
1

X Access Control
Extension Specification

Eamon F. Walsh

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OF OR OTH-
ER DEALINGS IN THE SOFTWARE.

2009

Revision History
Revision 1.0 19 Oct 2006 efw

Initial Version
Revision 2.0 10 Mar 2008 efw

Version 2.0
Revision 2.1 19 Jun 2009 efw

Version 2.1 (XI2)
Revision 2.2 29 Jun 2009 efw

Version 2.2 (Property post-data hook)

Abstract

The X Access Control Extension (XACE) is a set of generic "hooks" that can be used by oth-
er X extensions to perform access checks. The goal of XACE is to prevent clutter in the core
dix/os code by providing a common mechanism for doing these sorts of checks. The concept
is identical to the Linux Security Module (LSM) in the Linux Kernel.

XACE version 1.0 was a generalization of the SECURITY extension, which provides a simple
on/off trust model where "untrusted" clients are restricted in certain areas. Its hooks were
for the most part straight replacements of the old SECURITY logic with generic hook calls.
XACE version 2.0 has substantially modified many of the hooks, adding additional parame-
ters and many new access types. Coverage has also been extended to many additional ex-
tensions, such as Render and Composite. Finally, there is new support for polyinstantiation,
or duplicate, window properties and selections.

This paper describes the implementation of XACE version 2.0, changes to the core server
DIX and OS layers that have been made or are being considered, and each of the security
hooks that XACE offers at the current time and their function. It is expected that changes
to XACE be documented here. Please notify the authors of this document of any changes to
XACE so that they may be properly documented.

Table of Contents
Introduction ... 2

Prerequisites .. 2

XACE-Spec

2

Purpose .. 2
Prior Work .. 3
Version 2.0 Changes .. 3
Future Work ... 5

Usage ... 5
Storing Security State ... 5
Using Hooks ... 6

Protocol .. 19
Requests ... 19
Events ... 20
Errors ... 20

Introduction

Prerequisites
This document is targeted to programmers who are writing security extensions for
X. It is assumed that the reader is familiar with the C programming language. It is
assumed that the reader understands the general workings of the X protocol and
X server.

Purpose
XACE makes it easier to implement new security models for X by providing a set of
pluggable hooks that extension writers can use. The idea is to provide an abstraction
layer between security extensions and the core DIX/OS code of the X server. This
prevents security extensions writers from having to understand the inner workings
of the X server and it prevents X server maintainers from having to deal with mul-
tiple security subsystems, each with its own intrusive code.

For example, consider the X.Org X server's resource subsystem, which is used to
track different types of server objects using ID numbers. The act of looking up an
object by its ID number is a security-relevant operation which security extension
writers would likely wish to control. For one or two security extensions it may be
acceptable to simply insert the extension's code directly into the resource manager
code, bracketed by ifdef's. However for more extensions this approach leads to
a tangle of code, particularly when results need to be logically combined, as in if
statement conditions. Additionally, different extension writers might place their re-
source checking code in different places in the server, leading to difficulty in track-
ing down where exactly a particular lookup operation is being blocked. Finally, this
approach may lead to unexpected interactions between the code of different exten-
sions, since there is no collaboration between extension writers.

The solution employed by the X Access Control Extension is to place hooks (calls
into XACE) at security-relevant places, such as the resource subsystem mentioned
above. Other extensions, typically in their initialization routines, can register call-
back functions on these hooks. When the hook is called from the server code, each
callback function registered on it is called in turn. The callback function is provided
with necessary arguments needed to make a security decision, including a return
value argument which can be set to indicate the result. XACE itself does not make
security decisions, or even know or care how such decisions are made. XACE merely
enforces the result of the decision, such as by returning a BadAccess error to the
requesting client.

XACE-Spec

3

This separation between the decision-making logic and the enforcement logic is
advantageous because it allows a great variety of security models to be developed
without resorting to intrusive modifications to the core systems being secured. The
challenge is to ensure that the hook framework itself provides hooks everywhere
they need to be provided. Once created, however, a hook can be used by everyone,
leading to less duplication of effort.

Prior Work

Security Extension

XACE was initially based on the SECURITY extension. This extension introduced
the concept of "trusted" and "untrusted" client connections, with the trust level es-
tablished by the authorization token used in the initial client connection. Untrust-
ed clients are restricted in several areas, notably in the use of background "None"
windows, access to server resources owned by trusted clients, and certain keyboard
input operations. Server extensions are also declared "trusted" or "untrusted," with
only untrusted extensions being visible to untrusted client connections.

Solaris Trusted Extensions

Trusted Extensions for Solaris has an X extension (Xtsol) which adds security func-
tionality. Some of the XACE hooks in the current set were derived from security
checks made by the Xtsol code. In other places, where the Xtsol and SECURITY
extensions both have checks, a single XACE hook replaces both.

Linux Security Modules

XACE is influenced by the Linux Security Modules project, which provides a similar
framework of security hooks for the Linux kernel.

Version 2.0 Changes

Different Return-Value Semantics

The status value returned by security modules has been changed. Formerly, security
modules were expected to set the "rval" field of the input structure to "False" if
access was to be denied. In version 2.0, this field has been removed in all hooks.
Security modules must now set the "status" field to an X error code to describe the
error. Typically, BadAccess will be returned, but this change allows security modules
to return BadAlloc to report memory allocation failure and BadMatch to report a
polyinstantiated object lookup failure (the section called “Polyinstantiation”).

DevPrivates Mechanism

The devPrivates mechanism in the X server was substantially revised to better sup-
port security extensions. The interface for using devPrivates has been unified across
the different structures that support private data. Private space allocation is now
independent of whether objects have already been created, and the private index-
es are now global rather than being structure specific. Callbacks are available to
initialize newly allocated space and to clean up before it is freed. Finally, there is a

XACE-Spec

4

mechanism for looking up the offset of the private pointer field in a structure, given
the structure's resource type.

New Access Modes

In the previous version, there were four possible modes for the "access_mode"
field: read, write, create, and destroy. In version 2.0, many new modes have been
introduced to better describe X operations, particularly on window objects. The
access_mode field has also been added to additional hooks as described in the in-
dividual hook changes.

Polyinstantiation

XACE now supports polyinstantiation of selections and window properties. the sec-
tion called “Property Access” and the section called “Selection Access” describe the
details, but the basic idea is that the property and selection access hooks may be
used to not only change the return value of a lookup operation but also to modify
the lookup result. This allows more than one property or selection with the same
atom name to be maintained.

Removed Hooks

The "drawable," "map," "window init", and "background" hooks have been removed.
They have been folded into the resource access hook using new access modes. The
"hostlist" hook has been removed and replaced by a new server access hook (see the
section called “Server Access”). The "site policy" and "declare extension security"
hooks have been removed as the SECURITY extension has been revised to no longer
require them.

New Hooks

New "send" and "receive" hooks have been added to allow basic control over event
delivery. "Client" and "server" access hooks have been added to control access by
clients to other clients (for example, through the KillClient call) and to the server
(for example when changing the host access list or changing the font path). "Screen"
and "screen saver" hooks have been added to control access to screens and screen
saver requests. A "selection" hook has been added to control access to selections.

Changes to Existing Hooks

• The resource access hook structure now has additional fields to describe a "par-
ent" object. They are set only when a resource with a defined parent (such as
a Window object) is being created, in which case the access mode will include
DixCreateAccess.

• The device access hook structure has had the "fromRequest" field removed and
an access mode field added.

• The property access hook structure has had the "propertyName" field removed
and a "ppProp" field added, which contains a pointer to a pointer to the property
structure itself. The extra level of indirection supports polyinstantiation (see the
section called “Polyinstantiation”). Note that the property structure contains the
property name.

XACE-Spec

5

• The extension dispatch/access hook structure now has an access mode field.

Future Work

Security Hooks

It is anticipated that the set of security hooks provided by XACE will change with
time. Some hooks may become deprecated. More hooks will likely be added as well,
as more portions of the X server are subjected to security analysis. Existing hooks
may be added in more places in the code, particularly protocol extensions. Currently,
the only method XACE provides for restricting access to some protocol extensions
is to deny access to them entirely.

It should be noted that XACE includes hooks in the protocol dispatch table, which
allow a security extension to examine any incoming protocol request (core or exten-
sion) and terminate the request before it is handled by the server. This functionality
can be used as a stopgap measure for security checks that are not supported by
the other XACE hooks. The end goal, however, is to have hooks integrated into the
server proper.

Core X Server

The set of extensions supported by X.org needs to be re-examined. Many of them are
essentially unused and removing them would be easier than attempting to secure
them. The GLX extension and the direct rendering kernel interfaces need to be
secured.

The server's routines for event delivery need to be reworked to allow greater control
by XACE modules. In particular, security extensions need to be able to associate
private data with each event at the time of its generation based on the context and
then have that data available at a decision point just before the event is delivered
to the client. This would allow event delivery to be better controlled on a per-client
basis, and would potentially allow additional security extension functionality such
as piggyback events.

Usage

Storing Security State
The first thing you, the security extension writer, should decide on is the state in-
formation that your extension will be storing and how it will be stored. XACE itself
does not provide any mechanism for storing state.

One method of storing state is global variables in the extension code. Tables can
be kept corresponding to internal server structures, updated to stay synchronized
with the structures themselves. One problem with this method is that the X server
does not have consistent methods for lifecycle management of its objects, meaning
that it might be difficult to keep state up to date with objects.

Another method of storing state is to attach your extension's security data directly
to the server structures. This method is possible via the devPrivates mechanism
provide by the DIX layer. Structures supporting this mechanism can be identified by

XACE-Spec

6

the presence of a "devPrivates" field. Full documentation of the devPrivates mech-
anism is described in the core X server documentation.

Using Hooks

Overview

XACE has two header files that security extension code may need to include. In-
clude Xext/xacestr.h if you need the structure definitions for the XACE hooks in
your source file. Otherwise, include Xext/xace.h, which contains everything else
including constants and function declarations.

XACE hooks use the standard X server callback mechanism. Your security
extension's callback functions should all use the following prototype:

void MyCallback(CallbackListPtr *pcbl, pointer userdata,
pointer calldata);

When the callback is called, pcbl points to the callback list itself. The X callback
mechanism allows the list to be manipulated in various ways, but XACE callbacks
should not do this. Remember that other security extensions may be registered on
the same hook. userdata is set to the data argument that was passed to XaceReg-
isterCallback at registration time; this can be used by your extension to pass data
into the callback. calldata points to a value or structure which is specific to each
XACE hook. These are discussed in the documentation for each specific hook, below.
Your extension must cast this argument to the appropriate pointer type.

To register a callback on a given hook, use XaceRegisterCallback:

Bool XaceRegisterCallback(int hook, CallbackProcPtr call-
back, pointer userdata);

Where hook is the XACE hook you wish to register on, callback is the callback
function you wish to register, and userdata will be passed through to the callback
as its second argument, as described above. See Table 1, “XACE security hooks.”
for the list of XACE hook codes. XaceRegisterCallback is typically called from the
extension initialization code; see the SECURITY source for examples. The return
value is TRUE for success, FALSE otherwise.

To unregister a callback, use XaceDeleteCallback:

Bool XaceDeleteCallback(int hook, CallbackProcPtr callback,
pointer userdata);

where the three arguments are identical to those used in the call to XaceRegister-
Callback. The return value is TRUE for success, FALSE otherwise.

Hooks

The currently defined set of XACE hooks is shown in Table 1, “XACE security
hooks.”. As discussed in the section called “Security Hooks”, the set of hooks is
likely to change in the future as XACE is adopted and further security analysis of
the X server is performed.

XACE-Spec

7

Table 1. XACE security hooks.
Hook Identifier Callback Argument

Type
Refer to

XACE_CORE_DISPATCH XaceCoreDispatchRec the section called “Core
Dispatch”

XACE_EXT_DISPATCH XaceExtAccessRec the section called “Exten-
sion Dispatch”

XACE_RESOURCE_ACCESS XaceResourceAccessRec the section called “Re-
source Access”

XACE_DEVICE_ACCESS XaceDeviceAccessRec the section called “Device
Access”

XACE_PROPERTY_ACCESS XacePropertyAccessRec the section called “Prop-
erty Access”

XACE_SEND_ACCESS XaceSendAccessRec the section called “Send
Access”

XACE_RECEIVE_ACCESS XaceReceiveAccessRec the section called “Re-
ceive Access”

XACE_CLIENT_ACCESS XaceClientAccessRec the section called “Client
Access”

XACE_EXT_ACCESS XaceExtAccessRec the section called “Exten-
sion Access”

XACE_SERVER_ACCESS XaceServerAccessRec the section called “Server
Access”

XACE_SELECTION_ACCESS XaceSelectionAccessRec the section called “Selec-
tion Access”

XACE_SCREEN_ACCESS XaceScreenAccessRec the section called “Screen
Access”

XACE_SCREENSAVER_ACCESSXaceScreenAccessRec the section called “Screen
Saver Access”

XACE_AUTH_AVAIL XaceAuthAvailRec the section called “Autho-
rization Availability Hook”

XACE_KEY_AVAIL XaceKeyAvailRec the section called “Key-
press Availability Hook”

XACE_AUDIT_BEGIN XaceAuditRec the section called “Audit-
ing Hooks”

XACE_AUDIT_END XaceAuditRec the section called “Audit-
ing Hooks”

In the descriptions that follow, it is helpful to have a listing of Xext/xacestr.h avail-
able for reference.

Core Dispatch

This hook allows security extensions to examine all incoming core protocol requests
before they are dispatched. The hook argument is a pointer to a structure of type
XaceCoreDispatchRec. This structure contains a client field of type ClientPtr and
a status field of type int.

XACE-Spec

8

The client field refers to the client making the incoming request. Note that the
complete request is accessible via the requestBuffer member of the client struc-
ture. The REQUEST family of macros, located in include/dix.h, are useful in verify-
ing and reading from this member.

The status field may be set to a nonzero X protocol error code. In this event, the
request will not be processed further and the error code will be returned to the
client.

Extension Dispatch

This hook allows security extensions to examine all incoming extension protocol
requests before they are dispatched. The hook argument is a pointer to a structure
of type XaceExtAccessRec. This structure contains a client field of type ClientPtr,
a ext field of type ExtensionEntry*, a access_mode field of type Mask, and a status
field of type int.

The client field refers to the client making the incoming request. Note that the
complete request is accessible via the requestBuffer member of the client struc-
ture. The REQUEST family of macros, located in include/dix.h, are useful in verify-
ing and reading from this member.

The ext field refers to the extension being accessed. This is required information
since extensions are not associated with any particular major number.

The access_mode field is set to DixUseAccess when this hook is exercised.

The status field may be set to a nonzero X protocol error code. In this event, the
request will not be processed further and the error code will be returned to the
client.

Resource Access

This hook allows security extensions to monitor all resource lookups. The hook ar-
gument is a pointer to a structure of type XaceResourceAccessRec. This structure
contains a client field of type ClientPtr, a id field of type XID, a rtype field of type
RESTYPE, a res field of type pointer, a ptype field of type RESTYPE, a parent field
of type pointer, a access_mode field of type Mask, and a status field of type int.

The client field refers to the client on whose behalf the lookup is being performed.
Note that this may be serverClient for server lookups.

The id field is the resource ID being looked up.

The rtype field is the type of the resource being looked up.

The res field is the resource itself: the result of the lookup.

The ptype field is the type of the parent resource or RT_NONE if not set.

The parent field is the parent resource itself or NULL if not set. The parent resource
is set only when two conditions are met: The resource in question is being created at
the time of the call (in which case the access_mode will include DixCreateAccess)
and the resource in question has a defined parent object. Table 3, “Resource access

XACE-Spec

9

hook parent objects.” lists the resources that support parent objects. The purpose
of these two fields is to provide generic support for "parent" resources.

The access_mode field encodes the type of action being performed. The valid mode
bits are defined in include/dixaccess.h. The meaning of the bits depends on the
specific resource type. Tables for some common types can be found in Table 2, “Re-
source access hook access modes.”. Note that the DixCreateAccess access mode
has special meaning: it signifies that the resource object is in the process of being
created. This provides an opportunity for the security extension to initialize its se-
curity label information in the structure devPrivates or otherwise. If the status field
is set to an error code in this case, the resource creation will fail and no entry will
be made under the specified resource ID.

The status field may be set to a nonzero X protocol error code. In this event, the
resource lookup will fail and an error (usually, but not always, the status value) will
be returned to the client.

Table 2. Resource access hook access modes.
Access Mode Bit Meaning Example Call Site
DixReadAccess The primary data or con-

tents of the object are be-
ing read (drawables, cur-
sors, colormaps).

GetImage, GetCursorI-
mage, CreatePicture,
QueryColors

DixWriteAccess The primary data or con-
tents of the object are be-
ing written (drawables,
cursors, colormaps).

PutImage, RenderTriFan,
ClearArea, StoreColors,
RecolorCursor

DixDestroyAccess The object is being re-
moved.

CloseFont, Destroy-
Window, FreePixmap,
FreeCursor, RenderFreeP-
icture

DixCreateAccess The object is being creat-
ed.

CreateWindow, Cre-
atePixmap, CreateGC,
CreateColormap

DixGetAttrAccess The object's attributes are
being queried, or the ob-
ject is being referenced.

GetWindowAttributes,
GetGeometry, QueryFont,
CopyGC, QueryBestSize

DixSetAttrAccess The object's attributes are
being changed.

SetWindowAttributes,
ChangeGC, SetClipRec-
tangles, XFixesSetCursor-
Name

DixListPropAccess User properties set on
the object are being listed
(windows).

ListProperties

DixGetPropAccess A user property set on the
object is being read (win-
dows).

GetProperty, RotateProp-
erties

DixSetPropAccess A user property set on the
object is being written
(windows).

ChangeProperty,
RotateProperties,
DeleteProperty

XACE-Spec

10

Access Mode Bit Meaning Example Call Site
DixListAccess Child objects of the object

are being listed out (win-
dows).

QueryTree, MapSubwin-
dows, UnmapSubwindows

DixAddAccess A child object is being
added to the object (draw-
ables, fonts, colormaps).

CreateWindow, Reparen-
tWindow, AllocColor, Ren-
derCreatePicture, Render-
AddGlyphs

DixRemoveAccess A child object is being re-
moved from object (draw-
ables, fonts, colormaps).

DestroyWindow, Repar-
entWindow, FreeColors,
RenderFreeGlyphs

DixHideAccess Object is being unmapped
or hidden from view
(drawables, cursor).

UnmapWindow,
XFixesHideCursor

DixShowAccess Object is being mapped
or shown (drawables, cur-
sor).

MapWindow, XFixesShow-
Cursor

DixBlendAccess Drawable contents are be-
ing mixed in a way that
may compromise con-
tents.

Background "None", Com-
positeRedirectWindow,
CompositeRedirectSub-
windows

DixGrabAccess Override-redirect bit on a
window has been set.

CreateWindow,
ChangeWindowAttributes

DixInstallAccess Colormap is being in-
stalled.

InstallColormap

DixUninstallAccess Colormap is being unin-
stalled.

UninstallColormap

DixSendAccess An event is being sent to a
window.

SendEvent

DixReceiveAccess A client is setting an event
mask on a window.

ChangeWindowAttributes,
XiSelectExtensionEvent

DixUseAccess The object is being used
without modifying it
(fonts, cursors, gc).

CreateWindow, FillPoly,
GrabButton, ChangeGC

DixManageAccess Window-manager type ac-
tions on a drawable.

CirculateWindow,
ChangeSaveSet, Reparen-
tWindow

Table 3. Resource access hook parent objects.
Resource Type Parent Resource Type Notes
RT_WINDOW RT_WINDOW Contains the parent win-

dow. This will be NULL
for root windows.

RT_PIXMAP RT_WINDOW COMPOSITE extension
only: the source window
is passed as the parent for
redirect pixmaps.

XACE-Spec

11

Resource Type Parent Resource Type Notes
RenderPictureType RC_DRAWABLE The source drawable is

passed as the parent for
Render picture objects.

Device Access

This hook allows security extensions to restrict client actions on input devices. The
hook argument is a pointer to a structure of type XaceDeviceAccessRec. This struc-
ture contains a client field of type ClientPtr, a dev field of type DeviceIntPtr, a
access_mode field of type Mask, and a status field of type int.

The client field refers to the client attempting to access the device (keyboard).
Note that this may be serverClient.

The dev field refers to the input device being accessed.

The access_mode field encodes the type of action being performed. The valid mode
bits are described in the table below.

The status field may be set to a nonzero X protocol error code. In this event, the
device operation will fail and an error (usually, but not always, the status value) will
be returned to the client.

Table 4. Device access hook access modes.

Access Mode Bit Meaning Example Call Site
DixGetAttrAccess Attributes of the device

are being queried.
GetKeyboardMapping,
XiGetKeyboardControl,
XkbGetDeviceInfo

DixReadAccess The state of the device is
being polled.

QueryPointer,
QueryKeymap, XkbGetS-
tate

DixWriteAccess The state of the device is
being programatically ma-
nipulated.

WarpPointer, XTestFakeIn-
put, XiSendExtension-
Event

DixSetAttrAccess Per-client device configu-
ration is being performed.

XkbPerClientFlags

DixManageAccess Global device configura-
tion is being performed.

ChangeKeyboardMapping,
XiChangeDeviceControl,
XkbSetControls

DixUseAccess The device is being
opened or referenced.

XiOpenDevice, XkbS-
electEvents

DixGrabAccess The device is being
grabbed.

GrabPointer, GrabButton,
GrabKey

DixFreezeAccess The state of the device is
being frozen by a synchro-
nous grab.

GrabKeyboard, GrabPoint-
er

DixForceAccess The device cursor is being
overriden by a grab.

GrabPointer, GrabButton

XACE-Spec

12

Access Mode Bit Meaning Example Call Site
DixGetFocusAccess The device focus is being

retrieved.
GetInputFocus, XiGetDe-
viceFocus

DixSetFocusAccess The device focus is being
set.

SetInputFocus, XiSetDe-
viceFocus

DixBellAccess The device bell is being
rung.

Bell, XiDeviceBell

DixCreateAccess The device object has
been newly allocated.

XIChangeDeviceHierar-
chy, XIAddMaster

DixDestroyAccess The device is being re-
moved.

XIChangeDeviceHierar-
chy, XIRemoveMaster

DixAddAccess A slave device is being at-
tached to the device.

XIChangeDeviceHierar-
chy, XIChangeAttachment

DixRemoveAccess A slave device is being un-
attached from the device.

XIChangeDeviceHierar-
chy, XIChangeAttachment

DixListPropAccess Properties set on the de-
vice are being listed.

ListDeviceProperties,
XIListProperties

DixGetPropAccess A property set on the de-
vice is being read.

GetDeviceProperty, XIGet-
Property

DixSetPropAccess A property set on the de-
vice is being written.

SetDeviceProperty, XISet-
Property

Property Access

This hook allows security extensions to monitor all property accesses and addition-
ally to support polyinstantiation if desired. The hook argument is a pointer to a
structure of type XacePropertyAccessRec. This structure contains a client field of
type ClientPtr, a pWin field of type WindowPtr, a ppProp field of type PropertyPtr*,
a access_mode field of type Mask, and a status field of type int.

The client field refers to the client which is accessing the property. Note that this
may be serverClient for server lookups.

The pWin field is the window on which the property is being accessed.

The ppProp field is a double-indirect pointer to the PropertyRec structure being ac-
cessed. The extra level of indirection supports property polyinstantiation; see below.
If your extension does not use the polyinstantiation feature, simply dereference the
pointer to obtain a PropertyPtr for the property

The access_mode field encodes the type of action being performed. The valid mode
bits are described in the table below.

The status field may be set to a nonzero X protocol error code. In this event, the
property request will not be processed further and the error code will be returned
to the client. However, the BadMatch code has special meaning; see below.

Table 5. Property access hook mode bits.
Access Mode Bit Meaning Example Call Site
DixCreateAccess The property object has

been newly allocated
ChangeProperty

XACE-Spec

13

Access Mode Bit Meaning Example Call Site
(this bit will always oc-
cur in conjunction with
DixWriteAccess).

DixWriteAccess The property data is be-
ing completely overwrit-
ten with new data.

ChangeProperty, Ro-
tateProperties

DixBlendAccess The property data is being
appended or prepended
to.

ChangeProperty

DixReadAccess The property data is being
read.

GetProperty

DixDestroyAccess The property data is being
deleted.

DeleteProperty

DixGetAttrAccess Existence of the property
is being disclosed.

ListProperties

DixPostAccess Post-write call reflecting
new contents (this bit will
always occur in conjunc-
tion with DixWriteAc-
cess).

ChangeProperty

New in XACE Version 2.0, this hook supports the polyinstantiation of properties.
This means that more than one property may exist having the same name, and the
security extension can control which property object is seen by which client. To
perform property polyinstantiation, your security extension should take the follow-
ing steps:

• When a property is being created (DixCreateAccess), the security extension
should label it appropriately based on the client that is creating it. In this case,
the ppProp field should not be modified.

• When a property is being looked up, the ppProp field will refer to the first structure
in the linked list with the given name. The security extension may change the
ppProp field to a different property structure by traversing the linked list (using
the PropertyRec next field) to find an alternate structure with the same property
name.

• Alternately, when a property is being looked up, the status may be set to Bad-
Match which will cause the DIX layer to treat the property as not existing. This
may result in an additional property object with the same name being created (in
which case the hook will be called again with the create access mode).

New in XACE Version 2.2, this hook allows security extensions to verify the contents
of properties after the client has written them. On a property change, the property
access hook will be called twice. The first call is unchanged from previous versions.
The second call will have the DixPostAccess bit together with DixWriteAccess and
the ppProp property pointer will contain the new data. Setting the status field
to something other than Success will cause the previous property contents to be
restored and the client to receive the status code as an error.

Note that in the case of property creation (when DixCreateAccess is set), the pp-
Prop field already reflects the new data. Hence security extensions wishing to vali-

XACE-Spec

14

date property data should check for either DixPostAccess or DixCreateAccess in
conjunction with DixWriteAccess. If your extension does not need this feature, sim-
ply ignore calls with the DixPostAccess bit set.

Send Access

This hook allows security extensions to prevent devices and clients from posting X
events to a given window. The hook argument is a pointer to a structure of type
XaceSendAccessRec. This structure contains a client field of type ClientPtr, a dev
field of type DeviceIntPtr, a pWin field of type WindowPtr, a events field of type
events, a count field of type int, and a status field of type int.

The client field refers to the client attempting a SendEvent request or other syn-
thetic event generation to the given window. This field may be NULL if the dev field
is set.

The dev field refers to the device attempting to post an event which would be deliv-
ered to the given window. This field may be NULL if the client field is set.

The pWin field refers to the target window.

The events field refers to the events that are being sent.

The count field contains the number of events in the events array.

The status field may be set to a nonzero X protocol error code. In this event, the
events will be dropped on the floor instead of being delivered.

Warning
This hook does not currently cover all instances of event delivery.

Receive Access

This hook allows security extensions to prevent a client from receiving X events
that have been delivered to a given window. The hook argument is a pointer to a
structure of type XaceReceiveAccessRec. This structure contains a client field of
type ClientPtr, a pWin field of type WindowPtr, a events field of type events, a count
field of type int, and a status field of type int.

The client field refers to the client to which the event would be delivered.

The pWin field refers to the window where the event has been sent.

The events field refers to the events that are being sent.

The count field contains the number of events in the events array.

The status field may be set to a nonzero X protocol error code. In this event, the
events will not be delivered to the client.

Warning
This hook does not currently cover all instances of event delivery.

Client Access

This hook allows security extensions to prevent clients from manipulating other
clients directly. This hook applies to a small set of protocol requests such as Kill-

XACE-Spec

15

Client. The hook argument is a pointer to a structure of type XaceClientAccess-
Rec. This structure contains a client field of type ClientPtr, a target field of type
ClientPtr, a access_mode field of type Mask, and a status field of type int.

The client field refers to the client making the request.

The target field refers to the client being manipulated.

The access_mode field encodes the type of action being performed. The valid mode
bits are described in the table below.

The status field may be set to a nonzero X protocol error code. In this event, the
request will fail and an error (usually, but not always, the status value) will be re-
turned to the client.

Table 6. Client access hook mode bits.

Access Mode Bit Meaning Example Call Site
DixGetAttrAccess Attributes of the client are

being queried.
SyncGetPriority

DixSetAttrAccess Attributes of the client are
being set.

SyncSetPriority

DixManageAccess The client's close-down-
mode (which affects glob-
al server resource man-
agement) is being set.

SetCloseDownMode

DixDestroyAccess The client is being killed. KillClient

Extension Access

This hook allows security extensions to approve or deny requests involving which
extensions are supported by the server. This allows control over which extensions
are visible. The hook argument is a pointer to a structure of type XaceExtAccessRec.
This structure contains a client field of type ClientPtr, a ext field of type Extensio-
nEntry*, a access_mode field of type Mask, and a status field of type int.

The client field refers to the client making the incoming request, which is typically
QueryExtension or ListExtensions.

The ext field refers to the extension being accessed. This is required information
since extensions are not associated with any particular major number.

The access_mode field is set to DixGetAttrAccess when this hook is exercised.

The status field may be set to a nonzero X protocol error code. In this event, the
extension will be reported as not supported (QueryExtensions) or omitted from the
returned list (ListExtensions).

Warning
If this hook is used, an extension dispatch hook should also be installed to
make sure that clients cannot circumvent the check by guessing the major
opcodes of extensions.

XACE-Spec

16

Server Access

This hook allows security extensions to approve or deny requests that affect the X
server itself. The hook argument is a pointer to a structure of type XaceServerAc-
cessRec, which contains a client field of type ClientPtr, a access_mode field of type
Mask, and a status field of type int.

The client field refers to the client making the request.

The access_mode field encodes the type of action being performed. The valid mode
bits are described in the table below.

The status field may be set to a nonzero X protocol error code. In this event, the
request will fail and an error (usually, but not always, the status value) will be re-
turned to the client.

Table 7. Server access hook mode bits.
Access Mode Bit Meaning Example Call Site
DixGetAttrAccess Attributes of the server

are being queried.
GetFontPath

DixSetAttrAccess Attributes of the server
are being set.

SetFontPath

DixManageAccess Server management is be-
ing performed.

ChangeAccessControl,
ListHosts

DixGrabAccess A server grab is being
performed.

GrabServer

DixReadAccess The server's actions are
being recorded.

Record, XEVIE extensions

DixDebugAccess Server debug facilities are
being used.

XTest extension, XkbSet-
DebuggingFlags

Selection Access

This hook allows security extensions to monitor all selection accesses and addition-
ally to support polyinstantiation if desired. The hook argument is a pointer to a
structure of type XaceSelectionAccessRec. This structure contains a client field of
type ClientPtr, a ppSel field of type Selection**, a access_mode field of type Mask,
and a status field of type int.

The client field refers to the client which is accessing the property. Note that this
may be serverClient for server lookups.

The ppSel field is a double-indirect pointer to the Selection structure being ac-
cessed. The extra level of indirection supports selection polyinstantiation; see be-
low. If your extension does not use the polyinstantiation feature, simply dereference
the pointer to obtain a SelectionRec * for the selection.

The access_mode field encodes the type of action being performed. The valid mode
bits are described in the table below.

The status field may be set to a nonzero X protocol error code. In this event, the
property request will not be processed further and the error code will be returned
to the client. However, the BadMatch code has special meaning; see below.

XACE-Spec

17

Table 8. Selection access hook mode bits.

Access Mode Bit Meaning Example Call Site
DixCreateAccess The selection object has

been newly allocated (this
bit will always occur in
conjunction with DixSe-
tAttrAccess).

SetSelectionOwner

DixSetAttrAccess The selection owner is be-
ing set.

SetSelectionOwner

DixGetAttrAccess The selection owner is be-
ing queried.

GetSelectionOwner

DixReadAccess A convert operation is be-
ing requested on the se-
lection.

ConvertSelection

This hook supports the polyinstantiation of selections. This means that more than
one selection may exist having the same name, and the security extension can con-
trol which selection object is seen by which client. To perform selection polyinstan-
tiation, your security extension should take the following steps:

• When selection ownership is being established (DixSetAttrAccess), the security
extension should label it appropriately based on the client that is taking owner-
ship. In this case, the ppSel field should not be modified.

• When a selection is being looked up, the ppProp field will refer to the first struc-
ture in the linked list with the given name. The security extension may change the
ppSel field to a different selection structure by traversing the linked list (using the
Selection next field) to find an alternate structure with the same selection name.

• Alternately, when a selection is being looked up, the status may be set to Bad-
Match which will cause the DIX layer to treat the selection as not existing. This
may result in an additional selection object with the same name being created (in
which case the hook will be called again with the create access mode).

Screen Access

This hook allows security extensions to approve or deny requests that manipulate
screen objects The hook argument is a pointer to a structure of type XaceScreenAc-
cessRec. This structure contains a client field of type ClientPtr, a screen field of
type ScreenPtr, a access_mode field of type Mask, and a status field of type int.

The client field refers to the client making the request.

The screen field refers to the screen object being referenced.

The access_mode field encodes the type of action being performed. The valid mode
bits are described in the table below.

The status field may be set to a nonzero X protocol error code. In this event, the
request will not be processed further and the error code will be returned to the
client.

XACE-Spec

18

Table 9. Screen access hook mode bits.

Access Mode Bit Meaning Example Call Site
DixGetAttrAccess Attributes of the screen

object are being queried.
ListInstalledColormaps,
QueryBestSize

DixSetAttrAccess Attributes of the screen
object are being set.

InstallColormap

DixHideAccess The cursor on the screen
is being globally hidden.

XFixesHideCursor

DixShowAccess The cursor on the screen
is being globally unhid-
den.

XFixesShowCursor

Screen Saver Access

This hook allows security extensions to approve or deny requests that manipu-
late the screensaver. The hook argument is a pointer to a structure of type Xac-
eScreenAccessRec. This structure contains a client field of type ClientPtr, a screen
field of type ScreenPtr, a access_mode field of type Mask, and a status field of type
int.

The client field refers to the client making the request.

The screen field refers to the screen object being referenced.

The access_mode field encodes the type of action being performed. The valid mode
bits are described in the table below.

The status field may be set to a nonzero X protocol error code. In this event, the
request will not be processed further and the error code will be returned to the
client.

Table 10. Screen saver access hook mode bits.

Access Mode Bit Meaning Example Call Site
DixGetAttrAccess Attributes of the screen

saver are being queried.
GetScreenSaver,
ScreenSaverQueryInfo

DixSetAttrAccess Attributes of the screen
saver are being set.

SetScreenSaver,
ScreenSaverSelectInput

DixHideAccess The screen saver is being
programmatically activat-
ed.

ForceScreenSaver, DP-
MSEnable

DixShowAccess The screen saver is being
programmatically deacti-
vated.

ForceScreenSaver, DP-
MSDisable

Authorization Availability Hook

This hook allows security extensions to examine the authorization associated with
a newly connected client. This can be used to set up client security state depending
on the authorization method that was used. The hook argument is a pointer to a

XACE-Spec

19

structure of type XaceAuthAvailRec. This structure contains a client field of type
ClientPtr, and a authId field of type XID.

The client field refers to the newly connected client.

The authId field is the resource ID of the client's authorization.

This hook has no return value.

Note
This hook is called after the client enters the initial state and before the client
enters the running state. Keep this in mind if your security extension uses
the ClientStateCallback list to keep track of clients.

This hook is a legacy of the APPGROUP Extension. In the future, this hook
may be phased out in favor of a new client state, ClientStateAuthenticat-
ed.

Keypress Availability Hook

This hook allows security extensions to examine keypresses outside of the normal
event mechanism. This could be used to implement server-side hotkey support. The
hook argument is a pointer to a structure of type XaceKeyAvailRec. This structure
contains a event field of type xEventPtr, a keybd field of type DeviceIntPtr, and a
count field of type int.

The event field refers to the keyboard event, typically a KeyPress or KeyRelease.

The keybd field refers to the input device that generated the event.

The count field is the number of repetitions of the event (not 100\% sure of this at
present, however).

This hook has no return value.

Auditing Hooks

Two hooks provide basic auditing support. The begin hook is called immediately be-
fore an incoming client request is dispatched and before the dispatch hook is called
(refer to the section called “Core Dispatch”). The end hook is called immedately
after the processing of the request has finished. The hook argument is a pointer to
a structure of type XaceKeyAvailRec. This structure contains a client field of type
ClientPtr, and a requestResult field of type int.

The client field refers to client making the request.

The requestResult field contains the result of the request, either Success or one
of the protocol error codes. Note that this field is significant only in the end hook.

These hooks have no return value.

Protocol
Requests

XACE does not define any X protocol.

XACE-Spec

20

Events
XACE does not define any X protocol.

Errors
XACE does not define any X protocol.

	X Access Control Extension Specification
	Table of Contents
	Introduction
	Prerequisites
	Purpose
	Prior Work
	Security Extension
	Solaris Trusted Extensions
	Linux Security Modules

	Version 2.0 Changes
	Different Return-Value Semantics
	DevPrivates Mechanism
	New Access Modes
	Polyinstantiation
	Removed Hooks
	New Hooks
	Changes to Existing Hooks

	Future Work
	Security Hooks
	Core X Server

	Usage
	Storing Security State
	Using Hooks
	Overview
	Hooks
	Core Dispatch
	Extension Dispatch
	Resource Access
	Device Access
	Property Access
	Send Access
	Receive Access
	Client Access
	Extension Access
	Server Access
	Selection Access
	Screen Access
	Screen Saver Access
	Authorization Availability Hook
	Keypress Availability Hook
	Auditing Hooks

	Protocol
	Requests
	Events
	Errors

