X Toolkit Intrinsics -
C Language Interface

X Window System

Joel McCormack, Digital Equipment Corporation
Paul Asente, Digital EQuipment Corporation
Ralph R. Swick, Digital Equipment Corporation

X Toolkit Intrinsics - C Language Interface: X Window System
by Joel McCormack, Paul Asente, and Ralph R. Swick

X Version 11, Release 7.7
XWindow System is a trademark of X Consortium, Inc.
Copyright © 1985, 1986, 1987, 1988, 1991, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

Copyright © 1985, 1986, 1987, 1988, 1991, 1994 Digital Equipment Corporation, Maynard, Massachusetts.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appears in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Digital not be used in in advertising or publicity
pertaining to distribution of the software without specific, written prior permission. Digital makes no representations
about the suitability of the software described herein for any purpose. It is provided "as is" without express or
implied warranty.

Acknowledgments

The design of the X11 Intrinsics was done primarily by Joel McCormack of Digi-
tal WSL. Major contributions to the design and implementation also were done by
Charles Haynes, Mike Chow, and Paul Asente of Digital WSL. Additional contribu-
tors to the design and/or implementation were:

Loretta Guarino-Reid (Digital WSL) Rich Hyde (Digital WSL)

Susan Angebranndt (Digital WSL) Terry Weissman (Digital WSL)
Mary Larson (Digital UEG) Mark Manasse (Digital SRC)

Jim Gettys (Digital SRC) Leo Treggiari (Digital SDT)
Ralph Swick (Project Athena and Digital Mark Ackerman (Project Athena)
ERP)

Ron Newman (Project Athena) Bob Scheifler (MIT LCS)

The contributors to the X10 toolkit also deserve mention. Although the X11 Intrin-
sics present an entirely different programming style, they borrow heavily from the
implicit and explicit concepts in the X10 toolkit.

The design and implementation of the X10 Intrinsics were done by:

Terry Weissman (Digital WSL)
Smokey Wallace (Digital WSL)
Phil Karlton (Digital WSL)
Charles Haynes (Digital WSL)
Frank Hall (HP)

The design and implementation of the X10 toolkit’s sample widgets were by the
above, as well as by:

Ram Rao (Digital UEG)

Mary Larson (Digital UEG)
Mike Gancarz (Digital UEG)
Kathleen Langone (Digital UEG)

These widgets provided a checklist of requirements that we had to address in the
X11 Intrinsics.

Thanks go to Al Mento of Digital’s UEG Documentation Group for formatting and
generally improving this document and to John Ousterhout of Berkeley for exten-
sively reviewing early drafts of it.

Finally, a special thanks to Mike Chow, whose extensive performance analysis of the
X10 toolkit provided the justification to redesign it entirely for X11.

Joel McCormack
Western Software Laboratory
Digital Equipment Corporation

Acknowledgments

March 1988

The current design of the Intrinsics has benefited greatly from the input of several
dedicated reviewers in the membership of the X Consortium. In addition to those
already mentioned, the following individuals have dedicated significant time to sug-
gesting improvements to the Intrinsics:

Steve Pitschke (Stellar) C.Doug Blewett (AT&T)

Bob Miller (HP) David Schiferl (Tektronix)

Fred Taft (HP) Michael Squires (Sequent)

Marcel Meth (AT&T) JimFulton (MIT)

Mike Collins (Digital) Kerry Kimbrough (Texas Instruments)
Scott McGregor (Digital) Phil Karlton (Digital)

Julian Payne (ESS) Jacques Davy (Bull)

Gabriel Beged-Dov (HP) GlennWidener (Tektronix)

Thanks go to each of them for the countless hours spent reviewing drafts and code.

Ralph R. Swick

External Research Group
Digital Equipment Corporation
MIT Project Athena

June 1988

From Release 3 to Release 4, several new members joined the design team. We
greatly appreciate the thoughtful comments, suggestions, lengthy discussions, and
in some cases implementation code contributed by each of the following:

Don Alecci (AT&T) EllisCohen (OSF)
Donna Converse (MIT) Clive Feather (IXI)
Nayeem Islam (Sun) Dana Laursen (HP)
Keith Packard (MIT) Chris Peterson (MIT)
Richard Probst (Sun) Larry Cable (Sun)

In Release 5, the effort to define the internationalization additions was headed by
Bill McMahon of Hewlett Packard and Frank Rojas of IBM. This has been an educa-
tional process for many of us, and Bill and Frank’s tutelage has carried us through.
Vania Joloboff of the OSF also contributed to the internationalization additions. The
implementation efforts of Bill, Gabe Beged-Dov, and especially Donna Converse for
this release are also gratefully acknowledged.

Ralph R. Swick
December 1989
and

July 1991

The Release 6 Intrinsics is a result of the collaborative efforts of participants in the
X Consortium’s intrinsics working group. A few individuals contributed substantial
design proposals, participated in lengthy discussions, reviewed final specifications,

ii

Acknowledgments

and in most cases, were also responsible for sections of the implementation. They
deserve recognition and thanks for their major contributions:

Paul Asente (Adobe) Larry Cable (SunSoft)

Ellis Cohen (OSF) Daniel Dardailler (OSF)
Vania Joloboff (OSF) KalebKeithley (X Consortium)
Courtney Loomis (HP) Douglas Rand (OSF)

Bob Scheifler (X Consortium) Ajay Vohra (SunSoft)

Many others analyzed designs, offered useful comments and suggestions, and
participated in a significant subset of the process. The following people deserve
thanks for their contributions: Andy Bovingdon, Sam Chang, Chris Craig, George
Erwin-Grotsky, Keith Edwards, Clive Feather, Stephen Gildea, Dan Heller, Steve
Humphrey, David Kaelbling, Jaime Lau, Rob Lembree, Stuart Marks, Beth Mynatt,
Tom Paquin, Chris Peterson, Kamesh Ramakrishna, Tom Rodriguez, Jim VanGilder,
Will Walker, and Mike Wexler.

I am especially grateful to two of my colleagues: Ralph Swick for expert editorial
guidance, and Kaleb Keithley for leadership in the implementation and the specifi-
cation work.

Donna Converse
X Consortium
April 1994

iii

Table of Contents

About This ManUalcoeeiiiiiiiiiii ettt e et e
1. Intrinsics and WIAGELSccuoeiiiiieiiiiiiiiiie et er e et e e eae e e eaeeeaaens
INTIINSICS .oiiiiiiiiii i ettt et e e eens
| I o Lo LU= T [TSP PPT PR
Procedures and MaCTOScccoeuuuieiiiiiiieeeeiiie ettt e e et e eeeab e e eeeeeaas
1A Lo o 1] PRSP
(070 4 I A Te [=Y o ST
Composite WIAGELS ..oivvuiiiiiiiiiieieiie et eere e eei e e e ra e e eaan e aananns
Constraint WIidgetsccuueeiiieiiiiieiiiireeiee e e et e e e eer e e e e e aaeeeaeees
Implementation-SPecific TYPES ...viiiiiriiiiiiiiiie e e e e
A o o £ A O F T3 ' T PN
Widget Naming Conventionscccceeevuieiiiiiiiiiinneeiieneeiieeeeineeeineenneneens
Widget Subclassing in Public .h Filescccccccveviiiiiiiiiniiiinicien e,
Widget Subclassing in Private .h Filesc.cccoovviiiiiiiiiiniiiiniiecie e,
Widget Subclassing in .C Filescccocveiiiiiiiiiiiiiiiiin e,
Widget Class and Superclass LOOK UD ...cooivvviiiiiniiiiiniiiiieiiieeeeieeeeiinns
Widget Subclass Verificationcccoeieveviiiiiiiiiiniiiin e
Superclass ChaiNingcevivuieriiiiiiiiiin e eei e e e eaae s
Class Initialization: class_initialize and class_part initialize Proce-
QUTES ittt ettt e ettt e e e ettt e e e e eabe e e e e eebieeeaees
Initializing @ Widget Classccccieviiiiiiiiirieiin e e e e e eeaenes
Inheritance of Superclass Operationsccccceeevvieiiieiiieiiieeiiieeieeeenee,
Invocation of Superclass Operationsc..coeevveeiiieiiiiiiiiiiiieeieeieeee,
Class Extension RECOTAScccuuuiiiiiiiiiiiiiiiiiiiiieeeiii et
2. Widget Instantiationccoeeiiiiiiiiiniiiiie e e e e e e eees
Initializing the X TOOIKItccouviiiiiiiiiii e e
Establishing the LocCalecooiiiiiiiiiiiiiieeie e e e e e
Loading the Resource Databasecccccieueviiiiiiiiiiniiiiiniciee e evi e enaen
Parsing the Command LinNeccceviiiiiiiiiiiniiiiieii e eeie e e e enans
Creating WiIdGetsiiiiiiiiieiiiii e e e e e e e e e e e e e e aaan e e eaanes
Creating and Merging Argument LiStsc.ccocevveviiiiieiiiniieiinieeieeennnn,
Creating a Widget INStancecccooevveiiiiiniiiiiniiiiie e
Creating an Application Shell INStancecccoeeveviiiiiiniiiiineiiiineeiins
Convenience Procedure to Initialize an Applicationcc..ceeeenneen.
Widget Instance Allocation: The allocate Procedurecccccccvvunennnen.
Widget Instance Initialization: The initialize Procedure
Constraint Instance Initialization: The ConstraintClassPart initialize
PIOCEAUTE ..cooeiiiiiiiie et
Nonwidget Data Initialization: The initialize_hook Procedure
Realizing WIAgetSiiiiiiiiiiieiiiie st e e e e e e e e e eae e eaaeeeees
Widget Instance Window Creation: The realize Procedure
Window Creation Convenience Routinec..ccceevivieeiiiiniiiiinieinnnnn.
Obtaining Window Information from a Widgetccccoeevviiiiiniiiiiniiiiinninins
Unrealizing WiIidgetscoooviiiiiiiiiiiin e e e e e e e eaaes
DesStroying WIAGQELSciiveeiiiiieiiiiiieiiie e e et e e et e e et e e et e e et e eeaaeaesnneaees
Adding and Removing Destroy Callbacksccoeevivvieiiiiiniiiiiniiinnnnns
Dynamic Data Deallocation: The destroy Procedurecc.c.ccvvuneennen.
Dynamic Constraint Data Deallocation: The ConstraintClassPart de-
SETOY PTOCEAUTIE ..couviiiiiiiiiiie it e e e e e e eaaa s
Widget Instance Deallocation: The deallocate Procedure
Exiting from an ApPplicationc.ccveiiiiieiiiiiiiiiir e e e

iv

X Toolkit Intrinsics -
C Language Interface

3. Composite Widgets and Their Childrenc..ccoeeuiiiiiiiiiniiiiie e, 58
Addition of Children to a Composite Widget: The insert child Procedure
... 59
Insertion Order of Children: The insert position Procedure 59
Deletion of Children: The delete child Procedureccccoeevvviiininiinnnnnenn. 60
Adding and Removing Children from the Managed Setc.cccevvnnennn.n. 60

Managing Childrenccooiiiiiiiiii e e 60
Unmanaging ChildTencoeeuiiiiiiiiiiiii e 62
Bundling Changes to the Managed Setccoevviiiiiiiiiiiiiniieeeeee, 63
Determining if a Widget Is Managedccceevuviivieiiieiiieiieeieeeieeen, 65
Controlling When Widgets Get Mappedccceueevviiiiiiiiiiiiieeeeeeeeie e, 65
Constrained Composite Widgetscceeueiiiiiiiiiiiiieiie e, 66

Y T=Y | VY4 T Fo =Y RPN 68

Shell Widget Definitionscccooiiiiiiiiiiiiii e 68
ShellClassPart Definitionscccovviiiiiiiiiiiiiiiiiie e 69
ShellPart Definitionccooiiiiiiiiiiiiii e 72
Shell RESOUTICES ...iivuiiiiiiieii ettt ettt e e e e et e e e e eees 75
ShellPart Default Valuesc.oovviiiiiiiiiiiiiiiiiiie e 77

Session PartiCipationcicvieiiiiiiiiir e e 83
JOINING 8 SESSIOT .ivuiiiiiiiiiiiiiie e e e e e e e e eans 83
Saving Application Statecccceeiiiiiiiii i 84
Responding to @ Shutdownccooeiiiiiiiiiiii e 87
Resigning from a SeSSIONc.ceiieiiiiiiiiiiiiiecie e 87

T o] o B B o VA4 T o =1 N 89
POP-UD WIdget TYPES .oeeniiiiiieiieeie ettt e et e e e et e et e e e ea e eaaeeanns 89
Creating a Pop-Up Shell ..o 90
Creating Pop-Up Childrenccoouiiiiiiii et e e 91
Mapping a Pop-Up WiIdgetcoovniiiiiiieeee e 91
Unmapping a Pop-Up WIdgetccouiiiiiiii e 94

6. Geometry Managementciiviiiiiiiiieiie et e e e et e e e e e e e eans 96
Initiating Geometry Changesccceviiiiiiieeiieeie et ee e e e eaeeaaaas 96
General Geometry Manager ReqUestscccoueviiiiiiiiiiiiiiieeeeeeeeeeee e 97
ReESIZE REQUESTES oeniieiiiiiiiiii et et e e e e e e ans 99
Potential Geometry Changescccoueiiiiiiiiiiiiiie e e e e eae e 99
Child Geometry Management: The geometry manager Procedure 100
Widget Placement and SiZiNgccoeeviiiiiiiiiiiiecee e 101
Preferred GEOMELTY ...c.uoiieiiiii e e e 103
Size Change Management: The resize Procedureccc.cceeevviivinnnnnnnenn. 105

7. Event Managementooiuiiiiiiiiiiii e e e aas 106
Adding and Deleting Additional Event Sourcesc.cccceeveevieiiineeinnnnnnnnn. 106

Adding and Removing Input SOUTICEScoevviiiiiiiiiiiieiiieeieeee e, 106
Adding and Removing Blocking Notificationsccccceeiiviiiiinninn.n 108
Adding and Removing Timeoutsc.cceevveiiiiiiiieiiiiieieceee e, 108
Adding and Removing Signal Callbackscccceviiiiiiiiiiieiiieeiieennnns 109

Constraining Events to a Cascade of Widgetscccovviiiiiiiiiiiniineenneenn.. 111
Requesting Key and Button Grabsccooeviiiiiiiiiiiiiniie e, 112

Focusing Events on a Childc.coiiiiiiiiiii e 115
Events for Drawables That Are Not a Widget's Window 116

Querying EVENnt SOUTCESc.iiuiiiiiiiiiiiei et ea e et e e e e ees 117

Dispatching EvVENtSccoeiiiiiiiiiii e e 118

The Application INPUt LOOP ..vuiiieiiiiiiiiiiiiee et e e e 119

Setting and Checking the Sensitivity State of a Widgetcc.cceeenniennios 120

Adding Background Work Procedurescccooueiiiiiiiiieiiieiiieeie e eeieeaenas 121

X EVENE FIlLETS ouiiiiiiiiiiie et 122

X Toolkit Intrinsics -
C Language Interface

Pointer Motion COMPIESSION ...c.ivuiiiiiiiiiiiiiieeieeie e eieee e eaeeneennens 122
Enter/Leave COMPTIESSION ...ccuviiiiniiiiiieiieieeieei e e et ete e e et eeneeaeanaens 122
EXposure COMPTIESSION ...cuiuniiniiiiiieiiiieiieeieeie et et eee e easeneeieenaaanns 122
Widget Exposure and ViSibilityccocciiiiiiiiiiiiii e 124
Redisplay of a Widget: The expose Procedurec..cceeevueevnneennnnnn.. 124
Widget VISibility ...ccoeiieeiiiiiiiii e 125

X Event Handlerso..oiiiiiiiiiiiiii ettt et 125
Event Handlers That Select Eventscccooeeviviiiiiiiiiiiiiiiniiiineecie, 126
Event Handlers That Do Not Select Eventsccceeviiiiiiiiiniiinnnnen. 128
Current Event Maskc.ooiiiiiiiiiiiiiiii e 129
Event Handlers for X11 Protocol EXtensionsccceceeevveveeinneinnnnnnnn. 130
Using the Intrinsics in a Multi-Threaded Environmentc..ccccevneeni. 134
Initializing a Multi-Threaded Intrinsics Applicationc.....c.c..... 134
Locking X Toolkit Data Structurescccoeeveeiiieiiiiiiieeiiecice e, 134
Event Management in a Multi-Threaded Environment 136

8. CAlIDACKS ..uieiiiiiiiee et e e e aaas 137
Using Callback Procedure and Callback List Definitionsccc.ccueinie. 137
Identifying Callback LiStScciiiiiiiiiiiiiiii e 138
Adding Callback ProCedUTEScceuuiiiiiiiiiiiiiieii ettt e e e e eae e 138
Removing Callback Proceduresc.ccoeeiuiiiiiiiiiiiiiieieeceeee e 139
Executing Callback ProCedUIESc.cceiiuiiiiiiiiiiiieiiieeiieeie e e e ea e eaeeaenas 139
Checking the Status of a Callback LiStccccceviviiiiiiiiiiiiiiieeeeeeen 140
9. Resource Managementcouiiiiiiiiiiiiiieee e e e e e e e e e e eans 141
ReESOUICE LISES .oeuiiiiiiiiiieiie ettt ee e e e e e ena s 141
Byte Offset Calculationscoouiiiiiiiiiiiiiiii e e 146
Superclass-to-Subclass Chaining of Resource Listscccccoeviieiiieeinnennnn.e. 146
SUDTESOUICES ..iiiiiiiiieiiie ettt e et e e e e e et e e e e 147
Obtaining Application RESOUICESccevueiiiiiiiiiiieeiie e e eaenas 148
ReSOUICe CONVETSIONS ..cuuuiiiiiieiiieiiieeiieiie ettt etie et e et eeeneeeneeeneeneeraeennnes 149
Predefined Resource CONVETLETScceuvieiiirieiineiiiieeeiieeeiieeeiieeenness 149
New Resource CONVETTETSccuuviuuiiiiiiiiiiiieei et ei et eeieeneenanes 152
Issuing Conversion WarTinNgsScc.cviviieiiiiniiieeieieeieeieeeeeieeieeeneaneeanns 155
Registering a New Resource CONVETtercccoceviveiiiiniiiniieiiinneinennns 156
Resource Converter INVOCAtiOncccvieiiiiiiiiiiiiiiiiiieiecece e 159
Reading and Writing Widget Statecoovveiiiiiiiiii e 162
Obtaining Widget Statecocouiiiiiiiiiiii e 162
Setting Widget Statecooviiiiiiiie e 164

10. Translation Managementeevuiiieiiieiii e e e e e e eaeeaaeees 170
ACTION TADIES .eniiiiiie e 170
Action Table Registrationccccoeiiiiiiiiiiiiiii e 171
Action Names to Procedure Translationscccoeeeeevviiiiiieiinieninnneen. 172
Action Hook Registrationc.ccoeiiiiiiiiiiiniiie e 172
Translation Tablesooiiiiiiiiiii et 173
EVENE SEQUENCES ..ovniiniiiiiii ittt et e e e eanas 174
ACEION SEQUETICES ..uivniiiiiiiiiiiieeii ettt et et e et eee e e e e ee e aans 174
Multi-CliCK TIMIE .eeuniiiiiiiiieiiiie ettt et e e e e e e eees 174
Translation Table Managementcccoveiiiiiiiiiiiiiiieeie e e e 175
USING ACCELETALOTS ...evuiiiiiiiiieii ettt e et e e e e et e e s e s e st e aaanas 177
KeyCode-to-KeySym CONVETSIONSc..cevuiiiiiiieieeiiieiiieeieeieeeieesreeenneesnneees 178
Obtaining a KeySym in an Action Procedurecc.ccoeiiiiiiiiiiiineinneennnnn. 181
KeySym-to-KeyCode CONVETSIONSccueviuniiiniiiieieeiieeiiieeieeieeeiesneeanaeanneees 182
Registering Button and Key Grabs for Actionsc..ccooeeveeiiieiiiiiiieiinnnnnss 182
Invoking Actions Dir€Ctlycceueiiiiiiiiiiiiii e 183
Obtaining a Widget's Action LiStcccoviiiiiiiiiiiiiiii e 184

vi

X Toolkit Intrinsics -
C Language Interface

11. Utility FUNCHIONS ouiiniiiiiii et e et e e e et e e aaeaanas 185
Determining the Number of Elements in an Arraycoocceeeeveevneeenneennnne. 185
Translating Strings to Widget InStancesc.ccoevveiiiiiiiiiiiiiniiieeeeeeeaens 185
Managing MemoOTY USAQE ...cc.ovuiiiiiniiiiiiiiiiiieeieeie e etee e e eteeee e eaeaneenns 186
Sharing Graphics CONtEXES ...c.ciiuiiiiiiiiiiiiieee e e e e 187
Managing SeleCtionsSc.c.eiiiiiiiiiiiieie e 189

Setting and Getting the Selection Timeout Valuecccccevveennneen. 189
Using Atomic Transfersccoceeiiiiiiiiiiiiiie e 190
Using Incremental Transfersccoovueeiiiiiiiiieececce e 195
Setting and Retrieving Selection Target Parameterscc......... 200
Generating MULTIPLE ReqUESTS ...c.ccviiiiiiiiiiiiiiiieieeeeeee e 202
Auxiliary Selection Propertiesccccoeiiiiiiiiiiiiiiiieiieee e, 203
Retrieving the Most Recent Timestampccccevvevveiiiiiiiiiiieiineennee, 203
Retrieving the Most Recent Eventcccccoevviiiiiiiiiiiiniieeeeeee, 204
Merging Exposure Events into @ Regioncc.coeevviiiiiiiiiiiiiiiniiiiieeieeenns 204
Translating Widget Coordinatesccceeviieiiiiiiiiiiiieiieee e e 204
Translating a Window to @ Widgetoovviiiiiiiiiii e 205
Handling ETITOTSciuniiiiiiiiiiie et e e e e et e et e e e et e e ae e st e st e eaneesanaees 205
Setting WM _COLORMAP WINDOWS ..ottt 209
Finding File NAMIESciuuiiiiiiieeiiieiieeie et et e e e e te et e et e et e ere e e e eenasaneeanns 210
Hooks for External AGentsccoouiiiiiiiiiiiii e e e e 213
Ho0K ODbjJjecCt RESOUTICES ...c.ueivniiiiieiiieiiieeie et et e e e e e e e een 214
Querying Open DiSPlayscccueeieiiiiiiiiieiiecie et ee e e e e ean e 218

12. Nonwidget ODBJECES ..ivniiiiiiiiie e e er e e e e e eaeaas 219
Data STIUCLUTES ...ceneiiiiiie et e e e et e eeaee 219
(0] o) 1=Toa A0 o [T o1 =S RURRRN 219

ObjectClassPart StTUCLUTEc.coeeiiiiiiiiiiieee e 219
ObjectPart StrUCtUTEccuiiiiiiie e 221
(0] o) 1=Toa A R =T 10 Db 4 o] =Y 221
ObjectPart Default Valuescccceoviiiiiiiiiiiiiiiie e 221
Object Arguments to Intrinsics Routinesccocovviiiiiiiiiiiiniinnnnnnns 221
L0 Lo) A @] o) = ol N 222
Rectangle ODJECESoivniiiiiii e 223
RectObjClassPart StruCturecoovveiiieiiiiiiiie e 223
RectODbjPart STTUCLUTEcovuiiiiii e 224
ReCtOD] RESOUICESuiiviiiiiiiiieiieii et et e et e e et e e a e e s e eanaeas 225
RectObjPart Default Valuesccoeviiiiiiiiiiiiiieeeeee e 225
Widget Arguments to Intrinsics Routinesccccoevviiiiiiiiiiiniiniinnnss 225
Use of Rectangle ODJECEScvvuiiiiiiiiiiiii e 225
Undeclared ClassSoeeuurieiieiiiiieeii ettt et e e e et e e e e e ei e e eeaae e 227
Widget Arguments to Intrinsics Routinescccccoeiiiiiiiiiiiniiiiie e, 227

13. Evolution of the INtrinSiCscioiuiiiiiiiiiiiiii e 229
Determining Specification Revision Levelcccooveiiiiiiiiiiiiiiinincee, 229
Release 3 to Release 4 Compatibilityccoevvviiiiiiiiiiiiiniii e 229

Additional ATGUMENESccuiiiiiiiiie e e e e 229
set values almost Proceduresc.cccoeiviiiiiiiiiiiiiiiie e, 230
QUETY GEOIMEITY euiiiiiniiiiiieii i e et ee et e e e e ea e e e e aanas 230
unrealizeCallback Callback LiStccooeiiiiiiiiiiiiiiiiiiiiiieee e, 230
Subclasses of WMShEILcoouiiiiiiiiiiiiiie e 230
Resource Type CONVETTETS ..cuuivuiiiiiiniiieiiieieeieiie e eiee e e et e e e e eeneens 231
KeySym Case Conversion Procedureccoooeeeiieiiiieiiieeineeinennnnnn. 231
Nonwidget ODJECES ..ovuiiieiiiiiieie e e e e 231
Release 4 to Release 5 Compatibilityccoevvuiiiiiiiiiiiiiiiii e 231
baseTranslations RESOUICEcviiiiiiiiiiiiiiiiiiiiiii e 231

vii

X Toolkit Intrinsics -
C Language Interface

Resource File Search Pathccccooiiiiiiiiiiiiiiiiiii e, 232
Customization RESOUTCEccuiviiiiiiiiiiiiiiiiiieie e 232
Per-Screen Resource Databasec..coccoeviiiiiiiiiiiiiiiiniiiiiniie e, 232
Internationalization of Applicationscccccevviiiiiiiiiiiiiiiiinee, 233
Permanently Allocated Stringscccccoeiiiiiiiiiiiiiiiiieee e 233
Arguments to Existing Functionscc.ccoocvviiiiiiiiinii i, 233
Release 5 to Release 6 Compatibilityccooveviiiiiiiiiiiiiniiii e 233
Widget INternalsoooviiiiiiie e 234
General Application Developmentccoeviiiiiiiiiiiiiiiiineeeee e 234
Communication with Window and Session Managersc........... 234
Geometry Managementoovvueiiiiiiiiiiiie e 235

Event Managementcoooiiiiiiiiiiiii e 235
Resource Managementc.oouiiiiiniiiiiiiiie e 236
Translation Managementcooveiiiiiiiiiiiiiiiie e e 236
SELECEIONIS ..ieiiii et 236
External Agent HOOKScoiuniiiiiiiii e 236

. Resource File FOTMALcoiiiiiiiiiiiiiiiie et 237
. Translation Table SYNtaXcccccoiiiiiiiiiiiiieeie e e e e 238
. Compatibility FUNCLIONS ...couiiiiiiiiiiii et 246
. INtrinsiCS EITOT MESSAUES ..cuuiiniiiiiiiiiiiiie ittt et e te et e e e ee et eane e eaeanne 256
. Defined SETINGS couniieiiiii e e aas 265
. Resource Configuration Managementcccoeeviiieiiiiiiiniiineieeeeeee e e 276

viii

About This Manual

X Toolkit Intrinsics — C Language Interface is intended to be read by both applica-
tion programmers who will use one or more of the many widget sets built with the
Intrinsics and by widget programmers who will use the Intrinsics to build widgets
for one of the widget sets. Not all the information in this manual, however, applies
to both audiences. That is, because the application programmer is likely to use only
a number of the Intrinsics functions in writing an application and because the wid-
get programmer is likely to use many more, if not all, of the Intrinsics functions in
building a widget, an attempt has been made to highlight those areas of informa-
tion that are deemed to be of special interest for the application programmer. (It is
assumed the widget programmer will have to be familiar with all the information.)
Therefore, all entries in the table of contents that are printed in bold indicate the
information that should be of special interest to an application programmer.

It is also assumed that, as application programmers become more familiar with the
concepts discussed in this manual, they will find it more convenient to implement
portions of their applications as special-purpose or custom widgets. It is possible,
nonetheless, to use widgets without knowing how to build them.

Conventions Used in this Manual

This document uses the following conventions:

* Global symbols are printed in t hi s speci al font. These can be either function
names, symbols defined in include files, data types, or structure names. Argu-
ments to functions, procedures, or macros are printed in italics.

¢ Each function is introduced by a general discussion that distinguishes it from oth-
er functions. The function declaration itself follows, and each argument is specif-
ically explained. General discussion of the function, if any is required, follows the
arguments.

* To eliminate any ambiguity between those arguments that you pass and those that
a function returns to you, the explanations for all arguments that you pass start
with the word specifies or, in the case of multiple arguments, the word specify.
The explanations for all arguments that are returned to you start with the word
returns or, in the case of multiple arguments, the word return.

ix

Chapter 1. Intrinsics and Widgets

The Intrinsics are a programming library tailored to the special requirements of user
interface construction within a network window system, specifically the X Window
System. The Intrinsics and a widget set make up an X Toolkit.

Intrinsics

The Intrinsics provide the base mechanism necessary to build a wide variety of in-
teroperating widget sets and application environments. The Intrinsics are a layer
on top of Xlib, the C Library X Interface. They extend the fundamental abstractions
provided by the X Window System while still remaining independent of any partic-
ular user interface policy or style.

The Intrinsics use object-oriented programming techniques to supply a consistent
architecture for constructing and composing user interface components, known as
widgets. This allows programmers to extend a widget set in new ways, either by
deriving new widgets from existing ones (subclassing) or by writing entirely new
widgets following the established conventions.

When the Intrinsics were first conceived, the root of the object hierarchy was a wid-
get class named Core. In Release 4 of the Intrinsics, three nonwidget superclasses
were added above Core. These superclasses are described in Chapter 12, Nonwid-
get Objects. The name of the class now at the root of the Intrinsics class hierarchy
is Object. The remainder of this specification refers uniformly to widgets and Core
as if they were the base class for all Intrinsics operations. The argument descrip-
tions for each Intrinsics procedure and Chapter 12, Nonwidget Objects describe
which operations are defined for the nonwidget superclasses of Core. The reader
may determine by context whether a specific reference to widget actually means
““widget" or " object."

Languages

The Intrinsics are intended to be used for two programming purposes. Programmers
writing widgets will be using most of the facilities provided by the Intrinsics to con-
struct user interface components from the simple, such as buttons and scrollbars,
to the complex, such as control panels and property sheets. Application program-
mers will use a much smaller subset of the Intrinsics procedures in combination
with one or more sets of widgets to construct and present complete user interfaces
on an X display. The Intrinsics programming interfaces primarily intended for ap-
plication use are designed to be callable from most procedural programming lan-
guages. Therefore, most arguments are passed by reference rather than by value.
The interfaces primarily intended for widget programmers are expected to be used
principally from the C language. In these cases, the usual C programming conven-
tions apply. In this specification, the term client refers to any module, widget, or
application that calls an Intrinsics procedure.

Applications that use the Intrinsics mechanisms must include the header files <X11/
Intrinsic.h>and <X11/ Stri ngDefs. h>, or their equivalent, and they may also in-
clude <X11/ Xat ons. h> and <X11/ Shel | . h>. In addition, widget implementations
should include <X11/ I ntri nsi cP. h> instead of <X11/Intri nsic. h>.

Intrinsics and Widgets

The applications must also include the additional header files for each wid-
get class that they are to use (for example, <X11/ Xaw/ Label . h> or <X11/ Xaw
Scrol | bar. h>). Ona POSIX-based system, the Intrinsics object library file is named
l'i bXt.a and is usually referenced as \-1Xt when linking the application.

Procedures and Macros

All functions defined in this specification except those specified below may be im-
plemented as C macros with arguments. C applications may use " #undef" to re-
move a macro definition and ensure that the actual function is referenced. Any such
macro will expand to a single expression that has the same precedence as a func-
tion call and that evaluates each of its arguments exactly once, fully protected by
parentheses, so that arbitrary expressions may be used as arguments.

The following symbols are macros that do not have function equivalents and that
may expand their arguments in a manner other than that described above: Xt Check-
Subcl ass, Xt New, Xt Nunber, Xt Of f set OF , Xt Of f set, and Xt Set Ar g.

Widgets

The fundamental abstraction and data type of the X Toolkit is the widget, which is
a combination of an X window and its associated input and display semantics and
which is dynamically allocated and contains state information. Some widgets display
information (for example, text or graphics), and others are merely containers for
other widgets (for example, a menu box). Some widgets are output-only and do not
react to pointer or keyboard input, and others change their display in response to
input and can invoke functions that an application has attached to them.

Every widget belongs to exactly one widget class, which is statically allocated and
initialized and which contains the operations allowable on widgets of that class.
Logically, a widget class is the procedures and data associated with all widgets be-
longing to that class. These procedures and data can be inherited by subclasses.
Physically, a widget class is a pointer to a structure. The contents of this structure
are constant for all widgets of the widget class but will vary from class to class.
(Here, " constant'' means the class structure is initialized at compile time and nev-
er changed, except for a one-time class initialization and in-place compilation of
resource lists, which takes place when the first widget of the class or subclass is
created.) For further information, see the section called “Creating Widgets”

The distribution of the declarations and code for a new widget class among a pub-
lic .h file for application programmer use, a private .h file for widget programmer
use, and the implementation .c file is described in the section called “Widget Class-
ing” The predefined widget classes adhere to these conventions.

A widget instance is composed of two parts:

* A data structure which contains instance-specific values.

* A class structure which contains information that is applicable to all widgets of
that class.

Much of the input/output of a widget (for example, fonts, colors, sizes, or border
widths) is customizable by users.

Intrinsics and Widgets

This chapter discusses the base widget classes, Core, Composite, and Constraint,
and ends with a discussion of widget classing.

Core Widgets

The Core widget class contains the definitions of fields common to all widgets. All
widgets classes are subclasses of the Core class, which is defined by the Cor eCl ass-
Part and Cor ePart structures.

CoreClassPart Structure

All widget classes contain the fields defined in the Cor e assPart structure.

typedef struct {
WidgetClass superclass; See Section
String class name; See Chapter 9
Cardinal widget size; See Section
XtProc class initialize; See Section
XtWidgetClassProc class part initialize; See Section
XtEnum class_inited; See Section
XtInitProc initialize; See Section
XtArgsProc initialize hook; See Section
XtRealizeProc realize; See Section
XtActionList actions; See Chapter 10
Cardinal num_actions; See Chapter 10
XtResourcelList resources; See Chapter 9
Cardinal num resources; See Chapter 9
XrmClass xrm_class; Private to resource manager
Boolean compress motion; See Section
XtEnum compress exposure; See Section
Boolean compress enterleave; See Section
Boolean visible interest; See Section

XtWidgetProc destroy; See Section
XtWidgetProc resize; See Chapter 6
XtExposeProc expose; See Section

XtSetValuesFunc set values; See Section
XtArgsFunc set values hook; See Section
XtAlmostProc set values almost; See Section
XtArgsProc get values hook; See Section
XtAcceptFocusProc accept focus; See Section

XtVersionType version; See Section
XtPointer callback private; Private to callbacks
String tm_table; See Chapter 10

XtGeometryHandler query geometry; See Chapter 6
XtStringProc display accelerator; See Chapter 10
XtPointer extension; See Section

} CoreClassPart;

All widget classes have the Core class fields as their first component. The prototyp-
ical W dget C ass and Cor eW dget Cl ass are defined with only this set of fields.

typedef struct {

Intrinsics and Widgets

CoreClassPart core class;
} WidgetClassRec, *WidgetClass, CoreClassRec, *CoreWidgetClass;

Various routines can cast widget class pointers, as needed, to specific widget class
types.

The single occurrences of the class record and pointer for creating instances of
Core are

InlintrinsicP. h:

extern WidgetClassRec widgetClassRec;
#define coreClassRec widgetClassRec

Inintrinsic.h:

extern WidgetClass widgetClass, coreWidgetClass;

The opaque types W dget and W dget d ass and the opaque variable wi dget O ass
are defined for generic actions on widgets. In order to make these types opaque
and ensure that the compiler does not allow applications to access private data, the
Intrinsics use incomplete structure definitions in I ntri nsi c. h:

typedef struct WidgetClassRec *WidgetClass, *CoreWidgetClass;
CorePart Structure

All widget instances contain the fields defined in the Cor ePart structure.

typedef struct CorePart {
Widget self; Described below
WidgetClass widget class; See Section
Widget parent; See Section
Boolean being destroyed; See Section
XtCallbackList destroy callbacks; Section
XtPointer constraints; See Section

Position x; See Chapter 6
Position y; See Chapter 6
Dimension width; See Chapter 6
Dimension height; See Chapter 6
Dimension border width; See Chapter 6
Boolean managed; See Chapter 3
Boolean sensitive; See Section

Boolean ancestor sensitive; See Section
XtTranslations accelerators; See Chapter 10
Pixel border pixel; See Section

Pixmap border pixmap; See Section
WidgetList popup list; See Chapter 5
Cardinal num popups; See Chapter 5

String name; See Chapter 9
Screen *screen; See Section
Colormap colormap; See Section

Intrinsics and Widgets

Window window; See Section
Cardinal depth; See Section

Pixel background pixel; See Section
Pixmap background pixmap; See Section

Boolean visible; See Section
Boolean mapped when managed; See Chapter 3
} CorePart;

All widget instances have the Core fields as their first component. The prototypical
type W dget is defined with only this set of fields.

typedef struct {
CorePart core;
} WidgetRec, *Widget, CoreRec, *CoreWidget;

Various routines can cast widget pointers, as needed, to specific widget types.
In order to make these types opaque and ensure that the compiler does not allow

applications to access private data, the Intrinsics use incomplete structure defini-
tionsin Intrinsic. h.

typedef struct WidgetRec *Widget, *CoreWidget;

Core Resources

The resource names, classes, and representation types specified in the cor eC ass-
Rec resource list are

Name Class Representation
XtNaccelerators XtCAccelerators XtRAcceleratorTable
XtNbackground XtCBackground XtRPixel
XtNbackgroundPixmap XtCPixmap XtRPixmap
XtNborderColor XtCBorderColor XtRPixel
XtNborderPixmap XtCPixmap XtRPixmap
XtNcolormap XtCColormap XtRColormap
XtNdepth XtCDepth XtRInt
XtNmappedWhenMan- XtCMappedWhenMan- XtRBoolean

aged aged

XtNscreen XtCScreen XtRScreen
XtNtranslations XtCTranslations XtRTranslationTable

Additional resources are defined for all widgets via the obj ect Cl assRec and rec-
t Obj d assRec resource lists; see the section called “Object Objects” and the section
called “Rectangle Objects” for details.

CorePart Default Values

The default values for the Core fields, which are filled in by the Intrinsics, from the
resource lists, and by the initialize procedures, are

Intrinsics and Widgets

Field

Default Value

self
widget class

parent

being destroyed
destroy callbacks
constraints

X

y

width

height

border width
managed
sensitive
ancestor sensitive

accelerators
border pixel
border pixmap
popup_list
num_popups
name

screen

colormap

window

depth
background pixel

background pixmap

visible

Address of the widget structure (may not be changed).

widget class argument to Xt Cr eat eW dget (may not be
changed).

parent argument to Xt Cr eat eW dget (may not be
changed).

Parent's being destroyed value.
NULL
NULL

_ O O O O

Fal se
True

logical AND of parent's sensitive and ancestor sensitive
values.

NULL

Xt Def aul t For egr ound
Xt Unspeci fi edPi xmap
NULL

0

name argument to Xt Cr eat eW dget (may not be
changed).

Parent's screen; top-level widget gets screen from display
specifier (may not be changed).

Parent's colormap value.

NULL

Parent's depth; top-level widget gets root window depth.
Xt Def aul t Backgr ound

Xt Unspeci fi edPi xmap

True

mapped when managedr ue

Xt Unspeci fi edPi xmap is a symbolic constant guaranteed to be unequal to any valid
Pixmap id, None, and Par ent Rel ati ve.

Composite Widgets

The Composite widget class is a subclass of the Core widget class (see Chapter 3,
Composite Widgets and Their Children). Composite widgets are intended to be con-
tainers for other widgets. The additional data used by composite widgets are de-
fined by the Conposi t eCl assPart and Conposit ePart structures.

Intrinsics and Widgets

CompositeClassPart Structure

In addition to the Core class fields, widgets of the Composite class have the following
class fields.

typedef struct {
XtGeometryHandler geometry manager; See Chapter 6
XtWidgetProc change managed; See Chapter 3
XtWidgetProc insert child; See Chapter 3
XtWidgetProc delete child; See Chapter 3
XtPointer extension; See Section

} CompositeClassPart;

The extension record defined for Conposi t ed assPart with record type equal to
NULLQUARK is Conposi t ed assExt ensi onRec.

typedef struct {
XtPointer next extension; See Section

XrmQuark record type; See Section
long version; See Section
Cardinal record_size; See Section

Boolean accepts_objects; See Section
Boolean allows change managed set; See Section
} CompositeClassExtensionRec, *CompositeClassExtension;

Composite classes have the Composite class fields immediately following the Core
class fields.

typedef struct {
CoreClassPart core class;
CompositeClassPart composite class;

} CompositeClassRec, *CompositeWidgetClass;

The single occurrences of the class record and pointer for creating instances of
Composite are

InintrinsicP. h:

extern CompositeClassRec compositeClassRec;

Inintrinsic. h:

extern WidgetClass compositeWidgetClass;

The opaque types ConpositeW dget and Conposi t eW dget Cl ass and the opaque
variable comnpositeW dget C ass are defined for generic operations on widgets
whose class is Composite or a subclass of Composite. The symbolic constant for
the Conposi t ed assExt ensi on version identifier is Xt Conposi t eExt ensi onVer si on
(see the section called “Class Extension Records”). I ntri nsi c. h uses an incomplete
structure definition to ensure that the compiler catches attempts to access private
data.

Intrinsics and Widgets

typedef struct CompositeClassRec *CompositeWidgetClass;
CompositePart Structure

In addition to the Core instance fields, widgets of the Composite class have the
following instance fields defined in the Conposi t ePart structure.

typedef struct {
WidgetList children; See Chapter 3
Cardinal num children; See Chapter 3
Cardinal num slots; See Chapter 3
XtOrderProc insert position; See Section
} CompositePart;

Composite widgets have the Composite instance fields immediately following the
Core instance fields.

typedef struct {
CorePart core;
CompositePart composite;
} CompositeRec, *CompositeWidget;

Intrinsic.h uses an incomplete structure definition to ensure that the compiler
catches attempts to access private data.

typedef struct CompositeRec *CompositeWidget;
Composite Resources

The resource names, classes, and representation types that are specified in the
conposi t eCl assRec resource list are

Name Class Representation
XtNchildren XtCReadOnly XtRWidgetList
XtNinsertPosition XtClInsertPosition XtRFunction
XtNnumChildren XtCReadOnly XtRCardinal

CompositePart Default Values

The default values for the Composite fields, which are filled in from the Composite
resource list and by the Composite initialize procedure, are

Field Default Value
children NULL
num_children 0

num_slots 0

insert position Internal function to

insert at end

Intrinsics and Widgets

The children, num_children, and insert position fields are declared as resources;
XtNinsertPosition is a settable resource, XtNchildren and XtNnumChildren may be
read by any client but should only be modified by the composite widget class pro-
cedures.

Constraint Widgets

The Constraint widget class is a subclass of the Composite widget class (see the sec-
tion called “Constrained Composite Widgets”). Constraint widgets maintain addi-
tional state data for each child; for example, client-defined constraints on the child's
geometry. The additional data used by constraint widgets are defined by the Con-
straint Cl assPart and Constraint Part structures.

ConstraintClassPart Structure

In addition to the Core and Composite class fields, widgets of the Constraint class
have the following class fields.

typedef struct {
XtResourcelist resources; See Chapter 9
Cardinal num resources; See Chapter 9
Cardinal constraint size; See Section
XtInitProc initialize; See Section
XtWidgetProc destroy; See Section
XtSetValuesFunc set values; See Section
XtPointer extension; See Section

} ConstraintClassPart;

The extension record defined for Constrai nt 0 assPart with record type equal to
NULLQUARK is Constrai nt d assExt ensi onRec.

typedef struct {
XtPointer next extension; See Section

XrmQuark record type; See Section
long version; See Section
Cardinal record _size; See Section

XtArgsProc get values hook; See Section
} ConstraintClassExtensionRec, *ConstraintClassExtension;

Constraint classes have the Constraint class fields immediately following the Com-
posite class fields.

typedef struct ConstraintClassRec {
CoreClassPart core class;
CompositeClassPart composite class;
ConstraintClassPart constraint class;

} ConstraintClassRec, *ConstraintWidgetClass;

The single occurrences of the class record and pointer for creating instances of
Constraint are

InlntrinsicP. h:

Intrinsics and Widgets

extern ConstraintClassRec constraintClassRec;

Inintrinsic.h:

extern WidgetClass constraintWidgetClass;

The opaque types Const r ai nt W dget and Const r ai nt W dget d ass and the opaque
variable constrai nt Wdget 0 ass are defined for generic operations on widgets
whose class is Constraint or a subclass of Constraint. The symbolic constant for the
Const rai nt Gl assExt ensi on version identifier is Xt Const r ai nt Ext ensi onVer si on
(see the section called “Class Extension Records”). I ntri nsi c. h uses an incomplete
structure definition to ensure that the compiler catches attempts to access private
data.

typedef struct ConstraintClassRec *ConstraintWidgetClass;

ConstraintPart Structure

In addition to the Core and Composite instance fields, widgets of the Constraint
class have the following unused instance fields defined in the Const r ai nt Par t struc-
ture

typedef struct {
int empty;
} ConstraintPart;

Constraint widgets have the Constraint instance fields immediately following the
Composite instance fields.

typedef struct {
CorePart core;
CompositePart composite;
ConstraintPart constraint;

} ConstraintRec, *ConstraintWidget;

Intrinsic.h uses an incomplete structure definition to ensure that the compiler
catches attempts to access private data.

typedef struct ConstraintRec *ConstraintWidget;

Constraint Resources
The constraint 0 assRec core class and constraint class resources fields are

NULL, and the num resources fields are zero; no additional resources beyond those
declared by the superclasses are defined for Constraint.

Implementation-Specific Types

To increase the portability of widget and application source code between different
system environments, the Intrinsics define several types whose precise represen-

10

Intrinsics and Widgets

tation is explicitly dependent upon, and chosen by, each individual implementation
of the Intrinsics.

These implementation-defined types are
Boolean A datum that contains a zero or nonzero value. Unless ex-

plicitly stated, clients should not assume that the nonze-
ro value is equal to the symbolic value Tr ue.

Cardinal An unsigned integer datum with a minimum range of
[0..2716-1].

Dimension An unsigned integer datum with a minimum range of
[0..2716-1].

Position A signed integer datum with a minimum range of

[-2715..2715-1].

XtPointer A datum large enough to contain the largest of a char*,
int*, function pointer, structure pointer, or long value. A
pointer to any type or function, or a long value may be
converted to an Xt Poi nt er and back again and the result
will compare equal to the original value. In ANSI C envi-
ronments it is expected that Xt Poi nt er will be defined
as void*.

XtArgVal A datum large enough to contain an Xt Poi nt er, Cardi -
nal , Di mensi on, or Posi ti on value.

XtEnum An integer datum large enough to encode at least 128
distinct values, two of which are the symbolic values
True and Fal se. The symbolic values TRUE and FALSE
are also defined to be equal to Tr ue and Fal se, respec-
tively.

In addition to these specific types, the precise order of the fields within the struc-
ture declarations for any of the instance part records Cbj ect Part, Rect Obj Part,
Cor ePart, Conposi t ePart, Shel | Part, WvBhel | Part, TopLevel Shel | Part, and Ap-
plicationShel | Part is implementation-defined. These structures may also have
additional private fields internal to the implementation. The Obj ect Part, Rect Obj -
Part, and Cor ePart structures must be defined so that any member with the same
name appears at the same offset in bj ect Rec, Rect Obj Rec, and CoreRec (W d-
get Rec). No other relations between the offsets of any two fields may be assumed.

Widget Classing

The widget class field of a widget points to its widget class structure, which contains
information that is constant across all widgets of that class. As a consequence, wid-
gets usually do not implement directly callable procedures; rather, they implement
procedures, called methods, that are available through their widget class structure.
These methods are invoked by generic procedures that envelop common actions
around the methods implemented by the widget class. Such procedures are applic-
able to all widgets of that class and also to widgets whose classes are subclasses
of that class.

11

Intrinsics and Widgets

All widget classes are a subclass of Core and can be subclassed further. Subclass-
ing reduces the amount of code and declarations necessary to make a new widget
class that is similar to an existing class. For example, you do not have to describe
every resource your widget uses in an Xt Resour celLi st . Instead, you describe on-
ly the resources your widget has that its superclass does not. Subclasses usually
inherit many of their superclasses' procedures (for example, the expose procedure
or geometry handler).

Subclassing, however, can be taken too far. If you create a subclass that inherits
none of the procedures of its superclass, you should consider whether you have
chosen the most appropriate superclass.

To make good use of subclassing, widget declarations and naming conventions are
highly stylized. A widget consists of three files:

¢ A public .h file, used by client widgets or applications.
¢ A private .h file, used by widgets whose classes are subclasses of the widget class.
* A .c file, which implements the widget.

Widget Naming Conventions

The Intrinsics provide a vehicle by which programmers can create new widgets
and organize a collection of widgets into an application. To ensure that applications
need not deal with as many styles of capitalization and spelling as the number of
widget classes it uses, the following guidelines should be followed when writing
new widgets:

* Use the X library naming conventions that are applicable. For example, a record
component name is all lowercase and uses underscores () for compound words
(for example, background pixmap). Type and procedure names start with upper-
case and use capitalization for compound words (for example, Ar gLi st or Xt Set -
Val ues).

* A resource name is spelled identically to the field name except that compound
names use capitalization rather than underscore. To let the compiler catch
spelling errors, each resource name should have a symbolic identifier prefixed
with " "XtN". For example, the background pixmap field has the corresponding
identifier XtNbackgroundPixmap, which is defined as the string " background-
Pixmap'. Many predefined names are listed in <X11/ St ri ngDef s. h>. Before you
invent a new name, you should make sure there is not already a name that you
can use.

* Aresource class string starts with a capital letter and uses capitalization for com-
pound names (for example,” " BorderWidth'). Each resource class string should
have a symbolic identifier prefixed with *"XtC" (for example, XtCBorderWidth).
Many predefined classes are listed in <X11/ St ri ngDef s. h>.

* A resource representation string is spelled identically to the type name (for ex-
ample, " TranslationTable"). Each representation string should have a symbolic
identifier prefixed with *~"XtR" (for example, XtRTranslationTable). Many prede-
fined representation types are listed in <X11/ St ri ngDef s. h>.

* New widget classes start with a capital and use uppercase for compound words.
Given a new class name AbcXyz, you should derive several names:

¢ » Additional widget instance structure part name AbcXyzPart.

* Complete widget instance structure names AbcXyzRec and AbcXyzRec.
* Widget instance structure pointer type name AbcXyzWidget.
* Additional class structure part name AbcXyzClassPart.

12

Intrinsics and Widgets

* Complete class structure names AbcXyzClassRec and AbcXyzClassRec.
* Class structure pointer type name AbcXyzWidgetClass.
* Class structure variable abcXyzClassRec.
* Class structure pointer variable abcXyzWidgetClass.

* Action procedures available to translation specifications should follow the same
naming conventions as procedures. That is, they start with a capital letter, and
compound names use uppercase (for example, " Highlight" and " NotifyClient").

The symbolic identifiers XtN..., XtC..., and XtR... may be implemented as macros,
as global symbols, or as a mixture of the two. The (implicit) type of the identifier
is Stri ng. The pointer value itself is not significant; clients must not assume that
inequality of two identifiers implies inequality of the resource name, class, or repre-
sentation string. Clients should also note that although global symbols permit sav-
ings in literal storage in some environments, they also introduce the possibility of
multiple definition conflicts when applications attempt to use independently devel-
oped widgets simultaneously.

Widget Subclassing in Public .h Files

The public .h file for a widget class is imported by clients and contains

¢ A reference to the public .h file for the superclass.

* Symbolic identifiers for the names and classes of the new resources that this wid-
get adds to its superclass. The definitions should have a single space between the
definition name and the value and no trailing space or comment in order to reduce
the possibility of compiler warnings from similar declarations in multiple classes.

* Type declarations for any new resource data types defined by the class.

* The class record pointer variable used to create widget instances.

* The C type that corresponds to widget instances of this class.

e Entry points for new class methods.

For example, the following is the public .h file for a possible implementation of a
Label widget:

#ifndef LABEL H
#define LABEL H
/* New resources */
#define XtNjustify "justify"
#define XtNforeground "foreground"
#define XtNlabel "label"
#define XtNfont "font"
#define XtNinternalWidth "internalWidth"
#define XtNinternalHeight "internalHeight"
/* Class record pointer */
extern WidgetClass labelWidgetClass;
/* C Widget type definition */
typedef struct LabelRec *LabelWidget;
/* New class method entry points */
extern void LabelSetText();
/* Widget w */
/* String text */
extern String LabelGetText();
/* Widget w */

13

Intrinsics and Widgets

#endif LABEL H

The conditional inclusion of the text allows the application to include header files
for different widgets without being concerned that they already may be included as
a superclass of another widget.

To accommodate operating systems with file name length restrictions, the name of
the public .h file is the first ten characters of the widget class. For example, the
public .h file for the Constraint widget class is Constrai nt. h.

Widget Subclassing in Private .h Files

The private .h file for a widget is imported by widget classes that are subclasses
of the widget and contains

A reference to the public .h file for the class.

A reference to the private .h file for the superclass.

Symbolic identifiers for any new resource representation types defined by the
class. The definitions should have a single space between the definition name and
the value and no trailing space or comment.

A structure part definition for the new fields that the widget instance adds to its
superclass's widget structure.

The complete widget instance structure definition for this widget.

A structure part definition for the new fields that this widget class adds to its
superclass's constraint structure if the widget class is a subclass of Constraint.
The complete constraint structure definition if the widget class is a subclass of
Constraint.

Type definitions for any new procedure types used by class methods declared in
the widget class part.

A structure part definition for the new fields that this widget class adds to its
superclass's widget class structure.

The complete widget class structure definition for this widget.

The complete widget class extension structure definition for this widget, if any.
The symbolic constant identifying the class extension version, if any.

The name of the global class structure variable containing the generic class struc-
ture for this class.

An inherit constant for each new procedure in the widget class part structure.

For example, the following is the private .h file for a possible Label widget:

#ifndef LABELP H

#define LABELP H

#include <X11/Label.h>

/* New representation types used by the Label widget */
#define XtRJustify "Justify"

/* New fields for the Label widget record */

typedef struct {

/* Settable resources */

Pixel foreground;

XFontStruct *font;

String label; /* text to display */
XtJustify justify;

14

Intrinsics and Widgets

Dimension internal width; /* # pixels horizontal border */

Dimension internal height; /* # pixels vertical border */
/* Data derived from resources */

GC normal GC;

GC gray GC;

Pixmap gray pixmap;

Position label x;

Position label y;

Dimension label width;

Dimension label height;

Cardinal label len;

Boolean display sensitive;
} LabelPart;

/* Full instance record declaration */
typedef struct LabelRec {
CorePart core;
LabelPart label;
} LabelRec;
/* Types for Label class methods */
typedef void (*LabelSetTextProc)();
/* Widget w */
/* String text */
typedef String (*LabelGetTextProc)();
/* Widget w */
/* New fields for the Label widget class record */
typedef struct {
LabelSetTextProc set text;
LabelGetTextProc get text;
XtPointer extension;
} LabelClassPart;
/* Full class record declaration */
typedef struct LabelClassRec {
CoreClassPart core class;
LabelClassPart label class;
} LabelClassRec;
/* Class record variable */
extern LabelClassRec labelClassRec;
#define LabellnheritSetText((LabelSetTextProc) XtInherit)
#define LabellnheritGetText((LabelGetTextProc) XtInherit)
#endif LABELP H

To accommodate operating systems with file name length restrictions, the name of
the private .h file is the first nine characters of the widget class followed by a capital
P. For example, the private .h file for the Constraint widget class is Constrai nP. h.

Widget Subclassing in .c Files

The .c file for a widget contains the structure initializer for the class record variable,
which contains the following parts:

* Class information (for example, superclass, class name, widget size,
class initialize, and class_inited).

15

Intrinsics and Widgets

* Data constants (for example, resources and num resources, actions and
num_actions, visible interest, compress motion, compress exposure, and ver-
sion).

* Widget operations (for example, initialize, realize, destroy, resize, expose,
set values, accept _focus, and any new operations specific to the widget).

The superclass field points to the superclass global class record, declared in the
superclass private .h file. For direct subclasses of the generic core widget, super-
class should be initialized to the address of the wi dget C assRec structure. The su-
perclass is used for class chaining operations and for inheriting or enveloping a
superclass's operations (see the section called “Superclass Chaining”, the section
called “Initializing a Widget Class”, and the section called “Inheritance of Super-
class Operations”.

The class name field contains the text name for this class, which is used by the
resource manager. For example, the Label widget has the string " Label'. More
than one widget class can share the same text class name. This string must be
permanently allocated prior to or during the execution of the class initialization
procedure and must not be subsequently deallocated.

The widget_size field is the size of the corresponding widget instance structure (not
the size of the class structure).

The version field indicates the toolkit implementation version number and is used
for runtime consistency checking of the X Toolkit and widgets in an application.
Widget writers must set it to the implementation-defined symbolic value Xt Ver si on
in the widget class structure initialization. Those widget writers who believe that
their widget binaries are compatible with other implementations of the Intrinsics
can put the special value Xt Ver si onDont Check in the version field to disable version
checking for those widgets. If a widget needs to compile alternative code for differ-
ent revisions of the Intrinsics interface definition, it may use the symbol Xt Speci -
ficationRel ease, as described in Chapter 13, Evolution of the Intrinsics. Use of
Xt Ver si on allows the Intrinsics implementation to recognize widget binaries that
were compiled with older implementations.

The extension field is for future upward compatibility. If the widget programmer
adds fields to class parts, all subclass structure layouts change, requiring complete
recompilation. To allow clients to avoid recompilation, an extension field at the end
of each class part can point to a record that contains any additional class information
required.

All other fields are described in their respective sections.

The .cfile also contains the declaration of the global class structure pointer variable
used to create instances of the class. The following is an abbreviated version of the .c
file for a Label widget. The resources table is described in Chapter 9, Resource
Management.

/* Resources specific to Label */
static XtResource resources[] = {

{XtNforeground, XtCForeground, XtRPixel, sizeof(Pixel),
XtOffset(LabelWidget, label.foreground), XtRString,
XtDefaultForeground},

{XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct *),

16

Intrinsics and Widgets

XtOffset(LabelWidget, label.font), XtRString,
XtDefaultFont},

{XtNlabel, XtCLabel, XtRString, sizeof(String),
XtOffset(LabelWidget, label.label), XtRString, NULL},

/* Forward declarations of procedures */
static void Classlnitialize();

static void Initialize();

static void Realize();

static void SetText();

static void GetText();

/* Class record constant */
LabelClassRec labelClassRec = {

/* core_class fields */

/* superclass */ (WidgetClass)&coreClassRec,
/* class name */ "Label",

/* widget size */ sizeof(LabelRec),

/* class initialize */ ClasslInitialize,

/* class part initialize */ NULL,

/* class inited */ False,

/* initialize */ Initialize,

/* initialize hook */ NULL,

[* realize */ Realize,

[* actions */ NULL,

/*num actions */ O,

[* resources */ resources,

/* num resources */ XtNumber(resources),
/*xrm class */ NULLQUARK,

/* compress motion */ True,

/* compress_exposure */ True,

/* compress_enterleave */ True,

/* visible interest */ False,

/* destroy */ NULL,

[*resize */ Resize,

/* expose */ Redisplay,

/* set values */ SetValues,

/* set_ values hook */ NULL,

/* set values almost */ XtInheritSetValuesAlmost,
/* get values hook */ NULL,

/* accept focus */ NULL,

[*version */ XtVersion,

/* callback offsets */ NULL,

/*tm table */ NULL,

/* query geometry */ XtInheritQueryGeometry,
/* display accelerator */ NULL,

17

Intrinsics and Widgets

/* extension */ NULL
}
{

/* Label class fields */

/* get text */ GetText,
/* set text */ SetText,
/* extension */ NULL

}
}¥
/* Class record pointer */
WidgetClass labelWidgetClass = (WidgetClass) &labelClassRec;
/* New method access routines */
void LabelSetText(w, text)
Widget w;
String text;

LabelWidgetClass lwc = (Label WidgetClass)XtClass(w);
XtCheckSubclass(w, labelWidgetClass, NULL);
*(lwc->label class.set text)(w, text)

}

/* Private procedures */

Widget Class and Superclass Look Up

To obtain the class of a widget, use Xt d ass.
W dget G ass Xtd ass(w);

w Specifies the widget. Must be of class Object or any subclass there-
of.

The Xt d ass function returns a pointer to the widget's class structure.
To obtain the superclass of a widget, use Xt Super cl ass.
W dget Cl ass Xt Super Cl ass(W) ;

w Specifies the widget. Must be of class Object or any subclass there-
of.

The Xt Super cl ass function returns a pointer to the widget's superclass class struc-
ture.

Widget Subclass Verification

To check the subclass to which a widget belongs, use Xt | sSubcl ass.
Bool ean XtlsSubclass(w, w dget_cl ass);

w Specifies the widget or object instance whose class
is to be checked. Must be of class Object or any sub-
class thereof.

18

Intrinsics and Widgets

widget class Specifies the widget class for which to test. Must be
objectClass or any subclass thereof.

The Xt | sSubcl ass function returns Tr ue if the class of the specified widget is equal
to or is a subclass of the specified class. The widget's class can be any number of
subclasses down the chain and need not be an immediate subclass of the specified
class. Composite widgets that need to restrict the class of the items they contain
can use Xt | sSubcl ass to find out if a widget belongs to the desired class of objects.

To test if a given widget belongs to a subclass of an Intrinsics-defined class, the In-
trinsics define macros or functions equivalent to Xt | sSubcl ass for each of the built-
in classes. These procedures are Xt | sObj ect, Xt | sRect Obj , Xt | sW dget , Xt | sCom
posite, XtlsConstraint, XtlsShell, XtlsOverrideShell, Xt|sWshel |, Xt sVen-
dor Shel |, Xt | sTransi ent Shel I, Xt | sTopLevel Shel |, Xt I sApplicati onShel |, and
Xt 1 sSessi onShel | .

All these macros and functions have the same argument description.
Bool ean Xtls(w);

w Specifies the widget or object instance whose class is to be
checked. Must be of class Object or any subclass thereof.

These procedures may be faster than calling Xt | sSubcl ass directly for the built-
in classes.

To check a widget's class and to generate a debugging error message, use Xt Check-
Subcl ass, defined in <X11/ I ntri nsi cP. h>:

voi d Xt CheckSubclass(w, wi dget _class, nessage);

w Specifies the widget or object whose class is to be
checked. Must be of class Object or any subclass
thereof.

widget class Specifies the widget class for which to test. Must be

objectClass or any subclass thereof.
message Specifies the message to be used.

The Xt CheckSubcl ass macro determines if the class of the specified widget is equal
to or is a subclass of the specified class. The widget's class can be any number of
subclasses down the chain and need not be an immediate subclass of the specified
class. If the specified widget's class is not a subclass, Xt CheckSubcl ass constructs
an error message from the supplied message, the widget's actual class, and the
expected class and calls Xt Er r or Msg. Xt CheckSubcl ass should be used at the entry
point of exported routines to ensure that the client has passed in a valid widget
class for the exported operation.

Xt CheckSubcl ass is only executed when the module has been compiled with the
compiler symbol DEBUG defined; otherwise, it is defined as the empty string and
generates no code.

Superclass Chaining

While most fields in a widget class structure are self-contained, some fields are
linked to their corresponding fields in their superclass structures. With a linked

19

Intrinsics and Widgets

field, the Intrinsics access the field's value only after accessing its corresponding su-
perclass value (called downward superclass chaining) or before accessing its corre-
sponding superclass value (called upward superclass chaining). The self-contained
fields are

In all widget classes: class name
class initialize
widget size
realize
visible interest
resize
expose
accept _focus
compress_motion
compress_exposure
compress_enterleave
set values almost
tm_table
version
allocate
deallocate

In Composite widget classes: geometry manager
change managed
insert_child
delete child
accepts_objects
allows change managed set

In Constraint widget classes: constraint _size

In Shell widget classes: root geometry manager

With downward superclass chaining, the invocation of an operation first accesses
the field from the Object, RectObj, and Core class structures, then from the subclass
structure, and so on down the class chain to that widget's class structure. These
superclass-to-subclass fields are

class_part initialize
get values hook
initialize
initialize_hook

set values

set values hook
resources

In addition, for subclasses of Constraint, the following fields of the Constrai nt -
Cl assPart and Constrai nt Cl assExt ensi onRec structures are chained from the
Constraint class down to the subclass:

resources
initialize

20

Intrinsics and Widgets

set values
get values hook

With upward superclass chaining, the invocation of an operation first accesses the
field from the widget class structure, then from the superclass structure, and so on
up the class chain to the Core, RectObj, and Object class structures. The subclass-to-
superclass fields are

destroy
actions

For subclasses of Constraint, the following field of Const r ai nt Cl assPart is chained
from the subclass up to the Constraint class: destroy

Class Initialization: class_initialize and
class_part_initialize Procedures

Many class records can be initialized completely at compile or link time. In some
cases, however, a class may need to register type converters or perform other sorts
of once-only runtime initialization.

Because the C language does not have initialization procedures that are invoked
automatically when a program starts up, a widget class can declare a class_initialize
procedure that will be automatically called exactly once by the Intrinsics. A class
initialization procedure pointer is of type Xt Proc:

typedef void (*XtProc)(void);

A widget class indicates that it has no class initialization procedure by specifying
NULL in the class initialize field.

In addition to the class initialization that is done exactly once, some classes perform
initialization for fields in their parts of the class record. These are performed not just
for the particular class, but for subclasses as well, and are done in the class's class
part initialization procedure, a pointer to which is stored in the class part initialize
field. The class part initialize procedure pointer is of type Xt W dget O assPr oc.

void (*XtWdget Cl assProc) (W dget Cl ass) (w dget _cl ass);

widget class Points to the class structure for the class being ini-
tialized.

During class initialization, the class part initialization procedures for the class and
all its superclasses are called in superclass-to-subclass order on the class record.
These procedures have the responsibility of doing any dynamic initializations nec-
essary to their class's part of the record. The most common is the resolution of any
inherited methods defined in the class. For example, if a widget class C has super-
classes Core, Composite, A, and B, the class record for C first is passed to Core 's
class part initialize procedure. This resolves any inherited Core methods and com-
piles the textual representations of the resource list and action table that are de-
fined in the class record. Next, Composite's class part initialize procedure is called
to initialize the composite part of C's class record. Finally, the class part initialize
procedures for A, B, and C, in that order, are called. For further information, see

21

Intrinsics and Widgets

the section called “Initializing a Widget Class” Classes that do not define any new
class fields or that need no extra processing for them can specify NULL in the
class_part initialize field.

All widget classes, whether they have a class initialization procedure or not, must
start with their class inited field Fal se.

The first time a widget of a class is created, Xt Cr eat eW dget ensures that the widget
class and all superclasses are initialized, in superclass-to-subclass order, by check-
ing each class inited field and, if it is Fal se, by calling the class_initialize and the
class part initialize procedures for the class and all its superclasses. The Intrinsics
then set the class inited field to a nonzero value. After the one-time initialization,
a class structure is constant.

The following example provides the class initialization procedure for a Label class.

static void Classlnitialize()

{
XtSetTypeConverter(XtRString, XtRJustify, CvtStringToJustify,
NULL, 0, XtCacheNone, NULL);

}
Initializing a Widget Class

A class is initialized when the first widget of that class or any subclass is created.
To initialize a widget class without creating any widgets, use Xt I ni ti al i zeW dget -
d ass.

void XtlnitializeWdgetd ass(object_cl ass);

object class Specifies the object class to initialize. May be ob-
j ect d ass or any subclass thereof.

If the specified widget class is already initialized, Xt I ni ti al i zeW dget d ass re-
turns immediately.

If the class initialization procedure registers type converters, these type converters
are not available until the first object of the class or subclass is created or Xt | ni -
tializeWdget d ass is called (see the section called “Resource Conversions”).

Inheritance of Superclass Operations

A widget class is free to use any of its superclass's self-contained operations rather
than implementing its own code. The most frequently inherited operations are

* expose

* realize

* insert child

* delete child

* geometry manager
* set values almost

To inherit an operation xyz, specify the constant Xt | nheri t Xyz in your class record.

22

Intrinsics and Widgets

Every class that declares a new procedure in its widget class part must provide for
inheriting the procedure in its class part initialize procedure. The chained opera-
tions declared in Core and Constraint records are never inherited. Widget classes
that do nothing beyond what their superclass does specify NULL for chained pro-
cedures in their class records.

Inheriting works by comparing the value of the field with a known, special value
and by copying in the superclass's value for that field if a match occurs. This spe-
cial value, called the inheritance constant, is usually the Intrinsics internal value
_Xtlnherit castto the appropriate type. Xt | nherit is a procedure that issues an
error message if it is actually called.

For example, Conposi t eP. h contains these definitions:

#define XtInheritGeometryManager ((XtGeometryHandler) XtInherit)
#define XtInheritChangeManaged ((XtWidgetProc) XtInherit)
#define XtInheritInsertChild ((XtArgsProc) XtInherit)

#define XtInheritDeleteChild ((XtWidgetProc) XtInherit)

Composite's class part initialize procedure begins as follows:

static void CompositeClassPartInitialize(widgetClass)
WidgetClass widgetClass;
{

CompositeWidgetClass wc = (CompositeWidgetClass)widgetClass;
CompositeWidgetClass super = (CompositeWidgetClass)wc->core class.superclass;
if (wc->composite class.geometry manager == XtInheritGeometryManager) {
wc->composite class.geometry manager = super->composite class.geometry manager;
}
if (wc->composite class.change managed == XtInheritChangeManaged) {
wc->composite class.change managed = super->composite class.change managed;

}

Nonprocedure fields may be inherited in the same manner as procedure fields. The
class may declare any reserved value it wishes for the inheritance constant for its
new fields. The following inheritance constants are defined:

For Object:

e XtlnheritAllocate
e Xtl nheritDeal | ocate

For Core:

XtlnheritRealize

Xt I nheritResize

Xt I nheri t Expose

Xt I nherit Set Val uesAl nost
Xt I nheri t Accept Focus

Xt nheritQueryGeonetry
Xt nheritTransl ations

23

Intrinsics and Widgets

e Xt nheritDi splayAccel erat or
For Composite:

e Xt I nherit Geomnet r yManager
e Xt | nherit ChangeManaged

e XtlnheritlnsertChild

e XtInheritDel eteChild

For Shell:

e Xt I nherit Root Geonet r yManager

Invocation of Superclass Operations

A widget sometimes needs to call a superclass operation that is not chained. For
example, a widget's expose procedure might call its superclass's expose and then
perform a little more work on its own. For example, a Composite class with prede-
fined managed children can implement insert child by first calling its superclass's
insert_child and then calling Xt ManageChi | d to add the child to the managed set.

Note

A class method should not use Xt Super cl ass but should instead call the
class method of its own specific superclass directly through the superclass
record. That is, it should use its own class pointers only, not the widget's
class pointers, as the widget's class may be a subclass of the class whose
implementation is being referenced.

This technique is referred to as enveloping the superclass's operation.

Class Extension Records

It may be necessary at times to add new fields to already existing widget class struc-
tures. To permit this to be done without requiring recompilation of all subclasses,
the last field in a class part structure should be an extension pointer. If no extension
fields for a class have yet been defined, subclasses should initialize the value of the
extension pointer to NULL.

If extension fields exist, as is the case with the Composite, Constraint, and Shell
classes, subclasses can provide values for these fields by setting the extension point-
er for the appropriate part in their class structure to point to a statically declared
extension record containing the additional fields. Setting the extension field is nev-
er mandatory; code that uses fields in the extension record must always check the
extension field and take some appropriate default action if it is NULL.

In order to permit multiple subclasses and libraries to chain extension records from
a single extension field, extension records should be declared as a linked list, and
each extension record definition should contain the following four fields at the be-
ginning of the structure declaration:

struct {
XtPointer next extension;

24

Intrinsics and Widgets

XrmQuark record type;
long version;
Cardinal record_size;

I3

next extension Specifies the next record in the list, or NULL.

record type Specifies the particular structure declaration to
which each extension record instance conforms.

version Specifies a version id symbolic constant supplied by
the definer of the structure.

record size Specifies the total number of bytes allocated for the

extension record.

The record type field identifies the contents of the extension record and is used
by the definer of the record to locate its particular extension record in the list.
The record type field is normally assigned the result of Xr nSt ri ngToQuar k for a
registered string constant. The Intrinsics reserve all record type strings beginning
with the two characters " "XT" for future standard uses. The value NULLQUARK
may also be used by the class part owner in extension records attached to its own
class part extension field to identify the extension record unique to that particular
class.

The version field is an owner-defined constant that may be used to identify binary
files that have been compiled with alternate definitions of the remainder of the ex-
tension record data structure. The private header file for a widget class should pro-
vide a symbolic constant for subclasses to use to initialize this field. The record size
field value includes the four common header fields and should normally be initial-
ized with si zeof ().

Any value stored in the class part extension fields of Conposited assPart, Con-
strai nt G assPart, or Shel | d assPart must point to an extension record conform-
ing to this definition.

The Intrinsics provide a utility function for widget writers to locate a particular class
extension record in a linked list, given a widget class and the offset of the extension
field in the class record.

To locate a class extension record, use Xt Get Cl assExt ensi on.

Xt Poi nter Xt Get Cl assExtension(object _class, byte offset, type, ver-
sion, record_size);

object class Specifies the object class containing the extension
list to be searched.

byte offset Specifies the offset in bytes from the base of the class
record of the extension field to be searched.

type Specifies the record type of the class extension to be
located.

version Specifies the minimum acceptable version of the

class extension required for a match.

25

Intrinsics and Widgets

record size Specifies the minimum acceptable length of the class
extension record required for a match, or 0.

The list of extension records at the specified offset in the specified object class will
be searched for a match on the specified type, a version greater than or equal to the
specified version, and a record size greater than or equal the specified record size
if it is nonzero. Xt Get C assExt ensi on returns a pointer to a matching extension
record or NULL if no match is found. The returned extension record must not be
modified or freed by the caller if the caller is not the extension owner.

26

Chapter 2. Widget Instantiation

A hierarchy of widget instances constitutes a widget tree. The shell widget returned
by Xt AppCr eat eShel | is the root of the widget tree instance. The widgets with one
or more children are the intermediate nodes of that tree, and the widgets with no
children of any kind are the leaves of the widget tree. With the exception of pop-
up children (see Chapter 5, Pop-Up Widgets), this widget tree instance defines the
associated X Window tree.

Widgets can be either composite or primitive. Both kinds of widgets can contain
children, but the Intrinsics provide a set of management mechanisms for construct-
ing and interfacing between composite widgets, their children, and other clients.

Composite widgets, that is, members of the class conposi t eW dget O ass, are con-
tainers for an arbitrary, but widget implementation-defined, collection of children,
which may be instantiated by the composite widget itself, by other clients, or by a
combination of the two. Composite widgets also contain methods for managing the
geometry (layout) of any child widget. Under unusual circumstances, a composite
widget may have zero children, but it usually has at least one. By contrast, primitive
widgets that contain children typically instantiate specific children of known class-
es themselves and do not expect external clients to do so. Primitive widgets also do
not have general geometry management methods.

In addition, the Intrinsics recursively perform many operations (for example, real-
ization and destruction) on composite widgets and all their children. Primitive wid-
gets that have children must be prepared to perform the recursive operations them-
selves on behalf of their children.

A widget tree is manipulated by several Intrinsics functions. For example, Xt Real -
i zeW dget traverses the tree downward and recursively realizes all pop-up widgets
and children of composite widgets. Xt Dest r oyW dget traverses the tree downward
and destroys all pop-up widgets and children of composite widgets. The functions
that fetch and modify resources traverse the tree upward and determine the inher-
itance of resources from a widget's ancestors. Xt MakeGeonet r yRequest traverses
the tree up one level and calls the geometry manager that is responsible for a wid-
get child's geometry.

To facilitate upward traversal of the widget tree, each widget has a pointer to its
parent widget. The Shell widget that Xt AppCr eat eShel | returns has a parent point-
er of NULL.

To facilitate downward traversal of the widget tree, the children field of each com-
posite widget is a pointer to an array of child widgets, which includes all normal
children created, not just the subset of children that are managed by the composite
widget's geometry manager. Primitive widgets that instantiate children are entirely
responsible for all operations that require downward traversal below themselves.
In addition, every widget has a pointer to an array of pop-up children.

Initializing the X Toolkit

Before an application can call any Intrinsics function other than Xt Set LanguagePr oc
and Xt Tool ki t Threadl ni ti al i ze, it must initialize the Intrinsics by using

27

Widget Instantiation

e Xt Tool kitlnitialize, which initializes the Intrinsics internals

e Xt Cr eat eAppl i cati onCont ext, which initializes the per-application state

e Xt Di spl ayl nitializeor*XtQpenDi spl ay, which initializes the per-display state
e Xt AppCr eat eShel | , which creates the root of a widget tree

Or an application can call the convenience procedure Xt OpenAppl i cati on, which
combines the functions of the preceding procedures. An application wishing to
use the ANSI C locale mechanism should call Xt Set LanguagePr oc prior to calling
XtDisplaylnitialize, *XtOpenDi spl ay, Xt OpenApplication, or XtApplnitial-
i ze.

Multiple instances of X Toolkit applications may be implemented in a single address
space. Each instance needs to be able to read input and dispatch events indepen-
dently of any other instance. Further, an application instance may need multiple
display connections to have widgets on multiple displays. From the application's
point of view, multiple display connections usually are treated together as a single
unit for purposes of event dispatching. To accommodate both requirements, the In-
trinsics define application contexts, each of which provides the information needed
to distinguish one application instance from another. The major component of an
application context is a list of one or more X Di spl ay pointers for that application.
The Intrinsics handle all display connections within a single application context si-
multaneously, handling input in a round-robin fashion. The application context type
Xt AppCont ext is opaque to clients.

To initialize the Intrinsics internals, use Xt Tool kitlniti ali ze.
void XtToolkitlnitialize();

If Xt Tool kitlnitialize was previously called, it returns immediately. When Xt -
Tool ki t Threadl ni ti al i ze is called before Xt Tool ki tl niti al i ze, the latter is pro-
tected against simultaneous activation by multiple threads.

To create an application context, use Xt Cr eat eAppl i cati onCont ext .
Xt AppCont ext Xt Creat eAppl i cati onContext();

The Xt Cr eat eAppl i cati onCont ext function returns an application context, which
is an opaque type. Every application must have at least one application context.

To destroy an application context and close any remaining display connections in
it, use Xt Dest r oyAppl i cat i onCont ext .

voi d Xt DestroyApplicati onCont ext (app_context);

app_context Specifies the application context.

The Xt DestroyApplicationContext function destroys the specified application
context. If called from within an event dispatch (for example, in a callback proce-

dure), Xt Dest r oyAppl i cati onCont ext does not destroy the application context un-
til the dispatch is complete.

To get the application context in which a given widget was created, use Xt W dget -
ToAppl i cat i onCont ext .

Xt AppCont ext Xt W dget ToAppl i cat i onCont ext (W) ;

28

Widget Instantiation

w Specifies the widget for which you want the application context.
Must be of class Object or any subclass thereof.

The Xt W dget ToAppl i cati onCont ext function returns the application context for
the specified widget.

To initialize a display and add it to an application context, use Xt Di spl ayl ni ti al -
i ze.

voi d XtDi splaylnitialize(app_context, di spl ay, appl i cati on_nane,
application_class, options, numoptions, argc, argv);
app_context Specifies the application context.

display Specifies a previously opened display connection.
Note that a single display connection can be in at
most one application context.

application name Specifies the name of the application instance.

application_class Specifies the class name of this application, which
is usually the generic name for all instances of this
application.

options Specifies how to parse the command line for any ap-

plication-specific resources. The options argument is
passed as a parameter to Xr nPar seConmand. For fur-
ther information, see Parsing Command Line Options
in Xlib — C Language X Interface and the section
called “Parsing the Command Line” of this specifica-

tion.
num_options Specifies the number of entries in the options list.
argc Specifies a pointer to the number of command line
parameters.
argv Specifies the list of command line parameters.

The Xt Di spl ayl nitialize function retrieves the language string to be used for
the specified display (see the section called “Finding File Names”), calls the lan-
guage procedure (if set) with that language string, builds the resource database
for the default screen, calls the Xlib Xr mPar seCommand function to parse the com-
mand line, and performs other per-display initialization. After Xr nPar seConmand has
been called, argc and argv contain only those parameters that were not in the stan-
dard option table or in the table specified by the options argument. If the modi-
fied argc is not zero, most applications simply print out the modified argv along
with a message listing the allowable options. On POSIX-based systems, the applica-
tion name is usually the final component of argv[0]. If the synchronous resource is
True, Xt Di spl ayl nitialize calls the Xlib XSynchr oni ze function to put Xlib into
synchronous mode for this display connection and any others currently open in the
application context. See the section called “Loading the Resource Database” and
the section called “Parsing the Command Line” for details on the application name,
application_class, options, and num_options arguments.

Xt Di splayl nitialize calls Xr nSet Dat abase to associate the resource database of
the default screen with the display before returning.

29

Widget Instantiation

To open a display, initialize it, and then add it to an application context, use
* Xt OpenDi spl ay.

Di spl ay *Xt QpenDi spl ay(app_context, display_string, application_nane,
application_class, options, numoptions, argc, argv);

app_context Specifies the application context.

display string Specifies the display string, or NULL.

application_name Specifies the name of the application instance, or
NULL.

application_class Specifies the class name of this application, which
is usually the generic name for all instances of this
application.

options Specifies how to parse the command line for any ap-

plication-specific resources. The options argument is
passed as a parameter to Xr nPar seConmmand.

num_options Specifies the number of entries in the options list.

argc Specifies a pointer to the number of command line
parameters.

argv Specifies the list of command line parameters.

The * Xt OpenDi spl ay function calls XOpenDi spl ay with the specified display string.
If display string is NULL, * Xt OpenDi spl ay uses the current value of the \-display
option specified in argv. If no display is specified in argv, the user's default display
is retrieved from the environment. On POSIX-based systems, this is the value of the
DISPLAY environment variable.

If this succeeds, * Xt OpenDi spl ay then calls Xt Di spl ayl nitialize and passes it
the opened display and the value of the \-name option specified in argv as the
application name. If no \-name option is specified and application name is non-
NULL, application name is passed to Xt Di spl ayl ni ti al i ze. If application name
is NULL and if the environment variable RESOURCE_NAME is set, the value of
RESOURCE_NAME is used. Otherwise, the application name is the name used to
invoke the program. On implementations that conform to ANSI C Hosted Environ-
ment support, the application name will be argv[0] less any directory and file type
components, that is, the final component of argvl0], if specified. If argv[0] does not
exist or is the empty string, the application name is *“main'. * Xt QpenDi spl ay re-
turns the newly opened display or NULL if it failed.

See the section called “Using the Intrinsics in a Multi-Threaded Environment” for
information regarding the use of * Xt OpenDi spl ay in multiple threads.

To close a display and remove it from an application context, use Xt Cl oseDi spl ay.
voi d Xt d oseDi spl ay(di spl ay);
display Specifies the display.

The Xt Cl oseDi spl ay function calls XO oseDi spl ay with the specified display as
soon as it is safe to do so. If called from within an event dispatch (for example, a

30

Widget Instantiation

callback procedure), Xt Cl oseDi spl ay does not close the display until the dispatch is
complete. Note that applications need only call Xt Cl oseDi spl ay if they are to con-
tinue executing after closing the display; otherwise, they should call Xt Dest r oy Ap-
pl i cati onCont ext.

See the section called “Using the Intrinsics in a Multi-Threaded Environment” for
information regarding the use of Xt C oseDi spl ay in multiple threads.

Establishing the Locale

Resource databases are specified to be created in the current process locale. Dur-
ing display initialization prior to creating the per-screen resource database, the In-
trinsics will call out to a specified application procedure to set the locale according
to options found on the command line or in the per-display resource specifications.

The callout procedure provided by the application is of type Xt LanguagePr oc.

typedef String (*XtLanguageProc) (di splay, |anguage, client_data);

display Passes the display.

language Passes the initial language value obtained from the
command line or server per-display resource specifi-
cations.

client data Passes the additional client data specified in the call

to Xt Set LanguagePr oc.

The language procedure allows an application to set the locale to the value of the
language resource determined by Xt Di spl ayl nitialize. The function returns a
new language string that will be subsequently used by Xt Di spl ayl nitialize to
establish the path for loading resource files. The returned string will be copied by
the Intrinsics into new memory.

Initially, no language procedure is set by the Intrinsics. To set the language proce-
dure for use by Xt Di spl ayl nitial i ze, use Xt Set LanguagePr oc.

Xt LanguagePr oc Xt Set LanguagePr oc(app_context, proc, client_data);

app_context Specifies the application context in which the lan-
guage procedure is to be used, or NULL.

proc Specifies the language procedure.

client data Specifies additional client data to be passed to the lan-
guage procedure when it is called.

Xt Set LanguagePr oc sets the language procedure that will be called from Xt Di s-
pl ayl ni ti al i ze for all subsequent Displays initialized in the specified application
context. If app context is NULL, the specified language procedure is registered in
all application contexts created by the calling process, including any future appli-
cation contexts that may be created. If proc is NULL, a default language procedure
is registered. Xt Set LanguagePr oc returns the previously registered language pro-
cedure. If a language procedure has not yet been registered, the return value is

31

Widget Instantiation

unspecified, but if this return value is used in a subsequent call to Xt Set Language-
Pr oc, it will cause the default language procedure to be registered.

The default language procedure does the following:

» Sets the locale according to the environment. On ANSI C-based systems this is
done by calling set | ocal e(LC_ALL, language). If an error is encountered, a warn-
ing message is issued with Xt War ni ng.

¢ Calls XSupport sLocal e to verify that the current locale is supported. If the locale
is not supported, a warning message is issued with Xt War ni ng and the locale is
setto " "C'".

» Calls XSet Local eModi fi er s specifying the empty string.

* Returns the value of the current locale. On ANSI C-based systems this is the return
value from a final call to set | ocal e(LC ALL, NULL).

A client wishing to use this mechanism to establish locale can do so by calling Xt Set -
LanguagePr oc prior to Xt Di spl ayl niti al i ze, as in the following example.

Widget top;
XtSetLanguageProc(NULL, NULL, NULL);
top = XtOpenApplication(...);

Loading the Resource Database

The Xt Di spl ayl ni ti al i ze function first determines the language string to be used
for the specified display. It then creates a resource database for the default screen
of the display by combining the following sources in order, with the entries in the
first named source having highest precedence:

* Application command line (argc, argv).

* Per-host user environment resource file on the local host.

¢ Per-screen resource specifications from the server.

* Per-display resource specifications from the server or from the user preference
file on the local host.

* Application-specific user resource file on the local host.

* Application-specific class resource file on the local host.

When the resource database for a particular screen on the display is needed (either
internally, or when Xt Scr eenDat abase is called), it is created in the following man-
ner using the sources listed above in the same order:

» Atemporary database, the " server resource database', is created from the string
returned by XResour ceManager String or, if XResour ceManager Stri ng returns
NULL, the contents of a resource file in the user's home directory. On POSIX-based
systems, the usual name for this user preference resource file is $HOME/. Xde-
faul ts.

» If a language procedure has been set, Xt Di spl ayl ni ti al i ze first searches the
command line for the option " "-xnlLanguage', or for a -xrm option that specifies
the xnlLanguage/XnlLanguage resource, as specified by Section 2.4. If such a
resource is found, the value is assumed to be entirely in XPCS, the X Portable
Character Set. If neither option is specified on the command line, Xt Di spl ayl ni -

32

Widget Instantiation

tialize queries the server resource database (which is assumed to be entirely
in XPCS) for the resource name. xnl Language, class Class. Xnl Language where
name and Class are the application name and application class specified to
Xt Di spl ayl ni tial i ze. The language procedure is then invoked with the resource
value if found, else the empty string. The string returned from the language pro-
cedure is saved for all future references in the Intrinsics that require the per-
display language string.

* The screen resource database is initialized by parsing the command line in the
manner specified by Section 2.4.

» If a language procedure has not been set, the initial database is then queried for
the resource name. xnl Language, class Class. Xnl Language as specified above. If
this database query fails, the server resource database is queried; if this query
also fails, the language is determined from the environment; on POSIX-based sys-
tems, this is done by retrieving the value of the LANG environment variable. If no
language string is found, the empty string is used. This language string is saved
for all future references in the Intrinsics that require the per-display language
string.

» After determining the language string, the user's environment resource file is then
merged into the initial resource database if the file exists. This file is user-, host-,
and process-specific and is expected to contain user preferences that are to over-
ride those specifications in the per-display and per-screen resources. On POSIX-
based systems, the user's environment resource file name is specified by the value
of the XENVIRONMENT environment variable. If this environment variable does
not exist, the user's home directory is searched for a file named . Xdef aul t s- host,
where host is the host name of the machine on which the application is running.

* The per-screen resource specifications are then merged into the screen resource
database, if they exist. These specifications are the string returned by XScr een-
Resour ceStri ng for the respective screen and are owned entirely by the user.

* Next, the server resource database created earlier is merged into the screen re-
source database. The server property, and corresponding user preference file, are
owned and constructed entirely by the user.

» The application-specific user resource file from the local host is then merged into
the screen resource database. This file contains user customizations and is stored
in a directory owned by the user. Either the user or the application or both can
store resource specifications in the file. Each should be prepared to find and re-
spect entries made by the other. The file name is found by calling Xr nSet Dat a-
base with the current screen resource database, after preserving the original dis-
play-associated database, then calling Xt Resol vePat hnane with the parameters
(display, NULL, NULL, NULL, path, NULL, 0, NULL), where path is defined in an
operating-system-specific way. On POSIX-based systems, path is defined to be the
value of the environment variable XUSERFILESEARCHPATH if this is defined.
If XUSERFILESEARCHPATH is not defined, an implementation-dependent de-
fault value is used. This default value is constrained in the following manner:

e o Ifthe environment variable XAPPLRESDIR is not defined, the default XUSER-

FILESEARCHPATH must contain at least six entries. These entries must con-
tain $HOME as the directory prefix, plus the following substitutions:

. %C, %N, %L or %C, %N, %l, %t, %c
%C, %N, %l

%C, %N

%N, %L or %N, %l, %t, %c

%N, %]l

%N

Ul W=

33

Widget Instantiation

The order of these six entries within the path must be as given above. The order
and use of substitutions within a given entry are implementation-dependent.

* f XAPPLRESDIR is defined, the default XUSERFILESEARCHPATH must con-
tain at least seven entries. These entries must contain the following directory
prefixes and substitutions:

. $XAPPLRESDIR with %C, %N, %L or %C, %N, %]l, %t, %c
. $XAPPLRESDIR with %C, %N, %l

. $XAPPLRESDIR with %C, %N

. $XAPPLRESDIR with %N, %L or %N, %I, %t, %c

. $XAPPLRESDIR with %N, %l

. $XAPPLRESDIR with %N

. $HOME with %N

NO O WN -

The order of these seven entries within the path must be as given above. The or-
der and use of substitutions within a given entry are implementation-dependent.

» Last, the application-specific class resource file from the local host is merged into
the screen resource database. This file is owned by the application and is usually
installed in a system directory when the application is installed. It may contain
sitewide customizations specified by the system manager. The name of the appli-
cation class resource file is found by calling Xt Resol vePat hnane with the parame-
ters (display, * “app-defaults', NULL, NULL, NULL, NULL, 0, NULL). This file is
expected to be provided by the developer of the application and may be required
for the application to function properly. A simple application that wants to be as-
sured of having a minimal set of resources in the absence of its class resource file
can declare fallback resource specifications with Xt AppSet Fal | backResour ces.
Note that the customization substitution string is retrieved dynamically by Xt Re-
sol vePat hnanme so that the resolved file name of the application class resource
file can be affected by any of the earlier sources for the screen resource database,
even though the contents of the class resource file have lowest precedence. After
calling Xt Resol vePat hnane, the original display-associated database is restored.

To obtain the resource database for a particular screen, use Xt Scr eenDat abase.
XrnDat abase Xt Scr eenDat abase(screen);

screen Specifies the screen whose resource database is to be re-
turned.

The Xt Scr eenDat abase function returns the fully merged resource database as
specified above, associated with the specified screen. If the specified screen does
not belong to a Di spl ay initialized by Xt Di spl ayl ni ti al i ze, the results are unde-
fined.

To obtain the default resource database associated with a particular display, use
Xt Dat abase.

Xr nDat abase Xt Dat abase(di spl ay);
display Specifies the display.

The Xt Dat abase function is equivalent to Xr mGet Dat abase. It returns the database
associated with the specified display, or NULL if a database has not been set.

34

Widget Instantiation

To specify a default set of resource values that will be used to initialize the resource
database if no application-specific class resource file is found (the last of the six
sources listed above), use Xt AppSet Fal | backResour ces.

voi d Xt AppSet Fal | backResour ces(app_context, specification_list);

app_context Specifies the application context in which the fall-
back specifications will be used.

specification list Specifies a NULL-terminated list of resource specifi-
cations to preload the database, or NULL.

Each entry in specification list points to a string in the format of Xr nPut Li neRe-
sour ce. Following a call to Xt AppSet Fal | backResour ces, when a resource data-
base is being created for a particular screen and the Intrinsics are not able
to find or read an application-specific class resource file according to the rules
given above and if specification list is not NULL, the resource specifications in
specification list will be merged into the screen resource database in place of
the application-specific class resource file. Xt AppSet Fal | backResour ces is not re-
quired to copy specification list; the caller must ensure that the contents of the
list and of the strings addressed by the list remain valid until all displays are ini-
tialized or until Xt AppSet Fal | backResour ces is called again. The value NULL for
specification_list removes any previous fallback resource specification for the ap-
plication context. The intended use for fallback resources is to provide a minimal
number of resources that will make the application usable (or at least terminate
with helpful diagnostic messages) when some problem exists in finding and loading
the application defaults file.

Parsing the Command Line

The * Xt OpenDi spl ay function first parses the command line for the following op-

tions:
-display Specifies the display name for XOpenDi spl ay.
-name Sets the resource name prefix, which overrides the application

name passed to * Xt QpenDi spl ay.

-xnllanguage Specifies the initial language string for establishing locale and for
finding application class resource files.

Xt Di spl ayl nitialize has atable of standard command line options that are passed
to Xr nPar seCommand for adding resources to the resource database, and it takes as
a parameter additional application-specific resource abbreviations. The format of
this table is described in Section 15.9 in XIlib — C Language X Interface.

typedef enum {
XrmoptionNoArg, /* Value is specified in OptionDescRec.value */
XrmoptionlsArg, /* Value is the option string itself */
XrmoptionStickyArg, /* Value is characters immediately following option */
XrmoptionSepArg, /* Value is next argument in argv */
XrmoptionResArg, /* Use the next argument as input to XrmPutLineResource*/
XrmoptionSkipArg, /* Ignore this option and the next argument in argv */
XrmoptionSkipNArgs, /* Ignore this option and the next */

35

Widget Instantiation

/* OptionDescRec.value arguments in argv */
XrmoptionSkipLine /* Ignore this option and the rest of argv */
} XrmOptionKind;
typedef struct {
char *option; /* Option name in argv */
char *specifier; /* Resource name (without application name) */
XrmOptionKind argKind; /* Location of the resource value */
XPointer value; /* Value to provide if XrmoptionNoArg */
} XrmOptionDescRec, *XrmOptionDescList;

The standard table contains the following entries:

Option String Resource Name Argument Kind Resource Value
—background *background SepArg next argument
—bd *borderColor SepArg next argument
—bg *background SepArg next argument
—borderwidth .borderWidth SepArg next argument
—bordercolor *borderColor SepArg next argument
—bw .borderWidth SepArg next argument
—display .display SepArg next argument
—fg *foreground SepArg next argument
—fn *font SepArg next argument
—font *font SepArg next argument
—foreground *foreground SepArg next argument
—geometry .geometry SepArg next argument
—iconic .iconic NoArg "true"”

—name .name SepArg next argument
—reverse .reverseVideo NoArg "on"

—-rv .reverseVideo NoArg "on"

+rv .reverseVideo NoArg "off"
—selectionTimeout .selectionTimeout SepArg next argument
—synchronous .synchronous NoArg "on"
+synchronous .synchronous NoArg "off"

—title title SepArg next argument
—xnllanguage .xnlLanguage SepArg next argument
—Xrm next argument ResArg next argument
—xtsessionlD .sessionlD SepArg next argument

Note that any unique abbreviation for an option name in the standard table or in
the application table is accepted.

If reverseVideo is True, the values of Xt Def aul t For egr ound and Xt Def aul t Back-
gr ound are exchanged for all screens on the Display.

The value of the synchronous resource specifies whether or not Xlib is put into syn-
chronous mode. If a value is found in the resource database during display initial-

36

Widget Instantiation

ization, Xt Di spl ayl ni ti al i ze makes a call to XSynchr oni ze for all display connec-
tions currently open in the application context. Therefore, when multiple displays
are initialized in the same application context, the most recent value specified for
the synchronous resource is used for all displays in the application context.

The value of the selectionTimeout resource applies to all displays opened in the
same application context. When multiple displays are initialized in the same appli-
cation context, the most recent value specified is used for all displays in the appli-
cation context.

The -xrm option provides a method of setting any resource in an application. The
next argument should be a quoted string identical in format to a line in the user
resource file. For example, to give a red background to all command buttons in an
application named xmh, you can start it up as

xmh -xrm 'xmh*Command.background: red'

When it parses the command line, Xt Di spl ayl ni ti al i ze merges the application
option table with the standard option table before calling the Xlib Xr nPar seConmand
function. An entry in the application table with the same name as an entry in the
standard table overrides the standard table entry. If an option name is a prefix of an-
other option name, both names are kept in the merged table. The Intrinsics reserve
all option names beginning with the characters " "-xt' for future standard uses.

Creating Widgets

The creation of widget instances is a three-phase process:

1. The widgets are allocated and initialized with resources and are optionally added
to the managed subset of their parent.

2. All composite widgets are notified of their managed children in a bottom-up tra-
versal of the widget tree.

3. The widgets create X windows, which then are mapped.

To start the first phase, the application calls Xt Cr eat eW dget for all its widgets and
adds some (usually, most or all) of its widgets to their respective parents' managed
set by calling Xt ManageChi | d. To avoid an 0O(n?) creation process where each com-
posite widget lays itself out each time a widget is created and managed, parent
widgets are not notified of changes in their managed set during this phase.

After all widgets have been created, the application calls Xt Real i zeW dget with
the top-level widget to execute the second and third phases. Xt Real i zeW dget first
recursively traverses the widget tree in a postorder (bottom-up) traversal and then
notifies each composite widget with one or more managed children by means of its
change managed procedure.

Notifying a parent about its managed set involves geometry layout and possibly
geometry negotiation. A parent deals with constraints on its size imposed from
above (for example, when a user specifies the application window size) and sugges-
tions made from below (for example, when a primitive child computes its preferred
size). One difference between the two can cause geometry changes to ripple in both
directions through the widget tree. The parent may force some of its children to

37

Widget Instantiation

change size and position and may issue geometry requests to its own parent in or-
der to better accommodate all its children. You cannot predict where anything will
go on the screen until this process finishes.

Consequently, in the first and second phases, no X windows are actually created,
because it is likely that they will get moved around after creation. This avoids un-
necessary requests to the X server.

Finally, Xt Real i zeW dget starts the third phase by making a preorder (top-down)
traversal of the widget tree, allocates an X window to each widget by means of its
realize procedure, and finally maps the widgets that are managed.

Creating and Merging Argument Lists

Many Intrinsics functions may be passed pairs of resource names and values. These
are passed as an arglist, a pointer to an array of Ar g structures, which contains

typedef struct {
String name;

XtArgVal value;
} Arg, *ArgList;

where Xt Ar gVal is as defined in Section 1.5.

If the size of the resource is less than or equal to the size of an Xt Ar gVal , the re-
source value is stored directly in value; otherwise, a pointer to it is stored in value.

To set values in an Ar gLi st, use Xt Set Ar g.

void Xt SetArg(arg, nane, value);

arg Specifies the name/value pair to set.
name Specifies the name of the resource.
value Specifies the value of the resource if it will fit in an Xt Ar gVal ,

else the address.

The Xt Set Ar g function is usually used in a highly stylized manner to minimize the
probability of making a mistake; for example:

Arg args[20];

int n;

n=0;

XtSetArg(args[n], XtNheight, 100); n++;
XtSetArg(args[n], XtNwidth, 200); n++;
XtSetValues(widget, args, n);

Alternatively, an application can statically declare the argument list and use Xt Num
ber:

static Args args|[] = {
{XtNheight, (XtArgVal) 100},

38

Widget Instantiation

{XtNwidth, (XtArgVal) 200},
}
XtSetValues(Widget, args, XtNumber(args));

Note that you should not use expressions with side effects such as auto-increment
or auto-decrement within the first argument to Xt Set Ar g. Xt Set Ar g can be imple-
mented as a macro that evaluates the first argument twice.

To merge two arglist arrays, use Xt Mer geAr gLi st s.

ArgLi st Xt MergeArgLists(argsl, numargsl, args2, numargs?2);

argsl Specifies the first argument list.

num_argsl Specifies the number of entries in the first argument list.

args2 Specifies the second argument list.

num_args2 1Specifies the number of entries in the second argument
ist.

The Xt Mer geAr gLi st s function allocates enough storage to hold the combined ar-
glist arrays and copies them into it. Note that it does not check for duplicate entries.
The length of the returned list is the sum of the lengths of the specified lists. When
it is no longer needed, free the returned storage by using Xt Fr ee.

All Intrinsics interfaces that require Ar gLi st arguments have analogs conforming
to the ANSI C variable argument list (traditionally called " “varargs') calling con-
vention. The name of the analog is formed by prefixing *"Va'" to the name of the
corresponding Ar gLi st procedure; e.g., Xt VaCr eat eW dget . Each procedure named
Xt Vasomething takes as its last arguments, in place of the corresponding Ar gLi st/
Car di nal parameters, a variable parameter list of resource name and value pairs
where each name is of type St ri ng and each value is of type Xt ArgVal . The end of
the list is identified by a name entry containing NULL. Developers writing in the C
language wishing to pass resource name and value pairs to any of these interfaces
may use the ArgLi st and varargs forms interchangeably.

Two special names are defined for use only in varargs lists: Xt VaTypedArg and
Xt VaNest edLi st .

#define XtVaTypedArg "XtVaTypedArg"

If the name Xt VaTypedAr g is specified in place of a resource name, then the follow-
ing four arguments are interpreted as a name/type/value/size tuple where name is
of type Stri ng, type is of type St ri ng, value is of type Xt Ar gVal , and size is of type
int. When a varargs list containing Xt VaTypedAr g is processed, a resource type con-
version (see the section called “Resource Conversions”) is performed if necessary
to convert the value into the format required by the associated resource. If type is
XtRString, then value contains a pointer to the string and size contains the number
of bytes allocated, including the trailing null byte. If type is not XtRString, then if
size is less than or equal to si zeof (Xt ArgVal), the value should be the data cast to
the type Xt ArgVal , otherwise value is a pointer to the data. If the type conversion
fails for any reason, a warning message is issued and the list entry is skipped.

#define XtVaNestedList "XtVaNestedList"

39

Widget Instantiation

If the name Xt VaNest edLi st is specified in place of a resource name, then the fol-
lowing argument is interpreted as an Xt Var Ar gsLi st value, which specifies another
varargs list that is logically inserted into the original list at the point of declaration.
The end of the nested list is identified with a name entry containing NULL. Varargs
lists may nest to any depth.

To dynamically allocate a varargs list for use with Xt VaNest edLi st in multiple calls,
use Xt VaCr eat eAr gslLi st.

typedef XtPointer XtVarArgsList;

Xt Var Ar gsLi st Xt VaCr eat eAr gsLi st (unused, ...);
unused This argument is not currently used and must be specified
as NULL.

Specifies a variable parameter list of resource name and val-
ue pairs.

The Xt VaCr eat eAr gsLi st function allocates memory and copies its arguments into
a single list pointer, which may be used with Xt VaNest edLi st . The end of both lists
is identified by a name entry containing NULL. Any entries of type Xt VaTypedAr g
are copied as specified without applying conversions. Data passed by reference (in-
cluding Strings) are not copied, only the pointers themselves; the caller must ensure
that the data remain valid for the lifetime of the created varargs list. The list should
be freed using Xt Fr ee when no longer needed.

Use of resource files and of the resource database is generally encouraged over
lengthy arglist or varargs lists whenever possible in order to permit modification
without recompilation.

Creating a Widget Instance

To create an instance of a widget, use Xt Cr eat eW dget .
W dget Xt Creat eW dget (nane, object_cl ass, parent, args, num.args);

name Specifies the resource instance name for the created
widget, which is used for retrieving resources and,
for that reason, should not be the same as any other
widget that is a child of the same parent.

object class Specifies the widget class pointer for the created ob-
ject. Must be objectClass or any subclass thereof.

parent Specifies the parent widget. Must be of class Object
or any subclass thereof.

args Specifies the argument list to override any other re-
source specifications.

num_args Specifies the number of entries in the argument list.

The Xt Cr eat eW dget function performs all the boilerplate operations of widget cre-
ation, doing the following in order:

40

Widget Instantiation

* Checks to see if the class_initialize procedure has been called for this class and
for all superclasses and, if not, calls those necessary in a superclass-to-subclass
order.

e If the specified class is not coreW dget O ass or a subclass thereof, and the
parent's class is a subclass of conpositeW dget Cl ass and either no exten-
sion record in the parent's composite class part extension field exists with the
record type NULLQUARK or the accepts objects field in the extension record
is Fal se, Xt Creat eW dget issues a fatal error; see the section called “Addition
of Children to a Composite Widget: The insert child Procedure” and Chapter 12,
Nonwidget Objects.

« If the specified class contains an extension record in the object class part exten-
sion field with record type NULLQUARK and the allocate field is not NULL, the
procedure is invoked to allocate memory for the widget instance. If the parent
is a member of the class const r ai nt W dget Cl ass, the procedure also allocates
memory for the parent's constraints and stores the address of this memory in-
to the constraints field. If no allocate procedure is found, the Intrinsics allocate
memory for the widget and, when applicable, the constraints, and initializes the
constraints field.

 Initializes the Core nonresource data fields self, parent, widget class,
being destroyed, name, managed, window, visible, popup list, and num_popups.

* Initializes the resource fields (for example, background pixel) by using the Cor e-
Cl assPart resource lists specified for this class and all superclasses.

» If the parent is a member of the class constrai nt Wdget Cl ass, initializes the
resource fields of the constraints record by using the Constrai nt d assPart re-
source lists specified for the parent's class and all superclasses up to constr ai n-
t Wdget d ass.

» Calls the initialize procedures for the widget starting at the Object initialize pro-
cedure on down to the widget's initialize procedure.

 If the parent is a member of the class constrai nt W dget Cl ass, calls the Con-
straint Cl assPart initialize procedures, starting at const r ai nt W dget Cl ass on
down to the parent's Constrai nt 0 assPart initialize procedure.

« If the parent is a member of the class conposit eW dget C ass, puts the widget
into its parent's children list by calling its parent's insert child procedure. For
further information, see the section called “Addition of Children to a Composite
Widget: The insert child Procedure”.

To create an instance of a widget using varargs lists, use Xt VaCr eat eW dget .

W dget Xt VaCreat eW dget (nane, object_class, parent, ...);
name Specifies the resource name for the created widget.
object class Specifies the widget class pointer for the created ob-

ject. Must be objectClass or any subclass thereof.

parent Specifies the parent widget. Must be of class Object
or any subclass thereof.

Specifies the variable argument list to override any
other resource specifications.

The Xt VaCr eat eW dget procedure is identical in function to Xt Cr eat eW dget with
the args and num_args parameters replaced by a varargs list, as described in Sec-
tion 2.5.1.

41

Widget Instantiation

Creating an Application Shell Instance

An application can have multiple top-level widgets, each of which specifies a unique
widget tree that can potentially be on different screens or displays. An application
uses Xt AppCr eat eShel | to create independent widget trees.

W dget Xt AppCr eat eShel | (name, application_class, w dget cl ass, displ ay,
args, nhum args);

name Specifies the instance name of the shell widget.
If name is NULL, the application name passed to
Xt Di splaylnitializeisused.

application_class Specifies the resource class string to be used in place
of the widget class name string when widget class is
appl i cati onShel | W dget d ass or a subclass there-
of.

widget class Specifies the widget class for the top-level widget
(e.g., appl i cationShel | Wdgetd ass).

display Specifies the display for the default screen and for
the resource database used to retrieve the shell wid-
get resources.

args Specifies the argument list to override any other re-
source specifications.

num_args Specifies the number of entries in the argument list.

The Xt AppCr eat eShel | function creates a new shell widget instance as the root
of a widget tree. The screen resource for this widget is determined by first scan-
ning args for the XtNscreen argument. If no XtNscreen argument is found, the
resource database associated with the default screen of the specified display is
queried for the resource name.screen, class Class.Screen where Class is the spec-
ified application class if widget class is appl i cati onShel | W dget O ass or a sub-
class thereof. If widget class is not applicati on\ %hel | \ % dget\ %l ass or a
subclass, Class is the class name field from the CoreC assPart of the specified
widget class. If this query fails, the default screen of the specified display is used.
Once the screen is determined, the resource database associated with that screen
is used to retrieve all remaining resources for the shell widget not specified in args.
The widget name and Class as determined above are used as the leftmost (i.e., root)
components in all fully qualified resource names for objects within this widget tree.

If the specified widget class is a subclass of WMShell, the name and Class as deter-
mined above will be stored into the WM_CLASS property on the widget's window
when it becomes realized. If the specified widget class is appl i cati onShel | W d-
get d ass or a subclass thereof, the WM_COMMAND property will also be set from
the values of the XtNargv and XtNargc resources.

To create multiple top-level shells within a single (logical) application, you can use
one of two methods:

* Designate one shell as the real top-level shell and create the others as pop-up
children of it by using Xt Cr eat ePopupShel | .
* Have all shells as pop-up children of an unrealized top-level shell.

42

Widget Instantiation

The first method, which is best used when there is a clear choice for what is the
main window, leads to resource specifications like the following:

xmail.geometry:... (the main window)
xmail.read.geometry:... (the read window)
xmail.compose.geometry:... (the compose window)

The second method, which is best if there is no main window, leads to resource

specifications like the following:

xmail.headers.geometry:... (the headers window)
xmail.read.geometry:... (the read window)
xmail.compose.geometry:... (the compose window)

To create a top-level widget that is the root of a widget tree using varargs lists, use
Xt VaAppCr eat eShel | .

W dget Xt VaAppCreat eShel | (name, application_class, w dget_class, dis-

pl ay);

name Specifies the instance name of the shell widget.
If name is NULL, the application name passed to
Xt Di spl aylnitialize is used.

application_class Specifies the resource class string to be used in place
of the widget class name string when widget class is
appl i cati onShel | W dget d ass or a subclass there-
of.

widget class Specifies the widget class for the top-level widget.

display Specifies the display for the default screen and for

the resource database used to retrieve the shell wid-
get resources.

Specifies the variable argument list to override any
other resource specifications.

The Xt VaAppCr eat eShel | procedure is identical in function to Xt AppCr eat eShel |
with the args and num_args parameters replaced by a varargs list, as described in
Section 2.5.1.

Convenience Procedure to Initialize an Application

To initialize the Intrinsics internals, create an application context, open and initialize
a display, and create the initial root shell instance, an application may use Xt Ope-
nAppl i cat i on or Xt VaQpenAppl i cati on.

W dget Xt OpenApplication(app_context _return, application_class, op-
tions, numoptions, argc_in_out, argv_in_out, fallback resources,
wi dget _cl ass, args, num. args);

app_context return Returns the application context, if non-NULL.

43

Widget Instantiation

application_class
options
num_options

argc in_out

argv_in_out

fallback_resources

Specifies the class name of the application.
Specifies the command line options table.
Specifies the number of entries in options.

Specifies a pointer to the number of command line
arguments.

Specifies a pointer to the command line arguments.

Specifies resource values to be used if the applica-

tion class resource file cannot be opened or read, or
NULL.

widget class Specifies the class of the widget to be created. Must

be shellWidgetClass or a subclass.

args Specifies the argument list to override any other re-
source specifications for the created shell widget.

num_args Specifies the number of entries in the argument list.

The Xt OpenAppl i cati on function calls Xt Tool ki tlnitiali ze followed by Xt Cre-
at eAppl i cat i onCont ext, then calls * Xt OpenDi spl ay with display string NULL and
application name NULL, and finally calls Xt AppCr eat eShel | with name NULL, the
specified widget class, an argument list and count, and returns the created shell.
The recommended widget class is sessi onShel | W dget Cl ass. The argument list
and count are created by merging the specified args and num_args with a list con-
taining the specified argc and argv. The modified argc and argv returned by Xt Di s-
pl ayl nitial i ze are returned in argc _in_out and argv_in_out. If app context return
is not NULL, the created application context is also returned. If the display speci-
fied by the command line cannot be opened, an error message is issued and Xt Ope-
nAppl i cati on terminates the application. If fallback resources is non-NULL, Xt Ap-
pSet Fal | backResour ces is called with the value prior to calling * Xt OpenDi spl ay.

W dget Xt VaQpenApplication(app_context return, application_class, op-

tions, numoptions,

wi dget _cl ass);
app_context return
application class
options
num_options

argc in_out

argv_in_out

fallback_resources

widget class

argc_in out, argv_in out, fallback resources,

Returns the application context, if non-NULL.
Specifies the class name of the application.
Specifies the command line options table.
Specifies the number of entries in options.

Specifies a pointer to the number of command line
arguments.

Specifies the command line arguments array.

Specifies resource values to be used if the application
class resource file cannot be opened, or NULL.

Specifies the class of the widget to be created. Must
be shellWidgetClass or a subclass.

44

Widget Instantiation

Specifies the variable argument list to override any
other resource specifications for the created shell.

The Xt VaOpenAppl i cat i on procedure is identical in function to Xt OQpenAppl i cati on
with the args and num_args parameters replaced by a varargs list, as described in
Section 2.5.1.

Widget Instance Allocation: The allocate Procedure

A widget class may optionally provide an instance allocation procedure in the Ob-
j ect O assExt ensi on record.

When the call to create a widget includes a varargs list containing Xt VaTypedAr g,
these arguments will be passed to the allocation procedure in an Xt TypedAr gLi st .

typedef struct {

String name;

String type;

XtArgVal value;

int size;

} XtTypedArg, *XtTypedArgList;

The allocate procedure pointer in the Obj ect O assExt ensi on record is of type
(*Al I ocat eProc).

t ypedef voi d (*Al' |l ocat eProc) (w dget _cl ass, constraint_si ze,
nore_bytes, args, numargs, typed_args, numtyped_args, new_return,
nore_bytes return);

widget class Specifies the widget class of the instance to allocate.

constraint _size Specifies the size of the constraint record to allocate,
or 0.

more bytes Specifies the number of auxiliary bytes of memory to
allocate.

args Specifies the argument list as given in the call to cre-

ate the widget.

num_args Specifies the number of arguments.

typed args Specifies the list of typed arguments given in the call
to create the widget.

num_typed args Specifies the number of typed arguments.

new return Returns a pointer to the newly allocated instance, or

NULL in case of error.

more bytes return Returns the auxiliary memory if it was requested, or
NULL if requested and an error occurred; otherwise,
unchanged.

At widget allocation time, if an extension record with record type equal to NUL-
LQUARK is located through the object class part extension field and the allocate

45

Widget Instantiation

field is not NULL, the (*Al | ocat eProc) will be invoked to allocate memory for the
widget. If no ObjectClassPart extension record is declared with record type equal to
NULLQUARK, then Xt I nherit Al | ocate and Xt | nherit Deal | ocat e are assumed.
If no (*Al |l ocat eProc) is found, the Intrinsics will allocate memory for the widget.

An (*Al | ocat eProc) must perform the following:

* Allocate memory for the widget instance and return it in new return. The memory
must be at least we->core_class.widget _size bytes in length, double-word aligned.

* Initialize the core.constraints field in the instance record to NULL or to point to a
constraint record. If constraint_size is not 0, the procedure must allocate memory
for the constraint record. The memory must be double-word aligned.

» If more bytesisnot 0, then the address of a block of memory at least more bytesin
size, double-word aligned, must be returned in the more bytes return parameter,
or NULL to indicate an error.

A class allocation procedure that envelops the allocation procedure of a superclass
must rely on the enveloped procedure to perform the instance and constraint allo-
cation. Allocation procedures should refrain from initializing fields in the widget
record except to store pointers to newly allocated additional memory. Under no cir-
cumstances should an allocation procedure that envelopes its superclass allocation
procedure modify fields in the instance part of any superclass.

Widget Instance Initialization: The initialize Procedure

The initialize procedure pointer in a widget class is of type (* Xt I ni t Proc).
typedef void (*XtlnitProc)(request, new, args, numargs);

request Specifies a copy of the widget with resource values as re-
quested by the argument list, the resource database, and
the widget defaults.

new Specifies the widget with the new values, both resource
and nonresource, that are actually allowed.

args Specifies the argument list passed by the client, for com-
puting derived resource values. If the client created the
widget using a varargs form, any resources specified via
Xt VaTypedAr g are converted to the widget representation
and the list is transformed into the Ar gLi st format.

num_args Specifies the number of entries in the argument list.
An initialization procedure performs the following:

» Allocates space for and copies any resources referenced by address that the client
is allowed to free or modify after the widget has been created. For example, if a
widget has a field that is a St ri ng, it may choose not to depend on the characters
at that address remaining constant but dynamically allocate space for the string
and copy it to the new space. Widgets that do not copy one or more resources
referenced by address should clearly so state in their user documentation.

Note

It is not necessary to allocate space for or to copy callback lists.

46

Widget Instantiation

* Computes values for unspecified resource fields. For example, if width and height
are zero, the widget should compute an appropriate width and height based on
its other resources.

Note

A widget may directly assign only its own width and height within the
initialize, initialize hook, set values, and set values hook procedures; see
Chapter 6, Geometry Management.
¢ Computes values for uninitialized nonresource fields that are derived from re-
source fields. For example, graphics contexts (GCs) that the widget uses are de-
rived from resources like background, foreground, and font.

An initialization procedure also can check certain fields for internal consistency. For
example, it makes no sense to specify a colormap for a depth that does not support
that colormap.

Initialization procedures are called in superclass-to-subclass order after all fields
specified in the resource lists have been initialized. The initialize procedure does
not need to examine args and num_args if all public resources are declared in the
resource list. Most of the initialization code for a specific widget class deals with
fields defined in that class and not with fields defined in its superclasses.

If a subclass does not need an initialization procedure because it does not need to
perform any of the above operations, it can specify NULL for the initialize field in
the class record.

Sometimes a subclass may want to overwrite values filled in by its superclass. In
particular, size calculations of a superclass often are incorrect for a subclass, and
in this case, the subclass must modify or recalculate fields declared and computed
by its superclass.

As an example, a subclass can visually surround its superclass display. In this case,
the width and height calculated by the superclass initialize procedure are too small
and need to be incremented by the size of the surround. The subclass needs to know
if its superclass's size was calculated by the superclass or was specified explicitly.
All widgets must place themselves into whatever size is explicitly given, but they
should compute a reasonable size if no size is requested.

The request and new arguments provide the necessary information for a subclass
to determine the difference between an explicitly specified field and a field com-
puted by a superclass. The request widget is a copy of the widget as initialized by
the arglist and resource database. The new widget starts with the values in the re-
quest, but it has been updated by all superclass initialization procedures called so
far. A subclass initialize procedure can compare these two to resolve any potential
conflicts.

In the above example, the subclass with the visual surround can see if the width and
height in the request widget are zero. If so, it adds its surround size to the width
and height fields in the new widget. If not, it must make do with the size originally
specified.

The new widget will become the actual widget instance record. Therefore, the ini-
tialization procedure should do all its work on the new widget; the request widget
should never be modified. If the initialize procedure needs to call any routines that
operate on a widget, it should specify new as the widget instance.

47

Widget Instantiation

Constraint Instance Initialization: The ConstraintClass-
Part initialize Procedure

The constraint initialization procedure pointer, found in the Const r ai nt Cl assPart
initialize field of the widget class record, is of type (*Xt1nitProc). The values
passed to the parent constraint initialization procedures are the same as those
passed to the child's class widget initialization procedures.

The constraints field of the request widget points to a copy of the constraints record
as initialized by the arglist and resource database.

The constraint initialization procedure should compute any constraint fields derived
from constraint resources. It can make further changes to the new widget to make
the widget and any other constraint fields conform to the specified constraints, for
example, changing the widget's size or position.

If a constraint class does not need a constraint initialization procedure, it can specify
NULL for the initialize field of the Constrai nt d assPart in the class record.

Nonwidget Data Initialization: The initialize_hook Proce-

dure

Note

The initialize hook procedure is obsolete, as the same information is now
available to the initialize procedure. The procedure has been retained for
those widgets that used it in previous releases.

The initialize hook procedure pointer is of type (* Xt Ar gsProc) :

t ypedef void(*XtArgsProc)(w, args, numargs);

w Specifies the widget.

args Specifies the argument list passed by the client. If the
client created the widget using a varargs form, any re-
sources specified via Xt VaTypedAr g are converted to the
widget representation and the list is transformed into the
ArgLi st format.

num_args Specifies the number of entries in the argument list.

If this procedure is not NULL, it is called immediately after the corresponding ini-
tialize procedure or in its place if the initialize field is NULL.

The initialize hook procedure allows a widget instance to initialize nonresource data
using information from the specified argument list as if it were a resource.

Realizing Widgets

To realize a widget instance, use Xt Real i zeW dget .

48

Widget Instantiation

voi d Xt Real i zeW dget (w);
w Specifies the widget. Must be of class Core or any subclass thereof.

If the widget is already realized, Xt Real i zeW dget simply returns. Otherwise it per-
forms the following:

* Binds all action names in the widget's translation table to procedures (see the
section called “Action Names to Procedure Translations”).

* Makes a postorder traversal of the widget tree rooted at the specified widget and
calls each non-NULL change managed procedure of all composite widgets that
have one or more managed children.

* Constructs an XSet W ndowAt t ri but es structure filled in with information derived
from the Core widget fields and calls the realize procedure for the widget, which
adds any widget-specific attributes and creates the X window.

» If the widget is not a subclass of conposi t eW dget G ass, Xt Real i zeW dget re-
turns; otherwise it continues and performs the following:

* » Descends recursively to each of the widget's managed children and calls the
realize procedures. Primitive widgets that instantiate children are responsible
for realizing those children themselves.

* Maps all of the managed children windows that have mapped when _managed
True. If a widget is managed but mapped when managed is Fal se, the widget
is allocated visual space but is not displayed.

If the widget is a top-level shell widget (that is, it has no parent), and
mapped when _managed is Tr ue, Xt Real i zeW dget maps the widget window.

Xt Creat eW dget, Xt VaCr eat eW dget , Xt Real i zeW dget , Xt ManageChi | dr en, Xt Un-
manage\ %Chi | dren, Xt Unreal i zeW dget, Xt Set MappedwWhenManaged, and Xt De-
st roy\ %W dget maintain the following invariants:

» If a composite widget is realized, then all its managed children are realized.
* If a composite widget is realized, then all its managed children that have
mapped when_managed Tr ue are mapped.

All Intrinsics functions and all widget routines should accept either realized or un-
realized widgets. When calling the realize or change managed procedures for chil-
dren of a composite widget, Xt Real i zeW dget calls the procedures in reverse or-
der of appearance in the Conposi t ePart children list. By default, this ordering of
the realize procedures will result in the stacking order of any newly created sub-
windows being top-to-bottom in the order of appearance on the list, and the most
recently created child will be at the bottom.

To check whether or not a widget has been realized, use Xt | sReal i zed.
Bool ean XtlsRealized(w);

w Specifies the widget. Must be of class Object or any subclass there-
of.

The Xt | sReal i zed function returns Tr ue if the widget has been realized, that is, if
the widget has a nonzero window ID. If the specified object is not a widget, the state
of the nearest widget ancestor is returned.

Some widget procedures (for example, set values) might wish to operate differently
after the widget has been realized.

49

Widget Instantiation

Widget Instance Window Creation: The realize Proce-

dure

The realize procedure pointer in a widget class is of type (* Xt Real i zePr oc) .

typedef void (*XtRealizeProc)(w, value_mask, attributes);

w Specifies the widget.

value mask Specifies which fields in the attributes structure are
used.

attributes Specifies the window attributes to use in the XCre-

at eW ndow call.
The realize procedure must create the widget's window.

Before calling the class realize procedure, the generic Xt Real i zeW dget function
fills in a mask and a corresponding XSet W ndowAt t ri but es structure. It sets the
following fields in attributes and corresponding bits in value mask based on infor-
mation in the widget core structure:

» The background pixmap (or background pixel if background pixmap is Xt Un-
speci fi edPi xmap) is filled in from the corresponding field.

* The border pixmap (or border pixel if border pixmap is Xt Unspeci fi edPi xmap)
is filled in from the corresponding field.

e The colormap is filled in from the corresponding field.

* The event mask is filled in based on the event handlers registered, the event
translations specified, whether the expose field is non-NULL, and whether
visible interest is Tr ue.

» The bit_gravity is set to Nor t hWest Gr avi ty if the expose field is NULL.

These or any other fields in attributes and the corresponding bits in value mask can
be set by the realize procedure.

Note that because realize is not a chained operation, the widget class realize pro-
cedure must update the XSet W ndowAt t ri but es structure with all the appropriate
fields from non-Core superclasses.

A widget class can inherit its realize procedure from its superclass during class ini-
tialization. The realize procedure defined for cor eW dget O ass calls Xt Cr eat eW n-
dow with the passed value mask and attributes and with window class and visual
set to CopyFr onPar ent . Both conposi t eW dget Cl ass and const rai nt W dget C ass
inherit this realize procedure, and most new widget subclasses can do the same
(see the section called “Inheritance of Superclass Operations”).

The most common noninherited realize procedures set bit_gravity in the mask and
attributes to the appropriate value and then create the window. For example, de-
pending on its justification, Label might set bit gravity to West Gravity, Center-
Gravity, or East Gravi ty. Consequently, shrinking it would just move the bits ap-
propriately, and no exposure event is needed for repainting.

If a composite widget's children should be realized in an order other than that spec-
ified (to control the stacking order, for example), it should call Xt Real i zeW dget on
its children itself in the appropriate order from within its own realize procedure.

50

Widget Instantiation

Widgets that have children and whose class is not a subclass of conposi t eW dget -
Cl ass are responsible for calling Xt Real i zeW dget on their children, usually from
within the realize procedure.

Realize procedures cannot manage or unmanage their descendants.

Window Creation Convenience Routine

Rather than call the Xlib XCr eat eW ndow function explicitly, a realize procedure
should normally call the Intrinsics analog Xt Cr eat eW ndow, which simplifies the cre-
ation of windows for widgets.

voi d Xt Creat eW ndow(w, wi ndow class, visual, value_mask, attributes);

w Specifies the widget that defines the additional win-
dow attributed. Must be of class Core or any subclass
thereof.

window class Specifies the Xlib window class (for example, | n-

put Qut put, | nput Onl y, or CopyFronParent).

visual Specifies the visual type (usually CopyFr onParent).

value_mask Specifies which fields in the attributes structure are
used.

attributes Specifies the window attributes to use in the XCr e-

at eW ndow call.

The Xt Cr eat eW ndow function calls the Xlib XCr eat eW ndow function with values
from the widget structure and the passed parameters. Then, it assigns the created
window to the widget's window field.

Xt Cr eat eW ndow evaluates the following fields of the widget core structure: depth,
screen, parent->core.window, x, y, width, height, and border width.

Obtaining Window Information from a Widget

The Core widget class definition contains the screen and window ids. The window
field may be NULL for a while (see the section called “Creating Widgets” and the
section called “Realizing Widgets”).

The display pointer, the parent widget, screen pointer, and window of a widget are
available to the widget writer by means of macros and to the application writer by
means of functions.

Di splay XtDisplay(w;

w Specifies the widget. Must be of class Core or any subclass thereof.
Xt Di spl ay returns the display pointer for the specified widget.

W dget Xt Parent (w);

w Specifies the widget. Must be of class Object or any subclass there-
of.

51

Widget Instantiation

Xt Par ent returns the parent object for the specified widget. The returned object
will be of class Object or a subclass.

Screen *Xt Screen(w);

w Specifies the widget. Must be of class Core or any subclass thereof.
* Xt Scr een returns the screen pointer for the specified widget.

W ndow Xt W ndow(w) ;

w Specifies the widget. Must be of class Core or any subclass thereof.
Xt W ndow returns the window of the specified widget.

The display pointer, screen pointer, and window of a widget or of the closest wid-
get ancestor of a nonwidget object are available by means of * Xt Di spl ayOf Obj ect,
*Xt Scr eenOf Obj ect, and Xt W ndowOf Obj ect .

Di splay *XtDi spl ayOf Cbj ect (w) ;

object Specifies the object. Must be of class Object or any subclass
thereof.

*Xt Di spl ayOf Obj ect is identical in function to Xt Di spl ay if the object is a widget;
otherwise * Xt Di spl ayOf Obj ect returns the display pointer for the nearest ancestor
of object that is of class Widget or a subclass thereof.

Screen *Xt ScreenOf Obj ect (obj ect) ;

object Specifies the object. Must be of class Object or any subclass
thereof.

*Xt Scr eenCf Obj ect is identical in function to * Xt Scr een if the object is a widget;
otherwise * Xt Scr eenCOf Obj ect returns the screen pointer for the nearest ancestor
of object that is of class Widget or a subclass thereof.

W ndow Xt W ndowCOf Chj ect (obj ect) ;

object Specifies the object. Must be of class Object or any subclass
thereof.

Xt W ndowOf Qbj ect is identical in function to Xt W ndow if the object is a widget;
otherwise Xt W ndowOF Obj ect returns the window for the nearest ancestor of object
that is of class Widget or a subclass thereof.

To retrieve the instance name of an object, use Xt Nane.
String Xt Name(object);

object Specifies the object whose name is desired. Must be of class
Object or any subclass thereof.

Xt Nane returns a pointer to the instance name of the specified object. The storage
is owned by the Intrinsics and must not be modified. The name is not qualified by
the names of any of the object's ancestors.

52

Widget Instantiation

Several window attributes are locally cached in the widget instance. Thus, they
can be set by the resource manager and Xt Set Val ues as well as used by routines
that derive structures from these values (for example, depth for deriving pixmaps,
background pixel for deriving GCs, and so on) or in the Xt Cr eat eW ndow call.

The x, y, width, height, and border width window attributes are available to geome-
try managers. These fields are maintained synchronously inside the Intrinsics. When
an XConf i gur eW ndowis issued by the Intrinsics on the widget's window (on request
of its parent), these values are updated immediately rather than some time later
when the server generates a Confi gureNoti fy event. (In fact, most widgets do not
select Subst ruct ur eNot i fy events.) This ensures that all geometry calculations are
based on the internally consistent toolkit world rather than on either an inconsistent
world updated by asynchronous Confi gureNoti fy events or a consistent, but slow,
world in which geometry managers ask the server for window sizes whenever they
need to lay out their managed children (see Chapter 6, Geometry Management).

Unrealizing Widgets

To destroy the windows associated with a widget and its non-pop-up descendants,
use Xt Unr eal i zeW dget .

voi d Xt UnrealizeWdget(w;
w Specifies the widget. Must be of class Core or any subclass thereof.

If the widget is currently unrealized, Xt Unr eal i zeW dget simply returns. Otherwise
it performs the following:

* Unmanages the widget if the widget is managed.

* Makes a postorder (child-to-parent) traversal of the widget tree rooted at the spec-
ified widget and, for each widget that has declared a callback list resource named
" “unrealizeCallback", executes the procedures on the XtNunrealizeCallback list.

* Destroys the widget's window and any subwindows by calling XDest r oyW ndow
with the specified widget's window field.

Any events in the queue or which arrive following a call to Xt Unr eal i zeW dget will
be dispatched as if the window(s) of the unrealized widget(s) had never existed.

Destroying Widgets
The Intrinsics provide support

* To destroy all the pop-up children of the widget being destroyed and destroy all
children of composite widgets.

* To remove (and unmap) the widget from its parent.

» To call the callback procedures that have been registered to trigger when the
widget is destroyed.

* To minimize the number of things a widget has to deallocate when destroyed.

* To minimize the number of XDest r oyW ndow calls when destroying a widget tree.

To destroy a widget instance, use Xt Dest r oyW dget .

voi d Xt DestroyW dget (w);

53

Widget Instantiation

w Specifies the widget. Must be of class Object or any subclass there-
of.

The Xt Dest royW dget function provides the only method of destroying a widget,
including widgets that need to destroy themselves. It can be called at any time,
including from an application callback routine of the widget being destroyed. This
requires a two-phase destroy process in order to avoid dangling references to de-
stroyed widgets.

In phase 1, Xt Dest r oyW dget performs the following:

» If the being destroyed field of the widget is Tr ue, it returns immediately.

* Recursively descends the widget tree and sets the being destroyed field to True
for the widget and all normal and pop-up children.

¢ Adds the widget to a list of widgets (the destroy list) that should be destroyed
when it is safe to do so.

Entries on the destroy list satisfy the invariant that if w2 occurs after wl on the
destroy list, then w2 is not a descendent, either normal or pop-up, of wl.

Phase 2 occurs when all procedures that should execute as a result of the current
event have been called, including all procedures registered with the event and trans-
lation managers, that is, when the current invocation of Xt Di spat chEvent is about
to return, or immediately if not in Xt Di spat chEvent .

In phase 2, Xt Dest r oyW dget performs the following on each entry in the destroy
list in the order specified:

 If the widget is not a pop-up child and the widget's parent is a subclass of com
posi t e\ 9 dget d ass, and if the parent is not being destroyed, it calls Xt Unnan-
ageChi | d on the widget and then calls the widget's parent's delete child proce-
dure (see the section called “Deletion of Children: The delete child Procedure”).
¢ Calls the destroy callback procedures registered on the widget and all normal and
pop-up descendants in postorder (it calls child callbacks before parent callbacks).

The Xt DestroyW dget function then makes second traversal of the widget and all
normal and pop-up descendants to perform the following three items on each widget
in postorder:

 If the widget is not a pop-up child and the widget's parent is a subclass of con-
strai nt\ %N dget C ass, it calls the Constrai nt Cl assPart destroy procedure for
the parent, then for the parent's superclass, until finally it calls the Const rai nt -
Cl assPart destroy procedure for const r ai nt W dget d ass.

* Calls the CoreC assPart destroy procedure declared in the widget class, then
the destroy procedure declared in its superclass, until finally it calls the destroy
procedure declared in the Object class record. Callback lists are deallocated.

« If the widget class object class part contains an Obj ect C assExt ensi on record
with the record type NULLQUARK and the deallocate field is not NULL, calls the
deallocate procedure to deallocate the instance and if one exists, the constraint
record. Otherwise, the Intrinsics will deallocate the widget instance record and
if one exists, the constraint record.

* Calls XDestroyW ndow if the specified widget is realized (that is, has an X win-
dow). The server recursively destroys all normal descendant windows. (Windows
of realized pop-up Shell children, and their descendants, are destroyed by a shell
class destroy procedure.)

54

Widget Instantiation

Adding and Removing Destroy Callbacks

When an application needs to perform additional processing during the destruction
of a widget, it should register a destroy callback procedure for the widget. The
destroy callback procedures use the mechanism described in Chapter 8, Callbacks.
The destroy callback list is identified by the resource name XtNdestroyCallback.

For example, the following adds an application-supplied destroy callback procedure
ClientDestroy with client data to a widget by calling Xt AddCal | back.

XtAddCallback(w, XtNdestroyCallback, ClientDestroy, client_data)

Similarly, the following removes the application-supplied destroy callback proce-
dure ClientDestroy by calling Xt RenoveCal | back.

XtRemoveCallback(w, XtNdestroyCallback, ClientDestroy, client data)

The ClientDestroy argument is of type (* Xt Cal | backPr oc) ; see the section called
“Using Callback Procedure and Callback List Definitions”.

Dynamic Data Deallocation: The destroy Procedure

The destroy procedure pointers in the Cbj ect G assPart, Rect Obj Cl assPart, and
Cor ed assPart structures are of type Xt W dget Pr oc.

typedef void XtWdgetProc(w;
w Specifies the widget being destroyed.

The destroy procedures are called in subclass-to-superclass order. Therefore, a
widget's destroy procedure should deallocate only storage that is specific to the
subclass and should ignore the storage allocated by any of its superclasses. The
destroy procedure should deallocate only resources that have been explicitly creat-
ed by the subclass. Any resource that was obtained from the resource database or
passed in an argument list was not created by the widget and therefore should not
be destroyed by it. If a widget does not need to deallocate any storage, the destroy
procedure entry in its class record can be NULL.

Deallocating storage includes, but is not limited to, the following steps:

Calling Xt Fr ee on dynamic storage allocated with Xt Mal | oc, Xt Cal | oc, and so on.
Calling XFr eePi xmap on pixmaps created with direct X calls.

Calling Xt Rel easeGC on GCs allocated with Xt Get GC.

Calling XFr eeGC on GCs allocated with direct X calls.

Calling Xt RenmoveEvent Handl er on event handlers added to other widgets.
Calling Xt RenoveTi neQut on timers created with Xt AppAddTi neQut .

Calling Xt Dest r oyW dget for each child if the widget has children and is not a
subclass of conposi t eW dget d ass.

During destroy phase 2 for each widget, the Intrinsics remove the widget from the
modal cascade, unregister all event handlers, remove all key, keyboard, button, and
pointer grabs and remove all callback procedures registered on the widget. Any
outstanding selection transfers will time out.

55

Widget Instantiation

Dynamic Constraint Data Deallocation: The Constraint-
ClassPart destroy Procedure

The constraint destroy procedure identified in the Constraintd assPart con-
strai nt Wdget C ass. This constraint destroy procedure pointer is of type Xt W d-
get Proc. The constraint destroy procedures are called in subclass-to-superclass or-
der, starting at the class of the widget's parent and ending at const r ai nt\ %W dget -
Cl ass. Therefore, a parent's constraint destroy procedure should deallocate only
storage that is specific to the constraint subclass and not storage allocated by any
of its superclasses.

If a parent does not need to deallocate any constraint storage, the constraint destroy
procedure entry in its class record can be NULL.

Widget Instance Deallocation: The deallocate Procedure

The deallocate procedure pointer in the Obj ect O assExt ensi on record is of type
Xt Deal | ocat ePr oc.

typedef void (*XtDeall ocateProc)(w dget, nore_bytes);
widget Specifies the widget being destroyed.

more bytes Specifies the auxiliary memory received from the cor-
responding allocator along with the widget, or NULL.

When a widget is destroyed, if an Obj ect 0 assExt ensi on record exists in the object
class part extension field with record type NULLQUARK and the deallocate field
is not NULL, the Xt Deal | ocat ePr oc will be called. If no ObjectClassPart extension
record is declared with record type equal to NULLQUARK, then Xt | nherit Al |l o-
cat e and Xt I nheri t Deal | ocat e are assumed. The responsibilities of the deallocate
procedure are to deallocate the memory specified by more bytes if it is not NULL,
to deallocate the constraints record as specified by the widget's core.constraints
field if it is not NULL, and to deallocate the widget instance itself.

If no Xt Deal | ocat ePr oc is found, it is assumed that the Intrinsics originally allocat-
ed the memory and is responsible for freeing it.

Exiting from an Application

All X Toolkit applications should terminate by calling Xt Dest r oyAppl i cati onCon-
t ext and then exiting using the standard method for their operating system (typi-
cally, by calling exi t for POSIX-based systems). The quickest way to make the win-
dows disappear while exiting is to call Xt UhnmapW dget on each top-level shell wid-
get. The Intrinsics have no resources beyond those in the program image, and the
X server will free its resources when its connection to the application is broken.

Depending upon the widget set in use, it may be necessary to explicitly destroy in-
dividual widgets or widget trees with Xt Dest r oyW dget before calling Xt Dest r oy-
Appl i cati onCont ext in order to ensure that any required widget cleanup is prop-
erly executed. The application developer must refer to the widget documentation
to learn if a widget needs to perform cleanup beyond that performed automatically
by the operating system. If the client is a session participant (see the section called

56

Widget Instantiation

“Session Participation”), then the client may wish to resign from the session before
exiting. See the section called “Resigning from a Session” for details.

57

Chapter 3. Composite Widgets and
Their Children

Composite widgets (widgets whose class is a subclass of conposi t eW dget Cl ass)
can have an arbitrary number of children. Consequently, they are responsible for
much more than primitive widgets. Their responsibilities (either implemented di-
rectly by the widget class or indirectly by Intrinsics functions) include:

* Overall management of children from creation to destruction.

* Destruction of descendants when the composite widget is destroyed.

» Physical arrangement (geometry management) of a displayable subset of children
(that is, the managed children).

* Mapping and unmapping of a subset of the managed children.

Overall management is handled by the generic procedures Xt Cr eat eW dget and
Xt Dest r oyW dget . Xt Cr eat eW dget adds children to their parent by calling the
parent's insert_child procedure. Xt Dest r oyW dget removes children from their par-
ent by calling the parent's delete child procedure and ensures that all children of
a destroyed composite widget also get destroyed.

Only a subset of the total number of children is actually managed by the geometry
manager and hence possibly visible. For example, a composite editor widget sup-
porting multiple editing buffers might allocate one child widget for each file buffer,
but it might display only a small number of the existing buffers. Widgets that are in
this displayable subset are called managed widgets and enter into geometry man-
ager calculations. The other children are called unmanaged widgets and, by defin-
ition, are not mapped by the Intrinsics.

Children are added to and removed from their parent's managed set by using
Xt ManageChi | d, Xt ManageChi | dr en, Xt UnmanageChi | d, Xt UnmanageChi | dr en, and
Xt ChangeManagedSet , which notify the parent to recalculate the physical layout of
its children by calling the parent's change managed procedure. The Xt Cr eat eMan-
agedW dget convenience function calls Xt Cr eat eW dget and Xt ManageChi | d on the
result.

Most managed children are mapped, but some widgets can be in a state where they
take up physical space but do not show anything. Managed widgets are not mapped
automatically if their map when_managed field is Fal se. The default is Tr ue and is
changed by using Xt Set MappedWhenManaged.

Each composite widget class declares a geometry manager, which is responsible
for figuring out where the managed children should appear within the composite
widget's window. Geometry management techniques fall into four classes:

Fixed boxes Fixed boxes have a fixed number of children created by
the parent. All these children are managed, and none ever
makes geometry manager requests.

Homogeneous boxes Homogeneous boxes treat all children equally and apply
the same geometry constraints to each child. Many clients
insert and delete widgets freely.

Heterogeneous boxes Heterogeneous boxes have a specific location where each
child is placed. This location usually is not specified in pix-

58

Composite Widgets
and Their Children

els, because the window may be resized, but is expressed
rather in terms of the relationship between a child and the
parent or between the child and other specific children.
The class of heterogeneous boxes is usually a subclass of
Constraint.

Shell boxes Shell boxes typically have only one child, and the child's
size is usually exactly the size of the shell. The geometry
manager must communicate with the window manager, if
it exists, and the box must also accept Confi gureNotify
events when the window size is changed by the window
manager.

Addition of Children to a Composite Widget:
The insert_child Procedure

To add a child to the parent's list of children, the Xt Cr eat eW dget function calls the
parent's class routine insert child. The insert child procedure pointer in a compos-
ite widget is of type Xt W dget Pr oc.

typedef void (*XtWdgetProc)(w;
w Passes the newly created child.

Most composite widgets inherit their superclass's operation. The insert child rou-
tine in ConpositeWdgetClass calls the insert_position procedure and in-
serts the child at the specified position in the children list, expanding it if necessary.

Some composite widgets define their own insert child routine so that they can or-
der their children in some convenient way, create companion controller widgets
for a new widget, or limit the number or class of their child widgets. A composite
widget class that wishes to allow nonwidget children (see Chapter 12, Nonwidget
Objects) must specify a Conposi t e assExt ensi on extension record as described
in the section called “CompositeClassPart Structure” and set the accepts objects
field in this record to Tr ue. If the Conposi t ed assExt ensi on record is not specified
or the accepts objects field is Fal se, the composite widget can assume that all its
children are of a subclass of Core without an explicit subclass test in the insert child
procedure.

If there is not enough room to insert a new child in the children array (that is,
num_children is equal to num_slots), the insert_child procedure must first reallocate
the array and update num_slots. The insert child procedure then places the child
at the appropriate position in the array and increments the num_children field.

Insertion Order of Children: The
Insert_position Procedure

Instances of composite widgets sometimes need to specify more about the order in
which their children are kept. For example, an application may want a set of com-
mand buttons in some logical order grouped by function, and it may want buttons
that represent file names to be kept in alphabetical order without constraining the
order in which the buttons are created.

59

Composite Widgets
and Their Children

An application controls the presentation order of a set of children by supplying an
XtNinsertPosition resource. The insert position procedure pointer in a composite
widget instance is of type (* Xt Or der Proc) .

typedef Cardinal (*XtOrderProc)(w;
w Passes the newly created widget.

Composite widgets that allow clients to order their children (usually homogeneous
boxes) can call their widget instance's insert position procedure from the class's
insert child procedure to determine where a new child should go in its children
array. Thus, a client using a composite class can apply different sorting criteria
to widget instances of the class, passing in a different insert position procedure
resource when it creates each composite widget instance.

The return value of the insert position procedure indicates how many children
should go before the widget. Returning zero indicates that the widget should go be-
fore all other children, and returning num_children indicates that it should go after
all other children. The default insert position function returns num children and
can be overridden by a specific composite widget's resource list or by the argument
list provided when the composite widget is created.

Deletion of Children: The delete _child Proce-

To remove the child from the parent's children list, the Xt Dest r oyW dget function
eventually causes a call to the Composite parent's class delete child procedure. The
delete child procedure pointer is of type Xt W dget Pr oc.

typedef void (*XtWdgetProc)(w;
w Passes the child being deleted.

Most widgets inherit the delete child procedure from their superclass. Composite
widgets that create companion widgets define their own delete child procedure to
remove these companion widgets.

Adding and Removing Children from the Man-
aged Set

The Intrinsics provide a set of generic routines to permit the addition of widgets to
or the removal of widgets from a composite widget's managed set. These generic
routines eventually call the composite widget's change managed procedure if the
procedure pointer is non-NULL. The change managed procedure pointer is of type
Xt W dget Proc. The widget argument specifies the composite widget whose man-
aged child set has been modified.

Managing Children

To add a list of widgets to the geometry-managed (and hence displayable) subset of
their Composite parent, use Xt ManageChi | dr en.

60

Composite Widgets
and Their Children

typedef Widget *WidgetList;
voi d Xt ManageChi | dren(children, numchildren);

children Specifies a list of child widgets. Each child must be
of class RectObj or any subclass thereof.

num_children Specifies the number of children in the list.
The Xt ManageChi | dr en function performs the following:

¢ Issues an error if the children do not all have the same parent or if the parent's
class is not a subclass of conposi t eW dget d ass.

¢ Returns immediately if the common parent is being destroyed; otherwise, for each
unique child on the list, Xt ManageChi | dr en ignores the child if it already is man-
aged or is being destroyed, and marks it if not.

e If the parent is realized and after all children have been marked, it makes some
of the newly managed children viewable:

e « Calls the change managed routine of the widgets' parent.
* Calls Xt Real i zeW dget on each previously unmanaged child that is unrealized.
* Maps each previously unmanaged child that has map when _managed Tr ue.

Managing children is independent of the ordering of children and independent of
creating and deleting children. The layout routine of the parent should consider
children whose managed field is True and should ignore all other children. Note
that some composite widgets, especially fixed boxes, call Xt ManageChi | d from their
insert child procedure.

If the parent widget is realized, its change managed procedure is called to notify it
that its set of managed children has changed. The parent can reposition and resize
any of its children. It moves each child as needed by calling Xt MoveW dget, which
first updates the x and y fields and which then calls XMoveW ndow.

If the composite widget wishes to change the size or border width of any of
its children, it calls Xt Resi zeW dget, which first updates the width, height, and
border width fields and then calls XConf i gur eW ndow. Simultaneous repositioning
and resizing may be done with Xt Conf i gur eW dget ; see the section called “Widget
Placement and Sizing”.

To add a single child to its parent widget's set of managed children, use Xt Man-
ageChi | d.

voi d Xt ManageChi | d(chil d);

child Specifies the child. Must be of class RectObj or any subclass
thereof.

The Xt ManageChi | d function constructs a W dget Li st of length 1 and calls Xt Man-
ageChi | dren.

To create and manage a child widget in a single procedure, use Xt Cr eat eManaged-
W dget or Xt VaCr eat eManagedW dget .

W dget Xt Cr eat eManagedW dget (nane, wi dget _cl ass, par ent, args,
num ar gs) ;

61

Composite Widgets

and Their Children
name Specifies the resource instance name for the created
widget.
widget class Specifies the widget class pointer for the created
widget. (rC
parent Specifies the parent widget. Must be of class Com-

posite or any subclass thereof.

args Specifies the argument list to override any other re-
source specifications.

num_args Specifies the number of entries in the argument list.

The Xt Cr eat eManagedW dget function is a convenience routine that calls Xt Cr e-
at eW dget and Xt ManageChi | d.

W dget Xt VaCr eat eManagedW dget (name, wi dget cl ass, parent);

name Specifies the resource instance name for the created
widget.

widget class Specifies the widget class pointer for the created
widget. (rC

parent Specifies the parent widget. Must be of class Com-

posite or any subclass thereof.

Specifies the variable argument list to override any
other resource specifications.

Xt VaCr eat eManagedW dget is identical in function to Xt Cr eat eManagedW dget with
the args and num_args parameters replaced by a varargs list, as described in Sec-
tion 2.5.1.

Unmanaging Children

To remove a list of children from a parent widget's managed list, use Xt Unman-
ageChi | dren.

voi d Xt UnmanageChi | dren(children, numchildren);

children Specifies a list of child widgets. Each child must be
of class RectObj or any subclass thereof.

num_children Specifies the number of children.
The Xt UnnanageChi | dr en function performs the following:

* Returns immediately if the common parent is being destroyed.

¢ Issues an error if the children do not all have the same parent or if the parent is
not a subclass of conposi t eW dget d ass.

* For each unique child on the list, Xt UnmanageChi | dr en ignores the child if it is
unmanaged; otherwise it performs the following:

e * Marks the child as unmanaged.
» If the child is realized and the map when managed field is Tr ue, it is unmapped.

62

Composite Widgets
and Their Children

» If the parent is realized and if any children have become unmanaged, calls the
change managed routine of the widgets' parent.

Xt UnnmanageChi | dren does not destroy the child widgets. Removing widgets from
a parent's managed set is often a temporary banishment, and some time later the
client may manage the children again. To destroy widgets entirely, Xt Dest r oyW d-
get should be called instead; see the section called “Exiting from an Application”.

To remove a single child from its parent widget's managed set, use Xt Unman-
ageChi | d.

voi d Xt UnmanageChi |l d(child);

child Specifies the child. Must be of class RectObj or any subclass
thereof.

The Xt UnmanageChi | d function constructs a widget list of length 1 and calls Xt Un-
manageChi | dren.

These functions are low-level routines that are used by generic composite widget
building routines. In addition, composite widgets can provide widget-specific, high-
level convenience procedures.

Bundling Changes to the Managed Set

A client may simultaneously unmanage and manage children with a single call
to the Intrinsics. In this same call the client may provide a callback procedure
that can modify the geometries of one or more children. The composite widget
class defines whether this single client call results in separate invocations of the
change managed method, one to unmanage and the other to manage, or in just a
single invocation.

To simultaneously remove from and add to the geometry-managed set of children
of a composite parent, use Xt ChangeManagedSet .

voi d Xt ChangeManagedSet (unmanage_chi |l dr en, num unmanage_chil dren,
do_change _proc, client_data, manage_chil dren, num manage_chil dren);

unmanage children Specifies the list of widget children to initially re-
move from the managed set.

num_unmanage children Specifies the number of entries in the
unmanage_children list.

do _change proc Specifies a procedure to invoke between unmanag-
ing and managing the children, or NULL.

client data Specifies client data to be passed to the
do_change proc.

manage children Specifies the list of widget children to finally add to
the managed set.

num_manage children Specifies the number of entries in the
manage children list.

63

Composite Widgets
and Their Children

The Xt ChangeManagedSet function performs the following:

* Returns immediately if num _unmanage children and num_manage_children are
both 0.

* Issues a warning and returns if the widgets specified in the manage children and
the unmanage children lists do not all have the same parent or if that parent is
not a subclass of conposi t eW dget d ass.

* Returns immediately if the common parent is being destroyed.

* If do change proc is not NULL and the parent's ConpositeC assExtension
allows change managed set field is Fal se, then Xt ChangeManagedSet performs
the following:

e * Calls Xt UnmanageChi | dr en (unmanage_children, num_unmanage children).

* Calls the do change proc.

* Calls Xt ManageChi | dr en (manage_children, num_manage children).

¢ Otherwise, the following is performed:

* « For each child on the unmanage_children list; if the child is already unmanaged
it is ignored, otherwise it is marked as unmanaged, and if it is realized and its
map when_managed field is Tr ue, it is unmapped.

» If do change proc is non-NULL, the procedure is invoked.

» For each child on the manage children list; if the child is already managed or
is being destroyed, it is ignored; otherwise it is marked as managed.

e If the parent is realized and after all children have been marked, the
change managed method of the parent is invoked, and subsequently some of
the newly managed children are made viewable by calling Xt Real i zeW dget on
each previously unmanaged child that is unrealized and mapping each previ-
ously unmanaged child that has map when _managed Tr ue.

If no Conposit eCl assExt ensi on record is found in the parent's composite class
part extension field with record type NULLQUARK and version greater than 1,
and if Xt | nherit ChangeManaged was specified in the parent's class record dur-
ing class initialization, the value of the allows change managed set field is inher-
ited from the superclass. The value inherited from conposi t eW dget C ass for the
allows change managed set field is Fal se.

It is not an error to include a child in both the unmanage children and the
manage children lists. The effect of such a call is that the child remains managed
following the call, but the do change proc is able to affect the child while it is in
an unmanaged state.

The do change proc is of type * Xt DoChangePr oc.

t ypedef voi d * Xt DoChangePr oc(conposite_parent, unmange_chi l dren,
num unmanage_chi |l dren, manage_chi | dren, num manage_chi | dr en,
client_data);

composite parent Passes the composite parent whose managed set is
being altered.

unmanage children Passes the list of children just removed from the man-
aged set.
num_unmanage children Passes the number of entries in the

unmanage_children list.

manage children Passes the list of children about to be added to the
managed set.

64

Composite Widgets

and Their Children
num_manage children Passes the number of entries in the manage children
list.
client data Passes the client data passed to Xt ChangeMan-
agedSet .

The do change proc procedure is used by the caller of Xt ChangeManagedSet to
make changes to one or more children at the point when the managed set contains
the fewest entries. These changes may involve geometry requests, and in this case
the caller of Xt ChangeManagedSet may take advantage of the fact that the Intrinsics
internally grant geometry requests made by unmanaged children without invoking
the parent's geometry manager. To achieve this advantage, if the do change proc
procedure changes the geometry of a child or of a descendant of a child, then that
child should be included in the unmanage children and manage_children lists.

Determining if a Widget Is Managed

To determine the managed state of a given child widget, use Xt | sManaged.
Bool ean Xt|sManaged(w);

w Specifies the widget. Must be of class Object or any subclass there-
of.

The Xt | sManaged function returns Tr ue if the specified widget is of class RectObj
or any subclass thereof and is managed, or Fal se otherwise.

Controlling When Widgets Get Mapped

A widget is normally mapped if it is managed. However, this behavior can be over-
ridden by setting the XtNmappedWhenManaged resource for the widget when it is
created or by setting the map when _managed field to Fal se.

To change the value of a given widget's map when managed field, use
Xt Set MappedWhenManaged.

voi d Xt Set MappedwWhenManaged(w, map_when_nanaged) ;

w Specifies the widget. Must be of class Core or any
subclass thereof.

map when _managed Specifies a Boolean value that indicates the
new value that is stored into the widget's
map when managed field.

If the widget is realized and managed, and if map when managed is True,
Xt Set MappedWhenManaged maps the window. If the widget is realized and managed,
and if map when _managed is Fal se, it unmaps the window. Xt Set MappedWhenMan-
aged is a convenience function that is equivalent to (but slightly faster than) calling
Xt Set Val ues and setting the new value for the XtNmappedWhenManaged resource
then mapping the widget as appropriate. As an alternative to using Xt Set Mapped-
WhenManaged to control mapping, a client may set mapped when_managed to Fal se
and use Xt MapW dget and Xt UnmapW dget explicitly.

To map a widget explicitly, use Xt MapW dget .

65

Composite Widgets
and Their Children

Xt MapW dget (w) ;

w Specifies the widget. Must be of class Core or any subclass thereof.
To unmap a widget explicitly, use Xt UnnapW dget .

Xt UnmapW dget (w) ;

w Specifies the widget. Must be of class Core or any subclass thereof.

Constrained Composite Widgets

The Constraint widget class is a subclass of conposi t eW dget C ass. The name is
derived from the fact that constraint widgets may manage the geometry of their
children based on constraints associated with each child. These constraints can
be as simple as the maximum width and height the parent will allow the child to
occupy or can be as complicated as how other children should change if this child
is moved or resized. Constraint widgets let a parent define constraints as resources
that are supplied for their children. For example, if the Constraint parent defines the
maximum sizes for its children, these new size resources are retrieved for each child
as if they were resources that were defined by the child widget's class. Accordingly,
constraint resources may be included in the argument list or resource file just like
any other resource for the child.

Constraint widgets have all the responsibilities of normal composite widgets and,
in addition, must process and act upon the constraint information associated with
each of their children.

To make it easy for widgets and the Intrinsics to keep track of the constraints asso-
ciated with a child, every widget has a constraints field, which is the address of a
parent-specific structure that contains constraint information about the child. If a
child's parent does not belong to a subclass of constrai nt Wdget C ass, then the
child's constraints field is NULL.

Subclasses of Constraint can add constraint data to the constraint record defined by
their superclass. To allow this, widget writers should define the constraint records
in their private .h file by using the same conventions as used for widget records.
For example, a widget class that needs to maintain a maximum width and height
for each child might define its constraint record as follows:

typedef struct {

Dimension max_width, max_ height;

} MaxConstraintPart;

typedef struct {

MaxConstraintPart max;

} MaxConstraintRecord, *MaxConstraint;

A subclass of this widget class that also needs to maintain a minimum size would
define its constraint record as follows:

typedef struct {
Dimension min width, min height;
} MinConstraintPart;

66

Composite Widgets
and Their Children

typedef struct {

MaxConstraintPart max;

MinConstraintPart min;

} MaxMinConstraintRecord, *MaxMinConstraint;

Constraints are allocated, initialized, deallocated, and otherwise maintained insofar
as possible by the Intrinsics. The Constraint class record part has several entries
that facilitate this. All entries in Constrai nt C assPart are fields and procedures
that are defined and implemented by the parent, but they are called whenever ac-
tions are performed on the parent's children.

The Xt Creat eW dget function uses the constraint size field in the parent's class
record to allocate a constraint record when a child is created. Xt Cr eat eW dget also
uses the constraint resources to fill in resource fields in the constraint record asso-
ciated with a child. It then calls the constraint initialize procedure so that the parent
can compute constraint fields that are derived from constraint resources and can
possibly move or resize the child to conform to the given constraints.

When the Xt Get Val ues and Xt Set Val ues functions are executed on a child, they use
the constraint resources to get the values or set the values of constraints associated
with that child. Xt Set Val ues then calls the constraint set values procedures so that
the parent can recompute derived constraint fields and move or resize the child as
appropriate. If a Constraint widget class or any of its superclasses have declared
a Const r ai nt d assExt ensi on record in the Constrai nt G assPart extension fields
with a record type of NULLQUARK and the get values hook field in the extension
record is non-NULL, Xt Get Val ues calls the get values hook procedure(s) to allow
the parent to return derived constraint fields.

The Xt Dest r oyW dget function calls the constraint destroy procedure to deallocate
any dynamic storage associated with a constraint record. The constraint record it-
self must not be deallocated by the constraint destroy procedure; Xt Dest r oyW dget
does this automatically.

67

Chapter 4. Shell Widgets

Shell widgets hold an application's top-level widgets to allow them to communicate
with the window manager and session manager. Shells have been designed to be
as nearly invisible as possible. Clients have to create them, but they should never
have to worry about their sizes.

If a shell widget is resized from the outside (typically by a window manager), the
shell widget also resizes its managed child widget automatically. Similarly, if the
shell's child widget needs to change size, it can make a geometry request to the
shell, and the shell negotiates the size change with the outer environment. Clients
should never attempt to change the size of their shells directly.

The five types of public shells are:

OverrideShell Used for shell windows that completely bypass the window
manager (for example, pop-up menu shells).

TransientShell Used for shell windows that have the WM_TRANSIENT_FOR
property set. The effect of this property is dependent upon the
window manager being used.

TopLevelShell Used for normal top-level windows (for example, any additional
top-level widgets an application needs).

ApplicationShell Formerly used for the single main top-level window that the
window manager identifies as an application instance and
made obsolete by SessionShell.

SessionShell Used for the single main top-level window that the window
manager identifies as an application instance and that inter-
acts with the session manager.

Shell Widget Definitions

Widgets negotiate their size and position with their parent widget, that is, the widget
that directly contains them. Widgets at the top of the hierarchy do not have parent
widgets. Instead, they must deal with the outside world. To provide for this, each
top-level widget is encapsulated in a special widget, called a shell widget.

Shell widgets, whose class is a subclass of the Composite class, encapsulate other
widgets and can allow a widget to avoid the geometry clipping imposed by the par-
ent-child window relationship. They also can provide a layer of communication with
the window manager.

The eight different types of shells are:

Shell The base class for shell widgets; provides the fields needed for
all types of shells. Shell is a direct subclass of compositeWid-
getClass.

OverrideShell A subclass of Shell; used for shell windows that completely by-

pass the window manager.

WMShell A subclass of Shell; contains fields needed by the common win-
dow manager protocol.

68

Shell Widgets

VendorShell A subclass of WMShell; contains fields used by vendor-specific
window managers.

TransientShell A subclass of VendorShell; used for shell windows that desire
the WM_TRANSIENT _FOR property.

TopLevelShell A subclass of VendorShell; used for normal top-level windows.

ApplicationShell A subclass of TopLevelShell; may be used for an application's
additional root windows.

SessionShell A subclass of ApplicationShell; used for an application's main
root window.

Note that the classes Shell, WMShell, and VendorShell are internal and should not
be instantiated or subclassed. Only OverrrideShell, TransientShell, TopLevelShell,
ApplicationShell, and SessionShell are intended for public use.

ShellClassPart Definitions

Only the Shell class has additional class fields, which are all contained in the Shel | -
Cl assExt ensi onRec. None of the other Shell classes have any additional class fields:

typedef struct {
XtPointer extension;
} ShellClassPart, OverrideShellClassPart,
WMShellClassPart, VendorShellClassPart, TransientShellClassPart,
TopLevelShellClassPart, ApplicationShellClassPart, SessionShellClassPart;

The full Shell class record definitions are:

typedef struct ShellClassRec {
CoreClassPart core class;
CompositeClassPart composite class;
ShellClassPart shell class;

} ShellClassRec;

typedef struct {

XtPointer next extension; See the section called “Class Extension Records
XrmQuark record type; See the section called “Class Extension Records”
long version; See the section called “Class Extension Records”

Cardinal record size; See the section called “Class Extension Records”
XtGeometryHandler root geometry manager; See below

} ShellClassExtensionRec, *ShellClassExtension;

”

typedef struct OverrideShellClassRec {
CoreClassPart core class;
CompositeClassPart composite class;
ShellClassPart shell class;
OverrideShellClassPart override shell class;
} OverrideShellClassRec;

69

Shell Widgets

typedef struct WMShellClassRec {
CoreClassPart core class;
CompositeClassPart composite class;
ShellClassPart shell class;
WMShellClassPart wm shell class;

} WMShellClassRec;

typedef struct VendorShellClassRec {
CoreClassPart core class;
CompositeClassPart composite class;
ShellClassPart shell class;
WMShellClassPart wm shell class;
VendorShellClassPart vendor shell class;
} VendorShellClassRec;

typedef struct TransientShellClassRec {
CoreClassPart core class;
CompositeClassPart composite class;
ShellClassPart shell class;

WMShellClassPart wm shell class;
VendorShellClassPart vendor shell class;
TransientShellClassPart transient shell class;
} TransientShellClassRec;

typedef struct TopLevelShellClassRec {
CoreClassPart core class;
CompositeClassPart composite class;
ShellClassPart shell class;
WMShellClassPart wm shell class;
VendorShellClassPart vendor shell class;
TopLevelShellClassPart top level shell class;
} TopLevelShellClassRec;

typedef struct ApplicationShellClassRec {
CoreClassPart core class;

CompositeClassPart composite class;
ShellClassPart shell class;

WMShellClassPart wm shell class;
VendorShellClassPart vendor shell class;
TopLevelShellClassPart top level shell class;
ApplicationShellClassPart application shell class;
} ApplicationShellClassRec;

typedef struct SessionShellClassRec {
CoreClassPart core class;
CompositeClassPart composite class;
ShellClassPart shell class;
WMShellClassPart wm shell class;
VendorShellClassPart vendor shell class;
TopLevelShellClassPart top level shell class;

70

Shell Widgets

ApplicationShellClassPart application shell class;
SessionShellClassPart session shell class;
} SessionShellClassRec;

The single occurrences of the class records and pointers for creating instances of
shells are:

extern ShellClassRec shellClassRec;

extern OverrideShellClassRec overrideShellClassRec;
extern WMShellClassRec wmShellClassRec;

extern VendorShellClassRec vendorShellClassRec;
extern TransientShellClassRec transientShellClassRec;
extern TopLevelShellClassRec topLevelShellClassRec;
extern ApplicationShellClassRec applicationShellClassRec;
extern SessionShellClassRec sessionShellClassRec;
extern WidgetClass shellWidgetClass;

extern WidgetClass overrideShellWidgetClass;

extern WidgetClass wmShellWidgetClass;

extern WidgetClass vendorShellWidgetClass;

extern WidgetClass transientShellWidgetClass;

extern WidgetClass topLevelShellWidgetClass;

extern WidgetClass applicationShellWidgetClass;
extern WidgetClass sessionShellWidgetClass;

The following opaque types and opaque variables are defined for generic operations
on widgets whose class is a subclass of Shell.

Types Variables

ShellWidget shellWidgetClass
OverrideShellWidget overrideShellWidgetClass
WMShellWidget wmShellWidgetClass
VendorShellWidget vendorShellWidgetClass
TransientShellWidget transientShellWidgetClass
TopLevelShellWidget topLevelShellWidgetClass
ApplicationShellWidget applicationShellWidgetClass
SessionShellWidget sessionShellWidgetClass
ShellWidgetClass

OverrideShellWidgetClass

WMShellWidgetClass

VendorShellWidgetClass
TransientShellWidgetClass
TopLevelShellWidgetClass
ApplicationShellWidgetClass
SessionShellWidgetClass

The declarations for all Intrinsics-defined shells except VendorShell appear in
Shel | . h and Shel | P. h. VendorShell has separate public and private .h files which
are included by Shel | . h and Shel | P. h.

71

Shell Widgets

Shel | . h uses incomplete structure definitions to ensure that the compiler catches
attempts to access private data in any of the Shell instance or class data structures.

The symbolic constant for the Shell d assExtension version identifier is
Xt Shel | Ext ensi onVer si on (see the section called “Class Extension Records”).

The root geometry manager procedure acts as the parent geometry manager
for geometry requests made by shell widgets. When a shell widget calls either
Xt MakeGeonet r yRequest or Xt MakeResi zeRequest, the root geometry manager
procedure is invoked to negotiate the new geometry with the window manager. If
the window manager permits the new geometry, the root geometry manager pro-
cedure should return Xt GeonetryYes; if the window manager denies the geome-
try request or does not change the window geometry within some timeout interval
(equal to wm_timeout in the case of WMShells), the root geometry manager proce-
dure should return Xt Geonet r yNo. If the window manager makes some alternative
geometry change, the root geometry manager procedure may return either Xt Ge-
onet ryNo and handle the new geometry as a resize or Xt Geonet r yAl npst in antic-
ipation that the shell will accept the compromise. If the compromise is not accept-
ed, the new size must then be handled as a resize. Subclasses of Shell that wish
to provide their own root geometry manager procedures are strongly encouraged
to use enveloping to invoke their superclass's root_geometry manager procedure
under most situations, as the window manager interaction may be very complex.

If no Shel | O assPart extension record is declared with record type equal to NUL-
LQUARK, then Xt | nheri t Root Geonet r yManager is assumed.

ShellPart Definition

The various shell widgets have the following additional instance fields defined in
their widget records:

typedef struct {

String geometry;
XtCreatePopupChildProc create popup child proc;
XtGrabKind grab kind;

Boolean spring loaded;

Boolean popped up;

Boolean allow shell resize;
Boolean client specified;

Boolean save under;

Boolean override redirect;
XtCallbackList popup_callback;
XtCallbackList popdown_callback;
Visual * visual;

} ShellPart;

typedef struct {
int empty;
} OverrideShellPart;

typedef struct {
String title;

72

Shell Widgets

int wm_timeout;
Boolean wait for wm;
Boolean transient;
Boolean urgency;
Widget client leader;
String window role;
struct OldXSizeHints {
long flags;

int x,y;

int width, height;

int min width, min height;
int max width, max height;
int width inc, height inc;
struct {

int x;

inty;

} min aspect, max aspect;
} size hints;

XWMHints wm hints;

int base width, base height, win gravity;
Atom title encoding;
} WMShellPart;

typedef struct {
int vendor specific;
} VendorShellPart;

typedef struct {

Widget transient for;

} TransientShellPart;
typedef struct {

String icon_name;

Boolean iconic;

Atom icon name encoding;
} TopLevelShellPart;

typedef struct {

char * class;

XrmClass xrm_class;
int argc;

char ** argv;

} ApplicationShellPart;

typedef struct {
SmcConn connection;
String session id;
String * restart command;
String * clone command;
String * discard command;
String * resign_command;
String * shutdown command;

73

Shell Widgets

String * environment;

String current dir;

String program path;

unsigned char restart_style;
Boolean join session;
XtCallbackList save callbacks;
XtCallbackList interact_callbacks;
XtCallbackList cancel callbacks;
XtCallbackList save complete callbacks;
XtCallbackList die callbacks;
XtCallbackList error callbacks;

} SessionShellPart;

The full shell widget instance record definitions are:

typedef struct {

CorePart core;
CompositePart composite;
ShellPart shell;

} ShellRec, *ShellWidget;

typedef struct {

CorePart core;

CompositePart composite;

ShellPart shell;

OverrideShellPart override;

} OverrideShellRec, *OverrideShellWidget;

typedef struct {

CorePart core;

CompositePart composite;
ShellPart shell;

WMShellPart wm;

} WMShellRec, *WMShellWidget;

typedef struct {

CorePart core;

CompositePart composite;

ShellPart shell;

WMShellPart wm;

VendorShellPart vendor;

} VendorShellRec, *VendorShellWidget;

typedef struct {

CorePart core;

CompositePart composite;

ShellPart shell;

WMShellPart wm;

VendorShellPart vendor;

TransientShellPart transient;

} TransientShellRec, *TransientShellWidget;

74

Shell Widgets

Shell

typedef struct {

CorePart core;

CompositePart composite;

ShellPart shell;

WMShellPart wm;

VendorShellPart vendor;
TopLevelShellPart topLevel;

} TopLevelShellRec, *TopLevelShellWidget;

typedef struct {

CorePart core;

CompositePart composite;

ShellPart shell;

WMShellPart wm;

VendorShellPart vendor;

TopLevelShellPart topLevel;
ApplicationShellPart application;

} ApplicationShellRec, *ApplicationShellWidget;

typedef struct {

CorePart core;

CompositePart composite;

ShellPart shell;

WMShellPart wm;

VendorShellPart vendor;
TopLevelShellPart topLevel;
ApplicationShellPart application;
SessionShellPart session;

} SessionShellRec, *SessionShellWidget;

Resources

The resource names, classes, and representation types specified in the shel | O ass-
Rec resource list are:

Name Class Representation
XtNallowShellResize XtCAllowShellResize XtRBoolean
XtNcreatePopupChildProc XtCCreatePopupChildProc XtRFunction
XtNgeometry XtCGeometry XtRString
XtNoverrideRedirect XtCOverrideRedirect XtRBoolean
XtNpopdownCallback XtCCallback XtRCallback
XtNpopupCallback XtCCallback XtRCallback
XtNsaveUnder XtCSaveUnder XtRBoolean
XtNvisual XtCVisual XtRVisual

OverrideShell declares no additional resources beyond those defined by Shell.

The resource names, classes, and representation types specified in the wnthel | -
Cl assRec resource list are:

75

Shell Widgets

Name Class Representation
XtNbaseHeight XtCBaseHeight XtRInt
XtNbaseWidth XtCBaseWidth XtRInt
XtNclientLeader XtCClientLeader XtRWidget
XtNheightlnc XtCHeightlInc XtRInt
XtNiconMask XtCIconMask XtRBitmap
XtNiconPixmap XtClIconPixmap XtRBitmap
XtNiconWindow XtCIconWindow XtRWindow
XtNiconX XtCIconX XtRInt
XtNiconY XtCIconY XtRInt
XtNinitialState XtClnitialState XtRInitialState
XtNinput XtCInput XtRBool
XtNmaxAspectX XtCMaxAspectX XtRInt
XtNmaxAspectY XtCMaxAspectY XtRInt
XtNmaxHeight XtCMaxHeight XtRInt
XtNmaxWidth XtCMaxWidth XtRInt
XtNminAspectX XtCMinAspectX XtRInt
XtNminAspectY XtCMinAspectY XtRInt
XtNminHeight XtCMinHeight XtRInt
XtNminWidth XtCMinWidth XtRInt
XtNtitle XtCTitle XtRString
XtNtitleEncoding XtCTitleEncoding XtRAtom
XtNtransient XtCTransient XtRBoolean
XtNwaitforwm, XtNwait- XtCWaitforwm, XtCWait- XtRBoolean
ForWm ForWm

XtNwidthInc XtCWidthInc XtRInt
XtNwindowRole XtCWindowRole XtRString
XtNwinGravity XtCWinGravity XtRGravity
XtNwindowGroup XtCWindowGroup XtRWindow
XtNwmTimeout XtCWmTimeout XtRInt
XtNurgency XtCUrgency XtRBoolean

The class resource list for VendorShell is implementation-defined.

The resource names, classes, and representation types that are specified in the

t ransi ent \ ¥%8hel | G assRec resource list are:

Name

Class

Representation

XtNtransientFor

XtCTransientFor

XtRWidget

The resource names, classes, and representation types that are specified in the

t opLevel Shel | O assRec resource list are:

76

Shell Widgets

Name Class Representation
XtNiconName XtCIconName XtRString
XtNiconNameEncoding XtCIconNameEncoding XtRAtom
XtNiconic XtClconic XtRBoolean

The resource names, classes, and representation types that are specified in the
appl i cati on\ ¥8hel | d assRec resource list are:

Name Class Representation
XtNargc XtCArgc XtRInt
XtNargv XtCArgv XtRStringArray

The resource names, classes, and representation types that are specified in the
sessi onShel | d assRec resource list are:

Name Class Representation
XtNcancelCallback XtCCallback XtRCallback
XtNcloneCommand XtCCloneCommand XtRCommandArgArray
XtNconnection XtCConnection XtRSmcConn
XtNcurrentDirectory XtCCurrentDirectory XtRDirectoryString
XtNdieCallback XtCCallback XtRCallback
XtNdiscardCommand XtCDiscardCommand XtRCommandArgArray
XtNenvironment XtCEnvironment XtREnvironmentArray
XtNerrorCallback XtCCallback XtRCallback
XtNinteractCallback XtCCallback XtRCallback
XtNjoinSession XtCJoinSession XtRBoolean
XtNprogramPath XtCProgramPath XtRString
XtNresignCommand XtCResignCommand XtRCommandArgArray
XtNrestartCommand XtCRestartCommand XtRCommandArgArray
XtNrestartStyle XtCRestartStyle XtRRestartStyle
XtNsaveCallback XtCCallback XtRCallback
XtNsaveCompleteCallback XtCCallback XtRCallback
XtNsessionlD XtCSessionlD XtRString

XtNshutdownCommand XtCShutdownCommand XtRCommandArgArray

ShellPart Default Values

The default values for fields common to all classes of public shells (filled in by the
Shell resource lists and the Shell initialize procedures) are:

77

Shell Widgets

Field Default Value

geometry NULL

create popup child proc NULL

grab kind (none)

spring loaded (none)

popped up Fal se

allow_shell resize Fal se

client specified (internal)

save under Tr ue for OverrideShell and Transi