
Egbert Eich

eich@suse.de
FOSDEM 2006

Renovating DDX

mailto:eich@suse.de

Why restrict us of video drivers to X?
• There may be other consumers for a video driver

– XGl

– Standalone DRI

– kernel?

– ...

• Currently driver infrastucture is married intimately with
the Xserver
– We expose X screens all the way down to the driver

– bad idea
> heads cannot be migrated to different screens

> doing things like twin view requires ugly kludges

> driver cannot be used outside of an Xserver environment

> Testing of a driver requires to start an entire Xserver

Why restrict us of video drivers to X?

•Most data is collected at server startup time
– modification of the data during the lifetime of a server is not

modifiable

– No graphics device hot plugging

– No mode list changes: No display hotplugging

•All data collected during a server startup gets lost when
terminating the server:

– We need to recollect all the data!

Move driver infrastructure out of X!

• Requires a generic API between the driver and the
rest of X

• Make Xserver passive to mode selection:
– set a video mode and put X on top of it.

– make the Xserver adapt to video mode changes

• Benefit:
– no screen flickering when switching between console and

different Xserver

– kernel can continue to dump error to the screen even when X is
running.

What do we have to look into?

• DDX: driver structure
• Common infrastructure:

– Mode setting

– Hardware interfacing
> PCI infrastructure

> Resource access

> Resource availability/sharing

– Access to BIOS ROM
> Data

> Int10

> VBE

Structure
• Put different subsystems that will live in indepenent

modues:
– PCI subsystem

– Resource access subsystem

– Int10 subsystem

– Mode selection subsystem

• Allows to test subsystems rather independently.
• Allows possibe reuse of different subystems in other

software
• Forces us to design sane interfaces between different

subsystems
• We can integrate support for OS specific features

without affecting everybody

Fix DIX

• DIX provides infrasturcure for hardware differences!
– output device specific functions into ScreenRec structure.

– prevents us from adding additional screen resources

– use multiple output devices for the same screen

– migrate between different output devices for the same screen

• Move hardware specifics completely to DDX
– Create a DIX screen / DDX device mapping layer in DDX

– root visual should still represent the native depth of the
hardware

Configuration

• Make configuration 'on-the-fly'
– create a configuration mechanism independent form the

underlying communication inface

– create a communication channel between config app and driver
> could be thru an X extension (redesigned RandR) but other mechanisms are

also possible.

– Configurable features are changing rapidly
> create a 'registry' for well know configuration properties

> provide all information to create a meaningful GUI if this information doesn't
exist

> Handle all semantics inside the 'consumer'. GUI app should not have to have
knowledge of setting interdependencies

PCI interface

– Outdated cruft: PCI Tag

– resembles data strcuture in PCI CFGMECH1 on PC hardware

– Device scanning takes ages: we check for every possible
device ID on every possible bus

– Most operating systems provide all this information at almost no
cost.
> Take advantage of this information if available

> Move the current device separation code to a legacy OS helper layer so that
those who still need to rely on this can use it.

– Device support info stays on driver:
> How do we map drivers to devices?

