
X11R6 Sample Implementation Frame Work

Katsuhisa Yano

TOSHIBA Corporation

Yoshio Horiuchi

IBM Japan

Copyright © 1994 by TOSHIBA Corporation
Copyright © 1994 by IBM Corporation

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice and this permission notice appear in all copies. TOSHIBA Corporation and
IBM Corporation make no representations about the suitability for any purpose of the information in this document.
This documentation is provided as is without express or implied warranty.

Copyright © 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documenta-
tion files (the ‘‘Software’’), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-
ware.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to pro-
mote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

X Window System is a trademark of The Open Group.

1. Preface
This document proposes to define the structures, methods and their signatures that are expected to
be common to all locale dependent functions within the Xlib sample implementation. The fol-
lowing illustration (Fig.1) is proposed to outline the separating of the components within the sam-
ple implementation.

... 0.237 5.796 5.24 10.14 ... 0.000i 4.344i 5.003i 0.000i

Input
Method

Output
Method

<Locl. Serv. API>
X Locale Object

C Library
ANSI impl.

Locale Library
non-AnSI impl.

<< ANSI/MSE API >>
(X Contrib)

XLC_XLOCALE
- MB_CUR_MAX
- codeset info
o char/charset
o conv/charset

XLC_FONTSET
- fonset info
- charset info
- font/charset
- XLFD, GL/GR

- codeset info
o char/charset
o conv/charset

- MB_CUR_MAX
localedef DB

Application

<< ANSI/MSE API >>
(X Contrib)

XLocale Source (X Core) System LOcale Source

XLib API
(X Core)

<< >>

Fig.1 : Frame Work of Locale Service API Proposal
Generally speaking, the internationalized portion of Xlib (Locale Dependent X, LDX) consists of
three objects; locale (LC) , input method (IM) and output method (OM). The LC provides a set
of information that depends on user’s language environment. The IM manages text inputing, and
the OM manages text drawing. Both IM and OM highly depend on LC data.
In X11R5, there are two sample implementations, Ximp and Xsi, for Xlib internationalization.
But in both implementations, IM and OM actually refer the private extension of LC. It breaks
coexistence of these two sample implementations. For example, if a user creates a new OM for
special purpose as a part of Ximp, it will not work with Xsi.
As a solution of this problem, we propose to define the standard APIs between these three objects,
and define the structure that are common to these objects.

2. Objective

• Explain the current X11R6 sample implementation

1

Sample Implementation Frame Work X11, Release 6.9/7.0

• Document the common set of locale dependent interfaces
• Provide more flexible pluggable layer

3. Locale Object Binding Functions
This chapter describes functions related locale object binding for implementing the pluggable
layer.
A locale loader is an entry point for locale object, which instantiates XLCd object and binds
locale methods with specified locale name. The behavior of loader is implementation dependent.
And, what kind of loaders are available is also implementation dependent.
The loader is called in _XOpenLC, but caller of _XOpenLC does not need to care about its
inside. For example, if the loader is implemented with dynamic load functions, and the dynamic
module is expected to be unloaded when the corresponding XLCd is freed, close methods of
XLCdMethods should handle unloading.

Initializing a locale loader list

void _XlcInitLoader()
The _XlcInitLoader function initializes the locale loader list with vendor specific manner. Each
loader is registered with calling _XlcAddLoader. The number of loaders and their order in the
loader list is implementation dependent.

Add a loader

typedef XLCd (*XLCdLoadProc)(name);
char *name;

typedef int XlcPosition;

#define XlcHead 0
#define XlcTail -1

Bool _XlcAddLoader(proc, position)
XLCdLoadProc proc;
XlcPosition position;

The _XlcAddLoader function registers the specified locale loader ‘‘proc’’ to the internal loader
list. The position specifies that the loader ‘‘proc’’ should be placed in the top of the loader
list(XlcHead) or last(XlcTail).
The object loader is called from the top of the loader list in order, when calling time.

Remove a loader

void _XlcRemoveLoader(proc)
XLCdLoadProc proc;

The _XlcRemoveLoader function removes the locale loader specified by ‘‘proc’’ from the loader
list.
Current implementation provides following locale loaders;

2

Sample Implementation Frame Work X11, Release 6.9/7.0

_XlcDefaultLoader
_XlcGenericLoader
_XlcEucLoader
_XlcSjisLoader
_XlcUtfLoader
_XaixOsDynamicLoad

4. Locale Method Interface
This chapter describes the locale method API, which is a set of accessible functions from both IM
and OM parts. The locale method API provides the functionalities; obtaining locale dependent
information, handling charset, converting text, etc.
As a result of using these APIs instead of accessing vender private extension of the locale object,
we can keep locale, IM and OM independently each other.

5. Locale Method Functions
Open a Locale Method

XLCd _XOpenLC(name)
char *name;

The _XOpenLC function opens a locale method which corresponds to the specified locale name.
_XOpenLC calls a locale object loader, which is registered via _XlcAddLoaderinto is valid and
successfully opens a locale, _XOpenLC returns the XLCd. If the loader is invalid or failed to
open a locale, _XOpenLC calls the next loader. If all registered loaders cannot open a locale,
_XOpenLC returns NULL.

XLCd _XlcCurrentLC()

The _XlcCurrentLC function returns an XLCd that are bound to current locale.

Close a Locale Method

void _XCloseLC(lcd)
XLCd lcd;

The _XCloseLC function close a locale method the specified lcd.

Obtain Locale Method values

char * _XGetLCValues(lcd, ...)
XLCd lcd;

The _XGetLCValues function returns NULL if no error occurred; otherwise, it returns the name
of the first argument that could not be obtained. The following values are defined as standard
arguments. Other values are implementation dependent.

Name Type Description

XlcNCodeset char* codeset part of locale name

3

Sample Implementation Frame Work X11, Release 6.9/7.0

Name Type Description

XlcNDefaultString char* XDefaultString()
XlcNEncodingName char* encoding name
XlcNLanguage char* language part of locale name
XlcNMbCurMax int ANSI C MB_CUR_MAX
XlcNStateDependentEncoding Bool is state-dependent encoding or not
XlcNTerritory char* territory part of locale name

6. Charset functions
The XlcCharSet is an identifier which represents a subset of characters (character set) in the
locale object.

typedef enum {
XlcUnknown, XlcC0, XlcGL, XlcC1, XlcGR, XlcGLGR, XlcOther

} XlcSide;

typedef struct _XlcCharSetRec *XlcCharSet;

typedef struct {
char *name;
XPointer value;

} XlcArg, *XlcArgList;

typedef char* (*XlcGetCSValuesProc)(charset, args, num_args);
XlcCharSet charset;
XlcArgList args;
int num_args;

typedef struct _XlcCharSetRec {
char *name;
XrmQuark xrm_name;
char *encoding_name;
XrmQuark xrm_encoding_name;
XlcSide side;
int char_size;
int set_size;
char *ct_sequence;
XlcGetCSValuesProc get_values;

} XlcCharSetRec;

Get an XlcCharSet

XlcCharSet _XlcGetCharSet(name)
char *name;

The _XlcGetCharSet function gets an XlcCharSet which corresponds to the charset name speci-
fied by ‘‘name’’. _XlcGetCharSet returns NULL, if no XlcCharSet bound to specified ‘‘name’’.

4

Sample Implementation Frame Work X11, Release 6.9/7.0

The following character sets are pre-registered.

Name Description

ISO8859-1:GL 7-bit ASCII graphics (ANSI X3.4-1968),
Left half of ISO 8859 sets

JISX0201.1976-0:GL Left half of JIS X0201-1976 (reaffirmed 1984),
8-Bit Alphanumeric-Katakana Code

ISO8859-1:GR Right half of ISO 8859-1, Latin alphabet No. 1
ISO8859-2:GR Right half of ISO 8859-2, Latin alphabet No. 2
ISO8859-3:GR Right half of ISO 8859-3, Latin alphabet No. 3
ISO8859-4:GR Right half of ISO 8859-4, Latin alphabet No. 4
ISO8859-7:GR Right half of ISO 8859-7, Latin/Greek alphabet
ISO8859-6:GR Right half of ISO 8859-6, Latin/Arabic alphabet
ISO8859-8:GR Right half of ISO 8859-8, Latin/Hebrew alphabet
ISO8859-5:GR Right half of ISO 8859-5, Latin/Cyrillic alphabet
ISO8859-9:GR Right half of ISO 8859-9, Latin alphabet No. 5
JISX0201.1976-0:GR Right half of JIS X0201-1976 (reaffirmed 1984),

8-Bit Alphanumeric-Katakana Code

GB2312.1980-0:GL GB2312-1980, China (PRC) Hanzi defined as GL
GB2312.1980-0:GR GB2312-1980, China (PRC) Hanzi defined as GR
JISX0208.1983-0:GL JIS X0208-1983, Japanese Graphic Character Set

defined as GL
JISX0208.1983-0:GR JIS X0208-1983, Japanese Graphic Character Set

defined as GR
KSC5601.1987-0:GL KS C5601-1987, Korean Graphic Character Set

defined as GL
KSC5601.1987-0:GR KS C5601-1987, Korean Graphic Character Set

defined as GR
JISX0212.1990-0:GL JIS X0212-1990, Japanese Graphic Character Set

defined as GL
JISX0212.1990-0:GR JIS X0212-1990, Japanese Graphic Character Set

defined as GR

Add an XlcCharSet

Bool _XlcAddCharSet(charset)
XlcCharSet charset;

The _XlcAddCharSet function registers XlcCharSet specified by ‘‘charset’’.

Obtain Character Set values

char * _XlcGetCSValues(charset, ...)
XlcCharSet charset;

The _XlcGetCSValues function returns NULL if no error occurred; otherwise, it returns the
name of the first argument that could not be obtained. The following values are defined as

5

Sample Implementation Frame Work X11, Release 6.9/7.0

standard arguments. Other values are implementation dependent.

Name Type Description

XlcNName char* charset name
XlcNEncodingName char* XLFD CharSet Registry and Encoding
XlcNSide XlcSide charset side (GL, GR, ...)
XlcNCharSize int number of octets per character
XlcNSetSize int number of character sets
XlcNControlSequence char* control sequence of Compound Text

7. Converter Functions
We provide a set of the common converter APIs, that are independent from both of source and
destination text type.

typedef struct _XlcConvRec *XlcConv;

typedef void (*XlcCloseConverterProc)(conv);
XlcConv conv;

typedef int (*XlcConvertProc)(conv, from, from_left, to, to_left, args, num_args);
XlcConv conv;
XPointer *from;
int *from_left;
XPointer *to;
int *to_left;
XPointer *args;
int num_args;

typedef void (*XlcResetConverterProc)(conv);
XlcConv conv;

typedef struct _XlcConvMethodsRec {
XlcCloseConverterProc close;
XlcConvertProc convert;
XlcResetConverterProc reset;

} XlcConvMethodsRec, *XlcConvMethods;

typedef struct _XlcConvRec {
XlcConvMethods methods;
XPointer state;

} XlcConvRec;

Open a converter

6

Sample Implementation Frame Work X11, Release 6.9/7.0

XlcConv _XlcOpenConverter(from_lcd, from_type, to_lcd, to_type)
XLCd from_lcd;
char *from_type;
XLCd to_lcd;
char *to_type;

_XlcOpenConverter function opens the converter which converts a text from specified
‘‘from_type’’ to specified ‘‘to_type’’ encoding. If the function cannot find proper converter or
cannot open a corresponding converter, it returns NULL. Otherwise, it returns the conversion
descriptor.
The following types are pre-defined. Other types are implementation dependent.

Name Type Description Arguments

XlcNMultiByte char * multibyte -
XlcNWideChar wchar_t * wide character -
XlcNCompoundText char * COMPOUND_TEXT -
XlcNString char * STRING -
XlcNCharSet char * per charset XlcCharSet
XlcNChar char * per character XlcCharSet

Close a converter

void _XlcCloseConverter(conv)
XlcConv conv;

The _XlcCloseConverter function closes the specified converter ‘‘conv’’.

Code conversion

int _XlcConvert(conv, from, from_left, to, to_left, args, num_args)
XlcConv conv;
XPointer *from;
int *from_left;
XPointer *to;
int *to_left;
XPointer *args;
int num_args;

The _XlcConvert function converts a sequence of characters from one type, in the array specified
by ‘‘from’’, into a sequence of corresponding characters in another type, in the array specified by
‘‘to’’. The types are those specified in the _XlcOpenConverter() call that returned the conver-
sion descriptor, ‘‘conv’’. The arguments ‘‘from’’, ‘‘from_left’’, ‘‘to’’ and ‘‘to_left’’ hav e the same
specification of XPG4 iconv function.
For state-dependent encodings, the conversion descriptor ‘‘conv’’ is placed into its initial shift
state by a call for which ‘‘from’’ is a NULL pointer, or for which ‘‘from’’ points to a null pointer.
The following 2 converters prepared by locale returns appropriate charset (XlcCharSet) in an area
pointed by args[0].

7

Sample Implementation Frame Work X11, Release 6.9/7.0

From To Description

XlcNMultiByte XlcNCharSet Segmentation (Decomposing)
XlcNWideChar XlcNCharSet Segmentation (Decomposing)

The conversion, from XlcNMultiByte/XlcNWideChar to XlcNCharSet, extracts a segment which
has same charset encoding characters. More than one segment cannot be converted in a call.

Reset a converter

void _XlcResetConverter(conv)
XlcConv conv;

The _XlcResetConverter function reset the specified converter ‘‘conv’’.

Register a converter

typedef XlcConv (*XlcOpenConverterProc)(from_lcd, from_type, to_lcd, to_type);
XLCd from_lcd;
char *from_type;
XLCd to_lcd;
char *to_type;

Bool _XlcSetConverter(from_lcd, from, to_lcd, to, converter)
XLCd from_lcd;
char *from;
XLCd to_lcd;
char *to;
XlcOpenConverterProc converter;

The XlcSetConverter function registers a converter which convert from ‘‘from_type’’ to
‘‘to_type’’ into the converter list (in the specified XLCd).

8. X Locale Database functions
X Locale Database contains the subset of user’s environment that depends on language. The fol-
lowing APIs are provided for accessing X Locale Database and other locale relative files.
For more detail about X Locale Database, please refer X Locale Database Definition document.

Get a resource from database

void _XlcGetResource(lcd, category, class, value, count)
XLCd lcd;
char *category;
char *class;
char ***value;
int *count;

The _XlcGetResource function obtains a locale dependent data which is associated with the
locale of specified ‘‘lcd’’. The locale data is provided by system locale or by X Locale Database
file, and what kind of data is available is implementation dependent.

8

Sample Implementation Frame Work X11, Release 6.9/7.0

The specified ‘‘category’’ and ‘‘class’’ are used for finding out the objective locale data.
The returned value is returned in value argument in string list form, and the returned count shows
the number of strings in the value.
The returned value is owned by locale method, and should not be modified or freed by caller.

Get a locale relative file name

char * _XlcFileName(lcd, category)
XLCd lcd;
char *category;

The _XlcFileName functions returns a file name which is bound to the specified ‘‘lcd’’ and ‘‘cat-
egory’’, as a null-terminated string. If no file name can be found, or there is no readable file for
the found file name, _XlcFileName returns NULL. The returned file name should be freed by
caller.
The rule for searching a file name is implementation dependent. In current implementation,
_XlcFileName uses ‘‘{category}.dir’’ file as mapping table, which has pairs of strings, a full
locale name and a corresponding file name.

9. Utility Functions
Compare Latin-1 strings

int _XlcCompareISOLatin1(str1, str2)
char *str1, *str2;

int _XlcNCompareISOLatin1(str1, str2, len)
char *str1, *str2;
int len;

The _XlcCompareIsoLatin1 function to compares two ISO-8859-1 strings. Bytes representing
ASCII lower case letters are converted to upper case before making the comparison. The value
returned is an integer less than, equal to, or greater than zero, depending on whether ‘‘str1’’ is lex-
icographicly less than, equal to, or greater than ‘‘str2’’.
The _XlcNCompareIsoLatin1 function is identical to _XlcCompareISOLatin1, except that at
most ‘‘len’’ bytes are compared.

Resource Utility

int XlcNumber(array)
ArrayType array;

Similar to XtNumber.

void _XlcCopyFromArg(src, dst, size)
char *src;
char *dst;
int size;

9

Sample Implementation Frame Work X11, Release 6.9/7.0

void _XlcCopyToArg(src, dst, size)
char *src;
char **dst;
int size;

Similar to _XtCopyFromArg and _XtCopyToArg.

void _XlcCountVaList(var, count_ret)
va_list var;
int *count_ret;

Similar to _XtCountVaList.

void _XlcVaToArgList(var, count, args_ret)
va_list var;
int count;
XlcArgList *args_ret;

Similar to _XtVaToArgList.

typedef struct _XlcResource {
char *name;
XrmQuark xrm_name;
int size;
int offset;
unsigned long mask;

} XlcResource, *XlcResourceList;

#define XlcCreateMask (1L<<0)
#define XlcDefaultMask (1L<<1)
#define XlcGetMask (1L<<2)
#define XlcSetMask (1L<<3)
#define XlcIgnoreMask (1L<<4)

void _XlcCompileResourceList(resources, num_resources)
XlcResourceList resources;
int num_resources;

Similar to _XtCompileResourceList.

char * _XlcGetValues(base, resources, num_resources, args, num_args, mask)
XPointer base;
XlcResourceList resources;
int num_resources;
XlcArgList args;
int num_args;
unsigned long mask;

Similar to XtGetSubvalues.

10

Sample Implementation Frame Work X11, Release 6.9/7.0

char * _XlcSetValues(base, resources, num_resources, args, num_args, mask)
XPointer base;
XlcResourceList resources;
int num_resources;
XlcArgList args;
int num_args;
unsigned long mask;

Similar to XtSetSubvalues.

ANSI C Compatible Functions
The following are ANSI C/MSE Compatible Functions for non-ANSI C environment.

int _Xmblen(str, len)
char *str;
int len;

The _Xmblen function returns the number of characters pointed to by ‘‘str’’. Only ‘‘len’’ bytes
in ‘‘str’’ are used in determining the character count returned. ‘‘Str’’ may point at characters from
any valid codeset in the current locale.
The call _Xmblen is equivalent to

_Xmbtowc(_Xmbtowc((wchar_t*)NULL, str, len))

int _Xmbtowc(wstr, str, len)
wchar_t *wstr;
char *str;
int len;

The _Xmbtowc function converts the character(s) pointed to by ‘‘str’’ to their wide character
representation(s) pointed to by ‘‘wstr’’. ‘‘Len’’ is the number of bytes in ‘‘str’’ to be converted.
The return value is the number of characters converted.
The call _Xmbtowc is equivalent to

_Xlcmbtowc((XLCd)NULL, wstr, str, len)

int _Xlcmbtowc(lcd, wstr, str, len)
XLCd lcd;
wchar_t *wstr;
char *str;
int len;

The _Xlcmbtowc function is identical to _Xmbtowc, except that it requires the ‘‘lcd’’ argument.
If ‘‘lcd’’ is (XLCd) NULL, _Xlcmbtowc, calls _XlcCurrentLC to determine the current locale.

int _Xwctomb(str, wc)
char *str;
wchar_t wc;

The _Xwctomb function converts a single wide character pointed to by ‘‘wc’’ to its multibyte
representation pointed to by ‘‘str’’. On success, the return value is 1.
The call _Xwctomb is equivalent to

_Xlcwctomb((XLCd)NULL, str, wstr)

11

Sample Implementation Frame Work X11, Release 6.9/7.0

int _Xlcwctomb(lcd, str, wc)
XLCd lcd;
char *str;
wchar_t wc;

The _Xlcwctomb function is identical to _Xwctomb, except that it requires the ‘‘lcd’’ argument.
If ‘‘lcd’’ is (XLCd) NULL, _Xlcwctomb, calls _XlcCurrentLC to determine the current locale.

int _Xmbstowcs(wstr, str, len)
wchar_t *wstr;
char *str;
int len;

The _Xmbstowcs function converts the NULL-terminated string pointed to by ‘‘str’’ to its wide
character string representation pointed to by ‘‘wstr’’. ‘‘Len’’ is the number of characters in ‘‘str’’
to be converted.
The call _Xmbstowcs is equivalent to

_Xlcmbstowcs((XLCd)NULL, wstr, str, len)

int _Xlcmbstowcs(lcd, wstr, str, len)
XLCd lcd;
wchar_t *wstr;
char *str;
int len;

The _Xlcmbstowcs function is identical to _Xmbstowcs, except that it requires the ‘‘lcd’’ argu-
ment. If ‘‘lcd’’ is (XLCd) NULL, _Xlcmbstowcs, calls _XlcCurrentLC to determine the cur-
rent locale.

int _Xwcstombs(str, wstr, len)
char *str;
wchar_t *wstr;
int len;

The _Xwcstombs function converts the (wchar_t) NULL terminated wide character string
pointed to by ‘‘wstr’’ to the NULL terminated multibyte string pointed to by ‘‘str’’.
The call _Xwcstombs is equivalent to

_Xlcwcstombs((XLCd)NULL, str, wstr, len)

int _Xlcwcstombs(lcd, str, wstr, len)
XLCd lcd;
char *str;
wchar_t *wstr;
int len;

The _Xlcwcstombs function is identical to _Xwcstombs, except that it requires the ‘‘lcd’’ argu-
ment. If ‘‘lcd’’ is (XLCd) NULL, _Xlcwcstombs, calls _XlcCurrentLC to determine the cur-
rent locale.

int _Xwcslen(wstr)
wchar_t *wstr;

The _Xwcslen function returns the count of wide characters in the (wchar_t) NULL terminated
wide character string pointed to by ‘‘wstr’’.

12

Sample Implementation Frame Work X11, Release 6.9/7.0

wchar_t * _Xwcscpy(wstr1, wstr2)
wchar_t *wstr1, *wstr2;

wchar_t * _Xwcsncpy(wstr1, wstr2, len)
wchar_t *wstr1, *wstr2;
int len;

The _Xwcscpy function copies the (wchar_t) NULL terminated wide character string pointed to
by ‘‘wstr2’’ to the object pointed at by ‘‘wstr1’’. ‘‘Wstr1’’ is (wchar_t) NULL terminated. The
return value is a pointer to ‘‘wstr1’’.
The _Xwcsncpy function is identical to _Xwcscpy, except that it copies ‘‘len’’ wide characters
from the object pointed to by ‘‘wstr2’’ to the object pointed to ‘‘wstr1’’.

int _Xwcscmp(wstr1, wstr2)
wchar_t *wstr1, *wstr2;

int _Xwcsncmp(wstr1, wstr2, len)
wchar_t *wstr1, *wstr2;
int len;

The _Xwcscmp function compares two (wchar_t) NULL terminated wide character strings. The
value returned is an integer less than, equal to, or greater than zero, depending on whether
‘‘wstr1’’ is lexicographicly less then, equal to, or greater than ‘‘str2’’.
The _Xwcsncmp function is identical to _XlcCompareISOLatin1, except that at most ‘‘len’’
wide characters are compared.

13

