tangl and mangl

Threaded OpenGL API Dispatch

Alexander Monakov

amonakov@ispras.ru

Institute for System Programming of Russian Academy of Sciences

X.Org Developers Conference, October 10, 2014

1/

amonakov@ispras.ru

Talking Points

Threaded GL API dispatch
e Concept
@ Implementation details
o Making it fast
e Making it faster

@ Missing relevant features in OpenGL

Note the Footnote

Application makes API calls
@ Store function IDs and arguments in a buffer
@ Don't execute the actual function

@ Return control to the application
@ Have a secondary thread do the real work

@ Retrieve function IDs and args from the buffer
o Execute the actual function

@ ...as long as postponing the side effects is fine

“Threaded"! refers to offloading the work to another thread

! “threaded dispatch” usually refers to a certain design of an interpreter loop

Not That Easy

You can't naively make an API call asynchronously when it

@ ...returns a value
@ ...dereferences pointers into application memory

e pointer given in arguments

e pointer escaped via previous calls

@ ...unless async behavior allowed by the spec
(glArrayElement)

@ ...specified to have a synchronizing effect (glFinish)
@ ...just better be synchronous (glXSwapBuffers)
Solutions:

@ Synchronize (stall until the secondary thread catches up)
big hammer, always works

o If API call needs a const pointer to a small array, just copy it

@ Use API semantics to your advantage in other ways

No Silver Bullet

Won't buy you anything if the application is
e ...100% GPU bound

@ ...100% CPU bound all outside the driver
not helping the bottleneck

@ ...100% CPU bound all in the driver
moving the bottleneck to another thread

Ideal case:
@ CPU bound, 50% in GL driver on the critical path
@ No API calls causing synchronization stalls

Ideal theoretical speedup is “about 2x”

Not Exactly New

Been done before:

e NVIDIA: __GL_THREADED_OPTIMIZATIONS, 2012
(years after Windows driver got “Multicore Optimizations”)

@ Mesa: anholt/glthread-5 branch
What's going to be new here
@ Standalone, vendor-independent

@ Will come with a stall profiler

6/ 25

Principles of Operation

To perform threaded offload, one needs:
@ Secondary worker threads
@ Mechanism to pass API call args
@ Synchronization mechanism

@ Producer/consumer stubs for each GL entrypoint

One worker thread for each application thread touching GL/GLX
@ 1-1 producer-consumer correspondence
@ Never touch libGL from original application threads
@ When to spawn:
In GLX calls, spawn worker if doesn't exist yet
In GL calls, no need to care
@ When to cleanup:
when the corresponding application thread exits
(using pthread key_create)

8/ 25

One worker thread for each application thread touching GL/GLX
@ 1-1 producer-consumer correspondence
@ Never touch libGL from original application threads
@ When to spawn:
In GLX calls, spawn worker if doesn't exist yet
In GL calls, no need to care
@ When to cleanup:
when the corresponding application thread exits
(using pthread key_create)
Tried and discarded another approach:
@ Spawn one worker per active context
@ Turns out NVIDIA driver gets slower with
pthread mutex_unlock high in perf profiles
@ Presumably attempts to protect internal datastructures with
mutexes when mulithreaded, even with one context
o Exact logic is unclear
@ Need to dlopen NVIDIA libGL from worker thread as well!

8/ 25

One ring buffer for each producer-consumer pair
o Size/align 4AMB/4MB — get a hugepage if lucky
o Data layout just natural:

e Function ID followed by arguments
o Variable-length arrays preceded by length
e Primitive types aligned to their size

o Prescribe maximum argument size (e.g. 16K)

o Useful to keep small glBufferSubData calls async
o For larger sizes, make a synchronous call without copying

9/ 25

Synchronization

Threads occasionally need to suspend:

o Consumer: ring buffer empty

@ Producer: ring buffer may overflow on next call

@ Producer: when making a synchronous call
When one suspends, the other needs to wake it
Approach taken:

@ For producer and consumer, maintain
o Current pointer into ring buffer
e “Suspended” flag

@ Suspend/wakeup:
o Futex operations on pointers

o Fits almost? perfectly
o Consumer: sched_yield() a few times before suspending

2needs endian-dependent hacks
10 / 25

Need two stubs for each GL API entrypoint
@ Almost 3000 functions (counting all extensions)
@ Must have automatic codegen

Need formal API specs to do codegen

@ Old GL specs: incomplete, deprecated
@ New GL specs

o XML
o Not informative enough

@ APITrace specs: very nice

11/ 25

Function(ASYNC, Void, glVertex2f, ((GLfloat, x), (GLfloat, y)))

Function(ASYNC, Void, glVertex2f, ((GLfloat, x), (GLfloat, y)))

void glVertex2f (GLfloat x, GLfloat y)
{

PFUNC (g1Vertex2f) ;

PUT(x) ;

PUT(y) ;

PDONE;
}

static void worker_glVertex2f (void)
{

GLfloat x;

GLfloat y;

CFUNC(glVertex2f) ;

GET (%) ;

GET(y);

CDONE;

CNEXT (glVertex2f) (x, y);

Producer Stub Assembly

glVertex2f:

Get thread-specific context (cheat: IE TLS)
movq current@gottpoff (%rip), %rax
movq #%fs: (frax), %rdi

Get ring buffer pointer
movq 256 (%rdi), %rsi

Save Function ID
movl $216, (Y%rsi)

Advance ring buffer pointer
leaq 16 (hrsi), %rdx

Save args
movss %xmm0O, 4(%rsi)
movss /xmml, 8(%rsi)

Store ring buffer pointer and handle overflow
jmp producer_advance

13/ 25

Consumer Stub Assembly

worker_glVertex2f:
Load args
movss 4(%rbx), %xmmO
movss 8(%rbx), %xmmi
Advance ring buffer pointer
leaq 16 (%rbx) , %rbx
Jump to vendor 1ibGL
jmp xJrax

Workers are very small thanks to custom ABI.
Use return register (rax) for driver function pointer
Use callee-saved registers (rbx, r15) for

@ Ring buffer pointer
o Current context data (very rarely needed)

Only a matter of 3 global register vars (GCC extension)

14 / 25

Stall Profiler

Producer side can output stall timing statistics:

41 fps
92.1 syncs per frame
0 waits per frame (due to overflow)

sync: 78.2%

wait: 0%

glXSwapBuffers: 41 88.6%
glGetIntegerv: 1447 6.85%
glCheckFramebufferStatus: 1406 2.82%
glMapBufferRange: 592 1.02%
glBufferData: 143 0.326%
glTexImage3D: 5 0.124%
glGetError: 41 0.057%

15 / 25

Fake It Till You Make It

Fast offload not useful if you sync all the time

@ Chances are, you will. ..

@ ...unless the application was heavily optimized with driver
threading in mind

@ Want some way to forgo syncs when possible

Ways to avoid thread syncs:

16 / 25

Fake It Till You Make It

Fast offload not useful if you sync all the time

@ Chances are, you will. ..

@ ...unless the application was heavily optimized with driver
threading in mind

@ Want some way to forgo syncs when possible
Ways to avoid thread syncs:

@ Guess and hope for the best

o glGetError() {return GL_NO_ERROR;}
o glCheckFramebufferStatus() — likewise

16 / 25

Fake It Till You Make It

Fast offload not useful if you sync all the time

@ Chances are, you will. ..

@ ...unless the application was heavily optimized with driver
threading in mind

@ Want some way to forgo syncs when possible

Ways to avoid thread syncs:
@ Guess and hope for the best
o glGetError() {return GL_NO_ERROR;}
o glCheckFramebufferStatus() — likewise
@ Try to track some GL state

o Intercept glBindFramebuffer (GL_DRAW_FRAMEBUFFER, fbo)
o Answer glGetIntegerv (GL_DRAW_FRAMEBUFFER_BINDING)
queries

16 / 25

Duck Mapping

glMapBufferRange (target, offset, length,
GL_MAP WRITE BIT | GL_MAP_UNSYNCHRONIZED_BIT)
shouldn’t sync, right?

17 / 25

Duck Mapping

glMapBufferRange (target, offset, length,
GL_MAP WRITE BIT | GL_MAP_UNSYNCHRONIZED BIT)
shouldn’t sync, right?
o Give data = malloc(length) to the application

@ Remember (offset, length, data) for target
@ When application calls glUnmapBuffer:

o glBufferSubData(target, offset, length, data)
o free(data)

17 / 25

Duck Mapping

glMapBufferRange (target, offset, length,
GL_MAP WRITE BIT | GL_MAP_UNSYNCHRONIZED BIT)
shouldn’t sync, right?
o Give data = malloc(length) to the application

@ Remember (offset, length, data) for target
@ When application calls glUnmapBuffer:

o glBufferSubData(target, offset, length, data)
o free(data)

Only do it if 1ength is small enough

17 / 25

Tangle and Mangle

Contradicting goals
@ Threaded dispatch

e Simple 1:1 call mapping
o Low overhead

@ Sync avoidance:

e Do some tracking — not free
o Call transformations — plenty of room for error

18 / 25

Tangle and Mangle

Contradicting goals
@ Threaded dispatch
e Simple 1:1 call mapping
o Low overhead
@ Sync avoidance:
e Do some tracking — not free
o Call transformations — plenty of room for error
Completely separate in two libraries:
@ tangl — pure threaded dispatch
o Simple, correct, fast
e Good enough for “well-behaved” applications
@ mangl — call transformation

All kinds of questionable hacks to sync avoidance
Plenty of room for error

Ability to deviate from GL spec (should be configurable)
Adds overhead

18 / 25

Enabling asynchronous memory access in the driver

No way in core GL to say:
@ Here's a memory range in the application address space
o | promise | won't modify or unmap it
@ Therefore the driver may access it asynchronously

19 /25

Enabling asynchronous memory access in the driver
No way in core GL to say:
@ Here's a memory range in the application address space
o | promise | won't modify or unmap it
@ Therefore the driver may access it asynchronously
Example use case:
@ mmap a resource file
glTexImage from mmap'ed range
glFenceSync
do something else
glClientWaitSync
@ munmap
or glReadPixels/glGetBufferSubData into a prescribed buffer

19 /25

Enabling asynchronous memory access in the driver
No way in core GL to say:
@ Here's a memory range in the application address space
o | promise | won't modify or unmap it
@ Therefore the driver may access it asynchronously
Example use case:
@ mmap a resource file
glTexImage from mmap'ed range
glFenceSync
do something else
glClientWaitSync
@ munmap
or glReadPixels/glGetBufferSubData into a prescribed buffer
Actually this was done as extensions:
@ GL_SGIX_async, 1998
@ GL_NV_pixel data range, 2002
Why not in main spec?

19 /25

Missing Pieces Il: Fence Callbacks

No way to register a user function for fence completion
o Callbacks are not a foreign concept in GL (debug output)

o Without callbacks, glClientWaitSync needs a complete
synchronization stall in threaded dispatch

More oddity in GL fence objects:

@ glFenceSync conflates object creation and GPU operation

Suitable for GL_ARB_sync2?

20 / 25

77

Thank you!

21 /25

Redundant And Incomplete Data

Backup/extra slides follow

Safety First

You might not want this in Mesa:

libpthread is required to spawn worker threads
loading libpthread switches all mutexes from no-op to real

on FreeBSD libpthread cannot be dynamically loaded

not necessarily a good idea to absorb everything

23 / 25

Higher Hanging Fruit

In-driver implementation can do a bit better:
@ Skip one level of GL dispatch (direct/indirect) in workers
@ Skip PLT for API calls in the worker
@ Tune code layout for I-cache locality

@ Do some state tracking up front (and reuse tracking code)

24 / 25

Pie in the Sky

Interesting potential developments based on fast threaded dispatch
layer:

@ Low-overhead GL tracing
@ Out-of-process GL
o tee dispatch

25 / 25

	Intro

