
tangl and mangl

Threaded OpenGL API Dispatch

Alexander Monakov
amonakov@ispras.ru

Institute for System Programming of Russian Academy of Sciences

X.Org Developers Conference, October 10, 2014

1 / 25

amonakov@ispras.ru

Talking Points

Threaded GL API dispatch

Concept

Implementation details

Making it fast

Making it faster

Missing relevant features in OpenGL

2 / 25

Note the Footnote

Application makes API calls

Store function IDs and arguments in a buffer

Don’t execute the actual function

Return control to the application

Have a secondary thread do the real work

Retrieve function IDs and args from the buffer
Execute the actual function

. . . as long as postponing the side effects is fine

“Threaded”1 refers to offloading the work to another thread

1“threaded dispatch” usually refers to a certain design of an interpreter loop
3 / 25

Not That Easy

You can’t naively make an API call asynchronously when it

. . . returns a value

. . . dereferences pointers into application memory

pointer given in arguments
pointer escaped via previous calls
. . . unless async behavior allowed by the spec
(glArrayElement)

. . . specified to have a synchronizing effect (glFinish)

. . . just better be synchronous (glXSwapBuffers)

Solutions:

Synchronize (stall until the secondary thread catches up)
big hammer, always works

If API call needs a const pointer to a small array, just copy it

Use API semantics to your advantage in other ways

4 / 25

No Silver Bullet

Won’t buy you anything if the application is

. . . 100% GPU bound

. . . 100% CPU bound all outside the driver
not helping the bottleneck

. . . 100% CPU bound all in the driver
moving the bottleneck to another thread

Ideal case:

CPU bound, 50% in GL driver on the critical path

No API calls causing synchronization stalls

Ideal theoretical speedup is “about 2x”

5 / 25

Not Exactly New

Been done before:

NVIDIA: GL THREADED OPTIMIZATIONS, 2012
(years after Windows driver got“Multicore Optimizations”)

Mesa: anholt/glthread-5 branch

What’s going to be new here

Standalone, vendor-independent

Will come with a stall profiler

6 / 25

Principles of Operation

To perform threaded offload, one needs:

Secondary worker threads

Mechanism to pass API call args

Synchronization mechanism

Producer/consumer stubs for each GL entrypoint

7 / 25

Workers

One worker thread for each application thread touching GL/GLX

1–1 producer-consumer correspondence
Never touch libGL from original application threads
When to spawn:

In GLX calls, spawn worker if doesn’t exist yet
In GL calls, no need to care

When to cleanup:
when the corresponding application thread exits
(using pthread key create)

Tried and discarded another approach:

Spawn one worker per active context
Turns out NVIDIA driver gets slower with
pthread mutex unlock high in perf profiles
Presumably attempts to protect internal datastructures with
mutexes when mulithreaded, even with one context
Exact logic is unclear
Need to dlopen NVIDIA libGL from worker thread as well!

8 / 25

Workers

One worker thread for each application thread touching GL/GLX

1–1 producer-consumer correspondence
Never touch libGL from original application threads
When to spawn:

In GLX calls, spawn worker if doesn’t exist yet
In GL calls, no need to care

When to cleanup:
when the corresponding application thread exits
(using pthread key create)

Tried and discarded another approach:

Spawn one worker per active context
Turns out NVIDIA driver gets slower with
pthread mutex unlock high in perf profiles
Presumably attempts to protect internal datastructures with
mutexes when mulithreaded, even with one context
Exact logic is unclear
Need to dlopen NVIDIA libGL from worker thread as well!

8 / 25

Buffers

One ring buffer for each producer-consumer pair

Size/align 4MB/4MB — get a hugepage if lucky

Data layout just natural:

Function ID followed by arguments
Variable-length arrays preceded by length
Primitive types aligned to their size

Prescribe maximum argument size (e.g. 16K)

Useful to keep small glBufferSubData calls async
For larger sizes, make a synchronous call without copying

9 / 25

Synchronization

Threads occasionally need to suspend:

Consumer: ring buffer empty

Producer: ring buffer may overflow on next call

Producer: when making a synchronous call

When one suspends, the other needs to wake it
Approach taken:

For producer and consumer, maintain

Current pointer into ring buffer
“Suspended” flag

Suspend/wakeup:

Futex operations on pointers
Fits almost2 perfectly
Consumer: sched yield() a few times before suspending

2needs endian-dependent hacks
10 / 25

Stubs

Need two stubs for each GL API entrypoint

Almost 3000 functions (counting all extensions)

Must have automatic codegen

Need formal API specs to do codegen

Old GL specs: incomplete, deprecated

New GL specs

XML
Not informative enough

APITrace specs: very nice

11 / 25

Stubs

Function(ASYNC, Void, glVertex2f, ((GLfloat, x), (GLfloat, y)))

void glVertex2f (GLfloat x, GLfloat y)

{

PFUNC(glVertex2f);

PUT(x);

PUT(y);

PDONE;

}

static void worker_glVertex2f(void)

{

GLfloat x;

GLfloat y;

CFUNC(glVertex2f);

GET(x);

GET(y);

CDONE;

CNEXT(glVertex2f)(x, y);

}

12 / 25

Stubs

Function(ASYNC, Void, glVertex2f, ((GLfloat, x), (GLfloat, y)))

void glVertex2f (GLfloat x, GLfloat y)

{

PFUNC(glVertex2f);

PUT(x);

PUT(y);

PDONE;

}

static void worker_glVertex2f(void)

{

GLfloat x;

GLfloat y;

CFUNC(glVertex2f);

GET(x);

GET(y);

CDONE;

CNEXT(glVertex2f)(x, y);

}

12 / 25

Producer Stub Assembly

glVertex2f:

Get thread-specific context (cheat: IE TLS)

movq current@gottpoff(%rip), %rax

movq %fs:(%rax), %rdi

Get ring buffer pointer

movq 256(%rdi), %rsi

Save Function ID

movl $216, (%rsi)

Advance ring buffer pointer

leaq 16(%rsi), %rdx

Save args

movss %xmm0, 4(%rsi)

movss %xmm1, 8(%rsi)

Store ring buffer pointer and handle overflow

jmp producer_advance

13 / 25

Consumer Stub Assembly

worker_glVertex2f:

Load args

movss 4(%rbx), %xmm0

movss 8(%rbx), %xmm1

Advance ring buffer pointer

leaq 16(%rbx), %rbx

Jump to vendor libGL

jmp *%rax

Workers are very small thanks to custom ABI.
Use return register (rax) for driver function pointer
Use callee-saved registers (rbx, r15) for

Ring buffer pointer
Current context data (very rarely needed)

Only a matter of 3 global register vars (GCC extension)

14 / 25

Stall Profiler

Producer side can output stall timing statistics:

41 fps

92.1 syncs per frame

0 waits per frame (due to overflow)

sync: 78.2%

wait: 0%

glXSwapBuffers: 41 88.6%

glGetIntegerv: 1447 6.85%

glCheckFramebufferStatus: 1406 2.82%

glMapBufferRange: 592 1.02%

glBufferData: 143 0.326%

glTexImage3D: 5 0.124%

glGetError: 41 0.057%

15 / 25

Fake It Till You Make It

Fast offload not useful if you sync all the time

Chances are, you will. . .

. . . unless the application was heavily optimized with driver
threading in mind

Want some way to forgo syncs when possible

Ways to avoid thread syncs:

Guess and hope for the best

glGetError() {return GL NO ERROR;}
glCheckFramebufferStatus() — likewise

Try to track some GL state

Intercept glBindFramebuffer(GL DRAW FRAMEBUFFER, fbo)

Answer glGetIntegerv(GL DRAW FRAMEBUFFER BINDING)

queries

16 / 25

Fake It Till You Make It

Fast offload not useful if you sync all the time

Chances are, you will. . .

. . . unless the application was heavily optimized with driver
threading in mind

Want some way to forgo syncs when possible

Ways to avoid thread syncs:

Guess and hope for the best

glGetError() {return GL NO ERROR;}
glCheckFramebufferStatus() — likewise

Try to track some GL state

Intercept glBindFramebuffer(GL DRAW FRAMEBUFFER, fbo)

Answer glGetIntegerv(GL DRAW FRAMEBUFFER BINDING)

queries

16 / 25

Fake It Till You Make It

Fast offload not useful if you sync all the time

Chances are, you will. . .

. . . unless the application was heavily optimized with driver
threading in mind

Want some way to forgo syncs when possible

Ways to avoid thread syncs:

Guess and hope for the best

glGetError() {return GL NO ERROR;}
glCheckFramebufferStatus() — likewise

Try to track some GL state

Intercept glBindFramebuffer(GL DRAW FRAMEBUFFER, fbo)

Answer glGetIntegerv(GL DRAW FRAMEBUFFER BINDING)

queries

16 / 25

Duck Mapping

glMapBufferRange(target, offset, length,

GL MAP WRITE BIT | GL MAP UNSYNCHRONIZED BIT)

shouldn’t sync, right?

Give data = malloc(length) to the application

Remember (offset, length, data) for target

When application calls glUnmapBuffer:

glBufferSubData(target, offset, length, data)

free(data)

Only do it if length is small enough

17 / 25

Duck Mapping

glMapBufferRange(target, offset, length,

GL MAP WRITE BIT | GL MAP UNSYNCHRONIZED BIT)

shouldn’t sync, right?

Give data = malloc(length) to the application

Remember (offset, length, data) for target

When application calls glUnmapBuffer:

glBufferSubData(target, offset, length, data)

free(data)

Only do it if length is small enough

17 / 25

Duck Mapping

glMapBufferRange(target, offset, length,

GL MAP WRITE BIT | GL MAP UNSYNCHRONIZED BIT)

shouldn’t sync, right?

Give data = malloc(length) to the application

Remember (offset, length, data) for target

When application calls glUnmapBuffer:

glBufferSubData(target, offset, length, data)

free(data)

Only do it if length is small enough

17 / 25

Tangle and Mangle

Contradicting goals

Threaded dispatch

Simple 1:1 call mapping
Low overhead

Sync avoidance:

Do some tracking — not free
Call transformations — plenty of room for error

Completely separate in two libraries:

tangl — pure threaded dispatch

Simple, correct, fast
Good enough for “well-behaved” applications

mangl — call transformation

All kinds of questionable hacks to sync avoidance
Plenty of room for error
Ability to deviate from GL spec (should be configurable)
Adds overhead

18 / 25

Tangle and Mangle

Contradicting goals

Threaded dispatch

Simple 1:1 call mapping
Low overhead

Sync avoidance:

Do some tracking — not free
Call transformations — plenty of room for error

Completely separate in two libraries:

tangl — pure threaded dispatch

Simple, correct, fast
Good enough for “well-behaved” applications

mangl — call transformation

All kinds of questionable hacks to sync avoidance
Plenty of room for error
Ability to deviate from GL spec (should be configurable)
Adds overhead

18 / 25

Missing Pieces

Enabling asynchronous memory access in the driver
No way in core GL to say:

Here’s a memory range in the application address space
I promise I won’t modify or unmap it
Therefore the driver may access it asynchronously

Example use case:

mmap a resource file
glTexImage from mmap’ed range
glFenceSync

do something else
glClientWaitSync

munmap

or glReadPixels/glGetBufferSubData into a prescribed buffer
Actually this was done as extensions:

GL SGIX async, 1998
GL NV pixel data range, 2002

Why not in main spec?
19 / 25

Missing Pieces

Enabling asynchronous memory access in the driver
No way in core GL to say:

Here’s a memory range in the application address space
I promise I won’t modify or unmap it
Therefore the driver may access it asynchronously

Example use case:

mmap a resource file
glTexImage from mmap’ed range
glFenceSync

do something else
glClientWaitSync

munmap

or glReadPixels/glGetBufferSubData into a prescribed buffer
Actually this was done as extensions:

GL SGIX async, 1998
GL NV pixel data range, 2002

Why not in main spec?
19 / 25

Missing Pieces

Enabling asynchronous memory access in the driver
No way in core GL to say:

Here’s a memory range in the application address space
I promise I won’t modify or unmap it
Therefore the driver may access it asynchronously

Example use case:

mmap a resource file
glTexImage from mmap’ed range
glFenceSync

do something else
glClientWaitSync

munmap

or glReadPixels/glGetBufferSubData into a prescribed buffer
Actually this was done as extensions:

GL SGIX async, 1998
GL NV pixel data range, 2002

Why not in main spec?
19 / 25

Missing Pieces II: Fence Callbacks

No way to register a user function for fence completion

Callbacks are not a foreign concept in GL (debug output)

Without callbacks, glClientWaitSync needs a complete
synchronization stall in threaded dispatch

More oddity in GL fence objects:

glFenceSync conflates object creation and GPU operation

Suitable for GL ARB sync2?

20 / 25

???

Thank you!

21 / 25

Redundant And Incomplete Data

Backup/extra slides follow

22 / 25

Safety First

You might not want this in Mesa:

libpthread is required to spawn worker threads

loading libpthread switches all mutexes from no-op to real

on FreeBSD libpthread cannot be dynamically loaded

not necessarily a good idea to absorb everything

23 / 25

Higher Hanging Fruit

In-driver implementation can do a bit better:

Skip one level of GL dispatch (direct/indirect) in workers

Skip PLT for API calls in the worker

Tune code layout for I-cache locality

Do some state tracking up front (and reuse tracking code)

24 / 25

Pie in the Sky

Interesting potential developments based on fast threaded dispatch
layer:

Low-overhead GL tracing

Out-of-process GL

tee dispatch

25 / 25

	Intro

