
X Synchronization Extension Library

X Consortium Standard

Tim Glauert, Olivetti Research
Dave Carver, Digital Equipment Corporation
Jim Gettys, Digital Equipment Corporation

David P. Wiggins, X Consortium, Inc.

X Synchronization Extension Library: X Consortium Standard
by Tim Glauert, Dave Carver, Jim Gettys, and David P. Wiggins
X Version 11, Release 7.7
Version 3.0
Copyright © 1991 Olivetti Research Limited, Cambridge England, Digital Equipment Corpo-
ration, Maynard, Massachusetts

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies. Olivetti, Digital, MIT, and the X Consortium make no
representations about the suitability for any purpose of the information in this document. This documentation is
provided as is without express or implied warranty.

Copyright © 1991 X Consortium, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

X Window System is a trademark of The OpenGroup.

iii

Table of Contents
1. Synchronization Protocol .. 1

Description ... 1
2. C Language Binding .. 3

C Functions .. 3
C Macros/Functions ... 5
Events ... 7
Errors ... 7

1

Chapter 1. Synchronization Protocol
The core X protocol makes no guarantees about the relative order of execution of
requests for different clients. This means that any synchronization between clients
must be done at the client level in an operating system-dependent and network-de-
pendent manner. Even if there was an accepted standard for such synchronization,
the use of a network introduces unpredictable delays between the synchronization
of the clients and the delivery of the resulting requests to the X server.

The core X protocol also makes no guarantees about the time at which requests are
executed, which means that all clients with real-time constraints must implement
their timing on the host computer. Any such timings are subject to error introduced
by delays within the operating system and network and are inefficient because of
the need for round-trip requests that keep the client and server synchronized.

The synchronization extension provides primitives that allow synchronization be-
tween clients to take place entirely within the X server. This removes any error in-
troduced by the network and makes it possible to synchronize clients on different
hosts running different operating systems. This is important for multimedia appli-
cations, where audio, video, and graphics data streams are being synchronized. The
extension also provides internal timers within the X server to which client requests
can be synchronized. This allows simple animation applications to be implemented
without any round-trip requests and makes best use of buffering within the client,
network, and server.

Description
The mechanism used by this extension for synchronization within the X server is
to block the processing of requests from a client until a specific synchronization
condition occurs. When the condition occurs, the client is released and processing
of requests continues. Multiple clients may block on the same condition to give
inter-client synchronization. Alternatively, a single client may block on a condition
such as an animation frame marker.

The extension adds Counter and Alarm to the set of resources managed by the
server. A counter has a 64-bit integer value that may be increased or decreased by
client requests or by the server internally. A client can block by sending an Await
request that waits until one of a set of synchronization conditions, called TRIGGERs,
becomes TRUE.

The CreateCounter request allows a client to create a Counter that can be changed
by explicit SetCounter and ChangeCounter requests. These can be used to imple-
ment synchronization between different clients.

There are some counters, called System Counters, that are changed by the serv-
er internally rather than by client requests. The effect of any change to a system
counter is not visible until the server has finished processing the current request.
In other words, system counters are apparently updated in the gaps between the
execution of requests rather than during the actual execution of a request. The ex-
tension provides a system counter that advances with the server time as defined by
the core protocol, and it may also provide counters that advance with the real-world
time or that change each time the CRT screen is refreshed. Other extensions may
provide their own extension-specific system counters.

Synchronization Protocol

2

The extension provides an Alarm mechanism that allows clients to receive an event
on a regular basis when a particular counter is changed.

3

Chapter 2. C Language Binding
The C routines provide direct access to the protocol and add no additional seman-
tics.

The include file for this extension is <X11/extensions/sync.h>. Most of the names
in the language binding are derived from the protocol names by prepending XSync
to the protocol name and changing the capitalization.

C Functions
Most of the following functions generate SYNC protocol requests.

Status XSyncQueryExtension(*dpy, *event_base_return,
*error_base_return);

If dpy supports the SYNC extension, XSyncQueryExtension returns True, sets
*event_base_return to the event number for the first SYNC event, and sets
*error_base_return to the error number for the first SYNC error. If dpy does not
support the SYNC extension, it returns False.

Status XSyncInitialize(*dpy, *major_version_return,
*minor_version_return);

XSyncInitialize sets *major_version_return and *minor version return to the ma-
jor/minor SYNC protocol version supported by the server. If the XSync library is
compatible with the version returned by the server, this function returns True. If
dpy does not support the SYNC extension, or if there was an error during commu-
nication with the server, or if the server and library protocol versions are incompat-
ible, this function returns False. The only XSync function that may be called before
this function is XSyncQueryExtension. If a client violates this rule, the effects of all
XSync calls that it makes are undefined.

XSyncSystemCounter *XSyncListSystemCounters(*dpy,
*n_counters_return);

XSyncListSystemCounters returns a pointer to an array of system counters sup-
ported by the display and sets *n_counters_return to the number of counters in the
array. The array should be freed with XSyncFreeSystemCounterList. If dpy does
not support the SYNC extension, or if there was an error during communication
with the server, or if the server does not support any system counters, this function
returns NULL.

XSyncSystemCounter has the following fields:

char * name; /* null-terminated name of system counter */
XSyncCounter counter; /* counter id of this system counter */
XSyncValue resolution; /* resolution of this system counter */

void XSyncFreeSystemCounterList(*list);

XSyncFreeSystemCounterList frees the memory associated with the system
counter list returned by XSyncListSystemCounters.

C Language Binding

4

XSyncCounter XSyncCreateCounter(*dpy, initial_value);

XSyncCreateCounter creates a counter on the dpy with the given initial value and
returns the counter ID. It returns None if dpy does not support the SYNC extension.

Status XSyncSetCounter(*dpy, counter, value);

XSyncSetCounter sets counter to value. It returns False if dpy does not support
the SYNC extension; otherwise, it returns True.

Status XSyncChangeCounter(*dpy, counter, value);

XSyncChangeCounter adds value to counter. It returns False if dpy does not support
the SYNC extension; otherwise, it returns True.

Status XSyncDestroyCounter(*dpy, counter);

XSyncDestroyCounter destroys counter. It returns False if dpy does not support
the SYNC extension; otherwise, it returns True.

Status XSyncQueryCounter(*dpy, counter, *value_return);

XSyncQueryCounter sets *value_return to the current value of counter. It returns
False if there was an error during communication with the server or if dpy does
not support the SYNC extension; otherwise, it returns True.

Status XSyncAwait(*dpy, *wait_list, n_conditions);

XSyncAwait awaits on the conditions in wait_list. The n_conditions is the number
of wait conditions in wait_list. It returns False if dpy does not support the SYNC
extension; otherwise, it returns True. The await is processed asynchronously by the
server; this function always returns immediately after issuing the request.

XSyncWaitCondition has the following fields:

XSyncCounter trigger.counter; /*counter to trigger on */
XSyncValueType trigger.value_type; /*absolute/relative */
XSyncValue trigger.wait_value; /*value to compare counter to */
XSyncTestType trigger.test_type; /*pos/neg comparison/transtion */
XSyncValue event_threshold; /*send event if past threshold */

XSyncValueType can be either XSyncAbsolute or XSyncRelative.

XSyncTestType can be one of XSyncPositiveTransition, XSyncNegativeTransi-
tion, XSyncPositiveComparison, or XSyncNegativeComparison.

XSyncAlarm XSyncCreateAlarm(*dpy, values_mask, *values`);

XSyncCreateAlarm creates an alarm and returns the alarm ID. It returns None if the
display does not support the SYNC extension. The values_mask and values specify
the alarm attributes.

XSyncAlarmAttributes has the following fields. The attribute_mask column speci-
fies the symbol that the caller should OR into values_mask to indicate that the value
for the corresponding attribute was actually supplied. Default values are used for

C Language Binding

5

all attributes that do not have their attribute_mask OR’ed into values_mask. See the
protocol description for CreateAlarm for the defaults.

type field name attribute_mask
XSyncCounter trigger.counter; XSyncCACounter
XSyncValueType trigger.value_type; XSyncCAValueType
XSyncValue trigger.wait_value; XSyncCAValue
XSyncTestType trigger.test_type; XSyncCATestType
XSyncValue delta; XSyncCADelta
Bool events; XSyncCAEvents
XSyncAlarmState state; client cannot set this

Status XSyncDestroyAlarm(*dpy, alarm);

XSyncDestroyAlarm destroys alarm. It returns False if dpy does not support the
SYNC extension; otherwise, it returns True.

Status XSyncQueryAlarm(*dpy, alarm, *values_return);

XSyncQueryAlarm sets *values_return to the alarm’s attributes. It returns False if
there was an error during communication with the server or if dpy does not support
the SYNC extension; otherwise, it returns True.

Status XSyncChangeAlarm(*dpy, alarm, values_mask, *values);

XSyncChangeAlarm changes alarm’s attributes. The attributes to change are spec-
ified as in XSyncCreateAlarm. It returns False if dpy does not support the SYNC
extension; otherwise, it returns True.

Status XSyncSetPriority(*dpy, client_resource_id, priority);

XSyncSetPriority sets the priority of the client owning client_resource_id to pri-
ority. If client_resource_id is None, it sets the caller’s priority. It returns False if
dpy does not support the SYNC extension; otherwise, it returns True.

Status XSyncGetPriority(*dpy, client_resource_id, *return_priority);

XSyncGetPriority sets *return_priority to the priority of the client owning
client_resource_id. If client_resource_id is None, it sets *return_priority to the
caller’s priority. It returns False if there was an error during communication with
the server or if dpy does not support the SYNC extension; otherwise, it returns True.

C Macros/Functions
The following procedures manipulate 64-bit values. They are defined both as macros
and as functions. By default, the macro form is used. To use the function form,
#undef the macro name to uncover the function.

void XSyncIntToValue(*pv, i);

Converts i to an XSyncValue and stores it in *pv. Performs sign extension (*pv will
have the same sign as i.)

void XSyncIntsToValue(*pv, low, high);

C Language Binding

6

Stores low in the low 32 bits of *pv and high in the high 32 bits of *pv.

Bool XSyncValueGreaterThan(a, b);

Returns True if a is greater than b, else returns False.

Bool XSyncValueLessThan(a, b);

Returns True if a is less than b, else returns False.

Bool XSyncValueGreaterOrEqual(a, b);

Returns True if a is greater than or equal to b, else returns False.

Bool XSyncValueLessOrEqual(a, b);

Returns True if a is less than or equal to b, else returns False.

Bool XSyncValueEqual(a, b);

Returns True if a is equal to b, else returns False.

Bool XSyncValueIsNegative(v);

Returns True if v is negative, else returns False.

Bool XSyncValueIsZero(v);

Returns True if v is zero, else returns False.

Bool XSyncValueIsPositive(v);

Returns True if v is positive, else returns False.

unsigned int XSyncValueLow32(v);

Returns the low 32 bits of v.

unsigned int XSyncValueHigh32(v);

Returns the high 32 bits of v.

void XSyncValueAdd(*presult, a, b, *poverflow);

Adds a to b and stores the result in *presult. If the result could not fit in 64 bits,
*poverflow is set to True, else it is set to False.

void XSyncValueSubtract(*presult, a, b, *poverflow);

Subtracts b from a and stores the result in *presult. If the result could not fit in 64
bits, *poverflow is set to True, else it is set to False.

void XSyncMaxValue(*pv);

Sets *pv to the maximum value expressible in 64 bits.

void XSyncMinValue(*pv);

Sets *pv to the minimum value expressible in 64 bits.

C Language Binding

7

Events
Let event_base be the value event base return as defined in the function XSync-
QueryExtension.

An XSyncCounterNotifyEvent’s type field has the value event_base + XSyncCoun-
terNotify. The fields of this structure are:

int type; /* event base + XSyncCounterNotify */
unsigned long serial; /* number of last request processed by server */
Bool send event; /* true if this came from a SendEvent request */
Display * display; /* Display the event was read from */
XSyncCounter counter; /* counter involved in await */
XSyncValue wait_value; /* value being waited for */
XSyncValue counter_value; /* counter value when this event was sent */
Time time; /* milliseconds */
int count; /* how many more events to come */
Bool destroyed; /* True if counter was destroyed */

An XSyncAlarmNotifyEvent’s type field has the value event_base + XSyncAlarmNo-
tify. The fields of this structure are:

int type; /* event_base + XSyncAlarmNotify */
unsigned long serial; /* number of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display * display; /*Display the event was read from */
XSyncAlarm alarm; /* alarm that triggered */
XSyncValue counter_value /* value that triggered the alarm */
XSyncValue alarm_value /* test value of trigger in alarm */
Time time; /* milliseconds */
XSyncAlarmState state; /* new state of alarm */

Errors
Let error_base be the value error_base_return as defined in the function XSync-
QueryExtension.

An XSyncAlarmError’s error_code field has XSyncBadAlarm. The fields of this struc-
ture are:

int type
Display * display; /* Display the event was read from */
XSyncCounter counter; /* resource id */
unsigned long serial; /* serial number of failed request */
unsigned char error_code; /* error_base + XSyncBadAlarm */
unsigned char request_code; /* Major op-code of failed request */
unsigned char minor_code; /* Minor op-code of failed request */

An XSyncCounterError’s error code field has the value error_base + XSyncBad-
Counter. The fields of this structure are:

C Language Binding

8

int type
Display * display; /* Display the event was read from */
XSyncCounter counter; /* resource id */
unsigned long serial; /* serial number of failed request */
unsigned char error_code; /* error_base + XSyncBadCounter */
unsigned char request_code; /* Major op-code of failed request */
unsigned char minor_code; /* Minor op-code of failed request */

	X Synchronization Extension Library
	Table of Contents
	Chapter 1. Synchronization Protocol
	Description

	Chapter 2. C Language Binding
	C Functions
	C Macros/Functions
	Events
	Errors

