
Xlib - C Language X Interface

X Consortium Standard

James Gettys, Digital Equipment Corporation
Robert W. Scheifler, Massachusetts Institute of Technology

Chuck Adams
Tektronix, Inc.
Vania Joloboff

Open Software Foundation
Hideki Hiura

Sun Microsystems, Inc.
Bill McMahon

Hewlett-Packard Company
Ron Newman

Massachusetts Institute of Technology
Al Tabayoyon
Tektronix, Inc.
Glenn Widener
Tektronix, Inc.

Shigeru Yamada
Fujitsu OSSI



Xlib - C Language X Interface: X Consortium Standard
by James Gettys and Robert W. Scheifler
Chuck Adams
Tektronix, Inc.
Vania Joloboff
Open Software Foundation
Hideki Hiura
Sun Microsystems, Inc.
Bill McMahon
Hewlett-Packard Company
Ron Newman
Massachusetts Institute of Technology
Al Tabayoyon
Tektronix, Inc.
Glenn Widener
Tektronix, Inc.
Shigeru Yamada
Fujitsu OSSI
X Version 11, Release 7.7
Copyright © 1985, 1986, 1987, 1988, 1989, 1991, 1994, 1996, 2002 The Open Group

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of The Open Group shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from The Open Group.

Copyright © 1985, 1986, 1987, 1988, 1989, 1991 Digital Equipment Corporation

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appears in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the names of Digital and Tetronix not be used in in advertising
or publicity pertaining to distribution of the software without specific, written prior permission. Digital and Tetronix
make no representations about the suitability of the software described herein for any purpose. It is provided “as
is” without express or implied warranty.

TekHVC is a trademark of Tektronix, Inc.



Table of Contents
Acknowledgments ...................................................................................................  x
1. Introduction to Xlib ...........................................................................................  1

Overview of the X Window System ................................................................  1
Errors ..............................................................................................................  3
Standard Header Files ...................................................................................  3
Generic Values and Types ..............................................................................  4
Naming and Argument Conventions within Xlib ............................................ 4
Programming Considerations .........................................................................  5
Character Sets and Encodings .......................................................................  5
Formatting Conventions .................................................................................  6

2. Display Functions ............................................................................................... 7
Opening the Display .......................................................................................  7
Obtaining Information about the Display, Image Formats, or Screens ........... 8

Display Macros ........................................................................................ 9
Image Format Functions and Macros ................................................... 14
Screen Information Macros ..................................................................  17

Generating a NoOperation Protocol Request ............................................... 20
Freeing Client-Created Data ........................................................................  20
Closing the Display ....................................................................................... 20
Using X Server Connection Close Operations .............................................. 21
Using Xlib with Threads ............................................................................... 22
Using Internal Connections .......................................................................... 23

3. Window Functions ............................................................................................ 26
Visual Types ..................................................................................................  26
Window Attributes ........................................................................................  27

Background Attribute ............................................................................ 30
Border Attribute ....................................................................................  31
Gravity Attributes .................................................................................. 31
Backing Store Attribute ........................................................................  32
Save Under Flag ...................................................................................  33
Backing Planes and Backing Pixel Attributes .......................................  33
Event Mask and Do Not Propagate Mask Attributes ............................ 33
Override Redirect Flag .........................................................................  34
Colormap Attribute ...............................................................................  34
Cursor Attribute ....................................................................................  34

Creating Windows ......................................................................................... 34
Destroying Windows .....................................................................................  37
Mapping Windows ........................................................................................  38
Unmapping Windows ....................................................................................  40
Configuring Windows .................................................................................... 40
Changing Window Stacking Order ...............................................................  45
Changing Window Attributes .......................................................................  47

4. Window Information Functions ........................................................................ 51
Obtaining Window Information ....................................................................  51
Translating Screen Coordinates ...................................................................  54
Properties and Atoms ...................................................................................  56
Obtaining and Changing Window Properties ...............................................  59
Selections ......................................................................................................  63

5. Pixmap and Cursor Functions .........................................................................  66
Creating and Freeing Pixmaps ..................................................................... 66
Creating, Recoloring, and Freeing Cursors .................................................  67

iii



Xlib - C Language X Interface

6. Color Management Functions .........................................................................  71
Color Structures ...........................................................................................  72
Color Strings ................................................................................................. 76

RGB Device String Specification ..........................................................  76
RGB Intensity String Specification .......................................................  77
Device-Independent String Specifications ............................................  77

Color Conversion Contexts and Gamut Mapping .........................................  78
Creating, Copying, and Destroying Colormaps ............................................  78
Mapping Color Names to Values .................................................................. 80
Allocating and Freeing Color Cells ..............................................................  82
Modifying and Querying Colormap Cells .....................................................  86
Color Conversion Context Functions ............................................................ 91

Getting and Setting the Color Conversion Context of a Colormap .......  91
Obtaining the Default Color Conversion Context .................................  92
Color Conversion Context Macros ........................................................  92
Modifying Attributes of a Color Conversion Context ............................ 93
Creating and Freeing a Color Conversion Context ..............................  94

Converting between Color Spaces ...............................................................  95
Callback Functions .......................................................................................  96

Prototype Gamut Compression Procedure ............................................ 96
Supplied Gamut Compression Procedures ...........................................  97
Prototype White Point Adjustment Procedure ......................................  98
Supplied White Point Adjustment Procedures ......................................  99

Gamut Querying Functions ........................................................................  100
Red, Green, and Blue Queries ............................................................  101
CIELab Queries ...................................................................................  103
CIELuv Queries ...................................................................................  105
TekHVC Queries ..................................................................................  107

Color Management Extensions ................................................................... 109
Color Spaces .......................................................................................  109
Adding Device-Independent Color Spaces .......................................... 109
Querying Color Space Format and Prefix ...........................................  110
Creating Additional Color Spaces ....................................................... 110
Parse String Callback .........................................................................  111
Color Specification Conversion Callback ............................................  112
Function Sets ......................................................................................  113
Adding Function Sets .......................................................................... 113
Creating Additional Function Sets ...................................................... 114

7. Graphics Context Functions ..........................................................................  116
Manipulating Graphics Context/State ........................................................  116
Using Graphics Context Convenience Routines .........................................  125

Setting the Foreground, Background, Function, or Plane Mask ......... 126
Setting the Line Attributes and Dashes .............................................. 127
Setting the Fill Style and Fill Rule .....................................................  128
Setting the Fill Tile and Stipple .........................................................  129
Setting the Current Font ....................................................................  131
Setting the Clip Region ......................................................................  131
Setting the Arc Mode, Subwindow Mode, and Graphics Exposure ..... 133

8. Graphics Functions ........................................................................................  134
Clearing Areas ............................................................................................  134
Copying Areas ............................................................................................. 135
Drawing Points, Lines, Rectangles, and Arcs ............................................. 137

Drawing Single and Multiple Points ...................................................  138
Drawing Single and Multiple Lines ....................................................  139

iv



Xlib - C Language X Interface

Drawing Single and Multiple Rectangles ...........................................  140
Drawing Single and Multiple Arcs ...................................................... 141

Filling Areas ................................................................................................ 143
Filling Single and Multiple Rectangles ............................................... 143
Filling a Single Polygon ......................................................................  144
Filling Single and Multiple Arcs .........................................................  145

Font Metrics ................................................................................................ 146
Loading and Freeing Fonts ................................................................. 150
Obtaining and Freeing Font Names and Information ......................... 152
Computing Character String Sizes .....................................................  154
Computing Logical Extents ................................................................. 154
Querying Character String Sizes ........................................................  155

Drawing Text ............................................................................................... 157
Drawing Complex Text ........................................................................ 158
Drawing Text Characters ....................................................................  159
Drawing Image Text Characters .........................................................  160

Transferring Images between Client and Server .......................................  161
9. Window and Session Manager Functions ...................................................... 166

Changing the Parent of a Window .............................................................  166
Controlling the Lifetime of a Window ........................................................  167
Managing Installed Colormaps ................................................................... 168
Setting and Retrieving the Font Search Path ............................................  169
Grabbing the Server ...................................................................................  170
Killing Clients .............................................................................................  171
Controlling the Screen Saver .....................................................................  171
Controlling Host Access .............................................................................  173

Adding, Getting, or Removing Hosts ..................................................  174
Changing, Enabling, or Disabling Access Control ..............................  176

10. Events ........................................................................................................... 178
Event Types ................................................................................................  178
Event Structures ......................................................................................... 179
Event Masks ................................................................................................ 181
Event Processing Overview ........................................................................  182
Keyboard and Pointer Events .....................................................................  184

Pointer Button Events .........................................................................  184
Keyboard and Pointer Events .............................................................  185

Window Entry/Exit Events .......................................................................... 188
Normal Entry/Exit Events ...................................................................  190
Grab and Ungrab Entry/Exit Events ...................................................  191

Input Focus Events .....................................................................................  192
Normal Focus Events and Focus Events While Grabbed ....................  193
Focus Events Generated by Grabs ...................................................... 196

Key Map State Notification Events ............................................................  196
Exposure Events .........................................................................................  197

Expose Events .....................................................................................  197
GraphicsExpose and NoExpose Events ..............................................  198

Window State Change Events ....................................................................  199
CirculateNotify Events ........................................................................  199
ConfigureNotify Events .......................................................................  200
CreateNotify Events ............................................................................  201
DestroyNotify Events ..........................................................................  202
GravityNotify Events ...........................................................................  203
MapNotify Events ................................................................................ 203
MappingNotify Events ......................................................................... 204

v



Xlib - C Language X Interface

ReparentNotify Events ........................................................................  205
UnmapNotify Events ...........................................................................  206
VisibilityNotify Events .........................................................................  206

Structure Control Events ...........................................................................  207
CirculateRequest Events .....................................................................  207
ConfigureRequest Events .................................................................... 208
MapRequest Events ............................................................................  209
ResizeRequest Events .........................................................................  210

Colormap State Change Events .................................................................  210
Client Communication Events ....................................................................  211

ClientMessage Events .........................................................................  211
PropertyNotify Events .........................................................................  212
SelectionClear Events .........................................................................  213
SelectionRequest Events ..................................................................... 213
SelectionNotify Events ........................................................................  214

11. Event Handling Functions ...........................................................................  216
Selecting Events .........................................................................................  216
Handling the Output Buffer .......................................................................  217
Event Queue Management .........................................................................  217
Manipulating the Event Queue ..................................................................  218

Returning the Next Event ................................................................... 218
Selecting Events Using a Predicate Procedure ..................................  219
Selecting Events Using a Window or Event Mask .............................. 220

Putting an Event Back into the Queue ....................................................... 223
Sending Events to Other Applications .......................................................  223
Getting Pointer Motion History ..................................................................  224
Handling Protocol Errors ...........................................................................  225

Enabling or Disabling Synchronization ..............................................  225
Using the Default Error Handlers ......................................................  226

12. Input Device Functions ................................................................................ 231
Pointer Grabbing ........................................................................................  231
Keyboard Grabbing .....................................................................................  236
Resuming Event Processing .......................................................................  239
Moving the Pointer .....................................................................................  241
Controlling Input Focus .............................................................................. 242
Manipulating the Keyboard and Pointer Settings ......................................  243
Manipulating the Keyboard Encoding ........................................................  248

13. Locales and Internationalized Text Functions .............................................  254
X Locale Management ................................................................................  255
Locale and Modifier Dependencies ............................................................  256
Variable Argument Lists .............................................................................  258
Output Methods ..........................................................................................  258

Output Method Overview .................................................................... 259
Output Method Functions ...................................................................  259
X Output Method Values ..................................................................... 261
Output Context Functions ................................................................... 263
Output Context Values ........................................................................  265
Creating and Freeing a Font Set ........................................................  268
Obtaining Font Set Metrics ................................................................  272
Drawing Text Using Font Sets ............................................................  277

Input Methods ............................................................................................  280
Input Method Overview ......................................................................  280
Input Method Management ................................................................  288
Input Method Functions .....................................................................  290

vi



Xlib - C Language X Interface

Input Method Values ...........................................................................  293
Input Context Functions .....................................................................  296
Input Context Values ........................................................................... 299
Input Method Callback Semantics ...................................................... 310
Event Filtering ....................................................................................  320
Getting Keyboard Input ......................................................................  320
Input Method Conventions .................................................................. 322

String Constants .........................................................................................  322
14. Inter-Client Communication Functions ........................................................ 324

Client to Window Manager Communication ..............................................  326
Manipulating Top-Level Windows .......................................................  326
Converting String Lists ....................................................................... 328
Setting and Reading Text Properties .................................................. 332
Setting and Reading the WM_NAME Property ................................... 333
Setting and Reading the WM_ICON_NAME Property ........................  334
Setting and Reading the WM_HINTS Property ..................................  335
Setting and Reading the WM_NORMAL_HINTS Property .................. 337
Setting and Reading the WM_CLASS Property ..................................  341
Setting and Reading the WM_TRANSIENT_FOR Property .................  342
Setting and Reading the WM_PROTOCOLS Property ........................  343
Setting and Reading the WM_COLORMAP_WINDOWS Property .......  343
Setting and Reading the WM_ICON_SIZE Property ...........................  344
Using Window Manager Convenience Functions ...............................  346

Client to Session Manager Communication ...............................................  348
Setting and Reading the WM_COMMAND Property ..........................  348
Setting and Reading the WM_CLIENT_MACHINE Property ..............  349

Standard Colormaps ...................................................................................  350
Standard Colormap Properties and Atoms .........................................  352
Setting and Obtaining Standard Colormaps ....................................... 353

15. Resource Manager Functions ......................................................................  356
Resource File Syntax ..................................................................................  357
Resource Manager Matching Rules ...........................................................  358
Quarks .........................................................................................................  359
Creating and Storing Databases ................................................................  361
Merging Resource Databases ..................................................................... 364
Looking Up Resources ................................................................................ 365
Storing into a Resource Database .............................................................. 367
Enumerating Database Entries ..................................................................  369
Parsing Command Line Options .................................................................  370

16. Application Utility Functions .......................................................................  373
Using Keyboard Utility Functions ..............................................................  373

KeySym Classification Macros ............................................................  375
Using Latin-1 Keyboard Event Functions ................................................... 376
Allocating Permanent Storage .................................................................... 377
Parsing the Window Geometry ...................................................................  377
Manipulating Regions .................................................................................  379

Creating, Copying, or Destroying Regions .........................................  379
Moving or Shrinking Regions .............................................................  380
Computing with Regions ..................................................................... 380
Determining if Regions Are Empty or Equal ......................................  382
Locating a Point or a Rectangle in a Region ......................................  382

Using Cut Buffers .......................................................................................  383
Determining the Appropriate Visual Type .................................................. 384
Manipulating Images ..................................................................................  386

vii



Xlib - C Language X Interface

Manipulating Bitmaps ................................................................................. 388
Using the Context Manager .......................................................................  391

A. Xlib Functions and Protocol Requests ..........................................................  394
B. X Font Cursors ..............................................................................................  408
C. Extensions ......................................................................................................  409

Basic Protocol Support Routines ................................................................ 409
Hooking into Xlib ........................................................................................ 410

Hooks into the Library ........................................................................ 411
Hooks onto Xlib Data Structures ........................................................  417

GC Caching .................................................................................................  418
Graphics Batching ......................................................................................  419
Writing Extension Stubs .............................................................................  420

Requests, Replies, and Xproto.h .........................................................  420
Request Format ...................................................................................  420
Starting to Write a Stub Procedure .................................................... 422
Locking Data Structures .....................................................................  422
Sending the Protocol Request and Arguments ...................................  423
Variable Length Arguments ................................................................  424
Replies .................................................................................................  424
Synchronous Calling ...........................................................................  427
Allocating and Deallocating Memory .................................................. 427
Portability Considerations ...................................................................  428
Deriving the Correct Extension Opcode .............................................  428

D. Compatibility Functions ................................................................................. 430
X Version 11 Compatibility Functions ........................................................  430

Setting Standard Properties ...............................................................  430
Setting and Getting Window Sizing Hints ..........................................  431
Getting and Setting an XStandardColormap Structure ......................  433
Parsing Window Geometry .................................................................. 434
Getting the X Environment Defaults ................................................... 435

X Version 10 Compatibility Functions ........................................................  435
Drawing and Filling Polygons and Curves .......................................... 435
Associating User Data with a Value ...................................................  438

Glossary ..............................................................................................................  440
Index ...................................................................................................................  453

viii



List of Tables
A.1. Protocol requests made by each Xlib function ...........................................  394
A.2. Xlib functions which use each Protocol Request ........................................ 400

ix



Acknowledgments
The design and implementation of the first 10 versions of X were primarily the work
of three individuals: Robert Scheifler of the MIT Laboratory for Computer Science
and Jim Gettys of Digital Equipment Corporation and Ron Newman of MIT, both at
MIT Project Athena. X version 11, however, is the result of the efforts of dozens of
individuals at almost as many locations and organizations. At the risk of offending
some of the players by exclusion, we would like to acknowledge some of the people
who deserve special credit and recognition for their work on Xlib. Our apologies to
anyone inadvertently overlooked.

Release 1
Our thanks does to Ron Newman (MIT Project Athena), who contributed
substantially to the design and implementation of the Version 11 Xlib interface.

Our thanks also goes to Ralph Swick (Project Athena and Digital) who kept it all
together for us during the early releases. He handled literally thousands of requests
from people everywhere and saved the sanity of at least one of us. His calm good
cheer was a foundation on which we could build.

Our thanks also goes to Todd Brunhoff (Tektronix) who was ``loaned'' to Project
Athena at exactly the right moment to provide very capable and much-needed
assistance during the alpha and beta releases. He was responsible for the successful
integration of sources from multiple sites; we would not have had a release without
him.

Our thanks also goes to Al Mento and Al Wojtas of Digital's ULTRIX Documentation
Group. With good humor and cheer, they took a rough draft and made it an
infinitely better and more useful document. The work they have done will help
many everywhere. We also would like to thank Hal Murray (Digital SRC) and Peter
George (Digital VMS) who contributed much by proofreading the early drafts of this
document.

Our thanks also goes to Jeff Dike (Digital UEG), Tom Benson, Jackie Granfield, and
Vince Orgovan (Digital VMS) who helped with the library utilities implementation;
to Hania Gajewska (Digital UEG-WSL) who, along with Ellis Cohen (CMU and
Siemens), was instrumental in the semantic design of the window manager
properties; and to Dave Rosenthal (Sun Microsystems) who also contributed to
the protocol and provided the sample generic color frame buffer device-dependent
code.

The alpha and beta test participants deserve special recognition and thanks as
well. It is significant that the bug reports (and many fixes) during alpha and
beta test came almost exclusively from just a few of the alpha testers, mostly
hardware vendors working on product implementations of X. The continued public
contribution of vendors and universities is certainly to the benefit of the entire X
community.

Our special thanks must go to Sam Fuller, Vice-President of Corporate Research
at Digital, who has remained committed to the widest public availability of X and
who made it possible to greatly supplement MIT's resources with the Digital staff

x



Acknowledgments

in order to make version 11 a reality. Many of the people mentioned here are part
of the Western Software Laboratory (Digital UEG-WSL) of the ULTRIX Engineering
group and work for Smokey Wallace, who has been vital to the project's success.
Others not mentioned here worked on the toolkit and are acknowledged in the X
Toolkit documentation.

Of course, we must particularly thank Paul Asente, formerly of Stanford University
and now of Digital UEG-WSL, who wrote W, the predecessor to X, and Brian Reid,
formerly of Stanford University and now of Digital WRL, who had much to do with
W's design.

Finally, our thanks goes to MIT, Digital Equipment Corporation, and IBM for
providing the environment where it could happen.

Release 4
Our thanks go to Jim Fulton (MIT X Consortium) for designing and specifying the
new Xlib functions for Inter-Client Communication Conventions (ICCCM) support.

We also thank Al Mento of Digital for his continued effort in maintaining this
document and Jim Fulton and Donna Converse (MIT X Consortium) for their much-
appreciated efforts in reviewing the changes.

Release 5
The principal authors of the Input Method facilities are Vania Joloboff (Open
Software Foundation) and Bill McMahon (Hewlett-Packard). The principal author
of the rest of the internationalization facilities is Glenn Widener (Tektronix). Our
thanks to them for keeping their sense of humor through a long and sometimes
difficult design process. Although the words and much of the design are due to
them, many others have contributed substantially to the design and implementation.
Tom McFarland (HP) and Frank Rojas (IBM) deserve particular recognition for their
contributions. Other contributors were: Tim Anderson (Motorola), Alka Badshah
(OSF), Gabe Beged-Dov (HP), Chih-Chung Ko (III), Vera Cheng (III), Michael Collins
(Digital), Walt Daniels (IBM), Noritoshi Demizu (OMRON), Keisuke Fukui (Fujitsu),
Hitoshoi Fukumoto (Nihon Sun), Tim Greenwood (Digital), John Harvey (IBM),
Hideki Hiura (Sun), Fred Horman (AT&T), Norikazu Kaiya (Fujitsu), Yuji Kamata
(IBM), Yutaka Kataoka (Waseda University), Ranee Khubchandani (Sun), Akira
Kon (NEC), Hiroshi Kuribayashi (OMRON), Teruhiko Kurosaka (Sun), Seiji Kuwari
(OMRON), Sandra Martin (OSF), Narita Masahiko (Fujitsu), Masato Morisaki (NTT),
Nelson Ng (Sun), Takashi Nishimura (NTT America), Makato Nishino (IBM), Akira
Ohsone (Nihon Sun), Chris Peterson (MIT), Sam Shteingart (AT&T), Manish Sheth
(AT&T), Muneiyoshi Suzuki (NTT), Cori Mehring (Digital), Shoji Sugiyama (IBM),
and Eiji Tosa (IBM).

We are deeply indebted to Tatsuya Kato (NTT), Hiroshi Kuribayashi (OMRON),
Seiji Kuwari (OMRON), Muneiyoshi Suzuki (NTT), and Li Yuhong (OMRON)
for producing one of the first complete sample implementation of the
internationalization facilities, and Hiromu Inukai (Nihon Sun), Takashi Fujiwara
(Fujitsu), Hideki Hiura (Sun), Yasuhiro Kawai (Oki Technosystems Laboratory),
Kazunori Nishihara (Fuji Xerox), Masaki Takeuchi (Sony), Katsuhisa Yano (Toshiba),
Makoto Wakamatsu (Sony Corporation) for producing the another complete sample
implementation of the internationalization facilities.

xi



Acknowledgments

The principal authors (design and implementation) of the Xcms color management
facilities are Al Tabayoyon (Tektronix) and Chuck Adams (Tektronix). Joann Taylor
(Tektronix), Bob Toole (Tektronix), and Keith Packard (MIT X Consortium) also
contributed significantly to the design. Others who contributed are: Harold
Boll (Kodak), Ken Bronstein (HP), Nancy Cam (SGI), Donna Converse (MIT X
Consortium), Elias Israel (ISC), Deron Johnson (Sun), Jim King (Adobe), Ricardo
Motta (HP), Chuck Peek (IBM), Wil Plouffe (IBM), Dave Sternlicht (MIT X
Consortium), Kumar Talluri (AT&T), and Richard Verberg (IBM).

We also once again thank Al Mento of Digital for his work in formatting and
reformatting text for this manual, and for producing man pages. Thanks also to Clive
Feather (IXI) for proof-reading and finding a number of small errors.

Release 6
Stephen Gildea (X Consortium) authored the threads support. Ovais Ashraf (Sun)
and Greg Olsen (Sun) contributed substantially by testing the facilities and
reporting bugs in a timely fashion.

The principal authors of the internationalization facilities, including Input and
Output Methods, are Hideki Hiura (SunSoft) and Shigeru Yamada (Fujitsu OSSI).
Although the words and much of the design are due to them, many others have
contributed substantially to the design and implementation. They are: Takashi
Fujiwara (Fujitsu), Yoshio Horiuchi (IBM), Makoto Inada (Digital), Hiromu Inukai
(Nihon SunSoft), Song JaeKyung (KAIST), Franky Ling (Digital), Tom McFarland
(HP), Hiroyuki Miyamoto (Digital), Masahiko Narita (Fujitsu), Frank Rojas (IBM),
Hidetoshi Tajima (HP), Masaki Takeuchi (Sony), Makoto Wakamatsu (Sony), Masaki
Wakao (IBM), Katsuhisa Yano(Toshiba) and Jinsoo Yoon (KAIST).

The principal producers of the sample implementation of the internationalization
facilities are: Jeffrey Bloomfield (Fujitsu OSSI), Takashi Fujiwara (Fujitsu), Hideki
Hiura (SunSoft), Yoshio Horiuchi (IBM), Makoto Inada (Digital), Hiromu Inukai
(Nihon SunSoft), Song JaeKyung (KAIST), Riki Kawaguchi (Fujitsu), Franky Ling
(Digital), Hiroyuki Miyamoto (Digital), Hidetoshi Tajima (HP), Toshimitsu Terazono
(Fujitsu), Makoto Wakamatsu (Sony), Masaki Wakao (IBM), Shigeru Yamada (Fujitsu
OSSI) and Katsuhisa Yano (Toshiba).

The coordinators of the integration, testing, and release of this implementation
of the internationalization facilities are Nobuyuki Tanaka (Sony) and Makoto
Wakamatsu (Sony).

Others who have contributed to the architectural design or testing of the sample
implementation of the internationalization facilities are: Hector Chan (Digital),
Michael Kung (IBM), Joseph Kwok (Digital), Hiroyuki Machida (Sony), Nelson Ng
(SunSoft), Frank Rojas (IBM), Yoshiyuki Segawa (Fujitsu OSSI), Makiko Shimamura
(Fujitsu), Shoji Sugiyama (IBM), Lining Sun (SGI), Masaki Takeuchi (Sony), Jinsoo
Yoon (KAIST) and Akiyasu Zen (HP).

Jim Gettys
Cambridge Research Laboratory
Digital Equipment Corporation

Robert W. Scheifler

xii



Acknowledgments

Laboratory for Computer Science
Massachusetts Institute of Technology

Release 7
This document is made available to you in modern formats such as HTML and
PDF thanks to the efforts of Matt Dew, who converted the original troff sources
to DocBook/XML and edited them into shape; along with Gaetan Nadon and
Alan Coopersmith, who set up the formatting machinery in the libX11 builds and
performed further editing of the DocBook markup.

xiii



Chapter 1. Introduction to Xlib
The X Window System is a network-transparent window system that was designed
at MIT. X display servers run on computers with either monochrome or color bitmap
display hardware. The server distributes user input to and accepts output requests
from various client programs located either on the same machine or elsewhere in
the network. Xlib is a C subroutine library that application programs (clients) use
to interface with the window system by means of a stream connection. Although a
client usually runs on the same machine as the X server it is talking to, this need
not be the case.

Xlib − C Language X Interface is a reference guide to the low-level C language
interface to the X Window System protocol. It is neither a tutorial nor a user’s guide
to programming the X Window System. Rather, it provides a detailed description
of each function in the library as well as a discussion of the related background
information. Xlib − C Language X Interface assumes a basic understanding of a
graphics window system and of the C programming language. Other higher-level
abstractions (for example, those provided by the toolkits for X) are built on top
of the Xlib library. For further information about these higher-level libraries, see
the appropriate toolkit documentation. The X Window System Protocol provides the
definitive word on the behavior of X. Although additional information appears here,
the protocol document is the ruling document.

To provide an introduction to X programming, this chapter discusses:

• Overview of the X Window System

• Errors

• Standard header files

• Generic values and types

• Naming and argument conventions within Xlib

• Programming considerations

• Character sets and encodings

• Formatting conventions

Overview of the X Window System
Some of the terms used in this book are unique to X, and other terms that are
common to other window systems have different meanings in X. You may find it
helpful to refer to the glossary, which is located at the end of the book.

The X Window System supports one or more screens containing overlapping
windows or subwindows.  A screen is a physical monitor and hardware that can be
color, grayscale, or monochrome. There can be multiple screens for each display
or workstation. A single X server can provide display services for any number of
screens. A set of screens for a single user with one keyboard and one pointer (usually
a mouse) is called a display.

1

../../xproto/x11protocol.pdf#x11protocol


Introduction to Xlib

All the windows in an X server are arranged in strict hierarchies. At the top of each
hierarchy is a root window, which covers each of the display screens. Each root
window is partially or completely covered by child windows. All windows, except
for root windows, have parents. There is usually at least one window for each
application program.   Child windows may in turn have their own children. In this
way, an application program can create an arbitrarily deep tree on each screen. X
provides graphics, text, and raster operations for windows.

A child window can be larger than its parent. That is, part or all of the child window
can extend beyond the boundaries of the parent, but all output to a window is clipped
by its parent.  If several children of a window have overlapping locations, one of the
children is considered to be on top of or raised over the others, thus obscuring them.
Output to areas covered by other windows is suppressed by the window system
unless the window has backing store. If a window is obscured by a second window,
the second window obscures only those ancestors of the second window that are
also ancestors of the first window.

 A window has a border zero or more pixels in width, which can be any pattern
(pixmap) or solid color you like. A window usually but not always has a background
pattern, which will be repainted by the window system when uncovered. Child
windows obscure their parents, and graphic operations in the parent window
usually are clipped by the children.

Each window and pixmap has its own coordinate system. The coordinate system has
the X axis horizontal and the Y axis vertical with the origin [0, 0] at the upper-left
corner. Coordinates are integral, in terms of pixels, and coincide with pixel centers.
For a window, the origin is inside the border at the inside, upper-left corner.

X does not guarantee to preserve the contents of windows. When part or all of a
window is hidden and then brought back onto the screen, its contents may be lost.
The server then sends the client program an Expose event to notify it that part or
all of the window needs to be repainted. Programs must be prepared to regenerate
the contents of windows on demand.

    X also provides off-screen storage of graphics objects, called pixmaps. Single
plane (depth 1) pixmaps are sometimes referred to as bitmaps. Pixmaps can be used
in most graphics functions interchangeably with windows and are used in various
graphics operations to define patterns or tiles. Windows and pixmaps together are
referred to as drawables.

Most of the functions in Xlib just add requests to an output buffer. These requests
later execute asynchronously on the X server. Functions that return values of
information stored in the server do not return (that is, they block) until an explicit
reply is received or an error occurs. You can provide an error handler, which will
be called when the error is reported.

 If a client does not want a request to execute asynchronously, it can follow the
request with a call to XSync, which blocks until all previously buffered asynchronous
events have been sent and acted on. As an important side effect, the output buffer in
Xlib is always flushed by a call to any function that returns a value from the server
or waits for input.

       Many Xlib functions will return an integer resource ID, which allows you
to refer to objects stored on the X server. These can be of type Window, Font,
Pixmap, Colormap, Cursor, and GContext, as defined in the file <X11/X.h>.    These

2



Introduction to Xlib

resources are created by requests and are destroyed (or freed) by requests or
when connections are closed. Most of these resources are potentially shareable
between applications, and in fact, windows are manipulated explicitly by window
manager programs. Fonts and cursors are shared automatically across multiple
screens. Fonts are loaded and unloaded as needed and are shared by multiple
clients. Fonts are often cached in the server. Xlib provides no support for sharing
graphics contexts between applications.

 Client programs are informed of events. Events may either be side effects of a
request (for example, restacking windows generates Expose events) or completely
asynchronous (for example, from the keyboard). A client program asks to be
informed of events. Because other applications can send events to your application,
programs must be prepared to handle (or ignore) events of all types.

Input events (for example, a key pressed or the pointer moved) arrive
asynchronously from the server and are queued until they are requested by an
explicit call (for example, XNextEvent or XWindowEvent). In addition, some library
functions (for example, XRaiseWindow) generate Expose and ConfigureRequest
events. These events also arrive asynchronously, but the client may  wish to explicitly
wait for them by calling XSync after calling a function that can cause the server to
generate events.

Errors
Some functions return Status, an integer error indication. If the function fails, it
returns a zero. If the function returns a status of zero, it has not updated the return
arguments.  Because C does not provide multiple return values, many functions
must return their results by writing into client-passed storage.  By default, errors are
handled either by a standard library function or by one that you provide. Functions
that return pointers to strings return NULL pointers if the string does not exist.

The X server reports protocol errors at the time that it detects them. If more than
one error could be generated for a given request, the server can report any of them.

Because Xlib usually does not transmit requests to the server immediately (that is,
it buffers them), errors can be reported much later than they actually occur. For
debugging purposes, however, Xlib provides a mechanism for forcing synchronous
behavior (see section 11.8.1). When synchronization is enabled, errors are reported
as they are generated.

When Xlib detects an error, it calls an error handler, which your program can
provide. If you do not provide an error handler, the error is printed, and your
program terminates.

Standard Header Files
The following include files are part of the Xlib standard: 

<X11/Xlib.h>

<X11/X.h>

<X11/Xcms.h>

<X11/Xutil.h>

<X11/Xresource.h>

<X11/Xatom.h>

3



Introduction to Xlib

<X11/cursorfont.h>

<X11/keysymdef.h>

<X11/keysym.h>

<X11/Xlibint.h>

<X11/Xproto.h>

<X11/Xprotostr.h>

<X11/X10.h>

Generic Values and Types
The following symbols are defined by Xlib and used throughout the manual:

•    Xlib defines the type Bool and the Boolean values True and False.

•  None is the universal null resource ID or atom.

•  The type XID is used for generic resource IDs.

•  The type XPointer is defined to be char* and is used as a generic opaque pointer
to data.

Naming and Argument Conventions within Xlib
Xlib follows a number of conventions for the naming and syntax of the functions.
Given that you remember what information the function requires, these conventions
are intended to make the syntax of the functions more predictable.

The major naming conventions are:

• To differentiate the X symbols from the other symbols, the library uses mixed case
for external symbols. It leaves lowercase for variables and all uppercase for user
macros, as per existing convention.

• All Xlib functions begin with a capital X.

• The beginnings of all function names and symbols are capitalized.

• All user-visible data structures begin with a capital X. More generally, anything
that a user might dereference begins with a capital X.

• Macros and other symbols do not begin with a capital X. To distinguish them from
all user symbols, each word in the macro is capitalized.

• All elements of or variables in a data structure are in lowercase. Compound words,
where needed, are constructed with underscores (_).

• The display argument, where used, is always first in the argument list.

• All resource objects, where used, occur at the beginning of the argument list
immediately after the display argument.

• When a graphics context is present together with another type of resource (most
commonly, a drawable), the graphics context occurs in the argument list after the
other resource. Drawables outrank all other resources.

• Source arguments always precede the destination arguments in the argument list.

4



Introduction to Xlib

• The x argument always precedes the y argument in the argument list.

• The width argument always precedes the height argument in the argument list.

• Where the x, y, width, and height arguments are used together, the x and y
arguments always precede the width and height arguments.

• Where a mask is accompanied with a structure, the mask always precedes the
pointer to the structure in the argument list.

Programming Considerations
The major programming considerations are:

• Coordinates and sizes in X are actually 16-bit quantities. This decision was made
to minimize the bandwidth required for a given level of performance. Coordinates
usually are declared as an int in the interface. Values larger than 16 bits are
truncated silently. Sizes (width and height) are declared as unsigned quantities.

• Keyboards are the greatest variable between different manufacturers'
workstations. If you want your program to be portable, you should be particularly
conservative here.

• Many display systems have limited amounts of off-screen memory. If you can, you
should minimize use of pixmaps and backing store.

• The user should have control of their screen real estate. Therefore, you should
write your applications to react to window management rather than presume
control of the entire screen. What you do inside of your top-level window, however,
is up to your application. For further information, see chapter 14 and the Inter-
Client Communication Conventions Manual.

Character Sets and Encodings
Some of the Xlib functions make reference to specific character sets and character
encodings. The following are the most common:

X Portable Character Set A basic set of 97 characters, which are assumed to
exist in all locales supported by Xlib. This set contains
the following characters:

a..z A..Z 0..9 !"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~ <space>, <tab>, and <newline>

This set is the left/lower half of the graphic character
set of ISO8859-1 plus space, tab, and newline. It
is also the set of graphic characters in 7-bit ASCII
plus the same three control characters. The actual
encoding of these characters on the host is system
dependent.

Host Portable Character
Encoding

The encoding of the X Portable Character Set on
the host. The encoding itself is not defined by this
standard, but the encoding must be the same in all

5

../../xorg-docs/icccm/icccm.pdf#icccm
../../xorg-docs/icccm/icccm.pdf#icccm


Introduction to Xlib

locales supported by Xlib on the host. If a string is
said to be in the Host Portable Character Encoding,
then it only contains characters from the X Portable
Character Set, in the host encoding.

Latin-1 The coded character set defined by the ISO8859-1
standard.

Latin Portable Character
Encoding

The encoding of the X Portable Character Set using
the Latin-1 codepoints plus ASCII control characters.
If a string is said to be in the Latin Portable Character
Encoding, then it only contains characters from the
X Portable Character Set, not all of Latin-1.

STRING Encoding Latin-1, plus tab and newline.

POSIX Portable Filename
Character Set

The set of 65 characters, which can be used in
naming files on a POSIX-compliant host, that are
correctly processed in all locales. The set is:

a..z A..Z 0..9 ._-

Formatting Conventions
Xlib − C Language X Interface uses the following conventions:

• Global symbols are printed in this special font. These can be either function
names, symbols defined in include files, or structure names. When declared and
defined, function arguments are printed in italics. In the explanatory text that
follows, they usually are printed in regular type.

• Each function is introduced by a general discussion that distinguishes it from
other functions. The function declaration itself follows, and each argument is
specifically explained. Although ANSI C function prototype syntax is not used,
Xlib header files normally declare functions using function prototypes in ANSI
C environments. General discussion of the function, if any is required, follows
the arguments. Where applicable, the last paragraph of the explanation lists the
possible Xlib error codes that the function can generate. For a complete discussion
of the Xlib error codes, see section 11.8.2.

• To eliminate any ambiguity between those arguments that you pass and those that
a function returns to you, the explanations for all arguments that you pass start
with the word specifies or, in the case of multiple arguments, the word specify.
The explanations for all arguments that are returned to you start with the word
returns or, in the case of multiple arguments, the word return. The explanations
for all arguments that you can pass and are returned start with the words specifies
and returns.

• Any pointer to a structure that is used to return a value is designated as such by
the _return suffix as part of its name. All other pointers passed to these functions
are used for reading only. A few arguments use pointers to structures that are
used for both input and output and are indicated by using the _in_out suffix.

6



Chapter 2. Display Functions
Before your program can use a display, you must establish a connection to the X
server. Once you have established a connection, you then can use the Xlib macros
and functions discussed in this chapter to return information about the display. This
chapter discusses how to:

• Open (connect to) the display

• Obtain information about the display, image formats, or screens

• Generate a NoOperation protocol request

• Free client-created data

• Close (disconnect from) a display

• Use X Server connection close operations

• Use Xlib with threads

• Use internal connections

Opening the Display
To open a connection to the X server that controls a display, use XOpenDisplay. 

Display *XOpenDisplay(display_name);

display_name Specifies the hardware display name, which
determines the display and communications domain
to be used. On a POSIX-conformant system, if the
display_name is NULL, it defaults to the value of the
DISPLAY environment variable. 

The encoding and interpretation of the display name are implementation-
dependent. Strings in the Host Portable Character Encoding are supported; support
for other characters is implementation-dependent. On POSIX-conformant systems,
the display name or DISPLAY environment variable can be a string in the format:

 protocol/hostname:number.screen_number

protocol Specifies a protocol family or an alias for a
protocol family. Supported protocol families are
implementation dependent. The protocol entry is
optional. If protocol is not specified, the / separating
protocol and hostname must also not be specified.

hostname Specifies the name of the host machine on which
the display is physically attached. You follow the
hostname with either a single colon (:) or a double
colon (::).

7



Display Functions

number Specifies the number of the display server on that
host machine. You may optionally follow this display
number with a period (.). A single CPU can have
more than one display. Multiple displays are usually
numbered starting with zero. 

screen_number Specifies the screen to be used on that server.
Multiple screens can be controlled by a single X
server. The screen_number sets an internal variable
that can be accessed by using the DefaultScreen
macro or the XDefaultScreen function if you are
using languages other than C (see section 2.2.1).

For example, the following would specify screen 1 of display 0 on the machine named
``dual-headed'':

dual-headed:0.1

The XOpenDisplay function returns a Display structure that serves as the
connection to the X server and that contains all the information about that X server.
XOpenDisplay connects your application to the X server through TCP or DECnet
communications protocols, or through some local inter-process communication
protocol.   If the protocol is specified as "tcp", "inet", or "inet6", or if no protocol is
specified and the hostname is a host machine name and a single colon (:) separates
the hostname and display number, XOpenDisplay connects using TCP streams. (If
the protocol is specified as "inet", TCP over IPv4 is used. If the protocol is specified
as "inet6", TCP over IPv6 is used. Otherwise, the implementation determines which
IP version is used.) If the hostname and protocol are both not specified, Xlib uses
whatever it believes is the fastest transport. If the hostname is a host machine name
and a double colon (::) separates the hostname and display number, XOpenDisplay
connects using DECnet. A single X server can support any or all of these transport
mechanisms simultaneously. A particular Xlib implementation can support many
more of these transport mechanisms.

 If successful, XOpenDisplay returns a pointer to a Display structure, which is
defined in <X11/Xlib.h>.    If XOpenDisplay does not succeed, it returns NULL.
After a successful call to XOpenDisplay, all of the screens in the display can be
used by the client. The screen number specified in the display_name argument is
returned by the DefaultScreen macro (or the XDefaultScreen function). You can
access elements of the Display and Screen structures only by using the information
macros or functions. For information about using macros and functions to obtain
information from the Display structure, see section 2.2.1.

X servers may implement various types of access control mechanisms (see section
9.8).

Obtaining Information about the Display, Image
Formats, or Screens

The Xlib library provides a number of useful macros and corresponding functions
that return data from the Display structure. The macros are used for C
programming, and their corresponding function equivalents are for other language
bindings. This section discusses the:

8



Display Functions

• Display macros

• Image format functions and macros

• Screen information macros

 All other members of the Display structure (that is, those for which no
macros are defined) are private to Xlib and must not be used. Applications
must never directly modify or inspect these private members of the Display
structure. The XDisplayWidth, XDisplayHeight, XDisplayCells, XDisplayPlanes,
XDisplayWidthMM, and XDisplayHeightMM functions in the next sections are
misnamed. These functions really should be named Screenwhatever and
XScreenwhatever, not Displaywhatever or XDisplaywhatever. Our apologies for the
resulting confusion.

Display Macros
Applications should not directly modify any part of the Display and Screen
structures. The members should be considered read-only, although they may change
as the result of other operations on the display.

The following lists the C language macros, their corresponding function equivalents
that are for other language bindings, and what data both can return.

AllPlanes

unsigned long XAllPlanes();

  Both return a value with all bits set to 1 suitable for use in a plane argument to
a procedure.

    Both BlackPixel and WhitePixel can be used in implementing a monochrome
application. These pixel values are for permanently allocated entries in the default
colormap. The actual RGB (red, green, and blue) values are settable on some screens
and, in any case, may not actually be black or white. The names are intended to
convey the expected relative intensity of the colors.

BlackPixel(display, screen_number);

unsigned long XBlackPixel(display, screen_number);

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host
server.

Both return the black pixel value for the specified screen.

WhitePixel(display, screen_number);

unsigned long XWhitePixel(display, screen_number);

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host
server.

9



Display Functions

Both return the white pixel value for the specified screen.

ConnectionNumber(display);

int XConnectionNumber(display);

display Specifies the connection to the X server.

  Both return a connection number for the specified display. On a POSIX-conformant
system, this is the file descriptor of the connection.

DefaultColormap(display, screen_number);

Colormap XDefaultColormap(display, screen_number);

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host
server.

  Both return the default colormap ID for allocation on the specified screen. Most
routine allocations of color should be made out of this colormap.

DefaultDepth(display, screen_number);

int XDefaultDepth(display, screen_number);

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host
server.

  Both return the depth (number of planes) of the default root window for
the specified screen. Other depths may also be supported on this screen (see
XMatchVisualInfo).

 To determine the number of depths that are available on a given screen, use
XListDepths.

int *XListDepths(display, screen_number, count_return);

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host
server.

count_return Returns the number of depths.

The XListDepths function returns the array of depths that are available on the
specified screen. If the specified screen_number is valid and sufficient memory
for the array can be allocated, XListDepths sets count_return to the number of
available depths. Otherwise, it does not set count_return and returns NULL. To
release the memory allocated for the array of depths, use XFree.

DefaultGC(display, screen_number);

10



Display Functions

GC XDefaultGC(display, screen_number);

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host
server.

  Both return the default graphics context for the root window of the specified
screen. This GC is created for the convenience of simple applications and contains
the default GC components with the foreground and background pixel values
initialized to the black and white pixels for the screen, respectively. You can modify
its contents freely because it is not used in any Xlib function. This GC should never
be freed.

DefaultRootWindow(display);

Window XDefaultRootWindow(display);

display Specifies the connection to the X server.

  Both return the root window for the default screen.

DefaultScreenOfDisplay(display);

Screen *XDefaultScreenOfDisplay(display);

display Specifies the connection to the X server.

  Both return a pointer to the default screen.

ScreenOfDisplay(display, screen_number);

Screen *XScreenOfDisplay(display, screen_number);

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host
server.

  Both return a pointer to the indicated screen.

DefaultScreen(display);

int XDefaultScreen(display);

display Specifies the connection to the X server.

  Both return the default screen number referenced by the XOpenDisplay function.
This macro or function should be used to retrieve the screen number in applications
that will use only a single screen.

DefaultVisual(display, screen_number);

Visual *XDefaultVisual(display, screen_number);

11



Display Functions

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host
server.

  Both return the default visual type for the specified screen. For further information
about visual types, see section 3.1.

DisplayCells(display, screen_number);

int XDisplayCells(display, screen_number);

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host
server.

  Both return the number of entries in the default colormap.

DisplayPlanes(display, screen_number);

int XDisplayPlanes(display, screen_number);

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host
server.

  Both return the depth of the root window of the specified screen. For an explanation
of depth, see the glossary.

DisplayString(display);

char *XDisplayString(display);

display Specifies the connection to the X server.

  Both return the string that was passed to XOpenDisplay when the current display
was opened. On POSIX-conformant systems, if the passed string was NULL, these
return the value of the DISPLAY environment variable when the current display was
opened.  These are useful to applications that invoke the fork system call and want
to open a new connection to the same display from the child process as well as for
printing error messages.

long XExtendedMaxRequestSize(display);

display Specifies the connection to the X server.

 The XExtendedMaxRequestSize function returns zero if the specified display
does not support an extended-length protocol encoding; otherwise, it returns the
maximum request size (in 4-byte units) supported by the server using the extended-
length encoding. The Xlib functions XDrawLines, XDrawArcs, XFillPolygon,
XChangeProperty, XSetClipRectangles, and XSetRegion will use the extended-
length encoding as necessary, if supported by the server. Use of the extended-length

12

../../bigreqsproto/bigreq.pdf#XExtendedMaxRequestSize


Display Functions

encoding in other Xlib functions (for example, XDrawPoints, XDrawRectangles,
XDrawSegments, XFillArcs, XFillRectangles, XPutImage) is permitted but not
required; an Xlib implementation may choose to split the data across multiple
smaller requests instead.

long XMaxRequestSize(display);

display Specifies the connection to the X server.

 The XMaxRequestSize function returns the maximum request size (in 4-byte units)
supported by the server without using an extended-length protocol encoding. Single
protocol requests to the server can be no larger than this size unless an extended-
length protocol encoding is supported by the server. The protocol guarantees the
size to be no smaller than 4096 units (16384 bytes). Xlib automatically breaks
data up into multiple protocol requests as necessary for the following functions:
XDrawPoints, XDrawRectangles, XDrawSegments, XFillArcs, XFillRectangles,
and XPutImage.

LastKnownRequestProcessed(display);

unsigned long XLastKnownRequestProcessed(display);

display Specifies the connection to the X server.

  Both extract the full serial number of the last request known by Xlib to have been
processed by the X server. Xlib automatically sets this number when replies, events,
and errors are received.

NextRequest(display);

unsigned long XNextRequest(display);

display Specifies the connection to the X server.

  Both extract the full serial number that is to be used for the next request. Serial
numbers are maintained separately for each display connection.

ProtocolVersion(display);

int XProtocolVersion(display);

display Specifies the connection to the X server.

  Both return the major version number (11) of the X protocol associated with the
connected display.

ProtocolRevision(display);

int XProtocolRevision(display);

display Specifies the connection to the X server.

  Both return the minor protocol revision number of the X server.

13



Display Functions

QLength(display);

int XQLength(display);

display Specifies the connection to the X server.

  Both return the length of the event queue for the connected display. Note that there
may be more events that have not been read into the queue yet (see XEventsQueued).

RootWindow(display, screen_number);

Window XRootWindow(display, screen_number);

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host
server.

    Both return the root window. These are useful with functions that need a drawable
of a particular screen and for creating top-level windows.

ScreenCount(display);

int XScreenCount(display);

display Specifies the connection to the X server.

  Both return the number of available screens.

ServerVendor(display);

char *XServerVendor(display);

display Specifies the connection to the X server.

  Both return a pointer to a null-terminated string that provides some identification
of the owner of the X server implementation. If the data returned by the server is
in the Latin Portable Character Encoding, then the string is in the Host Portable
Character Encoding. Otherwise, the contents of the string are implementation-
dependent.

VendorRelease(display);

int XVendorRelease(display);

display Specifies the connection to the X server.

  Both return a number related to a vendor's release of the X server.

Image Format Functions and Macros
Applications are required to present data to the X server in a format that the server
demands. To help simplify applications, most of the work required to convert the
data is provided by Xlib (see sections 8.7 and 16.8).

14



Display Functions

 The XPixmapFormatValues structure provides an interface to the pixmap format
information that is returned at the time of a connection setup. It contains:

typedef struct {
 int depth;
 int bits_per_pixel;
 int scanline_pad;
} XPixmapFormatValues;

To obtain the pixmap format information for a given display, use
XListPixmapFormats. 

XPixmapFormatValues *XListPixmapFormats(display, count_return);

display Specifies the connection to the X server.

count_return Returns the number of pixmap formats that are
supported by the display.

The XListPixmapFormats function returns an array of XPixmapFormatValues
structures that describe the types of Z format images supported by the specified
display. If insufficient memory is available, XListPixmapFormats returns NULL. To
free the allocated storage for the XPixmapFormatValues structures, use XFree.

The following lists the C language macros, their corresponding function equivalents
that are for other language bindings, and what data they both return for the
specified server and screen. These are often used by toolkits as well as by simple
applications.

ImageByteOrder(display);

int XImageByteOrder(display);

display Specifies the connection to the X server.

  Both specify the required byte order for images for each scanline unit in XY format
(bitmap) or for each pixel value in Z format. The macro or function can return either
LSBFirst or MSBFirst.

XBitmapUnit(display);

int XBitmapUnit(display);

display Specifies the connection to the X server.

  Both return the size of a bitmap's scanline unit in bits. The scanline is calculated
in multiples of this value.

BitmapBitOrder(display);

int XBitmapBitOrder(display);

display Specifies the connection to the X server.

15



Display Functions

  Within each bitmap unit, the left-most bit in the bitmap as displayed on the screen is
either the least significant or most significant bit in the unit. This macro or function
can return LSBFirst or MSBFirst.

BitmapPad(display);

int XBitmapPad(display);

display Specifies the connection to the X server.

  Each scanline must be padded to a multiple of bits returned by this macro or
function.

DisplayHeight(display, screen_number);

int XDisplayHeight(display, screen_number);

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host
server.

  Both return an integer that describes the height of the screen in pixels.

DisplayHeightMM(display, screen_number);

int XDisplayHeightMM(display, screen_number);

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host
server.

  Both return the height of the specified screen in millimeters.

DisplayWidth(display, screen_number);

int XDisplayWidth(display, screen_number);

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host
server.

  Both return the width of the screen in pixels.

DisplayWidthMM(display, screen_number);

int XDisplayWidthMM(display, screen_number);

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host
server.

16



Display Functions

  Both return the width of the specified screen in millimeters.

Screen Information Macros
The following lists the C language macros, their corresponding function equivalents
that are for other language bindings, and what data they both can return. These
macros or functions all take a pointer to the appropriate screen structure.

BlackPixelOfScreen(screen);

unsigned long XBlackPixelOfScreen(screen);

screen Specifies the appropriate Screen structure.

  Both return the black pixel value of the specified screen.

XWhitePixelOfScreen(screen);

unsigned long XWhitePixelOfScreen(screen);

screen Specifies the appropriate Screen structure.

  Both return the white pixel value of the specified screen.

CellsOfScreen(screen);

int XCellsOfScreen(screen);

screen Specifies the appropriate Screen structure.

  Both return the number of colormap cells in the default colormap of the specified
screen.

DefaultColormapOfScreen(screen);

Colormap XDefaultColormapOfScreen(screen);

screen Specifies the appropriate Screen structure.

  Both return the default colormap of the specified screen.

DefaultDepthOfScreen(screen);

int XDefaultDepthOfScreen(screen);

screen Specifies the appropriate Screen structure.

  Both return the depth of the root window.

DefaultGCOfScreen(screen);

GC XDefaultGCOfScreen(screen);

17



Display Functions

screen Specifies the appropriate Screen structure.

  Both return a default graphics context (GC) of the specified screen, which has the
same depth as the root window of the screen. The GC must never be freed.

XDefaultVisualOfScreen(screen);

Visual *XDefaultVisualOfScreen(screen);

screen Specifies the appropriate Screen structure.

  Both return the default visual of the specified screen. For information on visual
types, see section 3.1.

DoesBackingStore(screen);

int XDoesBackingStore(screen);

screen Specifies the appropriate Screen structure.

  Both return a value indicating whether the screen supports backing stores. The
value returned can be one of WhenMapped, NotUseful, or Always (see section 3.2.4).

DoesSaveUnders(screen);

Bool XDoesSaveUnders(screen);

screen Specifies the appropriate Screen structure.

  Both return a Boolean value indicating whether the screen supports save unders.
If True, the screen supports save unders. If False, the screen does not support save
unders (see section 3.2.5).

DisplayOfScreen(screen);

Display *XDisplayOfScreen(screen);

screen Specifies the appropriate Screen structure.

  Both return the display of the specified screen.

ScreenNumberOfScreen(screen);

long XScreenNumberOfScreen(screen);

screen Specifies the appropriate Screen structure.

The XScreenNumberOfScreen function returns the screen index number of the
specified screen.

EventMaskOfScreen(screen);

18



Display Functions

long XEventMaskOfScreen(screen);

screen Specifies the appropriate Screen structure.

  Both return the event mask of the root window for the specified screen at
connection setup time.

WidthOfScreen(screen);

int XWidthOfScreen(screen);

screen Specifies the appropriate Screen structure.

  Both return the width of the specified screen in pixels.

HeightOfScreen(screen);

int XHeightOfScreen(screen);

screen Specifies the appropriate Screen structure.

  Both return the height of the specified screen in pixels.

WidthMMOfScreen(screen);

int XWidthMMOfScreen(screen);

screen Specifies the appropriate Screen structure.

  Both return the width of the specified screen in millimeters.

HeightMMOfScreen(screen);

int XHeightMMOfScreen(screen);

screen Specifies the appropriate Screen structure.

  Both return the height of the specified screen in millimeters.

MaxCmapsOfScreen(screen);

int XMaxCmapsOfScreen(screen);

screen Specifies the appropriate Screen structure.

  Both return the maximum number of installed colormaps supported by the specified
screen (see section 9.3).

MinCmapsOfScreen(screen);

int XMinCmapsOfScreen(screen);

screen Specifies the appropriate Screen structure.

19



Display Functions

  Both return the minimum number of installed colormaps supported by the specified
screen (see section 9.3).

PlanesOfScreen(screen);

int XPlanesOfScreen(screen);

screen Specifies the appropriate Screen structure.

  Both return the depth of the root window.

RootWindowOfScreen(screen);

Window XRootWindowOfScreen(screen);

screen Specifies the appropriate Screen structure.

  Both return the root window of the specified screen.

Generating a NoOperation Protocol Request
To execute a NoOperation protocol request, use XNoOp. 

XNoOp(display);

display Specifies the connection to the X server.

The XNoOp function sends a NoOperation protocol request to the X server, thereby
exercising the connection.

Freeing Client-Created Data
To free in-memory data that was created by an Xlib function, use XFree. 

XFree(data);

data Specifies the data that is to be freed.

The XFree function is a general-purpose Xlib routine that frees the specified data.
You must use it to free any objects that were allocated by Xlib, unless an alternate
function is explicitly specified for the object. A NULL pointer cannot be passed to
this function.

Closing the Display
To close a display or disconnect from the X server, use XCloseDisplay. 

XCloseDisplay(display);

display Specifies the connection to the X server.

The XCloseDisplay function closes the connection to the X server for the display
specified in the Display structure and destroys all windows, resource IDs (Window,

20



Display Functions

Font, Pixmap, Colormap, Cursor, and GContext), or other resources that the client
has created on this display, unless the close-down mode of the client has been
changed (see XSetCloseDownMode). Therefore, these windows, resource IDs, and
other resources should never be referenced again or an error will be generated.
Before exiting, you should call XCloseDisplay explicitly so that any pending errors
are reported as XCloseDisplay performs a final XSync operation.  

XCloseDisplay can generate a BadGC error.

Xlib provides a function to permit the resources owned by a client to survive
after the client's connection is closed. To change a client's close-down mode, use
XSetCloseDownMode. 

XSetCloseDownMode(display, close_mode);

display Specifies the connection to the X server.

close_mode Specifies the client close-down mode. You can pass
DestroyAll, RetainPermanent, or RetainTemporary.

The XSetCloseDownMode function defines what will happen to the client's resources
at connection close. A connection starts in DestroyAll mode. For information
on what happens to the client's resources when the close_mode argument is
RetainPermanent or RetainTemporary, see section 2.6.

XSetCloseDownMode can generate a BadValue error.

Using X Server Connection Close Operations
When the X server's connection to a client is closed either by an explicit call to
XCloseDisplay or by a process that exits, the X server performs the following
automatic operations:

• It disowns all selections owned by the client (see XSetSelectionOwner).

• It performs an XUngrabPointer and XUngrabKeyboard if the client has actively
grabbed the pointer or the keyboard.

• It performs an XUngrabServer if the client has grabbed the server.

• It releases all passive grabs made by the client.

• It marks all resources (including colormap entries) allocated by the client either
as permanent or temporary, depending on whether the close-down mode is
RetainPermanent or RetainTemporary. However, this does not prevent other client
applications from explicitly destroying the resources (see XSetCloseDownMode).

When the close-down mode is DestroyAll, the X server destroys all of a client's
resources as follows:

• It examines each window in the client's save-set to determine if it is an inferior
(subwindow) of a window created by the client. (The save-set is a list of other
clients' windows that are referred to as save-set windows.) If so, the X server
reparents the save-set window to the closest ancestor so that the save-set window
is not an inferior of a window created by the client. The reparenting leaves

21



Display Functions

unchanged the absolute coordinates (with respect to the root window) of the
upper-left outer corner of the save-set window.

• It performs a MapWindow request on the save-set window if the save-set window is
unmapped. The X server does this even if the save-set window was not an inferior
of a window created by the client.

• It destroys all windows created by the client.

• It performs the appropriate free request on each nonwindow resource created
by the client in the server (for example, Font, Pixmap, Cursor, Colormap, and
GContext).

• It frees all colors and colormap entries allocated by a client application.

Additional processing occurs when the last connection to the X server closes. An X
server goes through a cycle of having no connections and having some connections.
When the last connection to the X server closes as a result of a connection closing
with the close_mode of DestroyAll, the X server does the following:

• It resets its state as if it had just been started. The X server begins by destroying
all lingering resources from clients that have terminated in RetainPermanent or
RetainTemporary mode.

• It deletes all but the predefined atom identifiers.

• It deletes all properties on all root windows (see section 4.3).

• It resets all device maps and attributes (for example, key click, bell volume, and
acceleration) as well as the access control list.

• It restores the standard root tiles and cursors.

• It restores the default font path.

• It restores the input focus to state PointerRoot.

However, the X server does not reset if you close a connection with a close-down
mode set to RetainPermanent or RetainTemporary.

Using Xlib with Threads
On systems that have threads, support may be provided to permit multiple threads
to use Xlib concurrently.

To initialize support for concurrent threads, use XInitThreads. 

Status XInitThreads();

The XInitThreads function initializes Xlib support for concurrent threads. This
function must be the first Xlib function a multi-threaded program calls, and it must
complete before any other Xlib call is made. This function returns a nonzero status
if initialization was successful; otherwise, it returns zero. On systems that do not
support threads, this function always returns zero.

It is only necessary to call this function if multiple threads might use Xlib
concurrently. If all calls to Xlib functions are protected by some other access

22



Display Functions

mechanism (for example, a mutual exclusion lock in a toolkit or through explicit
client programming), Xlib thread initialization is not required. It is recommended
that single-threaded programs not call this function.

To lock a display across several Xlib calls, use XLockDisplay. 

XLockDisplay(display);

display Specifies the connection to the X server.

The XLockDisplay function locks out all other threads from using the specified
display. Other threads attempting to use the display will block until the display is
unlocked by this thread. Nested calls to XLockDisplay work correctly; the display
will not actually be unlocked until XUnlockDisplay has been called the same
number of times as XLockDisplay. This function has no effect unless Xlib was
successfully initialized for threads using XInitThreads.

To unlock a display, use XUnlockDisplay. 

XUnlockDisplay(display);

display Specifies the connection to the X server.

The XUnlockDisplay function allows other threads to use the specified display
again. Any threads that have blocked on the display are allowed to continue. Nested
locking works correctly; if XLockDisplay has been called multiple times by a thread,
then XUnlockDisplay must be called an equal number of times before the display is
actually unlocked. This function has no effect unless Xlib was successfully initialized
for threads using XInitThreads.

Using Internal Connections
In addition to the connection to the X server, an Xlib implementation may require
connections to other kinds of servers (for example, to input method servers as
described in chapter 13). Toolkits and clients that use multiple displays, or that
use displays in combination with other inputs, need to obtain these additional
connections to correctly block until input is available and need to process that input
when it is available. Simple clients that use a single display and block for input in
an Xlib event function do not need to use these facilities.

To track internal connections for a display, use XAddConnectionWatch.

typedef void (*XConnectionWatchProc)(display, client_data, fd, opening,
watch_data);

Status XAddConnectionWatch(display, procedure, client_data);

display Specifies the connection to the X server.

procedure Specifies the procedure to be called.

client_data Specifies the additional client data.

The XAddConnectionWatch function registers a procedure to be called each time
Xlib opens or closes an internal connection for the specified display. The procedure
is passed the display, the specified client_data, the file descriptor for the connection,

23



Display Functions

a Boolean indicating whether the connection is being opened or closed, and a
pointer to a location for private watch data. If opening is True, the procedure can
store a pointer to private data in the location pointed to by watch_data; when the
procedure is later called for this same connection and opening is False, the location
pointed to by watch_data will hold this same private data pointer.

This function can be called at any time after a display is opened. If internal
connections already exist, the registered procedure will immediately be called for
each of them, before XAddConnectionWatch returns. XAddConnectionWatch returns
a nonzero status if the procedure is successfully registered; otherwise, it returns
zero.

The registered procedure should not call any Xlib functions. If the procedure
directly or indirectly causes the state of internal connections or watch procedures
to change, the result is not defined. If Xlib has been initialized for threads, the
procedure is called with the display locked and the result of a call by the procedure
to any Xlib function that locks the display is not defined unless the executing thread
has externally locked the display using XLockDisplay.

To stop tracking internal connections for a display, use XRemoveConnectionWatch. 

Status XRemoveConnectionWatch(display, procedure, client_data);

display Specifies the connection to the X server.

procedure Specifies the procedure to be called.

client_data Specifies the additional client data.

The XRemoveConnectionWatch function removes a previously registered connection
watch procedure. The client_data must match the client_data used when the
procedure was initially registered.

To process input on an internal connection, use XProcessInternalConnection. 

void XProcessInternalConnection(display, fd);

display Specifies the connection to the X server.

fd Specifies the file descriptor.

The XProcessInternalConnection function processes input available on an
internal connection. This function should be called for an internal connection only
after an operating system facility (for example, select or poll) has indicated that
input is available; otherwise, the effect is not defined.

To obtain all of the current internal connections for a display, use
XInternalConnectionNumbers. 

Status XInternalConnectionNumbers(display, fd, count_return);

display Specifies the connection to the X server.

fd_return Returns the file descriptors.

24



Display Functions

count_return Returns the number of file descriptors.

The XInternalConnectionNumbers function returns a list of the file descriptors for
all internal connections currently open for the specified display. When the allocated
list is no longer needed, free it by using XFree. This functions returns a nonzero
status if the list is successfully allocated; otherwise, it returns zero.

25



Chapter 3. Window Functions
Visual Types

 On some display hardware, it may be possible to deal with color resources in more
than one way. For example, you may be able to deal with a screen of either 12-bit
depth with arbitrary mapping of pixel to color (pseudo-color) or 24-bit depth with 8
bits of the pixel dedicated to each of red, green, and blue. These different ways of
dealing with the visual aspects of the screen are called visuals. For each screen of
the display, there may be a list of valid visual types supported at different depths of
the screen. Because default windows and visual types are defined for each screen,
most simple applications need not deal with this complexity. Xlib provides macros
and functions that return the default root window, the default depth of the default
root window, and the default visual type (see sections 2.2.1 and 16.7).

Xlib uses an opaque Visual  structure that contains information about the possible
color mapping. The visual utility functions (see section 16.7) use an XVisualInfo
structure to return this information to an application. The members of this
structure pertinent to this discussion are class, red_mask, green_mask, blue_mask,
bits_per_rgb, and colormap_size. The class member specifies one of the possible
visual classes of the screen and can be       StaticGray, StaticColor, TrueColor,
GrayScale, PseudoColor, or DirectColor.

The following concepts may serve to make the explanation of visual types clearer.
The screen can be color or grayscale, can have a colormap that is writable or read-
only, and can also have a colormap whose indices are decomposed into separate
RGB pieces, provided one is not on a grayscale screen. This leads to the following
diagram:

                      Color        Gray-Scale
                   R/O    R/W      R/O   R/W
----------------------------------------------
 Undecomposed    Static  Pseudo   Static  Gray
   Colormap      Color   Color    Gray    Scale

 Decomposed       True   Direct
   Colormap       Color  Color
----------------------------------------------

Conceptually, as each pixel is read out of video memory for display on the screen,
it goes through a look-up stage by indexing into a colormap. Colormaps can be
manipulated arbitrarily on some hardware, in limited ways on other hardware, and
not at all on other hardware. The visual types affect the colormap and the RGB
values in the following ways:

• For PseudoColor, a pixel value indexes a colormap to produce independent RGB
values, and the RGB values can be changed dynamically.

• GrayScale is treated the same way as PseudoColor except that the primary that
drives the screen is undefined. Thus, the client should always store the same value
for red, green, and blue in the colormaps.

26



Window Functions

• For DirectColor, a pixel value is decomposed into separate RGB subfields, and
each subfield separately indexes the colormap for the corresponding value. The
RGB values can be changed dynamically.

• TrueColor is treated the same way as DirectColor except that the colormap has
predefined, read-only RGB values. These RGB values are server dependent but
provide linear or near-linear ramps in each primary.

• StaticColor is treated the same way as PseudoColor except that the colormap has
predefined, read-only, server-dependent RGB values.

• StaticGray is treated the same way as StaticColor except that the RGB values are
equal for any single pixel value, thus resulting in shades of gray. StaticGray with
a two-entry colormap can be thought of as monochrome.

The red_mask, green_mask, and blue_mask members are only defined for
DirectColor and TrueColor. Each has one contiguous set of bits with no
intersections. The bits_per_rgb member specifies the log base 2 of the number
of distinct color values (individually) of red, green, and blue. Actual RGB values
are unsigned 16-bit numbers. The colormap_size member defines the number
of available colormap entries in a newly created colormap. For DirectColor and
TrueColor, this is the size of an individual pixel subfield.

To obtain the visual ID from a Visual, use XVisualIDFromVisual. 

VisualID XVisualIDFromVisual(visual);

visual Specifies the visual type.

The XVisualIDFromVisual function returns the visual ID for the specified visual
type.

Window Attributes
  All InputOutput windows have a border width of zero or more pixels, an optional
background, an event suppression mask (which suppresses propagation of events
from children), and a property list (see section 4.3). The window border and
background can be a solid color or a pattern, called a tile. All windows except the
root have a parent and are clipped by their parent. If a window is stacked on top of
another window, it obscures that other window for the purpose of input. If a window
has a background (almost all do), it obscures the other window for purposes of
output. Attempts to output to the obscured area do nothing, and no input events
(for example, pointer motion) are generated for the obscured area.

Windows also have associated property lists (see section 4.3).

Both InputOutput and InputOnly windows have the following common attributes,
which are the only attributes of an InputOnly window:

• win-gravity

• event-mask

• do-not-propagate-mask

27



Window Functions

• override-redirect

• cursor

If you specify any other attributes for an InputOnly window, a BadMatch error
results.

InputOnly windows are used for controlling input events in situations where
InputOutput windows are unnecessary. InputOnly windows are invisible; can only
be used to control such things as cursors, input event generation, and grabbing;
and cannot be used in any graphics requests. Note that InputOnly windows cannot
have InputOutput windows as inferiors.

Windows have borders of a programmable width and pattern as well as a
background pattern or tile.  Pixel values can be used for solid colors.   The
background and border pixmaps can be destroyed immediately after creating the
window if no further explicit references to them are to be made.  The pattern
can either be relative to the parent or absolute. If ParentRelative, the parent's
background is used.

When windows are first created, they are not visible (not mapped) on the screen. Any
output to a window that is not visible on the screen and that does not have backing
store will be discarded.  An application may wish to create a window long before it
is mapped to the screen. When a window is eventually mapped to the screen (using
XMapWindow),  the X server generates an Expose event for the window if backing
store has not been maintained.

A window manager can override your choice of size, border width, and position
for a top-level window. Your program must be prepared to use the actual size and
position of the top window. It is not acceptable for a client application to resize
itself unless in direct response to a human command to do so. Instead, either your
program should use the space given to it, or if the space is too small for any useful
work, your program might ask the user to resize the window. The border of your
top-level window is considered fair game for window managers.

To set an attribute of a window, set the appropriate member of the
XSetWindowAttributes structure and OR in the corresponding value bitmask in your
subsequent calls to XCreateWindow and XChangeWindowAttributes, or use one of
the other convenience functions that set the appropriate attribute. The symbols for
the value mask bits and the XSetWindowAttributes structure are:

/* Window attribute value mask bits */

/* Window attribute value mask bits */
#define    CWBackPixmap                    (1L<<0)
#define    CWBackPixel                     (1L<<1)
#define    CWBorderPixmap                  (1L<<2)
#define    CWBorderPixel                   (1L<<3)
#define    CWBitGravity                    (1L<<4)
#define    CWWinGravity                    (1L<<5)
#define    CWBackingStore                  (1L<<6)
#define    CWBackingPlanes                 (1L<<7)
#define    CWBackingPixel                  (1L<<8)

28



Window Functions

#define    CWOverrideRedirect              (1L<<9)
#define    CWSaveUnder                     (1L<<10)
#define    CWEventMask                     (1L<<11)
#define    CWDontPropagate                 (1L<<12)
#define    CWColormap                      (1L<<13)
#define    CWCursor                        (1L<<14)

/* Values */

typedef struct {
     Pixmap background_pixmap;     /* background, None, or ParentRelative */
     unsigned long background_pixel;     /* background pixel */
     Pixmap border_pixmap;          /* border of the window or CopyFromParent */
     unsigned long border_pixel;     /* border pixel value */
     int bit_gravity;     /* one of bit gravity values */
     int win_gravity;     /* one of the window gravity values */
     int backing_store;     /* NotUseful, WhenMapped, Always */
     unsigned long backing_planes;     /* planes to be preserved if possible */
     unsigned long backing_pixel;     /* value to use in restoring planes */
     Bool save_under;     /* should bits under be saved? (popups) */
     long event_mask;     /* set of events that should be saved */
     long do_not_propagate_mask;     /* set of events that should not propagate */
     Bool override_redirect;     /* boolean value for override_redirect */
     Colormap colormap;     /* color map to be associated with window */
     Cursor cursor;          /* cursor to be displayed (or None) */
} XSetWindowAttributes;

The following lists the defaults for each window attribute and indicates whether the
attribute is applicable to InputOutput and InputOnly windows:

Attribute Default InputOutput InputOnly
background-pixmap None Yes No
background-pixel Undefined Yes No
border-pixmap CopyFromParent Yes No
border-pixel Undefined Yes No
bit-gravity ForgetGravity Yes No
win-gravity NorthWestGravity Yes Yes
backing-store NotUseful Yes No
backing-planes All ones Yes No
backing-pixel zero Yes No
save-under False Yes No
event-mask empty set Yes Yes
do-not-propagate-
mask

empty set Yes Yes

29



Window Functions

Attribute Default InputOutput InputOnly
override-redirect False Yes Yes
colormap CopyFromParent Yes No
cursor None Yes Yes

Background Attribute
Only InputOutput windows can have a background. You can set the background of
an InputOutput window by using a pixel or a pixmap.

The background-pixmap attribute of a window specifies the pixmap to be used for
a window's background. This pixmap can be of any size, although some sizes may
be faster than others. The background-pixel attribute of a window specifies a pixel
value used to paint a window's background in a single color.

You can set the background-pixmap to a pixmap, None (default), or ParentRelative.
You can set the background-pixel of a window to any pixel value (no default). If you
specify a background-pixel, it overrides either the default background-pixmap or
any value you may have set in the background-pixmap. A pixmap of an undefined size
that is filled with the background-pixel is used for the background. Range checking
is not performed on the background pixel; it simply is truncated to the appropriate
number of bits.

If you set the background-pixmap, it overrides the default. The background-pixmap
and the window must have the same depth, or a BadMatch error results. If you set
background-pixmap to None, the window has no defined background. If you set the
background-pixmap to ParentRelative:

• The parent window's background-pixmap is used. The child window, however,
must have the same depth as its parent, or a BadMatch error results.

• If the parent window has a background-pixmap of None, the window also has a
background-pixmap of None.

• A copy of the parent window's background-pixmap is not made. The parent's
background-pixmap is examined each time the child window's background-
pixmap is required.

• The background tile origin always aligns with the parent window's background
tile origin. If the background-pixmap is not ParentRelative, the background tile
origin is the child window's origin.

Setting a new background, whether by setting background-pixmap or background-
pixel, overrides any previous background. The background-pixmap can be freed
immediately if no further explicit reference is made to it (the X server will keep
a copy to use when needed). If you later draw into the pixmap used for the
background, what happens is undefined because the X implementation is free to
make a copy of the pixmap or to use the same pixmap.

When no valid contents are available for regions of a window and either the regions
are visible or the server is maintaining backing store, the server automatically tiles
the regions with the window's background unless the window has a background of
None. If the background is None, the previous screen contents from other windows

30



Window Functions

of the same depth as the window are simply left in place as long as the contents come
from the parent of the window or an inferior of the parent. Otherwise, the initial
contents of the exposed regions are undefined. Expose events are then generated
for the regions, even if the background-pixmap is None (see section 10.9).

Border Attribute

Only InputOutput windows can have a border. You can set the border of an
InputOutput window by using a pixel or a pixmap.

The border-pixmap attribute of a window specifies the pixmap to be used for a
window's border. The border-pixel attribute of a window specifies a pixmap of
undefined size filled with that pixel be used for a window's border. Range checking
is not performed on the background pixel; it simply is truncated to the appropriate
number of bits. The border tile origin is always the same as the background tile
origin.

You can also set the border-pixmap to a pixmap of any size (some may be faster
than others) or to CopyFromParent (default). You can set the border-pixel to any
pixel value (no default).

If you set a border-pixmap, it overrides the default. The border-pixmap and the
window must have the same depth, or a BadMatch error results. If you set the
border-pixmap to CopyFromParent, the parent window's border-pixmap is copied.
Subsequent changes to the parent window's border attribute do not affect the child
window. However, the child window must have the same depth as the parent window,
or a BadMatch error results.

The border-pixmap can be freed immediately if no further explicit reference is
made to it. If you later draw into the pixmap used for the border, what happens is
undefined because the X implementation is free either to make a copy of the pixmap
or to use the same pixmap. If you specify a border-pixel, it overrides either the
default border-pixmap or any value you may have set in the border-pixmap. All pixels
in the window's border will be set to the border-pixel. Setting a new border, whether
by setting border-pixel or by setting border-pixmap, overrides any previous border.

Output to a window is always clipped to the inside of the window. Therefore,
graphics operations never affect the window border.

Gravity Attributes

The bit gravity of a window defines which region of the window should be retained
when an InputOutput window is resized. The default value for the bit-gravity
attribute is ForgetGravity. The window gravity of a window allows you to define how
the InputOutput or InputOnly window should be repositioned if its parent is resized.
The default value for the win-gravity attribute is NorthWestGravity.

If the inside width or height of a window is not changed and if the window is moved
or its border is changed, then the contents of the window are not lost but move with
the window. Changing the inside width or height of the window causes its contents
to be moved or lost (depending on the bit-gravity of the window) and causes children
to be reconfigured (depending on their win-gravity). For a change of width and
height, the (x, y) pairs are defined:

31



Window Functions

Gravity Direction Coordinates
NorthWestGravity (0, 0)
NorthGravity (Width/2, 0)
NorthEastGravity (Width, 0)
WestGravity (0, Height/2)
CenterGravity (Width/2, Height/2)
EastGravity (Width, Height/2)
SouthWestGravity (0, Height)
SouthGravity (Width/2, Height)
SouthEastGravity (Width, Height)

When a window with one of these bit-gravity values is resized, the corresponding
pair defines the change in position of each pixel in the window. When a window with
one of these win-gravities has its parent window resized, the corresponding pair
defines the change in position of the window within the parent. When a window is
so repositioned, a GravityNotify event is generated (see section 10.10.5).

A bit-gravity of StaticGravity indicates that the contents or origin should not move
relative to the origin of the root window. If the change in size of the window is
coupled with a change in position (x, y), then for bit-gravity the change in position of
each pixel is (−x, −y), and for win-gravity the change in position of a child when its
parent is so resized is (−x, −y). Note that StaticGravity still only takes effect when
the width or height of the window is changed, not when the window is moved.

A bit-gravity of ForgetGravity indicates that the window's contents are always
discarded after a size change, even if a backing store or save under has been
requested. The window is tiled with its background and zero or more Expose
events are generated. If no background is defined, the existing screen contents are
not altered. Some X servers may also ignore the specified bit-gravity and always
generate Expose events.

The contents and borders of inferiors are not affected by their parent's bit-gravity.
A server is permitted to ignore the specified bit-gravity and use Forget instead.

A win-gravity of UnmapGravity is like NorthWestGravity (the window is not moved),
except the child is also unmapped when the parent is resized, and an UnmapNotify
event is generated.

Backing Store Attribute
Some implementations of the X server may choose to maintain the contents of
InputOutput windows. If the X server maintains the contents of a window, the off-
screen saved pixels are known as backing store. The backing store advises the X
server on what to do with the contents of a window. The backing-store attribute can
be set to NotUseful (default), WhenMapped, or Always.

A backing-store attribute of NotUseful advises the X server that maintaining
contents is unnecessary, although some X implementations may still choose to
maintain contents and, therefore, not generate Expose events. A backing-store
attribute of WhenMapped advises the X server that maintaining contents of
obscured regions when the window is mapped would be beneficial. In this case,

32



Window Functions

the server may generate an Expose event when the window is created. A backing-
store attribute of Always advises the X server that maintaining contents even when
the window is unmapped would be beneficial. Even if the window is larger than
its parent, this is a request to the X server to maintain complete contents, not just
the region within the parent window boundaries. While the X server maintains the
window's contents, Expose events normally are not generated, but the X server may
stop maintaining contents at any time.

When the contents of obscured regions of a window are being maintained, regions
obscured by noninferior windows are included in the destination of graphics
requests (and source, when the window is the source). However, regions obscured
by inferior windows are not included.

Save Under Flag
Some server implementations may preserve contents of InputOutput windows under
other InputOutput windows. This is not the same as preserving the contents of a
window for you. You may get better visual appeal if transient windows (for example,
pop-up menus) request that the system preserve the screen contents under them,
so the temporarily obscured applications do not have to repaint.

You can set the save-under flag to True or False (default). If save-under is True,
the X server is advised that, when this window is mapped, saving the contents of
windows it obscures would be beneficial.

Backing Planes and Backing Pixel Attributes
You can set backing planes to indicate (with bits set to 1) which bit planes of an
InputOutput window hold dynamic data that must be preserved in backing store
and during save unders. The default value for the backing-planes attribute is all
bits set to 1. You can set backing pixel to specify what bits to use in planes not
covered by backing planes. The default value for the backing-pixel attribute is all
bits set to 0. The X server is free to save only the specified bit planes in the backing
store or the save under and is free to regenerate the remaining planes with the
specified pixel value. Any extraneous bits in these values (that is, those bits beyond
the specified depth of the window) may be simply ignored. If you request backing
store or save unders, you should use these members to minimize the amount of off-
screen memory required to store your window.

Event Mask and Do Not Propagate Mask Attributes
The event mask defines which events the client is interested in for this InputOutput
or InputOnly window (or, for some event types, inferiors of this window). The event
mask is the bitwise inclusive OR of zero or more of the valid event mask bits. You
can specify that no maskable events are reported by setting NoEventMask (default).

The do-not-propagate-mask attribute defines which events should not be
propagated to ancestor windows when no client has the event type selected in
this InputOutput or InputOnly window. The do-not-propagate-mask is the bitwise
inclusive OR of zero or more of the following masks: KeyPress, KeyRelease,
ButtonPress, ButtonRelease, PointerMotion, Button1Motion, Button2Motion,
Button3Motion, Button4Motion, Button5Motion, and ButtonMotion. You can specify
that all events are propagated by setting NoEventMask (default).

33



Window Functions

Override Redirect Flag
To control window placement or to add decoration, a window manager often needs
to intercept (redirect) any map or configure request. Pop-up windows, however,
often need to be mapped without a window manager getting in the way. To control
whether an InputOutput or InputOnly window is to ignore these structure control
facilities, use the override-redirect flag.

The override-redirect flag specifies whether map and configure requests on this
window should override a SubstructureRedirectMask on the parent. You can set
the override-redirect flag to True or False (default). Window managers use this
information to avoid tampering with pop-up windows (see also chapter 14).

Colormap Attribute
The colormap attribute specifies which colormap best reflects the true colors of
the InputOutput window. The colormap must have the same visual type as the
window, or a BadMatch error results. X servers capable of supporting multiple
hardware colormaps can use this information, and window managers can use it for
calls to XInstallColormap. You can set the colormap attribute to a colormap or to
CopyFromParent (default).

If you set the colormap to CopyFromParent, the parent window's colormap is copied
and used by its child. However, the child window must have the same visual type
as the parent, or a BadMatch error results. The parent window must not have a
colormap of None, or a BadMatch error results. The colormap is copied by sharing
the colormap object between the child and parent, not by making a complete copy
of the colormap contents. Subsequent changes to the parent window's colormap
attribute do not affect the child window.

Cursor Attribute
The cursor attribute specifies which cursor is to be used when the pointer is in
the InputOutput or InputOnly window. You can set the cursor to a cursor or None
(default).

If you set the cursor to None, the parent's cursor is used when the pointer is in the
InputOutput or InputOnly window, and any change in the parent's cursor will cause
an immediate change in the displayed cursor. By calling XFreeCursor, the cursor
can be freed immediately as long as no further explicit reference to it is made.

Creating Windows
Xlib provides basic ways for creating windows, and toolkits often supply higher-
level functions specifically for creating and placing top-level windows, which are
discussed in the appropriate toolkit documentation. If you do not use a toolkit,
however, you must provide some standard information or hints for the window
manager by using the Xlib inter-client communication functions (see chapter 14).

If you use Xlib to create your own top-level windows (direct children of the root
window), you must observe the following rules so that all applications interact
reasonably across the different styles of window management:

34



Window Functions

• You must never fight with the window manager for the size or placement of your
top-level window.

• You must be able to deal with whatever size window you get, even if this means
that your application just prints a message like ``Please make me bigger'' in its
window.

• You should only attempt to resize or move top-level windows in direct response to
a user request. If a request to change the size of a top-level window fails, you must
be prepared to live with what you get. You are free to resize or move the children
of top-level windows as necessary. (Toolkits often have facilities for automatic
relayout.)

• If you do not use a toolkit that automatically sets standard window properties,
you should set these properties for top-level windows before mapping them.

For further information, see chapter 14 and the Inter-Client Communication
Conventions Manual.

XCreateWindow is the more general function that allows you to set specific window
attributes when you create a window. XCreateSimpleWindow creates a window that
inherits its attributes from its parent window.

 The X server acts as if InputOnly windows do not exist for the purposes of graphics
requests, exposure processing, and VisibilityNotify events. An InputOnly window
cannot be used as a drawable (that is, as a source or destination for graphics
requests). InputOnly and InputOutput windows act identically in other respects
(properties, grabs, input control, and so on). Extension packages can define other
classes of windows.

To create an unmapped window and set its window attributes, use XCreateWindow.

Window XCreateWindow(display, parent, x, y, width, height, border_width,
depth, class, visual, valuemask, attributes);

display Specifies the connection to the X server.

parent Specifies the parent window.

x

y Specify the x and y coordinates, which are the top-
left outside corner of the created window's borders
and are relative to the inside of the parent window's
borders.

width

height Specify the width and height, which are the created
window's inside dimensions and do not include the
created window's borders. The dimensions must be
nonzero, or a BadValue error results.

border_width Specifies the width of the created window's border
in pixels.

35

../../xorg-docs/icccm/icccm.pdf#icccm
../../xorg-docs/icccm/icccm.pdf#icccm


Window Functions

depth Specifies the window's depth. A depth of
CopyFromParent means the depth is taken from the
parent.

class Specifies the created window's class. You can pass
InputOutput, InputOnly, or CopyFromParent. A class
of CopyFromParent means the class is taken from the
parent.

visual Specifies the visual type. A visual of CopyFromParent
means the visual type is taken from the parent.

valuemask Specifies which window attributes are defined in
the attributes argument. This mask is the bitwise
inclusive OR of the valid attribute mask bits. If
valuemask is zero, the attributes are ignored and are
not referenced.

attributes Specifies the structure from which the values (as
specified by the value mask) are to be taken. The
value mask should have the appropriate bits set
to indicate which attributes have been set in the
structure.

The XCreateWindow function creates an unmapped subwindow for a specified parent
window, returns the window ID of the created window, and causes the X server to
generate a CreateNotify event. The created window is placed on top in the stacking
order with respect to siblings.

The coordinate system has the X axis horizontal and the Y axis vertical with the
origin [0, 0] at the upper-left corner. Coordinates are integral, in terms of pixels,
and coincide with pixel centers. Each window and pixmap has its own coordinate
system. For a window, the origin is inside the border at the inside, upper-left corner.

The border_width for an InputOnly window must be zero, or a BadMatch error
results. For class InputOutput, the visual type and depth must be a combination
supported for the screen, or a BadMatch error results. The depth need not be the
same as the parent, but the parent must not be a window of class InputOnly, or
a BadMatch error results. For an InputOnly window, the depth must be zero, and
the visual must be one supported by the screen. If either condition is not met, a
BadMatch error results. The parent window, however, may have any depth and class.
If you specify any invalid window attribute for a window, a BadMatch error results.

The created window is not yet displayed (mapped) on the user's display. To display
the window, call XMapWindow. The new window initially uses the same cursor as its
parent. A new cursor can be defined for the new window by calling XDefineCursor.
  The window will not be visible on the screen unless it and all of its ancestors are
mapped and it is not obscured by any of its ancestors.

XCreateWindow can generate BadAlloc, BadColor, BadCursor, BadMatch,
BadPixmap, BadValue, and BadWindow errors.

To create an unmapped InputOutput subwindow of a given parent window, use
XCreateSimpleWindow.

Window XCreateSimpleWindow(display, parent, x, y, width, height,
border_width, border, background);

36



Window Functions

display Specifies the connection to the X server.

parent Specifies the parent window.

x

y Specify the x and y coordinates, which are the top-left
outside corner of the new window's borders and are
relative to the inside of the parent window's borders.

width

height Specify the width and height, which are the created
window's inside dimensions and do not include the
created window's borders. The dimensions must be
nonzero, or a BadValue error results.

border_width Specifies the width of the created window's border
in pixels.

border Specifies the border pixel value of the window.

background Specifies the background pixel value of the window.

The XCreateSimpleWindow function creates an unmapped InputOutput subwindow
for a specified parent window, returns the window ID of the created window, and
causes the X server to generate a CreateNotify event. The created window is placed
on top in the stacking order with respect to siblings. Any part of the window that
extends outside its parent window is clipped. The border_width for an InputOnly
window must be zero, or a BadMatch error results. XCreateSimpleWindow inherits
its depth, class, and visual from its parent. All other window attributes, except
background and border, have their default values.

XCreateSimpleWindow can generate BadAlloc, BadMatch, BadValue, and
BadWindow errors.

Destroying Windows
Xlib provides functions that you can use to destroy a window or destroy all
subwindows of a window.

To destroy a window and all of its subwindows, use XDestroyWindow.

XDestroyWindow(display, w);

display Specifies the connection to the X server.

w Specifies the window.

The XDestroyWindow function destroys the specified window as well as all of its
subwindows and causes the X server to generate a DestroyNotify event for each
window. The window should never be referenced again. If the window specified
by the w argument is mapped, it is unmapped automatically. The ordering of
the DestroyNotify events is such that for any given window being destroyed,
DestroyNotify is generated on any inferiors of the window before being generated
on the window itself. The ordering among siblings and across subhierarchies is not
otherwise constrained. If the window you specified is a root window, no windows

37



Window Functions

are destroyed. Destroying a mapped window will generate Expose events on other
windows that were obscured by the window being destroyed.

XDestroyWindow can generate a BadWindow error.

To destroy all subwindows of a specified window, use XDestroySubwindows.

XDestroySubwindows(display, w);

display Specifies the connection to the X server.

w Specifies the window.

The XDestroySubwindows function destroys all inferior windows of the specified
window, in bottom-to-top stacking order. It causes the X server to generate a
DestroyNotify event for each window. If any mapped subwindows were actually
destroyed, XDestroySubwindows causes the X server to generate Expose events on
the specified window. This is much more efficient than deleting many windows one
at a time because much of the work need be performed only once for all of the
windows, rather than for each window. The subwindows should never be referenced
again.

XDestroySubwindows can generate a BadWindow error.

Mapping Windows
A window is considered mapped if an XMapWindow call has been made on it. It may
not be visible on the screen for one of the following reasons:

• It is obscured by another opaque window.

• One of its ancestors is not mapped.

• It is entirely clipped by an ancestor.

Expose events are generated for the window when part or all of it becomes visible
on the screen. A client receives the Expose events only if it has asked for them.
Windows retain their position in the stacking order when they are unmapped.

A window manager may want to control the placement of subwindows. If
SubstructureRedirectMask has been selected by a window manager on a parent
window (usually a root window), a map request initiated by other clients on a child
window is not performed, and the window manager is sent a MapRequest event.
However, if the override-redirect flag on the child had been set to True (usually only
on pop-up menus), the map request is performed.

A tiling window manager might decide to reposition and resize other clients'
windows and then decide to map the window to its final location. A window manager
that wants to provide decoration might reparent the child into a frame first. For
further information, see sections 3.2.8 and 10.10. Only a single client at a time can
select for SubstructureRedirectMask.

Similarly, a single client can select for ResizeRedirectMask on a parent window.
Then, any attempt to resize the window by another client is suppressed, and the
client receives a ResizeRequest event.

To map a given window, use XMapWindow.

38



Window Functions

XMapWindow(display, w);

display Specifies the connection to the X server.

w Specifies the window.

The XMapWindow function maps the window and all of its subwindows that have had
map requests. Mapping a window that has an unmapped ancestor does not display
the window but marks it as eligible for display when the ancestor becomes mapped.
Such a window is called unviewable. When all its ancestors are mapped, the window
becomes viewable and will be visible on the screen if it is not obscured by another
window. This function has no effect if the window is already mapped.

If the override-redirect of the window is False and if some other client has selected
SubstructureRedirectMask on the parent window, then the X server generates
a MapRequest event, and the XMapWindow function does not map the window.
Otherwise, the window is mapped, and the X server generates a MapNotify event.

If the window becomes viewable and no earlier contents for it are remembered,
the X server tiles the window with its background. If the window's background is
undefined, the existing screen contents are not altered, and the X server generates
zero or more Expose events. If backing-store was maintained while the window
was unmapped, no Expose events are generated. If backing-store will now be
maintained, a full-window exposure is always generated. Otherwise, only visible
regions may be reported. Similar tiling and exposure take place for any newly
viewable inferiors.

 If the window is an InputOutput window, XMapWindow generates Expose events
on each InputOutput window that it causes to be displayed. If the client maps
and paints the window and if the client begins processing events, the window is
painted twice. To avoid this, first ask for Expose events and then map the window,
so the client processes input events as usual. The event list will include Expose for
each window that has appeared on the screen. The client's normal response to an
Expose event should be to repaint the window. This method usually leads to simpler
programs and to proper interaction with window managers.

XMapWindow can generate a BadWindow error.

To map and raise a window, use XMapRaised.

XMapRaised(display, w);

display Specifies the connection to the X server.

w Specifies the window.

The XMapRaised function essentially is similar to XMapWindow in that it maps the
window and all of its subwindows that have had map requests. However, it also
raises the specified window to the top of the stack. For additional information, see
XMapWindow.

XMapRaised can generate multiple BadWindow errors.

To map all subwindows for a specified window, use XMapSubwindows.

XMapSubwindows(display, w);

39



Window Functions

display Specifies the connection to the X server.

w Specifies the window.

The XMapSubwindows  function maps all subwindows for a specified window in top-
to-bottom stacking order. The X server generates Expose events on each newly
displayed window. This may be much more efficient than mapping many windows
one at a time because the server needs to perform much of the work only once, for
all of the windows, rather than for each window.

XMapSubwindows can generate a BadWindow error.

Unmapping Windows
Xlib provides functions that you can use to unmap a window or all subwindows.

To unmap a window, use XUnmapWindow.

XUnmapWindow(display, w);

display Specifies the connection to the X server.

w Specifies the window.

The XUnmapWindow function unmaps the specified window and causes the X server
to generate an UnmapNotify   event. If the specified window is already unmapped,
XUnmapWindow has no effect. Normal exposure processing on formerly obscured
windows is performed. Any child window will no longer be visible until another map
call is made on the parent. In other words, the subwindows are still mapped but are
not visible until the parent is mapped. Unmapping a window will generate Expose
events on windows that were formerly obscured by it.

XUnmapWindow can generate a BadWindow error.

To unmap all subwindows for a specified window, use XUnmapSubwindows.

XUnmapSubwindows(display, w);

display Specifies the connection to the X server.

w Specifies the window.

The XUnmapSubwindows function unmaps all subwindows for the specified window
in bottom-to-top stacking order. It causes the X server to generate an UnmapNotify
event on each subwindow and Expose events on formerly obscured windows.  Using
this function is much more efficient than unmapping multiple windows one at a time
because the server needs to perform much of the work only once, for all of the
windows, rather than for each window.

XUnmapSubwindows can generate a BadWindow error.

Configuring Windows

Xlib provides functions that you can use to move a window, resize a window, move
and resize a window, or change a window's border width. To change one of these

40



Window Functions

parameters, set the appropriate member of the XWindowChanges structure and
OR in the corresponding value mask in subsequent calls to XConfigureWindow. The
symbols for the value mask bits and the XWindowChanges structure are:

/* Configure window value mask bits */
#define      CWX              (1<<0)
#define      CWY              (1<<1)
#define      CWWidth          (1<<2)
#define      CWHeight         (1<<3)
#define      CWBorderWidth    (1<<4)
#define      CWSibling        (1<<5)
#define      CWStackMode      (1<<6)

/* Values */

typedef struct {
     int x, y;
     int width, height;
     int border_width;
     Window sibling;
     int stack_mode;
} XWindowChanges;

The x and y members are used to set the window's x and y coordinates, which are
relative to the parent's origin and indicate the position of the upper-left outer corner
of the window. The width and height members are used to set the inside size of the
window, not including the border, and must be nonzero, or a BadValue error results.
Attempts to configure a root window have no effect.

The border_width member is used to set the width of the border in pixels. Note that
setting just the border width leaves the outer-left corner of the window in a fixed
position but moves the absolute position of the window's origin. If you attempt to
set the border-width attribute of an InputOnly window nonzero, a BadMatch error
results.

The sibling member is used to set the sibling window for stacking operations. The
stack_mode member is used to set how the window is to be restacked and can be
set to Above, Below, TopIf, BottomIf, or Opposite.

If the override-redirect flag of the window is False and if some other client
has selected SubstructureRedirectMask on the parent, the X server generates
a ConfigureRequest event, and no further processing is performed. Otherwise,
if some other client has selected ResizeRedirectMask on the window and the
inside width or height of the window is being changed, a ResizeRequest event is
generated, and the current inside width and height are used instead. Note that the
override-redirect flag of the window has no effect on ResizeRedirectMask and that
SubstructureRedirectMask on the parent has precedence over ResizeRedirectMask
on the window.

When the geometry of the window is changed as specified, the window is restacked
among siblings, and a ConfigureNotify event is generated if the state of the window

41



Window Functions

actually changes. GravityNotify events are generated after ConfigureNotify events.
If the inside width or height of the window has actually changed, children of the
window are affected as specified.

If a window's size actually changes, the window's subwindows move according to
their window gravity. Depending on the window's bit gravity, the contents of the
window also may be moved (see section 3.2.3).

If regions of the window were obscured but now are not, exposure processing is
performed on these formerly obscured windows, including the window itself and
its inferiors. As a result of increasing the width or height, exposure processing is
also performed on any new regions of the window and any regions where window
contents are lost.

The restack check (specifically, the computation for BottomIf, TopIf, and Opposite)
is performed with respect to the window's final size and position (as controlled by
the other arguments of the request), not its initial position. If a sibling is specified
without a stack_mode, a BadMatch error results.

If a sibling and a stack_mode are specified, the window is restacked as follows:

Above The window is placed just above the sibling.
Below The window is placed just below the sibling.
TopIf If the sibling occludes the window, the window is placed at

the top of the stack.
BottomIf If the window occludes the sibling, the window is placed at

the bottom of the stack.
Opposite If the sibling occludes the window, the window is placed at

the top of the stack. If the window occludes the sibling, the
window is placed at the bottom of the stack.

If a stack_mode is specified but no sibling is specified, the window is restacked as
follows:

Above The window is placed at the top of the stack.
Below The window is placed at the bottom of the stack.
TopIf If any sibling occludes the window, the window is placed at

the top of the stack.
BottomIf If the window occludes any sibling, the window is placed at

the bottom of the stack.
Opposite If any sibling occludes the window, the window is placed at

the top of the stack. If the window occludes any sibling, the
window is placed at the bottom of the stack.

Attempts to configure a root window have no effect.

To configure a window's size, location, stacking, or border, use XConfigureWindow.

XConfigureWindow(display, w, value_mask, values);

display Specifies the connection to the X server.

w Specifies the window to be reconfigured.

42



Window Functions

value_mask Specifies which values are to be set using information in
the values structure. This mask is the bitwise inclusive
OR of the valid configure window values bits.

values Specifies the XWindowChanges structure.

The XConfigureWindow function uses the values specified in the XWindowChanges
structure to reconfigure a window's size, position, border, and stacking order. Values
not specified are taken from the existing geometry of the window.

If a sibling is specified without a stack_mode or if the window is not actually
a sibling, a BadMatch error results. Note that the computations for BottomIf,
TopIf, and Opposite are performed with respect to the window's final geometry
(as controlled by the other arguments passed to XConfigureWindow), not its initial
geometry. Any backing store contents of the window, its inferiors, and other newly
visible windows are either discarded or changed to reflect the current screen
contents (depending on the implementation).

XConfigureWindow can generate BadMatch, BadValue, and BadWindow errors.

To move a window without changing its size, use XMoveWindow.

XMoveWindow(display, w, x, y);

display Specifies the connection to the X server.

w Specifies the window to be moved.

x

y Specify the x and y coordinates, which define the new
location of the top-left pixel of the window's border or the
window itself if it has no border.

The XMoveWindow function moves the specified window to the specified x and y
coordinates, but it does not change the window's size, raise the window, or change
the mapping state of the window. Moving a mapped window may or may not lose the
window's contents depending on if the window is obscured by nonchildren and if no
backing store exists. If the contents of the window are lost, the X server generates
Expose events. Moving a mapped window generates Expose events on any formerly
obscured windows.

If the override-redirect flag of the window is False and some other client has
selected SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no further processing is performed. Otherwise, the
window is moved.

XMoveWindow can generate a BadWindow error.

To change a window's size without changing the upper-left coordinate, use
XResizeWindow.

XResizeWindow(display, w, width, height);

display Specifies the connection to the X server.

w Specifies the window.

43



Window Functions

width

height Specify the width and height, which are the interior
dimensions of the window after the call completes.

The XResizeWindow function changes the inside dimensions of the specified window,
not including its borders. This function does not change the window's upper-left
coordinate or the origin and does not restack the window. Changing the size of a
mapped window may lose its contents and generate Expose events. If a mapped
window is made smaller, changing its size generates Expose events on windows that
the mapped window formerly obscured.

If the override-redirect flag of the window is False and some other client has
selected SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no further processing is performed. If either width or
height is zero, a BadValue error results.

XResizeWindow can generate BadValue and BadWindow errors.

To change the size and location of a window, use XMoveResizeWindow.

XMoveResizeWindow(display, w, x, y, width, height);

display Specifies the connection to the X server.

w Specifies the window to be reconfigured.

x

y Specify the x and y coordinates, which define the new
position of the window relative to its parent.

width

height Specify the width and height, which define the interior size
of the window.

The XMoveResizeWindow function changes the size and location of the specified
window without raising it. Moving and resizing a mapped window may generate an
Expose event on the window. Depending on the new size and location parameters,
moving and resizing a window may generate Expose events on windows that the
window formerly obscured.

If the override-redirect flag of the window is False and some other client has
selected SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no further processing is performed. Otherwise, the
window size and location are changed.

XMoveResizeWindow can generate BadValue and BadWindow errors.

To change the border width of a given window, use XSetWindowBorderWidth.

XSetWindowBorderWidth(display, w, width);

display Specifies the connection to the X server.

w Specifies the window.

44



Window Functions

width Specifies the width of the window border.

The XSetWindowBorderWidth function sets the specified window's border width to
the specified width.

XSetWindowBorderWidth can generate a BadWindow error.

Changing Window Stacking Order

Xlib provides functions that you can use to raise, lower, circulate, or restack
windows.

To raise a window so that no sibling window obscures it, use XRaiseWindow.

XRaiseWindow(display, w);

display Specifies the connection to the X server.

w Specifies the window.

The XRaiseWindow function raises the specified window to the top of the stack so
that no sibling window obscures it. If the windows are regarded as overlapping
sheets of paper stacked on a desk, then raising a window is analogous to moving the
sheet to the top of the stack but leaving its x and y location on the desk constant.
Raising a mapped window may generate Expose events for the window and any
mapped subwindows that were formerly obscured.

If the override-redirect attribute of the window is False and some other client
has selected SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no processing is performed. Otherwise, the window
is raised.

XRaiseWindow can generate a BadWindow error.

To lower a window so that it does not obscure any sibling windows, use
XLowerWindow.

XLowerWindow(display, w);

display Specifies the connection to the X server.

w Specifies the window.

The XLowerWindow function lowers the specified window to the bottom of the stack
so that it does not obscure any sibling windows. If the windows are regarded as
overlapping sheets of paper stacked on a desk, then lowering a window is analogous
to moving the sheet to the bottom of the stack but leaving its x and y location on
the desk constant. Lowering a mapped window will generate Expose events on any
windows it formerly obscured.

If the override-redirect attribute of the window is False and some other client
has selected SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no processing is performed. Otherwise, the window
is lowered to the bottom of the stack.

XLowerWindow can generate a BadWindow error.

45



Window Functions

To circulate a subwindow up or down, use XCirculateSubwindows.

XCirculateSubwindows(display, w, direction);

display Specifies the connection to the X server.

w Specifies the window.

direction Specifies the direction (up or down) that you want
to circulate the window. You can pass RaiseLowest or
LowerHighest.

The XCirculateSubwindows function circulates children of the specified window in
the specified direction. If you specify RaiseLowest, XCirculateSubwindows raises
the lowest mapped child (if any) that is occluded by another child to the top of
the stack. If you specify LowerHighest, XCirculateSubwindows lowers the highest
mapped child (if any) that occludes another child to the bottom of the stack.
Exposure processing is then performed on formerly obscured windows. If some
other client has selected SubstructureRedirectMask on the window, the X server
generates a CirculateRequest event, and no further processing is performed. If a
child is actually restacked, the X server generates a CirculateNotify event.

XCirculateSubwindows can generate BadValue and BadWindow errors.

To raise the lowest mapped child of a window that is partially or completely occluded
by another child, use XCirculateSubwindowsUp.

XCirculateSubwindowsUp(display, w);

display Specifies the connection to the X server.

w Specifies the window.

The XCirculateSubwindowsUp function raises the lowest mapped child of the
specified window that is partially or completely occluded by another child.
Completely unobscured children are not affected. This is a convenience function
equivalent to XCirculateSubwindows with RaiseLowest specified.

XCirculateSubwindowsUp can generate a BadWindow error.

To lower the highest mapped child of a window that partially or completely occludes
another child, use XCirculateSubwindowsDown.

XCirculateSubwindowsDown(display, w);

display Specifies the connection to the X server.

w Specifies the window.

The XCirculateSubwindowsDown function lowers the highest mapped child of the
specified window that partially or completely occludes another child. Completely
unobscured children are not affected. This is a convenience function equivalent to
XCirculateSubwindows with LowerHighest specified.

XCirculateSubwindowsDown can generate a BadWindow error.

To restack a set of windows from top to bottom, use XRestackWindows.

46



Window Functions

XRestackWindows(display, windows[], nwindows);

display Specifies the connection to the X server.

windows Specifies an array containing the windows to be
restacked.

nwindows Specifies the number of windows to be restacked.

The XRestackWindows function restacks the windows in the order specified, from top
to bottom. The stacking order of the first window in the windows array is unaffected,
but the other windows in the array are stacked underneath the first window, in the
order of the array. The stacking order of the other windows is not affected. For each
window in the window array that is not a child of the specified window, a BadMatch
error results.

If the override-redirect attribute of a window is False and some other client
has selected SubstructureRedirectMask on the parent, the X server generates
ConfigureRequest events for each window whose override-redirect flag is not set,
and no further processing is performed. Otherwise, the windows will be restacked
in top-to-bottom order.

XRestackWindows can generate a BadWindow error.

Changing Window Attributes

Xlib provides functions that you can use to set window attributes.
XChangeWindowAttributes is the more general function that allows you to set one or
more window attributes provided by the XSetWindowAttributes structure. The other
functions described in this section allow you to set one specific window attribute,
such as a window's background.

To change one or more attributes for a given window, use
XChangeWindowAttributes.

XChangeWindowAttributes(display, w, valuemask, attributes);

display Specifies the connection to the X server.

w Specifies the window.

valuemask Specifies which window attributes are defined in the
attributes argument. This mask is the bitwise inclusive
OR of the valid attribute mask bits. If valuemask is
zero, the attributes are ignored and are not referenced.
The values and restrictions are the same as for
XCreateWindow.

attributes Specifies the structure from which the values (as
specified by the value mask) are to be taken. The value
mask should have the appropriate bits set to indicate
which attributes have been set in the structure (see
section 3.2).

47



Window Functions

Depending on the valuemask, the XChangeWindowAttributes function uses the
window attributes in the XSetWindowAttributes structure to change the specified
window attributes. Changing the background does not cause the window contents to
be changed. To repaint the window and its background, use XClearWindow. Setting
the border or changing the background such that the border tile origin changes
causes the border to be repainted. Changing the background of a root window
to None or ParentRelative restores the default background pixmap. Changing the
border of a root window to CopyFromParent restores the default border pixmap.
Changing the win-gravity does not affect the current position of the window.
Changing the backing-store of an obscured window to WhenMapped or Always,
or changing the backing-planes, backing-pixel, or save-under of a mapped window
may have no immediate effect. Changing the colormap of a window (that is,
defining a new map, not changing the contents of the existing map) generates
a ColormapNotify event. Changing the colormap of a visible window may have
no immediate effect on the screen because the map may not be installed (see
XInstallColormap). Changing the cursor of a root window to None restores the
default cursor. Whenever possible, you are encouraged to share colormaps.

Multiple clients can select input on the same window. Their event masks are
maintained separately. When an event is generated, it is reported to all interested
clients. However, only one client at a time can select for SubstructureRedirectMask,
ResizeRedirectMask, and ButtonPressMask. If a client attempts to select any of
these event masks and some other client has already selected one, a BadAccess
error results. There is only one do-not-propagate-mask for a window, not one per
client.

XChangeWindowAttributes can generate BadAccess, BadColor, BadCursor,
BadMatch, BadPixmap, BadValue, and BadWindow errors.

To set the background of a window to a given pixel, use XSetWindowBackground.

XSetWindowBackground(display, w, background_pixel);

display Specifies the connection to the X server.

w Specifies the window.

background_pixel Specifies the pixel that is to be used for the
background.

The XSetWindowBackground function sets the background of the window to the
specified pixel value. Changing the background does not cause the window contents
to be changed. XSetWindowBackground uses a pixmap of undefined size filled with
the pixel value you passed. If you try to change the background of an InputOnly
window, a BadMatch error results.

XSetWindowBackground can generate BadMatch and BadWindow errors.

To set the background of a window to a given pixmap, use
XSetWindowBackgroundPixmap.

XSetWindowBackgroundPixmap(display, w, background_pixmap);

display Specifies the connection to the X server.

w Specifies the window.

48



Window Functions

background_pixmap Specifies the background pixmap, ParentRelative, or
None.

  The XSetWindowBackgroundPixmap function sets the background pixmap of the
window to the specified pixmap. The background pixmap can immediately be freed
if no further explicit references to it are to be made. If ParentRelative is specified,
the background pixmap of the window's parent is used, or on the root window, the
default background is restored. If you try to change the background of an InputOnly
window, a BadMatch error results. If the background is set to None, the window
has no defined background.

XSetWindowBackgroundPixmap can generate BadMatch, BadPixmap, and
BadWindow errors. XSetWindowBackground and XSetWindowBackgroundPixmap do
not change the current contents of the window.

To change and repaint a window's border to a given pixel, use XSetWindowBorder.

XSetWindowBorder(display, w, border_pixel);

display Specifies the connection to the X server.

w Specifies the window.

border_pixel Specifies the entry in the colormap.

The XSetWindowBorder function sets the border of the window to the pixel value
you specify. If you attempt to perform this on an InputOnly window, a BadMatch
error results.

XSetWindowBorder can generate BadMatch and BadWindow errors.

To change and repaint the border tile of a given window, use
XSetWindowBorderPixmap.

XSetWindowBorderPixmap(display, w, border_pixmap);

display Specifies the connection to the X server.

w Specifies the window.

border_pixmap Specifies the border pixmap or CopyFromParent.

The XSetWindowBorderPixmap function sets the border pixmap of the window to
the pixmap you specify. The border pixmap can be freed immediately if no further
explicit references to it are to be made. If you specify CopyFromParent, a copy of
the parent window's border pixmap is used. If you attempt to perform this on an
InputOnly window, a BadMatch error results.  

XSetWindowBorderPixmap can generate BadMatch, BadPixmap, and BadWindow
errors.

To set the colormap of a given window, use XSetWindowColormap.

XSetWindowColormap(display, w, colormap);

display Specifies the connection to the X server.

w Specifies the window.

49



Window Functions

colormap Specifies the colormap.

The XSetWindowColormap function sets the specified colormap of the specified
window. The colormap must have the same visual type as the window, or a BadMatch
error results.

XSetWindowColormap can generate BadColor, BadMatch, and BadWindow errors.

To define which cursor will be used in a window, use XDefineCursor.

XDefineCursor(display, w, cursor);

display Specifies the connection to the X server.

w Specifies the window.

cursor Specifies the cursor that is to be displayed or None.

If a cursor is set, it will be used when the pointer is in the window. If the cursor is
None, it is equivalent to XUndefineCursor.

XDefineCursor can generate BadCursor and BadWindow errors.

To undefine the cursor in a given window, use XUndefineCursor.

XUndefineCursor(display, w);

display Specifies the connection to the X server.

w Specifies the window.

The XUndefineCursor function undoes the effect of a previous XDefineCursor for
this window. When the pointer is in the window, the parent's cursor will now be
used. On the root window, the default cursor is restored.

XUndefineCursor can generate a BadWindow error.

50



Chapter 4. Window Information
Functions

After you connect the display to the X server and create a window, you can use the
Xlib window information functions to:

• Obtain information about a window

• Translate screen coordinates

• Manipulate property lists

• Obtain and change window properties

• Manipulate selections

Obtaining Window Information
Xlib provides functions that you can use to obtain information about the window
tree, the window's current attributes, the window's current geometry, or the current
pointer coordinates. Because they are most frequently used by window managers,
these functions all return a status to indicate whether the window still exists.

To obtain the parent, a list of children, and number of children for a given window,
use XQueryTree.

Status XQueryTree(display, w, root_return, parent_return,
children_return, nchildren_return);

display Specifies the connection to the X server.

w Specifies the window whose list of children, root,
parent, and number of children you want to obtain.

root_return Returns the root window.

parent_return Returns the parent window.

children_return Returns the list of children.

nchildren_return Returns the number of children.

The XQueryTree function returns the root ID, the parent window ID, a pointer to
the list of children windows (NULL when there are no children), and the number
of children in the list for the specified window. The children are listed in current
stacking order, from bottom-most (first) to top-most (last). XQueryTree returns zero
if it fails and nonzero if it succeeds. To free a non-NULL children list when it is no
longer needed, use XFree.

XQueryTree can generate a BadWindow error.

To obtain the current attributes of a given window, use XGetWindowAttributes.

Status XGetWindowAttributes(display, w, window_attributes_return);

51



Window Information
Functions

display Specifies the connection to the X server.

w Specifies the window whose current attributes you
want to obtain.

window_attributes_return Returns the specified window's attributes in the
XWindowAttributes structure.

The XGetWindowAttributes function returns the current attributes for the specified
window to an XWindowAttributes structure.

typedef struct {
     int x, y;                     /* location of window */
     int width, height;            /* width and height of window */
     int border_width;             /* border width of window */
     int depth;                    /* depth of window */
     Visual *visual;               /* the associated visual structure */
     Window root;                  /* root of screen containing window */
     int class;                    /* InputOutput, InputOnly*/
     int bit_gravity;              /* one of the bit gravity values */
     int win_gravity;              /* one of the window gravity values */
     int backing_store;            /* NotUseful, WhenMapped, Always */
     unsigned long backing_planes; /* planes to be preserved if possible */
     unsigned long backing_pixel;  /* value to be used when restoring planes */
     Bool save_under;              /* boolean, should bits under be saved? */
     Colormap colormap;            /* color map to be associated with window */
     Bool map_installed;           /* boolean, is color map currently installed*/
     int map_state;                /* IsUnmapped, IsUnviewable, IsViewable */
     long all_event_masks;         /* set of events all people have interest in*/
     long your_event_mask;         /* my event mask */
     long do_not_propagate_mask;   /* set of events that should not propagate */
     Bool override_redirect;       /* boolean value for override-redirect */
     Screen *screen;               /* back pointer to correct screen */
} XWindowAttributes;

The x and y members are set to the upper-left outer corner relative to the parent
window's origin. The width and height members are set to the inside size of the
window, not including the border. The border_width member is set to the window's
border width in pixels. The depth member is set to the depth of the window (that
is, bits per pixel for the object). The visual member is a pointer to the screen's
associated Visual structure. The root member is set to the root window of the screen
containing the window. The class member is set to the window's class and can be
either InputOutput or InputOnly.

The bit_gravity member is set to the window's bit gravity and can be one of the
following:

ForgetGravity EastGravity
NorthWestGravity SouthWestGravity
NorthGravity SouthGravity
NorthEastGravity SouthEastGravity

52



Window Information
Functions

WestGravity StaticGravity

The win_gravity member is set to the window's window gravity and can be one of
the following:

UnmapGravity SouthWestGravity
NorthWestGravity SouthGravity
NorthGravity SouthEastGravity
NorthEastGravity StaticGravity
WestGravity CenterGravity
EastGravity

For additional information on gravity, see section 3.2.3.

The backing_store member is set to indicate how the X server should maintain
the contents of a window and can be WhenMapped, Always, or NotUseful. The
backing_planes member is set to indicate (with bits set to 1) which bit planes of the
window hold dynamic data that must be preserved in backing_stores and during
save_unders. The backing_pixel member is set to indicate what values to use for
planes not set in backing_planes.

The save_under member is set to True or False. The colormap member is set to
the colormap for the specified window and can be a colormap ID or None. The
map_installed member is set to indicate whether the colormap is currently installed
and can be True or False. The map_state member is set to indicate the state of
the window and can be IsUnmapped, IsUnviewable, or IsViewable. IsUnviewable is
used if the window is mapped but some ancestor is unmapped.

The all_event_masks member is set to the bitwise inclusive OR of all event masks
selected on the window by all clients. The your_event_mask member is set to
the bitwise inclusive OR of all event masks selected by the querying client. The
do_not_propagate_mask member is set to the bitwise inclusive OR of the set of
events that should not propagate.

The override_redirect member is set to indicate whether this window overrides
structure control facilities and can be True or False. Window manager clients should
ignore the window if this member is True.

The screen member is set to a screen pointer that gives you a back pointer to the
correct screen. This makes it easier to obtain the screen information without having
to loop over the root window fields to see which field matches.

XGetWindowAttributes can generate BadDrawable and BadWindow errors.

To obtain the current geometry of a given drawable, use XGetGeometry.

Status XGetGeometry(display, d, root_return, x_return, y_return,
width_return, height_return, border_width_return, depth_return);

display Specifies the connection to the X server.

d Specifies the drawable, which can be a window or a
pixmap.

root_return Returns the root window.

x_return

53



Window Information
Functions

y_return Return the x and y coordinates that define the
location of the drawable. For a window, these
coordinates specify the upper-left outer corner
relative to its parent's origin. For pixmaps, these
coordinates are always zero.

width_return

height_return Return the drawable's dimensions (width and
height). For a window, these dimensions specify the
inside size, not including the border.

border_width_return Returns the border width in pixels. If the drawable is
a pixmap, it returns zero.

depth_return Returns the depth of the drawable (bits per pixel for
the object).

The XGetGeometry function returns the root window and the current geometry of
the drawable. The geometry of the drawable includes the x and y coordinates, width
and height, border width, and depth. These are described in the argument list. It is
legal to pass to this function a window whose class is InputOnly.

XGetGeometry can generate a BadDrawable error.

Translating Screen Coordinates
Applications sometimes need to perform a coordinate transformation from the
coordinate space of one window to another window or need to determine which
window the pointing device is in. XTranslateCoordinates and XQueryPointer fulfill
these needs (and avoid any race conditions) by asking the X server to perform these
operations.

To translate a coordinate in one window to the coordinate space of another window,
use XTranslateCoordinates.

Bool XTranslateCoordinates(display, src_w, dest_w, src_x, src_y,
dest_x_return, dest_y_return, child_return);

display Specifies the connection to the X server.

src_w Specifies the source window.

dest_w Specifies the destination window.

src_x

src_y Specify the x and y coordinates within the source
window.

dest_x_return

dest_y_return Return the x and y coordinates within the destination
window.

child_return Returns the child if the coordinates are contained in
a mapped child of the destination window.

54



Window Information
Functions

If XTranslateCoordinates returns True, it takes the src_x and src_y coordinates
relative to the source window's origin and returns these coordinates to
dest_x_return and dest_y_return relative to the destination window's origin. If
XTranslateCoordinates returns False, src_w and dest_w are on different screens,
and dest_x_return and dest_y_return are zero. If the coordinates are contained
in a mapped child of dest_w, that child is returned to child_return. Otherwise,
child_return is set to None.

XTranslateCoordinates can generate a BadWindow error.

To obtain the screen coordinates of the pointer or to determine the pointer
coordinates relative to a specified window, use XQueryPointer.

Bool XQueryPointer(display, w, root_return, child_return,
root_x_return, root_y_return, win_x_return, win_y_return, mask_return);

display Specifies the connection to the X server.

w Specifies the window.

root_return Returns the root window that the pointer is in.

child_return Returns the child window that the pointer is located
in, if any.

root_x_return

root_y_return Return the pointer coordinates relative to the root
window's origin.

win_x_return

win_y_return Return the pointer coordinates relative to the
specified window.

mask_return Returns the current state of the modifier keys and
pointer buttons.

The XQueryPointer function returns the root window the pointer is logically on
and the pointer coordinates relative to the root window's origin. If XQueryPointer
returns False, the pointer is not on the same screen as the specified window,
and XQueryPointer returns None to child_return and zero to win_x_return and
win_y_return. If XQueryPointer returns True, the pointer coordinates returned to
win_x_return and win_y_return are relative to the origin of the specified window. In
this case, XQueryPointer returns the child that contains the pointer, if any, or else
None to child_return.

XQueryPointer returns the current logical state of the keyboard buttons and the
modifier keys in mask_return. It sets mask_return to the bitwise inclusive OR of one
or more of the button or modifier key bitmasks to match the current state of the
mouse buttons and the modifier keys.

Note that the logical state of a device (as seen through Xlib) may lag the physical
state if device event processing is frozen (see section 12.1).

XQueryPointer can generate a BadWindow error.

55



Window Information
Functions

Properties and Atoms
A property is a collection of named, typed data. The window system has a set of
predefined properties  (for example, the name of a window, size hints, and so on),
and users can define any other arbitrary information and associate it with windows.
Each property has a name, which is an ISO Latin-1 string. For each named property,
a unique identifier (atom) is associated with it. A property also has a type, for
example, string or integer. These types are also indicated using atoms, so arbitrary
new types can be defined. Data of only one type may be associated with a single
property name. Clients can store and retrieve properties associated with windows.
For efficiency reasons, an atom is used rather than a character string. XInternAtom
can be used to obtain the atom for property names. 

A property is also stored in one of several possible formats. The X server can
store the information as 8-bit quantities, 16-bit quantities, or 32-bit quantities. This
permits the X server to present the data in the byte order that the client expects. If
you define further properties of complex type, you must encode and decode them
yourself. These functions must be carefully written if they are to be portable. For
further information about how to write a library extension, see appendix C. The
type of a property is defined by an atom, which allows for arbitrary extension in
this type scheme. 

Certain property names are predefined in the server for commonly used functions.
The atoms for these properties are defined in <X11/Xatom.h>.    To avoid name
clashes with user symbols, the #define name for each atom has the XA_ prefix. For
an explanation of the functions that let you get and set much of the information
stored in these predefined properties, see chapter 14.

The core protocol imposes no semantics on these property names, but semantics are
specified in other X Consortium standards, such as the Inter-Client Communication
Conventions Manual and the X Logical Font Description Conventions.

You can use properties to communicate other information between applications. The
functions described in this section let you define new properties and get the unique
atom IDs in your applications.

Although any particular atom can have some client interpretation within each of the
name spaces, atoms occur in five distinct name spaces within the protocol:

• Selections

• Property names

• Property types

• Font properties

• Type of a ClientMessage event (none are built into the X server)

The built-in selection property names are:

PRIMARY SECONDARY

The built-in property names are:

56

../../xorg-docs/icccm/icccm.pdf#icccm
../../xorg-docs/icccm/icccm.pdf#icccm
../../xorg-docs/xlfd/xlfd.pdf#xlfd


Window Information
Functions

CUT_BUFFER0 RESOURCE_MANAGER
CUT_BUFFER1 WM_CLASS
CUT_BUFFER2 WM_CLIENT_MACHINE
CUT_BUFFER3 WM_COLORMAP_WINDOWS
CUT_BUFFER4 WM_COMMAND
CUT_BUFFER5 WM_HINTS
CUT_BUFFER6 WM_ICON_NAME
CUT_BUFFER7 WM_ICON_SIZE
RGB_BEST_MAP WM_NAME
RGB_BLUE_MAP WM_NORMAL_HINTS
RGB_DEFAULT_MAP WM_PROTOCOLS
RGB_GRAY_MAP WM_STATE
RGB_GREEN_MAP WM_TRANSIENT_FOR
RGB_RED_MAP WM_ZOOM_HINTS

The built-in property types are:

ARC PIXMAP
ATOM POINT
BITMAP RGB_COLOR_MAP
CARDINAL RECTANGLE
COLORMAP STRING
CURSOR VISUALID
DRAWABLE WINDOW
FONT WM_HINTS
INTEGER WM_SIZE_HINTS

The built-in font property names are:

MIN_SPACE STRIKEOUT_DESCENT
NORM_SPACE STRIKEOUT_ASCENT
MAX_SPACE ITALIC_ANGLE
END_SPACE X_HEIGHT
SUPERSCRIPT_X QUAD_WIDTH
SUPERSCRIPT_Y WEIGHT
SUBSCRIPT_X POINT_SIZE
SUBSCRIPT_Y RESOLUTION
UNDERLINE_POSITION COPYRIGHT
UNDERLINE_THICKNESS NOTICE
FONT_NAME FAMILY_NAME
FULL_NAME CAP_HEIGHT

For further information about font properties, see section 8.5.

To return an atom for a given name, use XInternAtom.

Atom XInternAtom(display, atom_name, only_if_exists);

display Specifies the connection to the X server.

atom_name Specifies the name associated with the atom you
want returned.

only_if_exists Specifies a Boolean value that indicates whether the
atom must be created.

57



Window Information
Functions

The XInternAtom function returns the atom identifier associated with the specified
atom_name string. If only_if_exists is False, the atom is created if it does not exist.
Therefore, XInternAtom can return None. If the atom name is not in the Host
Portable Character Encoding, the result is implementation-dependent. Uppercase
and lowercase matter; the strings ``thing'', ``Thing'', and ``thinG'' all designate
different atoms. The atom will remain defined even after the client's connection
closes. It will become undefined only when the last connection to the X server closes.

XInternAtom can generate BadAlloc and BadValue errors.

To return atoms for an array of names, use XInternAtoms.

Status XInternAtoms(display, names, count, only_if_exists,
atoms_return);

display Specifies the connection to the X server.

names Specifies the array of atom names.

count Specifies the number of atom names in the array.

only_if_exists Specifies a Boolean value that indicates whether the
atom must be created.

atoms_return Returns the atoms.

The XInternAtoms function returns the atom identifiers associated with the
specified names. The atoms are stored in the atoms_return array supplied by the
caller. Calling this function is equivalent to calling XInternAtom for each of the
names in turn with the specified value of only_if_exists, but this function minimizes
the number of round-trip protocol exchanges between the client and the X server.

This function returns a nonzero status if atoms are returned for all of the names;
otherwise, it returns zero.

XInternAtoms can generate BadAlloc and BadValue errors.

To return a name for a given atom identifier, use XGetAtomName.

char *XGetAtomName(display, atom);

display Specifies the connection to the X server.

atom Specifies the atom for the property name you want
returned.

The XGetAtomName function returns the name associated with the specified atom. If
the data returned by the server is in the Latin Portable Character Encoding, then the
returned string is in the Host Portable Character Encoding. Otherwise, the result
is implementation-dependent. To free the resulting string, call XFree.

XGetAtomName can generate a BadAtom error.

To return the names for an array of atom identifiers, use XGetAtomNames.

Status XGetAtomNames(display, atoms, count, names_return);

display Specifies the connection to the X server.

58



Window Information
Functions

atoms Specifies the array of atoms.

count Specifies the number of atoms in the array.

names_return Returns the atom names.

The XGetAtomNames function returns the names associated with the specified atoms.
The names are stored in the names_return array supplied by the caller. Calling this
function is equivalent to calling XGetAtomName for each of the atoms in turn, but
this function minimizes the number of round-trip protocol exchanges between the
client and the X server.

This function returns a nonzero status if names are returned for all of the atoms;
otherwise, it returns zero.

XGetAtomNames can generate a BadAtom error.

Obtaining and Changing Window Properties
You can attach a property list to every window. Each property has a name, a
type, and a value (see section 4.3). The value is an array of 8-bit, 16-bit, or 32-
bit quantities, whose interpretation is left to the clients. The type char is used to
represent 8-bit quantities, the type short is used to represent 16-bit quantities, and
the type long is used to represent 32-bit quantities.

Xlib provides functions that you can use to obtain, change, update, or interchange
window properties. In addition, Xlib provides other utility functions for inter-client
communication (see chapter 14).

To obtain the type, format, and value of a property of a given window, use
XGetWindowProperty. 

int XGetWindowProperty(display, w, property, long_offset, long_length,
delete, req_type, actual_type_return, actual_format_return,
nitems_return, bytes_after_return, prop_return);

display Specifies the connection to the X server.

w Specifies the window whose property you want to
obtain.

property Specifies the property name.

long_offset Specifies the offset in the specified property (in 32-
bit quantities) where the data is to be retrieved.

long_length Specifies the length in 32-bit multiples of the data to
be retrieved.

delete Specifies a Boolean value that determines whether
the property is deleted.

req_type Specifies the atom identifier associated with the
property type or AnyPropertyType.

actual_type_return Returns the atom identifier that defines the actual
type of the property.

59



Window Information
Functions

actual_format_return Returns the actual format of the property.

nitems_return Returns the actual number of 8-bit, 16-bit, or 32-bit
items stored in the prop_return data.

bytes_after_return Returns the number of bytes remaining to be read in
the property if a partial read was performed.

prop_return Returns the data in the specified format.

The XGetWindowProperty function returns the actual type of the property; the actual
format of the property; the number of 8-bit, 16-bit, or 32-bit items transferred; the
number of bytes remaining to be read in the property; and a pointer to the data
actually returned. XGetWindowProperty sets the return arguments as follows:

• If the specified property does not exist for the specified window,
XGetWindowProperty returns None to actual_type_return and the value zero
to actual_format_return and bytes_after_return. The nitems_return argument is
empty. In this case, the delete argument is ignored.

• If the specified property exists but its type does not match the specified type,
XGetWindowProperty returns the actual property type to actual_type_return, the
actual property format (never zero) to actual_format_return, and the property
length in bytes (even if the actual_format_return is 16 or 32) to bytes_after_return.
It also ignores the delete argument. The nitems_return argument is empty.

• If the specified property exists and either you assign AnyPropertyType to the
req_type argument or the specified type matches the actual property type,
XGetWindowProperty returns the actual property type to actual_type_return and
the actual property format (never zero) to actual_format_return. It also returns a
value to bytes_after_return and nitems_return, by defining the following values:

• N = actual length of the stored property in bytes (even if the format is 16 or 32)
I = 4 * long_offset T = N - I L = MINIMUM(T, 4 * long_length) A = N - (I + L)

• The returned value starts at byte index I in the property (indexing from zero),
and its length in bytes is L. If the value for long_offset causes L to be negative,
a BadValue error results. The value of bytes_after_return is A, giving the number
of trailing unread bytes in the stored property.

If the returned format is 8, the returned data is represented as a char array. If the
returned format is 16, the returned data is represented as a short array and should
be cast to that type to obtain the elements. If the returned format is 32, the returned
data is represented as a long array and should be cast to that type to obtain the
elements.

XGetWindowProperty always allocates one extra byte in prop_return (even if the
property is zero length) and sets it to zero so that simple properties consisting of
characters do not have to be copied into yet another string before use.

If delete is True and bytes_after_return is zero, XGetWindowProperty deletes the
property from the window and generates a PropertyNotify event on the window.

The function returns Success if it executes successfully. To free the resulting data,
use XFree.

XGetWindowProperty can generate BadAtom, BadValue, and BadWindow errors.

60



Window Information
Functions

To obtain a given window's property list, use XListProperties.

Atom *XListProperties(display, w, num_prop_return);

display Specifies the connection to the X server.

w Specifies the window whose property list you want
to obtain.

num_prop_return Returns the length of the properties array.

The XListProperties function returns a pointer to an array of atom properties that
are defined for the specified window or returns NULL if no properties were found.
To free the memory allocated by this function, use XFree.

XListProperties can generate a BadWindow error.

To change a property of a given window, use XChangeProperty.

XChangeProperty(display, w, property, type, format, mode, data,
nelements);

display Specifies the connection to the X server.

w Specifies the window whose property you want to
change.

property Specifies the property name.

type Specifies the type of the property. The X server does
not interpret the type but simply passes it back to an
application that later calls XGetWindowProperty.

format Specifies whether the data should be viewed as a list
of 8-bit, 16-bit, or 32-bit quantities. Possible values are
8, 16, and 32. This information allows the X server to
correctly perform byte-swap operations as necessary. If
the format is 16-bit or 32-bit, you must explicitly cast
your data pointer to an (unsigned char *) in the call to
XChangeProperty.

mode Specifies the mode of the operation. You
can pass PropModeReplace, PropModePrepend, or
PropModeAppend.

data Specifies the property data.

nelements Specifies the number of elements of the specified data
format.

The XChangeProperty function alters the property for the specified window
and causes the X server to generate a PropertyNotify event on that window.
XChangeProperty performs the following:

• If mode is PropModeReplace, XChangeProperty discards the previous property
value and stores the new data.

61



Window Information
Functions

• If mode is PropModePrepend or PropModeAppend, XChangeProperty inserts the
specified data before the beginning of the existing data or onto the end of the
existing data, respectively. The type and format must match the existing property
value, or a BadMatch error results. If the property is undefined, it is treated as
defined with the correct type and format with zero-length data.

If the specified format is 8, the property data must be a char array. If the specified
format is 16, the property data must be a short array. If the specified format is 32,
the property data must be a long array.

The lifetime of a property is not tied to the storing client. Properties remain until
explicitly deleted, until the window is destroyed, or until the server resets. For
a discussion of what happens when the connection to the X server is closed, see
section 2.6. The maximum size of a property is server dependent and can vary
dynamically depending on the amount of memory the server has available. (If there
is insufficient space, a BadAlloc error results.)

XChangeProperty can generate BadAlloc, BadAtom, BadMatch, BadValue, and
BadWindow errors.

To rotate a window's property list, use XRotateWindowProperties.

XRotateWindowProperties(display, w, properties[], num_prop,
npositions);

display Specifies the connection to the X server.

w Specifies the window.

properties Specifies the array of properties that are to be rotated.

num_prop Specifies the length of the properties array.

npositions Specifies the rotation amount.

The XRotateWindowProperties function allows you to rotate properties on a
window and causes the X server to generate PropertyNotify events. If the property
names in the properties array are viewed as being numbered starting from zero and
if there are num_prop property names in the list, then the value associated with
property name I becomes the value associated with property name (I + npositions)
mod N for all I from zero to N − 1. The effect is to rotate the states by npositions
places around the virtual ring of property names (right for positive npositions, left
for negative npositions). If npositions mod N is nonzero, the X server generates a
PropertyNotify event for each property in the order that they are listed in the array.
If an atom occurs more than once in the list or no property with that name is defined
for the window, a BadMatch error results. If a BadAtom or BadMatch error results,
no properties are changed.

XRotateWindowProperties can generate BadAtom, BadMatch, and BadWindow
errors.

To delete a property on a given window, use XDeleteProperty.

XDeleteProperty(display, w, property);

display Specifies the connection to the X server.

62



Window Information
Functions

w Specifies the window whose property you want to delete.

property Specifies the property name.

The XDeleteProperty function deletes the specified property only if the property
was defined on the specified window and causes the X server to generate a
PropertyNotify event on the window unless the property does not exist.

XDeleteProperty can generate BadAtom and BadWindow errors.

Selections
 Selections are one method used by applications to exchange data. By using the
property mechanism, applications can exchange data of arbitrary types and can
negotiate the type of the data. A selection can be thought of as an indirect property
with a dynamic type. That is, rather than having the property stored in the X server,
the property is maintained by some client (the owner). A selection is global in nature
(considered to belong to the user but be maintained by clients) rather than being
private to a particular window subhierarchy or a particular set of clients.

Xlib provides functions that you can use to set, get, or request conversion of
selections. This allows applications to implement the notion of current selection,
which requires that notification be sent to applications when they no longer own the
selection. Applications that support selection often highlight the current selection
and so must be informed when another application has acquired the selection so
that they can unhighlight the selection.

When a client asks for the contents of a selection, it specifies a selection target
type. This target type can be used to control the transmitted representation of the
contents. For example, if the selection is ``the last thing the user clicked on'' and
that is currently an image, then the target type might specify whether the contents
of the image should be sent in XY format or Z format.

The target type can also be used to control the class of contents transmitted, for
example, asking for the ``looks'' (fonts, line spacing, indentation, and so forth) of a
paragraph selection, not the text of the paragraph. The target type can also be used
for other purposes. The protocol does not constrain the semantics.

To set the selection owner, use XSetSelectionOwner.

XSetSelectionOwner(display, selection, owner, time);

display Specifies the connection to the X server.

selection Specifies the selection atom.

owner Specifies the owner of the specified selection atom. You
can pass a window or None.

time Specifies the time. You can pass either a timestamp or
CurrentTime.

The XSetSelectionOwner function changes the owner and last-change time for the
specified selection and has no effect if the specified time is earlier than the current
last-change time of the specified selection or is later than the current X server
time. Otherwise, the last-change time is set to the specified time, with CurrentTime

63



Window Information
Functions

replaced by the current server time. If the owner window is specified as None, then
the owner of the selection becomes None (that is, no owner). Otherwise, the owner
of the selection becomes the client executing the request.

If the new owner (whether a client or None) is not the same as the current owner
of the selection and the current owner is not None, the current owner is sent a
SelectionClear event. If the client that is the owner of a selection is later terminated
(that is, its connection is closed) or if the owner window it has specified in the
request is later destroyed, the owner of the selection automatically reverts to None,
but the last-change time is not affected. The selection atom is uninterpreted by
the X server. XGetSelectionOwner returns the owner window, which is reported in
SelectionRequest and SelectionClear events. Selections are global to the X server.

XSetSelectionOwner can generate BadAtom and BadWindow errors.

To return the selection owner, use XGetSelectionOwner.

Window XGetSelectionOwner(display, selection);

display Specifies the connection to the X server.

selection Specifies the selection atom whose owner you want
returned.

The XGetSelectionOwner function returns the window ID associated with the
window that currently owns the specified selection. If no selection was specified,
the function returns the constant None. If None is returned, there is no owner for
the selection.

XGetSelectionOwner can generate a BadAtom error.

To request conversion of a selection, use XConvertSelection.

XConvertSelection(display, selection, target, property, requestor,
time);

display Specifies the connection to the X server.

selection Specifies the selection atom.

target Specifies the target atom.

property Specifies the property name. You also can pass None.

requestor Specifies the requestor.

time Specifies the time. You can pass either a timestamp or
CurrentTime.

XConvertSelection requests that the specified selection be converted to the
specified target type:

• If the specified selection has an owner, the X server sends a SelectionRequest
event to that owner.

• If no owner for the specified selection exists, the X server generates a
SelectionNotify event to the requestor with property None.

64



Window Information
Functions

The arguments are passed on unchanged in either of the events. There are two
predefined selection atoms: PRIMARY and SECONDARY.

XConvertSelection can generate BadAtom and BadWindow errors.

65



Chapter 5. Pixmap and Cursor
Functions
Creating and Freeing Pixmaps

Pixmaps can only be used on the screen on which they were created. Pixmaps are
off-screen resources that are used for various operations, such as defining cursors
as tiling patterns or as the source for certain raster operations. Most graphics
requests can operate either on a window or on a pixmap. A bitmap is a single bit-
plane pixmap.

To create a pixmap of a given size, use XCreatePixmap.

Pixmap XCreatePixmap(display, d, width, height, depth);

display Specifies the connection to the X server.

d Specifies which screen the pixmap is created on.

width

height Specify the width and height, which define the dimensions
of the pixmap.

depth Specifies the depth of the pixmap.

The XCreatePixmap function creates a pixmap of the width, height, and depth
you specified and returns a pixmap ID that identifies it. It is valid to pass an
InputOnly window to the drawable argument. The width and height arguments must
be nonzero, or a BadValue error results. The depth argument must be one of the
depths supported by the screen of the specified drawable, or a BadValue error
results.

The server uses the specified drawable to determine on which screen to create the
pixmap. The pixmap can be used only on this screen and only with other drawables
of the same depth (see XCopyPlane for an exception to this rule). The initial contents
of the pixmap are undefined.

XCreatePixmap can generate BadAlloc, BadDrawable, and BadValue errors.

To free all storage associated with a specified pixmap, use XFreePixmap.

XFreePixmap(display, pixmap);

display Specifies the connection to the X server.

pixmap Specifies the pixmap.

The XFreePixmap function first deletes the association between the pixmap ID
and the pixmap. Then, the X server frees the pixmap storage when there are no
references to it. The pixmap should never be referenced again.

XFreePixmap can generate a BadPixmap error.

66



Pixmap and Cursor Functions

Creating, Recoloring, and Freeing Cursors
Each window can have a different cursor defined for it. Whenever the pointer is in
a visible window, it is set to the cursor defined for that window. If no cursor was
defined for that window, the cursor is the one defined for the parent window.

From X's perspective, a cursor consists of a cursor source, mask, colors, and a
hotspot. The mask pixmap determines the shape of the cursor and must be a depth
of one. The source pixmap must have a depth of one, and the colors determine the
colors of the source. The hotspot defines the point on the cursor that is reported
when a pointer event occurs. There may be limitations imposed by the hardware
on cursors as to size and whether a mask is implemented.  XQueryBestCursor can
be used to find out what sizes are possible. There is a standard font for creating
cursors, but Xlib provides functions that you can use to create cursors from an
arbitrary font or from bitmaps.

To create a cursor from the standard cursor font, use XCreateFontCursor.

#include <X11/cursorfont.h>

Cursor XCreateFontCursor(display, shape);

display Specifies the connection to the X server.

shape Specifies the shape of the cursor.

X provides a set of standard cursor shapes in a special font named cursor.
Applications are encouraged to use this interface for their cursors because the font
can be customized for the individual display type. The shape argument specifies
which glyph of the standard fonts to use.

The hotspot comes from the information stored in the cursor font. The initial colors
of a cursor are a black foreground and a white background (see XRecolorCursor).
For further information about cursor shapes, see appendix B.

XCreateFontCursor can generate BadAlloc and BadValue errors.

To create a cursor from font glyphs, use XCreateGlyphCursor.

Cursor XCreateGlyphCursor(display, source_font, mask_font, source_char,
mask_char, foreground_color, background_color);

display Specifies the connection to the X server.

source_font Specifies the font for the source glyph.

mask_font Specifies the font for the mask glyph or None.

source_char Specifies the character glyph for the source.

mask_char Specifies the glyph character for the mask.

foreground_color Specifies the RGB values for the foreground of the
source.

background_color Specifies the RGB values for the background of the
source.

67



Pixmap and Cursor Functions

The XCreateGlyphCursor function is similar to XCreatePixmapCursor except that
the source and mask bitmaps are obtained from the specified font glyphs. The
source_char must be a defined glyph in source_font, or a BadValue error results.
If mask_font is given, mask_char must be a defined glyph in mask_font, or a
BadValue error results. The mask_font and character are optional. The origins
of the source_char and mask_char (if defined) glyphs are positioned coincidently
and define the hotspot. The source_char and mask_char need not have the same
bounding box metrics, and there is no restriction on the placement of the hotspot
relative to the bounding boxes. If no mask_char is given, all pixels of the source
are displayed. You can free the fonts immediately by calling XFreeFont if no further
explicit references to them are to be made.

For 2-byte matrix fonts, the 16-bit value should be formed with the byte1 member
in the most significant byte and the byte2 member in the least significant byte.

XCreateGlyphCursor can generate BadAlloc, BadFont, and BadValue errors.

To create a cursor from two bitmaps, use XCreatePixmapCursor.

Cursor XCreatePixmapCursor(display, source, mask, foreground_color,
background_color, x, y);

display Specifies the connection to the X server.

source Specifies the shape of the source cursor.

mask Specifies the cursor's source bits to be displayed or
None.

foreground_color Specifies the RGB values for the foreground of the
source.

background_color Specifies the RGB values for the background of the
source.

x

y Specify the x and y coordinates, which indicate the
hotspot relative to the source's origin.

The XCreatePixmapCursor function creates a cursor and returns the cursor ID
associated with it. The foreground and background RGB values must be specified
using foreground_color and background_color, even if the X server only has a
StaticGray or GrayScale screen. The foreground color is used for the pixels set to 1
in the source, and the background color is used for the pixels set to 0. Both source
and mask, if specified, must have depth one (or a BadMatch error results) but can
have any root. The mask argument defines the shape of the cursor. The pixels set
to 1 in the mask define which source pixels are displayed, and the pixels set to 0
define which pixels are ignored. If no mask is given, all pixels of the source are
displayed. The mask, if present, must be the same size as the pixmap defined by the
source argument, or a BadMatch error results. The hotspot must be a point within
the source, or a BadMatch error results.

The components of the cursor can be transformed arbitrarily to meet display
limitations. The pixmaps can be freed immediately if no further explicit references
to them are to be made. Subsequent drawing in the source or mask pixmap has an

68



Pixmap and Cursor Functions

undefined effect on the cursor. The X server might or might not make a copy of the
pixmap.

XCreatePixmapCursor can generate BadAlloc and BadPixmap errors.

To determine useful cursor sizes, use XQueryBestCursor.

Status XQueryBestCursor(display, d, width, height, width_return,
height_return);

display Specifies the connection to the X server.

d Specifies the drawable, which indicates the screen.

width

height Specify the width and height of the cursor that you
want the size information for.

width_return

height_return Return the best width and height that is closest to
the specified width and height.

Some displays allow larger cursors than other displays. The XQueryBestCursor
function provides a way to find out what size cursors are actually possible on the
display.  It returns the largest size that can be displayed. Applications should be
prepared to use smaller cursors on displays that cannot support large ones.

XQueryBestCursor can generate a BadDrawable error.

To change the color of a given cursor, use XRecolorCursor.

XRecolorCursor(display, cursor, foreground_color, background_color);

display Specifies the connection to the X server.

cursor Specifies the cursor.

foreground_color Specifies the RGB values for the foreground of the
source.

background_color Specifies the RGB values for the background of the
source.

The XRecolorCursor function changes the color of the specified cursor, and if the
cursor is being displayed on a screen, the change is visible immediately. The pixel
members of the XColor structures are ignored; only the RGB values are used.

XRecolorCursor can generate a BadCursor error.

To free (destroy) a given cursor, use XFreeCursor.

XFreeCursor(display, cursor);

display Specifies the connection to the X server.

cursor Specifies the cursor.

69



Pixmap and Cursor Functions

The XFreeCursor function deletes the association between the cursor resource
ID and the specified cursor. The cursor storage is freed when no other resource
references it. The specified cursor ID should not be referred to again.

XFreeCursor can generate a BadCursor error.

70



Chapter 6. Color Management
Functions

Each X window always has an associated colormap that provides a level of
indirection between pixel values and colors displayed on the screen. Xlib provides
functions that you can use to manipulate a colormap. The X protocol defines
colors using values in the RGB color space. The RGB color space is device
dependent; rendering an RGB value on differing output devices typically results in
different colors. Xlib also provides a means for clients to specify color using device-
independent color spaces for consistent results across devices. Xlib supports device-
independent color spaces derivable from the CIE XYZ color space. This includes the
CIE XYZ, xyY, L*u*v*, and L*a*b* color spaces as well as the TekHVC color space.

This chapter discusses how to:

• Create, copy, and destroy a colormap

• Specify colors by name or value

• Allocate, modify, and free color cells

• Read entries in a colormap

• Convert between color spaces

• Control aspects of color conversion

• Query the color gamut of a screen

• Add new color spaces

All functions, types, and symbols in this chapter with the prefix ̀ `Xcms'' are defined
in <X11/Xcms.h>.    The remaining functions and types are defined in <X11/Xlib.h>.
  

Functions in this chapter manipulate the representation of color on the screen. For
each possible value that a pixel can take in a window, there is a color cell in the
colormap. For example, if a window is 4 bits deep, pixel values 0 through 15 are
defined. A colormap is a collection of color cells. A color cell consists of a triple
of red, green, and blue (RGB) values. The hardware imposes limits on the number
of significant bits in these values. As each pixel is read out of display memory, the
pixel is looked up in a colormap. The RGB value of the cell determines what color
is displayed on the screen. On a grayscale display with a black-and-white monitor,
the values are combined to determine the brightness on the screen.

Typically, an application allocates color cells or sets of color cells to obtain the
desired colors. The client can allocate read-only cells. In which case, the pixel values
for these colors can be shared among multiple applications, and the RGB value of the
cell cannot be changed. If the client allocates read/write cells, they are exclusively
owned by the client, and the color associated with the pixel value can be changed
at will. Cells must be allocated (and, if read/write, initialized with an RGB value)
by a client to obtain desired colors. The use of pixel value for an unallocated cell
results in an undefined color.

71



Color Management Functions

Because colormaps are associated with windows, X supports displays with multiple
colormaps and, indeed, different types of colormaps. If there are insufficient
colormap resources in the display, some windows will display in their true colors,
and others will display with incorrect colors. A window manager usually controls
which windows are displayed in their true colors if more than one colormap is
required for the color resources the applications are using. At any time, there
is a set of installed colormaps for a screen. Windows using one of the installed
colormaps display with true colors, and windows using other colormaps generally
display with incorrect colors. You can control the set of installed colormaps by using
XInstallColormap and XUninstallColormap.

Colormaps are local to a particular screen. Screens always have a default colormap,
and programs typically allocate cells out of this colormap. Generally, you should
not write applications that monopolize color resources. Although some hardware
supports multiple colormaps installed at one time, many of the hardware displays
built today support only a single installed colormap, so the primitives are written to
encourage sharing of colormap entries between applications.

The DefaultColormap macro returns the default colormap. The DefaultVisual
macro returns the default visual type for the specified screen.  Possible visual types
are StaticGray, GrayScale, StaticColor, PseudoColor, TrueColor, or DirectColor (see
section 3.1).

Color Structures
Functions that operate only on RGB color space values use an XColor structure,
which contains:

typedef struct {
 unsigned long pixel; /* pixel value */
 unsigned short red, green, blue; /* rgb values */
 char flags; /* DoRed, DoGreen, DoBlue */ 
 char pad;
} XColor;

The red, green, and blue values are always in the range 0 to 65535 inclusive,
independent of the number of bits actually used in the display hardware. The server
scales these values down to the range used by the hardware. Black is represented
by (0,0,0), and white is represented by (65535,65535,65535).  In some functions,
the flags member controls which of the red, green, and blue members is used and
can be the inclusive OR of zero or more of DoRed, DoGreen, and DoBlue.

Functions that operate on all color space values use an XcmsColor structure. This
structure contains a union of substructures, each supporting color specification
encoding for a particular color space. Like the XColor structure, the XcmsColor
structure contains pixel and color specification information (the spec member in
the XcmsColor structure). 

72



Color Management Functions

typedef unsigned long XcmsColorFormat;   /* Color Specification Format */

typedef struct {
 union {
  XcmsRGB RGB;
  XcmsRGBi RGBi;
  XcmsCIEXYZ CIEXYZ;
  XcmsCIEuvY CIEuvY;
  XcmsCIExyY CIExyY;
  XcmsCIELab CIELab;
  XcmsCIELuv CIELuv;
  XcmsTekHVC TekHVC;
  XcmsPad Pad;
 } spec;
 unsigned long pixel;
 XcmsColorFormat format;
} XcmsColor;   /* Xcms Color Structure */

Because the color specification can be encoded for the various color spaces,
encoding for the spec member is identified by the format member, which is of type
XcmsColorFormat. The following macros define standard formats.

#define          XcmsUndefinedFormat   0x00000000
#define          XcmsCIEXYZFormat      0x00000001  /* CIE XYZ */
#define          XcmsCIEuvYFormat      0x00000002  /* CIE u'v'Y */
#define          XcmsCIExyYFormat      0x00000003  /* CIE xyY */
#define          XcmsCIELabFormat      0x00000004  /* CIE L*a*b* */
#define          XcmsCIELuvFormat      0x00000005  /* CIE L*u*v* */
#define          XcmsTekHVCFormat      0x00000006  /* TekHVC */
#define          XcmsRGBFormat         0x80000000  /* RGB Device */
#define          XcmsRGBiFormat        0x80000001  /* RGB Intensity */

Formats for device-independent color spaces are distinguishable from those for
device-dependent spaces by the 32nd bit. If this bit is set, it indicates that the color
specification is in a device-dependent form; otherwise, it is in a device-independent
form. If the 31st bit is set, this indicates that the color space has been added to
Xlib at run time (see section 6.12.4). The format value for a color space added
at run time may be different each time the program is executed. If references to
such a color space must be made outside the client (for example, storing a color
specification in a file), then reference should be made by color space string prefix
(see XcmsFormatOfPrefix and XcmsPrefixOfFormat).

Data types that describe the color specification encoding for the various color
spaces are defined as follows: 

typedef double XcmsFloat;

typedef struct {
 unsigned short red; /* 0x0000 to 0xffff */

73



Color Management Functions

 unsigned short green; /* 0x0000 to 0xffff */
 unsigned short blue; /* 0x0000 to 0xffff */
} XcmsRGB;  /* RGB Device */

typedef struct {
 XcmsFloat red; /* 0.0 to 1.0 */
 XcmsFloat green; /* 0.0 to 1.0 */
 XcmsFloat blue; /* 0.0 to 1.0 */
} XcmsRGBi;  /* RGB Intensity */

typedef struct {
 XcmsFloat X;
 XcmsFloat Y; /* 0.0 to 1.0 */
 XcmsFloat Z;
} XcmsCIEXYZ;  /* CIE XYZ */

typedef struct {
 XcmsFloat u_prime; /* 0.0 to ~0.6 */
 XcmsFloat v_prime; /* 0.0 to ~0.6 */
 XcmsFloat Y;  /* 0.0 to 1.0 */
} XcmsCIEuvY;  /* CIE u'v'Y */

typedef struct {
 XcmsFloat x;  /* 0.0 to ~.75 */
 XcmsFloat y;  /* 0.0 to ~.85 */
 XcmsFloat Y;  /* 0.0 to 1.0 */
} XcmsCIExyY;  /* CIE xyY */

typedef struct {
 XcmsFloat L_star;  /* 0.0 to 100.0 */

74



Color Management Functions

 XcmsFloat a_star;
 XcmsFloat b_star;
} XcmsCIELab;  /* CIE L*a*b* */

typedef struct {
 XcmsFloat L_star;  /* 0.0 to 100.0 */
 XcmsFloat u_star;
 XcmsFloat v_star;
} XcmsCIELuv;  /* CIE L*u*v* */

typedef struct {
 XcmsFloat H;  /* 0.0 to 360.0 */
 XcmsFloat V;  /* 0.0 to 100.0 */
 XcmsFloat C;  /* 0.0 to 100.0 */
} XcmsTekHVC;  /* TekHVC */

typedef struct {
 XcmsFloat pad0;
 XcmsFloat pad1;
 XcmsFloat pad2;
 XcmsFloat pad3;
} XcmsPad;  /* four doubles */

The device-dependent formats provided allow color specification in:

• RGB Intensity (XcmsRGBi)

• Red, green, and blue linear intensity values, floating-point values from 0.0 to 1.0,
where 1.0 indicates full intensity, 0.5 half intensity, and so on.

• RGB Device (XcmsRGB)

• Red, green, and blue values appropriate for the specified output device. XcmsRGB
values are of type unsigned short, scaled from 0 to 65535 inclusive, and are
interchangeable with the red, green, and blue values in an XColor structure.

It is important to note that RGB Intensity values are not gamma corrected values. In
contrast, RGB Device values generated as a result of converting color specifications
are always gamma corrected, and RGB Device values acquired as a result of
querying a colormap or passed in by the client are assumed by Xlib to be gamma
corrected. The term RGB value in this manual always refers to an RGB Device value.

75



Color Management Functions

Color Strings
Xlib provides a mechanism for using string names for colors. A color string may
either contain an abstract color name or a numerical color specification. Color
strings are case-insensitive.

Color strings are used in the following functions:

• XAllocNamedColor

• XcmsAllocNamedColor

• XLookupColor

• XcmsLookupColor

• XParseColor

• XStoreNamedColor

Xlib supports the use of abstract color names, for example, red or blue. A value
for this abstract name is obtained by searching one or more color name databases.
Xlib first searches zero or more client-side databases; the number, location, and
content of these databases is implementation-dependent and might depend on the
current locale. If the name is not found, Xlib then looks for the color in the X server's
database. If the color name is not in the Host Portable Character Encoding, the
result is implementation-dependent.

A numerical color specification consists of a color space name and a set of values
in the following syntax:

<color_space_name>:<value>/.../<value>

The following are examples of valid color strings.

"CIEXYZ:0.3227/0.28133/0.2493"
"RGBi:1.0/0.0/0.0"
"rgb:00/ff/00"
"CIELuv:50.0/0.0/0.0"

The syntax and semantics of numerical specifications are given for each standard
color space in the following sections.

RGB Device String Specification
An RGB Device specification is identified by the prefix ``rgb:'' and conforms to the
following syntax:

rgb:<red>/<green>/<blue>

    <red>, <green>, <blue> := h | hh | hhh | hhhh

76



Color Management Functions

    h := single hexadecimal digits (case insignificant)

Note that h indicates the value scaled in 4 bits, hh the value scaled in 8 bits, hhh
the value scaled in 12 bits, and hhhh the value scaled in 16 bits, respectively.

Typical examples are the strings ̀ `rgb:ea/75/52'' and ̀ `rgb:ccc/320/320'', but mixed
numbers of hexadecimal digit strings (``rgb:ff/a5/0'' and ``rgb:ccc/32/0'') are also
allowed.

For backward compatibility, an older syntax for RGB Device is supported, but its
continued use is not encouraged. The syntax is an initial sharp sign character
followed by a numeric specification, in one of the following formats:

#RGB (4 bits each)
#RRGGBB (8 bits each)
#RRRGGGBBB (12 bits each)
#RRRRGGGGBBBB (16 bits each)

The R, G, and B represent single hexadecimal digits. When fewer than 16 bits each
are specified, they represent the most significant bits of the value (unlike the ̀ `rgb:''
syntax, in which values are scaled). For example, the string ``#3a7'' is the same
as ``#3000a0007000''.

RGB Intensity String Specification
An RGB intensity specification is identified by the prefix ``rgbi:'' and conforms to
the following syntax:

rgbi:<red>/<green>/<blue>

Note that red, green, and blue are floating-point values between 0.0 and 1.0,
inclusive. The input format for these values is an optional sign, a string of numbers
possibly containing a decimal point, and an optional exponent field containing an E
or e followed by a possibly signed integer string.

Device-Independent String Specifications
The standard device-independent string specifications have the following syntax:

CIEXYZ:<X>/<Y>/<Z>
CIEuvY:<u>/<v>/<Y>
CIExyY:<x>/<y>/<Y>
CIELab:<L>/<a>/<b>
CIELuv:<L>/<u>/<v>
TekHVC:<H>/<V>/<C>

All of the values (C, H, V, X, Y, Z, a, b, u, v, y, x) are floating-point values. The syntax for
these values is an optional plus or minus sign, a string of digits possibly containing a
decimal point, and an optional exponent field consisting of an ``E'' or ``e'' followed
by an optional plus or minus followed by a string of digits.

77



Color Management Functions

Color Conversion Contexts and Gamut
Mapping

When Xlib converts device-independent color specifications into device-dependent
specifications and vice versa, it uses knowledge about the color limitations of the
screen hardware. This information, typically called the device profile,  is available
in a Color Conversion Context (CCC).  

Because a specified color may be outside the color gamut of the target screen and
the white point associated with the color specification may differ from the white
point inherent to the screen, Xlib applies gamut mapping when it encounters certain
conditions: 

• Gamut compression occurs when conversion of device-independent color
specifications to device-dependent color specifications results in a color out of the
target screen's gamut.

• White adjustment occurs when the inherent white point of the screen differs from
the white point assumed by the client.

Gamut handling methods are stored as callbacks in the CCC, which in turn are used
by the color space conversion routines. Client data is also stored in the CCC for each
callback. The CCC also contains the white point the client assumes to be associated
with color specifications (that is, the Client White Point).     The client can specify
the gamut handling callbacks and client data as well as the Client White Point. Xlib
does not preclude the X client from performing other forms of gamut handling (for
example, gamut expansion); however, Xlib does not provide direct support for gamut
handling other than white adjustment and gamut compression.

Associated with each colormap is an initial CCC transparently generated by Xlib. 
Therefore, when you specify a colormap as an argument to an Xlib function, you are
indirectly specifying a CCC.   There is a default CCC associated with each screen.
Newly created CCCs inherit attributes from the default CCC, so the default CCC
attributes can be modified to affect new CCCs.  

Xcms functions in which gamut mapping can occur return Status and have specific
status values defined for them, as follows:

• XcmsFailure indicates that the function failed.

• XcmsSuccess indicates that the function succeeded. In addition, if the function
performed any color conversion, the colors did not need to be compressed.

• XcmsSuccessWithCompression indicates the function performed color conversion
and at least one of the colors needed to be compressed. The gamut compression
method is determined by the gamut compression procedure in the CCC that is
specified directly as a function argument or in the CCC indirectly specified by
means of the colormap argument.

Creating, Copying, and Destroying Colormaps
To create a colormap for a screen, use XCreateColormap.

78



Color Management Functions

Colormap XCreateColormap(display, w, visual, alloc);

display Specifies the connection to the X server.

w Specifies the window on whose screen you want to create
a colormap.

visual Specifies a visual type supported on the screen. If the visual
type is not one supported by the screen, a BadMatch error
results.

alloc Specifies the colormap entries to be allocated. You can pass
AllocNone or AllocAll.

The XCreateColormap function creates a colormap of the specified visual type for
the screen on which the specified window resides and returns the colormap ID
associated with it. Note that the specified window is only used to determine the
screen.

The initial values of the colormap entries are undefined for the visual
classes GrayScale, PseudoColor, and DirectColor. For StaticGray, StaticColor, and
TrueColor, the entries have defined values, but those values are specific to the visual
and are not defined by X. For StaticGray, StaticColor, and TrueColor, alloc must
be AllocNone, or a BadMatch error results. For the other visual classes, if alloc is
AllocNone, the colormap initially has no allocated entries, and clients can allocate
them. For information about the visual types, see section 3.1.

If alloc is AllocAll, the entire colormap is allocated writable. The initial values of all
allocated entries are undefined. For GrayScale and PseudoColor, the effect is as if an
XAllocColorCells call returned all pixel values from zero to N - 1, where N is the
colormap entries value in the specified visual. For DirectColor, the effect is as if an
XAllocColorPlanes call returned a pixel value of zero and red_mask, green_mask,
and blue_mask values containing the same bits as the corresponding masks in the
specified visual. However, in all cases, none of these entries can be freed by using
XFreeColors.

XCreateColormap can generate BadAlloc, BadMatch, BadValue, and BadWindow
errors.

To create a new colormap when the allocation out of a previously shared colormap
has failed because of resource exhaustion, use XCopyColormapAndFree.

Colormap XCopyColormapAndFree(display, colormap);

display Specifies the connection to the X server.

colormap Specifies the colormap.

The XCopyColormapAndFree function creates a colormap of the same visual type
and for the same screen as the specified colormap and returns the new colormap
ID. It also moves all of the client's existing allocation from the specified colormap
to the new colormap with their color values intact and their read-only or writable
characteristics intact and frees those entries in the specified colormap. Color values
in other entries in the new colormap are undefined. If the specified colormap was
created by the client with alloc set to AllocAll, the new colormap is also created

79



Color Management Functions

with AllocAll, all color values for all entries are copied from the specified colormap,
and then all entries in the specified colormap are freed. If the specified colormap
was not created by the client with AllocAll, the allocations to be moved are all
those pixels and planes that have been allocated by the client using XAllocColor,
XAllocNamedColor, XAllocColorCells, or XAllocColorPlanes and that have not
been freed since they were allocated.

XCopyColormapAndFree can generate BadAlloc and BadColor errors.

To destroy a colormap, use XFreeColormap. 

XFreeColormap(display, colormap);

display Specifies the connection to the X server.

colormap Specifies the colormap that you want to destroy.

The XFreeColormap function deletes the association between the colormap resource
ID and the colormap and frees the colormap storage. However, this function has
no effect on the default colormap for a screen. If the specified colormap is an
installed map for a screen, it is uninstalled (see XUninstallColormap). If the
specified colormap is defined as the colormap for a window (by XCreateWindow,
XSetWindowColormap, or XChangeWindowAttributes), XFreeColormap changes the
colormap associated with the window to None and generates a ColormapNotify
event. X does not define the colors displayed for a window with a colormap of None.

XFreeColormap can generate a BadColor error.

Mapping Color Names to Values
To map a color name to an RGB value, use XLookupColor.  

Status XLookupColor(display, colormap, color_name, exact_def_return,
screen_def_return);

display Specifies the connection to the X server.

colormap Specifies the colormap.

color_name Specifies the color name string (for example, red)
whose color definition structure you want returned.

exact_def_return Returns the exact RGB values.

screen_def_return Returns the closest RGB values provided by the
hardware.

The XLookupColor function looks up the string name of a color with respect to
the screen associated with the specified colormap. It returns both the exact color
values and the closest values provided by the screen with respect to the visual type
of the specified colormap. If the color name is not in the Host Portable Character
Encoding, the result is implementation-dependent. Use of uppercase or lowercase
does not matter. XLookupColor returns nonzero if the name is resolved; otherwise,
it returns zero.

XLookupColor can generate a BadColor error.

80



Color Management Functions

To map a color name to the exact RGB value, use XParseColor.

Status XParseColor(display, colormap, spec, exact_def_return);

display Specifies the connection to the X server.

colormap Specifies the colormap.

spec Specifies the color name string; case is ignored.

exact_def_return Returns the exact color value for later use and sets
the DoRed, DoGreen, and DoBlue flags.

The XParseColor function looks up the string name of a color with respect to the
screen associated with the specified colormap. It returns the exact color value.
If the color name is not in the Host Portable Character Encoding, the result
is implementation-dependent. Use of uppercase or lowercase does not matter.
XParseColor returns nonzero if the name is resolved; otherwise, it returns zero.

XParseColor can generate a BadColor error.

To map a color name to a value in an arbitrary color space, use XcmsLookupColor.

Status XcmsLookupColor(display, colormap, color_string,
color_exact_return, color_screen_return, result_format);

display Specifies the connection to the X server.

colormap Specifies the colormap.

color_string Specifies the color string(St.

color_exact_return Returns the color specification parsed from the color
string or parsed from the corresponding string found
in a color-name database.

color_screen_return Returns the color that can be reproduced on the
screen.

result_format Specifies the color format for the returned
color specifications (color_screen_return and
color_exact_return arguments). If the format is
XcmsUndefinedFormat and the color string contains
a numerical color specification, the specification is
returned in the format used in that numerical color
specification. If the format is XcmsUndefinedFormat
and the color string contains a color name, the
specification is returned in the format used to store
the color in the database.

The XcmsLookupColor function looks up the string name of a color with
respect to the screen associated with the specified colormap. It returns both
the exact color values and the closest values provided by the screen with
respect to the visual type of the specified colormap. The values are returned
in the format specified by result_format. If the color name is not in the Host
Portable Character Encoding, the result is implementation-dependent. Use of
uppercase or lowercase does not matter. XcmsLookupColor returns XcmsSuccess

81



Color Management Functions

or XcmsSuccessWithCompression if the name is resolved; otherwise, it returns
XcmsFailure. If XcmsSuccessWithCompression is returned, the color specification
returned in color_screen_return is the result of gamut compression.

Allocating and Freeing Color Cells
There are two ways of allocating color cells: explicitly as read-only entries, one
pixel value at a time, or read/write, where you can allocate a number of color cells
and planes simultaneously.  A read-only cell has its RGB value set by the server. 
Read/write cells do not have defined colors initially; functions described in the next
section must be used to store values into them. Although it is possible for any client
to store values into a read/write cell allocated by another client, read/write cells
normally should be considered private to the client that allocated them.

Read-only colormap cells are shared among clients. The server counts each
allocation and freeing of the cell by clients. When the last client frees a shared cell,
the cell is finally deallocated. If a single client allocates the same read-only cell
multiple times, the server counts each such allocation, not just the first one.

To allocate a read-only color cell with an RGB value, use XAllocColor.

Status XAllocColor(display, colormap, screen_in_out);

display Specifies the connection to the X server.

colormap Specifies the colormap.

screen_in_out Specifies and returns the values actually used in the
colormap.

The XAllocColor function allocates a read-only colormap entry corresponding to
the closest RGB value supported by the hardware. XAllocColor returns the pixel
value of the color closest to the specified RGB elements supported by the hardware
and returns the RGB value actually used. The corresponding colormap cell is read-
only. In addition, XAllocColor returns nonzero if it succeeded or zero if it failed.    
Multiple clients that request the same effective RGB value can be assigned the same
read-only entry, thus allowing entries to be shared. When the last client deallocates
a shared cell, it is deallocated. XAllocColor does not use or affect the flags in the
XColor structure.

XAllocColor can generate a BadColor error. delim %%

To allocate a read-only color cell with a color in arbitrary format, use
XcmsAllocColor.

Status XcmsAllocColor(display, colormap, color_in_out, result_format);

display Specifies the connection to the X server.

colormap Specifies the colormap.

color_in_out Specifies the color to allocate and returns the pixel
and color that is actually used in the colormap.

result_format Specifies the color format for the returned color
specification.

82



Color Management Functions

The XcmsAllocColor function is similar to XAllocColor except the color can be
specified in any format. The XcmsAllocColor function ultimately calls XAllocColor
to allocate a read-only color cell (colormap entry) with the specified color.
XcmsAllocColor first converts the color specified to an RGB value and then passes
this to XAllocColor. XcmsAllocColor returns the pixel value of the color cell
and the color specification actually allocated. This returned color specification is
the result of converting the RGB value returned by XAllocColor into the format
specified with the result_format argument. If there is no interest in a returned
color specification, unnecessary computation can be bypassed if result_format is set
to XcmsRGBFormat. The corresponding colormap cell is read-only. If this routine
returns XcmsFailure, the color_in_out color specification is left unchanged.

XcmsAllocColor can generate a BadColor error.

To allocate a read-only color cell using a color name and return the closest color
supported by the hardware in RGB format, use XAllocNamedColor.

Status XAllocNamedColor(display, colormap, color_name,
screen_def_return, exact_def_return);

display Specifies the connection to the X server.

colormap Specifies the colormap.

color_name Specifies the color name string (for example, red)
whose color definition structure you want returned.

screen_def_return Returns the closest RGB values provided by the
hardware.

exact_def_return Returns the exact RGB values.

The XAllocNamedColor function looks up the named color with respect to the
screen that is associated with the specified colormap. It returns both the exact
database definition and the closest color supported by the screen. The allocated
color cell is read-only. The pixel value is returned in screen_def_return. If the color
name is not in the Host Portable Character Encoding, the result is implementation-
dependent. Use of uppercase or lowercase does not matter. If screen_def_return
and exact_def_return point to the same structure, the pixel field will be set correctly,
but the color values are undefined. XAllocNamedColor returns nonzero if a cell is
allocated; otherwise, it returns zero.

XAllocNamedColor can generate a BadColor error.

To allocate a read-only color cell using a color name and return the closest color
supported by the hardware in an arbitrary format, use XcmsAllocNamedColor.

Status XcmsAllocNamedColor(display, colormap, color_string,
color_screen_return, color_exact_return, result_format);

display Specifies the connection to the X server.

colormap Specifies the colormap.

color_string Specifies the color string whose color definition
structure is to be returned.

83



Color Management Functions

color_screen_return Returns the pixel value of the color cell and color
specification that actually is stored for that cell.

color_exact_return Returns the color specification parsed from the color
string or parsed from the corresponding string found
in a color-name database.

result_format Specifies the color format for the returned
color specifications (color_screen_return and
color_exact_return arguments). If the format is
XcmsUndefinedFormat and the color string contains
a numerical color specification, the specification is
returned in the format used in that numerical color
specification. If the format is XcmsUndefinedFormat
and the color string contains a color name, the
specification is returned in the format used to store
the color in the database.

The XcmsAllocNamedColor function is similar to XAllocNamedColor except that
the color returned can be in any format specified. This function ultimately
calls XAllocColor to allocate a read-only color cell with the color specified
by a color string. The color string is parsed into an XcmsColor structure (see
XcmsLookupColor), converted to an RGB value, and finally passed to XAllocColor.
If the color name is not in the Host Portable Character Encoding, the result is
implementation-dependent. Use of uppercase or lowercase does not matter.

This function returns both the color specification as a result of parsing (exact
specification) and the actual color specification stored (screen specification).
This screen specification is the result of converting the RGB value returned
by XAllocColor into the format specified in result_format. If there is no
interest in a returned color specification, unnecessary computation can be
bypassed if result_format is set to XcmsRGBFormat. If color_screen_return and
color_exact_return point to the same structure, the pixel field will be set correctly,
but the color values are undefined.

XcmsAllocNamedColor can generate a BadColor error.

To allocate read/write color cell and color plane combinations for a PseudoColor
model, use XAllocColorCells.

Status XAllocColorCells(display, colormap, contig,
plane_masks_return[], nplanes, pixels_return[], npixels);

display Specifies the connection to the X server.

colormap Specifies the colormap.

contig Specifies a Boolean value that indicates whether the
planes must be contiguous.

plane_mask_return Returns an array of plane masks.

nplanes Specifies the number of plane masks that are to be
returned in the plane masks array.

pixels_return Returns an array of pixel values.

84



Color Management Functions

npixels Specifies the number of pixel values that are to be
returned in the pixels_return array.

The XAllocColorCells function allocates read/write color cells. The number of
colors must be positive and the number of planes nonnegative, or a BadValue error
results. If ncolors and nplanes are requested, then ncolors pixels and nplane plane
masks are returned. No mask will have any bits set to 1 in common with any other
mask or with any of the pixels. By ORing together each pixel with zero or more
masks, ncolors × 2nplanes distinct pixels can be produced. All of these are allocated
writable by the request. For GrayScale or PseudoColor, each mask has exactly one
bit set to 1. For DirectColor, each has exactly three bits set to 1. If contig is True
and if all masks are ORed together, a single contiguous set of bits set to 1 will be
formed for GrayScale or PseudoColor and three contiguous sets of bits set to 1 (one
within each pixel subfield) for DirectColor. The RGB values of the allocated entries
are undefined. XAllocColorCells returns nonzero if it succeeded or zero if it failed.

XAllocColorCells can generate BadColor and BadValue errors.

To allocate read/write color resources for a DirectColor model, use
XAllocColorPlanes.

Status XAllocColorPlanes(display, colormap, contig, pixels_return[],
ncolors, nreds, ngreens, nblues, rmask_return, gmask_return,
bmask_return);

display Specifies the connection to the X server.

colormap Specifies the colormap.

contig Specifies a Boolean value that indicates whether the
planes must be contiguous.

pixels_return Returns an array of pixel values. XAllocColorPlanes
returns the pixel values in this array.

ncolors Specifies the number of pixel values that are to be
returned in the pixels_return array.

nreds

ngreens

nblues Specify the number of red, green, and blue planes.
The value you pass must be nonnegative.

rmask_return

gmask_return

bmask_return Return bit masks for the red, green, and blue planes.

The specified ncolors must be positive; and nreds, ngreens, and nblues must be
nonnegative, or a BadValue error results. If ncolors colors, nreds reds, ngreens
greens, and nblues blues are requested, ncolors pixels are returned; and the masks
have nreds, ngreens, and nblues bits set to 1, respectively. If contig is True, each
mask will have a contiguous set of bits set to 1. No mask will have any bits set
to 1 in common with any other mask or with any of the pixels. For DirectColor,

85



Color Management Functions

each mask will lie within the corresponding pixel subfield. By ORing together
subsets of masks with each pixel value, ncolors × 2(nreds+ngreens+nblues) distinct pixel
values can be produced. All of these are allocated by the request. However, in the
colormap, there are only ncolors × 2nreds independent red entries, ncolors × 2ngreens

independent green entries, and ncolors × 2nblues independent blue entries. This is
true even for PseudoColor. When the colormap entry of a pixel value is changed
(using XStoreColors, XStoreColor, or XStoreNamedColor), the pixel is decomposed
according to the masks, and the corresponding independent entries are updated.
XAllocColorPlanes returns nonzero if it succeeded or zero if it failed.

XAllocColorPlanes can generate BadColor and BadValue errors.

 To free colormap cells, use XFreeColors.  

XFreeColors(display, colormap, pixels[], npixels, planes);

display Specifies the connection to the X server.

colormap Specifies the colormap.

pixels Specifies an array of pixel values that map to the cells in
the specified colormap.

npixels Specifies the number of pixels.

planes Specifies the planes you want to free.

The XFreeColors function frees the cells represented by pixels whose values are
in the pixels array. The planes argument should not have any bits set to 1 in
common with any of the pixels. The set of all pixels is produced by ORing together
subsets of the planes argument with the pixels. The request frees all of these
pixels that were allocated by the client (using     XAllocColor, XAllocNamedColor,
XAllocColorCells, and XAllocColorPlanes). Note that freeing an individual pixel
obtained from XAllocColorPlanes may not actually allow it to be reused until all
of its related pixels are also freed. Similarly, a read-only entry is not actually freed
until it has been freed by all clients, and if a client allocates the same read-only entry
multiple times, it must free the entry that many times before the entry is actually
freed.

All specified pixels that are allocated by the client in the colormap are freed, even
if one or more pixels produce an error. If a specified pixel is not a valid index into
the colormap, a BadValue error results. If a specified pixel is not allocated by the
client (that is, is unallocated or is only allocated by another client) or if the colormap
was created with all entries writable (by passing AllocAll to XCreateColormap), a
BadAccess error results. If more than one pixel is in error, the one that gets reported
is arbitrary.

XFreeColors can generate BadAccess, BadColor, and BadValue errors.

Modifying and Querying Colormap Cells
To store an RGB value in a single colormap cell, use XStoreColor.

XStoreColor(display, colormap, color);

86



Color Management Functions

display Specifies the connection to the X server.

colormap Specifies the colormap.

color Specifies the pixel and RGB values.

The XStoreColor function changes the colormap entry of the pixel value specified
in the pixel member of the XColor structure. You specified this value in the pixel
member of the XColor structure. This pixel value must be a read/write cell and
a valid index into the colormap. If a specified pixel is not a valid index into the
colormap, a BadValue error results. XStoreColor also changes the red, green, and/
or blue color components. You specify which color components are to be changed
by setting DoRed, DoGreen, and/or DoBlue in the flags member of the XColor
structure. If the colormap is an installed map for its screen, the changes are visible
immediately.

XStoreColor can generate BadAccess, BadColor, and BadValue errors.

To store multiple RGB values in multiple colormap cells, use XStoreColors.

XStoreColors(display, colormap, color[], ncolors);

display Specifies the connection to the X server.

colormap Specifies the colormap.

color Specifies an array of color definition structures to be
stored.

ncolors Specifies the number of XColor structures in the color
definition array.

The XStoreColors function changes the colormap entries of the pixel values
specified in the pixel members of the XColor structures. You specify which color
components are to be changed by setting DoRed, DoGreen, and/or DoBlue in the
flags member of the XColor structures. If the colormap is an installed map for its
screen, the changes are visible immediately. XStoreColors changes the specified
pixels if they are allocated writable in the colormap by any client, even if one or more
pixels generates an error. If a specified pixel is not a valid index into the colormap, a
BadValue error results. If a specified pixel either is unallocated or is allocated read-
only, a BadAccess error results. If more than one pixel is in error, the one that gets
reported is arbitrary.

XStoreColors can generate BadAccess, BadColor, and BadValue errors.

To store a color of arbitrary format in a single colormap cell, use XcmsStoreColor.

Status XcmsStoreColor(display, colormap, color);

display Specifies the connection to the X server.

colormap Specifies the colormap.

color Specifies the color cell and the color to store. Values
specified in this XcmsColor structure remain unchanged
on return.

87



Color Management Functions

The XcmsStoreColor function converts the color specified in the XcmsColor
structure into RGB values. It then uses this RGB specification in an XColor structure,
whose three flags (DoRed, DoGreen, and DoBlue) are set, in a call to XStoreColor
to change the color cell specified by the pixel member of the XcmsColor structure.
This pixel value must be a valid index for the specified colormap, and the color cell
specified by the pixel value must be a read/write cell. If the pixel value is not a valid
index, a BadValue error results. If the color cell is unallocated or is allocated read-
only, a BadAccess error results. If the colormap is an installed map for its screen,
the changes are visible immediately.

Note that XStoreColor has no return value; therefore, an XcmsSuccess return value
from this function indicates that the conversion to RGB succeeded and the call to
XStoreColor was made. To obtain the actual color stored, use XcmsQueryColor.
Because of the screen's hardware limitations or gamut compression, the color
stored in the colormap may not be identical to the color specified.

XcmsStoreColor can generate BadAccess, BadColor, and BadValue errors.

To store multiple colors of arbitrary format in multiple colormap cells, use
XcmsStoreColors.

Status XcmsStoreColors(display, colormap, colors[], ncolors,
compression_flags_return[]);

display Specifies the connection to the X server.

colormap Specifies the colormap.

colors Specifies the color specification array of XcmsColor
structures, each specifying a color cell and the color
to store in that cell. Values specified in the array
remain unchanged upon return.

ncolors Specifies the number of XcmsColor structures in the
color-specification array.

compression_flags_return Returns an array of Boolean values indicating
compression status. If a non-NULL pointer is
supplied, each element of the array is set to True if
the corresponding color was compressed and False
otherwise. Pass NULL if the compression status is not
useful.

The XcmsStoreColors function converts the colors specified in the array of
XcmsColor structures into RGB values and then uses these RGB specifications in
XColor structures, whose three flags (DoRed, DoGreen, and DoBlue) are set, in a
call to XStoreColors to change the color cells specified by the pixel member of the
corresponding XcmsColor structure. Each pixel value must be a valid index for the
specified colormap, and the color cell specified by each pixel value must be a read/
write cell. If a pixel value is not a valid index, a BadValue error results. If a color
cell is unallocated or is allocated read-only, a BadAccess error results. If more than
one pixel is in error, the one that gets reported is arbitrary. If the colormap is an
installed map for its screen, the changes are visible immediately.

Note that XStoreColors has no return value; therefore, an XcmsSuccess return
value from this function indicates that conversions to RGB succeeded and the call to

88



Color Management Functions

XStoreColors was made. To obtain the actual colors stored, use XcmsQueryColors.
Because of the screen's hardware limitations or gamut compression, the colors
stored in the colormap may not be identical to the colors specified.

XcmsStoreColors can generate BadAccess, BadColor, and BadValue errors.

To store a color specified by name in a single colormap cell, use XStoreNamedColor.

XStoreNamedColor(display, colormap, color, pixel, flags);

display Specifies the connection to the X server.

colormap Specifies the colormap.

color Specifies the color name string (for example, red).

pixel Specifies the entry in the colormap.

flags Specifies which red, green, and blue components are set.

The XStoreNamedColor function looks up the named color with respect to the
screen associated with the colormap and stores the result in the specified colormap.
The pixel argument determines the entry in the colormap. The flags argument
determines which of the red, green, and blue components are set. You can set
this member to the bitwise inclusive OR of the bits DoRed, DoGreen, and DoBlue.
If the color name is not in the Host Portable Character Encoding, the result is
implementation-dependent. Use of uppercase or lowercase does not matter. If the
specified pixel is not a valid index into the colormap, a BadValue error results. If
the specified pixel either is unallocated or is allocated read-only, a BadAccess error
results.

XStoreNamedColor can generate BadAccess, BadColor, BadName, and BadValue
errors.

The XQueryColor and XQueryColors functions take pixel values in the pixel member
of XColor structures and store in the structures the RGB values for those pixels from
the specified colormap. The values returned for an unallocated entry are undefined.
These functions also set the flags member in the XColor structure to all three colors.
If a pixel is not a valid index into the specified colormap, a BadValue error results.
If more than one pixel is in error, the one that gets reported is arbitrary.

To query the RGB value of a single colormap cell, use XQueryColor.

XQueryColor(display, colormap, def_in_out);

display Specifies the connection to the X server.

colormap Specifies the colormap.

def_in_out Specifies and returns the RGB values for the pixel
specified in the structure.

The XQueryColor function returns the current RGB value for the pixel in the XColor
structure and sets the DoRed, DoGreen, and DoBlue flags.

XQueryColor can generate BadColor and BadValue errors.

To query the RGB values of multiple colormap cells, use XQueryColors.

89



Color Management Functions

XQueryColors(display, colormap, defs_in_out[], ncolors);

display Specifies the connection to the X server.

colormap Specifies the colormap.

defs_in_out Specifies and returns an array of color definition
structures for the pixel specified in the structure.

ncolors Specifies the number of XColor structures in the color
definition array.

The XQueryColors function returns the RGB value for each pixel in each XColor
structure and sets the DoRed, DoGreen, and DoBlue flags in each structure.

XQueryColors can generate BadColor and BadValue errors.

To query the color of a single colormap cell in an arbitrary format, use
XcmsQueryColor.

Status XcmsQueryColor(display, colormap, color_in_out, result_format);

display Specifies the connection to the X server.

colormap Specifies the colormap.

color_in_out Specifies the pixel member that indicates the color
cell to query. The color specification stored for the
color cell is returned in this XcmsColor structure.

result_format Specifies the color format for the returned color
specification.

The XcmsQueryColor function obtains the RGB value for the pixel value in the pixel
member of the specified XcmsColor structure and then converts the value to the
target format as specified by the result_format argument. If the pixel is not a valid
index in the specified colormap, a BadValue error results.

XcmsQueryColor can generate BadColor and BadValue errors.

To query the color of multiple colormap cells in an arbitrary format, use
XcmsQueryColors.

Status XcmsQueryColors(display, colormap, colors_in_out[], ncolors,
result_format);

display Specifies the connection to the X server.

colormap Specifies the colormap.

colors_in_out Specifies an array of XcmsColor structures, each
pixel member indicating the color cell to query. The
color specifications for the color cells are returned in
these structures.

ncolors Specifies the number of XcmsColor structures in the
color-specification array.

90



Color Management Functions

result_format Specifies the color format for the returned color
specification.

The XcmsQueryColors function obtains the RGB values for pixel values in the pixel
members of XcmsColor structures and then converts the values to the target format
as specified by the result_format argument. If a pixel is not a valid index into the
specified colormap, a BadValue error results. If more than one pixel is in error, the
one that gets reported is arbitrary.

XcmsQueryColors can generate BadColor and BadValue errors.

Color Conversion Context Functions
This section describes functions to create, modify, and query Color Conversion
Contexts (CCCs).

Associated with each colormap is an initial CCC transparently generated by Xlib.
 Therefore, when you specify a colormap as an argument to a function, you are
indirectly specifying a CCC.   The CCC attributes that can be modified by the X
client are:

• Client White Point

• Gamut compression procedure and client data

• White point adjustment procedure and client data

The initial values for these attributes are implementation specific. The CCC
attributes for subsequently created CCCs can be defined by changing the CCC
attributes of the default CCC.   There is a default CCC associated with each screen.

Getting and Setting the Color Conversion Context of a
Colormap

To obtain the CCC associated with a colormap, use XcmsCCCOfColormap.

XcmsCCC XcmsCCCOfColormap(display, colormap);

display Specifies the connection to the X server.

colormap Specifies the colormap.

The XcmsCCCOfColormap function returns the CCC associated with the specified
colormap. Once obtained, the CCC attributes can be queried or modified.
Unless the CCC associated with the specified colormap is changed with
XcmsSetCCCOfColormap, this CCC is used when the specified colormap is used as
an argument to color functions.

To change the CCC associated with a colormap, use XcmsSetCCCOfColormap.

XcmsCCC XcmsSetCCCOfColormap(display, colormap, ccc);

display Specifies the connection to the X server.

colormap Specifies the colormap.

91



Color Management Functions

ccc Specifies the CCC.

The XcmsSetCCCOfColormap function changes the CCC associated with the specified
colormap. It returns the CCC previously associated with the colormap. If they are
not used again in the application, CCCs should be freed by calling XcmsFreeCCC.
Several colormaps may share the same CCC without restriction; this includes the
CCCs generated by Xlib with each colormap. Xlib, however, creates a new CCC with
each new colormap.

Obtaining the Default Color Conversion Context
You can change the default CCC attributes for subsequently created CCCs by
changing the CCC attributes of the default CCC.   A default CCC is associated with
each screen.

To obtain the default CCC for a screen, use XcmsDefaultCCC.

XcmsCCC XcmsDefaultCCC(display, screen_number);

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host
server.

The XcmsDefaultCCC function returns the default CCC for the specified screen.
Its visual is the default visual of the screen. Its initial gamut compression and
white point adjustment procedures as well as the associated client data are
implementation specific.

Color Conversion Context Macros
Applications should not directly modify any part of the XcmsCCC. The following lists
the C language macros, their corresponding function equivalents for other language
bindings, and what data they both can return.

DisplayOfCCC(ccc);

Display *XcmsDisplayOfCCC(ccc);

ccc Specifies the CCC.

Both return the display associated with the specified CCC.

VisualOfCCC(ccc);

Visual *XcmsVisualOfCCC(ccc);

ccc Specifies the CCC.

Both return the visual associated with the specified CCC.

ScreenNumberOfCCC(ccc);

int XcmsScreenNumberOfCCC(ccc);

ccc Specifies the CCC.

92



Color Management Functions

Both return the number of the screen associated with the specified CCC.

ScreenWhitePointOfCCC(ccc);

XcmsColor XcmsScreenWhitePointOfCCC(ccc);

ccc Specifies the CCC.

Both return the white point of the screen associated with the specified CCC.

ClientWhitePointOfCCC(ccc);

XcmsColor *XcmsClientWhitePointOfCCC(ccc);

ccc Specifies the CCC.

Both return the Client White Point of the specified CCC.

Modifying Attributes of a Color Conversion Context
To set the Client White Point in the CCC, use XcmsSetWhitePoint.

Status XcmsSetWhitePoint(ccc, color);

ccc Specifies the CCC.

color Specifies the new Client White Point.

The XcmsSetWhitePoint function changes the Client White Point in the
specified CCC. Note that the pixel member is ignored and that the color
specification is left unchanged upon return. The format for the new white
point must be XcmsCIEXYZFormat, XcmsCIEuvYFormat, XcmsCIExyYFormat, or
XcmsUndefinedFormat. If the color argument is NULL, this function sets the
format component of the Client White Point specification to XcmsUndefinedFormat,
indicating that the Client White Point is assumed to be the same as the Screen White
Point.

This function returns nonzero status if the format for the new white point is valid;
otherwise, it returns zero.

To set the gamut compression procedure and corresponding client data in a
specified CCC, use XcmsSetCompressionProc.

XcmsCompressionProc XcmsSetCompressionProc(ccc, compression_proc,
client_data);

ccc Specifies the CCC.

compression_proc Specifies the gamut compression procedure that is to
be applied when a color lies outside the screen's color
gamut. If NULL is specified and a function using this
CCC must convert a color specification to a device-
dependent format and encounters a color that lies
outside the screen's color gamut, that function will
return XcmsFailure.

client_data Specifies client data for gamut compression
procedure or NULL.

93



Color Management Functions

The XcmsSetCompressionProc function first sets the gamut compression procedure
and client data in the specified CCC with the newly specified procedure and client
data and then returns the old procedure.

To set the white point adjustment procedure and corresponding client data in a
specified CCC, use XcmsSetWhiteAdjustProc.

XcmsWhiteAdjustProc XcmsSetWhiteAdjustProc(ccc, white_adjust_proc,
client_data);

ccc Specifies the CCC.

white_adjust_proc Specifies the white point adjustment procedure.

client_data Specifies client data for white point adjustment
procedure or NULL.

The XcmsSetWhiteAdjustProc function first sets the white point adjustment
procedure and client data in the specified CCC with the newly specified procedure
and client data and then returns the old procedure.

Creating and Freeing a Color Conversion Context
You can explicitly create a CCC within your application by calling XcmsCreateCCC.
These created CCCs can then be used by those functions that explicitly call for a
CCC argument. Old CCCs that will not be used by the application should be freed
using XcmsFreeCCC.

To create a CCC, use XcmsCreateCCC.

XcmsCCC XcmsCreateCCC(display, screen_number, visual,
client_white_point, compression_proc, compression_client_data,
white_adjust_proc, white_adjust_client_data);

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host
server.

visual Specifies the visual type.

client_white_point Specifies the Client White Point. If NULL is specified,
the Client White Point is to be assumed to be the
same as the Screen White Point. Note that the pixel
member is ignored.

compression_proc Specifies the gamut compression procedure that is to
be applied when a color lies outside the screen's color
gamut. If NULL is specified and a function using this
CCC must convert a color specification to a device-
dependent format and encounters a color that lies
outside the screen's color gamut, that function will
return XcmsFailure.

compression_client_data Specifies client data for use by the gamut
compression procedure or NULL.

94



Color Management Functions

white_adjust_proc Specifies the white adjustment procedure that is to
be applied when the Client White Point differs from
the Screen White Point. NULL indicates that no white
point adjustment is desired.

white_adjust_client_data Specifies client data for use with the white point
adjustment procedure or NULL.

The XcmsCreateCCC function creates a CCC for the specified display, screen, and
visual.

To free a CCC, use XcmsFreeCCC.

void XcmsFreeCCC(ccc);

ccc Specifies the CCC.

The XcmsFreeCCC function frees the memory used for the specified CCC. Note that
default CCCs and those currently associated with colormaps are ignored.

Converting between Color Spaces
To convert an array of color specifications in arbitrary color formats to a single
destination format, use XcmsConvertColors.

Status XcmsConvertColors(ccc, colors_in_out[], ncolors, target_format,
compression_flags_return[]);

ccc Specifies the CCC. If conversion is between device-
independent color spaces only (for example, TekHVC
to CIELuv), the CCC is necessary only to specify the
Client White Point.

colors_in_out Specifies an array of color specifications. Pixel
members are ignored and remain unchanged upon
return.

ncolors Specifies the number of XcmsColor structures in the
color-specification array.

target_format Specifies the target color specification format.

compression_flags_return Returns an array of Boolean values indicating
compression status. If a non-NULL pointer is
supplied, each element of the array is set to True if
the corresponding color was compressed and False
otherwise. Pass NULL if the compression status is not
useful.

The XcmsConvertColors function converts the color specifications in the specified
array of XcmsColor structures from their current format to a single target format,
using the specified CCC. When the return value is XcmsFailure, the contents of the
color specification array are left unchanged.

The array may contain a mixture of color specification formats (for example, 3
CIE XYZ, 2 CIE Luv, and so on). When the array contains both device-independent

95



Color Management Functions

and device-dependent color specifications and the target_format argument specifies
a device-dependent format (for example, XcmsRGBiFormat, XcmsRGBFormat), all
specifications are converted to CIE XYZ format and then to the target device-
dependent format.

Callback Functions
This section describes the gamut compression and white point adjustment
callbacks.

The gamut compression procedure specified in the CCC is called when an attempt
to convert a color specification from XcmsCIEXYZ to a device-dependent format
(typically XcmsRGBi) results in a color that lies outside the screen's color gamut. If
the gamut compression procedure requires client data, this data is passed via the
gamut compression client data in the CCC.

During color specification conversion between device-independent and device-
dependent color spaces, if a white point adjustment procedure is specified in the
CCC, it is triggered when the Client White Point and Screen White Point differ. If
required, the client data is obtained from the CCC.

Prototype Gamut Compression Procedure
The gamut compression callback interface must adhere to the following:

typedef Status(*XcmsCompressionProc)(ccc, colors_in_out[], ncolors,
index, compression_flags_return[]);

ccc Specifies the CCC.

colors_in_out Specifies an array of color specifications. Pixel
members should be ignored and must remain
unchanged upon return.

ncolors Specifies the number of XcmsColor structures in the
color-specification array.

index Specifies the index into the array of XcmsColor
structures for the encountered color specification
that lies outside the screen's color gamut. Valid
values are 0 (for the first element) to ncolors - 1.

compression_flags_return Returns an array of Boolean values for indicating
compression status. If a non-NULL pointer is
supplied and a color at a given index is compressed,
then True should be stored at the corresponding
index in this array; otherwise, the array should not
be modified.

When implementing a gamut compression procedure, consider the following rules
and assumptions:

• The gamut compression procedure can attempt to compress one or multiple
specifications at a time.

96



Color Management Functions

• When called, elements 0 to index - 1 in the color specification array can
be assumed to fall within the screen's color gamut. In addition, these color
specifications are already in some device-dependent format (typically XcmsRGBi).
If any modifications are made to these color specifications, they must be in their
initial device-dependent format upon return.

• When called, the element in the color specification array specified by the index
argument contains the color specification outside the screen's color gamut
encountered by the calling routine. In addition, this color specification can be
assumed to be in XcmsCIEXYZ. Upon return, this color specification must be in
XcmsCIEXYZ.

• When called, elements from index to ncolors - 1 in the color specification array
may or may not fall within the screen's color gamut. In addition, these color
specifications can be assumed to be in XcmsCIEXYZ. If any modifications are made
to these color specifications, they must be in XcmsCIEXYZ upon return.

• The color specifications passed to the gamut compression procedure have already
been adjusted to the Screen White Point. This means that at this point the color
specification's white point is the Screen White Point.

• If the gamut compression procedure uses a device-independent color space
not initially accessible for use in the color management system, use
XcmsAddColorSpace to ensure that it is added.

Supplied Gamut Compression Procedures
The following equations are useful in describing gamut compression functions:
delim %%

%CIELab~Psychometric~Chroma ~=~ sqrt(a_star sup 2 ~+~ b_star sup 2 )%

%CIELab~Psychometric~Hue ~=~ tan sup -1 left [ b_star over a_star right ]%

%CIELuv~Psychometric~Chroma ~=~ sqrt(u_star sup 2 ~+~ v_star sup 2 )%

%CIELuv~Psychometric~Hue ~=~ tan sup -1 left [ v_star over u_star right ]%

The gamut compression callback procedures provided by Xlib are as follows:

• XcmsCIELabClipL

• This brings the encountered out-of-gamut color specification into the screen's
color gamut by reducing or increasing CIE metric lightness (L*) in the CIE L*a*b*
color space until the color is within the gamut. If the Psychometric Chroma
of the color specification is beyond maximum for the Psychometric Hue Angle,
then while maintaining the same Psychometric Hue Angle, the color will be
clipped to the CIE L*a*b* coordinates of maximum Psychometric Chroma. See
XcmsCIELabQueryMaxC. No client data is necessary.

• XcmsCIELabClipab

• This brings the encountered out-of-gamut color specification into the screen's
color gamut by reducing Psychometric Chroma, while maintaining Psychometric
Hue Angle, until the color is within the gamut. No client data is necessary.

97



Color Management Functions

• XcmsCIELabClipLab

• This brings the encountered out-of-gamut color specification into the screen's
color gamut by replacing it with CIE L*a*b* coordinates that fall within the color
gamut while maintaining the original Psychometric Hue Angle and whose vector
to the original coordinates is the shortest attainable. No client data is necessary.

• XcmsCIELuvClipL

• This brings the encountered out-of-gamut color specification into the screen's
color gamut by reducing or increasing CIE metric lightness (L*) in the CIE L*u*v*
color space until the color is within the gamut. If the Psychometric Chroma
of the color specification is beyond maximum for the Psychometric Hue Angle,
then, while maintaining the same Psychometric Hue Angle, the color will be
clipped to the CIE L*u*v* coordinates of maximum Psychometric Chroma. See
XcmsCIELuvQueryMaxC. No client data is necessary.

• XcmsCIELuvClipuv

• This brings the encountered out-of-gamut color specification into the screen's
color gamut by reducing Psychometric Chroma, while maintaining Psychometric
Hue Angle, until the color is within the gamut. No client data is necessary.

• XcmsCIELuvClipLuv

• This brings the encountered out-of-gamut color specification into the screen's
color gamut by replacing it with CIE L*u*v* coordinates that fall within the color
gamut while maintaining the original Psychometric Hue Angle and whose vector
to the original coordinates is the shortest attainable. No client data is necessary.

• XcmsTekHVCClipV

• This brings the encountered out-of-gamut color specification into the screen's
color gamut by reducing or increasing the Value dimension in the TekHVC color
space until the color is within the gamut. If Chroma of the color specification is
beyond maximum for the particular Hue, then, while maintaining the same Hue,
the color will be clipped to the Value and Chroma coordinates that represent
maximum Chroma for that particular Hue. No client data is necessary.

• XcmsTekHVCClipC

• This brings the encountered out-of-gamut color specification into the screen's
color gamut by reducing the Chroma dimension in the TekHVC color space until
the color is within the gamut. No client data is necessary.

• XcmsTekHVCClipVC

• This brings the encountered out-of-gamut color specification into the screen's
color gamut by replacing it with TekHVC coordinates that fall within the color
gamut while maintaining the original Hue and whose vector to the original
coordinates is the shortest attainable. No client data is necessary.

Prototype White Point Adjustment Procedure
The white point adjustment procedure interface must adhere to the following:

98



Color Management Functions

typedef Status (*XcmsWhiteAdjustProc)(ccc, initial_white_point,
target_white_point, target_format, colors_in_out[], ncolors,
compression_flags_return[]);

ccc Specifies the CCC.

initial_white_point Specifies the initial white point.

target_white_point Specifies the target white point.

target_format Specifies the target color specification format.

colors_in_out Specifies an array of color specifications. Pixel
members should be ignored and must remain
unchanged upon return.

ncolors Specifies the number of XcmsColor structures in the
color-specification array.

compression_flags_return Returns an array of Boolean values for indicating
compression status. If a non-NULL pointer is
supplied and a color at a given index is compressed,
then True should be stored at the corresponding
index in this array; otherwise, the array should not
be modified.

Supplied White Point Adjustment Procedures
White point adjustment procedures provided by Xlib are as follows:

• XcmsCIELabWhiteShiftColors

• This uses the CIE L*a*b* color space for adjusting the chromatic character of
colors to compensate for the chromatic differences between the source and
destination white points. This procedure simply converts the color specifications
to XcmsCIELab using the source white point and then converts to the target
specification format using the destination's white point. No client data is
necessary.

• XcmsCIELuvWhiteShiftColors

• This uses the CIE L*u*v* color space for adjusting the chromatic character of
colors to compensate for the chromatic differences between the source and
destination white points. This procedure simply converts the color specifications
to XcmsCIELuv using the source white point and then converts to the target
specification format using the destination's white point. No client data is
necessary.

• XcmsTekHVCWhiteShiftColors

• This uses the TekHVC color space for adjusting the chromatic character of
colors to compensate for the chromatic differences between the source and
destination white points. This procedure simply converts the color specifications

99



Color Management Functions

to XcmsTekHVC using the source white point and then converts to the target
specification format using the destination's white point. An advantage of this
procedure over those previously described is an attempt to minimize hue shift.
No client data is necessary.

From an implementation point of view, these white point adjustment procedures
convert the color specifications to a device-independent but white-point-dependent
color space (for example, CIE L*u*v*, CIE L*a*b*, TekHVC) using one white point
and then converting those specifications to the target color space using another
white point. In other words, the specification goes in the color space with one white
point but comes out with another white point, resulting in a chromatic shift based on
the chromatic displacement between the initial white point and target white point.
The CIE color spaces that are assumed to be white-point-independent are CIE u'v'Y,
CIE XYZ, and CIE xyY. When developing a custom white point adjustment procedure
that uses a device-independent color space not initially accessible for use in the
color management system, use XcmsAddColorSpace to ensure that it is added.

As an example, if the CCC specifies a white point adjustment procedure and if the
Client White Point and Screen White Point differ, the XcmsAllocColor function will
use the white point adjustment procedure twice:

• Once to convert to XcmsRGB

• A second time to convert from XcmsRGB

For example, assume the specification is in XcmsCIEuvY and the adjustment
procedure is XcmsCIELuvWhiteShiftColors. During conversion to XcmsRGB, the
call to XcmsAllocColor results in the following series of color specification
conversions:

• From XcmsCIEuvY to XcmsCIELuv using the Client White Point

• From XcmsCIELuv to XcmsCIEuvY using the Screen White Point

• From XcmsCIEuvY to XcmsCIEXYZ (CIE u'v'Y and XYZ are white-point-
independent color spaces)

• From XcmsCIEXYZ to XcmsRGBi

• From XcmsRGBi to XcmsRGB

The resulting RGB specification is passed to XAllocColor, and the RGB specification
returned by XAllocColor is converted back to XcmsCIEuvY by reversing the color
conversion sequence.

Gamut Querying Functions
This section describes the gamut querying functions that Xlib provides. These
functions allow the client to query the boundary of the screen's color gamut in
terms of the CIE L*a*b*, CIE L*u*v*, and TekHVC color spaces.  Functions are also
provided that allow you to query the color specification of:

• White (full-intensity red, green, and blue)

• Red (full-intensity red while green and blue are zero)

100



Color Management Functions

• Green (full-intensity green while red and blue are zero)

• Blue (full-intensity blue while red and green are zero)

• Black (zero-intensity red, green, and blue)

The white point associated with color specifications passed to and returned from
these gamut querying functions is assumed to be the Screen White Point.  This is
a reasonable assumption, because the client is trying to query the screen's color
gamut.

The following naming convention is used for the Max and Min functions:

Xcms<color_space>QueryMax<dimensions>

Xcms<color_space>QueryMin<dimensions>

The <dimensions> consists of a letter or letters that identify the dimensions of the
color space that are not fixed. For example, XcmsTekHVCQueryMaxC is given a fixed
Hue and Value for which maximum Chroma is found.

Red, Green, and Blue Queries
To obtain the color specification for black (zero-intensity red, green, and blue), use
XcmsQueryBlack.

Status XcmsQueryBlack(ccc, target_format, color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

target_format Specifies the target color specification format.

color_return Returns the color specification in the specified
target format for zero-intensity red, green, and blue.
The white point associated with the returned color
specification is the Screen White Point. The value
returned in the pixel member is undefined.

The XcmsQueryBlack function returns the color specification in the specified target
format for zero-intensity red, green, and blue.

To obtain the color specification for blue (full-intensity blue while red and green are
zero), use XcmsQueryBlue.

Status XcmsQueryBlue(ccc, target_format, color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

target_format Specifies the target color specification format.

color_return Returns the color specification in the specified target
format for full-intensity blue while red and green are
zero. The white point associated with the returned

101



Color Management Functions

color specification is the Screen White Point. The
value returned in the pixel member is undefined.

The XcmsQueryBlue function returns the color specification in the specified target
format for full-intensity blue while red and green are zero.

To obtain the color specification for green (full-intensity green while red and blue
are zero), use XcmsQueryGreen.

Status XcmsQueryGreen(ccc, target_format, color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

target_format Specifies the target color specification format.

color_return Returns the color specification in the specified target
format for full-intensity green while red and blue are
zero. The white point associated with the returned
color specification is the Screen White Point. The
value returned in the pixel member is undefined.

The XcmsQueryGreen function returns the color specification in the specified target
format for full-intensity green while red and blue are zero.

To obtain the color specification for red (full-intensity red while green and blue are
zero), use XcmsQueryRed.

Status XcmsQueryRed(ccc, target_format, color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

target_format Specifies the target color specification format.

color_return Returns the color specification in the specified target
format for full-intensity red while green and blue are
zero. The white point associated with the returned
color specification is the Screen White Point. The
value returned in the pixel member is undefined.

The XcmsQueryRed function returns the color specification in the specified target
format for full-intensity red while green and blue are zero.

To obtain the color specification for white (full-intensity red, green, and blue), use
XcmsQueryWhite.

Status XcmsQueryWhite(ccc, target_format, color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

target_format Specifies the target color specification format.

color_return Returns the color specification in the specified
target format for full-intensity red, green, and blue.

102



Color Management Functions

The white point associated with the returned color
specification is the Screen White Point. The value
returned in the pixel member is undefined.

The XcmsQueryWhite function returns the color specification in the specified target
format for full-intensity red, green, and blue.

CIELab Queries
The following equations are useful in describing the CIELab query functions: delim
%%

   

%CIELab~Psychometric~Chroma ~=~ sqrt(a_star sup 2 ~+~ b_star sup 2 )%

%CIELab~Psychometric~Hue ~=~ tan sup -1 left [ b_star over a_star right ]%

To obtain the CIE L*a*b* coordinates of maximum Psychometric Chroma for a given
Psychometric Hue Angle and CIE metric lightness (L*), use XcmsCIELabQueryMaxC.

Status XcmsCIELabQueryMaxC(ccc, hue_angle, L_star, color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find
maximum chroma.

L_star Specifies the lightness (L*) at which to find maximum
chroma.

color_return Returns the CIE L*a*b* coordinates of maximum
chroma displayable by the screen for the given hue
angle and lightness. The white point associated with
the returned color specification is the Screen White
Point. The value returned in the pixel member is
undefined.

The XcmsCIELabQueryMaxC function, given a hue angle and lightness, finds the point
of maximum chroma displayable by the screen. It returns this point in CIE L*a*b*
coordinates.

To obtain the CIE L*a*b* coordinates of maximum CIE metric lightness
(L*) for a given Psychometric Hue Angle and Psychometric Chroma, use
XcmsCIELabQueryMaxL.

Status XcmsCIELabQueryMaxL(ccc, hue_angle, chroma, color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find
maximum lightness.

103



Color Management Functions

chroma Specifies the chroma at which to find maximum
lightness.

color_return Returns the CIE L*a*b* coordinates of maximum
lightness displayable by the screen for the given hue
angle and chroma. The white point associated with
the returned color specification is the Screen White
Point. The value returned in the pixel member is
undefined.

The XcmsCIELabQueryMaxL function, given a hue angle and chroma, finds the point
in CIE L*a*b* color space of maximum lightness (L*) displayable by the screen. It
returns this point in CIE L*a*b* coordinates. An XcmsFailure return value usually
indicates that the given chroma is beyond maximum for the given hue angle.

To obtain the CIE L*a*b* coordinates of maximum Psychometric Chroma for a given
Psychometric Hue Angle, use XcmsCIELabQueryMaxLC.

Status XcmsCIELabQueryMaxLC(ccc, hue_angle, color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find
maximum chroma.

color_return Returns the CIE L*a*b* coordinates of maximum
chroma displayable by the screen for the given hue
angle. The white point associated with the returned
color specification is the Screen White Point. The
value returned in the pixel member is undefined.

The XcmsCIELabQueryMaxLC function, given a hue angle, finds the point of maximum
chroma displayable by the screen. It returns this point in CIE L*a*b* coordinates.

To obtain the CIE L*a*b* coordinates of minimum CIE metric lightness
(L*) for a given Psychometric Hue Angle and Psychometric Chroma, use
XcmsCIELabQueryMinL.

Status XcmsCIELabQueryMinL(ccc, hue_angle, chroma, color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find
minimum lightness.

chroma Specifies the chroma at which to find minimum
lightness.

color_return Returns the CIE L*a*b* coordinates of minimum
lightness displayable by the screen for the given hue
angle and chroma. The white point associated with
the returned color specification is the Screen White
Point. The value returned in the pixel member is
undefined.

104



Color Management Functions

The XcmsCIELabQueryMinL function, given a hue angle and chroma, finds the point
of minimum lightness (L*) displayable by the screen. It returns this point in CIE
L*a*b* coordinates. An XcmsFailure return value usually indicates that the given
chroma is beyond maximum for the given hue angle.

CIELuv Queries
The following equations are useful in describing the CIELuv query functions: delim
%%

   

%CIELuv~Psychometric~Chroma ~=~ sqrt(u_star sup 2 ~+~ v_star sup 2 )%

%CIELuv~Psychometric~Hue ~=~ tan sup -1 left [ v_star over u_star right ]%

To obtain the CIE L*u*v* coordinates of maximum Psychometric Chroma for a given
Psychometric Hue Angle and CIE metric lightness (L*), use XcmsCIELuvQueryMaxC.

Status XcmsCIELuvQueryMaxC(ccc, hue_angle, L_star, color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find
maximum chroma.

L_star Specifies the lightness (L*) at which to find maximum
chroma.

color_return Returns the CIE L*u*v* coordinates of maximum
chroma displayable by the screen for the given hue
angle and lightness. The white point associated with
the returned color specification is the Screen White
Point. The value returned in the pixel member is
undefined.

The XcmsCIELuvQueryMaxC function, given a hue angle and lightness, finds the point
of maximum chroma displayable by the screen. It returns this point in CIE L*u*v*
coordinates.

To obtain the CIE L*u*v* coordinates of maximum CIE metric lightness
(L*) for a given Psychometric Hue Angle and Psychometric Chroma, use
XcmsCIELuvQueryMaxL.

Status XcmsCIELuvQueryMaxL(ccc, hue_angle, chroma, color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find
maximum lightness.

L_star Specifies the lightness (L*) at which to find maximum
lightness.

105



Color Management Functions

color_return Returns the CIE L*u*v* coordinates of maximum
lightness displayable by the screen for the given hue
angle and chroma. The white point associated with
the returned color specification is the Screen White
Point. The value returned in the pixel member is
undefined.

The XcmsCIELuvQueryMaxL function, given a hue angle and chroma, finds the point
in CIE L*u*v* color space of maximum lightness (L*) displayable by the screen. It
returns this point in CIE L*u*v* coordinates. An XcmsFailure return value usually
indicates that the given chroma is beyond maximum for the given hue angle.

To obtain the CIE L*u*v* coordinates of maximum Psychometric Chroma for a given
Psychometric Hue Angle, use XcmsCIELuvQueryMaxLC.

Status XcmsCIELuvQueryMaxLC(ccc, hue_angle, color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find
maximum chroma.

color_return Returns the CIE L*u*v* coordinates of maximum
chroma displayable by the screen for the given hue
angle. The white point associated with the returned
color specification is the Screen White Point. The
value returned in the pixel member is undefined.

The XcmsCIELuvQueryMaxLC function, given a hue angle, finds the point of maximum
chroma displayable by the screen. It returns this point in CIE L*u*v* coordinates.

To obtain the CIE L*u*v* coordinates of minimum CIE metric lightness
(L*) for a given Psychometric Hue Angle and Psychometric Chroma, use
XcmsCIELuvQueryMinL.

Status XcmsCIELuvQueryMinL(ccc, hue_angle, chroma, color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue_angle Specifies the hue angle (in degrees) at which to find
minimum lightness.

chroma Specifies the chroma at which to find minimum
lightness.

color_return Returns the CIE L*u*v* coordinates of minimum
lightness displayable by the screen for the given hue
angle and chroma. The white point associated with
the returned color specification is the Screen White
Point. The value returned in the pixel member is
undefined.

The XcmsCIELuvQueryMinL function, given a hue angle and chroma, finds the point
of minimum lightness (L*) displayable by the screen. It returns this point in CIE

106



Color Management Functions

L*u*v* coordinates. An XcmsFailure return value usually indicates that the given
chroma is beyond maximum for the given hue angle.

TekHVC Queries
To obtain the maximum Chroma for a given Hue and Value, use
XcmsTekHVCQueryMaxC.

Status XcmsTekHVCQueryMaxC(ccc, hue, value, color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue Specifies the Hue in which to find the maximum
Chroma.

value Specifies the Value in which to find the maximum
Chroma.

color_return Returns the maximum Chroma along with the actual
Hue and Value at which the maximum Chroma was
found. The white point associated with the returned
color specification is the Screen White Point. The
value returned in the pixel member is undefined.

The XcmsTekHVCQueryMaxC function, given a Hue and Value, determines the
maximum Chroma in TekHVC color space displayable by the screen. It returns the
maximum Chroma along with the actual Hue and Value at which the maximum
Chroma was found.

To obtain the maximum Value for a given Hue and Chroma, use
XcmsTekHVCQueryMaxV.

Status XcmsTekHVCQueryMaxV(ccc, hue, chroma, color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue Specifies the Hue in which to find the maximum
Value.

chroma Specifies the chroma at which to find maximum
Value.

color_return Returns the maximum Value along with the Hue and
Chroma at which the maximum Value was found.
The white point associated with the returned color
specification is the Screen White Point. The value
returned in the pixel member is undefined.

The XcmsTekHVCQueryMaxV function, given a Hue and Chroma, determines the
maximum Value in TekHVC color space displayable by the screen. It returns the
maximum Value and the actual Hue and Chroma at which the maximum Value was
found.

To obtain the maximum Chroma and Value at which it is reached for a specified Hue,
use XcmsTekHVCQueryMaxVC.

107



Color Management Functions

Status XcmsTekHVCQueryMaxVC(ccc, hue, color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue Specifies the Hue in which to find the maximum
Chroma.

color_return Returns the color specification in XcmsTekHVC for
the maximum Chroma, the Value at which that
maximum Chroma is reached, and the actual Hue at
which the maximum Chroma was found. The white
point associated with the returned color specification
is the Screen White Point. The value returned in the
pixel member is undefined.

The XcmsTekHVCQueryMaxVC function, given a Hue, determines the maximum
Chroma in TekHVC color space displayable by the screen and the Value at which
that maximum Chroma is reached. It returns the maximum Chroma, the Value at
which that maximum Chroma is reached, and the actual Hue for which the maximum
Chroma was found.

To obtain a specified number of TekHVC specifications such that they contain
maximum Values for a specified Hue and the Chroma at which the maximum Values
are reached, use XcmsTekHVCQueryMaxVSamples.

Status XcmsTekHVCQueryMaxVSamples(ccc, hue, colors_return[], nsamples);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

hue Specifies the Hue for maximum Chroma/Value
samples.

nsamples Specifies the number of samples.

colors_return Returns nsamples of color specifications in
XcmsTekHVC such that the Chroma is the maximum
attainable for the Value and Hue. The white point
associated with the returned color specification is the
Screen White Point. The value returned in the pixel
member is undefined.

The XcmsTekHVCQueryMaxVSamples returns nsamples of maximum Value, the
Chroma at which that maximum Value is reached, and the actual Hue for which the
maximum Chroma was found. These sample points may then be used to plot the
maximum Value/Chroma boundary of the screen's color gamut for the specified Hue
in TekHVC color space.

To obtain the minimum Value for a given Hue and Chroma, use
XcmsTekHVCQueryMinV.

Status XcmsTekHVCQueryMinV(ccc, hue, chroma, color_return);

ccc Specifies the CCC. The CCC's Client White Point and
white point adjustment procedures are ignored.

108



Color Management Functions

hue Specifies the Hue in which to find the minimum
Value.

value Specifies the Value in which to find the minimum
Value.

color_return Returns the minimum Value and the actual Hue and
Chroma at which the minimum Value was found.
The white point associated with the returned color
specification is the Screen White Point. The value
returned in the pixel member is undefined.

The XcmsTekHVCQueryMinV function, given a Hue and Chroma, determines the
minimum Value in TekHVC color space displayable by the screen. It returns the
minimum Value and the actual Hue and Chroma at which the minimum Value was
found.

Color Management Extensions
The Xlib color management facilities can be extended in two ways:

• Device-Independent Color Spaces

• Device-independent color spaces that are derivable to CIE XYZ space can be
added using the XcmsAddColorSpace function.

• Color Characterization Function Set

• A Color Characterization Function Set consists of device-dependent color spaces
and their functions that convert between these color spaces and the CIE XYZ color
space, bundled together for a specific class of output devices. A function set can
be added using the XcmsAddFunctionSet function.

Color Spaces
The CIE XYZ color space serves as the hub for all conversions between device-
independent and device-dependent color spaces. Therefore, the knowledge to
convert an XcmsColor structure to and from CIE XYZ format is associated with
each color space. For example, conversion from CIE L*u*v* to RGB requires the
knowledge to convert from CIE L*u*v* to CIE XYZ and from CIE XYZ to RGB.
This knowledge is stored as an array of functions that, when applied in series, will
convert the XcmsColor structure to or from CIE XYZ format. This color specification
conversion mechanism facilitates the addition of color spaces.

Of course, when converting between only device-independent color spaces or
only device-dependent color spaces, shortcuts are taken whenever possible. For
example, conversion from TekHVC to CIE L*u*v* is performed by intermediate
conversion to CIE u*v*Y and then to CIE L*u*v*, thus bypassing conversion between
CIE u*v*Y and CIE XYZ.

Adding Device-Independent Color Spaces
To add a device-independent color space, use XcmsAddColorSpace.

109



Color Management Functions

Status XcmsAddColorSpace(color_space);

color_space Specifies the device-independent color space to add.

The XcmsAddColorSpace function makes a device-independent color space (actually
an XcmsColorSpace structure) accessible by the color management system.
Because format values for unregistered color spaces are assigned at run time, they
should be treated as private to the client. If references to an unregistered color
space must be made outside the client (for example, storing color specifications in
a file using the unregistered color space), then reference should be made by color
space prefix (see XcmsFormatOfPrefix and XcmsPrefixOfFormat).

If the XcmsColorSpace structure is already accessible in the color management
system, XcmsAddColorSpace returns XcmsSuccess.

Note that added XcmsColorSpaces must be retained for reference by Xlib.

Querying Color Space Format and Prefix
To obtain the format associated with the color space associated with a specified
color string prefix, use XcmsFormatOfPrefix.

XcmsColorFormat XcmsFormatOfPrefix(prefix);

prefix Specifies the string that contains the color space prefix.

The XcmsFormatOfPrefix function returns the format for the specified color space
prefix (for example, the string ``CIEXYZ''). The prefix is case-insensitive. If the
color space is not accessible in the color management system, XcmsFormatOfPrefix
returns XcmsUndefinedFormat.

To obtain the color string prefix associated with the color space specified by a color
format, use XcmsPrefixOfFormat.

char *XcmsPrefixOfFormat(format);

format Specifies the color specification format.

The XcmsPrefixOfFormat function returns the string prefix associated with the
color specification encoding specified by the format argument. Otherwise, if no
encoding is found, it returns NULL. The returned string must be treated as read-
only.

Creating Additional Color Spaces
Color space specific information necessary for color space conversion and color
string parsing is stored in an XcmsColorSpace structure. Therefore, a new structure
containing this information is required for each additional color space. In the case of
device-independent color spaces, a handle to this new structure (that is, by means
of a global variable) is usually made accessible to the client program for use with
the XcmsAddColorSpace function.

If a new XcmsColorSpace structure specifies a color space not registered with
the X Consortium, they should be treated as private to the client because format
values for unregistered color spaces are assigned at run time. If references to an
unregistered color space must be made outside the client (for example, storing color

110



Color Management Functions

specifications in a file using the unregistered color space), then reference should be
made by color space prefix (see XcmsFormatOfPrefix and XcmsPrefixOfFormat).

typedef (*XcmsConversionProc)();
typedef XcmsConversionProc *XcmsFuncListPtr;
  /* A NULL terminated list of function pointers*/

typedef struct _XcmsColorSpace {
 char *prefix;
 XcmsColorFormat format;
 XcmsParseStringProc parseString;
 XcmsFuncListPtr to_CIEXYZ;
 XcmsFuncListPtr from_CIEXYZ;
 int inverse_flag;
} XcmsColorSpace;

The prefix member specifies the prefix that indicates a color string is in this color
space's string format. For example, the strings ̀ `ciexyz'' or ̀ `CIEXYZ'' for CIE XYZ,
and ``rgb'' or ``RGB'' for RGB. The prefix is case insensitive. The format member
specifies the color specification format. Formats for unregistered color spaces are
assigned at run time. The parseString member contains a pointer to the function
that can parse a color string into an XcmsColor structure. This function returns
an integer (int): nonzero if it succeeded and zero otherwise. The to_CIEXYZ and
from_CIEXYZ members contain pointers, each to a NULL terminated list of function
pointers. When the list of functions is executed in series, it will convert the color
specified in an XcmsColor structure from/to the current color space format to/from
the CIE XYZ format. Each function returns an integer (int): nonzero if it succeeded
and zero otherwise. The white point to be associated with the colors is specified
explicitly, even though white points can be found in the CCC. The inverse_flag
member, if nonzero, specifies that for each function listed in to_CIEXYZ, its inverse
function can be found in from_CIEXYZ such that:

Given:  n = number of functions in each list

for each i, such that 0 <= i < n
    from_CIEXYZ[n - i - 1] is the inverse of to_CIEXYZ[i].

This allows Xlib to use the shortest conversion path, thus bypassing CIE XYZ if
possible (for example, TekHVC to CIE L*u*v*).

Parse String Callback
The callback in the XcmsColorSpace structure for parsing a color string for the
particular color space must adhere to the following software interface specification:

Status XcmsParseStringProc(color_string, color_return);

color_string Specifies the color string to parse.

color_return Returns the color specification in the color space's
format.

111



Color Management Functions

Color Specification Conversion Callback
Callback functions in the XcmsColorSpace structure for converting a color
specification between device-independent spaces must adhere to the following
software interface specification:

Status ConversionProc(ccc, white_point, colors_in_out, ncolors);

ccc Specifies the CCC.

white_point Specifies the white point associated with color
specifications. The pixel member should be ignored,
and the entire structure remain unchanged upon
return.

colors_in_out Specifies an array of color specifications. Pixel
members should be ignored and must remain
unchanged upon return.

ncolors Specifies the number of XcmsColor structures in the
color-specification array.

Callback functions in the XcmsColorSpace structure for converting a color
specification to or from a device-dependent space must adhere to the following
software interface specification:

Status ConversionProc(ccc, colors_in_out, ncolors,
compression_flags_return[]);

ccc Specifies the CCC.

colors_in_out Specifies an array of color specifications. Pixel
members should be ignored and must remain
unchanged upon return.

ncolors Specifies the number of XcmsColor structures in the
color-specification array.

compression_flags_return Returns an array of Boolean values for indicating
compression status. If a non-NULL pointer is
supplied and a color at a given index is compressed,
then True should be stored at the corresponding
index in this array; otherwise, the array should not
be modified.

Conversion functions are available globally for use by other color spaces. The
conversion functions provided by Xlib are:

Function Converts from Converts to
XcmsCIELabToCIEXYZ XcmsCIELabFormat XcmsCIEXYZFormat
XcmsCIELuvToCIEuvY XcmsCIELuvFormat XcmsCIEuvYFormat
XcmsCIEXYZToCIELab XcmsCIEXYZFormat XcmsCIELabFormat
XcmsCIEXYZToCIEuvY XcmsCIEXYZFormat XcmsCIEuvYFormat
XcmsCIEXYZToCIExyY XcmsCIEXYZFormat XcmsCIExyYFormat

112



Color Management Functions

Function Converts from Converts to
XcmsCIEXYZToRGBi XcmsCIEXYZFormat XcmsRGBiFormat
XcmsCIEuvYToCIELuv XcmsCIEuvYFormat XcmsCIELabFormat
XcmsCIEuvYToCIEXYZ XcmsCIEuvYFormat XcmsCIEXYZFormat
XcmsCIEuvYToTekHVC XcmsCIEuvYFormat XcmsTekHVCFormat
XcmsCIExyYToCIEXYZ XcmsCIExyYFormat XcmsCIEXYZFormat
XcmsRGBToRGBi XcmsRGBFormat XcmsRGBiFormat
XcmsRGBiToCIEXYZ XcmsRGBiFormat XcmsCIEXYZFormat
XcmsRGBiToRGB XcmsRGBiFormat XcmsRGBFormat
XcmsTekHVCToCIEuvY XcmsTekHVCFormat XcmsCIEuvYFormat

Function Sets
Functions to convert between device-dependent color spaces and CIE XYZ may
differ for different classes of output devices (for example, color versus gray
monitors). Therefore, the notion of a Color Characterization Function Set has
been developed. A function set consists of device-dependent color spaces and the
functions that convert color specifications between these device-dependent color
spaces and the CIE XYZ color space appropriate for a particular class of output
devices. The function set also contains a function that reads color characterization
data off root window properties. It is this characterization data that will differ
between devices within a class of output devices.  For details about how color
characterization data is stored in root window properties, see the section on Device
Color Characterization in the Inter-Client Communication Conventions Manual. The
LINEAR_RGB function set is provided by Xlib and will support most color monitors.
Function sets may require data that differs from those needed for the LINEAR_RGB
function set. In that case, its corresponding data may be stored on different root
window properties.

Adding Function Sets
To add a function set, use XcmsAddFunctionSet.

Status XcmsAddFunctionSet(function_set);

function_set Specifies the function set to add.

The XcmsAddFunctionSet function adds a function set to the color management
system. If the function set uses device-dependent XcmsColorSpace structures not
accessible in the color management system, XcmsAddFunctionSet adds them. If
an added XcmsColorSpace structure is for a device-dependent color space not
registered with the X Consortium, they should be treated as private to the client
because format values for unregistered color spaces are assigned at run time. If
references to an unregistered color space must be made outside the client (for
example, storing color specifications in a file using the unregistered color space),
then reference should be made by color space prefix (see XcmsFormatOfPrefix and
XcmsPrefixOfFormat).

Additional function sets should be added before any calls to other Xlib routines are
made. If not, the XcmsPerScrnInfo member of a previously created XcmsCCC does
not have the opportunity to initialize with the added function set.

113

../../xorg-docs/icccm/icccm.pdf#Device_Color_Characterization
../../xorg-docs/icccm/icccm.pdf#Device_Color_Characterization


Color Management Functions

Creating Additional Function Sets
The creation of additional function sets should be required only when an output
device does not conform to existing function sets or when additional device-
dependent color spaces are necessary. A function set consists primarily of a
collection of device-dependent XcmsColorSpace structures and a means to read
and store a screen's color characterization data. This data is stored in an
XcmsFunctionSet structure. A handle to this structure (that is, by means of
global variable) is usually made accessible to the client program for use with
XcmsAddFunctionSet.

If a function set uses new device-dependent XcmsColorSpace structures, they
will be transparently processed into the color management system. Function sets
can share an XcmsColorSpace structure for a device-dependent color space. In
addition, multiple XcmsColorSpace structures are allowed for a device-dependent
color space; however, a function set can reference only one of them. These
XcmsColorSpace structures will differ in the functions to convert to and from CIE
XYZ, thus tailored for the specific function set.

typedef struct _XcmsFunctionSet {
 XcmsColorSpace **DDColorSpaces;
 XcmsScreenInitProc screenInitProc;
 XcmsScreenFreeProc screenFreeProc;
} XcmsFunctionSet;

The DDColorSpaces member is a pointer to a NULL terminated list of pointers
to XcmsColorSpace structures for the device-dependent color spaces that are
supported by the function set. The screenInitProc member is set to the
callback procedure (see the following interface specification) that initializes the
XcmsPerScrnInfo structure for a particular screen.

The screen initialization callback must adhere to the following software interface
specification: 

typedef Status (*XcmsScreenInitProc)(display, screen_number,
screen_info);

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host
server.

screen_info Specifies the XcmsPerScrnInfo structure, which
contains the per screen information.

The screen initialization callback in the XcmsFunctionSet structure fetches
the color characterization data (device profile) for the specified screen,
typically off properties on the screen's root window. It then initializes the
specified XcmsPerScrnInfo structure.   If successful, the procedure fills in the
XcmsPerScrnInfo structure as follows:

• It sets the screenData member to the address of the created device profile data
structure (contents known only by the function set).

114



Color Management Functions

• It next sets the screenWhitePoint member.

• It next sets the functionSet member to the address of the XcmsFunctionSet
structure.

• It then sets the state member to XcmsInitSuccess and finally returns
XcmsSuccess.

If unsuccessful, the procedure sets the state member to XcmsInitFailure and returns
XcmsFailure.

The XcmsPerScrnInfo structure contains:

typedef struct _XcmsPerScrnInfo {
 XcmsColor screenWhitePoint;
 XPointer functionSet;
 XPointer screenData;
 unsigned char state;
 char pad[3];
} XcmsPerScrnInfo;

The screenWhitePoint member specifies the white point inherent to the screen. The
functionSet member specifies the appropriate function set. The screenData member
specifies the device profile. The state member is set to one of the following:

• XcmsInitNone indicates initialization has not been previously attempted.

• XcmsInitFailure indicates initialization has been previously attempted but failed.

• XcmsInitSuccess indicates initialization has been previously attempted and
succeeded.

The screen free callback must adhere to the following software interface
specification:

typedef void (*XcmsScreenFreeProc)(screenData);

screenData Specifies the data to be freed.

This function is called to free the screenData stored in an XcmsPerScrnInfo
structure.

115



Chapter 7. Graphics Context Functions
A number of resources are used when performing graphics operations in X. Most
information about performing graphics (for example, foreground color, background
color, line style, and so on) is stored in resources called graphics contexts (GCs).
Most graphics operations (see chapter 8) take a GC as an argument. Although in
theory the X protocol permits sharing of GCs between applications, it is expected
that applications will use their own GCs when performing operations. Sharing of
GCs is highly discouraged because the library may cache GC state.

Graphics operations can be performed to either windows or pixmaps, which
collectively are called drawables. Each drawable exists on a single screen. A GC
is created for a specific screen and drawable depth and can only be used with
drawables of matching screen and depth.

This chapter discusses how to:

• Manipulate graphics context/state

• Use graphics context convenience functions

Manipulating Graphics Context/State
Most attributes of graphics operations are stored in GCs. These include line width,
line style, plane mask, foreground, background, tile, stipple, clipping region, end
style, join style, and so on. Graphics operations (for example, drawing lines) use
these values to determine the actual drawing operation. Extensions to X may add
additional components to GCs. The contents of a GC are private to Xlib.

Xlib implements a write-back cache for all elements of a GC that are not resource
IDs to allow Xlib to implement the transparent coalescing of changes to GCs. For
example, a call to XSetForeground of a GC followed by a call to XSetLineAttributes
results in only a single-change GC protocol request to the server. GCs are neither
expected nor encouraged to be shared between client applications, so this write-
back caching should present no problems. Applications cannot share GCs without
external synchronization. Therefore, sharing GCs between applications is highly
discouraged.

To set an attribute of a GC, set the appropriate member of the XGCValues structure
and OR in the corresponding value bitmask in your subsequent calls to XCreateGC.
The symbols for the value mask bits and the XGCValues structure are:

/* GC attribute value mask bits */

#define     GCFunction              (1L<<0)
#define     GCPlaneMask             (1L<<1)
#define     GCForeground            (1L<<2)
#define     GCBackground            (1L<<3)
#define     GCLineWidth             (1L<<4)
#define     GCLineStyle             (1L<<5)
#define     GCCapStyle              (1L<<6)
#define     GCJoinStyle             (1L<<7)

116



Graphics Context Functions

#define     GCFillStyle             (1L<<8)
#define     GCFillRule              (1L<<9)
#define     GCTile                  (1L<<10)
#define     GCStipple               (1L<<11)
#define     GCTileStipXOrigin       (1L<<12)
#define     GCTileStipYOrigin       (1L<<13)
#define     GCFont                  (1L<<14)
#define     GCSubwindowMode         (1L<<15)
#define     GCGraphicsExposures     (1L<<16)
#define     GCClipXOrigin           (1L<<17)
#define     GCClipYOrigin           (1L<<18)
#define     GCClipMask              (1L<<19)
#define     GCDashOffset            (1L<<20)
#define     GCDashList              (1L<<21)
#define     GCArcMode               (1L<<22)

/* Values */

typedef struct {
     int function;                 /* logical operation */
     unsigned long plane_mask;     /* plane mask */
     unsigned long foreground;     /* foreground pixel */
     unsigned long background;     /* background pixel */
     int line_width;               /* line width (in pixels) */
     int line_style;               /* LineSolid, LineOnOffDash, LineDoubleDash */
     int cap_style;                /* CapNotLast, CapButt, CapRound, CapProjecting */
     int join_style;               /* JoinMiter, JoinRound, JoinBevel */
     int fill_style;               /* FillSolid, FillTiled, FillStippled FillOpaqueStippled*/
     int fill_rule;                /* EvenOddRule, WindingRule */
     int arc_mode;                 /* ArcChord, ArcPieSlice */
     Pixmap tile;                  /* tile pixmap for tiling operations */
     Pixmap stipple;               /* stipple 1 plane pixmap for stippling */
     int ts_x_origin;              /* offset for tile or stipple operations */
     int ts_y_origin
     Font font;                    /* default text font for text operations */
     int subwindow_mode;           /* ClipByChildren, IncludeInferiors */
     Bool graphics_exposures;      /* boolean, should exposures be generated */
     int clip_x_origin;            /* origin for clipping */
     int clip_y_origin;
     Pixmap clip_mask;             /* bitmap clipping; other calls for rects */
     int dash_offset;              /* patterned/dashed line information */
     char dashes;
} XGCValues;

The default GC values are:

Component Default
function GXcopy
plane_mask All ones
foreground 0

117



Graphics Context Functions

Component Default
background 1
line_width 0
line_style LineSolid
cap_style CapButt
join_style JoinMiter
fill_style FillSolid
fill_rule EvenOddRule
arc_mode ArcPieSlice
tile Pixmap of unspecified size filled with

foreground pixel

(that is, client specified pixel if any, else
0)

(subsequent changes to foreground do
not affect this pixmap)

stipple Pixmap of unspecified size filled with
ones

ts_x_origin 0
ts_y_origin 0
font <implementation dependent>
subwindow_mode ClipByChildren
graphics_exposures True
clip_x_origin 0
clip_y_origin 0
clip_mask None
dash_offset 0
dashes 4 (that is, the list [4, 4])

Note that foreground and background are not set to any values likely to be useful
in a window.

   The function attributes of a GC are used when you update a section of a drawable
(the destination) with bits from somewhere else (the source). The function in a GC
defines how the new destination bits are to be computed from the source bits and
the old destination bits. GXcopy is typically the most useful because it will work
on a color display, but special applications may use other functions, particularly in
concert with particular planes of a color display. The 16 GC functions, defined in
<X11/X.h>,    are:

Function Name Value Operation
GXclear 0x0 0
GXand 0x1 src AND dst
GXandReverse 0x2 src AND NOT dst
GXcopy 0x3 src

118



Graphics Context Functions

Function Name Value Operation
GXandInverted 0x4 (NOT src) AND dst
GXnoop 0x5 dst
GXxor 0x6 src XOR dst
GXor 0x7 src OR dst
GXnor 0x8 (NOT src) AND (NOT dst)
GXequiv 0x9 (NOT src) XOR dst
GXinvert 0xa NOT dst
GXorReverse 0xb src OR (NOT dst)
GXcopyInverted 0xc NOT src
GXorInverted 0xd (NOT src) OR dst
GXnand 0xe (NOT src) OR (NOT dst)
GXset 0xf 1

Many graphics operations depend on either pixel values or planes in a GC.  The
planes attribute is of type long, and it specifies which planes of the destination are
to be modified, one bit per plane.  A monochrome display has only one plane and will
be the least significant bit of the word. As planes are added to the display hardware,
they will occupy more significant bits in the plane mask.

In graphics operations, given a source and destination pixel, the result is computed
bitwise on corresponding bits of the pixels. That is, a Boolean operation is performed
in each bit plane. The plane_mask restricts the operation to a subset of planes.
A macro constant AllPlanes can be used to refer to all planes of the screen
simultaneously. The result is computed by the following:

((src FUNC dst) AND plane-mask) OR (dst AND (NOT plane-mask))

Range checking is not performed on the values for foreground, background, or
plane_mask. They are simply truncated to the appropriate number of bits. The line-
width is measured in pixels and either can be greater than or equal to one (wide
line) or can be the special value zero (thin line).

Wide lines are drawn centered on the path described by the graphics request.
Unless otherwise specified by the join-style or cap-style, the bounding box of a wide
line with endpoints [x1, y1], [x2, y2] and width w is a rectangle with vertices at the
following real coordinates:

[x1-(w*sn/2), y1+(w*cs/2)], [x1+(w*sn/2), y1-(w*cs/2)],
[x2-(w*sn/2), y2+(w*cs/2)], [x2+(w*sn/2), y2-(w*cs/2)]

Here sn is the sine of the angle of the line, and cs is the cosine of the angle of the
line. A pixel is part of the line and so is drawn if the center of the pixel is fully inside
the bounding box (which is viewed as having infinitely thin edges). If the center
of the pixel is exactly on the bounding box, it is part of the line if and only if the
interior is immediately to its right (x increasing direction). Pixels with centers on a
horizontal edge are a special case and are part of the line if and only if the interior

119



Graphics Context Functions

or the boundary is immediately below (y increasing direction) and the interior or
the boundary is immediately to the right (x increasing direction).

Thin lines (zero line-width) are one-pixel-wide lines drawn using an unspecified,
device-dependent algorithm. There are only two constraints on this algorithm.

• If a line is drawn unclipped from [x1,y1] to [x2,y2] and if another line is drawn
unclipped from [x1+dx,y1+dy] to [x2+dx,y2+dy], a point [x,y] is touched by
drawing the first line if and only if the point [x+dx,y+dy] is touched by drawing
the second line.

• The effective set of points comprising a line cannot be affected by clipping. That
is, a point is touched in a clipped line if and only if the point lies inside the clipping
region and the point would be touched by the line when drawn unclipped.

A wide line drawn from [x1,y1] to [x2,y2] always draws the same pixels as a
wide line drawn from [x2,y2] to [x1,y1], not counting cap-style and join-style. It is
recommended that this property be true for thin lines, but this is not required. A
line-width of zero may differ from a line-width of one in which pixels are drawn.
This permits the use of many manufacturers' line drawing hardware, which may run
many times faster than the more precisely specified wide lines.

In general, drawing a thin line will be faster than drawing a wide line of width one.
However, because of their different drawing algorithms, thin lines may not mix well
aesthetically with wide lines. If it is desirable to obtain precise and uniform results
across all displays, a client should always use a line-width of one rather than a line-
width of zero.

The line-style defines which sections of a line are drawn:

LineSolid The full path of the line is drawn.

LineDoubleDash The full path of the line is drawn, but the even dashes are filled
differently from the odd dashes (see fill-style) with CapButt style
used where even and odd dashes meet.

LineOnOffDash Only the even dashes are drawn, and cap-style applies to all
internal ends of the individual dashes, except CapNotLast is
treated as CapButt.

The cap-style defines how the endpoints of a path are drawn:

CapNotLast This is equivalent to CapButt except that for a line-width of zero
the final endpoint is not drawn.

CapButt The line is square at the endpoint (perpendicular to the slope of
the line) with no projection beyond.

CapRound The line has a circular arc with the diameter equal to the line-
width, centered on the endpoint. (This is equivalent to CapButt for
line-width of zero).

CapProjecting The line is square at the end, but the path continues beyond
the endpoint for a distance equal to half the line-width. (This is
equivalent to CapButt for line-width of zero).

120



Graphics Context Functions

The join-style defines how corners are drawn for wide lines:

JoinMiter The outer edges of two lines extend to meet at an angle. However, if
the angle is less than 11 degrees, then a JoinBevel join-style is used
instead.

JoinRound The corner is a circular arc with the diameter equal to the line-width,
centered on the joinpoint.

JoinBevel The corner has CapButt endpoint styles with the triangular notch filled.

For a line with coincident endpoints (x1=x2, y1=y2), when the cap-style is applied
to both endpoints, the semantics depends on the line-width and the cap-style:

CapNotLast thin The results are device dependent, but the
desired effect is that nothing is drawn.

CapButt thin The results are device dependent, but the
desired effect is that a single pixel is drawn.

CapRound thin The results are the same as for CapButt /thin.
CapProjecting thin The results are the same as for CapButt /thin.
CapButt wide Nothing is drawn.
CapRound wide The closed path is a circle, centered at the

endpoint, and with the diameter equal to the
line-width.

CapProjecting wide The closed path is a square, aligned with the
coordinate axes, centered at the endpoint, and
with the sides equal to the line-width.

For a line with coincident endpoints (x1=x2, y1=y2), when the join-style is applied
at one or both endpoints, the effect is as if the line was removed from the overall
path. However, if the total path consists of or is reduced to a single point joined with
itself, the effect is the same as when the cap-style is applied at both endpoints.

The tile/stipple represents an infinite two-dimensional plane, with the tile/stipple
replicated in all dimensions. When that plane is superimposed on the drawable for
use in a graphics operation, the upper-left corner of some instance of the tile/stipple
is at the coordinates within the drawable specified by the tile/stipple origin. The tile/
stipple and clip origins are interpreted relative to the origin of whatever destination
drawable is specified in a graphics request. The tile pixmap must have the same root
and depth as the GC, or a BadMatch error results. The stipple pixmap must have
depth one and must have the same root as the GC, or a BadMatch error results. For
stipple operations where the fill-style is FillStippled but not FillOpaqueStippled, the
stipple pattern is tiled in a single plane and acts as an additional clip mask to be
ANDed with the clip-mask. Although some sizes may be faster to use than others,
any size pixmap can be used for tiling or stippling.

The fill-style defines the contents of the source for line, text, and fill requests. For
all text and fill requests (for example, XDrawText, XDrawText16, XFillRectangle,
XFillPolygon, and XFillArc); for line requests with line-style LineSolid (for
example, XDrawLine, XDrawSegments, XDrawRectangle, XDrawArc); and for the even
dashes for line requests with line-style LineOnOffDash or LineDoubleDash, the
following apply:

121



Graphics Context Functions

FillSolid Foreground
FillTiled Tile
FillOpaqueStippled A tile with the same width and height as stipple, but

with background everywhere stipple has a zero and
with foreground everywhere stipple has a one

FillStippled Foreground masked by stipple

When drawing lines with line-style LineDoubleDash, the odd dashes are controlled
by the fill-style in the following manner:

FillSolid Background
FillTiled Same as for even dashes
FillOpaqueStippled Same as for even dashes
FillStippled Background masked by stipple

Storing a pixmap in a GC might or might not result in a copy being made. If the
pixmap is later used as the destination for a graphics request, the change might or
might not be reflected in the GC. If the pixmap is used simultaneously in a graphics
request both as a destination and as a tile or stipple, the results are undefined.

For optimum performance, you should draw as much as possible with the same
GC (without changing its components). The costs of changing GC components
relative to using different GCs depend on the display hardware and the server
implementation. It is quite likely that some amount of GC information will be cached
in display hardware and that such hardware can only cache a small number of GCs.

The dashes value is actually a simplified form of the more general patterns that
can be set with XSetDashes. Specifying a value of N is equivalent to specifying the
two-element list [N, N] in XSetDashes. The value must be nonzero, or a BadValue
error results.

The clip-mask restricts writes to the destination drawable. If the clip-mask is set to
a pixmap, it must have depth one and have the same root as the GC, or a BadMatch
error results. If clip-mask is set to None, the pixels are always drawn regardless of
the clip origin. The clip-mask also can be set by calling the XSetClipRectangles or
XSetRegion functions. Only pixels where the clip-mask has a bit set to 1 are drawn.
Pixels are not drawn outside the area covered by the clip-mask or where the clip-
mask has a bit set to 0. The clip-mask affects all graphics requests. The clip-mask
does not clip sources. The clip-mask origin is interpreted relative to the origin of
whatever destination drawable is specified in a graphics request.

You can set the subwindow-mode to ClipByChildren or IncludeInferiors. For
ClipByChildren, both source and destination windows are additionally clipped by all
viewable InputOutput children. For IncludeInferiors, neither source nor destination
window is clipped by inferiors. This will result in including subwindow contents in
the source and drawing through subwindow boundaries of the destination. The use
of IncludeInferiors on a window of one depth with mapped inferiors of differing
depth is not illegal, but the semantics are undefined by the core protocol.

The fill-rule defines what pixels are inside (drawn) for paths given in XFillPolygon
requests and can be set to EvenOddRule or WindingRule. For EvenOddRule, a point
is inside if an infinite ray with the point as origin crosses the path an odd number
of times. For WindingRule, a point is inside if an infinite ray with the point as

122



Graphics Context Functions

origin crosses an unequal number of clockwise and counterclockwise directed path
segments. A clockwise directed path segment is one that crosses the ray from left
to right as observed from the point. A counterclockwise segment is one that crosses
the ray from right to left as observed from the point. The case where a directed line
segment is coincident with the ray is uninteresting because you can simply choose
a different ray that is not coincident with a segment.

For both EvenOddRule and WindingRule, a point is infinitely small, and the path is
an infinitely thin line. A pixel is inside if the center point of the pixel is inside and the
center point is not on the boundary. If the center point is on the boundary, the pixel
is inside if and only if the polygon interior is immediately to its right (x increasing
direction). Pixels with centers on a horizontal edge are a special case and are inside
if and only if the polygon interior is immediately below (y increasing direction).

The arc-mode controls filling in the XFillArcs function and can be set to ArcPieSlice
or ArcChord. For ArcPieSlice, the arcs are pie-slice filled. For ArcChord, the arcs
are chord filled.

The graphics-exposure flag controls GraphicsExpose event generation for
XCopyArea and XCopyPlane requests (and any similar requests defined by
extensions).

To create a new GC that is usable on a given screen with a depth of drawable, use
XCreateGC.

GC XCreateGC(display, d, valuemask, values);

display Specifies the connection to the X server.

d Specifies the drawable.

valuemask Specifies which components in the GC are to be set using
the information in the specified values structure. This
argument is the bitwise inclusive OR of zero or more of
the valid GC component mask bits.

values Specifies any values as specified by the valuemask.

The XCreateGC function creates a graphics context and returns a GC. The GC can be
used with any destination drawable having the same root and depth as the specified
drawable. Use with other drawables results in a BadMatch error.

XCreateGC can generate BadAlloc, BadDrawable, BadFont, BadMatch, BadPixmap,
and BadValue errors.

To copy components from a source GC to a destination GC, use XCopyGC.

XCopyGC(display, src, dest, valuemask);

display Specifies the connection to the X server.

src Specifies the components of the source GC.

valuemask Specifies which components in the GC are to be copied
to the destination GC. This argument is the bitwise
inclusive OR of zero or more of the valid GC component
mask bits.

123



Graphics Context Functions

dest Specifies the destination GC.

The XCopyGC function copies the specified components from the source GC to the
destination GC. The source and destination GCs must have the same root and depth,
or a BadMatch error results. The valuemask specifies which component to copy, as
for XCreateGC.

XCopyGC can generate BadAlloc, BadGC, and BadMatch errors.

To change the components in a given GC, use XChangeGC.

XChangeGC(display, gc, valuemask, values);

display Specifies the connection to the X server.

gc Specifies the GC.

valuemask Specifies which components in the GC are to be changed
using information in the specified values structure. This
argument is the bitwise inclusive OR of zero or more of
the valid GC component mask bits.

values Specifies any values as specified by the valuemask.

The XChangeGC function changes the components specified by valuemask for the
specified GC. The values argument contains the values to be set. The values and
restrictions are the same as for XCreateGC. Changing the clip-mask overrides any
previous XSetClipRectangles request on the context. Changing the dash-offset
or dash-list overrides any previous XSetDashes request on the context. The order
in which components are verified and altered is server dependent. If an error is
generated, a subset of the components may have been altered.

XChangeGC can generate BadAlloc, BadFont, BadGC, BadMatch, BadPixmap, and
BadValue errors.

To obtain components of a given GC, use XGetGCValues.

Status XGetGCValues(display, gc, valuemask, values_return);

display Specifies the connection to the X server.

gc Specifies the GC.

valuemask Specifies which components in the GC are to
be returned in the values_return argument. This
argument is the bitwise inclusive OR of zero or more
of the valid GC component mask bits.

values_return Returns the GC values in the specified XGCValues
structure.

The XGetGCValues function returns the components specified by valuemask
for the specified GC. If the valuemask contains a valid set of GC mask
bits (GCFunction, GCPlaneMask, GCForeground, GCBackground, GCLineWidth,
GCLineStyle, GCCapStyle, GCJoinStyle, GCFillStyle, GCFillRule, GCTile,
GCStipple, GCTileStipXOrigin, GCTileStipYOrigin, GCFont, GCSubwindowMode,
GCGraphicsExposures, GCClipXOrigin, GCClipYOrigin, GCDashOffset, or

124



Graphics Context Functions

GCArcMode) and no error occurs, XGetGCValues sets the requested components in
values_return and returns a nonzero status. Otherwise, it returns a zero status. Note
that the clip-mask and dash-list (represented by the GCClipMask and GCDashList
bits, respectively, in the valuemask) cannot be requested. Also note that an invalid
resource ID (with one or more of the three most significant bits set to 1) will
be returned for GCFont, GCTile, and GCStipple if the component has never been
explicitly set by the client.

To free a given GC, use XFreeGC.

XFreeGC(display, gc);

display Specifies the connection to the X server.

gc Specifies the GC.

The XFreeGC function destroys the specified GC as well as all the associated storage.

XFreeGC can generate a BadGC error.

To obtain the GContext resource ID for a given GC, use XGContextFromGC.

GContext XGContextFromGC(gc);

gc Specifies the GC for which you want the resource ID.

Xlib usually defers sending changes to the components of a GC to the server
until a graphics function is actually called with that GC. This permits batching of
component changes into a single server request. In some circumstances, however,
it may be necessary for the client to explicitly force sending the changes to the
server. An example might be when a protocol extension uses the GC indirectly, in
such a way that the extension interface cannot know what GC will be used. To force
sending GC component changes, use XFlushGC.

void XFlushGC(display, gc);

display Specifies the connection to the X server.

gc Specifies the GC.

Using Graphics Context Convenience Routines
This section discusses how to set the:

• Foreground, background, plane mask, or function components

• Line attributes and dashes components

• Fill style and fill rule components

• Fill tile and stipple components

• Font component

• Clip region component

125



Graphics Context Functions

• Arc mode, subwindow mode, and graphics exposure components

Setting the Foreground, Background, Function, or Plane
Mask

To set the foreground, background, plane mask, and function components for a
given GC, use XSetState.

XSetState(display, gc, foreground, background, function, plane_mask);

display Specifies the connection to the X server.

gc Specifies the GC.

foreground Specifies the foreground you want to set for the
specified GC.

background Specifies the background you want to set for the
specified GC.

function Specifies the function you want to set for the specified
GC.

plane_mask Specifies the plane mask.

XSetState can generate BadAlloc, BadGC, and BadValue errors.

To set the foreground of a given GC, use XSetForeground.

XSetForeground(display, gc, foreground);

display Specifies the connection to the X server.

gc Specifies the GC.

foreground Specifies the foreground you want to set for the
specified GC.

XSetForeground can generate BadAlloc and BadGC errors.

To set the background of a given GC, use XSetBackground.

XSetBackground(display, gc, background);

display Specifies the connection to the X server.

gc Specifies the GC.

background Specifies the background you want to set for the
specified GC.

XSetBackground can generate BadAlloc and BadGC errors.

To set the display function in a given GC, use XSetFunction.

XSetFunction(display, gc, function);

display Specifies the connection to the X server.

126



Graphics Context Functions

gc Specifies the GC.

function Specifies the function you want to set for the specified GC.

XSetFunction can generate BadAlloc, BadGC, and BadValue errors.

To set the plane mask of a given GC, use XSetPlaneMask.

XSetPlaneMask(display, gc, plane_mask);

display Specifies the connection to the X server.

gc Specifies the GC.

plane_mask Specifies the plane mask.

XSetPlaneMask can generate BadAlloc and BadGC errors.

Setting the Line Attributes and Dashes
To set the line drawing components of a given GC, use XSetLineAttributes.

XSetLineAttributes(display, gc, line_width, line_style, cap_style,
join_style);

display Specifies the connection to the X server.

gc Specifies the GC.

line_width Specifies the line-width you want to set for the specified
GC.

line_style Specifies the line-style you want to set for the
specified GC. You can pass LineSolid, LineOnOffDash,
or LineDoubleDash.

cap_style Specifies the line-style and cap-style you want to set for
the specified GC. You can pass CapNotLast, CapButt,
CapRound, or CapProjecting.

join_style Specifies the line join-style you want to set for the
specified GC. You can pass JoinMiter, JoinRound, or
JoinBevel.

XSetLineAttributes can generate BadAlloc, BadGC, and BadValue errors.

To set the dash-offset and dash-list for dashed line styles of a given GC, use
XSetDashes.

XSetDashes(display, gc, dash_offset, dash_list[], n);

display Specifies the connection to the X server.

gc Specifies the GC.

dash_offset Specifies the phase of the pattern for the dashed line-
style you want to set for the specified GC.

127



Graphics Context Functions

dash_list Specifies the dash-list for the dashed line-style you
want to set for the specified GC.

n Specifies the number of elements in dash_list.

The XSetDashes function sets the dash-offset and dash-list attributes for dashed
line styles in the specified GC. There must be at least one element in the specified
dash_list, or a BadValue error results. The initial and alternating elements (second,
fourth, and so on) of the dash_list are the even dashes, and the others are the odd
dashes. Each element specifies a dash length in pixels. All of the elements must be
nonzero, or a BadValue error results. Specifying an odd-length list is equivalent to
specifying the same list concatenated with itself to produce an even-length list.

The dash-offset defines the phase of the pattern, specifying how many pixels into the
dash-list the pattern should actually begin in any single graphics request. Dashing
is continuous through path elements combined with a join-style but is reset to the
dash-offset between each sequence of joined lines.

The unit of measure for dashes is the same for the ordinary coordinate system.
Ideally, a dash length is measured along the slope of the line, but implementations
are only required to match this ideal for horizontal and vertical lines. Failing the
ideal semantics, it is suggested that the length be measured along the major axis
of the line. The major axis is defined as the x axis for lines drawn at an angle of
between −45 and +45 degrees or between 135 and 225 degrees from the x axis.
For all other lines, the major axis is the y axis.

XSetDashes can generate BadAlloc, BadGC, and BadValue errors.

Setting the Fill Style and Fill Rule
To set the fill-style of a given GC, use XSetFillStyle.

XSetFillStyle(display, gc, fill_style);

display Specifies the connection to the X server.

gc Specifies the GC.

fill_style Specifies the fill-style you want to set for the specified
GC. You can pass FillSolid, FillTiled, FillStippled, or
FillOpaqueStippled.

XSetFillStyle can generate BadAlloc, BadGC, and BadValue errors.

To set the fill-rule of a given GC, use XSetFillRule.

XSetFillRule(display, gc, fill_rule);

display Specifies the connection to the X server.

gc Specifies the GC.

fill_rule Specifies the fill-rule you want to set for the specified GC.
You can pass EvenOddRule or WindingRule.

XSetFillRule can generate BadAlloc, BadGC, and BadValue errors.

128



Graphics Context Functions

Setting the Fill Tile and Stipple
Some displays have hardware support for tiling or stippling with patterns of specific
sizes. Tiling and stippling operations that restrict themselves to those specific sizes
run much faster than such operations with arbitrary size patterns. Xlib provides
functions that you can use to determine the best size, tile, or stipple for the display
as well as to set the tile or stipple shape and the tile or stipple origin.

To obtain the best size of a tile, stipple, or cursor, use XQueryBestSize.

Status XQueryBestSize(display, class, which_screen, width, height,
width_return, height_return);

display Specifies the connection to the X server.

class Specifies the class that you are interested in. You can
pass TileShape, CursorShape, or StippleShape.

which_screen Specifies any drawable on the screen.

width

height Specify the width and height.

width_return

height_return Return the width and height of the object best
supported by the display hardware.

The XQueryBestSize function returns the best or closest size to the specified
size. For CursorShape, this is the largest size that can be fully displayed on
the screen specified by which_screen. For TileShape, this is the size that can
be tiled fastest. For StippleShape, this is the size that can be stippled fastest.
For CursorShape, the drawable indicates the desired screen. For TileShape and
StippleShape, the drawable indicates the screen and possibly the window class
and depth. An InputOnly window cannot be used as the drawable for TileShape or
StippleShape, or a BadMatch error results.

XQueryBestSize can generate BadDrawable, BadMatch, and BadValue errors.

To obtain the best fill tile shape, use XQueryBestTile.

Status XQueryBestTile(display, which_screen, width, height,
width_return, height_return);

display Specifies the connection to the X server.

which_screen Specifies any drawable on the screen.

width

height Specify the width and height.

width_return

height_return Return the width and height of the object best
supported by the display hardware.

129



Graphics Context Functions

The XQueryBestTile function returns the best or closest size, that is, the size that
can be tiled fastest on the screen specified by which_screen. The drawable indicates
the screen and possibly the window class and depth. If an InputOnly window is used
as the drawable, a BadMatch error results.

XQueryBestTile can generate BadDrawable and BadMatch errors.

To obtain the best stipple shape, use XQueryBestStipple.

Status XQueryBestStipple(display, which_screen, width, height,
width_return, height_return);

display Specifies the connection to the X server.

which_screen Specifies any drawable on the screen.

width

height Specify the width and height.

width_return

height_return Return the width and height of the object best
supported by the display hardware.

The XQueryBestStipple function returns the best or closest size, that is, the size
that can be stippled fastest on the screen specified by which_screen. The drawable
indicates the screen and possibly the window class and depth. If an InputOnly
window is used as the drawable, a BadMatch error results.

XQueryBestStipple can generate BadDrawable and BadMatch errors.

To set the fill tile of a given GC, use XSetTile.

XSetTile(display, gc, tile);

display Specifies the connection to the X server.

gc Specifies the GC.

tile Specifies the fill tile you want to set for the specified GC.

The tile and GC must have the same depth, or a BadMatch error results.

XSetTile can generate BadAlloc, BadGC, BadMatch, and BadPixmap errors.

To set the stipple of a given GC, use XSetStipple.

XSetStipple(display, gc, stipple);

display Specifies the connection to the X server.

gc Specifies the GC.

stipple Specifies the stipple you want to set for the specified GC.

The stipple must have a depth of one, or a BadMatch error results.

XSetStipple can generate BadAlloc, BadGC, BadMatch, and BadPixmap errors.

130



Graphics Context Functions

To set the tile or stipple origin of a given GC, use XSetTSOrigin.

XSetTSOrigin(display, gc, ts_x_origin, ts_y_origin);

display Specifies the connection to the X server.

gc Specifies the GC.

ts_x_origin

ts_y_origin Specify the x and y coordinates of the tile and stipple
origin.

When graphics requests call for tiling or stippling, the parent's origin will be
interpreted relative to whatever destination drawable is specified in the graphics
request.

XSetTSOrigin can generate BadAlloc and BadGC errors.

Setting the Current Font
To set the current font of a given GC, use XSetFont.

XSetFont(display, gc, font);

display Specifies the connection to the X server.

gc Specifies the GC.

font Specifies the font.

XSetFont can generate BadAlloc, BadFont, and BadGC errors.

Setting the Clip Region
Xlib provides functions that you can use to set the clip-origin and the clip-mask or
set the clip-mask to a list of rectangles.

To set the clip-origin of a given GC, use XSetClipOrigin.

XSetClipOrigin(display, gc, clip_x_origin, clip_y_origin);

display Specifies the connection to the X server.

gc Specifies the GC.

clip_x_origin

clip_y_origin Specify the x and y coordinates of the clip-mask
origin.

The clip-mask origin is interpreted relative to the origin of whatever destination
drawable is specified in the graphics request.

XSetClipOrigin can generate BadAlloc and BadGC errors.

To set the clip-mask of a given GC to the specified pixmap, use XSetClipMask.

131



Graphics Context Functions

XSetClipMask(display, gc, pixmap);

display Specifies the connection to the X server.

gc Specifies the GC.

pixmap Specifies the pixmap or None.

If the clip-mask is set to None, the pixels are always drawn (regardless of the clip-
origin).

XSetClipMask can generate BadAlloc, BadGC, BadMatch, and BadPixmap errors.

To set the clip-mask of a given GC to the specified list of rectangles, use
XSetClipRectangles.

XSetClipRectangles(display, gc, clip_x_origin, clip_y_origin,
rectangles[], n, ordering);

display Specifies the connection to the X server.

gc Specifies the GC.

clip_x_origin

clip_y_origin Specify the x and y coordinates of the clip-mask
origin.

rectangles Specifies an array of rectangles that define the clip-
mask.

n Specifies the number of rectangles.

ordering Specifies the ordering relations on the rectangles.
You can pass Unsorted, YSorted, YXSorted, or
YXBanded.

The XSetClipRectangles function changes the clip-mask in the specified GC to the
specified list of rectangles and sets the clip origin. The output is clipped to remain
contained within the rectangles. The clip-origin is interpreted relative to the origin
of whatever destination drawable is specified in a graphics request. The rectangle
coordinates are interpreted relative to the clip-origin. The rectangles should be
nonintersecting, or the graphics results will be undefined. Note that the list of
rectangles can be empty, which effectively disables output. This is the opposite of
passing None as the clip-mask in XCreateGC, XChangeGC, and XSetClipMask.

If known by the client, ordering relations on the rectangles can be specified with the
ordering argument. This may provide faster operation by the server. If an incorrect
ordering is specified, the X server may generate a BadMatch error, but it is not
required to do so. If no error is generated, the graphics results are undefined.
Unsorted means the rectangles are in arbitrary order. YSorted means that the
rectangles are nondecreasing in their Y origin. YXSorted additionally constrains
YSorted order in that all rectangles with an equal Y origin are nondecreasing in
their X origin. YXBanded additionally constrains YXSorted by requiring that, for
every possible Y scanline, all rectangles that include that scanline have an identical
Y origins and Y extents.

132



Graphics Context Functions

XSetClipRectangles can generate BadAlloc, BadGC, BadMatch, and BadValue
errors.

Xlib provides a set of basic functions for performing region arithmetic. For
information about these functions, see section 16.5.

Setting the Arc Mode, Subwindow Mode, and Graphics
Exposure

To set the arc mode of a given GC, use XSetArcMode.

XSetArcMode(display, gc, arc_mode);

display Specifies the connection to the X server.

gc Specifies the GC.

arc_mode Specifies the arc mode. You can pass ArcChord or
ArcPieSlice.

XSetArcMode can generate BadAlloc, BadGC, and BadValue errors.

To set the subwindow mode of a given GC, use XSetSubwindowMode.

XSetSubwindowMode(display, gc, subwindow_mode);

display Specifies the connection to the X server.

gc Specifies the GC.

subwindow_mode Specifies the subwindow mode. You can pass
ClipByChildren or IncludeInferiors.

XSetSubwindowMode can generate BadAlloc, BadGC, and BadValue errors.

To set the graphics-exposures flag of a given GC, use XSetGraphicsExposures.

XSetGraphicsExposures(display, gc, graphics_exposures);

display Specifies the connection to the X server.

gc Specifies the GC.

graphics_exposures Specifies a Boolean value that indicates whether you
want GraphicsExpose and NoExpose events to be
reported when calling XCopyArea and XCopyPlane
with this GC.

XSetGraphicsExposures can generate BadAlloc, BadGC, and BadValue errors.

133



Chapter 8. Graphics Functions
Once you have established a connection to a display, you can use the Xlib graphics
functions to:

• Clear and copy areas

• Draw points, lines, rectangles, and arcs

• Fill areas

• Manipulate fonts

• Draw text

• Transfer images between clients and the server

If the same drawable and GC is used for each call, Xlib batches back-to-back calls to
XDrawPoint, XDrawLine, XDrawRectangle, XFillArc, and XFillRectangle. Note that
this reduces the total number of requests sent to the server.

Clearing Areas
Xlib provides functions that you can use to clear an area or the entire window.
Because pixmaps do not have defined backgrounds, they cannot be filled by
using the functions described in this section. Instead, to accomplish an analogous
operation on a pixmap, you should use XFillRectangle, which sets the pixmap to
a known value.

To clear a rectangular area of a given window, use XClearArea.

XClearArea(display, w, x, y, width, height, exposures);

display Specifies the connection to the X server.

w Specifies the window.

x

y Specify the x and y coordinates, which are relative to the
origin of the window and specify the upper-left corner of
the rectangle.

width

height Specify the width and height, which are the dimensions
of the rectangle.

exposures Specifies a Boolean value that indicates if Expose events
are to be generated.

The XClearArea function paints a rectangular area in the specified window
according to the specified dimensions with the window's background pixel or
pixmap. The subwindow-mode effectively is ClipByChildren. If width is zero, it is
replaced with the current width of the window minus x. If height is zero, it is

134



Graphics Functions

replaced with the current height of the window minus y. If the window has a defined
background tile, the rectangle clipped by any children is filled with this tile. If
the window has background None, the contents of the window are not changed.
In either case, if exposures is True, one or more Expose events are generated for
regions of the rectangle that are either visible or are being retained in a backing
store. If you specify a window whose class is InputOnly, a BadMatch error results.

XClearArea can generate BadMatch, BadValue, and BadWindow errors.

To clear the entire area in a given window, use XClearWindow.

XClearWindow(display, w);

display Specifies the connection to the X server.

w Specifies the window.

The XClearWindow function clears the entire area in the specified window and is
equivalent to XClearArea (display, w, 0, 0, 0, 0, False). If the window has a defined
background tile, the rectangle is tiled with a plane-mask of all ones and GXcopy
function. If the window has background None, the contents of the window are
not changed. If you specify a window whose class is InputOnly, a BadMatch error
results.

XClearWindow can generate BadMatch and BadWindow errors.

Copying Areas
Xlib provides functions that you can use to copy an area or a bit plane.

To copy an area between drawables of the same root and depth, use XCopyArea.

XCopyArea(display, src, dest, gc, src_x, src_y, width, height, dest_x,
dest_y);

display Specifies the connection to the X server.

src

dest Specify the source and destination rectangles to be
combined.

gc Specifies the GC.

src_x

src_y Specify the x and y coordinates, which are relative to the
origin of the source rectangle and specify its upper-left
corner.

width

height Specify the width and height, which are the dimensions of
both the source and destination rectangles.

dest_x

135



Graphics Functions

dest_y Specify the x and y coordinates, which are relative to the
origin of the destination rectangle and specify its upper-
left corner.

The XCopyArea function combines the specified rectangle of src with the specified
rectangle of dest. The drawables must have the same root and depth, or a BadMatch
error results.

If regions of the source rectangle are obscured and have not been retained
in backing store or if regions outside the boundaries of the source drawable
are specified, those regions are not copied. Instead, the following occurs on
all corresponding destination regions that are either visible or are retained in
backing store. If the destination is a window with a background other than None,
corresponding regions of the destination are tiled with that background (with
plane-mask of all ones and GXcopy function). Regardless of tiling or whether
the destination is a window or a pixmap, if graphics-exposures is True, then
GraphicsExpose events for all corresponding destination regions are generated.
If graphics-exposures is True but no GraphicsExpose events are generated, a
NoExpose event is generated. Note that by default graphics-exposures is True in
new GCs.

This function uses these GC components: function, plane-mask, subwindow-mode,
graphics-exposures, clip-x-origin, clip-y-origin, and clip-mask.

XCopyArea can generate BadDrawable, BadGC, and BadMatch errors.

To copy a single bit plane of a given drawable, use XCopyPlane.

XCopyPlane(display, src, dest, gc, src_x, src_y, width, height, dest_x,
dest_y, plane);

display Specifies the connection to the X server.

src

dest Specify the source and destination rectangles to be
combined.

gc Specifies the GC.

src_x

src_y Specify the x and y coordinates, which are relative to the
origin of the source rectangle and specify its upper-left
corner.

width

height Specify the width and height, which are the dimensions of
both the source and destination rectangles.

dest_x

dest_y Specify the x and y coordinates, which are relative to the
origin of the destination rectangle and specify its upper-
left corner.

136



Graphics Functions

plane Specifies the bit plane. You must set exactly one bit to 1.

The XCopyPlane function uses a single bit plane of the specified source rectangle
combined with the specified GC to modify the specified rectangle of dest. The
drawables must have the same root but need not have the same depth. If the
drawables do not have the same root, a BadMatch error results. If plane does not
have exactly one bit set to 1 and the value of plane is not less than %2 sup n%,
where n is the depth of src, a BadValue error results.

Effectively, XCopyPlane forms a pixmap of the same depth as the rectangle of dest
and with a size specified by the source region. It uses the foreground/background
pixels in the GC (foreground everywhere the bit plane in src contains a bit set
to 1, background everywhere the bit plane in src contains a bit set to 0) and the
equivalent of a CopyArea protocol request is performed with all the same exposure
semantics. This can also be thought of as using the specified region of the source
bit plane as a stipple with a fill-style of FillOpaqueStippled for filling a rectangular
area of the destination.

This function uses these GC components: function, plane-mask, foreground,
background, subwindow-mode, graphics-exposures, clip-x-origin, clip-y-origin, and
clip-mask.

XCopyPlane can generate BadDrawable, BadGC, BadMatch, and BadValue errors.

Drawing Points, Lines, Rectangles, and Arcs
Xlib provides functions that you can use to draw:

• A single point or multiple points

• A single line or multiple lines

• A single rectangle or multiple rectangles

• A single arc or multiple arcs

Some of the functions described in the following sections use these structures:

typedef struct {
     short x1, y1, x2, y2;
} XSegment;

typedef struct {
     short x, y;
} XPoint;

137



Graphics Functions

typedef struct {
     short x, y;
     unsigned short width, height;
} XRectangle;

typedef struct {
     short x, y;
     unsigned short width, height;
     short angle1, angle2;             /* Degrees * 64 */
} XArc;

All x and y members are signed integers. The width and height members are 16-bit
unsigned integers. You should be careful not to generate coordinates and sizes out
of the 16-bit ranges, because the protocol only has 16-bit fields for these values.

Drawing Single and Multiple Points
   

To draw a single point in a given drawable, use XDrawPoint.

XDrawPoint(display, d, gc, x, y);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x

y Specify the x and y coordinates where you want the point
drawn.

To draw multiple points in a given drawable, use XDrawPoints.

XDrawPoints(display, d, gc, points, npoints, mode);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

points Specifies an array of points.

npoints Specifies the number of points in the array.

138



Graphics Functions

mode Specifies the coordinate mode. You can pass
CoordModeOrigin or CoordModePrevious.

The XDrawPoint function uses the foreground pixel and function components of the
GC to draw a single point into the specified drawable; XDrawPoints draws multiple
points this way. CoordModeOrigin treats all coordinates as relative to the origin, and
CoordModePrevious treats all coordinates after the first as relative to the previous
point. XDrawPoints draws the points in the order listed in the array.

Both functions use these GC components: function, plane-mask, foreground,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.

XDrawPoint can generate BadDrawable, BadGC, and BadMatch errors.
XDrawPoints can generate BadDrawable, BadGC, BadMatch, and BadValue errors.

Drawing Single and Multiple Lines
      

To draw a single line between two points in a given drawable, use XDrawLine.

XDrawLine(display, d, gc, x1, y1, x2, y2);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x1

y1

x2

y2 Specify the points (x1, y1) and (x2, y2) to be connected.

To draw multiple lines in a given drawable, use XDrawLines.

XDrawLines(display, d, gc, points, npoints, mode);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

points Specifies an array of points.

npoints Specifies the number of points in the array.

mode Specifies the coordinate mode. You can pass
CoordModeOrigin or CoordModePrevious.

To draw multiple, unconnected lines in a given drawable, use XDrawSegments.

XDrawSegments(display, d, gc, segments, nsegments);

139



Graphics Functions

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

segments Specifies an array of segments.

nsegments Specifies the number of segments in the array.

The XDrawLine function uses the components of the specified GC to draw a line
between the specified set of points (x1, y1) and (x2, y2). It does not perform joining
at coincident endpoints. For any given line, XDrawLine does not draw a pixel more
than once. If lines intersect, the intersecting pixels are drawn multiple times.

The XDrawLines function uses the components of the specified GC to draw npoints-1
lines between each pair of points (point[i], point[i+1]) in the array of XPoint
structures. It draws the lines in the order listed in the array. The lines join correctly
at all intermediate points, and if the first and last points coincide, the first and
last lines also join correctly. For any given line, XDrawLines does not draw a
pixel more than once. If thin (zero line-width) lines intersect, the intersecting
pixels are drawn multiple times. If wide lines intersect, the intersecting pixels are
drawn only once, as though the entire PolyLine protocol request were a single,
filled shape. CoordModeOrigin treats all coordinates as relative to the origin, and
CoordModePrevious treats all coordinates after the first as relative to the previous
point.

The XDrawSegments function draws multiple, unconnected lines. For each segment,
XDrawSegments draws a line between (x1, y1) and (x2, y2). It draws the lines in the
order listed in the array of XSegment structures and does not perform joining at
coincident endpoints. For any given line, XDrawSegments does not draw a pixel more
than once. If lines intersect, the intersecting pixels are drawn multiple times.

All three functions use these GC components: function, plane-mask, line-width,
line-style, cap-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-
mask. The XDrawLines function also uses the join-style GC component. All three
functions also use these GC mode-dependent components: foreground, background,
tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, and dash-list.

XDrawLine, XDrawLines, and XDrawSegments can generate BadDrawable, BadGC,
and BadMatch errors. XDrawLines also can generate BadValue errors.

Drawing Single and Multiple Rectangles
   

To draw the outline of a single rectangle in a given drawable, use XDrawRectangle.

XDrawRectangle(display, d, gc, x, y, width, height);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x

140



Graphics Functions

y Specify the x and y coordinates, which specify the upper-
left corner of the rectangle.

width

height Specify the width and height, which specify the dimensions
of the rectangle.

To draw the outline of multiple rectangles in a given drawable, use
XDrawRectangles.

XDrawRectangles(display, d, gc, rectangles[], nrectangles);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

rectangles Specifies an array of rectangles.

nrectangles Specifies the number of rectangles in the array.

The XDrawRectangle and XDrawRectangles functions draw the outlines of the
specified rectangle or rectangles as if a five-point PolyLine protocol request were
specified for each rectangle:

• [x,y] [x+width,y] [x+width,y+height] [x,y+height] [x,y]

For the specified rectangle or rectangles, these functions do not draw a pixel more
than once. XDrawRectangles draws the rectangles in the order listed in the array.
If rectangles intersect, the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, line-width, line-
style, cap-style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin,
and clip-mask. They also use these GC mode-dependent components: foreground,
background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, and
dash-list.

XDrawRectangle and XDrawRectangles can generate BadDrawable, BadGC, and
BadMatch errors.

Drawing Single and Multiple Arcs
   

To draw a single arc in a given drawable, use XDrawArc.

XDrawArc(display, d, gc, x, y, width, height, angle1, angle2);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x

141



Graphics Functions

y Specify the x and y coordinates, which are relative to the
origin of the drawable and specify the upper-left corner of
the bounding rectangle.

width

height Specify the width and height, which are the major and
minor axes of the arc.

angle1 Specifies the start of the arc relative to the three-o'clock
position from the center, in units of degrees * 64.

angle2 Specifies the path and extent of the arc relative to the start
of the arc, in units of degrees * 64.

To draw multiple arcs in a given drawable, use XDrawArcs.

XDrawArcs(display, d, gc, arcs, narcs);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

arcs Specifies an array of arcs.

narcs Specifies the number of arcs in the array.

delim %% XDrawArc draws a single circular or elliptical arc, and XDrawArcs draws
multiple circular or elliptical arcs. Each arc is specified by a rectangle and two
angles. The center of the circle or ellipse is the center of the rectangle, and the
major and minor axes are specified by the width and height. Positive angles indicate
counterclockwise motion, and negative angles indicate clockwise motion. If the
magnitude of angle2 is greater than 360 degrees, XDrawArc or XDrawArcs truncates
it to 360 degrees.

For an arc specified as %[ ~x, ~y, ~width , ~height, ~angle1, ~angle2 ]%, the origin
of the major and minor axes is at % [ x +^ {width over 2} , ~y +^ {height over
2} ]%, and the infinitely thin path describing the entire circle or ellipse intersects
the horizontal axis at % [ x, ~y +^ {height over 2} ]% and % [ x +^ width , ~y
+^ { height over 2 }] % and intersects the vertical axis at % [ x +^ { width over
2 } , ~y ]% and % [ x +^ { width over 2 }, ~y +^ height ]%. These coordinates
can be fractional and so are not truncated to discrete coordinates. The path should
be defined by the ideal mathematical path. For a wide line with line-width lw, the
bounding outlines for filling are given by the two infinitely thin paths consisting of
all points whose perpendicular distance from the path of the circle/ellipse is equal to
lw/2 (which may be a fractional value). The cap-style and join-style are applied the
same as for a line corresponding to the tangent of the circle/ellipse at the endpoint.

For an arc specified as % [ ~x, ~y, ~width, ~height, ~angle1, ~angle2 ]%, the angles
must be specified in the effectively skewed coordinate system of the ellipse (for a
circle, the angles and coordinate systems are identical). The relationship between
these angles and angles expressed in the normal coordinate system of the screen
(as measured with a protractor) is as follows:

142



Graphics Functions

% roman "skewed-angle" ~ = ~ atan left ( tan ( roman "normal-angle" )
 * width over height right ) +^ adjust%

The skewed-angle and normal-angle are expressed in radians (rather than in
degrees scaled by 64) in the range % [ 0 , ~2 pi ]% and where atan returns a value
in the range % [ - pi over 2 , ~pi over 2 ] % and adjust is:

%0%     for normal-angle in the range % [ 0 , ~pi over 2  ]%
%pi%     for normal-angle in the range % [ pi over 2 , ~{3 pi} over 2  ]%
%2 pi%     for normal-angle in the range % [ {3 pi} over 2 , ~2 pi  ]%

For any given arc, XDrawArc and XDrawArcs do not draw a pixel more than once.
If two arcs join correctly and if the line-width is greater than zero and the arcs
intersect, XDrawArc and XDrawArcs do not draw a pixel more than once. Otherwise,
the intersecting pixels of intersecting arcs are drawn multiple times. Specifying an
arc with one endpoint and a clockwise extent draws the same pixels as specifying
the other endpoint and an equivalent counterclockwise extent, except as it affects
joins.

If the last point in one arc coincides with the first point in the following arc, the two
arcs will join correctly. If the first point in the first arc coincides with the last point
in the last arc, the two arcs will join correctly. By specifying one axis to be zero, a
horizontal or vertical line can be drawn. Angles are computed based solely on the
coordinate system and ignore the aspect ratio.

Both functions use these GC components: function, plane-mask, line-width, line-
style, cap-style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin,
and clip-mask. They also use these GC mode-dependent components: foreground,
background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, and
dash-list.

XDrawArc and XDrawArcs can generate BadDrawable, BadGC, and BadMatch errors.

Filling Areas
Xlib provides functions that you can use to fill:

• A single rectangle or multiple rectangles

• A single polygon

• A single arc or multiple arcs

Filling Single and Multiple Rectangles
   

To fill a single rectangular area in a given drawable, use XFillRectangle.

XFillRectangle(display, d, gc, x, y, width, height);

display Specifies the connection to the X server.

143



Graphics Functions

d Specifies the drawable.

gc Specifies the GC.

x

y Specify the x and y coordinates, which are relative to the
origin of the drawable and specify the upper-left corner of
the rectangle.

width

height Specify the width and height, which are the dimensions of
the rectangle to be filled.

To fill multiple rectangular areas in a given drawable, use XFillRectangles.

XFillRectangles(display, d, gc, rectangles, nrectangles);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

rectangles Specifies an array of rectangles.

nrectangles Specifies the number of rectangles in the array.

The XFillRectangle and XFillRectangles functions fill the specified rectangle or
rectangles as if a four-point FillPolygon protocol request were specified for each
rectangle:

[x,y] [x+width,y] [x+width,y+height] [x,y+height]

Each function uses the x and y coordinates, width and height dimensions, and GC
you specify.

XFillRectangles fills the rectangles in the order listed in the array. For any given
rectangle, XFillRectangle and XFillRectangles do not draw a pixel more than
once. If rectangles intersect, the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, and tile-stipple-y-origin.

XFillRectangle and XFillRectangles can generate BadDrawable, BadGC, and
BadMatch errors.

Filling a Single Polygon
To fill a polygon area in a given drawable, use XFillPolygon.  

XFillPolygon(display, d, gc, points, npoints, shape, mode);

144



Graphics Functions

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

points Specifies an array of points.

npoints Specifies the number of points in the array.

shape Specifies a shape that helps the server to improve
performance. You can pass Complex, Convex, or
Nonconvex.

mode Specifies the coordinate mode. You can pass
CoordModeOrigin or CoordModePrevious.

XFillPolygon fills the region closed by the specified path. The path is closed
automatically if the last point in the list does not coincide with the first point.
XFillPolygon does not draw a pixel of the region more than once. CoordModeOrigin
treats all coordinates as relative to the origin, and CoordModePrevious treats all
coordinates after the first as relative to the previous point.

Depending on the specified shape, the following occurs:

• If shape is Complex, the path may self-intersect. Note that contiguous coincident
points in the path are not treated as self-intersection.

• If shape is Convex, for every pair of points inside the polygon, the line segment
connecting them does not intersect the path. If known by the client, specifying
Convex can improve performance. If you specify Convex for a path that is not
convex, the graphics results are undefined.

• If shape is Nonconvex, the path does not self-intersect, but the shape is not wholly
convex. If known by the client, specifying Nonconvex instead of Complex may
improve performance. If you specify Nonconvex for a self-intersecting path, the
graphics results are undefined.

The fill-rule of the GC controls the filling behavior of self-intersecting polygons.

This function uses these GC components: function, plane-mask, fill-style, fill-rule,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. It also uses these GC
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, and tile-stipple-y-origin.

XFillPolygon can generate BadDrawable, BadGC, BadMatch, and BadValue errors.

Filling Single and Multiple Arcs
   To fill a single arc in a given drawable, use XFillArc.

XFillArc(display, d, gc, x, y, width, height, angle1, angle2);

display Specifies the connection to the X server.

d Specifies the drawable.

145



Graphics Functions

gc Specifies the GC.

x

y Specify the x and y coordinates, which are relative to the
origin of the drawable and specify the upper-left corner of
the bounding rectangle.

width

height Specify the width and height, which are the major and
minor axes of the arc.

angle1 Specifies the start of the arc relative to the three-o'clock
position from the center, in units of degrees * 64.

angle2 Specifies the path and extent of the arc relative to the start
of the arc, in units of degrees * 64.

To fill multiple arcs in a given drawable, use XFillArcs.

XFillArcs(display, d, gc, arcs, narcs);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

arcs Specifies an array of arcs.

narcs Specifies the number of arcs in the array.

For each arc, XFillArc or XFillArcs fills the region closed by the infinitely thin
path described by the specified arc and, depending on the arc-mode specified in
the GC, one or two line segments. For ArcChord, the single line segment joining
the endpoints of the arc is used. For ArcPieSlice, the two line segments joining the
endpoints of the arc with the center point are used. XFillArcs fills the arcs in the
order listed in the array. For any given arc, XFillArc and XFillArcs do not draw a
pixel more than once. If regions intersect, the intersecting pixels are drawn multiple
times.

Both functions use these GC components: function, plane-mask, fill-style, arc-mode,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, and tile-stipple-y-origin.

XFillArc and XFillArcs can generate BadDrawable, BadGC, and BadMatch errors.

Font Metrics
 A font is a graphical description of a set of characters that are used to increase
efficiency whenever a set of small, similar sized patterns are repeatedly used.

This section discusses how to:

• Load and free fonts

146



Graphics Functions

• Obtain and free font names

• Compute character string sizes

• Compute logical extents

• Query character string sizes

The X server loads fonts whenever a program requests a new font. The server
can cache fonts for quick lookup. Fonts are global across all screens in a server.
Several levels are possible when dealing with fonts. Most applications simply use
XLoadQueryFont to load a font and query the font metrics.

Characters in fonts are regarded as masks. Except for image text requests, the only
pixels modified are those in which bits are set to 1 in the character. This means that
it makes sense to draw text using stipples or tiles (for example, many menus gray-
out unusable entries).

The XFontStruct structure contains all of the information for the font and consists
of the font-specific information as well as a pointer to an array of XCharStruct
structures for the characters contained in the font. The XFontStruct, XFontProp,
and XCharStruct structures contain:

typedef struct {
     short lbearing;               /* origin to left edge of raster */
     short rbearing;               /* origin to right edge of raster */
     short width;                  /* advance to next char's origin */
     short ascent;                 /* baseline to top edge of raster */
     short descent;                /* baseline to bottom edge of raster */
     unsigned short attributes;    /* per char flags (not predefined) */
} XCharStruct;

typedef struct {
     Atom     name;
     unsigned long card32;
} XFontProp;

typedef struct {     /* normal 16 bit characters are two bytes */
    unsigned char byte1;
    unsigned char byte2;
} XChar2b;

147



Graphics Functions

typedef struct {
     XExtData *ext_data;               /* hook for extension to hang data */
     Font fid;                         /* Font id for this font */
     unsigned direction;               /* hint about the direction font is painted */
     unsigned min_char_or_byte2;       /* first character */
     unsigned max_char_or_byte2;       /* last character */
     unsigned min_byte1;               /* first row that exists */
     unsigned max_byte1;               /* last row that exists */
     Bool all_chars_exist;             /* flag if all characters have nonzero size */
     unsigned default_char;            /* char to print for undefined character */
     int n_properties;                 /* how many properties there are */
     XFontProp *properties;            /* pointer to array of additional properties */
     XCharStruct min_bounds;           /* minimum bounds over all existing char */
     XCharStruct max_bounds;           /* maximum bounds over all existing char */
     XCharStruct *per_char;            /* first_char to last_char information */
     int ascent;                       /* logical extent above baseline for spacing */
     int descent;                      /* logical descent below baseline for spacing */
} XFontStruct;

X supports single byte/character, two bytes/character matrix, and 16-bit character
text operations. Note that any of these forms can be used with a font, but a single
byte/character text request can only specify a single byte (that is, the first row of
a 2-byte font). You should view 2-byte fonts as a two-dimensional matrix of defined
characters: byte1 specifies the range of defined rows and byte2 defines the range
of defined columns of the font. Single byte/character fonts have one row defined,
and the byte2 range specified in the structure defines a range of characters.

The bounding box of a character is defined by the XCharStruct of that character.
When characters are absent from a font, the default_char is used. When fonts have
all characters of the same size, only the information in the XFontStruct min and
max bounds are used.

The members of the XFontStruct have the following semantics:

• The direction member can be either FontLeftToRight or FontRightToLeft. It is just
a hint as to whether most XCharStruct elements have a positive (FontLeftToRight)
or a negative (FontRightToLeft) character width metric. The core protocol defines
no support for vertical text.

• If the min_byte1 and max_byte1 members are both zero, min_char_or_byte2
specifies the linear character index corresponding to the first element of the
per_char array, and max_char_or_byte2 specifies the linear character index of the
last element.

• If either min_byte1 or max_byte1 are nonzero, both min_char_or_byte2 and
max_char_or_byte2 are less than 256, and the 2-byte character index values
corresponding to the per_char array element N (counting from 0) are:

• byte1 = N/D + min_byte1 byte2 = N\\D + min_char_or_byte2

• where:

148



Graphics Functions

• D = max_char_or_byte2 - min_char_or_byte2 + 1 / = integer division \\ = integer
modulus

• If the per_char pointer is NULL, all glyphs between the first and last character
indexes inclusive have the same information, as given by both min_bounds and
max_bounds.

• If all_chars_exist is True, all characters in the per_char array have nonzero
bounding boxes.

• The default_char member specifies the character that will be used when an
undefined or nonexistent character is printed. The default_char is a 16-bit
character (not a 2-byte character). For a font using 2-byte matrix format,
the default_char has byte1 in the most-significant byte and byte2 in the least
significant byte. If the default_char itself specifies an undefined or nonexistent
character, no printing is performed for an undefined or nonexistent character.

• The min_bounds and max_bounds members contain the most extreme values of
each individual XCharStruct component over all elements of this array (and ignore
nonexistent characters). The bounding box of the font (the smallest rectangle
enclosing the shape obtained by superimposing all of the characters at the same
origin [x,y]) has its upper-left coordinate at:

     [x + min_bounds.lbearing, y - max_bounds.ascent]

• Its width is:

     max_bounds.rbearing - min_bounds.lbearing

• Its height is:

     max_bounds.ascent + max_bounds.descent

• The ascent member is the logical extent of the font above the baseline that is used
for determining line spacing. Specific characters may extend beyond this.

• The descent member is the logical extent of the font at or below the baseline that
is used for determining line spacing. Specific characters may extend beyond this.

• If the baseline is at Y-coordinate y, the logical extent of the font is inclusive
between the Y-coordinate values (y - font.ascent) and (y + font.descent - 1).
Typically, the minimum interline spacing between rows of text is given by ascent
+ descent.

For a character origin at [x,y], the bounding box of a character (that is, the smallest
rectangle that encloses the character's shape) described in terms of XCharStruct
components is a rectangle with its upper-left corner at:

[x + lbearing, y - ascent]

Its width is:

149



Graphics Functions

rbearing - lbearing

Its height is:

ascent + descent

The origin for the next character is defined to be:

[x + width, y]

The lbearing member defines the extent of the left edge of the character ink from the
origin. The rbearing member defines the extent of the right edge of the character
ink from the origin. The ascent member defines the extent of the top edge of the
character ink from the origin. The descent member defines the extent of the bottom
edge of the character ink from the origin. The width member defines the logical
width of the character.

Note that the baseline (the y position of the character origin) is logically viewed as
being the scanline just below nondescending characters. When descent is zero, only
pixels with Y-coordinates less than y are drawn, and the origin is logically viewed
as being coincident with the left edge of a nonkerned character. When lbearing is
zero, no pixels with X-coordinate less than x are drawn. Any of the XCharStruct
metric members could be negative. If the width is negative, the next character will
be placed to the left of the current origin.

The X protocol does not define the interpretation of the attributes member in the
XCharStruct structure. A nonexistent character is represented with all members of
its XCharStruct set to zero.

A font is not guaranteed to have any properties. The interpretation of the property
value (for example, long or unsigned long) must be derived from a priori knowledge
of the property. A basic set of font properties is specified in the X Consortium
standard X Logical Font Description Conventions.

Loading and Freeing Fonts
Xlib provides functions that you can use to load fonts, get font information, unload
fonts, and free font information.    A few font functions use a GContext resource ID
or a font ID interchangeably.

To load a given font, use XLoadFont.

Font XLoadFont(display, name);

display Specifies the connection to the X server.

name Specifies the name of the font, which is a null-terminated
string.

The XLoadFont function loads the specified font and returns its associated font
ID. If the font name is not in the Host Portable Character Encoding, the result is
implementation-dependent. Use of uppercase or lowercase does not matter. When
the characters ``?'' and ``*'' are used in a font name, a pattern match is performed
and any matching font is used. In the pattern, the ``?'' character will match any

150

../../xorg-docs/xlfd/xlfd.pdf#xlfd


Graphics Functions

single character, and the ``*'' character will match any number of characters.
A structured format for font names is specified in the X Consortium standard X
Logical Font Description Conventions. If XLoadFont was unsuccessful at loading the
specified font, a BadName error results. Fonts are not associated with a particular
screen and can be stored as a component of any GC. When the font is no longer
needed, call XUnloadFont.

XLoadFont can generate BadAlloc and BadName errors.

To return information about an available font, use XQueryFont.

XFontStruct *XQueryFont(display, font_ID);

display Specifies the connection to the X server.

font_ID Specifies the font ID or the GContext ID.

The XQueryFont function returns a pointer to the XFontStruct structure, which
contains information associated with the font. You can query a font or the font
stored in a GC. The font ID stored in the XFontStruct structure will be the
GContext ID, and you need to be careful when using this ID in other functions (see
XGContextFromGC). If the font does not exist, XQueryFont returns NULL. To free this
data, use XFreeFontInfo.

To perform a XLoadFont and XQueryFont in a single operation, use XLoadQueryFont.

XFontStruct *XLoadQueryFont(display, name);

display Specifies the connection to the X server.

name Specifies the name of the font, which is a null-terminated
string.

The XLoadQueryFont function provides the most common way for accessing a font.
XLoadQueryFont both opens (loads) the specified font and returns a pointer to the
appropriate XFontStruct structure. If the font name is not in the Host Portable
Character Encoding, the result is implementation-dependent. If the font does not
exist, XLoadQueryFont returns NULL.

XLoadQueryFont can generate a BadAlloc error.

To unload the font and free the storage used by the font structure that was allocated
by XQueryFont or XLoadQueryFont, use XFreeFont.

XFreeFont(display, font_struct);

display Specifies the connection to the X server.

font_struct Specifies the storage associated with the font.

The XFreeFont function deletes the association between the font resource ID and
the specified font and frees the XFontStruct structure. The font itself will be freed
when no other resource references it. The data and the font should not be referenced
again.

XFreeFont can generate a BadFont error.

To return a given font property, use XGetFontProperty.

151

../../xorg-docs/xlfd/xlfd.pdf#xlfd
../../xorg-docs/xlfd/xlfd.pdf#xlfd


Graphics Functions

Bool XGetFontProperty(font_struct, atom, value_return);

font_struct Specifies the storage associated with the font.

atom Specifies the atom for the property name you want
returned.

value_return Returns the value of the font property.

Given the atom for that property, the XGetFontProperty function returns the value
of the specified font property. XGetFontProperty also returns False if the property
was not defined or True if it was defined. A set of predefined atoms exists for font
properties, which can be found in <X11/Xatom.h>.    This set contains the standard
properties associated with a font. Although it is not guaranteed, it is likely that the
predefined font properties will be present.

To unload a font that was loaded by XLoadFont, use XUnloadFont.

XUnloadFont(display, font);

display Specifies the connection to the X server.

font Specifies the font.

The XUnloadFont function deletes the association between the font resource ID and
the specified font. The font itself will be freed when no other resource references
it. The font should not be referenced again.

XUnloadFont can generate a BadFont error.

Obtaining and Freeing Font Names and Information
You obtain font names and information by matching a wildcard specification when
querying a font type for a list of available sizes and so on.

To return a list of the available font names, use XListFonts.

char **XListFonts(display, pattern, maxnames, actual_count_return);

display Specifies the connection to the X server.

pattern Specifies the null-terminated pattern string that can
contain wildcard characters.

maxnames Specifies the maximum number of names to be
returned.

actual_count_return Returns the actual number of font names.

The XListFonts function returns an array of available font names (as controlled by
the font search path; see XSetFontPath) that match the string you passed to the
pattern argument. The pattern string can contain any characters, but each asterisk
(*) is a wildcard for any number of characters, and each question mark (?) is a
wildcard for a single character. If the pattern string is not in the Host Portable
Character Encoding, the result is implementation-dependent. Use of uppercase or
lowercase does not matter. Each returned string is null-terminated. If the data

152



Graphics Functions

returned by the server is in the Latin Portable Character Encoding, then the
returned strings are in the Host Portable Character Encoding. Otherwise, the result
is implementation-dependent. If there are no matching font names, XListFonts
returns NULL. The client should call XFreeFontNames when finished with the result
to free the memory.

To free a font name array, use XFreeFontNames.

XFreeFontNames(list[]);

list Specifies the array of strings you want to free.

The XFreeFontNames function frees the array and strings returned by XListFonts
or XListFontsWithInfo.

To obtain the names and information about available fonts, use
XListFontsWithInfo.

char **XListFontsWithInfo(display, pattern, maxnames, count_return,
info_return);

display Specifies the connection to the X server.

pattern Specifies the null-terminated pattern string that can
contain wildcard characters.

maxnames Specifies the maximum number of names to be
returned.

count_return Returns the actual number of matched font names.

info_return Returns the font information.

The XListFontsWithInfo function returns a list of font names that match the
specified pattern and their associated font information. The list of names is limited
to size specified by maxnames. The information returned for each font is identical to
what XLoadQueryFont would return except that the per-character metrics are not
returned. The pattern string can contain any characters, but each asterisk (*) is a
wildcard for any number of characters, and each question mark (?) is a wildcard for a
single character. If the pattern string is not in the Host Portable Character Encoding,
the result is implementation-dependent. Use of uppercase or lowercase does not
matter. Each returned string is null-terminated. If the data returned by the server is
in the Latin Portable Character Encoding, then the returned strings are in the Host
Portable Character Encoding. Otherwise, the result is implementation-dependent.
If there are no matching font names, XListFontsWithInfo returns NULL.

To free only the allocated name array, the client should call XFreeFontNames. To
free both the name array and the font information array or to free just the font
information array, the client should call XFreeFontInfo.

To free font structures and font names, use XFreeFontInfo.

XFreeFontInfo(names, free_info, actual_count);

names Specifies the list of font names.

free_info Specifies the font information.

153



Graphics Functions

actual_count Specifies the actual number of font names.

The XFreeFontInfo function frees a font structure or an array of font structures and
optionally an array of font names. If NULL is passed for names, no font names are
freed. If a font structure for an open font (returned by XLoadQueryFont) is passed,
the structure is freed, but the font is not closed; use XUnloadFont to close the font.

Computing Character String Sizes
Xlib provides functions that you can use to compute the width, the logical extents,
and the server information about 8-bit and 2-byte text strings.   The width is
computed by adding the character widths of all the characters. It does not matter if
the font is an 8-bit or 2-byte font. These functions return the sum of the character
metrics in pixels.

To determine the width of an 8-bit character string, use XTextWidth.

int XTextWidth(font_struct, string, count);

font_struct Specifies the font used for the width computation.

string Specifies the character string.

count Specifies the character count in the specified string.

To determine the width of a 2-byte character string, use XTextWidth16.

int XTextWidth16(font_struct, string, count);

font_struct Specifies the font used for the width computation.

string Specifies the character string.

count Specifies the character count in the specified string.

Computing Logical Extents
To compute the bounding box of an 8-bit character string in a given font, use
XTextExtents.

XTextExtents(font_struct, string, nchars, direction_return,
font_ascent_return, font_descent_return, overall_return);

font_struct Specifies the XFontStruct structure.

string Specifies the character string.

nchars Specifies the number of characters in the character
string.

direction_return Returns the value of the direction hint
(FontLeftToRight or FontRightToLeft).

font_ascent_return Returns the font ascent.

font_descent_return Returns the font descent.

154



Graphics Functions

overall_return Returns the overall size in the specified XCharStruct
structure.

To compute the bounding box of a 2-byte character string in a given font, use
XTextExtents16.

XTextExtents16(font_struct, string, nchars, direction_return,
font_ascent_return, font_descent_return, overall_return);

font_struct Specifies the XFontStruct structure.

string Specifies the character string.

nchars Specifies the number of characters in the character
string.

direction_return Returns the value of the direction hint
(FontLeftToRight or FontRightToLeft).

font_ascent_return Returns the font ascent.

font_descent_return Returns the font descent.

overall_return Returns the overall size in the specified XCharStruct
structure.

The XTextExtents and XTextExtents16 functions perform the size computation
locally and, thereby, avoid the round-trip overhead of XQueryTextExtents and
XQueryTextExtents16. Both functions return an XCharStruct structure, whose
members are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of all characters
in the string. The descent member is set to the maximum of the descent metrics.
The width member is set to the sum of the character-width metrics of all characters
in the string. For each character in the string, let W be the sum of the character-
width metrics of all characters preceding it in the string. Let L be the left-side-
bearing metric of the character plus W. Let R be the right-side-bearing metric of the
character plus W. The lbearing member is set to the minimum L of all characters in
the string. The rbearing member is set to the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each
XChar2b structure is interpreted as a 16-bit number with byte1 as the most
significant byte. If the font has no defined default character, undefined characters
in the string are taken to have all zero metrics.

Querying Character String Sizes
To query the server for the bounding box of an 8-bit character string in a given font,
use XQueryTextExtents.

XQueryTextExtents(display, font_ID, string, nchars, direction_return,
font_ascent_return, font_descent_return, overall_return);

display Specifies the connection to the X server.

font_ID Specifies either the font ID or the GContext ID that
contains the font.

155



Graphics Functions

string Specifies the character string.

nchars Specifies the number of characters in the character
string.

direction_return Returns the value of the direction hint
(FontLeftToRight or FontRightToLeft).

font_ascent_return Returns the font ascent.

font_descent_return Returns the font descent.

overall_return Returns the overall size in the specified XCharStruct
structure.

To query the server for the bounding box of a 2-byte character string in a given font,
use XQueryTextExtents16.

XQueryTextExtents16(display, font_ID, string, nchars, direction_return,
font_ascent_return, font_descent_return, overall_return);

display Specifies the connection to the X server.

font_ID Specifies either the font ID or the GContext ID that
contains the font.

string Specifies the character string.

nchars Specifies the number of characters in the character
string.

direction_return Returns the value of the direction hint
(FontLeftToRight or FontRightToLeft).

font_ascent_return Returns the font ascent.

font_descent_return Returns the font descent.

overall_return Returns the overall size in the specified XCharStruct
structure.

The XQueryTextExtents and XQueryTextExtents16 functions return the bounding
box of the specified 8-bit and 16-bit character string in the specified font or
the font contained in the specified GC. These functions query the X server and,
therefore, suffer the round-trip overhead that is avoided by XTextExtents and
XTextExtents16. Both functions return a XCharStruct structure, whose members
are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of all characters
in the string. The descent member is set to the maximum of the descent metrics.
The width member is set to the sum of the character-width metrics of all characters
in the string. For each character in the string, let W be the sum of the character-
width metrics of all characters preceding it in the string. Let L be the left-side-
bearing metric of the character plus W. Let R be the right-side-bearing metric of the
character plus W. The lbearing member is set to the minimum L of all characters in
the string. The rbearing member is set to the maximum R.

156



Graphics Functions

For fonts defined with linear indexing rather than 2-byte matrix indexing, each
XChar2b structure is interpreted as a 16-bit number with byte1 as the most
significant byte. If the font has no defined default character, undefined characters
in the string are taken to have all zero metrics.

Characters with all zero metrics are ignored. If the font has no defined default_char,
the undefined characters in the string are also ignored.

XQueryTextExtents and XQueryTextExtents16 can generate BadFont and BadGC
errors.

Drawing Text
This section discusses how to draw:

• Complex text

• Text characters

• Image text characters

The fundamental text functions XDrawText and XDrawText16 use the following
structures:

typedef struct {
     char *chars;     /* pointer to string */
     int nchars;      /* number of characters */
     int delta;       /* delta between strings */
     Font font;       /* Font to print it in, None don't change */
} XTextItem;

typedef struct {
     XChar2b *chars;     /* pointer to two-byte characters */
     int nchars;         /* number of characters */
     int delta;         /* delta between strings */
     Font font;         /* font to print it in, None don't change */
} XTextItem16;

If the font member is not None, the font is changed before printing and also is stored
in the GC. If an error was generated during text drawing, the previous items may
have been drawn. The baseline of the characters are drawn starting at the x and y
coordinates that you pass in the text drawing functions.

For example, consider the background rectangle drawn by XDrawImageString. If
you want the upper-left corner of the background rectangle to be at pixel coordinate

157



Graphics Functions

(x,y), pass the (x,y + ascent) as the baseline origin coordinates to the text functions.
The ascent is the font ascent, as given in the XFontStruct structure. If you want the
lower-left corner of the background rectangle to be at pixel coordinate (x,y), pass
the (x,y - descent + 1) as the baseline origin coordinates to the text functions. The
descent is the font descent, as given in the XFontStruct structure.

Drawing Complex Text
 

To draw 8-bit characters in a given drawable, use XDrawText.

XDrawText(display, d, gc, x, y, items, nitems);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x

y Specify the x and y coordinates, which are relative to the
origin of the specified drawable and define the origin of the
first character.

items Specifies an array of text items.

nitems Specifies the number of text items in the array.

To draw 2-byte characters in a given drawable, use XDrawText16.

XDrawText16(display, d, gc, x, y, items, nitems);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x

y Specify the x and y coordinates, which are relative to the
origin of the specified drawable and define the origin of the
first character.

items Specifies an array of text items.

nitems Specifies the number of text items in the array.

The XDrawText16 function is similar to XDrawText except that it uses 2-byte or 16-bit
characters. Both functions allow complex spacing and font shifts between counted
strings.

Each text item is processed in turn. A font member other than None in an item
causes the font to be stored in the GC and used for subsequent text. A text element
delta specifies an additional change in the position along the x axis before the string
is drawn. The delta is always added to the character origin and is not dependent

158



Graphics Functions

on any characteristics of the font. Each character image, as defined by the font in
the GC, is treated as an additional mask for a fill operation on the drawable. The
drawable is modified only where the font character has a bit set to 1. If a text item
generates a BadFont error, the previous text items may have been drawn.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each
XChar2b structure is interpreted as a 16-bit number with byte1 as the most
significant byte.

Both functions use these GC components: function, plane-mask, fill-style, font,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, and tile-stipple-y-origin.

XDrawText and XDrawText16 can generate BadDrawable, BadFont, BadGC, and
BadMatch errors.

Drawing Text Characters
  To draw 8-bit characters in a given drawable, use XDrawString.

XDrawString(display, d, gc, x, y, string, length);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x

y Specify the x and y coordinates, which are relative to the
origin of the specified drawable and define the origin of the
first character.

string Specifies the character string.

length Specifies the number of characters in the string argument.

To draw 2-byte characters in a given drawable, use XDrawString16.

XDrawString16(display, d, gc, x, y, string, length);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x

y Specify the x and y coordinates, which are relative to the
origin of the specified drawable and define the origin of the
first character.

string Specifies the character string.

length Specifies the number of characters in the string argument.

159



Graphics Functions

Each character image, as defined by the font in the GC, is treated as an additional
mask for a fill operation on the drawable. The drawable is modified only where the
font character has a bit set to 1. For fonts defined with 2-byte matrix indexing and
used with XDrawString16, each byte is used as a byte2 with a byte1 of zero.

Both functions use these GC components: function, plane-mask, fill-style, font,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, and tile-stipple-y-origin.

XDrawString and XDrawString16 can generate BadDrawable, BadGC, and
BadMatch errors.

Drawing Image Text Characters
  Some applications, in particular terminal emulators, need to print image text in
which both the foreground and background bits of each character are painted. This
prevents annoying flicker on many displays.  

To draw 8-bit image text characters in a given drawable, use XDrawImageString.

XDrawImageString(display, d, gc, x, y, string, length);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x

y Specify the x and y coordinates, which are relative to the
origin of the specified drawable and define the origin of the
first character.

string Specifies the character string.

length Specifies the number of characters in the string argument.

To draw 2-byte image text characters in a given drawable, use XDrawImageString16.

XDrawImageString16(display, d, gc, x, y, string, length);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x

y Specify the x and y coordinates, which are relative to the
origin of the specified drawable and define the origin of the
first character.

string Specifies the character string.

length Specifies the number of characters in the string argument.

160



Graphics Functions

The XDrawImageString16 function is similar to XDrawImageString except that it
uses 2-byte or 16-bit characters. Both functions also use both the foreground and
background pixels of the GC in the destination.

The effect is first to fill a destination rectangle with the background pixel defined in
the GC and then to paint the text with the foreground pixel. The upper-left corner
of the filled rectangle is at:

[x, y - font-ascent]

The width is:

overall-width

The height is:

font-ascent + font-descent

The overall-width, font-ascent, and font-descent are as would be returned by
XQueryTextExtents using gc and string. The function and fill-style defined in the GC
are ignored for these functions. The effective function is GXcopy, and the effective
fill-style is FillSolid.

For fonts defined with 2-byte matrix indexing and used with XDrawImageString,
each byte is used as a byte2 with a byte1 of zero.

Both functions use these GC components: plane-mask, foreground, background,
font, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.

XDrawImageString and XDrawImageString16 can generate BadDrawable, BadGC,
and BadMatch errors.

Transferring Images between Client and Server
Xlib provides functions that you can use to transfer images between a client and
the server. Because the server may require diverse data formats, Xlib provides an
image object that fully describes the data in memory and that provides for basic
operations on that data. You should reference the data through the image object
rather than referencing the data directly. However, some implementations of the
Xlib library may efficiently deal with frequently used data formats by replacing
functions in the procedure vector with special case functions. Supported operations
include destroying the image, getting a pixel, storing a pixel, extracting a subimage
of an image, and adding a constant to an image (see section 16.8).

All the image manipulation functions discussed in this section make use of the
XImage structure, which describes an image as it exists in the client's memory.

161



Graphics Functions

typedef struct _XImage {
     int width, height;         /* size of image */
     int xoffset;               /* number of pixels offset in X direction */
     int format;                /* XYBitmap, XYPixmap, ZPixmap */
     char *data;                /* pointer to image data */
     int byte_order;            /* data byte order, LSBFirst, MSBFirst */
     int bitmap_unit;           /* quant. of scanline 8, 16, 32 */
     int bitmap_bit_order;      /* LSBFirst, MSBFirst */
     int bitmap_pad;            /* 8, 16, 32 either XY or ZPixmap */
     int depth;                 /* depth of image */
     int bytes_per_line;        /* accelerator to next scanline */
     int bits_per_pixel;        /* bits per pixel (ZPixmap) */
     unsigned long red_mask;    /* bits in z arrangement */
     unsigned long green_mask;
     unsigned long blue_mask;
     XPointer obdata;           /* hook for the object routines to hang on */
     struct funcs {             /* image manipulation routines */
          struct _XImage *(*create_image)();
          int             (*destroy_image)();
          unsigned long   (*get_pixel)();
          int             (*put_pixel)();
          struct _XImage  *(*sub_image)();
          int            (*add_pixel)();
     } f;
} XImage;

To initialize the image manipulation routines of an image structure, use XInitImage.

Status XInitImage(image);

ximage Specifies the image.

The XInitImage function initializes the internal image manipulation routines of
an image structure, based on the values of the various structure members.
All fields other than the manipulation routines must already be initialized. If
the bytes_per_line member is zero, XInitImage will assume the image data is
contiguous in memory and set the bytes_per_line member to an appropriate value
based on the other members; otherwise, the value of bytes_per_line is not changed.
All of the manipulation routines are initialized to functions that other Xlib image
manipulation functions need to operate on the type of image specified by the rest
of the structure.

This function must be called for any image constructed by the client before passing
it to any other Xlib function. Image structures created or returned by Xlib do not
need to be initialized in this fashion.

This function returns a nonzero status if initialization of the structure is successful.
It returns zero if it detected some error or inconsistency in the structure, in which
case the image is not changed.

To combine an image with a rectangle of a drawable on the display, use XPutImage.

XPutImage(display, d, gc, image, src_x, src_y, dest_x, dest_y, width,
height);

162



Graphics Functions

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

image Specifies the image you want combined with the rectangle.

src_x Specifies the offset in X from the left edge of the image
defined by the XImage structure.

src_y Specifies the offset in Y from the top edge of the image
defined by the XImage structure.

dest_x

dest_y Specify the x and y coordinates, which are relative to
the origin of the drawable and are the coordinates of the
subimage.

width

height Specify the width and height of the subimage, which define
the dimensions of the rectangle.

The XPutImage function combines an image with a rectangle of the specified
drawable. The section of the image defined by the src_x, src_y, width, and height
arguments is drawn on the specified part of the drawable. If XYBitmap format
is used, the depth of the image must be one, or a BadMatch error results. The
foreground pixel in the GC defines the source for the one bits in the image, and the
background pixel defines the source for the zero bits. For XYPixmap and ZPixmap,
the depth of the image must match the depth of the drawable, or a BadMatch error
results.

If the characteristics of the image (for example, byte_order and bitmap_unit) differ
from what the server requires, XPutImage automatically makes the appropriate
conversions.

This function uses these GC components: function, plane-mask, subwindow-mode,
clip-x-origin, clip-y-origin, and clip-mask. It also uses these GC mode-dependent
components: foreground and background.

XPutImage can generate BadDrawable, BadGC, BadMatch, and BadValue errors.

To return the contents of a rectangle in a given drawable on the display, use
XGetImage. This function specifically supports rudimentary screen dumps.

XImage *XGetImage(display, d, x, y, width, height, plane_mask, format);

display Specifies the connection to the X server.

d Specifies the drawable.

x

y Specify the x and y coordinates, which are relative to
the origin of the drawable and define the upper-left
corner of the rectangle.

163



Graphics Functions

width

height Specify the width and height of the subimage, which
define the dimensions of the rectangle.

plane_mask Specifies the plane mask.

format Specifies the format for the image. You can pass
XYPixmap or ZPixmap.

The XGetImage function returns a pointer to an XImage structure. This structure
provides you with the contents of the specified rectangle of the drawable in the
format you specify. If the format argument is XYPixmap, the image contains only the
bit planes you passed to the plane_mask argument. If the plane_mask argument only
requests a subset of the planes of the display, the depth of the returned image will
be the number of planes requested. If the format argument is ZPixmap, XGetImage
returns as zero the bits in all planes not specified in the plane_mask argument.
The function performs no range checking on the values in plane_mask and ignores
extraneous bits.

XGetImage returns the depth of the image to the depth member of the XImage
structure. The depth of the image is as specified when the drawable was created,
except when getting a subset of the planes in XYPixmap format, when the depth is
given by the number of bits set to 1 in plane_mask.

If the drawable is a pixmap, the given rectangle must be wholly contained within the
pixmap, or a BadMatch error results. If the drawable is a window, the window must
be viewable, and it must be the case that if there were no inferiors or overlapping
windows, the specified rectangle of the window would be fully visible on the screen
and wholly contained within the outside edges of the window, or a BadMatch error
results. Note that the borders of the window can be included and read with this
request. If the window has backing-store, the backing-store contents are returned
for regions of the window that are obscured by noninferior windows. If the window
does not have backing-store, the returned contents of such obscured regions are
undefined. The returned contents of visible regions of inferiors of a different depth
than the specified window's depth are also undefined. The pointer cursor image
is not included in the returned contents. If a problem occurs, XGetImage returns
NULL.

XGetImage can generate BadDrawable, BadMatch, and BadValue errors.

To copy the contents of a rectangle on the display to a location within a preexisting
image structure, use XGetSubImage.

XImage *XGetSubImage(display, d, x, y, width, height, plane_mask,
format, dest_image, dest_x, dest_y);

display Specifies the connection to the X server.

d Specifies the drawable.

x

y Specify the x and y coordinates, which are relative to
the origin of the drawable and define the upper-left
corner of the rectangle.

164



Graphics Functions

width

height Specify the width and height of the subimage, which
define the dimensions of the rectangle.

plane_mask Specifies the plane mask.

format Specifies the format for the image. You can pass
XYPixmap or ZPixmap.

dest_image Specifies the destination image.

dest_x

dest_y Specify the x and y coordinates, which are relative
to the origin of the destination rectangle, specify its
upper-left corner, and determine where the subimage
is placed in the destination image.

The XGetSubImage function updates dest_image with the specified subimage in the
same manner as XGetImage. If the format argument is XYPixmap, the image contains
only the bit planes you passed to the plane_mask argument. If the format argument
is ZPixmap, XGetSubImage returns as zero the bits in all planes not specified in the
plane_mask argument. The function performs no range checking on the values in
plane_mask and ignores extraneous bits. As a convenience, XGetSubImage returns
a pointer to the same XImage structure specified by dest_image.

The depth of the destination XImage structure must be the same as that of the
drawable. If the specified subimage does not fit at the specified location on the
destination image, the right and bottom edges are clipped. If the drawable is a
pixmap, the given rectangle must be wholly contained within the pixmap, or a
BadMatch error results. If the drawable is a window, the window must be viewable,
and it must be the case that if there were no inferiors or overlapping windows, the
specified rectangle of the window would be fully visible on the screen and wholly
contained within the outside edges of the window, or a BadMatch error results. If the
window has backing-store, then the backing-store contents are returned for regions
of the window that are obscured by noninferior windows. If the window does not
have backing-store, the returned contents of such obscured regions are undefined.
The returned contents of visible regions of inferiors of a different depth than the
specified window's depth are also undefined. If a problem occurs, XGetSubImage
returns NULL.

XGetSubImage can generate BadDrawable, BadGC, BadMatch, and BadValue errors.

165



Chapter 9. Window and Session
Manager Functions

Although it is difficult to categorize functions as exclusively for an application, a
window manager, or a session manager, the functions in this chapter are most often
used by window managers and session managers. It is not expected that these
functions will be used by most application programs. Xlib provides management
functions to:

• Change the parent of a window

• Control the lifetime of a window

• Manage installed colormaps

• Set and retrieve the font search path

• Grab the server

• Kill a client

• Control the screen saver

• Control host access

Changing the Parent of a Window
To change a window's parent to another window on the same screen, use
XReparentWindow. There is no way to move a window between screens.

XReparentWindow(display, w, parent, x, y);

display Specifies the connection to the X server.

w Specifies the window.

parent Specifies the parent window.

x

y Specify the x and y coordinates of the position in the new
parent window.

If the specified window is mapped, XReparentWindow automatically performs an
UnmapWindow request on it, removes it from its current position in the hierarchy, and
inserts it as the child of the specified parent. The window is placed in the stacking
order on top with respect to sibling windows.

After reparenting the specified window, XReparentWindow causes the X server to
generate a ReparentNotify event. The override_redirect member returned in this
event is set to the window's corresponding attribute. Window manager clients
usually should ignore this window if this member is set to True. Finally, if the

166



Window and Session
Manager Functions

specified window was originally mapped, the X server automatically performs a
MapWindow request on it.

The X server performs normal exposure processing on formerly obscured windows.
The X server might not generate Expose events for regions from the initial
UnmapWindow request that are immediately obscured by the final MapWindow request.
A BadMatch error results if:

• The new parent window is not on the same screen as the old parent window.

• The new parent window is the specified window or an inferior of the specified
window.

• The new parent is InputOnly, and the window is not.

• The specified window has a ParentRelative background, and the new parent
window is not the same depth as the specified window.

XReparentWindow can generate BadMatch and BadWindow errors.

Controlling the Lifetime of a Window
The save-set of a client is a list of other clients' windows that, if they are inferiors
of one of the client's windows at connection close, should not be destroyed and
should be remapped if they are unmapped. For further information about close-
connection processing, see section 2.6. To allow an application's window to survive
when a window manager that has reparented a window fails, Xlib provides the
save-set functions that you can use to control the longevity of subwindows that are
normally destroyed when the parent is destroyed. For example, a window manager
that wants to add decoration to a window by adding a frame might reparent an
application's window. When the frame is destroyed, the application's window should
not be destroyed but be returned to its previous place in the window hierarchy.

The X server automatically removes windows from the save-set when they are
destroyed.

To add or remove a window from the client's save-set, use XChangeSaveSet.

XChangeSaveSet(display, w, change_mode);

display Specifies the connection to the X server.

w Specifies the window that you want to add to or delete
from the client's save-set.

change_mode Specifies the mode. You can pass SetModeInsert or
SetModeDelete.

Depending on the specified mode, XChangeSaveSet either inserts or deletes the
specified window from the client's save-set. The specified window must have been
created by some other client, or a BadMatch error results.

XChangeSaveSet can generate BadMatch, BadValue, and BadWindow errors.

To add a window to the client's save-set, use XAddToSaveSet.

167



Window and Session
Manager Functions

XAddToSaveSet(display, w);

display Specifies the connection to the X server.

w Specifies the window that you want to add to the client's
save-set.

The XAddToSaveSet function adds the specified window to the client's save-set. The
specified window must have been created by some other client, or a BadMatch error
results.

XAddToSaveSet can generate BadMatch and BadWindow errors.

To remove a window from the client's save-set, use XRemoveFromSaveSet.

XRemoveFromSaveSet(display, w);

display Specifies the connection to the X server.

w Specifies the window that you want to delete from the
client's save-set.

The XRemoveFromSaveSet function removes the specified window from the client's
save-set. The specified window must have been created by some other client, or a
BadMatch error results.

XRemoveFromSaveSet can generate BadMatch and BadWindow errors.

Managing Installed Colormaps
The X server maintains a list of installed colormaps. Windows using these colormaps
are guaranteed to display with correct colors; windows using other colormaps may
or may not display with correct colors. Xlib provides functions that you can use to
install a colormap, uninstall a colormap, and obtain a list of installed colormaps.

At any time, there is a subset of the installed maps that is viewed as an ordered list
and is called the required list. The length of the required list is at most M, where
M is the minimum number of installed colormaps specified for the screen in the
connection setup. The required list is maintained as follows. When a colormap is
specified to XInstallColormap, it is added to the head of the list; the list is truncated
at the tail, if necessary, to keep its length to at most M. When a colormap is specified
to XUninstallColormap and it is in the required list, it is removed from the list. A
colormap is not added to the required list when it is implicitly installed by the X
server, and the X server cannot implicitly uninstall a colormap that is in the required
list.

To install a colormap, use XInstallColormap.

XInstallColormap(display, colormap);

display Specifies the connection to the X server.

colormap Specifies the colormap.

The XInstallColormap function installs the specified colormap for its associated
screen. All windows associated with this colormap immediately display with true

168



Window and Session
Manager Functions

colors. You associated the windows with this colormap when you created them
by calling XCreateWindow, XCreateSimpleWindow, XChangeWindowAttributes, or
XSetWindowColormap.

If the specified colormap is not already an installed colormap, the X server generates
a ColormapNotify event on each window that has that colormap. In addition, for
every other colormap that is installed as a result of a call to XInstallColormap, the
X server generates a ColormapNotify event on each window that has that colormap.

XInstallColormap can generate a BadColor error.

To uninstall a colormap, use XUninstallColormap.

XUninstallColormap(display, colormap);

display Specifies the connection to the X server.

colormap Specifies the colormap.

The XUninstallColormap function removes the specified colormap from the
required list for its screen. As a result, the specified colormap might be uninstalled,
and the X server might implicitly install or uninstall additional colormaps. Which
colormaps get installed or uninstalled is server dependent except that the required
list must remain installed.

If the specified colormap becomes uninstalled, the X server generates a
ColormapNotify event on each window that has that colormap. In addition, for
every other colormap that is installed or uninstalled as a result of a call to
XUninstallColormap, the X server generates a ColormapNotify event on each
window that has that colormap.

XUninstallColormap can generate a BadColor error.

To obtain a list of the currently installed colormaps for a given screen, use
XListInstalledColormaps.

Colormap *XListInstalledColormaps(display, w, num_return);

display Specifies the connection to the X server.

w Specifies the window that determines the screen.

num_return Returns the number of currently installed colormaps.

The XListInstalledColormaps function returns a list of the currently installed
colormaps for the screen of the specified window. The order of the colormaps in
the list is not significant and is no explicit indication of the required list. When the
allocated list is no longer needed, free it by using XFree.

XListInstalledColormaps can generate a BadWindow error.

Setting and Retrieving the Font Search Path
The set of fonts available from a server depends on a font search path. Xlib provides
functions to set and retrieve the search path for a server.

169



Window and Session
Manager Functions

To set the font search path, use XSetFontPath.

XSetFontPath(display, directories, ndirs);

display Specifies the connection to the X server.

directories Specifies the directory path used to look for a font.
Setting the path to the empty list restores the default
path defined for the X server.

ndirs Specifies the number of directories in the path.

The XSetFontPath function defines the directory search path for font lookup.
There is only one search path per X server, not one per client. The encoding
and interpretation of the strings are implementation-dependent, but typically they
specify directories or font servers to be searched in the order listed. An X server
is permitted to cache font information internally; for example, it might cache an
entire font from a file and not check on subsequent opens of that font to see if the
underlying font file has changed. However, when the font path is changed, the X
server is guaranteed to flush all cached information about fonts for which there
currently are no explicit resource IDs allocated. The meaning of an error from this
request is implementation-dependent.

XSetFontPath can generate a BadValue error.

To get the current font search path, use XGetFontPath.

char **XGetFontPath(display, npaths_return);

display Specifies the connection to the X server.

npaths_return Returns the number of strings in the font path array.

The XGetFontPath function allocates and returns an array of strings containing the
search path. The contents of these strings are implementation-dependent and are
not intended to be interpreted by client applications. When it is no longer needed,
the data in the font path should be freed by using XFreeFontPath.

To free data returned by XGetFontPath, use XFreeFontPath.

XFreeFontPath(list);

list Specifies the array of strings you want to free.

The XFreeFontPath function frees the data allocated by XGetFontPath.

Grabbing the Server
Xlib provides functions that you can use to grab and ungrab the server. These
functions can be used to control processing of output on other connections
by the window system server. While the server is grabbed, no processing of
requests or close downs on any other connection will occur. A client closing its
connection automatically ungrabs the server.   Although grabbing the server is
highly discouraged, it is sometimes necessary.

To grab the server, use XGrabServer.

170



Window and Session
Manager Functions

XGrabServer(display);

display Specifies the connection to the X server.

The XGrabServer function disables processing of requests and close downs on all
other connections than the one this request arrived on. You should not grab the X
server any more than is absolutely necessary.

To ungrab the server, use XUngrabServer.

XUngrabServer(display);

display Specifies the connection to the X server.

The XUngrabServer function restarts processing of requests and close downs on
other connections. You should avoid grabbing the X server as much as possible.

Killing Clients
Xlib provides a function to cause the connection to a client to be closed and its
resources to be destroyed. To destroy a client, use XKillClient.

XKillClient(display, resource);

display Specifies the connection to the X server.

resource Specifies any resource associated with the client that you
want to destroy or AllTemporary.

The XKillClient function forces a close down of the client that created the
resource if a valid resource is specified. If the client has already terminated in
either RetainPermanent or RetainTemporary mode, all of the client's resources
are destroyed. If AllTemporary is specified, the resources of all clients that have
terminated in RetainTemporary are destroyed (see section 2.5). This permits
implementation of window manager facilities that aid debugging. A client can set its
close-down mode to RetainTemporary. If the client then crashes, its windows would
not be destroyed. The programmer can then inspect the application's window tree
and use the window manager to destroy the zombie windows.

XKillClient can generate a BadValue error.

Controlling the Screen Saver
Xlib provides functions that you can use to set or reset the mode of the screen saver,
to force or activate the screen saver, or to obtain the current screen saver values.

To set the screen saver mode, use XSetScreenSaver.

XSetScreenSaver(display, timeout, interval, prefer_blanking,
allow_exposures);

display Specifies the connection to the X server.

timeout Specifies the timeout, in seconds, until the screen
saver turns on.

171



Window and Session
Manager Functions

interval Specifies the interval, in seconds, between screen
saver alterations.

prefer_blanking Specifies how to enable screen blanking. You
can pass DontPreferBlanking, PreferBlanking, or
DefaultBlanking.

allow_exposures Specifies the screen save control values. You
can pass DontAllowExposures, AllowExposures, or
DefaultExposures.

Timeout and interval are specified in seconds. A timeout of 0 disables the screen
saver (but an activated screen saver is not deactivated), and a timeout of −1 restores
the default. Other negative values generate a BadValue error. If the timeout value
is nonzero, XSetScreenSaver enables the screen saver. An interval of 0 disables
the random-pattern motion. If no input from devices (keyboard, mouse, and so on)
is generated for the specified number of timeout seconds once the screen saver is
enabled, the screen saver is activated.

For each screen, if blanking is preferred and the hardware supports video blanking,
the screen simply goes blank. Otherwise, if either exposures are allowed or the
screen can be regenerated without sending Expose events to clients, the screen
is tiled with the root window background tile randomly re-origined each interval
seconds. Otherwise, the screens' state do not change, and the screen saver is not
activated. The screen saver is deactivated, and all screen states are restored at the
next keyboard or pointer input or at the next call to XForceScreenSaver with mode
ScreenSaverReset.

If the server-dependent screen saver method supports periodic change, the interval
argument serves as a hint about how long the change period should be, and zero
hints that no periodic change should be made. Examples of ways to change the
screen include scrambling the colormap periodically, moving an icon image around
the screen periodically, or tiling the screen with the root window background tile,
randomly re-origined periodically.

XSetScreenSaver can generate a BadValue error.

To force the screen saver on or off, use XForceScreenSaver.

XForceScreenSaver(display, mode);

display Specifies the connection to the X server.

mode Specifies the mode that is to be applied. You can pass
ScreenSaverActive or ScreenSaverReset.

If the specified mode is ScreenSaverActive and the screen saver currently is
deactivated, XForceScreenSaver activates the screen saver even if the screen saver
had been disabled with a timeout of zero. If the specified mode is ScreenSaverReset
and the screen saver currently is enabled, XForceScreenSaver deactivates the
screen saver if it was activated, and the activation timer is reset to its initial state
(as if device input had been received).

XForceScreenSaver can generate a BadValue error.

To activate the screen saver, use XActivateScreenSaver.

172



Window and Session
Manager Functions

XActivateScreenSaver(display);

display Specifies the connection to the X server.

To reset the screen saver, use XResetScreenSaver.

XResetScreenSaver(display);

display Specifies the connection to the X server.

To get the current screen saver values, use XGetScreenSaver.

XGetScreenSaver(display, timeout_return, interval_return,
prefer_blanking_return, allow_exposures_return);

display Specifies the connection to the X server.

timeout_return Returns the timeout, in seconds, until the screen
saver turns on.

interval_return Returns the interval between screen saver
invocations.

prefer_blanking_return Returns the current screen blanking
preference (DontPreferBlanking, PreferBlanking, or
DefaultBlanking).

allow_exposures_return Returns the current screen save control
value (DontAllowExposures, AllowExposures, or
DefaultExposures).

Controlling Host Access
This section discusses how to:

• Add, get, or remove hosts from the access control list

• Change, enable, or disable access

  X does not provide any protection on a per-window basis. If you find out
the resource ID of a resource, you can manipulate it. To provide some minimal
level of protection, however, connections are permitted only from machines you
trust. This is adequate on single-user workstations but obviously breaks down
on timesharing machines. Although provisions exist in the X protocol for proper
connection authentication, the lack of a standard authentication server leaves host-
level access control as the only common mechanism.

 The initial set of hosts allowed to open connections typically consists of:

• The host the window system is running on.

• On POSIX-conformant systems, each host listed in the /etc/X?.hosts file. The ?
indicates the number of the display.  This file should consist of host names
separated by newlines. DECnet nodes must terminate in :: to distinguish them
from Internet hosts.

173



Window and Session
Manager Functions

If a host is not in the access control list when the access control mechanism is
enabled and if the host attempts to establish a connection, the server refuses the
connection. To change the access list, the client must reside on the same host as
the server and/or must have been granted permission in the initial authorization at
connection setup.

Servers also can implement other access control policies in addition to or in place
of this host access facility. For further information about other access control
implementations, see X Window System Protocol.

Adding, Getting, or Removing Hosts
Xlib provides functions that you can use to add, get, or remove hosts from the access
control list. All the host access control functions use the XHostAddress structure,
which contains:

typedef struct {
     int family;        /* for example FamilyInternet */
     int length;        /* length of address, in bytes */
     char *address;     /* pointer to where to find the address */
} XHostAddress;

The family member specifies which protocol address family to use (for
example, TCP/IP or DECnet) and can be FamilyInternet, FamilyInternet6,
FamilyServerInterpreted, FamilyDECnet, or FamilyChaos. The length member
specifies the length of the address in bytes. The address member specifies a pointer
to the address.

For TCP/IP, the address should be in network byte order. For IP version 4 addresses,
the family should be FamilyInternet and the length should be 4 bytes. For IP version
6 addresses, the family should be FamilyInternet6 and the length should be 16 bytes.

For the DECnet family, the server performs no automatic swapping on the address
bytes. A Phase IV address is 2 bytes long. The first byte contains the least significant
8 bits of the node number. The second byte contains the most significant 2 bits of
the node number in the least significant 2 bits of the byte and the area in the most
significant 6 bits of the byte.

For the ServerInterpreted family, the length is ignored and the address member is
a pointer to a XServerInterpretedAddress structure, which contains:

typedef struct {
     int typelength;     /* length of type string, in bytes */
     int valuelength;    /* length of value string, in bytes */
     char *type;         /* pointer to where to find the type string */

174

../../xproto/x11protocol.pdf#Connection_Setup


Window and Session
Manager Functions

     char *value;        /* pointer to where to find the address */
} XServerInterpretedAddress;

The type and value members point to strings representing the type and value of the
server interpreted entry. These strings may not be NULL-terminated so care should
be used when accessing them. The typelength and valuelength members specify the
length in byte of the type and value strings.

To add a single host, use XAddHost.

XAddHost(display, host);

display Specifies the connection to the X server.

host Specifies the host that is to be added.

The XAddHost function adds the specified host to the access control list for that
display. The server must be on the same host as the client issuing the command,
or a BadAccess error results.

XAddHost can generate BadAccess and BadValue errors.

To add multiple hosts at one time, use XAddHosts.

XAddHosts(display, hosts, num_hosts);

display Specifies the connection to the X server.

hosts Specifies each host that is to be added.

num_hosts Specifies the number of hosts.

The XAddHosts function adds each specified host to the access control list for that
display. The server must be on the same host as the client issuing the command,
or a BadAccess error results.

XAddHosts can generate BadAccess and BadValue errors.

To obtain a host list, use XListHosts.

XHostAddress *XListHosts(display, nhosts_return, state_return);

display Specifies the connection to the X server.

nhosts_return Returns the number of hosts currently in the access
control list.

state_return Returns the state of the access control.

The XListHosts function returns the current access control list as well as whether
the use of the list at connection setup was enabled or disabled. XListHosts allows a
program to find out what machines can make connections. It also returns a pointer
to a list of host structures that were allocated by the function. When no longer
needed, this memory should be freed by calling XFree.

To remove a single host, use XRemoveHost.

XRemoveHost(display, host);

175



Window and Session
Manager Functions

display Specifies the connection to the X server.

host Specifies the host that is to be removed.

The XRemoveHost function removes the specified host from the access control list
for that display. The server must be on the same host as the client process, or a
BadAccess error results. If you remove your machine from the access list, you can
no longer connect to that server, and this operation cannot be reversed unless you
reset the server.

XRemoveHost can generate BadAccess and BadValue errors.

To remove multiple hosts at one time, use XRemoveHosts.

XRemoveHosts(display, hosts, num_hosts);

display Specifies the connection to the X server.

hosts Specifies each host that is to be removed.

num_hosts Specifies the number of hosts.

The XRemoveHosts function removes each specified host from the access control list
for that display. The X server must be on the same host as the client process, or a
BadAccess error results. If you remove your machine from the access list, you can
no longer connect to that server, and this operation cannot be reversed unless you
reset the server.

XRemoveHosts can generate BadAccess and BadValue errors.

Changing, Enabling, or Disabling Access Control
Xlib provides functions that you can use to enable, disable, or change access control.

For these functions to execute successfully, the client application must reside on
the same host as the X server and/or have been given permission in the initial
authorization at connection setup.

To change access control, use XSetAccessControl.

XSetAccessControl(display, mode);

display Specifies the connection to the X server.

mode Specifies the mode. You can pass EnableAccess or
DisableAccess.

The XSetAccessControl function either enables or disables the use of the access
control list at each connection setup.

XSetAccessControl can generate BadAccess and BadValue errors.

To enable access control, use XEnableAccessControl.

XEnableAccessControl(display);

display Specifies the connection to the X server.

176



Window and Session
Manager Functions

The XEnableAccessControl function enables the use of the access control list at
each connection setup.

XEnableAccessControl can generate a BadAccess error.

To disable access control, use XDisableAccessControl.

XDisableAccessControl(display);

display Specifies the connection to the X server.

The XDisableAccessControl function disables the use of the access control list at
each connection setup.

XDisableAccessControl can generate a BadAccess error.

177



Chapter 10. Events
A client application communicates with the X server through the connection you
establish with the XOpenDisplay function. A client application sends requests to
the X server over this connection. These requests are made by the Xlib functions
that are called in the client application. Many Xlib functions cause the X server to
generate events, and the user’s typing or moving the pointer can generate events
asynchronously. The X server returns events to the client on the same connection.

This chapter discusses the following topics associated with events:

• Event types

• Event structures

• Event masks

• Event processing

Functions for handling events are dealt with in the next chapter.

Event Types
 An event is data generated asynchronously by the X server as a result of some
device activity or as side effects of a request sent by an Xlib function.  Device-related
events propagate from the source window to ancestor windows until some client
application has selected that event type or until the event is explicitly discarded.
The X server generally sends an event to a client application only if the client has
specifically asked to be informed of that event type, typically by setting the event-
mask attribute of the window. The mask can also be set when you create a window
or by changing the window's event-mask. You can also mask out events that would
propagate to ancestor windows by manipulating the do-not-propagate mask of the
window's attributes. However, MappingNotify events are always sent to all clients.  

An event type describes a specific event generated by the X server. For each event
type, a corresponding constant name is defined in <X11/X.h>,    which is used
when referring to an event type.  The following table lists the event category and
its associated event type or types. The processing associated with these events is
discussed in section 10.5.

178



Events

Event
Category

Event Type

Keyboard
events

KeyPress, KeyRelease

Pointer events ButtonPress, ButtonRelease, MotionNotify
Window
crossing events

EnterNotify, LeaveNotify

Input focus
events

FocusIn, FocusOut

Keymap state
notification
event

KeymapNotify

Exposure
events

Expose, GraphicsExpose, NoExpose

Structure
control events

CirculateRequest, ConfigureRequest, MapRequest,
ResizeRequest

Window state
notification
events

CirculateNotify, ConfigureNotify, CreateNotify, DestroyNotify,
GravityNotify, MapNotify, MappingNotify, ReparentNotify,
UnmapNotify, VisibilityNotify

Colormap state
notification
event

ColormapNotify

Client
communication
events

ClientMessage, PropertyNotify, SelectionClear, SelectionNotify,
SelectionRequest

Event Structures
For each event type, a corresponding structure is declared in <X11/Xlib.h>.    All
the event structures have the following common members:

typedef struct {
     int           type;
     unsigned long serial;     /* # of last request processed by server */
     Bool          send_event; /* true if this came from a SendEvent request */
     Display       *display;   /* Display the event was read from */
     Window        window;
} XAnyEvent;

The type member is set to the event type constant name that uniquely identifies
it. For example, when the X server reports a GraphicsExpose event to a client
application, it sends an XGraphicsExposeEvent structure with the type member
set to GraphicsExpose. The display member is set to a pointer to the display the
event was read on. The send_event member is set to True if the event came from
a SendEvent protocol request. The serial member is set from the serial number

179



Events

reported in the protocol but expanded from the 16-bit least-significant bits to a full
32-bit value. The window member is set to the window that is most useful to toolkit
dispatchers.

The X server can send events at any time in the input stream. Xlib stores any events
received while waiting for a reply in an event queue for later use. Xlib also provides
functions that allow you to check events in the event queue (see section 11.3).

In addition to the individual structures declared for each event type, the XEvent
structure is a union of the individual structures declared for each event type.
Depending on the type, you should access members of each event by using the
XEvent union.

typedef union _XEvent {
     int                            type;          /* must not be changed */
     XAnyEvent                      xany;
     XKeyEvent                      xkey;
     XButtonEvent                   xbutton;
     XMotionEvent                   xmotion;
     XCrossingEvent                 xcrossing;
     XFocusChangeEvent              xfocus;
     XExposeEvent                   xexpose;
     XGraphicsExposeEvent           xgraphicsexpose;
     XNoExposeEvent                 xnoexpose;
     XVisibilityEvent               xvisibility;
     XCreateWindowEvent             xcreatewindow;
     XDestroyWindowEvent            xdestroywindow;
     XUnmapEvent                    xunmap;
     XMapEvent                      xmap;
     XMapRequestEvent               xmaprequest;
     XReparentEvent                 xreparent;
     XConfigureEvent                xconfigure;
     XGravityEvent                  xgravity;
     XResizeRequestEvent            xresizerequest;
     XConfigureRequestEvent         xconfigurerequest;
     XCirculateEvent                xcirculate;
     XCirculateRequestEvent         xcirculaterequest;
     XPropertyEvent                 xproperty;
     XSelectionClearEvent           xselectionclear;
     XSelectionRequestEvent         xselectionrequest;
     XSelectionEvent                xselection;
     XColormapEvent                 xcolormap;
     XClientMessageEvent            xclient;
     XMappingEvent                  xmapping;
     XErrorEvent                    xerror;
     XKeymapEvent                   xkeymap;
     long                           pad[24];
} XEvent;

180



Events

An XEvent structure's first entry always is the type member, which is set to the
event type. The second member always is the serial number of the protocol request
that generated the event. The third member always is send_event, which is a Bool
that indicates if the event was sent by a different client. The fourth member always
is a display, which is the display that the event was read from. Except for keymap
events, the fifth member always is a window, which has been carefully selected to
be useful to toolkit dispatchers. To avoid breaking toolkits, the order of these first
five entries is not to change. Most events also contain a time member, which is the
time at which an event occurred. In addition, a pointer to the generic event must
be cast before it is used to access any other information in the structure.

Event Masks
 Clients select event reporting of most events relative to a window. To do this, pass an
event mask to an Xlib event-handling function that takes an event_mask argument.
The bits of the event mask are defined in <X11/X.h>.    Each bit in the event mask
maps to an event mask name, which describes the event or events you want the X
server to return to a client application.

Unless the client has specifically asked for them, most events are not reported
to clients when they are generated. Unless the client suppresses them by
setting graphics-exposures in the GC to False, GraphicsExpose and NoExpose
are reported by default as a result of XCopyPlane and XCopyArea. SelectionClear,
SelectionRequest, SelectionNotify, or ClientMessage cannot be masked. Selection-
related events are only sent to clients cooperating with selections (see section 4.5).
When the keyboard or pointer mapping is changed, MappingNotify is always sent
to clients.

The following table lists the event mask constants you can pass to the event_mask
argument and the circumstances in which you would want to specify the event mask:

Event Mask Circumstances
NoEventMask No events wanted
KeyPressMask Keyboard down events wanted
KeyReleaseMask Keyboard up events wanted
ButtonPressMask Pointer button down events wanted
ButtonReleaseMask Pointer button up events wanted
EnterWindowMask Pointer window entry events wanted
LeaveWindowMask Pointer window leave events wanted
PointerMotionMask Pointer motion events wanted
PointerMotionHintMaskPointer motion hints wanted
Button1MotionMask Pointer motion while button 1 down
Button2MotionMask Pointer motion while button 2 down
Button3MotionMask Pointer motion while button 3 down
Button4MotionMask Pointer motion while button 4 down
Button5MotionMask Pointer motion while button 5 down
ButtonMotionMask Pointer motion while any button down
KeymapStateMask Keyboard state wanted at window entry and focus in

181



Events

Event Mask Circumstances
ExposureMask Any exposure wanted
VisibilityChangeMask Any change in visibility wanted
StructureNotifyMask Any change in window structure wanted
ResizeRedirectMask Redirect resize of this window
SubstructureNotifyMaskSubstructure notification wanted
SubstructureRedirectMaskRedirect structure requests on children
FocusChangeMask Any change in input focus wanted
PropertyChangeMask Any change in property wanted
ColormapChangeMask Any change in colormap wanted
OwnerGrabButtonMaskAutomatic grabs should activate with owner_events set to

True

Event Processing Overview
The event reported to a client application during event processing depends on which
event masks you provide as the event-mask attribute for a window. For some event
masks, there is a one-to-one correspondence between the event mask constant and
the event type constant. For example, if you pass the event mask ButtonPressMask,
the X server sends back only ButtonPress events.  Most events contain a time
member, which is the time at which an event occurred.

In other cases, one event mask constant can map to several event type constants. For
example, if you pass the event mask SubstructureNotifyMask, the X server can send
back CirculateNotify, ConfigureNotify, CreateNotify, DestroyNotify, GravityNotify,
MapNotify, ReparentNotify, or UnmapNotify events.

In another case, two event masks can map to one event type. For example, if you
pass either PointerMotionMask or ButtonMotionMask, the X server sends back a
MotionNotify event.

The following table lists the event mask, its associated event type or types, and the
structure name associated with the event type. Some of these structures actually
are typedefs to a generic structure that is shared between two event types. Note
that N.A. appears in columns for which the information is not applicable.

Event Mask Event Type Structure Generic
Structure

ButtonMotionMask

Button1MotionMask

Button2MotionMask

Button3MotionMask

Button4MotionMask

Button5MotionMask

MotionNotify XPointerMovedEvent XMotionEvent

ButtonPressMask ButtonPress XButtonPressedEvent XButtonEvent

182



Events

Event Mask Event Type Structure Generic
Structure

ButtonReleaseMask ButtonRelease XButtonReleasedEventXButtonEvent
ColormapChangeMaskColormapNotify XColormapEvent
EnterWindowMask EnterNotify XEnterWindowEvent XCrossingEvent
LeaveWindowMask LeaveNotify XLeaveWindowEvent XCrossingEvent
ExposureMask Expose XExposeEvent

GraphicsExpose XGraphicsExposeEventGCGraphicsExposures
in GC NoExpose XNoExposeEvent

FocusIn XFocusInEvent XFocusChangeEventFocusChangeMask
FocusOut XFocusOutEvent XFocusChangeEvent

KeymapStateMask KeymapNotify XKeymapEvent
KeyPressMask KeyPress XKeyPressedEvent XKeyEvent
KeyReleaseMask KeyRelease XKeyReleasedEvent XKeyEvent
OwnerGrabButtonMaskN.A. N.A.
PointerMotionMask MotionNotify XPointerMovedEvent XMotionEvent
PointerMotionHintMaskN.A. N.A.
PropertyChangeMask PropertyNotify XPropertyEvent
ResizeRedirectMask ResizeRequest XResizeRequestEvent

CirculateNotify XCirculateEvent
ConfigureNotify XConfigureEvent
DestroyNotify XDestroyWindowEvent
GravityNotify XGravityEvent
MapNotify XMapEvent
ReparentNotify XReparentEvent

StructureNotifyMask

UnmapNotify XUnmapEvent
CirculateNotify XCirculateEvent
ConfigureNotify XConfigureEvent
CreateNotify XCreateWindowEvent
DestroyNotify XDestroyWindowEvent
GravityNotify XGravityEvent
MapNotify XMapEvent
ReparentNotify XReparentEvent

SubstructureNotifyMask

UnmapNotify XUnmapEvent
CirculateRequest XCirculateRequestEvent
ConfigureRequest XConfigureRequestEvent

SubstructureRedirectMask

MapRequest XMapRequestEvent
N.A. ClientMessage XClientMessageEvent
N.A. MappingNotify XMappingEvent
N.A. SelectionClear XSelectionClearEvent

183



Events

Event Mask Event Type Structure Generic
Structure

N.A. SelectionNotify XSelectionEvent
N.A. SelectionRequest XSelectionRequestEvent
VisibilityChangeMask VisibilityNotify XVisibilityEvent

The sections that follow describe the processing that occurs when you select the
different event masks. The sections are organized according to these processing
categories:

• Keyboard and pointer events

• Window crossing events

• Input focus events

• Keymap state notification events

• Exposure events

• Window state notification events

• Structure control events

• Colormap state notification events

• Client communication events

Keyboard and Pointer Events
This section discusses:

• Pointer button events

• Keyboard and pointer events

Pointer Button Events

The following describes the event processing that occurs when a pointer button
press is processed with the pointer in some window w and when no active pointer
grab is in progress.

The X server searches the ancestors of w from the root down, looking for a passive
grab to activate. If no matching passive grab on the button exists, the X server
automatically starts an active grab for the client receiving the event and sets the
last-pointer-grab time to the current server time. The effect is essentially equivalent
to an XGrabButton with these client passed arguments:

184



Events

Argument Value
w The event window
event_mask The client's selected pointer events on the event window
pointer_mode GrabModeAsync
keyboard_mode GrabModeAsync
owner_events True, if the client has selected OwnerGrabButtonMask on the

event window, otherwise False
confine_to None
cursor None

The active grab is automatically terminated when the logical state of the pointer has
all buttons released. Clients can modify the active grab by calling XUngrabPointer
and XChangeActivePointerGrab.

Keyboard and Pointer Events
     This section discusses the processing that occurs for the keyboard events
KeyPress and KeyRelease and the pointer events ButtonPress, ButtonRelease, and
MotionNotify. For information about the keyboard event-handling utilities, see
chapter 11.

  The X server reports KeyPress or KeyRelease events to clients wanting information
about keys that logically change state. Note that these events are generated for
all keys, even those mapped to modifier bits.   The X server reports ButtonPress
or ButtonRelease events to clients wanting information about buttons that logically
change state.

 The X server reports MotionNotify events to clients wanting information about
when the pointer logically moves. The X server generates this event whenever
the pointer is moved and the pointer motion begins and ends in the window. The
granularity of MotionNotify events is not guaranteed, but a client that selects this
event type is guaranteed to receive at least one event when the pointer moves and
then rests.

The generation of the logical changes lags the physical changes if device event
processing is frozen.

To receive KeyPress, KeyRelease, ButtonPress, and ButtonRelease events, set
KeyPressMask, KeyReleaseMask, ButtonPressMask, and ButtonReleaseMask bits in
the event-mask attribute of the window.

To receive MotionNotify events, set one or more of the following event masks bits
in the event-mask attribute of the window.

• Button1MotionMask - Button5MotionMask

• The client application receives MotionNotify events only when one or more of the
specified buttons is pressed.

• ButtonMotionMask

• The client application receives MotionNotify events only when at least one button
is pressed.

185



Events

• PointerMotionMask

• The client application receives MotionNotify events independent of the state of
the pointer buttons.

• PointerMotionHintMask

• If PointerMotionHintMask is selected in combination with one or more of the
above masks, the X server is free to send only one MotionNotify event (with the
is_hint member of the XPointerMovedEvent structure set to NotifyHint) to the
client for the event window, until either the key or button state changes, the
pointer leaves the event window, or the client calls XQueryPointer or . The server
still may send MotionNotify events without is_hint set to NotifyHint.

The source of the event is the viewable window that the pointer is in. The window
used by the X server to report these events depends on the window's position in the
window hierarchy and whether any intervening window prohibits the generation of
these events. Starting with the source window, the X server searches up the window
hierarchy until it locates the first window specified by a client as having an interest
in these events. If one of the intervening windows has its do-not-propagate-mask set
to prohibit generation of the event type, the events of those types will be suppressed.
Clients can modify the actual window used for reporting by performing active grabs
and, in the case of keyboard events, by using the focus window.

The structures for these event types contain:

typedef struct {
     int            type;            /* ButtonPress or ButtonRelease */
     unsigned long  serial;          /* # of last request processed by server */
     Bool           send_event;      /* true if this came from a SendEvent request */
     Display        *display;        /* Display the event was read from */
     Window         window;          /* ``event'' window it is reported relative to */
     Window         root;            /* root window that the event occurred on */
     Window         subwindow;       /* child window */
     Time           time;            /* milliseconds */
     int            x, y;            /* pointer x, y coordinates in event window */
     int            x_root, y_root;  /* coordinates relative to root */
     unsigned int   state;           /* key or button mask */
     unsigned int   button;          /* detail */
     Bool           same_screen;     /* same screen flag */
} XButtonEvent;
typedef XButtonEvent XButtonPressedEvent;
typedef XButtonEvent XButtonReleasedEvent;

typedef struct {
     int            type;            /* KeyPress or KeyRelease */
     unsigned long  serial;          /* # of last request processed by server */
     Bool           send_event;      /* true if this came from a SendEvent request */
     Display        *display;        /* Display the event was read from */
     Window         window;          /* ``event'' window it is reported relative to */
     Window         root;            /* root window that the event occurred on */
     Window         subwindow;       /* child window */
     Time           time;            /* milliseconds */

186



Events

     int            x, y;            /* pointer x, y coordinates in event window */
     int            x_root, y_root;  /* coordinates relative to root */
     unsigned int   state;           /* key or button mask */
     unsigned int   keycode;         /* detail */
     Bool           same_screen;     /* same screen flag */
} XKeyEvent;
typedef XKeyEvent XKeyPressedEvent;
typedef XKeyEvent XKeyReleasedEvent;

typedef struct {
     int            type;              /* MotionNotify */
     unsigned long  serial;            /* # of last request processed by server */
     Bool           send_event;        /* true if this came from a SendEvent request */
     Display        *display;          /* Display the event was read from */
     Window         window;            /* ``event'' window reported relative to */
     Window         root;              /* root window that the event occurred on */
     Window         subwindow;         /* child window */
     Time           time;              /* milliseconds */
     int            x, y;              /* pointer x, y coordinates in event window */
     int            x_root, y_root;    /* coordinates relative to root */
     unsigned int   state;             /* key or button mask */
     char           is_hint;           /* detail */
     Bool           same_screen;       /* same screen flag */
} XMotionEvent;
typedef XMotionEvent XPointerMovedEvent;

These structures have the following common members: window, root, subwindow,
time, x, y, x_root, y_root, state, and same_screen. The window member is set to the
window on which the event was generated and is referred to as the event window.
As long as the conditions previously discussed are met, this is the window used by
the X server to report the event. The root member is set to the source window's root
window. The x_root and y_root members are set to the pointer's coordinates relative
to the root window's origin at the time of the event.

The same_screen member is set to indicate whether the event window is on the
same screen as the root window and can be either True or False. If True, the event
and root windows are on the same screen. If False, the event and root windows are
not on the same screen.

If the source window is an inferior of the event window, the subwindow member of
the structure is set to the child of the event window that is the source window or
the child of the event window that is an ancestor of the source window. Otherwise,
the X server sets the subwindow member to None. The time member is set to the
time when the event was generated and is expressed in milliseconds.

If the event window is on the same screen as the root window, the x and y members
are set to the coordinates relative to the event window's origin. Otherwise, these
members are set to zero.

The state member is set to indicate the logical state of the pointer buttons
and modifier keys just prior to the event, which is the bitwise inclusive OR of
one or more of the button or modifier key masks: Button1Mask, Button2Mask,
Button3Mask, Button4Mask, Button5Mask, ShiftMask, LockMask, ControlMask,
Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, and Mod5Mask.

187



Events

Each of these structures also has a member that indicates the detail. For the
XKeyPressedEvent and XKeyReleasedEvent structures, this member is called a
keycode. It is set to a number that represents a physical key on the keyboard. The
keycode is an arbitrary representation for any key on the keyboard (see sections
12.7 and 16.1).

For the XButtonPressedEvent and XButtonReleasedEvent structures, this member
is called button. It represents the pointer button that changed state and can be the
Button1, Button2, Button3, Button4, or Button5 value. For the XPointerMovedEvent
structure, this member is called is_hint. It can be set to NotifyNormal or NotifyHint.

Some of the symbols mentioned in this section have fixed values, as follows:

Symbol Value
Button1MotionMask(1L<<8)
Button2MotionMask(1L<<9)
Button3MotionMask(1L<<10)
Button4MotionMask(1L<<11)
Button5MotionMask(1L<<12)
Button1Mask (1<<8)
Button2Mask (1<<9)
Button3Mask (1<<10)
Button4Mask (1<<11)
Button5Mask (1<<12)
ShiftMask (1<<0)
LockMask (1<<1)
ControlMask (1<<2)
Mod1Mask (1<<3)
Mod2Mask (1<<4)
Mod3Mask (1<<5)
Mod4Mask (1<<6)
Mod5Mask (1<<7)
Button1 1
Button2 2
Button3 3
Button4 4
Button5 5

Window Entry/Exit Events
  This section describes the processing that occurs for the window crossing events
EnterNotify and LeaveNotify.   If a pointer motion or a window hierarchy change
causes the pointer to be in a different window than before, the X server reports
EnterNotify or LeaveNotify events to clients who have selected for these events. All
EnterNotify and LeaveNotify events caused by a hierarchy change are generated
after any hierarchy event (UnmapNotify, MapNotify, ConfigureNotify, GravityNotify,

188



Events

CirculateNotify) caused by that change; however, the X protocol does not constrain
the ordering of EnterNotify and LeaveNotify events with respect to FocusOut,
VisibilityNotify, and Expose events.

This contrasts with MotionNotify events, which are also generated when the pointer
moves but only when the pointer motion begins and ends in a single window.
An EnterNotify or LeaveNotify event also can be generated when some client
application calls XGrabPointer and XUngrabPointer.

To receive EnterNotify or LeaveNotify events, set the EnterWindowMask or
LeaveWindowMask bits of the event-mask attribute of the window.

The structure for these event types contains:

typedef struct {
     int           type;           /* EnterNotify or LeaveNotify */
     unsigned long serial;         /* # of last request processed by server */
     Bool          send_event;     /* true if this came from a SendEvent request */
     Display       *display;       /* Display the event was read from */
     Window        window;         /* ``event'' window reported relative to */
     Window        root;           /* root window that the event occurred on */
     Window        subwindow;      /* child window */
     Time          time;           /* milliseconds */
     int           x, y;           /* pointer x, y coordinates in event window */
     int           x_root, y_root; /* coordinates relative to root */
     int           mode;           /* NotifyNormal, NotifyGrab, NotifyUngrab */
     int           detail;
                   /*
                    * NotifyAncestor, NotifyVirtual, NotifyInferior, 
                    * NotifyNonlinear,NotifyNonlinearVirtual
                    */
     Bool          same_screen;    /* same screen flag */
     Bool          focus;          /* boolean focus */
     unsigned int  state;          /* key or button mask */
} XCrossingEvent;
typedef XCrossingEvent XEnterWindowEvent;
typedef XCrossingEvent XLeaveWindowEvent;

The window member is set to the window on which the EnterNotify or LeaveNotify
event was generated and is referred to as the event window. This is the window
used by the X server to report the event, and is relative to the root window on which
the event occurred. The root member is set to the root window of the screen on
which the event occurred.

For a LeaveNotify event, if a child of the event window contains the initial position of
the pointer, the subwindow component is set to that child. Otherwise, the X server
sets the subwindow member to None. For an EnterNotify event, if a child of the
event window contains the final pointer position, the subwindow component is set
to that child or None.

The time member is set to the time when the event was generated and is expressed
in milliseconds. The x and y members are set to the coordinates of the pointer

189



Events

position in the event window. This position is always the pointer's final position, not
its initial position. If the event window is on the same screen as the root window, x
and y are the pointer coordinates relative to the event window's origin. Otherwise,
x and y are set to zero. The x_root and y_root members are set to the pointer's
coordinates relative to the root window's origin at the time of the event.

The same_screen member is set to indicate whether the event window is on the
same screen as the root window and can be either True or False. If True, the event
and root windows are on the same screen. If False, the event and root windows are
not on the same screen.

The focus member is set to indicate whether the event window is the focus window
or an inferior of the focus window. The X server can set this member to either True
or False. If True, the event window is the focus window or an inferior of the focus
window. If False, the event window is not the focus window or an inferior of the
focus window.

The state member is set to indicate the state of the pointer buttons and modifier
keys just prior to the event. The X server can set this member to the bitwise
inclusive OR of one or more of the button or modifier key masks: Button1Mask,
Button2Mask, Button3Mask, Button4Mask, Button5Mask, ShiftMask, LockMask,
ControlMask, Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, Mod5Mask.

The mode member is set to indicate whether the events are normal events,
pseudo-motion events when a grab activates, or pseudo-motion events when a grab
deactivates. The X server can set this member to NotifyNormal, NotifyGrab, or
NotifyUngrab.

The detail member is set to indicate the notify detail and can be NotifyAncestor,
NotifyVirtual, NotifyInferior, NotifyNonlinear, or NotifyNonlinearVirtual.

Normal Entry/Exit Events
EnterNotify and LeaveNotify events are generated when the pointer moves from one
window to another window. Normal events are identified by XEnterWindowEvent or
XLeaveWindowEvent structures whose mode member is set to NotifyNormal.

• When the pointer moves from window A to window B and A is an inferior of B,
the X server does the following:

• It generates a LeaveNotify event on window A, with the detail member of the
XLeaveWindowEvent structure set to NotifyAncestor.

• It generates a LeaveNotify event on each window between window A and window
B, exclusive, with the detail member of each XLeaveWindowEvent structure set
to NotifyVirtual.

• It generates an EnterNotify event on window B, with the detail member of the
XEnterWindowEvent structure set to NotifyInferior.

• When the pointer moves from window A to window B and B is an inferior of A,
the X server does the following:

• It generates a LeaveNotify event on window A, with the detail member of the
XLeaveWindowEvent structure set to NotifyInferior.

190



Events

• It generates an EnterNotify event on each window between window A and window
B, exclusive, with the detail member of each XEnterWindowEvent structure set
to NotifyVirtual.

• It generates an EnterNotify event on window B, with the detail member of the
XEnterWindowEvent structure set to NotifyAncestor.

• When the pointer moves from window A to window B and window C is their least
common ancestor, the X server does the following:

• It generates a LeaveNotify event on window A, with the detail member of the
XLeaveWindowEvent structure set to NotifyNonlinear.

• It generates a LeaveNotify event on each window between window A and window
C, exclusive, with the detail member of each XLeaveWindowEvent structure set
to NotifyNonlinearVirtual.

• It generates an EnterNotify event on each window between window C and window
B, exclusive, with the detail member of each XEnterWindowEvent structure set
to NotifyNonlinearVirtual.

• It generates an EnterNotify event on window B, with the detail member of the
XEnterWindowEvent structure set to NotifyNonlinear.

• When the pointer moves from window A to window B on different screens, the X
server does the following:

• It generates a LeaveNotify event on window A, with the detail member of the
XLeaveWindowEvent structure set to NotifyNonlinear.

• If window A is not a root window, it generates a LeaveNotify event on each window
above window A up to and including its root, with the detail member of each
XLeaveWindowEvent structure set to NotifyNonlinearVirtual.

• If window B is not a root window, it generates an EnterNotify event on each
window from window B's root down to but not including window B, with the detail
member of each XEnterWindowEvent structure set to NotifyNonlinearVirtual.

• It generates an EnterNotify event on window B, with the detail member of the
XEnterWindowEvent structure set to NotifyNonlinear.

Grab and Ungrab Entry/Exit Events

Pseudo-motion mode EnterNotify and LeaveNotify events are generated when a
pointer grab activates or deactivates. Events in which the pointer grab activates are
identified by XEnterWindowEvent or XLeaveWindowEvent structures whose mode
member is set to NotifyGrab. Events in which the pointer grab deactivates are
identified by XEnterWindowEvent or XLeaveWindowEvent structures whose mode
member is set to NotifyUngrab (see XGrabPointer).

• When a pointer grab activates after any initial warp into a confine_to window and
before generating any actual ButtonPress event that activates the grab, G is the
grab_window for the grab, and P is the window the pointer is in, the X server does
the following:

191



Events

• It generates EnterNotify and LeaveNotify events (see section 10.6.1) with the
mode members of the XEnterWindowEvent and XLeaveWindowEvent structures
set to NotifyGrab. These events are generated as if the pointer were to suddenly
warp from its current position in P to some position in G. However, the pointer
does not warp, and the X server uses the pointer position as both the initial and
final positions for the events.

• When a pointer grab deactivates after generating any actual ButtonRelease event
that deactivates the grab, G is the grab_window for the grab, and P is the window
the pointer is in, the X server does the following:

• It generates EnterNotify and LeaveNotify events (see section 10.6.1) with the
mode members of the XEnterWindowEvent and XLeaveWindowEvent structures
set to NotifyUngrab. These events are generated as if the pointer were to suddenly
warp from some position in G to its current position in P. However, the pointer
does not warp, and the X server uses the current pointer position as both the
initial and final positions for the events.

Input Focus Events
  This section describes the processing that occurs for the input focus events FocusIn
and FocusOut.   The X server can report FocusIn or FocusOut events to clients
wanting information about when the input focus changes. The keyboard is always
attached to some window (typically, the root window or a top-level window), which is
called the focus window. The focus window and the position of the pointer determine
the window that receives keyboard input. Clients may need to know when the input
focus changes to control highlighting of areas on the screen.

To receive FocusIn or FocusOut events, set the FocusChangeMask bit in the event-
mask attribute of the window.

The structure for these event types contains:

typedef struct {
     int           type;       /* FocusIn or FocusOut */
     unsigned long serial;     /* # of last request processed by server */
     Bool          send_event; /* true if this came from a SendEvent request */
     Display       *display;   /* Display the event was read from */
     Window        window;     /* window of event */
     int           mode;       /* NotifyNormal, NotifyGrab, NotifyUngrab */
     int           detail;
                   /*
                    * NotifyAncestor, NotifyVirtual, NotifyInferior, 
                    * NotifyNonlinear,NotifyNonlinearVirtual, NotifyPointer,
                    * NotifyPointerRoot, NotifyDetailNone 
                    */
} XFocusChangeEvent;
typedef XFocusChangeEvent XFocusInEvent;
typedef XFocusChangeEvent XFocusOutEvent;

The window member is set to the window on which the FocusIn or FocusOut event
was generated. This is the window used by the X server to report the event. The

192



Events

mode member is set to indicate whether the focus events are normal focus events,
focus events while grabbed, focus events when a grab activates, or focus events
when a grab deactivates. The X server can set the mode member to NotifyNormal,
NotifyWhileGrabbed, NotifyGrab, or NotifyUngrab.

All FocusOut events caused by a window unmap are generated after any
UnmapNotify event; however, the X protocol does not constrain the ordering
of FocusOut events with respect to generated EnterNotify, LeaveNotify,
VisibilityNotify, and Expose events.

Depending on the event mode, the detail member is set to indicate the notify
detail and can be NotifyAncestor, NotifyVirtual, NotifyInferior, NotifyNonlinear,
NotifyNonlinearVirtual, NotifyPointer, NotifyPointerRoot, or NotifyDetailNone.

Normal Focus Events and Focus Events While Grabbed

Normal focus events are identified by XFocusInEvent or XFocusOutEvent structures
whose mode member is set to NotifyNormal. Focus events while grabbed are
identified by XFocusInEvent or XFocusOutEvent structures whose mode member is
set to NotifyWhileGrabbed. The X server processes normal focus and focus events
while grabbed according to the following:

• When the focus moves from window A to window B, A is an inferior of B, and the
pointer is in window P, the X server does the following:

• It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyAncestor.

• It generates a FocusOut event on each window between window A and window
B, exclusive, with the detail member of each XFocusOutEvent structure set to
NotifyVirtual.

• It generates a FocusIn event on window B, with the detail member of the
XFocusOutEvent structure set to NotifyInferior.

• If window P is an inferior of window B but window P is not window A or an
inferior or ancestor of window A, it generates a FocusIn event on each window
below window B, down to and including window P, with the detail member of each
XFocusInEvent structure set to NotifyPointer.

• When the focus moves from window A to window B, B is an inferior of A, and the
pointer is in window P, the X server does the following:

• If window P is an inferior of window A but P is not an inferior of window B or an
ancestor of B, it generates a FocusOut event on each window from window P up
to but not including window A, with the detail member of each XFocusOutEvent
structure set to NotifyPointer.

• It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyInferior.

• It generates a FocusIn event on each window between window A and window
B, exclusive, with the detail member of each XFocusInEvent structure set to
NotifyVirtual.

193



Events

• It generates a FocusIn event on window B, with the detail member of the
XFocusInEvent structure set to NotifyAncestor.

• When the focus moves from window A to window B, window C is their least
common ancestor, and the pointer is in window P, the X server does the following:

• If window P is an inferior of window A, it generates a FocusOut event on each
window from window P up to but not including window A, with the detail member
of the XFocusOutEvent structure set to NotifyPointer.

• It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyNonlinear.

• It generates a FocusOut event on each window between window A and window
C, exclusive, with the detail member of each XFocusOutEvent structure set to
NotifyNonlinearVirtual.

• It generates a FocusIn event on each window between C and B, exclusive, with the
detail member of each XFocusInEvent structure set to NotifyNonlinearVirtual.

• It generates a FocusIn event on window B, with the detail member of the
XFocusInEvent structure set to NotifyNonlinear.

• If window P is an inferior of window B, it generates a FocusIn event on each
window below window B down to and including window P, with the detail member
of the XFocusInEvent structure set to NotifyPointer.

• When the focus moves from window A to window B on different screens and the
pointer is in window P, the X server does the following:

• If window P is an inferior of window A, it generates a FocusOut event on each
window from window P up to but not including window A, with the detail member
of each XFocusOutEvent structure set to NotifyPointer.

• It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyNonlinear.

• If window A is not a root window, it generates a FocusOut event on each window
above window A up to and including its root, with the detail member of each
XFocusOutEvent structure set to NotifyNonlinearVirtual.

• If window B is not a root window, it generates a FocusIn event on each window
from window B's root down to but not including window B, with the detail member
of each XFocusInEvent structure set to NotifyNonlinearVirtual.

• It generates a FocusIn event on window B, with the detail member of each
XFocusInEvent structure set to NotifyNonlinear.

• If window P is an inferior of window B, it generates a FocusIn event on each
window below window B down to and including window P, with the detail member
of each XFocusInEvent structure set to NotifyPointer.

• When the focus moves from window A to PointerRoot (events sent to the window
under the pointer) or None (discard), and the pointer is in window P, the X server
does the following:

194



Events

• If window P is an inferior of window A, it generates a FocusOut event on each
window from window P up to but not including window A, with the detail member
of each XFocusOutEvent structure set to NotifyPointer.

• It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyNonlinear.

• If window A is not a root window, it generates a FocusOut event on each window
above window A up to and including its root, with the detail member of each
XFocusOutEvent structure set to NotifyNonlinearVirtual.

• It generates a FocusIn event on the root window of all screens, with the
detail member of each XFocusInEvent structure set to NotifyPointerRoot (or
NotifyDetailNone).

• If the new focus is PointerRoot, it generates a FocusIn event on each window from
window P's root down to and including window P, with the detail member of each
XFocusInEvent structure set to NotifyPointer.

• When the focus moves from PointerRoot (events sent to the window under the
pointer) or None to window A, and the pointer is in window P, the X server does
the following:

• If the old focus is PointerRoot, it generates a FocusOut event on each window
from window P up to and including window P's root, with the detail member of
each XFocusOutEvent structure set to NotifyPointer.

• It generates a FocusOut event on all root windows, with the detail member of each
XFocusOutEvent structure set to NotifyPointerRoot (or NotifyDetailNone).

• If window A is not a root window, it generates a FocusIn event on each window
from window A's root down to but not including window A, with the detail member
of each XFocusInEvent structure set to NotifyNonlinearVirtual.

• It generates a FocusIn event on window A, with the detail member of the
XFocusInEvent structure set to NotifyNonlinear.

• If window P is an inferior of window A, it generates a FocusIn event on each
window below window A down to and including window P, with the detail member
of each XFocusInEvent structure set to NotifyPointer.

• When the focus moves from PointerRoot (events sent to the window under the
pointer) to None (or vice versa), and the pointer is in window P, the X server does
the following:

• If the old focus is PointerRoot, it generates a FocusOut event on each window
from window P up to and including window P's root, with the detail member of
each XFocusOutEvent structure set to NotifyPointer.

• It generates a FocusOut event on all root windows, with the detail member of each
XFocusOutEvent structure set to either NotifyPointerRoot or NotifyDetailNone.

• It generates a FocusIn event on all root windows, with the detail member of each
XFocusInEvent structure set to NotifyDetailNone or NotifyPointerRoot.

• If the new focus is PointerRoot, it generates a FocusIn event on each window from
window P's root down to and including window P, with the detail member of each
XFocusInEvent structure set to NotifyPointer.

195



Events

Focus Events Generated by Grabs
Focus events in which the keyboard grab activates are identified by XFocusInEvent
or XFocusOutEvent structures whose mode member is set to NotifyGrab. Focus
events in which the keyboard grab deactivates are identified by XFocusInEvent
or XFocusOutEvent structures whose mode member is set to NotifyUngrab (see
XGrabKeyboard).

• When a keyboard grab activates before generating any actual KeyPress event that
activates the grab, G is the grab_window, and F is the current focus, the X server
does the following:

• It generates FocusIn and FocusOut events, with the mode members of the
XFocusInEvent and XFocusOutEvent structures set to NotifyGrab. These events
are generated as if the focus were to change from F to G.

• When a keyboard grab deactivates after generating any actual KeyRelease event
that deactivates the grab, G is the grab_window, and F is the current focus, the
X server does the following:

• It generates FocusIn and FocusOut events, with the mode members of the
XFocusInEvent and XFocusOutEvent structures set to NotifyUngrab. These events
are generated as if the focus were to change from G to F.

Key Map State Notification Events
  The X server can report KeymapNotify events to clients that want information
about changes in their keyboard state.

To receive KeymapNotify events, set the KeymapStateMask bit in the event-mask
attribute of the window. The X server generates this event immediately after every
EnterNotify and FocusIn event.

The structure for this event type contains:

/* generated on EnterWindow and FocusIn when KeymapState selected */
typedef struct {
     int            type;           /* KeymapNotify */
     unsigned long  serial;         /* # of last request processed by server */
     Bool           send_event;     /* true if this came from a SendEvent request */
     Display        *display;       /* Display the event was read from */
     Window         window;
     char           key_vector[32];
} XKeymapEvent;     

The window member is not used but is present to aid some toolkits. The key_vector
member is set to the bit vector of the keyboard. Each bit set to 1 indicates that the
corresponding key is currently pressed. The vector is represented as 32 bytes. Byte
N (from 0) contains the bits for keys 8N to 8N + 7 with the least significant bit in
the byte representing key 8N.

196



Events

Exposure Events
The X protocol does not guarantee to preserve the contents of window regions when
the windows are obscured or reconfigured. Some implementations may preserve
the contents of windows. Other implementations are free to destroy the contents of
windows when exposed. X expects client applications to assume the responsibility
for restoring the contents of an exposed window region. (An exposed window region
describes a formerly obscured window whose region becomes visible.) Therefore,
the X server sends Expose events describing the window and the region of the
window that has been exposed. A naive client application usually redraws the entire
window. A more sophisticated client application redraws only the exposed region.

Expose Events
  The X server can report Expose events to clients wanting information about when
the contents of window regions have been lost. The circumstances in which the
X server generates Expose events are not as definite as those for other events.
However, the X server never generates Expose events on windows whose class you
specified as InputOnly. The X server can generate Expose events when no valid
contents are available for regions of a window and either the regions are visible,
the regions are viewable and the server is (perhaps newly) maintaining backing
store on the window, or the window is not viewable but the server is (perhaps
newly) honoring the window's backing-store attribute of Always or WhenMapped.
The regions decompose into an (arbitrary) set of rectangles, and an Expose event
is generated for each rectangle. For any given window, the X server guarantees to
report contiguously all of the regions exposed by some action that causes Expose
events, such as raising a window.

To receive Expose events, set the ExposureMask bit in the event-mask attribute of
the window.

The structure for this event type contains:

typedef struct {
     int           type;           /* Expose */
     unsigned long serial;         /* # of last request processed by server */
     Bool          send_event;     /* true if this came from a SendEvent request */
     Display       *display;       /* Display the event was read from */
     Window        window;
     int           x, y;
     int           width, height;
     int           count;          /* if nonzero, at least this many more */
} XExposeEvent;

The window member is set to the exposed (damaged) window. The x and y members
are set to the coordinates relative to the window's origin and indicate the upper-left
corner of the rectangle. The width and height members are set to the size (extent)
of the rectangle. The count member is set to the number of Expose events that are

197



Events

to follow. If count is zero, no more Expose events follow for this window. However,
if count is nonzero, at least that number of Expose events (and possibly more)
follow for this window. Simple applications that do not want to optimize redisplay
by distinguishing between subareas of its window can just ignore all Expose events
with nonzero counts and perform full redisplays on events with zero counts.

GraphicsExpose and NoExpose Events
   The X server can report GraphicsExpose events to clients wanting information
about when a destination region could not be computed during certain graphics
requests: XCopyArea or XCopyPlane. The X server generates this event whenever a
destination region could not be computed because of an obscured or out-of-bounds
source region. In addition, the X server guarantees to report contiguously all of
the regions exposed by some graphics request (for example, copying an area of a
drawable to a destination drawable).

 The X server generates a NoExpose event whenever a graphics request that might
produce a GraphicsExpose event does not produce any. In other words, the client is
really asking for a GraphicsExpose event but instead receives a NoExpose event.

To receive GraphicsExpose or NoExpose events, you must first set the graphics-
exposure attribute of the graphics context to True. You also can set the graphics-
expose attribute when creating a graphics context using XCreateGC or by calling
XSetGraphicsExposures.

The structures for these event types contain:

typedef struct {
     int            type;           /* GraphicsExpose */
     unsigned long  serial;         /* # of last request processed by server */
     Bool           send_event;     /* true if this came from a SendEvent request */
     Display        *display;       /* Display the event was read from */
     Drawable       drawable;
     int            x, y;
     int            width, height;
     int            count;          /* if nonzero, at least this many more */
     int            major_code;     /* core is CopyArea or CopyPlane */
     int            minor_code;     /* not defined in the core */
} XGraphicsExposeEvent;

typedef struct {
     int           type;         /* NoExpose */
     unsigned long serial;       /* # of last request processed by server */
     Bool          send_event;   /* true if this came from a SendEvent request */
     Display       *display;     /* Display the event was read from */

198



Events

     Drawable      drawable;
     int           major_code;   /* core is CopyArea or CopyPlane */
     int           minor_code;   /* not defined in the core */
} XNoExposeEvent;

Both structures have these common members: drawable, major_code, and
minor_code. The drawable member is set to the drawable of the destination region
on which the graphics request was to be performed. The major_code member is
set to the graphics request initiated by the client and can be either X_CopyArea
or X_CopyPlane. If it is X_CopyArea, a call to XCopyArea initiated the request.
If it is X_CopyPlane, a call to XCopyPlane initiated the request. These constants
are defined in <X11/Xproto.h>.    The minor_code member, like the major_code
member, indicates which graphics request was initiated by the client. However, the
minor_code member is not defined by the core X protocol and will be zero in these
cases, although it may be used by an extension.

The XGraphicsExposeEvent structure has these additional members: x, y, width,
height, and count. The x and y members are set to the coordinates relative to the
drawable's origin and indicate the upper-left corner of the rectangle. The width and
height members are set to the size (extent) of the rectangle. The count member
is set to the number of GraphicsExpose events to follow. If count is zero, no more
GraphicsExpose events follow for this window. However, if count is nonzero, at least
that number of GraphicsExpose events (and possibly more) are to follow for this
window.

Window State Change Events
The following sections discuss:

• CirculateNotify events

• ConfigureNotify events

• CreateNotify events

• DestroyNotify events

• GravityNotify events

• MapNotify events

• MappingNotify events

• ReparentNotify events

• UnmapNotify events

• VisibilityNotify events

CirculateNotify Events
  The X server can report CirculateNotify events to clients wanting information
about when a window changes its position in the stack. The X server generates
this event type whenever a window is actually restacked as a result of a

199



Events

client application calling XCirculateSubwindows, XCirculateSubwindowsUp, or
XCirculateSubwindowsDown.

To receive CirculateNotify events, set the StructureNotifyMask bit in the event-
mask attribute of the window or the SubstructureNotifyMask bit in the event-mask
attribute of the parent window (in which case, circulating any child generates an
event).

The structure for this event type contains:

typedef struct {
     int type;     /* CirculateNotify */
     unsigned long serial;     /* # of last request processed by server */
     Bool send_event;     /* true if this came from a SendEvent request */
     Display *display;     /* Display the event was read from */
     Window event;
     Window window;
     int place;     /* PlaceOnTop, PlaceOnBottom */
} XCirculateEvent;

The event member is set either to the restacked window or to its parent, depending
on whether StructureNotify or SubstructureNotify was selected. The window
member is set to the window that was restacked. The place member is set
to the window's position after the restack occurs and is either PlaceOnTop or
PlaceOnBottom. If it is PlaceOnTop, the window is now on top of all siblings. If it is
PlaceOnBottom, the window is now below all siblings.

ConfigureNotify Events
  The X server can report ConfigureNotify events to clients wanting information
about actual changes to a window's state, such as size, position, border, and
stacking order. The X server generates this event type whenever one of the following
configure window requests made by a client application actually completes:

• A window's size, position, border, and/or stacking order is reconfigured by calling
XConfigureWindow.

• The window's position in the stacking order is changed by calling XLowerWindow,
XRaiseWindow, or XRestackWindows.

• A window is moved by calling XMoveWindow.

• A window's size is changed by calling XResizeWindow.

• A window's size and location is changed by calling XMoveResizeWindow.

• A window is mapped and its position in the stacking order is changed by calling
XMapRaised.

• A window's border width is changed by calling XSetWindowBorderWidth.

200



Events

To receive ConfigureNotify events, set the StructureNotifyMask bit in the event-
mask attribute of the window or the SubstructureNotifyMask bit in the event-mask
attribute of the parent window (in which case, configuring any child generates an
event).

The structure for this event type contains:

typedef struct {
     int           type;       /* ConfigureNotify */
     unsigned long serial;     /* # of last request processed by server */
     Bool          send_event; /* true if this came from a SendEvent request */
     Display       *display;   /* Display the event was read from */
     Window        event;
     Window        window;
     int           x, y;
     int           width, height;
     int           border_width;
     Window        above;
     Bool          override_redirect;
} XConfigureEvent;

The event member is set either to the reconfigured window or to its parent,
depending on whether StructureNotify or SubstructureNotify was selected. The
window member is set to the window whose size, position, border, and/or stacking
order was changed.

The x and y members are set to the coordinates relative to the parent window's
origin and indicate the position of the upper-left outside corner of the window. The
width and height members are set to the inside size of the window, not including
the border. The border_width member is set to the width of the window's border,
in pixels.

The above member is set to the sibling window and is used for stacking operations.
If the X server sets this member to None, the window whose state was changed is
on the bottom of the stack with respect to sibling windows. However, if this member
is set to a sibling window, the window whose state was changed is placed on top
of this sibling window.

The override_redirect member is set to the override-redirect attribute of the
window. Window manager clients normally should ignore this window if the
override_redirect member is True.

CreateNotify Events
  The X server can report CreateNotify events to clients wanting information
about creation of windows. The X server generates this event whenever a client
application creates a window by calling XCreateWindow or XCreateSimpleWindow.

To receive CreateNotify events, set the SubstructureNotifyMask bit in the event-
mask attribute of the window. Creating any children then generates an event.

The structure for the event type contains:

201



Events

typedef struct {
     int           type;               /* CreateNotify */
     unsigned long serial;             /* # of last request processed by server */
     Bool          send_event;         /* true if this came from a SendEvent request */
     Display       *display;           /* Display the event was read from */
     Window        parent;             /* parent of the window */
     Window        window;             /* window id of window created */
     int           x, y;               /* window location */
     int           width, height;      /* size of window */
     int           border_width;       /* border width */
     Bool          override_redirect;  /* creation should be overridden */
} XCreateWindowEvent;

The parent member is set to the created window's parent. The window member
specifies the created window. The x and y members are set to the created window's
coordinates relative to the parent window's origin and indicate the position of the
upper-left outside corner of the created window. The width and height members
are set to the inside size of the created window (not including the border) and
are always nonzero. The border_width member is set to the width of the created
window's border, in pixels. The override_redirect member is set to the override-
redirect attribute of the window. Window manager clients normally should ignore
this window if the override_redirect member is True.

DestroyNotify Events
  The X server can report DestroyNotify events to clients wanting information about
which windows are destroyed. The X server generates this event whenever a client
application destroys a window by calling XDestroyWindow or XDestroySubwindows.

The ordering of the DestroyNotify events is such that for any given window,
DestroyNotify is generated on all inferiors of the window before being generated
on the window itself. The X protocol does not constrain the ordering among siblings
and across subhierarchies.

To receive DestroyNotify events, set the StructureNotifyMask bit in the event-
mask attribute of the window or the SubstructureNotifyMask bit in the event-mask
attribute of the parent window (in which case, destroying any child generates an
event).

The structure for this event type contains:

typedef struct {
     int           type;       /* DestroyNotify */
     unsigned long serial;     /* # of last request processed by server */
     Bool          send_event; /* true if this came from a SendEvent request */

202



Events

     Display       *display;   /* Display the event was read from */
     Window        event;
     Window        window;
} XDestroyWindowEvent;

The event member is set either to the destroyed window or to its parent, depending
on whether StructureNotify or SubstructureNotify was selected. The window
member is set to the window that is destroyed.

GravityNotify Events
  The X server can report GravityNotify events to clients wanting information about
when a window is moved because of a change in the size of its parent. The X server
generates this event whenever a client application actually moves a child window
as a result of resizing its parent by calling XConfigureWindow, XMoveResizeWindow,
or XResizeWindow.

To receive GravityNotify events, set the StructureNotifyMask bit in the event-
mask attribute of the window or the SubstructureNotifyMask bit in the event-mask
attribute of the parent window (in which case, any child that is moved because its
parent has been resized generates an event).

The structure for this event type contains:

typedef struct {
     int           type;       /* GravityNotify */
     unsigned long serial;     /* # of last request processed by server */
     Bool          send_event; /* true if this came from a SendEvent request */
     Display       *display;   /* Display the event was read from */
     Window        event;
     Window        window;
     int           x, y;
} XGravityEvent;

The event member is set either to the window that was moved or to its parent,
depending on whether StructureNotify or SubstructureNotify was selected. The
window member is set to the child window that was moved. The x and y members
are set to the coordinates relative to the new parent window's origin and indicate
the position of the upper-left outside corner of the window.

MapNotify Events
  The X server can report MapNotify events to clients wanting information about
which windows are mapped. The X server generates this event type whenever a
client application changes the window's state from unmapped to mapped by calling
XMapWindow, XMapRaised, XMapSubwindows, XReparentWindow, or as a result of save-
set processing.

To receive MapNotify events, set the StructureNotifyMask bit in the event-mask
attribute of the window or the SubstructureNotifyMask bit in the event-mask

203



Events

attribute of the parent window (in which case, mapping any child generates an
event).

The structure for this event type contains:

typedef struct {
     int           type;                  /* MapNotify */
     unsigned long serial;                /* # of last request processed by server */
     Bool          send_event;            /* true if this came from a SendEvent request */
     Display       *display;              /* Display the event was read from */
     Window        event;
     Window        window;
     Bool          override_redirect;     /* boolean, is override set... */
} XMapEvent;

The event member is set either to the window that was mapped or to its parent,
depending on whether StructureNotify or SubstructureNotify was selected. The
window member is set to the window that was mapped. The override_redirect
member is set to the override-redirect attribute of the window. Window manager
clients normally should ignore this window if the override-redirect attribute is True,
because these events usually are generated from pop-ups, which override structure
control.

MappingNotify Events
  The X server reports MappingNotify events to all clients. There is no mechanism to
express disinterest in this event. The X server generates this event type whenever
a client application successfully calls:

• XSetModifierMapping to indicate which KeyCodes are to be used as modifiers

• XChangeKeyboardMapping to change the keyboard mapping

• XSetPointerMapping to set the pointer mapping

The structure for this event type contains:

typedef struct {
     int           type;           /* MappingNotify */
     unsigned long serial;         /* # of last request processed by server */
     Bool          send_event;     /* true if this came from a SendEvent request */
     Display       *display;       /* Display the event was read from */
     Window        window;         /* unused */
     int           request;        /* one of MappingModifier, MappingKeyboard,
                   MappingPointer  */

204



Events

     int           first_keycode;  /* first keycode */
     int           count;          /* defines range of change w. first_keycode*/
} XMappingEvent;

The request member is set to indicate the kind of mapping change that occurred
and can be MappingModifier, MappingKeyboard, or MappingPointer. If it is
MappingModifier, the modifier mapping was changed. If it is MappingKeyboard, the
keyboard mapping was changed. If it is MappingPointer, the pointer button mapping
was changed. The first_keycode and count members are set only if the request
member was set to MappingKeyboard. The number in first_keycode represents the
first number in the range of the altered mapping, and count represents the number
of keycodes altered.

To update the client application's knowledge of the keyboard, you should call
XRefreshKeyboardMapping.

ReparentNotify Events
  The X server can report ReparentNotify events to clients wanting information about
changing a window's parent. The X server generates this event whenever a client
application calls XReparentWindow and the window is actually reparented.

To receive ReparentNotify events, set the StructureNotifyMask bit in the event-
mask attribute of the window or the SubstructureNotifyMask bit in the event-mask
attribute of either the old or the new parent window (in which case, reparenting
any child generates an event).

The structure for this event type contains:

typedef struct {
     int           type;       /* ReparentNotify */
     unsigned long serial;     /* # of last request processed by server */
     Bool          send_event; /* true if this came from a SendEvent request */
     Display       *display;   /* Display the event was read from */
     Window        event;
     Window        window;
     Window        parent;
     int           x, y;
     Bool          override_redirect;
} XReparentEvent;

The event member is set either to the reparented window or to the old or the
new parent, depending on whether StructureNotify or SubstructureNotify was
selected. The window member is set to the window that was reparented. The parent
member is set to the new parent window. The x and y members are set to the
reparented window's coordinates relative to the new parent window's origin and
define the upper-left outer corner of the reparented window. The override_redirect
member is set to the override-redirect attribute of the window specified by the
window member. Window manager clients normally should ignore this window if
the override_redirect member is True.

205



Events

UnmapNotify Events
  The X server can report UnmapNotify events to clients wanting information about
which windows are unmapped. The X server generates this event type whenever a
client application changes the window's state from mapped to unmapped.

To receive UnmapNotify events, set the StructureNotifyMask bit in the event-
mask attribute of the window or the SubstructureNotifyMask bit in the event-
mask attribute of the parent window (in which case, unmapping any child window
generates an event).

The structure for this event type contains:

typedef struct {
     int           type;       /* UnmapNotify */
     unsigned long serial;     /* # of last request processed by server */
     Bool          send_event; /* true if this came from a SendEvent request */
     Display       *display;   /* Display the event was read from */
     Window        event;
     Window        window;
     Bool          from_configure;
} XUnmapEvent;

The event member is set either to the unmapped window or to its parent, depending
on whether StructureNotify or SubstructureNotify was selected. This is the
window used by the X server to report the event. The window member is set to the
window that was unmapped. The from_configure member is set to True if the event
was generated as a result of a resizing of the window's parent when the window
itself had a win_gravity of UnmapGravity.

VisibilityNotify Events
  The X server can report VisibilityNotify events to clients wanting any change in the
visibility of the specified window. A region of a window is visible if someone looking
at the screen can actually see it. The X server generates this event whenever the
visibility changes state. However, this event is never generated for windows whose
class is InputOnly.

All VisibilityNotify events caused by a hierarchy change are generated after
any hierarchy event (UnmapNotify, MapNotify, ConfigureNotify, GravityNotify,
CirculateNotify) caused by that change. Any VisibilityNotify event on a given
window is generated before any Expose events on that window, but it is not required
that all VisibilityNotify events on all windows be generated before all Expose events
on all windows. The X protocol does not constrain the ordering of VisibilityNotify
events with respect to FocusOut, EnterNotify, and LeaveNotify events.

To receive VisibilityNotify events, set the VisibilityChangeMask bit in the event-
mask attribute of the window.

The structure for this event type contains:

206



Events

typedef struct {
     int           type;       /* VisibilityNotify */
     unsigned long serial;     /* # of last request processed by server */
     Bool          send_event; /* true if this came from a SendEvent request */
     Display       *display;   /* Display the event was read from */
     Window        window;
     int           state;
} XVisibilityEvent;

The window member is set to the window whose visibility state changes. The state
member is set to the state of the window's visibility and can be VisibilityUnobscured,
VisibilityPartiallyObscured, or VisibilityFullyObscured. The X server ignores all of
a window's subwindows when determining the visibility state of the window and
processes VisibilityNotify events according to the following:

• When the window changes state from partially obscured, fully obscured, or
not viewable to viewable and completely unobscured, the X server generates
the event with the state member of the XVisibilityEvent structure set to
VisibilityUnobscured.

• When the window changes state from viewable and completely unobscured
or not viewable to viewable and partially obscured, the X server generates
the event with the state member of the XVisibilityEvent structure set to
VisibilityPartiallyObscured.

• When the window changes state from viewable and completely unobscured,
viewable and partially obscured, or not viewable to viewable and fully obscured,
the X server generates the event with the state member of the XVisibilityEvent
structure set to VisibilityFullyObscured.

Structure Control Events
This section discusses:

• CirculateRequest events

• ConfigureRequest events

• MapRequest events

• ResizeRequest events

CirculateRequest Events
  The X server can report CirculateRequest events to clients wanting
information about when another client initiates a circulate window request
on a specified window. The X server generates this event type whenever a
client initiates a circulate window request on a window and a subwindow
actually needs to be restacked. The client initiates a circulate window request

207



Events

on the window by calling XCirculateSubwindows, XCirculateSubwindowsUp, or
XCirculateSubwindowsDown.

To receive CirculateRequest events, set the SubstructureRedirectMask in the event-
mask attribute of the window. Then, in the future, the circulate window request
for the specified window is not executed, and thus, any subwindow's position
in the stack is not changed. For example, suppose a client application calls
XCirculateSubwindowsUp to raise a subwindow to the top of the stack. If you had
selected SubstructureRedirectMask on the window, the X server reports to you a
CirculateRequest event and does not raise the subwindow to the top of the stack.

The structure for this event type contains:

typedef struct {
     int           type;       /* CirculateRequest */
     unsigned long serial;     /* # of last request processed by server */
     Bool          send_event; /* true if this came from a SendEvent request */
     Display       *display;   /* Display the event was read from */
     Window        parent;
     Window        window;
     int place;                /* PlaceOnTop, PlaceOnBottom */
} XCirculateRequestEvent;

The parent member is set to the parent window. The window member is set to the
subwindow to be restacked. The place member is set to what the new position in
the stacking order should be and is either PlaceOnTop or PlaceOnBottom. If it is
PlaceOnTop, the subwindow should be on top of all siblings. If it is PlaceOnBottom,
the subwindow should be below all siblings.

ConfigureRequest Events
  The X server can report ConfigureRequest events to clients wanting
information about when a different client initiates a configure window request
on any child of a specified window. The configure window request attempts
to reconfigure a window's size, position, border, and stacking order. The X
server generates this event whenever a different client initiates a configure
window request on a window by calling XConfigureWindow, XLowerWindow,
XRaiseWindow, XMapRaised, XMoveResizeWindow, XMoveWindow, XResizeWindow,
XRestackWindows, or XSetWindowBorderWidth.

To receive ConfigureRequest events, set the SubstructureRedirectMask bit in the
event-mask attribute of the window. ConfigureRequest events are generated when
a ConfigureWindow protocol request is issued on a child window by another client.
For example, suppose a client application calls XLowerWindow to lower a window.
If you had selected SubstructureRedirectMask on the parent window and if the
override-redirect attribute of the window is set to False, the X server reports a
ConfigureRequest event to you and does not lower the specified window.

The structure for this event type contains:

208



Events

typedef struct {
     int           type;         /* ConfigureRequest */
     unsigned long serial;       /* # of last request processed by server */
     Bool          send_event;   /* true if this came from a SendEvent request */
     Display       *display;     /* Display the event was read from */
     Window        parent;
     Window        window;
     int           x, y;
     int           width, height;
     int           border_width;
     Window        above;
     int           detail;       /* Above, Below, TopIf, BottomIf, Opposite */
     unsigned long value_mask;
} XConfigureRequestEvent;

The parent member is set to the parent window. The window member is set to
the window whose size, position, border width, and/or stacking order is to be
reconfigured. The value_mask member indicates which components were specified
in the ConfigureWindow protocol request. The corresponding values are reported as
given in the request. The remaining values are filled in from the current geometry
of the window, except in the case of above (sibling) and detail (stack-mode), which
are reported as None and Above, respectively, if they are not given in the request.

MapRequest Events
  The X server can report MapRequest events to clients wanting information about
a different client's desire to map windows. A window is considered mapped when
a map window request completes. The X server generates this event whenever a
different client initiates a map window request on an unmapped window whose
override_redirect member is set to False. Clients initiate map window requests by
calling XMapWindow, XMapRaised, or XMapSubwindows.

To receive MapRequest events, set the SubstructureRedirectMask bit in the event-
mask attribute of the window. This means another client's attempts to map a child
window by calling one of the map window request functions is intercepted, and
you are sent a MapRequest instead. For example, suppose a client application calls
XMapWindow to map a window. If you (usually a window manager) had selected
SubstructureRedirectMask on the parent window and if the override-redirect
attribute of the window is set to False, the X server reports a MapRequest event
to you and does not map the specified window. Thus, this event gives your window
manager client the ability to control the placement of subwindows.

The structure for this event type contains:

209



Events

typedef struct {
     int           type;       /* MapRequest */
     unsigned long serial;     /* # of last request processed by server */
     Bool          send_event; /* true if this came from a SendEvent request */
     Display       *display;   /* Display the event was read from */
     Window        parent;
     Window        window;
} XMapRequestEvent;

The parent member is set to the parent window. The window member is set to the
window to be mapped.

ResizeRequest Events
  The X server can report ResizeRequest events to clients wanting information about
another client's attempts to change the size of a window. The X server generates
this event whenever some other client attempts to change the size of the specified
window by calling XConfigureWindow, XResizeWindow, or XMoveResizeWindow.

To receive ResizeRequest events, set the ResizeRedirect bit in the event-mask
attribute of the window. Any attempts to change the size by other clients are then
redirected.

The structure for this event type contains:

typedef struct {
     int           type;        /* ResizeRequest */
     unsigned long serial;      /* # of last request processed by server */
     Bool          send_event;  /* true if this came from a SendEvent request */
     Display       *display;    /* Display the event was read from */
     Window        window;
     int           width, height;
} XResizeRequestEvent;

The window member is set to the window whose size another client attempted to
change. The width and height members are set to the inside size of the window,
excluding the border.

Colormap State Change Events
  The X server can report ColormapNotify events to clients wanting information
about when the colormap changes and when a colormap is installed or uninstalled.
The X server generates this event type whenever a client application:

• Changes the colormap member of the XSetWindowAttributes structure by calling
XChangeWindowAttributes, XFreeColormap, or XSetWindowColormap

• Installs or uninstalls the colormap by calling XInstallColormap or
XUninstallColormap

210



Events

To receive ColormapNotify events, set the ColormapChangeMask bit in the event-
mask attribute of the window.

The structure for this event type contains:

typedef struct {
     int           type;       /* ColormapNotify */
     unsigned long serial;     /* # of last request processed by server */
     Bool          send_event; /* true if this came from a SendEvent request */
     Display       *display;   /* Display the event was read from */
     Window        window;
     Colormap      colormap;   /* colormap or None */
     Bool          new;
     int           state;      /* ColormapInstalled, ColormapUninstalled */
} XColormapEvent;

The window member is set to the window whose associated colormap is changed,
installed, or uninstalled. For a colormap that is changed, installed, or uninstalled,
the colormap member is set to the colormap associated with the window. For a
colormap that is changed by a call to XFreeColormap, the colormap member is set
to None. The new member is set to indicate whether the colormap for the specified
window was changed or installed or uninstalled and can be True or False. If it
is True, the colormap was changed. If it is False, the colormap was installed or
uninstalled. The state member is always set to indicate whether the colormap is
installed or uninstalled and can be ColormapInstalled or ColormapUninstalled.

Client Communication Events
This section discusses:

• ClientMessage events

• PropertyNotify events

• SelectionClear events

• SelectionNotify events

• SelectionRequest events

ClientMessage Events
  The X server generates ClientMessage events only when a client calls the function
XSendEvent.

The structure for this event type contains:

211



Events

typedef struct {
     int           type;           /* ClientMessage */
     unsigned long serial;         /* # of last request processed by server */
     Bool          send_event;     /* true if this came from a SendEvent request */
     Display       *display;       /* Display the event was read from */
     Window        window;
     Atom          message_type;
     int           format;
     union         {
                     char  b[20];
                     short s[10];
                     long  l[5];
                   } data;
} XClientMessageEvent;

The message_type member is set to an atom that indicates how the data should
be interpreted by the receiving client. The format member is set to 8, 16, or 32
and specifies whether the data should be viewed as a list of bytes, shorts, or longs.
The data member is a union that contains the members b, s, and l. The b, s, and
l members represent data of twenty 8-bit values, ten 16-bit values, and five 32-
bit values. Particular message types might not make use of all these values. The X
server places no interpretation on the values in the window, message_type, or data
members.

PropertyNotify Events
  The X server can report PropertyNotify events to clients wanting information about
property changes for a specified window.

To receive PropertyNotify events, set the PropertyChangeMask bit in the event-
mask attribute of the window.

The structure for this event type contains:

typedef struct {
     int           type;       /* PropertyNotify */
     unsigned long serial;     /* # of last request processed by server */
     Bool          send_event; /* true if this came from a SendEvent request */
     Display       *display;   /* Display the event was read from */
     Window        window;
     Atom atom;
     Time time;
     int state;                /* PropertyNewValue or PropertyDelete */
} XPropertyEvent;

The window member is set to the window whose associated property was changed.
The atom member is set to the property's atom and indicates which property was
changed or desired. The time member is set to the server time when the property
was changed. The state member is set to indicate whether the property was changed

212



Events

to a new value or deleted and can be PropertyNewValue or PropertyDelete. The
state member is set to PropertyNewValue when a property of the window is changed
using XChangeProperty or XRotateWindowProperties (even when adding zero-
length data using XChangeProperty) and when replacing all or part of a property
with identical data using XChangeProperty or XRotateWindowProperties. The state
member is set to PropertyDelete when a property of the window is deleted using
XDeleteProperty or, if the delete argument is True, XGetWindowProperty.

SelectionClear Events
  The X server reports SelectionClear events to the client losing ownership of
a selection. The X server generates this event type when another client asserts
ownership of the selection by calling XSetSelectionOwner.

The structure for this event type contains:

typedef struct {
     int           type;       /* SelectionClear */
     unsigned long serial;     /* # of last request processed by server */
     Bool          send_event; /* true if this came from a SendEvent request */
     Display       *display;   /* Display the event was read from */
     Window        window;
     Atom          selection;
     Time          time;
} XSelectionClearEvent;

The selection member is set to the selection atom. The time member is set to the
last change time recorded for the selection. The window member is the window
that was specified by the current owner (the owner losing the selection) in its
XSetSelectionOwner call.

SelectionRequest Events
  The X server reports SelectionRequest events to the owner of a selection. The X
server generates this event whenever a client requests a selection conversion by
calling XConvertSelection for the owned selection.

The structure for this event type contains:

typedef struct {
     int           type;       /* SelectionRequest */
     unsigned long serial;     /* # of last request processed by server */
     Bool          send_event; /* true if this came from a SendEvent request */
     Display       *display;   /* Display the event was read from */
     Window        owner;

213



Events

     Window        requestor;
     Atom          selection;
     Atom          target;
     Atom          property;
     Time          time;
} XSelectionRequestEvent;

The owner member is set to the window that was specified by the current owner in
its XSetSelectionOwner call. The requestor member is set to the window requesting
the selection. The selection member is set to the atom that names the selection. For
example, PRIMARY is used to indicate the primary selection. The target member
is set to the atom that indicates the type the selection is desired in. The property
member can be a property name or None. The time member is set to the timestamp
or CurrentTime value from the ConvertSelection request.

The owner should convert the selection based on the specified target type and
send a SelectionNotify event back to the requestor. A complete specification for
using selections is given in the X Consortium standard Inter-Client Communication
Conventions Manual.

SelectionNotify Events
  This event is generated by the X server in response to a ConvertSelection protocol
request when there is no owner for the selection. When there is an owner, it should
be generated by the owner of the selection by using XSendEvent. The owner of a
selection should send this event to a requestor when a selection has been converted
and stored as a property or when a selection conversion could not be performed
(which is indicated by setting the property member to None).

If None is specified as the property in the ConvertSelection protocol request,
the owner should choose a property name, store the result as that property on
the requestor window, and then send a SelectionNotify giving that actual property
name.

The structure for this event type contains:

typedef struct {
     int           type;       /* SelectionNotify */
     unsigned long serial;     /* # of last request processed by server */
     Bool          send_event; /* true if this came from a SendEvent request */
     Display       *display;   /* Display the event was read from */
     Window        requestor;
     Atom          selection;
     Atom          target;
     Atom          property;   /* atom or None */
     Time          time;
} XSelectionEvent;

The requestor member is set to the window associated with the requestor of the
selection. The selection member is set to the atom that indicates the selection. For

214

../../xorg-docs/icccm/icccm.pdf#Peer_to_Peer_Communication_by_Means_of_Selections
../../xorg-docs/icccm/icccm.pdf#Peer_to_Peer_Communication_by_Means_of_Selections


Events

example, PRIMARY is used for the primary selection. The target member is set to the
atom that indicates the converted type. For example, PIXMAP is used for a pixmap.
The property member is set to the atom that indicates which property the result
was stored on. If the conversion failed, the property member is set to None. The
time member is set to the time the conversion took place and can be a timestamp
or CurrentTime.

215



Chapter 11. Event Handling Functions
This chapter discusses the Xlib functions you can use to:

• Select events

• Handle the output buffer and the event queue

• Select events from the event queue

• Send and get events

• Handle protocol errors

Note
Some toolkits use their own event-handling functions and do not allow you
to interchange these event-handling functions with those in Xlib. For further
information, see the documentation supplied with the toolkit.

Most applications simply are event loops: they wait for an event, decide what to
do with it, execute some amount of code that results in changes to the display, and
then wait for the next event.

Selecting Events
There are two ways to select the events you want reported to your client application.
One way is to set the event_mask member of the XSetWindowAttributes structure
when you call XCreateWindow and XChangeWindowAttributes. Another way is to
use XSelectInput.

XSelectInput(display, w, event_mask);

display Specifies the connection to the X server.

w Specifies the window whose events you are interested
in.

event_mask Specifies the event mask.

The XSelectInput function requests that the X server report the events associated
with the specified event mask. Initially, X will not report any of these events.
Events are reported relative to a window. If a window is not interested in a device
event, it usually propagates to the closest ancestor that is interested, unless the
do_not_propagate mask prohibits it. 

Setting the event-mask attribute of a window overrides any previous call for the
same window but not for other clients. Multiple clients can select for the same
events on the same window with the following restrictions:

• Multiple clients can select events on the same window because their event masks
are disjoint. When the X server generates an event, it reports it to all interested
clients.

• Only one client at a time can select CirculateRequest, ConfigureRequest,
or MapRequest events, which are associated with the event mask
SubstructureRedirectMask.

216



Event Handling Functions

• Only one client at a time can select a ResizeRequest event, which is associated
with the event mask ResizeRedirectMask.

• Only one client at a time can select a ButtonPress event, which is associated with
the event mask ButtonPressMask.

The server reports the event to all interested clients.

XSelectInput can generate a BadWindow error.

Handling the Output Buffer
The output buffer is an area used by Xlib to store requests. The functions described
in this section flush the output buffer if the function would block or not return an
event. That is, all requests residing in the output buffer that have not yet been sent
are transmitted to the X server. These functions differ in the additional tasks they
might perform.

To flush the output buffer, use XFlush.

XFlush(display);

display Specifies the connection to the X server.

The XFlush function flushes the output buffer. Most client applications need not use
this function because the output buffer is automatically flushed as needed by calls
to XPending, XNextEvent, and XWindowEvent.    Events generated by the server may
be enqueued into the library's event queue.

To flush the output buffer and then wait until all requests have been processed, use
XSync.

XSync(display, discard);

display Specifies the connection to the X server.

discard Specifies a Boolean value that indicates whether XSync
discards all events on the event queue.

The XSync function flushes the output buffer and then waits until all requests have
been received and processed by the X server. Any errors generated must be handled
by the error handler. For each protocol error received by Xlib, XSync calls the client
application's error handling routine (see section 11.8.2). Any events generated by
the server are enqueued into the library's event queue.

Finally, if you passed False, XSync does not discard the events in the queue. If you
passed True, XSync discards all events in the queue, including those events that
were on the queue before XSync was called. Client applications seldom need to call
XSync.

Event Queue Management
Xlib maintains an event queue. However, the operating system also may be buffering
data in its network connection that is not yet read into the event queue.

217



Event Handling Functions

To check the number of events in the event queue, use XEventsQueued.

int XEventsQueued(display, mode);

display Specifies the connection to the X server.

mode Specifies the mode. You can pass QueuedAlready,
QueuedAfterFlush, or QueuedAfterReading.

If mode is QueuedAlready, XEventsQueued returns the number of events already in
the event queue (and never performs a system call). If mode is QueuedAfterFlush,
XEventsQueued returns the number of events already in the queue if the number
is nonzero. If there are no events in the queue, XEventsQueued flushes the output
buffer, attempts to read more events out of the application's connection, and
returns the number read. If mode is QueuedAfterReading, XEventsQueued returns
the number of events already in the queue if the number is nonzero. If there are
no events in the queue, XEventsQueued attempts to read more events out of the
application's connection without flushing the output buffer and returns the number
read.

XEventsQueued always returns immediately without I/O if there are events already
in the queue. XEventsQueued with mode QueuedAfterFlush is identical in behavior
to XPending. XEventsQueued with mode QueuedAlready is identical to the XQLength
function.

To return the number of events that are pending, use XPending.

int XPending(display);

display Specifies the connection to the X server.

The XPending function returns the number of events that have been received from
the X server but have not been removed from the event queue. XPending is identical
to XEventsQueued with the mode QueuedAfterFlush specified.

Manipulating the Event Queue
Xlib provides functions that let you manipulate the event queue. This section
discusses how to:

• Obtain events, in order, and remove them from the queue

• Peek at events in the queue without removing them

• Obtain events that match the event mask or the arbitrary predicate procedures
that you provide

Returning the Next Event
To get the next event and remove it from the queue, use XNextEvent.

XNextEvent(display, event_return);

display Specifies the connection to the X server.

event_return Returns the next event in the queue.

218



Event Handling Functions

The XNextEvent function copies the first event from the event queue into the
specified XEvent structure and then removes it from the queue. If the event queue
is empty, XNextEvent flushes the output buffer and blocks until an event is received.

To peek at the event queue, use XPeekEvent.

XPeekEvent(display, event_return);

display Specifies the connection to the X server.

event_return Returns a copy of the matched event's associated
structure.

The XPeekEvent function returns the first event from the event queue, but it does
not remove the event from the queue. If the queue is empty, XPeekEvent flushes the
output buffer and blocks until an event is received. It then copies the event into the
client-supplied XEvent structure without removing it from the event queue.

Selecting Events Using a Predicate Procedure
Each of the functions discussed in this section requires you to pass a predicate
procedure that determines if an event matches what you want. Your predicate
procedure must decide if the event is useful without calling any Xlib functions. If the
predicate directly or indirectly causes the state of the event queue to change, the
result is not defined. If Xlib has been initialized for threads, the predicate is called
with the display locked and the result of a call by the predicate to any Xlib function
that locks the display is not defined unless the caller has first called XLockDisplay.

The predicate procedure and its associated arguments are:

Bool(display, event, arg);

display Specifies the connection to the X server.

event Specifies the XEvent structure.

arg Specifies the argument passed in from the XIfEvent,
XCheckIfEvent, or XPeekIfEvent function.

The predicate procedure is called once for each event in the queue until it finds a
match. After finding a match, the predicate procedure must return True. If it did
not find a match, it must return False.

To check the event queue for a matching event and, if found, remove the event from
the queue, use XIfEvent.

XIfEvent(display, event_return, (*predicate)(), arg);

display Specifies the connection to the X server.

event_return Returns the matched event's associated structure.

predicate Specifies the procedure that is to be called to
determine if the next event in the queue matches
what you want.

arg Specifies the user-supplied argument that will be
passed to the predicate procedure.

219



Event Handling Functions

The XIfEvent function completes only when the specified predicate procedure
returns True for an event, which indicates an event in the queue matches. XIfEvent
flushes the output buffer if it blocks waiting for additional events. XIfEvent removes
the matching event from the queue and copies the structure into the client-supplied
XEvent structure.

To check the event queue for a matching event without blocking, use
XCheckIfEvent.

Bool XCheckIfEvent(display, event_return, (*predicate)(), arg);

display Specifies the connection to the X server.

event_return Returns a copy of the matched event's associated
structure.

predicate Specifies the procedure that is to be called to
determine if the next event in the queue matches
what you want.

arg Specifies the user-supplied argument that will be
passed to the predicate procedure.

When the predicate procedure finds a match, XCheckIfEvent copies the matched
event into the client-supplied XEvent structure and returns True. (This event
is removed from the queue.) If the predicate procedure finds no match,
XCheckIfEvent returns False, and the output buffer will have been flushed. All
earlier events stored in the queue are not discarded.

To check the event queue for a matching event without removing the event from
the queue, use XPeekIfEvent.

XPeekIfEvent(display, event_return, (*predicate)(), arg);

display Specifies the connection to the X server.

event_return Returns a copy of the matched event's associated
structure.

predicate Specifies the procedure that is to be called to
determine if the next event in the queue matches
what you want.

arg Specifies the user-supplied argument that will be
passed to the predicate procedure.

The XPeekIfEvent function returns only when the specified predicate procedure
returns True for an event. After the predicate procedure finds a match,
XPeekIfEvent copies the matched event into the client-supplied XEvent structure
without removing the event from the queue. XPeekIfEvent flushes the output buffer
if it blocks waiting for additional events.

Selecting Events Using a Window or Event Mask
The functions discussed in this section let you select events by window or event
types, allowing you to process events out of order.

220



Event Handling Functions

To remove the next event that matches both a window and an event mask, use
XWindowEvent.

XWindowEvent(display, w, event_mask, event_return);

display Specifies the connection to the X server.

w Specifies the window whose events you are
interested in.

event_mask Specifies the event mask.

event_return Returns the matched event's associated structure.

The XWindowEvent function searches the event queue for an event that matches
both the specified window and event mask. When it finds a match, XWindowEvent
removes that event from the queue and copies it into the specified XEvent structure.
The other events stored in the queue are not discarded. If a matching event is not in
the queue, XWindowEvent flushes the output buffer and blocks until one is received.

To remove the next event that matches both a window and an event mask (if any),
use XCheckWindowEvent.  This function is similar to XWindowEvent except that it
never blocks and it returns a Bool indicating if the event was returned.

Bool XCheckWindowEvent(display, w, event_mask, event_return);

display Specifies the connection to the X server.

w Specifies the window whose events you are
interested in.

event_mask Specifies the event mask.

event_return Returns the matched event's associated structure.

The XCheckWindowEvent function searches the event queue and then the events
available on the server connection for the first event that matches the specified
window and event mask. If it finds a match, XCheckWindowEvent removes that event,
copies it into the specified XEvent structure, and returns True. The other events
stored in the queue are not discarded. If the event you requested is not available,
XCheckWindowEvent returns False, and the output buffer will have been flushed.

To remove the next event that matches an event mask, use XMaskEvent.

XMaskEvent(display, event_mask, event_return);

display Specifies the connection to the X server.

event_mask Specifies the event mask.

event_return Returns the matched event's associated structure.

The XMaskEvent function searches the event queue for the events associated with
the specified mask. When it finds a match, XMaskEvent removes that event and
copies it into the specified XEvent structure. The other events stored in the queue
are not discarded. If the event you requested is not in the queue, XMaskEvent flushes
the output buffer and blocks until one is received.

221



Event Handling Functions

To return and remove the next event that matches an event mask (if any), use
XCheckMaskEvent. This function is similar to XMaskEvent except that it never blocks
and it returns a Bool indicating if the event was returned.

Bool XCheckMaskEvent(display, event_mask, event_return);

display Specifies the connection to the X server.

event_mask Specifies the event mask.

event_return Returns the matched event's associated structure.

The XCheckMaskEvent function searches the event queue and then any events
available on the server connection for the first event that matches the specified
mask. If it finds a match, XCheckMaskEvent removes that event, copies it into the
specified XEvent structure, and returns True. The other events stored in the queue
are not discarded. If the event you requested is not available, XCheckMaskEvent
returns False, and the output buffer will have been flushed.

To return and remove the next event in the queue that matches an event type, use
XCheckTypedEvent.

Bool XCheckTypedEvent(display, event_type, event_return);

display Specifies the connection to the X server.

event_type Specifies the event type to be compared.

event_return Returns the matched event's associated structure.

The XCheckTypedEvent function searches the event queue and then any events
available on the server connection for the first event that matches the specified
type. If it finds a match, XCheckTypedEvent removes that event, copies it into the
specified XEvent structure, and returns True. The other events in the queue are not
discarded. If the event is not available, XCheckTypedEvent returns False, and the
output buffer will have been flushed.

To return and remove the next event in the queue that matches an event type and
a window, use XCheckTypedWindowEvent.

Bool XCheckTypedWindowEvent(display, w, event_type, event_return);

display Specifies the connection to the X server.

w Specifies the window.

event_type Specifies the event type to be compared.

event_return Returns the matched event's associated structure.

The XCheckTypedWindowEvent function searches the event queue and then any
events available on the server connection for the first event that matches the
specified type and window. If it finds a match, XCheckTypedWindowEvent removes
the event from the queue, copies it into the specified XEvent structure, and returns
True. The other events in the queue are not discarded. If the event is not available,
XCheckTypedWindowEvent returns False, and the output buffer will have been
flushed.

222



Event Handling Functions

Putting an Event Back into the Queue
To push an event back into the event queue, use XPutBackEvent.

XPutBackEvent(display, event);

display Specifies the connection to the X server.

event Specifies the event.

The XPutBackEvent function pushes an event back onto the head of the display's
event queue by copying the event into the queue. This can be useful if you read an
event and then decide that you would rather deal with it later. There is no limit to
the number of times in succession that you can call XPutBackEvent.

Sending Events to Other Applications
To send an event to a specified window, use XSendEvent.  This function is often
used in selection processing. For example, the owner of a selection should use
XSendEvent to send a SelectionNotify event to a requestor when a selection has
been converted and stored as a property.

Status XSendEvent(display, w, propagate, event_mask, event_send);

display Specifies the connection to the X server.

w Specifies the window the event is to be sent to, or
PointerWindow, or InputFocus.

propagate Specifies a Boolean value.

event_mask Specifies the event mask.

event_send Specifies the event that is to be sent.

The XSendEvent function identifies the destination window, determines which
clients should receive the specified events, and ignores any active grabs. This
function requires you to pass an event mask. For a discussion of the valid event
mask names, see section 10.3. This function uses the w argument to identify the
destination window as follows:

• If w is PointerWindow, the destination window is the window that contains the
pointer.

• If w is InputFocus and if the focus window contains the pointer, the destination
window is the window that contains the pointer; otherwise, the destination
window is the focus window.

To determine which clients should receive the specified events, XSendEvent uses
the propagate argument as follows:

• If event_mask is the empty set, the event is sent to the client that created the
destination window. If that client no longer exists, no event is sent.

• If propagate is False, the event is sent to every client selecting on destination any
of the event types in the event_mask argument.

223



Event Handling Functions

• If propagate is True and no clients have selected on destination any of the event
types in event-mask, the destination is replaced with the closest ancestor of
destination for which some client has selected a type in event-mask and for which
no intervening window has that type in its do-not-propagate-mask. If no such
window exists or if the window is an ancestor of the focus window and InputFocus
was originally specified as the destination, the event is not sent to any clients.
Otherwise, the event is reported to every client selecting on the final destination
any of the types specified in event_mask.

The event in the XEvent structure must be one of the core events or one of the
events defined by an extension (or a BadValue error results) so that the X server
can correctly byte-swap the contents as necessary. The contents of the event are
otherwise unaltered and unchecked by the X server except to force send_event to
True in the forwarded event and to set the serial number in the event correctly;
therefore these fields and the display field are ignored by XSendEvent.

XSendEvent returns zero if the conversion to wire protocol format failed and returns
nonzero otherwise.

XSendEvent can generate BadValue and BadWindow errors.

Getting Pointer Motion History
Some X server implementations will maintain a more complete history of pointer
motion than is reported by event notification. The pointer position at each pointer
hardware interrupt may be stored in a buffer for later retrieval. This buffer is called
the motion history buffer. For example, a few applications, such as paint programs,
want to have a precise history of where the pointer traveled. However, this historical
information is highly excessive for most applications.

To determine the approximate maximum number of elements in the motion buffer,
use XDisplayMotionBufferSize.

unsigned long(display);

display Specifies the connection to the X server.

The server may retain the recent history of the pointer motion and do so to a
finer granularity than is reported by MotionNotify events. The  function makes this
history available.

To get the motion history for a specified window and time, use .

XTimeCoord *XGetMotionEvents(display, w, start, stop, nevents_return);

display Specifies the connection to the X server.

w Specifies the window.

start

stop Specify the time interval in which the events are
returned from the motion history buffer. You can pass
a timestamp or CurrentTime.

nevents_return Returns the number of events from the motion
history buffer.

224



Event Handling Functions

The  function returns all events in the motion history buffer that fall between the
specified start and stop times, inclusive, and that have coordinates that lie within
the specified window (including its borders) at its present placement. If the server
does not support motion history, if the start time is later than the stop time, or if the
start time is in the future, no events are returned;  returns NULL. If the stop time
is in the future, it is equivalent to specifying CurrentTime. The return type for this
function is a structure defined as follows:

typedef struct {
 Time time;
 short x, y;
} XTimeCoord;

The time member is set to the time, in milliseconds. The x and y members are set to
the coordinates of the pointer and are reported relative to the origin of the specified
window. To free the data returned from this call, use XFree.

can generate a BadWindow error.

Handling Protocol Errors
Xlib provides functions that you can use to enable or disable synchronization and
to use the default error handlers.

Enabling or Disabling Synchronization
When debugging X applications, it often is very convenient to require Xlib to behave
synchronously so that errors are reported as they occur. The following function lets
you disable or enable synchronous behavior. Note that graphics may occur 30 or
more times more slowly when synchronization is enabled.  On POSIX-conformant
systems, there is also a global variable _Xdebug that, if set to nonzero before starting
a program under a debugger, will force synchronous library behavior.

After completing their work, all Xlib functions that generate protocol requests call
what is known as an after function.  sets which function is to be called.

int(display, (*procedure)());

display Specifies the connection to the X server.

procedure Specifies the procedure to be called.

The specified procedure is called with only a display pointer.  returns the previous
after function.

To enable or disable synchronization, use XSynchronize.

int(display, onoff);

display Specifies the connection to the X server.

225



Event Handling Functions

onoff Specifies a Boolean value that indicates whether to enable
or disable synchronization.

The XSynchronize function returns the previous after function. If onoff is True,
XSynchronize turns on synchronous behavior. If onoff is False, XSynchronize turns
off synchronous behavior.

Using the Default Error Handlers
  There are two default error handlers in Xlib: one to handle typically fatal conditions
(for example, the connection to a display server dying because a machine crashed)
and one to handle protocol errors from the X server. These error handlers can be
changed to user-supplied routines if you prefer your own error handling and can
be changed as often as you like. If either function is passed a NULL pointer, it
will reinvoke the default handler. The action of the default handlers is to print an
explanatory message and exit.

To set the error handler, use XSetErrorHandler.

int *XSetErrorHandler(handler);

handler Specifies the program's supplied error handler.

Xlib generally calls the program's supplied error handler whenever an error
is received. It is not called on BadName errors from OpenFont, LookupColor,
or AllocNamedColor protocol requests or on BadFont errors from a QueryFont
protocol request. These errors generally are reflected back to the program through
the procedural interface. Because this condition is not assumed to be fatal, it is
acceptable for your error handler to return; the returned value is ignored. However,
the error handler should not call any functions (directly or indirectly) on the display
that will generate protocol requests or that will look for input events. The previous
error handler is returned.

The XErrorEvent structure contains: 

typedef struct {
 int type;
 Display *display; /* Display the event was read from */
 unsigned long serial;  /* serial number of failed request */
 unsigned char error_code; /* error code of failed request */
 unsigned char request_code; /* Major op-code of failed request */
 unsigned char minor_code; /* Minor op-code of failed request */
 XID resourceid;  /* resource id */
} XErrorEvent;

 The serial member is the number of requests, starting from one, sent over the
network connection since it was opened. It is the number that was the value
of NextRequest immediately before the failing call was made. The request_code
member is a protocol request of the procedure that failed, as defined in <X11/
Xproto.h>. The following error codes can be returned by the functions described
in this chapter:

226



Event Handling Functions

Error Code Description
BadAccess A client attempts to grab a key/button combination already

grabbed by another client.

A client attempts to free a colormap entry that it had not
already allocated or to free an entry in a colormap that was
created with all entries writable.

A client attempts to store into a read-only or unallocated
colormap entry.

A client attempts to modify the access control list from other
than the local (or otherwise authorized) host.

A client attempts to select an event type that another client
has already selected.

BadAlloc The server fails to allocate the requested resource. Note that
the explicit listing of BadAlloc errors in requests only covers
allocation errors at a very coarse level and is not intended
to (nor can it in practice hope to) cover all cases of a server
running out of allocation space in the middle of service. The
semantics when a server runs out of allocation space are left
unspecified, but a server may generate a BadAlloc error on
any request for this reason, and clients should be prepared to
receive such errors and handle or discard them.

BadAtom A value for an atom argument does not name a defined atom.
BadColor A value for a colormap argument does not name a defined

colormap.
BadCursor A value for a cursor argument does not name a defined cursor.
BadDrawable A value for a drawable argument does not name a defined

window or pixmap.
BadFont A value for a font argument does not name a defined font (or,

in some cases, GContext).
BadGC A value for a GContext argument does not name a defined

GContext.
BadIDChoice The value chosen for a resource identifier either is not

included in the range assigned to the client or is already in
use. Under normal circumstances, this cannot occur and
should be considered a server or Xlib error.

BadImplementationThe server does not implement some aspect of the request. A
server that generates this error for a core request is deficient.
As such, this error is not listed for any of the requests, but
clients should be prepared to receive such errors and handle
or discard them.

BadLength The length of a request is shorter or longer than that required
to contain the arguments. This is an internal Xlib or server
error.

The length of a request exceeds the maximum length accepted
by the server.

227



Event Handling Functions

Error Code Description
BadMatch In a graphics request, the root and depth of the graphics

context do not match those of the drawable.

An InputOnly window is used as a drawable.

Some argument or pair of arguments has the correct type and
range, but it fails to match in some other way required by the
request.

An InputOnly window lacks this attribute.
BadName A font or color of the specified name does not exist.
BadPixmap A value for a pixmap argument does not name a defined

pixmap.
BadRequest The major or minor opcode does not specify a valid request.

This usually is an Xlib or server error.
BadValue Some numeric value falls outside of the range of values

accepted by the request. Unless a specific range is specified
for an argument, the full range defined by the argument's type
is accepted. Any argument defined as a set of alternatives
typically can generate this error (due to the encoding).

BadWindow A value for a window argument does not name a defined
window.

Note
The BadAtom, BadColor, BadCursor, BadDrawable, BadFont, BadGC,
BadPixmap, and BadWindow errors are also used when the argument type
is extended by a set of fixed alternatives.

To obtain textual descriptions of the specified error code, use XGetErrorText.

XGetErrorText(display, code, buffer_return, length);

display Specifies the connection to the X server.

code Specifies the error code for which you want to obtain
a description.

buffer_return Returns the error description.

length Specifies the size of the buffer.

The XGetErrorText function copies a null-terminated string describing the specified
error code into the specified buffer. The returned text is in the encoding of the
current locale. It is recommended that you use this function to obtain an error
description because extensions to Xlib may define their own error codes and error
strings.

To obtain error messages from the error database, use XGetErrorDatabaseText.

XGetErrorDatabaseText(display, name, message, default_string,
buffer_return, length);

228



Event Handling Functions

display Specifies the connection to the X server.

name Specifies the name of the application.

message Specifies the type of the error message.

default_string Specifies the default error message if none is found
in the database.

buffer_return Returns the error description.

length Specifies the size of the buffer.

The XGetErrorDatabaseText function returns a null-terminated message (or the
default message) from the error message database. Xlib uses this function internally
to look up its error messages. The text in the default_string argument is assumed
to be in the encoding of the current locale, and the text stored in the buffer_return
argument is in the encoding of the current locale.

The name argument should generally be the name of your application. The message
argument should indicate which type of error message you want. If the name
and message are not in the Host Portable Character Encoding, the result is
implementation-dependent. Xlib uses three predefined ``application names'' to
report errors. In these names, uppercase and lowercase matter.

XProtoError The protocol error number is used as a string for the
message argument.

XlibMessage These are the message strings that are used internally
by the library.

XRequest For a core protocol request, the major request
protocol number is used for the message argument.
For an extension request, the extension name (as
given by InitExtension) followed by a period (.) and
the minor request protocol number is used for the
message argument. If no string is found in the error
database, the default_string is returned to the buffer
argument.

To report an error to the user when the requested display does not exist, use
XDisplayName.

char *XDisplayName(string);

string Specifies the character string.

The XDisplayName function returns the name of the display that XOpenDisplay
would attempt to use. If a NULL string is specified, XDisplayName looks in the
environment for the display and returns the display name that XOpenDisplay would
attempt to use. This makes it easier to report to the user precisely which display
the program attempted to open when the initial connection attempt failed.

To handle fatal I/O errors, use XSetIOErrorHandler.

int());

229



Event Handling Functions

handler Specifies the program's supplied error handler.

The XSetIOErrorHandler sets the fatal I/O error handler. Xlib calls the program's
supplied error handler if any sort of system call error occurs (for example, the
connection to the server was lost). This is assumed to be a fatal condition, and the
called routine should not return. If the I/O error handler does return, the client
process exits.

Note that the previous error handler is returned.

230



Chapter 12. Input Device Functions
You can use the Xlib input device functions to:

• Grab the pointer and individual buttons on the pointer

• Grab the keyboard and individual keys on the keyboard

• Resume event processing

• Move the pointer

• Set the input focus

• Manipulate the keyboard and pointer settings

• Manipulate the keyboard encoding

Pointer Grabbing
Xlib provides functions that you can use to control input from the pointer, which
usually is a mouse. Usually, as soon as keyboard and mouse events occur, the X
server delivers them to the appropriate client, which is determined by the window
and input focus. The X server provides sufficient control over event delivery to
allow window managers to support mouse ahead and various other styles of user
interface. Many of these user interfaces depend on synchronous delivery of events.
The delivery of pointer and keyboard events can be controlled independently.

When mouse buttons or keyboard keys are grabbed, events will be sent to the
grabbing client rather than the normal client who would have received the event.
If the keyboard or pointer is in asynchronous mode, further mouse and keyboard
events will continue to be processed. If the keyboard or pointer is in synchronous
mode, no further events are processed until the grabbing client allows them (see
XAllowEvents). The keyboard or pointer is considered frozen during this interval.
The event that triggered the grab can also be replayed.

Note that the logical state of a device (as seen by client applications) may lag the
physical state if device event processing is frozen.

 There are two kinds of grabs: active and passive. An active grab occurs when a
single client grabs the keyboard and/or pointer explicitly (see XGrabPointer and
XGrabKeyboard).  A passive grab occurs when clients grab a particular keyboard
key or pointer button in a window, and the grab will activate when the key or button
is actually pressed. Passive grabs are convenient for implementing reliable pop-up
menus. For example, you can guarantee that the pop-up is mapped before the up
pointer button event occurs by grabbing a button requesting synchronous behavior.
The down event will trigger the grab and freeze further processing of pointer events
until you have the chance to map the pop-up window. You can then allow further
event processing. The up event will then be correctly processed relative to the pop-
up window.

For many operations, there are functions that take a time argument. The X server
includes a timestamp in various events. One special time, called   CurrentTime,

231



Input Device Functions

represents the current server time. The X server maintains the time when the input
focus was last changed, when the keyboard was last grabbed, when the pointer was
last grabbed, or when a selection was last changed. Your application may be slow
reacting to an event. You often need some way to specify that your request should
not occur if another application has in the meanwhile taken control of the keyboard,
pointer, or selection. By providing the timestamp from the event in the request, you
can arrange that the operation not take effect if someone else has performed an
operation in the meanwhile.

A timestamp is a time value, expressed in milliseconds. It typically is the time since
the last server reset. Timestamp values wrap around (after about 49.7 days). The
server, given its current time is represented by timestamp T, always interprets
timestamps from clients by treating half of the timestamp space as being later in
time than T. One timestamp value, named CurrentTime, is never generated by the
server. This value is reserved for use in requests to represent the current server
time.

For many functions in this section, you pass pointer event mask
bits. The valid pointer event mask bits are: ButtonPressMask,
ButtonReleaseMask, EnterWindowMask, LeaveWindowMask, PointerMotionMask,
PointerMotionHintMask, Button1MotionMask, Button2MotionMask,
Button3MotionMask, Button4MotionMask, Button5MotionMask,
ButtonMotionMask, and KeymapStateMask. For other functions in this section, you
pass keymask bits. The valid keymask bits are: ShiftMask, LockMask, ControlMask,
Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, and Mod5Mask.

To grab the pointer, use XGrabPointer.

int XGrabPointer(display, grab_window, owner_events, event_mask,
pointer_mode, keyboard_mode, confine_to, cursor, time);

display Specifies the connection to the X server.

grab_window Specifies the grab window.

owner_events Specifies a Boolean value that indicates whether the
pointer events are to be reported as usual or reported
with respect to the grab window if selected by the
event mask.

event_mask Specifies which pointer events are reported to the
client. The mask is the bitwise inclusive OR of the
valid pointer event mask bits.

pointer_mode Specifies further processing of pointer events. You
can pass GrabModeSync or GrabModeAsync.

keyboard_mode Specifies further processing of keyboard events. You
can pass GrabModeSync or GrabModeAsync.

confine_to Specifies the window to confine the pointer in or
None.

cursor Specifies the cursor that is to be displayed during the
grab or None.

232



Input Device Functions

time Specifies the time. You can pass either a timestamp
or CurrentTime.

The XGrabPointer function actively grabs control of the pointer and returns
GrabSuccess if the grab was successful. Further pointer events are reported only to
the grabbing client. XGrabPointer overrides any active pointer grab by this client.
If owner_events is False, all generated pointer events are reported with respect to
grab_window and are reported only if selected by event_mask. If owner_events is
True and if a generated pointer event would normally be reported to this client, it is
reported as usual. Otherwise, the event is reported with respect to the grab_window
and is reported only if selected by event_mask. For either value of owner_events,
unreported events are discarded.

If the pointer_mode is GrabModeAsync, pointer event processing continues as
usual. If the pointer is currently frozen by this client, the processing of events
for the pointer is resumed. If the pointer_mode is GrabModeSync, the state of the
pointer, as seen by client applications, appears to freeze, and the X server generates
no further pointer events until the grabbing client calls XAllowEvents or until the
pointer grab is released. Actual pointer changes are not lost while the pointer is
frozen; they are simply queued in the server for later processing.

If the keyboard_mode is GrabModeAsync, keyboard event processing is unaffected
by activation of the grab. If the keyboard_mode is GrabModeSync, the state of
the keyboard, as seen by client applications, appears to freeze, and the X server
generates no further keyboard events until the grabbing client calls XAllowEvents
or until the pointer grab is released. Actual keyboard changes are not lost while the
pointer is frozen; they are simply queued in the server for later processing.

If a cursor is specified, it is displayed regardless of what window the pointer is in. If
None is specified, the normal cursor for that window is displayed when the pointer
is in grab_window or one of its subwindows; otherwise, the cursor for grab_window
is displayed.

If a confine_to window is specified, the pointer is restricted to stay contained in that
window. The confine_to window need have no relationship to the grab_window. If
the pointer is not initially in the confine_to window, it is warped automatically to the
closest edge just before the grab activates and enter/leave events are generated as
usual. If the confine_to window is subsequently reconfigured, the pointer is warped
automatically, as necessary, to keep it contained in the window.

The time argument allows you to avoid certain circumstances that come up if
applications take a long time to respond or if there are long network delays.
Consider a situation where you have two applications, both of which normally grab
the pointer when clicked on. If both applications specify the timestamp from the
event, the second application may wake up faster and successfully grab the pointer
before the first application. The first application then will get an indication that the
other application grabbed the pointer before its request was processed.

XGrabPointer generates EnterNotify and LeaveNotify events.

Either if grab_window or confine_to window is not viewable or if the confine_to
window lies completely outside the boundaries of the root window, XGrabPointer
fails and returns GrabNotViewable. If the pointer is actively grabbed by some other
client, it fails and returns AlreadyGrabbed. If the pointer is frozen by an active grab
of another client, it fails and returns GrabFrozen. If the specified time is earlier than

233



Input Device Functions

the last-pointer-grab time or later than the current X server time, it fails and returns
GrabInvalidTime. Otherwise, the last-pointer-grab time is set to the specified time
(CurrentTime is replaced by the current X server time).

XGrabPointer can generate BadCursor, BadValue, and BadWindow errors.

To ungrab the pointer, use XUngrabPointer.

XUngrabPointer(display, time);

display Specifies the connection to the X server.

time Specifies the time. You can pass either a timestamp or
CurrentTime.

The XUngrabPointer function releases the pointer and any queued events if this
client has actively grabbed the pointer from XGrabPointer, XGrabButton, or from a
normal button press. XUngrabPointer does not release the pointer if the specified
time is earlier than the last-pointer-grab time or is later than the current X server
time. It also generates EnterNotify and LeaveNotify events. The X server performs
an UngrabPointer request automatically if the event window or confine_to window
for an active pointer grab becomes not viewable or if window reconfiguration causes
the confine_to window to lie completely outside the boundaries of the root window.

To change an active pointer grab, use XChangeActivePointerGrab.

XChangeActivePointerGrab(display, event_mask, cursor, time);

display Specifies the connection to the X server.

event_mask Specifies which pointer events are reported to the
client. The mask is the bitwise inclusive OR of the valid
pointer event mask bits.

cursor Specifies the cursor that is to be displayed or None.

time Specifies the time. You can pass either a timestamp or
CurrentTime.

The XChangeActivePointerGrab function changes the specified dynamic
parameters if the pointer is actively grabbed by the client and if the specified time
is no earlier than the last-pointer-grab time and no later than the current X server
time. This function has no effect on the passive parameters of an XGrabButton. The
interpretation of event_mask and cursor is the same as described in XGrabPointer.

XChangeActivePointerGrab can generate BadCursor and BadValue errors.

To grab a pointer button, use XGrabButton.

XGrabButton(display, button, modifiers, grab_window, owner_events,
event_mask, pointer_mode, keyboard_mode, confine_to, cursor);

display Specifies the connection to the X server.

button Specifies the pointer button that is to be grabbed or
AnyButton.

234



Input Device Functions

modifiers Specifies the set of keymasks or AnyModifier. The
mask is the bitwise inclusive OR of the valid keymask
bits.

grab_window Specifies the grab window.

owner_events Specifies a Boolean value that indicates whether the
pointer events are to be reported as usual or reported
with respect to the grab window if selected by the
event mask.

event_mask Specifies which pointer events are reported to the
client. The mask is the bitwise inclusive OR of the
valid pointer event mask bits.

pointer_mode Specifies further processing of pointer events. You
can pass GrabModeSync or GrabModeAsync.

keyboard_mode Specifies further processing of keyboard events. You
can pass GrabModeSync or GrabModeAsync.

confine_to Specifies the window to confine the pointer in or
None.

cursor Specifies the cursor that is to be displayed or None.

The XGrabButton function establishes a passive grab. In the future, the pointer is
actively grabbed (as for XGrabPointer), the last-pointer-grab time is set to the time
at which the button was pressed (as transmitted in the ButtonPress event), and the
ButtonPress event is reported if all of the following conditions are true:

• The pointer is not grabbed, and the specified button is logically pressed when the
specified modifier keys are logically down, and no other buttons or modifier keys
are logically down.

• The grab_window contains the pointer.

• The confine_to window (if any) is viewable.

• A passive grab on the same button/key combination does not exist on any ancestor
of grab_window.

The interpretation of the remaining arguments is as for XGrabPointer. The active
grab is terminated automatically when the logical state of the pointer has all buttons
released (independent of the state of the logical modifier keys).

Note that the logical state of a device (as seen by client applications) may lag the
physical state if device event processing is frozen.

This request overrides all previous grabs by the same client on the same button/
key combinations on the same window. A modifiers of AnyModifier is equivalent
to issuing the grab request for all possible modifier combinations (including the
combination of no modifiers). It is not required that all modifiers specified have
currently assigned KeyCodes. A button of AnyButton is equivalent to issuing the
request for all possible buttons. Otherwise, it is not required that the specified
button currently be assigned to a physical button.

235



Input Device Functions

If some other client has already issued an XGrabButton with the same button/
key combination on the same window, a BadAccess error results. When using
AnyModifier or AnyButton, the request fails completely, and a BadAccess error
results (no grabs are established) if there is a conflicting grab for any combination.
XGrabButton has no effect on an active grab.

XGrabButton can generate BadCursor, BadValue, and BadWindow errors.

To ungrab a pointer button, use XUngrabButton.

XUngrabButton(display, button, modifiers, grab_window);

display Specifies the connection to the X server.

button Specifies the pointer button that is to be released or
AnyButton.

modifiers Specifies the set of keymasks or AnyModifier. The
mask is the bitwise inclusive OR of the valid keymask
bits.

grab_window Specifies the grab window.

The XUngrabButton function releases the passive button/key combination on the
specified window if it was grabbed by this client. A modifiers of AnyModifier is
equivalent to issuing the ungrab request for all possible modifier combinations,
including the combination of no modifiers. A button of AnyButton is equivalent to
issuing the request for all possible buttons. XUngrabButton has no effect on an active
grab.

XUngrabButton can generate BadValue and BadWindow errors.

Keyboard Grabbing
Xlib provides functions that you can use to grab or ungrab the keyboard as well as
allow events.

For many functions in this section, you pass keymask bits. The valid keymask
bits are: ShiftMask, LockMask, ControlMask, Mod1Mask, Mod2Mask, Mod3Mask,
Mod4Mask, and Mod5Mask.

To grab the keyboard, use XGrabKeyboard.

int XGrabKeyboard(display, grab_window, owner_events, pointer_mode,
keyboard_mode, time);

display Specifies the connection to the X server.

grab_window Specifies the grab window.

owner_events Specifies a Boolean value that indicates whether the
keyboard events are to be reported as usual.

pointer_mode Specifies further processing of pointer events. You
can pass GrabModeSync or GrabModeAsync.

236



Input Device Functions

keyboard_mode Specifies further processing of keyboard events. You
can pass GrabModeSync or GrabModeAsync.

time Specifies the time. You can pass either a timestamp
or CurrentTime.

The XGrabKeyboard function actively grabs control of the keyboard and generates
FocusIn and FocusOut events. Further key events are reported only to the
grabbing client. XGrabKeyboard overrides any active keyboard grab by this client.
If owner_events is False, all generated key events are reported with respect to
grab_window. If owner_events is True and if a generated key event would normally
be reported to this client, it is reported normally; otherwise, the event is reported
with respect to the grab_window. Both KeyPress and KeyRelease events are always
reported, independent of any event selection made by the client.

If the keyboard_mode argument is GrabModeAsync, keyboard event processing
continues as usual. If the keyboard is currently frozen by this client, then processing
of keyboard events is resumed. If the keyboard_mode argument is GrabModeSync,
the state of the keyboard (as seen by client applications) appears to freeze, and the
X server generates no further keyboard events until the grabbing client issues a
releasing XAllowEvents call or until the keyboard grab is released. Actual keyboard
changes are not lost while the keyboard is frozen; they are simply queued in the
server for later processing.

If pointer_mode is GrabModeAsync, pointer event processing is unaffected by
activation of the grab. If pointer_mode is GrabModeSync, the state of the pointer
(as seen by client applications) appears to freeze, and the X server generates no
further pointer events until the grabbing client issues a releasing XAllowEvents call
or until the keyboard grab is released. Actual pointer changes are not lost while the
pointer is frozen; they are simply queued in the server for later processing.

If the keyboard is actively grabbed by some other client, XGrabKeyboard fails
and returns AlreadyGrabbed. If grab_window is not viewable, it fails and returns
GrabNotViewable. If the keyboard is frozen by an active grab of another client,
it fails and returns GrabFrozen. If the specified time is earlier than the last-
keyboard-grab time or later than the current X server time, it fails and returns
GrabInvalidTime. Otherwise, the last-keyboard-grab time is set to the specified time
(CurrentTime is replaced by the current X server time).

XGrabKeyboard can generate BadValue and BadWindow errors.

To ungrab the keyboard, use XUngrabKeyboard.

XUngrabKeyboard(display, time);

display Specifies the connection to the X server.

time Specifies the time. You can pass either a timestamp or
CurrentTime.

The XUngrabKeyboard function releases the keyboard and any queued events
if this client has it actively grabbed from either XGrabKeyboard or XGrabKey.
XUngrabKeyboard does not release the keyboard and any queued events if the
specified time is earlier than the last-keyboard-grab time or is later than the
current X server time. It also generates FocusIn and FocusOut events. The X server

237



Input Device Functions

automatically performs an UngrabKeyboard request if the event window for an
active keyboard grab becomes not viewable.

To passively grab a single key of the keyboard, use XGrabKey.

XGrabKey(display, keycode, modifiers, grab_window, owner_events,
pointer_mode, keyboard_mode);

display Specifies the connection to the X server.

keycode Specifies the KeyCode or AnyKey.

modifiers Specifies the set of keymasks or AnyModifier. The
mask is the bitwise inclusive OR of the valid keymask
bits.

grab_window Specifies the grab window.

owner_events Specifies a Boolean value that indicates whether the
keyboard events are to be reported as usual.

pointer_mode Specifies further processing of pointer events. You
can pass GrabModeSync or GrabModeAsync.

keyboard_mode Specifies further processing of keyboard events. You
can pass GrabModeSync or GrabModeAsync.

The XGrabKey function establishes a passive grab on the keyboard. In the future, the
keyboard is actively grabbed (as for XGrabKeyboard), the last-keyboard-grab time is
set to the time at which the key was pressed (as transmitted in the KeyPress event),
and the KeyPress event is reported if all of the following conditions are true:

• The keyboard is not grabbed and the specified key (which can itself be a modifier
key) is logically pressed when the specified modifier keys are logically down, and
no other modifier keys are logically down.

• Either the grab_window is an ancestor of (or is) the focus window, or the
grab_window is a descendant of the focus window and contains the pointer.

• A passive grab on the same key combination does not exist on any ancestor of
grab_window.

The interpretation of the remaining arguments is as for XGrabKeyboard. The active
grab is terminated automatically when the logical state of the keyboard has the
specified key released (independent of the logical state of the modifier keys).

Note that the logical state of a device (as seen by client applications) may lag the
physical state if device event processing is frozen.

A modifiers argument of AnyModifier is equivalent to issuing the request for all
possible modifier combinations (including the combination of no modifiers). It is not
required that all modifiers specified have currently assigned KeyCodes. A keycode
argument of AnyKey is equivalent to issuing the request for all possible KeyCodes.
Otherwise, the specified keycode must be in the range specified by min_keycode
and max_keycode in the connection setup, or a BadValue error results.

238



Input Device Functions

If some other client has issued a XGrabKey with the same key combination on the
same window, a BadAccess error results. When using AnyModifier or AnyKey, the
request fails completely, and a BadAccess error results (no grabs are established)
if there is a conflicting grab for any combination.

XGrabKey can generate BadAccess, BadValue, and BadWindow errors.

To ungrab a key, use XUngrabKey.

XUngrabKey(display, keycode, modifiers, grab_window);

display Specifies the connection to the X server.

keycode Specifies the KeyCode or AnyKey.

modifiers Specifies the set of keymasks or AnyModifier. The
mask is the bitwise inclusive OR of the valid keymask
bits.

grab_window Specifies the grab window.

The XUngrabKey function releases the key combination on the specified window
if it was grabbed by this client. It has no effect on an active grab. A modifiers
of AnyModifier is equivalent to issuing the request for all possible modifier
combinations (including the combination of no modifiers). A keycode argument of
AnyKey is equivalent to issuing the request for all possible key codes.

XUngrabKey can generate BadValue and BadWindow errors.

Resuming Event Processing
The previous sections discussed grab mechanisms with which processing of events
by the server can be temporarily suspended. This section describes the mechanism
for resuming event processing.

To allow further events to be processed when the device has been frozen, use
XAllowEvents.

XAllowEvents(display, event_mode, time);

display Specifies the connection to the X server.

event_mode Specifies the event mode. You can
pass AsyncPointer, SyncPointer, AsyncKeyboard,
SyncKeyboard, ReplayPointer, ReplayKeyboard,
AsyncBoth, or SyncBoth.

time Specifies the time. You can pass either a timestamp or
CurrentTime.

The XAllowEvents function releases some queued events if the client has caused a
device to freeze. It has no effect if the specified time is earlier than the last-grab
time of the most recent active grab for the client or if the specified time is later than
the current X server time. Depending on the event_mode argument, the following
occurs:

239



Input Device Functions

AsyncPointer If the pointer is frozen by the client, pointer event processing
continues as usual. If the pointer is frozen twice by the client
on behalf of two separate grabs, AsyncPointer thaws for both.
AsyncPointer has no effect if the pointer is not frozen by the
client, but the pointer need not be grabbed by the client.

SyncPointer If the pointer is frozen and actively grabbed by the client,
pointer event processing continues as usual until the next
ButtonPress or ButtonRelease event is reported to the client.
At this time, the pointer again appears to freeze. However, if
the reported event causes the pointer grab to be released, the
pointer does not freeze. SyncPointer has no effect if the pointer
is not frozen by the client or if the pointer is not grabbed by the
client.

ReplayPointer If the pointer is actively grabbed by the client and is frozen
as the result of an event having been sent to the client (either
from the activation of an XGrabButton or from a previous
XAllowEvents with mode SyncPointer but not from an
XGrabPointer), the pointer grab is released and that event
is completely reprocessed. This time, however, the function
ignores any passive grabs at or above (toward the root of) the
grab_window of the grab just released. The request has no effect
if the pointer is not grabbed by the client or if the pointer is not
frozen as the result of an event.

AsyncKeyboard If the keyboard is frozen by the client, keyboard event
processing continues as usual. If the keyboard is frozen twice
by the client on behalf of two separate grabs, AsyncKeyboard
thaws for both. AsyncKeyboard has no effect if the keyboard is
not frozen by the client, but the keyboard need not be grabbed
by the client.

SyncKeyboard If the keyboard is frozen and actively grabbed by the client,
keyboard event processing continues as usual until the next
KeyPress or KeyRelease event is reported to the client. At this
time, the keyboard again appears to freeze. However, if the
reported event causes the keyboard grab to be released, the
keyboard does not freeze. SyncKeyboard has no effect if the
keyboard is not frozen by the client or if the keyboard is not
grabbed by the client.

ReplayKeyboardIf the keyboard is actively grabbed by the client and is frozen as
the result of an event having been sent to the client (either from
the activation of an XGrabKey or from a previous XAllowEvents
with mode SyncKeyboard but not from an XGrabKeyboard),
the keyboard grab is released and that event is completely
reprocessed. This time, however, the function ignores any
passive grabs at or above (toward the root of) the grab_window
of the grab just released. The request has no effect if the
keyboard is not grabbed by the client or if the keyboard is not
frozen as the result of an event.

SyncBoth If both pointer and keyboard are frozen by the client, event
processing for both devices continues as usual until the next
ButtonPress, ButtonRelease, KeyPress, or KeyRelease event is
reported to the client for a grabbed device (button event for the
pointer, key event for the keyboard), at which time the devices
again appear to freeze. However, if the reported event causes
the grab to be released, then the devices do not freeze (but if
the other device is still grabbed, then a subsequent event for it
will still cause both devices to freeze). SyncBoth has no effect
unless both pointer and keyboard are frozen by the client. If the
pointer or keyboard is frozen twice by the client on behalf of
two separate grabs, SyncBoth thaws for both (but a subsequent
freeze for SyncBoth will only freeze each device once).

AsyncBoth If the pointer and the keyboard are frozen by the client, event
processing for both devices continues as usual. If a device is
frozen twice by the client on behalf of two separate grabs,
AsyncBoth thaws for both. AsyncBoth has no effect unless both
pointer and keyboard are frozen by the client.

240



Input Device Functions

AsyncPointer, SyncPointer, and ReplayPointer have no effect on the processing
of keyboard events. AsyncKeyboard, SyncKeyboard, and ReplayKeyboard have no
effect on the processing of pointer events. It is possible for both a pointer grab and
a keyboard grab (by the same or different clients) to be active simultaneously. If a
device is frozen on behalf of either grab, no event processing is performed for the
device. It is possible for a single device to be frozen because of both grabs. In this
case, the freeze must be released on behalf of both grabs before events can again be
processed. If a device is frozen twice by a single client, then a single XAllowEvents
releases both.

XAllowEvents can generate a BadValue error.

Moving the Pointer
Although movement of the pointer normally should be left to the control of the end
user, sometimes it is necessary to move the pointer to a new position under program
control.

To move the pointer to an arbitrary point in a window, use XWarpPointer.

XWarpPointer(display, src_w, dest_w, src_x, src_y, src_width,
src_height, dest_x, dest_y);

display Specifies the connection to the X server.

src_w Specifies the source window or None.

dest_w Specifies the destination window or None.

src_x

src_y

src_width

src_height Specify a rectangle in the source window.

dest_x

dest_y Specify the x and y coordinates within the destination
window.

If dest_w is None, XWarpPointer moves the pointer by the offsets (dest_x, dest_y)
relative to the current position of the pointer. If dest_w is a window, XWarpPointer
moves the pointer to the offsets (dest_x, dest_y) relative to the origin of dest_w.
However, if src_w is a window, the move only takes place if the window src_w
contains the pointer and if the specified rectangle of src_w contains the pointer.

The src_x and src_y coordinates are relative to the origin of src_w. If src_height is
zero, it is replaced with the current height of src_w minus src_y. If src_width is zero,
it is replaced with the current width of src_w minus src_x.

There is seldom any reason for calling this function. The pointer should normally be
left to the user. If you do use this function, however, it generates events just as if the
user had instantaneously moved the pointer from one position to another. Note that
you cannot use XWarpPointer to move the pointer outside the confine_to window

241



Input Device Functions

of an active pointer grab. An attempt to do so will only move the pointer as far as
the closest edge of the confine_to window.

XWarpPointer can generate a BadWindow error.

Controlling Input Focus
Xlib provides functions that you can use to set and get the input focus. The input
focus is a shared resource, and cooperation among clients is required for correct
interaction. See the Inter-Client Communication Conventions Manual for input
focus policy.

To set the input focus, use XSetInputFocus.

XSetInputFocus(display, focus, revert_to, time);

display Specifies the connection to the X server.

focus Specifies the window, PointerRoot, or None.

revert_to Specifies where the input focus reverts to if the window
becomes not viewable. You can pass RevertToParent,
RevertToPointerRoot, or RevertToNone.

time Specifies the time. You can pass either a timestamp or
CurrentTime.

The XSetInputFocus function changes the input focus and the last-focus-change
time. It has no effect if the specified time is earlier than the current last-focus-
change time or is later than the current X server time. Otherwise, the last-focus-
change time is set to the specified time (CurrentTime is replaced by the current
X server time). XSetInputFocus causes the X server to generate FocusIn and
FocusOut events.

Depending on the focus argument, the following occurs:

• If focus is None, all keyboard events are discarded until a new focus window is
set, and the revert_to argument is ignored.

• If focus is a window, it becomes the keyboard's focus window. If a generated
keyboard event would normally be reported to this window or one of its inferiors,
the event is reported as usual. Otherwise, the event is reported relative to the
focus window.

• If focus is PointerRoot, the focus window is dynamically taken to be the root
window of whatever screen the pointer is on at each keyboard event. In this case,
the revert_to argument is ignored.

The specified focus window must be viewable at the time XSetInputFocus is called,
or a BadMatch error results. If the focus window later becomes not viewable, the
X server evaluates the revert_to argument to determine the new focus window as
follows:

• If revert_to is RevertToParent, the focus reverts to the parent (or the closest
viewable ancestor), and the new revert_to value is taken to be RevertToNone.

242

../../xorg-docs/icccm/icccm.pdf#Input_Focus


Input Device Functions

• If revert_to is RevertToPointerRoot or RevertToNone, the focus reverts to
PointerRoot or None, respectively. When the focus reverts, the X server generates
FocusIn and FocusOut events, but the last-focus-change time is not affected.

XSetInputFocus can generate BadMatch, BadValue, and BadWindow errors.

To obtain the current input focus, use XGetInputFocus.

XGetInputFocus(display, focus_return, revert_to_return);

display Specifies the connection to the X server.

focus_return Returns the focus window, PointerRoot, or None.

revert_to_return Returns the current focus state (RevertToParent,
RevertToPointerRoot, or RevertToNone).

The XGetInputFocus function returns the focus window and the current focus state.

Manipulating the Keyboard and Pointer
Settings

Xlib provides functions that you can use to change the keyboard control, obtain a
list of the auto-repeat keys, turn keyboard auto-repeat on or off, ring the bell, set
or obtain the pointer button or keyboard mapping, and obtain a bit vector for the
keyboard.

    This section discusses the user-preference options of bell, key click, pointer
behavior, and so on. The default values for many of these options are server
dependent. Not all implementations will actually be able to control all of these
parameters.

The XChangeKeyboardControl function changes control of a keyboard and operates
on a XKeyboardControl structure:

/* Mask bits for ChangeKeyboardControl */

#define     KBBellPercent           (1L<<0)
#define     KBBellPitch             (1L<<1)
#define     KBBellDuration          (1L<<2)
#define     KBLed                   (1L<<3)
#define     KBLedMode               (1L<<4)
#define     KBKey                   (1L<<5)
#define     KBAutoRepeatMode        (1L<<6)

/* Values */

typedef struct {
int key_click_percent;
int bell_percent;
int bell_pitch;

243



Input Device Functions

int bell_duration;
int led;
int led_mode;                /* LedModeOn, LedModeOff */
int key;
int auto_repeat_mode;        /* AutoRepeatModeOff, AutoRepeatModeOn,
                                AutoRepeatModeDefault */
} XKeyboardControl;

The key_click_percent member sets the volume for key clicks between 0 (off) and
100 (loud) inclusive, if possible. A setting of -1 restores the default. Other negative
values generate a BadValue error.

The bell_percent sets the base volume for the bell between 0 (off) and 100 (loud)
inclusive, if possible. A setting of -1 restores the default. Other negative values
generate a BadValue error. The bell_pitch member sets the pitch (specified in Hz)
of the bell, if possible. A setting of -1 restores the default. Other negative values
generate a BadValue error. The bell_duration member sets the duration of the bell
specified in milliseconds, if possible. A setting of -1 restores the default. Other
negative values generate a BadValue error.

If both the led_mode and led members are specified, the state of that LED
is changed, if possible. The led_mode member can be set to LedModeOn or
LedModeOff. If only led_mode is specified, the state of all LEDs are changed,
if possible. At most 32 LEDs numbered from one are supported. No standard
interpretation of LEDs is defined. If led is specified without led_mode, a BadMatch
error results.

If both the auto_repeat_mode and key members are specified, the auto_repeat_mode
of that key is changed (according to AutoRepeatModeOn, AutoRepeatModeOff, or
AutoRepeatModeDefault), if possible. If only auto_repeat_mode is specified, the
global auto_repeat_mode for the entire keyboard is changed, if possible, and does
not affect the per-key settings. If a key is specified without an auto_repeat_mode,
a BadMatch error results. Each key has an individual mode of whether or not
it should auto-repeat and a default setting for the mode. In addition, there is
a global mode of whether auto-repeat should be enabled or not and a default
setting for that mode. When global mode is AutoRepeatModeOn, keys should obey
their individual auto-repeat modes. When global mode is AutoRepeatModeOff, no
keys should auto-repeat. An auto-repeating key generates alternating KeyPress and
KeyRelease events. When a key is used as a modifier, it is desirable for the key not
to auto-repeat, regardless of its auto-repeat setting.

A bell generator connected with the console but not directly on a keyboard is treated
as if it were part of the keyboard. The order in which controls are verified and
altered is server-dependent. If an error is generated, a subset of the controls may
have been altered.

XChangeKeyboardControl(display, value_mask, values);

display Specifies the connection to the X server.

value_mask Specifies which controls to change. This mask is the
bitwise inclusive OR of the valid control mask bits.

values Specifies one value for each bit set to 1 in the mask.

244



Input Device Functions

The XChangeKeyboardControl function controls the keyboard characteristics
defined by the XKeyboardControl structure. The value_mask argument specifies
which values are to be changed.

XChangeKeyboardControl can generate BadMatch and BadValue errors.

To obtain the current control values for the keyboard, use XGetKeyboardControl.

XGetKeyboardControl(display, values_return);

display Specifies the connection to the X server.

values_return Returns the current keyboard controls in the
specified XKeyboardState structure.

The XGetKeyboardControl function returns the current control values for the
keyboard to the XKeyboardState structure.

 

typedef struct {
 int key_click_percent;
 int bell_percent;
 unsigned int bell_pitch, bell_duration;
 unsigned long led_mask;
 int global_auto_repeat;
 char auto_repeats[32];
} XKeyboardState;

For the LEDs, the least significant bit of led_mask corresponds to LED one, and each
bit set to 1 in led_mask indicates an LED that is lit. The global_auto_repeat member
can be set to AutoRepeatModeOn or AutoRepeatModeOff. The auto_repeats
member is a bit vector. Each bit set to 1 indicates that auto-repeat is enabled for the
corresponding key. The vector is represented as 32 bytes. Byte N (from 0) contains
the bits for keys 8N to 8N + 7 with the least significant bit in the byte representing
key 8N.

To turn on keyboard auto-repeat, use XAutoRepeatOn.

XAutoRepeatOn(display);

display Specifies the connection to the X server.

The XAutoRepeatOn function turns on auto-repeat for the keyboard on the specified
display.

To turn off keyboard auto-repeat, use XAutoRepeatOff.

XAutoRepeatOff(display);

display Specifies the connection to the X server.

The XAutoRepeatOff function turns off auto-repeat for the keyboard on the specified
display.

245



Input Device Functions

To ring the bell, use XBell.

XBell(display, percent);

display Specifies the connection to the X server.

percent Specifies the volume for the bell, which can range from
-100 to 100 inclusive.

The XBell function rings the bell on the keyboard on the specified display, if
possible. The specified volume is relative to the base volume for the keyboard. If the
value for the percent argument is not in the range -100 to 100 inclusive, a BadValue
error results. The volume at which the bell rings when the percent argument is
nonnegative is:

• base - [(base * percent) / 100] + percent

The volume at which the bell rings when the percent argument is negative is:

• base + [(base * percent) / 100]

To change the base volume of the bell, use XChangeKeyboardControl.

XBell can generate a BadValue error.

To obtain a bit vector that describes the state of the keyboard, use XQueryKeymap.

XQueryKeymap(display, keys_return[32]);

display Specifies the connection to the X server.

keys_return Returns an array of bytes that identifies which keys
are pressed down. Each bit represents one key of the
keyboard.

The XQueryKeymap function returns a bit vector for the logical state of the keyboard,
where each bit set to 1 indicates that the corresponding key is currently pressed
down. The vector is represented as 32 bytes. Byte N (from 0) contains the bits for
keys 8N to 8N + 7 with the least significant bit in the byte representing key 8N.

Note that the logical state of a device (as seen by client applications) may lag the
physical state if device event processing is frozen.

To set the mapping of the pointer buttons, use XSetPointerMapping.

int XSetPointerMapping(display, map[], nmap);

display Specifies the connection to the X server.

map Specifies the mapping list.

nmap Specifies the number of items in the mapping list.

The XSetPointerMapping function sets the mapping of the pointer. If it succeeds,
the X server generates a MappingNotify event, and XSetPointerMapping returns
MappingSuccess. Element map[i] defines the logical button number for the physical
button i+1. The length of the list must be the same as XGetPointerMapping would

246



Input Device Functions

return, or a BadValue error results. A zero element disables a button, and elements
are not restricted in value by the number of physical buttons. However, no two
elements can have the same nonzero value, or a BadValue error results. If any of the
buttons to be altered are logically in the down state, XSetPointerMapping returns
MappingBusy, and the mapping is not changed.

XSetPointerMapping can generate a BadValue error.

To get the pointer mapping, use XGetPointerMapping.

int XGetPointerMapping(display, map_return[], nmap);

display Specifies the connection to the X server.

map_return Returns the mapping list.

nmap Specifies the number of items in the mapping list.

The XGetPointerMapping function returns the current mapping of the pointer.
Pointer buttons are numbered starting from one. XGetPointerMapping returns the
number of physical buttons actually on the pointer. The nominal mapping for a
pointer is map[i]=i+1. The nmap argument specifies the length of the array where
the pointer mapping is returned, and only the first nmap elements are returned in
map_return.

To control the pointer's interactive feel, use XChangePointerControl.

XChangePointerControl(display, do_accel, do_threshold, accel_numerator,
accel_denominator, threshold);

display Specifies the connection to the X server.

do_accel Specifies a Boolean value that controls whether the
values for the accel_numerator or accel_denominator
are used.

do_threshold Specifies a Boolean value that controls whether the
value for the threshold is used.

accel_numerator Specifies the numerator for the acceleration
multiplier.

accel_denominator Specifies the denominator for the acceleration
multiplier.

threshold Specifies the acceleration threshold.

The XChangePointerControl function defines how the pointing device moves. The
acceleration, expressed as a fraction, is a multiplier for movement. For example,
specifying 3/1 means the pointer moves three times as fast as normal. The fraction
may be rounded arbitrarily by the X server. Acceleration only takes effect if the
pointer moves more than threshold pixels at once and only applies to the amount
beyond the value in the threshold argument. Setting a value to -1 restores the
default. The values of the do_accel and do_threshold arguments must be True for the
pointer values to be set, or the parameters are unchanged. Negative values (other
than -1) generate a BadValue error, as does a zero value for the accel_denominator
argument.

247



Input Device Functions

XChangePointerControl can generate a BadValue error.

To get the current pointer parameters, use XGetPointerControl.

XGetPointerControl(display, accel_numerator_return,
accel_denominator_return, threshold_return);

display Specifies the connection to the X server.

accel_numerator_return Returns the numerator for the acceleration
multiplier.

accel_denominator_return Returns the denominator for the acceleration
multiplier.

threshold_return Returns the acceleration threshold.

The XGetPointerControl function returns the pointer's current acceleration
multiplier and acceleration threshold.

Manipulating the Keyboard Encoding
A KeyCode represents a physical (or logical) key. KeyCodes lie in the inclusive
range [8,255]. A KeyCode value carries no intrinsic information, although server
implementors may attempt to encode geometry (for example, matrix) information
in some fashion so that it can be interpreted in a server-dependent fashion. The
mapping between keys and KeyCodes cannot be changed.

A KeySym is an encoding of a symbol on the cap of a key. The set of defined
KeySyms includes the ISO Latin character sets (1-4), Katakana, Arabic, Cyrillic,
Greek, Technical, Special, Publishing, APL, Hebrew, Thai, Korean and a miscellany
of keys found on keyboards (Return, Help, Tab, and so on). To the extent possible,
these sets are derived from international standards. In areas where no standards
exist, some of these sets are derived from Digital Equipment Corporation standards.
The list of defined symbols can be found in <X11/keysymdef.h>.    Unfortunately,
some C preprocessors have limits on the number of defined symbols. If you must
use KeySyms not in the Latin 1-4, Greek, and miscellaneous classes, you may have
to define a symbol for those sets. Most applications usually only include <X11/
keysym.h>,    which defines symbols for ISO Latin 1-4, Greek, and miscellaneous.

A list of KeySyms is associated with each KeyCode. The list is intended to convey
the set of symbols on the corresponding key. If the list (ignoring trailing NoSymbol
entries) is a single KeySym ``K'', then the list is treated as if it were the list ``K
NoSymbol K NoSymbol''. If the list (ignoring trailing NoSymbol entries) is a pair
of KeySyms ``K1 K2'', then the list is treated as if it were the list ``K1 K2 K1 K2''.
If the list (ignoring trailing NoSymbol entries) is a triple of KeySyms ``K1 K2 K3'',
then the list is treated as if it were the list ``K1 K2 K3 NoSymbol''. When an explicit
``void'' element is desired in the list, the value VoidSymbol can be used.

The first four elements of the list are split into two groups of KeySyms. Group
1 contains the first and second KeySyms; Group 2 contains the third and fourth
KeySyms. Within each group, if the second element of the group is NoSymbol, then
the group should be treated as if the second element were the same as the first
element, except when the first element is an alphabetic KeySym ``K'' for which
both lowercase and uppercase forms are defined. In that case, the group should

248



Input Device Functions

be treated as if the first element were the lowercase form of ``K'' and the second
element were the uppercase form of ``K''.

The standard rules for obtaining a KeySym from a KeyPress event make use of only
the Group 1 and Group 2 KeySyms; no interpretation of other KeySyms in the list is
given. Which group to use is determined by the modifier state. Switching between
groups is controlled by the KeySym named MODE SWITCH, by attaching that
KeySym to some KeyCode and attaching that KeyCode to any one of the modifiers
Mod1 through Mod5. This modifier is called the group modifier. For any KeyCode,
Group 1 is used when the group modifier is off, and Group 2 is used when the group
modifier is on.

The Lock modifier is interpreted as CapsLock when the KeySym named
XK_Caps_Lock is attached to some KeyCode and that KeyCode is attached to the
Lock modifier. The Lock modifier is interpreted as ShiftLock when the KeySym
named XK_Shift_Lock is attached to some KeyCode and that KeyCode is attached to
the Lock modifier. If the Lock modifier could be interpreted as both CapsLock and
ShiftLock, the CapsLock interpretation is used.

The operation of keypad keys is controlled by the KeySym named XK_Num_Lock,
by attaching that KeySym to some KeyCode and attaching that KeyCode to any one
of the modifiers Mod1 through Mod5. This modifier is called the numlock modifier.
The standard KeySyms with the prefix ``XK_KP_'' in their name are called keypad
KeySyms; these are KeySyms with numeric value in the hexadecimal range 0xFF80
to 0xFFBD inclusive. In addition, vendor-specific KeySyms in the hexadecimal range
0x11000000 to 0x1100FFFF are also keypad KeySyms.

Within a group, the choice of KeySym is determined by applying the first rule that
is satisfied from the following list:

• The numlock modifier is on and the second KeySym is a keypad KeySym. In this
case, if the Shift modifier is on, or if the Lock modifier is on and is interpreted as
ShiftLock, then the first KeySym is used, otherwise the second KeySym is used.

• The Shift and Lock modifiers are both off. In this case, the first KeySym is used.

• The Shift modifier is off, and the Lock modifier is on and is interpreted as
CapsLock. In this case, the first KeySym is used, but if that KeySym is lowercase
alphabetic, then the corresponding uppercase KeySym is used instead.

• The Shift modifier is on, and the Lock modifier is on and is interpreted as
CapsLock. In this case, the second KeySym is used, but if that KeySym is lowercase
alphabetic, then the corresponding uppercase KeySym is used instead.

• The Shift modifier is on, or the Lock modifier is on and is interpreted as ShiftLock,
or both. In this case, the second KeySym is used.

No spatial geometry of the symbols on the key is defined by their order in the
KeySym list, although a geometry might be defined on a server-specific basis. The X
server does not use the mapping between KeyCodes and KeySyms. Rather, it merely
stores it for reading and writing by clients.

To obtain the legal KeyCodes for a display, use XDisplayKeycodes.

XDisplayKeycodes(display, min_keycodes_return, max_keycodes_return);

display Specifies the connection to the X server.

249



Input Device Functions

min_keycodes_return Returns the minimum number of KeyCodes.

max_keycodes_return Returns the maximum number of KeyCodes.

The XDisplayKeycodes function returns the min-keycodes and max-keycodes
supported by the specified display. The minimum number of KeyCodes returned is
never less than 8, and the maximum number of KeyCodes returned is never greater
than 255. Not all KeyCodes in this range are required to have corresponding keys.

To obtain the symbols for the specified KeyCodes, use XGetKeyboardMapping.

KeySym *XGetKeyboardMapping(display, first_keycode, keycode_count,
keysyms_per_keycode_return);

display Specifies the connection to the X server.

first_keycode Specifies the first KeyCode that is to be returned.

keycode_count Specifies the number of KeyCodes that are to be
returned.

keysyms_per_keycode_return Returns the number of KeySyms per KeyCode.

The XGetKeyboardMapping function returns the symbols for the specified number
of KeyCodes starting with first_keycode. The value specified in first_keycode must
be greater than or equal to min_keycode as returned by XDisplayKeycodes, or a
BadValue error results. In addition, the following expression must be less than or
equal to max_keycode as returned by XDisplayKeycodes:

first_keycode + keycode_count - 1

If this is not the case, a BadValue error results. The number of elements in the
KeySyms list is:

keycode_count * keysyms_per_keycode_return

KeySym number N, counting from zero, for KeyCode K has the following index in
the list, counting from zero:

(K - first_code) * keysyms_per_code_return + N

The X server arbitrarily chooses the keysyms_per_keycode_return value to be large
enough to report all requested symbols. A special KeySym value of NoSymbol is
used to fill in unused elements for individual KeyCodes. To free the storage returned
by XGetKeyboardMapping, use XFree.

XGetKeyboardMapping can generate a BadValue error.

To change the keyboard mapping, use XChangeKeyboardMapping.

XChangeKeyboardMapping(display, first_keycode, keysyms_per_keycode,
keysyms, num_codes);

display Specifies the connection to the X server.

250



Input Device Functions

first_keycode Specifies the first KeyCode that is to be changed.

keysyms_per_keycode Specifies the number of KeySyms per KeyCode.

keysyms Specifies an array of KeySyms.

num_codes Specifies the number of KeyCodes that are to be
changed.

The XChangeKeyboardMapping function defines the symbols for the specified
number of KeyCodes starting with first_keycode. The symbols for KeyCodes outside
this range remain unchanged. The number of elements in keysyms must be:

num_codes * keysyms_per_keycode

The specified first_keycode must be greater than or equal to min_keycode
returned by XDisplayKeycodes, or a BadValue error results. In addition, the
following expression must be less than or equal to max_keycode as returned by
XDisplayKeycodes, or a BadValue error results:

first_keycode + num_codes - 1

KeySym number N, counting from zero, for KeyCode K has the following index in
keysyms, counting from zero:

(K - first_keycode) * keysyms_per_keycode + N

The specified keysyms_per_keycode can be chosen arbitrarily by the client to be
large enough to hold all desired symbols. A special KeySym value of NoSymbol
should be used to fill in unused elements for individual KeyCodes. It is legal for
NoSymbol to appear in nontrailing positions of the effective list for a KeyCode.
XChangeKeyboardMapping generates a MappingNotify event.

There is no requirement that the X server interpret this mapping. It is merely stored
for reading and writing by clients.

XChangeKeyboardMapping can generate BadAlloc and BadValue errors.

The next six functions make use of the XModifierKeymap data structure, which
contains:

typedef struct {
 int max_keypermod; /* This server's max number of keys per modifier */
 KeyCode *modifiermap; /* An 8 by max_keypermod array of the modifiers */
} XModifierKeymap;

To create an XModifierKeymap structure, use XNewModifiermap.

XModifierKeymap *XNewModifiermap(max_keys_per_mod);

251



Input Device Functions

max_keys_per_mod Specifies the number of KeyCode entries
preallocated to the modifiers in the map.

The XNewModifiermap function returns a pointer to XModifierKeymap structure for
later use.

To add a new entry to an XModifierKeymap structure, use
XInsertModifiermapEntry.

XModifierKeymap *XInsertModifiermapEntry(modmap, keycode_entry,
modifier);

modmap Specifies the XModifierKeymap structure.

keycode_entry Specifies the KeyCode.

modifier Specifies the modifier.

The XInsertModifiermapEntry function adds the specified KeyCode to the set
that controls the specified modifier and returns the resulting XModifierKeymap
structure (expanded as needed).

To delete an entry from an XModifierKeymap structure, use
XDeleteModifiermapEntry.

XModifierKeymap *XDeleteModifiermapEntry(modmap, keycode_entry,
modifier);

modmap Specifies the XModifierKeymap structure.

keycode_entry Specifies the KeyCode.

modifier Specifies the modifier.

The XDeleteModifiermapEntry function deletes the specified KeyCode from the
set that controls the specified modifier and returns a pointer to the resulting
XModifierKeymap structure.

To destroy an XModifierKeymap structure, use XFreeModifiermap.

XFreeModifiermap(modmap);

modmap Specifies the XModifierKeymap structure.

The XFreeModifiermap function frees the specified XModifierKeymap structure.

To set the KeyCodes to be used as modifiers, use XSetModifierMapping.

int XSetModifierMapping(display, modmap);

display Specifies the connection to the X server.

modmap Specifies the XModifierKeymap structure.

The XSetModifierMapping function specifies the KeyCodes of the keys (if any) that
are to be used as modifiers. If it succeeds, the X server generates a MappingNotify
event, and XSetModifierMapping returns MappingSuccess. X permits at most 8

252



Input Device Functions

modifier keys. If more than 8 are specified in the XModifierKeymap structure, a
BadLength error results.

The modifiermap member of the XModifierKeymap structure contains 8 sets of
max_keypermod KeyCodes, one for each modifier in the order Shift, Lock, Control,
Mod1, Mod2, Mod3, Mod4, and Mod5. Only nonzero KeyCodes have meaning in
each set, and zero KeyCodes are ignored. In addition, all of the nonzero KeyCodes
must be in the range specified by min_keycode and max_keycode in the Display
structure, or a BadValue error results.

An X server can impose restrictions on how modifiers can be changed, for example,
if certain keys do not generate up transitions in hardware, if auto-repeat cannot be
disabled on certain keys, or if multiple modifier keys are not supported. If some such
restriction is violated, the status reply is MappingFailed, and none of the modifiers
are changed. If the new KeyCodes specified for a modifier differ from those currently
defined and any (current or new) keys for that modifier are in the logically down
state, XSetModifierMapping returns MappingBusy, and none of the modifiers is
changed.

XSetModifierMapping can generate BadAlloc and BadValue errors.

To obtain the KeyCodes used as modifiers, use XGetModifierMapping.

XModifierKeymap *XGetModifierMapping(display);

display Specifies the connection to the X server.

The XGetModifierMapping function returns a pointer to a newly created
XModifierKeymap structure that contains the keys being used as modifiers. The
structure should be freed after use by calling XFreeModifiermap. If only zero values
appear in the set for any modifier, that modifier is disabled.

253



Chapter 13. Locales and
Internationalized Text Functions

An internationalized application is one that is adaptable to the requirements of
different native languages, local customs, and character string encodings. The
process of adapting the operation to a particular native language, local custom,
or string encoding is called localization. A goal of internationalization is to permit
localization without program source modifications or recompilation.

As one of the localization mechanisms, Xlib provides an X Input Method (XIM)
functional interface for internationalized text input and an X Output Method (XOM)
functional interface for internationalized text output.

Internationalization in X is based on the concept of a locale. A locale defines the
localized behavior of a program at run time. Locales affect Xlib in its:

• Encoding and processing of input method text

• Encoding of resource files and values

• Encoding and imaging of text strings

• Encoding and decoding for inter-client text communication

• Encoding and decoding for inter-client text communication Characters from
various languages are represented in a computer using an encoding. Different
languages have different encodings, and there are even different encodings for the
same characters in the same language.

This chapter defines support for localized text imaging and text input and describes
the locale mechanism that controls all locale-dependent Xlib functions. Sets of
functions are provided for multibyte (char *) text as well as wide character (wchar_t)
text in the form supported by the host C language environment. The multibyte and
wide character functions are equivalent except for the form of the text argument.

The Xlib internationalization functions are not meant to provide support for
multilingual applications (mixing multiple languages within a single piece of text),
but they make it possible to implement applications that work in limited fashion
with more than one language in independent contexts.

The remainder of this chapter discusses:

• X locale management

• Locale and modifier dependencies

• Variable argument lists

• Output methods

• Input methods

• String constants

254



Locales and Internationalized
Text Functions

X Locale Management
X supports one or more of the locales defined by the host environment. On
implementations that conform to the ANSI C library, the locale announcement
method is setlocale. This function configures the locale operation of both the
host C library and Xlib. The operation of Xlib is governed by the LC_CTYPE
category; this is called the current locale. An implementation is permitted to provide
implementation-dependent mechanisms for announcing the locale in addition to
setlocale.

On implementations that do not conform to the ANSI C library, the locale
announcement method is Xlib implementation-dependent.

The mechanism by which the semantic operation of Xlib is defined for a specific
locale is implementation-dependent.

X is not required to support all the locales supported by the host. To determine if
the current locale is supported by X, use XSupportsLocale.

Bool XSupportsLocale();

The XSupportsLocale function returns True if Xlib functions are capable of
operating under the current locale. If it returns False, Xlib locale-dependent
functions for which the XLocaleNotSupported return status is defined will return
XLocaleNotSupported. Other Xlib locale-dependent routines will operate in the ̀ `C''
locale.

The client is responsible for selecting its locale and X modifiers. Clients should
provide a means for the user to override the clients' locale selection at client
invocation. Most single-display X clients operate in a single locale for both X
and the host processing environment. They will configure the locale by calling
three functions: the host locale configuration function, XSupportsLocale, and
XSetLocaleModifiers.

The semantics of certain categories of X internationalization capabilities can be
configured by setting modifiers. Modifiers are named by implementation-dependent
and locale-specific strings. The only standard use for this capability at present is
selecting one of several styles of keyboard input method.

To configure Xlib locale modifiers for the current locale, use XSetLocaleModifiers.

char *XSetLocaleModifiers(modifier_list);

modifier_list Specifies the modifiers.

The XSetLocaleModifiers function sets the X modifiers for the current
locale setting. The modifier_list argument is a null-terminated string of
the form ``{@category=value}'', that is, having zero or more concatenated
``@category=value'' entries, where category is a category name and value is the
(possibly empty) setting for that category. The values are encoded in the current
locale. Category names are restricted to the POSIX Portable Filename Character
Set.

The local host X locale modifiers announcer (on POSIX-compliant systems, the
XMODIFIERS environment variable) is appended to the modifier_list to provide
default values on the local host. If a given category appears more than once in
the list, the first setting in the list is used. If a given category is not included in

255



Locales and Internationalized
Text Functions

the full modifier list, the category is set to an implementation-dependent default
for the current locale. An empty value for a category explicitly specifies the
implementation-dependent default.

If the function is successful, it returns a pointer to a string. The contents of the
string are such that a subsequent call with that string (in the same locale) will
restore the modifiers to the same settings. If modifier_list is a NULL pointer,
XSetLocaleModifiers also returns a pointer to such a string, and the current locale
modifiers are not changed.

If invalid values are given for one or more modifier categories supported by the
locale, a NULL pointer is returned, and none of the current modifiers are changed.

At program startup, the modifiers that are in effect are unspecified until the first
successful call to set them. Whenever the locale is changed, the modifiers that are in
effect become unspecified until the next successful call to set them. Clients should
always call XSetLocaleModifiers with a non-NULL modifier_list after setting the
locale before they call any locale-dependent Xlib routine.

The only standard modifier category currently defined is ``im'', which identifies the
desired input method. The values for input method are not standardized. A single
locale may use multiple input methods, switching input method under user control.
The modifier may specify the initial input method in effect or an ordered list of input
methods. Multiple input methods may be specified in a single im value string in an
implementation-dependent manner.

The returned modifiers string is owned by Xlib and should not be modified or freed
by the client. It may be freed by Xlib after the current locale or modifiers are
changed. Until freed, it will not be modified by Xlib.

The recommended procedure for clients initializing their locale and modifiers is
to obtain locale and modifier announcers separately from one of the following
prioritized sources:

• A command line option

• A resource

• The empty string ("")

The first of these that is defined should be used. Note that when a locale command
line option or locale resource is defined, the effect should be to set all categories
to the specified locale, overriding any category-specific settings in the local host
environment.

Locale and Modifier Dependencies
The internationalized Xlib functions operate in the current locale configured by the
host environment and X locale modifiers set by XSetLocaleModifiers or in the
locale and modifiers configured at the time some object supplied to the function
was created. For each locale-dependent function, the following table describes the
locale (and modifiers) dependency:

Locale from Affects the Function In
Locale Query/Configuration:
setlocale XSupportsLocale Locale queried

256



Locales and Internationalized
Text Functions

Locale from Affects the Function In
XSetLocaleModifiers Locale modified

Resources:
setlocale XrmGetFileDatabase

XrmGetStringDatabase

Locale of XrmDatabase

XrmDatabase XrmPutFileDatabase

XrmLocaleOfDatabase

Locale of XrmDatabase

Setting Standard Properties:
setlocale XmbSetWMProperties Encoding of supplied/

returned text (some
WM_ property text in
environment locale)

setlocale XmbTextPropertyToTextList

XwcTextPropertyToTextList

XmbTextListToTextProperty

XwcTextListToTextProperty

Encoding of supplied/
returned text

Text Input:
XOpenIM XIM input method

selection
XRegisterIMInstantiateCallback XIM selection

setlocale

XUnregisterIMInstantiateCallback XIM selection
XCreateIC XIC input method

configuration
XIM

XLocaleOfIM, and so on Queried locale
XmbLookupString Keyboard layoutXIC
XwcLookupString Encoding of returned

text
Text Drawing:

XOpenOM XOM output method
selection

setlocale

XCreateFontSet Charsets of fonts in
XFontSet

XCreateOC XOC output method
configuration

XOM

XLocaleOfOM, and so on Queried locale
XmbDrawText, Locale of supplied text
XwcDrawText, and so on Locale of supplied text

XFontSet

XExtentsOfFontSet, and so on

XmbTextExtents,

XwcTextExtents, and so on

Locale-dependent
metrics

257



Locales and Internationalized
Text Functions

Locale from Affects the Function In
Xlib Errors:
setlocale XGetErrorDatabaseText,

XGetErrorText, and so on

Locale of error
message

Clients may assume that a locale-encoded text string returned by an X function can
be passed to a C library routine, or vice versa, if the locale is the same at the two
calls.

All text strings processed by internationalized Xlib functions are assumed to begin
in the initial state of the encoding of the locale, if the encoding is state-dependent.

All Xlib functions behave as if they do not change the current locale or X modifier
setting. (This means that if they do change locale or call XSetLocaleModifiers with
a non-NULL argument, they must save and restore the current state on entry and
exit.) Also, Xlib functions on implementations that conform to the ANSI C library
do not alter the global state associated with the ANSI C functions mblen, mbtowc,
wctomb, and strtok.

Variable Argument Lists
Various functions in this chapter have arguments that conform to the ANSI C
variable argument list calling convention. Each function denoted with an argument
of the form ``...'' takes a variable-length list of name and value pairs, where each
name is a string and each value is of type XPointer. A name argument that is NULL
identifies the end of the list.

A variable-length argument list may contain a nested list. If the name
XNVaNestedList is specified in place of an argument name, then the following value
is interpreted as an XVaNestedList value that specifies a list of values logically
inserted into the original list at the point of declaration. A NULL identifies the end
of a nested list.

To allocate a nested variable argument list dynamically, use XVaCreateNestedList.

XVaNestedList XVaCreateNestedList(dummy);

dummy Specifies an unused argument (required by ANSI C).

... Specifies the variable length argument list(Al.

The XVaCreateNestedList function allocates memory and copies its arguments into
a single list pointer, which may be used as a value for arguments requiring a list
value. Any entries are copied as specified. Data passed by reference is not copied;
the caller must ensure data remains valid for the lifetime of the nested list. The list
should be freed using XFree when it is no longer needed.

Output Methods
This section provides discussions of the following X Output Method (XOM) topics:

• Output method overview

258



Locales and Internationalized
Text Functions

• Output method functions

• Output method values

• Output context functions

• Output context values

• Creating and freeing a font set

• Obtaining font set metrics

• Drawing text using font sets

Output Method Overview
Locale-dependent text may include one or more text components, each of which
may require different fonts and character set encodings. In some languages, each
component might have a different drawing direction, and some components might
contain context-dependent characters that change shape based on relationships
with neighboring characters.

When drawing such locale-dependent text, some locale-specific knowledge is
required; for example, what fonts are required to draw the text, how the text can be
separated into components, and which fonts are selected to draw each component.
Further, when bidirectional text must be drawn, the internal representation order
of the text must be changed into the visual representation order to be drawn.

An X Output Method provides a functional interface so that clients do not have
to deal directly with such locale-dependent details. Output methods provide the
following capabilities:

• Creating a set of fonts required to draw locale-dependent text.

• Drawing locale-dependent text with a font set without the caller needing to be
aware of locale dependencies.

• Obtaining the escapement and extents in pixels of locale-dependent text.

• Determining if bidirectional or context-dependent drawing is required in a specific
locale with a specific font set.

Two different abstractions are used in the representation of the output method for
clients.

The abstraction used to communicate with an output method is an opaque data
structure represented by the XOM data type. The abstraction for representing
the state of a particular output thread is called an output context. The Xlib
representation of an output context is an XOC, which is compatible with XFontSet
in terms of its functional interface, but is a broader, more generalized abstraction.

Output Method Functions
To open an output method, use XOpenOM.

259



Locales and Internationalized
Text Functions

XOM XOpenOM(display, db, res_name, res_class);

display Specifies the connection to the X server.

db Specifies a pointer to the resource database.

res_name Specifies the full resource name of the application.

res_class Specifies the full class name of the application.

The XOpenOM function opens an output method matching the current locale and
modifiers specification. The current locale and modifiers are bound to the output
method when XOpenOM is called. The locale associated with an output method cannot
be changed.

The specific output method to which this call will be routed is identified on the
basis of the current locale and modifiers. XOpenOM will identify a default output
method corresponding to the current locale. That default can be modified using
XSetLocaleModifiers to set the output method modifier.

The db argument is the resource database to be used by the output method for
looking up resources that are private to the output method. It is not intended that
this database be used to look up values that can be set as OC values in an output
context. If db is NULL, no database is passed to the output method.

The res_name and res_class arguments specify the resource name and class of the
application. They are intended to be used as prefixes by the output method when
looking up resources that are common to all output contexts that may be created
for this output method. The characters used for resource names and classes must
be in the X Portable Character Set. The resources looked up are not fully specified
if res_name or res_class is NULL.

The res_name and res_class arguments are not assumed to exist beyond the call
to XOpenOM. The specified resource database is assumed to exist for the lifetime of
the output method.

XOpenOM returns NULL if no output method could be opened.

To close an output method, use XCloseOM.

Status XCloseOM(om);

om Specifies the output method.

The XCloseOM function closes the specified output method.

To set output method attributes, use XSetOMValues.

char *XSetOMValues(om);

om Specifies the output method.

... Specifies the variable-length argument list to set XOM values.

The XSetOMValues function presents a variable argument list programming
interface for setting properties or features of the specified output method. This

260



Locales and Internationalized
Text Functions

function returns NULL if it succeeds; otherwise, it returns the name of the first
argument that could not be obtained.

No standard arguments are currently defined by Xlib.

To query an output method, use XGetOMValues.

char *XGetOMValues(om);

om Specifies the output method.

... Specifies the variable-length argument list to get XOM values.

The XGetOMValues function presents a variable argument list programming
interface for querying properties or features of the specified output method. This
function returns NULL if it succeeds; otherwise, it returns the name of the first
argument that could not be obtained.

To obtain the display associated with an output method, use XDisplayOfOM.

Display *XDisplayOfOM(om);

om Specifies the output method.

The XDisplayOfOM function returns the display associated with the specified output
method.

To get the locale associated with an output method, use XLocaleOfOM.

char *XLocaleOfOM(om);

om Specifies the output method.

The XLocaleOfOM returns the locale associated with the specified output method.

X Output Method Values
The following table describes how XOM values are interpreted by an output method.
The first column lists the XOM values. The second column indicates how each of the
XOM values are treated by a particular output style.

The following key applies to this table.

Key Explanation
G This value may be read using XGetOMValues.

XOM Value Key
XNRequiredCharSet G
XNQueryOrientation G
XNDirectionalDependentDrawing G
XNContextualDrawing G

261



Locales and Internationalized
Text Functions

Required Char Set

The XNRequiredCharSet argument returns the list of charsets that are required for
loading the fonts needed for the locale. The value of the argument is a pointer to
a structure of type XOMCharSetList.

The XOMCharSetList structure is defined as follows: 

typedef struct {
     int    charset_count;
     char   **charset_list;
} XOMCharSetList;

The charset_list member is a list of one or more null-terminated charset names, and
the charset_count member is the number of charset names.

The required charset list is owned by Xlib and should not be modified or freed by the
client. It will be freed by a call to XCloseOM with the associated XOM. Until freed,
its contents will not be modified by Xlib.

Query Orientation

The XNQueryOrientation argument returns the global orientation of text when
drawn. Other than XOMOrientation_LTR_TTB, the set of orientations supported is
locale-dependent. The value of the argument is a pointer to a structure of type
XOMOrientation. Clients are responsible for freeing the XOMOrientation structure
by using XFree; this also frees the contents of the structure.

typedef struct {
     int          num_orientation;
     XOrientation *orientation;     /* Input Text description */
} XOMOrientation;

typedef enum {
     XOMOrientation_LTR_TTB,
     XOMOrientation_RTL_TTB,     
     XOMOrientation_TTB_LTR,
     XOMOrientation_TTB_RTL,
     XOMOrientation_Context
} XOrientation;

The possible value for XOrientation may be:

• XOMOrientation_LTR_TTB left-to-right, top-to-bottom global orientation

• XOMOrientation_RTL_TTB right-to-left, top-to-bottom global orientation

• XOMOrientation_TTB_LTR top-to-bottom, left-to-right global orientation

262



Locales and Internationalized
Text Functions

• XOMOrientation_TTB_RTL top-to-bottom, right-to-left global orientation

• XOMOrientation_Context contextual global orientation

Directional Dependent Drawing

The XNDirectionalDependentDrawing argument indicates whether the text
rendering functions implement implicit handling of directional text. If this value is
True, the output method has knowledge of directional dependencies and reorders
text as necessary when rendering text. If this value is False, the output method
does not implement any directional text handling, and all character directions are
assumed to be left-to-right.

Regardless of the rendering order of characters, the origins of all characters are on
the primary draw direction side of the drawing origin.

This OM value presents functionality identical to the
XDirectionalDependentDrawing function.

Context Dependent Drawing

The XNContextualDrawing argument indicates whether the text rendering
functions implement implicit context-dependent drawing. If this value is True, the
output method has knowledge of context dependencies and performs character
shape editing, combining glyphs to present a single character as necessary. The
actual shape editing is dependent on the locale implementation and the font set
used.

This OM value presents functionality identical to the XContextualDrawing function.

Output Context Functions
An output context is an abstraction that contains both the data required by an output
method and the information required to display that data. There can be multiple
output contexts for one output method. The programming interfaces for creating,
reading, or modifying an output context use a variable argument list. The name
elements of the argument lists are referred to as XOC values. It is intended that
output methods be controlled by these XOC values. As new XOC values are created,
they should be registered with the X Consortium. An XOC can be used anywhere
an XFontSet can be used, and vice versa; XFontSet is retained for compatibility
with previous releases. The concepts of output methods and output contexts include
broader, more generalized abstraction than font set, supporting complex and more
intelligent text display, and dealing not only with multiple fonts but also with context
dependencies. However, XFontSet is widely used in several interfaces, so XOC is
defined as an upward compatible type of XFontSet.

To create an output context, use XCreateOC.

XOC XCreateOC(om);

om Specifies the output method.

... Specifies the variable-length argument list to set XOC values.

263



Locales and Internationalized
Text Functions

The XCreateOC function creates an output context within the specified output
method.

The base font names argument is mandatory at creation time, and the output context
will not be created unless it is provided. All other output context values can be set
later.

XCreateOC returns NULL if no output context could be created. NULL can be
returned for any of the following reasons:

• A required argument was not set.

• A read-only argument was set.

• An argument name is not recognized.

• The output method encountered an output method implementation-dependent
error.

XCreateOC can generate a BadAtom error.

To destroy an output context, use XDestroyOC.

void XDestroyOC(oc);

oc Specifies the output context.

The XDestroyOC function destroys the specified output context.

To get the output method associated with an output context, use XOMOfOC.

XOM XOMOfOC(oc);

oc Specifies the output context.

The XOMOfOC function returns the output method associated with the specified
output context.

Xlib provides two functions for setting and reading output context values,
respectively, XSetOCValues and XGetOCValues. Both functions have a variable-
length argument list. In that argument list, any XOC value's name must be denoted
with a character string using the X Portable Character Set.

To set XOC values, use XSetOCValues.

char *XSetOCValues(oc);

oc Specifies the output context.

... Specifies the variable-length argument list to set XOC values.

The XSetOCValues function returns NULL if no error occurred; otherwise, it returns
the name of the first argument that could not be set. An argument might not be set
for any of the following reasons:

• The argument is read-only.

• The argument name is not recognized.

• An implementation-dependent error occurs.

264



Locales and Internationalized
Text Functions

Each value to be set must be an appropriate datum, matching the data type imposed
by the semantics of the argument.

XSetOCValues can generate a BadAtom error.

To obtain XOC values, use XGetOCValues.

char *XGetOCValues(oc);

oc Specifies the output context.

... Specifies the variable-length argument list to get XOC values.

The XGetOCValues function returns NULL if no error occurred; otherwise, it returns
the name of the first argument that could not be obtained. An argument might not
be obtained for any of the following reasons:

• The argument name is not recognized.

• An implementation-dependent error occurs.

Each argument value following a name must point to a location where the value is
to be stored.

Output Context Values
The following table describes how XOC values are interpreted by an output method.
The first column lists the XOC values. The second column indicates the alternative
interfaces that function identically and are provided for compatibility with previous
releases. The third column indicates how each of the XOC values is treated.

The following keys apply to this table.

Key Explanation
C This value must be set with XCreateOC.
D This value may be set using XCreateOC. If it is not set,a default is

provided.
G This value may be read using XGetOCValues.
S This value must be set using XSetOCValues.

XOC Value Alternative Interface Key
BaseFontName XCreateFontSet C-G
MissingCharSet XCreateFontSet G
DefaultString XCreateFontSet G
Orientation - D-S-G
ResourceName - S-G
ResourceClass - S-G
FontInfo XFontsOfFontSet G
OMAutomatic - G

265



Locales and Internationalized
Text Functions

Base Font Name

The XNBaseFontName argument is a list of base font names that Xlib uses to
load the fonts needed for the locale. The base font names are a comma-separated
list. The string is null-terminated and is assumed to be in the Host Portable
Character Encoding; otherwise, the result is implementation-dependent. White
space immediately on either side of a separating comma is ignored.

Use of XLFD font names permits Xlib to obtain the fonts needed for a variety of
locales from a single locale-independent base font name. The single base font name
should name a family of fonts whose members are encoded in the various charsets
needed by the locales of interest.

An XLFD base font name can explicitly name a charset needed for the locale. This
allows the user to specify an exact font for use with a charset required by a locale,
fully controlling the font selection.

If a base font name is not an XLFD name, Xlib will attempt to obtain an XLFD name
from the font properties for the font. If Xlib is successful, the XGetOCValues function
will return this XLFD name instead of the client-supplied name.

This argument must be set at creation time and cannot be changed. If no fonts exist
for any of the required charsets, or if the locale definition in Xlib requires that a
font exist for a particular charset and a font is not found for that charset, XCreateOC
returns NULL.

When querying for the XNBaseFontName XOC value, XGetOCValues returns a null-
terminated string identifying the base font names that Xlib used to load the fonts
needed for the locale. This string is owned by Xlib and should not be modified
or freed by the client. The string will be freed by a call to XDestroyOC with the
associated XOC. Until freed, the string contents will not be modified by Xlib.

Missing CharSet

The XNMissingCharSet argument returns the list of required charsets that are
missing from the font set. The value of the argument is a pointer to a structure of
type XOMCharSetList.

If fonts exist for all of the charsets required by the current locale, charset_list is set
to NULL and charset_count is set to zero. If no fonts exist for one or more of the
required charsets, charset_list is set to a list of one or more null-terminated charset
names for which no fonts exist, and charset_count is set to the number of missing
charsets. The charsets are from the list of the required charsets for the encoding
of the locale and do not include any charsets to which Xlib may be able to remap
a required charset.

The missing charset list is owned by Xlib and should not be modified or freed by the
client. It will be freed by a call to XDestroyOC with the associated XOC. Until freed,
its contents will not be modified by Xlib.

Default String

When a drawing or measuring function is called with an XOC that has missing
charsets, some characters in the locale will not be drawable. The XNDefaultString
argument returns a pointer to a string that represents the glyphs that are drawn

266



Locales and Internationalized
Text Functions

with this XOC when the charsets of the available fonts do not include all glyphs
required to draw a character. The string does not necessarily consist of valid
characters in the current locale and is not necessarily drawn with the fonts loaded
for the font set, but the client can draw or measure the default glyphs by including
this string in a string being drawn or measured with the XOC.

If the XNDefaultString argument returned the empty string (""), no glyphs are
drawn and the escapement is zero. The returned string is null-terminated. It is
owned by Xlib and should not be modified or freed by the client. It will be freed by
a call to XDestroyOC with the associated XOC. Until freed, its contents will not be
modified by Xlib.

Orientation

The XNOrientation argument specifies the current orientation of text when drawn.
The value of this argument is one of the values returned by the XGetOMValues
function with the XNQueryOrientation argument specified in the XOrientation list.
The value of the argument is of type XOrientation. When XNOrientation is queried,
the value specifies the current orientation. When XNOrientation is set, a value is
used to set the current orientation.

When XOMOrientation_Context is set, the text orientation of the text is determined
according to an implementation-defined method (for example, ISO 6429 control
sequences), and the initial text orientation for locale-dependent Xlib functions is
assumed to be XOMOrientation_LTR_TTB.

The XNOrientation value does not change the prime drawing direction for Xlib
drawing functions.

Resource Name and Class

The XNResourceName and XNResourceClass arguments are strings that specify
the full name and class used by the client to obtain resources for the display of the
output context. These values should be used as prefixes for name and class when
looking up resources that may vary according to the output context. If these values
are not set, the resources will not be fully specified.

It is not intended that values that can be set as XOM values be set as resources.

When querying for the XNResourceName or XNResourceClass XOC value,
XGetOCValues returns a null-terminated string. This string is owned by Xlib and
should not be modified or freed by the client. The string will be freed by a call to
XDestroyOC with the associated XOC or when the associated value is changed via
XSetOCValues. Until freed, the string contents will not be modified by Xlib.

Font Info

The XNFontInfo argument specifies a list of one or more XFontStruct structures and
font names for the fonts used for drawing by the given output context. The value of
the argument is a pointer to a structure of type XOMFontInfo.

typedef struct {

267



Locales and Internationalized
Text Functions

     int         num_font;
     XFontStruct **font_struct_list;
     char        **font_name_list;
} XOMFontInfo;

A list of pointers to the XFontStruct structures is returned to font_struct_list. A list
of pointers to null-terminated, fully-specified font name strings in the locale of the
output context is returned to font_name_list. The font_name_list order corresponds
to the font_struct_list order. The number of XFontStruct structures and font names
is returned to num_font.

Because it is not guaranteed that a given character will be imaged using a single
font glyph, there is no provision for mapping a character or default string to the font
properties, font ID, or direction hint for the font for the character. The client may
access the XFontStruct list to obtain these values for all the fonts currently in use.

Xlib does not guarantee that fonts are loaded from the server at the creation of
an XOC. Xlib may choose to cache font data, loading it only as needed to draw
text or compute text dimensions. Therefore, existence of the per_char metrics in
the XFontStruct structures in the XFontStructSet is undefined. Also, note that all
properties in the XFontStruct structures are in the STRING encoding.

The client must not free the XOMFontInfo struct itself; it will be freed when the
XOC is closed.

OM Automatic

The XNOMAutomatic argument returns whether the associated output context
was created by XCreateFontSet or not. Because the XFreeFontSet function not
only destroys the output context but also closes the implicit output method
associated with it, XFreeFontSet should be used with any output context created
by XCreateFontSet. However, it is possible that a client does not know how the
output context was created. Before a client destroys the output context, it can query
whether XNOMAutomatic is set to determine whether XFreeFontSet or XDestroyOC
should be used to destroy the output context.

Creating and Freeing a Font Set
Xlib international text drawing is done using a set of one or more fonts, as needed
for the locale of the text. Fonts are loaded according to a list of base font names
supplied by the client and the charsets required by the locale. The XFontSet is an
opaque type representing the state of a particular output thread and is equivalent
to the type XOC.

The XCreateFontSet function is a convenience function for creating an output
context using only default values. The returned XFontSet has an implicitly created
XOM. This XOM has an OM value XNOMAutomatic automatically set to True so
that the output context self indicates whether it was created by XCreateOC or
XCreateFontSet.

XFontSet XCreateFontSet(display, base_font_name_list,
missing_charset_list_return, missing_charset_count_return,
def_string_return);

display Specifies the connection to the X server.

268



Locales and Internationalized
Text Functions

base_font_name_list Specifies the base font names.

missing_charset_list_return Returns the missing charsets.

missing_charset_count_returnReturns the number of missing charsets.

def_string_return Returns the string drawn for missing charsets.

The XCreateFontSet function creates a font set for the specified display. The font
set is bound to the current locale when XCreateFontSet is called. The font set may
be used in subsequent calls to obtain font and character information and to image
text in the locale of the font set.

The base_font_name_list argument is a list of base font names that Xlib uses to
load the fonts needed for the locale. The base font names are a comma-separated
list. The string is null-terminated and is assumed to be in the Host Portable
Character Encoding; otherwise, the result is implementation-dependent. White
space immediately on either side of a separating comma is ignored.

Use of XLFD font names permits Xlib to obtain the fonts needed for a variety of
locales from a single locale-independent base font name. The single base font name
should name a family of fonts whose members are encoded in the various charsets
needed by the locales of interest.

An XLFD base font name can explicitly name a charset needed for the locale. This
allows the user to specify an exact font for use with a charset required by a locale,
fully controlling the font selection.

If a base font name is not an XLFD name, Xlib will attempt to obtain an XLFD name
from the font properties for the font. If this action is successful in obtaining an
XLFD name, the XBaseFontNameListOfFontSet function will return this XLFD name
instead of the client-supplied name.

Xlib uses the following algorithm to select the fonts that will be used to display text
with the XFontSet.

For each font charset required by the locale, the base font name list is searched
for the first appearance of one of the following cases that names a set of fonts that
exist at the server:

• The first XLFD-conforming base font name that specifies the required charset or
a superset of the required charset in its CharSetRegistry and CharSetEncoding
fields. The implementation may use a base font name whose specified charset is
a superset of the required charset, for example, an ISO8859-1 font for an ASCII
charset.

• The first set of one or more XLFD-conforming base font names that specify one
or more charsets that can be remapped to support the required charset. The Xlib
implementation may recognize various mappings from a required charset to one
or more other charsets and use the fonts for those charsets. For example, JIS
Roman is ASCII with tilde and backslash replaced by yen and overbar; Xlib may
load an ISO8859-1 font to support this character set if a JIS Roman font is not
available.

• The first XLFD-conforming font name or the first non-XLFD font name for which an
XLFD font name can be obtained, combined with the required charset (replacing
the CharSetRegistry and CharSetEncoding fields in the XLFD font name). As in

269



Locales and Internationalized
Text Functions

case 1, the implementation may use a charset that is a superset of the required
charset.

• The first font name that can be mapped in some implementation-dependent
manner to one or more fonts that support imaging text in the charset.

For example, assume that a locale required the charsets:

ISO8859-1
JISX0208.1983
JISX0201.1976
GB2312-1980.0

The user could supply a base_font_name_list that explicitly specifies the charsets,
ensuring that specific fonts are used if they exist. For example:

"-JIS-Fixed-Medium-R-Normal--26-180-100-100-C-240-JISX0208.1983-0,\\
-JIS-Fixed-Medium-R-Normal--26-180-100-100-C-120-JISX0201.1976-0,\\
-GB-Fixed-Medium-R-Normal--26-180-100-100-C-240-GB2312-1980.0,\\
-Adobe-Courier-Bold-R-Normal--25-180-75-75-M-150-ISO8859-1"

Alternatively, the user could supply a base_font_name_list that omits the charsets,
letting Xlib select font charsets required for the locale. For example:

"-JIS-Fixed-Medium-R-Normal--26-180-100-100-C-240,\\
-JIS-Fixed-Medium-R-Normal--26-180-100-100-C-120,\\
-GB-Fixed-Medium-R-Normal--26-180-100-100-C-240,\\
-Adobe-Courier-Bold-R-Normal--25-180-100-100-M-150"

Alternatively, the user could simply supply a single base font name that allows
Xlib to select from all available fonts that meet certain minimum XLFD property
requirements. For example:

"-*-*-*-R-Normal--*-180-100-100-*-*"

If XCreateFontSet is unable to create the font set, either because there
is insufficient memory or because the current locale is not supported,
XCreateFontSet returns NULL, missing_charset_list_return is set to NULL, and
missing_charset_count_return is set to zero. If fonts exist for all of the charsets
required by the current locale, XCreateFontSet returns a valid XFontSet,
missing_charset_list_return is set to NULL, and missing_charset_count_return is set
to zero.

If no font exists for one or more of the required charsets, XCreateFontSet sets
missing_charset_list_return to a list of one or more null-terminated charset names
for which no font exists and sets missing_charset_count_return to the number
of missing fonts. The charsets are from the list of the required charsets for the
encoding of the locale and do not include any charsets to which Xlib may be able
to remap a required charset.

If no font exists for any of the required charsets or if the locale definition in
Xlib requires that a font exist for a particular charset and a font is not found for

270



Locales and Internationalized
Text Functions

that charset, XCreateFontSet returns NULL. Otherwise, XCreateFontSet returns
a valid XFontSet to font_set.

When an Xmb/wc drawing or measuring function is called with an XFontSet that
has missing charsets, some characters in the locale will not be drawable. If
def_string_return is non-NULL, XCreateFontSet returns a pointer to a string that
represents the glyphs that are drawn with this XFontSet when the charsets of the
available fonts do not include all font glyphs required to draw a codepoint. The
string does not necessarily consist of valid characters in the current locale and is
not necessarily drawn with the fonts loaded for the font set, but the client can draw
and measure the default glyphs by including this string in a string being drawn or
measured with the XFontSet.

If the string returned to def_string_return is the empty string (""), no glyphs are
drawn, and the escapement is zero. The returned string is null-terminated. It is
owned by Xlib and should not be modified or freed by the client. It will be freed by
a call to XFreeFontSet with the associated XFontSet. Until freed, its contents will
not be modified by Xlib.

The client is responsible for constructing an error message from the missing charset
and default string information and may choose to continue operation in the case
that some fonts did not exist.

The returned XFontSet and missing charset list should be freed with XFreeFontSet
and XFreeStringList, respectively. The client-supplied base_font_name_list may be
freed by the client after calling XCreateFontSet.

To obtain a list of XFontStruct structures and full font names given an XFontSet,
use XFontsOfFontSet.

int XFontsOfFontSet(font_set, font_struct_list_return,
font_name_list_return);

font_set Specifies the font set.

font_struct_list_return Returns the list of font structs.

font_name_list_return Returns the list of font names.

The XFontsOfFontSet function returns a list of one or more XFontStructs and font
names for the fonts used by the Xmb and Xwc layers for the given font set. A list of
pointers to the XFontStruct structures is returned to font_struct_list_return. A list
of pointers to null-terminated, fully specified font name strings in the locale of the
font set is returned to font_name_list_return. The font_name_list order corresponds
to the font_struct_list order. The number of XFontStruct structures and font names
is returned as the value of the function.

Because it is not guaranteed that a given character will be imaged using a single
font glyph, there is no provision for mapping a character or default string to the font
properties, font ID, or direction hint for the font for the character. The client may
access the XFontStruct list to obtain these values for all the fonts currently in use.

Xlib does not guarantee that fonts are loaded from the server at the creation of an
XFontSet. Xlib may choose to cache font data, loading it only as needed to draw
text or compute text dimensions. Therefore, existence of the per_char metrics in

271



Locales and Internationalized
Text Functions

the XFontStruct structures in the XFontStructSet is undefined. Also, note that all
properties in the XFontStruct structures are in the STRING encoding.

The XFontStruct and font name lists are owned by Xlib and should not be modified or
freed by the client. They will be freed by a call to XFreeFontSet with the associated
XFontSet. Until freed, their contents will not be modified by Xlib.

To obtain the base font name list and the selected font name list given an XFontSet,
use XBaseFontNameListOfFontSet.

char *XBaseFontNameListOfFontSet(font_set);

font_set Specifies the font set.

The XBaseFontNameListOfFontSet function returns the original base font name list
supplied by the client when the XFontSet was created. A null-terminated string
containing a list of comma-separated font names is returned as the value of the
function. White space may appear immediately on either side of separating commas.

If XCreateFontSet obtained an XLFD name from the font properties for the font
specified by a non-XLFD base name, the XBaseFontNameListOfFontSet function
will return the XLFD name instead of the non-XLFD base name.

The base font name list is owned by Xlib and should not be modified or freed by the
client. It will be freed by a call to XFreeFontSet with the associated XFontSet. Until
freed, its contents will not be modified by Xlib.

To obtain the locale name given an XFontSet, use XLocaleOfFontSet.

char *XLocaleOfFontSet(font_set);

font_set Specifies the font set.

The XLocaleOfFontSet function returns the name of the locale bound to the
specified XFontSet, as a null-terminated string.

The returned locale name string is owned by Xlib and should not be modified or
freed by the client. It may be freed by a call to XFreeFontSet with the associated
XFontSet. Until freed, it will not be modified by Xlib.

The XFreeFontSet function is a convenience function for freeing an output context.
XFreeFontSet also frees its associated XOM if the output context was created by
XCreateFontSet.

void XFreeFontSet(display, font_set);

display Specifies the connection to the X server.

font_set Specifies the font set.

The XFreeFontSet function frees the specified font set. The associated base font
name list, font name list, XFontStruct list, and XFontSetExtents, if any, are freed.

Obtaining Font Set Metrics
Metrics for the internationalized text drawing functions are defined in terms of a
primary draw direction, which is the default direction in which the character origin

272



Locales and Internationalized
Text Functions

advances for each succeeding character in the string. The Xlib interface is currently
defined to support only a left-to-right primary draw direction. The drawing origin
is the position passed to the drawing function when the text is drawn. The baseline
is a line drawn through the drawing origin parallel to the primary draw direction.
Character ink is the pixels painted in the foreground color and does not include
interline or intercharacter spacing or image text background pixels.

The drawing functions are allowed to implement implicit text directionality control,
reversing the order in which characters are rendered along the primary draw
direction in response to locale-specific lexical analysis of the string.

Regardless of the character rendering order, the origins of all characters are on
the primary draw direction side of the drawing origin. The screen location of a
particular character image may be determined with XmbTextPerCharExtents or
XwcTextPerCharExtents.

The drawing functions are allowed to implement context-dependent rendering,
where the glyphs drawn for a string are not simply a concatenation of the glyphs
that represent each individual character. A string of two characters drawn with
XmbDrawString may render differently than if the two characters were drawn with
separate calls to XmbDrawString. If the client appends or inserts a character in a
previously drawn string, the client may need to redraw some adjacent characters
to obtain proper rendering.

To find out about direction-dependent rendering, use
XDirectionalDependentDrawing.

Bool XDirectionalDependentDrawing(font_set);

font_set Specifies the font set.

The XDirectionalDependentDrawing function returns True if the drawing functions
implement implicit text directionality; otherwise, it returns False.

To find out about context-dependent rendering, use XContextualDrawing.

Bool XContextualDrawing(font_set);

font_set Specifies the font set.

The XContextualDrawing function returns True if text drawn with the font set might
include context-dependent drawing; otherwise, it returns False.

To find out about context-dependent or direction-dependent rendering, use
XContextDependentDrawing.

Bool XContextDependentDrawing(font_set);

font_set Specifies the font set.

The XContextDependentDrawing function returns True if the drawing functions
implement implicit text directionality or if text drawn with the font_set might include
context-dependent drawing; otherwise, it returns False.

The drawing functions do not interpret newline, tab, or other control characters.
The behavior when nonprinting characters other than space are drawn is

273



Locales and Internationalized
Text Functions

implementation-dependent. It is the client's responsibility to interpret control
characters in a text stream.

The maximum character extents for the fonts that are used by the text drawing
layers can be accessed by the XFontSetExtents structure: 

typedef struct {
     XRectangle max_ink_extent;     /* over all drawable characters */
     XRectangle max_logical_extent; /* over all drawable characters */
} XFontSetExtents;

The XRectangle structures used to return font set metrics are the usual Xlib screen-
oriented rectangles with x, y giving the upper left corner, and width and height
always positive.

The max_ink_extent member gives the maximum extent, over all drawable
characters, of the rectangles that bound the character glyph image drawn in
the foreground color, relative to a constant origin. See XmbTextExtents and
XwcTextExtents for detailed semantics.

The max_logical_extent member gives the maximum extent, over all drawable
characters, of the rectangles that specify minimum spacing to other graphical
features, relative to a constant origin. Other graphical features drawn by the client,
for example, a border surrounding the text, should not intersect this rectangle. The
max_logical_extent member should be used to compute minimum interline spacing
and the minimum area that must be allowed in a text field to draw a given number
of arbitrary characters.

Due to context-dependent rendering, appending a given character to a string may
change the string's extent by an amount other than that character's individual
extent.

The rectangles for a given character in a string can be obtained from
XmbTextPerCharExtents or XwcTextPerCharExtents.

To obtain the maximum extents structure given an XFontSet, use
XExtentsOfFontSet.

XFontSetExtents *XExtentsOfFontSet(font_set);

font_set Specifies the font set.

The XExtentsOfFontSet function returns an XFontSetExtents structure for the
fonts used by the Xmb and Xwc layers for the given font set.

The XFontSetExtents structure is owned by Xlib and should not be modified or freed
by the client. It will be freed by a call to XFreeFontSet with the associated XFontSet.
Until freed, its contents will not be modified by Xlib.

To obtain the escapement in pixels of the specified text as a value, use
XmbTextEscapement or XwcTextEscapement.

int XmbTextEscapement(font_set, string, num_bytes);

274



Locales and Internationalized
Text Functions

int XwcTextEscapement(font_set, string, num_wchars);

font_set Specifies the font set.

string Specifies the character string.

num_bytes Specifies the number of bytes in the string argument.

num_wchars Specifies the number of characters in the string
argument.

The XmbTextEscapement and XwcTextEscapement functions return the escapement
in pixels of the specified string as a value, using the fonts loaded for the specified
font set. The escapement is the distance in pixels in the primary draw direction from
the drawing origin to the origin of the next character to be drawn, assuming that
the rendering of the next character is not dependent on the supplied string.

Regardless of the character rendering order, the escapement is always positive.

To obtain the overall_ink_return and overall_logical_return arguments, the overall
bounding box of the string's image, and a logical bounding box, use XmbTextExtents
or XwcTextExtents.

int XmbTextExtents(font_set, string, num_bytes, overall_ink_return,
overall_logical_return);

int XwcTextExtents(font_set, string, num_wchars, overall_ink_return,
overall_logical_return);

font_set Specifies the font set.

string Specifies the character string.

num_bytes Specifies the number of bytes in the string argument.

num_wchars Specifies the number of characters in the string
argument.

overall_ink_return Returns the overall ink dimensions.

overall_logical_return Returns the overall logical dimensions.

The XmbTextExtents and XwcTextExtents functions set the components of the
specified overall_ink_return and overall_logical_return arguments to the overall
bounding box of the string's image and a logical bounding box for spacing
purposes, respectively. They return the value returned by XmbTextEscapement or
XwcTextEscapement. These metrics are relative to the drawing origin of the string,
using the fonts loaded for the specified font set.

If the overall_ink_return argument is non-NULL, it is set to the bounding box of
the string's character ink. The overall_ink_return for a nondescending, horizontally
drawn Latin character is conventionally entirely above the baseline; that is,
overall_ink_return.height <= -overall_ink_return.y. The overall_ink_return for a
nonkerned character is entirely at, and to the right of, the origin; that is,
overall_ink_return.x >= 0. A character consisting of a single pixel at the origin
would set overall_ink_return fields y = 0, x = 0, width = 1, and height = 1.

275



Locales and Internationalized
Text Functions

If the overall_logical_return argument is non-NULL, it is set to the bounding box
that provides minimum spacing to other graphical features for the string. Other
graphical features, for example, a border surrounding the text, should not intersect
this rectangle.

When the XFontSet has missing charsets, metrics for each unavailable character
are taken from the default string returned by XCreateFontSet so that the metrics
represent the text as it will actually be drawn. The behavior for an invalid codepoint
is undefined.

To determine the effective drawing origin for a character in a drawn string, the client
should call XmbTextPerCharExtents on the entire string, then on the character, and
subtract the x values of the returned rectangles for the character. This is useful
to redraw portions of a line of text or to justify words, but for context-dependent
rendering, the client should not assume that it can redraw the character by itself
and get the same rendering.

To obtain per-character information for a text string, use XmbTextPerCharExtents
or XwcTextPerCharExtents.

Status XmbTextPerCharExtents(font_set, string, num_bytes,
ink_array_return, logical_array_return, array_size, num_chars_return,
overall_ink_return, overall_logical_return);

Status XwcTextPerCharExtents(font_set, string, num_wchars,
ink_array_return, logical_array_return, array_size, num_chars_return,
overall_ink_return, overall_logical_return);

font_set Specifies the font set.

string Specifies the character string.

num_bytes Specifies the number of bytes in the string argument.

num_wchars Specifies the number of characters in the string
argument.

ink_array_return Returns the ink dimensions for each character.

logical_array_return Returns the logical dimensions for each character.

array_size Specifies the size of ink_array_return and
logical_array_return. The caller must pass in arrays
of this size.

num_chars_return Returns the number of characters in the string
argument.

overall_ink_return Returns the overall ink dimensions.

overall_logical_return Returns the overall logical dimensions.

The XmbTextPerCharExtents and XwcTextPerCharExtents functions return the
text dimensions of each character of the specified text, using the fonts loaded
for the specified font set. Each successive element of ink_array_return and
logical_array_return is set to the successive character's drawn metrics, relative to
the drawing origin of the string and one rectangle for each character in the supplied

276



Locales and Internationalized
Text Functions

text string. The number of elements of ink_array_return and logical_array_return
that have been set is returned to num_chars_return.

Each element of ink_array_return is set to the bounding box of the corresponding
character's drawn foreground color. Each element of logical_array_return is set to
the bounding box that provides minimum spacing to other graphical features for
the corresponding character. Other graphical features should not intersect any of
the logical_array_return rectangles.

Note that an XRectangle represents the effective drawing dimensions of the
character, regardless of the number of font glyphs that are used to draw the
character or the direction in which the character is drawn. If multiple characters
map to a single character glyph, the dimensions of all the XRectangles of those
characters are the same.

When the XFontSet has missing charsets, metrics for each unavailable character
are taken from the default string returned by XCreateFontSet so that the metrics
represent the text as it will actually be drawn. The behavior for an invalid codepoint
is undefined.

If the array_size is too small for the number of characters in the supplied text,
the functions return zero and num_chars_return is set to the number of rectangles
required. Otherwise, the functions return a nonzero value.

If the overall_ink_return or overall_logical_return argument is non-NULL,
XmbTextPerCharExtents and XwcTextPerCharExtents return the maximum extent
of the string's metrics to overall_ink_return or overall_logical_return, as returned
by XmbTextExtents or XwcTextExtents.

Drawing Text Using Font Sets
The functions defined in this section draw text at a specified location in a drawable.
They are similar to the functions XDrawText, XDrawString, and XDrawImageString
except that they work with font sets instead of single fonts and interpret the text
based on the locale of the font set instead of treating the bytes of the string as direct
font indexes. See section 8.6 for details of the use of Graphics Contexts (GCs) and
possible protocol errors. If a BadFont error is generated, characters prior to the
offending character may have been drawn.

The text is drawn using the fonts loaded for the specified font set; the font in the
GC is ignored and may be modified by the functions. No validation that all fonts
conform to some width rule is performed.

The text functions XmbDrawText and XwcDrawText use the following structures:

typedef struct {
     char     *chars;    /* pointer to string */
     int      nchars;    /* number of bytes */
     int      delta;     /* pixel delta between strings */
     XFontSet font_set;  /* fonts, None means don't change */

277



Locales and Internationalized
Text Functions

} XmbTextItem;

typedef struct {
     wchar_t *chars;     /* pointer to wide char string */
     int nchars;     /* number of wide characters */
     int delta;     /* pixel delta between strings */
     XFontSet font_set;     /* fonts, None means don't change */
} XwcTextItem;

To draw text using multiple font sets in a given drawable, use XmbDrawText or
XwcDrawText.

void XmbDrawText(display, d, gc, x, y, items, nitems);

void XwcDrawText(display, d, gc, x, y, items, nitems);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x

y Specify the x and y coordinates of the position in the new
parent window.

items Specifies an array of text items.

nitems Specifies the number of text items in the array.

The XmbDrawText and XwcDrawText functions allow complex spacing and font set
shifts between text strings. Each text item is processed in turn, with the origin of
a text element advanced in the primary draw direction by the escapement of the
previous text item. A text item delta specifies an additional escapement of the text
item drawing origin in the primary draw direction. A font_set member other than
None in an item causes the font set to be used for this and subsequent text items
in the text_items list. Leading text items with a font_set member set to None will
not be drawn.

XmbDrawText and XwcDrawText do not perform any context-dependent rendering
between text segments. Clients may compute the drawing metrics by passing each
text segment to XmbTextExtents and XwcTextExtents or XmbTextPerCharExtents
and XwcTextPerCharExtents. When the XFontSet has missing charsets, each
unavailable character is drawn with the default string returned by XCreateFontSet.
The behavior for an invalid codepoint is undefined.

To draw text using a single font set in a given drawable, use XmbDrawString or
XwcDrawString.

void XmbDrawString(display, d, font_set, gc, x, y, string, num_bytes);

void XwcDrawString(display, d, font_set, gc, x, y, string, num_wchars);

278



Locales and Internationalized
Text Functions

display Specifies the connection to the X server.

d Specifies the drawable.

font_set Specifies the font set.

gc Specifies the GC.

x

y Specify the x and y coordinates of the position in the
new parent window.

string Specifies the character string.

num_bytes Specifies the number of bytes in the string argument.

num_wchars Specifies the number of characters in the string
argument.

The XmbDrawString and XwcDrawString functions draw the specified text with
the foreground pixel. When the XFontSet has missing charsets, each unavailable
character is drawn with the default string returned by XCreateFontSet. The
behavior for an invalid codepoint is undefined.

To draw image text using a single font set in a given drawable, use
XmbDrawImageString or XwcDrawImageString.

void XmbDrawImageString(display, d, font_set, gc, x, y, string,
num_bytes);

void XwcDrawImageString(display, d, font_set, gc, x, y, string,
num_wchars);

display Specifies the connection to the X server.

d Specifies the drawable.

font_set Specifies the font set.

gc Specifies the GC.

x

y Specify the x and y coordinates of the position in the
new parent window.

string Specifies the character string.

num_bytes Specifies the number of bytes in the string argument.

num_wchars Specifies the number of characters in the string
argument.

The XmbDrawImageString and XwcDrawImageString functions fill a destination
rectangle with the background pixel defined in the GC and then paint the text
with the foreground pixel. The filled rectangle is the rectangle returned to
overall_logical_return by XmbTextExtents or XwcTextExtents for the same text and
XFontSet.

279



Locales and Internationalized
Text Functions

When the XFontSet has missing charsets, each unavailable character is drawn
with the default string returned by XCreateFontSet. The behavior for an invalid
codepoint is undefined.

Input Methods
This section provides discussions of the following X Input Method (XIM) topics:

• Input method overview

• Input method management

• Input method functions

• Input method values

• Input context functions

• Input context values

• Input method callback semantics

• Event filtering

• Getting keyboard input

• Input method conventions

Input Method Overview
This section provides definitions for terms and concepts used for internationalized
text input and a brief overview of the intended use of the mechanisms provided by
Xlib.

A large number of languages in the world use alphabets consisting of a small
set of symbols (letters) to form words. To enter text into a computer in an
alphabetic language, a user usually has a keyboard on which there exist key symbols
corresponding to the alphabet. Sometimes, a few characters of an alphabetic
language are missing on the keyboard. Many computer users who speak a Latin-
alphabet-based language only have an English-based keyboard. They need to hit
a combination of keystrokes to enter a character that does not exist directly on
the keyboard. A number of algorithms have been developed for entering such
characters. These are known as European input methods, compose input methods,
or dead-key input methods.

Japanese is an example of a language with a phonetic symbol set, where each
symbol represents a specific sound. There are two phonetic symbol sets in Japanese:
Katakana and Hiragana. In general, Katakana is used for words that are of foreign
origin, and Hiragana is used for writing native Japanese words. Collectively, the two
systems are called Kana. Each set consists of 48 characters.

Korean also has a phonetic symbol set, called Hangul. Each of the 24 basic phonetic
symbols (14 consonants and 10 vowels) represents a specific sound. A syllable is
composed of two or three parts: the initial consonants, the vowels, and the optional
last consonants. With Hangul, syllables can be treated as the basic units on which
text processing is done. For example, a delete operation may work on a phonetic

280



Locales and Internationalized
Text Functions

symbol or a syllable. Korean code sets include several thousands of these syllables.
A user types the phonetic symbols that make up the syllables of the words to be
entered. The display may change as each phonetic symbol is entered. For example,
when the second phonetic symbol of a syllable is entered, the first phonetic symbol
may change its shape and size. Likewise, when the third phonetic symbol is entered,
the first two phonetic symbols may change their shape and size.

Not all languages rely solely on alphabetic or phonetic systems. Some languages,
including Japanese and Korean, employ an ideographic writing system. In an
ideographic system, rather than taking a small set of symbols and combining
them in different ways to create words, each word consists of one unique symbol
(or, occasionally, several symbols). The number of symbols can be very large:
approximately 50,000 have been identified in Hanzi, the Chinese ideographic
system.

Two major aspects of ideographic systems impact their use with computers. First,
the standard computer character sets in Japan, China, and Korea include roughly
8,000 characters, while sets in Taiwan have between 15,000 and 30,000 characters.
This makes it necessary to use more than one byte to represent a character. Second,
it obviously is impractical to have a keyboard that includes all of a given language's
ideographic symbols. Therefore, a mechanism is required for entering characters so
that a keyboard with a reasonable number of keys can be used. Those input methods
are usually based on phonetics, but there also exist methods based on the graphical
properties of characters.

In Japan, both Kana and the ideographic system Kanji are used. In Korea, Hangul
and sometimes the ideographic system Hanja are used. Now consider entering
ideographs in Japan, Korea, China, and Taiwan.

In Japan, either Kana or English characters are typed and then a region is selected
(sometimes automatically) for conversion to Kanji. Several Kanji characters may
have the same phonetic representation. If that is the case with the string entered,
a menu of characters is presented and the user must choose the appropriate one. If
no choice is necessary or a preference has been established, the input method does
the substitution directly. When Latin characters are converted to Kana or Kanji, it
is called a romaji conversion.

In Korea, it is usually acceptable to keep Korean text in Hangul form, but some
people may choose to write Hanja-originated words in Hanja rather than in Hangul.
To change Hangul to Hanja, the user selects a region for conversion and then follows
the same basic method as that described for Japanese.

Probably because there are well-accepted phonetic writing systems for Japanese
and Korean, computer input methods in these countries for entering ideographs are
fairly standard. Keyboard keys have both English characters and phonetic symbols
engraved on them, and the user can switch between the two sets.

The situation is different for Chinese. While there is a phonetic system called Pinyin
promoted by authorities, there is no consensus for entering Chinese text. Some
vendors use a phonetic decomposition (Pinyin or another), others use ideographic
decomposition of Chinese words, with various implementations and keyboard
layouts. There are about 16 known methods, none of which is a clear standard.

Also, there are actually two ideographic sets used: Traditional Chinese (the original
written Chinese) and Simplified Chinese. Several years ago, the People's Republic of

281



Locales and Internationalized
Text Functions

China launched a campaign to simplify some ideographic characters and eliminate
redundancies altogether. Under the plan, characters would be streamlined every
five years. Characters have been revised several times now, resulting in the smaller,
simpler set that makes up Simplified Chinese.

Input Method Architecture

As shown in the previous section, there are many different input methods in use
today, each varying with language, culture, and history. A common feature of
many input methods is that the user may type multiple keystrokes to compose
a single character (or set of characters). The process of composing characters
from keystrokes is called preediting. It may require complex algorithms and large
dictionaries involving substantial computer resources.

Input methods may require one or more areas in which to show the feedback of the
actual keystrokes, to propose disambiguation to the user, to list dictionaries, and so
on. The input method areas of concern are as follows:

• The status area is a logical extension of the LEDs that exist on the physical
keyboard. It is a window that is intended to present the internal state of the input
method that is critical to the user. The status area may consist of text data and
bitmaps or some combination.

• The preedit area displays the intermediate text for those languages that are
composing prior to the client handling the data.

• The auxiliary area is used for pop-up menus and customizing dialogs that may be
required for an input method. There may be multiple auxiliary areas for an input
method. Auxiliary areas are managed by the input method independent of the
client. Auxiliary areas are assumed to be separate dialogs, which are maintained
by the input method.

There are various user interaction styles used for preediting. The ones supported
by Xlib are as follows:

• For on-the-spot input methods, preediting data will be displayed directly in the
application window. Application data is moved to allow preedit data to appear at
the point of insertion.

• Over-the-spot preediting means that the data is displayed in a preedit window
that is placed over the point of insertion.

• Off-the-spot preediting means that the preedit window is inside the application
window but not at the point of insertion. Often, this type of window is placed at
the bottom of the application window.

• Root-window preediting refers to input methods that use a preedit window that
is the child of RootWindow.

It would require a lot of computing resources if portable applications had to include
input methods for all the languages in the world. To avoid this, a goal of the Xlib
design is to allow an application to communicate with an input method placed in a
separate process. Such a process is called an input server. The server to which the
application should connect is dependent on the environment when the application is
started up, that is, the user language and the actual encoding to be used for it. The
input method connection is said to be locale-dependent. It is also user-dependent.

282



Locales and Internationalized
Text Functions

For a given language, the user can choose, to some extent, the user interface style
of input method (if choice is possible among several).

Using an input server implies communication overhead, but applications can be
migrated without relinking. Input methods can be implemented either as a stub
communicating to an input server or as a local library.

An input method may be based on a front-end or a back-end architecture. In a front-
end architecture, there are two separate connections to the X server: keystrokes go
directly from the X server to the input method on one connection and other events to
the regular client connection. The input method is then acting as a filter and sends
composed strings to the client. A front-end architecture requires synchronization
between the two connections to avoid lost key events or locking issues.

In a back-end architecture, a single X server connection is used. A dispatching
mechanism must decide on this channel to delegate appropriate keystrokes to the
input method. For instance, it may retain a Help keystroke for its own purpose. In the
case where the input method is a separate process (that is, a server), there must be
a special communication protocol between the back-end client and the input server.

A front-end architecture introduces synchronization issues and a filtering
mechanism for noncharacter keystrokes (Function keys, Help, and so on). A back-
end architecture sometimes implies more communication overhead and more
process switching. If all three processes (X server, input server, client) are running
on a single workstation, there are two process switches for each keystroke in a back-
end architecture, but there is only one in a front-end architecture.

The abstraction used by a client to communicate with an input method is an opaque
data structure represented by the XIM data type. This data structure is returned by
the XOpenIM function, which opens an input method on a given display. Subsequent
operations on this data structure encapsulate all communication between client and
input method. There is no need for an X client to use any networking library or
natural language package to use an input method.

A single input server may be used for one or more languages, supporting one or
more encoding schemes. But the strings returned from an input method will always
be encoded in the (single) locale associated with the XIM object.

Input Contexts

Xlib provides the ability to manage a multi-threaded state for text input. A client may
be using multiple windows, each window with multiple text entry areas, and the user
possibly switching among them at any time. The abstraction for representing the
state of a particular input thread is called an input context. The Xlib representation
of an input context is an XIC.

An input context is the abstraction retaining the state, properties, and semantics
of communication between a client and an input method. An input context is a
combination of an input method, a locale specifying the encoding of the character
strings to be returned, a client window, internal state information, and various
layout or appearance characteristics. The input context concept somewhat matches
for input the graphics context abstraction defined for graphics output.

One input context belongs to exactly one input method. Different input contexts may
be associated with the same input method, possibly with the same client window.

283



Locales and Internationalized
Text Functions

An XIC is created with the XCreateIC function, providing an XIM argument and
affiliating the input context to the input method for its lifetime. When an input
method is closed with XCloseIM, all of its affiliated input contexts should not be used
any more (and should preferably be destroyed before closing the input method).

Considering the example of a client window with multiple text entry areas, the
application programmer could, for example, choose to implement as follows:

• As many input contexts are created as text entry areas, and the client will get the
input accumulated on each context each time it looks up in that context.

• A single context is created for a top-level window in the application. If such a
window contains several text entry areas, each time the user moves to another
text entry area, the client has to indicate changes in the context.

A range of choices can be made by application designers to use either a single or
multiple input contexts, according to the needs of their application.

Getting Keyboard Input

To obtain characters from an input method, a client must call the function
XmbLookupString or XwcLookupString with an input context created from that
input method. Both a locale and display are bound to an input method when it is
opened, and an input context inherits this locale and display. Any strings returned
by XmbLookupString or XwcLookupString will be encoded in that locale.

Focus Management

For each text entry area in which the XmbLookupString or XwcLookupString
functions are used, there will be an associated input context.

When the application focus moves to a text entry area, the application must set the
input context focus to the input context associated with that area. The input context
focus is set by calling XSetICFocus with the appropriate input context.

Also, when the application focus moves out of a text entry area, the application
should unset the focus for the associated input context by calling XUnsetICFocus.
As an optimization, if XSetICFocus is called successively on two different input
contexts, setting the focus on the second will automatically unset the focus on the
first.

To set and unset the input context focus correctly, it is necessary to track
application-level focus changes. Such focus changes do not necessarily correspond
to X server focus changes.

If a single input context is being used to do input for multiple text entry areas, it
will also be necessary to set the focus window of the input context whenever the
focus window changes (see section 13.5.6.3).

Geometry Management

In most input method architectures (on-the-spot being the notable exception), the
input method will perform the display of its own data. To provide better visual
locality, it is often desirable to have the input method areas embedded within a
client. To do this, the client may need to allocate space for an input method. Xlib
provides support that allows the size and position of input method areas to be

284



Locales and Internationalized
Text Functions

provided by a client. The input method areas that are supported for geometry
management are the status area and the preedit area.

The fundamental concept on which geometry management for input method
windows is based is the proper division of responsibilities between the client (or
toolkit) and the input method. The division of responsibilities is as follows:

• The client is responsible for the geometry of the input method window.

• The input method is responsible for the contents of the input method window.

An input method is able to suggest a size to the client, but it cannot suggest a
placement. Also the input method can only suggest a size. It does not determine the
size, and it must accept the size it is given.

Before a client provides geometry management for an input method, it must
determine if geometry management is needed. The input method indicates the
need for geometry management by setting XIMPreeditArea or XIMStatusArea in its
XIMStyles value returned by XGetIMValues. When a client has decided that it will
provide geometry management for an input method, it indicates that decision by
setting the XNInputStyle value in the XIC.

After a client has established with the input method that it will do geometry
management, the client must negotiate the geometry with the input method. The
geometry is negotiated by the following steps:

• The client suggests an area to the input method by setting the XNAreaNeeded
value for that area. If the client has no constraints for the input method, it either
will not suggest an area or will set the width and height to zero. Otherwise, it will
set one of the values.

• The client will get the XIC value XNAreaNeeded. The input method will return
its suggested size in this value. The input method should pay attention to any
constraints suggested by the client.

• The client sets the XIC value XNArea to inform the input method of the geometry
of its window. The client should try to honor the geometry requested by the input
method. The input method must accept this geometry.

Clients doing geometry management must be aware that setting other XIC values
may affect the geometry desired by an input method. For example, XNFontSet and
XNLineSpace may change the geometry desired by the input method.

The table of XIC values (see section 13.5.6) indicates the values that can cause the
desired geometry to change when they are set. It is the responsibility of the client
to renegotiate the geometry of the input method window when it is needed.

In addition, a geometry management callback is provided by which an input method
can initiate a geometry change.

Event Filtering

A filtering mechanism is provided to allow input methods to capture X
events transparently to clients. It is expected that toolkits (or clients) using
XmbLookupString or XwcLookupString will call this filter at some point in the event
processing mechanism to make sure that events needed by an input method can be
filtered by that input method.

285



Locales and Internationalized
Text Functions

If there were no filter, a client could receive and discard events that are necessary
for the proper functioning of an input method. The following provides a few
examples of such events:

• Expose events on preedit window in local mode.

• Events may be used by an input method to communicate with an input server.
Such input server protocol-related events have to be intercepted if one does not
want to disturb client code.

• Key events can be sent to a filter before they are bound to translations such as
those the X Toolkit Intrinsics library provides.

Clients are expected to get the XIC value XNFilterEvents and augment the event
mask for the client window with that event mask. This mask may be zero.

Callbacks

When an on-the-spot input method is implemented, only the client can insert or
delete preedit data in place and possibly scroll existing text. This means that the
echo of the keystrokes has to be achieved by the client itself, tightly coupled with
the input method logic.

When the user enters a keystroke, the client calls XmbLookupString or
XwcLookupString. At this point, in the on-the-spot case, the echo of the keystroke in
the preedit has not yet been done. Before returning to the client logic that handles
the input characters, the look-up function must call the echoing logic to insert the
new keystroke. If the keystrokes entered so far make up a character, the keystrokes
entered need to be deleted, and the composed character will be returned. Hence,
what happens is that, while being called by client code, the input method logic
has to call back to the client before it returns. The client code, that is, a callback
procedure, is called from the input method logic.

There are a number of cases where the input method logic has to call back the
client. Each of those cases is associated with a well-defined callback action. It is
possible for the client to specify, for each input context, what callback is to be called
for each action.

There are also callbacks provided for feedback of status information and a callback
to initiate a geometry request for an input method.

Visible Position Feedback Masks

In the on-the-spot input style, there is a problem when attempting to draw preedit
strings that are longer than the available space. Once the display area is exceeded,
it is not clear how best to display the preedit string. The visible position feedback
masks of XIMText help resolve this problem by allowing the input method to specify
hints that indicate the essential portions of the preedit string. For example, such
hints can help developers implement scrolling of a long preedit string within a short
preedit display area.

Preedit String Management

As highlighted before, the input method architecture provides preediting, which
supports a type of preprocessor input composition. In this case, composition

286



Locales and Internationalized
Text Functions

consists of interpreting a sequence of key events and returning a committed
string via XmbLookupString or XwcLookupString. This provides the basics for input
methods.

In addition to preediting based on key events, a general framework is provided
to give a client that desires it more advanced preediting based on the text within
the client. This framework is called string conversion and is provided using XIC
values. The fundamental concept of string conversion is to allow the input method
to manipulate the client's text independent of any user preediting operation.

The need for string conversion is based on language needs and input method
capabilities. The following are some examples of string conversion:

• Transliteration conversion provides language-specific conversions within the
input method. In the case of Korean input, users wish to convert a Hangul string
into a Hanja string while in preediting, after preediting, or in other situations
(for example, on a selected string). The conversion is triggered when the user
presses a Hangul-to-Hanja key sequence (which may be input method specific).
Sometimes the user may want to invoke the conversion after finishing preediting
or on a user-selected string. Thus, the string to be converted is in an application
buffer, not in the preedit area of the input method. The string conversion services
allow the client to request this transliteration conversion from the input method.
There are many other transliteration conversions defined for various languages,
for example, Kana-to-Kanji conversion in Japanese. The key to remember is that
transliteration conversions are triggered at the request of the user and returned
to the client immediately without affecting the preedit area of the input method.

• Reconversion of a previously committed string or a selected string is supported
by many input methods as a convenience to the user. For example, a user
tends to mistype the commit key while preediting. In that case, some input
methods provide a special key sequence to request a ``reconvert'' operation on
the committed string, similar to the undo facility provided by most text editors.
Another example is where the user is proofreading a document that has some
misconversions from preediting and wants to correct the misconverted text. Such
reconversion is again triggered by the user invoking some special action, but
reconversions should not affect the state of the preedit area.

• Context-sensitive conversion is required for some languages and input methods
that need to retrieve text that surrounds the current spot location (cursor
position) of the client's buffer. Such text is needed when the preediting operation
depends on some surrounding characters (usually preceding the spot location).
For example, in Thai language input, certain character sequences may be invalid
and the input method may want to check whether characters constitute a valid
word. Input methods that do such context-dependent checking need to retrieve
the characters surrounding the current cursor position to obtain complete words.
Unlike other conversions, this conversion is not explicitly requested by the user.
Input methods that provide such context-sensitive conversion continuously need
to request context from the client, and any change in the context of the spot
location may affect such conversions. The client's context would be needed if the
user moves the cursor and starts editing again. For this reason, an input method
supporting this type of conversion should take notice of when the client calls
XmbResetIC or XwcResetIC, which is usually an indication of a context change.

Context-sensitive conversions just need a copy of the client's text, while other
conversions replace the client's text with new text to achieve the reconversion or

287



Locales and Internationalized
Text Functions

transliteration. Yet in all cases the result of a conversion, either immediately or via
preediting, is returned by the XmbLookupString and XwcLookupString functions.

String conversion support is dependent on the availability of the
XNStringConversion or XNStringConversionCallback XIC values. Because the input
method may not support string conversions, clients have to query the availability of
string conversion operations by checking the supported XIC values list by calling
XGetIMValues with the XNQueryICValuesList IM value.

The difference between these two values is whether the conversion is invoked by
the client or the input method. The XNStringConversion XIC value is used by clients
to request a string conversion from the input method. The client is responsible for
determining which events are used to trigger the string conversion and whether
the string to be converted should be copied or deleted. The type of conversion is
determined by the input method; the client can only pass the string to be converted.
The client is guaranteed that no XNStringConversionCallback will be issued when
this value is set; thus, the client need only set one of these values.

The XNStringConversionCallback XIC value is used by the client to notify the input
method that it will accept requests from the input method for string conversion.
If this value is set, it is the input method's responsibility to determine which
events are used to trigger the string conversion. When such events occur, the
input method issues a call to the client-supplied procedure to retrieve the string
to be converted. The client's callback procedure is notified whether to copy or
delete the string and is provided with hints as to the amount of text needed. The
XIMStringConversionCallbackStruct specifies which text should be passed back to
the input method.

Finally, the input method may call the client's XNStringConversionCallback
procedure multiple times if the string returned from the callback is not sufficient to
perform a successful conversion. The arguments to the client's procedure allow the
input method to define a position (in character units) relative to the client's cursor
position and the size of the text needed. By varying the position and size of the
desired text in subsequent callbacks, the input method can retrieve additional text.

Input Method Management

The interface to input methods might appear to be simply creating an input
method (XOpenIM) and freeing an input method (XCloseIM). However, input methods
may require complex communication with input method servers (IM servers), for
example:

• If the X server, IM server, and X clients are started asynchronously, some clients
may attempt to connect to the IM server before it is fully operational, and fail.
Therefore, some mechanism is needed to allow clients to detect when an IM server
has started.

It is up to clients to decide what should be done when an IM server is not available
(for example, wait, or use some other IM server).

• Some input methods may allow the underlying IM server to be switched. Such
customization may be desired without restarting the entire client.

288



Locales and Internationalized
Text Functions

To support management of input methods in these cases, the following functions
are provided:

XRegisterIMInstantiateCallback This function allows clients to register
a callback procedure to be called when
Xlib detects that an IM server is up and
available.

XOpenIM A client calls this function as a result of
the callback procedure being called.

XSetIMValues, XSetICValues These functions use the XIM and XIC
values, XNDestroyCallback, to allow a
client to register a callback procedure
to be called when Xlib detects that an
IM server that was associated with
an opened input method is no longer
available. In addition, this function
can be used to switch IM servers for
those input methods that support
such functionality. The IM value for
switching IM servers is implementation-
dependent; see the description below
about switching IM servers.

XUnregisterIMInstantiateCallback This function removes a callback
procedure registered by the client.

Input methods that support switching of IM servers may exhibit some side-effects:

• The input method will ensure that any new IM server supports any of the input
styles being used by input contexts already associated with the input method.
However, the list of supported input styles may be different.

• Geometry management requests on previously created input contexts may be
initiated by the new IM server.

Hot Keys

Some clients need to guarantee which keys can be used to escape from the input
method, regardless of the input method state; for example, the client-specific Help
key or the keys to move the input focus. The HotKey mechanism allows clients
to specify a set of keys for this purpose. However, the input method might not
allow clients to specify hot keys. Therefore, clients have to query support of hot
keys by checking the supported XIC values list by calling XGetIMValues with the
XNQueryICValuesList IM value. When the hot keys specified conflict with the key
bindings of the input method, hot keys take precedence over the key bindings of
the input method.

Preedit State Operation

An input method may have several internal states, depending on its implementation
and the locale. However, one state that is independent of locale and implementation
is whether the input method is currently performing a preediting operation. Xlib

289



Locales and Internationalized
Text Functions

provides the ability for an application to manage the preedit state programmatically.
Two methods are provided for retrieving the preedit state of an input context. One
method is to query the state by calling XGetICValues with the XNPreeditState
XIC value. Another method is to receive notification whenever the preedit state is
changed. To receive such notification, an application needs to register a callback
by calling XSetICValues with the XNPreeditStateNotifyCallback XIC value. In
order to change the preedit state programmatically, an application needs to call
XSetICValues with XNPreeditState.

Availability of the preedit state is input method dependent. The input method may
not provide the ability to set the state or to retrieve the state programmatically.
Therefore, clients have to query availability of preedit state operations by
checking the supported XIC values list by calling XGetIMValues with the
XNQueryICValuesList IM value.

Input Method Functions
To open a connection, use XOpenIM.

XIM XOpenIM(display, db, res_name, res_class);

display Specifies the connection to the X server.

db Specifies a pointer to the resource database.

res_name Specifies the full resource name of the application.

res_class Specifies the full class name of the application.

The XOpenIM function opens an input method, matching the current locale and
modifiers specification. Current locale and modifiers are bound to the input
method at opening time. The locale associated with an input method cannot be
changed dynamically. This implies that the strings returned by XmbLookupString or
XwcLookupString, for any input context affiliated with a given input method, will
be encoded in the locale current at the time the input method is opened.

The specific input method to which this call will be routed is identified on the basis
of the current locale. XOpenIM will identify a default input method corresponding
to the current locale. That default can be modified using XSetLocaleModifiers for
the input method modifier.

The db argument is the resource database to be used by the input method for
looking up resources that are private to the input method. It is not intended that this
database be used to look up values that can be set as IC values in an input context.
If db is NULL, no database is passed to the input method.

The res_name and res_class arguments specify the resource name and class of the
application. They are intended to be used as prefixes by the input method when
looking up resources that are common to all input contexts that may be created
for this input method. The characters used for resource names and classes must be
in the X Portable Character Set. The resources looked up are not fully specified if
res_name or res_class is NULL.

The res_name and res_class arguments are not assumed to exist beyond the call
to XOpenIM. The specified resource database is assumed to exist for the lifetime of
the input method.

290



Locales and Internationalized
Text Functions

XOpenIM returns NULL if no input method could be opened.

To close a connection, use XCloseIM.

Status XCloseIM(im);

im Specifies the input method.

The XCloseIM function closes the specified input method.

To set input method attributes, use XSetIMValues.

char *XSetIMValues(im);

im Specifies the input method.

... Specifies the variable-length argument list to set XIM values.

The XSetIMValues function presents a variable argument list programming
interface for setting attributes of the specified input method. It returns NULL if it
succeeds; otherwise, it returns the name of the first argument that could not be
set. Xlib does not attempt to set arguments from the supplied list that follow the
failed argument; all arguments in the list preceding the failed argument have been
set correctly.

To query an input method, use XGetIMValues.

char *XGetIMValues(im);

im Specifies the input method.

... Specifies the variable length argument list to get XIM values.

The XGetIMValues function presents a variable argument list programming
interface for querying properties or features of the specified input method. This
function returns NULL if it succeeds; otherwise, it returns the name of the first
argument that could not be obtained.

Each XIM value argument (following a name) must point to a location where the
XIM value is to be stored. That is, if the XIM value is of type T, the argument must
be of type T*. If T itself is a pointer type, then XGetIMValues allocates memory to
store the actual data, and the client is responsible for freeing this data by calling
XFree with the returned pointer.

To obtain the display associated with an input method, use XDisplayOfIM.

Display *XDisplayOfIM(im);

im Specifies the input method.

The XDisplayOfIM function returns the display associated with the specified input
method.

To get the locale associated with an input method, use XLocaleOfIM.

char *XLocaleOfIM(im);

291



Locales and Internationalized
Text Functions

im Specifies the input method.

The XLocaleOfIM function returns the locale associated with the specified input
method.

To register an input method instantiate callback, use
XRegisterIMInstantiateCallback.

Bool XRegisterIMInstantiateCallback(display, db, res_name, res_class,
callback, client_data);

display Specifies the connection to the X server.

db Specifies a pointer to the resource database.

res_name Specifies the full resource name of the application.

res_class Specifies the full class name of the application.

callback Specifies a pointer to the input method instantiate
callback.

client_data Specifies the additional client data.

The XRegisterIMInstantiateCallback function registers a callback to be invoked
whenever a new input method becomes available for the specified display that
matches the current locale and modifiers.

The function returns True if it succeeds; otherwise, it returns False.

The generic prototype is as follows:

void IMInstantiateCallback(display, client_data, call_data);

display Specifies the connection to the X server.

client_data Specifies the additional client data.

call_data Not used for this callback and always passed as NULL.

To unregister an input method instantiation callback, use
XUnregisterIMInstantiateCallback.

Bool XUnregisterIMInstantiateCallback(display, db, res_name, res_class,
callback, client_data);

display Specifies the connection to the X server.

db Specifies a pointer to the resource database.

res_name Specifies the full resource name of the application.

res_class Specifies the full class name of the application.

callback Specifies a pointer to the input method instantiate
callback.

292



Locales and Internationalized
Text Functions

client_data Specifies the additional client data.

The XUnregisterIMInstantiateCallback function removes an input method
instantiation callback previously registered. The function returns True if it
succeeds; otherwise, it returns False.

Input Method Values
The following table describes how XIM values are interpreted by an input method.
The first column lists the XIM values. The second column indicates how each of the
XIM values are treated by that input style.

The following keys apply to this table.

Key Explanation
D This value may be set using XSetIMValues. If it is not set, a

default is provided.
S This value may be set using XSetIMValues.
G This value may be read using XGetIMValues.

XIM Value Key
XNQueryInputStyle G
XNResourceName D-S-G
XNResourceClass D-S-G
XNDestroyCallback D-S-G
XNQueryIMValuesList G
XNQueryICValuesList G
XNVisiblePosition G
XNR6PreeditCallback D-S-G

XNR6PreeditCallback is obsolete and its use is not recommended (see section
13.5.4.6).

Query Input Style

A client should always query the input method to determine which input styles are
supported. The client should then find an input style it is capable of supporting.

If the client cannot find an input style that it can support, it should negotiate with
the user the continuation of the program (exit, choose another input method, and
so on).

The argument value must be a pointer to a location where the returned value will
be stored. The returned value is a pointer to a structure of type XIMStyles. Clients
are responsible for freeing the XIMStyles structure. To do so, use XFree.

The XIMStyles structure is defined as follows:

293



Locales and Internationalized
Text Functions

typedef unsigned long XIMStyle;

#define     XIMPreeditArea             0x0001L
#define     XIMPreeditCallbacks        0x0002L
#define     XIMPreeditPosition         0x0004L
#define     XIMPreeditNothing          0x0008L
#define     XIMPreeditNone             0x0010L

#define     XIMStatusArea              0x0100L
#define     XIMStatusCallbacks         0x0200L
#define     XIMStatusNothing           0x0400L
#define     XIMStatusNone              0x0800L

typedef struct {
      unsigned short count_styles;
      XIMStyle * supported_styles;
} XIMStyles;

An XIMStyles structure contains the number of input styles supported in its
count_styles field. This is also the size of the supported_styles array.

The supported styles is a list of bitmask combinations, which indicate the
combination of styles for each of the areas supported. These areas are described
later. Each element in the list should select one of the bitmask values for each
area. The list describes the complete set of combinations supported. Only these
combinations are supported by the input method.

The preedit category defines what type of support is provided by the input method
for preedit information.

XIMPreeditArea If chosen, the input method would require the client
to provide some area values for it to do its preediting.
Refer to XIC values XNArea and XNAreaNeeded.

XIMPreeditPosition If chosen, the input method would require the client
to provide positional values. Refer to XIC values
XNSpotLocation and XNFocusWindow.

XIMPreeditCallbacks If chosen, the input method would require the
client to define the set of preedit callbacks.
Refer to XIC values XNPreeditStartCallback,
XNPreeditDoneCallback, XNPreeditDrawCallback,
and XNPreeditCaretCallback.

XIMPreeditNothing If chosen, the input method can function without any
preedit values.

XIMPreeditNone The input method does not provide any preedit
feedback. Any preedit value is ignored. This style is
mutually exclusive with the other preedit styles.

The status category defines what type of support is provided by the input method
for status information.

294



Locales and Internationalized
Text Functions

XIMStatusArea The input method requires the client to provide
some area values for it to do its status feedback. See
XNArea and XNAreaNeeded.

XIMStatusCallbacks The input method requires the client to define the
set of status callbacks, XNStatusStartCallback,
XNStatusDoneCallback, and XNStatusDrawCallback.

XIMStatusNothing The input method can function without any status
values.

XIMStatusNone The input method does not provide any status
feedback. If chosen, any status value is ignored.
This style is mutually exclusive with the other status
styles.

Resource Name and Class

The XNResourceName and XNResourceClass arguments are strings that specify
the full name and class used by the input method. These values should be used as
prefixes for the name and class when looking up resources that may vary according
to the input method. If these values are not set, the resources will not be fully
specified.

It is not intended that values that can be set as XIM values be set as resources.

Destroy Callback

The XNDestroyCallback argument is a pointer to a structure of type XIMCallback.
XNDestroyCallback is triggered when an input method stops its service for any
reason. After the callback is invoked, the input method is closed and the associated
input context(s) are destroyed by Xlib. Therefore, the client should not call XCloseIM
or XDestroyIC.

The generic prototype of this callback function is as follows:

void DestroyCallback(im, client_data, call_data);

im Specifies the input method.

client_data Specifies the additional client data.

call_data Not used for this callback and always passed as NULL.

A DestroyCallback is always called with a NULL call_data argument.

Query IM/IC Values List

XNQueryIMValuesList and XNQueryICValuesList are used to query about XIM and
XIC values supported by the input method.

The argument value must be a pointer to a location where the returned value will be
stored. The returned value is a pointer to a structure of type XIMValuesList. Clients
are responsible for freeing the XIMValuesList structure. To do so, use XFree.

295



Locales and Internationalized
Text Functions

The XIMValuesList structure is defined as follows:

typedef struct {
     unsigned short count_values;
     char **supported_values;
} XIMValuesList;

Visible Position

The XNVisiblePosition argument indicates whether the visible position masks of
XIMFeedback in XIMText are available.

The argument value must be a pointer to a location where the returned value will
be stored. The returned value is of type Bool. If the returned value is True, the input
method uses the visible position masks of XIMFeedback in XIMText; otherwise, the
input method does not use the masks.

Because this XIM value is optional, a client should call XGetIMValues with argument
XNQueryIMValuesList before using this argument. If the XNVisiblePosition does not
exist in the IM values list returned from XNQueryIMValuesList, the visible position
masks of XIMFeedback in XIMText are not used to indicate the visible position.

Preedit Callback Behavior

The XNR6PreeditCallback argument originally included in the X11R6 specification
has been deprecated.\(dg During formulation of the X11R6 specification, the
behavior of the R6 PreeditDrawCallbacks was going to differ significantly from
that of the R5 callbacks. Late changes to the specification converged the R5 and
R6 behaviors, eliminating the need for XNR6PreeditCallback. Unfortunately, this
argument was not removed from the R6 specification before it was published.

The XNR6PreeditCallback argument indicates whether the behavior of preedit
callbacks regarding XIMPreeditDrawCallbackStruct values follows Release 5 or
Release 6 semantics.

The value is of type Bool. When querying for XNR6PreeditCallback, if the returned
value is True, the input method uses the Release 6 behavior; otherwise, it uses the
Release 5 behavior. The default value is False. In order to use Release 6 semantics,
the value of XNR6PreeditCallback must be set to True.

Because this XIM value is optional, a client should call XGetIMValues with argument
XNQueryIMValuesList before using this argument. If the XNR6PreeditCallback
does not exist in the IM values list returned from XNQueryIMValuesList, the
PreeditCallback behavior is Release 5 semantics.

Input Context Functions
An input context is an abstraction that is used to contain both the data required (if
any) by an input method and the information required to display that data. There

296



Locales and Internationalized
Text Functions

may be multiple input contexts for one input method. The programming interfaces
for creating, reading, or modifying an input context use a variable argument list. The
name elements of the argument lists are referred to as XIC values. It is intended that
input methods be controlled by these XIC values. As new XIC values are created,
they should be registered with the X Consortium.

To create an input context, use XCreateIC.

XIC XCreateIC(im);

im Specifies the input method.

... Specifies the variable length argument list to set XIC values.

The XCreateIC function creates a context within the specified input method.

Some of the arguments are mandatory at creation time, and the input context will
not be created if those arguments are not provided. The mandatory arguments are
the input style and the set of text callbacks (if the input style selected requires
callbacks). All other input context values can be set later.

XCreateIC returns a NULL value if no input context could be created. A NULL value
could be returned for any of the following reasons:

• A required argument was not set.

• A read-only argument was set (for example, XNFilterEvents).

• The argument name is not recognized.

• The input method encountered an input method implementation-dependent error.

XCreateIC can generate BadAtom, BadColor, BadPixmap, and BadWindow errors.

To destroy an input context, use XDestroyIC.

void XDestroyIC(ic);

ic Specifies the input context.

XDestroyIC destroys the specified input context.

To communicate to and synchronize with input method for any changes in keyboard
focus from the client side, use XSetICFocus and XUnsetICFocus.

void XSetICFocus(ic);

ic Specifies the input context.

The XSetICFocus function allows a client to notify an input method that the
focus window attached to the specified input context has received keyboard focus.
The input method should take action to provide appropriate feedback. Complete
feedback specification is a matter of user interface policy.

Calling XSetICFocus does not affect the focus window value.

297



Locales and Internationalized
Text Functions

void XUnsetICFocus(ic);

ic Specifies the input context.

The XUnsetICFocus function allows a client to notify an input method that the
specified input context has lost the keyboard focus and that no more input
is expected on the focus window attached to that input context. The input
method should take action to provide appropriate feedback. Complete feedback
specification is a matter of user interface policy.

Calling XUnsetICFocus does not affect the focus window value; the client may still
receive events from the input method that are directed to the focus window.

To reset the state of an input context to its initial state, use XmbResetIC or
XwcResetIC.

char *XmbResetIC(ic);

wchar_t *XwcResetIC(ic);

ic Specifies the input context.

When XNResetState is set to XIMInitialState, XmbResetIC and XwcResetIC reset an
input context to its initial state; when XNResetState is set to XIMPreserveState,
the current input context state is preserved. In both cases, any input pending on
that context is deleted. The input method is required to clear the preedit area, if
any, and update the status accordingly. Calling XmbResetIC or XwcResetIC does not
change the focus.

The return value of XmbResetIC is its current preedit string as a multibyte string. If
there is any preedit text drawn or visible to the user, then these procedures must
return a non-NULL string. If there is no visible preedit text, then it is input method
implementation-dependent whether these procedures return a non-NULL string or
NULL.

The client should free the returned string by calling XFree.

To get the input method associated with an input context, use XIMOfIC.

XIM XIMOfIC(ic);

ic Specifies the input context.

The XIMOfIC function returns the input method associated with the specified input
context.

Xlib provides two functions for setting and reading XIC values, respectively,
XSetICValues and XGetICValues. Both functions have a variable-length argument
list. In that argument list, any XIC value's name must be denoted with a character
string using the X Portable Character Set.

To set XIC values, use XSetICValues.

char *XSetICValues(ic);

298



Locales and Internationalized
Text Functions

ic Specifies the input context.

... Specifies the variable length argument list to set XIC values.

The XSetICValues function returns NULL if no error occurred; otherwise, it returns
the name of the first argument that could not be set. An argument might not be set
for any of the following reasons:

• The argument is read-only (for example, XNFilterEvents).

• The argument name is not recognized.

• An implementation-dependent error occurs.

Each value to be set must be an appropriate datum, matching the data type imposed
by the semantics of the argument.

XSetICValues can generate BadAtom, BadColor, BadCursor, BadPixmap, and
BadWindow errors.

To obtain XIC values, use XGetICValues.

char *XGetICValues(ic);

ic Specifies the input context.

... Specifies the variable length argument list to get XIC values.

The XGetICValues function returns NULL if no error occurred; otherwise, it returns
the name of the first argument that could not be obtained. An argument could not
be obtained for any of the following reasons:

• The argument name is not recognized.

• The input method encountered an implementation-dependent error.

Each IC attribute value argument (following a name) must point to a location where
the IC value is to be stored. That is, if the IC value is of type T, the argument must
be of type T*. If T itself is a pointer type, then XGetICValues allocates memory to
store the actual data, and the client is responsible for freeing this data by calling
XFree with the returned pointer. The exception to this rule is for an IC value of type
XVaNestedList (for preedit and status attributes). In this case, the argument must
also be of type XVaNestedList. Then, the rule of changing type T to T* and freeing
the allocated data applies to each element of the nested list.

Input Context Values
The following tables describe how XIC values are interpreted by an input method
depending on the input style chosen by the user.

The first column lists the XIC values. The second column indicates which values
are involved in affecting, negotiating, and setting the geometry of the input method
windows. The subentries under the third column indicate the different input styles
that are supported. Each of these columns indicates how each of the XIC values are
treated by that input style.

299



Locales and Internationalized
Text Functions

The following keys apply to these tables.

Key Explanation
C This value must be set with XCreateIC.
D This value may be set using XCreateIC.> If it is not set,> a

default is provided.
G This value may be read using XGetICValues.
GN This value may cause geometry negotiation when its value is set

by means of XCreateIC or XSetICValues.
GR This value will be the response of the input method when any

GN value is changed.
GS This value will cause the geometry of the input method window

to be set.
O This value must be set once and only once. It need not be set at

create time.
S This value may be set with XSetICValues.
Ignored This value is ignored by the input method for the given input

style.

XIC Value Geometry
Management

Preedit
Callback

Preedit
Position

Input
Style
Preedit
Area

Preedit
Nothing

Preedit
None

Input
Style

  C-G C-G C-G C-G C-G

Client
Window

  O-G O-G O-G O-G Ignored

Focus
Window

GN D-S-G D-S-G D-S-G D-S-G Ignored

Resource
Name

  Ignored D-S-G D-S-G D-S-G Ignored

Resource
Class

  Ignored D-S-G D-S-G D-S-G Ignored

Geometry
Callback

  Ignored Ignored D-S-G Ignored Ignored

Filter
Events

  G G G G Ignored

Destroy
Callback

  D-S-G D-S-G D-S-G D-S-G D-S-G

String
Conversion
Callback

  S-G S-G S-G S-G S-G

String
Conversion

  D-S-G D-S-G D-S-G D-S-G D-S-G

Reset
State

  D-S-G D-S-G D-S-G D-S-G Ignored

300



Locales and Internationalized
Text Functions

XIC Value Geometry
Management

Preedit
Callback

Preedit
Position

Input
Style
Preedit
Area

Preedit
Nothing

Preedit
None

HotKey   S-G S-G S-G S-G Ignored
HotKeyState  D-S-G D-S-G D-S-G D-S-G Ignored
Preedit

Area GS Ignored D-S-G D-S-G Ignored Ignored
Area
Needed

GN-GR Ignored Ignored S-G Ignored Ignored

Spot
Location

  Ignored D-S-G Ignored Ignored Ignored

Colormap   Ignored D-S-G D-S-G D-S-G Ignored
Foreground  Ignored D-S-G D-S-G D-S-G Ignored
Background  Ignored D-S-G D-S-G D-S-G Ignored
Background
Pixmap

  Ignored D-S-G D-S-G D-S-G Ignored

Font Set GN Ignored D-S-G D-S-G D-S-G Ignored
Line
Spacing

GN Ignored D-S-G D-S-G D-S-G Ignored

Cursor   Ignored D-S-G D-S-G D-S-G Ignored
Preedit
State

  D-S-G D-S-G D-S-G D-S-G Ignored

Preedit
State
Notify
Callback

  S-G S-G S-G S-G Ignored

Preedit
Callbacks

  C-S-G Ignored Ignored Ignored Ignored

XIC Value Geomentry
Management

Status
Callback

Status Area Status
Nothing

Status
None

Input Style   C-G C-G C-G C-G
Client
Window

  O-G O-G O-G Ignored

Focus
Window

GN D-S-G D-S-G D-S-G Ignored

Resource
Name

  Ignored D-S-G D-S-G Ignored

Resource
Class

  Ignored D-S-G D-S-G Ignored

Geometry
Callback

  Ignored D-S-G Ignored Ignored

Filter Events   G G G G
Status

301



Locales and Internationalized
Text Functions

XIC Value Geomentry
Management

Status
Callback

Status Area Status
Nothing

Status
None

Area GS Ignored D-S-G Ignored Ignored
Area
Needed

GN-GR Ignored S-G Ignored Ignored

Colormap   Ignored D-S-G D-S-G Ignored
Foreground   Ignored D-S-G D-S-G Ignored
Background   Ignored D-S-G D-S-G Ignored
Background
Pixmap

  Ignored D-S-G D-S-G Ignored

Font Set GN Ignored D-S-G D-S-G Ignored
Line
Spacing

GN Ignored D-S-G D-S-G Ignored

Cursor   Ignored D-S-G D-S-G Ignored
Status
Callbacks

  C-S-G Ignored Ignored Ignored

Input Style

The XNInputStyle argument specifies the input style to be used. The value of this
argument must be one of the values returned by the XGetIMValues function with
the XNQueryInputStyle argument specified in the supported_styles list.

Note that this argument must be set at creation time and cannot be changed.

Client Window

 The XNClientWindow argument specifies to the input method the client window in
which the input method can display data or create subwindows. Geometry values
for input method areas are given with respect to the client window. Dynamic change
of client window is not supported. This argument may be set only once and should
be set before any input is done using this input context. If it is not set, the input
method may not operate correctly.

If an attempt is made to set this value a second time with XSetICValues, the string
XNClientWindow will be returned by XSetICValues, and the client window will not
be changed.

If the client window is not a valid window ID on the display attached to the input
method, a BadWindow error can be generated when this value is used by the input
method.

Focus Window

 The XNFocusWindow argument specifies the focus window. The primary purpose
of the XNFocusWindow is to identify the window that will receive the key event
when input is composed. In addition, the input method may possibly affect the focus
window as follows:

• Select events on it

302



Locales and Internationalized
Text Functions

• Send events to it

• Modify its properties

• Grab the keyboard within that window

The associated value must be of type Window. If the focus window is not a valid
window ID on the display attached to the input method, a BadWindow error can be
generated when this value is used by the input method.

When this XIC value is left unspecified, the input method will use the client window
as the default focus window.

Resource Name and Class

  The XNResourceName and XNResourceClass arguments are strings that specify
the full name and class used by the client to obtain resources for the client window.
These values should be used as prefixes for name and class when looking up
resources that may vary according to the input context. If these values are not set,
the resources will not be fully specified.

It is not intended that values that can be set as XIC values be set as resources.

Geometry Callback

 The XNGeometryCallback argument is a structure of type XIMCallback (see section
13.5.6.13.12).

The XNGeometryCallback argument specifies the geometry callback that a client
can set. This callback is not required for correct operation of either an input method
or a client. It can be set for a client whose user interface policy permits an input
method to request the dynamic change of that input method's window. An input
method that does dynamic change will need to filter any events that it uses to initiate
the change.

Filter Events

 The XNFilterEvents argument returns the event mask that an input method needs
to have selected for. The client is expected to augment its own event mask for the
client window with this one.

This argument is read-only, is set by the input method at create time, and is never
changed.

The type of this argument is unsigned long. Setting this value will cause an error.

Destroy Callback

The XNDestroyCallback argument is a pointer to a structure of type XIMCallback
(see section 13.5.6.13.12). This callback is triggered when the input method stops
its service for any reason; for example, when a connection to an IM server is broken.
After the destroy callback is called, the input context is destroyed and the input
method is closed. Therefore, the client should not call XDestroyIC and XCloseIM.

303



Locales and Internationalized
Text Functions

String Conversion Callback

The XNStringConversionCallback argument is a structure of type XIMCallback (see
section 13.5.6.13.12).

The XNStringConversionCallback argument specifies a string conversion callback.
This callback is not required for correct operation of either the input method or the
client. It can be set by a client to support string conversions that may be requested
by the input method. An input method that does string conversions will filter any
events that it uses to initiate the conversion.

Because this XIC value is optional, a client should call XGetIMValues with argument
XNQueryICValuesList before using this argument.

String Conversion

The XNStringConversion argument is a structure of type XIMStringConversionText.

The XNStringConversion argument specifies the string to be converted by an input
method. This argument is not required for correct operation of either the input
method or the client.

String conversion facilitates the manipulation of text independent of preediting. It
is essential for some input methods and clients to manipulate text by performing
context-sensitive conversion, reconversion, or transliteration conversion on it.

Because this XIC value is optional, a client should call XGetIMValues with argument
XNQueryICValuesList before using this argument.

The XIMStringConversionText structure is defined as follows:

typedef struct _XIMStringConversionText {
     unsigned short              length;
     XIMStringConversionFeedback *feedback;
     Bool                        encoding_is_wchar;
     union {
          char     *mbs;
          wchar_t  *wcs;
     } string;
} XIMStringConversionText;

typedef unsigned long XIMStringConversionFeedback;

The feedback member is reserved for future use. The text to be converted is defined
by the string and length members. The length is indicated in characters. To prevent
the library from freeing memory pointed to by an uninitialized pointer, the client
should set the feedback element to NULL.

Reset State

The XNResetState argument specifies the state the input context will return to after
calling XmbResetIC or XwcResetIC.

304



Locales and Internationalized
Text Functions

The XIC state may be set to its initial state, as specified by the XNPreeditState value
when XCreateIC was called, or it may be set to preserve the current state.

The valid masks for XIMResetState are as follows:

 

typedef unsigned long XIMResetState;

#define XIMInitialState  (1L)
#define XIMPreserveState (1L<<1)

If XIMInitialState is set, then XmbResetIC and XwcResetIC will return to the initial
XNPreeditState state of the XIC.

If XIMPreserveState is set, then XmbResetIC and XwcResetIC will preserve the
current state of the XIC.

If XNResetState is left unspecified, the default is XIMInitialState.

XIMResetState values other than those specified above will default to
XIMInitialState.

Because this XIC value is optional, a client should call XGetIMValues with argument
XNQueryICValuesList before using this argument.

Hot Keys

The XNHotKey argument specifies the hot key list to the XIC. The hot key list is a
pointer to the structure of type XIMHotKeyTriggers, which specifies the key events
that must be received without any interruption of the input method. For the hot key
list set with this argument to be utilized, the client must also set XNHotKeyState
to XIMHotKeyStateON.

Because this XIC value is optional, a client should call XGetIMValues with argument
XNQueryICValuesList before using this functionality.

The value of the argument is a pointer to a structure of type XIMHotKeyTriggers.

If an event for a key in the hot key list is found, then the process will receive the
event and it will be processed inside the client.

typedef struct {
     KeySym keysym;
     unsigned int modifier;
     unsigned int modifier_mask;
} XIMHotKeyTrigger;

typedef struct {

305



Locales and Internationalized
Text Functions

     int num_hot_key;
     XIMHotKeyTrigger *key;
} XIMHotKeyTriggers;

The combination of modifier and modifier_mask are used to represent one of three
states for each modifier: either the modifier must be on, or the modifier must be off,
or the modifier is a ``don't care'' - it may be on or off. When a modifier_mask bit
is set to 0, the state of the associated modifier is ignored when evaluating whether
the key is hot or not.

Modifier Bit Mask Bit Meaning
0 1 The modifier must be off.
1 1 The modifier must be on.
n/a 0 Do not care if the modifier is on or off.

Hot Key State

The XNHotKeyState argument specifies the hot key state of the input method. This
is usually used to switch the input method between hot key operation and normal
input processing.

The value of the argument is a pointer to a structure of type XIMHotKeyState .

typedef unsigned long XIMHotKeyState;

#define XIMHotKeyStateON            (0x0001L)
#define XIMHotKeyStateOFF           (0x0002L)

If not specified, the default is XIMHotKeyStateOFF.

Preedit and Status Attributes

  The XNPreeditAttributes and XNStatusAttributes arguments specify to an input
method the attributes to be used for the preedit and status areas, if any. Those
attributes are passed to XSetICValues or XGetICValues as a nested variable-length
list. The names to be used in these lists are described in the following sections.

Area

 The value of the XNArea argument must be a pointer to a structure of type
XRectangle. The interpretation of the XNArea argument is dependent on the input
method style that has been set.

If the input method style is XIMPreeditPosition, XNArea specifies the clipping
region within which preediting will take place. If the focus window has been set,
the coordinates are assumed to be relative to the focus window. Otherwise, the
coordinates are assumed to be relative to the client window. If neither has been set,
the results are undefined.

306



Locales and Internationalized
Text Functions

If XNArea is not specified, is set to NULL, or is invalid, the input method will default
the clipping region to the geometry of the XNFocusWindow. If the area specified is
NULL or invalid, the results are undefined.

If the input style is XIMPreeditArea or XIMStatusArea, XNArea specifies the
geometry provided by the client to the input method. The input method may use this
area to display its data, either preedit or status depending on the area designated.
The input method may create a window as a child of the client window with
dimensions that fit the XNArea. The coordinates are relative to the client window. If
the client window has not been set yet, the input method should save these values
and apply them when the client window is set. If XNArea is not specified, is set to
NULL, or is invalid, the results are undefined.

Area Needed

 When set, the XNAreaNeeded argument specifies the geometry suggested by the
client for this area (preedit or status). The value associated with the argument must
be a pointer to a structure of type XRectangle. Note that the x, y values are not
used and that nonzero values for width or height are the constraints that the client
wishes the input method to respect.

When read, the XNAreaNeeded argument specifies the preferred geometry desired
by the input method for the area.

This argument is only valid if the input style is XIMPreeditArea or XIMStatusArea.
It is used for geometry negotiation between the client and the input method and
has no other effect on the input method (see section 13.5.1.5).

Spot Location

 The XNSpotLocation argument specifies to the input method the coordinates
of the spot to be used by an input method executing with XNInputStyle
set to XIMPreeditPosition. When specified to any input method other than
XIMPreeditPosition, this XIC value is ignored.

The x coordinate specifies the position where the next character would be inserted.
The y coordinate is the position of the baseline used by the current text line in the
focus window. The x and y coordinates are relative to the focus window, if it has been
set; otherwise, they are relative to the client window. If neither the focus window
nor the client window has been set, the results are undefined.

The value of the argument is a pointer to a structure of type XPoint.

Colormap

Two different arguments can be used to indicate what colormap the input method
should use to allocate colors, a colormap ID, or a standard colormap name.

 The XNColormap argument is used to specify a colormap ID. The argument value
is of type Colormap. An invalid argument may generate a BadColor error when it
is used by the input method.

 The XNStdColormap argument is used to indicate the name of the standard
colormap in which the input method should allocate colors. The argument value
is an Atom that should be a valid atom for calling XGetRGBColormaps. An invalid
argument may generate a BadAtom error when it is used by the input method.

307



Locales and Internationalized
Text Functions

If the colormap is left unspecified, the client window colormap becomes the default.

Foreground and Background

  The XNForeground and XNBackground arguments specify the foreground and
background pixel, respectively. The argument value is of type unsigned long. It must
be a valid pixel in the input method colormap.

If these values are left unspecified, the default is determined by the input method.

Background Pixmap

The XNBackgroundPixmap argument specifies a background pixmap to be used
as the background of the window. The value must be of type Pixmap. An invalid
argument may generate a BadPixmap error when it is used by the input method.

If this value is left unspecified, the default is determined by the input method.

Font Set

 The XNFontSet argument specifies to the input method what font set is to be used.
The argument value is of type XFontSet.

If this value is left unspecified, the default is determined by the input method.

Line Spacing

The XNLineSpace argument specifies to the input method what line spacing is to
be used in the preedit window if more than one line is to be used. This argument
is of type int.

If this value is left unspecified, the default is determined by the input method.

Cursor

 The XNCursor argument specifies to the input method what cursor is to be used in
the specified window. This argument is of type Cursor.

An invalid argument may generate a BadCursor error when it is used by the input
method. If this value is left unspecified, the default is determined by the input
method.

Preedit State

The XNPreeditState argument specifies the state of input preediting for the input
method. Input preediting can be on or off.

The valid mask names for XNPreeditState are as follows:

  

typedef unsigned long XIMPreeditState;

#define XIMPreeditUnknown    0L

308



Locales and Internationalized
Text Functions

#define XIMPreeditEnable     1L
#define XIMPreeditDisable    (1L<<1)

If a value of XIMPreeditEnable is set, then input preediting is turned on by the input
method.

If a value of XIMPreeditDisable is set, then input preediting is turned off by the
input method.

If XNPreeditState is left unspecified, then the state will be implementation-
dependent.

When XNResetState is set to XIMInitialState, the XNPreeditState value specified
at the creation time will be reflected as the initial state for XmbResetIC and
XwcResetIC.

Because this XIC value is optional, a client should call XGetIMValues with argument
XNQueryICValuesList before using this argument.

Preedit State Notify Callback

The preedit state notify callback is triggered by the input method when the
preediting state has changed. The value of the XNPreeditStateNotifyCallback
argument is a pointer to a structure of type XIMCallback. The generic prototype
is as follows:

void PreeditStateNotifyCallback(ic, client_data, call_data);

ic Specifies the input context.

client_data Specifies the additional client data.

call_data Specifies the current preedit state.

The XIMPreeditStateNotifyCallbackStruct structure is defined as follows:

typedef struct _XIMPreeditStateNotifyCallbackStruct {
     XIMPreeditState state;
} XIMPreeditStateNotifyCallbackStruct;

Because this XIC value is optional, a client should call XGetIMValues with argument
XNQueryICValuesList before using this argument.

Preedit and Status Callbacks

A client that wants to support the input style XIMPreeditCallbacks must provide
a set of preedit callbacks to the input method. The set of preedit callbacks is as
follows:

309



Locales and Internationalized
Text Functions

XNPreeditStartCallback This is called when the input method starts preedit.
XNPreeditDoneCallback This is called when the input method stops preedit.
XNPreeditDrawCallback This is called when a number of preedit keystrokes

should be echoed.
XNPreeditCaretCallback This is called to move the text insertion point within

the preedit string.

A client that wants to support the input style XIMStatusCallbacks must provide a
set of status callbacks to the input method. The set of status callbacks is as follows:

XNStatusStartCallback This is called when the input method initializes the
status area.

XNStatusDoneCallback This is called when the input method no longer needs
the status area.

XNStatusDrawCallback This is called when updating of the status area is
required.

The value of any status or preedit argument is a pointer to a structure of type
XIMCallback.  

typedef void (*XIMProc)();

typedef struct {
     XPointer client_data;
     XIMProc callback;
} XIMCallback;

Each callback has some particular semantics and will carry the data that expresses
the environment necessary to the client into a specific data structure. This
paragraph only describes the arguments to be used to set the callback.

Setting any of these values while doing preedit may cause unexpected results.

Input Method Callback Semantics
XIM callbacks are procedures defined by clients or text drawing packages that are
to be called from the input method when selected events occur. Most clients will use
a text editing package or a toolkit and, hence, will not need to define such callbacks.
This section defines the callback semantics, when they are triggered, and what their
arguments are. This information is mostly useful for X toolkit implementors.

Callbacks are mostly provided so that clients (or text editing packages) can
implement on-the-spot preediting in their own window. In that case, the input
method needs to communicate and synchronize with the client. The input method
needs to communicate changes in the preedit window when it is under control of
the client. Those callbacks allow the client to initialize the preedit area, display a
new preedit string, move the text insertion point during preedit, terminate preedit,
or update the status area.

310



Locales and Internationalized
Text Functions

All callback procedures follow the generic prototype:

void CallbackPrototype(ic, client_data, call_data);

ic Specifies the input context.

client_data Specifies the additional client data.

call_data Specifies data specific to the callback.

The call_data argument is a structure that expresses the arguments needed to
achieve the semantics; that is, it is a specific data structure appropriate to the
callback. In cases where no data is needed in the callback, this call_data argument
is NULL. The client_data argument is a closure that has been initially specified by
the client when specifying the callback and passed back. It may serve, for example,
to inherit application context in the callback.

The following paragraphs describe the programming semantics and specific data
structure associated with the different reasons.

Geometry Callback

The geometry callback is triggered by the input method to indicate that it wants the
client to negotiate geometry. The generic prototype is as follows:

void GeometryCallback(ic, client_data, call_data);

ic Specifies the input context.

client_data Specifies the additional client data.

call_data Not used for this callback and always passed as NULL.

The callback is called with a NULL call_data argument.

Destroy Callback

The destroy callback is triggered by the input method when it stops service for any
reason. After the callback is invoked, the input context will be freed by Xlib. The
generic prototype is as follows:

void DestroyCallback(ic, client_data, call_data);

ic Specifies the input context.

client_data Specifies the additional client data.

call_data Not used for this callback and always passed as NULL.

The callback is called with a NULL call_data argument.

String Conversion Callback

The string conversion callback is triggered by the input method to request the client
to return the string to be converted. The returned string may be either a multibyte
or wide character string, with an encoding matching the locale bound to the input
context. The callback prototype is as follows:

311



Locales and Internationalized
Text Functions

void StringConversionCallback(ic, client_data, call_data);

ic Specifies the input method.

client_data Specifies the additional client data.

call_data Specifies the amount of the string to be converted.

The callback is passed an XIMStringConversionCallbackStruct structure in the
call_data argument. The text member is an XIMStringConversionText structure (see
section 13.5.6.9) to be filled in by the client and describes the text to be sent to
the input method. The data pointed to by the string and feedback elements of the
XIMStringConversionText structure will be freed using XFree by the input method
after the callback returns. So the client should not point to internal buffers that are
critical to the client. Similarly, because the feedback element is currently reserved
for future use, the client should set feedback to NULL to prevent the library from
freeing memory at some random location due to an uninitialized pointer.

The XIMStringConversionCallbackStruct structure is defined as follows:

typedef struct _XIMStringConversionCallbackStruct {
     XIMStringConversionPosition position;          
     XIMCaretDirection direction;
     short factor;
     XIMStringConversionOperation operation;
     XIMStringConversionText *text;
} XIMStringConversionCallbackStruct;

typedef short XIMStringConversionPosition;

typedef unsigned short XIMStringConversionOperation;

#define XIMStringConversionSubstitution       (0x0001)
#define XIMStringConversionRetrieval          (0x0001)

XIMStringConversionPosition specifies the starting position of the string to be
returned in the XIMStringConversionText structure. The value identifies a position,
in units of characters, relative to the client's cursor position in the client's buffer.

The ending position of the text buffer is determined by the direction and
factor members. Specifically, it is the character position relative to the
starting point as defined by the XIMCaretDirection. The factor member of
XIMStringConversionCallbackStruct specifies the number of XIMCaretDirection
positions to be applied. For example, if the direction specifies XIMLineEnd and factor
is 1, then all characters from the starting position to the end of the current display
line are returned. If the direction specifies XIMForwardChar or XIMBackwardChar,
then the factor specifies a relative position, indicated in characters, from the
starting position.

XIMStringConversionOperation specifies whether the string to be converted
should be deleted (substitution) or copied (retrieval) from the client's buffer.

312



Locales and Internationalized
Text Functions

When the XIMStringConversionOperation is XIMStringConversionSubstitution, the
client must delete the string to be converted from its own buffer. When the
XIMStringConversionOperation is XIMStringConversionRetrieval, the client must
not delete the string to be converted from its buffer. The substitute operation is
typically used for reconversion and transliteration conversion, while the retrieval
operation is typically used for context-sensitive conversion.

Preedit State Callbacks

When the input method turns preediting on or off, a PreeditStartCallback or
PreeditDoneCallback callback is triggered to let the toolkit do the setup or the
cleanup for the preedit region.

int PreeditStartCallback(ic, client_data, call_data);

ic Specifies the input context.

client_data Specifies the additional client data.

call_data Not used for this callback and always passed as NULL.

When preedit starts on the specified input context, the callback is called with a
NULL call_data argument. PreeditStartCallback will return the maximum size
of the preedit string. A positive number indicates the maximum number of bytes
allowed in the preedit string, and a value of -1 indicates there is no limit.

void PreeditDoneCallback(ic, client_data, call_data);

ic Specifies the input context.

client_data Specifies the additional client data.

call_data Not used for this callback and always passed as NULL.

When preedit stops on the specified input context, the callback is called with
a NULL call_data argument. The client can release the data allocated by
PreeditStartCallback.

PreeditStartCallback should initialize appropriate data needed for displaying
preedit information and for handling further PreeditDrawCallback calls.
Once PreeditStartCallback is called, it will not be called again before
PreeditDoneCallback has been called.

Preedit Draw Callback

This callback is triggered to draw and insert, delete or replace, preedit text in
the preedit region. The preedit text may include unconverted input text such as
Japanese Kana, converted text such as Japanese Kanji characters, or characters
of both kinds. That string is either a multibyte or wide character string, whose
encoding matches the locale bound to the input context. The callback prototype is
as follows:

void PreeditDrawCallback(ic, client_data, call_data);

ic Specifies the input context.

313



Locales and Internationalized
Text Functions

client_data Specifies the additional client data.

call_data Specifies the preedit drawing information.

The callback is passed an XIMPreeditDrawCallbackStruct structure in the call_data
argument. The text member of this structure contains the text to be drawn. After
the string has been drawn, the caret should be moved to the specified location.

The XIMPreeditDrawCallbackStruct structure is defined as follows:

typedef struct _XIMPreeditDrawCallbackStruct {
     int caret;     /* Cursor offset within preedit string */
     int chg_first;     /* Starting change position */
     int chg_length;     /* Length of the change in character count */
     XIMText *text;
} XIMPreeditDrawCallbackStruct;

The client must keep updating a buffer of the preedit text and the callback
arguments referring to indexes in that buffer. The call_data fields have specific
meanings according to the operation, as follows:

• To indicate text deletion, the call_data member specifies a NULL text field. The
text to be deleted is then the current text in the buffer from position chg_first
(starting at zero) on a character length of chg_length.

• When text is non-NULL, it indicates insertion or replacement of text in the buffer.

• The chg_length member identifies the number of characters in the current
preedit buffer that are affected by this call. A positive chg_length indicates that
chg_length number of characters, starting at chg_first, must be deleted or must
be replaced by text, whose length is specified in the XIMText structure.

• A chg_length value of zero indicates that text must be inserted right at the position
specified by chg_first. A value of zero for chg_first specifies the first character in
the buffer.

• chg_length and chg_first combine to identify the modification required to the
preedit buffer; beginning at chg_first, replace chg_length number of characters
with the text in the supplied XIMText structure. For example, suppose the preedit
buffer contains the string "ABCDE".

•

Text:      A B C D E
          ^ ^ ^ ^ ^ ^
CharPos:  0 1 2 3 4 5

The CharPos in the diagram shows the location of the character position relative
to the character.

314



Locales and Internationalized
Text Functions

• If the value of chg_first is 1 and the value of chg_length is 3, this says to replace
3 characters beginning at character position 1 with the string in the XIMText
structure. Hence, BCD would be replaced by the value in the structure.

• Though chg_length and chg_first are both signed integers they will never have a
negative value.

• The caret member identifies the character position before which the cursor should
be placed - after modification to the preedit buffer has been completed. For
example, if caret is zero, the cursor is at the beginning of the buffer. If the caret
is one, the cursor is between the first and second character.

typedef struct _XIMText {
     unsigned short length;
     XIMFeedback * feedback;
     Bool encoding_is_wchar; 
     union {
          char * multi_byte;
          wchar_t * wide_char;
     } string; 
} XIMText;

The text string passed is actually a structure specifying as follows:

• The length member is the text length in characters.

• The encoding_is_wchar member is a value that indicates if the text string is
encoded in wide character or multibyte format. The text string may be passed
either as multibyte or as wide character; the input method controls in which form
data is passed. The client's callback routine must be able to handle data passed
in either form.

• The string member is the text string.

• The feedback member indicates rendering type for each character in the string
member. If string is NULL (indicating that only highlighting of the existing preedit
buffer should be updated), feedback points to length highlight elements that
should be applied to the existing preedit buffer, beginning at chg_first.

The feedback member expresses the types of rendering feedback the callback
should apply when drawing text. Rendering of the text to be drawn is specified
either in generic ways (for example, primary, secondary) or in specific ways (reverse,
underline). When generic indications are given, the client is free to choose the
rendering style. It is necessary, however, that primary and secondary be mapped to
two distinct rendering styles.

If an input method wants to control display of the preedit string, an input
method can indicate the visibility hints using feedbacks in a specific way. The
XIMVisibleToForward, XIMVisibleToBackword, and XIMVisibleToCenter masks are
exclusively used for these visibility hints. The XIMVisibleToForward mask indicates
that the preedit text is preferably displayed in the primary draw direction from
the caret position in the preedit area forward. The XIMVisibleToBackword mask

315



Locales and Internationalized
Text Functions

indicates that the preedit text is preferably displayed from the caret position
in the preedit area backward, relative to the primary draw direction. The
XIMVisibleToCenter mask indicates that the preedit text is preferably displayed with
the caret position in the preedit area centered.

The insertion point of the preedit string could exist outside of the visible area when
visibility hints are used. Only one of the masks is valid for the entire preedit string,
and only one character can hold one of these feedbacks for a given input context
at one time. This feedback may be OR'ed together with another highlight (such
as XIMReverse). Only the most recently set feedback is valid, and any previous
feedback is automatically canceled. This is a hint to the client, and the client is free
to choose how to display the preedit string.

The feedback member also specifies how rendering of the text argument should be
performed. If the feedback is NULL, the callback should apply the same feedback
as is used for the surrounding characters in the preedit buffer; if chg_first is at
a highlight boundary, the client can choose which of the two highlights to use. If
feedback is not NULL, feedback specifies an array defining the rendering for each
character of the string, and the length of the array is thus length.

If an input method wants to indicate that it is only updating the feedback of the
preedit text without changing the content of it, the XIMText structure will contain
a NULL value for the string field, the number of characters affected (relative to
chg_first) will be in the length field, and the feedback field will point to an array
of XIMFeedback.

Each element in the feedback array is a bitmask represented by a value of type
XIMFeedback. The valid mask names are as follows:

        

typedef unsigned long XIMFeedback;

#define     XIMReverse                     1L
#define     XIMUnderline                   (1L<<1)
#define     XIMHighlight                   (1L<<2)
#define     XIMPrimary                     (1L<<5)*
#define     XIMSecondary                   (1L<<6)*
#define     XIMTertiary                    (1L<<7)*
#define     XIMVisibleToForward            (1L<<8)
#define     XIMVisibleToBackward           (1L<<9)
#define     XIMVisibleToCenter               (1L<<10)

*† The values for XIMPrimary, XIMSecondary, and XIMTertiary were incorrectly defined in
the R5 specification. The X Consortium’s X11R5 implementation correctly
implemented the values for these highlights. The value of these highlights has
been corrected in this specification to agree with the values in the
Consortium’s X11R5 and X11R6 implementations.

Characters drawn with the XIMReverse highlight should be drawn by swapping
the foreground and background colors used to draw normal, unhighlighted
characters. Characters drawn with the XIMUnderline highlight should be
underlined. Characters drawn with the XIMHighlight, XIMPrimary, XIMSecondary,

316



Locales and Internationalized
Text Functions

and XIMTertiary highlights should be drawn in some unique manner that must
be different from XIMReverse and XIMUnderline. The values for XIMPrimary,
XIMSecondary, and XIMTertiary were incorrectly defined in the R5 specification.
The X Consortium's X11R5 implementation correctly implemented the values
for these highlights. The value of these highlights has been corrected in this
specification to agree with the values in the Consortium's X11R5 and X11R6
implementations.

Preedit Caret Callback

An input method may have its own navigation keys to allow the user to move the
text insertion point in the preedit area (for example, to move backward or forward).
Consequently, input method needs to indicate to the client that it should move the
text insertion point. It then calls the PreeditCaretCallback.

void PreeditCaretCallback(ic, client_data, call_data);

ic Specifies the input context.

client_data Specifies the additional client data.

call_data Specifies the preedit caret information.

The input method will trigger PreeditCaretCallback to move the text insertion
point during preedit. The call_data argument contains a pointer to an
XIMPreeditCaretCallbackStruct structure, which indicates where the caret should
be moved. The callback must move the insertion point to its new location and return,
in field position, the new offset value from the initial position.

The XIMPreeditCaretCallbackStruct structure is defined as follows: 

typedef struct _XIMPreeditCaretCallbackStruct {
     int position;     /* Caret offset within preedit string */
     XIMCaretDirection direction;     /* Caret moves direction */
     XIMCaretStyle style;     /* Feedback of the caret */
} XIMPreeditCaretCallbackStruct;

The XIMCaretStyle structure is defined as follows:

typedef enum {
     XIMIsInvisible,     /* Disable caret feedback */ 
     XIMIsPrimary,     /* UI defined caret feedback */
     XIMIsSecondary,     /* UI defined caret feedback */
} XIMCaretStyle;

The XIMCaretDirection structure is defined as follows: 

317



Locales and Internationalized
Text Functions

typedef enum {
     XIMForwardChar, XIMBackwardChar,
     XIMForwardWord, XIMBackwardWord,
     XIMCaretUp, XIMCaretDown,
     XIMNextLine, XIMPreviousLine,
     XIMLineStart, XIMLineEnd, 
     XIMAbsolutePosition,
     XIMDontChange,
 } XIMCaretDirection;

These values are defined as follows:

XIMForwardChar Move the caret forward one character position.
XIMBackwardChar Move the caret backward one character

position.
XIMForwardWord Move the caret forward one word.
XIMBackwardWord Move the caret backward one word.
XIMCaretUp Move the caret up one line keeping the current

horizontal offset.
XIMCaretDown Move the caret down one line keeping the

current horizontal offset.
XIMPreviousLine Move the caret to the beginning of the previous

line.
XIMNextLine Move the caret to the beginning of the next line.
XIMLineStart Move the caret to the beginning of the current

display line that contains the caret.
XIMLineEnd Move the caret to the end of the current display

line that contains the caret.
XIMAbsolutePosition The callback must move to the location specified

by the position field of the callback data,
indicated in characters, starting from the
beginning of the preedit text. Hence, a value of
zero means move back to the beginning of the
preedit text.

XIMDontChange The caret position does not change.

Status Callbacks

An input method may communicate changes in the status of an input context
(for example, created, destroyed, or focus changes) with three status callbacks:
StatusStartCallback, StatusDoneCallback, and StatusDrawCallback.

When the input context is created or gains focus, the input method calls the
StatusStartCallback callback.

void StatusStartCallback(ic, client_data, call_data);

ic Specifies the input context.

318



Locales and Internationalized
Text Functions

client_data Specifies the additional client data.

call_data Not used for this callback and always passed as NULL.

The callback should initialize appropriate data for displaying status and for
responding to StatusDrawCallback calls. Once StatusStartCallback is called, it will
not be called again before StatusDoneCallback has been called.

When an input context is destroyed or when it loses focus, the input method calls
StatusDoneCallback.

void StatusDoneCallback(ic, client_data, call_data);

ic Specifies the input context.

client_data Specifies the additional client data.

call_data Not used for this callback and always passed as NULL.

The callback may release any data allocated on StatusStart.

When an input context status has to be updated, the input method calls
StatusDrawCallback.

void StatusDrawCallback(ic, client_data, call_data);

ic Specifies the input context.

client_data Specifies the additional client data.

call_data Specifies the status drawing information.

The callback should update the status area by either drawing a string or imaging
a bitmap in the status area.

The XIMStatusDataType and XIMStatusDrawCallbackStruct structures are defined
as follows:  

typedef enum {
     XIMTextType,
     XIMBitmapType,
} XIMStatusDataType;

typedef struct _XIMStatusDrawCallbackStruct {
     XIMStatusDataType type;
     union {
          XIMText *text;
          Pixmap  bitmap;
     } data;
} XIMStatusDrawCallbackStruct;

The feedback styles XIMVisibleToForward, XIMVisibleToBackword, and
XIMVisibleToCenter are not relevant and will not appear in the XIMFeedback
element of the XIMText structure.

319



Locales and Internationalized
Text Functions

Event Filtering
Xlib provides the ability for an input method to register a filter internal to Xlib.
This filter is called by a client (or toolkit) by calling XFilterEvent after calling
XNextEvent. Any client that uses the XIM interface should call XFilterEvent to
allow input methods to process their events without knowledge of the client's
dispatching mechanism. A client's user interface policy may determine the priority
of event filters with respect to other event-handling mechanisms (for example,
modal grabs).

Clients may not know how many filters there are, if any, and what they do. They may
only know if an event has been filtered on return of XFilterEvent. Clients should
discard filtered events.

To filter an event, use XFilterEvent.

Bool XFilterEvent(event, w);

event Specifies the event to filter.

w Specifies the window for which the filter is to be applied.

If the window argument is None, XFilterEvent applies the filter to the window
specified in the XEvent structure. The window argument is provided so that layers
above Xlib that do event redirection can indicate to which window an event has
been redirected.

If XFilterEvent returns True, then some input method has filtered the event, and
the client should discard the event. If XFilterEvent returns False, then the client
should continue processing the event.

If a grab has occurred in the client and XFilterEvent returns True, the client should
ungrab the keyboard.

Getting Keyboard Input
To get composed input from an input method, use XmbLookupString or
XwcLookupString.

int XmbLookupString(ic, event, buffer_return, bytes_buffer,
keysym_return, status_return);

int XwcLookupString(ic, event, buffer_return, wchars_buffer,
keysym_return, status_return);

ic Specifies the input context.

event Specifies the key event to be used.

buffer_return Returns a multibyte string or wide character string
(if any) from the input method.

bytes_buffer

wchars_buffer Specifies space available in the return buffer.

320



Locales and Internationalized
Text Functions

keysym_return Returns the KeySym computed from the event if this
argument is not NULL.

status_return Returns a value indicating what kind of data is
returned.

The XmbLookupString and XwcLookupString functions return the string from the
input method specified in the buffer_return argument. If no string is returned, the
buffer_return argument is unchanged.

The KeySym into which the KeyCode from the event was mapped is returned in the
keysym_return argument if it is non-NULL and the status_return argument indicates
that a KeySym was returned. If both a string and a KeySym are returned, the KeySym
value does not necessarily correspond to the string returned.

XmbLookupString returns the length of the string in bytes, and XwcLookupString
returns the length of the string in characters. Both XmbLookupString and
XwcLookupString return text in the encoding of the locale bound to the input
method of the specified input context.

Each string returned by XmbLookupString and XwcLookupString begins in the
initial state of the encoding of the locale (if the encoding of the locale is state-
dependent).

Note
To insure proper input processing, it is essential that the client pass only
KeyPress events to XmbLookupString and XwcLookupString. Their behavior
when a client passes a KeyRelease event is undefined.

Clients should check the status_return argument before using the other returned
values. These two functions both return a value to status_return that indicates what
has been returned in the other arguments. The possible values returned are:

XBufferOverflow The input string to be returned is too large for
the supplied buffer_return. The required size
(XmbLookupString in bytes; XwcLookupString in
characters) is returned as the value of the function,
and the contents of buffer_return and keysym_return
are not modified. The client should recall the function
with the same event and a buffer of adequate size to
obtain the string.

XLookupNone No consistent input has been composed so far. The
contents of buffer_return and keysym_return are not
modified, and the function returns zero.

XLookupChars Some input characters have been composed. They
are placed in the buffer_return argument, and the
string length is returned as the value of the function.
The string is encoded in the locale bound to the input
context. The content of the keysym_return argument
is not modified.

XLookupKeySym A KeySym has been returned instead of a string
and is returned in keysym_return. The content of

321



Locales and Internationalized
Text Functions

the buffer_return argument is not modified, and the
function returns zero.

XLookupBoth Both a KeySym and a string are returned;
XLookupChars and XLookupKeySym occur
simultaneously.

It does not make any difference if the input context passed as an argument to
XmbLookupString and XwcLookupString is the one currently in possession of the
focus or not. Input may have been composed within an input context before it lost
the focus, and that input may be returned on subsequent calls to XmbLookupString
or XwcLookupString even though it does not have any more keyboard focus.

Input Method Conventions
The input method architecture is transparent to the client. However, clients should
respect a number of conventions in order to work properly. Clients must also be
aware of possible effects of synchronization between input method and library in
the case of a remote input server.

Client Conventions

A well-behaved client (or toolkit) should first query the input method style. If the
client cannot satisfy the requirements of the supported styles (in terms of geometry
management or callbacks), it should negotiate with the user continuation of the
program or raise an exception or error of some sort.

Synchronization Conventions

A KeyPress event with a KeyCode of zero is used exclusively as a signal that an
input method has composed input that can be returned by XmbLookupString or
XwcLookupString. No other use is made of a KeyPress event with KeyCode of zero.

Such an event may be generated by either a front-end or a back-end input method in
an implementation-dependent manner. Some possible ways to generate this event
include:

• A synthetic event sent by an input method server

• An artificial event created by a input method filter and pushed onto a client's
event queue

• A KeyPress event whose KeyCode value is modified by an input method filter

When callback support is specified by the client, input methods will not take action
unless they explicitly called back the client and obtained no response (the callback
is not specified or returned invalid data).

String Constants
The following symbols for string constants are defined in <X11/Xlib.h>. Although
they are shown here with particular macro definitions, they may be implemented
as macros, as global symbols, or as a mixture of the two. The string pointer value
itself is not significant; clients must not assume that inequality of two values implies
inequality of the actual string data.

322



Locales and Internationalized
Text Functions

#define XNVaNestedList                       "XNVaNestedList"
#define XNSeparatorofNestedList              "separatorofNestedList"
#define XNQueryInputStyle                    "queryInputStyle"
#define XNClientWindow                       "clientWindow"
#define XNInputStyle                         "inputStyle"
#define XNFocusWindow                        "focusWindow"
#define XNResourceName                       "resourceName"
#define XNResourceClass                      "resourceClass"
#define XNGeometryCallback                   "geometryCallback"
#define XNDestroyCallback                    "destroyCallback"
#define XNFilterEvents                       "filterEvents"
#define XNPreeditStartCallback               "preeditStartCallback"
#define XNPreeditDoneCallback                "preeditDoneCallback"
#define XNPreeditDrawCallback                "preeditDrawCallback"
#define XNPreeditCaretCallback               "preeditCaretCallback"
#define XNPreeditStateNotifyCallback         "preeditStateNotifyCallback"
#define XNPreeditAttributes                  "preeditAttributes"
#define XNStatusStartCallback                "statusStartCallback"
#define XNStatusDoneCallback                 "statusDoneCallback"
#define XNStatusDrawCallback                 "statusDrawCallback"
#define XNStatusAttributes                   "statusAttributes"
#define XNArea                               "area"
#define XNAreaNeeded                         "areaNeeded"
#define XNSpotLocation                       "spotLocation"
#define XNColormap                           "colorMap"
#define XNStdColormap                        "stdColorMap"
#define XNForeground                         "foreground"
#define XNBackground                         "background"
#define XNBackgroundPixmap                   "backgroundPixmap"
#define XNFontSet                            "fontSet"
#define XNLineSpace                          "lineSpace"
#define XNCursor                             "cursor"
#define XNQueryIMValuesList                  "queryIMValuesList"
#define XNQueryICValuesList                  "queryICValuesList"
#define XNStringConversionCallback           "stringConversionCallback"
#define XNStringConversion                   "stringConversion"
#define XNResetState                         "resetState"
#define XNHotKey                             "hotkey"
#define XNHotKeyState                        "hotkeyState"
#define XNPreeditState                       "preeditState"
#define XNVisiblePosition                    "visiblePosition"
#define XNR6PreeditCallbackBehavior          "r6PreeditCallback"
#define XNRequiredCharSet                    "requiredCharSet"
#define XNQueryOrientation                   "queryOrientation"
#define XNDirectionalDependentDrawing        "directionalDependentDrawing"
#define XNContextualDrawing                  "contextualDrawing"
#define XNBaseFontName                       "baseFontName"
#define XNMissingCharSet                     "missingCharSet"
#define XNDefaultString                      "defaultString"
#define XNOrientation                        "orientation"
#define XNFontInfo                           "fontInfo"
#define XNOMAutomatic                        "omAutomatic"

323



Chapter 14. Inter-Client
Communication Functions

The Inter-Client Communication Conventions Manual, hereafter referred to as the
ICCCM, details the X Consortium approved conventions that govern inter-client
communications. These conventions ensure peer-to-peer client cooperation in the
use of selections, cut buffers, and shared resources as well as client cooperation
with window and session managers. For further information, see the Inter-Client
Communication Conventions Manual.

Xlib provides a number of standard properties and programming interfaces that are
ICCCM compliant. The predefined atoms for some of these properties are defined
in the <X11/Xatom.h> header file, where to avoid name conflicts with user symbols
their #define name has an XA_ prefix. For further information about atoms and
properties, see section 4.3.

Xlib’s selection and cut buffer mechanisms provide the primary programming
interfaces by which peer client applications communicate with each other (see
sections 4.5 and 16.6). The functions discussed in this chapter provide the primary
programming interfaces by which client applications communicate with their
window and session managers as well as share standard colormaps.

The standard properties that are of special interest for communicating with window
and session managers are:

324

../../xorg-docs/icccm/icccm.pdf#icccm
../../xorg-docs/icccm/icccm.pdf#icccm


Inter-Client
Communication Functions

Name Type Format Description
WM_CLASS STRING 8 Set by application

programs to allow
window and session
managers to obtain the
application’s resources
from the resource
database.

WM_CLIENT_MACHINE TEXT   The string name of the
machine on which the
client application is
running.

WM_COLORMAP_WINDOWSWINDOWS 32 The list of window
IDs that may need a
different colormap from
that of their top-level
window.

WM_COMMAND TEXT   The command and
arguments, null
separated, used to
invoke the application.

WM_HINTS WM_HINTS 32 Additional hints set by
the client for use by the
window manager. The C
type of this property is
XWMHints.

WM_ICON_NAME TEXT   The name to be used in
an icon.

WM_ICON_SIZE WM_ICON_SIZE 32 The window manager
may set this property
on the root window
to specify the icon
sizes it supports. The C
type of this property is
XIconSize.

WM_NAME TEXT   The name of the
application.

WM_NORMAL_HINTS WM_NORMAL_HINTS32 Size hints for a window
in its normal state. The
C type of this property
is XSizeHints.

WM_PROTOCOLS ATOM 32 List of atoms
that identify the
communications
protocols between
the client and window
manager in which
the client is willing to
participate.

WM_STATE WM_STATE 32 Intended for
communication
between window and
session managers only.

WM_TRANSIENT_FOR WINDOW 32 Set by application
programs to indicate to
the window manager
that a transient top-
level window, such as a
dialog box.

325



Inter-Client
Communication Functions

The remainder of this chapter discusses:

• Client to window manager communication

• Client to session manager communication

• Standard colormaps

Client to Window Manager Communication
This section discusses how to:

• Manipulate top-level windows

• Convert string lists

• Set and read text properties

• Set and read the WM_NAME property

• Set and read the WM_ICON_NAME property

• Set and read the WM_HINTS property

• Set and read the WM_NORMAL_HINTS property

• Set and read the WM_CLASS property

• Set and read the WM_TRANSIENT_FOR property

• Set and read the WM_PROTOCOLS property

• Set and read the WM_COLORMAP_WINDOWS property

• Set and read the WM_ICON_SIZE property

• Use window manager convenience functions

Manipulating Top-Level Windows
Xlib provides functions that you can use to change the visibility or size of top-level
windows (that is, those that were created as children of the root window). Note that
the subwindows that you create are ignored by window managers. Therefore, you
should use the basic window functions described in chapter 3 to manipulate your
application's subwindows.

To request that a top-level window be iconified, use XIconifyWindow.

Status XIconifyWindow(display, w, screen_number);

display Specifies the connection to the X server.

w Specifies the window.

screen_number Specifies the appropriate screen number on the host
server.

326



Inter-Client
Communication Functions

The XIconifyWindow function sends a WM_CHANGE_STATE ClientMessage event
with a format of 32 and a first data element of IconicState (as described in
section 4.1.4 of the Inter-Client Communication Conventions Manual) and a
window of w to the root window of the specified screen with an event mask
set to SubstructureNotifyMask | SubstructureRedirectMask. Window managers
may elect to receive this message and if the window is in its normal state, may
treat it as a request to change the window's state from normal to iconic. If the
WM_CHANGE_STATE property cannot be interned, XIconifyWindow does not send
a message and returns a zero status. It returns a nonzero status if the client message
is sent successfully; otherwise, it returns a zero status.

To request that a top-level window be withdrawn, use XWithdrawWindow.

Status XWithdrawWindow(display, w, screen_number);

display Specifies the connection to the X server.

w Specifies the window.

screen_number Specifies the appropriate screen number on the host
server.

The XWithdrawWindow function unmaps the specified window and sends a synthetic
UnmapNotify event to the root window of the specified screen. Window managers
may elect to receive this message and may treat it as a request to change the
window's state to withdrawn. When a window is in the withdrawn state, neither its
normal nor its iconic representations is visible. It returns a nonzero status if the
UnmapNotify event is successfully sent; otherwise, it returns a zero status.

XWithdrawWindow can generate a BadWindow error.

To request that a top-level window be reconfigured, use XReconfigureWMWindow.

Status XReconfigureWMWindow(display, w, screen_number, value_mask,
values);

display Specifies the connection to the X server.

w Specifies the window.

screen_number Specifies the appropriate screen number on the host
server.

value_mask Specifies which values are to be set using information
in the values structure. This mask is the bitwise
inclusive OR of the valid configure window values
bits.

values Specifies the XWindowChanges structure.

The XReconfigureWMWindow function issues a ConfigureWindow request on the
specified top-level window. If the stacking mode is changed and the request
fails with a BadMatch error, the error is trapped by Xlib and a synthetic
ConfigureRequestEvent containing the same configuration parameters is sent to
the root of the specified window. Window managers may elect to receive this event
and treat it as a request to reconfigure the indicated window. It returns a nonzero
status if the request or event is successfully sent; otherwise, it returns a zero status.

327

../../xorg-docs/icccm/icccm.pdf#Changing_Window_State


Inter-Client
Communication Functions

XReconfigureWMWindow can generate BadValue and BadWindow errors.

Converting String Lists
Many of the text properties allow a variety of types and formats. Because the data
stored in these properties are not simple null-terminated strings, an XTextProperty
structure is used to describe the encoding, type, and length of the text as well as
its value. The XTextProperty structure contains: 

typedef struct {
 unsigned char *value; /* property data */
 Atom encoding; /* type of property */
 int format; /* 8, 16, or 32 */
 unsigned long nitems; /* number of items in value */
} XTextProperty;

Xlib provides functions to convert localized text to or from encodings that support
the inter-client communication conventions for text. In addition, functions are
provided for converting between lists of pointers to character strings and text
properties in the STRING encoding.

The functions for localized text return a signed integer error status that encodes
Success as zero, specific error conditions as negative numbers, and partial
conversion as a count of unconvertible characters.

#define #XNoMemory           -1
#define #XLocaleNotSupported -2
#define #XConverterNotFound  -3

typedef enum {
 XStringStyle,  /* STRING */
 XCompoundTextStyle, /* COMPOUND_TEXT */
 XTextStyle,  /* text in owner's encoding (current locale) */
 XStdICCTextStyle /* STRING, else COMPOUND_TEXT */
} XICCEncodingStyle;

To convert a list of text strings to an XTextProperty structure, use
XmbTextListToTextProperty or XwcTextListToTextProperty.

int XmbTextListToTextProperty(display, list, count, style,
text_prop_return);

int XwcTextListToTextProperty(display, list, count, style,
text_prop_return);

display Specifies the connection to the X server.

list Specifies a list of null-terminated character strings.

count Specifies the number of strings specified.

328



Inter-Client
Communication Functions

style Specifies the manner in which the property is
encoded.

text_prop_return Returns the XTextProperty structure.

The XmbTextListToTextProperty and XwcTextListToTextProperty functions set
the specified XTextProperty value to a set of null-separated elements representing
the concatenation of the specified list of null-terminated text strings. A final
terminating null is stored at the end of the value field of text_prop_return but is not
included in the nitems member.

The functions set the encoding field of text_prop_return to an Atom for the
specified display naming the encoding determined by the specified style and convert
the specified text list to this encoding for storage in the text_prop_return value
field. If the style XStringStyle or XCompoundTextStyle is specified, this encoding
is ``STRING'' or ``COMPOUND_TEXT'', respectively. If the style XTextStyle
is specified, this encoding is the encoding of the current locale. If the style
XStdICCTextStyle is specified, this encoding is ``STRING'' if the text is fully
convertible to STRING, else ``COMPOUND_TEXT''.

If insufficient memory is available for the new value string, the functions
return XNoMemory. If the current locale is not supported, the functions return
XLocaleNotSupported. In both of these error cases, the functions do not set
text_prop_return.

To determine if the functions are guaranteed not to return XLocaleNotSupported,
use XSupportsLocale.

If the supplied text is not fully convertible to the specified encoding, the functions
return the number of unconvertible characters. Each unconvertible character
is converted to an implementation-defined and encoding-specific default string.
Otherwise, the functions return Success. Note that full convertibility to all styles
except XStringStyle is guaranteed.

To free the storage for the value field, use XFree.

To obtain a list of text strings from an XTextProperty structure, use
XmbTextPropertyToTextList or XwcTextPropertyToTextList.

int XmbTextPropertyToTextList(display, text_prop, list_return,
count_return);

int XwcTextPropertyToTextList(display, text_prop, list_return,
count_return);

display Specifies the connection to the X server.

text_prop Specifies the XTextProperty structure to be used.

list_return Returns a list of null-terminated character strings.

count_return Returns the number of strings.

The XmbTextPropertyToTextList and XwcTextPropertyToTextList functions
return a list of text strings in the current locale representing the null-separated
elements of the specified XTextProperty structure. The data in text_prop must be
format 8.

329



Inter-Client
Communication Functions

Multiple elements of the property (for example, the strings in a disjoint text
selection) are separated by a null byte. The contents of the property are not
required to be null-terminated; any terminating null should not be included in
text_prop.nitems.

If insufficient memory is available for the list and its
elements, XmbTextPropertyToTextList and XwcTextPropertyToTextList return
XNoMemory. If the current locale is not supported, the functions return
XLocaleNotSupported. Otherwise, if the encoding field of text_prop is not
convertible to the encoding of the current locale, the functions return
XConverterNotFound. For supported locales, existence of a converter from
COMPOUND_TEXT, STRING or the encoding of the current locale is guaranteed
if XSupportsLocale returns True for the current locale (but the actual
text may contain unconvertible characters). Conversion of other encodings is
implementation-dependent. In all of these error cases, the functions do not set any
return values.

Otherwise, XmbTextPropertyToTextList and XwcTextPropertyToTextList return
the list of null-terminated text strings to list_return and the number of text strings
to count_return.

If the value field of text_prop is not fully convertible to the encoding of the
current locale, the functions return the number of unconvertible characters. Each
unconvertible character is converted to a string in the current locale that is specific
to the current locale. To obtain the value of this string, use XDefaultString.
Otherwise, XmbTextPropertyToTextList and XwcTextPropertyToTextList return
Success.

To free the storage for the list and its contents returned by
XmbTextPropertyToTextList, use XFreeStringList. To free the storage for
the list and its contents returned by XwcTextPropertyToTextList, use
XwcFreeStringList.

To free the in-memory data associated with the specified wide character string list,
use XwcFreeStringList.

void XwcFreeStringList(list);

list Specifies the list of strings to be freed.

The XwcFreeStringList function frees memory allocated by
XwcTextPropertyToTextList.

To obtain the default string for text conversion in the current locale, use

char *XDefaultString();

The XDefaultString function returns the default string used by Xlib for text
conversion (for example, in XmbTextPropertyToTextList). The default string is the
string in the current locale that is output when an unconvertible character is found
during text conversion. If the string returned by XDefaultString is the empty string
(""), no character is output in the converted text. XDefaultString does not return
NULL.

The string returned by XDefaultString is independent of the default string for text
drawing; see XCreateFontSet to obtain the default string for an XFontSet.

330



Inter-Client
Communication Functions

The behavior when an invalid codepoint is supplied to any Xlib function is undefined.

The returned string is null-terminated. It is owned by Xlib and should not be
modified or freed by the client. It may be freed after the current locale is changed.
Until freed, it will not be modified by Xlib.

To set the specified list of strings in the STRING encoding to a XTextProperty
structure, use XStringListToTextProperty.

Status XStringListToTextProperty(list, count, text_prop_return);

list Specifies a list of null-terminated character strings.

count Specifies the number of strings.

text_prop_return Returns the XTextProperty structure.

The XStringListToTextProperty function sets the specified XTextProperty to
be of type STRING (format 8) with a value representing the concatenation of
the specified list of null-separated character strings. An extra null byte (which
is not included in the nitems member) is stored at the end of the value field
of text_prop_return. The strings are assumed (without verification) to be in the
STRING encoding. If insufficient memory is available for the new value string,
XStringListToTextProperty does not set any fields in the XTextProperty structure
and returns a zero status. Otherwise, it returns a nonzero status. To free the storage
for the value field, use XFree.

To obtain a list of strings from a specified XTextProperty structure in the STRING
encoding, use XTextPropertyToStringList.

Status XTextPropertyToStringList(text_prop, list_return, count_return);

text_prop Specifies the XTextProperty structure to be used.

list_return Returns a list of null-terminated character strings.

count_return Returns the number of strings.

The XTextPropertyToStringList function returns a list of strings representing
the null-separated elements of the specified XTextProperty structure. The data
in text_prop must be of type STRING and format 8. Multiple elements of the
property (for example, the strings in a disjoint text selection) are separated by NULL
(encoding 0). The contents of the property are not null-terminated. If insufficient
memory is available for the list and its elements, XTextPropertyToStringList sets
no return values and returns a zero status. Otherwise, it returns a nonzero status.
To free the storage for the list and its contents, use XFreeStringList.

To free the in-memory data associated with the specified string list, use
XFreeStringList.

void XFreeStringList(list);

list Specifies the list of strings to be freed.

The XFreeStringList function releases memory allocated by
XmbTextPropertyToTextList and XTextPropertyToStringList and the missing
charset list allocated by XCreateFontSet.

331



Inter-Client
Communication Functions

Setting and Reading Text Properties
Xlib provides two functions that you can use to set and read the text properties
for a given window. You can use these functions to set and read those
properties of type TEXT (WM_NAME, WM_ICON_NAME, WM_COMMAND, and
WM_CLIENT_MACHINE). In addition, Xlib provides separate convenience functions
that you can use to set each of these properties. For further information about these
convenience functions, see sections 14.1.4, 14.1.5, 14.2.1, and 14.2.2, respectively.

To set one of a window's text properties, use XSetTextProperty.

void XSetTextProperty(display, w, text_prop, property);

display Specifies the connection to the X server.

w Specifies the window.

text_prop Specifies the XTextProperty structure to be used.

property Specifies the property name.

The XSetTextProperty function replaces the existing specified property for the
named window with the data, type, format, and number of items determined by the
value field, the encoding field, the format field, and the nitems field, respectively,
of the specified XTextProperty structure. If the property does not already exist,
XSetTextProperty sets it for the specified window.

XSetTextProperty can generate BadAlloc, BadAtom, BadValue, and BadWindow
errors.

To read one of a window's text properties, use XGetTextProperty.

Status XGetTextProperty(display, w, text_prop_return, property);

display Specifies the connection to the X server.

w Specifies the window.

text_prop_return Returns the XTextProperty structure.

property Specifies the property name.

The XGetTextProperty function reads the specified property from the window and
stores the data in the returned XTextProperty structure. It stores the data in the
value field, the type of the data in the encoding field, the format of the data in the
format field, and the number of items of data in the nitems field. An extra byte
containing null (which is not included in the nitems member) is stored at the end of
the value field of text_prop_return. The particular interpretation of the property's
encoding and data as text is left to the calling application. If the specified property
does not exist on the window, XGetTextProperty sets the value field to NULL, the
encoding field to None, the format field to zero, and the nitems field to zero.

If it was able to read and store the data in the XTextProperty structure,
XGetTextProperty returns a nonzero status; otherwise, it returns a zero status.

XGetTextProperty can generate BadAtom and BadWindow errors.

332



Inter-Client
Communication Functions

Setting and Reading the WM_NAME Property
Xlib provides convenience functions that you can use to set and read the WM_NAME
property for a given window.

To set a window's WM_NAME property with the supplied convenience function, use
XSetWMName.

void XSetWMName(display, w, text_prop);

display Specifies the connection to the X server.

w Specifies the window.

text_prop Specifies the XTextProperty structure to be used.

The XSetWMName convenience function calls XSetTextProperty to set the
WM_NAME property.

To read a window's WM_NAME property with the supplied convenience function,
use XGetWMName.

Status XGetWMName(display, w, text_prop_return);

display Specifies the connection to the X server.

w Specifies the window.

text_prop_return Returns the XTextProperty structure.

The XGetWMName convenience function calls XGetTextProperty to obtain the
WM_NAME property. It returns a nonzero status on success; otherwise, it returns
a zero status.

The following two functions have been superseded by XSetWMName and XGetWMName,
respectively. You can use these additional convenience functions for window names
that are encoded as STRING properties.

To assign a name to a window, use XStoreName.

XStoreName(display, w, window_name);

display Specifies the connection to the X server.

w Specifies the window.

window_name Specifies the window name, which should be a null-
terminated string.

The XStoreName function assigns the name passed to window_name to the specified
window. A window manager can display the window name in some prominent
place, such as the title bar, to allow users to identify windows easily. Some
window managers may display a window's name in the window's icon, although
they are encouraged to use the window's icon name if one is provided by the
application. If the string is not in the Host Portable Character Encoding, the result
is implementation-dependent.

XStoreName can generate BadAlloc and BadWindow errors.

333



Inter-Client
Communication Functions

To get the name of a window, use XFetchName.

Status XFetchName(display, w, window_name_return);

display Specifies the connection to the X server.

w Specifies the window.

window_name_return Returns the window name, which is a null-terminated
string.

The XFetchName function returns the name of the specified window. If it succeeds,
it returns a nonzero status; otherwise, no name has been set for the window,
and it returns zero. If the WM_NAME property has not been set for this window,
XFetchName sets window_name_return to NULL. If the data returned by the server
is in the Latin Portable Character Encoding, then the returned string is in the Host
Portable Character Encoding. Otherwise, the result is implementation-dependent.
When finished with it, a client must free the window name string using XFree.

XFetchName can generate a BadWindow error.

Setting and Reading the WM_ICON_NAME Property
Xlib provides convenience functions that you can use to set and read the
WM_ICON_NAME property for a given window.

To set a window's WM_ICON_NAME property, use XSetWMIconName.

void XSetWMIconName(display, w, text_prop);

display Specifies the connection to the X server.

w Specifies the window.

text_prop Specifies the XTextProperty structure to be used.

The XSetWMIconName convenience function calls XSetTextProperty to set the
WM_ICON_NAME property.

To read a window's WM_ICON_NAME property, use XGetWMIconName.

Status XGetWMIconName(display, w, text_prop_return);

display Specifies the connection to the X server.

w Specifies the window.

text_prop_return Returns the XTextProperty structure.

The XGetWMIconName convenience function calls XGetTextProperty to obtain the
WM_ICON_NAME property. It returns a nonzero status on success; otherwise, it
returns a zero status.

The next two functions have been superseded by XSetWMIconName and
XGetWMIconName, respectively. You can use these additional convenience functions
for window names that are encoded as STRING properties.

To set the name to be displayed in a window's icon, use XSetIconName.

334



Inter-Client
Communication Functions

XSetIconName(display, w, icon_name);

display Specifies the connection to the X server.

w Specifies the window.

icon_name Specifies the icon name, which should be a null-
terminated string.

If the string is not in the Host Portable Character Encoding, the result is
implementation-dependent. XSetIconName can generate BadAlloc and BadWindow
errors.

To get the name a window wants displayed in its icon, use XGetIconName.

Status XGetIconName(display, w, icon_name_return);

display Specifies the connection to the X server.

w Specifies the window.

icon_name_return Returns the window's icon name, which is a null-
terminated string.

The XGetIconName function returns the name to be displayed in the specified
window's icon. If it succeeds, it returns a nonzero status; otherwise, if no icon name
has been set for the window, it returns zero. If you never assigned a name to the
window, XGetIconName sets icon_name_return to NULL. If the data returned by the
server is in the Latin Portable Character Encoding, then the returned string is in
the Host Portable Character Encoding. Otherwise, the result is implementation-
dependent. When finished with it, a client must free the icon name string using
XFree.

XGetIconName can generate a BadWindow error.

Setting and Reading the WM_HINTS Property
Xlib provides functions that you can use to set and read the WM_HINTS property
for a given window. These functions use the flags and the XWMHints structure, as
defined in the <X11/Xutil.h>    header file.

To allocate an XWMHints structure, use XAllocWMHints.

XWMHints *XAllocWMHints();

The XAllocWMHints function allocates and returns a pointer to an XWMHints
structure. Note that all fields in the XWMHints structure are initially set to zero. If
insufficient memory is available, XAllocWMHints returns NULL. To free the memory
allocated to this structure, use XFree.

The XWMHints structure contains:

/* Window manager hints mask bits */

#define         InputHint             (1L<<0)
#define         StateHint             (1L<<1)

335



Inter-Client
Communication Functions

#define         IconPixmapHint        (1L<<2)
#define         IconWindowHint        (1L<<3)
#define         IconPositionHint      (1L<<4)
#define         IconMaskHint          (1L<<5)
#define         WindowGroupHint       (1L<<6)
#define         UrgencyHint           (1L<<8)
#define         AllHints              (InputHint|StateHint|IconPixmapHint|
                                       IconWIndowHint|IconPositionHint|
                                       IconMaskHint|WindowGroupHint)

/* Values */

typedef struct {
 long flags;         /* marks which fields in this structure are defined */
 Bool input;         /* does this application rely on the window manager to
              get keyboard input? */
 int initial_state; /* see below */
 Pixmap icon_pixmap; /* pixmap to be used as icon */
 Window icon_window; /* window to be used as icon */
 int icon_x, icon_y; /* initial position of icon */
 Pixmap icon_mask; /* pixmap to be used as mask for icon_pixmap */
 XID window_group; /* id of related window group */
 /* this structure may be extended in the future */
} XWMHints;

The input member is used to communicate to the window manager the input focus
model used by the application. Applications that expect input but never explicitly set
focus to any of their subwindows (that is, use the push model of focus management),
such as X Version 10 style applications that use real-estate driven focus, should set
this member to True. Similarly, applications that set input focus to their subwindows
only when it is given to their top-level window by a window manager should also set
this member to True. Applications that manage their own input focus by explicitly
setting focus to one of their subwindows whenever they want keyboard input (that
is, use the pull model of focus management) should set this member to False.
Applications that never expect any keyboard input also should set this member to
False.

Pull model window managers should make it possible for push model applications to
get input by setting input focus to the top-level windows of applications whose input
member is True. Push model window managers should make sure that pull model
applications do not break them by resetting input focus to PointerRoot when it is
appropriate (for example, whenever an application whose input member is False
sets input focus to one of its subwindows).

The definitions for the initial_state flag are:

#define      WithdrawnState 0
#define      NormalState    1   /* most applications start this way */
#define      IconicState    3   /* application wants to start as an icon */

The icon_mask specifies which pixels of the icon_pixmap should be used as the icon.
This allows for nonrectangular icons. Both icon_pixmap and icon_mask must be

336



Inter-Client
Communication Functions

bitmaps. The icon_window lets an application provide a window for use as an icon
for window managers that support such use. The window_group lets you specify
that this window belongs to a group of other windows. For example, if a single
application manipulates multiple top-level windows, this allows you to provide
enough information that a window manager can iconify all of the windows rather
than just the one window.

The UrgencyHint flag, if set in the flags field, indicates that the client deems the
window contents to be urgent, requiring the timely response of the user. The window
manager will make some effort to draw the user's attention to this window while
this flag is set. The client must provide some means by which the user can cause the
urgency flag to be cleared (either mitigating the condition that made the window
urgent or merely shutting off the alarm) or the window to be withdrawn.

To set a window's WM_HINTS property, use XSetWMHints.

XSetWMHints(display, w, wmhints);

display Specifies the connection to the X server.

w Specifies the window.

wmhints Specifies the XWMHints structure to be used.

The XSetWMHints function sets the window manager hints that include icon
information and location, the initial state of the window, and whether the application
relies on the window manager to get keyboard input.

XSetWMHints can generate BadAlloc and BadWindow errors.

To read a window's WM_HINTS property, use XGetWMHints.

XWMHints *XGetWMHints(display, w);

display Specifies the connection to the X server.

w Specifies the window.

The XGetWMHints function reads the window manager hints and returns NULL if no
WM_HINTS property was set on the window or returns a pointer to an XWMHints
structure if it succeeds. When finished with the data, free the space used for it by
calling XFree.

XGetWMHints can generate a BadWindow error.

Setting and Reading the WM_NORMAL_HINTS Property
Xlib provides functions that you can use to set or read the WM_NORMAL_HINTS
property for a given window. The functions use the flags and the XSizeHints
structure, as defined in the <X11/Xutil.h>    header file.

The size of the XSizeHints structure may grow in future releases, as new
components are added to support new ICCCM features. Passing statically allocated
instances of this structure into Xlib may result in memory corruption when running
against a future release of the library. As such, it is recommended that only
dynamically allocated instances of the structure be used.

337



Inter-Client
Communication Functions

To allocate an XSizeHints structure, use XAllocSizeHints.

XSizeHints *XAllocSizeHints();

The XAllocSizeHints function allocates and returns a pointer to an XSizeHints
structure. Note that all fields in the XSizeHints structure are initially set to zero.
If insufficient memory is available, XAllocSizeHints returns NULL. To free the
memory allocated to this structure, use XFree.

The XSizeHints structure contains:

/* Size hints mask bits */

#define           USPosition         (1L<<0)  /* user specified x,y */
#define           USSize             (1L<<1)  /* user specified width,height */
#define           PPosition          (1L<<2)  /* program specified position */
#define           PSize              (1L<<3)  /* program specified size */
#define           PMinSize           (1L<<4)  /* program specified minimum size */
#define           PMaxSize           (1L<<5)  /* program specified maximum size */
#define           PResizeInc         (1L<<5)  /* program specified resize increments */
#define           PAspect            (1L<<6)  /* program specified min and max aspect ratios */
#define           PBaseSize          (1L<<8)
#define           PWinGravity        (1L<<9)
#define           PAllHints          (PPosition|Psize|
                                      PMinSize|PMaxSize|
                                      PResizeInc|PAspect)

/* Values */

typedef struct {
 long flags;         /* marks which fields in this structure are defined */
 int x, y;         /* Obsolete */
 int width, height; /* Obsolete */
 int min_width, min_height;
 int max_width, max_height;
 int width_inc, height_inc;
 struct {
        int x;         /* numerator */
        int y;         /* denominator */
 } min_aspect, max_aspect;
 int base_width, base_height;
 int win_gravity;
 /* this structure may be extended in the future */
} XSizeHints;

The x, y, width, and height members are now obsolete and are left solely
for compatibility reasons. The min_width and min_height members specify the
minimum window size that still allows the application to be useful. The max_width
and max_height members specify the maximum window size. The width_inc
and height_inc members define an arithmetic progression of sizes (minimum to
maximum) into which the window prefers to be resized. The min_aspect and
max_aspect members are expressed as ratios of x and y, and they allow an
application to specify the range of aspect ratios it prefers. The base_width and

338



Inter-Client
Communication Functions

base_height members define the desired size of the window. The window manager
will interpret the position of the window and its border width to position the point
of the outer rectangle of the overall window specified by the win_gravity member.
The outer rectangle of the window includes any borders or decorations supplied by
the window manager. In other words, if the window manager decides to place the
window where the client asked, the position on the parent window's border named
by the win_gravity will be placed where the client window would have been placed
in the absence of a window manager.

Note that use of the PAllHints macro is highly discouraged.

To set a window's WM_NORMAL_HINTS property, use XSetWMNormalHints.

void XSetWMNormalHints(display, w, hints);

display Specifies the connection to the X server.

w Specifies the window.

hints Specifies the size hints for the window in its normal state.

The XSetWMNormalHints function replaces the size hints for the
WM_NORMAL_HINTS property on the specified window. If the property does not
already exist, XSetWMNormalHints sets the size hints for the WM_NORMAL_HINTS
property on the specified window. The property is stored with a type of
WM_SIZE_HINTS and a format of 32.

XSetWMNormalHints can generate BadAlloc and BadWindow errors.

To read a window's WM_NORMAL_HINTS property, use XGetWMNormalHints.

Status XGetWMNormalHints(display, w, hints_return, supplied_return);

display Specifies the connection to the X server.

w Specifies the window.

hints_return Returns the size hints for the window in its normal
state.

supplied_return Returns the hints that were supplied by the user.

The XGetWMNormalHints function returns the size hints stored in the
WM_NORMAL_HINTS property on the specified window. If the property is of type
WM_SIZE_HINTS, is of format 32, and is long enough to contain either an old (pre-
ICCCM) or new size hints structure, XGetWMNormalHints sets the various fields of
the XSizeHints structure, sets the supplied_return argument to the list of fields
that were supplied by the user (whether or not they contained defined values), and
returns a nonzero status. Otherwise, it returns a zero status.

If XGetWMNormalHints returns successfully and a pre-ICCCM size hints property is
read, the supplied_return argument will contain the following bits:

(USPosition|USSize|PPosition|PSize|PMinSize|
 PMaxSize|PResizeInc|PAspect)

339



Inter-Client
Communication Functions

If the property is large enough to contain the base size and window gravity fields
as well, the supplied_return argument will also contain the following bits:

PBaseSize|PWinGravity

XGetWMNormalHints can generate a BadWindow error.

To set a window's WM_SIZE_HINTS property, use XSetWMSizeHints.

void XSetWMSizeHints(display, w, hints, property);

display Specifies the connection to the X server.

w Specifies the window.

hints Specifies the XSizeHints structure to be used.

property Specifies the property name.

The XSetWMSizeHints function replaces the size hints for the specified property
on the named window. If the specified property does not already exist,
XSetWMSizeHints sets the size hints for the specified property on the named
window. The property is stored with a type of WM_SIZE_HINTS and a format of 32.
To set a window's normal size hints, you can use the XSetWMNormalHints function.

XSetWMSizeHints can generate BadAlloc, BadAtom, and BadWindow errors.

To read a window's WM_SIZE_HINTS property, use XGetWMSizeHints.

Status XGetWMSizeHints(display, w, hints_return, supplied_return,
property);

display Specifies the connection to the X server.

w Specifies the window.

hints_return Returns the XSizeHints structure.

supplied_return Returns the hints that were supplied by the user.

property Specifies the property name.

The XGetWMSizeHints function returns the size hints stored in the specified
property on the named window. If the property is of type WM_SIZE_HINTS, is of
format 32, and is long enough to contain either an old (pre-ICCCM) or new size
hints structure, XGetWMSizeHints sets the various fields of the XSizeHints structure,
sets the supplied_return argument to the list of fields that were supplied by the
user (whether or not they contained defined values), and returns a nonzero status.
Otherwise, it returns a zero status. To get a window's normal size hints, you can use
the XGetWMNormalHints function.

If XGetWMSizeHints returns successfully and a pre-ICCCM size hints property is
read, the supplied_return argument will contain the following bits:

(USPosition|USSize|PPosition|PSize|PMinSize|
 PMaxSize|PResizeInc|PAspect)

340



Inter-Client
Communication Functions

If the property is large enough to contain the base size and window gravity fields
as well, the supplied_return argument will also contain the following bits:

PBaseSize|PWinGravity

XGetWMSizeHints can generate BadAtom and BadWindow errors.

Setting and Reading the WM_CLASS Property
Xlib provides functions that you can use to set and get the WM_CLASS property for
a given window. These functions use the XClassHint structure, which is defined in
the <X11/Xutil.h>    header file.

To allocate an XClassHint structure, use XAllocClassHint. 

XClassHint *XAllocClassHint();

The XAllocClassHint function allocates and returns a pointer to an XClassHint
structure. Note that the pointer fields in the XClassHint structure are initially set to
NULL. If insufficient memory is available, XAllocClassHint returns NULL. To free
the memory allocated to this structure, use XFree.

The XClassHint contains:

typedef struct {
 char *res_name;
 char *res_class;
} XClassHint;

The res_name member contains the application name, and the res_class member
contains the application class. Note that the name set in this property may differ
from the name set as WM_NAME. That is, WM_NAME specifies what should be
displayed in the title bar and, therefore, can contain temporal information (for
example, the name of a file currently in an editor's buffer). On the other hand,
the name specified as part of WM_CLASS is the formal name of the application
that should be used when retrieving the application's resources from the resource
database.

To set a window's WM_CLASS property, use XSetClassHint.

XSetClassHint(display, w, class_hints);

display Specifies the connection to the X server.

w Specifies the window.

class_hints Specifies the XClassHint structure that is to be used.

The XSetClassHint function sets the class hint for the specified window. If
the strings are not in the Host Portable Character Encoding, the result is
implementation-dependent.

341



Inter-Client
Communication Functions

XSetClassHint can generate BadAlloc and BadWindow errors.

To read a window's WM_CLASS property, use XGetClassHint.

Status XGetClassHint(display, w, class_hints_return);

display Specifies the connection to the X server.

w Specifies the window.

class_hints_return Returns the XClassHint structure.

The XGetClassHint function returns the class hint of the specified window to the
members of the supplied structure. If the data returned by the server is in the Latin
Portable Character Encoding, then the returned strings are in the Host Portable
Character Encoding. Otherwise, the result is implementation-dependent. It returns
a nonzero status on success; otherwise, it returns a zero status. To free res_name
and res_class when finished with the strings, use XFree on each individually.

XGetClassHint can generate a BadWindow error.

Setting and Reading the WM_TRANSIENT_FOR Property
Xlib provides functions that you can use to set and read the WM_TRANSIENT_FOR
property for a given window.

To set a window's WM_TRANSIENT_FOR property, use XSetTransientForHint.

XSetTransientForHint(display, w, prop_window);

display Specifies the connection to the X server.

w Specifies the window.

prop_window Specifies the window that the WM_TRANSIENT_FOR
property is to be set to.

The XSetTransientForHint function sets the WM_TRANSIENT_FOR property of
the specified window to the specified prop_window.

XSetTransientForHint can generate BadAlloc and BadWindow errors.

To read a window's WM_TRANSIENT_FOR property, use XGetTransientForHint.

Status XGetTransientForHint(display, w, prop_window_return);

display Specifies the connection to the X server.

w Specifies the window.

prop_window_return Returns the WM_TRANSIENT_FOR property of the
specified window.

The XGetTransientForHint function returns the WM_TRANSIENT_FOR property
for the specified window. It returns a nonzero status on success; otherwise, it
returns a zero status.

XGetTransientForHint can generate a BadWindow error.

342



Inter-Client
Communication Functions

Setting and Reading the WM_PROTOCOLS Property
Xlib provides functions that you can use to set and read the WM_PROTOCOLS
property for a given window.

To set a window's WM_PROTOCOLS property, use XSetWMProtocols.

Status XSetWMProtocols(display, w, protocols, count);

display Specifies the connection to the X server.

w Specifies the window.

protocols Specifies the list of protocols.

count Specifies the number of protocols in the list.

The XSetWMProtocols function replaces the WM_PROTOCOLS property on the
specified window with the list of atoms specified by the protocols argument. If
the property does not already exist, XSetWMProtocols sets the WM_PROTOCOLS
property on the specified window to the list of atoms specified by the protocols
argument. The property is stored with a type of ATOM and a format of 32. If it
cannot intern the WM_PROTOCOLS atom, XSetWMProtocols returns a zero status.
Otherwise, it returns a nonzero status.

XSetWMProtocols can generate BadAlloc and BadWindow errors.

To read a window's WM_PROTOCOLS property, use XGetWMProtocols.

Status XGetWMProtocols(display, w, protocols_return, count_return);

display Specifies the connection to the X server.

w Specifies the window.

protocols_return Returns the list of protocols.

count_return Returns the number of protocols in the list.

The XGetWMProtocols function returns the list of atoms stored in the
WM_PROTOCOLS property on the specified window. These atoms describe window
manager protocols in which the owner of this window is willing to participate. If the
property exists, is of type ATOM, is of format 32, and the atom WM_PROTOCOLS
can be interned, XGetWMProtocols sets the protocols_return argument to a list of
atoms, sets the count_return argument to the number of elements in the list, and
returns a nonzero status. Otherwise, it sets neither of the return arguments and
returns a zero status. To release the list of atoms, use XFree.

XGetWMProtocols can generate a BadWindow error.

Setting and Reading the WM_COLORMAP_WINDOWS
Property

Xlib provides functions that you can use to set and read the
WM_COLORMAP_WINDOWS property for a given window.

343



Inter-Client
Communication Functions

To set a window's WM_COLORMAP_WINDOWS property, use
XSetWMColormapWindows.

Status XSetWMColormapWindows(display, w, colormap_windows, count);

display Specifies the connection to the X server.

w Specifies the window.

colormap_windows Specifies the list of windows.

count Specifies the number of windows in the list.

The XSetWMColormapWindows function replaces the WM_COLORMAP_WINDOWS
property on the specified window with the list of windows specified by
the colormap_windows argument. If the property does not already exist,
XSetWMColormapWindows sets the WM_COLORMAP_WINDOWS property on the
specified window to the list of windows specified by the colormap_windows
argument. The property is stored with a type of WINDOW and a format of 32. If
it cannot intern the WM_COLORMAP_WINDOWS atom, XSetWMColormapWindows
returns a zero status. Otherwise, it returns a nonzero status.

XSetWMColormapWindows can generate BadAlloc and BadWindow errors.

To read a window's WM_COLORMAP_WINDOWS property, use
XGetWMColormapWindows.

Status XGetWMColormapWindows(display, w, colormap_windows_return,
count_return);

display Specifies the connection to the X server.

w Specifies the window.

colormap_windows_return Returns the list of windows.

count_return Returns the number of windows in the list.

The XGetWMColormapWindows function returns the list of window identifiers stored
in the WM_COLORMAP_WINDOWS property on the specified window. These
identifiers indicate the colormaps that the window manager may need to install for
this window. If the property exists, is of type WINDOW, is of format 32, and the
atom WM_COLORMAP_WINDOWS can be interned, XGetWMColormapWindows sets
the windows_return argument to a list of window identifiers, sets the count_return
argument to the number of elements in the list, and returns a nonzero status.
Otherwise, it sets neither of the return arguments and returns a zero status. To
release the list of window identifiers, use XFree.

XGetWMColormapWindows can generate a BadWindow error.

Setting and Reading the WM_ICON_SIZE Property
Xlib provides functions that you can use to set and read the WM_ICON_SIZE
property for a given window. These functions use the XIconSize  structure, which
is defined in the <X11/Xutil.h>    header file.

344



Inter-Client
Communication Functions

To allocate an XIconSize structure, use XAllocIconSize.

XIconSize *XAllocIconSize();

The XAllocIconSize function allocates and returns a pointer to an XIconSize
structure. Note that all fields in the XIconSize structure are initially set to zero.
If insufficient memory is available, XAllocIconSize returns NULL. To free the
memory allocated to this structure, use XFree.

The XIconSize structure contains:

typedef struct {
 int min_width, min_height;
 int max_width, max_height;
 int width_inc, height_inc;
} XIconSize;

The width_inc and height_inc members define an arithmetic progression of sizes
(minimum to maximum) that represent the supported icon sizes.

To set a window's WM_ICON_SIZE property, use XSetIconSizes.

XSetIconSizes(display, w, size_list, count);

display Specifies the connection to the X server.

w Specifies the window.

size_list Specifies the size list.

count Specifies the number of items in the size list.

The XSetIconSizes function is used only by window managers to set the supported
icon sizes.

XSetIconSizes can generate BadAlloc and BadWindow errors.

To read a window's WM_ICON_SIZE property, use XGetIconSizes.

Status XGetIconSizes(display, w, size_list_return, count_return);

display Specifies the connection to the X server.

w Specifies the window.

size_list_return Returns the size list.

count_return Returns the number of items in the size list.

The XGetIconSizes function returns zero if a window manager has not set
icon sizes; otherwise, it returns nonzero. XGetIconSizes should be called by an
application that wants to find out what icon sizes would be most appreciated by the

345



Inter-Client
Communication Functions

window manager under which the application is running. The application should
then use XSetWMHints to supply the window manager with an icon pixmap or
window in one of the supported sizes. To free the data allocated in size_list_return,
use XFree.

XGetIconSizes can generate a BadWindow error.

Using Window Manager Convenience Functions
The XmbSetWMProperties function stores the standard set of window manager
properties, with text properties in standard encodings for internationalized text
communication. The standard window manager properties for a given window are
WM_NAME, WM_ICON_NAME, WM_HINTS, WM_NORMAL_HINTS, WM_CLASS,
WM_COMMAND, WM_CLIENT_MACHINE, and WM_LOCALE_NAME.

void XmbSetWMProperties(display, w, window_name, icon_name, argv[],
argc, normal_hints, wm_hints, class_hints);

display Specifies the connection to the X server.

w Specifies the window.

window_name Specifies the window name, which should be a null-
terminated string.

icon_name Specifies the icon name, which should be a null-
terminated string.

argv Specifies the application's argument list.

argc Specifies the number of arguments.

hints Specifies the size hints for the window in its normal
state.

wm_hints Specifies the XWMHints structure to be used.

class_hints Specifies the XClassHint structure to be used.

The XmbSetWMProperties convenience function provides a simple programming
interface for setting those essential window properties that are used for
communicating with other clients (particularly window and session managers).

If the window_name argument is non-NULL, XmbSetWMProperties sets
the WM_NAME property. If the icon_name argument is non-NULL,
XmbSetWMProperties sets the WM_ICON_NAME property. The window_name
and icon_name arguments are null-terminated strings in the encoding of the
current locale. If the arguments can be fully converted to the STRING encoding,
the properties are created with type ``STRING''; otherwise, the arguments
are converted to Compound Text, and the properties are created with type
``COMPOUND_TEXT''.

If the normal_hints argument is non-NULL, XmbSetWMProperties calls
XSetWMNormalHints, which sets the WM_NORMAL_HINTS property (see section
14.1.7). If the wm_hints argument is non-NULL, XmbSetWMProperties calls
XSetWMHints, which sets the WM_HINTS property (see section 14.1.6).

346



Inter-Client
Communication Functions

If the argv argument is non-NULL, XmbSetWMProperties sets the WM_COMMAND
property from argv and argc. An argc of zero indicates a zero-length command.

The hostname of the machine is stored using XSetWMClientMachine (see section
14.2.2).

If the class_hints argument is non-NULL, XmbSetWMProperties sets the WM_CLASS
property. If the res_name member in the XClassHint structure is set to the NULL
pointer and the RESOURCE_NAME environment variable is set, the value of the
environment variable is substituted for res_name. If the res_name member is NULL,
the environment variable is not set, and argv and argv[0] are set, then the value of
argv[0], stripped of any directory prefixes, is substituted for res_name.

It is assumed that the supplied class_hints.res_name and argv, the
RESOURCE_NAME environment variable, and the hostname of the machine
are in the encoding of the locale announced for the LC_CTYPE category (on
POSIX-compliant systems, the LC_CTYPE, else LANG environment variable).
The corresponding WM_CLASS, WM_COMMAND, and WM_CLIENT_MACHINE
properties are typed according to the local host locale announcer. No encoding
conversion is performed prior to storage in the properties.

For clients that need to process the property text in a locale, XmbSetWMProperties
sets the WM_LOCALE_NAME property to be the name of the current locale. The
name is assumed to be in the Host Portable Character Encoding and is converted
to STRING for storage in the property.

XmbSetWMProperties can generate BadAlloc and BadWindow errors.

To set a window's standard window manager properties with strings
in client-specified encodings, use XSetWMProperties. The standard window
manager properties for a given window are WM_NAME, WM_ICON_NAME,
WM_HINTS, WM_NORMAL_HINTS, WM_CLASS, WM_COMMAND, and
WM_CLIENT_MACHINE.

void XSetWMProperties(display, w, window_name, icon_name, argv, argc,
normal_hints, wm_hints, class_hints);

display Specifies the connection to the X server.

w Specifies the window.

window_name Specifies the window name, which should be a null-
terminated string.

icon_name Specifies the icon name, which should be a null-
terminated string.

argv Specifies the application's argument list.

argc Specifies the number of arguments.

normal_hints Specifies the size hints for the window in its normal
state.

wm_hints Specifies the XWMHints structure to be used.

class_hints Specifies the XClassHint structure to be used.

347



Inter-Client
Communication Functions

The XSetWMProperties convenience function provides a single programming
interface for setting those essential window properties that are used for
communicating with other clients (particularly window and session managers).

If the window_name argument is non-NULL, XSetWMProperties calls XSetWMName,
which, in turn, sets the WM_NAME property (see section 14.1.4). If the icon_name
argument is non-NULL, XSetWMProperties calls XSetWMIconName, which sets the
WM_ICON_NAME property (see section 14.1.5). If the argv argument is non-NULL,
XSetWMProperties calls XSetCommand, which sets the WM_COMMAND property
(see section 14.2.1). Note that an argc of zero is allowed to indicate a zero-
length command. Note also that the hostname of this machine is stored using
XSetWMClientMachine (see section 14.2.2).

If the normal_hints argument is non-NULL, XSetWMProperties calls
XSetWMNormalHints, which sets the WM_NORMAL_HINTS property (see section
14.1.7). If the wm_hints argument is non-NULL, XSetWMProperties calls
XSetWMHints, which sets the WM_HINTS property (see section 14.1.6).

If the class_hints argument is non-NULL, XSetWMProperties calls XSetClassHint,
which sets the WM_CLASS property (see section 14.1.8). If the res_name member
in the XClassHint structure is set to the NULL pointer and the RESOURCE_NAME
environment variable is set, then the value of the environment variable is
substituted for res_name. If the res_name member is NULL, the environment
variable is not set, and argv and argv[0] are set, then the value of argv[0], stripped
of any directory prefixes, is substituted for res_name.

XSetWMProperties can generate BadAlloc and BadWindow errors.

Client to Session Manager Communication
This section discusses how to:

• Set and read the WM_COMMAND property

• Set and read the WM_CLIENT_MACHINE property

Setting and Reading the WM_COMMAND Property
Xlib provides functions that you can use to set and read the WM_COMMAND
property for a given window.

To set a window's WM_COMMAND property, use XSetCommand.

XSetCommand(display, w, argv, argc);

display Specifies the connection to the X server.

w Specifies the window.

argv Specifies the application's argument list.

argc Specifies the number of arguments.

The XSetCommand function sets the command and arguments used to invoke the
application. (Typically, argv is the argv array of your main program.) If the strings

348



Inter-Client
Communication Functions

are not in the Host Portable Character Encoding, the result is implementation-
dependent.

XSetCommand can generate BadAlloc and BadWindow errors.

To read a window's WM_COMMAND property, use XGetCommand.

Status XGetCommand(display, w, argv_return, argc_return);

display Specifies the connection to the X server.

w Specifies the window.

argv_return Returns the application's argument list.

argc_return Returns the number of arguments returned.

The XGetCommand function reads the WM_COMMAND property from the specified
window and returns a string list. If the WM_COMMAND property exists, it is of type
STRING and format 8. If sufficient memory can be allocated to contain the string
list, XGetCommand fills in the argv_return and argc_return arguments and returns
a nonzero status. Otherwise, it returns a zero status. If the data returned by the
server is in the Latin Portable Character Encoding, then the returned strings are
in the Host Portable Character Encoding. Otherwise, the result is implementation-
dependent. To free the memory allocated to the string list, use XFreeStringList.

Setting and Reading the WM_CLIENT_MACHINE
Property

Xlib provides functions that you can use to set and read the WM_CLIENT_MACHINE
property for a given window.

To set a window's WM_CLIENT_MACHINE property, use XSetWMClientMachine.

void XSetWMClientMachine(display, w, text_prop);

display Specifies the connection to the X server.

w Specifies the window.

text_prop Specifies the XTextProperty structure to be used.

The XSetWMClientMachine convenience function calls XSetTextProperty to set the
WM_CLIENT_MACHINE property.

To read a window's WM_CLIENT_MACHINE property, use XGetWMClientMachine.

Status XGetWMClientMachine(display, w, text_prop_return);

display Specifies the connection to the X server.

w Specifies the window.

text_prop_return Returns the XTextProperty structure.

The XGetWMClientMachine convenience function performs an XGetTextProperty
on the WM_CLIENT_MACHINE property. It returns a nonzero status on success;
otherwise, it returns a zero status.

349



Inter-Client
Communication Functions

Standard Colormaps
Applications with color palettes, smooth-shaded drawings, or digitized images
demand large numbers of colors. In addition, these applications often require an
efficient mapping from color triples to pixel values that display the appropriate
colors.

As an example, consider a three-dimensional display program that wants to draw
a smoothly shaded sphere. At each pixel in the image of the sphere, the program
computes the intensity and color of light reflected back to the viewer. The result of
each computation is a triple of red, green, and blue (RGB) coefficients in the range
0.0 to 1.0. To draw the sphere, the program needs a colormap that provides a large
range of uniformly distributed colors. The colormap should be arranged so that the
program can convert its RGB triples into pixel values very quickly, because drawing
the entire sphere requires many such conversions.

On many current workstations, the display is limited to 256 or fewer colors.
Applications must allocate colors carefully, not only to make sure they cover
the entire range they need but also to make use of as many of the available
colors as possible. On a typical X display, many applications are active at once.
Most workstations have only one hardware look-up table for colors, so only one
application colormap can be installed at a given time. The application using the
installed colormap is displayed correctly, and the other applications go technicolor
and are displayed with false colors.

As another example, consider a user who is running an image processing program
to display earth-resources data. The image processing program needs a colormap
set up with 8 reds, 8 greens, and 4 blues, for a total of 256 colors. Because some
colors are already in use in the default colormap, the image processing program
allocates and installs a new colormap.

The user decides to alter some of the colors in the image by invoking a color palette
program to mix and choose colors. The color palette program also needs a colormap
with eight reds, eight greens, and four blues, so just like the image processing
program, it must allocate and install a new colormap.

Because only one colormap can be installed at a time, the color palette may be
displayed incorrectly whenever the image processing program is active. Conversely,
whenever the palette program is active, the image may be displayed incorrectly. The
user can never match or compare colors in the palette and image. Contention for
colormap resources can be reduced if applications with similar color needs share
colormaps.

The image processing program and the color palette program could share the same
colormap if there existed a convention that described how the colormap was set up.
Whenever either program was active, both would be displayed correctly.

The standard colormap properties define a set of commonly used colormaps.
Applications that share these colormaps and conventions display true colors more
often and provide a better interface to the user.

Standard colormaps allow applications to share commonly used color resources.
This allows many applications to be displayed in true colors simultaneously, even
when each application needs an entirely filled colormap.

350



Inter-Client
Communication Functions

Several standard colormaps are described in this section. Usually, a window
manager creates these colormaps. Applications should use the standard colormaps
if they already exist.

To allocate an XStandardColormap structure, use XAllocStandardColormap.

XStandardColormap *XAllocStandardColormap();

The XAllocStandardColormap function allocates and returns a pointer to an
XStandardColormap structure. Note that all fields in the XStandardColormap
structure are initially set to zero. If insufficient memory is available,
XAllocStandardColormap returns NULL. To free the memory allocated to this
structure, use XFree.

The XStandardColormap structure contains:

/* Hints */

#define       ReeaseByFreeingColormap  ((XID)1L)

/* Values */

typedef struct {
 Colormap colormap;
 unsigned long red_max;
 unsigned long red_mult;
 unsigned long green_max;
 unsigned long green_mult;
 unsigned long blue_max;
 unsigned long blue_mult;
 unsigned long base_pixel;
 VisualID visualid;
 XID killid;
} XStandardColormap;

The colormap member is the colormap created by the XCreateColormap function.
The red_max, green_max, and blue_max members give the maximum red, green,
and blue values, respectively. Each color coefficient ranges from zero to its max,
inclusive. For example, a common colormap allocation is 3/3/2 (3 planes for red, 3
planes for green, and 2 planes for blue). This colormap would have red_max = 7,
green_max = 7, and blue_max = 3. An alternate allocation that uses only 216 colors
is red_max = 5, green_max = 5, and blue_max = 5.

The red_mult, green_mult, and blue_mult members give the scale factors used to
compose a full pixel value. (See the discussion of the base_pixel members for further
information.) For a 3/3/2 allocation, red_mult might be 32, green_mult might be 4,
and blue_mult might be 1. For a 6-colors-each allocation, red_mult might be 36,
green_mult might be 6, and blue_mult might be 1.

The base_pixel member gives the base pixel value used to compose a full pixel value.
Usually, the base_pixel is obtained from a call to the XAllocColorPlanes function.
Given integer red, green, and blue coefficients in their appropriate ranges, one then
can compute a corresponding pixel value by using the following expression:

351



Inter-Client
Communication Functions

(r * red_mult + g * green_mult + b * blue_mult + base_pixel) & 0xFFFFFFFF

For GrayScale colormaps, only the colormap, red_max, red_mult, and base_pixel
members are defined. The other members are ignored. To compute a GrayScale
pixel value, use the following expression:

(gray * red_mult + base_pixel) & 0xFFFFFFFF

Negative multipliers can be represented by converting the 2's complement
representation of the multiplier into an unsigned long and storing the result in the
appropriate _mult field. The step of masking by 0xFFFFFFFF effectively converts
the resulting positive multiplier into a negative one. The masking step will take
place automatically on many machine architectures, depending on the size of the
integer type used to do the computation.

The visualid member gives the ID number of the visual from which the colormap
was created. The killid member gives a resource ID that indicates whether the cells
held by this standard colormap are to be released by freeing the colormap ID or by
calling the XKillClient function on the indicated resource. (Note that this method
is necessary for allocating out of an existing colormap.)

The properties containing the XStandardColormap information have the type
RGB_COLOR_MAP.

The remainder of this section discusses standard colormap properties and atoms as
well as how to manipulate standard colormaps.

Standard Colormap Properties and Atoms
  Several standard colormaps are available. Each standard colormap is defined by a
property, and each such property is identified by an atom. The following list names
the atoms and describes the colormap associated with each one. The <X11/Xatom.h>
   header file contains the definitions for each of the following atoms, which are
prefixed with XA_.

RGB_DEFAULT_MAP This atom names a property. The value of
the property is an array of XStandardColormap
structures. Each entry in the array describes an
RGB subset of the default color map for the Visual
specified by visual_id.

Some applications only need a few RGB colors and
may be able to allocate them from the system default
colormap. This is the ideal situation because the
fewer colormaps that are active in the system the
more applications are displayed with correct colors
at all times.

A typical allocation for the RGB_DEFAULT_MAP on
8-plane displays is 6 reds, 6 greens, and 6 blues. This

352



Inter-Client
Communication Functions

gives 216 uniformly distributed colors (6 intensities
of 36 different hues) and still leaves 40 elements of a
256-element colormap available for special-purpose
colors for text, borders, and so on.

RGB_BEST_MAP This atom names a property. The value of the
property is an XStandardColormap.

The property defines the best RGB colormap
available on the screen. (Of course, this is a
subjective evaluation.) Many image processing and
three-dimensional applications need to use all
available colormap cells and to distribute as many
perceptually distinct colors as possible over those
cells. This implies that there may be more green
values available than red, as well as more green or
red than blue.

For an 8-plane PseudoColor visual, RGB_BEST_MAP
is likely to be a 3/3/2 allocation. For a 24-plane
DirectColor visual, RGB_BEST_MAP is normally an
8/8/8 allocation.

RGB_RED_MAP,RGB_GREEN_MAP,RGB_BLUE_MAPThese atoms name properties. The value of each
property is an XStandardColormap.

The properties define all-red, all-green, and all-
blue colormaps, respectively. These maps are used
by applications that want to make color-separated
images. For example, a user might generate a full-
color image on an 8-plane display both by rendering
an image three times (once with high color resolution
in red, once with green, and once with blue) and by
multiply exposing a single frame in a camera.

RGB_GRAY_MAP This atom names a property. The value of the
property is an XStandardColormap.

The property describes the best GrayScale colormap
available on the screen. As previously mentioned,
only the colormap, red_max, red_mult, and
base_pixel members of the XStandardColormap
structure are used for GrayScale colormaps.

Setting and Obtaining Standard Colormaps
Xlib provides functions that you can use to set and obtain an XStandardColormap
structure.

To set an XStandardColormap structure, use XSetRGBColormaps.

void XSetRGBColormaps(display, w, std_colormap, count, property);

display Specifies the connection to the X server.

w Specifies the window.

353



Inter-Client
Communication Functions

std_colormap Specifies the XStandardColormap structure to be
used.

count Specifies the number of colormaps.

property Specifies the property name.

The XSetRGBColormaps function replaces the RGB colormap definition in the
specified property on the named window. If the property does not already exist,
XSetRGBColormaps sets the RGB colormap definition in the specified property on
the named window. The property is stored with a type of RGB_COLOR_MAP and a
format of 32. Note that it is the caller's responsibility to honor the ICCCM restriction
that only RGB_DEFAULT_MAP contain more than one definition.

The XSetRGBColormaps function usually is only used by window or session
managers. To create a standard colormap, follow this procedure:

• Open a new connection to the same server.

• Grab the server.

• See if the property is on the property list of the root window for the screen.

• If the desired property is not present:

• Create a colormap (unless you are using the default colormap of the screen).

• Determine the color characteristics of the visual.

• Allocate cells in the colormap (or create it with AllocAll).

• Call XStoreColors to store appropriate color values in the colormap.

• Fill in the descriptive members in the XStandardColormap structure.

• Attach the property to the root window.

• Use XSetCloseDownMode to make the resource permanent.

• Ungrab the server.

XSetRGBColormaps can generate BadAlloc, BadAtom, and BadWindow errors.

To obtain the XStandardColormap structure associated with the specified property,
use XGetRGBColormaps.

Status XGetRGBColormaps(display, w, std_colormap_return, count_return,
property);

display Specifies the connection to the X server.

w Specifies the window.

std_colormap_return Returns the XStandardColormap structure.

count_return Returns the number of colormaps.

property Specifies the property name.

354



Inter-Client
Communication Functions

The XGetRGBColormaps function returns the RGB colormap definitions stored in
the specified property on the named window. If the property exists, is of type
RGB_COLOR_MAP, is of format 32, and is long enough to contain a colormap
definition, XGetRGBColormaps allocates and fills in space for the returned colormaps
and returns a nonzero status. If the visualid is not present, XGetRGBColormaps
assumes the default visual for the screen on which the window is located; if the
killid is not present, None is assumed, which indicates that the resources cannot
be released. Otherwise, none of the fields are set, and XGetRGBColormaps returns a
zero status. Note that it is the caller's responsibility to honor the ICCCM restriction
that only RGB_DEFAULT_MAP contain more than one definition.

XGetRGBColormaps can generate BadAtom and BadWindow errors.

355



Chapter 15. Resource Manager
Functions

A program often needs a variety of options in the X environment (for example, fonts,
colors, icons, and cursors). Specifying all of these options on the command line is
awkward because users may want to customize many aspects of the program and
need a convenient way to establish these customizations as the default settings. The
resource manager is provided for this purpose. Resource specifications are usually
stored in human-readable files and in server properties.

The resource manager is a database manager with a twist. In most database
systems, you perform a query using an imprecise specification, and you get back
a set of records. The resource manager, however, allows you to specify a large
set of values with an imprecise specification, to query the database with a precise
specification, and to get back only a single value. This should be used by applications
that need to know what the user prefers for colors, fonts, and other resources. It is
this use as a database for dealing with X resources that inspired the name "Resource
Manager," although the resource manager can be and is used in other ways.

For example, a user of your application may want to specify that all windows
should have a blue background but that all mail-reading windows should have a red
background. With well-engineered and coordinated applications, a user can define
this information using only two lines of specifications.

As an example of how the resource manager works, consider a mail-reading
application called xmh. Assume that it is designed so that it uses a complex window
hierarchy all the way down to individual command buttons, which may be actual
small subwindows in some toolkits. These are often called objects or widgets. In
such toolkit systems, each user interface object can be composed of other objects
and can be assigned a name and a class. Fully qualified names or classes can have
arbitrary numbers of component names, but a fully qualified name always has the
same number of component names as a fully qualified class. This generally reflects
the structure of the application as composed of these objects, starting with the
application itself.

For example, the xmh mail program has a name "xmh" and is one of a class of "Mail"
programs. By convention, the first character of class components is capitalized, and
the first letter of name components is in lowercase. Each name and class finally
has an attribute (for example, "foreground" or "font"). If each window is properly
assigned a name and class, it is easy for the user to specify attributes of any portion
of the application.

At the top level, the application might consist of a paned window (that is, a window
divided into several sections) named "toc". One pane of the paned window is a button
box window named "buttons" and is filled with command buttons. One of these
command buttons is used to incorporate new mail and has the name "incorporate".
This window has a fully qualified name, "xmh.toc.buttons.incorporate", and a fully
qualified class, "Xmh.Paned.Box.Command". Its fully qualified name is the name of
its parent, "xmh.toc.buttons", followed by its name, "incorporate". Its class is the
class of its parent, "Xmh.Paned.Box", followed by its particular class, "Command".
The fully qualified name of a resource is the attribute's name appended to the
object's fully qualified name, and the fully qualified class is its class appended to
the object's class.

356



Resource Manager Functions

The incorporate button might need the following resources: Title string, Font,
Foreground color for its inactive state, Background color for its inactive state,
Foreground color for its active state, and Background color for its active state. Each
resource is considered to be an attribute of the button and, as such, has a name and
a class. For example, the foreground color for the button in its active state might
be named "activeForeground", and its class might be "Foreground".

When an application looks up a resource (for example, a color), it passes the
complete name and complete class of the resource to a look-up routine. The
resource manager compares this complete specification against the incomplete
specifications of entries in the resource database, finds the best match, and returns
the corresponding value for that entry.

The definitions for the resource manager are contained in <X11/Xresource.h>.   

Resource File Syntax
The syntax of a resource file is a sequence of resource lines terminated by newline
characters or the end of the file. The syntax of an individual resource line is:

ResourceLine     =     Comment | IncludeFile | ResourceSpec | <empty line>
Comment     =     "!" {<any character except null or newline>}
IncludeFile     =     "#" WhiteSpace "include" WhiteSpace FileName WhiteSpace
FileName     =     <valid filename for operating system>
ResourceSpec     =     WhiteSpace ResourceName WhiteSpace ":" WhiteSpace Value
ResourceName     =     [Binding] {Component Binding} ComponentName
Binding     =     "." | "*"
WhiteSpace     =     {<space> | <horizontal tab>}
Component     =     "?" | ComponentName
ComponentName     =     NameChar {NameChar}
NameChar     =     "a"-"z" | "A"-"Z" | "0"-"9" | "_" | "-"
Value     =     {<any character except null or unescaped newline>}

Elements separated by vertical bar (|) are alternatives. Curly braces ({......})
indicate zero or more repetitions of the enclosed elements. Square brackets ([......])
indicate that the enclosed element is optional. Quotes ("......") are used around literal
characters.

IncludeFile lines are interpreted by replacing the line with the contents of the
specified file. The word "include" must be in lowercase. The file name is interpreted
relative to the directory of the file in which the line occurs (for example, if the file
name contains no directory or contains a relative directory specification).

If a ResourceName contains a contiguous sequence of two or more Binding
characters, the sequence will be replaced with a single ".." character if the sequence
contains only ".." characters; otherwise, the sequence will be replaced with a single
"*" character.

A resource database never contains more than one entry for a given ResourceName.
If a resource file contains multiple lines with the same ResourceName, the last line
in the file is used.

357



Resource Manager Functions

Any white space characters before or after the name or colon in a ResourceSpec
are ignored. To allow a Value to begin with white space, the two-character
sequence "\\space" (backslash followed by space) is recognized and replaced by
a space character, and the two-character sequence "\\tab" (backslash followed
by horizontal tab) is recognized and replaced by a horizontal tab character. To
allow a Value to contain embedded newline characters, the two-character sequence
"\\n" is recognized and replaced by a newline character. To allow a Value to
be broken across multiple lines in a text file, the two-character sequence "\
\newline" (backslash followed by newline) is recognized and removed from the
value. To allow a Value to contain arbitrary character codes, the four-character
sequence "\\nnn", where each n is a digit character in the range of "0"-"7", is
recognized and replaced with a single byte that contains the octal value specified
by the sequence. Finally, the two-character sequence "\newline" is recognized and
replaced with a single backslash.

As an example of these sequences, the following resource line contains a value
consisting of four characters: a backslash, a null, a "z", and a newline:

magic.values: \\000\
z\n

Resource Manager Matching Rules
The algorithm for determining which resource database entry matches a given
query is the heart of the resource manager. All queries must fully specify the name
and class of the desired resource (use of the characters "*" and "?" is not permitted).
The library supports up to 100 components in a full name or class. Resources are
stored in the database with only partially specified names and classes, using pattern
matching constructs. An asterisk (*) is a loose binding and is used to represent any
number of intervening components, including none. A period (.) is a tight binding
and is used to separate immediately adjacent components. A question mark (?) is
used to match any single component name or class. A database entry cannot end
in a loose binding; the final component (which cannot be the character "?") must
be specified. The lookup algorithm searches the database for the entry that most
closely matches (is most specific for) the full name and class being queried. When
more than one database entry matches the full name and class, precedence rules
are used to select just one.

The full name and class are scanned from left to right (from highest level in the
hierarchy to lowest), one component at a time. At each level, the corresponding
component and/or binding of each matching entry is determined, and these
matching components and bindings are compared according to precedence rules.
Each of the rules is applied at each level before moving to the next level, until a rule
selects a single entry over all others. The rules, in order of precedence, are:

• An entry that contains a matching component (whether name, class, or the
character "?") takes precedence over entries that elide the level (that is, entries
that match the level in a loose binding).

• An entry with a matching name takes precedence over both entries with a
matching class and entries that match using the character "?". An entry with a
matching class takes precedence over entries that match using the character "?".

358



Resource Manager Functions

• An entry preceded by a tight binding takes precedence over entries preceded by
a loose binding.

To illustrate these rules, consider the following resource database entries:

xmh*Paned*activeForeground:     red     (entry A)
*incorporate.Foreground:     blue     (entry B)
xmh.toc*Command*activeForeground:     green     (entry C)
xmh.toc*?.Foreground:     white     (entry D)
xmh.toc*Command.activeForeground:     black     (entry E)

Consider a query for the resource:

xmh.toc.messagefunctions.incorporate.activeForeground     (name)
Xmh.Paned.Box.Command.Foreground     (class)

At the first level (xmh, Xmh), rule 1 eliminates entry B. At the second level (toc,
Paned), rule 2 eliminates entry A. At the third level (messagefunctions, Box), no
entries are eliminated. At the fourth level (incorporate, Command), rule 2 eliminates
entry D. At the fifth level (activeForeground, Foreground), rule 3 eliminates entry C.

Quarks
Most uses of the resource manager involve defining names, classes, and
representation types as string constants. However, always referring to strings in
the resource manager can be slow, because it is so heavily used in some toolkits. To
solve this problem, a shorthand for a string is used in place of the string in many
of the resource manager functions. Simple comparisons can be performed rather
than string comparisons. The shorthand name for a string is called a quark and is
the type XrmQuark. On some occasions, you may want to allocate a quark that has
no string equivalent.

A quark is to a string what an atom is to a string in the server, but its use is entirely
local to your application.

To allocate a new quark, use XrmUniqueQuark.

XrmQuark XrmUniqueQuark();

The XrmUniqueQuark function allocates a quark that is guaranteed not to represent
any string that is known to the resource manager.

Each name, class, and representation type is typedef'd as an XrmQuark.

typedef int XrmQuark, *XrmQuarkList;
typedef XrmQuark XrmName;
typedef XrmQuark XrmClass;
typedef XrmQuark XrmRepresentation;

359



Resource Manager Functions

#define NULLQUARK ((XrmQuark) 0)

Lists are represented as null-terminated arrays of quarks. The size of the array must
be large enough for the number of components used.

typedef XrmQuarkList XrmNameList;
typedef XrmQuarkList XrmClassList;

To convert a string to a quark, use XrmStringToQuark or XrmPermStringToQuark.

#define XrmStringToName(string) XrmStringToQuark(string)
#define XrmStringToClass(string) XrmStringToQuark(string)
#define XrmStringToRepresentation(string) XrmStringToQuark(string)

XrmQuark XrmStringToQuark(string);

string Specifies the string for which a quark(Ql is to be allocated.

These functions can be used to convert from string to quark representation.
If the string is not in the Host Portable Character Encoding, the conversion
is implementation-dependent. The string argument to XrmStringToQuark need
not be permanently allocated storage. XrmPermStringToQuark is just like
XrmStringToQuark, except that Xlib is permitted to assume the string argument is
permanently allocated, and, hence, that it can be used as the value to be returned
by XrmQuarkToString.

For any given quark, if XrmStringToQuark returns a non-NULL value, all future calls
will return the same value (identical address).

To convert a quark to a string, use XrmQuarkToString.

#define XrmNameToString(name)  XrmQuarkToString(name)
#define XrmClassToString(class)  XrmQuarkToString(name)
#define XrmRepresentationToString(type)  XrmQuarkToString(type)

char *XrmQuarkToString(quark);

quark Specifies the quark for which the equivalent string is desired.

These functions can be used to convert from quark representation to string. The
string pointed to by the return value must not be modified or freed. The returned
string is byte-for-byte equal to the original string passed to one of the string-to-
quark routines. If no string exists for that quark, XrmQuarkToString returns NULL.
For any given quark, if XrmQuarkToString returns a non-NULL value, all future calls
will return the same value (identical address).

To convert a string with one or more components to a quark list, use
XrmStringToQuarkList.

#define XrmStringToNameList(str,name)  XrmStringToQuarkList((str), (name))
#define XrmStringToClassList(str,class)  XrmStringToQuarkList((str), (class))

360



Resource Manager Functions

void XrmStringToQuarkList(string, quarks_return);

string Specifies the string for which a quark list is to be
allocated.

quarks_return Returns the list of quarks. The caller must allocate
sufficient space for the quarks list before calling
XrmStringToQuarkList.

The XrmStringToQuarkList function converts the null-terminated string (generally
a fully qualified name) to a list of quarks. Note that the string must be in the valid
ResourceName format (see section 15.1). If the string is not in the Host Portable
Character Encoding, the conversion is implementation-dependent.

A binding list is a list of type XrmBindingList and indicates if components of name
or class lists are bound tightly or loosely (that is, if wildcarding of intermediate
components is specified).

typedef enum {XrmBindTightly, XrmBindLoosely} XrmBinding, *XrmBindingList;

XrmBindTightly indicates that a period separates the components, and
XrmBindLoosely indicates that an asterisk separates the components.

To convert a string with one or more components to a binding list and a quark list,
use XrmStringToBindingQuarkList.

XrmStringToBindingQuarkList(string, bindings_return, quarks_return);

string Specifies the string for which a quark list is to be
allocated.

bindings_return Returns the binding list. The caller must allocate
sufficient space for the binding list before calling
XrmStringToBindingQuarkList.

quarks_return Returns the list of quarks. The caller must allocate
sufficient space for the quarks list before calling
XrmStringToBindingQuarkList.

Component names in the list are separated by a period or an asterisk character.
The string must be in the format of a valid ResourceName (see section 15.1). If the
string does not start with a period or an asterisk, a tight binding is assumed. For
example, the string ``*a.b*c'' becomes:

quarks:       a         b         c
bindings:     loose     tight     loose

Creating and Storing Databases
 A resource database is an opaque type, XrmDatabase. Each database value is
stored in an XrmValue structure. This structure consists of a size, an address, and

361



Resource Manager Functions

a representation type. The size is specified in bytes. The representation type is a
way for you to store data tagged by some application-defined type (for example, the
strings ``font'' or ``color''). It has nothing to do with the C data type or with its
class. The XrmValue structure is defined as:

typedef struct {
     unsigned int size;
     XPointer addr;
} XrmValue, *XrmValuePtr;

To initialize the resource manager, use XrmInitialize. 

void XrmInitialize(XrmInitialize(\|));

To retrieve a database from disk, use XrmGetFileDatabase.

XrmDatabase XrmGetFileDatabase(filename);

filename Specifies the resource database file name.

The XrmGetFileDatabase function opens the specified file, creates a new resource
database, and loads it with the specifications read in from the specified file. The
specified file should contain a sequence of entries in valid ResourceLine format
(see section 15.1); the database that results from reading a file with incorrect
syntax is implementation-dependent. The file is parsed in the current locale, and
the database is created in the current locale. If it cannot open the specified file,
XrmGetFileDatabase returns NULL.

To store a copy of a database to disk, use XrmPutFileDatabase.

void XrmPutFileDatabase(database, stored_db);

database Specifies the database that is to be used.

stored_db Specifies the file name for the stored database.

The XrmPutFileDatabase function stores a copy of the specified database in the
specified file. Text is written to the file as a sequence of entries in valid ResourceLine
format (see section 15.1). The file is written in the locale of the database. Entries
containing resource names that are not in the Host Portable Character Encoding or
containing values that are not in the encoding of the database locale, are written
in an implementation-dependent manner. The order in which entries are written is
implementation-dependent. Entries with representation types other than ``String''
are ignored.

To obtain a pointer to the screen-independent resources of a display, use
XResourceManagerString.

char *XResourceManagerString(display);

display Specifies the connection to the X server.

362



Resource Manager Functions

The XResourceManagerString function returns the RESOURCE_MANAGER
property from the server's root window of screen zero, which was returned when
the connection was opened using XOpenDisplay. The property is converted from
type STRING to the current locale. The conversion is identical to that produced by
XmbTextPropertyToTextList for a single element STRING property. The returned
string is owned by Xlib and should not be freed by the client. The property value
must be in a format that is acceptable to XrmGetStringDatabase. If no property
exists, NULL is returned.

To obtain a pointer to the screen-specific resources of a screen, use
XScreenResourceString.

char *XScreenResourceString(screen);

screen Specifies the screen.

The XScreenResourceString function returns the SCREEN_RESOURCES property
from the root window of the specified screen. The property is converted from type
STRING to the current locale. The conversion is identical to that produced by
XmbTextPropertyToTextList for a single element STRING property. The property
value must be in a format that is acceptable to XrmGetStringDatabase. If no
property exists, NULL is returned. The caller is responsible for freeing the returned
string by using XFree.

To create a database from a string, use XrmGetStringDatabase.

XrmDatabase XrmGetStringDatabase(data);

data Specifies the database contents using a string.

The XrmGetStringDatabase function creates a new database and stores the
resources specified in the specified null-terminated string. XrmGetStringDatabase
is similar to XrmGetFileDatabase except that it reads the information out of a string
instead of out of a file. The string should contain a sequence of entries in valid
ResourceLine format (see section 15.1) terminated by a null character; the database
that results from using a string with incorrect syntax is implementation-dependent.
The string is parsed in the current locale, and the database is created in the current
locale.

To obtain the locale name of a database, use XrmLocaleOfDatabase.

char *XrmLocaleOfDatabase(database);

database Specifies the resource database.

The XrmLocaleOfDatabase function returns the name of the locale bound to the
specified database, as a null-terminated string. The returned locale name string is
owned by Xlib and should not be modified or freed by the client. Xlib is not permitted
to free the string until the database is destroyed. Until the string is freed, it will
not be modified by Xlib.

To destroy a resource database and free its allocated memory, use
XrmDestroyDatabase.

void XrmDestroyDatabase(database);

database Specifies the resource database.

363



Resource Manager Functions

If database is NULL, XrmDestroyDatabase returns immediately.

To associate a resource database with a display, use XrmSetDatabase.

void XrmSetDatabase(display, database);

display Specifies the connection to the X server.

database Specifies the resource database.

The XrmSetDatabase function associates the specified resource database (or NULL)
with the specified display. The database previously associated with the display (if
any) is not destroyed. A client or toolkit may find this function convenient for
retaining a database once it is constructed.

To get the resource database associated with a display, use XrmGetDatabase.

XrmDatabase XrmGetDatabase(display);

display Specifies the connection to the X server.

The XrmGetDatabase function returns the database associated with the specified
display. It returns NULL if a database has not yet been set.

Merging Resource Databases
To merge the contents of a resource file into a database, use
XrmCombineFileDatabase.

Status XrmCombineFileDatabase(filename, target_db, override);

filename Specifies the resource database file name.

target_db Specifies the resource database into which the source
database is to be merged.

override Specifies whether source entries override target ones.

The XrmCombineFileDatabase function merges the contents of a resource file into
a database. If the same specifier is used for an entry in both the file and the
database, the entry in the file will replace the entry in the database if override is
True; otherwise, the entry in the file is discarded. The file is parsed in the current
locale. If the file cannot be read, a zero status is returned; otherwise, a nonzero
status is returned. If target_db contains NULL, XrmCombineFileDatabase creates
and returns a new database to it. Otherwise, the database pointed to by target_db
is not destroyed by the merge. The database entries are merged without changing
values or types, regardless of the locale of the database. The locale of the target
database is not modified.

To merge the contents of one database into another database, use
XrmCombineDatabase.

void XrmCombineDatabase(source_db, target_db, override);

source_db Specifies the resource database that is to be merged into
the target database.

364



Resource Manager Functions

target_db Specifies the resource database into which the source
database is to be merged.

override Specifies whether source entries override target ones.

The XrmCombineDatabase function merges the contents of one database into
another. If the same specifier is used for an entry in both databases, the entry in the
source_db will replace the entry in the target_db if override is True; otherwise, the
entry in source_db is discarded. If target_db contains NULL, XrmCombineDatabase
simply stores source_db in it. Otherwise, source_db is destroyed by the merge, but
the database pointed to by target_db is not destroyed. The database entries are
merged without changing values or types, regardless of the locales of the databases.
The locale of the target database is not modified.

To merge the contents of one database into another database with override
semantics, use XrmMergeDatabases.

void XrmMergeDatabases(source_db, target_db);

source_db Specifies the resource database that is to be merged into
the target database.

target_db Specifies the resource database into which the source
database is to be merged.

Calling the XrmMergeDatabases function is equivalent to calling the
XrmCombineDatabase function with an override argument of True.

Looking Up Resources
To retrieve a resource from a resource database, use XrmGetResource,
XrmQGetResource, or XrmQGetSearchResource.

Bool XrmGetResource(database, str_name, str_class, str_type_return,
value_return);

database Specifies the database that is to be used.

str_name Specifies the fully qualified name of the value being
retrieved (as a string).

str_class Specifies the fully qualified class of the value being
retrieved (as a string).

str_type_return Returns the representation type of the destination
(as a string).

value_return Returns the value in the database.

Bool XrmQGetResource(database, quark_name, quark_class,
quark_type_return, value_return);

database Specifies the database that is to be used.

quark_name Specifies the fully qualified name of the value being
retrieved (as a quark).

365



Resource Manager Functions

quark_class Specifies the fully qualified class of the value being
retrieved (as a quark).

quark_type_return Returns the representation type of the destination
(as a quark).

value_return Returns the value in the database.

The XrmGetResource and XrmQGetResource functions retrieve a resource from
the specified database. Both take a fully qualified name/class pair, a destination
resource representation, and the address of a value (size/address pair). The value
and returned type point into database memory; therefore, you must not modify the
data.

The database only frees or overwrites entries on XrmPutResource,
XrmQPutResource, or XrmMergeDatabases. A client that is not storing new values
into the database or is not merging the database should be safe using the address
passed back at any time until it exits. If a resource was found, both XrmGetResource
and XrmQGetResource return True; otherwise, they return False.

Most applications and toolkits do not make random probes into a resource database
to fetch resources. The X toolkit access pattern for a resource database is quite
stylized. A series of from 1 to 20 probes is made with only the last name/class
differing in each probe. The XrmGetResource function is at worst a 2n algorithm,
where n is the length of the name/class list. This can be improved upon by the
application programmer by prefetching a list of database levels that might match
the first part of a name/class list.

To obtain a list of database levels, use XrmQGetSearchList.

Bool XrmQGetSearchResource(database, names, classes, list_return,
list_length);

database Specifies the database that is to be used.

names Specifies a list of resource names.

classes Specifies a list of resource classes.

list_return Returns a search list for further use. The caller must
allocate sufficient space for the list before calling
XrmQGetSearchList.

list_length Specifies the number of entries (not the byte size)
allocated for list_return.

The XrmQGetSearchList function takes a list of names and classes and returns a list
of database levels where a match might occur. The returned list is in best-to-worst
order and uses the same algorithm as XrmGetResource for determining precedence.
If list_return was large enough for the search list, XrmQGetSearchList returns True;
otherwise, it returns False.

The size of the search list that the caller must allocate is dependent upon the number
of levels and wildcards in the resource specifiers that are stored in the database.
The worst case length is 3n, where n is the number of name or class components
in names or classes.

366



Resource Manager Functions

When using XrmQGetSearchList followed by multiple probes for resources with a
common name and class prefix, only the common prefix should be specified in the
name and class list to XrmQGetSearchList.

To search resource database levels for a given resource, use
XrmQGetSearchResource.

Bool XrmQGetSearchResource(list, name, class, type_return,
value_return);

list Specifies the search list returned by
XrmQGetSearchList.

name Specifies the resource name.

class Specifies the resource class.

type_return Returns data representation type.

value_return Returns the value in the database.

The XrmQGetSearchResource function searches the specified database levels for
the resource that is fully identified by the specified name and class. The search
stops with the first match. XrmQGetSearchResource returns True if the resource
was found; otherwise, it returns False.

A call to XrmQGetSearchList with a name and class list containing all but the
last component of a resource name followed by a call to XrmQGetSearchResource
with the last component name and class returns the same database entry as
XrmGetResource and XrmQGetResource with the fully qualified name and class.

Storing into a Resource Database
To store resources into the database, use XrmPutResource or XrmQPutResource.
Both functions take a partial resource specification, a representation type, and a
value. This value is copied into the specified database.

void XrmPutResource(database, specifier, type, value);

database Specifies the resource database.

specifier Specifies a complete or partial specification of the
resource.

type Specifies the type of the resource.

value Specifies the value of the resource, which is specified as
a string.

If database contains NULL, XrmPutResource creates a new database and
returns a pointer to it. XrmPutResource is a convenience function that calls
XrmStringToBindingQuarkList followed by:

XrmQPutResource(database, bindings, quarks, XrmStringToQuark(type), value)

367



Resource Manager Functions

If the specifier and type are not in the Host Portable Character Encoding, the
result is implementation-dependent. The value is stored in the database without
modification.

void XrmQPutResource(database, bindings, quarks, type, value);

database Specifies the resource database.

bindings Specifies a list of bindings.

quarks Specifies the complete or partial name or the class list of
the resource.

type Specifies the type of the resource.

value Specifies the value of the resource, which is specified as
a string.

If database contains NULL, XrmQPutResource creates a new database and returns
a pointer to it. If a resource entry with the identical bindings and quarks already
exists in the database, the previous type and value are replaced by the new specified
type and value. The value is stored in the database without modification.

To add a resource that is specified as a string, use XrmPutStringResource.

void XrmPutStringResource(database, specifier, value);

database Specifies the resource database.

specifier Specifies a complete or partial specification of the
resource.

value Specifies the value of the resource, which is specified as
a string.

If database contains NULL, XrmPutStringResource creates a new database and
returns a pointer to it. XrmPutStringResource adds a resource with the specified
value to the specified database. XrmPutStringResource is a convenience function
that first calls XrmStringToBindingQuarkList on the specifier and then calls
XrmQPutResource, using a ``String'' representation type. If the specifier is not in
the Host Portable Character Encoding, the result is implementation-dependent. The
value is stored in the database without modification.

To add a string resource using quarks as a specification, use
XrmQPutStringResource.

void XrmQPutStringResource(database, bindings, quarks, value);

database Specifies the resource database.

bindings Specifies a list of bindings.

quarks Specifies the complete or partial name or the class list of
the resource.

value Specifies the value of the resource, which is specified as
a string.

368



Resource Manager Functions

If database contains NULL, XrmQPutStringResource creates a new database and
returns a pointer to it. XrmQPutStringResource is a convenience routine that
constructs an XrmValue for the value string (by calling strlen to compute the size)
and then calls XrmQPutResource, using a ``String'' representation type. The value
is stored in the database without modification.

To add a single resource entry that is specified as a string that contains both a name
and a value, use XrmPutLineResource.

void XrmPutLineResource(database, line);

database Specifies the resource database.

line Specifies the resource name and value pair as a single
string.

If database contains NULL, XrmPutLineResource creates a new database and
returns a pointer to it. XrmPutLineResource adds a single resource entry to the
specified database. The line should be in valid ResourceLine format (see section
15.1) terminated by a newline or null character; the database that results from using
a string with incorrect syntax is implementation-dependent. The string is parsed in
the locale of the database. If the ResourceName is not in the Host Portable Character
Encoding, the result is implementation-dependent. Note that comment lines are not
stored.

Enumerating Database Entries
To enumerate the entries of a database, use XrmEnumerateDatabase. 

#define       XrmEnumAllLevels       0
#define       XrmEnumOneLevel        0

Bool XrmEnumerateDatabase(database, name_prefix, class_prefix, mode,
(*proc)(), arg);

database Specifies the resource database.

name_prefix Specifies the resource name prefix.

class_prefix Specifies the resource class prefix.

mode Specifies the number of levels to enumerate.

proc Specifies the procedure that is to be called for each
matching entry.

arg Specifies the user-supplied argument that will be
passed to the procedure.

The XrmEnumerateDatabase function calls the specified procedure for each resource
in the database that would match some completion of the given name/class resource
prefix. The order in which resources are found is implementation-dependent. If
mode is XrmEnumOneLevel, a resource must match the given name/class prefix
with just a single name and class appended. If mode is XrmEnumAllLevels, the
resource must match the given name/class prefix with one or more names and

369



Resource Manager Functions

classes appended. If the procedure returns True, the enumeration terminates and
the function returns True. If the procedure always returns False, all matching
resources are enumerated and the function returns False.

The procedure is called with the following arguments:

(*proc)(database, bindings, quarks, type, value, arg)
     XrmDatabase *database;
     XrmBindingList bindings;
     XrmQuarkList quarks;
     XrmRepresentation *type;
     XrmValue *value;
     XPointer arg;

The bindings and quarks lists are terminated by NULLQUARK. Note that pointers
to the database and type are passed, but these values should not be modified.

The procedure must not modify the database. If Xlib has been initialized for threads,
the procedure is called with the database locked and the result of a call by the
procedure to any Xlib function using the same database is not defined.

Parsing Command Line Options
The XrmParseCommand function can be used to parse the command line arguments to
a program and modify a resource database with selected entries from the command
line.

typedef enum {
     XrmoptionNoArg,     /* Value is specified in XrmOptionDescRec.value */
     XrmoptionIsArg,     /* Value is the option string itself */
     XrmoptionStickyArg,     /* Value is characters immediately following option */
     XrmoptionSepArg,     /* Value is next argument in argv */
     XrmoptionResArg,     /* Resource and value in next argument in argv */
     XrmoptionSkipArg,     /* Ignore this option and the next argument in argv */
     XrmoptionSkipLine,     /* Ignore this option and the rest of argv */
     XrmoptionSkipNArgs     /* Ignore this option and the next
          \ \ \ XrmOptionDescRec.value arguments in argv */
} XrmOptionKind;

Note that XrmoptionSkipArg is equivalent to XrmoptionSkipNArgs with the
XrmOptionDescRec.value field containing the value one. Note also that the value
zero for XrmoptionSkipNArgs indicates that only the option itself is to be skipped.

370



Resource Manager Functions

typedef struct {
     char *option;     /* Option specification string in argv              */
     char *specifier;     /* Binding and resource name (sans application name)    */
     XrmOptionKind argKind;     /* Which style of option it is         */
     XPointer value;     /* Value to provide if XrmoptionNoArg or 
          \ \ \ XrmoptionSkipNArgs   */
} XrmOptionDescRec, *XrmOptionDescList;

To load a resource database from a C command line, use XrmParseCommand.

void XrmParseCommand(database, table, table_count, name, argc_in_out,
argv_in_out);

database Specifies the resource database.

table Specifies the table of command line arguments to be
parsed.

table_count Specifies the number of entries in the table.

name Specifies the application name.

argc_in_out Specifies the number of arguments and returns the
number of remaining arguments.

argv_in_out Specifies the command line arguments and returns
the remaining arguments.

The XrmParseCommand function parses an (argc, argv) pair according to the specified
option table, loads recognized options into the specified database with type
``String,'' and modifies the (argc, argv) pair to remove all recognized options. If
database contains NULL, XrmParseCommand creates a new database and returns a
pointer to it. Otherwise, entries are added to the database specified. If a database
is created, it is created in the current locale.

The specified table is used to parse the command line. Recognized options in
the table are removed from argv, and entries are added to the specified resource
database in the order they occur in argv. The table entries contain information on the
option string, the option name, the style of option, and a value to provide if the option
kind is XrmoptionNoArg. The option names are compared byte-for-byte to arguments
in argv, independent of any locale. The resource values given in the table are stored
in the resource database without modification. All resource database entries are
created using a ``String'' representation type. The argc argument specifies the
number of arguments in argv and is set on return to the remaining number of
arguments that were not parsed. The name argument should be the name of your
application for use in building the database entry. The name argument is prefixed
to the resourceName in the option table before storing a database entry. The name
argument is treated as a single component, even if it has embedded periods. No
separating (binding) character is inserted, so the table must contain either a period
(.) or an asterisk (*) as the first character in each resourceName entry. To specify
a more completely qualified resource name, the resourceName entry can contain
multiple components. If the name argument and the resourceNames are not in the
Host Portable Character Encoding, the result is implementation-dependent.

The following provides a sample option table:

371



Resource Manager Functions

static XrmOptionDescRec opTable[] = {
{"-background",     "*background",                 XrmoptionSepArg,    (XPointer) NULL},
{"-bd",             "*borderColor",                XrmoptionSepArg,    (XPointer) NULL},
{"-bg",             "*background",                 XrmoptionSepArg,    (XPointer) NULL},
{"-borderwidth",    "*TopLevelShell.borderWidth",  XrmoptionSepArg,    (XPointer) NULL},
{"-bordercolor",    "*borderColor",                XrmoptionSepArg,    (XPointer) NULL},
{"-bw",             "*TopLevelShell.borderWidth",  XrmoptionSepArg,    (XPointer) NULL},
{"-display",        ".display",                    XrmoptionSepArg,    (XPointer) NULL},
{"-fg",             "*foreground",                 XrmoptionSepArg,    (XPointer) NULL},
{"-fn",             "*font",                       XrmoptionSepArg,    (XPointer) NULL},
{"-font",           "*font",                       XrmoptionSepArg,    (XPointer) NULL},
{"-foreground",     "*foreground",                 XrmoptionSepArg,    (XPointer) NULL},
{"-geometry",       ".TopLevelShell.geometry",     XrmoptionSepArg,    (XPointer) NULL},
{"-iconic",         ".TopLevelShell.iconic",       XrmoptionNoArg,     (XPointer) "on"},
{"-name",           ".name",                       XrmoptionSepArg,    (XPointer) NULL},
{"-reverse",        "*reverseVideo",               XrmoptionNoArg,     (XPointer) "on"},
{"-rv",             "*reverseVideo",               XrmoptionNoArg,     (XPointer) "on"},
{"-synchronous",    "*synchronous",                XrmoptionNoArg,     (XPointer) "on"},
{"-title",          ".TopLevelShell.title",        XrmoptionSepArg,    (XPointer) NULL},
{"-xrm",            NULL,                          XrmoptionResArg,    (XPointer) NULL},
};

In this table, if the -background (or -bg) option is used to set background colors,
the stored resource specifier matches all resources of attribute background. If the
-borderwidth option is used, the stored resource specifier applies only to border
width attributes of class TopLevelShell (that is, outer-most windows, including pop-
up windows). If the -title option is used to set a window name, only the topmost
application windows receive the resource.

When parsing the command line, any unique unambiguous abbreviation for an
option name in the table is considered a match for the option. Note that uppercase
and lowercase matter.

372



Chapter 16. Application Utility
Functions

Once you have initialized the X system, you can use the Xlib utility functions to:

• Use keyboard utility functions

• Use Latin-1 keyboard event functions

• Allocate permanent storage

• Parse the window geometry

• Manipulate regions

• Use cut buffers

• Determine the appropriate visual type

• Manipulate images

• Manipulate bitmaps

• Use the context manager

As a group, the functions discussed in this chapter provide the functionality that is
frequently needed and that spans toolkits. Many of these functions do not generate
actual protocol requests to the server.

Using Keyboard Utility Functions
This section discusses mapping between KeyCodes and KeySyms, classifying
KeySyms, and mapping between KeySyms and string names. The first three
functions in this section operate on a cached copy of the server keyboard mapping.
The first four KeySyms for each KeyCode are modified according to the rules given
in section 12.7. To obtain the untransformed KeySyms defined for a key, use the
functions described in section 12.7.

To obtain a KeySym for the KeyCode of an event, use XLookupKeysym.

KeySym XLookupKeysym(key_event, index);

key_event Specifies the KeyPress or KeyRelease event.

index Specifies the index into the KeySyms list for the event's
KeyCode.

The XLookupKeysym function uses a given keyboard event and the index you
specified to return the KeySym from the list that corresponds to the KeyCode
member in the XKeyPressedEvent or XKeyReleasedEvent structure. If no KeySym
is defined for the KeyCode of the event, XLookupKeysym returns NoSymbol.

To obtain a KeySym for a specific KeyCode, use XKeycodeToKeysym.

373



Application Utility Functions

KeySym XKeycodeToKeysym(display, keycode, index);

display Specifies the connection to the X server.

keycode Specifies the KeyCode.

index Specifies the element of KeyCode vector.

The XKeycodeToKeysym function uses internal Xlib tables and returns the KeySym
defined for the specified KeyCode and the element of the KeyCode vector. If no
symbol is defined, XKeycodeToKeysym returns NoSymbol.

To obtain a KeyCode for a key having a specific KeySym, use XKeysymToKeycode.

KeyCode XKeysymToKeycode(display, keysym);

display Specifies the connection to the X server.

keysym Specifies the KeySym that is to be searched for.

If the specified KeySym is not defined for any KeyCode, XKeysymToKeycode returns
zero.

The mapping between KeyCodes and KeySyms is cached internal to Xlib. When
this information is changed at the server, an Xlib function must be called to
refresh the cache. To refresh the stored modifier and keymap information, use
XRefreshKeyboardMapping.

XRefreshKeyboardMapping(event_map);

event_map Specifies the mapping event that is to be used.

The XRefreshKeyboardMapping function refreshes the stored modifier and keymap
information. You usually call this function when a MappingNotify event with a
request member of MappingKeyboard or MappingModifier occurs. The result is to
update Xlib's knowledge of the keyboard.

To obtain the uppercase and lowercase forms of a KeySym, use XConvertCase.

void XConvertCase(keysym, lower_return, upper_return);

keysym Specifies the KeySym that is to be converted.

lower_return Returns the lowercase form of keysym, or keysym.

upper_return Returns the uppercase form of keysym, or keysym.

The XConvertCase function returns the uppercase and lowercase forms of the
specified Keysym, if the KeySym is subject to case conversion; otherwise, the
specified KeySym is returned to both lower_return and upper_return. Support for
conversion of other than Latin and Cyrillic KeySyms is implementation-dependent.

KeySyms have string names as well as numeric codes. To convert the name of the
KeySym to the KeySym code, use XStringToKeysym.

KeySym XStringToKeysym(string);

374



Application Utility Functions

string Specifies the name of the KeySym that is to be converted.

Standard KeySym names are obtained from <X11/keysymdef.h>    by removing the
XK_ prefix from each name. KeySyms that are not part of the Xlib standard also may
be obtained with this function. The set of KeySyms that are available in this manner
and the mechanisms by which Xlib obtains them is implementation-dependent.

If the KeySym name is not in the Host Portable Character Encoding, the result is
implementation-dependent. If the specified string does not match a valid KeySym,
XStringToKeysym returns NoSymbol.

To convert a KeySym code to the name of the KeySym, use XKeysymToString.

char *XKeysymToString(keysym);

keysym Specifies the KeySym that is to be converted.

The returned string is in a static area and must not be modified. The returned string
is in the Host Portable Character Encoding. If the specified KeySym is not defined,
XKeysymToString returns a NULL.

KeySym Classification Macros
You may want to test if a KeySym is, for example, on the keypad or on one of the
function keys. You can use KeySym macros to perform the following tests.

IsCursorKey(keysym)

keysym Specifies the KeySym that is to be tested.

 Returns True if the specified KeySym is a cursor key.

IsFunctionKey(keysym)

keysym Specifies the KeySym that is to be tested.

 Returns True if the specified KeySym is a function key.

IsKeypadKey(keysym)

keysym Specifies the KeySym that is to be tested.

 Returns True if the specified KeySym is a standard keypad key.

IsPrivateKeypadKey(keysym)

keysym Specifies the KeySym that is to be tested.

 Returns True if the specified KeySym is a vendor-private keypad key.

IsMiscFunctionKey(keysym)

keysym Specifies the KeySym that is to be tested.

 Returns True if the specified KeySym is a miscellaneous function key.

IsModifierKey(keysym)

375



Application Utility Functions

keysym Specifies the KeySym that is to be tested.

 Returns True if the specified KeySym is a modifier key.

IsPFKey(keysym)

keysym Specifies the KeySym that is to be tested.

 Returns True if the specified KeySym is a PF key.

Using Latin-1 Keyboard Event Functions
Chapter 13 describes internationalized text input facilities, but sometimes it is
expedient to write an application that only deals with Latin-1 characters and ASCII
controls, so Xlib provides a simple function for that purpose. XLookupString handles
the standard modifier semantics described in section 12.7. This function does not
use any of the input method facilities described in chapter 13 and does not depend
on the current locale.

To map a key event to an ISO Latin-1 string, use XLookupString.

int XLookupString(event_struct, buffer_return, bytes_buffer,
keysym_return, status_in_out);

event_struct Specifies the key event structure to be used. You can
pass XKeyPressedEvent or XKeyReleasedEvent.

buffer_return Returns the translated characters.

bytes_buffer Specifies the length of the buffer. No more than
bytes_buffer of translation are returned.

keysym_return Returns the KeySym computed from the event if this
argument is not NULL.

status_in_out Specifies or returns the XComposeStatus structure
or NULL.

The XLookupString function translates a key event to a KeySym and a string. The
KeySym is obtained by using the standard interpretation of the Shift, Lock, group,
and numlock modifiers as defined in the X Protocol specification. If the KeySym has
been rebound (see XRebindKeysym), the bound string will be stored in the buffer.
Otherwise, the KeySym is mapped, if possible, to an ISO Latin-1 character or (if the
Control modifier is on) to an ASCII control character, and that character is stored
in the buffer. XLookupString returns the number of characters that are stored in
the buffer.

If present (non-NULL), the XComposeStatus structure records the state, which is
private to Xlib, that needs preservation across calls to XLookupString to implement
compose processing. The creation of XComposeStatus structures is implementation-
dependent; a portable program must pass NULL for this argument.

XLookupString depends on the cached keyboard information mentioned in the
previous section, so it is necessary to use XRefreshKeyboardMapping to keep this
information up-to-date.

376



Application Utility Functions

To rebind the meaning of a KeySym for XLookupString, use XRebindKeysym.

XRebindKeysym(display, keysym, list[], mod_count, string, num_bytes);

display Specifies the connection to the X server.

keysym Specifies the KeySym that is to be rebound.

list Specifies the KeySyms to be used as modifiers.

mod_count Specifies the number of modifiers in the modifier list.

string Specifies the string that is copied and will be returned
by XLookupString.

num_bytes Specifies the number of bytes in the string argument.

The XRebindKeysym function can be used to rebind the meaning of a KeySym for the
client. It does not redefine any key in the X server but merely provides an easy way
for long strings to be attached to keys. XLookupString returns this string when the
appropriate set of modifier keys are pressed and when the KeySym would have been
used for the translation. No text conversions are performed; the client is responsible
for supplying appropriately encoded strings. Note that you can rebind a KeySym
that may not exist.

Allocating Permanent Storage
To allocate some memory you will never give back, use Xpermalloc. 

char *Xpermalloc(size);

The Xpermalloc function allocates storage that can never be freed for the life
of the program. The memory is allocated with alignment for the C type double.
This function may provide some performance and space savings over the standard
operating system memory allocator.

Parsing the Window Geometry
To parse standard window geometry strings, use XParseGeometry.  

int XParseGeometry(parsestring, x_return, y_return, width_return,
height_return);

parsestring Specifies the string you want to parse.

x_return

y_return Return the x and y offsets.

width_return

height_return Return the width and height determined.

By convention, X applications use a standard string to indicate window size and
placement. XParseGeometry makes it easier to conform to this standard because it

377



Application Utility Functions

allows you to parse the standard window geometry. Specifically, this function lets
you parse strings of the form:

[=][<width>{xX}<height>][{+-}<xoffset>{+-}<yoffset>] 

The fields map into the arguments associated with this function. (Items enclosed in
<> are integers, items in [] are optional, and items enclosed in {} indicate ̀ `choose
one of.'' Note that the brackets should not appear in the actual string.) If the
string is not in the Host Portable Character Encoding, the result is implementation-
dependent.

The XParseGeometry function returns a bitmask that indicates which of the four
values (width, height, xoffset, and yoffset) were actually found in the string and
whether the x and y values are negative. By convention, −0 is not equal to +0,
because the user needs to be able to say ``position the window relative to the right
or bottom edge.'' For each value found, the corresponding argument is updated. For
each value not found, the argument is left unchanged. The bits are represented by
XValue, YValue, WidthValue, HeightValue, XNegative, or YNegative and are defined
in <X11/Xutil.h>.    They will be set whenever one of the values is defined or one
of the signs is set.

If the function returns either the XValue or YValue flag, you should place the window
at the requested position.

To construct a window's geometry information, use XWMGeometry.

int XWMGeometry(display, screen, user_geom, def_geom, bwidth, hints,
x_return, y_return, width_return, height_return, gravity_return);

display Specifies the connection to the X server.

screen Specifies the screen.

user_geom Specifies the user-specified geometry or NULL.

def_geom Specifies the application's default geometry or
NULL.

bwidth Specifies the border width.

hints Specifies the size hints for the window in its normal
state.

x_return

y_return Return the x and y offsets.

width_return

height_return Return the width and height determined.

gravity_return Returns the window gravity.

The XWMGeometry function combines any geometry information (given in the format
used by XParseGeometry) specified by the user and by the calling program with
size hints (usually the ones to be stored in WM_NORMAL_HINTS) and returns the

378



Application Utility Functions

position, size, and gravity (NorthWestGravity, NorthEastGravity, SouthEastGravity,
or SouthWestGravity) that describe the window. If the base size is not set in the
XSizeHints structure, the minimum size is used if set. Otherwise, a base size of zero
is assumed. If no minimum size is set in the hints structure, the base size is used. A
mask (in the form returned by XParseGeometry) that describes which values came
from the user specification and whether or not the position coordinates are relative
to the right and bottom edges is returned. Note that these coordinates will have
already been accounted for in the x_return and y_return values.

Note that invalid geometry specifications can cause a width or height of zero to
be returned. The caller may pass the address of the hints win_gravity field as
gravity_return to update the hints directly.

Manipulating Regions
Regions are arbitrary sets of pixel locations. Xlib provides functions for
manipulating regions. The opaque type Region is defined in <X11/Xutil.h>.    Xlib
provides functions that you can use to manipulate regions. This section discusses
how to:

• Create, copy, or destroy regions

• Move or shrink regions

• Compute with regions

• Determine if regions are empty or equal

• Locate a point or rectangle in a region

Creating, Copying, or Destroying Regions
To create a new empty region, use XCreateRegion.

Region XCreateRegion();

To generate a region from a polygon, use XPolygonRegion.

Region XPolygonRegion(points[], n, fill_rule);

points Specifies an array of points.

n Specifies the number of points in the polygon.

fill_rule Specifies the fill-rule you want to set for the specified GC.
You can pass EvenOddRule or WindingRule.

The XPolygonRegion function returns a region for the polygon defined by the points
array. For an explanation of fill_rule, see XCreateGC.

To set the clip-mask of a GC to a region, use XSetRegion.

XSetRegion(display, gc, r);

display Specifies the connection to the X server.

379



Application Utility Functions

gc Specifies the GC.

r Specifies the region.

The XSetRegion function sets the clip-mask in the GC to the specified region. The
region is specified relative to the drawable's origin. The resulting GC clip origin is
implementation-dependent. Once it is set in the GC, the region can be destroyed.

To deallocate the storage associated with a specified region, use XDestroyRegion.

XDestroyRegion(r);

r Specifies the region.

Moving or Shrinking Regions
To move a region by a specified amount, use XOffsetRegion.

XOffsetRegion(r, dx, dy);

r Specifies the region.

dx

dy Specify the x and y coordinates, which define the amount you
want to move the specified region.

To reduce a region by a specified amount, use XShrinkRegion.

XShrinkRegion(r, dx, dy);

r Specifies the region.

dx

dy Specify the x and y coordinates, which define the amount you
want to shrink the specified region.

Positive values shrink the size of the region, and negative values expand the region.

Computing with Regions
To generate the smallest rectangle enclosing a region, use XClipBox.

XClipBox(r, rect_return);

r Specifies the region.

rect_return Returns the smallest enclosing rectangle.

The XClipBox function returns the smallest rectangle enclosing the specified region.

To compute the intersection of two regions, use XIntersectRegion.

XIntersectRegion(sra, srb, dr_return);

380



Application Utility Functions

sra

srb Specify the two regions with which you want to perform
the computation.

dr_return Returns the result of the computation.

To compute the union of two regions, use XUnionRegion.

XUnionRegion(sra, srb, dr_return);

sra

srb Specify the two regions with which you want to perform
the computation.

dr_return Returns the result of the computation.

To create a union of a source region and a rectangle, use XUnionRectWithRegion.

XUnionRectWithRegion(rectangle, src_region, dest_region_return);

rectangle Specifies the rectangle.

src_region Specifies the source region to be used.

dest_region_return Returns the destination region.

The XUnionRectWithRegion function updates the destination region from a union
of the specified rectangle and the specified source region.

To subtract two regions, use XSubtractRegion.

XSubtractRegion(sra, srb, dr_return);

sra

srb Specify the two regions with which you want to perform
the computation.

dr_return Returns the result of the computation.

The XSubtractRegion function subtracts srb from sra and stores the results in
dr_return.

To calculate the difference between the union and intersection of two regions, use
XXorRegion.

XXorRegion(sra, srb, dr_return);

sra

srb Specify the two regions with which you want to perform
the computation.

dr_return Returns the result of the computation.

381



Application Utility Functions

Determining if Regions Are Empty or Equal
To determine if the specified region is empty, use XEmptyRegion.

Bool XEmptyRegion(r);

r Specifies the region.

The XEmptyRegion function returns True if the region is empty.

To determine if two regions have the same offset, size, and shape, use
XEqualRegion.

Bool XEqualRegion(r1, r2);

r1

r2 Specify the two regions.

The XEqualRegion function returns True if the two regions have the same offset,
size, and shape.

Locating a Point or a Rectangle in a Region
To determine if a specified point resides in a specified region, use XPointInRegion.

Bool XPointInRegion(r, x, y);

r Specifies the region.

x

y Specify the x and y coordinates, which define the point.

The XPointInRegion function returns True if the point (x, y) is contained in the
region r.

To determine if a specified rectangle is inside a region, use XRectInRegion.

int XRectInRegion(r, x, y, width, height);

r Specifies the region.

x

y Specify the x and y coordinates, which define the
coordinates of the upper-left corner of the rectangle.

width

height Specify the width and height, which define the rectangle.

The XRectInRegion function returns RectangleIn if the rectangle is entirely in the
specified region, RectangleOut if the rectangle is entirely out of the specified region,
and RectanglePart if the rectangle is partially in the specified region.

382



Application Utility Functions

Using Cut Buffers
 Xlib provides functions to manipulate cut buffers, a very simple form of cut-and-
paste inter-client communication. Selections are a much more powerful and useful
mechanism for interchanging data between client (see section 4.5) and generally
should be used instead of cut buffers.

Cut buffers are implemented as properties on the first root window of the display.
The buffers can only contain text, in the STRING encoding. The text encoding is not
changed by Xlib when fetching or storing. Eight buffers are provided and can be
accessed as a ring or as explicit buffers (numbered 0 through 7).

To store data in cut buffer 0, use XStoreBytes.

XStoreBytes(display, bytes, nbytes);

display Specifies the connection to the X server.

bytes Specifies the bytes, which are not necessarily ASCII or null-
terminated.

nbytes Specifies the number of bytes to be stored.

The data can have embedded null characters and need not be null-terminated. The
cut buffer's contents can be retrieved later by any client calling XFetchBytes.

XStoreBytes can generate a BadAlloc error.

To store data in a specified cut buffer, use XStoreBuffer.

XStoreBuffer(display, bytes, nbytes, buffer);

display Specifies the connection to the X server.

bytes Specifies the bytes, which are not necessarily ASCII or null-
terminated.

nbytes Specifies the number of bytes to be stored.

buffer Specifies the buffer in which you want to store the bytes.

If an invalid buffer is specified, the call has no effect. The data can have embedded
null characters and need not be null-terminated.

XStoreBuffer can generate a BadAlloc error.

To return data from cut buffer 0, use XFetchBytes.

char *XFetchBytes(display, nbytes_return);

display Specifies the connection to the X server.

nbytes_return Returns the number of bytes in the buffer.

The XFetchBytes function returns the number of bytes in the nbytes_return
argument, if the buffer contains data. Otherwise, the function returns NULL and

383



Application Utility Functions

sets nbytes to 0. The appropriate amount of storage is allocated and the pointer
returned. The client must free this storage when finished with it by calling XFree.

To return data from a specified cut buffer, use XFetchBuffer.

char *XFetchBuffer(display, nbytes_return, buffer);

display Specifies the connection to the X server.

nbytes_return Returns the number of bytes in the buffer.

buffer Specifies the buffer from which you want the stored
data returned.

The XFetchBuffer function returns zero to the nbytes_return argument if there is
no data in the buffer or if an invalid buffer is specified.

To rotate the cut buffers, use XRotateBuffers.

XRotateBuffers(display, rotate);

display Specifies the connection to the X server.

rotate Specifies how much to rotate the cut buffers.

The XRotateBuffers function rotates the cut buffers, such that buffer 0 becomes
buffer n, buffer 1 becomes n + 1 mod 8, and so on. This cut buffer numbering is
global to the display. Note that XRotateBuffers generates BadMatch errors if any
of the eight buffers have not been created.

Determining the Appropriate Visual Type
A single display can support multiple screens. Each screen can have several
different visual types supported at different depths. You can use the functions
described in this section to determine which visual to use for your application.

The functions in this section use the visual information masks and the XVisualInfo
structure, which is defined in <X11/Xutil.h>    and contains:

/* Visual information mask bits */

#define   VisualNoMask                 0x0
#define   VisualIDMask                 0x1
#define   VisualScreenMask             0x2
#define   VisualDepthMask              0x4
#define   VisualClassMask              0x8
#define   VisualRedMaskMask            0x10
#define   VisualGreenMaskMask          0x20
#define   VisualBlueMaskMask           0x40
#define   VisualColormapSizeMask       0x80
#define   VisualBitsPerRGBMask         0x100
#define   VisualAllMask                0x1FF

384



Application Utility Functions

/* Values */

typedef struct {
     Visual *visual;
     VisualID visualid;
     int screen;
     unsigned int depth;
     int class;
     unsigned long red_mask;
     unsigned long green_mask;
     unsigned long blue_mask;
     int colormap_size;
     int bits_per_rgb;
} XVisualInfo;

To obtain a list of visual information structures that match a specified template, use
XGetVisualInfo.

XVisualInfo *XGetVisualInfo(display, vinfo_mask, vinfo_template,
nitems_return);

display Specifies the connection to the X server.

vinfo_mask Specifies the visual mask value.

vinfo_template Specifies the visual attributes that are to be used in
matching the visual structures.

nitems_return Returns the number of matching visual structures.

The XGetVisualInfo function returns a list of visual structures that have attributes
equal to the attributes specified by vinfo_template. If no visual structures match the
template using the specified vinfo_mask, XGetVisualInfo returns a NULL. To free
the data returned by this function, use XFree.

To obtain the visual information that matches the specified depth and class of the
screen, use XMatchVisualInfo.

Status XMatchVisualInfo(display, screen, depth, class, vinfo_return);

display Specifies the connection to the X server.

screen Specifies the screen.

depth Specifies the depth of the screen.

class Specifies the class of the screen.

vinfo_return Returns the matched visual information.

The XMatchVisualInfo function returns the visual information for a visual that
matches the specified depth and class for a screen. Because multiple visuals that

385



Application Utility Functions

match the specified depth and class can exist, the exact visual chosen is undefined.
If a visual is found, XMatchVisualInfo returns nonzero and the information on the
visual to vinfo_return. Otherwise, when a visual is not found, XMatchVisualInfo
returns zero.

Manipulating Images
Xlib provides several functions that perform basic operations on images. All
operations on images are defined using an XImage structure, as defined in <X11/
Xlib.h>.    Because the number of different types of image formats can be very
large, this hides details of image storage properly from applications.

This section describes the functions for generic operations on images.
Manufacturers can provide very fast implementations of these for the formats
frequently encountered on their hardware. These functions are neither sufficient
nor desirable to use for general image processing. Rather, they are here to provide
minimal functions on screen format images. The basic operations for getting and
putting images are XGetImage and XPutImage.

Note that no functions have been defined, as yet, to read and write images to and
from disk files.

The XImage structure describes an image as it exists in the client's memory. The
user can request that some of the members such as height, width, and xoffset
be changed when the image is sent to the server. Note that bytes_per_line in
concert with offset can be used to extract a subset of the image. Other members
(for example, byte order, bitmap_unit, and so forth) are characteristics of both the
image and the server. If these members differ between the image and the server,
XPutImage makes the appropriate conversions. The first byte of the first line of
plane n must be located at the address (data + (n * height * bytes_per_line)). For a
description of the XImage structure, see section 8.7.

To allocate an XImage structure and initialize it with image format values from a
display, use XCreateImage.

XImage *XCreateImage(display, visual, depth, format, offset, data,
width, height, bitmap_pad, bytes_per_line);

display Specifies the connection to the X server.

visual Specifies the Visual structure.

depth Specifies the depth of the image.

format Specifies the format for the image. You can pass
XYBitmap, XYPixmap, or ZPixmap.

offset Specifies the number of pixels to ignore at the
beginning of the scanline.

data Specifies the image data.

width Specifies the width of the image, in pixels.

height Specifies the height of the image, in pixels.

386



Application Utility Functions

bitmap_pad Specifies the quantum of a scanline (8, 16, or 32). In
other words, the start of one scanline is separated in
client memory from the start of the next scanline by
an integer multiple of this many bits.

bytes_per_line Specifies the number of bytes in the client image
between the start of one scanline and the start of the
next.

The XCreateImage function allocates the memory needed for an XImage structure
for the specified display but does not allocate space for the image itself. Rather,
it initializes the structure byte-order, bit-order, and bitmap-unit values from the
display and returns a pointer to the XImage structure. The red, green, and blue
mask values are defined for Z format images only and are derived from the Visual
structure passed in. Other values also are passed in. The offset permits the rapid
displaying of the image without requiring each scanline to be shifted into position.
If you pass a zero value in bytes_per_line, Xlib assumes that the scanlines are
contiguous in memory and calculates the value of bytes_per_line itself.

Note that when the image is created using XCreateImage, XGetImage, or XSubImage,
the destroy procedure that the XDestroyImage function calls frees both the image
structure and the data pointed to by the image structure.

The basic functions used to get a pixel, set a pixel, create a subimage, and add a
constant value to an image are defined in the image object. The functions in this
section are really macro invocations of the functions in the image object and are
defined in <X11/Xutil.h>.   

To obtain a pixel value in an image, use XGetPixel.

unsigned long XGetPixel(ximage, x, y);

ximage Specifies the image.

x

y Specify the x and y coordinates.

The XGetPixel function returns the specified pixel from the named image. The pixel
value is returned in normalized format (that is, the least significant byte of the
long is the least significant byte of the pixel). The image must contain the x and y
coordinates.

To set a pixel value in an image, use XPutPixel.

XPutPixel(ximage, x, y, pixel);

ximage Specifies the image.

x

y Specify the x and y coordinates.

pixel Specifies the new pixel value.

The XPutPixel function overwrites the pixel in the named image with the specified
pixel value. The input pixel value must be in normalized format (that is, the least

387



Application Utility Functions

significant byte of the long is the least significant byte of the pixel). The image must
contain the x and y coordinates.

To create a subimage, use XSubImage.

XImage *XSubImage(ximage, x, y, subimage_width, subimage_height);

ximage Specifies the image.

x

y Specify the x and y coordinates.

subimage_width Specifies the width of the new subimage, in pixels.

subimage_height Specifies the height of the new subimage, in pixels.

The XSubImage function creates a new image that is a subsection of an existing
one. It allocates the memory necessary for the new XImage structure and returns a
pointer to the new image. The data is copied from the source image, and the image
must contain the rectangle defined by x, y, subimage_width, and subimage_height.

To increment each pixel in an image by a constant value, use XAddPixel.

XAddPixel(ximage, value);

ximage Specifies the image.

value Specifies the constant value that is to be added.

The XAddPixel function adds a constant value to every pixel in an image. It is
useful when you have a base pixel value from allocating color resources and need
to manipulate the image to that form.

To deallocate the memory allocated in a previous call to XCreateImage, use
XDestroyImage.

XDestroyImage(ximage);

ximage Specifies the image.

The XDestroyImage function deallocates the memory associated with the XImage
structure.

Note that when the image is created using XCreateImage, XGetImage, or XSubImage,
the destroy procedure that this macro calls frees both the image structure and the
data pointed to by the image structure.

Manipulating Bitmaps
Xlib provides functions that you can use to read a bitmap from a file, save a bitmap
to a file, or create a bitmap. This section describes those functions that transfer
bitmaps to and from the client's file system, thus allowing their reuse in a later
connection (for example, from an entirely different client or to a different display
or server).

The X version 11 bitmap file format is:

388



Application Utility Functions

#define name_width width
#define name_height height
#define name_x_hot x
#define name_y_hot y
static unsigned char name_bits[] = { 0xNN,... }

The lines for the variables ending with _x_hot and _y_hot suffixes are optional
because they are present only if a hotspot has been defined for this bitmap. The
lines for the other variables are required. The word ``unsigned'' is optional; that is,
the type of the _bits array can be ``char'' or ``unsigned char''. The _bits array must
be large enough to contain the size bitmap. The bitmap unit is 8.

To read a bitmap from a file and store it in a pixmap, use XReadBitmapFile.

int XReadBitmapFile(display, d, filename, width_return, height_return,
bitmap_return, x_hot_return, y_hot_return);

display Specifies the connection to the X server.

d Specifies the drawable that indicates the screen.

filename Specifies the file name to use. The format of the file
name is operating-system dependent.

width_return

height_return Return the width and height values of the read in
bitmap file.

bitmap_return Returns the bitmap that is created.

x_hot_return

y_hot_return Return the hotspot coordinates.

The XReadBitmapFile function reads in a file containing a bitmap. The file is
parsed in the encoding of the current locale. The ability to read other than
the standard format is implementation-dependent. If the file cannot be opened,
XReadBitmapFile returns BitmapOpenFailed. If the file can be opened but does
not contain valid bitmap data, it returns BitmapFileInvalid. If insufficient working
storage is allocated, it returns BitmapNoMemory. If the file is readable and valid,
it returns BitmapSuccess.

XReadBitmapFile returns the bitmap's height and width, as read from the file, to
width_return and height_return. It then creates a pixmap of the appropriate size,
reads the bitmap data from the file into the pixmap, and assigns the pixmap to the
caller's variable bitmap. The caller must free the bitmap using XFreePixmap when
finished. If name_x_hot and name_y_hot exist, XReadBitmapFile returns them to
x_hot_return and y_hot_return; otherwise, it returns −1,−1.

XReadBitmapFile can generate BadAlloc, BadDrawable, and BadGC errors.

To read a bitmap from a file and return it as data, use XReadBitmapFileData.

int XReadBitmapFileData(filename, width_return, height_return,
data_return, x_hot_return, y_hot_return);

389



Application Utility Functions

filename Specifies the file name to use. The format of the file
name is operating-system dependent.

width_return

height_return Return the width and height values of the read in
bitmap file.

data_return Returns the bitmap data.

x_hot_return

y_hot_return Return the hotspot coordinates.

The XReadBitmapFileData function reads in a file containing a bitmap, in the same
manner as XReadBitmapFile, but returns the data directly rather than creating a
pixmap in the server. The bitmap data is returned in data_return; the client must
free this storage when finished with it by calling XFree. The status and other return
values are the same as for XReadBitmapFile.

To write out a bitmap from a pixmap to a file, use XWriteBitmapFile.

int XWriteBitmapFile(display, filename, bitmap, width, height, x_hot,
y_hot);

display Specifies the connection to the X server.

filename Specifies the file name to use. The format of the file name
is operating-system dependent.

bitmap Specifies the bitmap.

width

height Specify the width and height.

x_hot

y_hot Specify where to place the hotspot coordinates (or −1,−1
if none are present) in the file.

The XWriteBitmapFile function writes a bitmap out to a file in the X Version 11
format. The name used in the output file is derived from the file name by deleting the
directory prefix. The file is written in the encoding of the current locale. If the file
cannot be opened for writing, it returns BitmapOpenFailed. If insufficient memory
is allocated, XWriteBitmapFile returns BitmapNoMemory; otherwise, on no error,
it returns BitmapSuccess. If x_hot and y_hot are not −1, −1, XWriteBitmapFile
writes them out as the hotspot coordinates for the bitmap.

XWriteBitmapFile can generate BadDrawable and BadMatch errors.

To create a pixmap and then store bitmap-format data into it, use
XCreatePixmapFromBitmapData.

Pixmap XCreatePixmapFromBitmapData(display, d, data, width, height, fg,
bg, depth);

display Specifies the connection to the X server.

390



Application Utility Functions

d Specifies the drawable that indicates the screen.

data Specifies the data in bitmap format.

width

height Specify the width and height.

fg

bg Specify the foreground and background pixel values to use.

depth Specifies the depth of the pixmap.

The XCreatePixmapFromBitmapData function creates a pixmap of the given depth
and then does a bitmap-format XPutImage of the data into it. The depth must be
supported by the screen of the specified drawable, or a BadMatch error results.

XCreatePixmapFromBitmapData can generate BadAlloc, BadDrawable, BadGC, and
BadValue errors.

To include a bitmap written out by XWriteBitmapFile  in a program directly, as
opposed to reading it in every time at run time, use XCreateBitmapFromData.

Pixmap XCreateBitmapFromData(display, d, data, width, height);

display Specifies the connection to the X server.

d Specifies the drawable that indicates the screen.

data Specifies the location of the bitmap data.

width

height Specify the width and height.

The XCreateBitmapFromData function allows you to include in your C program
(using #include) a bitmap file that was written out by XWriteBitmapFile (X version
11 format only) without reading in the bitmap file. The following example creates
a gray bitmap:

#include "gray.bitmap"

Pixmap bitmap;
bitmap = XCreateBitmapFromData(display, window, gray_bits, gray_width, gray_height);

If insufficient working storage was allocated, XCreateBitmapFromData returns
None. It is your responsibility to free the bitmap using XFreePixmap when finished.

XCreateBitmapFromData can generate BadAlloc and BadGC errors.

Using the Context Manager
The context manager provides a way of associating data with an X resource ID
(mostly typically a window) in your program. Note that this is local to your program;
the data is not stored in the server on a property list. Any amount of data in any

391



Application Utility Functions

number of pieces can be associated with a resource ID, and each piece of data has
a type associated with it. The context manager requires knowledge of the resource
ID and type to store or retrieve data.

Essentially, the context manager can be viewed as a two-dimensional, sparse array:
one dimension is subscripted by the X resource ID and the other by a context type
field. Each entry in the array contains a pointer to the data. Xlib provides context
management functions with which you can save data values, get data values, delete
entries, and create a unique context type. The symbols used are in <X11/Xutil.h>.   

To save a data value that corresponds to a resource ID and context type, use
XSaveContext.

int XSaveContext(display, rid, context, data);

display Specifies the connection to the X server.

rid Specifies the resource ID with which the data is associated.

context Specifies the context type to which the data belongs.

data Specifies the data to be associated with the window and
type.

If an entry with the specified resource ID and type already exists, XSaveContext
overrides it with the specified context. The XSaveContext function returns a
nonzero error code if an error has occurred and zero otherwise. Possible errors are
XCNOMEM (out of memory).

To get the data associated with a resource ID and type, use XFindContext.

int XFindContext(display, rid, context, data_return);

display Specifies the connection to the X server.

rid Specifies the resource ID with which the data is
associated.

context Specifies the context type to which the data belongs.

data_return Returns the data.

Because it is a return value, the data is a pointer. The XFindContext function returns
a nonzero error code if an error has occurred and zero otherwise. Possible errors
are XCNOENT (context-not-found).

To delete an entry for a given resource ID and type, use XDeleteContext.

int XDeleteContext(display, rid, context);

display Specifies the connection to the X server.

rid Specifies the resource ID with which the data is associated.

context Specifies the context type to which the data belongs.

The XDeleteContext function deletes the entry for the given resource ID and
type from the data structure. This function returns the same error codes that

392



Application Utility Functions

XFindContext returns if called with the same arguments. XDeleteContext does not
free the data whose address was saved.

To create a unique context type that may be used in subsequent calls to
XSaveContext and XFindContext, use XUniqueContext.

XContext XUniqueContext();

393



Appendix A. Xlib Functions and
Protocol Requests

This appendix provides two tables that relate to Xlib functions and the X protocol.
The following table lists each Xlib function (in alphabetical order) and the
corresponding protocol request that it generates.

Table A.1. Protocol requests made by each Xlib function
Xlib Function Protocol Request
XActivateScreenSaver ForceScreenSaver

XAddHost ChangeHosts

XAddHosts ChangeHosts

XAddToSaveSet ChangeSaveSet

XAllocColor AllocColor

XAllocColorCells AllocColorCells

XAllocColorPlanes AllocColorPlanes

XAllocNamedColor AllocNamedColor

XAllowEvents AllowEvents

XAutoRepeatOff ChangeKeyboardControl

XAutoRepeatOn ChangeKeyboardControl

XBell Bell

XChangeActivePointerGrab ChangeActivePointerGrab

XChangeGC ChangeGC

XChangeKeyboardControl ChangeKeyboardControl

XChangeKeyboardMapping ChangeKeyboardMapping

XChangePointerControl ChangePointerControl

XChangeProperty ChangeProperty

XChangeSaveSet ChangeSaveSet

XChangeWindowAttributes ChangeWindowAttributes

XCirculateSubwindows CirculateWindow

XCirculateSubwindowsDown CirculateWindow

XCirculateSubwindowsUp CirculateWindow

XClearArea ClearArea

XClearWindow ClearArea

XConfigureWindow ConfigureWindow

XConvertSelection ConvertSelection

XCopyArea CopyArea

XCopyColormapAndFree CopyColormapAndFree

XCopyGC CopyGC

XCopyPlane CopyPlane

394



Xlib Functions and
Protocol Requests

Xlib Function Protocol Request
CreateGC

CreatePixmap

FreeGC

XCreateBitmapFromData

PutImage

XCreateColormap CreateColormap

XCreateFontCursor CreateGlyphCursor

XCreateGC CreateGC

XCreateGlyphCursor CreateGlyphCursor

XCreatePixmap CreatePixmap

XCreatePixmapCursor CreateCursor

CreateGC

CreatePixmap

FreeGC

XCreatePixmapFromData

PutImage

XCreateSimpleWindow CreateWindow

XCreateWindow CreateWindow

XDefineCursor ChangeWindowAttributes

XDeleteProperty DeleteProperty

XDestroySubwindows DestroySubwindows

XDestroyWindow DestroyWindow

XDisableAccessControl SetAccessControl

XDrawArc PolyArc

XDrawArcs PolyArc

XDrawImageString ImageText8

XDrawImageString16 ImageText16

XDrawLine PolySegment

XDrawLines PolyLine

XDrawPoint PolyPoint

XDrawPoints PolyPoint

XDrawRectangle PolyRectangle

XDrawRectangles PolyRectangle

XDrawSegments PolySegment

XDrawString PolyText8

XDrawString16 PolyText16

XDrawText PolyText8

XDrawText16 PolyText16

XEnableAccessControl SetAccessControl

XFetchBytes GetProperty

XFetchName GetProperty

395



Xlib Functions and
Protocol Requests

Xlib Function Protocol Request
XFillArc PolyFillArc

XFillArcs PolyFillArc

XFillPolygon FillPoly

XFillRectangle PolyFillRectangle

XFillRectangles PolyFillRectangle

XForceScreenSaver ForceScreenSaver

XFreeColormap FreeColormap

XFreeColors FreeColors

XFreeCursor FreeCursor

XFreeFont CloseFont

XFreeGC FreeGC

XFreePixmap FreePixmap

XGetAtomName GetAtomName

XGetClassHint GetProperty

XGetFontPath GetFontPath

XGetGeometry GetGeometry

XGetIconName GetProperty

XGetIconSizes GetProperty

XGetImage GetImage

XGetInputFocus GetInputFocus

XGetKeyboardControl GetKeyboardControl

XGetKeyboardMapping GetKeyboardMapping

XGetModifierMapping GetModifierMapping

GetMotionEvents

XGetNormalHints GetProperty

XGetPointerControl GetPointerControl

XGetPointerMapping GetPointerMapping

XGetRGBColormaps GetProperty

XGetScreenSaver GetScreenSaver

XGetSelectionOwner GetSelectionOwner

XGetSizeHints GetProperty

XGetTextProperty GetProperty

XGetTransientForHint GetProperty

XGetWMClientMachine GetProperty

GetPropertyXGetWMColormapWindows

InternAtom

XGetWMHints GetProperty

XGetWMIconName GetProperty

XGetWMName GetProperty

396



Xlib Functions and
Protocol Requests

Xlib Function Protocol Request
XGetWMNormalHints GetProperty

GetPropertyXGetWMProtocols

InternAtom

XGetWMSizeHints GetProperty

GetWindowAttributesXGetWindowAttributes

GetGeometry

XGetWindowProperty GetProperty

XGetZoomHints GetProperty

XGrabButton GrabButton

XGrabKey GrabKey

XGrabKeyboard GrabKeyboard

XGrabPointer GrabPointer

XGrabServer GrabServer

InternAtomXIconifyWindow

SendEvent

XInitExtension QueryExtension

XInstallColormap InstallColormap

XInternAtom InternAtom

XKillClient KillClient

XListExtensions ListExtensions

XListFonts ListFonts

XListFontsWithInfo ListFontsWithInfo

XListHosts ListHosts

XListInstalledColormaps ListInstalledColormaps

XListProperties ListProperties

XLoadFont OpenFont

OpenFontXLoadQueryFont

QueryFont

XLookupColor LookupColor

XLowerWindow ConfigureWindow

ConfigureWindowXMapRaised

MapWindow

XMapSubwindows MapSubwindows

XMapWindow MapWindow

XMoveResizeWindow ConfigureWindow

XMoveWindow ConfigureWindow

XNoOp NoOperation

XOpenDisplay CreateGC

XParseColor LookupColor

397



Xlib Functions and
Protocol Requests

Xlib Function Protocol Request
XPutImage PutImage

XQueryBestCursor QueryBestSize

XQueryBestSize QueryBestSize

XQueryBestStipple QueryBestSize

XQueryBestTile QueryBestSize

XQueryColor QueryColors

XQueryColors QueryColors

XQueryExtension QueryExtension

XQueryFont QueryFont

XQueryKeymap QueryKeymap

XQueryPointer QueryPointer

XQueryTextExtents QueryTextExtents

XQueryTextExtents16 QueryTextExtents

XQueryTree QueryTree

XRaiseWindow ConfigureWindow

CreateGC

CreatePixmap

FreeGC

XReadBitmapFile

PutImage

XRecolorCursor RecolorCursor

ConfigureWindowXReconfigureWMWindow

SendEvent

XRemoveFromSaveSet ChangeSaveSet

XRemoveHost ChangeHosts

XRemoveHosts ChangeHosts

XReparentWindow ReparentWindow

XResetScreenSaver ForceScreenSaver

XResizeWindow ConfigureWindow

XRestackWindows ConfigureWindow

XRotateBuffers RotateProperties

XRotateWindowProperties RotateProperties

XSelectInput ChangeWindowAttributes

XSendEvent SendEvent

XSetAccessControl SetAccessControl

XSetArcMode ChangeGC

XSetBackground ChangeGC

XSetClassHint ChangeProperty

XSetClipMask ChangeGC

XSetClipOrigin ChangeGC

398



Xlib Functions and
Protocol Requests

Xlib Function Protocol Request
XSetClipRectangles SetClipRectangles

XSetCloseDownMode SetCloseDownMode

XSetCommand ChangeProperty

XSetDashes SetDashes

XSetFillRule ChangeGC

XSetFillStyle ChangeGC

XSetFont ChangeGC

XSetFontPath SetFontPath

XSetForeground ChangeGC

XSetFunction ChangeGC

XSetGraphicsExposures ChangeGC

XSetIconName ChangeProperty

XSetIconSizes ChangeProperty

XSetInputFocus SetInputFocus

XSetLineAttributes ChangeGC

XSetModifierMapping SetModifierMapping

XSetNormalHints ChangeProperty

XSetPlaneMask ChangeGC

XSetPointerMapping SetPointerMapping

XSetRGBColormaps ChangeProperty

XSetScreenSaver SetScreenSaver

XSetSelectionOwner SetSelectionOwner

XSetSizeHints ChangeProperty

XSetStandardProperties ChangeProperty

XSetState ChangeGC

XSetStipple ChangeGC

XSetSubwindowMode ChangeGC

XSetTextProperty ChangeProperty

XSetTile ChangeGC

XSetTransientForHint ChangeProperty

XSetTSOrigin ChangeGC

XSetWMClientMachine ChangeProperty

ChangePropertyXSetWMColormapWindows

InternAtom

XSetWMHints ChangeProperty

XSetWMIconName ChangeProperty

XSetWMName ChangeProperty

XSetWMNormalHints ChangeProperty

XSetWMProperties ChangeProperty

399



Xlib Functions and
Protocol Requests

Xlib Function Protocol Request
ChangePropertyXSetWMProtocols

InternAtom

XSetWMSizeHints ChangeProperty

XSetWindowBackground ChangeWindowAttributes

XSetWindowBackgroundPixmap ChangeWindowAttributes

XSetWindowBorder ChangeWindowAttributes

XSetWindowBorderPixmap ChangeWindowAttributes

XSetWindowBorderWidth ConfigureWindow

XSetWindowColormap ChangeWindowAttributes

XSetZoomHints ChangeProperty

XStoreBuffer ChangeProperty

XStoreBytes ChangeProperty

XStoreColor StoreColors

XStoreColors StoreColors

XStoreName ChangeProperty

XStoreNamedColor StoreNamedColor

XSync GetInputFocus

XSynchronize GetInputFocus

XTranslateCoordinates TranslateCoordinates

XUndefineCursor ChangeWindowAttributes

XUngrabButton UngrabButton

XUngrabKey UngrabKey

XUngrabKeyboard UngrabKeyboard

XUngrabPointer UngrabPointer

XUngrabServer UngrabServer

XUninstallColormap UninstallColormap

XUnloadFont CloseFont

XUnmapSubwindows UnmapSubwindows

XUnmapWindow UnmapWindow

XWarpPointer WarpPointer

SendEventXWithdrawWindow

UnmapWindow

The following table lists each X protocol request (in alphabetical order) and the Xlib
functions that reference it.

Table A.2. Xlib functions which use each Protocol Request

Protocol Request Xlib Function
AllocColor XAllocColor

AllocColorCells XAllocColorCells

400



Xlib Functions and
Protocol Requests

Protocol Request Xlib Function
AllocColorPlanes XAllocColorPlanes

AllocNamedColor XAllocNamedColor

AllowEvents XAllowEvents

Bell XBell

ChangeActivePointerGrab XChangeActivePointerGrab

XChangeGC

XSetArcMode

XSetBackground

XSetClipMask

XSetClipOrigin

XSetFillRule

XSetFillStyle

XSetFont

XSetForeground

XSetFunction

XSetGraphicsExposures

XSetLineAttributes

XSetPlaneMask

XSetState

XSetStipple

XSetSubwindowMode

XSetTile

ChangeGC

XSetTSOrigin

XAddHost

XAddHosts

XRemoveHost

ChangeHosts

XRemoveHosts

XAutoRepeatOff

XAutoRepeatOn

ChangeKeyboardControl

XChangeKeyboardControl

ChangeKeyboardMapping XChangeKeyboardMapping

ChangePointerControl XChangePointerControl

XChangeProperty

XSetClassHint

XSetCommand

XSetIconName

XSetIconSizes

XSetNormalHints

ChangeProperty

XSetRGBColormaps

401



Xlib Functions and
Protocol Requests

Protocol Request Xlib Function
XSetSizeHints

XSetStandardProperties

XSetTextProperty

XSetTransientForHint

XSetWMClientMachine

XSetWMColormapWindows

XSetWMHints

XSetWMIconName

XSetWMName

XSetWMNormalHints

XSetWMProperties

XSetWMProtocols

XSetWMSizeHints

XSetZoomHints

XStoreBuffer

XStoreBytes

XStoreName

XAddToSaveSet

XChangeSaveSet

ChangeSaveSet

XRemoveFromSaveSet

XChangeWindowAttributes

XDefineCursor

XSelectInput

XSetWindowBackground

XSetWindowBackgroundPixmap

XSetWindowBorder

XSetWindowBorderPixmap

XSetWindowColormap

ChangeWindowAttributes

XUndefineCursor

XCirculateSubwindowsDown

XCirculateSubwindowsUp

CirculateWindow

XCirculateSubwindows

XClearAreaClearArea

XClearWindow

XFreeFontCloseFont

XUnloadFont

XConfigureWindow

XLowerWindow

ConfigureWindow

XMapRaised

402



Xlib Functions and
Protocol Requests

Protocol Request Xlib Function
XMoveResizeWindow

XMoveWindow

XRaiseWindow

XReconfigureWMWindow

XResizeWindow

XRestackWindows

XSetWindowBorderWidth

ConvertSelection XConvertSelection

CopyArea XCopyArea

CopyColormapAndFree XCopyColormapAndFree

CopyGC XCopyGC

CopyPlane XCopyPlane

CreateColormap XCreateColormap

CreateCursor XCreatePixmapCursor

XCreateGC

XCreateBitmapFromData

XCreatePixmapFromData

XOpenDisplay

CreateGC

XReadBitmapFile

XCreateFontCursorCreateGlyphCursor

XCreateGlyphCursor

XCreatePixmap

XCreateBitmapFromData

XCreatePixmapFromData

CreatePixmap

XReadBitmapFile

XCreateSimpleWindowCreateWindow

XCreateWindow

DeleteProperty XDeleteProperty

DestroySubwindows XDestroySubwindows

DestroyWindow XDestroyWindow

FillPoly XFillPolygon

XActivateScreenSaver

XForceScreenSaver

ForceScreenSaver

XResetScreenSaver

FreeColormap XFreeColormap

FreeColors XFreeColors

FreeCursor XFreeCursor

XFreeGCFreeGC

XCreateBitmapFromData

403



Xlib Functions and
Protocol Requests

Protocol Request Xlib Function
XCreatePixmapFromData

XReadBitmapFile

FreePixmap XFreePixmap

GetAtomName XGetAtomName

GetFontPath XGetFontPath

XGetGeometryGetGeometry

XGetWindowAttributes

GetImage XGetImage

XGetInputFocus

XSync

GetInputFocus

XSynchronize

GetKeyboardControl XGetKeyboardControl

GetKeyboardMapping XGetKeyboardMapping

GetModifierMapping XGetModifierMapping

GetMotionEvents

GetPointerControl XGetPointerControl

GetPointerMapping XGetPointerMapping

XFetchBytes

XFetchName

XGetClassHint

XGetIconName

XGetIconSizes

XGetNormalHints

XGetRGBColormaps

XGetSizeHints

XGetTextProperty

XGetTransientForHint

XGetWMClientMachine

XGetWMColormapWindows

XGetWMHints

XGetWMIconName

XGetWMName

XGetWMNormalHints

XGetWMProtocols

XGetWMSizeHints

XGetWindowProperty

GetProperty

XGetZoomHints

GetSelectionOwner XGetSelectionOwner

GetWindowAttributes XGetWindowAttributes

404



Xlib Functions and
Protocol Requests

Protocol Request Xlib Function
GrabButton XGrabButton

GrabKey XGrabKey

GrabKeyboard XGrabKeyboard

GrabPointer XGrabPointer

GrabServer XGrabServer

ImageText8 XDrawImageString

ImageText16 XDrawImageString16

InstallColormap XInstallColormap

XGetWMColormapWindows

XGetWMProtocols

XIconifyWindow

XInternAtom

XSetWMColormapWindows

InternAtom

XSetWMProtocols

KillClient XKillClient

ListExtensions XListExtensions

ListFonts XListFonts

ListFontsWithInfo XListFontsWithInfo

ListHosts XListHosts

ListInstalledColormaps XListInstalledColormaps

ListProperties XListProperties

XLookupColorLookupColor

XParseColor

MapSubwindows XMapSubwindows

XMapRaisedMapWindow

XMapWindow

NoOperation XNoOp

XLoadFontOpenFont

XLoadQueryFont

XDrawArcPolyArc

XDrawArcs

XFillArcPolyFillArc

XFillArcs

XFillRectanglePolyFillRectangle

XFillRectangles

PolyLine XDrawLines

XDrawPointPolyPoint

XDrawPoints

PolyRectangle XDrawRectangle

405



Xlib Functions and
Protocol Requests

Protocol Request Xlib Function
XDrawRectangles

XDrawLinePolySegment

XDrawSegments

XDrawStringPolyText8

XDrawText

XDrawString16PolyText16

XDrawText16

XPutImage

XCreateBitmapFromData

XCreatePixmapFromData

PutImage

XReadBitmapFile

XQueryBestCursor

XQueryBestSize

XQueryBestStipple

QueryBestSize

XQueryBestTile

XQueryColorQueryColors

XQueryColors

XInitExtensionQueryExtension

XQueryExtension

XLoadQueryFontQueryFont

XQueryFont

QueryKeymap XQueryKeymap

QueryPointer XQueryPointer

XQueryTextExtentsQueryTextExtents

XQueryTextExtents16

QueryTree XQueryTree

RecolorCursor XRecolorCursor

ReparentWindow XReparentWindow

XRotateBuffersRotateProperties

XRotateWindowProperties

XIconifyWindow

XReconfigureWMWindow

XSendEvent

SendEvent

XWithdrawWindow

XDisableAccessControl

XEnableAccessControl

SetAccessControl

XSetAccessControl

SetClipRectangles XSetClipRectangles

SetCloseDownMode XSetCloseDownMode

406



Xlib Functions and
Protocol Requests

Protocol Request Xlib Function
SetDashes XSetDashes

SetFontPath XSetFontPath

SetInputFocus XSetInputFocus

SetModifierMapping XSetModifierMapping

SetPointerMapping XSetPointerMapping

XGetScreenSaverSetScreenSaver

XSetScreenSaver

SetSelectionOwner XSetSelectionOwner

XStoreColorStoreColors

XStoreColors

StoreNamedColor XStoreNamedColor

TranslateCoordinates XTranslateCoordinates

UngrabButton XUngrabButton

UngrabKey XUngrabKey

UngrabKeyboard XUngrabKeyboard

UngrabPointer XUngrabPointer

UngrabServer XUngrabServer

UninstallColormap XUninstallColormap

UnmapSubwindows XUnmapSubWindows

XUnmapWindowUnmapWindow

XWithdrawWindow

WarpPointer XWarpPointer

407



Appendix B. X Font Cursors
The following are the available cursors that can be used with XCreateFontCursor.

#define XC_X_cursor 0                     #define XC_ll_angle 76
#define XC_arrow 2                        #define XC_lr_angle 78
#define XC_based_arrow_down 4             #define XC_man 80
#define XC_based_arrow_up 6               #define XC_middlebutton 82
#define XC_boat 8                         #define XC_mouse 84
#define XC_bogosity 10                    #define XC_pencil 86
#define XC_bottom_left_corner 12          #define XC_pirate 88
#define XC_bottom_right_corner 14         #define XC_plus 90
#define XC_bottom_side 16                 #define XC_question_arrow 92
#define XC_bottom_tee 18                  #define XC_right_ptr 94
#define XC_box_spiral 20                  #define XC_right_side 96
#define XC_center_ptr 22                  #define XC_right_tee 98
#define XC_circle 24                      #define XC_rightbutton 100
#define XC_clock 26                       #define XC_rtl_logo 102
#define XC_coffee_mug 28                  #define XC_sailboat 104
#define XC_cross 30                       #define XC_sb_down_arrow 106
#define XC_cross_reverse 32               #define XC_sb_h_double_arrow 108
#define XC_crosshair 34                   #define XC_sb_left_arrow 110
#define XC_diamond_cross 36               #define XC_sb_right_arrow 112
#define XC_dot 38                         #define XC_sb_up_arrow 114
#define XC_dot_box_mask 40                #define XC_sb_v_double_arrow 116
#define XC_double_arrow 42                #define XC_shuttle 118
#define XC_draft_large 44                 #define XC_sizing 120
#define XC_draft_small 46                 #define XC_spider 122
#define XC_draped_box 48                  #define XC_spraycan 124
#define XC_exchange 50                    #define XC_star 126
#define XC_fleur 52                       #define XC_target 128
#define XC_gobbler 54                     #define XC_tcross 130
#define XC_gumby 56                       #define XC_top_left_arrow 132
#define XC_hand1 58                       #define XC_top_left_corner 134
#define XC_hand2 60                       #define XC_top_right_corner 136
#define XC_heart 62                       #define XC_top_side 138
#define XC_icon 64                        #define XC_top_tee 140
#define XC_iron_cross 66                  #define XC_trek 142
#define XC_left_ptr 68                    #define XC_ul_angle 144
#define XC_left_side 70                   #define XC_umbrella 146
#define XC_left_tee 72                    #define XC_ur_angle 148
#define XC_leftbutton 74                  #define XC_watch 150
                                          #define XC_xterm 152

408



Appendix C. Extensions
Because X can evolve by extensions to the core protocol, it is important that
extensions not be perceived as second-class citizens. At some point, your favorite
extensions may be adopted as additional parts of the X Standard.

Therefore, there should be little to distinguish the use of an extension from
that of the core protocol. To avoid having to initialize extensions explicitly in
application programs, it is also important that extensions perform lazy evaluations,
automatically initializing themselves when called for the first time.

This appendix describes techniques for writing extensions to Xlib that will run at
essentially the same performance as the core protocol requests.

Note
It is expected that a given extension to X consists of multiple requests.
Defining 10 new features as 10 separate extensions is a bad practice. Rather,
they should be packaged into a single extension and should use minor
opcodes to distinguish the requests.

The symbols and macros used for writing stubs to Xlib are listed in <X11/
Xlibint.h>.

Basic Protocol Support Routines
The basic protocol requests for extensions are XQueryExtension and
XListExtensions.

Bool XQueryExtension(display, name, major_opcode_return,
first_event_return, first_error_return);

display Specifies the connection to the X server.

name Specifies the extension name.

major_opcode_return Returns the major opcode.

first_event_return Returns the first event code, if any.

first_error_return Returns the first error code, if any.

The XQueryExtension function determines if the named extension is present. If
the extension is not present, XQueryExtension returns False; otherwise, it returns
True. If the extension is present, XQueryExtension returns the major opcode for
the extension to major_opcode_return; otherwise, it returns zero. Any minor opcode
and the request formats are specific to the extension. If the extension involves
additional event types, XQueryExtension returns the base event type code to
first_event_return; otherwise, it returns zero. The format of the events is specific
to the extension. If the extension involves additional error codes, XQueryExtension
returns the base error code to first_error_return; otherwise, it returns zero. The
format of additional data in the errors is specific to the extension.

409



Extensions

If the extension name is not in the Host Portable Character Encoding the result is
implementation-dependent. Uppercase and lowercase matter; the strings ``thing'',
``Thing'', and ``thinG'' are all considered different names.

char **XListExtensions(display, nextensions_return);

display Specifies the connection to the X server.

nextensions_return Returns the number of extensions listed.

The XListExtensions function returns a list of all extensions supported by the
server. If the data returned by the server is in the Latin Portable Character
Encoding, then the returned strings are in the Host Portable Character Encoding.
Otherwise, the result is implementation-dependent.

XFreeExtensionList(list);

list Specifies the list of extension names.

The XFreeExtensionList function frees the memory allocated by
XListExtensions.

Hooking into Xlib
These functions allow you to hook into the library. They are not normally used
by application programmers but are used by people who need to extend the core
X protocol and the X library interface. The functions, which generate protocol
requests for X, are typically called stubs.

In extensions, stubs first should check to see if they have initialized themselves on
a connection. If they have not, they then should call XInitExtension to attempt to
initialize themselves on the connection.

If the extension needs to be informed of GC/font allocation or deallocation or if the
extension defines new event types, the functions described here allow the extension
to be called when these events occur.

The XExtCodes structure returns the information from XInitExtension and is
defined in <X11/Xlib.h>:

typedef struct _XExtCodes { /* public to extension, cannot be changed */
 int extension;  /* extension number */
 int major_opcode; /* major op-code assigned by server */
 int first_event; /* first event number for the extension */
 int first_error; /* first error number for the extension */
} XExtCodes;

XExtCodes *XInitExtension(display, name);

display Specifies the connection to the X server.

name Specifies the extension name.

410



Extensions

The XInitExtension function determines if the named extension exists. Then,
it allocates storage for maintaining the information about the extension on the
connection, chains this onto the extension list for the connection, and returns the
information the stub implementor will need to access the extension. If the extension
does not exist, XInitExtension returns NULL.

If the extension name is not in the Host Portable Character Encoding, the result is
implementation-dependent. Uppercase and lowercase matter; the strings ``thing'',
``Thing'', and ``thinG'' are all considered different names.

The extension number in the XExtCodes structure is needed in the other calls that
follow. This extension number is unique only to a single connection.

XExtCodes *XAddExtension(display);

display Specifies the connection to the X server.

For local Xlib extensions, the XAddExtension function allocates the XExtCodes
structure, bumps the extension number count, and chains the extension onto the
extension list. (This permits extensions to Xlib without requiring server extensions.)

Hooks into the Library
These functions allow you to define procedures that are to be called when various
circumstances occur. The procedures include the creation of a new GC for a
connection, the copying of a GC, the freeing of a GC, the creating and freeing of
fonts, the conversion of events defined by extensions to and from wire format, and
the handling of errors.

All of these functions return the previous procedure defined for this extension.

int XESetCloseDisplay(display, extension, (*proc)());

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the procedure to call when the display is
closed.

The XESetCloseDisplay function defines a procedure to be called whenever
XCloseDisplay is called. It returns any previously defined procedure, usually NULL.

When XCloseDisplay is called, your procedure is called with these arguments:

int (*proc)(display, codes);

int *XESetCreateGC(display, extension, (*proc)());

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the procedure to call when a GC is closed.

411



Extensions

The XESetCreateGC function defines a procedure to be called whenever a new GC
is created. It returns any previously defined procedure, usually NULL.

When a GC is created, your procedure is called with these arguments:

int (*proc)(display, gc, codes);

int *XESetCopyGC(display, extension, (*proc)());

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the procedure to call when GC components are
copied.

The XESetCopyGC function defines a procedure to be called whenever a GC is copied.
It returns any previously defined procedure, usually NULL.

When a GC is copied, your procedure is called with these arguments:

int (*proc)(display, gc, codes);

int *XESetFreeGC(display, extension, (*proc)());

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the procedure to call when a GC is freed.

The XESetFreeGC function defines a procedure to be called whenever a GC is freed.
It returns any previously defined procedure, usually NULL.

When a GC is freed, your procedure is called with these arguments:

int (*proc)(display, gc, codes);

int *XESetCreateFont(display, extension, (*proc)());

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the procedure to call when a font is created.

The XESetCreateFont function defines a procedure to be called whenever
XLoadQueryFont and XQueryFont are called. It returns any previously defined
procedure, usually NULL.

When XLoadQueryFont or XQueryFont is called, your procedure is called with these
arguments:

int (*proc)(display, fs, codes);

412



Extensions

int *XESetFreeFont(display, extension, (*proc)());

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the procedure to call when a font is freed.

The XESetFreeFont function defines a procedure to be called whenever XFreeFont
is called. It returns any previously defined procedure, usually NULL.

When XFreeFont is called, your procedure is called with these arguments:

int (*proc)(display, fs, codes);

The XESetWireToEvent and XESetEventToWire functions allow you to define new
events to the library. An XEvent structure always has a type code (type int) as
the first component. This uniquely identifies what kind of event it is. The second
component is always the serial number (type unsigned long) of the last request
processed by the server. The third component is always a Boolean (type Bool)
indicating whether the event came from a SendEvent protocol request. The fourth
component is always a pointer to the display the event was read from. The fifth
component is always a resource ID of one kind or another, usually a window,
carefully selected to be useful to toolkit dispatchers. The fifth component should
always exist, even if the event does not have a natural destination; if there is no
value from the protocol to put in this component, initialize it to zero. There is an
implementation limit such that your host event structure size cannot be bigger
than the size of the XEvent union of structures. There also is no way to guarantee
that more than 24 elements or 96 characters in the structure will be fully portable
between machines.

int *XESetWireToEvent(display, event_number, (*proc)());

display Specifies the connection to the X server.

event_number Specifies the event code.

proc Specifies the procedure to call when converting an
event.

The XESetWireToEvent function defines a procedure to be called when an event
needs to be converted from wire format (xEvent) to host format (XEvent). The event
number defines which protocol event number to install a conversion procedure
for. XESetWireToEvent returns any previously defined procedure. You can replace
a core event conversion function with one of your own, although this is not
encouraged. It would, however, allow you to intercept a core event and modify
it before being placed in the queue or otherwise examined. When Xlib needs to
convert an event from wire format to host format, your procedure is called with
these arguments:

int (*proc)(display, re, event);

Your procedure must return status to indicate if the conversion succeeded. The re
argument is a pointer to where the host format event should be stored, and the
event argument is the 32-byte wire event structure. In the XEvent structure you
are creating, you must fill in the five required members of the event structure. You

413



Extensions

should fill in the type member with the type specified for the xEvent structure.
You should copy all other members from the xEvent structure (wire format) to the
XEvent structure (host format). Your conversion procedure should return True if the
event should be placed in the queue or False if it should not be placed in the queue.

To initialize the serial number component of the event, call _XSetLastRequestRead
with the event and use the return value.

unsigned long_XSetLastRequestRead(display, rep);

display Specifies the connection to the X server.

rep Specifies the wire event structure.

The _XSetLastRequestRead function computes and returns a complete serial
number from the partial serial number in the event.

Status *XESetEventToWire(display, event_number, (*proc)());

display Specifies the connection to the X server.

event_number Specifies the event code.

proc Specifies the procedure to call when converting an
event.

The XESetEventToWire function defines a procedure to be called when an event
needs to be converted from host format (XEvent) to wire format (xEvent) form.
The event number defines which protocol event number to install a conversion
procedure for. XESetEventToWire returns any previously defined procedure. It
returns zero if the conversion fails or nonzero otherwise. You can replace a core
event conversion function with one of your own, although this is not encouraged.
It would, however, allow you to intercept a core event and modify it before being
sent to another client. When Xlib needs to convert an event from host format to wire
format, your procedure is called with these arguments:

int (*proc)(display, re, event);

The re argument is a pointer to the host format event, and the event argument is a
pointer to where the 32-byte wire event structure should be stored. You should fill
in the type with the type from the XEvent structure. All other members then should
be copied from the host format to the xEvent structure.

Bool *XESetWireToError(display, error_number, (*proc)());

display Specifies the connection to the X server.

error_number Specifies the error code.

proc Specifies the procedure to call when an error is
received.

The XESetWireToError function defines a procedure to be called when an
extension error needs to be converted from wire format to host format. The error
number defines which protocol error code to install the conversion procedure for.
XESetWireToError returns any previously defined procedure.

414



Extensions

Use this function for extension errors that contain additional error values beyond
those in a core X error, when multiple wire errors must be combined into a single
Xlib error, or when it is necessary to intercept an X error before it is otherwise
examined.

When Xlib needs to convert an error from wire format to host format, the procedure
is called with these arguments:

int (*proc)(display, he, we);

The he argument is a pointer to where the host format error should be stored. The
structure pointed at by he is guaranteed to be as large as an XEvent structure and
so can be cast to a type larger than an XErrorEvent to store additional values. If
the error is to be completely ignored by Xlib (for example, several protocol error
structures will be combined into one Xlib error), then the function should return
False; otherwise, it should return True.

int *XESetError(display, extension, (*proc)());

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the procedure to call when an error is received.

Inside Xlib, there are times that you may want to suppress the calling of the external
error handling when an error occurs. This allows status to be returned on a call
at the cost of the call being synchronous (though most such functions are query
operations, in any case, and are typically programmed to be synchronous).

When Xlib detects a protocol error in _XReply, it calls your procedure with these
arguments:

int (*proc)(display, err, codes, ret_code);

The err argument is a pointer to the 32-byte wire format error. The codes argument
is a pointer to the extension codes structure. The ret_code argument is the return
code you may want _XReply returned to.

If your procedure returns a zero value, the error is not suppressed, and the
client's error handler is called. (For further information, see section 11.8.2.) If your
procedure returns nonzero, the error is suppressed, and _XReply returns the value
of ret_code.

char *XESetErrorString(display, extension, (*proc)());

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the procedure to call to obtain an error string.

The XGetErrorText function returns a string to the user for an error.
XESetErrorString allows you to define a procedure to be called that should return
a pointer to the error message. The following is an example.

415



Extensions

int (*proc)(display, code, codes, buffer, nbytes);

Your procedure is called with the error code for every error detected. You should
copy nbytes of a null-terminated string containing the error message into buffer.

void *XESetPrintErrorValues(display, extension, (*proc)());

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the procedure to call when an error is printed.

The XESetPrintErrorValues function defines a procedure to be called when an
extension error is printed, to print the error values. Use this function for extension
errors that contain additional error values beyond those in a core X error. It returns
any previously defined procedure.

When Xlib needs to print an error, the procedure is called with these arguments:

void (*proc)(display, ev, fp);

The structure pointed at by ev is guaranteed to be as large as an XEvent structure
and so can be cast to a type larger than an XErrorEvent to obtain additional values
set by using XESetWireToError. The underlying type of the fp argument is system
dependent; on a POSIX-compliant system, fp should be cast to type FILE*.

int *XESetFlushGC(display, extension, (*proc)());

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the procedure to call when a GC is flushed.

The procedure set by the XESetFlushGC function has the same interface as the
procedure set by the XESetCopyGC function, but is called when a GC cache needs
to be updated in the server.

int *XESetCopyGC(display, extension, (*proc)());

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the procedure to call when a buffer is flushed.

The XESetBeforeFlush function defines a procedure to be called when data is about
to be sent to the server. When data is about to be sent, your procedure is called one
or more times with these arguments:

void (*proc)(display, codes, data, len);

The data argument specifies a portion of the outgoing data buffer, and its length in
bytes is specified by the len argument. Your procedure must not alter the contents
of the data and must not do additional protocol requests to the same display.

416



Extensions

Hooks onto Xlib Data Structures
Various Xlib data structures have provisions for extension procedures to chain
extension supplied data onto a list. These structures are GC, Visual, Screen,
ScreenFormat, Display, and XFontStruct. Because the list pointer is always the first
member in the structure, a single set of procedures can be used to manipulate the
data on these lists.

The following structure is used in the functions in this section and is defined in
<X11/Xlib.h>

typedef struct _XExtData {
 int number; /* number returned by XInitExtension */
 struct _XExtData *next; /* next item on list of data for structure */
 int (*free_private)(); /* if defined,  called to free private */
 XPointer private_data; /* data private to this extension. */
} XExtData;

When any of the data structures listed above are freed, the list is walked, and the
structure's free procedure (if any) is called. If free is NULL, then the library frees
both the data pointed to by the private_data member and the structure itself.

union { Display *display;
 GC gc;
 Visual *visual;
 Screen *screen;
 ScreenFormat *pixmap_format;
 XFontStruct *font } XEDataObject;

XExtData **XEHeadOfExtensionList(object);

object Specifies the object.

The XEHeadOfExtensionList function returns a pointer to the list of extension
structures attached to the specified object. In concert with XAddToExtensionList,
XEHeadOfExtensionList allows an extension to attach arbitrary data to any of the
structures of types contained in XEDataObject.

XAddToExtensionList(structure, ext_data);

structure Specifies the extension list.

ext_data Specifies the extension data structure to add.

The structure argument is a pointer to one of the data structures enumerated above.
You must initialize ext_data->number with the extension number before calling this
function.

XExtData *XFindOnExtensionList(structure, number);

structure Specifies the extension list.

417



Extensions

number Specifies the extension number from XInitExtension.

The XFindOnExtensionList function returns the first extension data structure for
the extension numbered number. It is expected that an extension will add at most
one extension data structure to any single data structure's extension data list. There
is no way to find additional structures.

The XAllocID macro, which allocates and returns a resource ID, is defined in <X11/
Xlib.h>.

XAllocID(display);

display Specifies the connection to the X server.

This macro is a call through the Display structure to an internal resource ID
allocator. It returns a resource ID that you can use when creating new resources.

The XAllocIDs macro allocates and returns an array of resource ID.

XAllocIDs(display, ids_return, count);

display Specifies the connection to the X server.

ids_return Returns the resource IDs.

rep Specifies the number of resource IDs requested.

This macro is a call through the Display structure to an internal resource ID
allocator. It returns resource IDs to the array supplied by the caller. To correctly
handle automatic reuse of resource IDs, you must call XAllocIDs when requesting
multiple resource IDs. This call might generate protocol requests.

GC Caching
GCs are cached by the library to allow merging of independent change requests
to the same GC into single protocol requests. This is typically called a write-back
cache. Any extension procedure whose behavior depends on the contents of a GC
must flush the GC cache to make sure the server has up-to-date contents in its GC.

The FlushGC macro checks the dirty bits in the library's GC structure and calls
_XFlushGCCache if any elements have changed. The FlushGC macro is defined as
follows:

FlushGC(display, gc);

display Specifies the connection to the X server.

gc Specifies the GC.

Note that if you extend the GC to add additional resource ID components, you should
ensure that the library stub sends the change request immediately. This is because
a client can free a resource immediately after using it, so if you only stored the value
in the cache without forcing a protocol request, the resource might be destroyed
before being set into the GC. You can use the _XFlushGCCache procedure to force
the cache to be flushed. The _XFlushGCCache procedure is defined as follows:

_XFlushGCCache(display, gc);

418



Extensions

display Specifies the connection to the X server.

gc Specifies the GC.

Graphics Batching
If you extend X to add more poly graphics primitives, you may be able to take
advantage of facilities in the library to allow back-to-back single calls to be
transformed into poly requests. This may dramatically improve performance of
programs that are not written using poly requests. A pointer to an xReq, called
last_req in the display structure, is the last request being processed. By checking
that the last request type, drawable, gc, and other options are the same as the
new one and that there is enough space left in the buffer, you may be able to just
extend the previous graphics request by extending the length field of the request
and appending the data to the buffer. This can improve performance by five times or
more in naive programs. For example, here is the source for the XDrawPoint stub.
(Writing extension stubs is discussed in the next section.)

#include <X11/Xlibint.h>

/* precompute the maximum size of batching request allowed */

static int size = sizeof(xPolyPointReq) + EPERBATCH * sizeof(xPoint);

XDrawPoint(dpy, d, gc, x, y)
    register Display *dpy;
    Drawable d;
    GC gc;
    int x, y; /* INT16 */
{
    xPoint *point;
    LockDisplay(dpy);
    FlushGC(dpy, gc);
    {
    register xPolyPointReq *req = (xPolyPointReq *) dpy->last_req;
    /* if same as previous request, with same drawable, batch requests */
    if (
          (req->reqType == X_PolyPoint)
       && (req->drawable == d)
       && (req->gc == gc->gid)
       && (req->coordMode == CoordModeOrigin)
       && ((dpy->bufptr + sizeof (xPoint)) <= dpy->bufmax)
       && (((char *)dpy->bufptr - (char *)req) < size) ) {
         point = (xPoint *) dpy->bufptr;
         req->length += sizeof (xPoint) >> 2;
         dpy->bufptr += sizeof (xPoint);
         }

    else {
        GetReqExtra(PolyPoint, 4, req); /* 1 point = 4 bytes */
        req->drawable = d;
        req->gc = gc->gid;
        req->coordMode = CoordModeOrigin;

419



Extensions

        point = (xPoint *) (req + 1);
        }
    point->x = x;
    point->y = y;
    }
    UnlockDisplay(dpy);
    SyncHandle();
}

To keep clients from generating very long requests that may monopolize the server,
there is a symbol defined in <X11/Xlibint.h> of EPERBATCH on the number of
requests batched. Most of the performance benefit occurs in the first few merged
requests. Note that FlushGC is called before picking up the value of last_req,
because it may modify this field.

Writing Extension Stubs
All X requests always contain the length of the request, expressed as a 16-bit
quantity of 32 bit words. This means that a single request can be no more than 256K
bytes in length. Some servers may not support single requests of such a length.
The value of dpy->max_request_size contains the maximum length as defined by the
server implementation. For further information, see X Window System Protocol.

Requests, Replies, and Xproto.h
The <X11/Xproto.h> file contains three sets of definitions that are of interest to the
stub implementor: request names, request structures, and reply structures.

You need to generate a file equivalent to <X11/Xproto.h> for your extension and
need to include it in your stub procedure. Each stub procedure also must include
<X11/Xlibint.h>.

The identifiers are deliberately chosen in such a way that, if the request is called
X_DoSomething, then its request structure is xDoSomethingReq, and its reply is
xDoSomethingReply. The GetReq family of macros, defined in <X11/Xlibint.h>,
takes advantage of this naming scheme.

For each X request, there is a definition in <X11/Xproto.h> that looks similar to this:

#define X_DoSomething   42

In your extension header file, this will be a minor opcode, instead of a major opcode.

Request Format
Every request contains an 8-bit major opcode and a 16-bit length field expressed in
units of 4 bytes. Every request consists of 4 bytes of header (containing the major
opcode, the length field, and a data byte) followed by zero or more additional bytes
of data. The length field defines the total length of the request, including the header.
The length field in a request must equal the minimum length required to contain
the request. If the specified length is smaller or larger than the required length,
the server should generate a BadLength error. Unused bytes in a request are not
required to be zero. Extensions should be designed in such a way that long protocol

420

../../xproto/x11protocol.pdf#Maximum-request-length


Extensions

requests can be split up into smaller requests, if it is possible to exceed the maximum
request size of the server. The protocol guarantees the maximum request size to be
no smaller than 4096 units (16384 bytes).

Major opcodes 128 through 255 are reserved for extensions. Extensions are
intended to contain multiple requests, so extension requests typically have an
additional minor opcode encoded in the second data byte in the request header, but
the placement and interpretation of this minor opcode as well as all other fields in
extension requests are not defined by the core protocol. Every request is implicitly
assigned a sequence number (starting with one) used in replies, errors, and events.

Most protocol requests have a corresponding structure typedef in <X11/Xproto.h>,
which looks like:

typedef struct _DoSomethingReq {
 CARD8 reqType;  /* X_DoSomething */
 CARD8 someDatum; /* used differently in different requests */
 CARD16 length;  /* total # of bytes in request, divided by 4 */
 ...
 /* request-specific data */
 ...
} xDoSomethingReq;

If a core protocol request has a single 32-bit argument, you need not declare a
request structure in your extension header file. Instead, such requests use the
xResourceReq structure in <X11/Xproto.h>. This structure is used for any request
whose single argument is a Window, Pixmap, Drawable, GContext, Font, Cursor,
Colormap, Atom, or VisualID.

typedef struct _ResourceReq {
 CARD8 reqType; /* the request type, e.g. X_DoSomething */
 BYTE pad; /* not used */
 CARD16 length; /* 2 (= total # of bytes in request, divided by 4) */
 CARD32 id; /* the Window, Drawable, Font, GContext, etc. */
} xResourceReq;

If convenient, you can do something similar in your extension header file.

In both of these structures, the reqType field identifies the type of the request
(for example, X_MapWindow or X_CreatePixmap). The length field tells how long
the request is in units of 4-byte longwords. This length includes both the request
structure itself and any variable-length data, such as strings or lists, that follow the
request structure. Request structures come in different sizes, but all requests are
padded to be multiples of four bytes long.

A few protocol requests take no arguments at all. Instead, they use the xReq
structure in <X11/Xproto.h>, which contains only a reqType and a length (and a
pad byte).

If the protocol request requires a reply, then <X11/Xproto.h> also contains a reply
structure typedef:

421



Extensions

typedef struct _DoSomethingReply {
 BYTE type; /* always X_Reply */
 BYTE someDatum; /* used differently in different requests */
 CARD16 sequenceNumber; /* # of requests sent so far */
 CARD32 length; /* # of additional bytes, divided by 4 */
 ...
 /* request-specific data */
 ...
} xDoSomethingReply;

Most of these reply structures are 32 bytes long. If there are not that many reply
values, then they contain a sufficient number of pad fields to bring them up to 32
bytes. The length field is the total number of bytes in the request minus 32, divided
by 4. This length will be nonzero only if:

• The reply structure is followed by variable-length data, such as a list or string.

• The reply structure is longer than 32 bytes.

Only GetWindowAttributesl, QueryFont, QueryKeymap, and GetKeyboardControl
have reply structures longer than 32 bytes in the core protocol.

A few protocol requests return replies that contain no data. <X11/Xproto.h> does
not define reply structures for these. Instead, they use the xGenericReply structure,
which contains only a type, length, and sequence number (and sufficient padding
to make it 32 bytes long).

Starting to Write a Stub Procedure
An Xlib stub procedure should start like this:

#include "<X11/Xlibint.h>

XDoSomething (arguments, ... )
/* argument declarations */
{

register XDoSomethingReq *req;
...

If the protocol request has a reply, then the variable declarations should include the
reply structure for the request. The following is an example:

xDoSomethingReply rep;

Locking Data Structures
To lock the display structure for systems that want to support multithreaded access
to a single display connection, each stub will need to lock its critical section.

422



Extensions

Generally, this section is the point from just before the appropriate GetReq call until
all arguments to the call have been stored into the buffer. The precise instructions
needed for this locking depend upon the machine architecture. Two calls, which are
generally implemented as macros, have been provided. 

LockDisplay(display);

UnlockDisplay(display);

display Specifies the connection to the X server.

Sending the Protocol Request and Arguments
After the variable declarations, a stub procedure should call one of four macros
defined in <X11/Xlibint.h>: GetReq, GetReqExtra, GetResReq, or GetEmptyReq. All
of these macros take, as their first argument, the name of the protocol request as
declared in <X11/Xproto.h> except with X_ removed. Each one declares a Display
structure pointer, called dpy, and a pointer to a request structure, called req, which
is of the appropriate type. The macro then appends the request structure to the
output buffer, fills in its type and length field, and sets req to point to it.

If the protocol request has no arguments (for instance, X_GrabServer), then use
GetEmptyReq.

GetEmptyReq (DoSomething, req);

If the protocol request has a single 32-bit argument (such as a Pixmap, Window,
Drawable, Atom, and so on), then use GetResReq. The second argument to the macro
is the 32-bit object. X_MapWindow is a good example.

GetResReq (DoSomething, rid, req);

The rid argument is the Pixmap, Window, or other resource ID.

If the protocol request takes any other argument list, then call GetReq. After the
GetReq, you need to set all the other fields in the request structure, usually from
arguments to the stub procedure.

GetReq (DoSomething, req);
/* fill in arguments here */
req->arg1 = arg1;
req->arg2 = arg2;
...

A few stub procedures (such as XCreateGC and XCreatePixmap) return a resource
ID to the caller but pass a resource ID as an argument to the protocol request. Such
procedures use the macro XAllocID to allocate a resource ID from the range of IDs
that were assigned to this client when it opened the connection.

rid = req->rid = XAllocID();

423



Extensions

...
return (rid);

Finally, some stub procedures transmit a fixed amount of variable-length
data after the request. Typically, these procedures (such as XMoveWindow
and XSetBackground) are special cases of more general functions like
XMoveResizeWindow and XChangeGC. These procedures use GetReqExtra, which is
the same as GetReq except that it takes an additional argument (the number of
extra bytes to allocate in the output buffer after the request structure). This number
should always be a multiple of four. Note that it is possible for req to be set to
NULL as a defensive measure if the requested length exceeds the Xlib's buffer size
(normally 16K).

Variable Length Arguments
Some protocol requests take additional variable-length data that follow the
xDoSomethingReq structure. The format of this data varies from request to request.
Some requests require a sequence of 8-bit bytes, others a sequence of 16-bit or 32-
bit entities, and still others a sequence of structures.

It is necessary to add the length of any variable-length data to the length field of
the request structure. That length field is in units of 32-bit longwords. If the data
is a string or other sequence of 8-bit bytes, then you must round the length up and
shift it before adding:

req->length += (nbytes+3)>>2;

To transmit variable-length data, use the Data macros. If the data fits into the output
buffer, then this macro copies it to the buffer. If it does not fit, however, the Data
macro calls _XSend, which transmits first the contents of the buffer and then your
data. The Data macros take three arguments: the display, a pointer to the beginning
of the data, and the number of bytes to be sent.

Data(display, data, nbytes);

Data16(display, data, nbytes);

Data32(display, data, nbytes);

Data, Data16, and Data32 are macros that may use their last argument more
than once, so that argument should be a variable rather than an expression such
as ``nitems*sizeof(item)''. You should do that kind of computation in a separate
statement before calling them. Use the appropriate macro when sending byte, short,
or long data.

If the protocol request requires a reply, then call the procedure _XSend instead
of the Data macro. _XSend takes the same arguments, but because it sends your
data immediately instead of copying it into the output buffer (which would later be
flushed anyway by the following call on _XReply), it is faster.

Replies
If the protocol request has a reply, then call _XReply after you have finished dealing
with all the fixed-length and variable-length arguments. _XReply flushes the output

424



Extensions

buffer and waits for an xReply packet to arrive. If any events arrive in the meantime,
_XReply places them in the queue for later use.

Status _XReply(display, rep, extra, discard);

display Specifies the connection to the X server.

rep Specifies the reply structure.

extra Specifies the number of 32-bit words expected after the
replay.

discard Specifies if any data beyond that specified in the extra
argument should be discarded.

The _XReply function waits for a reply packet and copies its contents into the
specified rep. _XReply handles error and event packets that occur before the reply
is received. _XReply takes four arguments:

• A Display * structure

• A pointer to a reply structure (which must be cast to an xReply *)

• The number of additional 32-bit words (beyond sizeof( xReply) = 32 bytes) in
the reply structure

• A Boolean that indicates whether _XReply is to discard any additional bytes
beyond those it was told to read

Because most reply structures are 32 bytes long, the third argument is usually 0. The
only core protocol exceptions are the replies to GetWindowAttributesl, QueryFont,
QueryKeymap, and GetKeyboardControl, which have longer replies.

The last argument should be False if the reply structure is followed by additional
variable-length data (such as a list or string). It should be True if there is not
any variable-length data. This last argument is provided for upward-compatibility
reasons to allow a client to communicate properly with a hypothetical later
version of the server that sends more data than the client expected. For example,
some later version of GetWindowAttributesl might use a larger, but compatible,
xGetWindowAttributesReply that contains additional attribute data at the end.
_XReply returns True if it received a reply successfully or False if it received any
sort of error.

For a request with a reply that is not followed by variable-length data, you write
something like:

_XReply(display, (xReply *)&rep, 0, True);
*ret1 = rep.ret1;
*ret2 = rep.ret2;
*ret3 = rep.ret3;
...
UnlockDisplay(dpy);
SyncHandle();
return (rep.ret4);
}

425



Extensions

If there is variable-length data after the reply, change the True to False, and use the
appropriate _XRead function to read the variable-length data.

_XRead(display, data_return, nbytes);

display Specifies the connection to the X server.

data_return Specifies the buffer.

nbytes Specifies the number of bytes required.

The _XRead function reads the specified number of bytes into data_return.

_XRead16(display, data_return, nbytes);

display Specifies the connection to the X server.

data_return Specifies the buffer.

nbytes Specifies the number of bytes required.

The _XRead16 function reads the specified number of bytes, unpacking them as 16-
bit quantities, into the specified array as shorts.

_XRead32(display, data_return, nbytes);

display Specifies the connection to the X server.

data_return Specifies the buffer.

nbytes Specifies the number of bytes required.

The _XRead32 function reads the specified number of bytes, unpacking them as 32-
bit quantities, into the specified array as longs.

_XRead16Pad(display, data_return, nbytes);

display Specifies the connection to the X server.

data_return Specifies the buffer.

nbytes Specifies the number of bytes required.

The _XRead16Pad function reads the specified number of bytes, unpacking them as
16-bit quantities, into the specified array as shorts. If the number of bytes is not a
multiple of four, _XRead16Pad reads and discards up to two additional pad bytes.

_XReadPad(display, data_return, nbytes);

display Specifies the connection to the X server.

data_return Specifies the buffer.

nbytes Specifies the number of bytes required.

The _XReadPad function reads the specified number of bytes into data_return. If the
number of bytes is not a multiple of four, _XReadPad reads and discards up to three
additional pad bytes.

426



Extensions

Each protocol request is a little different. For further information, see the Xlib
sources for examples.

Synchronous Calling
Each procedure should have a call, just before returning to the user, to a macro
called SyncHandle. If synchronous mode is enabled (see XSynchronize), the request
is sent immediately. The library, however, waits until any error the procedure could
generate at the server has been handled.

Allocating and Deallocating Memory
To support the possible reentry of these procedures, you must observe several
conventions when allocating and deallocating memory, most often done when
returning data to the user from the window system of a size the caller could not know
in advance (for example, a list of fonts or a list of extensions). The standard C library
functions on many systems are not protected against signals or other multithreaded
uses. The following analogies to standard I/O library functions have been defined:

These should be used in place of any calls you would make to the normal C library
functions.

If you need a single scratch buffer inside a critical section (for example, to pack
and unpack data to and from the wire protocol), the general memory allocators may
be too expensive to use (particularly in output functions, which are performance
critical). The following function returns a scratch buffer for use within a critical
section:

char *_XAllocScratch(display, nbytes);

display Specifies the connection to the X server.

nbytes Specifies the number of bytes required.

This storage must only be used inside of a critical section of your stub. The returned
pointer cannot be assumed valid after any call that might permit another thread to
execute inside Xlib. For example, the pointer cannot be assumed valid after any use
of the GetReq or Data families of macros, after any use of _XReply, or after any use
of the _XSend or _XRead families of functions.

The following function returns a scratch buffer for use across critical sections:

char *_XAllocTemp(display, nbytes);

display Specifies the connection to the X server.

nbytes Specifies the number of bytes required.

This storage can be used across calls that might permit another thread to execute
inside Xlib. The storage must be explicitly returned to Xlib. The following function
returns the storage:

void _XFreeTemp(display, buf, nbytes);

display Specifies the connection to the X server.

427



Extensions

buf Specifies the buffer to return.

nbytes Specifies the size of the buffer.

You must pass back the same pointer and size that were returned by _XAllocTemp.

Portability Considerations
Many machine architectures do not correctly or efficiently access data at unaligned
locations; their compilers pad out structures to preserve this characteristic. Many
other machines capable of unaligned references pad inside of structures as well to
preserve alignment, because accessing aligned data is usually much faster. Because
the library and the server use structures to access data at arbitrary points in a
byte stream, all data in request and reply packets must be naturally aligned; that
is, 16-bit data starts on 16-bit boundaries in the request and 32-bit data on 32-
bit boundaries. All requests must be a multiple of 32 bits in length to preserve
the natural alignment in the data stream. You must pad structures out to 32-bit
boundaries. Pad information does not have to be zeroed unless you want to preserve
such fields for future use in your protocol requests, but it is recommended to zero it
to avoid inadvertent data leakage and improve compressability. Floating point varies
radically between machines and should be avoided completely if at all possible.

This code may run on machines with 16-bit ints. So, if any integer argument,
variable, or return value either can take only nonnegative values or is declared as a
CARD16 in the protocol, be sure to declare it as unsigned int and not as int. (This,
of course, does not apply to Booleans or enumerations.)

Similarly, if any integer argument or return value is declared CARD32 in the
protocol, declare it as an unsigned long and not as int or long. This also goes for any
internal variables that may take on values larger than the maximum 16-bit unsigned
int.

The library has always assumed that a char is 8 bits, a short is 16 bits, an int
is 16 or 32 bits, and a long is 32 bits. Unfortunately, this assumption remains on
machines where a long can hold 64-bits, and many functions and structures require
unnecessarily large fields to avoid breaking compatibility with existing code. Special
care must be taken with arrays of values that are transmitted in the protocol as
CARD32 or INT32 but have to be converted to arrays of 64-bit long when passed
to or from client applications.

The PackData macro is a half-hearted attempt to deal with the possibility of 32 bit
shorts. However, much more work is needed to make this work properly.

Deriving the Correct Extension Opcode
The remaining problem a writer of an extension stub procedure faces that the core
protocol does not face is to map from the call to the proper major and minor opcodes.
While there are a number of strategies, the simplest and fastest is outlined below.

• Declare an array of pointers, _NFILE long (this is normally found in <stdio.h>
and is the number of file descriptors supported on the system) of type XExtCodes.
Make sure these are all initialized to NULL.

• When your stub is entered, your initialization test is just to use the display pointer
passed in to access the file descriptor and an index into the array. If the entry is

428



Extensions

NULL, then this is the first time you are entering the procedure for this display.
Call your initialization procedure and pass to it the display pointer.

• Once in your initialization procedure, call XInitExtension; if it succeeds, store
the pointer returned into this array. Make sure to establish a close display handler
to allow you to zero the entry. Do whatever other initialization your extension
requires. (For example, install event handlers and so on.) Your initialization
procedure would normally return a pointer to the XExtCodes structure for this
extension, which is what would normally be found in your array of pointers.

• After returning from your initialization procedure, the stub can now continue
normally, because it has its major opcode safely in its hand in the XExtCodes
structure.

429



Appendix D. Compatibility Functions
The X Version 11 and X Version 10 functions discussed in this appendix are obsolete,
have been superseded by newer X Version 11 functions, and are maintained for
compatibility reasons only.

X Version 11 Compatibility Functions
You can use the X Version 11 compatibility functions to:

• Set standard properties

• Set and get window sizing hints

• Set and get an XStandardColormap structure

• Parse window geometry

• Get X environment defaults

Setting Standard Properties
To specify a minimum set of properties describing the simplest application,
use XSetStandardProperties. This function has been superseded by
XSetWMProperties and sets all or portions of the WM_NAME, WM_ICON_NAME,
WM_HINTS, WM_COMMAND, and WM_NORMAL_HINTS properties.

XSetStandardProperties(display, w, window_name, icon_name, icon_pixmap,
argv, argc, hints);

display Specifies the connection to the X server.

w Specifies the window.

window_name Specifies the window name, which should be a null-
terminated string.

icon_name Specifies the icon name, which should be a null-
terminated string.

icon_pixmap Specifies the bitmap that is to be used for the icon or
None.

argv Specifies the application's argument list.

argc Specifies the number of arguments.

hints Specifies a pointer to the size hints for the window in
its normal state.

The XSetStandardProperties function provides a means by which simple
applications set the most essential properties with a single call.
XSetStandardProperties should be used to give a window manager some
information about your program's preferences. It should not be used by
applications that need to communicate more information than is possible with

430



Compatibility Functions

XSetStandardProperties. (Typically, argv is the argv array of your main program.)
If the strings are not in the Host Portable Character Encoding, the result is
implementation-dependent.

XSetStandardProperties can generate BadAlloc and BadWindow errors.

Setting and Getting Window Sizing Hints
Xlib provides functions that you can use to set or get window sizing hints. The
functions discussed in this section use the flags and the XSizeHints structure, as
defined in the <X11/Xutil.h>    header file and use the WM_NORMAL_HINTS
property.

To set the size hints for a given window in its normal state, use XSetNormalHints.
This function has been superseded by XSetWMNormalHints.

XSetNormalHints(display, w, hints);

display Specifies the connection to the X server.

w Specifies the window.

hints Specifies a pointer to the size hints for the window in its
normal state.

The XSetNormalHints function sets the size hints structure for the specified window.
Applications use XSetNormalHints to inform the window manager of the size or
position desirable for that window. In addition, an application that wants to move
or resize itself should call XSetNormalHints and specify its new desired location
and size as well as making direct Xlib calls to move or resize. This is because
window managers may ignore redirected configure requests, but they pay attention
to property changes.

To set size hints, an application not only must assign values to the appropriate
members in the hints structure but also must set the flags member of the structure
to indicate which information is present and where it came from. A call to
XSetNormalHints is meaningless, unless the flags member is set to indicate which
members of the structure have been assigned values.

XSetNormalHints can generate BadAlloc and BadWindow errors.

To return the size hints for a window in its normal state, use XGetNormalHints. This
function has been superseded by XGetWMNormalHints.

Status XGetNormalHints(display, w, hints_return);

display Specifies the connection to the X server.

w Specifies the window.

hints_return Returns the size hints for the window in its normal
state.

The XGetNormalHints function returns the size hints for a window in its normal
state. It returns a nonzero status if it succeeds or zero if the application specified
no normal size hints for this window.

431



Compatibility Functions

XGetNormalHints can generate a BadWindow error.

The next two functions set and read the WM_ZOOM_HINTS property.

To set the zoom hints for a window, use XSetZoomHints. This function is no longer
supported by the Inter-Client Communication Conventions Manual.

XSetZoomHints(display, w, zhints);

display Specifies the connection to the X server.

w Specifies the window.

zhints Specifies a pointer to the zoom hints.

Many window managers think of windows in one of three states: iconic, normal,
or zoomed. The XSetZoomHints function provides the window manager with
information for the window in the zoomed state.

XSetZoomHints can generate BadAlloc and BadWindow errors.

To read the zoom hints for a window, use XGetZoomHints. This function is no longer
supported by the Inter-Client Communication Conventions Manual.

Status XGetZoomHints(display, w, zhints_return);

display Specifies the connection to the X server.

w Specifies the window.

zhints_return Returns the zoom hints.

The XGetZoomHints function returns the size hints for a window in its zoomed state.
It returns a nonzero status if it succeeds or zero if the application specified no zoom
size hints for this window.

XGetZoomHints can generate a BadWindow error.

To set the value of any property of type WM_SIZE_HINTS, use XSetSizeHints. This
function has been superseded by XSetWMSizeHints.

XSetSizeHints(display, w, hints, property);

display Specifies the connection to the X server.

w Specifies the window.

hints Specifies a pointer to the size hints.

property Specifies the property name.

The XSetSizeHints function sets the XSizeHints structure for the named property
and the specified window. This is used by XSetNormalHints and XSetZoomHints and
can be used to set the value of any property of type WM_SIZE_HINTS. Thus, it may
be useful if other properties of that type get defined.

XSetSizeHints can generate BadAlloc, BadAtom, and BadWindow errors.

432



Compatibility Functions

To read the value of any property of type WM_SIZE_HINTS, use XGetSizeHints.
This function has been superseded by XGetWMSizeHints.

Status XGetSizeHints(display, w, hints_return, property);

display Specifies the connection to the X server.

w Specifies the window.

hints_return Returns the size hints.

property Specifies the property name.

The XGetSizeHints function returns the XSizeHints structure for the named
property and the specified window. This is used by XGetNormalHints and
XGetZoomHints. It also can be used to retrieve the value of any property of type
WM_SIZE_HINTS. Thus, it may be useful if other properties of that type get defined.
XGetSizeHints returns a nonzero status if a size hint was defined or zero otherwise.

XGetSizeHints can generate BadAtom and BadWindow errors.

Getting and Setting an XStandardColormap Structure
To get the XStandardColormap structure associated with one of the described
atoms, use XGetStandardColormap. This function has been superseded by
XGetRGBColormaps.

Status XGetStandardColormap(display, w, colormap_return, property);

display Specifies the connection to the X server.

w Specifies the window.

colormap_return Returns the colormap associated with the specified
atom.

property Specifies the property name.

The XGetStandardColormap function returns the colormap definition associated
with the atom supplied as the property argument. XGetStandardColormap returns a
nonzero status if successful and zero otherwise. For example, to fetch the standard
GrayScale colormap for a display, you use XGetStandardColormap with the following
syntax:

XGetStandardColormap(dpy, DefaultRootWindow(dpy), &cmap, XA_RGB_GRAY_MAP);

See section 14.3 for the semantics of standard colormaps.

XGetStandardColormap can generate BadAtom and BadWindow errors.

To set a standard colormap, use XSetStandardColormap. This function has been
superseded by XSetRGBColormaps.

XSetStandardColormap(display, w, colormap, property);

display Specifies the connection to the X server.

433



Compatibility Functions

w Specifies the window.

colormap Specifies the colormap.

property Specifies the property name.

The XSetStandardColormap function usually is only used by window or session
managers.

XSetStandardColormap can generate BadAlloc, BadAtom, BadDrawable, and
BadWindow errors.

Parsing Window Geometry
To parse window geometry given a user-specified position and a default position,
use XGeometry. This function has been superseded by XWMGeometry.

int XGeometry(display, screen, position, default_position, bwidth,
fwidth, fheight, xadder, yadder, x_return, y_return, width_return,
height_return);

display Specifies the connection to the X server.

screen Specifies the screen.

position

default_position Specify the geometry specifications.

bwidth Specifies the border width.

fheight

fwidth Specify the font height and width in pixels (increment
size).

xadder

yadder Specify additional interior padding needed in the
window.

x_return

y_return Return the x and y offsets.

width_return

height_return Return the width and height determined.

You pass in the border width (bwidth), size of the increments fwidth and fheight
(typically font width and height), and any additional interior space (xadder and
yadder) to make it easy to compute the resulting size. The XGeometry function
returns the position the window should be placed given a position and a default
position. XGeometry determines the placement of a window using a geometry
specification as specified by XParseGeometry and the additional information about
the window. Given a fully qualified default geometry specification and an incomplete
geometry specification, XParseGeometry returns a bitmask value as defined above
in the XParseGeometry call, by using the position argument.

434



Compatibility Functions

The returned width and height will be the width and height specified by
default_position as overridden by any user-specified position. They are not affected
by fwidth, fheight, xadder, or yadder. The x and y coordinates are computed by using
the border width, the screen width and height, padding as specified by xadder and
yadder, and the fheight and fwidth times the width and height from the geometry
specifications.

Getting the X Environment Defaults
The XGetDefault function provides a primitive interface to the resource manager
facilities discussed in chapter 15. It is only useful in very simple applications.

char *XGetDefault(display, program, option);

display Specifies the connection to the X server.

program Specifies the program name for the Xlib defaults (usually
argv[0] of the main program).

option Specifies the option name.

The XGetDefault function returns the value of the resource prog.option, where prog
is the program argument with the directory prefix removed and option must be a
single component. Note that multilevel resources cannot be used with XGetDefault.
The class "Program.Name" is always used for the resource lookup. If the specified
option name does not exist for this program, XGetDefault returns NULL. The
strings returned by XGetDefault are owned by Xlib and should not be modified or
freed by the client.

If a database has been set with XrmSetDatabase, that database is used for
the lookup. Otherwise, a database is created and is set in the display (as if
by calling XrmSetDatabase). The database is created in the current locale. To
create a database, XGetDefault uses resources from the RESOURCE_MANAGER
property on the root window of screen zero. If no such property exists, a resource
file in the user's home directory is used. On a POSIX-conformant system, this
file is "$HOME/.Xdefaults".  After loading these defaults, XGetDefault merges
additional defaults specified by the XENVIRONMENT environment variable. If
XENVIRONMENT is defined, it contains a full path name for the additional resource
file. If XENVIRONMENT is not defined, XGetDefault looks for "$HOME/.Xdefaults-
name" , where name specifies the name of the machine on which the application is
running.

X Version 10 Compatibility Functions
You can use the X Version 10 compatibility functions to:

• Draw and fill polygons and curves

• Associate user data with a value

Drawing and Filling Polygons and Curves
Xlib provides functions that you can use to draw or fill arbitrary polygons or curves.
These functions are provided mainly for compatibility with X Version 10 and have

435



Compatibility Functions

no server support. That is, they call other Xlib functions, not the server directly.
Thus, if you just have straight lines to draw, using XDrawLines  or XDrawSegments
 is much faster.

The functions discussed here provide all the functionality of the X Version 10
functions XDraw,  XDrawFilled,  XDrawPatterned,  XDrawDashed,  and XDrawTiled. 
They are as compatible as possible given X Version 11's new line-drawing functions.
One thing to note, however, is that VertexDrawLastPoint is no longer supported.
Also, the error status returned is the opposite of what it was under X Version 10 (this
is the X Version 11 standard error status). XAppendVertex and XClearVertexFlag
from X Version 10 also are not supported.

Just how the graphics context you use is set up actually determines whether you get
dashes or not, and so on. Lines are properly joined if they connect and include the
closing of a closed figure (see XDrawLines). The functions discussed here fail (return
zero) only if they run out of memory or are passed a Vertex list that has a Vertex with
VertexStartClosed set that is not followed by a Vertex with VertexEndClosed set.

To achieve the effects of the X Version 10 XDraw,  XDrawDashed,  and
XDrawPatterned,  use XDraw.

#include <X11/X10.h>

Status XDraw(display, d, gc, vlist, vcount);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

vlist Specifies a pointer to the list of vertices that indicate what
to draw.

vcount Specifies how many vertices are in vlist.

The XDraw function draws an arbitrary polygon or curve. The figure drawn is defined
by the specified list of vertices (vlist). The points are connected by lines as specified
in the flags in the vertex structure.

Each Vertex, as defined in <X11/X10.h>,    is a structure with the following members: 

typedef struct _Vertex {
 short x,y;
 unsigned short flags;
} Vertex;

The x and y members are the coordinates of the vertex that are relative to either the
upper left inside corner of the drawable (if VertexRelative is zero) or the previous
vertex (if VertexRelative is one).

The flags, as defined in <X11/X10.h>,    are as follows:     

VertexRelative     0x0001     /* else absolute */

436



Compatibility Functions

VertexDontDraw     0x0002     /* else draw */
VertexCurved       0x0004     /* else straight */
VertexStartClosed  0x0008     /* else not */
VertexEndClosed    0x0010     /* else not */

• If VertexRelative is not set, the coordinates are absolute (that is, relative to the
drawable's origin). The first vertex must be an absolute vertex.

• If VertexDontDraw is one, no line or curve is drawn from the previous vertex to
this one. This is analogous to picking up the pen and moving to another place
before drawing another line.

• If VertexCurved is one, a spline algorithm is used to draw a smooth curve from
the previous vertex through this one to the next vertex. Otherwise, a straight line
is drawn from the previous vertex to this one. It makes sense to set VertexCurved
to one only if a previous and next vertex are both defined (either explicitly in the
array or through the definition of a closed curve).

• It is permissible for VertexDontDraw bits and VertexCurved bits both to be one.
This is useful if you want to define the previous point for the smooth curve but do
not want an actual curve drawing to start until this point.

• If VertexStartClosed is one, then this point marks the beginning of a closed curve.
This vertex must be followed later in the array by another vertex whose effective
coordinates are identical and that has a VertexEndClosed bit of one. The points
in between form a cycle to determine predecessor and successor vertices for the
spline algorithm.

This function uses these GC components: function, plane-mask, line-width, line-
style, cap-style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin,
and clip-mask. It also uses these GC mode-dependent components: foreground,
background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, and
dash-list.

To achieve the effects of the X Version 10 XDrawTiled  and XDrawFilled,  use
XDrawFilled.

#include <X11/X10.h>

Status XDrawFilled(display, d, gc, vlist, vcount);

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

vlist Specifies a pointer to the list of vertices that indicate what
to draw.

vcount Specifies how many vertices are in vlist.

The XDrawFilled function draws arbitrary polygons or curves and then fills them.

This function uses these GC components: function, plane-mask, line-width, line-
style, cap-style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin,
and clip-mask. It also uses these GC mode-dependent components: foreground,

437



Compatibility Functions

background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, dash-
list, fill-style, and fill-rule.

Associating User Data with a Value
These functions have been superseded by the context management functions (see
section 16.10). It is often necessary to associate arbitrary information with resource
IDs. Xlib provides the XAssocTable functions that you can use to make such an
association.    Application programs often need to be able to easily refer to their
own data structures when an event arrives. The XAssocTable system provides users
of the X library with a method for associating their own data structures with X
resources (Pixmaps, Fonts, Windows, and so on).

An XAssocTable can be used to type X resources. For example, the user may want
to have three or four types of windows, each with different properties. This can be
accomplished by associating each X window ID with a pointer to a window property
data structure defined by the user. A generic type has been defined in the X library
for resource IDs. It is called an XID.

There are a few guidelines that should be observed when using an XAssocTable :

• All XIDs are relative to the specified display.

• Because of the hashing scheme used by the association mechanism, the following
rules for determining the size of a XAssocTable should be followed. Associations
will be made and looked up more efficiently if the table size (number of buckets
in the hashing system) is a power of two and if there are not more than 8 XIDs
per bucket.

To return a pointer to a new XAssocTable, use XCreateAssocTable. 

XAssocTable *XCreateAssocTable(size);

size Specifies the number of buckets in the hash system of
XAssocTable.

The size argument specifies the number of buckets in the hash system of
XAssocTable. For reasons of efficiency the number of buckets should be a power
of two. Some size suggestions might be: use 32 buckets per 100 objects, and a
reasonable maximum number of objects per buckets is 8. If an error allocating
memory for the XAssocTable occurs, a NULL pointer is returned.

To create an entry in a given XAssocTable, use XMakeAssoc. 

XMakeAssoc(display, table, x_id, data);

display Specifies the connection to the X server.

table Specifies the assoc table.

x_id Specifies the X resource ID.

data Specifies the data to be associated with the X resource ID.

The XMakeAssoc function inserts data into an XAssocTable keyed on an XID. Data is
inserted into the table only once. Redundant inserts are ignored. The queue in each
association bucket is sorted from the lowest XID to the highest XID.

438



Compatibility Functions

To obtain data from a given XAssocTable, use XLookUpAssoc.

char *XLookUpAssoc(display, table, x_id);

display Specifies the connection to the X server.

table Specifies the assoc table.

x_id Specifies the X resource ID.

The XLookUpAssoc function retrieves the data stored in an XAssocTable by its XID.
If an appropriately matching XID can be found in the table, XLookUpAssoc returns
the data associated with it. If the x_id cannot be found in the table, it returns NULL.

To delete an entry from a given XAssocTable, use XDeleteAssoc.

XDeleteAssoc(display, table, x_id);

display Specifies the connection to the X server.

table Specifies the assoc table.

x_id Specifies the X resource ID.

The XDeleteAssoc function deletes an association in an XAssocTable keyed on its
XID. Redundant deletes (and deletes of nonexistent XIDs) are ignored. Deleting
associations in no way impairs the performance of an XAssocTable.

To free the memory associated with a given XAssocTable, use XDestroyAssocTable.

XDestroyAssocTable(table);

table Specifies the assoc table.

439



Glossary

References
Draft Proposed Multibyte Extension of ANSI C, Draft 1.1. November 30, 1989 SC22/C WG/

SWG IPSJ/ITSCJ Japan.

ISO2022: Information processing - ISO 7-bit and 8-bit coded character sets - Code extension
techniques..

ISO8859-1: Information processing - 8-bit single-byte coded graphic character sets - Part 1:
Latin alphabet No. 1..

POSIX: Information Technology - Portable Operating System Interface (POSIX) - Part 1:
System Application Program Interface (API) [C Language], ISO/IEC 9945-1..

Text of ISO/IEC/DIS 9541-1, Information Processing - Font Information Interchange - Part 1:
Architecture..

X/Open Portability Guide, Issue 3, December 1988 (XPG3), X/Open Company, Ltd, Prentice-
Hall, Inc. 1989. ISBN 0-13-685835-8. (See especially Volume 3: XSI Supplementary
Definitions.).

Access control list X maintains a list of hosts from which client programs can
be run. By default, only programs on the local host and hosts
specified in an initial list read by the server can use the display.
This access control list can be changed by clients on the local
host. Some server implementations can also implement other
authorization mechanisms in addition to or in place of this
mechanism. The action of this mechanism can be conditional
based on the authorization protocol name and data received by
the server at connection setup.

Active grab A grab is active when the pointer or keyboard is actually owned
by the single grabbing client.

Ancestors If W is an inferior of A, then A is an ancestor of W.

Atom An atom is a unique ID corresponding to a string name. Atoms
are used to identify properties, types, and selections.

Background An InputOutput window can have a background, which is defined
as a pixmap. When regions of the window have their contents
lost or invalidated, the server automatically tiles those regions
with the background.

Backing store When a server maintains the contents of a window, the pixels
saved off-screen are known as a backing store.

Base font name A font name used to select a family of fonts whose members
may be encoded in various charsets. The CharSetRegistry and
CharSetEncoding fields of an XLFD name identify the charset of
the font. A base font name may be a full XLFD name, with all

440



Glossary

fourteen '-' delimiters, or an abbreviated XLFD name containing
only the first 12 fields of an XLFD name, up to but not including
CharSetRegistry, with or without the thirteenth '-', or a non-
XLFD name. Any XLFD fields may contain wild cards.

When creating an XFontSet, Xlib accepts from the client a list
of one or more base font names which select one or more font
families. They are combined with charset names obtained from
the encoding of the locale to load the fonts required to render
text.

Bit gravity When a window is resized, the contents of the window are not
necessarily discarded. It is possible to request that the server
relocate the previous contents to some region of the window
(though no guarantees are made). This attraction of window
contents for some location of a window is known as bit gravity.

Bit plane When a pixmap or window is thought of as a stack of bitmaps,
each bitmap is called a bit plane or plane.

Bitmap A bitmap is a pixmap of depth one.

Border An InputOutput window can have a border of equal thickness
on all four sides of the window. The contents of the border are
defined by a pixmap, and the server automatically maintains the
contents of the border. Exposure events are never generated for
border regions.

Button grabbing Buttons on the pointer can be passively grabbed by a client.
When the button is pressed, the pointer is then actively grabbed
by the client.

Byte order For image (pixmap/bitmap) data, the server defines the byte
order, and clients with different native byte ordering must swap
bytes as necessary. For all other parts of the protocol, the client
defines the byte order, and the server swaps bytes as necessary.

Character A member of a set of elements used for the organization, control,
or representation of text (ISO2022, as adapted by XPG3). Note
that in ISO2022 terms, a character is not bound to a coded value
until it is identified as part of a coded character set.

Character glyph The abstract graphical symbol for a character. Character glyphs
may or may not map one-to-one to font glyphs, and may
be context-dependent, varying with the adjacent characters.
Multiple characters may map to a single character glyph.

Character set A collection of characters.

Charset An encoding with a uniform, state-independent mapping from
characters to codepoints. A coded character set.

For display in X, there can be a direct mapping from a charset
to one font, if the width of all characters in the charset is either
one or two bytes. A text string encoded in an encoding such as
Shift-JIS cannot be passed directly to the X server, because the

441



Glossary

text imaging requests accept only single-width charsets (either 8
or 16 bits). Charsets which meet these restrictions can serve as
``font charsets''. Font charsets strictly speaking map font indices
to font glyphs, not characters to character glyphs.

Note that a single font charset is sometimes used as the encoding
of a locale, for example, ISO8859-1.

Children The children of a window are its first-level subwindows.

Class Windows can be of different classes or types. See the entries
for InputOnly and InputOutput windows for further information
about valid window types.

Client An application program connects to the window system server
by some interprocess communication (IPC) path, such as a TCP
connection or a shared memory buffer. This program is referred
to as a client of the window system server. More precisely, the
client is the IPC path itself. A program with multiple paths
open to the server is viewed as multiple clients by the protocol.
Resource lifetimes are controlled by connection lifetimes, not by
program lifetimes.

Clipping region In a graphics context, a bitmap or list of rectangles can be
specified to restrict output to a particular region of the window.
The image defined by the bitmap or rectangles is called a
clipping region.

Coded character A character bound to a codepoint.

Coded character set A set of unambiguous rules that establishes a character set and
the one-to-one relationship between each character of the set
and its bit representation. (ISO2022, as adapted by XPG3) A
definition of a one-to-one mapping of a set of characters to a set
of codepoints.

Codepoint The coded representation of a single character in a coded
character set.

Colormap A colormap consists of a set of entries defining color values.
The colormap associated with a window is used to display the
contents of the window; each pixel value indexes the colormap
to produce an RGB value that drives the guns of a monitor.
Depending on hardware limitations, one or more colormaps can
be installed at one time so that windows associated with those
maps display with true colors.

Connection The IPC path between the server and client program is known
as a connection. A client program typically (but not necessarily)
has one connection to the server over which requests and events
are sent.

Containment A window contains the pointer if the window is viewable and the
hotspot of the cursor is within a visible region of the window or
a visible region of one of its inferiors. The border of the window
is included as part of the window for containment. The pointer

442



Glossary

is in a window if the window contains the pointer but no inferior
contains the pointer.

Coordinate system The coordinate system has X horizontal and Y vertical, with
the origin [0, 0] at the upper left. Coordinates are integral and
coincide with pixel centers. Each window and pixmap has its own
coordinate system. For a window, the origin is inside the border
at the inside upper-left corner.

Cursor A cursor is the visible shape of the pointer on a screen. It consists
of a hotspot, a source bitmap, a shape bitmap, and a pair of
colors. The cursor defined for a window controls the visible
appearance when the pointer is in that window.

Depth The depth of a window or pixmap is the number of bits per pixel it
has. The depth of a graphics context is the depth of the drawables
it can be used in conjunction with graphics output.

Device Keyboards, mice, tablets, track-balls, button boxes, and so on
are all collectively known as input devices. Pointers can have
one or more buttons (the most common number is three). The
core protocol only deals with two devices: the keyboard and the
pointer.

DirectColor DirectColor is a class of colormap in which a pixel value is
decomposed into three separate subfields for indexing. The first
subfield indexes an array to produce red intensity values. The
second subfield indexes a second array to produce blue intensity
values. The third subfield indexes a third array to produce green
intensity values. The RGB (red, green, and blue) values in the
colormap entry can be changed dynamically.

Display A server, together with its screens and input devices, is called a
display. The Xlib Display structure contains all information about
the particular display and its screens as well as the state that
Xlib needs to communicate with the display over a particular
connection.

Drawable Both windows and pixmaps can be used as sources and
destinations in graphics operations. These windows and pixmaps
are collectively known as drawables. However, an InputOnly
window cannot be used as a source or destination in a graphics
operation.

Encoding A set of unambiguous rules that establishes a character set and
a relationship between the characters and their representations.
The character set does not have to be fixed to a finite pre-
defined set of characters. The representations do not have to
be of uniform length. Examples are an ISO2022 graphic set,
a state-independent or state-dependent combination of graphic
sets, possibly including control sets, and the X Compound Text
encoding.

In X, encodings are identified by a string which appears as: the
CharSetRegistry and CharSetEncoding components of an XLFD
name; the name of a charset of the locale for which a font could

443



Glossary

not be found; or an atom which identifies the encoding of a text
property or which names an encoding for a text selection target
type. Encoding names should be composed of characters from
the X Portable Character Set.

Escapement The escapement of a string is the distance in pixels in the primary
draw direction from the drawing origin to the origin of the next
character (that is, the one following the given string) to be
drawn.

Event Clients are informed of information asynchronously by means
of events. These events can be either asynchronously generated
from devices or generated as side effects of client requests.
Events are grouped into types. The server never sends an event
to a client unless the client has specifically asked to be informed
of that type of event. However, clients can force events to be
sent to other clients. Events are typically reported relative to a
window.

Event mask Events are requested relative to a window. The set of event types
a client requests relative to a window is described by using an
event mask.

Event propagation Device-related events propagate from the source window to
ancestor windows until some client has expressed interest in
handling that type of event or until the event is discarded
explicitly.

Event source The deepest viewable window that the pointer is in is called the
source of a device-related event.

Event synchronization There are certain race conditions possible when demultiplexing
device events to clients (in particular, deciding where pointer
and keyboard events should be sent when in the middle of
window management operations). The event synchronization
mechanism allows synchronous processing of device events.

Exposure event Servers do not guarantee to preserve the contents of windows
when windows are obscured or reconfigured. Exposure events
are sent to clients to inform them when contents of regions of
windows have been lost.

Extension Named extensions to the core protocol can be defined to extend
the system. Extensions to output requests, resources, and event
types are all possible and expected.

Font A font is an array of glyphs (typically characters). The protocol
does no translation or interpretation of character sets. The client
simply indicates values used to index the glyph array. A font
contains additional metric information to determine interglyph
and interline spacing.

Font glyph The abstract graphical symbol for an index into a font.

Frozen events Clients can freeze event processing during keyboard and pointer
grabs.

444



Glossary

GC GC is an abbreviation for graphics context. See Graphics context.

Glyph An identified abstract graphical symbol independent of
any actual image. (ISO/IEC/DIS 9541-1) An abstract visual
representation of a graphic character, not bound to a codepoint.

Glyph image An image of a glyph, as obtained from a glyph representation
displayed on a presentation surface. (ISO/IEC/DIS 9541-1)

Grab Keyboard keys, the keyboard, pointer buttons, the pointer, and
the server can be grabbed for exclusive use by a client. In
general, these facilities are not intended to be used by normal
applications but are intended for various input and window
managers to implement various styles of user interfaces.

Graphics context Various information for graphics output is stored in a graphics
context (GC), such as foreground pixel, background pixel, line
width, clipping region, and so on. A graphics context can only
be used with drawables that have the same root and the same
depth as the graphics context.

Gravity The contents of windows and windows themselves have a gravity,
which determines how the contents move when a window is
resized. See Bit gravity and Window gravity.

GrayScale GrayScale can be viewed as a degenerate case of PseudoColor,
in which the red, green, and blue values in any given colormap
entry are equal and thus, produce shades of gray. The gray values
can be changed dynamically.

Host Portable Character
Encoding

The encoding of the X Portable Character Set on the host. The
encoding itself is not defined by this standard, but the encoding
must be the same in all locales supported by Xlib on the host. If
a string is said to be in the Host Portable Character Encoding,
then it only contains characters from the X Portable Character
Set, in the host encoding.

Hotspot A cursor has an associated hotspot, which defines the point in the
cursor corresponding to the coordinates reported for the pointer.

Identifier An identifier is a unique value associated with a resource that
clients use to name that resource. The identifier can be used over
any connection to name the resource.

Inferiors The inferiors of a window are all of the subwindows nested below
it: the children, the children's children, and so on.

Input focus The input focus is usually a window defining the scope for
processing of keyboard input. If a generated keyboard event
usually would be reported to this window or one of its inferiors,
the event is reported as usual. Otherwise, the event is reported
with respect to the focus window. The input focus also can be
set such that all keyboard events are discarded and such that
the focus window is dynamically taken to be the root window of
whatever screen the pointer is on at each keyboard event.

445



Glossary

Input manager Control over keyboard input is typically provided by an input
manager client, which usually is part of a window manager.

InputOnly window An InputOnly window is a window that cannot be used for
graphics requests. InputOnly windows are invisible and are used
to control such things as cursors, input event generation, and
grabbing. InputOnly windows cannot have InputOutput windows
as inferiors.

InputOutput window An InputOutput window is the normal kind of window that is used
for both input and output. InputOutput windows can have both
InputOutput and InputOnly windows as inferiors.

Internationalization The process of making software adaptable to the requirements of
different native languages, local customs, and character string
encodings. Making a computer program adaptable to different
locales without program source modifications or recompilation.

ISO2022 ISO standard for code extension techniques for 7-bit and 8-bit
coded character sets.

Key grabbing Keys on the keyboard can be passively grabbed by a client. When
the key is pressed, the keyboard is then actively grabbed by the
client.

Keyboard grabbing A client can actively grab control of the keyboard, and key events
will be sent to that client rather than the client the events would
normally have been sent to.

Keysym An encoding of a symbol on a keycap on a keyboard.

Latin-1 The coded character set defined by the ISO8859-1 standard.

Latin Portable Character
Encoding

The encoding of the X Portable Character Set using the Latin-1
codepoints plus ASCII control characters. If a string is said to be
in the Latin Portable Character Encoding, then it only contains
characters from the X Portable Character Set, not all of Latin-1.

Locale The international environment of a computer program defining
the ``localized'' behavior of that program at run-time. This
information can be established from one or more sets of
localization data. ANSI C defines locale-specific processing by
C system library calls. See ANSI C and the X/Open Portability
Guide specifications for more details. In this specification,
on implementations that conform to the ANSI C library, the
``current locale'' is the current setting of the LC_CTYPE
setlocale category. Associated with each locale is a text
encoding. When text is processed in the context of a locale, the
text must be in the encoding of the locale. The current locale
affects Xlib in its:

• Encoding and processing of input method text

• Encoding of resource files and values

• Encoding and imaging of text strings

446



Glossary

• Encoding and decoding for inter-client text communication

Locale name The identifier used to select the desired locale for the host C
library and X library functions. On ANSI C library compliant
systems, the locale argument to the setlocale function.

Localization The process of establishing information within a computer
system specific to the operation of particular native languages,
local customs and coded character sets. (XPG3)

Mapped A window is said to be mapped if a map call has been performed
on it. Unmapped windows and their inferiors are never viewable
or visible.

Modifier keys Shift, Control, Meta, Super, Hyper, Alt, Compose, Apple,
CapsLock, ShiftLock, and similar keys are called modifier keys.

Monochrome Monochrome is a special case of StaticGray in which there are
only two colormap entries.

Multibyte A character whose codepoint is stored in more than one byte;
any encoding which can contain multibyte characters; text
in a multibyte encoding. The ``char *'' null-terminated string
datatype in ANSI C. Note that references in this document
to multibyte strings imply only that the strings may contain
multibyte characters.

Obscure A window is obscured if some other window obscures it. A
window can be partially obscured and so still have visible
regions. Window A obscures window B if both are viewable
InputOutput windows, if A is higher in the global stacking
order, and if the rectangle defined by the outside edges of A
intersects the rectangle defined by the outside edges of B. Note
the distinction between obscures and occludes. Also note that
window borders are included in the calculation.

Occlude A window is occluded if some other window occludes it. Window
A occludes window B if both are mapped, if A is higher in the
global stacking order, and if the rectangle defined by the outside
edges of A intersects the rectangle defined by the outside edges
of B. Note the distinction between occludes and obscures. Also
note that window borders are included in the calculation and
that InputOnly windows never obscure other windows but can
occlude other windows.

Padding Some padding bytes are inserted in the data stream to maintain
alignment of the protocol requests on natural boundaries. This
increases ease of portability to some machine architectures.

Parent window If C is a child of P, then P is the parent of C.

Passive grab Grabbing a key or button is a passive grab. The grab activates
when the key or button is actually pressed.

Pixel value A pixel is an N-bit value, where N is the number of bit planes
used in a particular window or pixmap (that is, is the depth of

447



Glossary

the window or pixmap). A pixel in a window indexes a colormap
to derive an actual color to be displayed.

Pixmap A pixmap is a three-dimensional array of bits. A pixmap is
normally thought of as a two-dimensional array of pixels, where
each pixel can be a value from 0 to 2N-1, and where N is the
depth (z axis) of the pixmap. A pixmap can also be thought of as
a stack of N bitmaps. A pixmap can only be used on the screen
that it was created in.

Plane When a pixmap or window is thought of as a stack of bitmaps,
each bitmap is called a plane or bit plane.

Plane mask Graphics operations can be restricted to only affect a subset of
bit planes of a destination. A plane mask is a bit mask describing
which planes are to be modified. The plane mask is stored in a
graphics context.

Pointer The pointer is the pointing device currently attached to the
cursor and tracked on the screens.

Pointer grabbing A client can actively grab control of the pointer. Then button and
motion events will be sent to that client rather than the client
the events would normally have been sent to.

Pointing device A pointing device is typically a mouse, tablet, or some other
device with effective dimensional motion. The core protocol
defines only one visible cursor, which tracks whatever pointing
device is attached as the pointer.

POSIX Portable Operating System Interface, ISO/IEC 9945-1 (IEEE Std
1003.1).

POSIX Portable
Filename Character Set

The set of 65 characters which can be used in naming files on a
POSIX-compliant host that are correctly processed in all locales.
The set is:

a..z A..Z 0..9 ._-

Property Windows can have associated properties that consist of a name,
a type, a data format, and some data. The protocol places no
interpretation on properties. They are intended as a general-
purpose naming mechanism for clients. For example, clients
might use properties to share information such as resize hints,
program names, and icon formats with a window manager.

Property list The property list of a window is the list of properties that have
been defined for the window.

PseudoColor PseudoColor is a class of colormap in which a pixel value indexes
the colormap entry to produce an independent RGB value; that
is, the colormap is viewed as an array of triples (RGB values).
The RGB values can be changed dynamically.

Rectangle A rectangle specified by [x,y,w,h] has an infinitely thin outline
path with corners at [x,y], [x+w,y], [x+w,y+h], and [x, y+h].

448



Glossary

When a rectangle is filled, the lower-right edges are not drawn.
For example, if w=h=0, nothing would be drawn. For w=h=1, a
single pixel would be drawn.

Redirecting control Window managers (or client programs) may enforce window
layout policy in various ways. When a client attempts to change
the size or position of a window, the operation may be redirected
to a specified client rather than the operation actually being
performed.

Reply Information requested by a client program using the X protocol
is sent back to the client with a reply. Both events and replies
are multiplexed on the same connection. Most requests do not
generate replies, but some requests generate multiple replies.

Request A command to the server is called a request. It is a single block
of data sent over a connection.

Resource Windows, pixmaps, cursors, fonts, graphics contexts, and
colormaps are known as resources. They all have unique
identifiers associated with them for naming purposes. The
lifetime of a resource usually is bounded by the lifetime of the
connection over which the resource was created.

RGB values RGB values are the red, green, and blue intensity values that
are used to define a color. These values are always represented
as 16-bit, unsigned numbers, with 0 the minimum intensity and
65535 the maximum intensity. The X server scales these values
to match the display hardware.

Root The root of a pixmap or graphics context is the same as the root
of whatever drawable was used when the pixmap or GC was
created. The root of a window is the root window under which
the window was created.

Root window Each screen has a root window covering it. The root window
cannot be reconfigured or unmapped, but otherwise it acts as a
full-fledged window. A root window has no parent.

Save set The save set of a client is a list of other clients' windows that,
if they are inferiors of one of the client's windows at connection
close, should not be destroyed and that should be remapped
if currently unmapped. Save sets are typically used by window
managers to avoid lost windows if the manager should terminate
abnormally.

Scanline A scanline is a list of pixel or bit values viewed as a horizontal
row (all values having the same y coordinate) of an image, with
the values ordered by increasing the x coordinate.

Scanline order An image represented in scanline order contains scanlines
ordered by increasing the y coordinate.

Screen A server can provide several independent screens, which
typically have physically independent monitors. This would be

449



Glossary

the expected configuration when there is only a single keyboard
and pointer shared among the screens. A Screen structure
contains the information about that screen and is linked to the
Display structure.

Selection A selection can be thought of as an indirect property with
dynamic type. That is, rather than having the property stored
in the X server, it is maintained by some client (the owner).
A selection is global and is thought of as belonging to the
user and being maintained by clients, rather than being private
to a particular window subhierarchy or a particular set of
clients. When a client asks for the contents of a selection, it
specifies a selection target type, which can be used to control
the transmitted representation of the contents. For example, if
the selection is ``the last thing the user clicked on,'' and that is
currently an image, then the target type might specify whether
the contents of the image should be sent in XY format or Z format.

The target type can also be used to control the class of contents
transmitted; for example, asking for the ``looks'' (fonts, line
spacing, indentation, and so forth) of a paragraph selection,
rather than the text of the paragraph. The target type can also
be used for other purposes. The protocol does not constrain the
semantics.

Server The server, which is also referred to as the X server, provides
the basic windowing mechanism. It handles IPC connections
from clients, multiplexes graphics requests onto the screens, and
demultiplexes input back to the appropriate clients.

Server grabbing The server can be grabbed by a single client for exclusive
use. This prevents processing of any requests from other client
connections until the grab is completed. This is typically only a
transient state for such things as rubber-banding, pop-up menus,
or executing requests indivisibly.

Shift sequence ISO2022 defines control characters and escape sequences which
temporarily (single shift) or permanently (locking shift) cause a
different character set to be in effect (``invoking'' a character
set).

Sibling Children of the same parent window are known as sibling
windows.

Stacking order Sibling windows, similar to sheets of paper on a desk, can stack
on top of each other. Windows above both obscure and occlude
lower windows. The relationship between sibling windows is
known as the stacking order.

State-dependent
encoding

An encoding in which an invocation of a charset can apply to
multiple characters in sequence. A state-dependent encoding
begins in an ``initial state'' and enters other ``shift states''
when specific ``shift sequences'' are encountered in the byte
sequence. In ISO2022 terms, this means use of locking shifts,
not single shifts.

450



Glossary

State-independent
encoding

Any encoding in which the invocations of the charsets are fixed,
or span only a single character. In ISO2022 terms, this means
use of at most single shifts, not locking shifts.

StaticColor StaticColor can be viewed as a degenerate case of PseudoColor
in which the RGB values are predefined and read-only.

StaticGray StaticGray can be viewed as a degenerate case of GrayScale in
which the gray values are predefined and read-only. The values
are typically linear or near-linear increasing ramps.

Status Many Xlib functions return a success status. If the function does
not succeed, however, its arguments are not disturbed.

Stipple A stipple pattern is a bitmap that is used to tile a region to serve
as an additional clip mask for a fill operation with the foreground
color.

STRING encoding Latin-1, plus tab and newline.

String Equivalence Two ISO Latin-1 STRING8 values are considered equal if they
are the same length and if corresponding bytes are either
equal or are equivalent as follows: decimal values 65 to 90
inclusive (characters ``A'' to ``Z'') are pairwise equivalent to
decimal values 97 to 122 inclusive (characters ``a'' to ``z''),
decimal values 192 to 214 inclusive (characters ``A grave'' to
``O diaeresis'') are pairwise equivalent to decimal values 224
to 246 inclusive (characters ``a grave'' to ``o diaeresis''), and
decimal values 216 to 222 inclusive (characters ``O oblique'' to
``THORN'') are pairwise equivalent to decimal values 246 to 254
inclusive (characters ``o oblique'' to ``thorn'').

Tile A pixmap can be replicated in two dimensions to tile a region.
The pixmap itself is also known as a tile.

Timestamp A timestamp is a time value expressed in milliseconds. It is
typically the time since the last server reset. Timestamp values
wrap around (after about 49.7 days). The server, given its
current time is represented by timestamp T, always interprets
timestamps from clients by treating half of the timestamp space
as being earlier in time than T and half of the timestamp space as
being later in time than T. One timestamp value, represented by
the constant CurrentTime, is never generated by the server. This
value is reserved for use in requests to represent the current
server time.

TrueColor TrueColor can be viewed as a degenerate case of DirectColor
in which the subfields in the pixel value directly encode the
corresponding RGB values. That is, the colormap has predefined
read-only RGB values. The values are typically linear or near-
linear increasing ramps.

Type A type is an arbitrary atom used to identify the interpretation of
property data. Types are completely uninterpreted by the server.
They are solely for the benefit of clients. X predefines type atoms

451



Glossary

for many frequently used types, and clients also can define new
types.

Viewable A window is viewable if it and all of its ancestors are mapped.
This does not imply that any portion of the window is actually
visible. Graphics requests can be performed on a window when it
is not viewable, but output will not be retained unless the server
is maintaining backing store.

Visible A region of a window is visible if someone looking at the screen
can actually see it; that is, the window is viewable and the region
is not occluded by any other window.

Whitespace Any spacing character. On implementations that conform to the
ANSI C library, whitespace is any character for which isspace
returns true.

Window gravity When windows are resized, subwindows may be repositioned
automatically relative to some position in the window. This
attraction of a subwindow to some part of its parent is known as
window gravity.

Window manager Manipulation of windows on the screen and much of the user
interface (policy) is typically provided by a window manager
client.

X Portable Character Set A basic set of 97 characters which are assumed to exist in
all locales supported by Xlib. This set contains the following
characters:

a..z A..Z 0..9
!"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~
<space>, <tab>, and <newline>
      

This is the left/lower half (also called the G0 set) of the
graphic character set of ISO8859-1 plus <space>, <tab>, and
<newline>. It is also the set of graphic characters in 7-bit ASCII
plus the same three control characters. The actual encoding of
these characters on the host is system dependent; see the Host
Portable Character Encoding.

XLFD The X Logical Font Description Conventions that define a
standard syntax for structured font names.

XY format The data for a pixmap is said to be in XY format if it is organized
as a set of bitmaps representing individual bit planes with the
planes appearing from most-significant to least-significant bit
order.

Z format The data for a pixmap is said to be in Z format if it is organized
as a set of pixel values in scanline order.

452

../../xorg-docs/xlfd/xlfd.pdf#xlfd


Index
Symbols
_XAllocScratch, 427
_XAllocTemp, 427
_Xdebug, 225
_XFlushGCCache, 418
_XFreeTemp, 427
_XReply, 425
_XSetLastRequestRead, 414

A
Access control list, 173, 440
Active grab, 231, 440
Allocation

colormap, 82
read-only colormap cells, 82, 82, 83, 83
read/write colormap cells, 84
read/write colormap planes, 85

AllPlanes, 9
Ancestors, 440
Arcs

drawing, 141
filling, 145

Areas
clearing, 134
copying, 135

Atom, 56, 56, 440
getting name, 58, 58
interning, 57, 58
predefined, 56

Authentication, 173

B
Background, 440
Backing store, 440
BadAccess, 227
BadAlloc, 227
BadAtom, 227
BadColor, 227
BadCursor, 227
BadDrawable, 227
BadFont, 227
BadGC, 227
BadIDChoice, 227
BadImplementation, 228
BadLength, 228
BadMatch, 228
BadName, 228
BadPixmap, 228
BadRequest, 228
BadValue, 228

BadWindow, 228
Base font name, 440
Bit

gravity, 441
plane, 441

Bitmap, 2, 441
BitmapBitOrder, 16
BitmapPad, 16
BitmapUnit, 15
BlackPixel, 9
BlackPixelOfScreen, 17
Bool, 4
Border, 441
Button

grabbing, 234, 441
ungrabbing, 236

ButtonPress, 185
ButtonRelease, 185
Byte

order, 441

C
CallbackPrototype, 311
CCC, 78

creation, 94
default, 78, 91, 92, 92
freeing, 95
of colormap, 78, 91, 91, 91

CellsOfScreen, 17
Changing

pointer grab, 234
Character, 441
Character glyph, 441
Character set, 441
Charset, 441
Child window, 2
Child Window, 51
Children, 442
Chroma, 107, 107, 108

maximum, 107, 107, 108
CIE metric lightness, 103, 103, 104, 104, 105,
105, 106, 106

maximum, 103, 104, 105, 106
minimum, 104, 106

CirculateNotify, 199
CirculateRequest, 207
Class, 442
Clearing

areas, 134
windows, 135

Client, 442
Client White Point, 78

of Color Conversion Context, 93

453



Index

ClientMessage, 211
ClientWhitePointOfCCC, 93
Clipping region, 442
Coded character, 442
Coded character set, 442
Codepoint, 442
Color, 72

allocation, 82, 82, 82, 83, 83, 84, 85
conversion, 95
deallocation, 86
naming, 80, 81, 81, 83, 83, 89
querying, 89, 89, 90, 90
storing, 86, 87, 87, 88, 89

Color Characterization Data, 114
Color conversion, 95
Color Conversion Context, 78

creation, 78, 91, 94
default, 78, 91, 92, 92
freeing, 95
of colormap, 78, 91, 91, 91

Color map, 72, 82
Colormap, 442

CCC of, 91, 91
ColormapNotify, 210
Colormaps

standard, 352
ConfigureNotify, 200
ConfigureRequest, 208
Connection, 442
ConnectionNumber, 10
Containment, 442
Coordinate system, 443
Copying

areas, 135
planes, 136

CreateNotify, 201
CurrentTime, 182, 231
Cursor, 443

Initial State, 36
limitations, 69

Cut Buffers, 383

D
Debugging

error event, 226
error handlers, 226
error message strings, 228
error numbers, 227
synchronous mode, 225

Default Protection, 173
DefaultColormap, 10
DefaultColormapOfScreen, 17
DefaultDepth, 10

DefaultDepthOfScreen, 17
DefaultGC, 11
DefaultGCOfScreen, 18
DefaultRootWindow, 11
DefaultScreen, 11
DefaultScreenOfDisplay, 11
DefaultVisual, 12
DefaultVisualOfScreen, 18
Depth, 443
Destination, 118
DestroyCallback, 295, 311
DestroyNotify, 202
Device, 443
Device Color Characterization, 113
Device profile, 78, 114
DirectColor, 443
Display, 8, 443

data structure, 9
structure, 443, 450

Display Functions, 118
DisplayCells, 12
DisplayHeight, 16
DisplayHeightMM, 16
DisplayOfCCC, 92
DisplayOfScreen, 18
DisplayPlanes, 12
DisplayString, 12
DisplayWidth, 16
DisplayWidthMM, 17
DoesBackingStore, 18
DoesSaveUnders, 18
Drawable, 2, 443
Drawing

arcs, 141
image text, 160
lines, 139
points, 138
polygons, 139
rectangles, 140
strings, 159
text items, 158

E
Encoding, 443
EnterNotify, 188
Environment

DISPLAY, 7
Error

codes, 227
handlers, 226
handling, 3

Escapement, 444
Event, 3, 178, 444

454



Index

categories, 178
Exposure, 444
mask, 444
propagation, 216, 444
source, 444
synchronization, 444
types, 178

Event mask, 181
EventMaskOfScreen, 19
Events

ButtonPress, 185
ButtonRelease, 185
CirculateNotify, 199
CirculateRequest, 207
ClientMessage, 211
ColormapNotify, 210
ConfigureNotify, 200
ConfigureRequest, 208
CreateNotify, 201
DestroyNotify, 202
EnterNotify, 188
Expose, 197
FocusIn, 192
FocusOut, 192
GraphicsExpose, 198
GravityNotify, 203
KeymapNotify, 196
KeyPress, 185
KeyRelease, 185
LeaveNotify, 188
MapNotify, 203
MappingNotify, 204
MapRequest, 209
MotionNotify, 185
NoExpose, 198
PropertyNotify, 212
ReparentNotify, 205
ResizeRequest, 210
SelectionClear, 213
SelectionNotify, 214
SelectionRequest, 213
UnmapNotify, 206
VisibilityNotify, 206

Expose, 197
Extension, 444

F
False, 4
Files

$HOME/.Xdefaults, 435
/etc/X?.hosts, 173
<X11/cursorfont.h>, 
<X11/keysym.h>, , 248

<X11/keysymdef.h>, , 248, 375
<X11/X.h>, 2, , 118, 178, 181
<X11/X10.h>, , 436, 436
<X11/Xatom.h>, , 56, 152, 352
<X11/Xcms.h>, , 71
<X11/Xlib.h>, , 8, 71, 179, 386
<X11/Xlibint.h>, 
<X11/Xproto.h>, , 199
<X11/Xprotostr.h>, 
<X11/Xresource.h>, , 357
<X11/Xutil.h>, , 335, 337, 341, 344,
378, 379, 384, 387, 392, 431

Filling
arcs, 145
polygon, 144
rectangles, 143

FlushGC, 418
FocusIn, 192
FocusOut, 192
Font, 146, 444
Font glyph, 444
Fonts

freeing font information, 150
getting information, 150
unloading, 150

Freeing
colors, 86
resources, 28, 49, 49

Frozen events, 444
Function set, 113

LINEAR_RGB, 113

G
Gamut compression, 78

client data, 93
procedure, 93
setting in Color Conversion Context, 93

Gamut handling, 78
Gamut querying, 100
GC, 445
GeometryCallback, 311
Glyph, 445
Glyph image, 445
Grab, 445
Grabbing

buttons, 234
keyboard, 236
keys, 238
pointer, 232
server, 170

Graphics context, 445
initializing, 123

GraphicsExpose, 198

455



Index

Gravity, 445
GravityNotify, 203
GrayScale, 445

H
Hash Lookup, 438
Headers, 3

<X11/cursorfont.h>, 
<X11/keysym.h>, , 248
<X11/keysymdef.h>, , 248, 375
<X11/X.h>, 2, , 118, 178, 181
<X11/X10.h>, , 436, 436
<X11/Xatom.h>, , 56, 152, 352
<X11/Xcms.h>, , 71
<X11/Xlib.h>, , 8, 71, 179, 386
<X11/Xlibint.h>, 
<X11/Xproto.h>, , 199
<X11/Xprotostr.h>, 
<X11/Xresource.h>, , 357
<X11/Xutil.h>, , 335, 337, 341, 344,
378, 379, 384, 387, 392, 431

HeightMMOfScreen, 19
HeightOfScreen, 19
Host Portable Character Encoding, 445
Hotspot, 445

I
Identifier, 445
Image text

drawing, 160
ImageByteOrder, 15
IMInstantiateCallback, 292
Inferiors, 445
Input

focus, 445
manager, 446

Input Control, 178
Internationalization, 446
IsCursorKey, 375
IsFunctionKey, 375
IsKeypadKey, 375
IsMiscFunctionKey, 375
IsModifierKey, 376
ISO2022, 446
IsPFKey, 376
IsPrivateKeypadKey, 375

K
Key

grabbing, 238, 446
ungrabbing, 239

Keyboard
bell volume, 243

bit vector, 243
grabbing, 236, 446
keyclick volume, 243
ungrabbing, 237

KeymapNotify, 196
KeyPress, 185
KeyRelease, 185
Keysym, 446

L
LastKnownRequestProcessed, 13
Latin Portable Character Encoding, 446
Latin-1, 446
LeaveNotify, 188
Lines

drawing, 139
Locale, 446
Locale name, 447
Localization, 447
LockDisplay, 423

M
MapNotify, 203
Mapped window, 447
MappingNotify, 204
MapRequest, 209
MaxCmapsOfScreen, 19
Menus, 170
MinCmapsOfScreen, 20
Modifier keys, 447
Monochrome, 447
MotionNotify, 185
Mouse

programming, 243
Multibyte, 447

N
NextRequest, 13
NoExpose, 198
None, 4

O
Obscure, 447
Occlude, 447
Output Control, 178

P
Padding, 447
Parent Window, 2, 51
Passive grab, 231, 447
Pixel value, 119, 447
Pixmap, 2, 448
Plane, 448

456



Index

copying, 136
mask, 119, 448

PlanesOfScreen, 20
Pointer, 448

grabbing, 232, 234, 448
ungrabbing, 234

Pointing device, 448
Points

drawing, 138
Polygons

drawing, 139
filling, 144

POSIX, 448
POSIX Portable Filename Character Set, 448
POSIX System Call

fork, 12
PreeditCaretCallback, 317
PreeditDoneCallback, 313
PreeditDrawCallback, 313
PreeditStartCallback, 313
PreeditStateNotifyCallback, 309
Property, 448

appending, 61
changing, 61
deleting, 62
format, 61
getting, 59
listing, 61
prepending, 61
replacing, 61
type, 61

Property list, 448
PropertyNotify, 212
Protocol

DECnet, 8
TCP, 8

ProtocolRevision, 13
ProtocolVersion, 13
PseudoColor, 448
Psychometric Chroma, 103, 104, 105, 106

maximum, 103, 104, 105, 106
Psychometric Hue Angle, 103, 103, 104, 104,
105, 105, 106, 106

Q
QLength, 14

R
Read-only colormap cells, 82

allocating, 82, 82, 83, 83
read-only colormap cells, 82
Read/write colormap cells, 82

allocating, 84

Read/write colormap planes
allocating, 85

Rectangle, 449
filling, 143

Rectangles
drawing, 140

Redirecting control, 449
ReparentNotify, 205
Reply, 449
Request, 449
ResizeRequest, 210
Resource, 449
Resource IDs, 2, 21, 438

Colormap, 2
Cursor, 2
Font, 2
freeing, 28, 49, 49
GContext, 2
Pixmap, 2
Window, 2

RGB values, 449
Root, 449
RootWindow, 14
RootWindowOfScreen, 20

S
Save set, 449
Save Unders, 33
Scanline, 449

order, 449
Screen, 1, 8, 450

structure, 450
Screen White Point, 101
ScreenCount, 14
ScreenNumberOfCCC, 92
ScreenOfDisplay, 11
ScreenWhitePointOfCCC, 93
Selection, 63, 450

converting, 64
getting the owner, 64
setting the owner, 63

SelectionClear, 213
SelectionNotify, 214
SelectionRequest, 213
Serial Number, 226
Server, 450

grabbing, 170, 450
ServerVendor, 14
Shift sequence, 450
Sibling, 450
Source, 118
Stacking order, 2, 450
Standard Colormaps, 352

457



Index

State-dependent encoding, 450
State-independent encoding, 451
StaticColor, 451
StaticGray, 451
Status, 3, 451
StatusDoneCallback, 319
StatusDrawCallback, 319
StatusStartCallback, 318
Stipple, 451
String Equivalence, 451
StringConversionCallback, 312
Strings

drawing, 159

T
Text

drawing, 158
Tile, 2, 451

mode, 28
pixmaps, 28

Time, 231
Timestamp, 451
True, 4
TrueColor, 451
Type, 451

U
Ungrabbing

buttons, 236
keyboard, 237
keys, 239
pointer, 234

UnlockDisplay, 423
UnmapNotify, 206
UnmapNotify Event, 40, 40

V
Value, 107, 107, 108, 108

maximum, 107, 107, 108
minimum, 108

VendorRelease, 14
Vertex, 436
VertexCurved, 436
VertexDontDraw, 436
VertexEndClosed, 436
VertexRelative, 436
VertexStartClosed, 436
Viewable, 452
VisibilityNotify, 206
Visible, 452
Visual, 26
Visual Classes

GrayScale, 26

PseudoColor, 26
StaticColor, 26, 26
StaticGray, 26
TrueColor, 26

Visual Type, 26
VisualOfCCC, 92

W
White point, 78
White point adjustment, 78

client data, 94
procedure, 94
setting in Color Conversion Context, 94

WhitePixel, 9
WhitePixelOfScreen, 17
Whitespace, 452
WidthMMOfScreen, 19
WidthOfScreen, 19
Window, 2, 27

attributes, 27
background, 48
clearing, 135
defining the cursor, 50
determining location, 377, 434
gravity, 452
icon name, 334
IDs, 438
InputOnly, 35, 446
InputOutput, 446
manager, 452
managers, 170
mapping, 28
name, 333
parent, 447
root, 449
RootWindow, 14
undefining the cursor, 50
XRootWindow, 14

X
X Portable Character Set, 452
X10 compatibility

XDraw, 436, 436
XDrawDashed, 436, 436
XDrawFilled, 436, 437
XDrawPatterned, 436, 436
XDrawTiled, 436, 437

X11/cursorfont.h, 4
X11/keysym.h, 4, 248
X11/keysymdef.h, 4, 248, 375
X11/X.h, 2, 3, 118, 178, 181
X11/X10.h, 4, 436, 436
X11/Xatom.h, 3, 56, 152, 352

458



Index

X11/Xcms.h, 3, 71
X11/Xlib.h, 3, 8, 71, 179, 386
X11/Xlibint.h, 4
X11/Xproto.h, 4, 199
X11/Xprotostr.h, 4
X11/Xresource.h, 3, 357
X11/Xutil.h, 3, 335, 337, 341, 344, 378, 379,
384, 387, 392, 431
XActivateScreenSaver, 172
XAddExtension, 411
XAddHost, 175
XAddHosts, 175
XAddPixel, 388
XAddToExtensionList, 417
XAddToSaveSet, 167
XAllocClassHint, 341
XAllocColor, 82, 86
XAllocColorCells, 84, 86
XAllocColorPlanes, 85, 86
XAllocID, 418
XAllocIDs, 418
XAllocNamedColor, 83, 86
XAllowEvents, 239
XAllPlanes, 9
XAnyEvent, 179
XArc, 138
XAutoRepeatOff, 245
XAutoRepeatOn, 245
XBaseFontNameListOfFontSet, 272
XBell, 246
XBitmapBitOrder, 16
XBitmapPad, 16
XBitmapUnit, 15
XBlackPixel, 9
XBlackPixelOfScreen, 17
XCellsOfScreen, 17
XChangeActivePointerGrab, 234
XChangeGC, 124
XChangeKeyboardControl, 244
XChangeKeyboardMapping, 250
XChangePointerControl, 247
XChangeProperty, 61
XChangeSaveSet, 167
XChangeWindowAttributes, 47
XChar2b, 147
XCharStruct, 147
XCheckIfEvent, 220
XCheckMaskEvent, 222
XCheckTypedEvent, 222
XCheckTypedWindowEvent, 222
XCheckWindowEvent, 221, 221
XCirculateEvent, 200
XCirculateRequestEvent, 208
XCirculateSubwindows, 46

XCirculateSubwindowsDown, 46
XCirculateSubwindowsUp, 46
XClassHint, 341
XClearArea, 134
XClearWindow, 135
XClientMessageEvent, 211
XClipBox, 380
XCloseDisplay, 20, 21
XCloseIM, 291
XCloseOM, 260
XcmsAddColorSpace, 109
XcmsAddFunctionSet, 113
XcmsAllocColor, 82
XcmsAllocNamedColor, 83
XcmsCCCOfColormap, 91
XcmsCIELab, 74
XcmsCIELabQueryMaxC, 103
XcmsCIELabQueryMaxL, 103
XcmsCIELabQueryMaxLC, 104
XcmsCIELabQueryMinL, 104
XcmsCIELuv, 75
XcmsCIELuvQueryMaxC, 105
XcmsCIELuvQueryMaxL, 105
XcmsCIELuvQueryMaxLC, 106
XcmsCIELuvQueryMinL, 106
XcmsCIEuvY, 74
XcmsCIExyY, 74
XcmsCIEXYZ, 74
XcmsClientWhitePointOfCCC, 93
XcmsColor, 72
XcmsCompressionProc, 96
XcmsConvertColors, 95
XcmsCreateCCC, 94
XcmsDefaultCCC, 92
XcmsDisplayOfCCC, 92
XcmsFormatOfPrefix, 110
XcmsFreeCCC, 95
XcmsLookupColor, 81
XcmsPad, 75
XcmsParseStringProc, 111
XcmsPrefixOfFormat, 110
XcmsQueryBlack, 101
XcmsQueryBlue, 101
XcmsQueryColor, 90
XcmsQueryColors, 90
XcmsQueryGreen, 102
XcmsQueryRed, 102
XcmsQueryWhite, 102
XcmsRGB, 73
XcmsRGBi, 74
XcmsScreenInitProc, 114
XcmsScreenNumberOfCCC, 92
XcmsScreenWhitePointOfCCC, 93
XcmsSetCCCOfColormap, 91

459



Index

XcmsSetCompressionProc, 93
XcmsSetWhiteAdjustProc, 94
XcmsSetWhitePoint, 93
XcmsStoreColor, 87
XcmsStoreColors, 88
XcmsTekHVC, 75
XcmsTekHVCQueryMaxC, 107
XcmsTekHVCQueryMaxV, 107
XcmsTekHVCQueryMaxVC, 107
XcmsTekHVCQueryMaxVSamples, 108
XcmsTekHVCQueryMinV, 108
XcmsVisualOfCCC, 92
XcmsWhiteAdjustProc, 99
XColor, 72
XColormapEvent, 211
XConfigureEvent, 201
XConfigureRequestEvent, 209
XConfigureWindow, 42
XConnectionNumber, 10
XContextDependentDrawing, 273
XContextualDrawing, 273
XConvertCase, 374
XConvertSelection, 64
XCopyArea, 135
XCopyColormapAndFree, 79
XCopyGC, 123
XCopyPlane, 136
XCreateAssocTable, 438
XCreateBitmapFromData, 391
XCreateColormap, 79
XCreateFontCursor, 67
XCreateFontSet, 268
XCreateGC, 123
XCreateGlyphCursor, 67
XCreateIC, 297
XCreateImage, 386
XCreateOC, 263
XCreatePixmap, 66
XCreatePixmapCursor, 68
XCreatePixmapFromBitmapData, 390
XCreateSimpleWindow, 36
XCreateWindow, 35
XCreateWindowEvent, 202
XCrossingEvent, 189
XDefaultColormap, 10
XDefaultColormapOfScreen, 17
XDefaultDepth, 10
XDefaultDepthOfScreen, 17
XDefaultGC, 11
XDefaultGCOfScreen, 18
XDefaultRootWindow, 11
XDefaultScreen, 11
XDefaultScreenOfDisplay, 11
XDefaultVisual, 12

XDefaultVisualOfScreen, 18
XDefineCursor, 36, 50
XDeleteAssoc, 439
XDeleteContext, 392
XDeleteModifiermapEntry, 252
XDeleteProperty, 62
XDestroyAssocTable, 439
XDestroyIC, 297
XDestroyImage, 388
XDestroyOC, 264
XDestroyRegion, 380
XDestroySubwindows, 38
XDestroyWindow, 37
XDestroyWindowEvent, 202
XDirectionalDependentDrawing, 273
XDisableAccessControl, 177
XDisplayCells, 12
XDisplayHeight, 16
XDisplayHeightMM, 16
XDisplayKeycodes, 249
XDisplayMotionBufferSize, 224
XDisplayName, 229
XDisplayOfIM, 291
XDisplayOfOM, 261
XDisplayOfScreen, 18
XDisplayPlanes, 12
XDisplayString, 12
XDisplayWidth, 16
XDisplayWidthMM, 17
XDoesBackingStore, 18
XDoesSaveUnders, 18
xDoSomethingReply, 422
xDoSomethingReq, 421
XDrawArc, 141, 141
XDrawArcs, 141, 142
XDrawImageString, 160, 160
XDrawImageString16, 160, 160
XDrawLine, 139, 139
XDrawLines, 139, 139, 436
XDrawPoint, 138, 138
XDrawPoints, 138, 138
XDrawRectangle, 140, 140
XDrawRectangles, 140, 141
XDrawSegments, 139, 139, 436
XDrawString, 159
XDrawString16, 159
XDrawText, 158
XDrawText16, 158
XEHeadOfExtensionList, 417
XEmptyRegion, 382
XEnableAccessControl, 176
XEnterWindowEvent, 189
XEqualRegion, 382
XErrorEvent, 226

460



Index

XESetBeforeFlush, 416
XESetCloseDisplay, 411
XESetCopyGC, 412
XESetCreateFont, 412
XESetCreateGC, 411
XESetError, 415
XESetErrorString, 415
XESetEventToWire, 414
XESetFlushGC, 416
XESetFreeFont, 412
XESetPrintErrorValues, 416
XESetWireToError, 414
XESetWireToEvent, 413
XEvent, 180
XEventMaskOfScreen, 19
XEventsQueued, 218
XExposeEvent, 197
XExtCodes, 410
XExtData, 417
XExtendedMaxRequestSize, 12
XExtentsOfFontSet, 274
XFetchBuffer, 384
XFetchBytes, 383
XFetchName, 334
XFillArc, 145, 145
XFillArcs, 146
XFillPolygon, 144
XFillRectangle, 143, 143
XFillRectangles, 143, 144
XFilterEvent, 320
XFindContext, 392
XFindOnExtensionList, 417
XFlush, 217
XFlushGC, 125
XFocusChangeEvent, 192
XFocusInEvent, 192
XFocusOutEvent, 192
XFontProp, 147
XFontSetExtents, 274
XFontsOfFontSet, 271
XFontStruct, 148
XForceScreenSaver, 172
XFree, 20
XFreeColormap, 80
XFreeColors, 86
XFreeCursor, 69
XFreeExtensionList, 410
XFreeFont, 151
XFreeFontInfo, 153
XFreeFontNames, 153
XFreeFontPath, 170
XFreeFontSet, 272
XFreeGC, 125
XFreeModifiermap, 252

XFreePixmap, 66
XFreeStringList, 331
XGContextFromGC, 125
XGeometry, 434
XGetAtomName, 58
XGetAtomNames, 58
XGetClassHint, 342
XGetCommand, 349
XGetDefault, 435
XGetErrorDatabaseText, 228
XGetErrorText, 228
XGetFontPath, 170
XGetFontProperty, 152
XGetGCValues, 124
XGetGeometry, 53
XGetIconName, 335
XGetIconSizes, 345
XGetICValues, 299
XGetImage, 163
XGetIMValues, 291
XGetInputFocus, 243
XGetKeyboardControl, 245, 245
XGetKeyboardMapping, 250
XGetModifierMapping, 253
XGetMotionEvents, 224
XGetNormalHints, 431
XGetOCValues, 265
XGetOMValues, 261
XGetPixel, 387
XGetPointerControl, 248
XGetPointerMapping, 247
XGetRGBColormaps, 354
XGetScreenSaver, 173
XGetSelectionOwner, 64
XGetSizeHints, 433
XGetStandardColormap, 433
XGetSubImage, 164
XGetTextProperty, 332
XGetTransientForHint, 342
XGetVisualInfo, 385
XGetWindowAttributes, 51
XGetWindowProperty, 59
XGetWMClientMachine, 349
XGetWMColormapWindows, 344
XGetWMHints, 337
XGetWMIconName, 334
XGetWMName, 333
XGetWMNormalHints, 339
XGetWMProtocols, 343
XGetWMSizeHints, 340
XGetZoomHints, 432
XGrabButton, 234
XGrabKey, 238
XGrabKeyboard, 236

461



Index

XGrabPointer, 232
XGrabServer, 170
XGraphicsExposeEvent, 198
XGravityEvent, 203
XHeightMMOfScreen, 19
XHeightOfScreen, 19
XHostAddress, 174
XIconifyWindow, 326
XIconSize, 344, 345
XID, 4
XIfEvent, 219
XIMAbsolutePosition, 318
XImage, 161
XImageByteOrder, 15
XIMBackwardChar, 318
XIMBackwardWord, 318
XIMCallback, 310
XIMCaretDirection, 317
XIMCaretDown, 318
XIMCaretStyle, 317
XIMCaretUp, 318
XIMDontChange, 318
XIMForwardChar, 318
XIMForwardWord, 318
XIMHighlight, 316
XIMInitialState, 305
XIMLineEnd, 318
XIMLineStart, 318
XIMNextLine, 318
XIMOfIC, 298
XIMPreeditArea, 294, 294
XIMPreeditCallbacks, 294, 294
XIMPreeditCaretCallbackStruct, 317
XIMPreeditDisable, 308
XIMPreeditDrawCallbackStruct, 314
XIMPreeditEnable, 308
XIMPreeditNone, 294, 294
XIMPreeditNothing, 294, 294
XIMPreeditPosition, 294, 294
XIMPreeditStateNotifyCallbackStruct, 309
XIMPreeditUnknown, 308
XIMPreviousLine, 318
XIMPrimary, 316
XIMProc, 310
XIMReverse, 316
XIMSecondary, 316
XIMStatusArea, 294, 295
XIMStatusCallbacks, 294, 295
XIMStatusDataType, 319
XIMStatusDrawCallbackStruct, 319
XIMStatusNone, 294, 295
XIMStatusNothing, 294, 295
XIMStringConversionCallbackStruct, 312
XIMStyle, 294

XIMStyles, 294
XIMTertiary, 316
XIMText, 315
XIMUnderline, 316
XIMVisibleToBackward, 316
XIMVisibleToCenter, 316
XIMVisibleToForward, 316
XInitExtension, 410
XInitImage, 162
XInitThreads, 22
XINPreserveState, 305
XInsertModifiermapEntry, 252
XInstallColormap, 168
XInternalConnectionNumbers, 24
XInternAtom, 57
XInternAtoms, 58
XIntersectRegion, 380
XKeyboardState, 245
XKeycodeToKeysym, 374
XKeymapEvent, 196
XKeysymToKeycode, 374
XKeysymToString, 375
XKillClient, 171
XLastKnownRequestProcessed, 13
XLeaveWindowEvent, 189
XLFD, 452
XlibSpecificationRelease, 
XListDepths, 10
XListExtensions, 410
XListFonts, 152
XListFontsWithInfo, 153
XListHosts, 175
XListInstalledColormaps, 169
XListPixmapFormats, 15
XListProperties, 61
XLoadFont, 150
XLoadQueryFont, 151
XLocaleOfFontSet, 272
XLocaleOfIM, 291
XLocaleOfOM, 261
XLockDisplay, 23
XLookUpAssoc, 439
XLookupColor, 80
XLookupKeysym, 373
XLookupString, 376
XLowerWindow, 45
XMakeAssoc, 438
XMapEvent, 204
XMappingEvent, 204
XMapRaised, 39
XMapRequestEvent, 209
XMapSubwindows, 39, 40
XMapWindow, 28, 39, 39
XMaskEvent, 221

462



Index

XMatchVisualInfo, 385
XMaxCmapsOfScreen, 19
XMaxRequestSize, 13
XmbDrawImageString, 279
XmbDrawString, 278
XmbDrawText, 278
XmbLookupString, 320
XmbResetIC, 298
XmbSetWMProperties, 346
XmbTextEscapement, 274
XmbTextExtents, 275
XmbTextItem, 277
XmbTextListToTextProperty, 328
XmbTextPerCharExtents, 276
XmbTextPropertyToTextList, 329
XMinCmapsOfScreen, 20
XModifierKeymap, 251
XMoveResizeWindow, 44
XMoveWindow, 43
XNArea, 306
XNAreaNeeded, 307
XNBackground, 308
XNClientWindow, 302
XNColormap, 307
XNCursor, 308
XNewModifiermap, 251
XNextEvent, 217, 218
XNextRequest, 13
XNFilterEvents, 303
XNFocusWindow, 302
XNFontSet, 308
XNForeground, 308
XNGeometryCallback, 303
XNoExposeEvent, 198
XNoOp, 20
XNPreeditAttributes, 306
XNPreeditCaretCallback, 310
XNPreeditDoneCallback, 310
XNPreeditDrawCallback, 310
XNPreeditStartCallback, 310
XNResourceClass, 303
XNResourceName, 303
XNSpotLocation, 307
XNStatusAttributes, 306
XNStatusDoneCallback, 310
XNStatusDrawCallback, 310
XNStatusStartCallback, 310
XNStdColormap, 307
XOffsetRegion, 380
XOMCharSetList, 262
XOMOfOC, 264
XOpenDisplay, 7
XOpenIM, 290
XOpenOM, 260

XParseColor, 81
XParseGeometry, 377
XPeekEvent, 219
XPeekIfEvent, 220
XPending, 217, 218
Xpermalloc, 377
XPixmapFormatValues, 15
XPlanesOfScreen, 20
XPoint, 137
XPointer, 4
XPointInRegion, 382
XPolygonRegion, 379
XProcessInternalConnection, 24
XPropertyEvent, 212
XProtocolRevision, 13
XProtocolVersion, 13
XPutBackEvent, 223
XPutImage, 162
XPutPixel, 387
XQLength, 14
XQueryBestCursor, 67, 69
XQueryBestSize, 129
XQueryBestStipple, 130
XQueryBestTile, 129
XQueryColor, 89
XQueryColors, 89
XQueryExtension, 409
XQueryFont, 151
XQueryKeymap, 246
XQueryPointer, 55
XQueryTextExtents, 155
XQueryTextExtents16, 156
XQueryTree, 51
XRaiseWindow, 45
XReadBitmapFile, 389
XReadBitmapFileData, 389
XRebindKeysym, 377
XRecolorCursor, 69
XReconfigureWMWindow, 327
XRectangle, 138
XRectInRegion, 382
XRefreshKeyboardMapping, 374
XRegisterIMInstantiateCallback, 292
XRemoveConnectionWatch, 24
XRemoveFromSaveSet, 168
XRemoveHost, 175
XRemoveHosts, 176
XReparentEvent, 205
XReparentWindow, 166
XResetScreenSaver, 173
XResizeRequestEvent, 210
XResizeWindow, 43
XResourceManagerString, 362
xResourceReq, 421

463



Index

XRestackWindows, 47
XrmCombineDatabase, 364
XrmCombineFileDatabase, 364
XrmDatabase, 361
XrmDestroyDatabase, 363
XrmEnumerateDatabase, 369
XrmGetDatabase, 364
XrmGetFileDatabase, 362
XrmGetResource, 365
XrmGetStringDatabase, 363
XrmInitialize, 362
XrmLocaleOfDatabase, 363
XrmMergeDatabases, 365
XrmOptionDescRec, 370
XrmOptionKind, 370
XrmParseCommand, 371
XrmPermStringToQuark, 360
XrmPutFileDatabase, 362
XrmPutLineResource, 369
XrmPutResource, 367
XrmPutStringResource, 368
XrmQGetResource, 365
XrmQGetSearchList, 366
XrmQGetSearchResource, 367
XrmQPutResource, 368
XrmQPutStringResource, 368
XrmQuarkToString, 360
XrmSetDatabase, 364
XrmStringToBindingQuarkList, 361
XrmStringToQuark, 360
XrmStringToQuarkList, 361
XrmUniqueQuark, 359
XrmValue, 362
XRootWindow, 14
XRootWindowOfScreen, 20
XRotateBuffers, 384
XRotateWindowProperties, 62
XSaveContext, 392
XScreenCount, 14
XScreenNumberOfScreen, 18
XScreenOfDisplay, 11
XScreenResourceString, 363
XSegment, 137
XSelectInput, 216
XSelectionClearEvent, 213
XSelectionEvent, 214
XSelectionRequestEvent, 213
XSendEvent, 223, 223
XServerInterpretedAddress, 174
XServerVendor, 14
XSetAccessControl, 176
XSetAfterFunction, 225
XSetArcMode, 133
XSetBackground, 126

XSetClassHint, 341
XSetClipMask, 132
XSetClipOrigin, 131
XSetClipRectangles, 132
XSetCloseDownMode, 21
XSetCommand, 348
XSetDashes, 127
XSetErrorHandler, 226
XSetFillRule, 128
XSetFillStyle, 128
XSetFont, 131
XSetFontPath, 170
XSetForeground, 126
XSetFunction, 126
XSetGraphicsExposures, 133
XSetICFocus, 297
XSetIconName, 334
XSetIconSizes, 345
XSetICValues, 298
XSetIMValues, 291
XSetInputFocus, 242
XSetIOErrorHandler, 229
XSetLineAttributes, 127
XSetLocaleModifiers, 255
XSetModifierMapping, 252
XSetNormalHints, 431
XSetOCValues, 264
XSetOMValues, 260
XSetPlaneMask, 127
XSetPointerMapping, 246
XSetRegion, 379
XSetRGBColormaps, 353
XSetScreenSaver, 171
XSetSelectionOwner, 63
XSetSizeHints, 432
XSetStandardColormap, 433
XSetStandardProperties, 430
XSetState, 126
XSetStipple, 130
XSetSubwindowMode, 133
XSetTextProperty, 332
XSetTile, 130
XSetTransientForHint, 342
XSetTSOrigin, 131
XSetWindowAttributes, 29
XSetWindowBackground, 48
XSetWindowBackgroundPixmap, 48
XSetWindowBorder, 49
XSetWindowBorderPixmap, 49
XSetWindowBorderWidth, 44
XSetWindowColormap, 49
XSetWMClientMachine, 349
XSetWMColormapWindows, 344
XSetWMHints, 337

464



Index

XSetWMIconName, 334
XSetWMName, 333
XSetWMNormalHints, 339
XSetWMProperties, 347
XSetWMProtocols, 343
XSetWMSizeHints, 340
XSetZoomHints, 432
XShrinkRegion, 380
XStoreBuffer, 383
XStoreBytes, 383
XStoreColor, 86
XStoreColors, 87
XStoreName, 333
XStoreNamedColor, 89
XStringListToTextProperty, 331
XStringToKeysym, 374
XSubImage, 388
XSubtractRegion, 381
XSync, 2, 3, 217
XSynchronize, 225
XTextExtents, 154
XTextExtents16, 155
XTextItem, 157
XTextItem16, 157
XTextProperty, 328
XTextPropertyToStringList, 331
XTextWidth, 154, 154
XTextWidth16, 154, 154
XTimeCoord, 225
XTranslateCoordinates, 54
XUndefineCursor, 50
XUngrabButton, 236
XUngrabKey, 239
XUngrabKeyboard, 237
XUngrabPointer, 234
XUngrabServer, 171
XUninstallColormap, 169
XUnionRectWithRegion, 381
XUnionRegion, 381
XUnloadFont, 152
XUnlockDisplay, 23
XUnmapEvent, 206
XUnmapSubwindows, 40
XUnmapWindow, 40, 40
XUnregisterIMInstantiateCallback, 292
XUnsetICFocus, 298
XVaCreateNestedList, 258
XVendorRelease, 14
XVisibilityEvent, 207
XVisualIDFromVisual, 27
XWarpPointer, 241
XwcDrawImageString, 279
XwcDrawString, 278
XwcDrawText, 278

XwcFreeStringList, 330
XwcLookupString, 320
XwcResetIC, 298
XwcTextEscapement, 274
XwcTextExtents, 275
XwcTextItem, 278
XwcTextListToTextProperty, 328
XwcTextPerCharExtents, 276
XwcTextPropertyToTextList, 329
XWhitePixel, 9
XWhitePixelOfScreen, 17
XWidthMMOfScreen, 19
XWidthOfScreen, 19
XWindowAttributes, 52
XWindowChanges, 41
XWindowEvent, 217, 221
XWithdrawWindow, 327
XWMGeometry, 378
XWriteBitmapFile, 390, 391
XXorRegion, 381
XY format, 452

Z
Z format, 452

465


	Xlib - C Language X Interface
	Table of Contents
	Acknowledgments
	Chapter 1. Introduction to Xlib
	Overview of the X Window System
	Errors
	Standard Header Files
	Generic Values and Types
	Naming and Argument Conventions within Xlib
	Programming Considerations
	Character Sets and Encodings
	Formatting Conventions

	Chapter 2. Display Functions
	Opening the Display
	Obtaining Information about the Display, Image Formats, or Screens
	Display Macros
	Image Format Functions and Macros
	Screen Information Macros

	Generating a NoOperation Protocol Request
	Freeing Client-Created Data
	Closing the Display
	Using X Server Connection Close Operations
	Using Xlib with Threads
	Using Internal Connections

	Chapter 3. Window Functions
	Visual Types
	Window Attributes
	Background Attribute
	Border Attribute
	Gravity Attributes
	Backing Store Attribute
	Save Under Flag
	Backing Planes and Backing Pixel Attributes
	Event Mask and Do Not Propagate Mask Attributes
	Override Redirect Flag
	Colormap Attribute
	Cursor Attribute

	Creating Windows
	Destroying Windows
	Mapping Windows
	Unmapping Windows
	Configuring Windows
	Changing Window Stacking Order
	Changing Window Attributes

	Chapter 4. Window Information Functions
	Obtaining Window Information
	Translating Screen Coordinates
	Properties and Atoms
	Obtaining and Changing Window Properties
	Selections

	Chapter 5. Pixmap and Cursor Functions
	Creating and Freeing Pixmaps
	Creating, Recoloring, and Freeing Cursors

	Chapter 6. Color Management Functions
	Color Structures
	Color Strings
	RGB Device String Specification
	RGB Intensity String Specification
	Device-Independent String Specifications

	Color Conversion Contexts and Gamut Mapping
	Creating, Copying, and Destroying Colormaps
	Mapping Color Names to Values
	Allocating and Freeing Color Cells
	Modifying and Querying Colormap Cells
	Color Conversion Context Functions
	Getting and Setting the Color Conversion Context of a Colormap
	Obtaining the Default Color Conversion Context
	Color Conversion Context Macros
	Modifying Attributes of a Color Conversion Context
	Creating and Freeing a Color Conversion Context

	Converting between Color Spaces
	Callback Functions
	Prototype Gamut Compression Procedure
	Supplied Gamut Compression Procedures
	Prototype White Point Adjustment Procedure
	Supplied White Point Adjustment Procedures

	Gamut Querying Functions
	Red, Green, and Blue Queries
	CIELab Queries
	CIELuv Queries
	TekHVC Queries

	Color Management Extensions
	Color Spaces
	Adding Device-Independent Color Spaces
	Querying Color Space Format and Prefix
	Creating Additional Color Spaces
	Parse String Callback
	Color Specification Conversion Callback
	Function Sets
	Adding Function Sets
	Creating Additional Function Sets


	Chapter 7. Graphics Context Functions
	Manipulating Graphics Context/State
	Using Graphics Context Convenience Routines
	Setting the Foreground, Background, Function, or Plane Mask
	Setting the Line Attributes and Dashes
	Setting the Fill Style and Fill Rule
	Setting the Fill Tile and Stipple
	Setting the Current Font
	Setting the Clip Region
	Setting the Arc Mode, Subwindow Mode, and Graphics Exposure


	Chapter 8. Graphics Functions
	Clearing Areas
	Copying Areas
	Drawing Points, Lines, Rectangles, and Arcs
	Drawing Single and Multiple Points
	Drawing Single and Multiple Lines
	Drawing Single and Multiple Rectangles
	Drawing Single and Multiple Arcs

	Filling Areas
	Filling Single and Multiple Rectangles
	Filling a Single Polygon
	Filling Single and Multiple Arcs

	Font Metrics
	Loading and Freeing Fonts
	Obtaining and Freeing Font Names and Information
	Computing Character String Sizes
	Computing Logical Extents
	Querying Character String Sizes

	Drawing Text
	Drawing Complex Text
	Drawing Text Characters
	Drawing Image Text Characters

	Transferring Images between Client and Server

	Chapter 9. Window and Session Manager Functions
	Changing the Parent of a Window
	Controlling the Lifetime of a Window
	Managing Installed Colormaps
	Setting and Retrieving the Font Search Path
	Grabbing the Server
	Killing Clients
	Controlling the Screen Saver
	Controlling Host Access
	Adding, Getting, or Removing Hosts
	Changing, Enabling, or Disabling Access Control


	Chapter 10. Events
	Event Types
	Event Structures
	Event Masks
	Event Processing Overview
	Keyboard and Pointer Events
	Pointer Button Events
	Keyboard and Pointer Events

	Window Entry/Exit Events
	Normal Entry/Exit Events
	Grab and Ungrab Entry/Exit Events

	Input Focus Events
	Normal Focus Events and Focus Events While Grabbed
	Focus Events Generated by Grabs

	Key Map State Notification Events
	Exposure Events
	Expose Events
	GraphicsExpose and NoExpose Events

	Window State Change Events
	CirculateNotify Events
	ConfigureNotify Events
	CreateNotify Events
	DestroyNotify Events
	GravityNotify Events
	MapNotify Events
	MappingNotify Events
	ReparentNotify Events
	UnmapNotify Events
	VisibilityNotify Events

	Structure Control Events
	CirculateRequest Events
	ConfigureRequest Events
	MapRequest Events
	ResizeRequest Events

	Colormap State Change Events
	Client Communication Events
	ClientMessage Events
	PropertyNotify Events
	SelectionClear Events
	SelectionRequest Events
	SelectionNotify Events


	Chapter 11. Event Handling Functions
	Selecting Events
	Handling the Output Buffer
	Event Queue Management
	Manipulating the Event Queue
	Returning the Next Event
	Selecting Events Using a Predicate Procedure
	Selecting Events Using a Window or Event Mask

	Putting an Event Back into the Queue
	Sending Events to Other Applications
	Getting Pointer Motion History
	Handling Protocol Errors
	Enabling or Disabling Synchronization
	Using the Default Error Handlers


	Chapter 12. Input Device Functions
	Pointer Grabbing
	Keyboard Grabbing
	Resuming Event Processing
	Moving the Pointer
	Controlling Input Focus
	Manipulating the Keyboard and Pointer Settings
	Manipulating the Keyboard Encoding

	Chapter 13. Locales and Internationalized Text Functions
	X Locale Management
	Locale and Modifier Dependencies
	Variable Argument Lists
	Output Methods
	Output Method Overview
	Output Method Functions
	X Output Method Values
	Required Char Set
	Query Orientation
	Directional Dependent Drawing
	Context Dependent Drawing

	Output Context Functions
	Output Context Values
	Base Font Name
	Missing CharSet
	Default String
	Orientation
	Resource Name and Class
	Font Info
	OM Automatic

	Creating and Freeing a Font Set
	Obtaining Font Set Metrics
	Drawing Text Using Font Sets

	Input Methods
	Input Method Overview
	Input Method Architecture
	Input Contexts
	Getting Keyboard Input
	Focus Management
	Geometry Management
	Event Filtering
	Callbacks
	Visible Position Feedback Masks
	Preedit String Management

	Input Method Management
	Hot Keys
	Preedit State Operation

	Input Method Functions
	Input Method Values
	Query Input Style
	Resource Name and Class
	Destroy Callback
	Query IM/IC Values List
	Visible Position
	Preedit Callback Behavior

	Input Context Functions
	Input Context Values
	Input Style
	Client Window
	Focus Window
	Resource Name and Class
	Geometry Callback
	Filter Events
	Destroy Callback
	String Conversion Callback
	String Conversion
	Reset State
	Hot Keys
	Hot Key State
	Preedit and Status Attributes
	Area
	Area Needed
	Spot Location
	Colormap
	Foreground and Background
	Background Pixmap
	Font Set
	Line Spacing
	Cursor
	Preedit State
	Preedit State Notify Callback
	Preedit and Status Callbacks


	Input Method Callback Semantics
	Geometry Callback
	Destroy Callback
	String Conversion Callback
	Preedit State Callbacks
	Preedit Draw Callback
	Preedit Caret Callback
	Status Callbacks

	Event Filtering
	Getting Keyboard Input
	Input Method Conventions
	Client Conventions
	Synchronization Conventions


	String Constants

	Chapter 14. Inter-Client Communication Functions
	Client to Window Manager Communication
	Manipulating Top-Level Windows
	Converting String Lists
	Setting and Reading Text Properties
	Setting and Reading the WM_NAME Property
	Setting and Reading the WM_ICON_NAME Property
	Setting and Reading the WM_HINTS Property
	Setting and Reading the WM_NORMAL_HINTS Property
	Setting and Reading the WM_CLASS Property
	Setting and Reading the WM_TRANSIENT_FOR Property
	Setting and Reading the WM_PROTOCOLS Property
	Setting and Reading the WM_COLORMAP_WINDOWS Property
	Setting and Reading the WM_ICON_SIZE Property
	Using Window Manager Convenience Functions

	Client to Session Manager Communication
	Setting and Reading the WM_COMMAND Property
	Setting and Reading the WM_CLIENT_MACHINE Property

	Standard Colormaps
	Standard Colormap Properties and Atoms
	Setting and Obtaining Standard Colormaps


	Chapter 15. Resource Manager Functions
	Resource File Syntax
	Resource Manager Matching Rules
	Quarks
	Creating and Storing Databases
	Merging Resource Databases
	Looking Up Resources
	Storing into a Resource Database
	Enumerating Database Entries
	Parsing Command Line Options

	Chapter 16. Application Utility Functions
	Using Keyboard Utility Functions
	KeySym Classification Macros

	Using Latin-1 Keyboard Event Functions
	Allocating Permanent Storage
	Parsing the Window Geometry
	Manipulating Regions
	Creating, Copying, or Destroying Regions
	Moving or Shrinking Regions
	Computing with Regions
	Determining if Regions Are Empty or Equal
	Locating a Point or a Rectangle in a Region

	Using Cut Buffers
	Determining the Appropriate Visual Type
	Manipulating Images
	Manipulating Bitmaps
	Using the Context Manager

	Appendix A. Xlib Functions and Protocol Requests
	Appendix B. X Font Cursors
	Appendix C. Extensions
	Basic Protocol Support Routines
	Hooking into Xlib
	Hooks into the Library
	Hooks onto Xlib Data Structures

	GC Caching
	Graphics Batching
	Writing Extension Stubs
	Requests, Replies, and Xproto.h
	Request Format
	Starting to Write a Stub Procedure
	Locking Data Structures
	Sending the Protocol Request and Arguments
	Variable Length Arguments
	Replies
	Synchronous Calling
	Allocating and Deallocating Memory
	Portability Considerations
	Deriving the Correct Extension Opcode


	Appendix D. Compatibility Functions
	X Version 11 Compatibility Functions
	Setting Standard Properties
	Setting and Getting Window Sizing Hints
	Getting and Setting an XStandardColormap Structure
	Parsing Window Geometry
	Getting the X Environment Defaults

	X Version 10 Compatibility Functions
	Drawing and Filling Polygons and Curves
	Associating User Data with a Value


	Glossary
	References

	Index

