
X Window System Protocol

X Consortium Standard

X Version 11, Release 6.9/7.0

Robert W. Scheifler

X Consortium, Inc.

X Window System is a trademark of The Open Group.

Copyright © 1986, 1987, 1988, 1994, 2004 The Open Group

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documenta-
tion files (the ‘‘Software’’), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-
ware.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE OPEN GROUP BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the Open Group shall not be used in advertising or otherwise to promote
the sale, use or other dealings in this Software without prior written authorization from the Open Group.

Acknowledgments

The primary contributers to the X11 protocol are:

Dave Carver (Digital HPW)
Branko Gerovac (Digital HPW)
Jim Gettys (MIT/Project Athena, Digital)
Phil Karlton (Digital WSL)
Scott McGregor (Digital SSG)
Ram Rao (Digital UEG)
David Rosenthal (Sun)
Dave Winchell (Digital UEG)

The implementors of initial server who provided useful input are:

Susan Angebranndt (Digital)
Raymond Drewry (Digital)
Todd Newman (Digital)

The invited reviewers who provided useful input are:

Andrew Cherenson (Berkeley)
Burns Fisher (Digital)
Dan Garfinkel (HP)
Leo Hourvitz (Next)
Brock Krizan (HP)
David Laidlaw (Stellar)
Dave Mellinger (Interleaf)
Ron Newman (MIT)
John Ousterhout (Berkeley)
Andrew Palay (ITC CMU)
Ralph Swick (MIT)
Craig Taylor (Sun)
Jeffery Vroom (Stellar)

Thanks go to Al Mento of Digital’s UEG Documentation Group for formatting this document.
This document does not attempt to provide the rationale or pragmatics required to fully under-
stand the protocol or to place it in perspective within a complete system.
The protocol contains many management mechanisms that are not intended for normal applica-
tions. Not all mechanisms are needed to build a particular user interface. It is important to keep
in mind that the protocol is intended to provide mechanism, not policy.

Robert W. Scheifler
X Consortium, Inc.

1. Protocol Formats

Request Format
Every request contains an 8-bit major opcode and a 16-bit length field expressed in units of four
bytes. Every request consists of four bytes of a header (containing the major opcode, the length
field, and a data byte) followed by zero or more additional bytes of data. The length field defines
the total length of the request, including the header. The length field in a request must equal the
minimum length required to contain the request. If the specified length is smaller or larger than
the required length, an error is generated. Unused bytes in a request are not required to be zero.
Major opcodes 128 through 255 are reserved for extensions. Extensions are intended to contain
multiple requests, so extension requests typically have an additional minor opcode encoded in the
second data byte in the request header. Howev er, the placement and interpretation of this minor
opcode and of all other fields in extension requests are not defined by the core protocol. Every
request on a given connection is implicitly assigned a sequence number, starting with one, that is
used in replies, errors, and events.

Reply Format
Every reply contains a 32-bit length field expressed in units of four bytes. Every reply consists of
32 bytes followed by zero or more additional bytes of data, as specified in the length field.
Unused bytes within a reply are not guaranteed to be zero. Every reply also contains the least sig-
nificant 16 bits of the sequence number of the corresponding request.

Error Format
Error reports are 32 bytes long. Every error includes an 8-bit error code. Error codes 128
through 255 are reserved for extensions. Every error also includes the major and minor opcodes
of the failed request and the least significant 16 bits of the sequence number of the request. For
the following errors (see section 4), the failing resource ID is also returned: Colormap , Cursor ,
Drawable , Font , GContext , IDChoice , Pixmap , and Window . For Atom errors, the failing
atom is returned. For Value errors, the failing value is returned. Other core errors return no addi-
tional data. Unused bytes within an error are not guaranteed to be zero.

Event Format
Events are 32 bytes long. Unused bytes within an event are not guaranteed to be zero. Every
ev ent contains an 8-bit type code. The most significant bit in this code is set if the event was gen-
erated from a SendEvent request. Event codes 64 through 127 are reserved for extensions,
although the core protocol does not define a mechanism for selecting interest in such events.
Every core event (with the exception of KeymapNotify) also contains the least significant 16 bits
of the sequence number of the last request issued by the client that was (or is currently being) pro-
cessed by the server.

2. Syntactic Conventions
The rest of this document uses the following syntactic conventions.
• The syntax {...} encloses a set of alternatives.
• The syntax [...] encloses a set of structure components.
• In general, TYPEs are in uppercase and AlternativeValues are capitalized.
• Requests in section 9 are described in the following format:

1

X Protocol X11, Release 6.9/7.0

RequestName
arg1: type1
...
argN: typeN

→
result1: type1
...
resultM: typeM

Errors: kind1, ..., kindK

Description.

If no → is present in the description, then the request has no reply (it is asynchronous),
although errors may still be reported. If →+ is used, then one or more replies can be gener-
ated for a single request.

• Events in section 11 are described in the following format:

EventName
value1: type1
...
valueN: typeN

Description.

3. Common Types

Name Value

LISTofFOO A type name of the form LISTofFOO means a counted list of elements of
type FOO. The size of the length field may vary (it is not necessarily the
same size as a FOO), and in some cases, it may be implicit. It is fully
specified in Appendix B. Except where explicitly noted, zero-length lists
are legal.

BITMASK
LISTofVALUE

The types BITMASK and LISTofVALUE are somewhat special. Various
requests contain arguments of the form:
value-mask: BITMASK
value-list: LISTofVALUE
These are used to allow the client to specify a subset of a heterogeneous
collection of optional arguments. The value-mask specifies which argu-
ments are to be provided; each such argument is assigned a unique bit
position. The representation of the BITMASK will typically contain
more bits than there are defined arguments. The unused bits in the value-
mask must be zero (or the server generates a Value error). The value-list
contains one value for each bit set to 1 in the mask, from least significant
to most significant bit in the mask. Each value is represented with four
bytes, but the actual value occupies only the least significant bytes as
required. The values of the unused bytes do not matter.

2

X Protocol X11, Release 6.9/7.0

Name Value

OR A type of the form ‘‘T1 or ... or Tn’’ means the union of the indicated
types. A single-element type is given as the element without enclosing
braces.

WINDOW 32-bit value (top three bits guaranteed to be zero)
PIXMAP 32-bit value (top three bits guaranteed to be zero)
CURSOR 32-bit value (top three bits guaranteed to be zero)
FONT 32-bit value (top three bits guaranteed to be zero)
GCONTEXT 32-bit value (top three bits guaranteed to be zero)
COLORMAP 32-bit value (top three bits guaranteed to be zero)
DRAWABLE WINDOW or PIXMAP
FONTABLE FONT or GCONTEXT
AT OM 32-bit value (top three bits guaranteed to be zero)
VISUALID 32-bit value (top three bits guaranteed to be zero)
VALUE 32-bit quantity (used only in LISTofVALUE)
BYTE 8-bit value
INT8 8-bit signed integer
INT16 16-bit signed integer
INT32 32-bit signed integer
CARD8 8-bit unsigned integer
CARD16 16-bit unsigned integer
CARD32 32-bit unsigned integer
TIMESTAMP CARD32
BITGRAVITY {Forget , Static , NorthWest , North , NorthEast , West , Center ,

East , SouthWest , South , SouthEast}
WINGRAVITY {Unmap , Static , NorthWest , North , NorthEast , West , Center ,

East , SouthWest , South , SouthEast}
BOOL {True , False}
EVENT {KeyPress , KeyRelease , OwnerGrabButton , ButtonPress ,

ButtonRelease , EnterWindow , LeaveWindow , PointerMotion ,
PointerMotionHint , Button1Motion , Button2Motion ,
Button3Motion , Button4Motion , Button5Motion , ButtonMotion ,
Exposure , VisibilityChange , StructureNotify , ResizeRedirect ,
SubstructureNotify , SubstructureRedirect , FocusChange ,
PropertyChange , ColormapChange , KeymapState}

POINTEREVENT {ButtonPress , ButtonRelease , EnterWindow , LeaveWindow ,
PointerMotion , PointerMotionHint , Button1Motion ,
Button2Motion , Button3Motion , Button4Motion , Button5Motion ,
ButtonMotion , KeymapState}

DEVICEEVENT {KeyPress , KeyRelease , ButtonPress , ButtonRelease ,
PointerMotion , Button1Motion , Button2Motion , Button3Motion ,
Button4Motion , Button5Motion , ButtonMotion}

KEYSYM 32-bit value (top three bits guaranteed to be zero)
KEYCODE CARD8
BUTTON CARD8
KEYMASK {Shift , Lock , Control , Mod1 , Mod2 , Mod3 , Mod4 , Mod5}
BUTMASK {Button1 , Button2 , Button3 , Button4 , Button5}
KEYBUTMASK KEYMASK or BUTMASK

3

X Protocol X11, Release 6.9/7.0

Name Value

STRING8 LISTofCARD8
STRING16 LISTofCHAR2B
CHAR2B [byte1, byte2: CARD8]
POINT [x, y: INT16]
RECTANGLE [x, y: INT16,

width, height: CARD16]
ARC [x, y: INT16,

width, height: CARD16,
angle1, angle2: INT16]

HOST [family: {Internet , InternetV6 , ServerInterpreted , DECnet , Chaos}
address: LISTofBYTE]

The [x,y] coordinates of a RECTANGLE specify the upper-left corner.
The primary interpretation of large characters in a STRING16 is that they are composed of two
bytes used to index a two-dimensional matrix, hence, the use of CHAR2B rather than CARD16.
This corresponds to the JIS/ISO method of indexing 2-byte characters. It is expected that most
large fonts will be defined with 2-byte matrix indexing. For large fonts constructed with linear
indexing, a CHAR2B can be interpreted as a 16-bit number by treating byte1 as the most signifi-
cant byte. This means that clients should always transmit such 16-bit character values most sig-
nificant byte first, as the server will never byte-swap CHAR2B quantities.
The length, format, and interpretation of a HOST address are specific to the family (see Change-
Hosts request).

4. Errors
In general, when a request terminates with an error, the request has no side effects (that is, there is
no partial execution). The only requests for which this is not true are ChangeWindowAt-
tributes , ChangeGC , PolyText8 , PolyText16 , FreeColors , StoreColors , and ChangeKey-
boardControl .
The following error codes result from various requests as follows:

Error Description

Access An attempt is made to grab a key/button combination already
grabbed by another client.

An attempt is made to free a colormap entry not allocated by the
client or to free an entry in a colormap that was created with all
entries writable.

An attempt is made to store into a read-only or an unallocated col-
ormap entry.

An attempt is made to modify the access control list from other than
the local host (or otherwise authorized client).

An attempt is made to select an event type that only one client can
select at a time when another client has already selected it.

4

X Protocol X11, Release 6.9/7.0

Error Description

Alloc The server failed to allocate the requested resource. Note that the
explicit listing of Alloc errors in request only covers allocation
errors at a very coarse level and is not intended to cover all cases of a
server running out of allocation space in the middle of service. The
semantics when a server runs out of allocation space are left unspeci-
fied, but a server may generate an Alloc error on any request for this
reason, and clients should be prepared to receive such errors and han-
dle or discard them.

Atom A value for an ATOM argument does not name a defined ATOM.

Colormap A value for a COLORMAP argument does not name a defined COL-
ORMAP.

Cursor A value for a CURSOR argument does not name a defined CUR-
SOR.

Drawable A value for a DRAWABLE argument does not name a defined WIN-
DOW or PIXMAP.

Font A value for a FONT argument does not name a defined FONT.

A value for a FONTABLE argument does not name a defined FONT
or a defined GCONTEXT.

GContext A value for a GCONTEXT argument does not name a defined
GCONTEXT.

IDChoice The value chosen for a resource identifier either is not included in the
range assigned to the client or is already in use.

Implementation The server does not implement some aspect of the request. A server
that generates this error for a core request is deficient. As such, this
error is not listed for any of the requests, but clients should be pre-
pared to receive such errors and handle or discard them.

Length The length of a request is shorter or longer than that required to mini-
mally contain the arguments.

The length of a request exceeds the maximum length accepted by the
server.

Match An InputOnly window is used as a DRAWABLE.

In a graphics request, the GCONTEXT argument does not have the
same root and depth as the destination DRAWABLE argument.

Some argument (or pair of arguments) has the correct type and range,
but it fails to match in some other way required by the request.

Name A font or color of the specified name does not exist.

Pixmap A value for a PIXMAP argument does not name a defined PIXMAP.

Request The major or minor opcode does not specify a valid request.

5

X Protocol X11, Release 6.9/7.0

Error Description

Value Some numeric value falls outside the range of values accepted by the
request. Unless a specific range is specified for an argument, the full
range defined by the argument’s type is accepted. Any argument
defined as a set of alternatives typically can generate this error (due
to the encoding).

Window A value for a WINDOW argument does not name a defined WIN-
DOW.

Note
The Atom , Colormap , Cursor , Drawable , Font , GContext , Pixmap , and Win-
dow errors are also used when the argument type is extended by union with a set of
fixed alternatives, for example, <WINDOW or PointerRoot or None>.

5. Keyboards
A KEYCODE represents a physical (or logical) key. Keycodes lie in the inclusive range [8,255].
A keycode value carries no intrinsic information, although server implementors may attempt to
encode geometry information (for example, matrix) to be interpreted in a server-dependent fash-
ion. The mapping between keys and keycodes cannot be changed using the protocol.
A KEYSYM is an encoding of a symbol on the cap of a key. The set of defined KEYSYMs
include the character sets Latin-1, Latin-2, Latin-3, Latin-4, Kana, Arabic, Cyrillic, Greek, Tech,
Special, Publish, APL, Hebrew, Thai, and Korean as well as a set of symbols common on
keyboards (Return, Help, Tab, and so on). KEYSYMs with the most significant bit (of the 29
bits) set are reserved as vendor-specific.
A list of KEYSYMs is associated with each KEYCODE. The list is intended to convey the set of
symbols on the corresponding key. If the list (ignoring trailing NoSymbol entries) is a single
KEYSYM ‘‘K’’, then the list is treated as if it were the list ‘‘K NoSymbol K NoSymbol’’. If the
list (ignoring trailing NoSymbol entries) is a pair of KEYSYMs ‘‘K1 K2’’, then the list is treated
as if it were the list ‘‘K1 K2 K1 K2’’. If the list (ignoring trailing NoSymbol entries) is a triple of
KEYSYMs ‘‘K1 K2 K3’’, then the list is treated as if it were the list ‘‘K1 K2 K3 NoSymbol’’.
When an explicit ‘‘void’’ element is desired in the list, the value VoidSymbol can be used.
The first four elements of the list are split into two groups of KEYSYMs. Group 1 contains the
first and second KEYSYMs, Group 2 contains the third and fourth KEYSYMs. Within each
group, if the second element of the group is NoSymbol , then the group should be treated as if the
second element were the same as the first element, except when the first element is an alphabetic
KEYSYM ‘‘K’’ for which both lowercase and uppercase forms are defined. In that case, the
group should be treated as if the first element were the lowercase form of ‘‘K’’ and the second ele-
ment were the uppercase form of ‘‘K’’.
The standard rules for obtaining a KEYSYM from a KeyPress ev ent make use of only the Group
1 and Group 2 KEYSYMs; no interpretation of other KEYSYMs in the list is defined. The modi-
fier state determines which group to use. Switching between groups is controlled by the
KEYSYM named MODE SWITCH, by attaching that KEYSYM to some KEYCODE and attach-
ing that KEYCODE to any one of the modifiers Mod1 through Mod5 . This modifier is called
the ‘‘group modifier’’. For any KEYCODE, Group 1 is used when the group modifier is off, and
Group 2 is used when the group modifier is on.

6

X Protocol X11, Release 6.9/7.0

The Lock modifier is interpreted as CapsLock when the KEYSYM named CAPS LOCK is
attached to some KEYCODE and that KEYCODE is attached to the Lock modifier. The Lock
modifier is interpreted as ShiftLock when the KEYSYM named SHIFT LOCK is attached to
some KEYCODE and that KEYCODE is attached to the Lock modifier. If the Lock modifier
could be interpreted as both CapsLock and ShiftLock, the CapsLock interpretation is used.
The operation of ‘‘keypad’’ keys is controlled by the KEYSYM named NUM LOCK, by attach-
ing that KEYSYM to some KEYCODE and attaching that KEYCODE to any one of the modi-
fiers Mod1 through Mod5 . This modifier is called the ‘‘numlock modifier’’. The standard
KEYSYMs with the prefix KEYPAD in their name are called ‘‘keypad’’ KEYSYMs; these are
KEYSYMS with numeric value in the hexadecimal range #xFF80 to #xFFBD inclusive. In addi-
tion, vendor-specific KEYSYMS in the hexadecimal range #x11000000 to #x1100FFFF are also
keypad KEYSYMs.
Within a group, the choice of KEYSYM is determined by applying the first rule that is satisfied
from the following list:
• The numlock modifier is on and the second KEYSYM is a keypad KEYSYM. In this case,

if the Shift modifier is on, or if the Lock modifier is on and is interpreted as ShiftLock,
then the first KEYSYM is used; otherwise, the second KEYSYM is used.

• The Shift and Lock modifiers are both off. In this case, the first KEYSYM is used.
• The Shift modifier is off, and the Lock modifier is on and is interpreted as CapsLock. In

this case, the first KEYSYM is used, but if that KEYSYM is lowercase alphabetic, then the
corresponding uppercase KEYSYM is used instead.

• The Shift modifier is on, and the Lock modifier is on and is interpreted as CapsLock. In
this case, the second KEYSYM is used, but if that KEYSYM is lowercase alphabetic, then
the corresponding uppercase KEYSYM is used instead.

• The Shift modifier is on, or the Lock modifier is on and is interpreted as ShiftLock, or
both. In this case, the second KEYSYM is used.

The mapping between KEYCODEs and KEYSYMs is not used directly by the server; it is merely
stored for reading and writing by clients.

6. Pointers
Buttons are always numbered starting with one.

7. Predefined Atoms
Predefined atoms are not strictly necessary and may not be useful in all environments, but they
will eliminate many InternAtom requests in most applications. Note that they are predefined
only in the sense of having numeric values, not in the sense of having required semantics. The
core protocol imposes no semantics on these names, but semantics are specified in other X Win-
dow System standards, such as the Inter-Client Communication Conventions Manual and the X
Logical Font Description Conventions.
The following names have predefined atom values. Note that uppercase and lowercase matter.

ARC ITALIC_ANGLE STRING
AT OM MAX_SPACE SUBSCRIPT_X
BITMAP MIN_SPACE SUBSCRIPT_Y
CAP_HEIGHT NORM_SPACE SUPERSCRIPT_X
CARDINAL NOTICE SUPERSCRIPT_Y
COLORMAP PIXMAP UNDERLINE_POSITION

7

X Protocol X11, Release 6.9/7.0

COPYRIGHT POINT UNDERLINE_THICKNESS
CURSOR POINT_SIZE VISUALID
CUT_BUFFER0 PRIMARY WEIGHT
CUT_BUFFER1 QUAD_WIDTH WINDOW
CUT_BUFFER2 RECTANGLE WM_CLASS
CUT_BUFFER3 RESOLUTION WM_CLIENT_MACHINE
CUT_BUFFER4 RESOURCE_MANAGER WM_COMMAND
CUT_BUFFER5 RGB_BEST_MAP WM_HINTS
CUT_BUFFER6 RGB_BLUE_MAP WM_ICON_NAME
CUT_BUFFER7 RGB_COLOR_MAP WM_ICON_SIZE
DRAWABLE RGB_DEFAULT_MAP WM_NAME
END_SPACE RGB_GRAY_MAP WM_NORMAL_HINTS
FAMILY_NAME RGB_GREEN_MAP WM_SIZE_HINTS
FONT RGB_RED_MAP WM_TRANSIENT_FOR
FONT_NAME SECONDARY WM_ZOOM_HINTS
FULL_NAME STRIKEOUT_ASCENT X_HEIGHT
INTEGER STRIKEOUT_DESCENT

To avoid conflicts with possible future names for which semantics might be imposed (either at the
protocol level or in terms of higher level user interface models), names beginning with an under-
score should be used for atoms that are private to a particular vendor or organization. To guaran-
tee no conflicts between vendors and organizations, additional prefixes need to be used. However,
the protocol does not define the mechanism for choosing such prefixes. For names private to a
single application or end user but stored in globally accessible locations, it is suggested that two
leading underscores be used to avoid conflicts with other names.

8. Connection Setup
For remote clients, the X protocol can be built on top of any reliable byte stream.

Connection Initiation
The client must send an initial byte of data to identify the byte order to be employed. The value
of the byte must be octal 102 or 154. The value 102 (ASCII uppercase B) means values are trans-
mitted most significant byte first, and value 154 (ASCII lowercase l) means values are transmitted
least significant byte first. Except where explicitly noted in the protocol, all 16-bit and 32-bit
quantities sent by the client must be transmitted with this byte order, and all 16-bit and 32-bit
quantities returned by the server will be transmitted with this byte order.
Following the byte-order byte, the client sends the following information at connection setup:

protocol-major-version: CARD16
protocol-minor-version: CARD16
authorization-protocol-name: STRING8
authorization-protocol-data: STRING8

The version numbers indicate what version of the protocol the client expects the server to imple-
ment.
The authorization name indicates what authorization (and authentication) protocol the client
expects the server to use, and the data is specific to that protocol. Specification of valid authoriza-
tion mechanisms is not part of the core X protocol. A server that does not implement the protocol
the client expects or that only implements the host-based mechanism may simply ignore this
information. If both name and data strings are empty, this is to be interpreted as ‘‘no explicit
authorization.’’

8

X Protocol X11, Release 6.9/7.0

Server Response
The client receives the following information at connection setup:

success: {Failed , Success , Authenticate}
The client receives the following additional data if the returned success value is Failed , and the
connection is not successfully established:

protocol-major-version: CARD16
protocol-minor-version: CARD16
reason: STRING8

The client receives the following additional data if the returned success value is Authenticate ,
and further authentication negotiation is required:

reason: STRING8
The contents of the reason string are specific to the authorization protocol in use. The semantics
of this authentication negotiation are not constrained, except that the negotiation must eventually
terminate with a reply from the server containing a success value of Failed or Success .
The client receives the following additional data if the returned success value is Success , and the
connection is successfully established:

protocol-major-version: CARD16
protocol-minor-version: CARD16
vendor: STRING8
release-number: CARD32
resource-id-base, resource-id-mask: CARD32
image-byte-order: {LSBFirst , MSBFirst}
bitmap-scanline-unit: {8, 16, 32}
bitmap-scanline-pad: {8, 16, 32}
bitmap-bit-order: {LeastSignificant , MostSignificant}
pixmap-formats: LISTofFORMAT
roots: LISTofSCREEN
motion-buffer-size: CARD32
maximum-request-length: CARD16
min-keycode, max-keycode: KEYCODE
where:

FORMAT: [depth: CARD8,
bits-per-pixel: {1, 4, 8, 16, 24, 32}
scanline-pad: {8, 16, 32}]

9

X Protocol X11, Release 6.9/7.0

SCREEN: [root: WINDOW
width-in-pixels, height-in-pixels: CARD16
width-in-millimeters, height-in-millimeters: CARD16
allowed-depths: LISTofDEPTH
root-depth: CARD8
root-visual: VISUALID
default-colormap: COLORMAP
white-pixel, black-pixel: CARD32
min-installed-maps, max-installed-maps: CARD16
backing-stores: {Never , WhenMapped , Always}
save-unders: BOOL
current-input-masks: SETofEVENT]

DEPTH: [depth: CARD8
visuals: LISTofVISUALTYPE]

VISUALTYPE: [visual-id: VISUALID
class: {StaticGray , StaticColor , TrueColor , GrayScale ,

PseudoColor , DirectColor}
red-mask, green-mask, blue-mask: CARD32
bits-per-rgb-value: CARD8
colormap-entries: CARD16]

Server Information
The information that is global to the server is:
The protocol version numbers are an escape hatch in case future revisions of the protocol are nec-
essary. In general, the major version would increment for incompatible changes, and the minor
version would increment for small upward compatible changes. Barring changes, the major ver-
sion will be 11, and the minor version will be 0. The protocol version numbers returned indicate
the protocol the server actually supports. This might not equal the version sent by the client. The
server can (but need not) refuse connections from clients that offer a different version than the
server supports. A server can (but need not) support more than one version simultaneously.
The vendor string gives some identification of the owner of the server implementation. The ven-
dor controls the semantics of the release number.
The resource-id-mask contains a single contiguous set of bits (at least 18). The client allocates
resource IDs for types WINDOW, PIXMAP, CURSOR, FONT, GCONTEXT, and COLORMAP
by choosing a value with only some subset of these bits set and ORing it with resource-id-base.
Only values constructed in this way can be used to name newly created resources over this con-
nection. Resource IDs never hav e the top three bits set. The client is not restricted to linear or
contiguous allocation of resource IDs. Once an ID has been freed, it can be reused. An ID must
be unique with respect to the IDs of all other resources, not just other resources of the same type.
However, note that the value spaces of resource identifiers, atoms, visualids, and keysyms are dis-
tinguished by context, and as such, are not required to be disjoint; for example, a given numeric
value might be both a valid window ID, a valid atom, and a valid keysym.
Although the server is in general responsible for byte-swapping data to match the client, images
are always transmitted and received in formats (including byte order) specified by the server. The
byte order for images is given by image-byte-order and applies to each scanline unit in XY format
(bitmap format) and to each pixel value in Z format.

10

X Protocol X11, Release 6.9/7.0

A bitmap is represented in scanline order. Each scanline is padded to a multiple of bits as given
by bitmap-scanline-pad. The pad bits are of arbitrary value. The scanline is quantized in multi-
ples of bits as given by bitmap-scanline-unit. The bitmap-scanline-unit is always less than or
equal to the bitmap-scanline-pad. Within each unit, the leftmost bit in the bitmap is either the
least significant or most significant bit in the unit, as given by bitmap-bit-order. If a pixmap is
represented in XY format, each plane is represented as a bitmap, and the planes appear from most
significant to least significant in bit order with no padding between planes.
Pixmap-formats contains one entry for each depth value. The entry describes the Z format used
to represent images of that depth. An entry for a depth is included if any screen supports that
depth, and all screens supporting that depth must support only that Z format for that depth. In Z
format, the pixels are in scanline order, left to right within a scanline. The number of bits used to
hold each pixel is given by bits-per-pixel. Bits-per-pixel may be larger than strictly required by
the depth, in which case the least significant bits are used to hold the pixmap data, and the values
of the unused high-order bits are undefined. When the bits-per-pixel is 4, the order of nibbles in
the byte is the same as the image byte-order. When the bits-per-pixel is 1, the format is identical
for bitmap format. Each scanline is padded to a multiple of bits as given by scanline-pad. When
bits-per-pixel is 1, this will be identical to bitmap-scanline-pad.
How a pointing device roams the screens is up to the server implementation and is transparent to
the protocol. No geometry is defined among screens.
The server may retain the recent history of pointer motion and do so to a finer granularity than is
reported by MotionNotify ev ents. The GetMotionEvents request makes such history available.
The motion-buffer-size gives the approximate maximum number of elements in the history buffer.
Maximum-request-length specifies the maximum length of a request accepted by the server, in
4-byte units. That is, length is the maximum value that can appear in the length field of a request.
Requests larger than this maximum generate a Length error, and the server will read and simply
discard the entire request. Maximum-request-length will always be at least 4096 (that is, requests
of length up to and including 16384 bytes will be accepted by all servers).
Min-keycode and max-keycode specify the smallest and largest keycode values transmitted by the
server. Min-keycode is never less than 8, and max-keycode is never greater than 255. Not all
keycodes in this range are required to have corresponding keys.

Screen Information
The information that applies per screen is:
The allowed-depths specifies what pixmap and window depths are supported. Pixmaps are sup-
ported for each depth listed, and windows of that depth are supported if at least one visual type is
listed for the depth. A pixmap depth of one is always supported and listed, but windows of depth
one might not be supported. A depth of zero is never listed, but zero-depth InputOnly windows
are always supported.
Root-depth and root-visual specify the depth and visual type of the root window. Width-in-pixels
and height-in-pixels specify the size of the root window (which cannot be changed). The class of
the root window is always InputOutput . Width-in-millimeters and height-in-millimeters can be
used to determine the physical size and the aspect ratio.
The default-colormap is the one initially associated with the root window. Clients with minimal
color requirements creating windows of the same depth as the root may want to allocate from this
map by default.
Black-pixel and white-pixel can be used in implementing a monochrome application. These pixel
values are for permanently allocated entries in the default-colormap. The actual RGB values may

11

X Protocol X11, Release 6.9/7.0

be settable on some screens and, in any case, may not actually be black and white. The names are
intended to convey the expected relative intensity of the colors.
The border of the root window is initially a pixmap filled with the black-pixel. The initial back-
ground of the root window is a pixmap filled with some unspecified two-color pattern using
black-pixel and white-pixel.
Min-installed-maps specifies the number of maps that can be guaranteed to be installed simulta-
neously (with InstallColormap), regardless of the number of entries allocated in each map.
Max-installed-maps specifies the maximum number of maps that might possibly be installed
simultaneously, depending on their allocations. Multiple static-visual colormaps with identical
contents but differing in resource ID should be considered as a single map for the purposes of this
number. For the typical case of a single hardware colormap, both values will be 1.
Backing-stores indicates when the server supports backing stores for this screen, although it may
be storage limited in the number of windows it can support at once. If save-unders is True , the
server can support the save-under mode in CreateWindow and ChangeWindowAttributes ,
although again it may be storage limited.
The current-input-events is what GetWindowAttributes would return for the all-event-masks for
the root window.

Visual Information
The information that applies per visual-type is:
A giv en visual type might be listed for more than one depth or for more than one screen.
For PseudoColor , a pixel value indexes a colormap to produce independent RGB values; the
RGB values can be changed dynamically. GrayScale is treated in the same way as Pseudo-
Color except which primary drives the screen is undefined; thus, the client should always store
the same value for red, green, and blue in colormaps. For DirectColor , a pixel value is decom-
posed into separate RGB subfields, and each subfield separately indexes the colormap for the cor-
responding value. The RGB values can be changed dynamically. TrueColor is treated in the
same way as DirectColor except the colormap has predefined read-only RGB values. These val-
ues are server-dependent but provide linear or near-linear increasing ramps in each primary.
StaticColor is treated in the same way as PseudoColor except the colormap has predefined
read-only RGB values, which are server-dependent. StaticGray is treated in the same way as
StaticColor except the red, green, and blue values are equal for any single pixel value, resulting
in shades of gray. StaticGray with a two-entry colormap can be thought of as monochrome.
The red-mask, green-mask, and blue-mask are only defined for DirectColor and TrueColor .
Each has one contiguous set of bits set to 1 with no intersections. Usually each mask has the
same number of bits set to 1.
The bits-per-rgb-value specifies the log base 2 of the number of distinct color intensity values
(individually) of red, green, and blue. This number need not bear any relation to the number of
colormap entries. Actual RGB values are always passed in the protocol within a 16-bit spectrum,
with 0 being minimum intensity and 65535 being the maximum intensity. On hardware that pro-
vides a linear zero-based intensity ramp, the following relationship exists:

hw-intensity = protocol-intensity / (65536 / total-hw-intensities)

Colormap entries are indexed from 0. The colormap-entries defines the number of available col-
ormap entries in a newly created colormap. For DirectColor and TrueColor , this will usually
be 2 to the power of the maximum number of bits set to 1 in red-mask, green-mask, and blue-
mask.

12

X Protocol X11, Release 6.9/7.0

9. Requests

CreateWindow
wid, parent: WINDOW
class: {InputOutput , InputOnly , CopyFromParent}
depth: CARD8
visual: VISUALID or CopyFromParent
x, y: INT16
width, height, border-width: CARD16
value-mask: BITMASK
value-list: LISTofVALUE
Errors: Alloc , Colormap , Cursor , IDChoice , Match , Pixmap , Value , Window

This request creates an unmapped window and assigns the identifier wid to it.
A class of CopyFromParent means the class is taken from the parent. A depth of zero for class
InputOutput or CopyFromParent means the depth is taken from the parent. A visual of
CopyFromParent means the visual type is taken from the parent. For class InputOutput , the
visual type and depth must be a combination supported for the screen (or a Match error results).
The depth need not be the same as the parent, but the parent must not be of class InputOnly (or a
Match error results). For class InputOnly , the depth must be zero (or a Match error results),
and the visual must be one supported for the screen (or a Match error results). However, the par-
ent can have any depth and class.
The server essentially acts as if InputOnly windows do not exist for the purposes of graphics
requests, exposure processing, and VisibilityNotify ev ents. An InputOnly window cannot be
used as a drawable (as a source or destination for graphics requests). InputOnly and InputOut-
put windows act identically in other respects−properties, grabs, input control, and so on.
The coordinate system has the X axis horizontal and the Y axis vertical with the origin [0, 0] at
the upper-left corner. Coordinates are integral, in terms of pixels, and coincide with pixel centers.
Each window and pixmap has its own coordinate system. For a window, the origin is inside the
border at the inside, upper-left corner.
The x and y coordinates for the window are relative to the parent’s origin and specify the position
of the upper-left outer corner of the window (not the origin). The width and height specify the
inside size (not including the border) and must be nonzero (or a Value error results). The border-
width for an InputOnly window must be zero (or a Match error results).
The window is placed on top in the stacking order with respect to siblings.
The value-mask and value-list specify attributes of the window that are to be explicitly initialized.
The possible values are:

Attribute Type

background-pixmap PIXMAP or None or ParentRelative
background-pixel CARD32
border-pixmap PIXMAP or CopyFromParent
border-pixel CARD32
bit-gravity BITGRAVITY

13

X Protocol X11, Release 6.9/7.0

Attribute Type

win-gravity WINGRAVITY
backing-store {NotUseful , WhenMapped , Always}
backing-planes CARD32
backing-pixel CARD32
save-under BOOL
ev ent-mask SETofEVENT
do-not-propagate-mask SETofDEVICEEVENT
override-redirect BOOL
colormap COLORMAP or CopyFromParent
cursor CURSOR or None

The default values when attributes are not explicitly initialized are:

Attribute Default

background-pixmap None
border-pixmap CopyFromParent
bit-gravity Forget
win-gravity NorthWest
backing-store NotUseful
backing-planes all ones
backing-pixel zero
save-under False
ev ent-mask {} (empty set)
do-not-propagate-mask {} (empty set)
override-redirect False
colormap CopyFromParent
cursor None

Only the following attributes are defined for InputOnly windows:
• win-gravity
• event-mask
• do-not-propagate-mask
• override-redirect
• cursor
It is a Match error to specify any other attributes for InputOnly windows.
If background-pixmap is given, it overrides the default background-pixmap. The background
pixmap and the window must have the same root and the same depth (or a Match error results).
Any size pixmap can be used, although some sizes may be faster than others. If background
None is specified, the window has no defined background. If background ParentRelative is
specified, the parent’s background is used, but the window must have the same depth as the parent
(or a Match error results). If the parent has background None , then the window will also have
background None . A copy of the parent’s background is not made. The parent’s background is
reexamined each time the window background is required. If background-pixel is given, it over-
rides the default background-pixmap and any background-pixmap given explicitly, and a pixmap

14

X Protocol X11, Release 6.9/7.0

of undefined size filled with background-pixel is used for the background. Range checking is not
performed on the background-pixel value; it is simply truncated to the appropriate number of bits.
For a ParentRelative background, the background tile origin always aligns with the parent’s
background tile origin. Otherwise, the background tile origin is always the window origin.
When no valid contents are available for regions of a window and the regions are either visible or
the server is maintaining backing store, the server automatically tiles the regions with the win-
dow’s background unless the window has a background of None . If the background is None , the
previous screen contents from other windows of the same depth as the window are simply left in
place if the contents come from the parent of the window or an inferior of the parent; otherwise,
the initial contents of the exposed regions are undefined. Exposure events are then generated for
the regions, even if the background is None .
The border tile origin is always the same as the background tile origin. If border-pixmap is given,
it overrides the default border-pixmap. The border pixmap and the window must have the same
root and the same depth (or a Match error results). Any size pixmap can be used, although some
sizes may be faster than others. If CopyFromParent is given, the parent’s border pixmap is
copied (subsequent changes to the parent’s border attribute do not affect the child), but the win-
dow must have the same depth as the parent (or a Match error results). The pixmap might be
copied by sharing the same pixmap object between the child and parent or by making a complete
copy of the pixmap contents. If border-pixel is given, it overrides the default border-pixmap and
any border-pixmap given explicitly, and a pixmap of undefined size filled with border-pixel is
used for the border. Range checking is not performed on the border-pixel value; it is simply trun-
cated to the appropriate number of bits.
Output to a window is always clipped to the inside of the window, so that the border is never
affected.
The bit-gravity defines which region of the window should be retained if the window is resized,
and win-gravity defines how the window should be repositioned if the parent is resized (see Con-
figureWindow request).
A backing-store of WhenMapped advises the server that maintaining contents of obscured
regions when the window is mapped would be beneficial. A backing-store of Always advises the
server that maintaining contents even when the window is unmapped would be beneficial. In this
case, the server may generate an exposure event when the window is created. A value of NotUse-
ful advises the server that maintaining contents is unnecessary, although a server may still choose
to maintain contents while the window is mapped. Note that if the server maintains contents, then
the server should maintain complete contents not just the region within the parent boundaries,
ev en if the window is larger than its parent. While the server maintains contents, exposure events
will not normally be generated, but the server may stop maintaining contents at any time.
If save-under is True , the server is advised that when this window is mapped, saving the contents
of windows it obscures would be beneficial.
When the contents of obscured regions of a window are being maintained, regions obscured by
noninferior windows are included in the destination (and source, when the window is the source)
of graphics requests, but regions obscured by inferior windows are not included.
The backing-planes indicates (with bits set to 1) which bit planes of the window hold dynamic
data that must be preserved in backing-stores and during save-unders. The backing-pixel speci-
fies what value to use in planes not covered by backing-planes. The server is free to save only the
specified bit planes in the backing-store or save-under and regenerate the remaining planes with
the specified pixel value. Any bits beyond the specified depth of the window in these values are
simply ignored.

15

X Protocol X11, Release 6.9/7.0

The event-mask defines which events the client is interested in for this window (or for some event
types, inferiors of the window). The do-not-propagate-mask defines which events should not be
propagated to ancestor windows when no client has the event type selected in this window.
The override-redirect specifies whether map and configure requests on this window should over-
ride a SubstructureRedirect on the parent, typically to inform a window manager not to tamper
with the window.
The colormap specifies the colormap that best reflects the true colors of the window. Servers
capable of supporting multiple hardware colormaps may use this information, and window man-
agers may use it for InstallColormap requests. The colormap must have the same visual type
and root as the window (or a Match error results). If CopyFromParent is specified, the parent’s
colormap is copied (subsequent changes to the parent’s colormap attribute do not affect the child).
However, the window must have the same visual type as the parent (or a Match error results),
and the parent must not have a colormap of None (or a Match error results). For an explanation
of None , see FreeColormap request. The colormap is copied by sharing the colormap object
between the child and the parent, not by making a complete copy of the colormap contents.
If a cursor is specified, it will be used whenever the pointer is in the window. If None is speci-
fied, the parent’s cursor will be used when the pointer is in the window, and any change in the
parent’s cursor will cause an immediate change in the displayed cursor.
This request generates a CreateNotify ev ent.
The background and border pixmaps and the cursor may be freed immediately if no further
explicit references to them are to be made.
Subsequent drawing into the background or border pixmap has an undefined effect on the window
state. The server might or might not make a copy of the pixmap.

ChangeWindowAttributes
window: WINDOW
value-mask: BITMASK
value-list: LISTofVALUE
Errors: Access , Colormap , Cursor , Match , Pixmap , Value , Window

The value-mask and value-list specify which attributes are to be changed. The values and restric-
tions are the same as for CreateWindow .
Setting a new background, whether by background-pixmap or background-pixel, overrides any
previous background. Setting a new border, whether by border-pixel or border-pixmap, overrides
any previous border.
Changing the background does not cause the window contents to be changed. Setting the border
or changing the background such that the border tile origin changes causes the border to be
repainted. Changing the background of a root window to None or ParentRelative restores the
default background pixmap. Changing the border of a root window to CopyFromParent
restores the default border pixmap.
Changing the win-gravity does not affect the current position of the window.
Changing the backing-store of an obscured window to WhenMapped or Always or changing
the backing-planes, backing-pixel, or save-under of a mapped window may have no immediate
effect.

16

X Protocol X11, Release 6.9/7.0

Multiple clients can select input on the same window; their event-masks are disjoint. When an
ev ent is generated, it will be reported to all interested clients. However, only one client at a time
can select for SubstructureRedirect , only one client at a time can select for ResizeRedirect ,
and only one client at a time can select for ButtonPress . An attempt to violate these restrictions
results in an Access error.
There is only one do-not-propagate-mask for a window, not one per client.
Changing the colormap of a window (by defining a new map, not by changing the contents of the
existing map) generates a ColormapNotify ev ent. Changing the colormap of a visible window
might have no immediate effect on the screen (see InstallColormap request).
Changing the cursor of a root window to None restores the default cursor.
The order in which attributes are verified and altered is server-dependent. If an error is generated,
a subset of the attributes may have been altered.

GetWindowAttributes
window: WINDOW

→
visual: VISUALID
class: {InputOutput , InputOnly}
bit-gravity: BITGRAVITY
win-gravity: WINGRAVITY
backing-store: {NotUseful , WhenMapped , Always}
backing-planes: CARD32
backing-pixel: CARD32
save-under: BOOL
colormap: COLORMAP or None
map-is-installed: BOOL
map-state: {Unmapped , Unviewable , Viewable}
all-event-masks, your-event-mask: SETofEVENT
do-not-propagate-mask: SETofDEVICEEVENT
override-redirect: BOOL
Errors: Window

This request returns the current attributes of the window. A window is Unviewable if it is
mapped but some ancestor is unmapped. All-event-masks is the inclusive-OR of all event masks
selected on the window by clients. Your-event-mask is the event mask selected by the querying
client.

DestroyWindow
window: WINDOW
Errors: Window

If the argument window is mapped, an UnmapWindow request is performed automatically. The
window and all inferiors are then destroyed, and a DestroyNotify ev ent is generated for each
window. The ordering of the DestroyNotify ev ents is such that for any giv en window,

17

X Protocol X11, Release 6.9/7.0

DestroyNotify is generated on all inferiors of the window before being generated on the window
itself. The ordering among siblings and across subhierarchies is not otherwise constrained.
Normal exposure processing on formerly obscured windows is performed.
If the window is a root window, this request has no effect.

DestroySubwindows
window: WINDOW
Errors: Window

This request performs a DestroyWindow request on all children of the window, in bottom-to-top
stacking order.

ChangeSaveSet
window: WINDOW
mode: {Insert , Delete}

Errors:
Match , Value , Window

This request adds or removes the specified window from the client’s sav e-set. The window must
have been created by some other client (or a Match error results). For further information about
the use of the save-set, see section 10.
When windows are destroyed, the server automatically removes them from the save-set.

ReparentWindow
window , parent: WINDOW
x , y: INT16
Errors: Match , Window

If the window is mapped, an UnmapWindow request is performed automatically first. The win-
dow is then removed from its current position in the hierarchy and is inserted as a child of the
specified parent. The x and y coordinates are relative to the parent’s origin and specify the new
position of the upper-left outer corner of the window. The window is placed on top in the stack-
ing order with respect to siblings. A ReparentNotify ev ent is then generated. The override-redi-
rect attribute of the window is passed on in this event; a value of True indicates that a window
manager should not tamper with this window. Finally, if the window was originally mapped, a
MapWindow request is performed automatically.
Normal exposure processing on formerly obscured windows is performed. The server might not
generate exposure events for regions from the initial unmap that are immediately obscured by the
final map.
A Match error is generated if:
• The new parent is not on the same screen as the old parent.

18

X Protocol X11, Release 6.9/7.0

• The new parent is the window itself or an inferior of the window.
• The new parent is InputOnly , and the window is not.
• The window has a ParentRelative background, and the new parent is not the same depth

as the window.

MapWindow
window: WINDOW
Errors: Window

If the window is already mapped, this request has no effect.
If the override-redirect attribute of the window is False and some other client has selected Sub-
structureRedirect on the parent, then a MapRequest ev ent is generated, but the window
remains unmapped. Otherwise, the window is mapped, and a MapNotify ev ent is generated.
If the window is now viewable and its contents have been discarded, the window is tiled with its
background (if no background is defined, the existing screen contents are not altered), and zero or
more exposure events are generated. If a backing-store has been maintained while the window
was unmapped, no exposure events are generated. If a backing-store will now be maintained, a
full-window exposure is always generated. Otherwise, only visible regions may be reported.
Similar tiling and exposure take place for any newly viewable inferiors.

MapSubwindows
window: WINDOW
Errors: Window

This request performs a MapWindow request on all unmapped children of the window, in top-to-
bottom stacking order.

UnmapWindow
window: WINDOW
Errors: Window

If the window is already unmapped, this request has no effect. Otherwise, the window is
unmapped, and an UnmapNotify ev ent is generated. Normal exposure processing on formerly
obscured windows is performed.

UnmapSubwindows
window: WINDOW
Errors: Window

19

X Protocol X11, Release 6.9/7.0

This request performs an UnmapWindow request on all mapped children of the window, in bot-
tom-to-top stacking order.

ConfigureWindow
window: WINDOW
value-mask: BITMASK
value-list: LISTofVALUE
Errors: Match , Value , Window

This request changes the configuration of the window. The value-mask and value-list specify
which values are to be given. The possible values are:

Attribute Type

x INT16
y INT16
width CARD16
height CARD16
border-width CARD16
sibling WINDOW
stack-mode {Above , Below , TopIf , BottomIf , Opposite}

The x and y coordinates are relative to the parent’s origin and specify the position of the upper-
left outer corner of the window. The width and height specify the inside size, not including the
border, and must be nonzero (or a Value error results). Those values not specified are taken from
the existing geometry of the window. Note that changing just the border-width leaves the outer-
left corner of the window in a fixed position but moves the absolute position of the window’s ori-
gin. It is a Match error to attempt to make the border-width of an InputOnly window nonzero.
If the override-redirect attribute of the window is False and some other client has selected Sub-
structureRedirect on the parent, a ConfigureRequest ev ent is generated, and no further pro-
cessing is performed. Otherwise, the following is performed:
If some other client has selected ResizeRedirect on the window and the inside width or height of
the window is being changed, a ResizeRequest ev ent is generated, and the current inside width
and height are used instead. Note that the override-redirect attribute of the window has no effect
on ResizeRedirect and that SubstructureRedirect on the parent has precedence over Resiz-
eRedirect on the window.
The geometry of the window is changed as specified, the window is restacked among siblings,
and a ConfigureNotify ev ent is generated if the state of the window actually changes. If the
inside width or height of the window has actually changed, then children of the window are
affected, according to their win-gravity. Exposure processing is performed on formerly obscured
windows (including the window itself and its inferiors if regions of them were obscured but now
are not). Exposure processing is also performed on any new regions of the window (as a result of
increasing the width or height) and on any regions where window contents are lost.
If the inside width or height of a window is not changed but the window is moved or its border is
changed, then the contents of the window are not lost but move with the window. Changing the
inside width or height of the window causes its contents to be moved or lost, depending on the

20

X Protocol X11, Release 6.9/7.0

bit-gravity of the window. It also causes children to be reconfigured, depending on their win-
gravity. For a change of width and height of W and H, we define the [x, y] pairs as:

Direction Deltas

NorthWest [0, 0]
North [W/2, 0]
NorthEast [W, 0]
West [0, H/2]
Center [W/2, H/2]
East [W, H/2]
SouthWest [0, H]
South [W/2, H]
SouthEast [W, H]

When a window with one of these bit-gravities is resized, the corresponding pair defines the
change in position of each pixel in the window. When a window with one of these win-gravities
has its parent window resized, the corresponding pair defines the change in position of the win-
dow within the parent. This repositioning generates a GravityNotify ev ent. GravityNotify
ev ents are generated after the ConfigureNotify ev ent is generated.
A gravity of Static indicates that the contents or origin should not move relative to the origin of
the root window. If the change in size of the window is coupled with a change in position of [X,
Y], then for bit-gravity the change in position of each pixel is [−X, −Y] and for win-gravity the
change in position of a child when its parent is so resized is [−X, −Y]. Note that Static gravity
still only takes effect when the width or height of the window is changed, not when the window is
simply moved.
A bit-gravity of Forget indicates that the window contents are always discarded after a size
change, even if backing-store or save-under has been requested. The window is tiled with its
background (except, if no background is defined, the existing screen contents are not altered) and
zero or more exposure events are generated.
The contents and borders of inferiors are not affected by their parent’s bit-gravity. A server is
permitted to ignore the specified bit-gravity and use Forget instead.
A win-gravity of Unmap is like NorthWest , but the child is also unmapped when the parent is
resized, and an UnmapNotify ev ent is generated. UnmapNotify ev ents are generated after the
ConfigureNotify ev ent is generated.
If a sibling and a stack-mode are specified, the window is restacked as follows:

Above The window is placed just above the sibling.

Below The window is placed just below the sibling.

TopIf If the sibling occludes the window, then the window is placed at the top of
the stack.

BottomIf If the window occludes the sibling, then the window is placed at the bottom
of the stack.

Opposite If the sibling occludes the window, then the window is placed at the top of
the stack. Otherwise, if the window occludes the sibling, then the window is
placed at the bottom of the stack.

21

X Protocol X11, Release 6.9/7.0

If a stack-mode is specified but no sibling is specified, the window is restacked as follows:

Above The window is placed at the top of the stack.

Below The window is placed at the bottom of the stack.

TopIf If any sibling occludes the window, then the window is placed at the top of
the stack.

BottomIf If the window occludes any sibling, then the window is placed at the bottom
of the stack.

Opposite If any sibling occludes the window, then the window is placed at the top of
the stack. Otherwise, if the window occludes any sibling, then the window is
placed at the bottom of the stack.

It is a Match error if a sibling is specified without a stack-mode or if the window is not actually a
sibling.
Note that the computations for BottomIf , TopIf , and Opposite are performed with respect to the
window’s final geometry (as controlled by the other arguments to the request), not to its initial
geometry.
Attempts to configure a root window hav e no effect.

CirculateWindow
window: WINDOW
direction: {RaiseLowest , LowerHighest}
Errors: Value , Window

If some other client has selected SubstructureRedirect on the window, then a Circu-
lateRequest ev ent is generated, and no further processing is performed. Otherwise, the following
is performed, and then a CirculateNotify ev ent is generated if the window is actually restacked.
For RaiseLowest , CirculateWindow raises the lowest mapped child (if any) that is occluded by
another child to the top of the stack. For LowerHighest , CirculateWindow lowers the highest
mapped child (if any) that occludes another child to the bottom of the stack. Exposure processing
is performed on formerly obscured windows.

GetGeometry
drawable: DRAWABLE

→
root: WINDOW
depth: CARD8
x, y: INT16
width, height, border-width: CARD16
Errors: Drawable

This request returns the root and current geometry of the drawable. The depth is the number of
bits per pixel for the object. The x, y, and border-width will always be zero for pixmaps. For a

22

X Protocol X11, Release 6.9/7.0

window, the x and y coordinates specify the upper-left outer corner of the window relative to its
parent’s origin, and the width and height specify the inside size, not including the border.
It is legal to pass an InputOnly window as a drawable to this request.

QueryTree
window: WINDOW

→
root: WINDOW
parent: WINDOW or None
children: LISTofWINDOW
Errors: Window

This request returns the root, the parent, and the children of the window. The children are listed
in bottom-to-top stacking order.

InternAtom
name: STRING8
only-if-exists: BOOL

→
atom: ATOM or None
Errors: Alloc , Value

This request returns the atom for the given name. If only-if-exists is False , then the atom is cre-
ated if it does not exist. The string should use the ISO Latin-1 encoding. Uppercase and lower-
case matter.
The lifetime of an atom is not tied to the interning client. Atoms remain defined until server reset
(see section 10).

GetAtomName
atom: ATOM

→
name: STRING8
Errors: Atom

This request returns the name for the given atom.

23

X Protocol X11, Release 6.9/7.0

ChangeProperty
window: WINDOW
property, type: ATOM
format: {8, 16, 32}
mode: {Replace , Prepend , Append}
data: LISTofINT8 or LISTofINT16 or LISTofINT32
Errors: Alloc , Atom , Match , Value , Window

This request alters the property for the specified window. The type is uninterpreted by the server.
The format specifies whether the data should be viewed as a list of 8-bit, 16-bit, or 32-bit quanti-
ties so that the server can correctly byte-swap as necessary.
If the mode is Replace , the previous property value is discarded. If the mode is Prepend or
Append , then the type and format must match the existing property value (or a Match error
results). If the property is undefined, it is treated as defined with the correct type and format with
zero-length data. For Prepend , the data is tacked on to the beginning of the existing data, and for
Append , it is tacked on to the end of the existing data.
This request generates a PropertyNotify ev ent on the window.
The lifetime of a property is not tied to the storing client. Properties remain until explicitly
deleted, until the window is destroyed, or until server reset (see section 10).
The maximum size of a property is server-dependent and may vary dynamically.

DeleteProperty
window: WINDOW
property: ATOM
Errors: Atom , Window

This request deletes the property from the specified window if the property exists and generates a
PropertyNotify ev ent on the window unless the property does not exist.

GetProperty
window: WINDOW
property: ATOM
type: ATOM or AnyPropertyType
long-offset, long-length: CARD32
delete: BOOL

→
type: ATOM or None
format: {0, 8, 16, 32}
bytes-after: CARD32
value: LISTofINT8 or LISTofINT16 or LISTofINT32
Errors: Atom , Value , Window

24

X Protocol X11, Release 6.9/7.0

If the specified property does not exist for the specified window, then the return type is None , the
format and bytes-after are zero, and the value is empty. The delete argument is ignored in this
case. If the specified property exists but its type does not match the specified type, then the return
type is the actual type of the property, the format is the actual format of the property (never zero),
the bytes-after is the length of the property in bytes (even if the format is 16 or 32), and the value
is empty. The delete argument is ignored in this case. If the specified property exists and either
AnyPropertyType is specified or the specified type matches the actual type of the property, then
the return type is the actual type of the property, the format is the actual format of the property
(never zero), and the bytes-after and value are as follows, given:

N = actual length of the stored property in bytes
(even if the format is 16 or 32)

I = 4 * long-offset
T = N − I
L = MINIMUM(T, 4 * long-length)
A = N − (I + L)

The returned value starts at byte index I in the property (indexing from 0), and its length in bytes
is L. However, it is a Value error if long-offset is given such that L is negative. The value of
bytes-after is A, giving the number of trailing unread bytes in the stored property. If delete is
True and the bytes-after is zero, the property is also deleted from the window, and a Proper-
tyNotify ev ent is generated on the window.

RotateProperties
window: WINDOW
delta: INT16
properties: LISTofATOM
Errors: Atom , Match , Window

If the property names in the list are viewed as being numbered starting from zero, and there are N
property names in the list, then the value associated with property name I becomes the value asso-
ciated with property name (I + delta) mod N, for all I from zero to N − 1. The effect is to rotate
the states by delta places around the virtual ring of property names (right for positive delta, left
for negative delta).
If delta mod N is nonzero, a PropertyNotify ev ent is generated for each property in the order
listed.
If an atom occurs more than once in the list or no property with that name is defined for the win-
dow, a Match error is generated. If an Atom or Match error is generated, no properties are
changed.

25

X Protocol X11, Release 6.9/7.0

ListProperties
window: WINDOW

→
atoms: LISTofATOM
Errors: Window

This request returns the atoms of properties currently defined on the window.

SetSelectionOwner
selection: ATOM
owner: WINDOW or None
time: TIMESTAMP or CurrentTime
Errors: Atom , Window

This request changes the owner, owner window, and last-change time of the specified selection.
This request has no effect if the specified time is earlier than the current last-change time of the
specified selection or is later than the current server time. Otherwise, the last-change time is set
to the specified time with CurrentTime replaced by the current server time. If the owner win-
dow is specified as None , then the owner of the selection becomes None (that is, no owner).
Otherwise, the owner of the selection becomes the client executing the request. If the new owner
(whether a client or None) is not the same as the current owner and the current owner is not
None , then the current owner is sent a SelectionClear ev ent.
If the client that is the owner of a selection is later terminated (that is, its connection is closed) or
if the owner window it has specified in the request is later destroyed, then the owner of the selec-
tion automatically reverts to None , but the last-change time is not affected.
The selection atom is uninterpreted by the server. The owner window is returned by the GetSe-
lectionOwner request and is reported in SelectionRequest and SelectionClear ev ents.
Selections are global to the server.

GetSelectionOwner
selection: ATOM

→
owner: WINDOW or None
Errors: Atom

This request returns the current owner window of the specified selection, if any. If None is
returned, then there is no owner for the selection.

26

X Protocol X11, Release 6.9/7.0

ConvertSelection
selection, target: ATOM
property: ATOM or None
requestor: WINDOW
time: TIMESTAMP or CurrentTime
Errors: Atom , Window

If the specified selection has an owner, the server sends a SelectionRequest ev ent to that owner.
If no owner for the specified selection exists, the server generates a SelectionNotify ev ent to the
requestor with property None . The arguments are passed on unchanged in either of the events.

SendEvent
destination: WINDOW or PointerWindow or InputFocus
propagate: BOOL
event-mask: SETofEVENT
event: <normal-event-format>
Errors: Value , Window

If PointerWindow is specified, destination is replaced with the window that the pointer is in. If
InputFocus is specified and the focus window contains the pointer, destination is replaced with
the window that the pointer is in. Otherwise, destination is replaced with the focus window.
If the event-mask is the empty set, then the event is sent to the client that created the destination
window. If that client no longer exists, no event is sent.
If propagate is False , then the event is sent to every client selecting on destination any of the
ev ent types in event-mask.
If propagate is True and no clients have selected on destination any of the event types in event-
mask, then destination is replaced with the closest ancestor of destination for which some client
has selected a type in event-mask and no intervening window has that type in its do-not-propa-
gate-mask. If no such window exists or if the window is an ancestor of the focus window and
InputFocus was originally specified as the destination, then the event is not sent to any clients.
Otherwise, the event is reported to every client selecting on the final destination any of the types
specified in event-mask.
The event code must be one of the core events or one of the events defined by an extension (or a
Value error results) so that the server can correctly byte-swap the contents as necessary. The
contents of the event are otherwise unaltered and unchecked by the server except to force on the
most significant bit of the event code and to set the sequence number in the event correctly.
Active grabs are ignored for this request.

27

X Protocol X11, Release 6.9/7.0

GrabPointer
grab-window: WINDOW
owner-events: BOOL
event-mask: SETofPOINTEREVENT
pointer-mode, keyboard-mode: {Synchronous , Asynchronous}
confine-to: WINDOW or None
cursor: CURSOR or None
time: TIMESTAMP or CurrentTime

→
status: {Success , AlreadyGrabbed , Frozen , InvalidTime , NotViewable}
Errors: Cursor , Value , Window

This request actively grabs control of the pointer. Further pointer events are only reported to the
grabbing client. The request overrides any active pointer grab by this client.
If owner-events is False , all generated pointer events are reported with respect to grab-window
and are only reported if selected by event-mask. If owner-events is True and a generated pointer
ev ent would normally be reported to this client, it is reported normally. Otherwise, the event is
reported with respect to the grab-window and is only reported if selected by event-mask. For
either value of owner-events, unreported events are simply discarded.
If pointer-mode is Asynchronous , pointer event processing continues normally. If the pointer is
currently frozen by this client, then processing of pointer events is resumed. If pointer-mode is
Synchronous , the state of the pointer (as seen by means of the protocol) appears to freeze, and
no further pointer events are generated by the server until the grabbing client issues a releasing
AllowEvents request or until the pointer grab is released. Actual pointer changes are not lost
while the pointer is frozen. They are simply queued for later processing.
If keyboard-mode is Asynchronous , keyboard event processing is unaffected by activation of the
grab. If keyboard-mode is Synchronous , the state of the keyboard (as seen by means of the pro-
tocol) appears to freeze, and no further keyboard events are generated by the server until the grab-
bing client issues a releasing AllowEvents request or until the pointer grab is released. Actual
keyboard changes are not lost while the keyboard is frozen. They are simply queued for later pro-
cessing.
If a cursor is specified, then it is displayed regardless of what window the pointer is in. If no cur-
sor is specified, then when the pointer is in grab-window or one of its subwindows, the normal
cursor for that window is displayed. Otherwise, the cursor for grab-window is displayed.
If a confine-to window is specified, then the pointer will be restricted to stay contained in that
window. The confine-to window need have no relationship to the grab-window. If the pointer is
not initially in the confine-to window, then it is warped automatically to the closest edge (and
enter/leave events are generated normally) just before the grab activates. If the confine-to window
is subsequently reconfigured, the pointer will be warped automatically as necessary to keep it
contained in the window.
This request generates EnterNotify and LeaveNotify ev ents.
The request fails with status AlreadyGrabbed if the pointer is actively grabbed by some other
client. The request fails with status Frozen if the pointer is frozen by an active grab of another
client. The request fails with status NotViewable if grab-window or confine-to window is not
viewable or if the confine-to window lies completely outside the boundaries of the root window.
The request fails with status InvalidTime if the specified time is earlier than the last-pointer-grab
time or later than the current server time. Otherwise, the last-pointer-grab time is set to the

28

X Protocol X11, Release 6.9/7.0

specified time, with CurrentTime replaced by the current server time.

UngrabPointer
time: TIMESTAMP or CurrentTime

This request releases the pointer if this client has it actively grabbed (from either GrabPointer or
GrabButton or from a normal button press) and releases any queued events. The request has no
effect if the specified time is earlier than the last-pointer-grab time or is later than the current
server time.
This request generates EnterNotify and LeaveNotify ev ents.
An UngrabPointer request is performed automatically if the event window or confine-to window
for an active pointer grab becomes not viewable or if window reconfiguration causes the confine-
to window to lie completely outside the boundaries of the root window.

GrabButton
modifiers: SETofKEYMASK or AnyModifier
button: BUTTON or AnyButton
grab-window: WINDOW
owner-events: BOOL
event-mask: SETofPOINTEREVENT
pointer-mode, keyboard-mode: {Synchronous , Asynchronous}
confine-to: WINDOW or None
cursor: CURSOR or None
Errors: Access , Cursor , Value , Window

This request establishes a passive grab. In the future, the pointer is actively grabbed as described
in GrabPointer , the last-pointer-grab time is set to the time at which the button was pressed (as
transmitted in the ButtonPress ev ent), and the ButtonPress ev ent is reported if all of the follow-
ing conditions are true:
• The pointer is not grabbed and the specified button is logically pressed when the specified

modifier keys are logically down, and no other buttons or modifier keys are logically down.
• The grab-window contains the pointer.
• The confine-to window (if any) is viewable.
• A passive grab on the same button/key combination does not exist on any ancestor of grab-

window.
The interpretation of the remaining arguments is the same as for GrabPointer . The active grab
is terminated automatically when the logical state of the pointer has all buttons released, indepen-
dent of the logical state of modifier keys. Note that the logical state of a device (as seen by means
of the protocol) may lag the physical state if device event processing is frozen.
This request overrides all previous passive grabs by the same client on the same button/key com-
binations on the same window. A modifier of AnyModifier is equivalent to issuing the request
for all possible modifier combinations (including the combination of no modifiers). It is not
required that all specified modifiers have currently assigned keycodes. A button of AnyButton is
equivalent to issuing the request for all possible buttons. Otherwise, it is not required that the

29

X Protocol X11, Release 6.9/7.0

button specified currently be assigned to a physical button.
An Access error is generated if some other client has already issued a GrabButton request with
the same button/key combination on the same window. When using AnyModifier or AnyBut-
ton , the request fails completely (no grabs are established), and an Access error is generated if
there is a conflicting grab for any combination. The request has no effect on an active grab.

UngrabButton
modifiers: SETofKEYMASK or AnyModifier
button: BUTTON or AnyButton
grab-window: WINDOW
Errors: Value , Window

This request releases the passive button/key combination on the specified window if it was
grabbed by this client. A modifiers argument of AnyModifier is equivalent to issuing the request
for all possible modifier combinations (including the combination of no modifiers). A button of
AnyButton is equivalent to issuing the request for all possible buttons. The request has no effect
on an active grab.

ChangeActivePointerGrab
event-mask: SETofPOINTEREVENT
cursor: CURSOR or None
time: TIMESTAMP or CurrentTime
Errors: Cursor , Value

This request changes the specified dynamic parameters if the pointer is actively grabbed by the
client and the specified time is no earlier than the last-pointer-grab time and no later than the cur-
rent server time. The interpretation of event-mask and cursor are the same as in GrabPointer .
This request has no effect on the parameters of any passive grabs established with GrabButton .

GrabKeyboard
grab-window: WINDOW
owner-events: BOOL
pointer-mode, keyboard-mode: {Synchronous , Asynchronous}
time: TIMESTAMP or CurrentTime

→
status: {Success , AlreadyGrabbed , Frozen , InvalidTime , NotViewable}
Errors: Value , Window

This request actively grabs control of the keyboard. Further key events are reported only to the
grabbing client. This request overrides any active keyboard grab by this client.
If owner-events is False , all generated key events are reported with respect to grab-window. If
owner-events is True and if a generated key event would normally be reported to this client, it is
reported normally. Otherwise, the event is reported with respect to the grab-window. Both

30

X Protocol X11, Release 6.9/7.0

KeyPress and KeyRelease ev ents are always reported, independent of any event selection made
by the client.
If keyboard-mode is Asynchronous , keyboard event processing continues normally. If the
keyboard is currently frozen by this client, then processing of keyboard events is resumed. If
keyboard-mode is Synchronous , the state of the keyboard (as seen by means of the protocol)
appears to freeze. No further keyboard events are generated by the server until the grabbing client
issues a releasing AllowEvents request or until the keyboard grab is released. Actual keyboard
changes are not lost while the keyboard is frozen. They are simply queued for later processing.
If pointer-mode is Asynchronous , pointer event processing is unaffected by activation of the
grab. If pointer-mode is Synchronous , the state of the pointer (as seen by means of the protocol)
appears to freeze. No further pointer events are generated by the server until the grabbing client
issues a releasing AllowEvents request or until the keyboard grab is released. Actual pointer
changes are not lost while the pointer is frozen. They are simply queued for later processing.
This request generates FocusIn and FocusOut ev ents.
The request fails with status AlreadyGrabbed if the keyboard is actively grabbed by some other
client. The request fails with status Frozen if the keyboard is frozen by an active grab of another
client. The request fails with status NotViewable if grab-window is not viewable. The request
fails with status InvalidTime if the specified time is earlier than the last-keyboard-grab time or
later than the current server time. Otherwise, the last-keyboard-grab time is set to the specified
time with CurrentTime replaced by the current server time.

UngrabKeyboard
time: TIMESTAMP or CurrentTime

This request releases the keyboard if this client has it actively grabbed (as a result of either
GrabKeyboard or GrabKey) and releases any queued events. The request has no effect if the
specified time is earlier than the last-keyboard-grab time or is later than the current server time.
This request generates FocusIn and FocusOut ev ents.
An UngrabKeyboard is performed automatically if the event window for an active keyboard
grab becomes not viewable.

GrabKey
key: KEYCODE or AnyKey
modifiers: SETofKEYMASK or AnyModifier
grab-window: WINDOW
owner-events: BOOL
pointer-mode, keyboard-mode: {Synchronous , Asynchronous}
Errors: Access , Value , Window

This request establishes a passive grab on the keyboard. In the future, the keyboard is actively
grabbed as described in GrabKeyboard , the last-keyboard-grab time is set to the time at which
the key was pressed (as transmitted in the KeyPress ev ent), and the KeyPress ev ent is reported if
all of the following conditions are true:

31

X Protocol X11, Release 6.9/7.0

• The keyboard is not grabbed and the specified key (which can itself be a modifier key) is
logically pressed when the specified modifier keys are logically down, and no other modi-
fier keys are logically down.

• Either the grab-window is an ancestor of (or is) the focus window, or the grab-window is a
descendent of the focus window and contains the pointer.

• A passive grab on the same key combination does not exist on any ancestor of grab-win-
dow.

The interpretation of the remaining arguments is the same as for GrabKeyboard . The active
grab is terminated automatically when the logical state of the keyboard has the specified key
released, independent of the logical state of modifier keys. Note that the logical state of a device
(as seen by means of the protocol) may lag the physical state if device event processing is frozen.
This request overrides all previous passive grabs by the same client on the same key combinations
on the same window. A modifier of AnyModifier is equivalent to issuing the request for all pos-
sible modifier combinations (including the combination of no modifiers). It is not required that
all modifiers specified have currently assigned keycodes. A key of AnyKey is equivalent to issu-
ing the request for all possible keycodes. Otherwise, the key must be in the range specified by
min-keycode and max-keycode in the connection setup (or a Value error results).
An Access error is generated if some other client has issued a GrabKey with the same key com-
bination on the same window. When using AnyModifier or AnyKey , the request fails com-
pletely (no grabs are established), and an Access error is generated if there is a conflicting grab
for any combination.

UngrabKey
key: KEYCODE or AnyKey
modifiers: SETofKEYMASK or AnyModifier
grab-window: WINDOW
Errors: Value , Window

This request releases the key combination on the specified window if it was grabbed by this
client. A modifiers argument of AnyModifier is equivalent to issuing the request for all possible
modifier combinations (including the combination of no modifiers). A key of AnyKey is equiv-
alent to issuing the request for all possible keycodes. This request has no effect on an active grab.

AllowEvents
mode: {AsyncPointer , SyncPointer , ReplayPointer , AsyncKeyboard ,

SyncKeyboard , ReplayKeyboard , AsyncBoth , SyncBoth}
time: TIMESTAMP or CurrentTime
Errors: Value

This request releases some queued events if the client has caused a device to freeze. The request
has no effect if the specified time is earlier than the last-grab time of the most recent active grab
for the client or if the specified time is later than the current server time.
For AsyncPointer , if the pointer is frozen by the client, pointer event processing continues nor-
mally. If the pointer is frozen twice by the client on behalf of two separate grabs, AsyncPointer

32

X Protocol X11, Release 6.9/7.0

thaws for both. AsyncPointer has no effect if the pointer is not frozen by the client, but the
pointer need not be grabbed by the client.
For SyncPointer , if the pointer is frozen and actively grabbed by the client, pointer event pro-
cessing continues normally until the next ButtonPress or ButtonRelease ev ent is reported to the
client, at which time the pointer again appears to freeze. However, if the reported event causes
the pointer grab to be released, then the pointer does not freeze. SyncPointer has no effect if the
pointer is not frozen by the client or if the pointer is not grabbed by the client.
For ReplayPointer , if the pointer is actively grabbed by the client and is frozen as the result of
an event having been sent to the client (either from the activation of a GrabButton or from a pre-
vious AllowEvents with mode SyncPointer but not from a GrabPointer), then the pointer grab
is released and that event is completely reprocessed, this time ignoring any passive grabs at or
above (towards the root) the grab-window of the grab just released. The request has no effect if
the pointer is not grabbed by the client or if the pointer is not frozen as the result of an event.
For AsyncKeyboard , if the keyboard is frozen by the client, keyboard event processing contin-
ues normally. If the keyboard is frozen twice by the client on behalf of two separate grabs,
AsyncKeyboard thaws for both. AsyncKeyboard has no effect if the keyboard is not frozen by
the client, but the keyboard need not be grabbed by the client.
For SyncKeyboard , if the keyboard is frozen and actively grabbed by the client, keyboard event
processing continues normally until the next KeyPress or KeyRelease ev ent is reported to the
client, at which time the keyboard again appears to freeze. However, if the reported event causes
the keyboard grab to be released, then the keyboard does not freeze. SyncKeyboard has no
effect if the keyboard is not frozen by the client or if the keyboard is not grabbed by the client.
For ReplayKeyboard , if the keyboard is actively grabbed by the client and is frozen as the result
of an event having been sent to the client (either from the activation of a GrabKey or from a pre-
vious AllowEvents with mode SyncKeyboard but not from a GrabKeyboard), then the
keyboard grab is released and that event is completely reprocessed, this time ignoring any passive
grabs at or above (towards the root) the grab-window of the grab just released. The request has
no effect if the keyboard is not grabbed by the client or if the keyboard is not frozen as the result
of an event.
For SyncBoth , if both pointer and keyboard are frozen by the client, event processing (for both
devices) continues normally until the next ButtonPress , ButtonRelease , KeyPress , or KeyRe-
lease ev ent is reported to the client for a grabbed device (button event for the pointer, key event
for the keyboard), at which time the devices again appear to freeze. However, if the reported
ev ent causes the grab to be released, then the devices do not freeze (but if the other device is still
grabbed, then a subsequent event for it will still cause both devices to freeze). SyncBoth has no
effect unless both pointer and keyboard are frozen by the client. If the pointer or keyboard is
frozen twice by the client on behalf of two separate grabs, SyncBoth thaws for both (but a subse-
quent freeze for SyncBoth will only freeze each device once).
For AsyncBoth , if the pointer and the keyboard are frozen by the client, event processing for
both devices continues normally. If a device is frozen twice by the client on behalf of two sepa-
rate grabs, AsyncBoth thaws for both. AsyncBoth has no effect unless both pointer and
keyboard are frozen by the client.
AsyncPointer , SyncPointer , and ReplayPointer have no effect on processing of keyboard
ev ents. AsyncKeyboard , SyncKeyboard , and ReplayKeyboard have no effect on processing
of pointer events.
It is possible for both a pointer grab and a keyboard grab to be active simultaneously (by the same
or different clients). When a device is frozen on behalf of either grab, no event processing is per-
formed for the device. It is possible for a single device to be frozen because of both grabs. In this

33

X Protocol X11, Release 6.9/7.0

case, the freeze must be released on behalf of both grabs before events can again be processed. If
a device is frozen twice by a single client, then a single AllowEvents releases both.

GrabServer

This request disables processing of requests and close-downs on all connections other than the
one this request arrived on.

UngrabServer

This request restarts processing of requests and close-downs on other connections.

QueryPointer
window: WINDOW

→
root: WINDOW
child: WINDOW or None
same-screen: BOOL
root-x, root-y, win-x, win-y: INT16
mask: SETofKEYBUTMASK
Errors: Window

The root window the pointer is logically on and the pointer coordinates relative to the root’s ori-
gin are returned. If same-screen is False , then the pointer is not on the same screen as the argu-
ment window, child is None , and win-x and win-y are zero. If same-screen is True , then win-x
and win-y are the pointer coordinates relative to the argument window’s origin, and child is the
child containing the pointer, if any. The current logical state of the modifier keys and the buttons
are also returned. Note that the logical state of a device (as seen by means of the protocol) may
lag the physical state if device event processing is frozen.

GetMotionEvents
start, stop: TIMESTAMP or CurrentTime
window: WINDOW

→
ev ents: LISTofTIMECOORD
where:

TIMECOORD: [x, y: INT16
time: TIMESTAMP]

Errors: Window

34

X Protocol X11, Release 6.9/7.0

This request returns all events in the motion history buffer that fall between the specified start and
stop times (inclusive) and that have coordinates that lie within (including borders) the specified
window at its present placement. The x and y coordinates are reported relative to the origin of the
window.
If the start time is later than the stop time or if the start time is in the future, no events are
returned. If the stop time is in the future, it is equivalent to specifying CurrentTime .

TranslateCoordinates
src-window, dst-window: WINDOW
src-x, src-y: INT16

→
same-screen: BOOL
child: WINDOW or None
dst-x, dst-y: INT16
Errors: Window

The src-x and src-y coordinates are taken relative to src-window’s origin and are returned as dst-x
and dst-y coordinates relative to dst-window’s origin. If same-screen is False , then src-window
and dst-window are on different screens, and dst-x and dst-y are zero. If the coordinates are con-
tained in a mapped child of dst-window, then that child is returned.

WarpPointer
src-window: WINDOW or None
dst-window: WINDOW or None
src-x, src-y: INT16
src-width, src-height: CARD16
dst-x, dst-y: INT16
Errors: Window

If dst-window is None , this request moves the pointer by offsets [dst-x, dst-y] relative to the cur-
rent position of the pointer. If dst-window is a window, this request moves the pointer to [dst-x,
dst-y] relative to dst-window’s origin. However, if src-window is not None , the move only takes
place if src-window contains the pointer and the pointer is contained in the specified rectangle of
src-window.
The src-x and src-y coordinates are relative to src-window’s origin. If src-height is zero, it is
replaced with the current height of src-window minus src-y. If src-width is zero, it is replaced
with the current width of src-window minus src-x.
This request cannot be used to move the pointer outside the confine-to window of an active
pointer grab. An attempt will only move the pointer as far as the closest edge of the confine-to
window.
This request will generate events just as if the user had instantaneously moved the pointer.

35

X Protocol X11, Release 6.9/7.0

SetInputFocus
focus: WINDOW or PointerRoot or None
re vert-to: {Parent , PointerRoot , None}
time: TIMESTAMP or CurrentTime
Errors: Match , Value , Window

This request changes the input focus and the last-focus-change time. The request has no effect if
the specified time is earlier than the current last-focus-change time or is later than the current
server time. Otherwise, the last-focus-change time is set to the specified time with CurrentTime
replaced by the current server time.
If None is specified as the focus, all keyboard events are discarded until a new focus window is
set. In this case, the revert-to argument is ignored.
If a window is specified as the focus, it becomes the keyboard’s focus window. If a generated
keyboard event would normally be reported to this window or one of its inferiors, the event is
reported normally. Otherwise, the event is reported with respect to the focus window.
If PointerRoot is specified as the focus, the focus window is dynamically taken to be the root
window of whatever screen the pointer is on at each keyboard event. In this case, the revert-to
argument is ignored.
This request generates FocusIn and FocusOut ev ents.
The specified focus window must be viewable at the time of the request (or a Match error
results). If the focus window later becomes not viewable, the new focus window depends on the
revert-to argument. If revert-to is Parent , the focus reverts to the parent (or the closest viewable
ancestor) and the new rev ert-to value is taken to be None . If rev ert-to is PointerRoot or None ,
the focus reverts to that value. When the focus reverts, FocusIn and FocusOut ev ents are gener-
ated, but the last-focus-change time is not affected.

GetInputFocus
→

focus: WINDOW or PointerRoot or None
revert-to: {Parent , PointerRoot , None}

This request returns the current focus state.

QueryKeymap
→

keys: LISTofCARD8

This request returns a bit vector for the logical state of the keyboard. Each bit set to 1 indicates
that the corresponding key is currently pressed. The vector is represented as 32 bytes. Byte N
(from 0) contains the bits for keys 8N to 8N + 7 with the least significant bit in the byte represent-
ing key 8N. Note that the logical state of a device (as seen by means of the protocol) may lag the
physical state if device event processing is frozen.

36

X Protocol X11, Release 6.9/7.0

OpenFont
fid: FONT
name: STRING8
Errors: Alloc , IDChoice , Name

This request loads the specified font, if necessary, and associates identifier fid with it. The font
name should use the ISO Latin-1 encoding, and uppercase and lowercase do not matter. When
the characters ‘‘?’’ and ‘‘*’’ are used in a font name, a pattern match is performed and any match-
ing font is used. In the pattern, the ‘‘?’’ character (octal value 77) will match any single character,
and the ‘‘*’’ character (octal value 52) will match any number of characters. A structured format
for font names is specified in the X.Org standard X Logical Font Description Conventions.
Fonts are not associated with a particular screen and can be stored as a component of any graphics
context.

CloseFont
font: FONT
Errors: Font

This request deletes the association between the resource ID and the font. The font itself will be
freed when no other resource references it.

37

X Protocol X11, Release 6.9/7.0

QueryFont
font: FONTABLE

→
font-info: FONTINFO
char-infos: LISTofCHARINFO
where:

FONTINFO: [draw-direction: {LeftToRight , RightToLeft}
min-char-or-byte2, max-char-or-byte2: CARD16
min-byte1, max-byte1: CARD8
all-chars-exist: BOOL
default-char: CARD16
min-bounds: CHARINFO
max-bounds: CHARINFO
font-ascent: INT16
font-descent: INT16
properties: LISTofFONTPROP]

FONTPROP: [name: AT OM
value: <32-bit-value>]

CHARINFO: [left-side-bearing: INT16
right-side-bearing: INT16
character-width: INT16
ascent: INT16
descent: INT16
attributes: CARD16]

Errors: Font

This request returns logical information about a font. If a gcontext is given for font, the currently
contained font is used.
The draw-direction is just a hint and indicates whether most char-infos have a positive, Left-
ToRight , or a neg ative, RightToLeft , character-width metric. The core protocol defines no sup-
port for vertical text.
If min-byte1 and max-byte1 are both zero, then min-char-or-byte2 specifies the linear character
index corresponding to the first element of char-infos, and max-char-or-byte2 specifies the linear
character index of the last element. If either min-byte1 or max-byte1 are nonzero, then both min-
char-or-byte2 and max-char-or-byte2 will be less than 256, and the 2-byte character index values
corresponding to char-infos element N (counting from 0) are:

byte1 = N/D + min-byte1
byte2 = N\\D + min-char-or-byte2

where:

D = max-char-or-byte2 − min-char-or-byte2 + 1
/ = integer division
\\ = integer modulus

If char-infos has length zero, then min-bounds and max-bounds will be identical, and the effective
char-infos is one filled with this char-info, of length:

38

X Protocol X11, Release 6.9/7.0

L = D * (max-byte1 − min-byte1 + 1)

That is, all glyphs in the specified linear or matrix range have the same information, as given by
min-bounds (and max-bounds). If all-chars-exist is True , then all characters in char-infos have
nonzero bounding boxes.
The default-char specifies the character that will be used when an undefined or nonexistent char-
acter is used. Note that default-char is a CARD16, not CHAR2B. For a font using 2-byte matrix
format, the default-char has byte1 in the most significant byte and byte2 in the least significant
byte. If the default-char itself specifies an undefined or nonexistent character, then no printing is
performed for an undefined or nonexistent character.
The min-bounds and max-bounds contain the minimum and maximum values of each individual
CHARINFO component over all char-infos (ignoring nonexistent characters). The bounding box
of the font (that is, the smallest rectangle enclosing the shape obtained by superimposing all char-
acters at the same origin [x,y]) has its upper-left coordinate at:

[x + min-bounds.left-side-bearing, y − max-bounds.ascent]

with a width of:

max-bounds.right-side-bearing − min-bounds.left-side-bearing

and a height of:

max-bounds.ascent + max-bounds.descent

The font-ascent is the logical extent of the font above the baseline and is used for determining line
spacing. Specific characters may extend beyond this. The font-descent is the logical extent of the
font at or below the baseline and is used for determining line spacing. Specific characters may
extend beyond this. If the baseline is at Y-coordinate y, then the logical extent of the font is inclu-
sive between the Y-coordinate values (y − font-ascent) and (y + font-descent − 1).
A font is not guaranteed to have any properties. The interpretation of the property value (for
example, INT32, CARD32) must be derived from a priori knowledge of the property. A basic set
of font properties is specified in the X.Org standard X Logical Font Description Conventions.
For a character origin at [x,y], the bounding box of a character (that is, the smallest rectangle
enclosing the character’s shape), described in terms of CHARINFO components, is a rectangle
with its upper-left corner at:

[x + left-side-bearing, y − ascent]

with a width of:

right-side-bearing − left-side-bearing

and a height of:

ascent + descent

and the origin for the next character is defined to be:

[x + character-width, y]

Note that the baseline is logically viewed as being just below nondescending characters (when
descent is zero, only pixels with Y-coordinates less than y are drawn) and that the origin is logi-
cally viewed as being coincident with the left edge of a nonkerned character (when left-side-bear-
ing is zero, no pixels with X-coordinate less than x are drawn).

39

X Protocol X11, Release 6.9/7.0

Note that CHARINFO metric values can be negative.
A nonexistent character is represented with all CHARINFO components zero.
The interpretation of the per-character attributes field is server-dependent.

QueryTextExtents
font: FONTABLE
string: STRING16

→
draw-direction: {LeftToRight , RightToLeft}
font-ascent: INT16
font-descent: INT16
overall-ascent: INT16
overall-descent: INT16
overall-width: INT32
overall-left: INT32
overall-right: INT32
Errors: Font

This request returns the logical extents of the specified string of characters in the specified font.
If a gcontext is given for font, the currently contained font is used. The draw-direction, font-
ascent, and font-descent are the same as described in QueryFont . The overall-ascent is the max-
imum of the ascent metrics of all characters in the string, and the overall-descent is the maximum
of the descent metrics. The overall-width is the sum of the character-width metrics of all charac-
ters in the string. For each character in the string, let W be the sum of the character-width metrics
of all characters preceding it in the string, let L be the left-side-bearing metric of the character
plus W, and let R be the right-side-bearing metric of the character plus W. The overall-left is the
minimum L of all characters in the string, and the overall-right is the maximum R.
For fonts defined with linear indexing rather than 2-byte matrix indexing, the server will interpret
each CHAR2B as a 16-bit number that has been transmitted most significant byte first (that is,
byte1 of the CHAR2B is taken as the most significant byte).
Characters with all zero metrics are ignored. If the font has no defined default-char, then unde-
fined characters in the string are also ignored.

ListFonts
pattern: STRING8
max-names: CARD16

→
names: LISTofSTRING8

This request returns a list of available font names (as controlled by the font search path; see Set-
FontPath request) that match the pattern. At most, max-names names will be returned. The pat-
tern should use the ISO Latin-1 encoding, and uppercase and lowercase do not matter. In the pat-
tern, the ‘‘?’’ character (octal value 77) will match any single character, and the ‘‘*’’ character
(octal value 52) will match any number of characters. The returned names are in lowercase.

40

X Protocol X11, Release 6.9/7.0

ListFontsWithInfo
pattern: STRING8
max-names: CARD16

→
name: STRING8
info FONTINFO
replies-hint: CARD32
where:
FONTINFO: <same type definition as in QueryFont>

This request is similar to ListFonts , but it also returns information about each font. The informa-
tion returned for each font is identical to what QueryFont would return except that the per-char-
acter metrics are not returned. Note that this request can generate multiple replies. With each
reply, replies-hint may provide an indication of how many more fonts will be returned. This num-
ber is a hint only and may be larger or smaller than the number of fonts actually returned. A zero
value does not guarantee that no more fonts will be returned. After the font replies, a reply with a
zero-length name is sent to indicate the end of the reply sequence.

SetFontPath
path: LISTofSTRING8
Errors: Value

This request defines the search path for font lookup. There is only one search path per server, not
one per client. The interpretation of the strings is operating-system-dependent, but the strings are
intended to specify directories to be searched in the order listed.
Setting the path to the empty list restores the default path defined for the server.
As a side effect of executing this request, the server is guaranteed to flush all cached information
about fonts for which there currently are no explicit resource IDs allocated.
The meaning of an error from this request is system specific.

GetFontPath
→

path: LISTofSTRING8

This request returns the current search path for fonts.

41

X Protocol X11, Release 6.9/7.0

CreatePixmap
pid: PIXMAP
drawable: DRAWABLE
depth: CARD8
width, height: CARD16
Errors: Alloc , Drawable , IDChoice , Value

This request creates a pixmap and assigns the identifier pid to it. The width and height must be
nonzero (or a Value error results). The depth must be one of the depths supported by the root of
the specified drawable (or a Value error results). The initial contents of the pixmap are unde-
fined.
It is legal to pass an InputOnly window as a drawable to this request.

FreePixmap
pixmap: PIXMAP
Errors: Pixmap

This request deletes the association between the resource ID and the pixmap. The pixmap storage
will be freed when no other resource references it.

CreateGC
cid: GCONTEXT
drawable: DRAWABLE
value-mask: BITMASK
value-list: LISTofVALUE
Errors: Alloc , Drawable , Font , IDChoice , Match , Pixmap , Value

This request creates a graphics context and assigns the identifier cid to it. The gcontext can be
used with any destination drawable having the same root and depth as the specified drawable; use
with other drawables results in a Match error.
The value-mask and value-list specify which components are to be explicitly initialized. The con-
text components are:

Component Type

function {Clear , And , AndReverse , Copy , AndInverted , NoOp , Xor ,
Or , Nor , Equiv , Invert , OrReverse , CopyInverted ,
OrInverted , Nand , Set}

plane-mask CARD32
foreground CARD32
background CARD32
line-width CARD16
line-style {Solid , OnOffDash , DoubleDash}

42

X Protocol X11, Release 6.9/7.0

Component Type

cap-style {NotLast , Butt , Round , Projecting}
join-style {Miter , Round , Bevel}
fill-style {Solid , Tiled , OpaqueStippled , Stippled}
fill-rule {EvenOdd , Winding}
arc-mode {Chord , PieSlice}
tile PIXMAP
stipple PIXMAP
tile-stipple-x-origin INT16
tile-stipple-y-origin INT16
font FONT
subwindow-mode {ClipByChildren , IncludeInferiors}
graphics-exposures BOOL
clip-x-origin INT16
clip-y-origin INT16
clip-mask PIXMAP or None
dash-offset CARD16
dashes CARD8

In graphics operations, given a source and destination pixel, the result is computed bitwise on cor-
responding bits of the pixels; that is, a Boolean operation is performed in each bit plane. The
plane-mask restricts the operation to a subset of planes, so the result is:

((src FUNC dst) AND plane-mask) OR (dst AND (NOT plane-mask))

Range checking is not performed on the values for foreground, background, or plane-mask. They
are simply truncated to the appropriate number of bits.
The meanings of the functions are:

Function Operation

Clear 0
And src AND dst
AndReverse src AND (NOT dst)
Copy src
AndInverted (NOT src) AND dst
NoOp dst
Xor src XOR dst
Or src OR dst
Nor (NOT src) AND (NOT dst)
Equiv (NOT src) XOR dst
Invert NOT dst
OrReverse src OR (NOT dst)
CopyInverted NOT src
OrInverted (NOT src) OR dst
Nand (NOT src) OR (NOT dst)
Set 1

43

X Protocol X11, Release 6.9/7.0

The line-width is measured in pixels and can be greater than or equal to one, a wide line, or the
special value zero, a thin line.
Wide lines are drawn centered on the path described by the graphics request. Unless otherwise
specified by the join or cap style, the bounding box of a wide line with endpoints [x1, y1], [x2,
y2] and width w is a rectangle with vertices at the following real coordinates:

[x1−(w*sn/2), y1+(w*cs/2)], [x1+(w*sn/2), y1−(w*cs/2)],
[x2−(w*sn/2), y2+(w*cs/2)], [x2+(w*sn/2), y2−(w*cs/2)]

The sn is the sine of the angle of the line and cs is the cosine of the angle of the line. A pixel is
part of the line (and hence drawn) if the center of the pixel is fully inside the bounding box, which
is viewed as having infinitely thin edges. If the center of the pixel is exactly on the bounding box,
it is part of the line if and only if the interior is immediately to its right (x increasing direction).
Pixels with centers on a horizontal edge are a special case and are part of the line if and only if
the interior or the boundary is immediately below (y increasing direction) and if the interior or the
boundary is immediately to the right (x increasing direction). Note that this description is a math-
ematical model describing the pixels that are drawn for a wide line and does not imply that
trigonometry is required to implement such a model. Real or fixed point arithmetic is recom-
mended for computing the corners of the line endpoints for lines greater than one pixel in width.
Thin lines (zero line-width) are nominally one pixel wide lines drawn using an unspecified,
device-dependent algorithm. There are only two constraints on this algorithm. First, if a line is
drawn unclipped from [x1,y1] to [x2,y2] and another line is drawn unclipped from [x1+dx,y1+dy]
to [x2+dx,y2+dy], then a point [x,y] is touched by drawing the first line if and only if the point
[x+dx,y+dy] is touched by drawing the second line. Second, the effective set of points compris-
ing a line cannot be affected by clipping. Thus, a point is touched in a clipped line if and only if
the point lies inside the clipping region and the point would be touched by the line when drawn
unclipped.
Note that a wide line drawn from [x1,y1] to [x2,y2] always draws the same pixels as a wide line
drawn from [x2,y2] to [x1,y1], not counting cap-style and join-style. Implementors are encour-
aged to make this property true for thin lines, but it is not required. A line-width of zero may dif-
fer from a line-width of one in which pixels are drawn. In general, drawing a thin line will be
faster than drawing a wide line of width one, but thin lines may not mix well aesthetically with
wide lines because of the different drawing algorithms. If it is desirable to obtain precise and uni-
form results across all displays, a client should always use a line-width of one, rather than a line-
width of zero.
The line-style defines which sections of a line are drawn:

Solid The full path of the line is drawn.

DoubleDash The full path of the line is drawn, but the even dashes are filled differently
than the odd dashes (see fill-style), with Butt cap-style used where even and
odd dashes meet.

OnOffDash Only the even dashes are drawn, and cap-style applies to all internal ends of
the individual dashes (except NotLast is treated as Butt).

The cap-style defines how the endpoints of a path are drawn:

NotLast The result is equivalent to Butt , except that for a line-width of zero the final
endpoint is not drawn.

44

X Protocol X11, Release 6.9/7.0

Butt The result is square at the endpoint (perpendicular to the slope of the line)
with no projection beyond.

Round The result is a circular arc with its diameter equal to the line-width, centered
on the endpoint; it is equivalent to Butt for line-width zero.

Projecting The result is square at the end, but the path continues beyond the endpoint for
a distance equal to half the line-width; it is equivalent to Butt for line-width
zero.

The join-style defines how corners are drawn for wide lines:

Miter The outer edges of the two lines extend to meet at an angle. However, if the
angle is less than 11 degrees, a Bevel join-style is used instead.

Round The result is a circular arc with a diameter equal to the line-width, centered
on the joinpoint.

Bevel The result is Butt endpoint styles, and then the triangular notch is filled.

For a line with coincident endpoints (x1=x2, y1=y2), when the cap-style is applied to both end-
points, the semantics depends on the line-width and the cap-style:

NotLast thin This is device-dependent, but the desired effect is that nothing is
drawn.

Butt thin This is device-dependent, but the desired effect is that a single pixel
is drawn.

Round thin This is the same as Butt/thin.

Projecting thin This is the same as Butt/thin.

Butt wide Nothing is drawn.

Round wide The closed path is a circle, centered at the endpoint and with a diam-
eter equal to the line-width.

Projecting wide The closed path is a square, aligned with the coordinate axes, cen-
tered at the endpoint and with sides equal to the line-width.

For a line with coincident endpoints (x1=x2, y1=y2), when the join-style is applied at one or both
endpoints, the effect is as if the line was removed from the overall path. However, if the total path
consists of (or is reduced to) a single point joined with itself, the effect is the same as when the
cap-style is applied at both endpoints.
The tile/stipple represents an infinite two-dimensional plane with the tile/stipple replicated in all
dimensions. When that plane is superimposed on the drawable for use in a graphics operation,
the upper-left corner of some instance of the tile/stipple is at the coordinates within the drawable
specified by the tile/stipple origin. The tile/stipple and clip origins are interpreted relative to the
origin of whatever destination drawable is specified in a graphics request.
The tile pixmap must have the same root and depth as the gcontext (or a Match error results).
The stipple pixmap must have depth one and must have the same root as the gcontext (or a
Match error results). For fill-style Stippled (but not fill-style OpaqueStippled), the stipple pat-
tern is tiled in a single plane and acts as an additional clip mask to be ANDed with the clip-mask.
Any size pixmap can be used for tiling or stippling, although some sizes may be faster to use than
others.

45

X Protocol X11, Release 6.9/7.0

The fill-style defines the contents of the source for line, text, and fill requests. For all text and fill
requests (for example, PolyText8 , PolyText16 , PolyFillRectangle , FillPoly , and PolyFillArc)
as well as for line requests with line-style Solid , (for example, PolyLine , PolySegment ,
PolyRectangle , PolyArc) and for the even dashes for line requests with line-style OnOffDash
or DoubleDash:

Solid Foreground

Tiled Tile

OpaqueStippled A tile with the same width and height as stipple but with background
ev erywhere stipple has a zero and with foreground everywhere stipple
has a one

Stippled Foreground masked by stipple

For the odd dashes for line requests with line-style DoubleDash:

Solid Background

Tiled Same as for even dashes

OpaqueStippled Same as for even dashes

Stippled Background masked by stipple

The dashes value allowed here is actually a simplified form of the more general patterns that can
be set with SetDashes . Specifying a value of N here is equivalent to specifying the two element
list [N, N] in SetDashes . The value must be nonzero (or a Value error results). The meaning of
dash-offset and dashes are explained in the SetDashes request.
The clip-mask restricts writes to the destination drawable. Only pixels where the clip-mask has
bits set to 1 are drawn. Pixels are not drawn outside the area covered by the clip-mask or where
the clip-mask has bits set to 0. The clip-mask affects all graphics requests, but it does not clip
sources. The clip-mask origin is interpreted relative to the origin of whatever destination draw-
able is specified in a graphics request. If a pixmap is specified as the clip-mask, it must have
depth 1 and have the same root as the gcontext (or a Match error results). If clip-mask is None ,
then pixels are always drawn, regardless of the clip origin. The clip-mask can also be set with the
SetClipRectangles request.
For ClipByChildren , both source and destination windows are additionally clipped by all view-
able InputOutput children. For IncludeInferiors , neither source nor destination window is
clipped by inferiors. This will result in including subwindow contents in the source and drawing
through subwindow boundaries of the destination. The use of IncludeInferiors with a source or
destination window of one depth with mapped inferiors of differing depth is not illegal, but the
semantics is undefined by the core protocol.
The fill-rule defines what pixels are inside (that is, are drawn) for paths given in FillPoly
requests. EvenOdd means a point is inside if an infinite ray with the point as origin crosses the
path an odd number of times. For Winding , a point is inside if an infinite ray with the point as
origin crosses an unequal number of clockwise and counterclockwise directed path segments. A
clockwise directed path segment is one that crosses the ray from left to right as observed from the
point. A counter-clockwise segment is one that crosses the ray from right to left as observed from
the point. The case where a directed line segment is coincident with the ray is uninteresting
because one can simply choose a different ray that is not coincident with a segment.
For both fill rules, a point is infinitely small and the path is an infinitely thin line. A pixel is
inside if the center point of the pixel is inside and the center point is not on the boundary. If the

46

X Protocol X11, Release 6.9/7.0

center point is on the boundary, the pixel is inside if and only if the polygon interior is immedi-
ately to its right (x increasing direction). Pixels with centers along a horizontal edge are a special
case and are inside if and only if the polygon interior is immediately below (y increasing direc-
tion).
The arc-mode controls filling in the PolyFillArc request.
The graphics-exposures flag controls GraphicsExposure ev ent generation for CopyArea and
CopyPlane requests (and any similar requests defined by extensions).
The default component values are:

Component Default

function Copy
plane-mask all ones
foreground 0
background 1
line-width 0
line-style Solid
cap-style Butt
join-style Miter
fill-style Solid
fill-rule EvenOdd
arc-mode PieSlice
tile Pixmap of unspecified size filled with foreground pixel

(that is, client specified pixel if any, else 0)
(subsequent changes to foreground do not affect this pixmap)

stipple Pixmap of unspecified size filled with ones
tile-stipple-x-origin 0
tile-stipple-y-origin 0
font <server-dependent-font>
subwindow-mode ClipByChildren
graphics-exposures True
clip-x-origin 0
clip-y-origin 0
clip-mask None
dash-offset 0
dashes 4 (that is, the list [4, 4])

Storing a pixmap in a gcontext might or might not result in a copy being made. If the pixmap is
later used as the destination for a graphics request, the change might or might not be reflected in
the gcontext. If the pixmap is used simultaneously in a graphics request as both a destination and
as a tile or stipple, the results are not defined.
It is quite likely that some amount of gcontext information will be cached in display hardware and
that such hardware can only cache a small number of gcontexts. Given the number and complex-
ity of components, clients should view switching between gcontexts with nearly identical state as
significantly more expensive than making minor changes to a single gcontext.

47

X Protocol X11, Release 6.9/7.0

ChangeGC
gc: GCONTEXT
value-mask: BITMASK
value-list: LISTofVALUE
Errors: Alloc , Font , GContext , Match , Pixmap , Value

This request changes components in gc. The value-mask and value-list specify which compo-
nents are to be changed. The values and restrictions are the same as for CreateGC .
Changing the clip-mask also overrides any previous SetClipRectangles request on the context.
Changing dash-offset or dashes overrides any previous SetDashes request on the context.
The order in which components are verified and altered is server-dependent. If an error is gener-
ated, a subset of the components may have been altered.

CopyGC
src-gc, dst-gc: GCONTEXT
value-mask: BITMASK
Errors: Alloc , GContext , Match , Value

This request copies components from src-gc to dst-gc. The value-mask specifies which compo-
nents to copy, as for CreateGC . The two gcontexts must have the same root and the same depth
(or a Match error results).

SetDashes
gc: GCONTEXT
dash-offset: CARD16
dashes: LISTofCARD8
Errors: Alloc , GContext , Value

This request sets dash-offset and dashes in gc for dashed line styles. Dashes cannot be empty (or
a Value error results). Specifying an odd-length list is equivalent to specifying the same list con-
catenated with itself to produce an even-length list. The initial and alternating elements of dashes
are the even dashes; the others are the odd dashes. Each element specifies a dash length in pixels.
All of the elements must be nonzero (or a Value error results). The dash-offset defines the phase
of the pattern, specifying how many pixels into dashes the pattern should actually begin in any
single graphics request. Dashing is continuous through path elements combined with a join-style
but is reset to the dash-offset between each sequence of joined lines.
The unit of measure for dashes is the same as in the ordinary coordinate system. Ideally, a dash
length is measured along the slope of the line, but implementations are only required to match
this ideal for horizontal and vertical lines. Failing the ideal semantics, it is suggested that the
length be measured along the major axis of the line. The major axis is defined as the x axis for
lines drawn at an angle of between −45 and +45 degrees or between 135 and 225 degrees from
the x axis. For all other lines, the major axis is the y axis.
For any graphics primitive, the computation of the endpoint of an individual dash only depends
on the geometry of the primitive, the start position of the dash, the direction of the dash, and the

48

X Protocol X11, Release 6.9/7.0

dash length.
For any graphics primitive, the total set of pixels used to render the primitive (both even and odd
numbered dash elements) with DoubleDash line-style is the same as the set of pixels used to ren-
der the primitive with Solid line-style.
For any graphics primitive, if the primitive is drawn with OnOffDash or DoubleDash line-style
unclipped at position [x,y] and again at position [x+dx,y+dy], then a point [x1,y1] is included in a
dash in the first instance if and only if the point [x1+dx,y1+dy] is included in the dash in the sec-
ond instance. In addition, the effective set of points comprising a dash cannot be affected by clip-
ping. A point is included in a clipped dash if and only if the point lies inside the clipping region
and the point would be included in the dash when drawn unclipped.

SetClipRectangles
gc: GCONTEXT
clip-x-origin, clip-y-origin: INT16
rectangles: LISTofRECTANGLE
ordering: {UnSorted , YSorted , YXSorted , YXBanded}
Errors: Alloc , GContext , Match , Value

This request changes clip-mask in gc to the specified list of rectangles and sets the clip origin.
Output will be clipped to remain contained within the rectangles. The clip origin is interpreted
relative to the origin of whatever destination drawable is specified in a graphics request. The rect-
angle coordinates are interpreted relative to the clip origin. The rectangles should be noninter-
secting, or graphics results will be undefined. Note that the list of rectangles can be empty, which
effectively disables output. This is the opposite of passing None as the clip-mask in CreateGC
and ChangeGC .
If known by the client, ordering relations on the rectangles can be specified with the ordering
argument. This may provide faster operation by the server. If an incorrect ordering is specified,
the server may generate a Match error, but it is not required to do so. If no error is generated, the
graphics results are undefined. UnSorted means that the rectangles are in arbitrary order.
YSorted means that the rectangles are nondecreasing in their Y origin. YXSorted additionally
constrains YSorted order in that all rectangles with an equal Y origin are nondecreasing in their
X origin. YXBanded additionally constrains YXSorted by requiring that, for every possible Y
scanline, all rectangles that include that scanline have identical Y origins and Y extents.

FreeGC
gc: GCONTEXT
Errors: GContext

This request deletes the association between the resource ID and the gcontext and destroys the
gcontext.

49

X Protocol X11, Release 6.9/7.0

ClearArea
window: WINDOW
x, y: INT16
width, height: CARD16
exposures: BOOL
Errors: Match , Value , Window

The x and y coordinates are relative to the window’s origin and specify the upper-left corner of
the rectangle. If width is zero, it is replaced with the current width of the window minus x. If
height is zero, it is replaced with the current height of the window minus y. If the window has a
defined background tile, the rectangle is tiled with a plane-mask of all ones and function of Copy
and a subwindow-mode of ClipByChildren . If the window has background None , the contents
of the window are not changed. In either case, if exposures is True , then one or more exposure
ev ents are generated for regions of the rectangle that are either visible or are being retained in a
backing store.
It is a Match error to use an InputOnly window in this request.

CopyArea
src-drawable, dst-drawable: DRAWABLE
gc: GCONTEXT
src-x , src-y: INT16
width, height: CARD16
dst-x, dst-y: INT16
Errors: Drawable , GContext , Match

This request combines the specified rectangle of src-drawable with the specified rectangle of dst-
drawable. The src-x and src-y coordinates are relative to src-drawable’s origin. The dst-x and
dst-y are relative to dst-drawable’s origin, each pair specifying the upper-left corner of the rectan-
gle. The src-drawable must have the same root and the same depth as dst-drawable (or a Match
error results).
If regions of the source rectangle are obscured and have not been retained in backing store or if
regions outside the boundaries of the source drawable are specified, then those regions are not
copied, but the following occurs on all corresponding destination regions that are either visible or
are retained in backing-store. If the dst-drawable is a window with a background other than
None , these corresponding destination regions are tiled (with plane-mask of all ones and function
Copy) with that background. Regardless of tiling and whether the destination is a window or a
pixmap, if graphics-exposures in gc is True , then GraphicsExposure ev ents for all correspond-
ing destination regions are generated.
If graphics-exposures is True but no GraphicsExposure ev ents are generated, then a NoExpo-
sure ev ent is generated.
GC components: function, plane-mask, subwindow-mode, graphics-exposures, clip-x-origin, clip-
y-origin, clip-mask

50

X Protocol X11, Release 6.9/7.0

CopyPlane
src-drawable, dst-drawable: DRAWABLE
gc: GCONTEXT
src-x, src-y: INT16
width, height: CARD16
dst-x, dst-y: INT16
bit-plane: CARD32
Errors: Drawable , GContext , Match , Value

The src-drawable must have the same root as dst-drawable (or a Match error results), but it need
not have the same depth. The bit-plane must have exactly one bit set to 1 and the value of bit-
plane must be less than 2n where n is the depth of src-drawable (or a Value error results). Effec-
tively, a pixmap of the same depth as dst-drawable and with size specified by the source region is
formed using the foreground/background pixels in gc (foreground everywhere the bit-plane in src-
drawable contains a bit set to 1, background everywhere the bit-plane contains a bit set to 0), and
the equivalent of a CopyArea is performed, with all the same exposure semantics. This can also
be thought of as using the specified region of the source bit-plane as a stipple with a fill-style of
OpaqueStippled for filling a rectangular area of the destination.
GC components: function, plane-mask, foreground, background, subwindow-mode, graphics-
exposures, clip-x-origin, clip-y-origin, clip-mask

PolyPoint
drawable: DRAWABLE
gc: GCONTEXT
coordinate-mode: {Origin , Previous}
points: LISTofPOINT
Errors: Drawable , GContext , Match , Value

This request combines the foreground pixel in gc with the pixel at each point in the drawable.
The points are drawn in the order listed.
The first point is always relative to the drawable’s origin. The rest are relative either to that origin
or the previous point, depending on the coordinate-mode.
GC components: function, plane-mask, foreground, subwindow-mode, clip-x-origin, clip-y-ori-
gin, clip-mask

PolyLine
drawable: DRAWABLE
gc: GCONTEXT
coordinate-mode: {Origin , Previous}
points: LISTofPOINT
Errors: Drawable , GContext , Match , Value

This request draws lines between each pair of points (point[i], point[i+1]). The lines are drawn in
the order listed. The lines join correctly at all intermediate points, and if the first and last points

51

X Protocol X11, Release 6.9/7.0

coincide, the first and last lines also join correctly.
For any giv en line, no pixel is drawn more than once. If thin (zero line-width) lines intersect, the
intersecting pixels are drawn multiple times. If wide lines intersect, the intersecting pixels are
drawn only once, as though the entire PolyLine were a single filled shape.
The first point is always relative to the drawable’s origin. The rest are relative either to that origin
or the previous point, depending on the coordinate-mode.
When either of the two lines involved in a Bevel join is neither vertical nor horizontal, then the
slope and position of the line segment defining the bevel join edge is implementation dependent.
However, the computation of the slope and distance (relative to the join point) only depends on
the line width and the slopes of the two lines.
GC components: function, plane-mask, line-width, line-style, cap-style, join-style, fill-style, sub-
window-mode, clip-x-origin, clip-y-origin, clip-mask
GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-
stipple-y-origin, dash-offset, dashes

PolySegment
drawable: DRAWABLE
gc: GCONTEXT
segments: LISTofSEGMENT
where:
SEGMENT: [x1, y1, x2, y2: INT16]
Errors: Drawable , GContext , Match

For each segment, this request draws a line between [x1, y1] and [x2, y2]. The lines are drawn in
the order listed. No joining is performed at coincident endpoints. For any giv en line, no pixel is
drawn more than once. If lines intersect, the intersecting pixels are drawn multiple times.
GC components: function, plane-mask, line-width, line-style, cap-style, fill-style, subwindow-
mode, clip-x-origin, clip-y-origin, clip-mask
GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-
stipple-y-origin, dash-offset, dashes

PolyRectangle
drawable: DRAWABLE
gc: GCONTEXT
rectangles: LISTofRECTANGLE
Errors: Drawable , GContext , Match

This request draws the outlines of the specified rectangles, as if a five-point PolyLine were speci-
fied for each rectangle:

[x,y] [x+width,y] [x+width,y+height] [x,y+height] [x,y]

The x and y coordinates of each rectangle are relative to the drawable’s origin and define the
upper-left corner of the rectangle.

52

X Protocol X11, Release 6.9/7.0

The rectangles are drawn in the order listed. For any giv en rectangle, no pixel is drawn more than
once. If rectangles intersect, the intersecting pixels are drawn multiple times.
GC components: function, plane-mask, line-width, line-style, cap-style, join-style, fill-style, sub-
window-mode, clip-x-origin, clip-y-origin, clip-mask
GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-
stipple-y-origin, dash-offset, dashes

PolyArc
drawable: DRAWABLE
gc: GCONTEXT
arcs: LISTofARC
Errors: Drawable , GContext , Match

This request draws circular or elliptical arcs. Each arc is specified by a rectangle and two angles.
The angles are signed integers in degrees scaled by 64, with positive indicating counterclockwise
motion and negative indicating clockwise motion. The start of the arc is specified by angle1 rela-
tive to the three-o’clock position from the center of the rectangle, and the path and extent of the
arc is specified by angle2 relative to the start of the arc. If the magnitude of angle2 is greater than
360 degrees, it is truncated to 360 degrees. The x and y coordinates of the rectangle are relative
to the origin of the drawable. For an arc specified as [x,y,w,h,a1,a2], the origin of the major and
minor axes is at [x+(w/2),y+(h/2)], and the infinitely thin path describing the entire circle/ellipse
intersects the horizontal axis at [x,y+(h/2)] and [x+w,y+(h/2)] and intersects the vertical axis at
[x+(w/2),y] and [x+(w/2),y+h]. These coordinates are not necessarily integral; that is, they are
not truncated to discrete coordinates.
For a wide line with line-width lw, the ideal bounding outlines for filling are given by the two
infinitely thin paths consisting of all points whose perpendicular distance from a tangent to the
path of the circle/ellipse is equal to lw/2 (which may be a fractional value). When the width and
height of the arc are not equal and both are nonzero, then the actual bounding outlines are imple-
mentation dependent. However, the computation of the shape and position of the bounding out-
lines (relative to the center of the arc) only depends on the width and height of the arc and the
line-width.
The cap-style is applied the same as for a line corresponding to the tangent of the circle/ellipse at
the endpoint. When the angle of an arc face is not an integral multiple of 90 degrees, and the
width and height of the arc are both are nonzero, then the shape and position of the cap at that
face is implementation dependent. However, for a Butt cap, the face is defined by a straight line,
and the computation of the position (relative to the center of the arc) and the slope of the line only
depends on the width and height of the arc and the angle of the arc face. For other cap styles, the
computation of the position (relative to the center of the arc) and the shape of the cap only
depends on the width and height of the arc, the line-width, the angle of the arc face, and the direc-
tion (clockwise or counter clockwise) of the arc from the endpoint.
The join-style is applied the same as for two lines corresponding to the tangents of the cir-
cles/ellipses at the join point. When the width and height of both arcs are nonzero, and the angle
of either arc face is not an integral multiple of 90 degrees, then the shape of the join is implemen-
tation dependent. However, the computation of the shape only depends on the width and height
of each arc, the line-width, the angles of the two arc faces, the direction (clockwise or counter
clockwise) of the arcs from the join point, and the relative orientation of the two arc center points.

53

X Protocol X11, Release 6.9/7.0

For an arc specified as [x,y,w,h,a1,a2], the angles must be specified in the effectively skewed
coordinate system of the ellipse (for a circle, the angles and coordinate systems are identical).
The relationship between these angles and angles expressed in the normal coordinate system of
the screen (as measured with a protractor) is as follows:

skewed-angle = atan(tan(normal-angle) * w/h) + adjust

The skewed-angle and normal-angle are expressed in radians (rather than in degrees scaled by 64)
in the range [0,2*PI). The atan returns a value in the range [−PI/2,PI/2]. The adjust is:

0 for normal-angle in the range [0,PI/2)
PI for normal-angle in the range [PI/2,(3*PI)/2)
2*PI for normal-angle in the range [(3*PI)/2,2*PI)

The arcs are drawn in the order listed. If the last point in one arc coincides with the first point in
the following arc, the two arcs will join correctly. If the first point in the first arc coincides with
the last point in the last arc, the two arcs will join correctly. For any giv en arc, no pixel is drawn
more than once. If two arcs join correctly and the line-width is greater than zero and the arcs
intersect, no pixel is drawn more than once. Otherwise, the intersecting pixels of intersecting arcs
are drawn multiple times. Specifying an arc with one endpoint and a clockwise extent draws the
same pixels as specifying the other endpoint and an equivalent counterclockwise extent, except as
it affects joins.
By specifying one axis to be zero, a horizontal or vertical line can be drawn.
Angles are computed based solely on the coordinate system, ignoring the aspect ratio.
GC components: function, plane-mask, line-width, line-style, cap-style, join-style, fill-style, sub-
window-mode, clip-x-origin, clip-y-origin, clip-mask
GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-
stipple-y-origin, dash-offset, dashes

FillPoly
drawable: DRAWABLE
gc: GCONTEXT
shape: {Complex , Nonconvex , Convex}
coordinate-mode: {Origin , Previous}
points: LISTofPOINT
Errors: Drawable , GContext , Match , Value

This request fills the region closed by the specified path. The path is closed automatically if the
last point in the list does not coincide with the first point. No pixel of the region is drawn more
than once.
The first point is always relative to the drawable’s origin. The rest are relative either to that origin
or the previous point, depending on the coordinate-mode.
The shape parameter may be used by the server to improve performance. Complex means the
path may self-intersect. Contiguous coincident points in the path are not treated as self-intersec-
tion.
Nonconvex means the path does not self-intersect, but the shape is not wholly convex. If known
by the client, specifying Nonconvex over Complex may improve performance. If Nonconvex is

54

X Protocol X11, Release 6.9/7.0

specified for a self-intersecting path, the graphics results are undefined.
Convex means that for every pair of points inside the polygon, the line segment connecting them
does not intersect the path. If known by the client, specifying Convex can improve performance.
If Convex is specified for a path that is not convex, the graphics results are undefined.
GC components: function, plane-mask, fill-style, fill-rule, subwindow-mode, clip-x-origin, clip-y-
origin, clip-mask
GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-
stipple-y-origin

PolyFillRectangle
drawable: DRAWABLE
gc: GCONTEXT
rectangles: LISTofRECTANGLE
Errors: Drawable , GContext , Match

This request fills the specified rectangles, as if a four-point FillPoly were specified for each rect-
angle:

[x,y] [x+width,y] [x+width,y+height] [x,y+height]

The x and y coordinates of each rectangle are relative to the drawable’s origin and define the
upper-left corner of the rectangle.
The rectangles are drawn in the order listed. For any giv en rectangle, no pixel is drawn more than
once. If rectangles intersect, the intersecting pixels are drawn multiple times.
GC components: function, plane-mask, fill-style, subwindow-mode, clip-x-origin, clip-y-origin,
clip-mask
GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-
stipple-y-origin

PolyFillArc
drawable: DRAWABLE
gc: GCONTEXT
arcs: LISTofARC
Errors: Drawable , GContext , Match

For each arc, this request fills the region closed by the infinitely thin path described by the speci-
fied arc and one or two line segments, depending on the arc-mode. For Chord , the single line
segment joining the endpoints of the arc is used. For PieSlice , the two line segments joining the
endpoints of the arc with the center point are used.
For an arc specified as [x,y,w,h,a1,a2], the origin of the major and minor axes is at
[x+(w/2),y+(h/2)], and the infinitely thin path describing the entire circle/ellipse intersects the
horizontal axis at [x,y+(h/2)] and [x+w,y+(h/2)] and intersects the vertical axis at [x+(w/2),y] and
[x+(w/2),y+h]. These coordinates are not necessarily integral; that is, they are not truncated to
discrete coordinates.

55

X Protocol X11, Release 6.9/7.0

The arc angles are interpreted as specified in the PolyArc request. When the angle of an arc face
is not an integral multiple of 90 degrees, then the precise endpoint on the arc is implementation
dependent. However, for Chord arc-mode, the computation of the pair of endpoints (relative to
the center of the arc) only depends on the width and height of the arc and the angles of the two
arc faces. For PieSlice arc-mode, the computation of an endpoint only depends on the angle of
the arc face for that endpoint and the ratio of the arc width to arc height.
The arcs are filled in the order listed. For any giv en arc, no pixel is drawn more than once. If
regions intersect, the intersecting pixels are drawn multiple times.
GC components: function, plane-mask, fill-style, arc-mode, subwindow-mode, clip-x-origin, clip-
y-origin, clip-mask
GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-
stipple-y-origin

PutImage
drawable: DRAWABLE
gc: GCONTEXT
depth: CARD8
width, height: CARD16
dst-x, dst-y: INT16
left-pad: CARD8
format: {Bitmap , XYPixmap , ZPixmap}
data: LISTofBYTE
Errors: Drawable , GContext , Match , Value

This request combines an image with a rectangle of the drawable. The dst-x and dst-y coordi-
nates are relative to the drawable’s origin.
If Bitmap format is used, then depth must be one (or a Match error results), and the image must
be in XY format. The foreground pixel in gc defines the source for bits set to 1 in the image, and
the background pixel defines the source for the bits set to 0.
For XYPixmap and ZPixmap , the depth must match the depth of the drawable (or a Match
error results). For XYPixmap , the image must be sent in XY format. For ZPixmap , the image
must be sent in the Z format defined for the given depth.
The left-pad must be zero for ZPixmap format (or a Match error results). For Bitmap and
XYPixmap format, left-pad must be less than bitmap-scanline-pad as given in the server connec-
tion setup information (or a Match error results). The first left-pad bits in every scanline are to
be ignored by the server. The actual image begins that many bits into the data. The width argu-
ment defines the width of the actual image and does not include left-pad.
GC components: function, plane-mask, subwindow-mode, clip-x-origin, clip-y-origin, clip-mask
GC mode-dependent components: foreground, background

56

X Protocol X11, Release 6.9/7.0

GetImage
drawable: DRAWABLE
x, y: INT16
width, height: CARD16
plane-mask: CARD32
format: {XYPixmap , ZPixmap}

→
depth: CARD8
visual: VISUALID or None
data: LISTofBYTE
Errors: Drawable , Match , Value

This request returns the contents of the given rectangle of the drawable in the given format. The x
and y coordinates are relative to the drawable’s origin and define the upper-left corner of the rect-
angle. If XYPixmap is specified, only the bit planes specified in plane-mask are transmitted,
with the planes appearing from most significant to least significant in bit order. If ZPixmap is
specified, then bits in all planes not specified in plane-mask are transmitted as zero. Range check-
ing is not performed on plane-mask; extraneous bits are simply ignored. The returned depth is as
specified when the drawable was created and is the same as a depth component in a FORMAT
structure (in the connection setup), not a bits-per-pixel component. If the drawable is a window,
its visual type is returned. If the drawable is a pixmap, the visual is None .
If the drawable is a pixmap, then the given rectangle must be wholly contained within the pixmap
(or a Match error results). If the drawable is a window, the window must be viewable, and it
must be the case that, if there were no inferiors or overlapping windows, the specified rectangle of
the window would be fully visible on the screen and wholly contained within the outside edges of
the window (or a Match error results). Note that the borders of the window can be included and
read with this request. If the window has a backing store, then the backing-store contents are
returned for regions of the window that are obscured by noninferior windows; otherwise, the
returned contents of such obscured regions are undefined. Also undefined are the returned con-
tents of visible regions of inferiors of different depth than the specified window. The pointer cur-
sor image is not included in the contents returned.
This request is not general-purpose in the same sense as other graphics-related requests. It is
intended specifically for rudimentary hardcopy support.

57

X Protocol X11, Release 6.9/7.0

PolyText8
drawable: DRAWABLE
gc: GCONTEXT
x, y: INT16
items: LISTofTEXTITEM8
where:

TEXTITEM8: TEXTELT8 or FONT
TEXTELT8: [delta: INT8

string: STRING8]

Errors: Drawable , Font , GContext , Match

The x and y coordinates are relative to the drawable’s origin and specify the baseline starting
position (the initial character origin). Each text item is processed in turn. A font item causes the
font to be stored in gc and to be used for subsequent text. Switching among fonts does not affect
the next character origin. A text element delta specifies an additional change in the position along
the x axis before the string is drawn; the delta is always added to the character origin. Each char-
acter image, as defined by the font in gc, is treated as an additional mask for a fill operation on the
drawable.
All contained FONTs are always transmitted most significant byte first.
If a Font error is generated for an item, the previous items may have been drawn.
For fonts defined with 2-byte matrix indexing, each STRING8 byte is interpreted as a byte2 value
of a CHAR2B with a byte1 value of zero.
GC components: function, plane-mask, fill-style, font, subwindow-mode, clip-x-origin, clip-y-ori-
gin, clip-mask
GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-
stipple-y-origin

PolyText16
drawable: DRAWABLE
gc: GCONTEXT
x, y: INT16
items: LISTofTEXTITEM16
where:

TEXTITEM16: TEXTELT16 or FONT
TEXTELT16: [delta: INT8

string: STRING16]

Errors: Drawable , Font , GContext , Match

This request is similar to PolyText8 , except 2-byte (or 16-bit) characters are used. For fonts
defined with linear indexing rather than 2-byte matrix indexing, the server will interpret each
CHAR2B as a 16-bit number that has been transmitted most significant byte first (that is, byte1 of
the CHAR2B is taken as the most significant byte).

58

X Protocol X11, Release 6.9/7.0

ImageText8
drawable: DRAWABLE
gc: GCONTEXT
x, y: INT16
string: STRING8
Errors: Drawable , GContext , Match

The x and y coordinates are relative to the drawable’s origin and specify the baseline starting
position (the initial character origin). The effect is first to fill a destination rectangle with the
background pixel defined in gc and then to paint the text with the foreground pixel. The upper-
left corner of the filled rectangle is at:

[x, y − font-ascent]

the width is:

overall-width

and the height is:

font-ascent + font-descent

The overall-width, font-ascent, and font-descent are as they would be returned by a QueryTex-
tExtents call using gc and string.
The function and fill-style defined in gc are ignored for this request. The effective function is
Copy , and the effective fill-style Solid .
For fonts defined with 2-byte matrix indexing, each STRING8 byte is interpreted as a byte2 value
of a CHAR2B with a byte1 value of zero.
GC components: plane-mask, foreground, background, font, subwindow-mode, clip-x-origin,
clip-y-origin, clip-mask

ImageText16
drawable: DRAWABLE
gc: GCONTEXT
x, y: INT16
string: STRING16
Errors: Drawable , GContext , Match

This request is similar to ImageText8 , except 2-byte (or 16-bit) characters are used. For fonts
defined with linear indexing rather than 2-byte matrix indexing, the server will interpret each
CHAR2B as a 16-bit number that has been transmitted most significant byte first (that is, byte1 of
the CHAR2B is taken as the most significant byte).

59

X Protocol X11, Release 6.9/7.0

CreateColormap
mid: COLORMAP
visual: VISUALID
window: WINDOW
alloc: {None , All}
Errors: Alloc , IDChoice , Match , Value , Window

This request creates a colormap of the specified visual type for the screen on which the window
resides and associates the identifier mid with it. The visual type must be one supported by the
screen (or a Match error results). The initial values of the colormap entries are undefined for
classes GrayScale , PseudoColor , and DirectColor . For StaticGray , StaticColor , and True-
Color , the entries will have defined values, but those values are specific to the visual and are not
defined by the core protocol. For StaticGray , StaticColor , and TrueColor , alloc must be spec-
ified as None (or a Match error results). For the other classes, if alloc is None , the colormap
initially has no allocated entries, and clients can allocate entries.
If alloc is All , then the entire colormap is allocated writable. The initial values of all allocated
entries are undefined. For GrayScale and PseudoColor , the effect is as if an AllocColorCells
request returned all pixel values from zero to N − 1, where N is the colormap-entries value in the
specified visual. For DirectColor , the effect is as if an AllocColorPlanes request returned a
pixel value of zero and red-mask, green-mask, and blue-mask values containing the same bits as
the corresponding masks in the specified visual. However, in all cases, none of these entries can
be freed with FreeColors .

FreeColormap
cmap: COLORMAP
Errors: Colormap

This request deletes the association between the resource ID and the colormap and frees the col-
ormap storage. If the colormap is an installed map for a screen, it is uninstalled (see Uninstall-
Colormap request). If the colormap is defined as the colormap for a window (by means of Cre-
ateWindow or ChangeWindowAttributes), the colormap for the window is changed to None ,
and a ColormapNotify ev ent is generated. The protocol does not define the colors displayed for
a window with a colormap of None .
This request has no effect on a default colormap for a screen.

CopyColormapAndFree
mid, src-cmap: COLORMAP
Errors: Alloc , Colormap , IDChoice

This request creates a colormap of the same visual type and for the same screen as src-cmap, and
it associates identifier mid with it. It also moves all of the client’s existing allocations from src-
cmap to the new colormap with their color values intact and their read-only or writable character-
istics intact, and it frees those entries in src-cmap. Color values in other entries in the new col-
ormap are undefined. If src-cmap was created by the client with alloc All (see CreateColormap

60

X Protocol X11, Release 6.9/7.0

request), then the new colormap is also created with alloc All , all color values for all entries are
copied from src-cmap, and then all entries in src-cmap are freed. If src-cmap was not created by
the client with alloc All , then the allocations to be moved are all those pixels and planes that have
been allocated by the client using either AllocColor , AllocNamedColor , AllocColorCells , or
AllocColorPlanes and that have not been freed since they were allocated.

InstallColormap
cmap: COLORMAP
Errors: Colormap

This request makes this colormap an installed map for its screen. All windows associated with
this colormap immediately display with true colors. As a side effect, additional colormaps might
be implicitly installed or uninstalled by the server. Which other colormaps get installed or unin-
stalled is server-dependent except that the required list must remain installed.
If cmap is not already an installed map, a ColormapNotify ev ent is generated on every window
having cmap as an attribute. In addition, for every other colormap that is installed or uninstalled
as a result of the request, a ColormapNotify ev ent is generated on every window having that col-
ormap as an attribute.
At any time, there is a subset of the installed maps that are viewed as an ordered list and are
called the required list. The length of the required list is at most M, where M is the min-installed-
maps specified for the screen in the connection setup. The required list is maintained as follows.
When a colormap is an explicit argument to InstallColormap , it is added to the head of the list;
the list is truncated at the tail, if necessary, to keep the length of the list to at most M. When a
colormap is an explicit argument to UninstallColormap and it is in the required list, it is
removed from the list. A colormap is not added to the required list when it is installed implicitly
by the server, and the server cannot implicitly uninstall a colormap that is in the required list.
Initially the default colormap for a screen is installed (but is not in the required list).

UninstallColormap
cmap: COLORMAP
Errors: Colormap

If cmap is on the required list for its screen (see InstallColormap request), it is removed from
the list. As a side effect, cmap might be uninstalled, and additional colormaps might be implicitly
installed or uninstalled. Which colormaps get installed or uninstalled is server-dependent except
that the required list must remain installed.
If cmap becomes uninstalled, a ColormapNotify ev ent is generated on every window having
cmap as an attribute. In addition, for every other colormap that is installed or uninstalled as a
result of the request, a ColormapNotify ev ent is generated on every window having that col-
ormap as an attribute.

61

X Protocol X11, Release 6.9/7.0

ListInstalledColormaps
window: WINDOW

→
cmaps: LISTofCOLORMAP
Errors: Window

This request returns a list of the currently installed colormaps for the screen of the specified win-
dow. The order of colormaps is not significant, and there is no explicit indication of the required
list (see InstallColormap request).

AllocColor
cmap: COLORMAP
red, green, blue: CARD16

→
pixel: CARD32
red, green, blue: CARD16
Errors: Alloc , Colormap

This request allocates a read-only colormap entry corresponding to the closest RGB values pro-
vided by the hardware. It also returns the pixel and the RGB values actually used. Multiple
clients requesting the same effective RGB values can be assigned the same read-only entry, allow-
ing entries to be shared.

AllocNamedColor
cmap: COLORMAP
name: STRING8

→
pixel: CARD32
exact-red, exact-green, exact-blue: CARD16
visual-red, visual-green, visual-blue: CARD16
Errors: Alloc , Colormap , Name

This request looks up the named color with respect to the screen associated with the colormap.
Then, it does an AllocColor on cmap. The name should use the ISO Latin-1 encoding, and
uppercase and lowercase do not matter. The exact RGB values specify the true values for the
color, and the visual values specify the values actually used in the colormap.

62

X Protocol X11, Release 6.9/7.0

AllocColorCells
cmap: COLORMAP
colors, planes: CARD16
contiguous: BOOL

→
pixels, masks: LISTofCARD32
Errors: Alloc , Colormap , Value

The number of colors must be positive, and the number of planes must be nonnegative (or a
Value error results). If C colors and P planes are requested, then C pixels and P masks are
returned. No mask will have any bits in common with any other mask or with any of the pixels.
By ORing together masks and pixels, C*2P distinct pixels can be produced; all of these are allo-
cated writable by the request. For GrayScale or PseudoColor , each mask will have exactly one
bit set to 1; for DirectColor , each will have exactly three bits set to 1. If contiguous is True and
if all masks are ORed together, a single contiguous set of bits will be formed for GrayScale or
PseudoColor , and three contiguous sets of bits (one within each pixel subfield) for DirectColor .
The RGB values of the allocated entries are undefined.

AllocColorPlanes
cmap: COLORMAP
colors, reds, greens, blues: CARD16
contiguous: BOOL

→
pixels: LISTofCARD32
red-mask, green-mask, blue-mask: CARD32
Errors: Alloc , Colormap , Value

The number of colors must be positive, and the reds, greens, and blues must be nonnegative (or a
Value error results). If C colors, R reds, G greens, and B blues are requested, then C pixels are
returned, and the masks have R, G, and B bits set, respectively. If contiguous is True , then each
mask will have a contiguous set of bits. No mask will have any bits in common with any other
mask or with any of the pixels. For DirectColor , each mask will lie within the corresponding
pixel subfield. By ORing together subsets of masks with pixels, C*2R+G+B distinct pixels can be
produced; all of these are allocated writable by the request. The initial RGB values of the allo-
cated entries are undefined. In the colormap, there are only C*2R independent red entries, C*2G

independent green entries, and C*2B independent blue entries. This is true even for Pseudo-
Color . When the colormap entry for a pixel value is changed using StoreColors or Store-
NamedColor , the pixel is decomposed according to the masks and the corresponding indepen-
dent entries are updated.

63

X Protocol X11, Release 6.9/7.0

FreeColors
cmap: COLORMAP
pixels: LISTofCARD32
plane-mask: CARD32
Errors: Access , Colormap , Value

The plane-mask should not have any bits in common with any of the pixels. The set of all pixels
is produced by ORing together subsets of plane-mask with the pixels. The request frees all of
these pixels that were allocated by the client (using AllocColor , AllocNamedColor , AllocCol-
orCells , and AllocColorPlanes). Note that freeing an individual pixel obtained from AllocCol-
orPlanes may not actually allow it to be reused until all of its related pixels are also freed. Simi-
larly, a read-only entry is not actually freed until it has been freed by all clients, and if a client
allocates the same read-only entry multiple times, it must free the entry that many times before
the entry is actually freed.
All specified pixels that are allocated by the client in cmap are freed, even if one or more pixels
produce an error. A Value error is generated if a specified pixel is not a valid index into cmap.
An Access error is generated if a specified pixel is not allocated by the client (that is, is unallo-
cated or is only allocated by another client) or if the colormap was created with all entries
writable (using an alloc value of All in CreateColormap). If more than one pixel is in error, it is
arbitrary as to which pixel is reported.

StoreColors
cmap: COLORMAP
items: LISTofCOLORITEM
where:

COLORITEM: [pixel: CARD32
do-red, do-green, do-blue: BOOL
red, green, blue: CARD16]

Errors: Access , Colormap , Value

This request changes the colormap entries of the specified pixels. The do-red, do-green, and do-
blue fields indicate which components should actually be changed. If the colormap is an installed
map for its screen, the changes are visible immediately.
All specified pixels that are allocated writable in cmap (by any client) are changed, even if one or
more pixels produce an error. A Value error is generated if a specified pixel is not a valid index
into cmap, and an Access error is generated if a specified pixel is unallocated or is allocated read-
only. If more than one pixel is in error, it is arbitrary as to which pixel is reported.

64

X Protocol X11, Release 6.9/7.0

StoreNamedColor
cmap: COLORMAP
pixel: CARD32
name: STRING8
do-red, do-green , do-blue: BOOL
Errors: Access , Colormap , Name , Value

This request looks up the named color with respect to the screen associated with cmap and then
does a StoreColors in cmap. The name should use the ISO Latin-1 encoding, and uppercase and
lowercase do not matter. The Access and Value errors are the same as in StoreColors .

QueryColors
cmap: COLORMAP
pixels: LISTofCARD32

→
colors: LISTofRGB
where:
RGB: [red, green, blue: CARD16]
Errors: Colormap , Value

This request returns the hardware-specific color values stored in cmap for the specified pixels.
The values returned for an unallocated entry are undefined. A Value error is generated if a pixel
is not a valid index into cmap. If more than one pixel is in error, it is arbitrary as to which pixel is
reported.

LookupColor
cmap: COLORMAP
name: STRING8

→
exact-red, exact-green, exact-blue: CARD16
visual-red, visual-green, visual-blue: CARD16
Errors: Colormap , Name

This request looks up the string name of a color with respect to the screen associated with cmap
and returns both the exact color values and the closest values provided by the hardware with
respect to the visual type of cmap. The name should use the ISO Latin-1 encoding, and upper-
case and lowercase do not matter.

65

X Protocol X11, Release 6.9/7.0

CreateCursor
cid: CURSOR
source: PIXMAP
mask: PIXMAP or None
fore-red, fore-green, fore-blue: CARD16
back-red, back-green, back-blue: CARD16
x, y: CARD16
Errors: Alloc , IDChoice , Match , Pixmap

This request creates a cursor and associates identifier cid with it. The foreground and background
RGB values must be specified, even if the server only has a StaticGray or GrayScale screen.
The foreground is used for the bits set to 1 in the source, and the background is used for the bits
set to 0. Both source and mask (if specified) must have depth one (or a Match error results), but
they can have any root. The mask pixmap defines the shape of the cursor. That is, the bits set to
1 in the mask define which source pixels will be displayed, and where the mask has bits set to 0,
the corresponding bits of the source pixmap are ignored. If no mask is given, all pixels of the
source are displayed. The mask, if present, must be the same size as the source (or a Match error
results). The x and y coordinates define the hotspot relative to the source’s origin and must be a
point within the source (or a Match error results).
The components of the cursor may be transformed arbitrarily to meet display limitations.
The pixmaps can be freed immediately if no further explicit references to them are to be made.
Subsequent drawing in the source or mask pixmap has an undefined effect on the cursor. The
server might or might not make a copy of the pixmap.

CreateGlyphCursor
cid: CURSOR
source-font: FONT
mask-font: FONT or None
source-char, mask-char: CARD16
fore-red, fore-green, fore-blue: CARD16
back-red, back-green, back-blue: CARD16
Errors: Alloc , Font , IDChoice , Value

This request is similar to CreateCursor , except the source and mask bitmaps are obtained from
the specified font glyphs. The source-char must be a defined glyph in source-font, and if mask-
font is given, mask-char must be a defined glyph in mask-font (or a Value error results). The
mask font and character are optional. The origins of the source and mask (if it is defined) glyphs
are positioned coincidently and define the hotspot. The source and mask need not have the same
bounding box metrics, and there is no restriction on the placement of the hotspot relative to the
bounding boxes. If no mask is given, all pixels of the source are displayed. Note that source-char
and mask-char are CARD16, not CHAR2B. For 2-byte matrix fonts, the 16-bit value should be
formed with byte1 in the most significant byte and byte2 in the least significant byte.
The components of the cursor may be transformed arbitrarily to meet display limitations.
The fonts can be freed immediately if no further explicit references to them are to be made.

66

X Protocol X11, Release 6.9/7.0

FreeCursor
cursor: CURSOR
Errors: Cursor

This request deletes the association between the resource ID and the cursor. The cursor storage
will be freed when no other resource references it.

RecolorCursor
cursor: CURSOR
fore-red, fore-green, fore-blue: CARD16
back-red, back-green, back-blue: CARD16
Errors: Cursor

This request changes the color of a cursor. If the cursor is being displayed on a screen, the
change is visible immediately.

QueryBestSize
class: {Cursor , Tile , Stipple}
drawable: DRAWABLE
width, height: CARD16

→
width, height: CARD16
Errors: Drawable , Match , Value

This request returns the best size that is closest to the argument size. For Cursor , this is the
largest size that can be fully displayed. For Tile , this is the size that can be tiled fastest. For
Stipple , this is the size that can be stippled fastest.
For Cursor , the drawable indicates the desired screen. For Tile and Stipple , the drawable indi-
cates the screen and also possibly the window class and depth. An InputOnly window cannot be
used as the drawable for Tile or Stipple (or a Match error results).

QueryExtension
name: STRING8

→
present: BOOL
major-opcode: CARD8
first-event: CARD8
first-error: CARD8

This request determines if the named extension is present. If so, the major opcode for the exten-
sion is returned, if it has one. Otherwise, zero is returned. Any minor opcode and the request for-
mats are specific to the extension. If the extension involves additional event types, the base event

67

X Protocol X11, Release 6.9/7.0

type code is returned. Otherwise, zero is returned. The format of the events is specific to the
extension. If the extension involves additional error codes, the base error code is returned. Other-
wise, zero is returned. The format of additional data in the errors is specific to the extension.
The extension name should use the ISO Latin-1 encoding, and uppercase and lowercase matter.

ListExtensions
→

names: LISTofSTRING8

This request returns a list of all extensions supported by the server.

SetModifierMapping
keycodes-per-modifier: CARD8
keycodes: LISTofKEYCODE

→
status: {Success , Busy , Failed}
Errors: Alloc , Value

This request specifies the keycodes (if any) of the keys to be used as modifiers. The number of
keycodes in the list must be 8*keycodes-per-modifier (or a Length error results). The keycodes
are divided into eight sets, with each set containing keycodes-per-modifier elements. The sets are
assigned to the modifiers Shift , Lock , Control , Mod1 , Mod2 , Mod3 , Mod4 , and Mod5 , in
order. Only nonzero keycode values are used within each set; zero values are ignored. All of the
nonzero keycodes must be in the range specified by min-keycode and max-keycode in the connec-
tion setup (or a Value error results). The order of keycodes within a set does not matter. If no
nonzero values are specified in a set, the use of the corresponding modifier is disabled, and the
modifier bit will always be zero. Otherwise, the modifier bit will be one whenever at least one of
the keys in the corresponding set is in the down position.
A server can impose restrictions on how modifiers can be changed (for example, if certain keys do
not generate up transitions in hardware, if auto-repeat cannot be disabled on certain keys, or if
multiple keys per modifier are not supported). The status reply is Failed if some such restriction
is violated, and none of the modifiers is changed.
If the new nonzero keycodes specified for a modifier differ from those currently defined and any
(current or new) keys for that modifier are logically in the down state, then the status reply is
Busy , and none of the modifiers is changed.
This request generates a MappingNotify ev ent on a Success status.

GetModifierMapping
→

keycodes-per-modifier: CARD8
keycodes: LISTofKEYCODE

68

X Protocol X11, Release 6.9/7.0

This request returns the keycodes of the keys being used as modifiers. The number of keycodes
in the list is 8*keycodes-per-modifier. The keycodes are divided into eight sets, with each set
containing keycodes-per-modifier elements. The sets are assigned to the modifiers Shift , Lock ,
Control , Mod1 , Mod2 , Mod3 , Mod4 , and Mod5 , in order. The keycodes-per-modifier value
is chosen arbitrarily by the server; zeroes are used to fill in unused elements within each set. If
only zero values are given in a set, the use of the corresponding modifier has been disabled. The
order of keycodes within each set is chosen arbitrarily by the server.

ChangeKeyboardMapping
first-keycode: KEYCODE
keysyms-per-keycode: CARD8
keysyms: LISTofKEYSYM
Errors: Alloc , Value

This request defines the symbols for the specified number of keycodes, starting with the specified
keycode. The symbols for keycodes outside this range remained unchanged. The number of ele-
ments in the keysyms list must be a multiple of keysyms-per-keycode (or a Length error results).
The first-keycode must be greater than or equal to min-keycode as returned in the connection
setup (or a Value error results) and:

first-keycode + (keysyms-length / keysyms-per-keycode) − 1

must be less than or equal to max-keycode as returned in the connection setup (or a Value error
results). KEYSYM number N (counting from zero) for keycode K has an index (counting from
zero) of:

(K − first-keycode) * keysyms-per-keycode + N

in keysyms. The keysyms-per-keycode can be chosen arbitrarily by the client to be large enough
to hold all desired symbols. A special KEYSYM value of NoSymbol should be used to fill in
unused elements for individual keycodes. It is legal for NoSymbol to appear in nontrailing posi-
tions of the effective list for a keycode.
This request generates a MappingNotify ev ent.
There is no requirement that the server interpret this mapping; it is merely stored for reading and
writing by clients (see section 5).

GetKeyboardMapping
first-keycode: KEYCODE
count: CARD8

→
keysyms-per-keycode: CARD8
keysyms: LISTofKEYSYM
Errors: Value

This request returns the symbols for the specified number of keycodes, starting with the specified
keycode. The first-keycode must be greater than or equal to min-keycode as returned in the

69

X Protocol X11, Release 6.9/7.0

connection setup (or a Value error results), and:

first-keycode + count − 1

must be less than or equal to max-keycode as returned in the connection setup (or a Value error
results). The number of elements in the keysyms list is:

count * keysyms-per-keycode

and KEYSYM number N (counting from zero) for keycode K has an index (counting from zero)
of:

(K − first-keycode) * keysyms-per-keycode + N

in keysyms. The keysyms-per-keycode value is chosen arbitrarily by the server to be large
enough to report all requested symbols. A special KEYSYM value of NoSymbol is used to fill in
unused elements for individual keycodes.

ChangeKeyboardControl
value-mask: BITMASK
value-list: LISTofVALUE
Errors: Match , Value

This request controls various aspects of the keyboard. The value-mask and value-list specify
which controls are to be changed. The possible values are:

Control Type

key-click-percent INT8
bell-percent INT8
bell-pitch INT16
bell-duration INT16
led CARD8
led-mode {On , Off}
key KEYCODE
auto-repeat-mode {On , Off , Default}

The key-click-percent sets the volume for key clicks between 0 (off) and 100 (loud) inclusive, if
possible. Setting to −1 restores the default. Other negative values generate a Value error.
The bell-percent sets the base volume for the bell between 0 (off) and 100 (loud) inclusive, if pos-
sible. Setting to −1 restores the default. Other negative values generate a Value error.
The bell-pitch sets the pitch (specified in Hz) of the bell, if possible. Setting to −1 restores the
default. Other negative values generate a Value error.
The bell-duration sets the duration of the bell (specified in milliseconds), if possible. Setting to
−1 restores the default. Other negative values generate a Value error.
If both led-mode and led are specified, then the state of that LED is changed, if possible. If only
led-mode is specified, then the state of all LEDs are changed, if possible. At most 32 LEDs,
numbered from one, are supported. No standard interpretation of LEDs is defined. It is a Match

70

X Protocol X11, Release 6.9/7.0

error if an led is specified without an led-mode.
If both auto-repeat-mode and key are specified, then the auto-repeat mode of that key is changed,
if possible. If only auto-repeat-mode is specified, then the global auto-repeat mode for the entire
keyboard is changed, if possible, without affecting the per-key settings. It is a Match error if a
key is specified without an auto-repeat-mode. Each key has an individual mode of whether or not
it should auto-repeat and a default setting for that mode. In addition, there is a global mode of
whether auto-repeat should be enabled or not and a default setting for that mode. When the
global mode is On , keys should obey their individual auto-repeat modes. When the global mode
is Off , no keys should auto-repeat. An auto-repeating key generates alternating KeyPress and
KeyRelease ev ents. When a key is used as a modifier, it is desirable for the key not to auto-
repeat, regardless of the auto-repeat setting for that key.
A bell generator connected with the console but not directly on the keyboard is treated as if it
were part of the keyboard.
The order in which controls are verified and altered is server-dependent. If an error is generated,
a subset of the controls may have been altered.

GetKeyboardControl
→

key-click-percent: CARD8
bell-percent: CARD8
bell-pitch: CARD16
bell-duration: CARD16
led-mask: CARD32
global-auto-repeat: {On , Off}
auto-repeats: LISTofCARD8

This request returns the current control values for the keyboard. For the LEDs, the least signifi-
cant bit of led-mask corresponds to LED one, and each one bit in led-mask indicates an LED that
is lit. The auto-repeats is a bit vector; each one bit indicates that auto-repeat is enabled for the
corresponding key. The vector is represented as 32 bytes. Byte N (from 0) contains the bits for
keys 8N to 8N + 7, with the least significant bit in the byte representing key 8N.

Bell
percent: INT8
Errors: Value

This request rings the bell on the keyboard at a volume relative to the base volume for the
keyboard, if possible. Percent can range from −100 to 100 inclusive (or a Value error results).
The volume at which the bell is rung when percent is nonnegative is:

base − [(base * percent) / 100] + percent

When percent is negative, it is:

base + [(base * percent) / 100]

71

X Protocol X11, Release 6.9/7.0

SetPointerMapping
map: LISTofCARD8

→
status: {Success , Busy}
Errors: Value

This request sets the mapping of the pointer. Elements of the list are indexed starting from one.
The length of the list must be the same as GetPointerMapping would return (or a Value error
results). The index is a core button number, and the element of the list defines the effective num-
ber.
A zero element disables a button. Elements are not restricted in value by the number of physical
buttons, but no two elements can have the same nonzero value (or a Value error results).
If any of the buttons to be altered are logically in the down state, the status reply is Busy , and the
mapping is not changed.
This request generates a MappingNotify ev ent on a Success status.

GetPointerMapping
→

map: LISTofCARD8

This request returns the current mapping of the pointer. Elements of the list are indexed starting
from one. The length of the list indicates the number of physical buttons.
The nominal mapping for a pointer is the identity mapping: map[i]=i.

ChangePointerControl
do-acceleration, do-threshold: BOOL
acceleration-numerator, acceleration-denominator: INT16
threshold: INT16
Errors: Value

This request defines how the pointer moves. The acceleration is a multiplier for movement
expressed as a fraction. For example, specifying 3/1 means the pointer moves three times as fast
as normal. The fraction can be rounded arbitrarily by the server. Acceleration only takes effect if
the pointer moves more than threshold number of pixels at once and only applies to the amount
beyond the threshold. Setting a value to −1 restores the default. Other negative values generate a
Value error, as does a zero value for acceleration-denominator.

72

X Protocol X11, Release 6.9/7.0

GetPointerControl
→

acceleration-numerator, acceleration-denominator: CARD16
threshold: CARD16

This request returns the current acceleration and threshold for the pointer.

SetScreenSaver
timeout, interval: INT16
prefer-blanking: {Yes , No , Default}
allow-exposures: {Yes , No , Default}
Errors: Value

The timeout and interval are specified in seconds; setting a value to −1 restores the default. Other
negative values generate a Value error. If the timeout value is zero, screen-saver is disabled (but
an activated screen-saver is not deactivated). If the timeout value is nonzero, screen-saver is
enabled. Once screen-saver is enabled, if no input from the keyboard or pointer is generated for
timeout seconds, screen-saver is activated. For each screen, if blanking is preferred and the hard-
ware supports video blanking, the screen will simply go blank. Otherwise, if either exposures are
allowed or the screen can be regenerated without sending exposure events to clients, the screen is
changed in a server-dependent fashion to avoid phosphor burn. Otherwise, the state of the screens
does not change, and screen-saver is not activated. At the next keyboard or pointer input or at the
next ForceScreenSaver with mode Reset , screen-saver is deactivated, and all screen states are
restored.
If the server-dependent screen-saver method is amenable to periodic change, interval serves as a
hint about how long the change period should be, with zero hinting that no periodic change
should be made. Examples of ways to change the screen include scrambling the color map peri-
odically, moving an icon image about the screen periodically, or tiling the screen with the root
window background tile, randomly reorigined periodically.

GetScreenSaver
→

timeout, interval: CARD16
prefer-blanking: {Yes , No}
allow-exposures: {Yes , No}

This request returns the current screen-saver control values.

ForceScreenSaver
mode: {Activate , Reset}
Errors: Value

73

X Protocol X11, Release 6.9/7.0

If the mode is Activate and screen-saver is currently deactivated, then screen-saver is activated
(even if screen-saver has been disabled with a timeout value of zero). If the mode is Reset and
screen-saver is currently enabled, then screen-saver is deactivated (if it was activated), and the
activation timer is reset to its initial state as if device input had just been received.

ChangeHosts
mode: {Insert , Delete}
host: HOST
Errors: Access , Value

This request adds or removes the specified host from the access control list. When the access
control mechanism is enabled and a client attempts to establish a connection to the server, the
host on which the client resides must be in the access control list, or the client must have been
granted permission by a server-dependent method, or the server will refuse the connection.
The client must reside on the same host as the server and/or have been granted permission by a
server-dependent method to execute this request (or an Access error results).
An initial access control list can usually be specified, typically by naming a file that the server
reads at startup and reset.
The following address families are defined. A server is not required to support these families and
may support families not listed here. Use of an unsupported family, an improper address format,
or an improper address length within a supported family results in a Value error.
For the Internet family, the address must be four bytes long. The address bytes are in standard IP
order; the server performs no automatic swapping on the address bytes. The Internet family sup-
ports IP version 4 addresses only.
For the InternetV6 family, the address must be sixteen bytes long. The address bytes are in stan-
dard IP order; the server performs no automatic swapping on the address bytes. The InternetV6
family supports IP version 6 addresses only.
For the DECnet family, the server performs no automatic swapping on the address bytes. A Phase
IV address is two bytes long: the first byte contains the least significant eight bits of the node
number, and the second byte contains the most significant two bits of the node number in the least
significant two bits of the byte and the area in the most significant six bits of the byte.
For the Chaos family, the address must be two bytes long. The host number is always the first
byte in the address, and the subnet number is always the second byte. The server performs no
automatic swapping on the address bytes.
For the ServerInterpreted family, the address may be of any length up to 65535 bytes. The
address consists of two strings of ASCII characters, separated by a byte with a value of 0. The
first string represents the type of address, and the second string contains the address value.
Address types and the syntax for their associated values will be registered via the X.Org Registry.
Implementors who wish to add implementation specific types may register a unique prefix with
the X.Org registry to prevent namespace collisions.
Use of a host address in the ChangeHosts request is deprecated. It is only useful when a host has
a unique, constant address, a requirement that is increasingly unmet as sites adopt dynamically
assigned addresses, network address translation gateways, IPv6 link local addresses, and various
other technologies. It also assumes all users of a host share equivalent access rights, and as such
has never been suitable for many multi-user machine environments. Instead, more secure forms

74

X Protocol X11, Release 6.9/7.0

of authentication, such as those based on shared secrets or public key encryption, are recom-
mended.

ListHosts
→

mode: {Enabled , Disabled}
hosts: LISTofHOST

This request returns the hosts on the access control list and whether use of the list at connection
setup is currently enabled or disabled.
Each HOST is padded to a multiple of four bytes.

SetAccessControl
mode: {Enable , Disable}
Errors: Access , Value

This request enables or disables the use of the access control list at connection setups.
The client must reside on the same host as the server and/or have been granted permission by a
server-dependent method to execute this request (or an Access error results).

SetCloseDownMode
mode: {Destroy , RetainPermanent , RetainTemporary}
Errors: Value

This request defines what will happen to the client’s resources at connection close. A connection
starts in Destroy mode. The meaning of the close-down mode is described in section 10.

KillClient
resource: CARD32 or AllTemporary
Errors: Value

If a valid resource is specified, KillClient forces a close-down of the client that created the
resource. If the client has already terminated in either RetainPermanent or RetainTemporary
mode, all of the client’s resources are destroyed (see section 10). If AllTemporary is specified,
then the resources of all clients that have terminated in RetainTemporary are destroyed.

NoOperation

75

X Protocol X11, Release 6.9/7.0

This request has no arguments and no results, but the request length field allows the request to be
any multiple of four bytes in length. The bytes contained in the request are uninterpreted by the
server.
This request can be used in its minimum four byte form as padding where necessary by client
libraries that find it convenient to force requests to begin on 64-bit boundaries.

10. Connection Close
At connection close, all event selections made by the client are discarded. If the client has the
pointer actively grabbed, an UngrabPointer is performed. If the client has the keyboard actively
grabbed, an UngrabKeyboard is performed. All passive grabs by the client are released. If the
client has the server grabbed, an UngrabServer is performed. All selections (see SetSelec-
tionOwner request) owned by the client are disowned. If close-down mode (see SetCloseDown-
Mode request) is RetainPermanent or RetainTemporary , then all resources (including col-
ormap entries) allocated by the client are marked as permanent or temporary, respectively (but
this does not prevent other clients from explicitly destroying them). If the mode is Destroy , all
of the client’s resources are destroyed.
When a client’s resources are destroyed, for each window in the client’s sav e-set, if the window is
an inferior of a window created by the client, the save-set window is reparented to the closest
ancestor such that the save-set window is not an inferior of a window created by the client. If the
save-set window is unmapped, a MapWindow request is performed on it (even if it was not an
inferior of a window created by the client). The reparenting leaves unchanged the absolute coor-
dinates (with respect to the root window) of the upper-left outer corner of the save-set window.
After save-set processing, all windows created by the client are destroyed. For each nonwindow
resource created by the client, the appropriate Free request is performed. All colors and col-
ormap entries allocated by the client are freed.
A server goes through a cycle of having no connections and having some connections. At every
transition to the state of having no connections as a result of a connection closing with a Destroy
close-down mode, the server resets its state as if it had just been started. This starts by destroying
all lingering resources from clients that have terminated in RetainPermanent or RetainTempo-
rary mode. It additionally includes deleting all but the predefined atom identifiers, deleting all
properties on all root windows, resetting all device maps and attributes (key click, bell volume,
acceleration), resetting the access control list, restoring the standard root tiles and cursors, restor-
ing the default font path, and restoring the input focus to state PointerRoot .
Note that closing a connection with a close-down mode of RetainPermanent or RetainTempo-
rary will not cause the server to reset.

11. Events
When a button press is processed with the pointer in some window W and no active pointer grab
is in progress, the ancestors of W are searched from the root down, looking for a passive grab to
activate. If no matching passive grab on the button exists, then an active grab is started automati-
cally for the client receiving the event, and the last-pointer-grab time is set to the current server
time. The effect is essentially equivalent to a GrabButton with arguments:

Argument Value

ev ent-window Event window
ev ent-mask Client’s selected pointer events on the event window

76

X Protocol X11, Release 6.9/7.0

Argument Value

pointer-mode and keyboard-mode Asynchronous
owner-events True if the client has OwnerGrabButton selected

on the event window, otherwise False
confine-to None
cursor None

The grab is terminated automatically when the logical state of the pointer has all buttons released.
UngrabPointer and ChangeActivePointerGrab can both be used to modify the active grab.

KeyPress
KeyRelease
ButtonPress
ButtonRelease
MotionNotify

root, event: WINDOW
child: WINDOW or None
same-screen: BOOL
root-x, root-y, event-x, event-y: INT16
detail: <see below>
state: SETofKEYBUTMASK
time: TIMESTAMP

These events are generated either when a key or button logically changes state or when the
pointer logically moves. The generation of these logical changes may lag the physical changes if
device event processing is frozen. Note that KeyPress and KeyRelease are generated for all
keys, even those mapped to modifier bits. The source of the event is the window the pointer is in.
The window the event is reported with respect to is called the event window. The event window
is found by starting with the source window and looking up the hierarchy for the first window on
which any client has selected interest in the event (provided no intervening window prohibits
ev ent generation by including the event type in its do-not-propagate-mask). The actual window
used for reporting can be modified by active grabs and, in the case of keyboard events, can be
modified by the focus window.
The root is the root window of the source window, and root-x and root-y are the pointer coordi-
nates relative to root’s origin at the time of the event. Event is the event window. If the event
window is on the same screen as root, then event-x and event-y are the pointer coordinates rela-
tive to the event window’s origin. Otherwise, ev ent-x and event-y are zero. If the source window
is an inferior of the event window, then child is set to the child of the event window that is an
ancestor of (or is) the source window. Otherwise, it is set to None . The state component gives
the logical state of the buttons and modifier keys just before the event. The detail component type
varies with the event type:

Event Component

KeyPress , KeyRelease KEYCODE

77

X Protocol X11, Release 6.9/7.0

Event Component

ButtonPress , ButtonRelease BUTTON
MotionNotify {Normal , Hint}

MotionNotify ev ents are only generated when the motion begins and ends in the window. The
granularity of motion events is not guaranteed, but a client selecting for motion events is guaran-
teed to get at least one event when the pointer moves and comes to rest. Selecting PointerMo-
tion receives events independent of the state of the pointer buttons. By selecting some subset of
Button[1-5]Motion instead, MotionNotify ev ents will only be received when one or more of the
specified buttons are pressed. By selecting ButtonMotion , MotionNotify ev ents will be
received only when at least one button is pressed. The events are always of type MotionNotify ,
independent of the selection. If PointerMotionHint is selected, the server is free to send only
one MotionNotify ev ent (with detail Hint) to the client for the event window until either the key
or button state changes, the pointer leaves the event window, or the client issues a QueryPointer
or GetMotionEvents request.

EnterNotify
LeaveNotify

root, event: WINDOW
child: WINDOW or None
same-screen: BOOL
root-x, root-y, event-x, event-y: INT16
mode: {Normal , Grab , Ungrab}
detail: {Ancestor , Virtual , Inferior , Nonlinear , NonlinearVirtual}
focus: BOOL
state: SETofKEYBUTMASK
time: TIMESTAMP

If pointer motion or window hierarchy change causes the pointer to be in a different window than
before, EnterNotify and LeaveNotify ev ents are generated instead of a MotionNotify ev ent.
Only clients selecting EnterWindow on a window receive EnterNotify ev ents, and only clients
selecting LeaveWindow receive LeaveNotify ev ents. The pointer position reported in the event
is always the final position, not the initial position of the pointer. The root is the root window for
this position, and root-x and root-y are the pointer coordinates relative to root’s origin at the time
of the event. Event is the event window. If the event window is on the same screen as root, then
ev ent-x and event-y are the pointer coordinates relative to the event window’s origin. Otherwise,
ev ent-x and event-y are zero. In a LeaveNotify ev ent, if a child of the event window contains the
initial position of the pointer, then the child component is set to that child. Otherwise, it is None .
For an EnterNotify ev ent, if a child of the event window contains the final pointer position, then
the child component is set to that child. Otherwise, it is None . If the event window is the focus
window or an inferior of the focus window, then focus is True . Otherwise, focus is False .
Normal pointer motion events have mode Normal . Pseudo-motion events when a grab activates
have mode Grab , and pseudo-motion events when a grab deactivates have mode Ungrab .
All EnterNotify and LeaveNotify ev ents caused by a hierarchy change are generated after any
hierarchy event caused by that change (that is, UnmapNotify , MapNotify , ConfigureNotify ,
GravityNotify , CirculateNotify), but the ordering of EnterNotify and LeaveNotify ev ents

78

X Protocol X11, Release 6.9/7.0

with respect to FocusOut , VisibilityNotify , and Expose ev ents is not constrained.
Normal events are generated as follows:
When the pointer moves from window A to window B and A is an inferior of B:
• LeaveNotify with detail Ancestor is generated on A.
• LeaveNotify with detail Virtual is generated on each window between A and B exclusive

(in that order).
• EnterNotify with detail Inferior is generated on B.
When the pointer moves from window A to window B and B is an inferior of A:
• LeaveNotify with detail Inferior is generated on A.
• EnterNotify with detail Virtual is generated on each window between A and B exclusive

(in that order).
• EnterNotify with detail Ancestor is generated on B.
When the pointer moves from window A to window B and window C is their least common
ancestor:
• LeaveNotify with detail Nonlinear is generated on A.
• LeaveNotify with detail NonlinearVirtual is generated on each window between A and C

exclusive (in that order).
• EnterNotify with detail NonlinearVirtual is generated on each window between C and B

exclusive (in that order).
• EnterNotify with detail Nonlinear is generated on B.
When the pointer moves from window A to window B on different screens:
• LeaveNotify with detail Nonlinear is generated on A.
• If A is not a root window, LeaveNotify with detail NonlinearVirtual is generated on each

window above A up to and including its root (in order).
• If B is not a root window, EnterNotify with detail NonlinearVirtual is generated on each

window from B’s root down to but not including B (in order).
• EnterNotify with detail Nonlinear is generated on B.
When a pointer grab activates (but after any initial warp into a confine-to window and before gen-
erating any actual ButtonPress ev ent that activates the grab), G is the grab-window for the grab,
and P is the window the pointer is in:
• EnterNotify and LeaveNotify ev ents with mode Grab are generated (as for Normal

above) as if the pointer were to suddenly warp from its current position in P to some posi-
tion in G. However, the pointer does not warp, and the pointer position is used as both the
initial and final positions for the events.

When a pointer grab deactivates (but after generating any actual ButtonRelease ev ent that deacti-
vates the grab), G is the grab-window for the grab, and P is the window the pointer is in:
• EnterNotify and LeaveNotify ev ents with mode Ungrab are generated (as for Normal

above) as if the pointer were to suddenly warp from some position in G to its current posi-
tion in P. Howev er, the pointer does not warp, and the current pointer position is used as
both the initial and final positions for the events.

79

X Protocol X11, Release 6.9/7.0

FocusIn
FocusOut

event: WINDOW
mode: {Normal , WhileGrabbed , Grab , Ungrab}
detail: {Ancestor , Virtual , Inferior , Nonlinear , NonlinearVirtual , Pointer ,

PointerRoot , None}

These events are generated when the input focus changes and are reported to clients selecting
FocusChange on the window. Events generated by SetInputFocus when the keyboard is not
grabbed have mode Normal . Events generated by SetInputFocus when the keyboard is grabbed
have mode WhileGrabbed . Events generated when a keyboard grab activates have mode Grab ,
and events generated when a keyboard grab deactivates have mode Ungrab .
All FocusOut ev ents caused by a window unmap are generated after any UnmapNotify ev ent,
but the ordering of FocusOut with respect to generated EnterNotify , LeaveNotify , Visibili-
tyNotify , and Expose ev ents is not constrained.
Normal and WhileGrabbed ev ents are generated as follows:
When the focus moves from window A to window B, A is an inferior of B, and the pointer is in
window P:
• FocusOut with detail Ancestor is generated on A.
• FocusOut with detail Virtual is generated on each window between A and B exclusive (in

order).
• FocusIn with detail Inferior is generated on B.
• If P is an inferior of B but P is not A or an inferior of A or an ancestor of A, FocusIn with

detail Pointer is generated on each window below B down to and including P (in order).
When the focus moves from window A to window B, B is an inferior of A, and the pointer is in
window P:
• If P is an inferior of A but P is not an inferior of B or an ancestor of B, FocusOut with

detail Pointer is generated on each window from P up to but not including A (in order).
• FocusOut with detail Inferior is generated on A.
• FocusIn with detail Virtual is generated on each window between A and B exclusive (in

order).
• FocusIn with detail Ancestor is generated on B.
When the focus moves from window A to window B, window C is their least common ancestor,
and the pointer is in window P:
• If P is an inferior of A, FocusOut with detail Pointer is generated on each window from P

up to but not including A (in order).
• FocusOut with detail Nonlinear is generated on A.
• FocusOut with detail NonlinearVirtual is generated on each window between A and C

exclusive (in order).
• FocusIn with detail NonlinearVirtual is generated on each window between C and B

exclusive (in order).
• FocusIn with detail Nonlinear is generated on B.
• If P is an inferior of B, FocusIn with detail Pointer is generated on each window below B

down to and including P (in order).

80

X Protocol X11, Release 6.9/7.0

When the focus moves from window A to window B on different screens and the pointer is in
window P:
• If P is an inferior of A, FocusOut with detail Pointer is generated on each window from P

up to but not including A (in order).
• FocusOut with detail Nonlinear is generated on A.
• If A is not a root window, FocusOut with detail NonlinearVirtual is generated on each

window above A up to and including its root (in order).
• If B is not a root window, FocusIn with detail NonlinearVirtual is generated on each

window from B’s root down to but not including B (in order).
• FocusIn with detail Nonlinear is generated on B.
• If P is an inferior of B, FocusIn with detail Pointer is generated on each window below B

down to and including P (in order).
When the focus moves from window A to PointerRoot (or None) and the pointer is in window
P:
• If P is an inferior of A, FocusOut with detail Pointer is generated on each window from P

up to but not including A (in order).
• FocusOut with detail Nonlinear is generated on A.
• If A is not a root window, FocusOut with detail NonlinearVirtual is generated on each

window above A up to and including its root (in order).
• FocusIn with detail PointerRoot (or None) is generated on all root windows.
• If the new focus is PointerRoot , FocusIn with detail Pointer is generated on each win-

dow from P’s root down to and including P (in order).
When the focus moves from PointerRoot (or None) to window A and the pointer is in window
P:
• If the old focus is PointerRoot , FocusOut with detail Pointer is generated on each win-

dow from P up to and including P’s root (in order).
• FocusOut with detail PointerRoot (or None) is generated on all root windows.
• If A is not a root window, FocusIn with detail NonlinearVirtual is generated on each

window from A’s root down to but not including A (in order).
• FocusIn with detail Nonlinear is generated on A.
• If P is an inferior of A, FocusIn with detail Pointer is generated on each window below A

down to and including P (in order).
When the focus moves from PointerRoot to None (or vice versa) and the pointer is in window
P:
• If the old focus is PointerRoot , FocusOut with detail Pointer is generated on each win-

dow from P up to and including P’s root (in order).
• FocusOut with detail PointerRoot (or None) is generated on all root windows.
• FocusIn with detail None (or PointerRoot) is generated on all root windows.
• If the new focus is PointerRoot , FocusIn with detail Pointer is generated on each win-

dow from P’s root down to and including P (in order).
When a keyboard grab activates (but before generating any actual KeyPress ev ent that activates
the grab), G is the grab-window for the grab, and F is the current focus:

81

X Protocol X11, Release 6.9/7.0

• FocusIn and FocusOut ev ents with mode Grab are generated (as for Normal above) as
if the focus were to change from F to G.

When a keyboard grab deactivates (but after generating any actual KeyRelease ev ent that deacti-
vates the grab), G is the grab-window for the grab, and F is the current focus:
• FocusIn and FocusOut ev ents with mode Ungrab are generated (as for Normal above)

as if the focus were to change from G to F.

KeymapNotify
keys: LISTofCARD8

The value is a bit vector as described in QueryKeymap . This event is reported to clients select-
ing KeymapState on a window and is generated immediately after every EnterNotify and
FocusIn .

Expose
window: WINDOW
x, y, width, height: CARD16
count: CARD16

This event is reported to clients selecting Exposure on the window. It is generated when no valid
contents are available for regions of a window, and either the regions are visible, the regions are
viewable and the server is (perhaps newly) maintaining backing store on the window, or the win-
dow is not viewable but the server is (perhaps newly) honoring window’s backing-store attribute
of Always or WhenMapped . The regions are decomposed into an arbitrary set of rectangles,
and an Expose ev ent is generated for each rectangle.
For a giv en action causing exposure events, the set of events for a given window are guaranteed to
be reported contiguously. If count is zero, then no more Expose ev ents for this window follow.
If count is nonzero, then at least that many more Expose ev ents for this window follow (and pos-
sibly more).
The x and y coordinates are relative to window’s origin and specify the upper-left corner of a rect-
angle. The width and height specify the extent of the rectangle.
Expose ev ents are never generated on InputOnly windows.
All Expose ev ents caused by a hierarchy change are generated after any hierarchy event caused
by that change (for example, UnmapNotify , MapNotify , ConfigureNotify , GravityNotify ,
CirculateNotify). All Expose ev ents on a given window are generated after any VisibilityNo-
tify ev ent on that window, but it is not required that all Expose ev ents on all windows be gener-
ated after all Visibilitity ev ents on all windows. The ordering of Expose ev ents with respect to
FocusOut , EnterNotify , and LeaveNotify ev ents is not constrained.

82

X Protocol X11, Release 6.9/7.0

GraphicsExposure
drawable: DRAWABLE
x, y, width, height: CARD16
count: CARD16
major-opcode: CARD8
minor-opcode: CARD16

This event is reported to a client using a graphics context with graphics-exposures selected and is
generated when a destination region could not be computed due to an obscured or out-of-bounds
source region. All of the regions exposed by a given graphics request are guaranteed to be
reported contiguously. If count is zero then no more GraphicsExposure ev ents for this window
follow. If count is nonzero, then at least that many more GraphicsExposure ev ents for this win-
dow follow (and possibly more).
The x and y coordinates are relative to drawable’s origin and specify the upper-left corner of a
rectangle. The width and height specify the extent of the rectangle.
The major and minor opcodes identify the graphics request used. For the core protocol, major-
opcode is always CopyArea or CopyPlane , and minor-opcode is always zero.

NoExposure
drawable: DRAWABLE
major-opcode: CARD8
minor-opcode: CARD16

This event is reported to a client using a graphics context with graphics-exposures selected and is
generated when a graphics request that might produce GraphicsExposure ev ents does not pro-
duce any. The drawable specifies the destination used for the graphics request.
The major and minor opcodes identify the graphics request used. For the core protocol, major-
opcode is always CopyArea or CopyPlane , and the minor-opcode is always zero.

VisibilityNotify
window: WINDOW
state: {Unobscured , PartiallyObscured , FullyObscured}

This event is reported to clients selecting VisibilityChange on the window. In the following, the
state of the window is calculated ignoring all of the window’s subwindows. When a window
changes state from partially or fully obscured or not viewable to viewable and completely unob-
scured, an event with Unobscured is generated. When a window changes state from viewable
and completely unobscured, from viewable and completely obscured, or from not viewable, to
viewable and partially obscured, an event with PartiallyObscured is generated. When a window
changes state from viewable and completely unobscured, from viewable and partially obscured,
or from not viewable to viewable and fully obscured, an event with FullyObscured is generated.
VisibilityNotify ev ents are never generated on InputOnly windows.
All VisibilityNotify ev ents caused by a hierarchy change are generated after any hierarchy event
caused by that change (for example, UnmapNotify , MapNotify , ConfigureNotify ,

83

X Protocol X11, Release 6.9/7.0

GravityNotify , CirculateNotify). Any VisibilityNotify ev ent on a given window is generated
before any Expose ev ents on that window, but it is not required that all VisibilityNotify ev ents
on all windows be generated before all Expose ev ents on all windows. The ordering of Visibili-
tyNotify ev ents with respect to FocusOut , EnterNotify , and LeaveNotify ev ents is not con-
strained.

CreateNotify
parent, window: WINDOW
x, y: INT16
width, height, border-width: CARD16
override-redirect: BOOL

This event is reported to clients selecting SubstructureNotify on the parent and is generated
when the window is created. The arguments are as in the CreateWindow request.

DestroyNotify
event, window: WINDOW

This event is reported to clients selecting StructureNotify on the window and to clients selecting
SubstructureNotify on the parent. It is generated when the window is destroyed. The ev ent is
the window on which the event was generated, and the window is the window that is destroyed.
The ordering of the DestroyNotify ev ents is such that for any giv en window, DestroyNotify is
generated on all inferiors of the window before being generated on the window itself. The order-
ing among siblings and across subhierarchies is not otherwise constrained.

UnmapNotify
event, window: WINDOW
from-configure: BOOL

This event is reported to clients selecting StructureNotify on the window and to clients selecting
SubstructureNotify on the parent. It is generated when the window changes state from mapped
to unmapped. The event is the window on which the event was generated, and the window is the
window that is unmapped. The from-configure flag is True if the event was generated as a result
of the window’s parent being resized when the window itself had a win-gravity of Unmap .

MapNotify
event, window: WINDOW
override-redirect: BOOL

This event is reported to clients selecting StructureNotify on the window and to clients selecting
SubstructureNotify on the parent. It is generated when the window changes state from
unmapped to mapped. The event is the window on which the event was generated, and the

84

X Protocol X11, Release 6.9/7.0

window is the window that is mapped. The override-redirect flag is from the window’s attribute.

MapRequest
parent, window: WINDOW

This event is reported to the client selecting SubstructureRedirect on the parent and is gener-
ated when a MapWindow request is issued on an unmapped window with an override-redirect
attribute of False .

ReparentNotify
event, window, parent: WINDOW
x, y: INT16
override-redirect: BOOL

This event is reported to clients selecting SubstructureNotify on either the old or the new parent
and to clients selecting StructureNotify on the window. It is generated when the window is
reparented. The ev ent is the window on which the event was generated. The window is the win-
dow that has been rerooted. The parent specifies the new parent. The x and y coordinates are rel-
ative to the new parent’s origin and specify the position of the upper-left outer corner of the win-
dow. The override-redirect flag is from the window’s attribute.

ConfigureNotify
event, window: WINDOW
x, y: INT16
width, height, border-width: CARD16
above-sibling: WINDOW or None
override-redirect: BOOL

This event is reported to clients selecting StructureNotify on the window and to clients selecting
SubstructureNotify on the parent. It is generated when a ConfigureWindow request actually
changes the state of the window. The event is the window on which the event was generated, and
the window is the window that is changed. The x and y coordinates are relative to the new par-
ent’s origin and specify the position of the upper-left outer corner of the window. The width and
height specify the inside size, not including the border. If above-sibling is None , then the win-
dow is on the bottom of the stack with respect to siblings. Otherwise, the window is immediately
on top of the specified sibling. The override-redirect flag is from the window’s attribute.

GravityNotify
event, window: WINDOW
x, y: INT16

This event is reported to clients selecting SubstructureNotify on the parent and to clients select-
ing StructureNotify on the window. It is generated when a window is moved because of a

85

X Protocol X11, Release 6.9/7.0

change in size of the parent. The event is the window on which the event was generated, and the
window is the window that is moved. The x and y coordinates are relative to the new parent’s ori-
gin and specify the position of the upper-left outer corner of the window.

ResizeRequest
window: WINDOW
width, height: CARD16

This event is reported to the client selecting ResizeRedirect on the window and is generated
when a ConfigureWindow request by some other client on the window attempts to change the
size of the window. The width and height are the requested inside size, not including the border.

ConfigureRequest
parent, window: WINDOW
x, y: INT16
width, height, border-width: CARD16
sibling: WINDOW or None
stack-mode: {Above , Below , TopIf , BottomIf , Opposite}
value-mask: BITMASK

This event is reported to the client selecting SubstructureRedirect on the parent and is gener-
ated when a ConfigureWindow request is issued on the window by some other client. The
value-mask indicates which components were specified in the request. The value-mask and the
corresponding values are reported as given in the request. The remaining values are filled in from
the current geometry of the window, except in the case of sibling and stack-mode, which are
reported as None and Above (respectively) if not given in the request.

CirculateNotify
event, window: WINDOW
place: {Top , Bottom}

This event is reported to clients selecting StructureNotify on the window and to clients selecting
SubstructureNotify on the parent. It is generated when the window is actually restacked from a
CirculateWindow request. The ev ent is the window on which the event was generated, and the
window is the window that is restacked. If place is Top , the window is now on top of all siblings.
Otherwise, it is below all siblings.

CirculateRequest
parent, window: WINDOW
place: {Top , Bottom}

This event is reported to the client selecting SubstructureRedirect on the parent and is gener-
ated when a CirculateWindow request is issued on the parent and a window actually needs to be

86

X Protocol X11, Release 6.9/7.0

restacked. The window specifies the window to be restacked, and the place specifies what the
new position in the stacking order should be.

PropertyNotify
window: WINDOW
atom: ATOM
state: {NewValue , Deleted}
time: TIMESTAMP

This event is reported to clients selecting PropertyChange on the window and is generated with
state NewValue when a property of the window is changed using ChangeProperty or
RotateProperties , even when adding zero-length data using ChangeProperty and when replac-
ing all or part of a property with identical data using ChangeProperty or RotateProperties . It
is generated with state Deleted when a property of the window is deleted using request
DeleteProperty or GetProperty . The timestamp indicates the server time when the property
was changed.

SelectionClear
owner: WINDOW
selection: ATOM
time: TIMESTAMP

This event is reported to the current owner of a selection and is generated when a new owner is
being defined by means of SetSelectionOwner . The timestamp is the last-change time recorded
for the selection. The owner argument is the window that was specified by the current owner in
its SetSelectionOwner request.

SelectionRequest
owner: WINDOW
selection: ATOM
target: ATOM
property: ATOM or None
requestor: WINDOW
time: TIMESTAMP or CurrentTime

This event is reported to the owner of a selection and is generated when a client issues a Convert-
Selection request. The owner argument is the window that was specified in the SetSelec-
tionOwner request. The remaining arguments are as in the ConvertSelection request.
The owner should convert the selection based on the specified target type and send a Selection-
Notify back to the requestor. A complete specification for using selections is given in the X.Org
standard Inter-Client Communication Conventions Manual.

87

X Protocol X11, Release 6.9/7.0

SelectionNotify
requestor: WINDOW
selection, target: ATOM
property: ATOM or None
time: TIMESTAMP or CurrentTime

This event is generated by the server in response to a ConvertSelection request when there is no
owner for the selection. When there is an owner, it should be generated by the owner using
SendEvent . The owner of a selection should send this event to a requestor either when a selec-
tion has been converted and stored as a property or when a selection conversion could not be per-
formed (indicated with property None).

ColormapNotify
window: WINDOW
colormap: COLORMAP or None
new: BOOL
state: {Installed , Uninstalled}

This event is reported to clients selecting ColormapChange on the window. It is generated with
value True for new when the colormap attribute of the window is changed and is generated with
value False for new when the colormap of a window is installed or uninstalled. In either case,
the state indicates whether the colormap is currently installed.

MappingNotify
request: {Modifier , Keyboard , Pointer}
first-keycode, count: CARD8

This event is sent to all clients. There is no mechanism to express disinterest in this event. The
detail indicates the kind of change that occurred: Modifiers for a successful SetModifierMap-
ping , Keyboard for a successful ChangeKeyboardMapping , and Pointer for a successful Set-
PointerMapping . If the detail is Keyboard , then first-keycode and count indicate the range of
altered keycodes.

ClientMessage
window: WINDOW
type: ATOM
format: {8, 16, 32}
data: LISTofINT8 or LISTofINT16 or LISTofINT32

This event is only generated by clients using SendEvent . The type specifies how the data is to be
interpreted by the receiving client; the server places no interpretation on the type or the data. The
format specifies whether the data should be viewed as a list of 8-bit, 16-bit, or 32-bit quantities,
so that the server can correctly byte-swap, as necessary. The data always consists of either 20
8-bit values or 10 16-bit values or 5 32-bit values, although particular message types might not

88

X Protocol X11, Release 6.9/7.0

make use of all of these values.

12. Flow Control and Concurrency
Whenever the server is writing to a given connection, it is permissible for the server to stop read-
ing from that connection (but if the writing would block, it must continue to service other connec-
tions). The server is not required to buffer more than a single request per connection at one time.
For a giv en connection to the server, a client can block while reading from the connection but
should undertake to read (events and errors) when writing would block. Failure on the part of a
client to obey this rule could result in a deadlocked connection, although deadlock is probably
unlikely unless either the transport layer has very little buffering or the client attempts to send
large numbers of requests without ever reading replies or checking for errors and events.
Whether or not a server is implemented with internal concurrency, the overall effect must be as if
individual requests are executed to completion in some serial order, and requests from a given
connection must be executed in delivery order (that is, the total execution order is a shuffle of the
individual streams). The execution of a request includes validating all arguments, collecting all
data for any reply, and generating and queueing all required events. However, it does not include
the actual transmission of the reply and the events. In addition, the effect of any other cause that
can generate multiple events (for example, activation of a grab or pointer motion) must effectively
generate and queue all required events indivisibly with respect to all other causes and requests.
For a request from a given client, any events destined for that client that are caused by executing
the request must be sent to the client before any reply or error is sent.

89

X Protocol X11, Release 6.9/7.0

Appendix A

KEYSYM Encoding

KEYSYM values are 32-bit integers that encode the symbols on the keycaps of a keyboard. The
three most significant bits are always zero, which leaves a 29-bit number space. For convenience,
KEYSYM values can be viewed as split into four bytes:
• Byte 1 is the most significant eight bits (three zero bits and the most-significant five bits of

the 29-bit effective value)
• Byte 2 is the next most-significant eight bits
• Byte 3 is the next most-significant eight bits
• Byte 4 is the least-significant eight bits
There are six categories of KEYSYM values.

A.1 Special KEYSYMs
There are two special values: NoSymbol and VoidSymbol . They are used to indicate the
absence of symbols (see section 5).

Byte 1 Byte 2 Byte 3 Byte 4 Hex. value Name

0 0 0 0 #x00000000 NoSymbol
0 255 255 255 #x00FFFFFF VoidSymbol

A.2 Latin-1 KEYSYMs
The Latin-1 KEYSYMs occupy the range #x0020 to #x007E and #x00A0 to #00FF and represent
the ISO 10646 / Unicode characters U+0020 to U+007E and U+00A0 to U+00FF, respectively.

A.3 Unicode KEYSYMs
These occupy the range #x01000100 to #x0110FFFF and represent the ISO 10646 / Unicode
characters U+0100 to U+10FFFF, respectively. The numeric value of a Unicode KEYSYM is the
Unicode position of the corresponding character plus #x01000000. In the interest of backwards
compatibility, clients should be able to process both the Unicode KEYSYM and the Legacy
KEYSYM for those characters where both exist.
Dead keys, which place an accent on the next character entered, shall be encoded as Function
KEYSYMs, and not as the Unicode KEYSYM corresponding to an equivalent combining charac-
ter. Where a keycap indicates a specific function with a graphical symbol that is also available in
Unicode (e.g., an upwards arrow for the cursor up function), the appropriate Function KEYSYM
should be used, and not the Unicode KEYSYM corresponding to the depicted symbol.

A.4 Function KEYSYMs
These represent keycap symbols that do not directly represent elements of a coded character set.
Instead, they typically identify a software function, mode, or operation (e.g., cursor up, caps lock,
insert) that can be activated using a dedicated key. Function KEYSYMs have zero values for

90

X Protocol X11, Release 6.9/7.0

bytes 1 and 2. Byte 3 distinguishes between several 8-bit sets within which byte 4 identifies the
individual function key.

Byte 3 Byte 4

255 Keyboard
254 Keyboard (XKB) Extension
253 3270

Within a national market, keyboards tend to be comparatively standard with respect to the charac-
ter keys, but they can differ significantly on the miscellaneous function keys. Some have function
keys left over from early timesharing days, others were designed for a specific application, such
as text processing, web browsing, or accessing audiovisual data. The symbols on the keycaps can
differ significantly between manufacturers and national markets, even where they denote the same
software function (e.g., Ctrl in the U.S. versus Strg in Germany)
There are two ways of thinking about how to define KEYSYMs for such a world:
• The Engraving approach
• The Common approach
The Engraving approach is to create a KEYSYM for every unique key engraving. This is effec-
tively taking the union of all key engravings on all keyboards. For example, some keyboards label
function keys across the top as F1 through Fn, and others label them as PF1 through PFn. These
would be different keys under the Engraving approach. Likewise, Lock would differ from Shift
Lock, which is different from the up-arrow symbol that has the effect of changing lowercase to
uppercase. There are lots of other aliases such as Del, DEL, Delete, Remove, and so forth. The
Engraving approach makes it easy to decide if a new entry should be added to the KEYSYM set:
if it does not exactly match an existing one, then a new one is created.
The Common approach tries to capture all of the keys present on an interesting number of
keyboards, folding likely aliases into the same KEYSYM. For example, Del, DEL, and Delete are
all merged into a single KEYSYM. Vendors can augment the KEYSYM set (using the vendor-
specific encoding space) to include all of their unique keys that were not included in the standard
set. Each vendor decides which of its keys map into the standard KEYSYMs, which presumably
can be overridden by a user. It is more difficult to implement this approach, because judgment is
required about when a sufficient set of keyboards implements an engraving to justify making it a
KEYSYM in the standard set and about which engravings should be merged into a single
KEYSYM.
Although neither scheme is perfect or elegant, the Common approach has been selected because it
makes it easier to write a portable application. Having the Delete functionality merged into a sin-
gle KEYSYM allows an application to implement a deletion function and expect reasonable bind-
ings on a wide set of workstations. Under the Common approach, application writers are still free
to look for and interpret vendor-specific KEYSYMs, but because they are in the extended set, the
application developer is more conscious that they are writing the application in a nonportable
fashion.
The Keyboard set is a miscellaneous collection of commonly occurring keys on keyboards.
Within this set, the numeric keypad symbols are generally duplicates of symbols found on keys
on the main part of the keyboard, but they are distinguished here because they often have a distin-
guishable semantics associated with them.

91

X Protocol X11, Release 6.9/7.0

KEYSYM Name Set
value

#xFF08 BACKSPACE, BACK SPA CE, BACK CHAR Keyboard
#xFF09 TAB Keyboard
#xFF0A LINEFEED, LF Keyboard
#xFF0B CLEAR Ke yboard
#xFF0D RETURN, ENTER Keyboard
#xFF13 PAUSE, HOLD Ke yboard
#xFF14 SCROLL LOCK Ke yboard
#xFF15 SYS REQ, SYSTEM REQUEST Keyboard
#xFF1B ESCAPE Ke yboard
#xFF20 MULTI-KEY CHARACTER PREFACE Keyboard
#xFF21 KANJI, KANJI CONVERT Keyboard
#xFF22 MUHENKAN Ke yboard
#xFF23 HENKAN MODE Keyboard
#xFF24 ROMAJI Keyboard
#xFF25 HIRAGANA Keyboard
#xFF26 KATAKANA Keyboard
#xFF27 HIRAGANA/KATAKANA TOGGLE Keyboard
#xFF28 ZENKAKU Ke yboard
#xFF29 HANKAKU Ke yboard
#xFF2A ZENKAKU/HANKAKU TOGGLE Keyboard
#xFF2B TOUROKU Keyboard
#xFF2C MASSYO Keyboard
#xFF2D KANA LOCK Keyboard
#xFF2E KANA SHIFT Keyboard
#xFF2F EISU SHIFT Keyboard
#xFF30 EISU TOGGLE Keyboard
#xFF31 HANGUL START/STOP (TOGGLE) Keyboard
#xFF32 HANGUL START Keyboard
#xFF33 HANGUL END, ENGLISH START Keyboard
#xFF34 START HANGUL/HANJA CONVERSION Keyboard
#xFF35 HANGUL JAMO MODE Ke yboard
#xFF36 HANGUL ROMAJA MODE Keyboard
#xFF37 HANGUL CODE INPUT Ke yboard
#xFF38 HANGUL JEONJA MODE Keyboard
#xFF39 HANGUL BANJA MODE Keyboard
#xFF3A HANGUL PREHANJA CONVERSION Keyboard
#xFF3B HANGUL POSTHANJA CONVERSION Keyboard
#xFF3C HANGUL SINGLE CANDIDATE Keyboard
#xFF3D HANGUL MULTIPLE CANDIDATE Keyboard
#xFF3E HANGUL PREVIOUS CANDIDATE Keyboard
#xFF3F HANGUL SPECIAL SYMBOLS Ke yboard
#xFF50 HOME Ke yboard
#xFF51 LEFT, MOVE LEFT, LEFT ARROW Keyboard
#xFF52 UP, MOVE UP, UP ARROW Keyboard
#xFF53 RIGHT, MOVE RIGHT, RIGHT ARROW Keyboard
#xFF54 DOWN, MOVE DOWN, DOWN ARROW Keyboard
#xFF55 PRIOR, PREVIOUS, PAGE UP Keyboard
#xFF56 NEXT, PAGE DOWN Keyboard
#xFF57 END, EOL Keyboard
#xFF58 BEGIN, BOL Keyboard
#xFF60 SELECT, MARK Keyboard
#xFF61 PRINT Ke yboard
#xFF62 EXECUTE, RUN, DO Ke yboard
#xFF63 INSERT, INSERT HERE Keyboard
#xFF65 UNDO, OOPS Keyboard
#xFF66 REDO, AGAIN Keyboard
#xFF67 MENU Ke yboard
#xFF68 FIND, SEARCH Keyboard
#xFF69 CANCEL, STOP, ABORT, EXIT Keyboard
#xFF6A HELP Ke yboard

92

X Protocol X11, Release 6.9/7.0

KEYSYM Name Set
value

#xFF6B BREAK Ke yboard
#xFF7E MODE SWITCH, SCRIPT SWITCH, CHARACTER SET SWITCH Ke yboard
#xFF7F NUM LOCK Keyboard
#xFF80 KEYPAD SPACE Keyboard
#xFF89 KEYPAD TAB Keyboard
#xFF8D KEYPAD ENTER Ke yboard
#xFF91 KEYPAD F1, PF1, A Ke yboard
#xFF92 KEYPAD F2, PF2, B Ke yboard
#xFF93 KEYPAD F3, PF3, C Ke yboard
#xFF94 KEYPAD F4, PF4, D Ke yboard
#xFF95 KEYPAD HOME Ke yboard
#xFF96 KEYPAD LEFT Ke yboard
#xFF97 KEYPAD UP Ke yboard
#xFF98 KEYPAD RIGHT Ke yboard
#xFF99 KEYPAD DOWN Keyboard
#xFF9A KEYPAD PRIOR, PAGE UP Keyboard
#xFF9B KEYPAD NEXT, PAGE DOWN Keyboard
#xFF9C KEYPAD END Ke yboard
#xFF9D KEYPAD BEGIN Ke yboard
#xFF9E KEYPAD INSERT Keyboard
#xFF9F KEYPAD DELETE Ke yboard
#xFFAA KEYPAD MULTIPLICATION SIGN, ASTERISK Ke yboard
#xFFAB KEYPAD PLUS SIGN Ke yboard
#xFFAC KEYPAD SEPARATOR, COMMA Ke yboard
#xFFAD KEYPAD MINUS SIGN, HYPHEN Ke yboard
#xFFAE KEYPAD DECIMAL POINT, FULL STOP Keyboard
#xFFAF KEYPAD DIVISION SIGN, SOLIDUS Ke yboard
#xFFB0 KEYPAD DIGIT ZERO Keyboard
#xFFB1 KEYPAD DIGIT ONE Ke yboard
#xFFB2 KEYPAD DIGIT TWO Keyboard
#xFFB3 KEYPAD DIGIT THREE Ke yboard
#xFFB4 KEYPAD DIGIT FOUR Ke yboard
#xFFB5 KEYPAD DIGIT FIVE Ke yboard
#xFFB6 KEYPAD DIGIT SIX Ke yboard
#xFFB7 KEYPAD DIGIT SEVEN Ke yboard
#xFFB8 KEYPAD DIGIT EIGHT Ke yboard
#xFFB9 KEYPAD DIGIT NINE Ke yboard
#xFFBD KEYPAD EQUALS SIGN Ke yboard
#xFFBE F1 Ke yboard
#xFFBF F2 Ke yboard
#xFFC0 F3 Ke yboard
#xFFC1 F4 Ke yboard
#xFFC2 F5 Ke yboard
#xFFC3 F6 Ke yboard
#xFFC4 F7 Ke yboard
#xFFC5 F8 Ke yboard
#xFFC6 F9 Ke yboard
#xFFC7 F10 Ke yboard
#xFFC8 F11, L1 Keyboard
#xFFC9 F12, L2 Keyboard
#xFFCA F13, L3 Keyboard
#xFFCB F14, L4 Keyboard
#xFFCC F15, L5 Keyboard
#xFFCD F16, L6 Keyboard
#xFFCE F17, L7 Keyboard
#xFFCF F18, L8 Keyboard
#xFFD0 F19, L9 Keyboard
#xFFD1 F20, L10 Keyboard
#xFFD2 F21, R1 Keyboard
#xFFD3 F22, R2 Keyboard

93

X Protocol X11, Release 6.9/7.0

KEYSYM Name Set
value

#xFFD4 F23, R3 Keyboard
#xFFD5 F24, R4 Keyboard
#xFFD6 F25, R5 Keyboard
#xFFD7 F26, R6 Keyboard
#xFFD8 F27, R7 Keyboard
#xFFD9 F28, R8 Keyboard
#xFFDA F29, R9 Ke yboard
#xFFDB F30, R10 Keyboard
#xFFDC F31, R11 Keyboard
#xFFDD F32, R12 Keyboard
#xFFDE F33, R13 Keyboard
#xFFDF F34, R14 Keyboard
#xFFE0 F35, R15 Keyboard
#xFFE1 LEFT SHIFT Keyboard
#xFFE2 RIGHT SHIFT Keyboard
#xFFE3 LEFT CONTROL Keyboard
#xFFE4 RIGHT CONTROL Keyboard
#xFFE5 CAPS LOCK Keyboard
#xFFE6 SHIFT LOCK Keyboard
#xFFE7 LEFT META Keyboard
#xFFE8 RIGHT META Keyboard
#xFFE9 LEFT ALT Keyboard
#xFFEA RIGHT ALT Keyboard
#xFFEB LEFT SUPER Keyboard
#xFFEC RIGHT SUPER Keyboard
#xFFED LEFT HYPER Keyboard
#xFFEE RIGHT HYPER Keyboard
#xFFFF DELETE, RUBOUT Keyboard

The Keyboard (XKB) Extension set, which provides among other things a range of dead keys, is
defined in ‘‘The X Keyboard Extension: Protocol Specification’’, Appendix C.
The 3270 set defines additional keys that are specific to IBM 3270 terminals.

KEYSYM Name Set
value

#xFD01 3270 DUPLICATE 3270
#xFD02 3270 FIELDMARK 3270
#xFD03 3270 RIGHT2 3270
#xFD04 3270 LEFT2 3270
#xFD05 3270 BACKTAB 3270
#xFD06 3270 ERASEEOF 3270
#xFD07 3270 ERASEINPUT 3270
#xFD08 3270 RESET 3270
#xFD09 3270 QUIT 3270
#xFD0A 3270 PA1 3270
#xFD0B 3270 PA2 3270
#xFD0C 3270 PA3 3270
#xFD0D 3270 TEST 3270
#xFD0E 3270 ATTN 3270
#xFD0F 3270 CURSORBLINK 3270
#xFD10 3270 ALTCURSOR 3270
#xFD11 3270 KEYCLICK 3270
#xFD12 3270 JUMP 3270
#xFD13 3270 IDENT 3270
#xFD14 3270 RULE 3270
#xFD15 3270 COPY 3270

94

X Protocol X11, Release 6.9/7.0

KEYSYM Name Set
value

#xFD16 3270 PLAY 3270
#xFD17 3270 SETUP 3270
#xFD18 3270 RECORD 3270
#xFD19 3270 CHANGESCREEN 3270
#xFD1A 3270 DELETEWORD 3270
#xFD1B 3270 EXSELECT 3270
#xFD1C 3270 CURSORSELECT 3270
#xFD1D 3270 PRINTSCREEN 3270
#xFD1E 3270 ENTER 3270

A.5 Vendor KEYSYMs
The KEYSYM number range #x10000000 to #x1FFFFFFF is available for vendor-specific exten-
tions. Among these, the range #x11000000 to #x1100FFFF is designated for keypad KEYSYMs.

A.6 Legacy KEYSYMs
These date from the time before ISO 10646 / Unicode was available. They represent characters
from a number of different older 8-bit coded character sets and have zero values for bytes 1 and 2.
Byte 3 indicates a coded character set and byte 4 is the 8-bit value of the particular character
within that set.

Byte 3 Byte 4 Byte 3 Byte 4

1 Latin-2 11 APL
2 Latin-3 12 Hebrew
3 Latin-4 13 Thai
4 Kana 14 Korean
5 Arabic 15 Latin-5
6 Cyrillic 16 Latin-6
7 Greek 17 Latin-7
8 Technical 18 Latin-8
9 Special 19 Latin-9

10 Publishing 32 Currency

Each character set contains gaps where codes have been removed that were duplicates with codes
in previous character sets (that is, character sets with lesser byte 3 value).
The Latin, Arabic, Cyrillic, Greek, Hebrew, and Thai sets were taken from the early drafts of the
relevant ISO 8859 parts available at the time. However, in the case of the Cyrillic and Greek sets,
these turned out differently in the final versions of the ISO standard. The Technical, Special, and
Publishing sets are based on Digital Equipment Corporation standards, as no equivalent interna-
tional standards were available at the time.
The table below lists all standardized Legacy KEYSYMs, along with the name used in the source
document. Where there exists an unambiguous equivalent in Unicode, as it is the case with all
ISO 8859 characters, it is given in the second column as a cross reference. Where there is no Uni-
code number provided, the exact semantics of the KEYSYM may have been lost and a Unicode
KEYSYM should be used instead, if available.
As support of Unicode KEYSYMs increases, some or all of the Legacy KEYSYMs may be
phased out and withdrawn in future versions of this standard. Most KEYSYMs in the sets Techni-
cal, Special, Publishing, APL and Currency (with the exception of #x20AC) were probably never

95

X Protocol X11, Release 6.9/7.0

used in practice, and were not supported by pre-Unicode fonts. In particular, the Currency set,
which was copied from Unicode, has already been deprecated by the introduction of the Unicode
KEYSYMs.

KEYSYM Unicode Name Set
value value

#x01A1 U+0104 LATIN CAPITAL LETTER A WITH OGONEK Latin-2
#x01A2 U+02D8 BREVE Latin-2
#x01A3 U+0141 LATIN CAPITAL LETTER L WITH STROKE Latin-2
#x01A5 U+013D LATIN CAPITAL LETTER L WITH CARON Latin-2
#x01A6 U+015A LATIN CAPITAL LETTER S WITH ACUTE Latin-2
#x01A9 U+0160 LATIN CAPITAL LETTER S WITH CARON Latin-2
#x01AA U+015E LATIN CAPITAL LETTER S WITH CEDILLA Latin-2
#x01AB U+0164 LATIN CAPITAL LETTER T WITH CARON Latin-2
#x01AC U+0179 LATIN CAPITAL LETTER Z WITH ACUTE Latin-2
#x01AE U+017D LATIN CAPITAL LETTER Z WITH CARON Latin-2
#x01AF U+017B LATIN CAPITAL LETTER Z WITH DOT ABOVE Latin-2
#x01B1 U+0105 LATIN SMALL LETTER A WITH OGONEK Latin-2
#x01B2 U+02DB OGONEK Latin-2
#x01B3 U+0142 LATIN SMALL LETTER L WITH STROKE Latin-2
#x01B5 U+013E LATIN SMALL LETTER L WITH CARON Latin-2
#x01B6 U+015B LATIN SMALL LETTER S WITH ACUTE Latin-2
#x01B7 U+02C7 CARON Latin-2
#x01B9 U+0161 LATIN SMALL LETTER S WITH CARON Latin-2
#x01BA U+015F LATIN SMALL LETTER S WITH CEDILLA Latin-2
#x01BB U+0165 LATIN SMALL LETTER T WITH CARON Latin-2
#x01BC U+017A LATIN SMALL LETTER Z WITH ACUTE Latin-2
#x01BD U+02DD DOUBLE ACUTE ACCENT Latin-2
#x01BE U+017E LATIN SMALL LETTER Z WITH CARON Latin-2
#x01BF U+017C LATIN SMALL LETTER Z WITH DOT ABOVE Latin-2
#x01C0 U+0154 LATIN CAPITAL LETTER R WITH ACUTE Latin-2
#x01C3 U+0102 LATIN CAPITAL LETTER A WITH BREVE Latin-2
#x01C5 U+0139 LATIN CAPITAL LETTER L WITH ACUTE Latin-2
#x01C6 U+0106 LATIN CAPITAL LETTER C WITH ACUTE Latin-2
#x01C8 U+010C LATIN CAPITAL LETTER C WITH CARON Latin-2
#x01CA U+0118 LATIN CAPITAL LETTER E WITH OGONEK Latin-2
#x01CC U+011A LATIN CAPITAL LETTER E WITH CARON Latin-2
#x01CF U+010E LATIN CAPITAL LETTER D WITH CARON Latin-2
#x01D0 U+0110 LATIN CAPITAL LETTER D WITH STROKE Latin-2
#x01D1 U+0143 LATIN CAPITAL LETTER N WITH ACUTE Latin-2
#x01D2 U+0147 LATIN CAPITAL LETTER N WITH CARON Latin-2
#x01D5 U+0150 LATIN CAPITAL LETTER O WITH DOUBLE ACUTE Latin-2
#x01D8 U+0158 LATIN CAPITAL LETTER R WITH CARON Latin-2
#x01D9 U+016E LATIN CAPITAL LETTER U WITH RING ABOVE Latin-2
#x01DB U+0170 LATIN CAPITAL LETTER U WITH DOUBLE ACUTE Latin-2
#x01DE U+0162 LATIN CAPITAL LETTER T WITH CEDILLA Latin-2
#x01E0 U+0155 LATIN SMALL LETTER R WITH ACUTE Latin-2
#x01E3 U+0103 LATIN SMALL LETTER A WITH BREVE Latin-2
#x01E5 U+013A LATIN SMALL LETTER L WITH ACUTE Latin-2
#x01E6 U+0107 LATIN SMALL LETTER C WITH ACUTE Latin-2
#x01E8 U+010D LATIN SMALL LETTER C WITH CARON Latin-2
#x01EA U+0119 LATIN SMALL LETTER E WITH OGONEK Latin-2
#x01EC U+011B LATIN SMALL LETTER E WITH CARON Latin-2
#x01EF U+010F LATIN SMALL LETTER D WITH CARON Latin-2
#x01F0 U+0111 LATIN SMALL LETTER D WITH STROKE Latin-2
#x01F1 U+0144 LATIN SMALL LETTER N WITH ACUTE Latin-2
#x01F2 U+0148 LATIN SMALL LETTER N WITH CARON Latin-2
#x01F5 U+0151 LATIN SMALL LETTER O WITH DOUBLE ACUTE Latin-2
#x01F8 U+0159 LATIN SMALL LETTER R WITH CARON Latin-2
#x01F9 U+016F LATIN SMALL LETTER U WITH RING ABOVE Latin-2
#x01FB U+0171 LATIN SMALL LETTER U WITH DOUBLE ACUTE Latin-2

96

X Protocol X11, Release 6.9/7.0

KEYSYM Unicode Name Set
value value

#x01FE U+0163 LATIN SMALL LETTER T WITH CEDILLA Latin-2
#x01FF U+02D9 DOT ABOVE Latin-2

#x02A1 U+0126 LATIN CAPITAL LETTER H WITH STROKE Latin-3
#x02A6 U+0124 LATIN CAPITAL LETTER H WITH CIRCUMFLEX Latin-3
#x02A9 U+0130 LATIN CAPITAL LETTER I WITH DOT ABOVE Latin-3
#x02AB U+011E LATIN CAPITAL LETTER G WITH BREVE Latin-3
#x02AC U+0134 LATIN CAPITAL LETTER J WITH CIRCUMFLEX Latin-3
#x02B1 U+0127 LATIN SMALL LETTER H WITH STROKE Latin-3
#x02B6 U+0125 LATIN SMALL LETTER H WITH CIRCUMFLEX Latin-3
#x02B9 U+0131 LATIN SMALL LETTER DOTLESS I Latin-3
#x02BB U+011F LATIN SMALL LETTER G WITH BREVE Latin-3
#x02BC U+0135 LATIN SMALL LETTER J WITH CIRCUMFLEX Latin-3
#x02C5 U+010A LATIN CAPITAL LETTER C WITH DOT ABOVE Latin-3
#x02C6 U+0108 LATIN CAPITAL LETTER C WITH CIRCUMFLEX Latin-3
#x02D5 U+0120 LATIN CAPITAL LETTER G WITH DOT ABOVE Latin-3
#x02D8 U+011C LATIN CAPITAL LETTER G WITH CIRCUMFLEX Latin-3
#x02DD U+016C LATIN CAPITAL LETTER U WITH BREVE Latin-3
#x02DE U+015C LATIN CAPITAL LETTER S WITH CIRCUMFLEX Latin-3
#x02E5 U+010B LATIN SMALL LETTER C WITH DOT ABOVE Latin-3
#x02E6 U+0109 LATIN SMALL LETTER C WITH CIRCUMFLEX Latin-3
#x02F5 U+0121 LATIN SMALL LETTER G WITH DOT ABOVE Latin-3
#x02F8 U+011D LATIN SMALL LETTER G WITH CIRCUMFLEX Latin-3
#x02FD U+016D LATIN SMALL LETTER U WITH BREVE Latin-3
#x02FE U+015D LATIN SMALL LETTER S WITH CIRCUMFLEX Latin-3

#x03A2 U+0138 LATIN SMALL LETTER KRA Latin-4
#x03A3 U+0156 LATIN CAPITAL LETTER R WITH CEDILLA Latin-4
#x03A5 U+0128 LATIN CAPITAL LETTER I WITH TILDE Latin-4
#x03A6 U+013B LATIN CAPITAL LETTER L WITH CEDILLA Latin-4
#x03AA U+0112 LATIN CAPITAL LETTER E WITH MACRON Latin-4
#x03AB U+0122 LATIN CAPITAL LETTER G WITH CEDILLA Latin-4
#x03AC U+0166 LATIN CAPITAL LETTER T WITH STROKE Latin-4
#x03B3 U+0157 LATIN SMALL LETTER R WITH CEDILLA Latin-4
#x03B5 U+0129 LATIN SMALL LETTER I WITH TILDE Latin-4
#x03B6 U+013C LATIN SMALL LETTER L WITH CEDILLA Latin-4
#x03BA U+0113 LATIN SMALL LETTER E WITH MACRON Latin-4
#x03BB U+0123 LATIN SMALL LETTER G WITH CEDILLA Latin-4
#x03BC U+0167 LATIN SMALL LETTER T WITH STROKE Latin-4
#x03BD U+014A LATIN CAPITAL LETTER ENG Latin-4
#x03BF U+014B LATIN SMALL LETTER ENG Latin-4
#x03C0 U+0100 LATIN CAPITAL LETTER A WITH MACRON Latin-4
#x03C7 U+012E LATIN CAPITAL LETTER I WITH OGONEK Latin-4
#x03CC U+0116 LATIN CAPITAL LETTER E WITH DOT ABOVE Latin-4
#x03CF U+012A LATIN CAPITAL LETTER I WITH MACRON Latin-4
#x03D1 U+0145 LATIN CAPITAL LETTER N WITH CEDILLA Latin-4
#x03D2 U+014C LATIN CAPITAL LETTER O WITH MACRON Latin-4
#x03D3 U+0136 LATIN CAPITAL LETTER K WITH CEDILLA Latin-4
#x03D9 U+0172 LATIN CAPITAL LETTER U WITH OGONEK Latin-4
#x03DD U+0168 LATIN CAPITAL LETTER U WITH TILDE Latin-4
#x03DE U+016A LATIN CAPITAL LETTER U WITH MACRON Latin-4
#x03E0 U+0101 LATIN SMALL LETTER A WITH MACRON Latin-4
#x03E7 U+012F LATIN SMALL LETTER I WITH OGONEK Latin-4
#x03EC U+0117 LATIN SMALL LETTER E WITH DOT ABOVE Latin-4
#x03EF U+012B LATIN SMALL LETTER I WITH MACRON Latin-4
#x03F1 U+0146 LATIN SMALL LETTER N WITH CEDILLA Latin-4
#x03F2 U+014D LATIN SMALL LETTER O WITH MACRON Latin-4
#x03F3 U+0137 LATIN SMALL LETTER K WITH CEDILLA Latin-4

97

X Protocol X11, Release 6.9/7.0

KEYSYM Unicode Name Set
value value

#x03F9 U+0173 LATIN SMALL LETTER U WITH OGONEK Latin-4
#x03FD U+0169 LATIN SMALL LETTER U WITH TILDE Latin-4
#x03FE U+016B LATIN SMALL LETTER U WITH MACRON Latin-4

#x047E U+203E OVERLINE Kana
#x04A1 U+3002 KANA FULL STOP Kana
#x04A2 U+300C KANA OPENING BRACKET Kana
#x04A3 U+300D KANA CLOSING BRACKET Kana
#x04A4 U+3001 KANA COMMA Kana
#x04A5 U+30FB KANA CONJUNCTIVE Kana
#x04A6 U+30F2 KANA LETTER WO Kana
#x04A7 U+30A1 KANA LETTER SMALL A Kana
#x04A8 U+30A3 KANA LETTER SMALL I Kana
#x04A9 U+30A5 KANA LETTER SMALL U Kana
#x04AA U+30A7 KANA LETTER SMALL E Kana
#x04AB U+30A9 KANA LETTER SMALL O Kana
#x04AC U+30E3 KANA LETTER SMALL YA Kana
#x04AD U+30E5 KANA LETTER SMALL YU Kana
#x04AE U+30E7 KANA LETTER SMALL YO Kana
#x04AF U+30C3 KANA LETTER SMALL TSU Kana
#x04B0 U+30FC PROLONGED SOUND SYMBOL Kana
#x04B1 U+30A2 KANA LETTER A Kana
#x04B2 U+30A4 KANA LETTER I Kana
#x04B3 U+30A6 KANA LETTER U Kana
#x04B4 U+30A8 KANA LETTER E Kana
#x04B5 U+30AA KANA LETTER O Kana
#x04B6 U+30AB KANA LETTER KA Kana
#x04B7 U+30AD KANA LETTER KI Kana
#x04B8 U+30AF KANA LETTER KU Kana
#x04B9 U+30B1 KANA LETTER KE Kana
#x04BA U+30B3 KANA LETTER KO Kana
#x04BB U+30B5 KANA LETTER SA Kana
#x04BC U+30B7 KANA LETTER SHI Kana
#x04BD U+30B9 KANA LETTER SU Kana
#x04BE U+30BB KANA LETTER SE Kana
#x04BF U+30BD KANA LETTER SO Kana
#x04C0 U+30BF KANA LETTER TA Kana
#x04C1 U+30C1 KANA LETTER CHI Kana
#x04C2 U+30C4 KANA LETTER TSU Kana
#x04C3 U+30C6 KANA LETTER TE Kana
#x04C4 U+30C8 KANA LETTER TO Kana
#x04C5 U+30CA KANA LETTER NA Kana
#x04C6 U+30CB KANA LETTER NI Kana
#x04C7 U+30CC KANA LETTER NU Kana
#x04C8 U+30CD KANA LETTER NE Kana
#x04C9 U+30CE KANA LETTER NO Kana
#x04CA U+30CF KANA LETTER HA Kana
#x04CB U+30D2 KANA LETTER HI Kana
#x04CC U+30D5 KANA LETTER FU Kana
#x04CD U+30D8 KANA LETTER HE Kana
#x04CE U+30DB KANA LETTER HO Kana
#x04CF U+30DE KANA LETTER MA Kana
#x04D0 U+30DF KANA LETTER MI Kana
#x04D1 U+30E0 KANA LETTER MU Kana
#x04D2 U+30E1 KANA LETTER ME Kana
#x04D3 U+30E2 KANA LETTER MO Kana
#x04D4 U+30E4 KANA LETTER YA Kana
#x04D5 U+30E6 KANA LETTER YU Kana
#x04D6 U+30E8 KANA LETTER YO Kana

98

X Protocol X11, Release 6.9/7.0

KEYSYM Unicode Name Set
value value

#x04D7 U+30E9 KANA LETTER RA Kana
#x04D8 U+30EA KANA LETTER RI Kana
#x04D9 U+30EB KANA LETTER RU Kana
#x04DA U+30EC KANA LETTER RE Kana
#x04DB U+30ED KANA LETTER RO Kana
#x04DC U+30EF KANA LETTER WA Kana
#x04DD U+30F3 KANA LETTER N Kana
#x04DE U+309B VOICED SOUND SYMBOL Kana
#x04DF U+309C SEMIVOICED SOUND SYMBOL Kana

#x05AC U+060C ARABIC COMMA Arabic
#x05BB U+061B ARABIC SEMICOLON Arabic
#x05BF U+061F ARABIC QUESTION MARK Arabic
#x05C1 U+0621 ARABIC LETTER HAMZA Arabic
#x05C2 U+0622 ARABIC LETTER ALEF WITH MADDA ABOVE Arabic
#x05C3 U+0623 ARABIC LETTER ALEF WITH HAMZA ABOVE Arabic
#x05C4 U+0624 ARABIC LETTER WAW WITH HAMZA ABOVE Arabic
#x05C5 U+0625 ARABIC LETTER ALEF WITH HAMZA BELOW Arabic
#x05C6 U+0626 ARABIC LETTER YEH WITH HAMZA ABOVE Arabic
#x05C7 U+0627 ARABIC LETTER ALEF Arabic
#x05C8 U+0628 ARABIC LETTER BEH Arabic
#x05C9 U+0629 ARABIC LETTER TEH MARBUTA Arabic
#x05CA U+062A ARABIC LETTER TEH Arabic
#x05CB U+062B ARABIC LETTER THEH Arabic
#x05CC U+062C ARABIC LETTER JEEM Arabic
#x05CD U+062D ARABIC LETTER HAH Arabic
#x05CE U+062E ARABIC LETTER KHAH Arabic
#x05CF U+062F ARABIC LETTER DAL Arabic
#x05D0 U+0630 ARABIC LETTER THAL Arabic
#x05D1 U+0631 ARABIC LETTER REH Arabic
#x05D2 U+0632 ARABIC LETTER ZAIN Arabic
#x05D3 U+0633 ARABIC LETTER SEEN Arabic
#x05D4 U+0634 ARABIC LETTER SHEEN Arabic
#x05D5 U+0635 ARABIC LETTER SAD Arabic
#x05D6 U+0636 ARABIC LETTER DAD Arabic
#x05D7 U+0637 ARABIC LETTER TAH Arabic
#x05D8 U+0638 ARABIC LETTER ZAH Arabic
#x05D9 U+0639 ARABIC LETTER AIN Arabic
#x05DA U+063A ARABIC LETTER GHAIN Arabic
#x05E0 U+0640 ARABIC TATWEEL Arabic
#x05E1 U+0641 ARABIC LETTER FEH Arabic
#x05E2 U+0642 ARABIC LETTER QAF Arabic
#x05E3 U+0643 ARABIC LETTER KAF Arabic
#x05E4 U+0644 ARABIC LETTER LAM Arabic
#x05E5 U+0645 ARABIC LETTER MEEM Arabic
#x05E6 U+0646 ARABIC LETTER NOON Arabic
#x05E7 U+0647 ARABIC LETTER HEH Arabic
#x05E8 U+0648 ARABIC LETTER WAW Arabic
#x05E9 U+0649 ARABIC LETTER ALEF MAKSURA Arabic
#x05EA U+064A ARABIC LETTER YEH Arabic
#x05EB U+064B ARABIC FATHATAN Arabic
#x05EC U+064C ARABIC DAMMATAN Arabic
#x05ED U+064D ARABIC KASRATAN Arabic
#x05EE U+064E ARABIC FATHA Arabic
#x05EF U+064F ARABIC DAMMA Arabic
#x05F0 U+0650 ARABIC KASRA Arabic
#x05F1 U+0651 ARABIC SHADDA Arabic
#x05F2 U+0652 ARABIC SUKUN Arabic

99

X Protocol X11, Release 6.9/7.0

KEYSYM Unicode Name Set
value value

#x06A1 U+0452 CYRILLIC SMALL LETTER DJE Cyrillic
#x06A2 U+0453 CYRILLIC SMALL LETTER GJE Cyrillic
#x06A3 U+0451 CYRILLIC SMALL LETTER IO Cyrillic
#x06A4 U+0454 CYRILLIC SMALL LETTER UKRAINIAN IE Cyrillic
#x06A5 U+0455 CYRILLIC SMALL LETTER DZE Cyrillic
#x06A6 U+0456 CYRILLIC SMALL LETTER BYELORUSSIAN-UKRAINIAN I Cyrillic
#x06A7 U+0457 CYRILLIC SMALL LETTER YI Cyrillic
#x06A8 U+0458 CYRILLIC SMALL LETTER JE Cyrillic
#x06A9 U+0459 CYRILLIC SMALL LETTER LJE Cyrillic
#x06AA U+045A CYRILLIC SMALL LETTER NJE Cyrillic
#x06AB U+045B CYRILLIC SMALL LETTER TSHE Cyrillic
#x06AC U+045C CYRILLIC SMALL LETTER KJE Cyrillic
#x06AD U+0491 CYRILLIC SMALL LETTER GHE WITH UPTURN Cyrillic
#x06AE U+045E CYRILLIC SMALL LETTER SHORT U Cyrillic
#x06AF U+045F CYRILLIC SMALL LETTER DZHE Cyrillic
#x06B0 U+2116 NUMERO SIGN Cyrillic
#x06B1 U+0402 CYRILLIC CAPITAL LETTER DJE Cyrillic
#x06B2 U+0403 CYRILLIC CAPITAL LETTER GJE Cyrillic
#x06B3 U+0401 CYRILLIC CAPITAL LETTER IO Cyrillic
#x06B4 U+0404 CYRILLIC CAPITAL LETTER UKRAINIAN IE Cyrillic
#x06B5 U+0405 CYRILLIC CAPITAL LETTER DZE Cyrillic
#x06B6 U+0406 CYRILLIC CAPITAL LETTER BYELORUSSIAN-UKRAINIAN I Cyrillic
#x06B7 U+0407 CYRILLIC CAPITAL LETTER YI Cyrillic
#x06B8 U+0408 CYRILLIC CAPITAL LETTER JE Cyrillic
#x06B9 U+0409 CYRILLIC CAPITAL LETTER LJE Cyrillic
#x06BA U+040A CYRILLIC CAPITAL LETTER NJE Cyrillic
#x06BB U+040B CYRILLIC CAPITAL LETTER TSHE Cyrillic
#x06BC U+040C CYRILLIC CAPITAL LETTER KJE Cyrillic
#x06BD U+0490 CYRILLIC CAPITAL LETTER GHE WITH UPTURN Cyrillic
#x06BE U+040E CYRILLIC CAPITAL LETTER SHORT U Cyrillic
#x06BF U+040F CYRILLIC CAPITAL LETTER DZHE Cyrillic
#x06C0 U+044E CYRILLIC SMALL LETTER YU Cyrillic
#x06C1 U+0430 CYRILLIC SMALL LETTER A Cyrillic
#x06C2 U+0431 CYRILLIC SMALL LETTER BE Cyrillic
#x06C3 U+0446 CYRILLIC SMALL LETTER TSE Cyrillic
#x06C4 U+0434 CYRILLIC SMALL LETTER DE Cyrillic
#x06C5 U+0435 CYRILLIC SMALL LETTER IE Cyrillic
#x06C6 U+0444 CYRILLIC SMALL LETTER EF Cyrillic
#x06C7 U+0433 CYRILLIC SMALL LETTER GHE Cyrillic
#x06C8 U+0445 CYRILLIC SMALL LETTER HA Cyrillic
#x06C9 U+0438 CYRILLIC SMALL LETTER I Cyrillic
#x06CA U+0439 CYRILLIC SMALL LETTER SHORT I Cyrillic
#x06CB U+043A CYRILLIC SMALL LETTER KA Cyrillic
#x06CC U+043B CYRILLIC SMALL LETTER EL Cyrillic
#x06CD U+043C CYRILLIC SMALL LETTER EM Cyrillic
#x06CE U+043D CYRILLIC SMALL LETTER EN Cyrillic
#x06CF U+043E CYRILLIC SMALL LETTER O Cyrillic
#x06D0 U+043F CYRILLIC SMALL LETTER PE Cyrillic
#x06D1 U+044F CYRILLIC SMALL LETTER YA Cyrillic
#x06D2 U+0440 CYRILLIC SMALL LETTER ER Cyrillic
#x06D3 U+0441 CYRILLIC SMALL LETTER ES Cyrillic
#x06D4 U+0442 CYRILLIC SMALL LETTER TE Cyrillic
#x06D5 U+0443 CYRILLIC SMALL LETTER U Cyrillic
#x06D6 U+0436 CYRILLIC SMALL LETTER ZHE Cyrillic
#x06D7 U+0432 CYRILLIC SMALL LETTER VE Cyrillic
#x06D8 U+044C CYRILLIC SMALL LETTER SOFT SIGN Cyrillic
#x06D9 U+044B CYRILLIC SMALL LETTER YERU Cyrillic
#x06DA U+0437 CYRILLIC SMALL LETTER ZE Cyrillic
#x06DB U+0448 CYRILLIC SMALL LETTER SHA Cyrillic
#x06DC U+044D CYRILLIC SMALL LETTER E Cyrillic

100

X Protocol X11, Release 6.9/7.0

KEYSYM Unicode Name Set
value value

#x06DD U+0449 CYRILLIC SMALL LETTER SHCHA Cyrillic
#x06DE U+0447 CYRILLIC SMALL LETTER CHE Cyrillic
#x06DF U+044A CYRILLIC SMALL LETTER HARD SIGN Cyrillic
#x06E0 U+042E CYRILLIC CAPITAL LETTER YU Cyrillic
#x06E1 U+0410 CYRILLIC CAPITAL LETTER A Cyrillic
#x06E2 U+0411 CYRILLIC CAPITAL LETTER BE Cyrillic
#x06E3 U+0426 CYRILLIC CAPITAL LETTER TSE Cyrillic
#x06E4 U+0414 CYRILLIC CAPITAL LETTER DE Cyrillic
#x06E5 U+0415 CYRILLIC CAPITAL LETTER IE Cyrillic
#x06E6 U+0424 CYRILLIC CAPITAL LETTER EF Cyrillic
#x06E7 U+0413 CYRILLIC CAPITAL LETTER GHE Cyrillic
#x06E8 U+0425 CYRILLIC CAPITAL LETTER HA Cyrillic
#x06E9 U+0418 CYRILLIC CAPITAL LETTER I Cyrillic
#x06EA U+0419 CYRILLIC CAPITAL LETTER SHORT I Cyrillic
#x06EB U+041A CYRILLIC CAPITAL LETTER KA Cyrillic
#x06EC U+041B CYRILLIC CAPITAL LETTER EL Cyrillic
#x06ED U+041C CYRILLIC CAPITAL LETTER EM Cyrillic
#x06EE U+041D CYRILLIC CAPITAL LETTER EN Cyrillic
#x06EF U+041E CYRILLIC CAPITAL LETTER O Cyrillic
#x06F0 U+041F CYRILLIC CAPITAL LETTER PE Cyrillic
#x06F1 U+042F CYRILLIC CAPITAL LETTER YA Cyrillic
#x06F2 U+0420 CYRILLIC CAPITAL LETTER ER Cyrillic
#x06F3 U+0421 CYRILLIC CAPITAL LETTER ES Cyrillic
#x06F4 U+0422 CYRILLIC CAPITAL LETTER TE Cyrillic
#x06F5 U+0423 CYRILLIC CAPITAL LETTER U Cyrillic
#x06F6 U+0416 CYRILLIC CAPITAL LETTER ZHE Cyrillic
#x06F7 U+0412 CYRILLIC CAPITAL LETTER VE Cyrillic
#x06F8 U+042C CYRILLIC CAPITAL LETTER SOFT SIGN Cyrillic
#x06F9 U+042B CYRILLIC CAPITAL LETTER YERU Cyrillic
#x06FA U+0417 CYRILLIC CAPITAL LETTER ZE Cyrillic
#x06FB U+0428 CYRILLIC CAPITAL LETTER SHA Cyrillic
#x06FC U+042D CYRILLIC CAPITAL LETTER E Cyrillic
#x06FD U+0429 CYRILLIC CAPITAL LETTER SHCHA Cyrillic
#x06FE U+0427 CYRILLIC CAPITAL LETTER CHE Cyrillic
#x06FF U+042A CYRILLIC CAPITAL LETTER HARD SIGN Cyrillic

#x07A1 U+0386 GREEK CAPITAL LETTER ALPHA WITH TONOS Greek
#x07A2 U+0388 GREEK CAPITAL LETTER EPSILON WITH TONOS Greek
#x07A3 U+0389 GREEK CAPITAL LETTER ETA WITH TONOS Greek
#x07A4 U+038A GREEK CAPITAL LETTER IOTA WITH TONOS Greek
#x07A5 U+03AA GREEK CAPITAL LETTER IOTA WITH DIALYTIKA Greek
#x07A7 U+038C GREEK CAPITAL LETTER OMICRON WITH TONOS Greek
#x07A8 U+038E GREEK CAPITAL LETTER UPSILON WITH TONOS Greek
#x07A9 U+03AB GREEK CAPITAL LETTER UPSILON WITH DIALYTIKA Greek
#x07AB U+038F GREEK CAPITAL LETTER OMEGA WITH TONOS Greek
#x07AE U+0385 GREEK DIALYTIKA TONOS Greek
#x07AF U+2015 HORIZONTAL BAR Greek
#x07B1 U+03AC GREEK SMALL LETTER ALPHA WITH TONOS Greek
#x07B2 U+03AD GREEK SMALL LETTER EPSILON WITH TONOS Greek
#x07B3 U+03AE GREEK SMALL LETTER ETA WITH TONOS Greek
#x07B4 U+03AF GREEK SMALL LETTER IOTA WITH TONOS Greek
#x07B5 U+03CA GREEK SMALL LETTER IOTA WITH DIALYTIKA Greek
#x07B6 U+0390 GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS Greek
#x07B7 U+03CC GREEK SMALL LETTER OMICRON WITH TONOS Greek
#x07B8 U+03CD GREEK SMALL LETTER UPSILON WITH TONOS Greek
#x07B9 U+03CB GREEK SMALL LETTER UPSILON WITH DIALYTIKA Greek
#x07BA U+03B0 GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS Greek
#x07BB U+03CE GREEK SMALL LETTER OMEGA WITH TONOS Greek
#x07C1 U+0391 GREEK CAPITAL LETTER ALPHA Greek

101

X Protocol X11, Release 6.9/7.0

KEYSYM Unicode Name Set
value value

#x07C2 U+0392 GREEK CAPITAL LETTER BETA Greek
#x07C3 U+0393 GREEK CAPITAL LETTER GAMMA Greek
#x07C4 U+0394 GREEK CAPITAL LETTER DELTA Greek
#x07C5 U+0395 GREEK CAPITAL LETTER EPSILON Greek
#x07C6 U+0396 GREEK CAPITAL LETTER ZETA Greek
#x07C7 U+0397 GREEK CAPITAL LETTER ETA Greek
#x07C8 U+0398 GREEK CAPITAL LETTER THETA Greek
#x07C9 U+0399 GREEK CAPITAL LETTER IOTA Greek
#x07CA U+039A GREEK CAPITAL LETTER KAPPA Greek
#x07CB U+039B GREEK CAPITAL LETTER LAMDA Greek
#x07CC U+039C GREEK CAPITAL LETTER MU Greek
#x07CD U+039D GREEK CAPITAL LETTER NU Greek
#x07CE U+039E GREEK CAPITAL LETTER XI Greek
#x07CF U+039F GREEK CAPITAL LETTER OMICRON Greek
#x07D0 U+03A0 GREEK CAPITAL LETTER PI Greek
#x07D1 U+03A1 GREEK CAPITAL LETTER RHO Greek
#x07D2 U+03A3 GREEK CAPITAL LETTER SIGMA Greek
#x07D4 U+03A4 GREEK CAPITAL LETTER TAU Greek
#x07D5 U+03A5 GREEK CAPITAL LETTER UPSILON Greek
#x07D6 U+03A6 GREEK CAPITAL LETTER PHI Greek
#x07D7 U+03A7 GREEK CAPITAL LETTER CHI Greek
#x07D8 U+03A8 GREEK CAPITAL LETTER PSI Greek
#x07D9 U+03A9 GREEK CAPITAL LETTER OMEGA Greek
#x07E1 U+03B1 GREEK SMALL LETTER ALPHA Greek
#x07E2 U+03B2 GREEK SMALL LETTER BETA Greek
#x07E3 U+03B3 GREEK SMALL LETTER GAMMA Greek
#x07E4 U+03B4 GREEK SMALL LETTER DELTA Greek
#x07E5 U+03B5 GREEK SMALL LETTER EPSILON Greek
#x07E6 U+03B6 GREEK SMALL LETTER ZETA Greek
#x07E7 U+03B7 GREEK SMALL LETTER ETA Greek
#x07E8 U+03B8 GREEK SMALL LETTER THETA Greek
#x07E9 U+03B9 GREEK SMALL LETTER IOTA Greek
#x07EA U+03BA GREEK SMALL LETTER KAPPA Greek
#x07EB U+03BB GREEK SMALL LETTER LAMDA Greek
#x07EC U+03BC GREEK SMALL LETTER MU Greek
#x07ED U+03BD GREEK SMALL LETTER NU Greek
#x07EE U+03BE GREEK SMALL LETTER XI Greek
#x07EF U+03BF GREEK SMALL LETTER OMICRON Greek
#x07F0 U+03C0 GREEK SMALL LETTER PI Greek
#x07F1 U+03C1 GREEK SMALL LETTER RHO Greek
#x07F2 U+03C3 GREEK SMALL LETTER SIGMA Greek
#x07F3 U+03C2 GREEK SMALL LETTER FINAL SIGMA Greek
#x07F4 U+03C4 GREEK SMALL LETTER TAU Greek
#x07F5 U+03C5 GREEK SMALL LETTER UPSILON Greek
#x07F6 U+03C6 GREEK SMALL LETTER PHI Greek
#x07F7 U+03C7 GREEK SMALL LETTER CHI Greek
#x07F8 U+03C8 GREEK SMALL LETTER PSI Greek
#x07F9 U+03C9 GREEK SMALL LETTER OMEGA Greek

#x08A1 U+23B7 LEFT RADICAL Technical
#x08A2 − TOP LEFT RADICAL Technical
#x08A3 − HORIZONTAL CONNECTOR Technical
#x08A4 U+2320 TOP INTEGRAL Technical
#x08A5 U+2321 BOTTOM INTEGRAL Technical
#x08A6 − VERTICAL CONNECTOR Technical
#x08A7 U+23A1 TOP LEFT SQUARE BRACKET Technical
#x08A8 U+23A3 BOTTOM LEFT SQUARE BRACKET Technical
#x08A9 U+23A4 TOP RIGHT SQUARE BRACKET Technical
#x08AA U+23A6 BOTTOM RIGHT SQUARE BRACKET Technical

102

X Protocol X11, Release 6.9/7.0

KEYSYM Unicode Name Set
value value

#x08AB U+239B TOP LEFT PARENTHESIS Technical
#x08AC U+239D BOTTOM LEFT PARENTHESIS Technical
#x08AD U+239E TOP RIGHT PARENTHESIS Technical
#x08AE U+23A0 BOTTOM RIGHT PARENTHESIS Technical
#x08AF U+23A8 LEFT MIDDLE CURLY BRACE Technical
#x08B0 U+23AC RIGHT MIDDLE CURLY BRACE Technical
#x08B1 − TOP LEFT SUMMATION Technical
#x08B2 − BOTTOM LEFT SUMMATION Technical
#x08B3 − TOP VERTICAL SUMMATION CONNECTOR Technical
#x08B4 − BOTTOM VERTICAL SUMMATION CONNECTOR Technical
#x08B5 − TOP RIGHT SUMMATION Technical
#x08B6 − BOTTOM RIGHT SUMMATION Technical
#x08B7 − RIGHT MIDDLE SUMMATION Technical
#x08BC U+2264 LESS THAN OR EQUAL SIGN Technical
#x08BD U+2260 NOT EQUAL SIGN Technical
#x08BE U+2265 GREATER THAN OR EQUAL SIGN Technical
#x08BF U+222B INTEGRAL Technical
#x08C0 U+2234 THEREFORE Technical
#x08C1 U+221D VARIATION, PROPORTIONAL TO Technical
#x08C2 U+221E INFINITY Technical
#x08C5 U+2207 NABLA, DEL Technical
#x08C8 U+223C IS APPROXIMATE TO Technical
#x08C9 U+2243 SIMILAR OR EQUAL TO Technical
#x08CD U+21D4 IF AND ONLY IF Technical
#x08CE U+21D2 IMPLIES Technical
#x08CF U+2261 IDENTICAL TO Technical
#x08D6 U+221A RADICAL Technical
#x08DA U+2282 IS INCLUDED IN Technical
#x08DB U+2283 INCLUDES Technical
#x08DC U+2229 INTERSECTION Technical
#x08DD U+222A UNION Technical
#x08DE U+2227 LOGICAL AND Technical
#x08DF U+2228 LOGICAL OR Technical
#x08EF U+2202 PARTIAL DERIVATIVE Technical
#x08F6 U+0192 FUNCTION Technical
#x08FB U+2190 LEFT ARROW Technical
#x08FC U+2191 UPWARD ARROW Technical
#x08FD U+2192 RIGHT ARROW Technical
#x08FE U+2193 DOWNWARD ARROW Technical

#x09DF − BLANK Special
#x09E0 U+25C6 SOLID DIAMOND Special
#x09E1 U+2592 CHECKERBOARD Special
#x09E2 U+2409 ‘‘HT’’ Special
#x09E3 U+240C ‘‘FF’’ Special
#x09E4 U+240D ‘‘CR’’ Special
#x09E5 U+240A ‘‘LF’’ Special
#x09E8 U+2424 ‘‘NL’’ Special
#x09E9 U+240B ‘‘VT’’ Special
#x09EA U+2518 LOWER-RIGHT CORNER Special
#x09EB U+2510 UPPER-RIGHT CORNER Special
#x09EC U+250C UPPER-LEFT CORNER Special
#x09ED U+2514 LOWER-LEFT CORNER Special
#x09EE U+253C CROSSING-LINES Special
#x09EF U+23BA HORIZONTAL LINE, SCAN 1 Special
#x09F0 U+23BB HORIZONTAL LINE, SCAN 3 Special
#x09F1 U+2500 HORIZONTAL LINE, SCAN 5 Special
#x09F2 U+23BC HORIZONTAL LINE, SCAN 7 Special
#x09F3 U+23BD HORIZONTAL LINE, SCAN 9 Special

103

X Protocol X11, Release 6.9/7.0

KEYSYM Unicode Name Set
value value

#x09F4 U+251C LEFT ‘‘T’’ Special
#x09F5 U+2524 RIGHT ‘‘T’’ Special
#x09F6 U+2534 BOTTOM ‘‘T’’ Special
#x09F7 U+252C TOP ‘‘T’’ Special
#x09F8 U+2502 VERTICAL BAR Special

#x0AA1 U+2003 EM SPACE Publish
#x0AA2 U+2002 EN SPACE Publish
#x0AA3 U+2004 3/EM SPACE Publish
#x0AA4 U+2005 4/EM SPACE Publish
#x0AA5 U+2007 DIGIT SPACE Publish
#x0AA6 U+2008 PUNCTUATION SPACE Publish
#x0AA7 U+2009 THIN SPACE Publish
#x0AA8 U+200A HAIR SPACE Publish
#x0AA9 U+2014 EM DASH Publish
#x0AAA U+2013 EN DASH Publish
#x0AAC − SIGNIFICANT BLANK SYMBOL Publish
#x0AAE U+2026 ELLIPSIS Publish
#x0AAF U+2025 DOUBLE BASELINE DOT Publish
#x0AB0 U+2153 VULGAR FRACTION ONE THIRD Publish
#x0AB1 U+2154 VULGAR FRACTION TWO THIRDS Publish
#x0AB2 U+2155 VULGAR FRACTION ONE FIFTH Publish
#x0AB3 U+2156 VULGAR FRACTION TWO FIFTHS Publish
#x0AB4 U+2157 VULGAR FRACTION THREE FIFTHS Publish
#x0AB5 U+2158 VULGAR FRACTION FOUR FIFTHS Publish
#x0AB6 U+2159 VULGAR FRACTION ONE SIXTH Publish
#x0AB7 U+215A VULGAR FRACTION FIVE SIXTHS Publish
#x0AB8 U+2105 CARE OF Publish
#x0ABB U+2012 FIGURE DASH Publish
#x0ABC − LEFT ANGLE BRACKET Publish
#x0ABD − DECIMAL POINT Publish
#x0ABE − RIGHT ANGLE BRACKET Publish
#x0ABF − MARKER Publish
#x0AC3 U+215B VULGAR FRACTION ONE EIGHTH Publish
#x0AC4 U+215C VULGAR FRACTION THREE EIGHTHS Publish
#x0AC5 U+215D VULGAR FRACTION FIVE EIGHTHS Publish
#x0AC6 U+215E VULGAR FRACTION SEVEN EIGHTHS Publish
#x0AC9 U+2122 TRADEMARK SIGN Publish
#x0ACA − SIGNATURE MARK Publish
#x0ACB − TRADEMARK SIGN IN CIRCLE Publish
#x0ACC − LEFT OPEN TRIANGLE Publish
#x0ACD − RIGHT OPEN TRIANGLE Publish
#x0ACE − EM OPEN CIRCLE Publish
#x0ACF − EM OPEN RECTANGLE Publish
#x0AD0 U+2018 LEFT SINGLE QUOTATION MARK Publish
#x0AD1 U+2019 RIGHT SINGLE QUOTATION MARK Publish
#x0AD2 U+201C LEFT DOUBLE QUOTATION MARK Publish
#x0AD3 U+201D RIGHT DOUBLE QUOTATION MARK Publish
#x0AD4 U+211E PRESCRIPTION, TAKE, RECIPE Publish
#x0AD6 U+2032 MINUTES Publish
#x0AD7 U+2033 SECONDS Publish
#x0AD9 U+271D LATIN CROSS Publish
#x0ADA − HEXAGRAM Publish
#x0ADB − FILLED RECTANGLE BULLET Publish
#x0ADC − FILLED LEFT TRIANGLE BULLET Publish
#x0ADD − FILLED RIGHT TRIANGLE BULLET Publish
#x0ADE − EM FILLED CIRCLE Publish
#x0ADF − EM FILLED RECTANGLE Publish
#x0AE0 − EN OPEN CIRCLE BULLET Publish

104

X Protocol X11, Release 6.9/7.0

KEYSYM Unicode Name Set
value value

#x0AE1 − EN OPEN SQUARE BULLET Publish
#x0AE2 − OPEN RECTANGULAR BULLET Publish
#x0AE3 − OPEN TRIANGULAR BULLET UP Publish
#x0AE4 − OPEN TRIANGULAR BULLET DOWN Publish
#x0AE5 − OPEN STAR Publish
#x0AE6 − EN FILLED CIRCLE BULLET Publish
#x0AE7 − EN FILLED SQUARE BULLET Publish
#x0AE8 − FILLED TRIANGULAR BULLET UP Publish
#x0AE9 − FILLED TRIANGULAR BULLET DOWN Publish
#x0AEA − LEFT POINTER Publish
#x0AEB − RIGHT POINTER Publish
#x0AEC U+2663 CLUB Publish
#x0AED U+2666 DIAMOND Publish
#x0AEE U+2665 HEART Publish
#x0AF0 U+2720 MALTESE CROSS Publish
#x0AF1 U+2020 DAGGER Publish
#x0AF2 U+2021 DOUBLE DAGGER Publish
#x0AF3 U+2713 CHECK MARK, TICK Publish
#x0AF4 U+2717 BALLOT CROSS Publish
#x0AF5 U+266F MUSICAL SHARP Publish
#x0AF6 U+266D MUSICAL FLAT Publish
#x0AF7 U+2642 MALE SYMBOL Publish
#x0AF8 U+2640 FEMALE SYMBOL Publish
#x0AF9 U+260E TELEPHONE SYMBOL Publish
#x0AFA U+2315 TELEPHONE RECORDER SYMBOL Publish
#x0AFB U+2117 PHONOGRAPH COPYRIGHT SIGN Publish
#x0AFC U+2038 CARET Publish
#x0AFD U+201A SINGLE LOW QUOTATION MARK Publish
#x0AFE U+201E DOUBLE LOW QUOTATION MARK Publish
#x0AFF − CURSOR Publish

#x0BA3 − LEFT CARET APL
#x0BA6 − RIGHT CARET APL
#x0BA8 − DOWN CARET APL
#x0BA9 − UP CARET APL
#x0BC0 − OVERBAR APL
#x0BC2 U+22A5 DOWN TACK APL
#x0BC3 − UP SHOE (CAP) APL
#x0BC4 U+230A DOWN STILE APL
#x0BC6 − UNDERBAR APL
#x0BCA U+2218 JOT APL
#x0BCC U+2395 QUAD APL
#x0BCE U+22A4 UP TACK APL
#x0BCF U+25CB CIRCLE APL
#x0BD3 U+2308 UP STILE APL
#x0BD6 − DOWN SHOE (CUP) APL
#x0BD8 − RIGHT SHOE APL
#x0BDA − LEFT SHOE APL
#x0BDC U+22A2 LEFT TACK APL
#x0BFC U+22A3 RIGHT TACK APL

#x0CDF U+2017 DOUBLE LOW LINE Hebrew
#x0CE0 U+05D0 HEBREW LETTER ALEF Hebrew
#x0CE1 U+05D1 HEBREW LETTER BET Hebrew
#x0CE2 U+05D2 HEBREW LETTER GIMEL Hebrew
#x0CE3 U+05D3 HEBREW LETTER DALET Hebrew
#x0CE4 U+05D4 HEBREW LETTER HE Hebrew
#x0CE5 U+05D5 HEBREW LETTER VAV Hebrew

105

X Protocol X11, Release 6.9/7.0

KEYSYM Unicode Name Set
value value

#x0CE6 U+05D6 HEBREW LETTER ZAYIN Hebrew
#x0CE7 U+05D7 HEBREW LETTER HET Hebrew
#x0CE8 U+05D8 HEBREW LETTER TET Hebrew
#x0CE9 U+05D9 HEBREW LETTER YOD Hebrew
#x0CEA U+05DA HEBREW LETTER FINAL KAF Hebrew
#x0CEB U+05DB HEBREW LETTER KAF Hebrew
#x0CEC U+05DC HEBREW LETTER LAMED Hebrew
#x0CED U+05DD HEBREW LETTER FINAL MEM Hebrew
#x0CEE U+05DE HEBREW LETTER MEM Hebrew
#x0CEF U+05DF HEBREW LETTER FINAL NUN Hebrew
#x0CF0 U+05E0 HEBREW LETTER NUN Hebrew
#x0CF1 U+05E1 HEBREW LETTER SAMEKH Hebrew
#x0CF2 U+05E2 HEBREW LETTER AYIN Hebrew
#x0CF3 U+05E3 HEBREW LETTER FINAL PE Hebrew
#x0CF4 U+05E4 HEBREW LETTER PE Hebrew
#x0CF5 U+05E5 HEBREW LETTER FINAL TSADI Hebrew
#x0CF6 U+05E6 HEBREW LETTER TSADI Hebrew
#x0CF7 U+05E7 HEBREW LETTER QOF Hebrew
#x0CF8 U+05E8 HEBREW LETTER RESH Hebrew
#x0CF9 U+05E9 HEBREW LETTER SHIN Hebrew
#x0CFA U+05EA HEBREW LETTER TAV Hebrew

#x0DA1 U+0E01 THAI CHARACTER KO KAI Thai
#x0DA2 U+0E02 THAI CHARACTER KHO KHAI Thai
#x0DA3 U+0E03 THAI CHARACTER KHO KHUAT Thai
#x0DA4 U+0E04 THAI CHARACTER KHO KHWAI Thai
#x0DA5 U+0E05 THAI CHARACTER KHO KHON Thai
#x0DA6 U+0E06 THAI CHARACTER KHO RAKHANG Thai
#x0DA7 U+0E07 THAI CHARACTER NGO NGU Thai
#x0DA8 U+0E08 THAI CHARACTER CHO CHAN Thai
#x0DA9 U+0E09 THAI CHARACTER CHO CHING Thai
#x0DAA U+0E0A THAI CHARACTER CHO CHANG Thai
#x0DAB U+0E0B THAI CHARACTER SO SO Thai
#x0DAC U+0E0C THAI CHARACTER CHO CHOE Thai
#x0DAD U+0E0D THAI CHARACTER YO YING Thai
#x0DAE U+0E0E THAI CHARACTER DO CHADA Thai
#x0DAF U+0E0F THAI CHARACTER TO PAT AK Thai
#x0DB0 U+0E10 THAI CHARACTER THO THAN Thai
#x0DB1 U+0E11 THAI CHARACTER THO NANGMONTHO Thai
#x0DB2 U+0E12 THAI CHARACTER THO PHUTHAO Thai
#x0DB3 U+0E13 THAI CHARACTER NO NEN Thai
#x0DB4 U+0E14 THAI CHARACTER DO DEK Thai
#x0DB5 U+0E15 THAI CHARACTER TO TAO Thai
#x0DB6 U+0E16 THAI CHARACTER THO THUNG Thai
#x0DB7 U+0E17 THAI CHARACTER THO THAHAN Thai
#x0DB8 U+0E18 THAI CHARACTER THO THONG Thai
#x0DB9 U+0E19 THAI CHARACTER NO NU Thai
#x0DBA U+0E1A THAI CHARACTER BO BAIMAI Thai
#x0DBB U+0E1B THAI CHARACTER PO PLA Thai
#x0DBC U+0E1C THAI CHARACTER PHO PHUNG Thai
#x0DBD U+0E1D THAI CHARACTER FO FA Thai
#x0DBE U+0E1E THAI CHARACTER PHO PHAN Thai
#x0DBF U+0E1F THAI CHARACTER FO FAN Thai
#x0DC0 U+0E20 THAI CHARACTER PHO SAMPHAO Thai
#x0DC1 U+0E21 THAI CHARACTER MO MA Thai
#x0DC2 U+0E22 THAI CHARACTER YO YAK Thai
#x0DC3 U+0E23 THAI CHARACTER RO RUA Thai
#x0DC4 U+0E24 THAI CHARACTER RU Thai
#x0DC5 U+0E25 THAI CHARACTER LO LING Thai

106

X Protocol X11, Release 6.9/7.0

KEYSYM Unicode Name Set
value value

#x0DC6 U+0E26 THAI CHARACTER LU Thai
#x0DC7 U+0E27 THAI CHARACTER WO WAEN Thai
#x0DC8 U+0E28 THAI CHARACTER SO SALA Thai
#x0DC9 U+0E29 THAI CHARACTER SO RUSI Thai
#x0DCA U+0E2A THAI CHARACTER SO SUA Thai
#x0DCB U+0E2B THAI CHARACTER HO HIP Thai
#x0DCC U+0E2C THAI CHARACTER LO CHULA Thai
#x0DCD U+0E2D THAI CHARACTER O ANG Thai
#x0DCE U+0E2E THAI CHARACTER HO NOKHUK Thai
#x0DCF U+0E2F THAI CHARACTER PAIYANNOI Thai
#x0DD0 U+0E30 THAI CHARACTER SARA A Thai
#x0DD1 U+0E31 THAI CHARACTER MAI HAN-AKAT Thai
#x0DD2 U+0E32 THAI CHARACTER SARA AA Thai
#x0DD3 U+0E33 THAI CHARACTER SARA AM Thai
#x0DD4 U+0E34 THAI CHARACTER SARA I Thai
#x0DD5 U+0E35 THAI CHARACTER SARA II Thai
#x0DD6 U+0E36 THAI CHARACTER SARA UE Thai
#x0DD7 U+0E37 THAI CHARACTER SARA UEE Thai
#x0DD8 U+0E38 THAI CHARACTER SARA U Thai
#x0DD9 U+0E39 THAI CHARACTER SARA UU Thai
#x0DDA U+0E3A THAI CHARACTER PHINTHU Thai
#x0DDF U+0E3F THAI CURRENCY SYMBOL BAHT Thai
#x0DE0 U+0E40 THAI CHARACTER SARA E Thai
#x0DE1 U+0E41 THAI CHARACTER SARA AE Thai
#x0DE2 U+0E42 THAI CHARACTER SARA O Thai
#x0DE3 U+0E43 THAI CHARACTER SARA AI MAIMUAN Thai
#x0DE4 U+0E44 THAI CHARACTER SARA AI MAIMALAI Thai
#x0DE5 U+0E45 THAI CHARACTER LAKKHANGYAO Thai
#x0DE6 U+0E46 THAI CHARACTER MAIYAMOK Thai
#x0DE7 U+0E47 THAI CHARACTER MAITAIKHU Thai
#x0DE8 U+0E48 THAI CHARACTER MAI EK Thai
#x0DE9 U+0E49 THAI CHARACTER MAI THO Thai
#x0DEA U+0E4A THAI CHARACTER MAI TRI Thai
#x0DEB U+0E4B THAI CHARACTER MAI CHATTAWA Thai
#x0DEC U+0E4C THAI CHARACTER THANTHAKHAT Thai
#x0DED U+0E4D THAI CHARACTER NIKHAHIT Thai
#x0DF0 U+0E50 THAI DIGIT ZERO Thai
#x0DF1 U+0E51 THAI DIGIT ONE Thai
#x0DF2 U+0E52 THAI DIGIT TWO Thai
#x0DF3 U+0E53 THAI DIGIT THREE Thai
#x0DF4 U+0E54 THAI DIGIT FOUR Thai
#x0DF5 U+0E55 THAI DIGIT FIVE Thai
#x0DF6 U+0E56 THAI DIGIT SIX Thai
#x0DF7 U+0E57 THAI DIGIT SEVEN Thai
#x0DF8 U+0E58 THAI DIGIT EIGHT Thai
#x0DF9 U+0E59 THAI DIGIT NINE Thai

#x0EA1 − HANGUL KIYEOG Korean
#x0EA2 − HANGUL SSANG KIYEOG Korean
#x0EA3 − HANGUL KIYEOG SIOS Korean
#x0EA4 − HANGUL NIEUN Korean
#x0EA5 − HANGUL NIEUN JIEUJ Korean
#x0EA6 − HANGUL NIEUN HIEUH Korean
#x0EA7 − HANGUL DIKEUD Korean
#x0EA8 − HANGUL SSANG DIKEUD Korean
#x0EA9 − HANGUL RIEUL Korean
#x0EAA − HANGUL RIEUL KIYEOG Korean
#x0EAB − HANGUL RIEUL MIEUM Korean
#x0EAC − HANGUL RIEUL PIEUB Korean

107

X Protocol X11, Release 6.9/7.0

KEYSYM Unicode Name Set
value value

#x0EAD − HANGUL RIEUL SIOS Korean
#x0EAE − HANGUL RIEUL TIEUT Korean
#x0EAF − HANGUL RIEUL PHIEUF Korean
#x0EB0 − HANGUL RIEUL HIEUH Korean
#x0EB1 − HANGUL MIEUM Korean
#x0EB2 − HANGUL PIEUB Korean
#x0EB3 − HANGUL SSANG PIEUB Korean
#x0EB4 − HANGUL PIEUB SIOS Korean
#x0EB5 − HANGUL SIOS Korean
#x0EB6 − HANGUL SSANG SIOS Korean
#x0EB7 − HANGUL IEUNG Korean
#x0EB8 − HANGUL JIEUJ Korean
#x0EB9 − HANGUL SSANG JIEUJ Korean
#x0EBA − HANGUL CIEUC Korean
#x0EBB − HANGUL KHIEUQ Korean
#x0EBC − HANGUL TIEUT Korean
#x0EBD − HANGUL PHIEUF Korean
#x0EBE − HANGUL HIEUH Korean
#x0EBF − HANGUL A Korean
#x0EC0 − HANGUL AE Korean
#x0EC1 − HANGUL YA Korean
#x0EC2 − HANGUL YAE Korean
#x0EC3 − HANGUL EO Korean
#x0EC4 − HANGUL E Korean
#x0EC5 − HANGUL YEO Korean
#x0EC6 − HANGUL YE Korean
#x0EC7 − HANGUL O Korean
#x0EC8 − HANGUL WA Korean
#x0EC9 − HANGUL WAE Korean
#x0ECA − HANGUL OE Korean
#x0ECB − HANGUL YO Korean
#x0ECC − HANGUL U Korean
#x0ECD − HANGUL WEO Korean
#x0ECE − HANGUL WE Korean
#x0ECF − HANGUL WI Korean
#x0ED0 − HANGUL YU Korean
#x0ED1 − HANGUL EU Korean
#x0ED2 − HANGUL YI Korean
#x0ED3 − HANGUL I Korean
#x0ED4 − HANGUL JONG SEONG KIYEOG Korean
#x0ED5 − HANGUL JONG SEONG SSANG KIYEOG Korean
#x0ED6 − HANGUL JONG SEONG KIYEOG SIOS Korean
#x0ED7 − HANGUL JONG SEONG NIEUN Korean
#x0ED8 − HANGUL JONG SEONG NIEUN JIEUJ Korean
#x0ED9 − HANGUL JONG SEONG NIEUN HIEUH Korean
#x0EDA − HANGUL JONG SEONG DIKEUD Korean
#x0EDB − HANGUL JONG SEONG RIEUL Korean
#x0EDC − HANGUL JONG SEONG RIEUL KIYEOG Korean
#x0EDD − HANGUL JONG SEONG RIEUL MIEUM Korean
#x0EDE − HANGUL JONG SEONG RIEUL PIEUB Korean
#x0EDF − HANGUL JONG SEONG RIEUL SIOS Korean
#x0EE0 − HANGUL JONG SEONG RIEUL TIEUT Korean
#x0EE1 − HANGUL JONG SEONG RIEUL PHIEUF Korean
#x0EE2 − HANGUL JONG SEONG RIEUL HIEUH Korean
#x0EE3 − HANGUL JONG SEONG MIEUM Korean
#x0EE4 − HANGUL JONG SEONG PIEUB Korean
#x0EE5 − HANGUL JONG SEONG PIEUB SIOS Korean
#x0EE6 − HANGUL JONG SEONG SIOS Korean
#x0EE7 − HANGUL JONG SEONG SSANG SIOS Korean
#x0EE8 − HANGUL JONG SEONG IEUNG Korean

108

X Protocol X11, Release 6.9/7.0

KEYSYM Unicode Name Set
value value

#x0EE9 − HANGUL JONG SEONG JIEUJ Korean
#x0EEA − HANGUL JONG SEONG CIEUC Korean
#x0EEB − HANGUL JONG SEONG KHIEUQ Korean
#x0EEC − HANGUL JONG SEONG TIEUT Korean
#x0EED − HANGUL JONG SEONG PHIEUF Korean
#x0EEE − HANGUL JONG SEONG HIEUH Korean
#x0EEF − HANGUL RIEUL YEORIN HIEUH Korean
#x0EF0 − HANGUL SUNKYEONGEUM MIEUM Korean
#x0EF1 − HANGUL SUNKYEONGEUM PIEUB Korean
#x0EF2 − HANGUL PAN SIOS Korean
#x0EF3 − HANGUL KKOGJI DALRIN IEUNG Korean
#x0EF4 − HANGUL SUNKYEONGEUM PHIEUF Korean
#x0EF5 − HANGUL YEORIN HIEUH Korean
#x0EF6 − HANGUL ARAE A Korean
#x0EF7 − HANGUL ARAE AE Korean
#x0EF8 − HANGUL JONG SEONG PAN SIOS Korean
#x0EF9 − HANGUL JONG SEONG KKOGJI DALRIN IEUNG Korean
#x0EFA − HANGUL JONG SEONG YEORIN HIEUH Korean
#x0EFF − KOREAN WON Korean

#x13BC U+0152 LATIN CAPITAL LIGATURE OE Latin-9
#x13BD U+0153 LATIN SMALL LIGATURE OE Latin-9
#x13BE U+0178 LATIN CAPITAL LETTER Y WITH DIAERESIS Latin-9

#x20A0 − CURRENCY ECU SIGN Currency
#x20A1 − CURRENCY COLON SIGN Currency
#x20A2 − CURRENCY CRUZEIRO SIGN Currency
#x20A3 − CURRENCY FRENCH FRANC SIGN Currency
#x20A4 − CURRENCY LIRA SIGN Currency
#x20A5 − CURRENCY MILL SIGN Currency
#x20A6 − CURRENCY NAIRA SIGN Currency
#x20A7 − CURRENCY PESETA SIGN Currency
#x20A8 − CURRENCY RUPEE SIGN Currency
#x20A9 − CURRENCY WON SIGN Currency
#x20AA − CURRENCY NEW SHEQEL SIGN Currency
#x20AB − CURRENCY DONG SIGN Currency
#x20AC U+20AC CURRENCY EURO SIGN Currency

109

X Protocol X11, Release 6.9/7.0

Appendix B
Protocol Encoding

Syntactic Conventions
All numbers are in decimal, unless prefixed with #x, in which case they are in hexadecimal (base
16).
The general syntax used to describe requests, replies, errors, events, and compound types is:

NameofThing
encode-form
...
encode-form

Each encode-form describes a single component.
For components described in the protocol as:

name: TYPE

the encode-form is:

N TYPE name

N is the number of bytes occupied in the data stream, and TYPE is the interpretation of those
bytes. For example,

depth: CARD8

becomes:

1 CARD8 depth

For components with a static numeric value the encode-form is:

N value name

The value is always interpreted as an N-byte unsigned integer. For example, the first two bytes of
a Window error are always zero (indicating an error in general) and three (indicating the Win-
dow error in particular):

1 0 Error
1 3 code

For components described in the protocol as:
name: {Name1 ,..., NameI}

the encode-form is:

N name
value1 Name1
...
valueI NameI

The value is always interpreted as an N-byte unsigned integer. Note that the size of N is some-
times larger than that strictly required to encode the values. For example:

class: {InputOutput , InputOnly , CopyFromParent}
becomes:

110

X Protocol X11, Release 6.9/7.0

2 class
0 CopyFromParent
1 InputOutput
2 InputOnly

For components described in the protocol as:
NAME: TYPE or Alternative1 ...or AlternativeI

the encode-form is:

N TYPE NAME
value1 Alternative1
...
valueI AlternativeI

The alternative values are guaranteed not to conflict with the encoding of TYPE. For example:
destination: WINDOW or PointerWindow or InputFocus

becomes:

4 WINDOW destination
0 PointerWindow
1 InputFocus

For components described in the protocol as:

value-mask: BITMASK

the encode-form is:

N BITMASK value-mask
mask1 mask-name1
...
maskI mask-nameI

The individual bits in the mask are specified and named, and N is 2 or 4. The most-significant bit
in a BITMASK is reserved for use in defining chained (multiword) bitmasks, as extensions aug-
ment existing core requests. The precise interpretation of this bit is not yet defined here, although
a probable mechanism is that a 1-bit indicates that another N bytes of bitmask follows, with bits
within the overall mask still interpreted from least-significant to most-significant with an N-byte
unit, with N-byte units interpreted in stream order, and with the overall mask being byte-swapped
in individual N-byte units.
For LISTofVALUE encodings, the request is followed by a section of the form:

VALUEs
encode-form
...
encode-form

listing an encode-form for each VALUE. The NAME in each encode-form keys to the corre-
sponding BITMASK bit. The encoding of a VALUE always occupies four bytes, but the number
of bytes specified in the encoding-form indicates how many of the least-significant bytes are actu-
ally used; the remaining bytes are unused and their values do not matter.
In various cases, the number of bytes occupied by a component will be specified by a lowercase
single-letter variable name instead of a specific numeric value, and often some other component
will have its value specified as a simple numeric expression involving these variables. Compo-
nents specified with such expressions are always interpreted as unsigned integers. The scope of
such variables is always just the enclosing request, reply, error, event, or compound type struc-
ture. For example:

2 3+n request length
4n LISTofPOINT points

111

X Protocol X11, Release 6.9/7.0

For unused bytes (the values of the bytes are undefined and do no matter), the encode-form is:

N unused

If the number of unused bytes is variable, the encode-form typically is:

p unused, p=pad(E)

where E is some expression, and pad(E) is the number of bytes needed to round E up to a multiple
of four.

pad(E) = (4 - (E mod 4)) mod 4

Common Types
LISTofFOO

In this document the LISTof notation strictly means some number of repetitions of the FOO
encoding; the actual length of the list is encoded elsewhere.

SETofFOO
A set is always represented by a bitmask, with a 1-bit indicating presence in the set.

BITMASK: CARD32
WINDOW: CARD32
PIXMAP: CARD32
CURSOR: CARD32
FONT: CARD32
GCONTEXT: CARD32
COLORMAP: CARD32
DRAWABLE: CARD32
FONTABLE: CARD32
AT OM: CARD32
VISUALID: CARD32
BYTE: 8-bit value
INT8: 8-bit signed integer
INT16: 16-bit signed integer
INT32: 32-bit signed integer
CARD8: 8-bit unsigned integer
CARD16: 16-bit unsigned integer
CARD32: 32-bit unsigned integer
TIMESTAMP: CARD32

BITGRAVITY
0 Forget
1 NorthWest
2 North
3 NorthEast
4 West
5 Center
6 East
7 SouthWest
8 South
9 SouthEast
10 Static

WINGRAVITY
0 Unmap
1 NorthWest

112

X Protocol X11, Release 6.9/7.0

2 North
3 NorthEast
4 West
5 Center
6 East
7 SouthWest
8 South
9 SouthEast
10 Static

BOOL
0 False
1 True

SETofEVENT
#x00000001 KeyPress
#x00000002 KeyRelease
#x00000004 ButtonPress
#x00000008 ButtonRelease
#x00000010 EnterWindow
#x00000020 LeaveWindow
#x00000040 PointerMotion
#x00000080 PointerMotionHint
#x00000100 Button1Motion
#x00000200 Button2Motion
#x00000400 Button3Motion
#x00000800 Button4Motion
#x00001000 Button5Motion
#x00002000 ButtonMotion
#x00004000 KeymapState
#x00008000 Exposure
#x00010000 VisibilityChange
#x00020000 StructureNotify
#x00040000 ResizeRedirect
#x00080000 SubstructureNotify
#x00100000 SubstructureRedirect
#x00200000 FocusChange
#x00400000 PropertyChange
#x00800000 ColormapChange
#x01000000 OwnerGrabButton
#xFE000000 unused but must be zero

SETofPOINTEREVENT
encodings are the same as for SETofEVENT, except with
#xFFFF8003 unused but must be zero

SETofDEVICEEVENT
encodings are the same as for SETofEVENT, except with
#xFFFFC0B0 unused but must be zero

KEYSYM: CARD32
KEYCODE: CARD8
BUTTON: CARD8

SETofKEYBUTMASK
#x0001 Shift
#x0002 Lock
#x0004 Control
#x0008 Mod1
#x0010 Mod2
#x0020 Mod3
#x0040 Mod4

113

X Protocol X11, Release 6.9/7.0

#x0080 Mod5
#x0100 Button1
#x0200 Button2
#x0400 Button3
#x0800 Button4
#x1000 Button5
#xE000 unused but must be zero

SETofKEYMASK
encodings are the same as for SETofKEYBUTMASK, except with
#xFF00 unused but must be zero

STRING8: LISTofCARD8
STRING16: LISTofCHAR2B

CHAR2B
1 CARD8 byte1
1 CARD8 byte2

POINT
2 INT16 x
2 INT16 y

RECTANGLE
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height

ARC
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 INT16 angle1
2 INT16 angle2

HOST
1 family

0 Internet
1 DECnet
2 Chaos
5 ServerInterpreted
6 InternetV6

1 unused
2 n length of address
n LISTofBYTE address
p unused, p=pad(n)

STR
1 n length of name in bytes
n STRING8 name

Errors
Request

1 0 Error
1 1 code
2 CARD16 sequence number
4 unused

114

X Protocol X11, Release 6.9/7.0

2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Value
1 0 Error
1 2 code
2 CARD16 sequence number
4 <32-bits> bad value
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Window
1 0 Error
1 3 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Pixmap
1 0 Error
1 4 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Atom
1 0 Error
1 5 code
2 CARD16 sequence number
4 CARD32 bad atom id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Cursor
1 0 Error
1 6 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Font
1 0 Error
1 7 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Match
1 0 Error

115

X Protocol X11, Release 6.9/7.0

1 8 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Drawable
1 0 Error
1 9 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Access
1 0 Error
1 10 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Alloc
1 0 Error
1 11 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Colormap
1 0 Error
1 12 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

GContext
1 0 Error
1 13 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

IDChoice
1 0 Error
1 14 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

116

X Protocol X11, Release 6.9/7.0

Name
1 0 Error
1 15 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Length
1 0 Error
1 16 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Implementation
1 0 Error
1 17 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Keyboards
KEYCODE values are always greater than 7 (and less than 256).
KEYSYM values with the bit #x10000000 set are reserved as vendor-specific.
The names and encodings of the standard KEYSYM values are contained in Appendix A,
Ke ysym Encoding.

Pointers
BUTTON values are numbered starting with one.

Predefined Atoms
PRIMARY 1 WM_NORMAL_HINTS 40
SECONDARY 2 WM_SIZE_HINTS 41
ARC 3 WM_ZOOM_HINTS 42
AT OM 4 MIN_SPACE 43
BITMAP 5 NORM_SPACE 44
CARDINAL 6 MAX_SPACE 45
COLORMAP 7 END_SPACE 46
CURSOR 8 SUPERSCRIPT_X 47
CUT_BUFFER0 9 SUPERSCRIPT_Y 48
CUT_BUFFER1 10 SUBSCRIPT_X 49
CUT_BUFFER2 11 SUBSCRIPT_Y 50
CUT_BUFFER3 12 UNDERLINE_POSITION 51
CUT_BUFFER4 13 UNDERLINE_THICKNESS 52
CUT_BUFFER5 14 STRIKEOUT_ASCENT 53
CUT_BUFFER6 15 STRIKEOUT_DESCENT 54
CUT_BUFFER7 16 ITALIC_ANGLE 55
DRAWABLE 17 X_HEIGHT 56
FONT 18 QUAD_WIDTH 57
INTEGER 19 WEIGHT 58
PIXMAP 20 POINT_SIZE 59
POINT 21 RESOLUTION 60
RECTANGLE 22 COPYRIGHT 61
RESOURCE_MANAGER 23 NOTICE 62
RGB_COLOR_MAP 24 FONT_NAME 63

117

X Protocol X11, Release 6.9/7.0

RGB_BEST_MAP 25 FAMILY_NAME 64
RGB_BLUE_MAP 26 FULL_NAME 65
RGB_DEFAULT_MAP 27 CAP_HEIGHT 66
RGB_GRAY_MAP 28 WM_CLASS 67
RGB_GREEN_MAP 29 WM_TRANSIENT_FOR 68
RGB_RED_MAP 30
STRING 31
VISUALID 32
WINDOW 33
WM_COMMAND 34
WM_HINTS 35
WM_CLIENT_MACHINE 36
WM_ICON_NAME 37
WM_ICON_SIZE 38
WM_NAME 39

Connection Setup
For TCP connections, displays on a given host are numbered starting from 0, and the server for
display N listens and accepts connections on port 6000 + N. For DECnet connections, displays
on a given host are numbered starting from 0, and the server for display N listens and accepts
connections on the object name obtained by concatenating ‘‘X$X’’ with the decimal representa-
tion of N, for example, X$X0 and X$X1.
Information sent by the client at connection setup:

1 byte-order
#x42 MSB first
#x6C LSB first

1 unused
2 CARD16 protocol-major-version
2 CARD16 protocol-minor-version
2 n length of authorization-protocol-name
2 d length of authorization-protocol-data
2 unused
n STRING8 authorization-protocol-name
p unused, p=pad(n)
d STRING8 authorization-protocol-data
q unused, q=pad(d)

Except where explicitly noted in the protocol, all 16-bit and 32-bit quantities sent by the client
must be transmitted with the specified byte order, and all 16-bit and 32-bit quantities returned by
the server will be transmitted with this byte order.
Information received by the client if the connection is refused:

1 0 Failed
1 n length of reason in bytes
2 CARD16 protocol-major-version
2 CARD16 protocol-minor-version
2 (n+p)/4 length in 4-byte units of ‘‘additional data’’
n STRING8 reason
p unused, p=pad(n)

Information received by the client if further authentication is required:

1 2 Authenticate
5 unused
2 (n+p)/4 length in 4-byte units of ‘‘additional data’’
n STRING8 reason
p unused, p=pad(n)

Information received by the client if the connection is accepted:

1 1 Success
1 unused

118

X Protocol X11, Release 6.9/7.0

2 CARD16 protocol-major-version
2 CARD16 protocol-minor-version
2 8+2n+(v+p+m)/4 length in 4-byte units of ‘‘additional data’’
4 CARD32 release-number
4 CARD32 resource-id-base
4 CARD32 resource-id-mask
4 CARD32 motion-buffer-size
2 v length of vendor
2 CARD16 maximum-request-length
1 CARD8 number of SCREENs in roots
1 n number for FORMATs in pixmap-formats
1 image-byte-order

0 LSBFirst
1 MSBFirst

1 bitmap-format-bit-order
0 LeastSignificant
1 MostSignificant

1 CARD8 bitmap-format-scanline-unit
1 CARD8 bitmap-format-scanline-pad
1 KEYCODE min-keycode
1 KEYCODE max-keycode
4 unused
v STRING8 vendor
p unused, p=pad(v)
8n LISTofFORMAT pixmap-formats
m LISTofSCREEN roots (m is always a multiple of 4)

FORMAT
1 CARD8 depth
1 CARD8 bits-per-pixel
1 CARD8 scanline-pad
5 unused

SCREEN
4 WINDOW root
4 COLORMAP default-colormap
4 CARD32 white-pixel
4 CARD32 black-pixel
4 SETofEVENT current-input-masks
2 CARD16 width-in-pixels
2 CARD16 height-in-pixels
2 CARD16 width-in-millimeters
2 CARD16 height-in-millimeters
2 CARD16 min-installed-maps
2 CARD16 max-installed-maps
4 VISUALID root-visual
1 backing-stores

0 Nev er
1 WhenMapped
2 Always

1 BOOL save-unders
1 CARD8 root-depth
1 CARD8 number of DEPTHs in allowed-depths
n LISTofDEPTH allowed-depths (n is always a multiple of 4)

DEPTH
1 CARD8 depth
1 unused
2 n number of VISUALTYPES in visuals
4 unused
24n LISTofVISUALTYPE visuals

119

X Protocol X11, Release 6.9/7.0

VISUALTYPE
4 VISUALID visual-id
1 class

0 StaticGray
1 GrayScale
2 StaticColor
3 PseudoColor
4 TrueColor
5 DirectColor

1 CARD8 bits-per-rgb-value
2 CARD16 colormap-entries
4 CARD32 red-mask
4 CARD32 green-mask
4 CARD32 blue-mask
4 unused

Requests
CreateWindow

1 1 opcode
1 CARD8 depth
2 8+n request length
4 WINDOW wid
4 WINDOW parent
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border-width
2 class

0 CopyFromParent
1 InputOutput
2 InputOnly

4 VISUALID visual
0 CopyFromParent

4 BITMASK value-mask (has n bits set to 1)
#x00000001 background-pixmap
#x00000002 background-pixel
#x00000004 border-pixmap
#x00000008 border-pixel
#x00000010 bit-gravity
#x00000020 win-gravity
#x00000040 backing-store
#x00000080 backing-planes
#x00000100 backing-pixel
#x00000200 override-redirect
#x00000400 save-under
#x00000800 event-mask
#x00001000 do-not-propagate-mask
#x00002000 colormap
#x00004000 cursor

4n LISTofVALUE value-list

VALUEs
4 PIXMAP background-pixmap

0 None
1 ParentRelative

4 CARD32 background-pixel
4 PIXMAP border-pixmap

0 CopyFromParent
4 CARD32 border-pixel
1 BITGRAVITY bit-gravity
1 WINGRAVITY win-gravity
1 backing-store

120

X Protocol X11, Release 6.9/7.0

0 NotUseful
1 WhenMapped
2 Always

4 CARD32 backing-planes
4 CARD32 backing-pixel
1 BOOL override-redirect
1 BOOL save-under
4 SETofEVENT event-mask
4 SETofDEVICEEVENT do-not-propagate-mask
4 COLORMAP colormap

0 CopyFromParent
4 CURSOR cursor

0 None

ChangeWindowAttributes
1 2 opcode
1 unused
2 3+n request length
4 WINDOW window
4 BITMASK value-mask (has n bits set to 1)

encodings are the same as for CreateWindow
4n LISTofVALUE value-list

encodings are the same as for CreateWindow

GetWindowAttributes
1 3 opcode
1 unused
2 2 request length
4 WINDOW window

→
1 1 Reply
1 backing-store

0 NotUseful
1 WhenMapped
2 Always

2 CARD16 sequence number
4 3 reply length
4 VISUALID visual
2 class

1 InputOutput
2 InputOnly

1 BITGRAVITY bit-gravity
1 WINGRAVITY win-gravity
4 CARD32 backing-planes
4 CARD32 backing-pixel
1 BOOL save-under
1 BOOL map-is-installed
1 map-state

0 Unmapped
1 Unviewable
2 Viewable

1 BOOL override-redirect
4 COLORMAP colormap

0 None
4 SETofEVENT all-event-masks
4 SETofEVENT your-event-mask
2 SETofDEVICEEVENT do-not-propagate-mask
2 unused

DestroyWindow
1 4 opcode
1 unused

121

X Protocol X11, Release 6.9/7.0

2 2 request length
4 WINDOW window

DestroySubwindows
1 5 opcode
1 unused
2 2 request length
4 WINDOW window

ChangeSaveSet
1 6 opcode
1 mode

0 Insert
1 Delete

2 2 request length
4 WINDOW window

ReparentWindow
1 7 opcode
1 unused
2 4 request length
4 WINDOW window
4 WINDOW parent
2 INT16 x
2 INT16 y

MapWindow
1 8 opcode
1 unused
2 2 request length
4 WINDOW window

MapSubwindows
1 9 opcode
1 unused
2 2 request length
4 WINDOW window

UnmapWindow
1 10 opcode
1 unused
2 2 request length
4 WINDOW window

UnmapSubwindows
1 11 opcode
1 unused
2 2 request length
4 WINDOW window

ConfigureWindow
1 12 opcode
1 unused
2 3+n request length
4 WINDOW window
2 BITMASK value-mask (has n bits set to 1)

#x0001 x
#x0002 y
#x0004 width
#x0008 height

122

X Protocol X11, Release 6.9/7.0

#x0010 border-width
#x0020 sibling
#x0040 stack-mode

2 unused
4n LISTofVALUE value-list

VALUEs
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border-width
4 WINDOW sibling
1 stack-mode

0 Above
1 Below
2 TopIf
3 BottomIf
4 Opposite

CirculateWindow
1 13 opcode
1 direction

0 RaiseLowest
1 LowerHighest

2 2 request length
4 WINDOW window

GetGeometry
1 14 opcode
1 unused
2 2 request length
4 DRAWABLE drawable

→
1 1 Reply
1 CARD8 depth
2 CARD16 sequence number
4 0 reply length
4 WINDOW root
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border-width
10 unused

QueryTree
1 15 opcode
1 unused
2 2 request length
4 WINDOW window

→
1 1 Reply
1 unused
2 CARD16 sequence number
4 n reply length
4 WINDOW root
4 WINDOW parent

0 None
2 n number of WINDOWs in children

123

X Protocol X11, Release 6.9/7.0

14 unused
4n LISTofWINDOW children

InternAtom
1 16 opcode
1 BOOL only-if-exists
2 2+(n+p)/4 request length
2 n length of name
2 unused
n STRING8 name
p unused, p=pad(n)

→
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
4 ATOM atom

0 None
20 unused

GetAtomName
1 17 opcode
1 unused
2 2 request length
4 ATOM atom

→
1 1 Reply
1 unused
2 CARD16 sequence number
4 (n+p)/4 reply length
2 n length of name
22 unused
n STRING8 name
p unused, p=pad(n)

ChangeProperty
1 18 opcode
1 mode

0 Replace
1 Prepend
2 Append

2 6+(n+p)/4 request length
4 WINDOW window
4 ATOM property
4 ATOM type
1 CARD8 format
3 unused
4 CARD32 length of data in format units

(= n for format = 8)
(= n/2 for format = 16)
(= n/4 for format = 32)

n LISTofBYTE data
(n is a multiple of 2 for format = 16)
(n is a multiple of 4 for format = 32)

p unused, p=pad(n)

DeleteProperty
1 19 opcode
1 unused
2 3 request length

124

X Protocol X11, Release 6.9/7.0

4 WINDOW window
4 ATOM property

GetProperty
1 20 opcode
1 BOOL delete
2 6 request length
4 WINDOW window
4 ATOM property
4 ATOM type

0 AnyPropertyType
4 CARD32 long-offset
4 CARD32 long-length

→
1 1 Reply
1 CARD8 format
2 CARD16 sequence number
4 (n+p)/4 reply length
4 ATOM type

0 None
4 CARD32 bytes-after
4 CARD32 length of value in format units

(= 0 for format = 0)
(= n for format = 8)
(= n/2 for format = 16)
(= n/4 for format = 32)

12 unused
n LISTofBYTE value

(n is zero for format = 0)
(n is a multiple of 2 for format = 16)
(n is a multiple of 4 for format = 32)

p unused, p=pad(n)

ListProperties
1 21 opcode
1 unused
2 2 request length
4 WINDOW window

→
1 1 Reply
1 unused
2 CARD16 sequence number
4 n reply length
2 n number of ATOMs in atoms
22 unused
4n LISTofATOM atoms

SetSelectionOwner
1 22 opcode
1 unused
2 4 request length
4 WINDOW owner

0 None
4 ATOM selection
4 TIMESTAMP time

0 CurrentTime

GetSelectionOwner
1 23 opcode
1 unused

125

X Protocol X11, Release 6.9/7.0

2 2 request length
4 ATOM selection

→
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
4 WINDOW owner

0 None
20 unused

ConvertSelection
1 24 opcode
1 unused
2 6 request length
4 WINDOW requestor
4 ATOM selection
4 ATOM target
4 ATOM property

0 None
4 TIMESTAMP time

0 CurrentTime

SendEvent
1 25 opcode
1 BOOL propagate
2 11 request length
4 WINDOW destination

0 PointerWindow
1 InputFocus

4 SETofEVENT event-mask
32 event

standard event format (see the Events section)

GrabPointer
1 26 opcode
1 BOOL owner-events
2 6 request length
4 WINDOW grab-window
2 SETofPOINTEREVENT event-mask
1 pointer-mode

0 Synchronous
1 Asynchronous

1 keyboard-mode
0 Synchronous
1 Asynchronous

4 WINDOW confine-to
0 None

4 CURSOR cursor
0 None

4 TIMESTAMP time
0 CurrentTime

→
1 1 Reply
1 status

0 Success
1 AlreadyGrabbed
2 Inv alidTime
3 NotViewable
4 Frozen

2 CARD16 sequence number

126

X Protocol X11, Release 6.9/7.0

4 0 reply length
24 unused

UngrabPointer
1 27 opcode
1 unused
2 2 request length
4 TIMESTAMP time

0 CurrentTime

GrabButton
1 28 opcode
1 BOOL owner-events
2 6 request length
4 WINDOW grab-window
2 SETofPOINTEREVENT event-mask
1 pointer-mode

0 Synchronous
1 Asynchronous

1 keyboard-mode
0 Synchronous
1 Asynchronous

4 WINDOW confine-to
0 None

4 CURSOR cursor
0 None

1 BUTTON button
0 AnyButton

1 unused
2 SETofKEYMASK modifiers

#x8000 AnyModifier

UngrabButton
1 29 opcode
1 BUTTON button

0 AnyButton
2 3 request length
4 WINDOW grab-window
2 SETofKEYMASK modifiers

#x8000 AnyModifier
2 unused

ChangeActivePointerGrab
1 30 opcode
1 unused
2 4 request length
4 CURSOR cursor

0 None
4 TIMESTAMP time

0 CurrentTime
2 SETofPOINTEREVENT event-mask
2 unused

GrabKeyboard
1 31 opcode
1 BOOL owner-events
2 4 request length
4 WINDOW grab-window
4 TIMESTAMP time

0 CurrentTime
1 pointer-mode

0 Synchronous

127

X Protocol X11, Release 6.9/7.0

1 Asynchronous
1 keyboard-mode

0 Synchronous
1 Asynchronous

2 unused

→
1 1 Reply
1 status

0 Success
1 AlreadyGrabbed
2 Inv alidTime
3 NotViewable
4 Frozen

2 CARD16 sequence number
4 0 reply length
24 unused

UngrabKeyboard
1 32 opcode
1 unused
2 2 request length
4 TIMESTAMP time

0 CurrentTime

GrabKey
1 33 opcode
1 BOOL owner-events
2 4 request length
4 WINDOW grab-window
2 SETofKEYMASK modifiers

#x8000 AnyModifier
1 KEYCODE key

0 AnyKe y
1 pointer-mode

0 Synchronous
1 Asynchronous

1 keyboard-mode
0 Synchronous
1 Asynchronous

3 unused

UngrabKey
1 34 opcode
1 KEYCODE key

0 AnyKe y
2 3 request length
4 WINDOW grab-window
2 SETofKEYMASK modifiers

#x8000 AnyModifier
2 unused

AllowEvents
1 35 opcode
1 mode

0 AsyncPointer
1 SyncPointer
2 ReplayPointer
3 AsyncKeyboard
4 SyncKeyboard
5 ReplayKeyboard
6 AsyncBoth

128

X Protocol X11, Release 6.9/7.0

7 SyncBoth
2 2 request length
4 TIMESTAMP time

0 CurrentTime

GrabServer
1 36 opcode
1 unused
2 1 request length

UngrabServer
1 37 opcode
1 unused
2 1 request length

QueryPointer
1 38 opcode
1 unused
2 2 request length
4 WINDOW window

→
1 1 Reply
1 BOOL same-screen
2 CARD16 sequence number
4 0 reply length
4 WINDOW root
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 win-x
2 INT16 win-y
2 SETofKEYBUTMASK mask
6 unused

GetMotionEvents
1 39 opcode
1 unused
2 4 request length
4 WINDOW window
4 TIMESTAMP start

0 CurrentTime
4 TIMESTAMP stop

0 CurrentTime

→
1 1 Reply
1 unused
2 CARD16 sequence number
4 2n reply length
4 n number of TIMECOORDs in events
20 unused
8n LISTofTIMECOORD events

TIMECOORD
4 TIMESTAMP time
2 INT16 x
2 INT16 y

129

X Protocol X11, Release 6.9/7.0

TranslateCoordinates
1 40 opcode
1 unused
2 4 request length
4 WINDOW src-window
4 WINDOW dst-window
2 INT16 src-x
2 INT16 src-y

→
1 1 Reply
1 BOOL same-screen
2 CARD16 sequence number
4 0 reply length
4 WINDOW child

0 None
2 INT16 dst-x
2 INT16 dst-y
16 unused

WarpPointer
1 41 opcode
1 unused
2 6 request length
4 WINDOW src-window

0 None
4 WINDOW dst-window

0 None
2 INT16 src-x
2 INT16 src-y
2 CARD16 src-width
2 CARD16 src-height
2 INT16 dst-x
2 INT16 dst-y

SetInputFocus
1 42 opcode
1 rev ert-to

0 None
1 PointerRoot
2 Parent

2 3 request length
4 WINDOW focus

0 None
1 PointerRoot

4 TIMESTAMP time
0 CurrentTime

GetInputFocus
1 43 opcode
1 unused
2 1 request length

→
1 1 Reply
1 rev ert-to

0 None
1 PointerRoot
2 Parent

2 CARD16 sequence number
4 0 reply length
4 WINDOW focus

0 None

130

X Protocol X11, Release 6.9/7.0

1 PointerRoot
20 unused

QueryKeymap
1 44 opcode
1 unused
2 1 request length

→
1 1 Reply
1 unused
2 CARD16 sequence number
4 2 reply length
32 LISTofCARD8 keys

OpenFont
1 45 opcode
1 unused
2 3+(n+p)/4 request length
4 FONT fid
2 n length of name
2 unused
n STRING8 name
p unused, p=pad(n)

CloseFont
1 46 opcode
1 unused
2 2 request length
4 FONT font

QueryFont
1 47 opcode
1 unused
2 2 request length
4 FONTABLE font

→
1 1 Reply
1 unused
2 CARD16 sequence number
4 7+2n+3m reply length
12 CHARINFO min-bounds
4 unused
12 CHARINFO max-bounds
4 unused
2 CARD16 min-char-or-byte2
2 CARD16 max-char-or-byte2
2 CARD16 default-char
2 n number of FONTPROPs in properties
1 draw-direction

0 LeftToRight
1 RightToLeft

1 CARD8 min-byte1
1 CARD8 max-byte1
1 BOOL all-chars-exist
2 INT16 font-ascent
2 INT16 font-descent
4 m number of CHARINFOs in char-infos
8n LISTofFONTPROP properties
12m LISTofCHARINFO char-infos

131

X Protocol X11, Release 6.9/7.0

FONTPROP
4 ATOM name
4 <32-bits> value

CHARINFO
2 INT16 left-side-bearing
2 INT16 right-side-bearing
2 INT16 character-width
2 INT16 ascent
2 INT16 descent
2 CARD16 attributes

QueryTextExtents
1 48 opcode
1 BOOL odd length, True if p = 2
2 2+(2n+p)/4 request length
4 FONTABLE font
2n STRING16 string
p unused, p=pad(2n)

→
1 1 Reply
1 draw-direction

0 LeftToRight
1 RightToLeft

2 CARD16 sequence number
4 0 reply length
2 INT16 font-ascent
2 INT16 font-descent
2 INT16 overall-ascent
2 INT16 overall-descent
4 INT32 overall-width
4 INT32 overall-left
4 INT32 overall-right
4 unused

ListFonts
1 49 opcode
1 unused
2 2+(n+p)/4 request length
2 CARD16 max-names
2 n length of pattern
n STRING8 pattern
p unused, p=pad(n)

→
1 1 Reply
1 unused
2 CARD16 sequence number
4 (n+p)/4 reply length
2 CARD16 number of STRs in names
22 unused
n LISTofSTR names
p unused, p=pad(n)

ListFontsWithInfo
1 50 opcode
1 unused
2 2+(n+p)/4 request length
2 CARD16 max-names
2 n length of pattern
n STRING8 pattern

132

X Protocol X11, Release 6.9/7.0

p unused, p=pad(n)

→ (except for last in series)
1 1 Reply
1 n length of name in bytes
2 CARD16 sequence number
4 7+2m+(n+p)/4 reply length
12 CHARINFO min-bounds
4 unused
12 CHARINFO max-bounds
4 unused
2 CARD16 min-char-or-byte2
2 CARD16 max-char-or-byte2
2 CARD16 default-char
2 m number of FONTPROPs in properties
1 draw-direction

0 LeftToRight
1 RightToLeft

1 CARD8 min-byte1
1 CARD8 max-byte1
1 BOOL all-chars-exist
2 INT16 font-ascent
2 INT16 font-descent
4 CARD32 replies-hint
8m LISTofFONTPROP properties
n STRING8 name
p unused, p=pad(n)

FONTPROP
encodings are the same as for QueryFont

CHARINFO
encodings are the same as for QueryFont

→ (last in series)
1 1 Reply
1 0 last-reply indicator
2 CARD16 sequence number
4 7 reply length
52 unused

SetFontPath
1 51 opcode
1 unused
2 2+(n+p)/4 request length
2 CARD16 number of STRs in path
2 unused
n LISTofSTR path
p unused, p=pad(n)

GetFontPath
1 52 opcode
1 unused
2 1 request list

→
1 1 Reply
1 unused
2 CARD16 sequence number
4 (n+p)/4 reply length
2 CARD16 number of STRs in path
22 unused
n LISTofSTR path

133

X Protocol X11, Release 6.9/7.0

p unused, p=pad(n)

CreatePixmap
1 53 opcode
1 CARD8 depth
2 4 request length
4 PIXMAP pid
4 DRAWABLE drawable
2 CARD16 width
2 CARD16 height

FreePixmap
1 54 opcode
1 unused
2 2 request length
4 PIXMAP pixmap

CreateGC
1 55 opcode
1 unused
2 4+n request length
4 GCONTEXT cid
4 DRAWABLE drawable
4 BITMASK value-mask (has n bits set to 1)

#x00000001 function
#x00000002 plane-mask
#x00000004 foreground
#x00000008 background
#x00000010 line-width
#x00000020 line-style
#x00000040 cap-style
#x00000080 join-style
#x00000100 fill-style
#x00000200 fill-rule
#x00000400 tile
#x00000800 stipple
#x00001000 tile-stipple-x-origin
#x00002000 tile-stipple-y-origin
#x00004000 font
#x00008000 subwindow-mode
#x00010000 graphics-exposures
#x00020000 clip-x-origin
#x00040000 clip-y-origin
#x00080000 clip-mask
#x00100000 dash-offset
#x00200000 dashes
#x00400000 arc-mode

4n LISTofVALUE value-list

VALUEs
1 function

0 Clear
1 And
2 AndReverse
3 Copy
4 AndInverted
5 NoOp
6 Xor
7 Or
8 Nor
9 Equiv
10 Invert
11 OrReverse

134

X Protocol X11, Release 6.9/7.0

12 CopyInverted
13 OrInverted
14 Nand
15 Set

4 CARD32 plane-mask
4 CARD32 foreground
4 CARD32 background
2 CARD16 line-width
1 line-style

0 Solid
1 OnOffDash
2 DoubleDash

1 cap-style
0 NotLast
1 Butt
2 Round
3 Projecting

1 join-style
0 Miter
1 Round
2 Bev el

1 fill-style
0 Solid
1 Tiled
2 Stippled
3 OpaqueStippled

1 fill-rule
0 EvenOdd
1 Winding

4 PIXMAP tile
4 PIXMAP stipple
2 INT16 tile-stipple-x-origin
2 INT16 tile-stipple-y-origin
4 FONT font
1 subwindow-mode

0 ClipByChildren
1 IncludeInferiors

1 BOOL graphics-exposures
2 INT16 clip-x-origin
2 INT16 clip-y-origin
4 PIXMAP clip-mask

0 None
2 CARD16 dash-offset
1 CARD8 dashes
1 arc-mode

0 Chord
1 PieSlice

ChangeGC
1 56 opcode
1 unused
2 3+n request length
4 GCONTEXT gc
4 BITMASK value-mask (has n bits set to 1)

encodings are the same as for CreateGC
4n LISTofVALUE value-list

encodings are the same as for CreateGC

CopyGC
1 57 opcode
1 unused
2 4 request length
4 GCONTEXT src-gc
4 GCONTEXT dst-gc

135

X Protocol X11, Release 6.9/7.0

4 BITMASK value-mask
encodings are the same as for CreateGC

SetDashes
1 58 opcode
1 unused
2 3+(n+p)/4 request length
4 GCONTEXT gc
2 CARD16 dash-offset
2 n length of dashes
n LISTofCARD8 dashes
p unused, p=pad(n)

SetClipRectangles
1 59 opcode
1 ordering

0 UnSorted
1 YSorted
2 YXSorted
3 YXBanded

2 3+2n request length
4 GCONTEXT gc
2 INT16 clip-x-origin
2 INT16 clip-y-origin
8n LISTofRECTANGLE rectangles

FreeGC
1 60 opcode
1 unused
2 2 request length
4 GCONTEXT gc

ClearArea
1 61 opcode
1 BOOL exposures
2 4 request length
4 WINDOW window
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height

CopyArea
1 62 opcode
1 unused
2 7 request length
4 DRAWABLE src-drawable
4 DRAWABLE dst-drawable
4 GCONTEXT gc
2 INT16 src-x
2 INT16 src-y
2 INT16 dst-x
2 INT16 dst-y
2 CARD16 width
2 CARD16 height

CopyPlane
1 63 opcode
1 unused
2 8 request length
4 DRAWABLE src-drawable

136

X Protocol X11, Release 6.9/7.0

4 DRAWABLE dst-drawable
4 GCONTEXT gc
2 INT16 src-x
2 INT16 src-y
2 INT16 dst-x
2 INT16 dst-y
2 CARD16 width
2 CARD16 height
4 CARD32 bit-plane

PolyPoint
1 64 opcode
1 coordinate-mode

0 Origin
1 Previous

2 3+n request length
4 DRAWABLE drawable
4 GCONTEXT gc
4n LISTofPOINT points

PolyLine
1 65 opcode
1 coordinate-mode

0 Origin
1 Previous

2 3+n request length
4 DRAWABLE drawable
4 GCONTEXT gc
4n LISTofPOINT points

PolySegment
1 66 opcode
1 unused
2 3+2n request length
4 DRAWABLE drawable
4 GCONTEXT gc
8n LISTofSEGMENT segments

SEGMENT
2 INT16 x1
2 INT16 y1
2 INT16 x2
2 INT16 y2

PolyRectangle
1 67 opcode
1 unused
2 3+2n request length
4 DRAWABLE drawable
4 GCONTEXT gc
8n LISTofRECTANGLE rectangles

PolyArc
1 68 opcode
1 unused
2 3+3n request length
4 DRAWABLE drawable
4 GCONTEXT gc
12n LISTofARC arcs

FillPoly

137

X Protocol X11, Release 6.9/7.0

1 69 opcode
1 unused
2 4+n request length
4 DRAWABLE drawable
4 GCONTEXT gc
1 shape

0 Complex
1 Nonconvex
2 Convex

1 coordinate-mode
0 Origin
1 Previous

2 unused
4n LISTofPOINT points

PolyFillRectangle
1 70 opcode
1 unused
2 3+2n request length
4 DRAWABLE drawable
4 GCONTEXT gc
8n LISTofRECTANGLE rectangles

PolyFillArc
1 71 opcode
1 unused
2 3+3n request length
4 DRAWABLE drawable
4 GCONTEXT gc
12n LISTofARC arcs

PutImage
1 72 opcode
1 format

0 Bitmap
1 XYPixmap
2 ZPixmap

2 6+(n+p)/4 request length
4 DRAWABLE drawable
4 GCONTEXT gc
2 CARD16 width
2 CARD16 height
2 INT16 dst-x
2 INT16 dst-y
1 CARD8 left-pad
1 CARD8 depth
2 unused
n LISTofBYTE data
p unused, p=pad(n)

GetImage
1 73 opcode
1 format

1 XYPixmap
2 ZPixmap

2 5 request length
4 DRAWABLE drawable
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
4 CARD32 plane-mask

138

X Protocol X11, Release 6.9/7.0

→
1 1 Reply
1 CARD8 depth
2 CARD16 sequence number
4 (n+p)/4 reply length
4 VISUALID visual

0 None
20 unused
n LISTofBYTE data
p unused, p=pad(n)

PolyText8
1 74 opcode
1 unused
2 4+(n+p)/4 request length
4 DRAWABLE drawable
4 GCONTEXT gc
2 INT16 x
2 INT16 y
n LISTofTEXTITEM8 items
p unused, p=pad(n) (p is always 0 or 1)

TEXTITEM8
1 m length of string (cannot be 255)
1 INT8 delta
m STRING8 string

or
1 255 font-shift indicator
1 font byte 3 (most-significant)
1 font byte 2
1 font byte 1
1 font byte 0 (least-significant)

PolyText16
1 75 opcode
1 unused
2 4+(n+p)/4 request length
4 DRAWABLE drawable
4 GCONTEXT gc
2 INT16 x
2 INT16 y
n LISTofTEXTITEM16 items
p unused, p=pad(n) (p must be 0 or 1)

TEXTITEM16
1 m number of CHAR2Bs in string (cannot be 255)
1 INT8 delta
2m STRING16 string

or
1 255 font-shift indicator
1 font byte 3 (most-significant)
1 font byte 2
1 font byte 1
1 font byte 0 (least-significant)

ImageText8
1 76 opcode
1 n length of string
2 4+(n+p)/4 request length
4 DRAWABLE drawable
4 GCONTEXT gc
2 INT16 x
2 INT16 y

139

X Protocol X11, Release 6.9/7.0

n STRING8 string
p unused, p=pad(n)

ImageText16
1 77 opcode
1 n number of CHAR2Bs in string
2 4+(2n+p)/4 request length
4 DRAWABLE drawable
4 GCONTEXT gc
2 INT16 x
2 INT16 y
2n STRING16 string
p unused, p=pad(2n)

CreateColormap
1 78 opcode
1 alloc

0 None
1 All

2 4 request length
4 COLORMAP mid
4 WINDOW window
4 VISUALID visual

FreeColormap
1 79 opcode
1 unused
2 2 request length
4 COLORMAP cmap

CopyColormapAndFree
1 80 opcode
1 unused
2 3 request length
4 COLORMAP mid
4 COLORMAP src-cmap

InstallColormap
1 81 opcode
1 unused
2 2 request length
4 COLORMAP cmap

UninstallColormap
1 82 opcode
1 unused
2 2 request length
4 COLORMAP cmap

ListInstalledColormaps
1 83 opcode
1 unused
2 2 request length
4 WINDOW window

→
1 1 Reply
1 unused
2 CARD16 sequence number
4 n reply length

140

X Protocol X11, Release 6.9/7.0

2 n number of COLORMAPs in cmaps
22 unused
4n LISTofCOLORMAP cmaps

AllocColor
1 84 opcode
1 unused
2 4 request length
4 COLORMAP cmap
2 CARD16 red
2 CARD16 green
2 CARD16 blue
2 unused

→
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
2 CARD16 red
2 CARD16 green
2 CARD16 blue
2 unused
4 CARD32 pixel
12 unused

AllocNamedColor
1 85 opcode
1 unused
2 3+(n+p)/4 request length
4 COLORMAP cmap
2 n length of name
2 unused
n STRING8 name
p unused, p=pad(n)

→
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
4 CARD32 pixel
2 CARD16 exact-red
2 CARD16 exact-green
2 CARD16 exact-blue
2 CARD16 visual-red
2 CARD16 visual-green
2 CARD16 visual-blue
8 unused

AllocColorCells
1 86 opcode
1 BOOL contiguous
2 3 request length
4 COLORMAP cmap
2 CARD16 colors
2 CARD16 planes

→
1 1 Reply
1 unused
2 CARD16 sequence number

141

X Protocol X11, Release 6.9/7.0

4 n+m reply length
2 n number of CARD32s in pixels
2 m number of CARD32s in masks
20 unused
4n LISTofCARD32 pixels
4m LISTofCARD32 masks

AllocColorPlanes
1 87 opcode
1 BOOL contiguous
2 4 request length
4 COLORMAP cmap
2 CARD16 colors
2 CARD16 reds
2 CARD16 greens
2 CARD16 blues

→
1 1 Reply
1 unused
2 CARD16 sequence number
4 n reply length
2 n number of CARD32s in pixels
2 unused
4 CARD32 red-mask
4 CARD32 green-mask
4 CARD32 blue-mask
8 unused
4n LISTofCARD32 pixels

FreeColors
1 88 opcode
1 unused
2 3+n request length
4 COLORMAP cmap
4 CARD32 plane-mask
4n LISTofCARD32 pixels

StoreColors
1 89 opcode
1 unused
2 2+3n request length
4 COLORMAP cmap
12n LISTofCOLORITEM items

COLORITEM
4 CARD32 pixel
2 CARD16 red
2 CARD16 green
2 CARD16 blue
1 do-red, do-green, do-blue

#x01 do-red (1 is True, 0 is False)
#x02 do-green (1 is True, 0 is False)
#x04 do-blue (1 is True, 0 is False)
#xF8 unused

1 unused

StoreNamedColor
1 90 opcode
1 do-red, do-green, do-blue

#x01 do-red (1 is True, 0 is False)
#x02 do-green (1 is True, 0 is False)

142

X Protocol X11, Release 6.9/7.0

#x04 do-blue (1 is True, 0 is False)
#xF8 unused

2 4+(n+p)/4 request length
4 COLORMAP cmap
4 CARD32 pixel
2 n length of name
2 unused
n STRING8 name
p unused, p=pad(n)

QueryColors
1 91 opcode
1 unused
2 2+n request length
4 COLORMAP cmap
4n LISTofCARD32 pixels

→
1 1 Reply
1 unused
2 CARD16 sequence number
4 2n reply length
2 n number of RGBs in colors
22 unused
8n LISTofRGB colors

RGB
2 CARD16 red
2 CARD16 green
2 CARD16 blue
2 unused

LookupColor
1 92 opcode
1 unused
2 3+(n+p)/4 request length
4 COLORMAP cmap
2 n length of name
2 unused
n STRING8 name
p unused, p=pad(n)

→
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
2 CARD16 exact-red
2 CARD16 exact-green
2 CARD16 exact-blue
2 CARD16 visual-red
2 CARD16 visual-green
2 CARD16 visual-blue
12 unused

CreateCursor
1 93 opcode
1 unused
2 8 request length
4 CURSOR cid
4 PIXMAP source
4 PIXMAP mask

143

X Protocol X11, Release 6.9/7.0

0 None
2 CARD16 fore-red
2 CARD16 fore-green
2 CARD16 fore-blue
2 CARD16 back-red
2 CARD16 back-green
2 CARD16 back-blue
2 CARD16 x
2 CARD16 y

CreateGlyphCursor
1 94 opcode
1 unused
2 8 request length
4 CURSOR cid
4 FONT source-font
4 FONT mask-font

0 None
2 CARD16 source-char
2 CARD16 mask-char
2 CARD16 fore-red
2 CARD16 fore-green
2 CARD16 fore-blue
2 CARD16 back-red
2 CARD16 back-green
2 CARD16 back-blue

FreeCursor
1 95 opcode
1 unused
2 2 request length
4 CURSOR cursor

RecolorCursor
1 96 opcode
1 unused
2 5 request length
4 CURSOR cursor
2 CARD16 fore-red
2 CARD16 fore-green
2 CARD16 fore-blue
2 CARD16 back-red
2 CARD16 back-green
2 CARD16 back-blue

QueryBestSize
1 97 opcode
1 class

0 Cursor
1 Tile
2 Stipple

2 3 request length
4 DRAWABLE drawable
2 CARD16 width
2 CARD16 height

→
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
2 CARD16 width

144

X Protocol X11, Release 6.9/7.0

2 CARD16 height
20 unused

QueryExtension
1 98 opcode
1 unused
2 2+(n+p)/4 request length
2 n length of name
2 unused
n STRING8 name
p unused, p=pad(n)

→
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
1 BOOL present
1 CARD8 major-opcode
1 CARD8 first-event
1 CARD8 first-error
20 unused

ListExtensions
1 99 opcode
1 unused
2 1 request length

→
1 1 Reply
1 CARD8 number of STRs in names
2 CARD16 sequence number
4 (n+p)/4 reply length
24 unused
n LISTofSTR names
p unused, p=pad(n)

ChangeKeyboardMapping
1 100 opcode
1 n keycode-count
2 2+nm request length
1 KEYCODE first-keycode
1 m keysyms-per-keycode
2 unused
4nm LISTofKEYSYM keysyms

GetKeyboardMapping
1 101 opcode
1 unused
2 2 request length
1 KEYCODE first-keycode
1 m count
2 unused

→
1 1 Reply
1 n keysyms-per-keycode
2 CARD16 sequence number
4 nm reply length (m = count field from the request)
24 unused
4nm LISTofKEYSYM keysyms

145

X Protocol X11, Release 6.9/7.0

ChangeKeyboardControl
1 102 opcode
1 unused
2 2+n request length
4 BITMASK value-mask (has n bits set to 1)

#x0001 key-click-percent
#x0002 bell-percent
#x0004 bell-pitch
#x0008 bell-duration
#x0010 led
#x0020 led-mode
#x0040 key
#x0080 auto-repeat-mode

4n LISTofVALUE value-list

VALUEs
1 INT8 key-click-percent
1 INT8 bell-percent
2 INT16 bell-pitch
2 INT16 bell-duration
1 CARD8 led
1 led-mode

0 Off
1 On

1 KEYCODE key
1 auto-repeat-mode

0 Off
1 On
2 Default

GetKeyboardControl
1 103 opcode
1 unused
2 1 request length

→
1 1 Reply
1 global-auto-repeat

0 Off
1 On

2 CARD16 sequence number
4 5 reply length
4 CARD32 led-mask
1 CARD8 key-click-percent
1 CARD8 bell-percent
2 CARD16 bell-pitch
2 CARD16 bell-duration
2 unused
32 LISTofCARD8 auto-repeats

Bell
1 104 opcode
1 INT8 percent
2 1 request length

ChangePointerControl
1 105 opcode
1 unused
2 3 request length
2 INT16 acceleration-numerator
2 INT16 acceleration-denominator
2 INT16 threshold
1 BOOL do-acceleration

146

X Protocol X11, Release 6.9/7.0

1 BOOL do-threshold

GetPointerControl
1 106 opcode
1 unused
2 1 request length

→
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
2 CARD16 acceleration-numerator
2 CARD16 acceleration-denominator
2 CARD16 threshold
18 unused

SetScreenSaver
1 107 opcode
1 unused
2 3 request length
2 INT16 timeout
2 INT16 interval
1 prefer-blanking

0 No
1 Yes
2 Default

1 allow-exposures
0 No
1 Yes
2 Default

2 unused

GetScreenSaver
1 108 opcode
1 unused
2 1 request length

→
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
2 CARD16 timeout
2 CARD16 interval
1 prefer-blanking

0 No
1 Yes

1 allow-exposures
0 No
1 Yes

18 unused

ChangeHosts
1 109 opcode
1 mode

0 Insert
1 Delete

2 2+(n+p)/4 request length
1 family

0 Internet
1 DECnet

147

X Protocol X11, Release 6.9/7.0

2 Chaos
1 unused
2 n length of address
n LISTofCARD8 address
p unused, p=pad(n)

ListHosts
1 110 opcode
1 unused
2 1 request length

→
1 1 Reply
1 mode

0 Disabled
1 Enabled

2 CARD16 sequence number
4 n/4 reply length
2 CARD16 number of HOSTs in hosts
22 unused
n LISTofHOST hosts (n always a multiple of 4)

SetAccessControl
1 111 opcode
1 mode

0 Disable
1 Enable

2 1 request length

SetCloseDownMode
1 112 opcode
1 mode

0 Destroy
1 RetainPermanent
2 RetainTemporary

2 1 request length

KillClient
1 113 opcode
1 unused
2 2 request length
4 CARD32 resource

0 AllTemporary

RotateProperties
1 114 opcode
1 unused
2 3+n request length
4 WINDOW window
2 n number of properties
2 INT16 delta
4n LISTofATOM properties

ForceScreenSaver
1 115 opcode
1 mode

0 Reset
1 Activate

2 1 request length

148

X Protocol X11, Release 6.9/7.0

SetPointerMapping
1 116 opcode
1 n length of map
2 1+(n+p)/4 request length
n LISTofCARD8 map
p unused, p=pad(n)

→
1 1 Reply
1 status

0 Success
1 Busy

2 CARD16 sequence number
4 0 reply length
24 unused

GetPointerMapping
1 117 opcode
1 unused
2 1 request length

→
1 1 Reply
1 n length of map
2 CARD16 sequence number
4 (n+p)/4 reply length
24 unused
n LISTofCARD8 map
p unused, p=pad(n)

SetModifierMapping
1 118 opcode
1 n keycodes-per-modifier
2 1+2n request length
8n LISTofKEYCODE keycodes

→
1 1 Reply
1 status

0 Success
1 Busy
2 Failed

2 CARD16 sequence number
4 0 reply length
24 unused

GetModifierMapping
1 119 opcode
1 unused
2 1 request length

→
1 1 Reply
1 n keycodes-per-modifier
2 CARD16 sequence number
4 2n reply length
24 unused
8n LISTofKEYCODE keycodes

NoOperation
1 127 opcode

149

X Protocol X11, Release 6.9/7.0

1 unused
2 1+n request length
4n unused

Events
KeyPress

1 2 code
1 KEYCODE detail
2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 BOOL same-screen
1 unused

KeyRelease
1 3 code
1 KEYCODE detail
2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 BOOL same-screen
1 unused

ButtonPress
1 4 code
1 BUTTON detail
2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 BOOL same-screen
1 unused

ButtonRelease
1 5 code
1 BUTTON detail
2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW root

150

X Protocol X11, Release 6.9/7.0

4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 BOOL same-screen
1 unused

MotionNotify
1 6 code
1 detail

0 Normal
1 Hint

2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 BOOL same-screen
1 unused

EnterNotify
1 7 code
1 detail

0 Ancestor
1 Virtual
2 Inferior
3 Nonlinear
4 NonlinearVirtual

2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 mode

0 Normal
1 Grab
2 Ungrab

1 same-screen, focus
#x01 focus (1 is True, 0 is False)
#x02 same-screen (1 is True, 0 is False)
#xFC unused

LeaveNotify
1 8 code
1 detail

0 Ancestor
1 Virtual

151

X Protocol X11, Release 6.9/7.0

2 Inferior
3 Nonlinear
4 NonlinearVirtual

2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 mode

0 Normal
1 Grab
2 Ungrab

1 same-screen, focus
#x01 focus (1 is True, 0 is False)
#x02 same-screen (1 is True, 0 is False)
#xFC unused

FocusIn
1 9 code
1 detail

0 Ancestor
1 Virtual
2 Inferior
3 Nonlinear
4 NonlinearVirtual
5 Pointer
6 PointerRoot
7 None

2 CARD16 sequence number
4 WINDOW event
1 mode

0 Normal
1 Grab
2 Ungrab
3 WhileGrabbed

23 unused

FocusOut
1 10 code
1 detail

0 Ancestor
1 Virtual
2 Inferior
3 Nonlinear
4 NonlinearVirtual
5 Pointer
6 PointerRoot
7 None

2 CARD16 sequence number
4 WINDOW event
1 mode

0 Normal
1 Grab
2 Ungrab
3 WhileGrabbed

23 unused

152

X Protocol X11, Release 6.9/7.0

KeymapNotify
1 11 code
31 LISTofCARD8 keys (byte for keycodes 0−7 is omitted)

Expose
1 12 code
1 unused
2 CARD16 sequence number
4 WINDOW window
2 CARD16 x
2 CARD16 y
2 CARD16 width
2 CARD16 height
2 CARD16 count
14 unused

GraphicsExposure
1 13 code
1 unused
2 CARD16 sequence number
4 DRAWABLE drawable
2 CARD16 x
2 CARD16 y
2 CARD16 width
2 CARD16 height
2 CARD16 minor-opcode
2 CARD16 count
1 CARD8 major-opcode
11 unused

NoExposure
1 14 code
1 unused
2 CARD16 sequence number
4 DRAWABLE drawable
2 CARD16 minor-opcode
1 CARD8 major-opcode
21 unused

VisibilityNotify
1 15 code
1 unused
2 CARD16 sequence number
4 WINDOW window
1 state

0 Unobscured
1 PartiallyObscured
2 FullyObscured

23 unused

CreateNotify
1 16 code
1 unused
2 CARD16 sequence number
4 WINDOW parent
4 WINDOW window
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border-width
1 BOOL override-redirect

153

X Protocol X11, Release 6.9/7.0

9 unused

DestroyNotify
1 17 code
1 unused
2 CARD16 sequence number
4 WINDOW event
4 WINDOW window
20 unused

UnmapNotify
1 18 code
1 unused
2 CARD16 sequence number
4 WINDOW event
4 WINDOW window
1 BOOL from-configure
19 unused

MapNotify
1 19 code
1 unused
2 CARD16 sequence number
4 WINDOW event
4 WINDOW window
1 BOOL override-redirect
19 unused

MapRequest
1 20 code
1 unused
2 CARD16 sequence number
4 WINDOW parent
4 WINDOW window
20 unused

ReparentNotify
1 21 code
1 unused
2 CARD16 sequence number
4 WINDOW event
4 WINDOW window
4 WINDOW parent
2 INT16 x
2 INT16 y
1 BOOL override-redirect
11 unused

ConfigureNotify
1 22 code
1 unused
2 CARD16 sequence number
4 WINDOW event
4 WINDOW window
4 WINDOW above-sibling

0 None
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border-width

154

X Protocol X11, Release 6.9/7.0

1 BOOL override-redirect
5 unused

ConfigureRequest
1 23 code
1 stack-mode

0 Above
1 Below
2 TopIf
3 BottomIf
4 Opposite

2 CARD16 sequence number
4 WINDOW parent
4 WINDOW window
4 WINDOW sibling

0 None
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border-width
2 BITMASK value-mask

#x0001 x
#x0002 y
#x0004 width
#x0008 height
#x0010 border-width
#x0020 sibling
#x0040 stack-mode

4 unused

GravityNotify
1 24 code
1 unused
2 CARD16 sequence number
4 WINDOW event
4 WINDOW window
2 INT16 x
2 INT16 y
16 unused

ResizeRequest
1 25 code
1 unused
2 CARD16 sequence number
4 WINDOW window
2 CARD16 width
2 CARD16 height
20 unused

CirculateNotify
1 26 code
1 unused
2 CARD16 sequence number
4 WINDOW event
4 WINDOW window
4 WINDOW unused
1 place

0 Top
1 Bottom

15 unused

155

X Protocol X11, Release 6.9/7.0

CirculateRequest
1 27 code
1 unused
2 CARD16 sequence number
4 WINDOW parent
4 WINDOW window
4 unused
1 place

0 Top
1 Bottom

15 unused

PropertyNotify
1 28 code
1 unused
2 CARD16 sequence number
4 WINDOW window
4 ATOM atom
4 TIMESTAMP time
1 state

0 NewValue
1 Deleted

15 unused

SelectionClear
1 29 code
1 unused
2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW owner
4 ATOM selection
16 unused

SelectionRequest
1 30 code
1 unused
2 CARD16 sequence number
4 TIMESTAMP time

0 CurrentTime
4 WINDOW owner
4 WINDOW requestor
4 ATOM selection
4 ATOM target
4 ATOM property

0 None
4 unused

SelectionNotify
1 31 code
1 unused
2 CARD16 sequence number
4 TIMESTAMP time

0 CurrentTime
4 WINDOW requestor
4 ATOM selection
4 ATOM target
4 ATOM property

0 None
8 unused

ColormapNotify
1 32 code

156

X Protocol X11, Release 6.9/7.0

1 unused
2 CARD16 sequence number
4 WINDOW window
4 COLORMAP colormap

0 None
1 BOOL new
1 state

0 Uninstalled
1 Installed

18 unused

ClientMessage
1 33 code
1 CARD8 format
2 CARD16 sequence number
4 WINDOW window
4 ATOM type
20 data

MappingNotify
1 34 code
1 unused
2 CARD16 sequence number
1 request

0 Modifier
1 Keyboard
2 Pointer

1 KEYCODE first-keycode
1 CARD8 count
25 unused

157

X Protocol X11, Release 6.9/7.0

Glossary

Access control list
X maintains a list of hosts from which client programs can be run. By default, only pro-
grams on the local host and hosts specified in an initial list read by the server can use the
display. Clients on the local host can change this access control list. Some server imple-
mentations can also implement other authorization mechanisms in addition to or in place of
this mechanism. The action of this mechanism can be conditional based on the authoriza-
tion protocol name and data received by the server at connection setup.

Active grab
A grab is active when the pointer or keyboard is actually owned by the single grabbing
client.

Ancestors
If W is an inferior of A, then A is an ancestor of W.

Atom
An atom is a unique ID corresponding to a string name. Atoms are used to identify proper-
ties, types, and selections.

Background
An InputOutput window can have a background, which is defined as a pixmap. When
regions of the window hav e their contents lost or invalidated, the server will automatically
tile those regions with the background.

Backing store
When a server maintains the contents of a window, the pixels saved off screen are known as
a backing store.

Bit gravity
When a window is resized, the contents of the window are not necessarily discarded. It is
possible to request that the server relocate the previous contents to some region of the win-
dow (though no guarantees are made). This attraction of window contents for some loca-
tion of a window is known as bit gravity.

Bit plane
When a pixmap or window is thought of as a stack of bitmaps, each bitmap is called a bit
plane or plane.

Bitmap
A bitmap is a pixmap of depth one.

Border
An InputOutput window can have a border of equal thickness on all four sides of the win-
dow. A pixmap defines the contents of the border, and the server automatically maintains
the contents of the border. Exposure events are never generated for border regions.

Button grabbing
Buttons on the pointer may be passively grabbed by a client. When the button is pressed,
the pointer is then actively grabbed by the client.

Byte order
For image (pixmap/bitmap) data, the server defines the byte order, and clients with different
native byte ordering must swap bytes as necessary. For all other parts of the protocol, the
client defines the byte order, and the server swaps bytes as necessary.

Children
The children of a window are its first-level subwindows.

158

X Protocol X11, Release 6.9/7.0

Client
An application program connects to the window system server by some interprocess com-
munication path, such as a TCP connection or a shared memory buffer. This program is
referred to as a client of the window system server. More precisely, the client is the com-
munication path itself; a program with multiple paths open to the server is viewed as multi-
ple clients by the protocol. Resource lifetimes are controlled by connection lifetimes, not
by program lifetimes.

Clipping region
In a graphics context, a bitmap or list of rectangles can be specified to restrict output to a
particular region of the window. The image defined by the bitmap or rectangles is called a
clipping region.

Colormap
A colormap consists of a set of entries defining color values. The colormap associated with
a window is used to display the contents of the window; each pixel value indexes the col-
ormap to produce RGB values that drive the guns of a monitor. Depending on hardware
limitations, one or more colormaps may be installed at one time, so that windows associ-
ated with those maps display with correct colors.

Connection
The interprocess communication path between the server and client program is known as a
connection. A client program typically (but not necessarily) has one connection to the
server over which requests and events are sent.

Containment
A window ‘‘contains’’ the pointer if the window is viewable and the hotspot of the cursor is
within a visible region of the window or a visible region of one of its inferiors. The border
of the window is included as part of the window for containment. The pointer is ‘‘in’’ a
window if the window contains the pointer but no inferior contains the pointer.

Coordinate system
The coordinate system has the X axis horizontal and the Y axis vertical, with the origin [0,
0] at the upper left. Coordinates are integral, in terms of pixels, and coincide with pixel
centers. Each window and pixmap has its own coordinate system. For a window, the origin
is inside the border at the inside upper left.

Cursor
A cursor is the visible shape of the pointer on a screen. It consists of a hot spot, a source
bitmap, a shape bitmap, and a pair of colors. The cursor defined for a window controls the
visible appearance when the pointer is in that window.

Depth
The depth of a window or pixmap is the number of bits per pixel that it has. The depth of a
graphics context is the depth of the drawables it can be used in conjunction with for graph-
ics output.

Device
Ke yboards, mice, tablets, track-balls, button boxes, and so on are all collectively known as
input devices. The core protocol only deals with two devices, ‘‘the keyboard’’ and ‘‘the
pointer.’’

DirectColor
DirectColor is a class of colormap in which a pixel value is decomposed into three sepa-
rate subfields for indexing. The first subfield indexes an array to produce red intensity val-
ues. The second subfield indexes a second array to produce blue intensity values. The third
subfield indexes a third array to produce green intensity values. The RGB values can be
changed dynamically.

Display
A server, together with its screens and input devices, is called a display.

Drawable
Both windows and pixmaps can be used as sources and destinations in graphics operations.
These windows and pixmaps are collectively known as drawables. However, an Inpu-
tOnly window cannot be used as a source or destination in a graphics operation.

159

X Protocol X11, Release 6.9/7.0

Event
Clients are informed of information asynchronously by means of events. These ev ents can
be generated either asynchronously from devices or as side effects of client requests.
Events are grouped into types. The server never sends events to a client unless the client
has specificially asked to be informed of that type of event. However, other clients can
force events to be sent to other clients. Events are typically reported relative to a window.

Event mask
Events are requested relative to a window. The set of event types that a client requests rela-
tive to a window is described by using an event mask.

Event synchronization
There are certain race conditions possible when demultiplexing device events to clients (in
particular deciding where pointer and keyboard events should be sent when in the middle of
window management operations). The event synchronization mechanism allows syn-
chronous processing of device events.

Event propagation
Device-related events propagate from the source window to ancestor windows until some
client has expressed interest in handling that type of event or until the event is discarded
explicitly.

Event source
The window the pointer is in is the source of a device-related event.

Exposure event
Servers do not guarantee to preserve the contents of windows when windows are obscured
or reconfigured. Exposure events are sent to clients to inform them when contents of
regions of windows have been lost.

Extension
Named extensions to the core protocol can be defined to extend the system. Extension to
output requests, resources, and event types are all possible and are expected.

Focus window
The focus window is another term for the input focus.

Font
A font is a matrix of glyphs (typically characters). The protocol does no translation or
interpretation of character sets. The client simply indicates values used to index the glyph
array. A font contains additional metric information to determine interglyph and interline
spacing.

GC, GContext
GC and gcontext are abbreviations for graphics context.

Glyph
A glyph is an image, typically of a character, in a font.

Grab
Ke yboard keys, the keyboard, pointer buttons, the pointer, and the server can be grabbed for
exclusive use by a client. In general, these facilities are not intended to be used by normal
applications but are intended for various input and window managers to implement various
styles of user interfaces.

Graphics context
Various information for graphics output is stored in a graphics context such as foreground
pixel, background pixel, line width, clipping region, and so on. A graphics context can
only be used with drawables that have the same root and the same depth as the graphics
context.

Gravity
See bit gravity and window gravity.

160

X Protocol X11, Release 6.9/7.0

GrayScale
GrayScale can be viewed as a degenerate case of PseudoColor , in which the red, green,
and blue values in any giv en colormap entry are equal, thus producing shades of gray. The
gray values can be changed dynamically.

Hotspot
A cursor has an associated hotspot that defines the point in the cursor corresponding to the
coordinates reported for the pointer.

Identifier
An identifier is a unique value associated with a resource that clients use to name that
resource. The identifier can be used over any connection.

Inferiors
The inferiors of a window are all of the subwindows nested below it: the children, the chil-
dren’s children, and so on.

Input focus
The input focus is normally a window defining the scope for processing of keyboard input.
If a generated keyboard event would normally be reported to this window or one of its infe-
riors, the event is reported normally. Otherwise, the event is reported with respect to the
focus window. The input focus also can be set such that all keyboard events are discarded
and such that the focus window is dynamically taken to be the root window of whatever
screen the pointer is on at each keyboard event.

Input manager
Control over keyboard input is typically provided by an input manager client.

InputOnly window
An InputOnly window is a window that cannot be used for graphics requests. InputOnly
windows are invisible and can be used to control such things as cursors, input event genera-
tion, and grabbing. InputOnly windows cannot have InputOutput windows as inferiors.

InputOutput window
An InputOutput window is the normal kind of opaque window, used for both input and
output. InputOutput windows can have both InputOutput and InputOnly windows as
inferiors.

Key grabbing
Ke ys on the keyboard can be passively grabbed by a client. When the key is pressed, the
keyboard is then actively grabbed by the client.

Keyboard grabbing
A client can actively grab control of the keyboard, and key events will be sent to that client
rather than the client the events would normally have been sent to.

Keysym
An encoding of a symbol on a keycap on a keyboard.

Mapped
A window is said to be mapped if a map call has been performed on it. Unmapped win-
dows and their inferiors are never viewable or visible.

Modifier keys
Shift, Control, Meta, Super, Hyper, Alt, Compose, Apple, CapsLock, ShiftLock, and simi-
lar keys are called modifier keys.

Monochrome
Monochrome is a special case of StaticGray in which there are only two colormap entries.

Obscure
A window is obscured if some other window obscures it. Window A obscures window B if
both are viewable InputOutput windows, A is higher in the global stacking order, and the
rectangle defined by the outside edges of A intersects the rectangle defined by the outside
edges of B. Note the distinction between obscure and occludes. Also note that window
borders are included in the calculation and that a window can be obscured and yet still have
visible regions.

161

X Protocol X11, Release 6.9/7.0

Occlude
A window is occluded if some other window occludes it. Window A occludes window B if
both are mapped, A is higher in the global stacking order, and the rectangle defined by the
outside edges of A intersects the rectangle defined by the outside edges of B. Note the dis-
tinction between occludes and obscures. Also note that window borders are included in the
calculation.

Padding
Some padding bytes are inserted in the data stream to maintain alignment of the protocol
requests on natural boundaries. This increases ease of portability to some machine archi-
tectures.

Parent window
If C is a child of P, then P is the parent of C.

Passive grab
Grabbing a key or button is a passive grab. The grab activates when the key or button is
actually pressed.

Pixel value
A pixel is an N-bit value, where N is the number of bit planes used in a particular window
or pixmap (that is, N is the depth of the window or pixmap). For a window, a pixel value
indexes a colormap to derive an actual color to be displayed.

Pixmap
A pixmap is a three-dimensional array of bits. A pixmap is normally thought of as a two-
dimensional array of pixels, where each pixel can be a value from 0 to (2ˆN)-1 and where N
is the depth (z axis) of the pixmap. A pixmap can also be thought of as a stack of N
bitmaps.

Plane
When a pixmap or window is thought of as a stack of bitmaps, each bitmap is called a
plane or bit plane.

Plane mask
Graphics operations can be restricted to only affect a subset of bit planes of a destination.
A plane mask is a bit mask describing which planes are to be modified. The plane mask is
stored in a graphics context.

Pointer
The pointer is the pointing device attached to the cursor and tracked on the screens.

Pointer grabbing
A client can actively grab control of the pointer. Then button and motion events will be
sent to that client rather than the client the events would normally have been sent to.

Pointing device
A pointing device is typically a mouse, tablet, or some other device with effective dimen-
sional motion. There is only one visible cursor defined by the core protocol, and it tracks
whatever pointing device is attached as the pointer.

Property
Windows may have associated properties, which consist of a name, a type, a data format,
and some data. The protocol places no interpretation on properties. They are intended as a
general-purpose naming mechanism for clients. For example, clients might use properties
to share information such as resize hints, program names, and icon formats with a window
manager.

Property list
The property list of a window is the list of properties that have been defined for the win-
dow.

PseudoColor
PseudoColor is a class of colormap in which a pixel value indexes the colormap to pro-
duce independent red, green, and blue values; that is, the colormap is viewed as an array of
triples (RGB values). The RGB values can be changed dynamically.

162

X Protocol X11, Release 6.9/7.0

Redirecting control
Window managers (or client programs) may want to enforce window layout policy in vari-
ous ways. When a client attempts to change the size or position of a window, the operation
may be redirected to a specified client rather than the operation actually being performed.

Reply
Information requested by a client program is sent back to the client with a reply. Both
ev ents and replies are multiplexed on the same connection. Most requests do not generate
replies, although some requests generate multiple replies.

Request
A command to the server is called a request. It is a single block of data sent over a connec-
tion.

Resource
Windows, pixmaps, cursors, fonts, graphics contexts, and colormaps are known as
resources. They all have unique identifiers associated with them for naming purposes. The
lifetime of a resource usually is bounded by the lifetime of the connection over which the
resource was created.

RGB values
Red, green, and blue (RGB) intensity values are used to define color. These values are
always represented as 16-bit unsigned numbers, with 0 being the minimum intensity and
65535 being the maximum intensity. The server scales the values to match the display
hardware.

Root
The root of a pixmap, colormap, or graphics context is the same as the root of whatever
drawable was used when the pixmap, colormap, or graphics context was created. The root
of a window is the root window under which the window was created.

Root window
Each screen has a root window covering it. It cannot be reconfigured or unmapped, but it
otherwise acts as a full-fledged window. A root window has no parent.

Save set
The save set of a client is a list of other clients’ windows that, if they are inferiors of one of
the client’s windows at connection close, should not be destroyed and that should be
remapped if currently unmapped. Save sets are typically used by window managers to
avoid lost windows if the manager terminates abnormally.

Scanline
A scanline is a list of pixel or bit values viewed as a horizontal row (all values having the
same y coordinate) of an image, with the values ordered by increasing x coordinate.

Scanline order
An image represented in scanline order contains scanlines ordered by increasing y coordi-
nate.

Screen
A server can provide several independent screens, which typically have physically indepen-
dent monitors. This would be the expected configuration when there is only a single
keyboard and pointer shared among the screens.

163

X Protocol X11, Release 6.9/7.0

Selection
A selection can be thought of as an indirect property with dynamic type; that is, rather than
having the property stored in the server, it is maintained by some client (the ‘‘owner’’). A
selection is global in nature and is thought of as belonging to the user (although maintained
by clients), rather than as being private to a particular window subhierarchy or a particular
set of clients. When a client asks for the contents of a selection, it specifies a selection
‘‘target type’’. This target type can be used to control the transmitted representation of the
contents. For example, if the selection is ‘‘the last thing the user clicked on’’ and that is
currently an image, then the target type might specify whether the contents of the image
should be sent in XY format or Z format. The target type can also be used to control the
class of contents transmitted; for example, asking for the ‘‘looks’’ (fonts, line spacing,
indentation, and so on) of a paragraph selection rather than the text of the paragraph. The
target type can also be used for other purposes. The protocol does not constrain the seman-
tics.

Server
The server provides the basic windowing mechanism. It handles connections from clients,
multiplexes graphics requests onto the screens, and demultiplexes input back to the appro-
priate clients.

Server grabbing
The server can be grabbed by a single client for exclusive use. This prevents processing of
any requests from other client connections until the grab is completed. This is typically
only a transient state for such things as rubber-banding, pop-up menus, or to execute
requests indivisibly.

Sibling
Children of the same parent window are known as sibling windows.

Stacking order
Sibling windows may stack on top of each other. Windows above other windows both
obscure and occlude those lower windows. This is similar to paper on a desk. The rela-
tionship between sibling windows is known as the stacking order.

StaticColor
StaticColor can be viewed as a degenerate case of PseudoColor in which the RGB values
are predefined and read-only.

StaticGray
StaticGray can be viewed as a degenerate case of GrayScale in which the gray values are
predefined and read-only. The values are typically linear or near-linear increasing ramps.

Stipple
A stipple pattern is a bitmap that is used to tile a region that will serve as an additional clip
mask for a fill operation with the foreground color.

String Equivalence
Tw o ISO Latin-1 STRING8 values are considered equal if they are the same length and if
corresponding bytes are either equal or are equivalent as follows: decimal values 65 to 90
inclusive (characters ‘‘A’’ to ‘‘Z’’) are pairwise equivalent to decimal values 97 to 122
inclusive (characters ‘‘a’’ to ‘‘z’’), decimal values 192 to 214 inclusive (characters ‘‘A
grave’’ to ‘‘O diaeresis’’) are pairwise equivalent to decimal values 224 to 246 inclusive
(characters ‘‘a grave’’ to ‘‘o diaeresis’’), and decimal values 216 to 222 inclusive (charac-
ters ‘‘O oblique’’ to ‘‘THORN’’) are pairwise equivalent to decimal values 246 to 254
inclusive (characters ‘‘o oblique’’ to ‘‘thorn’’).

Tile
A pixmap can be replicated in two dimensions to tile a region. The pixmap itself is also
known as a tile.

164

X Protocol X11, Release 6.9/7.0

Timestamp
A timestamp is a time value, expressed in milliseconds. It typically is the time since the
last server reset. Timestamp values wrap around (after about 49.7 days). The server, giv en
its current time is represented by timestamp T, always interprets timestamps from clients by
treating half of the timestamp space as being earlier in time than T and half of the times-
tamp space as being later in time than T. One timestamp value (named CurrentTime) is
never generated by the server. This value is reserved for use in requests to represent the
current server time.

TrueColor
TrueColor can be viewed as a degenerate case of DirectColor in which the subfields in
the pixel value directly encode the corresponding RGB values; that is, the colormap has
predefined read-only RGB values. The values are typically linear or near-linear increasing
ramps.

Type
A type is an arbitrary atom used to identify the interpretation of property data. Types are
completely uninterpreted by the server and are solely for the benefit of clients.

Viewable
A window is viewable if it and all of its ancestors are mapped. This does not imply that
any portion of the window is actually visible. Graphics requests can be performed on a
window when it is not viewable, but output will not be retained unless the server is main-
taining backing store.

Visible
A region of a window is visible if someone looking at the screen can actually see it; that is,
the window is viewable and the region is not occluded by any other window.

Window gravity
When windows are resized, subwindows may be repositioned automatically relative to
some position in the window. This attraction of a subwindow to some part of its parent is
known as window gravity.

Window manager
Manipulation of windows on the screen and much of the user interface (policy) is typically
provided by a window manager client.

XYFormat
The data for a pixmap is said to be in XY format if it is organized as a set of bitmaps repre-
senting individual bit planes, with the planes appearing from most-significant to least-sig-
nificant in bit order.

ZFormat
The data for a pixmap is said to be in Z format if it is organized as a set of pixel values in
scanline order.

165

X Protocol X11, Release 6.9/7.0

Table of Contents

Acknowledgments . iii
1. Protocol Formats . 1
2. Syntactic Conventions . 1
3. Common Types . 2
4. Errors . 4
5. Keyboards . 6
6. Pointers . 7
7. Predefined Atoms . 7
8. Connection Setup . 8
9. Requests . 13
10. Connection Close . 76
11. Events . 76
12. Flow Control and Concurrency 89
Appendix A − KEYSYM Encoding 90
Appendix B − Protocol Encoding 110
Glossary . 158
Index . 166

