Glamor Status Report

Keith Packard
Open Source Technology Center

Intel
keithp@keithp.com


mailto:keithp@keithp.com

What is Glamor?

 Glamor X Rendering helper
« Hardware independent
e Supports EGL and GLX
« Supports GL and GLES



Where Did Glamor Come From?

e Eric started it

- December 2008
- Goal of offering efficient hardware-independent X acceleration

 GL was pretty dire at the time

- Lots of 1.x drivers
- Lame 2.0 shader support

« Adopted by Zhigang Gong and Junyan He

- April 2011

- Goal of supporting SGX hardware without lots of custom code
 GL was a lot better

- Widespread GL 2.x support



Glamor Status in mid 2013

« Mostly Complete X acceleration

- Missing planemasks and a few other operations
« Structured like fb

- Build simple function to draw one object

- Layer with CPU-intensive code to deal with
clipping and repeats

 Performance heavily limited by CPU cost in
Glamor and OpenGL library



More Recent Glamor History

« Radeon stopped offering non-Glamor
acceleration

« Re-adopted by Eric
- August 2013

* Piled on by Keith
- March 2014



Pixmaps in Glamor

* GL Textures limits generally smaller than X
pixmap limits

* Tile textures to fill pixmap

* Dest is easy; just replicate rendering to each tile
member

e Source requires some magic

- Compute rectangle of dest covered by one source tile

- Construct intermediate textures from multiple source
tiles to eliminate seams in dest



X and Pixel Formats

* Pixmaps have no intrinsic color information.
Just depth.

« Windows have a visual, which describes their
pixel's RGB layout . Bits beyond those have no
core protocol meaning

* Render Pictures imbue pixels with color and
alpha

* Pixmaps (and even Windows) can have
multiple Pictures with different PictFormats



GL and Pixel Formats

e There are four “channels”, R, G, B and A

e Textures have intrinsic channel information, but
no depth or layout.

e Surfaces have channel information describing
which channels they contain.

« Data transferred between the application and
textures includes layout information.

 ARB texture swizzle lets you remap the
channels (if present).



Matching X and GL formats

 Putimage/Getimage specify the X wire
format to GL

 ARB texture swizzle can help with some
image format changes.

« However, sometimes Glamor must
reformat data with the CPU.

 Glamor doesn't currently do this correctly.



Fallbacks for Glamor

What to do when GL actually doesn't work
Download all pixmap textures to PBO
Map, fallback to fb

Upload PBO back to textures

Can take bounding box to limit data
transfer



Glamor for Core X

« Rewritten in mid 2014

- Goal was to
e Eliminate CPU time spent in Glamor

 Use GPU for complete operations



Dynamic Shader Generation

 Fragments of GLSL for each phase of
rendering

* Glued together and compiled at runtime



Rect Shader (GL)

static const glamor_facet glamor_facet polyfillrect 130 = {

.name = "poly fill rect”,

.version = 130,

.VS_vars = "attribute vec4 primitive;\n",
.vs_exec = (" vec2 pos = primitive.zw *

vec2(gl VertexID&1, (gl VertexID&2)>>1);\n"
GLAMOR POS(gl Position, (primitive.xy + pos))),



Rect Setup (GL)

prog = glamor_use_program_fill(pixmap, gc,
&glamor_priv->poly fill rect program,
&glamor_facet polyfillrect 130);

if ('proQ)
goto bail_ctx;

/* Set up the vertex buffers for the points */
v = glamor_get vbo_space(drawable->pScreen, nrect * sizeof (xRectangle), &vbo_offset);
glEnableVertexAttribArray(GLAMOR_VERTEX_ POS);
glVertexAttribDivisor(GLAMOR_VERTEX_POQOS, 1);
glVertexAttribPointer(GLAMOR_VERTEX POS, 4, GL_SHORT, GL_FALSE,

4 * sizeof (short), vbo_offset);

memcpy(v, prect, nrect * sizeof (xRectangle));

glamor_put vbo space(screen);



Rect Drawing

glamor_pixmap_loop(pixmap_priv, box_x, box_y) {
int nbox = RegionNumRects(gc->pCompositeClip);
BoxPtr box = RegionRects(gc->pCompositeClip);

glamor_set_destination_drawable(drawable, box_x, box_y, TRUE, FALSE, prog->matrix_uniform,
&off x, &off y);

while (nbox--) {
glScissor(box->x1 + off x,
box->y1l + off vy,
box->x2 - box->x1,
box->y2 - box->y1);
box++;
glDrawArraysinstanced(GL TRIANGLE_STRIP, 0, 4, nrect);



Glamor for Render

e Current code
- Optimized compositing
- Lots of CPU overhead

e Future plans
- Ponies and rainbows



Require GL Support for Glamor

« GLSL 1.20
« Desktop GL

- GL 2.1 or later
« GLES

- GLES 2.0 or later
- GL _EXT texture format BGRA8888



Optional GL Support for Glamor

« GLSL 1.30

- Integers
- Instancing for vertex generation

KHR debug

MESA pack invert

EXT framebuffer Dblit
ARB_map buffer range

« ARB buffer storage
* NV _texture barrier



Glamor Projects

Rework pixel format code

- Issues with multiple PictFormats (which Gtk+ does)
- Take advantage of texture swizzle extension

Remove “optimization” for single-texture pixmaps

Render text rewrite

- Remove temporary add buffer
- Implement new glyph cache
- ARB_blend _func_extended for component alpha

Fragment shader trapezoids
Use VAOs

Finish core context work
- Fix render code to use VBOs/VAOs



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

