
Hardware-Accelerated Graphics on Microkernels

Jamey Sharp, Galois

2015-09-18

what’s a microkernel?

a definition

. . . the near-minimum amount of software that can
provide the mechanisms needed to implement an
operating system (OS).
— https: // en. wikipedia. org/ wiki/ Microkernel

https://en.wikipedia.org/wiki/Microkernel

what does that mean, really?

Figure 1:monolithic vs. microkernel (from Wikipedia, public domain)

who cares?

do you trust your kernel? are you sure it:

I doesn’t crash, overrun buffers, write to random memory
I doesn’t leak information to untrusted processes
I enforces full isolation between processes
I ensures the highest-priority process is the one that’s running

seL4

a modern microkernel, 9k lines of formally verified C:

I proven not to overrun buffers or invoke undefined behavior
I proven to enforce isolation between processes
I proven to not access the wrong memory

cost of formal verification

optimistic cost estimate:

I over $1 trillion to write a formally verified Linux kernel

I that’s 10% of the US GDP

I (but it’s only 3x the SLOCCount estimate)

cost of formal verification

optimistic cost estimate:

I over $1 trillion to write a formally verified Linux kernel

I that’s 10% of the US GDP

I (but it’s only 3x the SLOCCount estimate)

cost of formal verification

optimistic cost estimate:

I over $1 trillion to write a formally verified Linux kernel

I that’s 10% of the US GDP

I (but it’s only 3x the SLOCCount estimate)

NOVA “microhypervisor”

Figure 2:NOVA architecture

Genode: portable userspace for microkernels

microkernel ⇒ no drivers in kernel

where do you get device drivers from?

I every research microkernel writes their own drivers

“Genode” project:

I drivers portable to 8+ microkernels
I x86 and ARM
I basic framebuffer and input drivers
I sound, block, network, usb, uart
I filesystems: FAT32, ext2, etc.

I POSIX-ish libc, Qt, and other porting aids for userspace
I VMs (in VirtualBox or Seoul) alongside native components

microkernel ⇒ no drivers in kernel

where do you get device drivers from?

I every research microkernel writes their own drivers

“Genode” project:

I drivers portable to 8+ microkernels
I x86 and ARM
I basic framebuffer and input drivers
I sound, block, network, usb, uart
I filesystems: FAT32, ext2, etc.

I POSIX-ish libc, Qt, and other porting aids for userspace
I VMs (in VirtualBox or Seoul) alongside native components

ready for prime-time?

some brave souls now run Genode with a Linux VM as their primary
desktop (!)

microkernel-friendly graphics architecture

current Linux graphics architecture

straw-man microkernel graphics architecture

straw-man microkernel graphics architecture

Mesa and i915 on Genode

I original work by Norman Feske of Genode Labs in 2010
I “proof of concept”:

I wrap Linux i915 driver in compatibility glue
I shove i915 in the GL client’s address space
I give GL client direct hardware access
I not quite what anyone wants, but proves the concept

I no Mesa changes needed
I clear path to a real graphics architecture

demo!

questions?

I http://galois.com
I jamey@galois.com
I @jamey_sharp
I http://genode.org

http://galois.com
mailto:jamey@galois.com
https://twitter.com/jamey_sharp
http://genode.org

	what's a microkernel?
	Genode: portable userspace for microkernels
	microkernel-friendly graphics architecture
	demo!

