
X Record Extension Library

X Consortium Standard

Martha Zimet, Network Computing Devices, Inc.
Edited by Stephen Gildea



X Record Extension Library: X Consortium Standard
by Martha Zimet and Stephen Gildea
X Version 11, Release 7.7
Version 1.13
Copyright © 1994 Network Computing Devices, Inc.

Permission to use, copy, modify, distribute, and sell this documentation for any purpose is hereby granted without
fee, provided that the above copyright notice and this permission notice appear in all copies. Network Computing
Devices, Inc. makes no representations about the suitability for any purpose of the information in this document.
This documentation is provided "as is" without express or implied warranty.

Copyright © 1995 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

X Window System is a trademark of The Open Group.



iii

Table of Contents
1. Record Extension Overview ..............................................................................  1

Synchronous Playback ...................................................................................  1
Design Approach ............................................................................................ 1
Record Clients ................................................................................................ 1

2. Common Arguments .......................................................................................... 3
Datum Flags ................................................................................................... 3
Selecting Clients ............................................................................................  3
Protocol Ranges .............................................................................................  4

3. Library Extension Requests ..............................................................................  7
Query Extension Version ................................................................................ 7
Create and Modify Context ...........................................................................  7

Additions .................................................................................................  8
Deletions .................................................................................................  9

Query Context State ......................................................................................  9
Data Transfer ...............................................................................................  10

Enable Context .....................................................................................  10
Enable Context Asynchronously ...........................................................  12
Disable Context ....................................................................................  13

ID Base Mask ............................................................................................... 14
Free Context ................................................................................................  14



1

Chapter 1. Record Extension Overview
The purpose of this extension is to support the recording and reporting of all core
X protocol and arbitrary X extension protocol. This first section gives an overview
of the Record extension. The following sections describe how to use the Record
extension library.

Synchronous Playback
Environment information is generally provided to an X-based playback mechanism,
which might use the XTest extension to synthesize input events. This synchroniza-
tion information defines the X state prior to event synthesis (for example, location
of the cursor, window locations and sizes, installed colormap, window manager run-
ning, and so on) and the consequences that occur after the playback mechanism
synthesizes the event. If the user moves the mouse into the icon window and presses
and releases a mouse button, the device events MotionNotify, ButtonPress, and
ButtonRelease are generated by the X server. Because X follows an event-driven
model, there are consequences that follow from the user actions, or device events,
that are in the form of X protocol. As a result of the previous user actions, the client
could generate requests such as ImageText8 and PolyLine to the X server, or the
X server could send non-device events such as Expose and MapNotify to the client
window. Both the requests and non-device events that result from user actions are
known as consequences, which can be used as a synchronization, or control point,
during playback. That is, the playback mechanism does not generate a specific syn-
thesized event until its matching synchronization condition occurs (for example, the
window is mapped or unmapped, the cursor changes, a text string displays, and
so on)

Because it cannot be predicted what synchronization information is required during
playback, the Record extension makes no assumptions about the intended use of the
recorded data. Facilities exist to record any core X protocol or X extension protocol.
Therefore, Record does not enforce a specific synchronization methodology.

Design Approach
The design approach of the extension is to record core X protocol and arbitrary X
extension protocol entirely within the X server itself. When the extension has been
requested to record specific protocol by one or more recording clients, the protocol
data is formatted and returned to the recording clients. The extension provides a
mechanism for capturing all events, including input device events that do not go
to any clients.

Record Clients
The recommended communication model for a Record application is to open two
connections to the server—one connection for recording control and one connection
for reading recorded protocol data.

Information about recording (for example, what clients to record, what protocol to
record for each client, and so on) is stored in resources called record contexts (type
XRecordContext). Most Record extension functions take a record context as an ar-



Record Extension Overview

2

gument. Although in theory it is possible to share record contexts between applica-
tions, it is expected that applications will use their own context when performing
recording operations.

A client that wishes to record X protocol does so through the library functions de-
fined in Library Extension Requests A typical sequence of requests that a client
would make is as follows:

• XRecordQueryVersion

query the extension protocol version.

• XRecordCreateContext

request that the server create a record context for access by this client, and ex-
press interest in clients and protocol to be recorded. This request returns an
XRecord-Context, which is an XID that is used by most other extension requests
to identify the specified context.

• XRecordEnableContext

begin the recording and reporting of protocol data.

• XRecordDisableContext

end the recording and reporting of protocol data.

• XRecordFreeContext

free the record context.

The header for this library is <X11/extensions/record.h>. All identifiers defined
in the interface are supplied by this header and are prefixed with "XRecord". The
Xtst library contains the XRecord functions.



3

Chapter 2. Common Arguments
The Record extension functions XRecordCreateContext and XRecordRegister-
Clients allow applications to specify the following:

• Individual clients or sets of clients to record

• Ranges of core X protocol and X extension protocol to record for each client

Protocol in the ranges specified by the recording client will be recorded by the
server. The device_events protocol type can be specified by a recording client
although it may not be sent to a recorded client. The device_events type dif-
fers from delivered_events, which also can be specified by a recording client;
delivered_events are actually delivered to one or more clients. These event types
are discussed in Protocol Ranges

The Record extension functions XRecordCreateContext and XRecordRegister-
Clients have the common arguments datum_flags, clients, and ranges, which spec-
ify whether server time and/or client sequence number should precede protocol el-
ements, the clients or client set to record, and the protocol ranges to record, re-
spectively. These are discussed in the following sections.

Datum Flags
The datum_flags argument is a set of flags OR’ed together to specify options for the
record context. Specify zero to disable all the options.

The XRecordFromServerTime flag specifies that XRecordInterceptData structures
with a category of XRecordFromServer will have a server_time field specific to each
protocol element.

The XRecordFromClientTime flag specifies that XRecordInterceptData structures
with a category of XRecordFromClient will have a server_time field specific to each
protocol element.

The XRecordFromClientSequence flag specifies that XRecordInterceptData struc-
tures with a category of XRecordFromClient or XRecordClientDied will have a valid
client_seq field.

Selecting Clients
The clients argument is a pointer to an array of XRecordClientSpec. XRecordClien-
tSpec is an integral type that holds a resource ID, a client resource ID base, or one
of the client set constants defined below.

Duplicate elements in the array are ignored by the functions, and if any element in
the array is not valid, a BadMatch error results. A resource ID references the client
that created that resource. The client set may be one of the following constants:
XRecordCurrentClients, XRecordFutureClients, or XRecordAllClients.

If the element in the array identifies a particular client, protocol specified by the
ranges argument will be recorded by the server. The recorded protocol data will
not be returned to the recording client until the record context has been enabled.
This is described in Data Transfer



Common Arguments

4

If the element is XRecordCurrentClients, the protocol ranges specified by the
ranges argument, except for device_events, are associated with each current client
connection. If the element is XRecordFutureClients, the protocol ranges specified
by the ranges argument are associated with each new client connection. If the ele-
ment is XRecordAllClients, the protocol ranges specified by the ranges argument
are associated with each current client connection and with each new client connec-
tion. When the context is enabled, the data connection is unregistered if it was reg-
istered. If the context is enabled, XRecordCurrentClients and XRecordAllClients
silently exclude the recording data connection. It is an error to explicitly register
the data connection.

Protocol Ranges
The functions XRecordCreateContext and XRecordRegisterClients have another
common argument, ranges, which is an array of pointers to XRecordRange struc-
tures. Each structure contains ranges of numeric values for each of the proto-
col types that can be specified and recorded individually by the Record exten-
sion. An XRecordRange structure must be allocated by the Record library using the
XRecordAllocRange function.

The XRecordRange typedef is a structure with the following members:

XRecordRange:
     XRecordRange8 core_requests     /* core X requests */
     XRecordRange8 core_replies      /* core X replies */
     XRecordExtRange ext_requests    /* extension requests */
     XRecordExtRange ext_replies     /* extension replies */
     XRecordRange8 delivered_events  /* delivered core and ext events */
     XRecordRange8 device_events     /* all core and ext device events */
     XRecordRange8 errors            /* core X and X ext errors */
     Bool client_started             /* connection setup reply from server */
     Bool client_died                /* notification of client disconnect */

The types used in XRecordRange members are defined as follows. The XRecor-
dRange8 typedef is a structure with the following members:

XRecordRange8:
     unsigned char first
     unsigned char last

The XRecordRange16 typedef is a structure with the following members:

XRecordRange16:
     unsigned short first
     unsigned short last

The XRecordExtRange typedef is a structure with the following members:

XRecordExtRange:
     XRecordRange8  ext_major



Common Arguments

5

     XRecordRange16 ext_minor

If any of the values specified in XRecordRange is invalid, a BadValue error results.

The core_requests member specifies the range of core X protocol requests to record.
Core X protocol requests with a major opcode that is between first and last, inclu-
sive, will be recorded. A BadValue error results if the value of first is greater than
the value of last. If the values of both first and last are zero, no core X protocol
requests will be recorded.

The core_replies member specifies the range of replies resulting from core X pro-
tocol requests to record. Replies that result from core X protocol requests with a
major opcode between first and last, inclusive, will be recorded. A BadValue error
results if the value of first is greater than the value of last. If the values of both first
and last are zero, no core X protocol replies will be recorded.

The ext_requests member specifies the range of X extension requests to record. X
extension requests with a major opcode between ext_major.first and ext_major.last,
and with a minor opcode between ext_minor.first and ext_minor.last, inclusive, will
be recorded. A BadValue error results if the value of ext_major.first is greater than
the value of ext_major.last or if the value of ext_minor.first is greater than the value
of ext_minor.last. If the values of both ext_major.first and ext_major.last are zero,
no X extension requests will be recorded.

The ext_replies member specifies the range of replies resulting from X extension
requests to record. Replies that result from an X extension request with a major
opcode between ext_major.first and ext_major.last, and a minor opcode that is be-
tween ext_minor.first and ext_minor.last will be recorded. A BadValue error results
if the value of ext_major.first is greater than the value of ext_major.last or if the val-
ue of ext_minor.first is greater than the value of ext_minor.last. If the values of both
ext_major.first and ext_major.last are zero, no X extension replies will be recorded.

The delivered_events member specifies the range of both core X events and X ex-
tension events to record. These events are delivered to at least one client. Core X
events and X extension events with a code value between first and last inclusive will
be recorded. A BadValue error results if the value of first is greater than the value
of last. If the values of first and last are zero, no events will be recorded.

The device_events member specifies the range of both core X device events and
X extension device events to record. These events may or may not be delivered
to a client. Core X device events and X extension device events with a code value
between first and last inclusive that are not delivered to any clients will be recorded.
A BadValue error results if the value of first is greater than the value of last. A
BadValue error results if first is less than two or last is less than two, except that if
first and last are zero, no events will be recorded.

The errors member specifies the range of both core X errors and X extension errors
to record. Core X errors and X extension errors with a code value between first
and last inclusive will be recorded. A BadValue error results if the value of first is
greater than the value of last. If the values of first and last are zero, no errors will
be recorded.

A value of True for the client_started member specifies the connection setup reply
from the server to new clients. If False the connection setup reply is not specified
by this XRecordRange



Common Arguments

6

A value of True for the client_died member specifies notification when a client dis-
connects. If False notification when a client disconnects is not specified by this
XRecordRange



7

Chapter 3. Library Extension Requests
Recording operations are accessed by programs through the use of new protocol
requests. The following functions are provided as extensions to Xlib. An Xlib error
results if an extension request is made to an X server that does not support the
Record extension. Note that any of the extension protocol requests may generate
BadAlloc or BadLength errors.

Query Extension Version
An application uses the XRecordQueryVersion function to determine the version of
the Record extension protocol supported by an X server.

Status XRecordQueryVersion( *display,  cmajor_return,  cminor_return);

display Returns the connection to the X server.

cmajor_return Returns the extension protocol major version in use.

cminor_return Returns the extension protocol minor version in use.

The XRecordQueryVersion function returns the major and minor protocol version
numbers supported by the server. XRecordQueryVersion returns nonzero (success)
only if the returned version numbers are common to both the library and the server;
otherwise, it returns zero.

Create and Modify Context
An application uses the XRecordCreateContext function to create a record context.
At the time the record context is created by the recording client, the clients to be
recorded and the protocol to record for each client may be specified.

XRecordContext XRecordCreateContext( *display,  datum_flags,  *clients,
nclients,  *ranges,  nranges);

display Returns the connection to the X server.

datum_flags Specifies whether detailed time or sequence info should be sent.

clients Specifies the clients to record.

nclients Specifies the number of clients.

ranges Specifies the protocol ranges to record.

nranges Specifies the number of protocol ranges.

The XRecordCreateContext function creates a record context and returns an
XRecordContext which is then used in the other Record library calls. This request
is typically executed by the recording client over its control connection to the X
server. The datum_flags specifies whether server time and/or client sequence num-
ber should precede protocol elements recorded by context ( Datum Flags ). When a
clients element identifies a particular client, the client is added to the context and



Library Extension Requests

8

the protocol to record for that client is set to the union of all ranges. When a clients
element is XRecordCurrentClients XRecordFutureClients or XRecordAllClients
the actions described in Selecting Clients are performed.

XRecordCreateContext returns zero if the request failed. XRecordCreateContext
can generate BadIDChoice BadMatch and BadValue errors.

The ranges argument is an XRecordRange array, that is, an array of pointers. The
structures the elements point to shall be allocated by calling XRecordAllocRange

XRecordRange *
XRecordAllocRange(void)

The XRecordAllocRange function allocates and returns an XRecordRange structure.
The structure is initialized to specify no protocol. The function returns NULL if the
structure allocation fails. The application can free the structure by calling XFree

Additions
An application uses the XRecordRegisterClients function to modify a previously
created record context, by adding clients or modifying the recorded protocol, typi-
cally over its control connection to the X server.

Status XRecordRegisterClients( *display,  context,  datum_flags,
*clients,  nclients,  *ranges,  nranges);

display Returns the connection to the X server.

context Specifies the record context to modify.

datum_flags Specifies whether detailed time or sequence info should be sent.

clients Specifies the clients to record.

nclients Specifies the number of clients.

ranges Specifies the protocol ranges to record.

nranges Specifies the number of protocol ranges.

The datum_flags specifies whether server time and/or client sequence number
should precede protocol elements for all clients recorded by context (See Datum
Flags ). When a clients element identifies a particular client and the client is not yet
targeted for recording in the given context, the client is added to the set of clients
to record, and the protocol to record for that client is set to the union of all ranges.
When the client is already targeted for recording, the protocol to record for that
client is set to the union of all ranges. When the element is XRecordCurrentClients
XRecordFutureClients or XRecordAllClients the actions described in Selecting
Clients are performed.

XRecordRegisterClients returns zero if the request failed; otherwise, it returns
nonzero.

XRecordRegisterClients can generate XRecordBadContext BadMatch and BadVal-
ue errors.



Library Extension Requests

9

Deletions
An application uses the XRecordUnregisterClients function to delete clients from
a previously created record context, typically over its control connection to the X
server.

Status XRecordUnRegisterClients( *display,  context,  *clients,
nclients);

display Returns the connection to the X server.

context Specifies the record context to modify.

clients Specifies the clients to stop recording.

nclients Specifies the number of clients.

When an element in clients identifies a particular client, and the specified client is
already targeted for recording in the given context, the client and the set of protocol
to record for that client are deleted from the context. If the specified client is not
targeted for recording, then no action is performed.

When the element is XRecordCurrentClients all clients currently targeted for
recording in context and their corresponding sets of protocol to record are deleted
from context.

When the item is XRecordFutureClients any future client connections will not au-
tomatically be targeted for recording in context.

When the element is XRecordAllClients all clients currently targeted for recording
in context and their corresponding sets of protocol to record are deleted from con-
text. Any future client connections will not automatically be targeted for recording
in context.

XRecordUnregisterClients returns zero if the request failed; otherwise, it returns
nonzero.

XRecordUnregisterClients can generate XRecordBadContext BadMatch and Bad-
Value errors.

Query Context State
An application uses the XRecordGetContext function to query the current state of
a record context, typically over its control connection to the X server.

Status XRecordGetContext( *display,  context,  **state_return);

display Specifies the connection to the X server.

context Specifies the record context to query.

state_return Specifies the address of a variable into which the function stores a
pointer to the current state of the record context.

The XRecordState typedef returned by XRecordGetContext is a structure with the
following members:



Library Extension Requests

10

XRecordState:
     Bool              enabled
     int               datum_flags
     unsigned long     nclients
     XRecordClientInfo **client_info

The enabled member is set to the state of data transfer and is True when the
recording client has asked that recorded data be sent; otherwise it is False The
datum_flags member is set to the value of these flags for this context. The nclients
member is set to the number of XRecordClientInfo structures returned. The
client_info member is an array of pointers to XRecordClientInfo structures that
contain the protocol to record for each targeted client. The XRecordClientInfo
typedef is a structure with the following members:

XRecordClientInfo:
     XRecordClientSpec client
     unsigned long nranges
     XRecordRange **ranges

The client member either identifies a client targeted for recording or is set to
XRecordFutureClients to describe how future clients will be automatically target-
ed for recording. The nranges member is set to the number of protocol ranges to
be recorded for the specified client. The ranges member is an array of pointers to
XRecordRange structures, which specify the protocol ranges to record.

XRecordGetContext returns zero if the request failed; otherwise, it returns nonze-
ro. The context argument must specify a valid XRecordContext or a XRecordBad-
Context error results.

Recording clients should use the XRecordFreeState function to free the state data
returned by XRecordGetContext

void XRecordFreeState( *state);

state Specifies the structure that is to be freed.

XRecordFreeState frees the data pointed to by state. If the argument does not
match an XRecordState pointer returned from a successful call to XRecordGetCon-
text or if XRecordFreeState has already been called with it, the behavior is unde-
fined.

Data Transfer
An application uses the XRecordEnableContext and XRecordDisableContext func-
tions to change the state of data transfer between the X server and the recording
client. These functions allow the application to start recording and reporting of pro-
tocol data and to stop recording and reporting of protocol data, respectively.

Enable Context
To direct the X server to record and report protocol, a program uses XRecordEn-
ableContext typically over its data connection to the X server. The reporting of



Library Extension Requests

11

recorded protocol back to the recording client is handled by the following data struc-
tures and procedure definitions. Each recorded protocol element is reported to the
recording client through an XRecordInterceptData typedef, a structure with the
following members:

XRecordInterceptData:
     XID              id_base
     Time             server_time
     unsigned long    client_seq
     int              category
     Bool             client_swapped
     unsigned char    *data
     unsigned long    data_len

The id_base member is set to the resource identifier base sent to the client in the
connection setup reply and therefore identifies the client being recorded, except
when the recorded protocol data is a device event that may have not been deliv-
ered to a client. In this case, id_base is set to zero. The server_time member is
set to the time of the server when the protocol was recorded. It is the time that
was attached to this protocol element in the reply, if so specified by datum_flags,
or else the time from the header of the reply that contained this protocol element.
The client_seq member is the sequence number of the recorded client's most recent
request processed by the server at the time this protocol element was recorded,
if this information were included in the recorded data; otherwise client_seq is 0.
The category member is set to one of the following values: XRecordStartOfData
XRecordFromServer XRecordFromClient XRecordClientStarted XRecordClient-
Died or XRecordEndOfData XRecordStartOfData is immediately sent as the first
reply to confirm that the context is enabled. XRecordFromClient indicates the pro-
tocol data is from the recorded client to the server (requests). XRecordFromServer
indicates the protocol data is from the server to the recorded client (replies, errors,
events, or device events). XRecordClientStarted indicates that the protocol data is
the connection setup reply from the server. XRecordClientDied indicates that the
recorded client has closed its connection to the X server; there is no protocol data.
XRecordEndOfData indicates that the context has been disabled and that this is the
last datum. It does not correspond to any protocol or state change in a recorded
client. There is no protocol data.

The client_swapped member is set to True if the byte order of the client being
recorded is swapped relative to the recording client; otherwise, it is set to False
All recorded protocol data is returned in the byte order of the recorded client.
Therefore, recording clients are responsible for all byte swapping, if required. De-
vice events are in the byte order of the recording client. For replies of category
XRecordStartOfData and XRecordEndOfData client_swapped is set according to the
byte order of the server relative to the recording client.

The data member contains the actual recorded protocol data. When category is set
to XRecordStartOfData XRecordClientDied or XRecordEndOfData no protocol data
are contained in data.

For the core X events KeyPress KeyRelease ButtonPress and ButtonRelease, the
fields of a device event that contain valid information are time and detail. For the
core X event MotionNotify the fields of a device event that contain valid information
are time, root, root-x and root-y. The time field refers to the time the event was
generated by the device.



Library Extension Requests

12

For the extension input device events DeviceKeyPress DeviceKeyRelease Device-
ButtonPress and DeviceButtonRelease the fields of a device event that contain
valid information are device, time, and detail. For DeviceMotionNotify the valid
device event fields are device and time. For the extension input device events Prox-
imityIn and ProximityOut the fields of a device event that contain valid informa-
tion are device and time. For the extension input device event DeviceValuator the
fields of a device event that contain valid information are device, num_valuators,
first_valuator, and valuators. The time field refers to the time the event was gener-
ated by the device.

The data_len member is set to the length of the actual recorded protocol data in
4-byte units.

When the context has been enabled, protocol data the recording client has previ-
ously expressed interest in is recorded and returned to the recording client via mul-
tiple replies. Because the X server batches the recorded data, more than one pro-
tocol element may be contained in the same reply packet. When a reply is received,
a procedure of type XRecordInterceptProc is called for each protocol element in
the reply.

typedef void (*XRecordInterceptProc)( closure,  *recorded_data);

closure Pointer that was passed in when the context was enabled.

recorded_data A protocol element recorded by the server extension.

This callback may use the control display connection (or any display connection
other than the data connection).

Recording clients should use the XRecordFreeData function to free the XRecordIn-
terceptData structure.

Status XRecordEnableContext( *display,  context,  callback,  closure);

display Specifies the connection to the X server.

context Specifies the record context to enable.

callback Specifies the function to be called for each protocol element received.

closure Specifies data passed to callback.

XRecordEnableContext enables data transfer between the recording client and the
X server. All core and extension protocol received from or sent to targeted clients
that the recording client has expressed interest in will be recorded and reported
to the recording client.

XRecordEnableContext returns zero if the request failed; otherwise, it returns
nonzero. The context argument must specify a valid XRecordContext or a XRecord-
BadContext error results. The error BadMatch results when data transfer is already
enabled on the given context.

Enable Context Asynchronously
Because XRecordEnableContext does not return until XRecordDisableContext is
executed on the control connection, a nonblocking interface in addition to XRecor-



Library Extension Requests

13

dEnableContext is provided. This interface also enables data transfer; however, it
does not block.

This interface is defined as follows:

Status XRecordEnableContextAsync( *display,  context,  callback,  clo-
sure);

display Specifies the connection to the X server.

context Specifies the record context to enable.

callback Specifies the function to be called for each protocol element received.

closure Specifies data passed to callback.

XRecordEnableContextAsync enables data transfer between the recording client
and the X server just as XRecordEnableContext does. Unlike XRecordEnableCon-
text it does not wait for the context to be disabled before returning; XRecordEn-
ableContextAsync returns as soon as the XRecordStartOfData reply has been re-
ceived and processed.

XRecordEnableContextAsync returns zero if it could not allocate the necessary
memory and nonzero if it sent the request successfully to the server. The context
argument must specify a valid XRecordContext or a XRecordBadContext error re-
sults. The error BadMatch results when data transfer is already enabled.

Each time it reads data from the server connection, Xlib will check for incoming
replies and call callback as necessary. The application may direct Xlib explicitly to
check for Record data with the XRecordProcessReplies function.

void XRecordProcessReplies( *display);

display Specifies the connection to the X server.

XRecordProcessReplies will check for any replies that have not yet been processed
by the application. The asynchronous callback will be called as appropriate.
XRecordProcessReplies returns when all immediately available replies have been
processed. It does not block.

To free the data passed to the XRecordInterceptProc callback, use XRecordFree-
Data

void XRecordFreeData( *data);

data Specifies the structure that is to be freed.

XRecordFreeData frees the data pointed to by data. If the argument does not match
an XRecordInterceptData pointer earlier passed to an XRecordInterceptProc call-
back or if XRecordFreeData has already been called with it, the behavior is unde-
fined.

Disable Context
To direct the X server to halt the reporting of recorded protocol, the program exe-
cutes XRecordDisableContext typically over its control connection to the X server.



Library Extension Requests

14

Status XRecordDisableContext( *display,  context);

display Specifies the connection to the X server.

context Specifies the record context to disable.

The XRecordDisableContext function disables context, stopping all recording over
its data connection. Any complete protocol elements for context that were buffered
in the server will be sent to the recording client rather than being discarded. If
a program attempts to disable an XRecordContext that has not been enabled, no
action will take place.

XRecordDisableContext returns zero if the request failed; otherwise, it returns
nonzero. The context argument must specify a valid XRecordContext or an XRecord-
BadContext error results.

ID Base Mask
To determine the mask the server uses for the client ID base, use XRecordIdBase-
Mask

XID XRecordIdBaseMask( *display);

display Specifies the connection to the X server.

The XRecordIdBaseMask function returns the resource ID mask passed to the client
by the server at connection setup.

Free Context
Before terminating, the program should request that the server free the record con-
text. This is done with the XRecordFreeContext function, typically over the record
client's control connection to the X server.

Status XRecordFreeContext( *display,  context);

display Specifies the connection to the X server.

context Specifies the record context to free.

The XRecordFreeContext function frees the given context for the requesting client.
Freeing a record context releases the clients targeted for recording and their re-
spective protocol ranges to record. If protocol data is being reported to the record-
ing client, generally over the data connection to the X server, the reporting ceases as
if XRecordDisableContext had been called on the given context. When a program
terminates without freeing its record context, the X server will automatically free
that context on behalf of the client.

XRecordFreeContext returns zero if the request failed; otherwise,it returns nonze-
ro. The context argument must specify a valid XRecordContext or a XRecordBad-
Context error results.


	X Record Extension Library
	Table of Contents
	Chapter 1. Record Extension Overview
	Synchronous Playback
	Design Approach
	Record Clients

	Chapter 2. Common Arguments
	Datum Flags
	Selecting Clients
	Protocol Ranges

	Chapter 3. Library Extension Requests
	Query Extension Version
	Create and Modify Context
	Additions
	Deletions

	Query Context State
	Data Transfer
	Enable Context
	Enable Context Asynchronously
	Disable Context

	ID Base Mask
	Free Context


