
Introduction Benchmarking EzBench

Pitfalls of benchmarking graphics applications for
performance tracking
And how to address them?

Martin Peres

Intel Open Source Technology Center Finland

September 18, 2015



Introduction Benchmarking EzBench

Summary

1 Introduction

2 Benchmarking

3 EzBench



Introduction Benchmarking EzBench

Introduction

Introduction

Current situation

Complex games/benchmarks are becoming available on Linux;

Drivers are getting more complex as performance improves;

Users now rely on Open Source drivers for performance.

Risks when merging new code

Break previous functionalities / rendering;

Break the performance of a game inadvertly;

Improve the performance of one game but slow down others.



Introduction Benchmarking EzBench

Introduction

Introduction

Review does not catch everything - Real-life example
@@ -340,6 +340,10 @@ is_color_fast_clear_compatible(struct brw_context *brw,

const union gl_color_union *color)

{

if (_mesa_is_format_integer_color(format))

+ if (brw->gen >= 8) {

+ perf_debug("Integer fast clear not enabled for (%s)",

+ _mesa_get_format_name(format));

+ }

return false;

Result

Up to 10% regression in some benchmarks;

Took 13 days for the fix to reach upstream.



Introduction Benchmarking EzBench

Introduction

Introduction - Need for benchmarking

It is impossible to predict performance

Some factors affecting the performance:

Data-and-code alignment and cache hierarchy/size;

CPU and GPU schedulers;

Samplers configuration;

Hardware generation;

Power budgets.

⇒ Need to benchmark all the platforms and games of interest.



Introduction Benchmarking EzBench

Summary

1 Introduction

2 Benchmarking
Pitfalls
Automating benchmarking

3 EzBench



Introduction Benchmarking EzBench

Who needs it?

Benchmarking

Different needs for benchmarking

Developers: Run multiple experiments and compare them;

QA:

Test patch series before they hit mainline;
Follow performance trends on mainline;
Create performance retrospective.



Introduction Benchmarking EzBench

Pitfalls

Pitfalls

Pitfalls of benchmarking

Intra- and inter-runs variance is variable between benchmarks;

Hitting the power budget, a thermal limit or GPU reset;

Being able to reproduce the different test results;

Not using the expected libraries;

Comparing runs generated using a different environment:

Kernel, libdrm and mesa’s version and config;
Display server used (and its configuration);
Hardware and BIOS versions.



Introduction Benchmarking EzBench

Pitfalls

Pitfalls - Intra- and inter-run variance

The variance forces us to execute multiple runs, which takes time!

Intra-run variance due to

Power management (Boost-like features, thermal throttling);

Concurrent tasks generating IOs, CPU or GPU load;

Interrupts from the hardware;

CPU/GPU schedulers.

Inter-run variance due to

Variations in the memory allocation.



Introduction Benchmarking EzBench

Pitfalls

Pitfalls - Recommendations to reduce the variance

CPU-limited cases

Force the CPU to one single frequency;

Pin the game/benchmark to a single core;

Disable ASLR and transparent huge pages;

Run as little services as possible;

Pin IRQs to another core;

Properly cool the device.

GPU-limited cases

Force the GPU to one frequency;

Reduce the number of active GPU contexts;

Properly cool the device.



Introduction Benchmarking EzBench

Pitfalls

Pitfalls - Recommendations to reduce the variance

Problem

If we change the environment, we skew the results!

Be smart!

Only get rid of what you are not trying to optimise or track!

Many variables to check, track and remember!

We need to help the developers and QA by automating all we can!



Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking

Objectives of automated benchmarking

Avoid or detect human errors;

Make sure the data is valid;

Be predictable in the execution time;

Provide as much information as possible;

Guarantee reproducibility of the results.

In concrete goals

Be aware of every library used by the program;

Know their versions, git ID and compilation flags;

Poll on the resources’ usage metrics;

Store all this information inside the report;

Understand performance results and act upon them.



Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking - Making sure the data is valid

Making sure the data is valid

Compute the statistical accuracy and add runs if needed;

Get information out from the kernel about major hw events;

Learn to give up and re-prioritise other benchmarks;

Try to reproduce runs and detect major differences;

Reboot the machine if unsure about the results;

Collect usage metrics of the resources;

Log all this information in the report.

Bisect performance changes automatically

It adds credibility to the report;

It also reproduces the issue.



Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking - Guaranteeing reproducibility

Guaranteeing reproducibility - Why?

Allow developers to reproduce a performance regression.

Challenges

How do we detect the entire environment of the benchmark?



Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking - Reading out the environment

Listing dependencies

Using ldd is insufficient because of run-time dependencies;

Strace is the most robust approach but it is slow;

Linked libraries can be listed in /proc/pid/maps.

Query the version of a library/program

No silver bullet;

Can sometimes be read out of a program (Linux);

Will often require controlling the build process.



Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking - What tools?

Phoronix Testing Suite - Pros

Automates data acquisition;

Collects some useful metrics.

Phoronix Testing Suite - Cons

Oriented towards simple reporting, no good for performance
analysts;

Reads out the environment but with no guarantees;

Hides performance data;

Not git-centric.



Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking - What tools?

Ben Widawsky’s tool - Pros

Strong modelling effort to validate the reported values;

Detects some hardware events and invalidates data;

Great for developer experiments, not for QA.

Ben Widawsky’s tool - Cons

Non-build- and non-git-aware;

Not aware of the environment;

Supports a limited amount of benchmarks;

Requires a lot of manual work to test big series.



Introduction Benchmarking EzBench

Automating benchmarking

Automated benchmarking - What tools?

Ideal system

Manages the build system, the commit history and the
environment of benchmarks while allowing metrics collection.
Should provide a visual report that eases performance analysis.



Introduction Benchmarking EzBench

Summary

1 Introduction

2 Benchmarking

3 EzBench
Overview
Architecture and features
Demo



Introduction Benchmarking EzBench

Overview

EzBench - Overview

Ezbench - Goals

Provide workflows and automation to take care of most issues;

Provide a framework quickly adaptable to your needs;

Work for both QA and developers!

Authors

Authors: Martin Peres (Intel) & Chris Wilson (Intel);

Licence: MIT;

Url: http://cgit.freedesktop.org/∼mperes/ezbench/



Introduction Benchmarking EzBench

Architecture and features

EzBench - Features

Current features

Modular architecture (profiles, tests and user hooks);

Automates the acquisition of benchmark data;

Generates a report that is usable by developers;

Bisects performance changes automatically;

Provides python bindings to acquire data and parse them.

WIP

Be crash-resistant by storing the expected goal and comparing
it to the current state;

Use a modelling approach to detect performance changes;

Detect the environment.



Introduction Benchmarking EzBench

Architecture and features

EzBench - Features

TODO

Detect HW events and react to them;

Predict run times more accurately;

Support deadlines and test prioritisation;

Support sending emails to the authors of perf changes;

Integrate with patchwork to test patch series.



Introduction Benchmarking EzBench

Demo

EzBench - Demo time!

Demo time and questions!


	Introduction
	Benchmarking
	Pitfalls
	Automating benchmarking

	EzBench
	Overview
	Architecture and features
	Demo


