
Ideas on looking for a new Driver Model

Egbert Eich, SUSE Labs, SUSE Linux Products GmbH
eich@suse.com

 1. Current Problems

 Current driver model designed in late ’90 by XFree86

 First Release in 2000

 Design goal: let the driver control any aspects of the configuration.
 Move common code to optional helper functions.
 Inherited limitiatons from mi and ?fb layers and core protocol.

 Supported hardware of the late 90’s:
 Single analog display output with
 depth 8, 16, 24
 2D acceleration

 1. Current Problems [cont.]

 Feature: was able to operate several independent graphics chips.

 Later added:
 XV video scaler support
 Support for multiple (2) display outputs with independed CRT

controller

 2. Limitations and Problems

 Multiple output devices per chip

 Multiple types of output devices:
 Analog (VGA style)
 DVI (digital)
 Video bridges (TV)

 Mode selection too simplistic: drivers do their own

 Missing hot plug support for output devices

 Limited support for switching output channels on the fly

 2. Limitations and Problems [cont.]

 Many features not configurable ’on the fly’.

 In general: ’Code is cheap!’ - register bit banging is not!

 X is not alone: other software needs mode setting, too!
 Text console
 standalone DRI
 Xgl

 2. Limitations and Problems [cont.]

 No support for hotplugging graphics devices bootstrap procedure
makes it impossible to add devices on the fly:

 Probe()
 PreInit()
 ScreenInit()

 2D accel model not suitable for RENDER

 Modern video drivers consist of drivers for different components
 no clear driver internal interfaces
 Migration to new driver model difficult

 3. A Model for the Future

 Take driver out of the Xserver
 create a separate video output driver module/project
 provide library/daemon: daemon record information about the driver/HW state,

library to provide interface to applications (like Xserver),perform that change hw
state (mode etc), provide a low level 2D acceleration, video scaler etc.
functionality.

 Let Xserver take ’passive role’:
 Mode selection happens between a UI and the driver.Pass video mode

information to Xserver to adjustitself to underlying mode.

 Create a thin DDX that to interface with driver API to take mode
information.

 4. How to get there?

 Not possible in a single step

 Preparations to be made in existing structure.

 Phase 1

 Look thru DDX: migrate HW related code (bus, address range
mapping into a separate layer.

 4. How to get there? [cont.]

 As a driver maintainer
 Identify different driver components (mode setting, 2D acceleration,DRI, video

...) and understand their interrelations.

 Identify which parts communicate with the other layers of X (PreInit(),
ScreenInit()) Video, XAA, DRI ...

 Separate X specific parts functionally from driver internal code.

 Create well defined driver internal interfaces

 Modify drivers to implement these interfaces

 Identify driver components that can be share between drivers
(RAMDAC, Video and FP bridges etc)

 4. How to get there? [cont.]

 Provides opportunity to clean up drivers and ’discover’ ’junk code’

 Easy to do for drivers that are currently maintained.

 What do we do about unmaintained drivers?
 If they are simple enough it may be easy to do.
 Possible to do without special knowledge if hardware for testing is available.

 We may loose some drivers.

 4. How to get there? [cont.]

 Phase 2

 Define external API for external library

 Add interfaces to sofware to work with this new DDX:
 For Xserver: prepare DDX to work with this

 Migrate selected drivers

 Test software (new Xserver DDX) with selected drivers

 4. How to get there? [cont.]

 Phase 3

 Port over the remaining drivers

