : Not inverse 1: Inverse	HMRT3DTYInverse
	22:21	Render Target3's Y Bias for Dither	HMRT3DTYBias

VX800 / VX820 Series Chrome9 HC3 Programming Manual

	20	Render Target3's X Inverse for Dither 0 : Not inverse 1: Inverse		HMRT3DTXInverse
	19:18	Render Target3's X Bias for Dither		HMRT3DTXBias
	17	Reserved		
	16:15	Render Target3's Dither Mode 00 : Dither Table with multiplied by $\left(2^{\wedge} \mathrm{n}-1\right)$ 10: Rounding with multiplied by $\left(2^{\wedge} \mathrm{n}-1\right)$ 01: Dither Table without multiplied by $\left(2^{\wedge} \mathrm{n}-1\right)$ 11: Rounding without multiplied by $\left(2^{\wedge} \mathrm{n}-1\right)$		HMRT3DTMode
	14:12	Reserved		
	11:8	Render Target3's Raster Operation 0000: BLACK 0 0001: NOT_MERGE_PEN DPon 0010: MASK_NOT_PEN DPna 0011: NOT_COPY_PEN Pn 0100: MASK_PEN_NOT PDna 0101: NOT Dn 0110: XOR_PEN DPx 0111: NOT_MASK_PEN DPan 1000: MASK_PEN DPa 1001: NOT_XOR_PEN DPxn 1010: NOP D 1011: MERGE_NOT_PEN DPno 1100: COPY_PEN P 1101: MERGE_PEN_NOT PDno 1110: MERGE_PEN DPo 1111: WHITE 1		HMRT3ROP
	7	Reserved		
	6	DeGamma for Render Target3's Reading Color 0: Disable 1: Enable. Use one-by-one mapping to deGamma the readen color from 2.2 to 1.0 color field before alpha blending operation.		HMRT3RDG
	5:4	Render Target $\mathbf{3}$ is SRGB 00: Gamma 1.0 field. Disable Gamma correction of writing back color 01: Gamma correction enable. Use one-by-one mapping to transform the color to gamma 2.2 field before wroten back to color buffer 10: Gamme correction enable. Use Gamma Table "HGTWC" to transform each color channel to a specific color field before wroten back to color buffer 11: Reserved		HMRT3SRGB
	3	Mask of Render Target3's Alpha Channel If the bit value is 0 , the relative data bit will remain the same value in Frame Buffer. If the bit value is 1 , the relative data bit will be updated by a new calculated number.		HMRT3AMSK
	2	Mask of Render Target3's Red Channel If the bit value is 0 , the relative data bit will remain the same value in Frame Buffer. If the bit value is 1 , the relative data bit will be updated by a new calculated number.		HMRT3RMSK
	1	Mask of Render Target3's Green Channel If the bit value is 0 , the relative data bit will remain the same value in Frame Buffer. If the bit value is 1 , the relative data bit will be updated by a new calculated number.		HMRT3GMSK
	0	Mask of Render Target3's Blue Channel If the bit value is 0 , the relative data bit will remain the same value in Frame Buffer. If the bit value is 1 , the relative data bit will be updated by a new calculated number.		HMRT3BMSK
6C-6Fh	23:0	Reserved		

HParaType $=01 \mathrm{~h}$

Sub-Address 70h-7Fh: Fog Setting

Bit [31:24] Sub-Address	Bit [23:0]	Description	Mnemonic
70h	23:8	Reserved	
	7	Fog Factor Sourec From PS 0: Fog factor is generated in PE by no matter vertex, linear or exponential Fog 1: Fog factor and Fog operation is dealt by the PS Instead of 8-bit fixed Fog factor, PE send "Fog coordinate" with format floating $\mathrm{s}[7] .10$ to PS. Note that is this bit is "true", HenFOGRT0, HenFOGRT1, HenFOGMRT2 and HenFOGMRT3 should be disabled.	HFogSrcPS
	6	Linear Fog Calculation Factor Setting 2 0: Use W or Z to calculate Linear Fog by setting of bit 4 1: Use attributr "Fog" as fog coordinate to calculate Linear Fog If (HFogLF2 == 1) Use Fog attribute to calculate linear fog or exponential fog(fog per pixel) Else if (HFogLF == 0) Use Z attribute to calculate linear fog or exponential fog(fog per pixel) Else Use W attribute to calculate linear fog or exponential fog(fog per pixel)	HFogLF2
	5	Fog Factor from Spectra Color's Alpha 0: Individual Fog Attribute 1: Use Spectral (Color 2) Alpha as Fog factor	HFogSCA
	4	Linear Fog Calculation Factor Setting 0: Use W to calculate Linear Fog 1: Use Z to calculate Linear Fog	HFogLF
	3	Fog Equation //Fog Equation 0: Cout $=\mathrm{f} *($ Cin + Csepc $)+(1-\mathrm{f}) *$ HCFog //Fog Equation 1: Cout $=(1-\mathrm{f}) *(\mathrm{Cin}+\mathrm{Cspec})+\mathrm{f} *$ HCFog 0: Use Fog Equation 0 1: Use Fog Equation 1	HFogEq
	2:0	Fog Mode If instead of vertex Z, Z is calculated in PS (HZSrcPS = 1), linear or non-linear fog from Z is not allowable 000: Local Fog 001: Reserved Global Fog 010: Linear Fog 011: Reserved 1xx: Non-linear Fog (Using Fog Table) 100: Exponential Fog 101: Exponential_2 Fog 11x: Reserved	HFogMD
71h	23	Reserved	
	22:12	G of HCFogCL. Positive fix-point from 0 to 1.0	HCFogG
	11	Reserved	
	10:0	B of HCFogCL. Positive fix-point from 0 to 1.0	HCFogB
72h	23:11	Reserved	
	10:0	R of Fog Color. Positive fix-point from 0 to 1.0	HCFogR
73h	23:15	Reserved	
	14:0	Fog Start Floating-point is used to calculate fog factor, the format of HFogSt is floating-point [8].7.	HFogSt
74h	23:0	Reserved	
75h	23:4	Reserved	
	3:0	Mantissa part of the One Over (Fog End - Fog Start) Note that not contain leading one.	HFogOOdMF
76h	23:8	Reserved	
	7:0	Exponential part of the One Over (Fog End - Fog Start) and as IEEE's floating presentation. The value of 1/(Fog End - Fog Start) is (1.HfogOOdMF[1:0] * $2^{\wedge}($ HfogOOdEF 127))	HFogOOdEF
77h	23:15	Reserved	
	14:0	Lower 3 Bytes of Fog End The format of HFogEnd is floating-point [8].7.	HFogEnd
78h	23:21	Reserved	
	20:8	Fog Density with positive floating format [8].5.	HFogDenst
	7:0	Reserved	

Technologies, Inc. we connect

VX800 / VX820 Series Chrome9 HC3 Programming Manual

79-7Fh	$23: 0$	Reserved

HParaType $=01 \mathrm{~h}$
Sub-Address 80h-8Fh: Miscellaneous Setting

$\begin{aligned} & \text { Bit [31:24] } \\ & \text { Sub-Address } \end{aligned}$	Bit [23:0]	Description	Mnemonic
80h	23:12	Color Window Top Clipping Value in the range of 0 to 2048	HCWClipT
	11:0	Color Window Bottom Clipping Value in the range of 0 to 2048	HCWClipB
81h	23:12	Color Window Left Clipping Value in the range of 0 to 2048	HCWClipL
	11:0	Color Window RightClipping Value in the range of 0 to 2048	HCWClipR
82h	23:12	Scissor Window Top Clipping Value in the range of 0 to 2048	HScissorWClip
	11:0	Scissor Window Bottom Clipping Value in the range of 0 to 2048	HScissorWClipB
83h	23:12	Scissor Window Left Clipping Value in the range of 0 to 2048	HScissorWClipL
	11:0	Scissor Window Right Clipping Value in the range of 0 to 2048	HScissorWClipR
84h	23:16	Reserved	
	15:0	Line Pattern The Line Pattern bit is start from the LSB.	HLP
85h	23	Line Pattern Reset HW would reset related repeat counter automatically whenever this register is set to " 1 ". It is NOT necessary for driver to clear this bit. HW would clear it after the counter reset.	HLPrst
	22:16	Reserved	
	15:0	Line Pattern Repeat Factor This number denotes how many times that a line pattern bit will be used for several line pixels.	HLPRF
86h	Lower 3 Bytes of Solid Shading Color		HSolidCL
	23:16	R of Solid Shading Color	HsolidR
	15:8	G of Solid Shading Color	HsolidG
	7:0	B of Solid Shading Color	HsolidB
87h	23:8	Reserved	
	Highest Byte of Solid Shading Color		HSolidCH
	7:0	Alpha of Solid Shading Color	HSolidA
88h	23:13	Reserved	
	12:0	Guard Band Window Left Clipping Value Format as s12 2'scomplement	HClipGL
89h	23:13	Reserved	
	12:0	Guard Band Window Right Clipping Value Format as s12 2'scomplement	HClipGR
8Ah	23	Enhance TX's Precision during PE's rendering 0: Disable 1: Enable	HTXPrecisionEnhance
	22:17	Reserved	
	16	Zero Round Mode for the Texture Coordinate from PE to PS 0 : Round to zero 1: Round to 0	HPETXZeroRND
	15:4	Bottom Y value for PS's Location Register As 12 positive integer.	HYB4LocationReg
	3	Enable HYB4LocationReg 0: Disable 1: Enable If (HPSLocationReg $==$ true) If (HenYB4LocationReg $==$ true) LocationReg. $Y=$ floating (HYB4LocationReg - PEY) ElseLocationReg. $Y=$ floating $($ PEY $)$	HenYB4LocationReg
	2	Indicate if Color 0(diffuse color) has been PreModulated with Ws 0 : Not pre-modulated, multiply C0 and Ws in SE 1: Pre-modulated, don't multiply C0 and Ws in WS	HpreMWsC0
	1	Indicate if Color 1 (specula color)has been PreModulated with Ws 0 : Not pre-modulated, multiply C1 and Ws in SE 1: Pre-modulated, don't multiply C1 and Ws in WS	HpreMWsC1
	0	Indicate if Fog has been PreModulated with Ws 0: Not pre-modulated, multiply Fog and Ws in SE 1: Pre-modulated, don't multiply Fog and Ws in WS	HpreMWsFog
8B-8Fh	23:0	Reserved	

HParaType $=01 \mathrm{~h}$

Sub-Address 90h-9Ah: Pixel Shader Setting

$\begin{gathered} \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
90h	23	Disable the funtion of detecting "ALUOut" by HW PS 0: PS would detect the "ALUOut" automaticly 1: "ALUOut" set by SW's PS code	HPSDctALUOut_N
	22	SoftWare Sets the HPSDPNTAU_N 0 : HW judge dependant TAU instruction by (HPSINAtoT[127:0] != 128'h0 \| HPSFIREALU) 1: SoftWare set HPSDPNTAU N AND hw FOLLOWED	HPSSWsetDPNTAU
	21	Indicate if TAU Execute Dependant Instruction 0 : There is dependant TAU instruction 1: No dependant TAU instruction	HPSDPNTAU_N
	20	Indicate if TAU Excutes Dependant TXKILL Instruction 0: TAU would excute dependant TXKILL instruction 1: TAU would NOT excute dependant TXKILL instruction Example of "dependant TXKILL" Example 1 $\begin{array}{ll} \text { txld } & \mathrm{r} 0, \mathrm{t} 0, \mathrm{~s} 0<\text { load texture for CVALID } \mid \text { STVALID } \\ \text { mad } & \mathrm{t} 1, \mathrm{r} 0, \mathrm{xx}, \mathrm{xx} \\ \text { txkill } & \mathrm{t} 1 \mathrm{e} \text { effect both CVALID and STVALID } \end{array}$ Note to SW Driver: Whenever there is any "dependant TXKILL", please keep this register "false". Only WITHOUT any "depandant TXKILL", set "HPSDPNTXkill_N" to "true". For "independand" PS code, "dependant TXKILL" must not exist thus HPSDPNTXkill_N" has better to be set for performance issue.	HPSDPNTXkill_N
	19	Pixel Shader gets Location Register (X, Y, Z, 1/W) from PE 0: No Location Register used in PS 1: Location Register used in PS	HPSLocationReg
	18	Pixel Shader is fired by ALU instruction initially. Default as "false" 0 : Pixel Shader is fired by TAU instruction initially 1: Pixel Shader is fired by ALU instruction initially	HPSFireALU
	17	The content of PS's constant registers with index 32 to 54 is the same as the index from 0 to 22 0 : Filled independent 1: Fill the same value to n and $(\mathrm{n}+32)$	HPSDbCnstR
	16:15	Pixel Shader Configure 00 : Normal Configure. There are 16 texture registers and 12 temporary registers used for each pixel. 01: Double Configure. There are 8 texture registers and 6 temporary registers used for each pixel. 10: Tripple Configure. There are 5 texture registers and 4 temporary registers used for each pixel. 11: 4-Time Configure. There are 4 texture registers and 3 temporary registers used for each pixel.	HPSConFig
	14	Texture Register 14(t14) is as the input to ALU 0 : None 1: For ALU(arithmetic unit)	HPSTEtoALU
	13	Texture Register 13(t13) is as the input to ALU 0 : None 1: For ALU(arithmetic unit)	HPSTDtoALU
	12	Texture Register 12(t12) is as the input to ALU 0 : None 1: For ALU(arithmetic unit)	HPSTCtoALU
	11	Texture Register 11(t11) is as the input to ALU 0 : None 1: For ALU(arithmetic unit)	HPSTBtoALU
	10	Texture Register 10(t10) is as the input to ALU 0 : None 1: For ALU(arithmetic unit)	HPSTAtoALU
	9	Texture Register 9(t9) is as the input to ALU 0 : None 1: For ALU(arithmetic unit)	HPST9toALU
	8	Texture Register 8(t8) is as the input to ALU 0 : None 1: For ALU(arithmetic unit)	HPST8toALU

VX800 / VX820 Series Chrome9 HC3 Programming Manual

	7	Texture Register 7(t7) is as the input to ALU 0 : None 1: For ALU(arithmetic unit)	HPST7toALU
	6	Texture Register 6(t6) is as the input to ALU 0: None 1: For ALU(arithmetic unit)	HPST6toALU
	5	Texture Register 5(t5) is as the input to ALU 0 : None 1: For ALU(arithmetic unit)	HPST5toALU
	4	Texture Register 4(t4) is as the input to ALU 0 : None 1: For ALU(arithmetic unit)	HPST4toALU
	3	Texture Register 3(t3) is as the input to ALU 0 : None 1: For ALU(arithmetic unit)	HPST3toALU
	2	Texture Register 2(t2) is as the input to ALU 0 : None 1: For ALU(arithmetic unit)	HPST2toALU
	1	Texture Register 1(t1) is as the input to ALU 0 : None 1: For ALU(arithmetic unit)	HPST1toALU
	0	Texture Register $0(t 0)$ is as the input to $\mathbf{A L U}$ 0 : None 1: For ALU(arithmetic unit)	HPST0toALU

91h	23	Texture Register 15(t15) is as the input to ALU 0: None 1: For ALU(arithmetic unit)	HPSTFtoALU
	22:16	Reserved	
	15	Texture Register 15(t15) is as the input to TAU 0: None 1: For TAU(texture address unit)	HPETXZeroRND
	14	Texture Register 14(t14) is as the input to TAU 0: None 1: For TAU(texture address unit)	HPSTEtoTAU
	13	Texture Register 13(t13) is as the input to TAU 0: None 1: For TAU(texture address unit)	HPSTDtoTAU
	12	Texture Register 12(t12) is as the input to TAU 0 : None 1: For TAU(texture address unit)	HPSTCtoTAU
	11	Texture Register 11(t11) is as the input to TAU 0: None 1: For TAU(texture address unit)	HPSTBtoTAU
	10	Texture Register $\mathbf{1 0 (t 1 0)}$ is as the input to TAU 0 : None 1: For TAU(texture address unit)	HPSTAtoTAU
	9	Texture Register 9(t9) is as the input to TAU 0 : None 1: For TAU(texture address unit)	HPST9toTAU
	8	Texture Register 8(t8) is as the input to TAU 0 : None 1: For TAU(texture address unit)	HPST8toTAU
	7	Texture Register 7(t7) is as the input to TAU 0 : None 1: For TAU(texture address unit)	HPST7toTAU
	6	Texture Register 6(t6) is as the input to TAU 0 : None 1: For TAU(texture address unit)	HPST6toTAU
	5	Texture Register 5(t5) is as the input to TAU 0 : None 1: For TAU(texture address unit)	HPST5toTAU
	4	Texture Register 4(t4) is as the input to TAU 0 : None 1: For TAU(texture address unit)	HPST4toTAU
	3	Texture Register 3(t3) is as the input to TAU 0 : None 1: For TAU(texture address unit)	HPST3toTAU
	2	Texture Register 2(t2) is as the input to TAU 0 : None 1: For TAU(texture address unit)	HPST2toTAU

VX800 / VX820 Series Chrome9 HC3 Programming Manual

	1	Texture Register 1(t1) is as the input to TAU $0:$ None $1:$ For TAU(texture address unit)	HPST1toTAU
	0	Texture Register 0(t0) is as the input to TAU $0:$ None $1:$ For TAU(texture address unit)	HPST0toTAU

92h	23:22	Reserved	
	21:16	Length of TAU Instruction	PSTAUILen
	15	Enable Texture Register 12-15 Swapping to Internal Register 0-3 whenever TAU-to-ALU Switches 0: Disable 1: Enable	HPSSWPT2A
	14	Enable Internal Register 0-3 Swapping to Texture Register 12-15 whenever ALU-to-TAU Switches 0: Disable 1: Enable	HPSSWPA2T
	13:9	Reserved	
	8:0	Length of ALU Instruction	PSALUILen

93h	23	Instruction Switch from TAU to ALU after the $\mathbf{2 3}^{\text {rd }}$ TAU Instruction 0 : Operate next TAU instruction 1: Switch to operate ALU instruction	HPSI23TtoA
	22	Instruction Switch from TAU to ALU after the 22 ${ }^{\text {nd }}$ TAU instruction	HPSI22TtoA
	21	Instruction Switch from TAU to ALU after the 21 ${ }^{\text {st }}$ TAU instruction	HPSI21TtoA
	20	Instruction Switch from TAU to ALU after the $20^{\text {th }}$ TAU instruction	HPSI20TtoA
	19	Instruction Switch from TAU to ALU after the $19^{\text {th }}$ TAU instruction	HPSI19TtoA
	18	Instruction Switch from TAU to ALU after the $18{ }^{\text {th }}$ TAU instruction	HPSI18TtoA
	17	Instruction Switch from TAU to ALU after the $17{ }^{\text {th }}$ TAU instruction	HPSI17TtoA
	16	Instruction Switch from TAU to ALU after the $16{ }^{\text {th }}$ TAU instruction	HPSI16TtoA
	15	Instruction Switch from TAU to ALU after the $15{ }^{\text {th }}$ TAU instruction	HPSI15TtoA
	14	Instruction Switch from TAU to ALU after the $14{ }^{\text {th }}$ TAU instruction	HPSI14TtoA
	13	Instruction Switch from TAU to ALU after the $13{ }^{\text {th }}$ TAU instruction	HPSI13TtoA
	12	Instruction Switch from TAU to ALU after the $12{ }^{\text {th }}$ TAU instruction	HPSI12TtoA
	11	Instruction Switch from TAU to ALU after the $11^{\text {th }}$ TAU instruction	HPSI11TtoA
	10	Instruction Switch from TAU to ALU after the 10 ${ }^{\text {th }}$ TAU instruction	HPSI10TtoA
	9	Instruction Switch from TAU to ALU after the $9^{\text {th }}$ TAU instruction	HPSI9TtoA
	8	Instruction Switch from TAU to ALU after the $8^{\text {th }}$ TAU instruction	HPSI8TtoA
	7	Instruction Switch from TAU to ALU after the $7^{\text {th }}$ TAU instruction	HPSI7TtoA
	6	Instruction Switch from TAU to ALU after the $6^{\text {th }}$ TAU instruction	HPSI6TtoA
	5	Instruction Switch from TAU to ALU after the $5^{\text {th }}$ TAU instruction	HPSI5TtoA
	4	Instruction Switch from TAU to ALU after the $4^{\text {th }}$ TAU instruction	HPSI4toA
	3	Instruction Switch from TAU to ALU after the $3^{\text {rd }}$ TAU instruction	HPSI3TtoA
	2	Instruction Switch from TAU to ALU after the $2^{\text {nd }}$ TAU instruction	HPSI2TtoA
	1	Instruction Switch from TAU to ALU after the $1^{\text {st }}$ TAU instruction	HPSI1TtoA
	0	Instruction Switch from TAU to ALU after the 0 ${ }^{\text {th }}$ TAU instruction	HPSI0TtoA

94h	23:8	Reserved	
	7	Instruction Switch from TAU to ALU after the 31 ${ }^{\text {st }}$ TAU instruction	HPS31TtoA
	6	Instruction Switch from TAU to ALU after the $3{ }^{\text {th }}$ TAU instruction	HPS30TtoA
	5	Instruction Switch from TAU to ALU after the $29^{\text {th }}$ TAU instruction	HPS29TtoA
	4	Instruction Switch from TAU to ALU after the $28{ }^{\text {th }}$ TAU instruction	HPS28TtoA
	3	Instruction Switch from TAU to ALU after the $27^{\text {th }}$ TAU instruction	HPS27TtoA
	2	Instruction Switch from TAU to ALU after the $26{ }^{\text {th }}$ TAU instruction	HPS26TtoA
	1	Instruction Switch from TAU to ALU after the $25^{\text {th }}$ TAU instruction	HPS25TtoA
	0	Instruction Switch from TAU to ALU after the $24^{\text {th }}$ TAU instruction	HPS24TtoA

Technologies, Inc. we connect

95h	23	Instruction Switch from ALU to TAU after the $23^{\text {rd }} \mathrm{ALU}$ Instruction 0: Operate next ALU instruction 1: Switch to operate TAU instruction	HPSI23Ato T
	22	Instruction Switch from ALU to TAU after the $222^{\text {nd }}$ ALU Instruction	HPSI22AtoT
	21	Instruction Switch from ALU to TAU after the $21^{\text {st }}$ ALU Instruction	HPSI21AtoT
	20	Instruction Switch from ALU to TAU after the 20 ${ }^{\text {th }}$ ALU Instruction	HPSI20AtoT
	19	Instruction Switch from ALU to TAU after the $19^{\text {th }}$ ALU Instruction	HPSI19AtoT
	18	Instruction Switch from ALU to TAU after the $18^{\text {th }}$ ALU Instruction	HPSI18AtoT
	17	Instruction Switch from ALU to TAU after the $17^{\text {th }}$ ALU Instruction	HPSI17AtoT
	16	Instruction Switch from ALU to TAU after the $16^{\text {th }}$ ALU Instruction	HPSI16AtoT
	15	Instruction Switch from ALU to TAU after the $15^{\text {th }}$ ALU Instruction	HPSI15Ato T
	14	Instruction Switch from ALU to TAU after the $14^{\text {th }}$ ALU Instruction	HPSI14AtoT
	13	Instruction Switch from ALU to TAU after the $13^{\text {th }}$ ALU Instruction	HPSI13AtoT
	12	Instruction Switch from ALU to TAU after the $12^{\text {th }}$ ALU Instruction	HPSI12AtoT
	11	Instruction Switch from ALU to TAU after the $11^{\text {th }}$ ALU Instruction	HPSI11AtoT
	10	Instruction Switch from ALU to TAU after the 10 ${ }^{\text {th }}$ ALU Instruction	HPSI10AtoT
	9	Instruction Switch from ALU to TAU after the $9^{\text {th }}$ ALU Instruction	HPSI9AtoT
	8	Instruction Switch from ALU to TAU after the $8^{\text {th }}$ ALU Instruction	HPSI8AtoT
	7	Instruction Switch from ALU to TAU after the $7^{\text {th }}$ ALU Instruction	HPSI7AtoT
	6	Instruction Switch from ALU to TAU after the $6^{\text {th }}$ ALU Instruction	HPSI6AtoT
	5	Instruction Switch from ALU to TAU after the $5^{\text {th }}$ ALU Instruction	HPSI5AtoT
	4	Instruction Switch from ALU to TAU after the $4^{\text {th }}$ ALU Instruction	HPSI4AtoT
	3	Instruction Switch from ALU to TAU after the $3^{\text {rd }}$ ALU Instruction	HPSI3AtoT
	2	Instruction Switch from ALU to TAU after the $2^{\text {nd }}$ ALU Instruction	HPSI2AtoT
	1	Instruction Switch from ALU to TAU after the $1^{\text {st }}$ ALU Instruction	HPSI1AtoT
	0	Instruction Switch from ALU to TAU after the $0^{\text {th }}$ ALU Instruction	HPSI0AtoT

96h	23	Instruction Switch from ALU to TAU after the $47^{\text {th }}$ ALU Instruction 0 : Operate next ALU instruction 1: Switch to operate TAU instruction	HPSI47Ato
	22	Instruction Switch from ALU to TAU after the $\mathbf{4 6}^{\text {th }}$ ALU Instruction	HPSI46Ato T
	21	Instruction Switch from ALU to TAU after the $\mathbf{4 5}^{\text {th }}$ ALU Instruction	HPSI45AtoT
	20	Instruction Switch from ALU to TAU after the 44 ${ }^{\text {th }}$ ALU Instruction	HPSI44AtoT
	19	Instruction Switch from ALU to TAU after the 43 ${ }^{\text {rd }}$ ALU Instruction	HPSI43AtoT
	18	Instruction Switch from ALU to TAU after the $\mathbf{4 2}^{\text {nd }}$ ALU Instruction	HPSI42AtoT
	17	Instruction Switch from ALU to TAU after the $41^{\text {st }}$ ALU Instruction	HPSI41AtoT
	16	Instruction Switch from ALU to TAU after the 40 ${ }^{\text {th }}$ ALU Instruction	HPSI40AtoT
	15	Instruction Switch from ALU to TAU after the 39 ${ }^{\text {th }}$ ALU Instruction	HPSI39AtoT
	14	Instruction Switch from ALU to TAU after the 38 ${ }^{\text {th }}$ ALU Instruction	HPSI38AtoT
	13	Instruction Switch from ALU to TAU after the $37^{\text {th }}$ ALU Instruction	HPSI37Ato T
	12	Instruction Switch from ALU to TAU after the 36 ${ }^{\text {th }}$ ALU Instruction	HPSI36AtoT
	11	Instruction Switch from ALU to TAU after the $35^{\text {th }}$ ALU Instruction	HPSI35AtoT
	10	Instruction Switch from ALU to TAU after the $34^{\text {th }}$ ALU Instruction	HPSI34AtoT
	9	Instruction Switch from ALU to TAU after the $33^{\text {th }}$ ALU Instruction	HPSI33AtoT
	8	Instruction Switch from ALU to TAU after the $3{ }^{\text {th }}$ ALU Instruction	HPSI32AtoT
	7	Instruction Switch from ALU to TAU after the $3{ }^{\text {st }}$ ALU Instruction	HPSI31AtoT
	6	Instruction Switch from ALU to TAU after the $3{ }^{\text {th }}$ ALU Instruction	HPSI30AtoT
	5	Instruction Switch from ALU to TAU after the $\mathbf{2 9}^{\text {th }}$ ALU Instruction	HPSI29AtoT
	4	Instruction Switch from ALU to TAU after the $\mathbf{2 8}^{\text {th }}$ ALU Instruction	HPSI28Ato T
	3	Instruction Switch from ALU to TAU after the $27^{\text {th }}$ ALU Instruction	HPSI27Ato T
	2	Instruction Switch from ALU to TAU after the $\mathbf{2 6}^{\text {th }}$ ALU Instruction	HPSI26AtoT
	1	Instruction Switch from ALU to TAU after the $25^{\text {th }}$ ALU Instruction	HPSI25AtoT
	0	Instruction Switch from ALU to TAU after the $24^{\text {th }}$ ALU Instruction	HPSI24AtoT
97h	23	Instruction Switch from ALU to TAU after the 71 ${ }^{\text {st }}$ ALU Instruction 0 : Operate next ALU instruction 1: Switch to operate TAU instruction	HPSI71Ato
	22	Instruction Switch from ALU to TAU after the 70 ${ }^{\text {th }}$ ALU Instruction	HPSI70Ato T
	21	Instruction Switch from ALU to TAU after the 69 ${ }^{\text {th }}$ ALU Instruction	HPSI69AtoT
	20	Instruction Switch from ALU to TAU after the $68^{\text {th }}$ ALU Instruction	HPSI68AtoT
	19	Instruction Switch from ALU to TAU after the $6{ }^{\text {th }}$ ALU Instruction	HPSI67AtoT
	18	Instruction Switch from ALU to TAU after the $66{ }^{\text {th }}$ ALU Instruction	HPSI66Ato T
	17	Instruction Switch from ALU to TAU after the $65^{\text {th }}$ ALU Instruction	HPSI65AtoT
	16	Instruction Switch from ALU to TAU after the $64{ }^{\text {th }}$ ALU Instruction	HPSI64AtoT
	15	Instruction Switch from ALU to TAU after the $63{ }^{\text {rd }}$ ALU Instruction	HPSI63AtoT
	14	Instruction Switch from ALU to TAU after the 62 ${ }^{\text {nd }}$ ALU Instruction	HPSI62AtoT
	13	Instruction Switch from ALU to TAU after the 61 ${ }^{\text {st }}$ ALU Instruction	HPSI61AtoT

	12	Instruction Switch from ALU to TAU after the $\mathbf{6 0}^{\text {th }}$ ALU Instruction	HPSI60Ato T
	11	Instruction Switch from ALU to TAU after the 59 ${ }^{\text {th }}$ ALU Instruction	HPSI59AtoT
	10	Instruction Switch from ALU to TAU after the $58{ }^{\text {th }}$ ALU Instruction	HPSI58AtoT
	9	Instruction Switch from ALU to TAU after the 57 ${ }^{\text {th }}$ ALU Instruction	HPSI57AtoT
	8	Instruction Switch from ALU to TAU after the $56{ }^{\text {th }}$ ALU Instruction	HPSI56AtoT
	7	Instruction Switch from ALU to TAU after the $55^{\text {th }}$ ALU Instruction	HPSI55AtoT
	6	Instruction Switch from ALU to TAU after the $54{ }^{\text {th }}$ ALU Instruction	HPSI54AtoT
	5	Instruction Switch from ALU to TAU after the $53{ }^{\text {rd }}$ ALU Instruction	HPSI53AtoT
	4	Instruction Switch from ALU to TAU after the $52^{\text {nd }}$ ALU Instruction	HPSI52AtoT
	3	Instruction Switch from ALU to TAU after the 51 ${ }^{\text {st }}$ ALU Instruction	HPSI51AtoT
	2	Instruction Switch from ALU to TAU after the $50^{\text {th }}$ ALU Instruction	HPSI50Ato T
	1	Instruction Switch from ALU to TAU after the $\mathbf{4 9}^{\text {th }}$ ALU Instruction	HPSI49AtoT
	0	Instruction Switch from ALU to TAU after the $\mathbf{4 8}^{\text {th }}$ ALU Instruction	HPSI48AtoT
98h	23	Instruction Switch from ALU to TAU after the $95^{\text {th }}$ ALU Instruction 0 : Operate next ALU instruction 1: Switch to operate TAU instruction	HPSI95Ato T
	22	Instruction Switch from ALU to TAU after the 94 ${ }^{\text {th }}$ ALU Instruction	HPSI94Ato T
	21	Instruction Switch from ALU to TAU after the $93{ }^{\text {rd }}$ ALU Instruction	HPSI93AtoT
	20	Instruction Switch from ALU to TAU after the $92{ }^{\text {nd }}$ ALU Instruction	HPSI92AtoT
	19	Instruction Switch from ALU to TAU after the $91{ }^{\text {st }}$ ALU Instruction	HPSI91AtoT
	18	Instruction Switch from ALU to TAU after the $9{ }^{\text {th }}$ ALU Instruction	HPSI90AtoT
	17	Instruction Switch from ALU to TAU after the 89 ${ }^{\text {th }}$ ALU Instruction	HPSI89Ato T
	16	Instruction Switch from ALU to TAU after the $88^{\text {th }}$ ALU Instruction	HPSI88AtoT
	15	Instruction Switch from ALU to TAU after the $87{ }^{\text {th }}$ ALU Instruction	HPSI87AtoT
	14	Instruction Switch from ALU to TAU after the $8{ }^{\text {th }}$ (ALU Instruction	HPSI86AtoT
	13	Instruction Switch from ALU to TAU after the $85^{\text {th }}$ ALU Instruction	HPSI85Ato T
	12	Instruction Switch from ALU to TAU after the 84 ${ }^{\text {th }}$ ALU Instruction	HPSI84Ato T
	11	Instruction Switch from ALU to TAU after the $83{ }^{\text {rd }}$ ALU Instruction	HPSI83AtoT
	10	Instruction Switch from ALU to TAU after the $82^{\text {nd }}$ ALU Instruction	HPSI82AtoT
	9	Instruction Switch from ALU to TAU after the $81{ }^{\text {st }}$ ALU Instruction	HPSI81AtoT
	8	Instruction Switch from ALU to TAU after the 80 ${ }^{\text {th }}$ ALU Instruction	HPSI80Ato T
	7	Instruction Switch from ALU to TAU after the 79 ${ }^{\text {th }}$ ALU Instruction	HPSI79Ato T
	6	Instruction Switch from ALU to TAU after the 78 ${ }^{\text {th }}$ ALU Instruction	HPSI78AtoT
	5	Instruction Switch from ALU to TAU after the $77^{\text {th }}$ ALU Instruction	HPSI77AtoT
	4	Instruction Switch from ALU to TAU after the 76 ${ }^{\text {th }}$ ALU Instruction	HPSI76AtoT
	3	Instruction Switch from ALU to TAU after the $75^{\text {th }}$ ALU Instruction	HPSI75AtoT
	2	Instruction Switch from ALU to TAU after the 74 ${ }^{\text {th }}$ ALU Instruction	HPSI74Ato T
	1	Instruction Switch from ALU to TAU after the $73^{\text {rd }}$ ALU Instruction	HPSI73AtoT
	0	Instruction Switch from ALU to TAU after the $\mathbf{7 2}^{\text {nd }}$ ALU Instruction	HPSI72AtoT

99h	23	Instruction Switch from ALU to TAU after the $119^{\text {th }}$ ALU Instruction 0: Operate next ALU instruction 1: Switch to operate TAU instruction	HPSI119Ato ${ }^{\text {T }}$
	22	Instruction Switch from ALU to TAU after the $118{ }^{\text {th }}$ ALU Instruction	HPSI118Ato T
	21	Instruction Switch from ALU to TAU after the $117^{\text {th }}$ ALU Instruction	HPSI117AtoT
	20	Instruction Switch from ALU to TAU after the $116{ }^{\text {th }}$ ALU Instruction	HPSI116AtoT
	19	Instruction Switch from ALU to TAU after the $115^{\text {th }}$ ALU Instruction	HPSI115Ato T
	18	Instruction Switch from ALU to TAU after the $114^{\text {th }}$ ALU Instruction	HPSI114Ato T
	17	Instruction Switch from ALU to TAU after the $113^{\text {rd }}$ ALU Instruction	HPSI113Ato T
	16	Instruction Switch from ALU to TAU after the $112{ }^{\text {nd }}$ ALU Instruction	HPSI112AtoT
	15	Instruction Switch from ALU to TAU after the $111{ }^{\text {st }}$ ALU Instruction	HPSI111AtoT
	14	Instruction Switch from ALU to TAU after the $110^{\text {th }}$ ALU Instruction	HPSI110Ato T
	13	Instruction Switch from ALU to TAU after the 109 ${ }^{\text {th }}$ ALU Instruction	HPSI109Ato T
	12	Instruction Switch from ALU to TAU after the 108 ${ }^{\text {th }}$ ALU Instruction	HPSI108Ato T
	11	Instruction Switch from ALU to TAU after the $107{ }^{\text {th }}$ ALU Instruction	HPSI107Ato T
	10	Instruction Switch from ALU to TAU after the 106 ${ }^{\text {th }}$ ALU Instruction	HPSI106Ato T
	9	Instruction Switch from ALU to TAU after the $105{ }^{\text {th }}$ ALU Instruction	HPSI105Ato T
	8	Instruction Switch from ALU to TAU after the 104 ${ }^{\text {th }}$ ALU Instruction	HPSI104Ato T
	7	Instruction Switch from ALU to TAU after the $103{ }^{\text {rd }}$ ALU Instruction	HPSI103Ato T
	6	Instruction Switch from ALU to TAU after the 1012 ${ }^{\text {nd }}$ ALU Instruction	HPSI102Ato T
	5	Instruction Switch from ALU to TAU after the $101^{\text {st }}$ ALU Instruction	HPSI101AtoT
	4	Instruction Switch from ALU to TAU after the 100 ${ }^{\text {th }}$ ALU Instruction	HPSI100Ato T
	3	Instruction Switch from ALU to TAU after the $99^{\text {th }}$ ALU Instruction	HPSI99AtoT
	2	Instruction Switch from ALU to TAU after the $98{ }^{\text {th }}$ ALU Instruction	HPSI98AtoT
	1	Instruction Switch from ALU to TAU after the $97^{\text {th }}$ ALU Instruction	HPSI97AtoT
	0	Instruction Switch from ALU to TAU after the $966^{\text {th }}$ ALU Instruction	HPSI96AtoT

VX800 / VX820 Series Chrome9 HC3 Programming Manual

9Ah	23	Temporary Register 15(r15)'s initial setting for Dstination Check bit	HPSR15DstChk
	22	Temporary Register 14(r14)'s initial setting for Dstination Check bit	HPSR14DstChk
	21	Temporary Register 13(r13)'s initial setting for Dstination Check bit	HPSR13DstChk
	20	Temporary Register 12(r12)'s initial setting for Dstination Check bit	HPSR12DstChk
	19	Temporary Register 11(r11)'s initial setting for Dstination Check bit	HPSR11DstChk
	18	Temporary Register 10(r10)'s initial setting for Dstination Check bit	HPSR10DstChk
	17	Temporary Register 9(r9)'s initial setting for Dstination Check bit	HPSR9DstChk
	16	Temporary Register 8(r8)'s initial setting for Dstination Check bit	HPSR8DstChk
	15	Temporary Register 7(r7)'s initial setting for Dstination Check bit	HPSR7DstChk
	14	Temporary Register 6(r6)'s initial setting for Dstination Check bit	HPSR6DstChk
	13	Temporary Register 5(r5)'s initial setting for Dstination Check bit	HPSR5DstChk
	12	Temporary Register 4(r4)'s initial setting for Dstination Check bit	HPSR4DstChk
	11	Temporary Register 3(r3)'s initial setting for Dstination Check bit	HPSR3DstChk
	10	Temporary Register 2(r2)'s initial setting for Dstination Check bit	HPSR2DstChk
	9	Temporary Register 1(r1)'s initial setting for Dstination Check bit	HPSR1DstChk
	8	Temporary Register 0(r0)'s initial setting for Dstination Check bit 0 : It is not necessary to check r0's valid bit whenever used as ALU's destination at the $1^{\text {st }}$ ime. 1: It is necessary to check r0's valid bit whenever used as ALU's destination at the 1st time. Note to Driver: Define HPSRnDstChk for PS's temporary register n . The default value is " 0 ". If some temporary register is as both TAU and ALU's destination when 1st used, the HPSRnDstChk must be set as " 1 ". HW would check r\#'s valid bit to see if data from "txld" is valid or not before the ALU instruction which uses $\mathrm{r} \#$ as "partial" destination. Here are some examples txld r0, t0; mov r0.a c0.a; or txld r0, t0; txld r1, tl ; mov r2, rl mov r0.a, c0.a: The HPSR0DstChk must be set as " 1 " by driver. It is very, very important, wrong setting would resulted to wrong result.	HPSR0DstChk
	7	Instruction Switch from ALU to TAU after the $127^{\text {th }}$ ALU Instruction 0: Operate next ALU instruction 1: Switch to operate TAU instruction	HPSI127Ato T
	6	Instruction Switch from ALU to TAU after the $126{ }^{\text {th }}$ ALU Instruction	HPSI126AtoT
	5	Instruction Switch from ALU to TAU after the $125{ }^{\text {th }}$ ALU Instruction	HPSI125Ato T
	4	Instruction Switch from ALU to TAU after the $124{ }^{\text {th }}$ ALU Instruction	HPSI124Ato T
	3	Instruction Switch from ALU to TAU after the $123{ }^{\text {rd }}$ ALU Instruction	HPSI123Ato T
	2	Instruction Switch from ALU to TAU after the $122^{\text {nd }}$ ALU Instruction	HPSI122Ato T
	1	Instruction Switch from ALU to TAU after the 121 ${ }^{\text {st }}$ ALU Instruction	HPSI121AtoT
	0	Instruction Switch from ALU to TAU after the $120{ }^{\text {th }}$ ALU Instruction	HPSI120AtoT

HParaType $=01 \mathrm{~h}$
Sub-Address AAh: SW Inspection

$\begin{gathered} \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
AAh	23:16	Reserved	
	15:0	Flag Number for SW Inspection	HCRFlagNum

HParaType 02h: Attribute of Texture Stage n (HParaSubType 00h to 0Fh)

The register table in this section is used for the following listed HParaSubTypes (from 00h to 0Fh).
HParaSubType $=00000000(00 \mathrm{~h})-$ - For Texture 0
HParaSubType $=00000001(01 \mathrm{~h})-$ For Texture 1
HParaSubType $=00000010(02 \mathrm{~h})-$ For Texture 2
HParaSubType $=00000011(03 \mathrm{~h})-$ For Texture 3
HParaSubType $=00000100(04 \mathrm{~h})-$ - For Texture 4
HParaSubType $=00000101(05 \mathrm{~h})-$ For Texture 5
HParaSubType $=00000110(06 \mathrm{~h})-$ For Texture 6
HParaSubType $=00000111(07 \mathrm{~h})-$ For Texture 7
HParaSubType $=00001000(08 \mathrm{~h})-$ For Texture 8
HParaSubType $=00001001(09 \mathrm{~h})-$ For Texture 9
HParaSubType $=00001010(0 \mathrm{Ah})-$ - For Texture A
HParaSubType $=00001011(0 \mathrm{Bh})-$ For Texture B
HParaSubType $=00001100(0 \mathrm{Ch})-$ For Texture C
HParaSubType $=00001101(0 \mathrm{Dh})-$ - For Texture D
HParaSubType $=00001110(0 \mathrm{Eh})-$ For Texture E
HParaSubType $=00001111(0 \mathrm{Fh})-$ For Texture F

HParaType $=02 \mathrm{~h}($ HParaSubType $=00 \mathrm{~h}-0 \mathrm{Fh})$
Sub-Address 00h-30h

$\begin{gathered} \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
00h	23:0	Face 0's Level 0 Base Address in unit of 256 bytes This is A31 to A8.	HTXnF0L0Bas
01h	23:0	Face 1's Level 0 Base Address in unit of 256 bytes This is A31 to A8.	HTXnF1L0Bas
02h	23:0	Face 2's Level 0 Base Address in unit of 256 bytes This is A31 to A8. program it back to 0 .	HTXnF2L0Bas
03h	23:0	Face 3's Level 0 Base Address in unit of 256 bytes This is A31 to A8.	HTXnF3L0Bas
04h	23:0	Face 4's Level 0 Base Address in unit of 256 bytes This is A31 to A8.	HTXnF4L0Bas
05h	23:0	Face 5's Level 0 Base Address in unit of 256 bytes This is A31 to A8.	HTXnF5L0Bas
06-17h	23:0	Reserved	
18h	23	Force Miss for Texture n's Texture Cache Hit Detection 0 : Detect hit or miss normally 1: Always force to miss	HTXnCHMiss
	22:18	Reserved	
	17:16	Texture Location of Face0 00: System Local Frame Buffer (S.L.) 01: System Dynamic Frame Buffer (S.F.) 10: Reserved (System Memory) 11: Reserved	HTXnF5LOC
	15:14	Texture Location of Face0 00: System Local Frame Buffer (S.L.) 01: System Dynamic Frame Buffer (S.F.) 10: Reserved (System Memory) 11: Reserved	HTXnF4LOC
	13	Reserved	
	12	Base Address Mode for Texture Sample n 0: HTXSnLmOffset is not Offset related to Level 0, but an independent Base Address of Level m. 1: This mode is for cubic texture and planner mode texture Base Address of Level $\mathrm{m}=$ HTXSnFfL0Bas + HTXSnLmOffset	HTXnBaseMode
	11:8	Mode of Texture n 0000: Reserved 0001: 2 Dimension, both S and T coordinates. 0010: 3 Dimension volume texture. S,T,R coordinates. 0011: Cube Texture 1xxx: Projection Texture Others: Reserved	HTXnMode

VX800 / VX820 Series Chrome9 HC3 Programming Manual

	7:6	Texture Location of Face 0 00: System Local Frame Buffer (S.L.) 01: System Dynamic Frame Buffer (S.F.) 10: Reserved (System Memory) 11: Reserved	HTXnF3LOC
	5:4	Texture Location of Face2 or Cr Buffer for Y-Cb-Cr Format 00: System Local Frame Buffer (S.L.) 01: System Dynamic Frame Buffer (S.F.) 10: Reserved (System Memory) 11: Reserved	HTXnF2LOC
	3:2	Texture Location of Face1, Cb Buffer for Y-Cb-Cr Format, or Crb Buffer for Y-Crb Format 00: System Local Frame Buffer (S.L.) 01: System Dynamic Frame Buffer (S.F.) 10: Reserved (System Memory) 11: Reserved	HTXnF1LOC
	1:0	```Texture Location of Face0 or Y Buffer for Y-Cb-Cr or Y-Crb Format 00: System Local Frame Buffer (S.L.) 01: System Dynamic Frame Buffer (S.F.) 10: Reserved (System Memory) 11: Reserved The procedure to determine the location of accessed texture: Consider fetch the texture with level "l" of texture stage " \(n\) ""s face " f " If \((\) HTXnBaseMode \(==1 \mid\) HTXnPower2 \(==1)\{/ /\) with offset mode for the base address LOC = HTXnFfLOC \(\}\) else \(\{/ /\) with base mode for the base address If ("l" ==0) \{ LOC \(=\mathrm{HTXnF0LOC}\) \} else if ("l" \(<=7\)) \{ LOC \(=\) HTXnLILOC \} else \(\{/ / " l "==8,9,10\) or 11 LOC \(=\) HTXnL8LOC \} \}```	HTXnF0LOC
19-1Fh	23:0	Reserved	
20h	23:12	Height of texture Level 0, maximum to 2048 The Heights of each level are all calculated from HTXSnL0H Height at Level " 1 " = HTXSnL0H $\gg 1$	HTXnL0H
	11:0	Width of Texture Level 0, maximum to 2048 The Widths of each level are all calculated from HTXSnL0W Height at Level " 1 " = HTXSnL0W $\gg 1$	HTXnL0W
21h	23:12	Reserved	
	11:0	Length of texture Level 0, maximum to 2048 (for 3D volume texture's R axis) The Lengths of each level are all calculated from HTXSnL0L Length at Level "l" = HTXSnL0L >> 1, but NO MIP for 3D volume texture.	HTXnL0L
22h	23:18	Reserved	
	17	Memory Mode of texture n 0: Linear mode 1: Tile mode	HTXnMMode
	16	Texture n's Tile is 16-texel High 0 : Normal 8-texel high 1: 16-texel high	HTXnTileH16
	15	Texture n ' s Width and High are Both Power of 2 0 : Non-power of 2 texture 1: Power of 2 texture	HTXnPower2
	14:12	Reserved	
	11:8	Exponential of Length of Texture n Level 0 , maximum to 11(2^11)	HTXnL0EL
	7:4	Exponential of High of Texture n Level 0, maximum to 11(2^11)	HTXnL0EH
	3:0	Exponential of Width of Texture n Level 0 , maximum to 11(2^11)	HTXnL0EW
23-2Fh	23:0	Reserved	

VX800 / VX820 Series Chrome9 HC3 Programming Manual

VX800 / VX820 Series Chrome9 HC3 Programming Manual

	15	Texture Color Extending mode(excluding Alpha) For Alpha channel, always extended with high color bit For YUV format(video texture) and HTXnYUV2RGBmode setten as 0 , always extended with zero 0 : Extending with high color bit 1: Extending with zero	HTXnCExtend
	14	Inverse the Texel Order in One Byte for those texture with 1bpp, 2bpp or 3bpp 0 : Normal Consider Index 1: Bit[7] for tex[8n+7], bit[6] for tex[8n+6].......bit[0] for tex[8n] Consider Index 2: Bit[7:6] for tex[4n+3], bit[5:4] for tex[4n+2].......bit[1:0] for tex[4n] Consider Index 4: Bit[7:4] for tex[2n+1], bit[3:0] for tex[2n] 1: Inverse Consider Index 1: Bit[7] for tex[8n], bit[6] for tex[8n+1]........bit[0] for tex[8n+7] Consider Index 2: Bit[7:6] for tex[4n], bit[5:4] for tex[4n+1].......bit[1:0] for tex[4n+3] Consider Index 4: Bit[7:4] for tex[2n], bit[3:0] for tex[2n+1]	HTXnInv124bpp

VX800 / VX820 Series Chrome9 HC3 Programming Manual

13:11	Mode for Z(Depth) Format Texture 000: D3D Mode $\begin{aligned} & \mathrm{R}=0.0 \\ & \mathrm{G}=\mathrm{Z} \\ & \mathrm{~B}=0.0 \\ & \mathrm{~A}=1.0 \end{aligned}$ 001: Shadow Map with Percentage Closer Filter as Greater or Equal Note that only for 24-bit fix Z format $\begin{aligned} & \mathrm{R}=(\text { accessed } \mathrm{Z} \geqq \text { texture coordinate's } \mathrm{R}) ? 1.0: 0.0 \\ & \mathrm{G}=(\text { accessed } \mathrm{Z} \geqq \text { texture coordinate's } \mathrm{R}) ? 1.0: 0.0 \\ & \mathrm{~B}=(\text { accessed } \mathrm{Z} \geqq \text { texture coordinate's } \mathrm{R}) ? 1.0: 0.0 \\ & \mathrm{~A}=1.0 \end{aligned}$ 010: Luminnance mode $\begin{aligned} & \mathrm{R}=\mathrm{Z} \\ & \mathrm{G}=\mathrm{Z} \\ & \mathrm{~B}=\mathrm{Z} \\ & \mathrm{~A}=1.0 \end{aligned}$ 011: Shadow Map with Percentage Closer Filter as Greater Note that only for 24-bit fix Z format $\mathrm{R}=(\text { accessed } \mathrm{Z}>\text { texture coordinate's } \mathrm{R}) \text { ? } 1.0: 0.0$ $\mathrm{G}=($ accessed $\mathrm{Z}>$ texture coordinate's R$)$? $1.0: 0.0$ $\mathrm{B}=($ accessed $\mathrm{Z}>$ texture coordinate's R$)$? $1.0: 0.0$ $\mathrm{A}=1.0$ 100: Intensity mode $\begin{aligned} & \mathrm{R}=\mathrm{Z} \\ & \mathrm{G}=\mathrm{Z} \\ & \mathrm{~B}=\mathrm{Z} \\ & \mathrm{~A}=\mathrm{Z} \end{aligned}$ 101: Shadow Map with Percentage Closer Filter as Smaller or Equal Note that only for 24-bit fix Z format $\begin{aligned} & \mathrm{R}=(\text { accessed } \mathrm{Z} \leqq \text { texture coordinate's } \mathrm{R}) ? 1.0: 0.0 \\ & \mathrm{G}=(\text { accessed } \mathrm{Z} \leqq \text { texture coordinate's } \mathrm{R}) ? 1.0: 0.0 \\ & \mathrm{~B}=(\text { accessed } \mathrm{Z} \leqq \text { texture coordinate's } \mathrm{R}) ? 1.0: 0.0 \\ & \mathrm{~A}=1.0 \end{aligned}$ 110: Alpha mode $\begin{aligned} & \mathrm{R}=0.0 \\ & \mathrm{G}=0.0 \\ & \mathrm{~B}=0.0 \\ & \mathrm{~A}=\mathrm{Z} \end{aligned}$ 111: Shadow Map with Percentage Closer Filter as Smaller Note that only for 24-bit fix Z format $\begin{aligned} & \mathrm{R}=(\text { accessed } \mathrm{Z}<\text { texture coordinate's } \mathrm{R}) ? 1.0: 0.0 \\ & \mathrm{G}=(\text { accessed } \mathrm{Z}<\text { texture coordinate's } \mathrm{R}) ? 1.0: 0.0 \\ & \mathrm{~B}=(\text { accessed } \mathrm{Z}<\text { texture coordinate's } \mathrm{R}) ? 1.0: 0.0 \\ & \mathrm{~A}=1.0 \end{aligned}$ Note1: For Z format texture(but shadow map with PCF excluded), the value should be transformed to $s[7] .16$ floating-point before sent to Pixel Shader. Note2: For OpenGL Driver and Depth texture's border color, please setting the R, G, B, A component to HTXSnTBR, HTXSnTBG, HTXSnTBB and HTXSnTBA separately. Although ICD define the 1st component of texture border color as the "Depth" value, HW would just adopt HTXSnTBR, HTXSnTBG, HTXSnTBB and HTXSnTBA, not matter what is the HTXnMode's setting.	HTXnZMode
10:9	Reserved	
8	Texture is as sRGB(non-gamma 1.0). The deGamma correction is necessary by deGamma table "HDGTRTX". DeGamma correction is only used to R, G and B component. Any color format cauld be deGammaed just after the filtering (\& color space conversation). 0: Disable DeGamma 1: Enable DeGamma	TXnSRGB
7:2	Reserved	

VX800 / VX820 Series Chrome9 HC3 Programming Manual

	1:0	Video Texture is as BT601(SDTV), BT709(HDTV) or just RGB 00: RGB For this format, consider the 8 -bit Y as positive 8 -bit $\mathrm{G}, 8$-bit U as positive 8 -bit R , and 8 -bit V as positive 8 -bit B . Then extend them to s 1.10 according to setting of HTXnCExtend. Then filter the texels. For this setting, YUV2RGB transform is not done in format decoder module or YUV2RGB transformed implemented by PS. 01: BT601(SDTV) $\mathrm{R}=\operatorname{clip}\left(\operatorname{round}\left(\left((\mathrm{Y}-16)^{*} 1.164383+(\mathrm{V}-128)^{*} 1.596027\right) * 256 / 255\right)\right)$ $\left.\left.\mathrm{G}=\operatorname{clip}(\operatorname{round}(((\mathrm{Y}-16) * 1.164383-(\mathrm{U}-128) * 0.391762)-(\mathrm{V}-128) * 0.812968))^{*} 256 / 255\right)\right)$ $\mathrm{B}=\operatorname{clip}($ round $(((\mathrm{Y}-16) * 1.164838+(\mathrm{U}-128) * 2.017232) * 256 / 255))$ 10: BT709(HDTV) $\left.\mathrm{R}=\operatorname{clip}\left(\operatorname{round}\left(((\mathrm{Y}-16) * 1.164383-(\mathrm{U}-128) * 0.0002)+(\mathrm{V}-128)^{*} 1.7927\right) * 256 / 255\right)\right)$ $\left.\left.\mathrm{G}=\operatorname{clip}\left(\operatorname{round}\left(\left((\mathrm{Y}-16)^{*} 1.164383-(\mathrm{U}-128) * 0.2132\right)-(\mathrm{V}-128) * 0.5329\right)\right) * 256 / 255\right)\right)$ $\mathrm{B}=\operatorname{clip}(\operatorname{round}(((\mathrm{Y}-16) * 1.164838+(\mathrm{U}-128) * 2.2114)-(\mathrm{V}-128) * 0.0001)) * 256 / 255))$ 11: Table For 8-bit YUV $\mathrm{R}=\operatorname{clip}\left(\operatorname{round}\left(\left(\mathrm{Y}^{*} \mathrm{~A}+\mathrm{U}^{*} \mathrm{~B} 1+\mathrm{V} * \mathrm{C} 1+\mathrm{D}\right)^{*} 256 / 255\right)\right)$ $\mathrm{G}=\operatorname{clip}\left(\operatorname{round}\left(\left(\mathrm{Y}^{*} \mathrm{~A}+\mathrm{U} * \mathrm{~B} 2+\mathrm{V} * \mathrm{C} 2+\mathrm{D}\right) * 256 / 255\right)\right)$ $\mathrm{B}=\operatorname{clip}\left(\operatorname{round}\left(\left(\mathrm{Y}^{*} \mathrm{~A}+\mathrm{U}^{*} \mathrm{~B} 3+\mathrm{V} * \mathrm{C} 3+\mathrm{D}\right)^{*} 256 / 255\right)\right)$ For 10-bit YUV $\mathrm{R}=\operatorname{clip}\left(\operatorname{round}\left(\left(\mathrm{Y}^{*} \mathrm{~A}+\mathrm{U}^{*} \mathrm{~B} 1+\mathrm{V} * \mathrm{C} 1+\mathrm{D}\right) * 1024 / 1023\right)\right)$ $\mathrm{G}=\operatorname{clip}\left(\operatorname{round}\left(\left(\mathrm{Y}^{*} \mathrm{~A}+\mathrm{U} * \mathrm{~B} 2+\mathrm{V} * \mathrm{C} 2+\mathrm{D}\right) * 1024 / 1023\right)\right)$ $\mathrm{B}=\operatorname{clip}($ round $((\mathrm{Y} * \mathrm{~A}+\mathrm{U} * \mathrm{~B} 3+\mathrm{V} * \mathrm{C} 3+\mathrm{D}) * 1024 / 1023))$	HTXnYUV2RGBmode
31-4Fh	23:0	Reserved	
50h	23:16	Reserved	
	15:0	Texture Sample n's $1^{\text {st }}$ Flag number for SW inspetion	HTXSnFlag1
51h	23:16	Reserved	
	15:0	Texture Sample n's 2 ${ }^{\text {nd }}$ Flag number for SW inspetion	HTXSnFlag2

HParaType 02h: Attribute of Texture Sample Stage n (HParaSubType 20h to 2Fh)

The register table in this section is used for the following listed HParaSubTypes (from 20h to 2Fh).
HParaSubType $=00100000(20 \mathrm{~h})$ For Texture Sample 0
HParaSubType $=00100001(21 \mathrm{~h})$ For Texture Sample 1
HParaSubType $=00100010(22 \mathrm{~h})$ For Texture Sample 2
HParaSubType $=00100011(23 \mathrm{~h})$ For Texture Sample 3
HParaSubType $=00100100(24 \mathrm{~h})$ For Texture Sample 4
HParaSubType $=00100101(25 \mathrm{~h})$ For Texture Sample 5
HParaSubType $=00100110(26 \mathrm{~h})$ For Texture Sample 6
HParaSubType $=00100111(27 \mathrm{~h})$ For Texture Sample 7
HParaSubType $=00101000(28 \mathrm{~h})$ For Texture Sample 8
HParaSubType $=00101001(29 \mathrm{~h})$ For Texture Sample 9
HParaSubType $=00101010(2 \mathrm{Ah})$ For Texture Sample A
HParaSubType $=00101011(2 \mathrm{Bh})$ For Texture Sample B
HParaSubType $=00101100(2 \mathrm{Ch})$ For Texture Sample C
HParaSubType $=00101101(2 \mathrm{Dh})$ For Texture Sample D
HParaSubType $=00101110(2 \mathrm{Eh})$ For Texture Sample E
HParaSubType $=00101111(2 \mathrm{Fh})$ For Texture Sample F

HParaType $=02 \mathrm{~h}($ HParaSubType $=20 \mathrm{~h}-2 \mathrm{Fh})$
Sub-Address 00h-40h

Bit [31:24] Sub-Address	Bit [23:0]	Description	Mnemonic
00-2Fh	23:0	Reserved	
30h	23:22	Reserved	
	21:12	Texture Level 0 Offset Format: 2's Complement Fix Point Number with 5 bits integer and 5 bits fraction The real Level 0 is (Texture Minimum Level + HTXnL0OS). Bit [21:17] 5 bits integer of Texture n Level 0 Bit [16:12] 5 bits fraction of Texture n Level 0	HTXSnL0OS
	11:6	Maximum Texture Level 000000: Texture n Maximum Level $=0$ 000001: Texture n Maximum Level $=1$ 000010: Texture n Maximum Level $=2$ 000011: Texture n Maximum Level $=3$ 000100: Texture n Maximum Level $=4$ 000101: Texture n Maximum Level $=5$ 000110: Texture n Maximum Level $=6$ 000111: Texture n Maximum Level $=7$ 001000: Texture n Maximum Level $=8$ 001001: Texture n Maximum Level $=9$ 001010: Texture n Maximum Level = A 001011: Texture n Maximum Level $=\mathrm{B}$ Others: Reserved	HTXSnLVmax
	5:0	Minimum Texture Level 000000: Texture n Minimum Level $=0$ 000001: Texture n Minimum Level $=1$ 000010: Texture n Minimum Level $=2$ 000011: Texture n Minimum Level $=3$ 000100: Texture n Minimum Level $=4$ 000101: Texture n Minimum Level $=5$ 000110: Texture n Minimum Level $=6$ 000111: Texture n Minimum Level $=7$ 001000: Texture n Minimum Level $=8$ 001001: Texture n Minimum Level $=9$ 001010: Texture n Minimum Level $=\mathrm{A}$ 001011: Texture n Minimum Level $=B$ Others: Reserved	HTXSnLVmin
31h	23:21	Reserved	

VX800 / VX820 Series Chrome9 HC3 Programming Manual

	11:0	Texture Mapping Mode Bit [11:9] Reserved Bit [8:6] R Axis Setting (for 3D Volume texture) 000: Border Color 001: Clamp 010: Repeat 011: Mirror 100-101: Reserved 111: Mirror Once Bit [5:3] T Axis Setting 000: Border Color 001: Clamp 010: Repeat 011: Mirror 100-101: Reserved 111: Mirror Once Bit [2:0] S Axis Setting 000: Border Color 001: Clamp 010: Repeat 011: Mirror 100-101: Reserved 111: Mirror Once	HTXSnMPMD
33h	23:0	Reserved	
35h	23:12	Red Color or U Component of Texture Border As s1.10 from -1.0 to 1.0	HTXSnTBR
	11:0	Green Color or Y Component of Texture Border As s1.10 from -1.0 to 1.0	HTXSnTBG
36h	23:12	Blue Color or V Component of Texture Border As s1.10 from - 1.0 to 1.0	HTXSnTBB
	11:0	```Texture Border Alpha As s1.10 from -1.0 to 1.0 Note for texture border color's usage: If (((HTXnFM == L16 or VU16 or G16R16 or G16FR16F or G32F)) \& (any filtered texel is border color)) \{ A channel of filter output \(=\) HTXSnTBA R channel of filter output \(=\) HTXSnTBR G channel of filter output \(=\) HTXSnTBG B channel of filter output \(=H T X S n T B B\) \} else \{ If (the texel is border color) \{ A channel of filter input of the texel = HTXSnTBA R channel of filter input of the texel \(=\) HTXSnTBR G channel of filter input of the texel \(=\) HTXSnTBG B channel of filter input of the texel \(=\) HTXSnTBB \} else \{ \(\quad / /\) the texel is just from the texture A channel of filter input of the texel = A after "color extending" R channel of filter input of the texel \(=\mathrm{R}\) after "color extending" G channel of filter input of the texel \(=\mathrm{G}\) after "color extending" \(B\) channel of filter input of the texel \(=B\) after "color extending" \} \}``` Note for YUV format and HTXnYUV2RGBmode is SDTV or HDTV, the border color is not in RGB space any more. It must be inverse transformed to YUV space as HTXSnTBG $<=\mathrm{Y}$, HTXSnTBR $<=\mathrm{U}$ \& HTXSnTBB $<=$ V. And the HTXSnTBG[1:0], HTXSnTBG[1:0] \& HTXSnTBR[1:0] are all zero.	HTXSnTBA
37-40h	23:0	Reserved	

HParaType $=02 \mathrm{~h}$ (HParaSubType $=20 \mathrm{~h}-2 \mathrm{Fh}$)

Sub-Address 50h-51h: SW Inspection for Texture Sample n

Bit [31:24] Sub-Address	Bit [23:0]	Description	Mnemonic

$\mathbf{5 0 h}$	$23: 16$	Reserved	
	$15: 0$	Texture Sample n's $\mathbf{1 t ~}^{\text {st }}$ Flag number for SW inspetion	HTXSnFlag1
$\mathbf{5 1 h}$	$23: 16$	Reserved	HTXSnFlag2
	$15: 0$	Texture Sample n's $\mathbf{2}^{\text {nd }}$ Flag number for SW inspetion	

HParaType 02h: Attribute of Texture Stage n (HParaSubType FEh)

The register tables in this section are used for HParaSubType (FEh).
HParaType $=02 \mathrm{~h}($ HParaSubType $=$ FEh $)$
Sub-Address 00h: For General Texture Attribute

$\begin{aligned} & \text { Bit [31:24] } \\ & \text { Sub-Address } \end{aligned}$	Bit [23:0]	Description	Mnemonic
00h	23:9	Reserved	
	8	Check Divisor and Mantissa Check if the divisor and dividend's mantissa in the instruction texldp are the same or not. If so, assign 1.0 to the mantissa of quotient. 0: Disable 1: Enable	HTXtexldpchpM
	7:4	Number of Texture n : n Texture, max up to 8	HTXNum
	3:2	Configuration of Data FIFO for Reading Texture 00: DFIFO1 is assigned to System memory's $1^{\text {st }}$ T-Arbitrator(SL) DFIFO2 is assigned to System memory's $2^{\text {nd }}$ T-Arbitrator(SF) DFIFO3 is assigned to Local Memory's T-Arbitrator 01: DFIFO1 is assigned to System memory's $1^{\text {st }} \mathrm{T}$-Arbitrator(SL) DFIFO2 is assigned to Local Memory's T-Arbitrator DFIFO3 is assigned to System memory's $2^{\text {nd }}$ T-Arbitrator(SF) 10: DFIFO1 is assigned to Local Memory's T-Arbitrator DFIFO2 is assigned to System memory's $2^{\text {nd }}$ T-Arbitrator(SF) DFIFO3 is assigned to System memory's $1^{\text {st }}$ T-Arbitrator(SL) 11: Reserved	HTXDFIFOConfig
	1	Fetch Texture 2 QWs (256 bits) or 4QWs (512 bits) for Each Request 0: Fetch 4 QWs(512 bits) for tiled-mode texture 1: Fetch 2QWs(256 bits)	HTX2or4QWFetch
	0	Clear Texture Cache 0: Don't care 1: Clear Texture Cache	HTXCHCLR

$\underline{\text { HParaType }=02 \mathrm{~h}(\text { HParaSubType }=\text { FEh }) ~}$

Sub-Address 01h-07h: Texture 0 to Texture 7 is defined for Primitive Engine

$\begin{gathered} \hline \text { Bit [31:24] } \\ \text { Sub-Address } \\ \hline \end{gathered}$	Bit [23:0]	Description	Mnemonic
01h	23	Reserved	
	22:21	Perspective Mode of Texture 2 00: Disable 01: Enable Perspective Correction 10: Enable Projection and be implemented to UVD module 11: Reserved	HTX2PPmode
	20:18	Source of Texture 2 000: Texture come from Texture A 001: Texture come from Texture B 010: Texture come from Texture C 011: Texture come from Texture D 100: Texture come from Texture E 101: Texture come from Texture F 110: Texture come from Texture G 111: Texture come from Texture H	HTX2Src
	17:16	Dimension of Texture 2 00: 1 Dimension, only S coordinate 01: 2 Dimension, Both S and T coordinate 10: 3 Dimension volume texture. S, T, R coordinate 11: 4 Dimension. S, T, R, Q coordinate	HTX2Dim
	15	Reserved	HPST1toALU
	14:13	Perspective Mode of Texture 1 00: Disable 01: Enable Perspective Correction 10: Enable Projection and be implemented to UVD module 11: Reserved	HTX1PPmode

VX800 / VX820 Series Chrome9 HC3 Programming Manual

VX800 / VX820 Series Chrome9 HC3 Programming Manual

	9:8	Dimension of Texture 4 00: 1 Dimension, only S coordinate 01: 2 Dimension, Both S and T coordinate 10: 3 Dimension volume texture. S, T, R coordinate 11: 4 Dimension. S, T, R, Q coordinate	HTX4Dim
	7	Reserved	
	6:5	Perspective Mode of Texture 3 00: Disable 01: Enable Perspective Correction 10: Enable Projection and be implemented to UVD module 11: Reserved	HTX3PPmode
	4:2	Source of Texture 3 000: Texture come from Texture A 001: Texture come from Texture B 010: Texture come from Texture C 011: Texture come from Texture D 100: Texture come from Texture E 101: Texture come from Texture F 110: Texture come from Texture G 111: Texture come from Texture H	HTX3Src
	1:0	Dimension of Texture 3 00: 1 Dimension, only S coordinate 01: 2 Dimension, Both S and T coordinate 10: 3 Dimension volume texture. S, T, R coordinate 11: 4 Dimension. $\mathrm{S}, \mathrm{T}, \mathrm{R}, \mathrm{Q}$ coordinate	HTX3Dim
03h	23:15	Reserved	
	14:13	Perspective Mode of Texture 7 00: Disable 01: Enable Perspective Correction 10: Enable Projection and be implemented to UVD module 11: Reserved	HTX7PPmode
	12:10	Source of Texture 7 000: Texture come from Texture A 001: Texture come from Texture B 010: Texture come from Texture C 011: Texture come from Texture D 100: Texture come from Texture E 101: Texture come from Texture F 110: Texture come from Texture G 111: Texture come from Texture H	HTX7Src
	9:8	Dimension of Texture 7 00: 1 Dimension, only S coordinate 01: 2 Dimension, Both S and T coordinate 10: 3 Dimension volume texture. S, T, R coordinate 11: 4 Dimension. S, T, R, Q coordinate	HTX7Dim
	7	Reserved	
	6:5	Perspective Mode of Texture 6 00: Disable 01: Enable Perspective Correction 10: Enable Projection and be implemented to UVD module 11: Reserved	HTX6PPmode
	4:2	Source of Texture 6 000: Texture come from Texture A 001: Texture come from Texture B 010: Texture come from Texture C 011: Texture come from Texture D 100: Texture come from Texture E 101: Texture come from Texture F 110: Texture come from Texture G 111: Texture come from Texture H	HTX6Src
	1:0	Dimension of Texture 6 00: 1 Dimension, only S coordinate 01: 2 Dimension, Both S and T coordinate 10: 3 Dimension volume texture. S, T, R coordinate 11: 4 Dimension. S, T, R, Q coordinate	HTX6Dim
04h	23:20	Exponential of Width for the Texture Coordinate Replaced by (x, y) $\mathrm{s}=\mathrm{x} / 2^{\wedge}$ HTXXYrpSTHE	HTXXYrpSTWE
	19:16	Exponential of High for the Texture Coordinate Replaced by (x, y) $\mathrm{t}=\mathrm{y} / 2^{\wedge}$ HTXXYrpSTHE	HTXXYrpSTHE
	15:8	Reserved	

VX800 / VX820 Series Chrome9 HC3 Programming Manual

	7:0	Use Screen Coordinate (\mathbf{x}, y) to Replace (s, t) Bit [7] 0 : Normal (s, t) for Texture 7 1: Use (x, y) to replace (s, t) for Texture 7 Bit [6] 0: Normal (s, t) for Texture 6 1: Use (x, y) to replace (s, t) for Texture 6 Bit [5] 0: Normal (s, t) for Texture 5 1: Use (x, y) to replace (s, t) for Texture 5 Bit [4] 0 : Normal (s, t) for Texture 4 1: Use (x, y) to replace (s, t) for Texture 4 Bit [3] 0: Normal (s, t) for Texture3 1: Use (x, y) to replace (s, t) for Texture 3 Bit [2] 0: Normal (s, t) for Texture 2 1: Use (x, y) to replace (s, t) for Texture 2 Bit [1] 0 : Normal (s, t) for Texture 1 1: Use (x, y) to replace (s, t) for Texture 1 Bit [0] 0 : Normal (s, t) for Texture 0 1: Use (x, y) to replace (s, t) for Texture 0	HTXXYrpST
05h	23:16	Reserved	
	15	Enable of $2^{\text {nd }}$ group of User Defined Clipping Planes 0 : Disable, No user defined clipping plane or only 1 texture is used for "User defined Clipping Plane" 1 : Enable, a $2^{\text {nd }}$ texture is used for "User defined Clipping Plane"	HTXUCP1Enable
	14	Perspective Mode of the Texture for $\mathbf{2}^{\text {nd }}$ group of User Defined Clipping Planes 0 : Disable 1: Enable Perspective Correction	HTXUCP1PPmode
	13:10	Source of the Texture for $\mathbf{2 d}^{\text {nd }}$ group of User Defined Clipping Planes 0000: Texture come from Texture A 0001: Texture come from Texture B 0010: Texture come from Texture C 0011: Texture come from Texture D 0100: Texture come from Texture E 0101: Texture come from Texture F 0110: Texture come from Texture G 0111: Texture come from Texture H 1000: Texture come from Texture I 1001: Texture come from Texture J Others: Reserved	HTXUCP1Src
	9:8	Dimension of the Texture for $\mathbf{2}^{\text {nd }}$ group of User Defined Clipping Planes 00: 1 Dimension, only S coordinate 01: 2 Dimension, Both S and T coordinate 10: 3 Dimension volume texture. $\mathrm{S}, \mathrm{T}, \mathrm{R}$ coordinate 11: 4 Dimension. S, T, R, Q coordinate	HTXUCP1Dim
	7	Enable of $1^{\text {st }}$ group of User Defined Clipping Planes 0 : Disable, No user defined clipping plane. 1: Enable, a texture is used for "User defined Clipping Plane"	HTXUCP0Enable
	6	Perspective Mode of the Texture for $1^{\text {st }}$ group of User Defined Clipping Planes 0 : Disable 1: Enable Perspective Correction	HTXUCP0PPmode
	5:2	Source of the Texture for $1^{\text {st }}$ group of User Defined Clipping Planes 0000: Texture come from Texture A 0001: Texture come from Texture B 0010: Texture come from Texture C 0011: Texture come from Texture D 0100: Texture come from Texture E 0101: Texture come from Texture F 0110: Texture come from Texture G 0111: Texture come from Texture H 1000: Texture come from Texture I 1001: Texture come from Texture J Others: Reserved	HTXUCP0Src

VX800 / VX820 Series Chrome9 HC3 Programming Manual

	$1: 0$	Dimension of the Texture for 1 st group of User Defined Clipping Planes	HTXUCP0Dim
		$00: 1$ Dimension, only S coordinate	
		$01: 2$ Dimension, Both S and T coordinate	
		$10: 3$ Dimension volume texture. S, T, R coordinate	
		$11: 4$ Dimension. S, T, R, Q coordinate	
		Note to Driver: It is forbidden to enable HTXUCP1Enable but disable	
	HTXUCP0Enable.		
$\mathbf{0 6 - 0 7 h}$	$23: 0$	Reserved	

HParaType $=02 \mathrm{~h}$ (HParaSubType $=$ FEh $)$

Sub-Address 08h-13h: Texture A to Texture H is defined in Vertex Buffer

Bit [31:24] Sub-Address	Bit [23:0]	Description	Mnemonic
08h	23:22	Reserved	
	21	Texture S Coordinate Input Mode 0 : Un-normalized 1: Normalized	HTXBSMD
	20	Texture T Coordinate Input Mode 0 : Un-normalized 1: Normalized	HTXBTMD
	19	Texture R Coordinate Input Mode 0 : Un-normalized 1: Normalized	HTXBRMD
	18	Texture Q Coordinate Input Mode 0 : Un-normalized 1: Normalized	HTXBQMD
	17:16	Dimension of Texture B 00: 1 Dimension, only S coordinate 01: 2 Dimension, both S and T coordinate 10: 3 Dimension volume texture. S, T, R coordinate 11: 4 Dimension. S, T, R, Q coordinate	HTXBDim
	15:14	Reserved	HTX1Src
	13	Texture S Coordinate Input Mode 0 : Un-normalized 1: Normalized	HTXASMD
	12	Texture T Coordinate Input Mode 0 : Un-normalized 1: Normalized	HTXATMD
	11	Texture R Coordinate Input Mode 0 : Un-normalized 1: Normalized	HTXARMD
	10	Texture Q Coordinate Input Mode 0 : Un-normalized 1: Normalized	HTXAQMD
	9:8	Dimension of Texture A 00: 1 Dimension, only S coordinate 01: 2 Dimension, both S and T coordinate 10: 3 Dimension volume texture. S, T, R coordinate 11: 4 Dimension. S, T, R, Q coordinate	HTXADim
	7:4	Reserved	
	3:0	Number of Texture in Vertex Buffer n : n Texture	HTXNum4VP
09h	23:22	Reserved	
	21	Texture S Coordinate Input Mode 0 : Un-normalized 1: Normalized	HTXESMD
	20	Texture T Coordinate Input Mode 0 : Un-normalized 1: Normalized	HTXETMD
	19	Texture R Coordinate Input Mode 0 : Un-normalized 1: Normalized	HTXERMD
	18	Texture Q Coordinate Input Mode 0 : Un-normalized 1: Normalized	HTXEQMD

VX800 / VX820 Series Chrome9 HC3 Programming Manual

VX800 / VX820 Series Chrome9 HC3 Programming Manual

	10	Texture Q Coordinate Input Mode 0 : Un-normalized 1: Normalized	HTXGQMD
	9:8	Dimension of Texture G 00: 1 Dimension, only S coordinate 01: 2 Dimension, both S and T coordinate 10: 3 Dimension volume texture. $\mathrm{S}, \mathrm{T}, \mathrm{R}$ coordinate 11: 4 Dimension. $\mathrm{S}, \mathrm{T}, \mathrm{R}, \mathrm{Q}$ coordinate	HTXGDim
	7:6	Reserved	
	5	Texture S Coordinate Input Mode 0 : Un-normalized 1: Normalized	HTXFSMD
	4	Texture T Coordinate Input Mode 0 : Un-normalized 1: Normalized	HTXFTMD
	3	Texture R Coordinate Input Mode 0 : Un-normalized 1: Normalized	HTXFRMD
	2	Texture Q Coordinate Input Mode 0 : Un-normalized 1: Normalized	HTXFQMD
	1:0	Dimension of Texture F 00: 1 Dimension, only S coordinate 01: 2 Dimension, both S and T coordinate 10: 3 Dimension volume texture. S, T, R coordinate 11: 4 Dimension. S, T, R, Q coordinate	HTXFDim
0Bh	23:16	Reserved	
	15	Texture D Wrap Correction along S Coordinate 0: No Wrap 1: Wrap	HTXDSWrapC
	14	Texture D Wrap Correction along T Coordinate 0: No Wrap 1: Wrap	HTXDTWrapC
	13:12	Reserved	
	11	Texture C Wrap Correction along S Coordinate 0: No Wrap 1: Wrap	HTXCSWrapC
	10	Texture C Wrap Correction along T Coordinate 0: No Wrap 1: Wrap	HTXCTWrapC
	9:8	Reserved	
	7	Texture B Wrap Correction along S Coordinate 0: No Wrap 1: Wrap	HTXBSWrapC
	6	Texture B Wrap Correction along T Coordinate 0: No Wrap 1: Wrap	HTXBTWrapC
	5:4	Reserved	
	3	Texture A Wrap Correction along S Coordinate 0: No Wrap 1: Wrap	HTXASWrapC
	2	Texture A Wrap Correction along T Coordinate 0: No Wrap 1: Wrap	HTXATWrapC
	1:0	Rserved	
0Ch	23:16	Reserved	
	15	Texture H Wrap Correction along S Coordinate 0: No Wrap 1: Wrap	HTXHSWrapC
	14	Texture H Wrap Correction along T Coordinate 0: No Wrap 1: Wrap	HTXHTWrapC
	13:12	Reserved	
	11	Texture G Wrap Correction along S Coordinate 0: No Wrap 1: Wrap	HTXGSWrapC
	10	Texture G Wrap Correction along T Coordinate 0: No Wrap 1: Wrap	HTXGTWrapC
	9:8	Reserved	

VX800 / VX820 Series Chrome9 HC3 Programming Manual

VX800 / VX820 Series Chrome9 HC3 Programming Manual

10h	23	```YUV422 (Packet Mode) Texture Decode Mode 0 : Even texel in \(S\) direction \(\left(Y e, U_{n}, V_{n}\right)\) odd texel in \(S\) direction \(\left(Y o, U_{n}, V_{n}\right)\) 1: Even texel in \(S\) direction \(\left(\mathrm{Ye}, \mathrm{U}_{\mathrm{n}}, \mathrm{V}_{\mathrm{n}}\right)\) odd texel in S direction \(\left(\mathrm{Yo},\left(\mathrm{U}_{\mathrm{n}}+\mathrm{U}_{\mathrm{n}+1}\right) / 2,\left(\mathrm{~V}_{\mathrm{n}}+\mathrm{V}_{\mathrm{n}+1}\right) / 2\right)\) \\ Note:``` ```If (HTXYUV422DM \(==\) true \& HTXnFM \(==00110000 \mathrm{~b}\) \(\&(\) HTXSnFLSe \(==\) nearest for enlarge \(\mid\) HTXSnFLSs \(==\) nearest for shrink) \& (odd texel in S direction) \& (not the rightest texel of texture)) \{ \(\mathrm{Y}=\mathrm{Yo}\) \(\mathrm{U}=\left(\mathrm{U}_{\mathrm{n}}+\mathrm{U}_{\mathrm{n}+1}\right) / 2\) \(\mathrm{V}=\left(\mathrm{V}_{\mathrm{n}}+\mathrm{V}_{\mathrm{n}+1}\right) / 2\) \} else \{ \(\mathrm{Y}=\mathrm{Y}\) \(\mathrm{U}=\mathrm{U}_{\mathrm{n}}\) \(\mathrm{V}=\mathrm{V}_{\mathrm{n}}\) \}``` ```If (HTXYUV422DM \(==\) true \& HTXnFM \(==00110000 \mathrm{~b}\) \(\&(\) HTXSnFLSe \(==\) nearest for enlarge \(\mid\) HTXSnFLSs \(==\) nearest for shrink) \& (odd texel in S direction) \& (not the rightest texel of texture)) \{ \(\mathrm{Y}=\mathrm{Yo}\) \(\mathrm{U}=\left(\mathrm{U}_{\mathrm{n}}+\mathrm{U}_{\mathrm{n}+1}\right) / 2\) \(\mathrm{V}=\left(\mathrm{V}_{\mathrm{n}}+\mathrm{V}_{\mathrm{n}+1}\right) / 2\) \} else \{ \(\mathrm{Y}=\mathrm{Y}\) \(\mathrm{U}=\mathrm{U}_{\mathrm{n}}\) \(\mathrm{V}=\mathrm{V}_{\mathrm{n}}\) \}```	HTXYUV422DM
	22:12	Coefficient D of YUV to RGB Conversion Format as 2's complement s2.8	HTXYUV2RGBD
	11	Reserved	
	10:0	Coefficient A of YUV to RGB Conversion Format as 2's complement s2.8	HTXYUV2RGBA
11h	23	Reserved	
	22:12	Coefficient C1 of YUV to RGB Conversion Format as 2's complement s2.8	HTXYUV2RGBC1
	11	Reserved	
	10:0	Coefficient B1 of YUV to RGB Conversion Format as 2's complement s2.8	HTXYUV2RGBB1
12h	23	Reserved	
	22:12	Coefficient C2 of YUV to RGB Conversion Format as 2's complement s2.8	HTXYUV2RGBC2
	11	Reserved	
	10:0	Coefficient B2 of YUV to RGB Conversion Format as 2's complement s2.8	HTXYUV2RGBB2
13h	23	Reserved	
	22:12	Coefficient C3 of YUV to RGB Conversion Format as 2's complement s2.8	HTXYUV2RGBC3
	11	Reserved	
	10:0	Coefficient B3 of YUV to RGB Conversion Format as 2's complement s2.8	HTXYUV2RGBB3

HParaType 03h: Palette (HParaSubType 00h-22h)

HParaType $=03 \mathrm{~h}($ HParaSubType $=00 \mathrm{~h})$
Sub-Address 00h: Texture Palette 0

Bit [31:24] Sub-Address	Bit [23:0]		Description
$\mathbf{0 0 h}$	$31: 24$	Reserved	Mnemonic
	$23: 16$	Y of Texture Palette n Data	
	$15: 8$	U of Texture Palette \mathbf{n} Data	HTPnY
	$7: 0$	V of Texture Palette \mathbf{n} Data	HTPnU

HParaType $=03 \mathrm{~h}($ HParaSubType $=01 \mathrm{~h})$
Sub-Address 01h: Texture Palette1 (Reserved)
$\underline{\text { HParaType }}=\mathbf{0 3 h}($ HParaSubType $=02 \mathrm{~h})$
Sub-Address 02h: Texture Palette1 (Reserved)

HParaType $=03 \mathrm{~h}($ HParaSubType $=03 \mathrm{~h})$
Sub-Address 03h: Texture Palette1 (Reserved)

HParaType $=03 \mathrm{~h}($ HParaSubType $=04 \mathrm{~h})$
Sub-Address 04h: Texture Palette1 (Reserved)
$\underline{\text { HParaType }=03 \mathrm{~h}}($ HParaSubType $=05 \mathrm{~h})$
Sub-Address 05h: Texture Palette1 (Reserved)

HParaType $=03 \mathrm{~h}($ HParaSubType $=06 \mathrm{~h})$
Sub-Address 06h: Texture Palette1 (Reserved)

HParaType $=03 \mathrm{~h}($ HParaSubType $=07 \mathrm{~h})$
Sub-Address 07h: Texture Palette1 (Reserved)

HParaType $=03 \mathrm{~h}($ HParaSubType $=08-0 \mathrm{Fh})$
Sub-Address 08-0Fh: Reserved

HParaType $=03 \mathrm{~h}$ (HParaSubType $=10 \mathrm{~h}$)

Sub-Address 10h: Offset or Base Address of Texture from Level 1 to Level 11 for the 16 Texture Samples
Ther are 16 texture samples and each sample can be maximum to 8 levels, so there should be $16 x 8=128$ entries
HaaraAdr $0->$ HTXS0L1Offset
HaaraAdr 1 -> HTXS0L2Offset
....
HaaraAdr 7 -> HTXS0L8Offset
HaaraAdr $8->$ HTXS1L1Offset
HaaraAdr 9 -> HTXS1L2Offset

HaaraAdr 15 -> HTXS1L8Offset
HaaraAdr 16 -> HTXS2L1Offset
HaaraAdr 17 -> HTXS2L2Offset
HaaraAdr 23 -> HTXS2L8Offset
\qquad
...
HaaraAdr 118 -> HTXSFL1Offset
HaaraAdr 119 -> HTXSFL2Offset
...........
HaaraAdr 127 -> HTXSFL8Offset
To sum up, consider HTXSnLmBasOffset, its entry is $(\mathbf{n} * 8+\mathbf{m})$, where \mathbf{n} is from 0 to Fh , and \mathbf{m} is from 1 to 8 h

$\begin{gathered} \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
10h	31:30	Location of Texture Sample n's Level m 00: Syntem Local Frame Buffer (S.L.) 01: System Dynamic Frame Buffer (S.F.) 10: Reserved (System Memory) 11: Reserved	HTXnLmLOC
	23:16	Reserved	
	7:0	Offset Related to Texture Sample n's Level 0 for Level m Base Address In Unit Byte,t his must be 256-byte boundary (in unit of 256 bytes or [31:8]).	HTXnLmBasOffset

HParaType = 03h (HParaSubType = 11h)

Sub-Address 11h: Texture 4x4 Filter Coeffiecient Table
There are $2^{\wedge} 5=32$ entries. The 5-bit fraction of " ff " or " tf " is as the index.

$\begin{aligned} & \text { Bit [31:24] } \\ & \text { Sub-Address } \end{aligned}$	Bit [23:0]	Description	Mnemonic
11h	31:22	Reserved	
	21:16	Coefficient Cm for 4x4 Filter Format as 1.5 positive fix-point maximum to 1.0	HTX4X4FItCm
	15	$\begin{aligned} & \text { Double the Coefficient Cr } \\ & \text { 0: Crd = HTX4X4FltCrd } \\ & \text { 1: Crd = HTX4X4FltCrd } \ll 1 \end{aligned}$	HTX4X4FltCrdE
	14:8	Coefficient C2 for 4x4 Filter Format as s1.5 2's complement fix-point maximum to 1.0 and minimum to -0.5	HTX4X4FItCrd
	7	$\begin{aligned} & \text { Double the Coefficient Clu } \\ & \text { 0: Clu = HTX4X4FltClu } \\ & \text { 1: Clu = HTX4X4FltClu } \ll 1 \end{aligned}$	HTX4X4FltCluE
	6:0	Coefficient Clu for 4×4 Filter Format as s1.5 2's complement fix-point maximum to 1.0 and minimum to -0.5	HTX4X4FItClu


```
Cl = HTX4X4Clu(sf) * 2^HTX4X4CluE(sf)
Cr}=HTX4X4Crd(sf)* 2^HTX4X4CrdE(sf
Csm = HTX4X4Cm(sf)
Cu= HTX4X4Clu(tf)* 2^HTX4X4CluE(tf)
Cd= HTX4X4Crd(tf) * 2^HTX4X4CrdE(tf)
Ctm = HTX4X4Cm(tf)
Cp1 = (1-Csm)*(1-Ctm)
Cp2 = Csm* (1 - Ctm)
Cp3 = (1-Csm)*Ctm
Cp4 = Csm*Ctm
```

$\mathrm{T} 1=(1-\mathrm{Cl}) *(1-\mathrm{Cu}) * \mathrm{~T} 1 \mathrm{ul}+\mathrm{Cl} *(1-\mathrm{Cu}) * \mathrm{~T} 1 \mathrm{ur}+(1-\mathrm{Cl})^{*} \mathrm{Cu} * \mathrm{~T} 1 \mathrm{dl}+\mathrm{Cl} * \mathrm{Cu} * \mathrm{~T} 1 \mathrm{dr}$
$\mathrm{T} 2=(1-\mathrm{Cr}) *(1-\mathrm{Cu}) * \mathrm{~T} 2 \mathrm{ul}+\mathrm{Cr} *(1-\mathrm{Cu})^{*} \mathrm{~T} 2 \mathrm{ur}+(1-\mathrm{Cr})^{*} \mathrm{Cu}^{*} \mathrm{~T} 2 \mathrm{dl}+\mathrm{Cr}^{*} \mathrm{Cu}^{*} \mathrm{~T}_{2} \mathrm{dr}$
$\mathrm{T} 3=(1-\mathrm{Cl}) *(1-\mathrm{Cd}) * \mathrm{~T} 3 \mathrm{ul}+\mathrm{Cl} *(1-\mathrm{Cd}) * \mathrm{~T} 3 \mathrm{ur}+(1-\mathrm{Cl}) * \mathrm{Cd} * \mathrm{~T} 3 \mathrm{dl}+\mathrm{Cl} * \mathrm{Cd} * \mathrm{~T} 3 \mathrm{dr}$
$\mathrm{T} 4=(1-\mathrm{Cr}) *(1-\mathrm{Cd}) * \mathrm{~T} 4 \mathrm{ul}+\mathrm{Cr} *(1-\mathrm{Cd}) * \mathrm{~T} 4 \mathrm{ur}+(1-\mathrm{Cr}) * \mathrm{Cd} * \mathrm{~T} 4 \mathrm{dl}+\mathrm{Cr} * \mathrm{Cd} * \mathrm{~T} 4 \mathrm{dr}$
$\mathrm{P}=\mathrm{T} 1 * \mathrm{Cp} 1+\mathrm{T} 2 * \mathrm{Cp} 2+\mathrm{T} 3 * \mathrm{Cp} 3+\mathrm{T} 4 * \mathrm{Cp} 4$

Technologies, Inc. we connect

HParaType $=03 \mathrm{~h}($ HParaSubType $=14 \mathrm{~h})$

Sub-Address 14h: Stipple Palette

Bit [31:24] Sub-Address	Bit [23:0]	Description	Mnemonic
14h	$31: 0$	32-Bit Stipple Palette Data	HSP

HParaType $=03 \mathrm{~h}($ HParaSubType $=15 \mathrm{~h}$, HParaAdr $=00 \mathrm{~h})$
Sub-Address 15h: de-Gamma Table for Reading Texture

$\begin{gathered} \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
15h	31:30	Rounding Mode 00: Truncate 01: Rounding 1x: Reserved	HDGTRTXRnd
	29:20	De-Gamma Table Value for Reading Texture at $\mathrm{C}=10{ }^{\prime} \mathrm{h} 0 \mathrm{C} 0$	HDGTRTX3
	19:10	De-Gamma Table Value for Reading Texture at C = 10'h080	HDGTRTX2
	9:0	De-Gamma Table Value for Reading Texture at C=10'h040	HDGTRTX1

$\underline{\text { HParaType }=03 \mathrm{~h}(\text { HParaSubType }=15 \mathrm{~h}, \mathrm{HParaAdr}=01 \mathrm{~h}) ~}$
Sub-Address 15h: de-Gamma Table for Reading Texture

$\begin{gathered} \hline \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
15h	31:30	Reserved	
	29:20	De-Gamma Table Value for Reading Texture at $\mathrm{C}=10$ 'h180	HDGTRTX6
	19:10	De-Gamma Table Value for Reading Texture at $\mathrm{C}=10$ 'h140	HDGTRTX5
	9:0	De-Gamma Table Value for Reading Texture at C = 10'h100	HDGTRTX4

$\underline{\text { HParaType }=03 \mathrm{~h}}$ (HParaSubType $=\mathbf{1 5 h}$, HParaAdr $=02 \mathrm{~h}$)

Sub-Address 15h: de-Gamma Table for Reading Texture

| Bit [31:24]
 Sub-Address | Bit [23:0] | | Description |
| :---: | :---: | :--- | :--- | Mnemonic \quad (

$\underline{\text { HParaType }=03 \mathrm{~h}}$ (HParaSubType $=\mathbf{1 5 h}$, HParaAdr $=03 \mathrm{~h}$)

Sub-Address 15h: de-Gamma Table for Reading Texture

| Bit [31:24]
 Sub-Address | Bit [23:0] | | Description |
| :---: | :---: | :--- | :--- | Mnemonic

$\underline{\text { HParaType }=03 \mathrm{~h}}($ HParaSubType $=15 \mathrm{~h}, \mathrm{HParaAdr}=\mathbf{0 4 h})$

Sub-Address 15h: de-Gamma Table for Reading Texture

$\begin{gathered} \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
15h	31:30	Reserved	
	29:20	De-Gamma Table Value for Reading Texture at $\mathbf{C}=10$ ' h 3 C 0	HDGTRTXF
	19:10	De-Gamma Table Value for Reading Texture at $\mathbf{C}=10$ ' $\mathbf{3 8 8 0}$	HDGTRTXE
	9:0	De-Gamma Table Value for Reading Texture at C = 10'h340	HDGTRTXD

Technologies, Inc. we connect

$\underline{\text { HParaType }=03 \mathrm{~h}}($ HParaSubType $=17 \mathrm{~h}$, HParaAdr $=00 \mathrm{~h})$

Sub-Address 17h: de-Gamma Table for Writing Color

| Bit [31:24]
 Sub-Address | Bit [23:0] | | Description |
| :---: | :---: | :--- | :--- | Mnemonic | (7h |
| :--- |
| |

HParaType $=03 \mathrm{~h}($ HParaSubType $=17 \mathrm{~h}, \mathrm{HParaAdr}=01 \mathrm{~h})$

Sub-Address 17h: de-Gamma Table for Writing Color

Bit [31:24] Sub-Address	Bit [23:0]	Description	Mnemonic
17h	31:30	Rounding Mode for G Channel 00: Truncate 01: Rounding 1x: Reserved	HGTWGRnd
	29:20	De-Gamma Table Value for Writing R Channel at $\mathrm{R}=10$ 'h002	HGTWR2
	19:10	De-Gamma Table Value for Writing G Channel at $G=10$ 'h002	HGTWG2
	9:0	De-Gamma Table Value for Writing B Channel at B=10'h002	HGTWB2

ParaType $=03 \mathrm{~h}($ HParaSubType $=17 \mathrm{~h}, \mathrm{HParaAdr}=02 \mathrm{~h})$

Sub-Address 17h: de-Gamma Table for Writing Color

$\begin{gathered} \hline \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
17h	31:30	Rounding Mode for B Channel 00: Truncate 01: Rounding 1x: Reserved	HGTWBRnd
	29:20	De-Gamma Table Value for Writing R Channel at $\mathrm{R}=10$ 'h003	HGTWR3
	19:10	De-Gamma Table Value for Writing G Channel at G = 10'h003	HGTWG3
	9:0	De-Gamma Table Value for Writing B Channel at B=10'h003	HGTWB3

$\underline{\text { HParaType }=03 \mathrm{~h}}$ (HParaSubType $=\mathbf{1 7 h}$, HParaAdr $=03 \mathrm{~h}$)

Sub-Address 17h: de-Gamma Table for Writing Color

| Bit [31:24]
 Sub-Address | Bit [23:0] | | Description |
| :---: | :---: | :--- | :--- | Mnemonic

$\underline{\text { HParaType }=03 \mathrm{~h}}($ HParaSubType $=\mathbf{1 7 h}$, HParaAdr $=\mathbf{0 4 h})$

Sub-Address 17h: de-Gamma Table for Writing Color

$\begin{gathered} \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
17h	31	Instead of Gamma Correction, but deGamma correction for G Channel 0 : Gamma correction 1: de-Gamma correction	HGTWGDeGamma
	30	Reserved	
	29:20	De-Gamma Table Value for Writing R Channel at $\mathrm{R}=10$ 'h006	HGTWR5
	19:10	De-Gamma Table Value for Writing G Channel at G = 10'h006	HGTWG5
	9:0	De-Gamma Table Value for Writing B Channel at B = 10'h006	HGTWB5

$\underline{\text { HParaType }=03 \mathrm{~h}(\text { HParaSubType }=17 \mathrm{~h}, \mathrm{HParaAdr}=05 \mathrm{~h})}$
Sub-Address 17h: de-Gamma Table for Writing Color

$\begin{gathered} \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
17h	31	Instead of Gamma Correction, but deGamma correction for B Channel 0 : Gamma correction 1: de-Gamma correction	HGTWBDeGamma
	30	Reserved	
	29:20	De-Gamma Table Value for Writing R Channel at $\mathrm{R}=10$ 'h008	HGTWR6
	19:10	De-Gamma Table Value for Writing G Channel at G = 10'h008	HGTWG6
	9:0	De-Gamma Table Value for Writing B Channel at B = 10'h008	HGTWB6

$\underline{\text { HParaType }=03 \mathrm{~h}(\text { HParaSubType }=17 \mathrm{~h}, \text { HParaAdr }=06 \mathrm{~h}) ~}$

Sub-Address 17h: de-Gamma Table for Writing Color

| Bit [31:24]
 Sub-Address | Bit [23:0] | | Description |
| :---: | :---: | :--- | :--- | Mnemonic \quad (

$\underline{\text { HParaType }=03 \mathrm{~h}(\text { HParaSubType }=17 \mathrm{~h}, \mathrm{HParaAdr}=\mathbf{0 7 h})}$

Sub-Address 17h: de-Gamma Table for Writing Color

$\begin{gathered} \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
17h	31:30	Reserved	
	29:20	De-Gamma Table Value for Writing R Channel at $\mathrm{R}=10$ 'h010	HGTWR8
	19:10	De-Gamma Table Value for Writing G Channel at G = 10'h010	HGTWG8
	9:0	De-Gamma Table Value for Writing B Channel at B=10'h010	HGTWB8

$\underline{\text { HParaType }=03 \mathrm{~h}(\text { HParaSubType }=17 \mathrm{~h}, \mathrm{HParaAdr}=\mathbf{0 8 h})}$

Sub-Address 17h: de-Gamma Table for Writing Color

Bit [31:24] Sub-Address	Bit [23:0]	Description	Mnemonic
17h	31:30	Reserved	
	29:20	De-Gamma Table Value for Writing R Channel at $\mathrm{R}=10$ 'h018	HGTWR9
	19:10	De-Gamma Table Value for Writing G Channel at $\mathrm{G}=10^{\prime} \mathrm{h} 018$	HGTWG9
	9:0	De-Gamma Table Value for Writing B Channel at B=10'h018	HGTWB9

Technologies, Inc. we connect
$\underline{\text { HParaType }=03 \mathrm{~h}}($ HParaSubType $=17 \mathrm{~h}$, HParaAdr $=09 \mathrm{~h})$
Sub-Address 17h: de-Gamma Table for Writing Color

$\begin{gathered} \hline \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
17h	31:30	Reserved	
	29:20	De-Gamma Table Value for Writing R Channel at $\mathrm{R}=10$ 'h020	HGTWRA
	19:10	De-Gamma Table Value for Writing G Channel at $G=10$ 'h020	HGTWGA
	9:0	De-Gamma Table Value for Writing B Channel at B = 10'h020	HGTWBA

HParaType = 03h (HParaSubType $=17 \mathrm{~h}$, HParaAdr $=$ Ah $)$

Sub-Address 17h: de-Gamma Table for Writing Color

| Bit [31:24]
 Sub-Address | Bit [23:0] | | Description |
| :---: | :---: | :--- | :--- | Mnemonic \quad (

$\underline{\text { HParaType }=03 \mathrm{~h}(\text { HParaSubType }=17 \mathrm{~h}, \text { HParaAdr }=\text { Bh }) ~}$

Sub-Address 17h: de-Gamma Table for Writing Color

Bit [31:24] Sub-Address	Bit [23:0]	Description	Mnemonic
17h	31:30	Reserved	
	29:20	De-Gamma Table Value for Writing R Channel at $\mathrm{R}=10$ 'h040	HGTWRC
	19:10	De-Gamma Table Value for Writing G Channel at $G=10 ' \mathrm{h040}$	HGTWGC
	9:0	De-Gamma Table Value for Writing B Channel at B=10'h040	HGTWBC

HParaType $=03 \mathrm{~h}($ HParaSubType $=17 \mathrm{~h}$, HParaAdr $=\mathrm{Ch}$)

Sub-Address 17h: de-Gamma Table for Writing Color

$\begin{gathered} \hline \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
17h	31:30	Reserved	
	29:20	De-Gamma Table Value for Writing R Channel at $\mathrm{R}=10$ 'h050	HGTWRD
	19:10	De-Gamma Table Value for Writing G Channel at $\mathbf{G}=10$ 'h050	HGTWGD
	9:0	De-Gamma Table Value for Writing B Channel at B = 10'h050	HGTWBD

HParaType = 03h (HParaSubType $=17 \mathrm{~h}, \mathrm{HParaAdr}=\mathrm{Dh})$

Sub-Address 17h: de-Gamma Table for Writing Color

Bit [31:24] Sub-Address	Bit [23:0]	Description	Mnemonic
17h	31:30	Reserved	
	29:20	De-Gamma Table Value for Writing R Channel at $\mathrm{R}=10$ 'h060	HGTWRE
	19:10	De-Gamma Table Value for Writing G Channel at $\mathbf{G}=10$ 'h060	HGTWGE
	9:0	De-Gamma Table Value for Writing B Channel at B = 10'h060	HGTWBE

HParaType $=03 \mathrm{~h}($ HParaSubType $=17 \mathrm{~h}$, HParaAdr $=$ Eh $)$
Sub-Address 17h: de-Gamma Table for Writing Color

$\begin{gathered} \hline \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
17h	31:30	Reserved	
	29:20	De-Gamma Table Value for Writing R Channel at $\mathrm{R}=10$ 'h070	HGTWRF
	19:10	De-Gamma Table Value for Writing G Channel at $G=10$ 'h070	HGTWGF
	9:0	De-Gamma Table Value for Writing B Channel at B = 10'h070	HGTWBF

Technologies, Inc. we connect
$\underline{\text { HParaType }=03 \mathrm{~h}(\text { HParaSubType }=17 \mathrm{~h}, \text { HParaAdr }=\text { Fh }) ~}$
Sub-Address 17h: de-Gamma Table for Writing Color

$\begin{gathered} \hline \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
17h	31:30	Reserved	
	29:20	De-Gamma Table Value for Writing R Channel at $\mathrm{R}=10$ 'h080	HGTWR10
	19:10	De-Gamma Table Value for Writing G Channel at G $=10$ 'h080	HGTWG10
	9:0	De-Gamma Table Value for Writing B Channel at B = 10'h090	HTWB10

$\underline{\text { HParaType }=03 \mathrm{~h}}$ (HParaSubType $=\mathbf{1 7 h}$, HParaAdr $=10 \mathrm{~h}$)

Sub-Address 17h: de-Gamma Table for Writing Color

| Bit [31:24]
 Sub-Address | Bit [23:0] | | Description |
| :---: | :---: | :--- | :--- | Mnemonic \quad (

$\underline{\text { HParaType }=03 \mathrm{~h}}$ (HParaSubType $=\mathbf{1 7 h}$, HParaAdr $=11 \mathrm{~h}$)

Sub-Address 17h: de-Gamma Table for Writing Color

$\begin{gathered} \hline \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
17h	31:30	Reserved	
	29:20	De-Gamma Table Value for Writing R Channel at $\mathrm{R}=10$ 'h0C0	HGTWR12
	19:10	De-Gamma Table Value for Writing G Channel at $G=10 ' \mathrm{h0C0}$	HGTWG12
	9:0	De-Gamma Table Value for Writing B Channel at $B=10^{\prime} \mathrm{h} 0 \mathrm{C} 0$	HGTWB12

$\underline{\text { HParaType }=03 \mathrm{~h}}$ (HParaSubType $=\mathbf{1 7 h}$, HParaAdr $=12 \mathrm{~h}$)

Sub-Address 17h: de-Gamma Table for Writing Color

$\begin{gathered} \hline \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
17h	31:30	Reserved	
	29:20	De-Gamma Table Value for Writing R Channel at $\mathrm{R}=10$ 'h0E0	HGTWR13
	19:10	De-Gamma Table Value for Writing G Channel at $G=10 \prime \mathrm{h0E0}$	HGTWG13
	9:0	De-Gamma Table Value for Writing B Channel at B = 10'h0E0	HGTWB13

$\underline{\text { HParaType }=03 \mathrm{~h}}($ HParaSubType $=17 \mathrm{~h}, \mathrm{HParaAdr}=13 \mathrm{~h})$

Sub-Address 17h: de-Gamma Table for Writing Color

Bit [31:24] Sub-Address	Bit [23:0]	Description	Mnemonic
17h	31:30	Reserved	
	29:20	De-Gamma Table Value for Writing R Channel at $\mathrm{R}=10$ 'h100	HGTWR14
	19:10	De-Gamma Table Value for Writing G Channel at $\mathbf{G}=10^{\prime} \mathbf{h 1 0 0}$	HGTWG14
	9:0	De-Gamma Table Value for Writing B Channel at B = 10'h100	HGTWB14

HParaType $=03 \mathrm{~h}($ HParaSubType $=17 \mathrm{~h}, \mathrm{HParaAdr}=14 \mathrm{~h})$
Sub-Address 17h: de-Gamma Table for Writing Color

$\begin{gathered} \hline \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
17h	31:30	Reserved	
	29:20	De-Gamma Table Value for Writing R Channel at $\mathrm{R}=10$ 'h140	HGTWR15
	19:10	De-Gamma Table Value for Writing G Channel at $G=10$ 'h140	HGTWG15
	9:0	De-Gamma Table Value for Writing B Channel at B = 10'h140	HGTWB15

Technologies, Inc. we connect
$\underline{\text { HParaType }=03 \mathrm{~h}}($ HParaSubType $=17 \mathrm{~h}, \mathrm{HParaAdr}=15 \mathrm{~h})$
Sub-Address 17h: de-Gamma Table for Writing Color

$\begin{gathered} \hline \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
17h	31:30	Reserved	
	29:20	De-Gamma Table Value for Writing R Channel at $\mathrm{R}=10$ 'h180	HGTWR16
	19:10	De-Gamma Table Value for Writing G Channel at $\mathrm{G}=1 \mathbf{1 0}^{\prime} \mathrm{h} 180$	HGTWG16
	9:0	De-Gamma Table Value for Writing B Channel at B = 10'h180	HGTWB16

$\underline{\text { HParaType }=03 \mathrm{~h}}$ (HParaSubType $=\mathbf{1 7 h}$, HParaAdr $=16 \mathrm{~h}$)

Sub-Address 17h: de-Gamma Table for Writing Color

| Bit [31:24]
 Sub-Address | Bit [23:0] | | Description |
| :---: | :---: | :--- | :--- | Mnemonic \quad (

$\underline{\text { HParaType }=03 \mathrm{~h}}$ (HParaSubType $=\mathbf{1 7 h}$, HParaAdr $=17 \mathrm{~h}$)

Sub-Address 17h: de-Gamma Table for Writing Color

$\begin{gathered} \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
17h	31:30	Reserved	
	29:20	De-Gamma Table Value for Writing R Channel at $\mathrm{R}=10$ 'h200	HGTWR18
	19:10	De-Gamma Table Value for Writing G Channel at G = 10'h200	HGTWG18
	9:0	De-Gamma Table Value for Writing B Channel at B=10'h200	HGTWB18

$\underline{\text { HParaType }=03 \mathrm{~h}}$ (HParaSubType $=17 \mathrm{~h}$, HParaAdr $=18 \mathrm{~h}$)

Sub-Address 17h: de-Gamma Table for Writing Color

Bit [31:24] Sub-Address	Bit [23:0]	Description	Mnemonic
17h	31:30	Reserved	
	29:20	De-Gamma Table Value for Writing R Channel at $\mathrm{R}=10$ 'h240	HGTWR19
	19:10	De-Gamma Table Value for Writing G Channel at $\mathrm{G}=1 \mathbf{1 0}^{\prime} \mathrm{h} 240$	HGTWG19
	9:0	De-Gamma Table Value for Writing B Channel at B = 10'h240	HGTWB19

HParaType $=03 \mathrm{~h}($ HParaSubType $=17 \mathrm{~h}, \mathbf{H P a r a A d r}=19 \mathrm{~h})$

Sub-Address 17h: de-Gamma Table for Writing Color

Bit [31:24] Sub-Address	Bit [23:0]	Description	Mnemonic
17h	31:30	Reserved	
	29:20	De-Gamma Table Value for Writing R Channel at $\mathrm{R}=10$ 'h280	HGTWR1A
	19:10	De-Gamma Table Value for Writing G Channel at G = 10' $\mathbf{h 2 8 0}$	HGTWG1A
	9:0	De-Gamma Table Value for Writing B Channel at B=10'h280	HGTWB1A

Technologies, Inc. we connect

$\underline{\text { HParaType }=03 \mathrm{~h}}$ (HParaSubType $=17 \mathrm{~h}$, HParaAdr $=1 \mathrm{Ah}$)

Sub-Address 17h: de-Gamma Table for Writing Color

$\begin{gathered} \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
17h	31:30	Reserved	
	29:20	De-Gamma Table Value for Writing R Channel at $\mathrm{R}=10$ 'h2C0	HGTWR1B
	19:10	De-Gamma Table Value for Writing G Channel at G = 10'h2C0	HGTWG1B
	9:0	De-Gamma Table Value for Writing B Channel at B=10'h2C0	HGTWB1B

$\underline{\text { HParaType }}=\mathbf{0 3 h}($ HParaSubType $=17 \mathrm{~h}$, HParaAdr $=1 \mathrm{Bh})$

Sub-Address 17h: de-Gamma Table for Writing Color

$\begin{gathered} \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
17h	31:30	Reserved	
	29:20	De-Gamma Table Value for Writing R Channel at $\mathrm{R}=10$ 'h300	HGTWR1C
	19:10	De-Gamma Table Value for Writing G Channel at G = 10' $\mathbf{h 3 0 0}$	HGTWG1C
	9:0	De-Gamma Table Value for Writing B Channel at B=10'h300	HGTWB1C

HParaType $=03 \mathrm{~h}$ (HParaSubType $=17 \mathrm{~h}$, HParaAdr $=1 \mathrm{Ch}$)

Sub-Address 17h: de-Gamma Table for Writing Color

$\begin{gathered} \hline \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
17h	31:30	Reserved	
	29:20	De-Gamma Table Value for Writing R Channel at $\mathrm{R}=10$ 'h340	HGTWR1D
	19:10	De-Gamma Table Value for Writing G Channel at G = 10'h340	HGTWG1D
	9:0	De-Gamma Table Value for Writing B Channel at B = 10'h340	HGTWB1D

HParaType $=03 \mathrm{~h}($ HParaSubType $=17 \mathrm{~h}$, HParaAdr $=1 \mathrm{Dh})$

Sub-Address 17h: de-Gamma Table for Writing Color

Bit [31:24] Sub-Address	Bit [23:0]	Description	Mnemonic
17h	31:30	Reserved	
	29:20	De-Gamma Table Value for Writing R Channel at $\mathrm{R}=10$ 'h380	HGTWR1E
	19:10	De-Gamma Table Value for Writing G Channel at $G=10$ 'h380	HGTWG1E
	9:0	De-Gamma Table Value for Writing B Channel at B=10'h380	HGTWB1E

$\underline{\text { HParaType }=03 \mathrm{~h}(\text { HParaSubType }=17 \mathrm{~h}, \text { HParaAdr }=1 \mathrm{Eh})}$
Sub-Address 17h: de-Gamma Table for Writing Color

Bit [31:24] Sub-Address	Bit [23:0]	Description	Mnemonic
17h	31:30	Reserved	
	29:20	De-Gamma Table Value for Writing R Channel at $\mathrm{R}=10$ 'h3C0	HGTWR1F
	19:10	De-Gamma Table Value for Writing G Channel at G = 10'h3C0	HGTWG1F
	9:0	De-Gamma Table Value for Writing B Channel at B=10'h3C0	HGTWB1F

HParaType $=03 \mathrm{~h}($ HParaSubType $=20 \mathrm{~h})$

Sub-Address 20h: Pixel Shader ALU Instruction
Each instruction contains 4 double words. HParaAdr $(4 n+3)$ to $(4 n)$ are as the n-th instruction. Because of total 96 instructions, there are up to $96 * 4(=384)$ entries.

Bit [31:24] Sub-Address	Bit [23:0]	Description	Mnemonic
20h	$31: 0$	Pixel Shader ALU instruction	HPSALUINST

HParaType $=03 \mathrm{~h}($ HParaSubType $=21 \mathrm{~h})$

Sub-Address 21h: Pixel Shader TAU Instruction
There are totally 32 32-bit TAU instructions.

Bit [31:24] Sub-Address	Bit [23:0]	Description	Mnemonic
21h	$31: 0$	Pixel Shader TAU instruction	HPSTAUINST

HParaType $=03 \mathrm{~h}($ HParaSubType $=22 \mathrm{~h})$

Sub-Address 22h: Pixel Shader Constant Registers

Each constant register contains 4 32-bit components.
HParaAdr (4 n) is as the 1 st component of the n-th constant register.
HParaAdr $(4 n+1)$ is as the 2 nd component of the n -th constant register.
HParaAdr $(4 n+2)$ is as the 3 rd component of the n-th constant register.
HParaAdr $(4 n+3)$ is as the 4 th component of the n-th constant register.
Where n is from 0 to 22 , and 32 to 54
If HPSDbCnstR is set, the n from 32 to 54 is the same as the n from 0 to 22 . And HW would fill n from 32 to 54 automatly.

| Bit [31:24]
 Sub-Address | Bit [23:0] | | Description |
| :---: | :---: | :---: | :---: | Mnemonic | 22h | $31: 0$ | Pixel Shader's Constant Register as Floating s[8].23
 HW would automately transform the 32-bit floating to 24-bit floating format. |
| :---: | :---: | :---: |

VX800 / VX820 Series Chrome9 HC3 Programming Manual

HParaType 04h: Vertex and Primitive Setting

HParaType $=04 \mathrm{~h}$

Sub-Address 00h-1Fh: Flexible Vertex Format

Bit [31:24] Sub-Address	Bit [23:0]	Description	Mnemonic
00h	23:22	Flexibility Vertex Format's (X, Y) Test Mode 00: Disable 01: If (X or Y is "Not-a-Number) then ignore corresponded primitive 1 x : If (X or Y is "Not-a-Number) then ignore corresponded primitive list	HFVFXYTMode
	21:20	Flexibility Vertex Format's Z Test Mode 00: Disable 01: If (Z is "Not-a-Number) then ignore corresponded primitive 1 x : If (Z is "Not-a-Number) then ignore corresponded primitive list	HFVFZTMode
	19:18	Flexibility Vertex Format's W Test Mode 00: Disable 01: If (W is "Not-a-Number) then ignore corresponded primitive 1 x : If (W is "Not-a-Number) then ignore corresponded primitive list	HFVFWTMode
	17	Switch the Flexibility Vertex Format's X to Y, and Y to X 0: Keep 1: Switch	HFVFXYSwitch
	16:15	Location of Vertex Buffer 00: System Local Frame Buffer (S.L.) 01: System Dynamic Frame Buffer (S.F.) 10: Reserved (System Memory) 11: Reserved Note to Driver and HW: All vertex buffers are located in SF.	HVBLoc
	14:6	Reserved	
	5:0	Length of FVF Vertex Length (in unit of 32 bits)	HFVFLEN
01h	23:22	Reserved	
	21:16	The $3^{\text {rd }}$ FVF Attribute Number. (X, Y,QJ, BFCdiff, BFCspec)	H03FVF
	15:14	Reserved	
	13:8	The $2^{\text {nd }}$ FVF Attribute Number. (X, Y,QJ, BFCdiff, BFCspec)	H02FVF
	7:6	Reserved	

VX800 / VX820 Series Chrome9 HC3 Programming Manual

	5:0	The $1^{\text {st }}$ FVF Attribute Number. (X, Y,QJ, BFCdiff, BFCspec) 00h: X 01h: Y 02h: Z 03h: W 04h: Point Size 05h: Color 0 : Diffuse 06h: Color 1 : Specula 07h: Fog Factor 08h: S of TextureA 09h: T of TextureA 0 Ah : R of TextureA 0Bh: Q of TextureA 0 Ch : S of TextureB 0 Dh : T of TextureB 0Eh: R of TextureB 0 Fh : Q of TextureB 10h: S of TextureC 11h: T of TextureC 12h: R of TextureC 13h: Q of TextureC 14h: S of TextureD 15h: T of TextureD 16h: R of TextureD 17h: Q of TextureD 18h: S of TextureE 19h: T of TextureE 1Ah: R of TextureE 1Bh: Q of TextureE 1Ch: S of TextureF 1Dh: T of TextureF 1Eh: R of TextureF 1Fh: Q of TextureF 20h: S of TextureG 21h: T of TextureG 22h: R of TextureG 23h: Q of TextureG 24h: S of TextureH 25h: T of TextureH 26h: R of TextureH 27h: Q of TextureH 28h: S of TextureI 29h: T of TextureI 2Ah: R of TextureI 2Bh: Q of TextureI 2Ch: S of TextureJ 2Dh: T of TextureJ 2Eh: R of TextureJ 2Fh: Q of TextureJ 30h: Reserved 31h: Back Face Color0(BFCdiff) 32h: Back Face Color1(BFCspec)	H01FVF
02h	23:22	Reserved	
	21:16	The $6^{\text {th }}$ FVF Attribute Number. (X, Y,QJ, BFCdiff, BFCspec)	H06FVF
	15:14	Reserved	
	13:8	The $5^{\text {th }}$ FVF Attribute Number. (X, Y,QJ, BFCdiff, BFCspec)	H05FVF
	7:6	Reserved	
	5:0	The $4^{\text {th }}$ FVF Attribute Number. (X, Y,QJ, BFCdiff, BFCspec)	H04FVF
03h	23:22	Reserved	
	21:16	The $9^{\text {th }}$ FVF Attribute Number. (X, Y,QJ, BFCdiff, BFCspec)	H09FVF
	15:14	Reserved	
	13:8	The $8^{\text {th }}$ FVF Attribute Number. (X, Y,QJ, BFCdiff, BFCspec)	H08FVF
	7:6	Reserved	
	5:0	The $7^{\text {th }}$ FVF Attribute Number. (X, Y,QJ, BFCdiff, BFCspec)	H07FVF
04h	23:22	Reserved	
	21:16	The $12^{\text {th }}$ FVF Attribute Number. (X, Y,QJ, BFCdiff, BFCspec)	H12FVF
	15:14	Reserved	
	13:8	The $11^{\text {th }}$ FVF Attribute Number. (X, Y,QJ, BFCdiff, BFCspec)	H11FVF
	7:6	Reserved	
	5:0	The $10^{\text {th }}$ FVF Attribute Number. (X, Y,QJ, BFCdiff, BFCspec)	H10FVF
05h	23:22	Reserved	

Technologies, Inc. we connect

VX800 / VX820 Series Chrome9 HC3 Programming Manual

| | $17: 12$ | The 50 ${ }^{\text {th }}$ FVF Attribute Number. (X, Y, $\ldots .$. QJ, BFCdiff, BFCspec) | H50FVF |
| :---: | :---: | :--- | :--- | :--- |
| | $11: 6$ | The 49 ${ }^{\text {th }}$ FVF Attribute Number. (X, Y, \ldots.. QJ, BFCdiff, BFCspec) | H49FVF |
| | $5: 0$ | The $\mathbf{4 8}^{\text {th }}$ FVF Attribute Number. (X, Y, $\ldots \ldots$ QJ, BFCdiff, BFCspec) | H48FVF |
| | $23: 0$ | Reserved | |

HParaType $=04 \mathrm{~h}$

Sub-Address 20h-3Fh: Vertex Buffer \& Primitive Setting
There are totally 32 32-bit TAU instructions.

$\begin{gathered} \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
20h	23	Disable Clipping for Triangle Point (Just near plane) 0: Enable 1: Disable Note to Driver: This register is only for triangle with fill mode "point". When this register enabled, there might be 2 new points resulted fromnear plane clipping, and their attribute such as point size, color, texsture.... Are interpolated from the original 3 vertices. When disabled(HenCL4TriPoint_N = 1), HW just renders the vertices inside the view volumn.	HenCL4TriPoint_N
	22:21	Reserved	
	21:16	The Setting of Second or Even One-vertex Triangle Bit [21:20] Setting of Vertex a This setting is used for both triangle and line rendering. 00 : Vertex a is a new input 01: The Vertex a will be replaced by previous Vertex a. 10: The Vertex a will be replaced by previous Vertex b. 11: The Vertex a will be replaced by previous Vertex c. Bit [19:18] Setting of Vertex b This setting is used for both triangle and line rendering. 00 : Vertex b is a new input 01: The Vertex b will be replaced by previous Vertex a. 10: The Vertex b will be replaced by previous Vertex b . 11: The Vertex b will be replaced by previous Vertex c . Bit [17:16] Setting of Vertex c This setting is used for both triangle and line rendering. 00 : Vertex c is a new input 01: The Vertex c will be replaced by previous Vertex a. 10: The Vertex c will be replaced by previous Vertex b. 11: The Vertex c will be replaced by previous Vertex c.	H2nd1VT
	15:8	Primitive Render Mode 00000000: Full Vertex Cycle For Triangle Rendering, this is the 3 vertexes cycle For Line Rendering, this is the 2 vertexes cycle 10xxxxxx: Reserved x1xxxxxx: Automatic Fast Primitive Vertex Cycle For Triangle Rendering, this is a fast way to render 3111 Mode For Line Rendering, this is a fast way to render 2111 Mode The first or odd single vertex cycle will use the setting of bit [5:0]. The second or even single vertex cycle will use the setting of H2nd1VT. Bit [13:12] Setting of Vertex a This setting is used for both triangle and line rendering. 00 : Vertex a is a new input 01: The Vertex a will be replaced by previous Vertex a. 10: The Vertex a will be replaced by previous Vertex b. 11: The Vertex a will be replaced by previous Vertex c. Bit [11:10] Setting of Vertex b This setting is used for both triangle and line rendering. 00 : Vertex b is a new input 01: The Vertex b will be replaced by previous Vertex a . 10: The Vertex b will be replaced by previous Vertex b. 11: The Vertex b will be replaced by previous Vertex c. Bit [9:8] Setting of Vertex c This setting is used for both triangle and line rendering. 00 : Vertex c is a new input 01: The Vertex c will be replaced by previous Vertex a. 10: The Vertex c will be replaced by previous Vertex b. 11: The Vertex c will be replaced by previous Vertex c.	HVCycle
	7:2	Reserved	
	1	Vertex Buffer Index Mode 0: 16-bits index 1: 32-bits index	HVBIndexMode
	0	Vertex Mode 0: Command Mode Vertex 1: Index Mode Vertex	HVertexMode
21h	23:0	Lower 3 Bytes of Vertex Buffer Base Address	HVBBaseL

VX800 / VX820 Series Chrome9 HC3 Programming Manual

22h	23:16	Reserved	
	15:8	Pitch of Each Vertex in Vertex Buffer	HVBPitch
	7:0	Higher Byte of Vertex Buffer Base Address	HVBBaseH
23h	23:16	Reserved	
	15	Last Pixel Control for Drawing Line 0: Discard the last pixel of each line 1: Draw the last pixel of each line	HLLastP
	14:12	Shading Setting 000: Solid Shading 001: Flat Shading Via Vertex a 010: Flat Shading Via Vertex b 011: Flat Shading Via Vertex c 100: Gouraud Shading	HShading
	11:9	Edge Flag We assume the vertex transmission sequence of a triangle is a, b, then c. 000: Render NO Edge for triangle wire-frame or antialiasing 1xx: Render Edge (a, b) for triangle wire-frame or antialiasing x 1 x : Render Edge(b, c) for triangle wire-frame or antialiasing xx 1 : Render Edge(c, a) for triangle wire-frame or antialiasing	HEFlag
	8	Back Face Mode for "Culling" 0 : If the vertex input is in the order of clockwise, it would be "culled" 1: If the vertex input is in the order of counterclockwise, it would be "culled"	HBFace4Cull
	7	Back Face Mode for VS's output "oBFD\#" 0 : If the vertex input is in the order of clockwise, "oBFD\#" would be selected as the vertex color 1: If the vertex input is in the order of counterclockwise, "oBFD\#" would be selected as the vertex color Note to Driver: Whenever the configure of VS's Output Registers contains oBD\#, and HenBFCull is false, HW would select oD\# or oBFD\# as Color 0 and Color1. And the algorithm is as: If (HenBFCull \& triangle meets HBFcae4Cull) Drop the triangle Else if ((FVFMask has Back Face Color0 \| FVFMask has Back Face Color1) \& triangle meet HBFcae4BFD) C0 = Back Face Color 0 C1 = Back Face Color 1 Else $\begin{aligned} & \mathrm{C} 0=\text { Color } 0 \\ & \mathrm{C} 1=\operatorname{Color} 1 \end{aligned}$	HBFace4BFD
	6:5	Primitive Type for Clock-Wise Triangle 00: Triangle Rendering for Hen2FRender enabled and clock-wise primitive 01: Reserved 10: Triangle Wire-frame Rendering for Hen2FRender enabled and clock-wise primitive 11: Triangle Point Rendering for Hen2FRender enabled and clock-wise primitive	HPMTypeCW
	4	Render mode(PMType) is Different for Front-Face and Back-Face Primitive The related PMType is "Triangle", "Triangle Wire-Frame" and "Triangle Point". 0 : The PMType for both front-face and back-face is the same, or only one kind of face is rendered. 1: The PMType is different for front-face and back-face primitive.	Hen2FRender
	3:0	Primitive Type 0000: Point Rendering 0001: Line Rendering 0010: Triangle Rendering for "Hen2Frender" is false, or Hen2Frender enabled and counter- clock-wise primitive 0011: Reserved 0100: Rectangle 0101: Reserved 0110: Triangle Wire-frame Rendering for "Hen2Frender" is false, or Hen2Frender enabled and counter-clock-wise primitive 0111: Triangle Point Rendering for "Hen2Frender" is false, or Hen2Frender enabled and counter-clock-wise primitive 1xxx: Reserved	HPMType
24h	23:0	Vertexes Number n : There are n vertexes in current primitive list	HVTXNum
25h	23:0	Vertexes Number Bit [23]: X Parameter Mask 0: Primitive Vertex Parameter does not have X 1: Primitive Vertex Parameter has X Bit [22]: Y Parameter Mask 0: Primitive Vertex Parameter does not have Y	HFVFMSK1

VX800 / VX820 Series Chrome9 HC3 Programming Manual

26h	23:16	Flexible Vertex Format Mask Bit [23]: Texture I's S Parameter Mask 0: Primitive Vertex Parameter does not have Texture Coordinate S 1: Primitive Vertex Parameter has Texture Coordinate S Bit [22]: Texture I's T Parameter Mask 0: Primitive Vertex Parameter does not have Texture Coordinate T 1: Primitive Vertex Parameter has Texture Coordinate T Bit [21]: Texture I's R Parameter Mask 0: Primitive Vertex Parameter does not have Texture Coordinate R 1: Primitive Vertex Parameter has Texture Coordinate R Bit [20]: Texture I's Q Parameter Mask 0: Primitive Vertex Parameter does not have Texture Coordinate Q 1: Primitive Vertex Parameter has Texture Coordinate Q Bit [19]: Texture J's S Parameter Mask 0: Primitive Vertex Parameter does not have Texture Coordinate S 1: Primitive Vertex Parameter has Texture Coordinate S Bit [18]: Texture J's T Parameter Mask 0: Primitive Vertex Parameter does not have Texture Coordinate T 1: Primitive Vertex Parameter has Texture Coordinate T Bit [17]: Texture J's R Parameter Mask 0: Primitive Vertex Parameter does not have Texture Coordinate R 1: Primitive Vertex Parameter has Texture Coordinate R Bit [16]: Texture J's Q Parameter Mask 0: Primitive Vertex Parameter does not have Texture Coordinate Q 1: Primitive Vertex Parameter has Texture Coordinate Q	HFVFMSK3

VX800 / VX820 Series Chrome9 HC3 Programming Manual

VX800 / VX820 Series Chrome9 HC3 Programming Manual

	15:0	Vertex Parameter Mask Bit [15]: Texture 4's S Parameter Mask 0: Primitive Vertex Parameter does not have Texture Coordinate S thus use default Value ?? 1: Primitive Vertex Parameter has Texture Coordinate S Bit [14]: Texture 4's T Parameter Mask 0: Primitive Vertex Parameter does not have Texture Coordinate T thus use default Value ?? 1: Primitive Vertex Parameter has Texture Coordinate T Bit [13]: Texture 4's R Parameter Mask 0: Primitive Vertex Parameter does not have Texture Coordinate R thus use default Value ?? 1: Primitive Vertex Parameter has Texture Coordinate R Bit [12]: Texture 4's Q Parameter Mask 0: Primitive Vertex Parameter does not have Texture Coordinate Q thus use default Value ?? 1: Primitive Vertex Parameter has Texture Coordinate Q Bit [11]: Texture 5's S Parameter Mask 0: Primitive Vertex Parameter does not have Texture Coordinate S thus use default Value ?? 1: Primitive Vertex Parameter has Texture Coordinate S Bit [10]: Texture 5's T Parameter Mask 0: Primitive Vertex Parameter does not have Texture Coordinate T thus use default Value ?? 1: Primitive Vertex Parameter has Texture Coordinate T Bit [9]: Texture 5's R Parameter Mask 0: Primitive Vertex Parameter does not have Texture Coordinate R thus use default Value ?? 1: Primitive Vertex Parameter has Texture Coordinate R Bit [8]: Texture 5's Q Parameter Mask 0: Primitive Vertex Parameter does not have Texture Coordinate Q thus use default Value ?? 1: Primitive Vertex Parameter has Texture Coordinate Q Bit [7]: Texture 6's S Parameter Mask 0: Primitive Vertex Parameter does not have Texture Coordinate S thus use default Value ?? 1: Primitive Vertex Parameter has Texture Coordinate S Bit [6]: Texture 6's T Parameter Mask 0: Primitive Vertex Parameter does not have Texture Coordinate T thus use default Value ?? 1: Primitive Vertex Parameter has Texture Coordinate T Bit [5]:Texture 6's R Parameter Mask 0: Primitive Vertex Parameter does not have Texture Coordinate R thus use default Value ?? 1: Primitive Vertex Parameter has Texture Coordinate R Bit [4]: Texture 6's Q Parameter Mask 0: Primitive Vertex Parameter does not have Texture Coordinate Q thus use default Value ?? 1: Primitive Vertex Parameter has Texture Coordinate Q Bit [3]: Texture 7's S Parameter Mask 0: Primitive Vertex Parameter does not have Texture Coordinate S thus use default Value ?? 1: Primitive Vertex Parameter has Texture Coordinate S Bit [2]: Texture 7's T Parameter Mask 0: Primitive Vertex Parameter does not have Texture Coordinate T thus use default Value ?? 1: Primitive Vertex Parameter has Texture Coordinate T Bit [1]: Texture 7's R Parameter Mask 0: Primitive Vertex Parameter does not have Texture Coordinate R thus use default Value ?? 1: Primitive Vertex Parameter has Texture Coordinate R Bit [0]: Texture 7's Q Parameter Mask 0: Primitive Vertex Parameter does not have Texture Coordinate Q thus use default Value ?? 1: Primitive Vertex Parameter has Texture Coordinate Q	HVPMSK2
2Ah	23:0	Point's Default Width as Floating s[8]. 15 When point size comes from FVF, this setting is as the maximum value of point size Point Sprite is not only useful for 3D AP, but also 2D and vedio AP. This can be considered as just filled a rectangle and make use of all those 3D feature at the same time. The maximum value is 2048.0 The minimum value is 1.0 If (HFVFMask of "point size" is " 0 ", and primitive type is point) Point_width $=$ HVPoint W Else Point_width $=\max ($ HVPointH, $\min ($ HVPoint W, value from Primitive Vertex data's "point_size")	HVPoint W
2Bh	23:0	Point's Default Hight as Floating s[8]. 15 When point size comes from FVF, this setting is as the minimum value of point size The maximum value is 2048.0 The minimum value is 1.0	HVPointH
2Ch	23:0	Lower 24-bit for Maximum Value of Vertex Buffer's Index	HVBIndexMaxL
2Dh	23:0	Lower 24-bit for Minimum Value of Vertex Buffer's Index	HVBIndexMinL
2Eh	23:16	Reserved	
	15:8	Higher 8-bit for Maximum Value of Vertex Buffer's Index	HVBIndexMaxH

VX800 / VX820 Series Chrome9 HC3 Programming Manual

	7:0	Higher 8-bit for Minimum Value of Vertex Buffer's Index If (index of vertex $>$ HVBIndexMax \| index of vertex $<$ HVBIndexMin) Ignore this and the followed indices	HVBIndexMinH
2Fh	23	Default Value for Vertex Parameter Z 0 : Default value is 0.0 1: Default value is 1.0	HVPDV_Z
	22	Default Value for Vertex Parameter W 0 : Default value is 0.0 1: Default value is 1.0	HVPDV_W
	21	Default Value for Vertex Parameter Fog 0 : Default value is 0.0 1: Default value is 1.0	HVPDV_F
	20	Default Value for Vertex Parameter Color 0 0 : Default value is 0.0 1: Default value is 1.0	HVPDV_C0
	19	Default Value for Vertex Parameter Alpha 0 0 : Default value is 0.0 1: Default value is 1.0	HVPDV_A0
	18	Default Value for Vertex Parameter Color 1 0 : Default value is 0.0 1: Default value is 1.0	HVPDV_C1
	17	Default Value for Vertex Parameter Alpha 1 0 : Default value is 0.0 1: Default value is 1.0	HVPDV_A1
	16	Default Value for Vertex Parameter Texture Coordinate \mathbf{S} 0 : Default value is 0.0 1: Default value is 1.0	HVPDV_S
	15	Default Value for Vertex Parameter Texture Coordinate T 0 : Default value is 0.0 1: Default value is 1.0	HVPDV_T
	14	Default Value for Vertex Parameter Texture Coordinate \mathbf{R} 0 : Default value is 0.0 1: Default value is 1.0	HVPDV_R
	13	Default Value for Vertex Parameter Texture Coordinate Q 0 : Default value is 0.0 1: Default value is 1.0	HVPDV_Q
	12:10	Reserved	
	9	Point Sprite Enable for Texture J 0: Disable 1: Enable	HVPenPSpriteTXJ
	8	Point Sprite Enable for Texture I 0: Disable 1: Enable	HVPenPSpriteTXI
	7	Point Sprite Enable for Texture \mathbf{H} 0: Disable 1: Enable	HVPenPSpriteTXH
	6	Point Sprite Enable for Texture G 0: Disable 1: Enable	HVPenPSpriteTXG
	5	Point Sprite Enable for Texture \mathbf{F} 0: Disable 1: Enable	HVPenPSpriteTXF
	4	Point Sprite Enable for Texture \mathbf{E} 0: Disable 1: Enable	HVPenPSpriteTXE
	3	Point Sprite Enable for Texture D 0: Disable 1: Enable	HVPenPSpriteTXD
	2	Point Sprite Enable for Texture C 0 : Disable 1: Enable	HVPenPSpriteTXC
	1	Point Sprite Enable for Texture B 0: Disable 1: Enable	HVPenPSpriteTXB

VX800 / VX820 Series Chrome9 HC3 Programming Manual

	0	Point Sprite Enable for Texture A 0: Disable 1: Enable Note to Driver: There are 2 enable setting for Point Sprite, "HenPSprite" and "HVPenPSpriteTXn", where n is from A to J. For OpenGL, the "HVPenPSpriteTXn" are used to set point sprite for each texture. But for D3D, "HenPSprite" is used to set point sprite for ALL textures. HW would do point sprite if any one of the 2 registers is true. That is For $(\mathrm{n}=\mathrm{A}$ to J$)$ If ((PMType is "point or "triangle point") \& (HenPSprite \| HVPenPSpriteTXn)) Texture n is setup as "Point Sprite"	HVPenPSpriteTXA
30-3Fh	23:0	Reserved	

HParaType $=04 \mathrm{~h}$

Sub-Address 40h-52h: Clipping Window to Screen Window Transformation Setting
All the transforming coefficients are 32-bit floating-point.

$\begin{gathered} \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
40h	23:0	Lower 3 Bytes of Scaling for X Transform	HC2SXScaleL
41h	23:0	Lower 3 Bytes of Offset for X Transform	HC2SXOffsetL
42h	23:16	Reserved	
	15:8	Higher Byte of Offset for X Transform	HC2SXOffsetH
	7:0	Higher Byte of Scaling for X Transform	HC2SXScaleH
43h	23:0	Lower 3 Bytes of Scaling for Y Transform	HC2SYScaleL
44h	23:0	Lower 3 Bytes of Offset for Y Transform	HC2SYOffsetL
45h	23:16	Reserved	
	15:8	Higher Byte of Offset for Y Transform	HC2SYOffsetH
	7:0	Higher Byte of Scaling for Y Transform	HC2SYScaleH
46h	23:0	Lower 3 Bytes of Scaling for Z Transform	HC2SZScaleL
47h	23:0	Lower 3 Bytes of Offset for Z Transform	HC2SZOffsetL
48h	23:16	A Threshold Value For More Accurate Area Calculating A threshold value of screen coordinate's Exponential part for more accurate area calculation. If any one screen coordinate's expomomtial is over "HC2SXYEmax4Area", the area calculating equation would be $\mathrm{XbYc}-\mathrm{XbYa}-\mathrm{XaYc}-\mathrm{XcYb}+\mathrm{XcYa}+\mathrm{XaYb}$. And add each term in the order from absolute largest to the absolute smallest. Note to HW: The minimum value of HC2SXYEmax4Area is $19+127$ (that is $2^{\wedge} 19$). HW has to have a check and adjustment as Used HC2SXYEmax4Area $=\max (146$, decoded HC2SXYEmax4Area). Thus the original patterns not to be re-generated.	HC2SXYEmax4Area
	15:8	Higher Byte of Offset for Z Transform	HC2SZOffsetH
	7:0	Higher Byte of Scaling for Z Transform	HC2SZScaleH
49-4Fh	23:0	Reserved	
50h	23:0	Lower 3 Bytes of Upper Clamping Value for Screen Coordinate	HC2SXYUClampL
51h	23:0	Lower 3 Bytes of Down Clamping Value for Screen Coordinate	HC2SXYDClampL
52h	23:16	Maximum Exponential Value Clipped Screen Coordinate If the clipped new vertex's screen coordinate is over $\pm 2^{\wedge} \mathrm{HC} 2 \mathrm{SXYEmax} 4 \mathrm{CL}$, regenerate this clipped vertex to a smaller screen coordinate.	HC2SXYEmax4CL
	15:8	Higher Byte of Upper Clamping Value for Screen Coordinate	HC2SXYUClampH
	7:0	```Higher Byte of Down Clamping Value for Screen Coordinate If (Xs >= HC2SXYUClamp) Xs = HC2SXYUClamp Else if (Xs \(<=\) HC2SXYDClamp) Xs \(=*\) HC2SXYDClamp If (Ys >= HC2SXYUClamp) Ys = HC2SXYUClamp Else if (Ys <= HC2SXYDClamp) Ys = HC2SXYDClamp```	HC2SXYDClampH
53-A9h	23:0	Reserved	
AAh	23:16	Reserved	
	15:0	Flag Number for SW Inspection	HCRFlagNum

Technologies, Inc. we connect

HParaType 10h: Commands for Command Regulator

HParaType $=10 \mathrm{~h}$

Sub-Address 00h: PCI Command Setting

| Bit [31:24]
 Sub-Address | Bit [23:0] | | Description |
| :---: | :---: | :--- | :--- | Mnemonic

HParaType $=10 \mathrm{~h}$

Sub-Address 02-03h: Read Register Back Command Setting

$\begin{gathered} \hline \hline \text { Bit [31:24] } \\ \text { Sub-Address } \\ \hline \end{gathered}$	Bit [23:0]	Description	Mnemonic
02h	23:21	Reserved	
	20:12	Reading-Back Register to Debug Port Address [10:2] for Reading-Back Register to Debug port; will be muxed with HI2CR_RADR[8:2].	HSetDBAdr
	11	Enable Reading-Back Register to Debug Port	HenRB2DB
	10:8	Reserved	
	7:0	ID for Reading-Back Register 0000 0000: Reading the RB registers from CR 0000 0001: Reading the RB registers from FE(including VP, CL and SE) 0000 0010: Reading the RB registers from PE(including RZ and CZ) 0000 0011: Reading the RB registers from RC 0000 0100: Reading the RB registers from PS 0000 0101: Reading the RB registers from XE 0000 0110: Reading the RB registers from BE(including GEMI) Others: Reserved	HSetRBGID
03h	23:0	Address for Reading-Back Register	HSetRBGAdr

HParaType $=10 \mathrm{~h}$

Sub-Address 04-07h: Interrupt Command

Bit [31:24] Sub-Address	Bit [23:0]	Description	Mnemonic
04h	23:4	Lower 24-bit of Interrupt State Buffer Base Address It is $\mathrm{A}[23: 0$] which $\mathrm{A}[3: 0]$ is useless, 128-bit alignment.	HIRSBBasL
	3:2	Reserved	
	1:0	Interrupt State Buffer Location 00: System Local Frame Buffer (S.L.) 01: System Dynamic Frame Buffer (S.F.) 10: System Memory (S.M.) 11: Reserved	HIRSBLoc
05h	23:9	Reserved	
	8	Store 3D Engine's Register Setting in State Buffer 0 : Disable. It is not necessary to store 3D's register setting (default) 1: Enable. Store 3D's register setting into the State Buffer	HIRSB4E3
	7:0	Higher 8-bit of Interrupt State Buffer Base Address It is A[31:24].	HIRSBBasH
06h	23:0	Threshold Value of the Left Vertex Data within One DIP in CR In unit of Dword. When the left vertex data in CR are more than HIRFthStop and HIRStop is asserted, CR would stop 3D immediately. Otherwise, CR would stop 3D at the end of DIP	HIRFthStop
07h	23:2	Reserved	
	1	Interrupt Request for Pause Force CR into "Pause State" until this bit is cleared. When in "Pause State", CR just holds and not sends any command or data to the Video engine, 2D engine or 3D engine	HIRPause
	0	Interrupt Request for Stop When this register set, CR would interrupt the GPU and wait new Command triggered	HIRStop

Note: HIRPause and HIRStop can not be set at the same time.

Technologies, Inc. we connect

HParaType $=10 \mathrm{~h}$

Sub-Address 10h: VMR Control

Bit [31:24] Sub-Address	Bit [23:0]	Description	Mnemonic
10h	$23: 1$	Reserved	
	0	VMR ID Buffer Status Reset	HIDRST

HParaType $=10 \mathrm{~h}$

Sub-Address 60-68h: AGP Command Setting

$\begin{gathered} \hline \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
60h	23:4	Lower 3 bytes of AGP Buffer Start Address It is $\mathrm{A}[23: 0]$ which $\mathrm{A}[3: 0]$ is useless. 128 -bit alignment.	HAGPBStL
	3:2	Reserved	
	1:0	AGP Buffer Location 00: System Local Frame Buffer (S.L.) 01: System Dynamic Frame Buffer (S.F.) 10: System Memory (S.M.) 11: Reserved	HAGPBLoc
61h	23:8	Reserved	
	7:0	Higher Byte of AGP Buffer Start Address It is $\mathrm{A}[31: 24]$.	HAGPBstH
62h	23:0	Lower 3 bytes of AGP Buffer End Address It is $\mathrm{A}[23: 0]$ which $\mathrm{A}[3: 0]$ is useless. 128-bit alignment.	HAGPBendL
63h	23:8	Reserved	
	7:0	Higher Byte of AGP Buffer End Address It is $\mathrm{A}[31: 24]$.	HAGPBendH
64h	23:0	Lower 3 bytes of AGP Buffer Pause Address It is $\mathrm{A}[31: 0]$ which $\mathrm{A}[3: 0]$ is useless. 128 -bit alignment.	HABPBpL
	23:10	Reserved	
	9:8	AGP Buffer Pause Address ID 00: HAGPBp is the Pause Address of AGP Command Fetch. If AGP Command Fetcher wants to continuously fetch AGP Command again, he will start on the next address after HAGPBp. 01: HAGPBp is the End Address of a portion of AGP Command Block. When AGP Command Fetcher reaches this address, he will start to fetch next AGP Command addressed by HAGPBst. No waiting or pause at this time. 10: HAGPBp is the AGP Command Stop Address. Whenever, AGP Command Fetcher reach this address, the AGP Command Fetching is finished. If we want to do another AGP Command Fetching, we have to set HAGPBTrig as 1. 11: Reserved	HAGPBpID
	7:0	Higher byte of AGP Buffer Pause Address It is $\mathrm{A}[31: 24]$	HAGPBpH
66h	23:0	Lower 3 bytes of AGP Buffer Jump Address It is $\mathrm{A}[23: 0]$ which $\mathrm{A}[3: 0]$ is useless. 128 -bit alignment.	HAGPBjumpL
67h	23:8	Reserved	
	7:0	Higher Byte of AGP Buffer Jump Address It is A[31:24].	HAGPBjumpH
68h	23:22	Reserved	
	21:16	Threshold value of Read AGP Command Default value is 8 .	HFthRCM
	15:5	Reserved	
	4	Clear Fence Queue	HFCQClear
	3	Clear AGP Cycle	HAGPBClear
	2	Trigger Restore AGP Command Cycle HW will only restore AGP command.	HRSTAGPTrig
	1	Trigger Restore 3D Register Cycle	HRSTTrig
	0	Trigger AGP Cycle The Trig signal of AGP command.	HAGPBTrig

Technologies, Inc. we connect

VX800 / VX820 Series Chrome9 HC3 Programming Manual

HParaType $=10 \mathrm{~h}$

Sub-Address 69h: Branch Command Setting

Bit [31:24] Sub-Address	Bit [23:0]	Description	Mnemonic
	$23: 1$	Reserved	HenBranch
	0	Default is On 0: Disable AGP Branch. Branch AGP Header (FE8x) is forbidden. 1: Enable AGP Branch	

HParaType $=10 \mathrm{~h}$

Sub-Address 6C-6Fh: Restore Command Setting

Bit [31:24] Sub-Address	Bit [23:0]	Description	Mnemonic
6Ch	23:4	Lower 3 bytes of Interrupt State Buffer Restore Start Address It is A[23:4]. 128-bit alignment.	HIRSBrstL
	3:2	Reserved	
	1:0	Interrupt State Buffer Restore Location 00: System Local Frame Buffer (S.L.) 01: System Dynamic Frame Buffer (S.F.) 10: System Memory (S.M.) 11: Reserved	HIRSBrstLoc
6Dh	23:8	Reserved	
	7:0	Higher Byte of Interrupt State Buffer Restore Start Address It is A[31:24]. 128-bit alignment.	HIRSBrstH
6Eh	23:4	Lower 3 bytes of AGP Buffer Restore Start Address It is $\mathrm{A}[23: 0]$ which $\mathrm{A}[3: 0]$ is useless. 128-bit alignment.	HAGPBrstL
	3:0	Reserved	
6Fh	23:8	Reserved	
	7:0	Higher Byte of AGP Buffer Restore Start Address It is $\mathrm{A}[31: 24]$. 128-bit alignment.	HAGPBrstH

HParaType $=10 \mathrm{~h}$

Sub-Address 70-7Ch: CMDQ Setting

$\begin{gathered} \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
70h	23:4	Lower 3 bytes of Command Queue Start Address It is $\mathrm{A}[23: 0]$ which $\mathrm{A}[3: 0]$ is useless. 128-bit alignment.	HCMDQstL
	3:2	Reserved	
	1:0	Command Queue Location 00: System Local Frame Buffer (S.L.) 01: System Dynamic Frame Buffer (S.F.) 10: System Memory (S.M.) 11: Reserved	HCMDQLoc
71h	23:0	Lower 3 bytes of Command Queue End Address It is A[23:0] which A[3:0] is useless. 128-bit alignment.	HCMDQendL
72h	23:16	Reserved	
	15:8	Higher byte of Command Queue End Address 128-bit alignment.	HCMDQendH
	7:0	Higher byte of Command Queue Start Address 128-bit alignment.	HCMDQstH
73h	23:0	Length of Command Queue In unit of 128 bits. The minimum value is $24 ' \mathrm{~h} 800$.	HCMDQLen
74h	23:22	Reserved	
	21:16	Threshold Value of Write Command Queue FIFO	HFthCMDQW
	15:14	Reserved	
	13:8	Threshold Value of Read Command Queue FIFO	HFthCMDQR

Technologies, Inc. we connect

HParaType 11h: Commands for Frame Buffer Swapping and CR's Miscellaneous

 SettingHParaType $=11 \mathrm{~h}$
Sub-Address 00h: CR’s Miscellaneous Setting

$\begin{gathered} \hline \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
00h	23:17	Reserved	
	16	Enable 2D/3D Request Lock Control 0 : Disable. When one of 3D/2D engine is busy, do not sent commands to another engine. 1: Enable. When one of $3 \mathrm{D} / 2 \mathrm{D}$ engine is busy, CR sent commands to another engine but another engine do not access memory. Only one of the 2D and 3D engine is working in a time. However, E3FIRE can be sent to 3D engine when 2D engine is busy. Also, E2FIRE can send to 2D engine when 3D engine is busy. In the first case, Command Regulator will set CRLock3D before issuing E3FIRE and reset CRLock3D after 3D engine idle. Similarly, CRLock2D is working in the same way.	HenGEMILock
	15:11	Reserved	
	10:8	The Depth n of FIFO 1 in CR $\begin{aligned} & 000: \mathrm{n}=16 \\ & 001: \mathrm{n}=24 \\ & 010: \mathrm{n}=32 \text { (default) } \\ & 011: \mathrm{n}=48 \\ & 100: \mathrm{n}=64 \end{aligned}$ Others: Reserved	HF1DEEPTYPE
	7:5	The Depth n of FIFO 2 in CR $\begin{aligned} & 000: \mathrm{n}=16 \\ & 001: \mathrm{n}=24 \\ & 010: \mathrm{n}=32 \text { (default) } \\ & 011: \mathrm{n}=48 \\ & 100: \mathrm{n}=64 \end{aligned}$ Others: Reserved	HF2DEEPTYPE
	4:2	The Depth n of FIFO 3 in CR $\begin{aligned} & 000: \mathrm{n}=16 \\ & 001: \mathrm{n}=24 \\ & 010: \mathrm{n}=32 \text { (default) } \\ & 011: \mathrm{n}=48 \\ & 100: \mathrm{n}=64 \end{aligned}$ Others: Reserved	HF3DEEPTYPE
	1	Reserved	
	0	Enable to Treat followed CMDs as "Critical"(not breakable) 0: The Command Queue can be broken by an "Interrupt command" 1: The Command Queue can not be broken. The "STOP" procedure only being executed after "HenCriticalCMD" is cleared.	HenCriticalCMD

HParaType $=11 \mathrm{~h}$

Sub-Address 04-07h: Fence Command

$\begin{gathered} \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
04h	23:20	Reserved	
	19:0	Higher Bits of Fence Command Base Address If HFCMode[2]=1, higher 20-bit Fence Command Base address for PCI Master Write. It is $\mathrm{A}[43: 24]$. If HFCMode[2]=0, Higher 12-bit Fence Type. It is FenceType[31:20].	HFCWBasH
05h	23:4	Lower bits of Fence Command base address If HFCMode[2]=1, Lower 24-bit Fence Command Base address for PCI Master Write. It is $\mathrm{A}[23: 4]$.	HFCWBasL
	3:0	Reserved	
06h	23:0	Lower 24-bit Fence Command ID	HFCIDL
07h	23	Reserved	
	22	Fence Command Queue Full Skip - Active at First CR Command (for HFCMode with Writes Fence Queue \&generate interrupt signal) 0: CR command ($41 \mathrm{c} / 420$) pause, until Fence Command Queue has space. (default) 1: CR keep running, overwrite Fence_ID to current write point in Fence queue.	HFCQSkip

VX800 / VX820 Series Chrome9 HC3 Programming Manual

	21	Fence Command Interrupt Wait (for HFCMode with Writes Fence Queue \& generate interrupt signal) 0: CR keep runninge, when CR_INT active. And write Fence_ID to Fence queue (default) 1: CR pause, until CR_INT is cleared by Fence queue empty (not 204[5]).	HFCIntWait
	20	Fence Command Trigger	HFCTrig
	19:16	Fence Command Mode 0000: Just record the HFCID 0001: Record the HFCID when all engines idle 0010: Just writes Fence Queue \& generate interrupt signal and record the HFCID 0011: Writes Fence Queue \& generate interrupt signal and record the HFCID when all engines idle 0100: Just Write out HFCID to System Memory and record the HFCID 0101: Write out HFCID to System Memory and record the HFCID when all engines idle 0110: Just Write out HFCID to System Memory, writes Fence Queue \& generate interrupt signal and record the HFCID 0111: Write out HFCID to System Memory, writes Fence Queue \& generate interrupt signal and record the HFCID when all engines idle Others: Reserved	HFCMode
	15:8	Higher 8-bit Fence Command ID	HFCIDH
	7:0	Reserved	

HParaType $=11 \mathrm{~h}$

Sub-Address 08-0Bh: Save Command

$\begin{gathered} \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
08h	23:4	Lower 24-bit of Save Buffer Start Base Address It is $\mathrm{A}[23: 0$] which $\mathrm{A}[3: 0]$ is useless. 128-bit alignment.	HSvBStL
	3:2	Reserved	
	1:0	Save Buffer Location 00: System Local Frame Buffer (S.L.) 01: System Dynamic Frame Buffer (S.F.) 10: System Memory (S.M.) 11: Reserved	HSvBLoc
09h	23:9	Reserved	
	8	Store 3D Engine's Register Write Enable 0 : Disable. It is not necessary to store 3D's register. (default) 1: Enable. Store 3D's register.	HSvWTEn
	7:0	Higher 8-bit of Save Buffer Start Base Address It is A[31:24].	HSvBStH
0Bh	23:1	Reserved	
	0	Save Trig for Save 3D Write Back Registers When this register set, CR save 3D write back registers and then keep run.	HSvTrig

Note: Priority HIRSB4E3 > HSvWTEn, if HIRSB4E3=1, all 3D save register will save to HIRSBBas not HSvBSt.

HParaType $=11 \mathrm{~h}$

Sub-Address 10-34h: Frame Buffer Automatic Swapping

$\begin{gathered} \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
10h	23:3	Lower 3 bytes of Display Frame Buffer Base Address of IGA1	HFB1BasL
	2	Reserved	
	1:0	Display Frame Buffer Location 00: System Local Frame Buffer (S.L.) 01: System Dynamic Frame Buffer (S.F.) 10: System Memory (S.M.) 11: Reserved	HFB1Loc
11h	23:8	Frame Flip Count of IGA1	HFlipCNT1
	7:0	Higher byte of Display Frame Buffer Base Address of IGA1	HFB1BasH
12h	23:4	Reserved	
	3	Enable Frame Buffer Automatic Swapping for IGA1	HenFB1ASwap
	2	Skip to Wait Blank when Automatic Swapping for IGA1 (default=0)	HskipFlipFB1
	1:0	Reserved	
13-17h	23:0	Reserved	
18h	23:3	Lower 3 bytes of Display Frame Buffer Base Address of IGA2	HFB2BasL
	2	Reserved	
	1:0	Display Frame Buffer Location of IGA2 00: System Local Frame Buffer (S.L.) 01: System Dynamic Frame Buffer (S.F.) 10: System Memory (S.M.) 11: Reserved	HFB2Loc
19h	23:8	Frame Flip Count of IGA2	HFlipCNT2
	7:0	Higher byte of Display Frame Buffer Base Address of IGA2	HFB2BasH
1Ah	23:4	Reserved	
	3	Enable Frame Buffer Automatic Swapping for IGA2	HenFB2ASwap
	2	Skip to Wait Blank when Automatic Swapping for IGA2. (default=0)	HskipFlipFB2
	1:0	Reserved	
1B-2Fh	23:0	Reserved	
30h	23:3	Lower 3 bytes of Display Frame Buffer Base Address of IGA Duo-view Control	HFBBasL
	2	Reserved	
	1:0	Display Frame Buffer location of IGA 00: System Local Frame Buffer (S.L.) 01: System Dynamic Frame Buffer (S.F.) 10: System Memory (S.M.) 11: Reserved	HFBLoc
31h	23:8	Frame Flip Count of IGA	HFlipCNT
	7:0	Higher byte of Display Frame Buffer Base Address of IGA	HFBBasH
32h	23:4	Reserved	
	3	Enable Frame Buffer Automatic Swapping for IGA	HenFBASwap
	2	Skip to wait blank when Automatic Swapping for IGA (default=0)	HskipFlipFB
	1:0	Reserved	
33-34h	23:0	Reserved	

HParaType $=11 \mathrm{~h}$

Sub-Address 68-6Bh: Branch Command Setting
T11A68-6B, only active in "AGP format" command.

$\begin{gathered} \text { Bit [31:24] } \\ \text { Sub-Address } \end{gathered}$	Bit [23:0]	Description	Mnemonic
68h	23:1	Reserved	
	0	Branch Type 0: Branch for Normal (default) Branch commands independent on previous command, Insert Branch commands in CR command queue. 1: Branch for Restore Wait all previous command finish before Branch header (FE8x), and then active Branch request.	HRstBranch
69h	23:1	Lower 3 bytes of Branch Buffer Start Address It is $\mathrm{A}[23: 1]$ which $\mathrm{A}[0]$ is useless. In unit of word(16-bit alignment) Note to Driver and HW: 1. The branch buffer address is modified to be alignment with 16 bits because of this address points to the vertex index in vertex buffer. 2. Branch for 3D vertex index in vertex buffer (16bits align.) is only from Header3 (Do not set in Header 2). 3. DWcount of header $=$ valid vertex data DWcount + invalid vertex data DWcount before valid vertex data (ex: HAGPBranchL[3:1]=2, i.e. invalid vertex data(16-bit alignment) DWcount before valid vertex data $=1$)	HAGPBranchL
	0	Reserved	
6Ah	23:22	Branch Buffer Location 00: System Local Frame Buffer (S.L.) 01: System Dynamic Frame Buffer (S.F.) 10: System Memory (S.M.) 11: Reserved	HAGPBranchLoc
	21:8	Reserved	
	7:0	Higher byte of Branch Buffer Start Address It is A[31:24].	HAGPBranchH
6Bh	23:0	Size of Branch Buffer In unit of 16 bytes (128 bits).	HAGPBranchSize

Note: For Sub-Address 6Ah, branch command trigger is hidden in AGP header (FE8x). "NESTED" branch buffer is forbidden.

HParaType $=11 \mathrm{~h}$

Sub-Address AA-ABh: SW Inspection (R/W)

Bit [31:24] Sub-Address	Bit [23:0]	Description	Mnemonic
AAh	$23: 0$	SW Event TAG for SW Inspection	HSWFLAGAA
ABh	$23: 0$	SW Event TAG for SW Inspection	HSWFLAGAB

VX800 / VX820 Series Chrome9 HC3 Programming Manual

CR Registers in 2D Register Space (60-6Ch)

For detailed 2D register descriptions, please refer to 2 D chapter.
Offset Address: 60h
3D / 2D ID Control

Bit	Attribute	Description	Mnemonic	Chip Rev	Sug
31	WO	Reserved			
30	WO	3D / 2D Command Force Start (Software Must Fill Zero)			
29:28	WO	3D / 2D Command Status 00: 3D / 2D command start 01: 3D / 2D command end 10: 3D / 2D command end and wait 3D idle 11: 3D / 2D command end and wait 2D idle			
27	WO	3D / 2D Command Stream Kinds			
26:24	WO	3D / 2D Wokring Buffer Number			
23:16	WO	Reserved for Hardware Use			
15:0	WO	3D / 2D Working ID			

Offset Address: 6Ch
 3D / 2D Wait Control

Bit	Attribute	Description	Mnemonic	Chip Rev	Sug
31	WO	Wait HQV0 IDLE			
30	WO	Wait HQV1 IDLE			
29	WO	Wait MCIDLE			
28:24	WO	Wait Idle Count			
23	WO	Wait 3D IDLE - for 3D / 2D Command Path			
22	WO	Wait 2D IDLE - for 3D / 2D Command Path			
21	WO	Wait DMA Channel 3 Idle			
20	WO	Wait DMA Channel 2 Idle			
19	WO	Wait DMA Channel 1 Idle			
18	WO	Wait DMA Channel 0 Idle			
17	WO	Wait LCD DN Idle			
16:14	WO	Reserved			
13	WO	Command Wait Later IGA VBLK Interval to Start to Work			
12	WO	Command Wait Former IGA VBLK Interval to Start to Work			
11	WO	Command Wait Later IGA VBLK End Pulse to Start to Work			
10	WO	Command Wait Former IGA VBLK End Pulse to Start to Work			
9	WO	Command Wait Later IGA VBLK Start Pulse to Start to Work			
8	WO	Command Wait Former IGA VBLK Start Pulse to Start to Work			
7:6	WO	Reserved			
5	WO	Command Wait IGA2 VBLK Interval to Start to Work			
4	WO	Command Wait IGA1 VBLK Interval to Start to Work			
3	WO	Command Wait IGA2 VBLK End Pulse to Start to Work			
2	WO	Command Wait IGA1 VBLK End Pulse to Start to Work			
1	WO	Command Wait IGA2 VBLK Start Pulse to Start to Work			
0	WO	Command Wait IGA1 VBLK Start Pulse to Start to Work			

CR Registers in Video Control Register Space (3260-326Ch)

For detailed video register descriptions, please refer to Video chapter.
Offset Address: 3260h
Video ID Control

Bit	Attribute		Description	Mnemonic
Chip Rev	Sug			
31	WO	Reserved		
30	WO	Video Command Force Start (Software Must Fill Zero)		
$29: 28$	WO	Video Command Status 00: Video command start 01: Video command end $10:$ Video command end and wait Video idle $11:$ Video command end and wait Video idle		
		Video Command Stream Kinds		
27	WO			
$26: 24$	WO	Video Wokring Buffer Number		
$23: 16$	WO	Reserved for Hardware Use		
$15: 0$	WO	Video Working ID		

Offset Address: 326Ch

Video Wait Control

Bit	Attribute	Description	Mnemonic	Chip Rev	Sug
31	WO	Wait 3D IDLE - for Video Command Path			
30	WO	Wait 2D IDLE - for Video Command Path			
29:25	WO	Wait Idle Count			
24:22	WO	Reserved			
21	WO	Wait HQV1 Starting Address Load			
20	WO	Wait HQV1 Fire Bit			
19	WO	Wait HQV1 HW Flip FIFO Full			
18	WO	Wait HQV1 Subpicture / Updateoverlay Flip			
17	WO	Wait HQV1 SW Flip			
16	WO	Wait HQV1 Finish a Frame			
15	WO	Wait DMA Channel 3 Idle			
14	WO	Wait DMA Channel 2 Idle			
13	WO	Wait DMA Channel 1 Idle			
12	WO	Wait DMA Channel 0 Idle			
11:6	WO	Reserved			
5	WO	Wait HQV0 Starting Address Load			
4	WO	Wait HQV0 Fire Bit			
3	WO	Wait HQV0 HW Flip FIFO Full			
2	WO	Wait HQV0 Subpicture / Updateoverlay Flip			
1	WO	Wait HQV0 SW Flip			
0	WO	Wait HQV0 Finish a Frame			

