
1

How to further enhance
XKB configuration

Kamil Toman
Ivan U. Pascal

X Version 11, Release 7.7

25 November 2002

Abstract

This guide is aimed to relieve one's labour to create a new (internationalized) keyboard lay-
out. Unlike other documents this guide accents the keymap developer's point of view.

How to further en-
hance XKB configuration

2

Table of Contents
Overview .. 3
The Basics ... 3
Enhancing XKB Configuration ... 4

Levels And Groups ... 4
Defining New Layouts ... 5

Predefined XKB Symbol Sets ... 5
Key Types ... 6
Rules ... 9
Descriptive Files of Rules .. 10

How to further en-
hance XKB configuration

3

Overview
The developer of a new layout should read the xkb protocol specification (The X Key-
board Extension: Protocol Specification [http://www.x.org/docs/XKB/XKBproto.pdf])
at least to clarify for himself some xkb-specific terms used in this document and
elsewhere in xkb configuration. Also it shows wise to understand how the X server
and a client digest their keyboard inputs (with and without xkb).

A useful source is also Ivan Pascal's text about xkb configuration [http://www.tsu.ru/
~pascal/en/xkb] often referenced throughout this document.

Note that this document covers only enhancements which are to be made to
XFree86 version 4.3 and X11R6.7.0 and above.

The Basics
At the startup (or at later at user's command) X server starts its xkb keyboard mod-
ule extension and reads data from a compiled configuration file.

This compiled configuration file is prepared by the program xkbcomp which be-
haves altogether as an ordinary compiler (see man xkbcomp). Its input are human
readable xkb configuration files which are verified and then composed into a useful
xkb configuration. Users don't need to mess with xkbcomp themselves, for them it
is invisible. Usually, it is started upon X server startup.

As you probably already know, the xkb configuration consists of five main modules:

Keycodes Tables that defines translation from keyboard scan codes into reason-
able symbolic names, maximum, minimum legal keycodes, symbolic
aliases and description of physically present LED-indicators. The prima-
ry sence of this component is to allow definitions of maps of symbols (see
below) to be independent of physical keyboard scancodes. There are two
main naming conventions for symbolic names (always four bytes long):

• names which express some traditional meaning like <SPCE> (stands
for space bar) or

• names which express some relative positioning on a keyboard, for ex-
ample <AE01> (an exclamation mark on US keyboards), on the right
there are keys <AE02>, <AE03> etc.

Types Types describe how the produced key is changed by active modifiers
(like Shift, Control, Alt, ...). There are several predefined types which
cover most of used combinations.

Compat Compatibility component defines internal behaviour of modifiers. Us-
ing compat component you can assign various actions (elaborately de-
scribed in xkb specification) to key events. This is also the place where
LED-indicators behaviour is defined.

Symbols For i18n purposes, this is the most important table. It defines what val-
ues (=symbols) are assigned to what keycodes (represented by their
symbolic name, see above). There may be defined more than one value
for each key and then it depends on a key type and on modifiers state
(respective compat component) which value will be the resulting one.

http://www.x.org/docs/XKB/XKBproto.pdf
http://www.x.org/docs/XKB/XKBproto.pdf
http://www.x.org/docs/XKB/XKBproto.pdf
http://www.tsu.ru/~pascal/en/xkb
http://www.tsu.ru/~pascal/en/xkb
http://www.tsu.ru/~pascal/en/xkb

How to further en-
hance XKB configuration

4

Geome-
try

Geometry files aren't used by xkb itself but they may be used by some
external programs to depict a keyboard image.

All these components have the files located in xkb configuration tree in subdirecto-
ries with the same names (usually in /usr/lib/X11/xkb).

Enhancing XKB Configuration
Most of xkb enhancements concerns a need to define new output symbols for the
some input key events. In other words, a need to define a new symbol map (for a
new language, standard or just to feel more comfortable when typing text).

What do you need to do? Generally, you have to define following things:

• the map of symbols itself

• the rules to allow users to select the new mapping

• the description of the new layout

First of all, it is good to go through existing layouts and to examine them if there is
something you could easily adjust to fit your needs. Even if there is nothing similar
you may get some ideas about basic concepts and used tricks.

Levels And Groups
Since XFree86 4.3.0 and X11R6.7.0 you can use multi-layout concept of xkb con-
figuration. Though it is still in boundaries of xkb protocol and general ideas, the
keymap designer must obey new rules when creating new maps. In exchange we
get a more powerful and cleaner configuration system.

Remember that it is the application which must decide which symbol matches which
keycode according to effective modifier state. The X server itself sends only an input
event message to. Of course, usually the general interpretation is processed by Xlib,
Xaw, Motif, Qt, Gtk and similar libraries. The X server only supplies its mapping
table (usually upon an application startup).

You can think of the X server's symbol table as of a irregular table where each key-
code has its row and where each combination of modifiers determines exactly one
column. The resulting cell then gives the proper symbolic value. Not all keycodes
need to bind different values for different combination of modifiers. <ENTER> key,
for instance, usually doesn't depend on any modifiers so it its row has only one col-
umn defined.

Note that in XKB there is no prior assumption that certain modifiers are bound
to certain columns. By editing proper files (see Key Types) this mapping can be
changed as well.

Unlike the original X protocol the XKB approach is far more flexible. It is comfort-
able to add one additional XKB term - group. You can think of a group as of a vec-
tor of columns per each keycode (naturally the dimension of this vector may differ
for different keycodes). What is it good for? The group is not very useful unless
you intend to use more than one logically different set of symbols (like more than
one alphabet) defined in a single mapping table. But then, the group has a natural
meaning - each symbol set has its own group and changing it means selecting a

How to further en-
hance XKB configuration

5

different one. XKB approach allows up to four different groups. The columns inside
each group are called (shift) levels. The X server knows the current group and re-
ports it together with modifier set and with a keycode in key events.

To sum it up:

• for each keycode XKB keyboard map contains up to four one-dimensional tables
- groups (logically different symbol sets)

• for each group of a keycode XKB keyboard map contains some columns - shift
levels (values reached by combinations of Shift, Ctrl, Alt, ... modifiers)

• different keycodes can have different number of groups

• different groups of one keycode can have different number of shift levels

• the current group number is tracked by X server

It is clear that if you sanely define levels, groups and sanely bind modifiers and
associated actions you can have simultaneously loaded up to four different symbol
sets where each of them would reside in its own group.

The multi-layout concept provides a facility to manipulate xkb groups and symbol
definitions in a way that allows almost arbitrary composition of predefined symbol
tables. To keep it fully functional you have to:

• define all symbols only in the first group

• (re)define any modifiers with extra care to avoid strange (anisometric) behaviour

Defining New Layouts
See Some Words About XKB internals [http://www.tsu.ru/~pascal/en/xkb/
internals.html] for explanation of used xkb terms and problems addressed by XKB
extension.

See Common notes about XKB configuration files language [http://www.tsu.ru/~pas-
cal/en/xkb/gram-common.html] for more precise explanation of syntax of xkb con-
figuration files.

Predefined XKB Symbol Sets
If you are about to define some European symbol map extension, you might want to
use on of four predefined latin alphabet layouts.

Okay, let's assume you want extend an existing keymap and you want to override a
few keys. Let's take a simple U.K. keyboard as an example (defined in pc/gb):

partial default alphanumeric_keys
xkb_symbols "basic" {
 include "pc/latin"

 name[Group1]="Great Britain";

http://www.tsu.ru/~pascal/en/xkb/internals.html
http://www.tsu.ru/~pascal/en/xkb/internals.html
http://www.tsu.ru/~pascal/en/xkb/internals.html
http://www.tsu.ru/~pascal/en/xkb/gram-common.html
http://www.tsu.ru/~pascal/en/xkb/gram-common.html
http://www.tsu.ru/~pascal/en/xkb/gram-common.html

How to further en-
hance XKB configuration

6

 key <AE02> { [2, quotedbl, twosuperior, oneeighth] };
 key <AE03> { [3, sterling, threesuperior, sterling] };
 key <AC11> { [apostrophe, at, dead_circumflex, dead_caron] };
 key <TLDE> { [grave, notsign, bar, bar] };
 key <BKSL> { [numbersign, asciitilde, dead_grave, dead_breve] };
 key <RALT> { type[Group1]="TWO_LEVEL",
 [ISO_Level3_Shift, Multi_key] };

 modifier_map Mod5 { <RALT> };
};

It defines a new layout in basic variant as an extension of common latin alphabet
layout. The layout (symbol set) name is set to "Great Britain". Then there are rede-
finitions of a few keycodes and a modifiers binding. As you can see the number of
shift levels is the same for <AE02>, <AE03>, <AC11>, <TLDE> and <BKSL> keys
but it differs from number of shift levels of <RALT>.

Note that the <RALT> key itself is a binding key for Mod5 and that it serves like a
shift modifier for LevelThree, together with Shift as a multi-key. It is a good habit
to respect this rule in a new similar layout.

Okay, you could now define more variants of your new layout besides basic simply
by including (augmenting/overriding/...) the basic definition and altering what may
be needed.

Key Types
The differences in the number of columns (shift levels) are caused by a different
types of keys (see the types definition in section basics). Most keycodes have implic-
itly set the keytype in the included “pc/latin” file to “FOUR_LEVEL_ALPHABETIC”.
The only exception is <RALT> keycode which is explicitly set “TWO_LEVEL” keytype.

All those names refer to pre-defined shift level schemes. Usually you can choose
a suitable shift level scheme from default types scheme list in proper xkb
component's subdirectory.

The most used schemes are:

ONE_LEVEL The key does not depend on any modifiers. The symbol
from first level is always chosen.

TWO_LEVEL The key uses a modifier Shift and may have two possible
values. The second level may be chosen by Shift modifier.
If Lock modifier (usually Caps-lock) applies the symbol
is further processed using system-specific capitalization
rules. If both Shift+Lock modifier apply the symbol from
the second level is taken and capitalization rules are ap-
plied (and usually have no effect).

ALPHABETIC The key uses modifiers Shift and Lock. It may have two
possible values. The second level may be chosen by Shift
modifier. When Lock modifier applies, the symbol from
the first level is taken and further processed using sys-
tem-specific capitalization rules. If both Shift+Lock mod-

How to further en-
hance XKB configuration

7

ifier apply the symbol from the first level is taken and
no capitalization rules applied. This is often called shift-
cancels-caps behaviour.

THREE_LEVEL Is the same as TWO_LEVEL but it considers an extra
modifier - LevelThree which can be used to gain the sym-
bol value from the third level. If both Shift+LevelThree
modifiers apply the value from the third level is also tak-
en. As in TWO_LEVEL, the Lock modifier doesn't influ-
ence the resulting level. Only Shift and LevelThree are
taken into that consideration. If the Lock modifier is ac-
tive capitalization rules are applied on the resulting sym-
bol.

FOUR_LEVEL Is the same as THREE_LEVEL but unlike LEVEL_THREE
if both Shift+LevelThree modifiers apply the symbol is
taken from the fourth level.

FOUR_LEVEL_ALPHABETICIs similar to FOUR_LEVEL but also defines shift-can-
cels-caps behaviour as in ALPHABETIC. If Lock+Lev-
elThree apply the symbol from the third level is taken
and the capitalization rules are applied. If Lock+Shift
+LevelThree apply the symbol from the third level is tak-
en and no capitalization rules are applied.

KEYPAD As the name suggest this scheme is primarily used for
numeric keypads. The scheme considers two modifiers -
Shift and NumLock. If none of modifiers applies the sym-
bol from the first level is taken. If either Shift or Num-
Lock modifiers apply the symbol from the second level is
taken. If both Shift+NumLock modifiers apply the sym-
bol from the first level is taken. Again, shift-cancels-caps
variant.

FOUR_LEVEL_KEYPAD Is similar to KEYPAD scheme but considers also Lev-
elThree modifier. If LevelThree modifier applies the sym-
bol from the third level is taken. If Shift+LevelThree or
NumLock+LevelThree apply the symbol from the fourth
level is taken. If all Shift+NumLock+LevelThree modi-
fiers apply the symbol from the third level is taken. This
also, shift-cancels-caps variant.

Besides that, there are several schemes for special purposes:

PC_BREAK It is similar to TWO_LEVEL scheme but it considers the Control modi-
fier rather than Shift. That means, the symbol from the second level is
chosen by Control rather than by Shift.

PC_SYSRQ It is similar to TWO_LEVEL scheme but it considers the Alt modifier
rather than Shift. That means, the symbol from the second level is cho-
sen by Alt rather than by Shift.

CTRL
+ALT

The key uses modifiers Alt and Control. It may have two possible values.
If only one modifier (Alt or Control) applies the symbol from the first
level is chosen. Only if both Alt+Control modifiers apply the symbol
from the second level is chosen.

How to further en-
hance XKB configuration

8

SHIFT
+ALT

The key uses modifiers Shift and Alt. It may have two possible values.
If only one modifier (Alt or Shift) applies the symbol from the first level
is chosen. Only if both Alt+Shift modifiers apply the symbol from the
second level is chosen.

If needed, special caps schemes may be used. They redefine the standard behav-
iour of all *ALPHABETIC types. The layouts (maps of symbols) with keys defined in
respective types then automatically change their behaviour accordingly. Possible
redefinitions are:

• internal

• internal_nocancel

• shift

• shift_nocancel

None of these schemes should be used directly. They are defined merely for 'caps:'
xkb options (used to globally change the layouts behaviour).

Don't alter any of existing key types. If you need a different behaviour create a new
one.

More On Definitions Of Types

When the XKB software deals with a separate type description it gets a complete list
of modifiers that should be taken into account from the 'modifiers=<list of mod-
ifiers>' list and expects that a set of 'map[<combination of modifiers>]=<list
of modifiers>' instructions that contain the mapping for each combination of mod-
ifiers mentioned in that list. Modifiers that are not explicitly listed are NOT taken
into account when the resulting shift level is computed. If some combination is omit-
ted the program (subroutine) should choose the first level for this combination (a
quite reasonable behavior).

Lets consider an example with two modifiers ModOne and ModTwo:

type "..." {
 modifiers = ModOne+ModTwo;
 map[None] = Level1;
 map[ModOne] = Level2;
};

In this case the map statements for ModTwo only and ModOne+ModTwo are omit-
ted. It means that if the ModTwo is active the subroutine can't found explicit map-
ping for such combination an will use the default level i.e. Level1.

But in the case the type described as:

type "..." {
 modifiers = ModOne;
 map[None] = Level1;
 map[ModOne] = Level2;

How to further en-
hance XKB configuration

9

};

the ModTwo will not be taken into account and the resulting level depends on the
ModOne state only. That means, ModTwo alone produces the Level1 but the combi-
nation ModOne+ModTwo produces the Level2 as well as ModOne alone.

What does it mean if the second modifier is the Lock? It means that in the first case
(the Lock itself is included in the list of modifiers but combinations with this modifier
aren't mentioned in the map statements) the internal capitalization rules will be
applied to the symbol from the first level. But in the second case the capitalization
will be applied to the symbol chosen accordingly to he first modifier - and this can
be the symbol from the first as well as from the second level.

Usually, all modifiers introduced in 'modifiers=<list of modifiers>' list are used
for shift level calculation and then discarded. Sometimes this is not desirable. If you
want to use a modifier for shift level calculation but you don't want to discard it, you
may list in 'preserve[<combination of modifiers>]=<list of modifiers>'. That
means, for a given combination all listed modifiers will be preserved. If the Lock
modifier is preserved then the resulting symbol is passed to internal capitalization
routine regardless whether it has been used for a shift level calculation or not.

Any key type description can use both real and virtual modifiers. Since real mod-
ifiers always have standard names it is not necessary to explicitly declare them.
Virtual modifiers can have arbitrary names and can be declared (prior using them)
directly in key type definition:

virtual_modifiers <comma-separated list of modifiers> ;

as seen in for example basic, pc or mousekeys key type definitions.

Rules
Once you are finished with your symbol map you need to add it to rules file. The rules
file describes how all the five basic keycodes, types, compat, symbols and geometry
components should be composed to give a sensible resulting xkb configuration.

The main advantage of rules over formerly used keymaps is a possibility to simply
parameterize (once) fixed patterns of configurations and thus to elegantly allow
substitutions of various local configurations into predefined templates.

A pattern in a rules file (often located in /usr/lib/X11/xkb/rules) can be parame-
terized with four other arguments: Model, Layout, Variant and Options. For most
cases parameters model and layout should be sufficient for choosing a functional
keyboard mapping.

The rules file itself is composed of pattern lines and lines with rules. The pattern
line starts with an exclamation mark ('!') and describes how will the xkb interpret
the following lines (rules). A sample rules file looks like this:

! model = keycodes
 macintosh_old = macintosh
 ...

How to further en-
hance XKB configuration

10

 * = xorg

! model = symbols
 hp = +inet(%m)
 microsoftpro = +inet(%m)
 geniuscomfy = +inet(%m)

! model layout[1] = symbols
 macintosh us = macintosh/us%(v[1])
 * * = pc/pc(%m)+pc/%l[1]%(v[1])

! model layout[2] = symbols
 macintosh us = +macintosh/us[2]%(v[2]):2
 * * = +pc/%l[2]%(v[2]):2

! option = types
 caps:internal = +caps(internal)
 caps:internal_nocancel = +caps(internal_nocancel)

Each rule defines what certain combination of values on the left side of equal sign
('=') results in. For example a (keyboard) model macintosh_old instructs xkb to
take definitions of keycodes from file keycodes/macintosh while the rest of models
(represented by a wild card '*') instructs it to take them from file keycodes/xorg.
The wild card represents all possible values on the left side which were not found in
any of the previous rules. The more specialized (more complete) rules have higher
precedence than general ones, i.e. the more general rules supply reasonable default
values.

As you can see some lines contain substitution parameters - the parameters preced-
ed by the percent sign ('%'). The first alphabetical character after the percent sign
expands to the value which has been found on the left side. For example +%l%(v)
expands into +cz(bksl) if the respective values on the left side were cz layout in
its bksl variant. More, if the layout resp. variant parameter is followed by a pair of
brackets ('[', ']') it means that xkb should place the layout resp. variant into speci-
fied xkb group. If the brackets are omitted the first group is the default value.

So the second block of rules enhances symbol definitions for some particular key-
board models with extra keys (for internet, multimedia, ...) . Other models are left
intact. Similarly, the last block overrides some key type definitions, so the common
global behaviour ''shift cancels caps'' or ''shift doesn't cancel caps'' can be selected.
The rest of rules produces special symbols for each variant us layout of macintosh
keyboard and standard pc symbols in appropriate variants as a default.

Descriptive Files of Rules
Now you just need to add a detailed description to <rules>.xml description file so
the other users (and external programs which often parse this file) know what is
your work about.

Old Descriptive Files

The formerly used descriptive files were named <rules>.lst Its structure is very
simple and quite self descriptive but such simplicity had also some cavities, for

How to further en-
hance XKB configuration

11

example there was no way how to describe local variants of layouts and there were
problems with the localization of descriptions. To preserve compatibility with some
older programs, new XML descriptive files can be converted to old format '.lst'.

For each parameter of rules file should be described its meaning. For the rules file
described above the .lst file could look like:

! model
 pc104 Generic 104-key PC
 microsoft Microsoft Natural
 pc98 PC-98xx Series
 macintosh Original Macintosh
 ...

! layout
 us U.S. English
 cz Czech
 de German
 ...

! option
 caps:internal uses internal capitalization. Shift cancels Caps
 caps:internal_nocancel uses internal capitalization. Shift doesn't cancel Caps

And that should be it. Enjoy creating your own xkb mapping.

	How to further enhance XKB configuration
	Table of Contents
	Overview
	The Basics
	Enhancing XKB Configuration
	Levels And Groups

	Defining New Layouts
	Predefined XKB Symbol Sets
	Key Types
	More On Definitions Of Types

	Rules
	Descriptive Files of Rules
	Old Descriptive Files

