

Glamor Status Report

Keith Packard
Open Source Technology Center

Intel
keithp@keithp.com

mailto:keithp@keithp.com

What is Glamor?

● Glamor X Rendering helper
● Hardware independent
● Supports EGL and GLX
● Supports GL and GLES

Where Did Glamor Come From?

● Eric started it
– December 2008
– Goal of offering efficient hardware-independent X acceleration

● GL was pretty dire at the time
– Lots of 1.x drivers
– Lame 2.0 shader support

● Adopted by Zhigang Gong and Junyan He
– April 2011
– Goal of supporting SGX hardware without lots of custom code

● GL was a lot better
– Widespread GL 2.x support

Glamor Status in mid 2013

● Mostly Complete X acceleration
– Missing planemasks and a few other operations

● Structured like fb
– Build simple function to draw one object
– Layer with CPU-intensive code to deal with

clipping and repeats

● Performance heavily limited by CPU cost in
Glamor and OpenGL library

More Recent Glamor History

● Radeon stopped offering non-Glamor
acceleration

● Re-adopted by Eric
– August 2013

● Piled on by Keith
– March 2014

Pixmaps in Glamor

● GL Textures limits generally smaller than X
pixmap limits

● Tile textures to fill pixmap
● Dest is easy; just replicate rendering to each tile

member
● Source requires some magic

– Compute rectangle of dest covered by one source tile
– Construct intermediate textures from multiple source

tiles to eliminate seams in dest

X and Pixel Formats

● Pixmaps have no intrinsic color information.
Just depth.

● Windows have a visual, which describes their
pixel's RGB layout . Bits beyond those have no
core protocol meaning

● Render Pictures imbue pixels with color and
alpha

● Pixmaps (and even Windows) can have
multiple Pictures with different PictFormats

GL and Pixel Formats

● There are four “channels”, R, G, B and A
● Textures have intrinsic channel information, but

no depth or layout.
● Surfaces have channel information describing

which channels they contain.
● Data transferred between the application and

textures includes layout information.
● ARB_texture_swizzle lets you remap the

channels (if present).

Matching X and GL formats

● PutImage/GetImage specify the X wire
format to GL

● ARB_texture_swizzle can help with some
image format changes.

● However, sometimes Glamor must
reformat data with the CPU.

● Glamor doesn't currently do this correctly.

Fallbacks for Glamor

● What to do when GL actually doesn't work
● Download all pixmap textures to PBO
● Map, fallback to fb
● Upload PBO back to textures
● Can take bounding box to limit data

transfer

Glamor for Core X

● Rewritten in mid 2014
– Goal was to

● Eliminate CPU time spent in Glamor
● Use GPU for complete operations

Dynamic Shader Generation

● Fragments of GLSL for each phase of
rendering

● Glued together and compiled at runtime

Rect Shader (GL)

static const glamor_facet glamor_facet_polyfillrect_130 = {

 .name = "poly_fill_rect",

 .version = 130,

 .vs_vars = "attribute vec4 primitive;\n",

 .vs_exec = (" vec2 pos = primitive.zw *

 vec2(gl_VertexID&1, (gl_VertexID&2)>>1);\n"

 GLAMOR_POS(gl_Position, (primitive.xy + pos))),

};

Rect Setup (GL)
 prog = glamor_use_program_fill(pixmap, gc,

 &glamor_priv->poly_fill_rect_program,

 &glamor_facet_polyfillrect_130);

 if (!prog)

 goto bail_ctx;

 /* Set up the vertex buffers for the points */

 v = glamor_get_vbo_space(drawable->pScreen, nrect * sizeof (xRectangle), &vbo_offset);

 glEnableVertexAttribArray(GLAMOR_VERTEX_POS);

 glVertexAttribDivisor(GLAMOR_VERTEX_POS, 1);

 glVertexAttribPointer(GLAMOR_VERTEX_POS, 4, GL_SHORT, GL_FALSE,

 4 * sizeof (short), vbo_offset);

 memcpy(v, prect, nrect * sizeof (xRectangle));

 glamor_put_vbo_space(screen);

Rect Drawing
 glamor_pixmap_loop(pixmap_priv, box_x, box_y) {

 int nbox = RegionNumRects(gc->pCompositeClip);

 BoxPtr box = RegionRects(gc->pCompositeClip);

 glamor_set_destination_drawable(drawable, box_x, box_y, TRUE, FALSE, prog->matrix_uniform,
&off_x, &off_y);

 while (nbox--) {

 glScissor(box->x1 + off_x,

 box->y1 + off_y,

 box->x2 - box->x1,

 box->y2 - box->y1);

 box++;

 glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, nrect);

 }

 }

Glamor for Render

● Current code
– Optimized compositing
– Lots of CPU overhead

● Future plans
– Ponies and rainbows

Require GL Support for Glamor

● GLSL 1.20
● Desktop GL

– GL 2.1 or later

● GLES
– GLES 2.0 or later
– GL_EXT_texture_format_BGRA8888

Optional GL Support for Glamor

● GLSL 1.30
– Integers
– Instancing for vertex generation

● KHR_debug
● MESA_pack_invert
● EXT_framebuffer_blit
● ARB_map_buffer_range
● ARB_buffer_storage
● NV_texture_barrier

Glamor Projects

● Rework pixel format code
– Issues with multiple PictFormats (which Gtk+ does)
– Take advantage of texture swizzle extension

● Remove “optimization” for single-texture pixmaps
● Render text rewrite

– Remove temporary add buffer
– Implement new glyph cache
– ARB_blend_func_extended for component alpha

● Fragment shader trapezoids
● Use VAOs
● Finish core context work

– Fix render code to use VBOs/VAOs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

