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1. Introduction
The management of fonts in large, heterogeneous environments is one of the hardest aspects of
using the X Window System.* Multiple formats and the lack of a consistent mechanism for
exporting font data to all displays on a network prevent the transparent use of applications across
different display platforms. The X Font Service protocol is designed to address this and other
issues, with specific emphasis on the needs of the core X protocol. Upward-compatible changes
(typically in the form of new requests) are expected as consensus is reached on new features (par-
ticularly outline font support).
Currently, most X displays use network file protocols such as NFS and TFTP to obtain raw font
data which they parse directly. Since a common binary format for this data doesn’t exist, displays
must be able to interpret a variety of formats if they are to be used with different application
hosts. This leads to wasted code and data space and a loss of interoperability as displays are used
in unforeseen environments.
By moving the interpretation of font data out of the X server into a separate service on the net-
work, these problems can be greatly reduced. In addition, new technologies, such as dynamically
generating bitmaps from scaled or outline fonts, can be provided to all displays transparently. For
horizontal text, caching techniques and increased processor power can potentially make rasteriza-
tion more efficient on large, centralized hosts than on individual displays.
Each font server provides sets of fonts that may be listed and queried for header, property, glyph
extents, and bitmap information. This data is transmitted over the network using a binary format
(with variations to support different bit- and byte-orders) designed to minimize the amount of
processing required by the display. Since the font server, rather than the display, is responsible
for parsing the raw font data, new formats can be used by all displays by modifying a single font
server.
From the user’s point of view, font servers are simply a new type of name in the X font path. Net-
work name services allow descriptive names (such as DEPARTMENT-FONTS or APPLICA-
TION-FONTS) to be translated into proper network addresses. X displays send requests to and
read replies from the font server rather than reading directly from files. Since the X Font Service
protocol is designed to allow subsets of the font data to be requested, displays may easily imple-
ment a variety of strategies for fine-grained demand-loading of glyphs.

2. Architectural Model
In this document, the words ‘‘client’’ and ‘‘server’’ refer to the consumer and provider of a font,
respectively, unless otherwise indicated. It is important to note that in this context, the X server is
also a font client.
The X Font Service protocol does not require any changes to the core X protocol or to any appli-
cations. To the user, font servers are simply additional types of font path elements. As such, X
servers may connect to multiple font servers, as shown in Figure 2.1. Although the font protocol
is geared towards the X Window System, it may be also used by other consumers of font data
(such as printer drivers).

* X Window System is a trademark of X Consortium, Inc.
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+--------+ +---------------+
| X1 |--------------| |
| Server | | Font Server |
+--------+ +-------| 1 |

| +---------------+
+--------+ |
| X2 |------+ +---------------+
| Server |--------------| |
+--------+ | Font Server |

+-------| 2 |
+---------+ | +---------------+
| other | |
| clients |------+
+---------+

Figure 2.1: Connecting to a Font Server
Clients communicate with the font server using the request/reply/event model over any mutually-
understood virtual stream connection (such as TCP/IP, DECnet,* etc.). Font servers are responsi-
ble for providing data in the bit and byte orders requested by the client. The set of requests and
ev ents provided in the first version of the X Font Service protocol is limited to supporting the
needs of the bitmap-oriented core X Window System protocol. Extensions are expected as new
needs evolve.
A font server reads raw font data from a variety of sources (possibly including other font servers)
and converts it into a common format that is transmitted to the client using the protocol described
in Section 4. New font formats are handled by adding new converters to a font server, as shown
in Figure 2.2.

+------------+
| client |
| (X server) |
+------------+

|
network

|
+--------------------------------------------+
| |
| font server 1 |
| |
+-----+-----+-----+-----+----+-----+---+-----+
| bdf | snf | pcf | atm | f3 | dwf | | | ... |
+-----+-----+-----+-----+----+-----+-|-+-----+

|
network

|
+----------+
| font |
| server 2 |
+----------+

Figure 2.2: Where Font Data Comes From
The server may choose to provide named sets of fonts called ‘‘catalogues.’’ Clients may specify
which of the sets should be used in listing or opening a font.

*DECnet is a trademark of Digital Equipment Corporation.
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An event mechanism similar to that used in the X protocol is provided for asynchronous notifica-
tion of clients by the server.
Clients may provide authorization data for the server to be used in determining (according to the
server’s licensing policy) whether or not access should be granted to particular fonts. This is par-
ticularly useful for clients whose authorization changes over time (such as an X server that can
verify the identity of the user).
Implementations that wish to provide additional requests or events may use the extension mecha-
nism. Adding to the core font service protocol (with the accompanying change in the major or
minor version numbers) is reserved to the X Consortium.

3. Font Server Naming
Font clients that expose font server names to the user are encouraged to provide ways of naming
font servers symbolically (e.g. DEPARTMENT-FONTS). However, for environments that lack
appropriate name services transport-specific names are necessary. Since these names do occur in
the protocol, clients and servers should support at least the applicable formats described below.
Formats for additional transports may be registered with the X Consortium.

3.1. TCP/IP Names
The following syntax should be used for TCP/IP names:

<TCP name> ::= "tcp/" <hostname>":" <ipportnumber> ["/" <cataloguelist>]

where <hostname> is either symbolic (such as expo.lcs.mit.edu) or numeric decimal (such as
18.30.0.212). The <ipportnumber> is the port on which the font server is listening for connec-
tions. The <cataloguelist> string at the end is optional and specifies a plus-separated list of cata-
logues that may be requested. For example:

tcp/expo.lcs.mit.edu:8012/available+special
tcp/18.30.0.212:7890

3.2. DECnet Names
The following syntax should be used for DECnet names:

<DECnet name> ::= "decnet/" <nodename> "::font$" <objname>
["/" <cataloguelist>]

where <nodename> is either symbolic (such as SRVNOD) or the numeric decimal form of the
DECnet address (such as 44.70). The <objname> is normal, case-insensitive DECnet object
name. The <cataloguelist> string at the end is optional and specifies a plus-separated list of cata-
logues that may be requested. For example:

DECNET/SRVNOD::FONT$DEFAULT/AVAILABLE
decnet/44.70::font$other

4. Protocol
The protocol described below uses the request/reply/error model and is specified using the same
conventions outlined in Section 2 of the core X Window System protocol [1]:
• Data type names are spelled in upper case with no word separators, as in: FONTID
• Alternate values are capitalized with no word separators, as in: MaxWidth
• Structure element declarations are in lower case with hyphens as word separators, as in:

byte-order-msb
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Note

Structure element names are referred to in upper case (e.g. BYTE-ORDER-
MSB) when used in descriptions to set them off from the surrounding text.
When this document is typeset they will be printed in lower case in a distinct
font.

• Type declarations have the form ‘‘name: type’’, as in: CARD8: 8-bit byte
• Comma-separated lists of alternate values are enclosed in braces, as in: { Min, MaxWidth,

Max }
• Comma-separated lists of structure elements are enclosed in brackets, as in: [ byte1:

CARD8, byte2: CARD8 ]
A type with a prefix ‘‘LISTof ’’ represents a counted list of elements of that type, as in: LISTof-
CARD8

4.1. Data Types
The following data types are used in the core X Font Server protocol:
ACCESSCONTEXT: ID

This value is specified in the CreateAC request as the identifier to be used when referring to
a particular AccessContext resource within the server. These resources are used by the
server to store client-specified authorization information. This information may be used by
the server to determine whether or not the client should be granted access to particular font
data.

In order to preserve the integrity of font licensing being performed by the font server, care
must be taken by a client to properly represent the identity of the true user of the font.
Some font clients will in fact be servers (for example, X servers) requesting fonts for their
own clients. Other font clients may be doing work on behalf of a number of different users
over time (for example, print spoolers).

AccessContexts must be created (with CreateAC) and switched among (with
SetAuthorization) to represent all of these ‘‘font users’’ properly.

ALTERNATESERVER: [ name: STRING8,
subset: BOOL ]

This structure specifies the NAME, encoded in ISO 8859-1 according to Section 3, of
another font server that may be useful as a substitute for this font server. The SUBSET field
indicates whether or not the alternate server is likely to only contain a subset of the fonts
available from this font server. This information is returned during the initial connection
setup and may be used by the client to find a backup server in case of failure.

AUTH: [ name: STRING8,
data: LISTofBYTE ]

This structure specifies the name of an authorization protocol and initial data for that proto-
col. It is used in the authorization negotiation in the initial connection setup and in the Cre-
ateAC request.

BITMAPFORMAT:
CARD32 containing the following fields defined by the sets of values given further below
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[
byte-order-msb: 1 bit,
bit-order-msb: 1 bit,
image-rect: 2 bits { Min,

MaxWidth,
Max },

zero-pad: 4 bits,
scanline-pad: 2 bits { ScanlinePad8,

ScanlinePad16,
ScanlinePad32,
ScanlinePad64 },

zero-pad: 2 bits,
scanline-unit: 2 bits { ScanlineUnit8,

ScanlineUnit16,
ScanlineUnit32,
ScanlineUnit64 },

zero-pad: 2 bits,
zero-pad: 16 bits,

]

This structure specifies how glyph images are transmitted in response to QueryXBitmaps8
and QueryXBitmaps16 requests.

If the BYTE-ORDER-MSB bit (1 << 0) is set, the Most Significant Byte of each scanline
unit is returned first. Otherwise, the Least Significant Byte is returned first.

If the BIT-ORDER-MSB bit (1 << 1) is set, the left-most bit in each glyph scanline unit is
stored in the Most Significant Bit of each transmitted scanline unit. Otherwise, the left-most
bit is stored in the Least Significant Bit.

The IMAGE-RECT field specifies a rectangle of pixels within the glyph image. It contains
one of the following alternate values:

ImageRectMin (0 << 2)
ImageRectMaxWidth (1 << 2)
ImageRectMax (2 << 2)

For a glyph with extents XCHARINFO in a font with header information XFONTINFO, the
IMAGE-RECT values have the following meanings:

ImageRectMin- This refers to the minimal bounding rectangle surrounding the
inked pixels in the glyph. This is the most compact representation. The edges
of the rectangle are:

left: XCHARINFO.LBEARING
right: XCHARINFO.RBEARING
top: XCHARINFO.ASCENT
bottom: XCHARINFO.DESCENT

ImageRectMaxWidth- This refers to the scanlines between the glyph’s ascent
and descent, padded on the left to the minimum left-bearing (or 0, whichever is
less) and on the right to the maximum right-bearing (or logical-width,
whichever is greater). All glyph images share a common horizontal origin.
This is a combination of ImageRectMax in the horizontal direction and
ImageRectMin in the vertical direction. The edges of the rectangle are:
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left: min (XFONTINFO.MIN-BOUNDS.LBEARING, 0)
right: max (XFONTINFO.MAX-BOUNDS.RBEARING,

XFONTINFO.MAX-BOUNDS.WIDTH)
top: XCHARINFO.ASCENT
bottom: XCHARINFO.DESCENT

ImageRectMax - This refers to all scanlines, from the maximum ascent (or the
font ascent, whichever is greater) to the maximum descent (or the font descent,
whichever is greater), padded to the same horizontal extents as MaxWidth. All
glyph images have the same sized bitmap and share a common origin. This is
the least compact representation, but may be the easiest or most efficient (partic-
ularly for character cell fonts) for some clients to use. The edges of the rectan-
gle are:

left: min (XFONTINFO.MIN-BOUNDS.LBEARING, 0)
right: max (XFONTINFO.MAX-BOUNDS.RBEARING,

XFONTINFO.MAX-BOUNDS.WIDTH)
top: max (XFONTINFO.FONT-ASCENT,

XFONTINFO.MAX-BOUNDS.ASCENT)
bottom: max (XFONTINFO.FONT-DESCENT,

XFONTINFO.MAX-BOUNDS.DESCENT)

The SCANLINE-PAD field specifies the number of bits (8, 16, 32, or 64) to
which each glyph scanline is padded before transmitting. It contains one of the
following alternate values:

ScanlinePad8 (0 << 8)
ScanlinePad16 (1 << 8)
ScanlinePad32 (2 << 8)
ScanlinePad64 (3 << 8)

The SCANLINE-UNIT field specifies the number of bits (8, 16, 32, or 64) that
should be treated as a unit for swapping. This value must be less than or equal
to the number of bits specified by the SCANLINE-PAD. It contains one of the
following alternate values:

ScanlineUnit8 (0 << 12)
ScanlineUnit16 (1 << 12)
ScanlineUnit32 (2 << 12)
ScanlineUnit64 (3 << 12)

BITMAPFORMATs are byte-swapped as CARD32s. All unspecified bits must
be zero.

Use of an invalid BITMAPFORMAT causes a Format error to be returned.
BITMAPFORMATMASK: CARD32 mask

This is a mask of bits representing the fields in a BITMAPFORMAT:

ByteOrderMask (1 << 0)
BitOrderMask (1 << 1)
ImageRectMask (1 << 2)
ScanlinePadMask (1 << 3)
ScanlineUnitMask (1 << 4)

Unspecified bits are required to be zero or else a Format error is returned.
BOOL: CARD8
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This is a boolean value containing one of the following alternate values:

False 0
True 1

BYTE: 8-bit value
This is an unsigned byte of data whose encoding is determined by the context in which it is
used.

CARD8: 8-bit unsigned integer

CARD16: 16-bit unsigned integer

CARD32: 32-bit unsigned integer
These are unsigned numbers. The latter two are byte-swapped when the server and client
have different byte orders.

CHAR2B: [ byte1, byte2: CARD8 ]
This structure specifies an individual character code within either a 2-dimensional matrix
(using BYTE1 and BYTE2 as the row and column indices, respectively) or a vector (using
BYTE1 and BYTE2 as most- and least-significant bytes, respectively). This data type is
treated as a pair of 8-bit values and is never byte-swapped. Therefore, the client should
always transmit BYTE1 first.

EVENTMASK: CARD32 mask
This is a mask of bits indicating which of an extension’s (or the core’s) maskable events the
client would like to receive. Each bit indicates one or more events, and a bit value of one
indicates interest in a corresponding set of events. The following bits are defined for event
masks specified for the core protocol (i.e. an EXTENSION-OPCODE of zero in SetEvent-
Mask and GetEventMask requests):

CatalogueListChangeMask (1 << 0)
FontListChangeMask (1 << 1)

If CatalogueListChangeMask is set, client is interested in receiving CatalogueListNotify
ev ents. If FontListChangeMask is set, the client is interested in receiving FontListNotify
ev ents.

Extensions that provide additional events may define their own event masks. These event
masks have their own scope and may use the same bit values as the core or other extensions.

All unused bits must be set to zero. In SetEventMask requests, if any bits are set that are
not defined for the extension (or core) for which this EVENTMASK is intended (according
to the EXTENSION- OPCODE given in the SetEventMask request), an EventMask error
is generated.

This value is swapped as a CARD32.
FONTID: ID

This is specified by the client in the request OpenBitmapFont as the identifier to be used
when referring to a particular open font.
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ID: CARD32
This is a 32-bit value in which the top 3 bits must be clear, and at least 1 other bit must be
set (yielding a range of 1 through 2ˆ29-1). It is specified by the client to represent objects in
the server. Identifiers are scoped according to their type are private to the client; thus, the
same identifier may be used for both a FONTID and an ACCESSCONTEXT as well as by
multiple clients.

An ID of zero is referred to as None.
INT8: 8-bit signed integer
INT16: 16-bit signed integer
INT32: 32-bit signed integer

These are signed numbers. The latter two are byte-swapped when the client and server have
different byte orders.

OFFSET32: [ position: CARD32,
length: CARD32 ]

This structure indicates a position and length within a block of data.
PROPINFO: [ offsets: LISTofPROPOFFSET,

data: LISTofBYTE ]
This structure describes the list of properties provided by a font. Strings for all of the prop-
erties names and values are stored within the data block and are located using a table of off-
sets and lengths.

This structure is padded to 32-bit alignment.
PROPOFFSET: [ name: OFFSET32,

value: OFFSET32,
type: CARD8,
zero-pad3: BYTE, BYTE, BYTE ]

This structure specifies the position, length, and type of of data for a property.

The NAME field specifies the position and length (which must be greater than zero) of the
property name relative to the beginning of the PROPINFO.DAT A block for this font. The
interpretation of the position and length of the VALUE field is determined by the TYPE
field, which contains one of the following alternate values:

String 0
Unsigned 1
Signed 2

which have the following meanings:
String

This property contains a counted string of bytes. The data is stored in the
PROPINFO.DAT A block beginning at relative byte VALUE.POSITION (begin-
ning with zero), extending for VALUE.LENGTH (at least zero) bytes.

Unsigned
This property contains a unsigned, 32-bit number stored as a CARD32 in
VALUE.POSITION (VALUE.LENGTH is zero).

Signed
This property contains a signed, 32-bit number stored as an INT32 in
VALUE.POSITION (VALUE.LENGTH is zero).

This structure is zero-padded to 32-bit alignment.
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RANGE: [ min-char, max-char: CHAR2B ]
This structure specifies a range of character codes. A single character is represented by
MIN-CHAR equals MAX-CHAR. If the linear interpretation of MAX-CHAR is less than
that of MIN-CHAR, or if MIN-CHAR is less than the font’s XFONTINFO.CHAR-
RANGE.MIN-CHAR, or if MAX-CHAR is greater than the font’s XFONTINFO.CHAR-
RANGE.MAX-CHAR, the range is invalid.

RESOLUTION: [ x-resolution: CARD16,
y-resolution: CARD16,
decipoint-size: CARD16 ]

This structure specifies resolution and point size to be used in resolving partially-specified
scaled font names. The X-RESOLUTION and Y-RESOLUTION are measured in pixels-
per-inch and must be greater than zero. The DECIPOINT-SIZE is the preferred font size,
measured in tenths of a point, and must be greater than zero.

STRING8: LISTofCARD8
This is a counted list of 1-byte character codes, typically encoded in ISO 8859-1. A charac-
ter code ‘‘c’’ is equivalent to a CHAR2B structure whose BYTE1 is zero and whose BYTE2
is ‘‘c’’.

TIMESTAMP: CARD32
This is the number of milliseconds that have passed since a server- dependent origin. It is
provided in errors and events and is permitted to wrap.

XCHARINFO: [ lbearing, rbearing: INT16,
width: INT16,
ascent, descent: INT16,
attributes: CARD16 ]

This structure specifies the ink extents and horizontal escapement (also known as the set- or
logical width) of an individual character. The first five values represent directed distances in
a coordinate system whose origin is aligned with the lower-left edge of the left-most pixel
of the glyph baseline (i.e. the baseline falls between two pixels as shown in Figure 3-1 of
the ‘‘Bitmap Distribution Format 2.1’’ Consortium standard [2]).

The LBEARING field specifies the directed distance measured to the right from the origin
to the left edge of the left-most inked pixel in the glyph.

The RBEARING field specifies the directed distance (measured to the right) from the origin
to the right edge of the right-most inked pixel in the glyph.

The WIDTH field specifies the directed distance (measured to the right) from the origin to
the position where the next character should appear (called the ‘‘escapement point’’). This
distance includes any whitespace used for intercharacter padding and is also referred to as
the ‘‘logical width’’ or ‘‘horizontal escapement.’’

The ASCENT field specifies the directed distance (measured up) from the baseline to the
top edge of the top-most inked pixel in the glyph.

The DESCENT field specifies the directed distance (measured down) from the baseline to
the bottom edge of the bottom-most inked pixel.

The ATTRIBUTES field specifies glyph-specific information that is passed through the
application. If this value is not being used, it should be zero.

The ink bounding box of a glyph is defined to be the smallest rectangle that encloses all of
the inked pixels. This box has a width of RBEARING - LBEARING pixels and a height of
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ASCENT + DESCENT pixels.
XFONTINFO: [ flags: CARD32,

drawing-direction: { LeftToRight, RightToLeft }
char-range: RANGE,
default-char: CHAR2B,
min-bounds: XCHARINFO,
max-bounds: XCHARINFO,
font-ascent: INT16,
font-descent: INT16,
properties: PROPINFO ]

This structure specifies attributes related to the font as a whole.

The FLAGS field is a bit mask containing zero or more of the following boolean values
(unspecified bits must be zero):

AllCharactersExist (1 << 0)
InkInside (1 << 1)
HorizontalOverlap (1 << 2)

which have the following meanings:
AllCharactersExist

If this bit is set, all of the characters in the range given by CHAR-RANGE have
glyphs encoded in the font. If this bit is clear, some of the characters may not
have encoded glyphs.

InkInside
If this bit is set, the inked pixels of each glyph fall within the rectangle
described by the font’s ascent, descent, origin, and the glyph’s escapement
point. If this bit is clear, there may be glyphs whose ink extends outside this
rectangle.

HorizontalOverlap
If this bit is set, the two ink bounding boxes (smallest rectangle enclosing the
inked pixels) of some pairs of glyphs in the font may overlap when displayed
side-by-side (i.e. the second character is imaged at the escapement point of the
first) on a common baseline. If this bit is clear, there are no pairs of glyphs
whose ink bounding boxes overlap.

The DRAWING-DIRECTION field contains a hint indicating whether most of the character
metrics have a positive (or ‘‘LeftToRight’’) logical width or a negative (‘‘RightToLeft’’) log-
ical width. It contains the following alternate values:

LeftToRight 0
RightToLeft 1

The CHAR-RANGE.MIN-CHAR and CHAR-RANGE.MAX-CHAR fields specify the first
and last character codes that have glyphs encoded in this font. All fonts must have at least
one encoded glyph (in which case the MIN-CHAR and MAX-CHAR are equal), but are not
required to have glyphs encoded at all positions between the first and last characters.

The DEFAULT-CHAR field specifies the character code of the glyph that the client should
substitute for unencoded characters. Requests for extents or bitmaps for an unencoded char-
acter generate zero-filled metrics and a zero-length glyph bitmap, respectively.

The MIN-BOUNDS and MAX-BOUNDS fields contain the minimum and maximum values
of each of the extents field of all encoded characters in the font (i.e. non-existent characters
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are ignored).

The FONT-ASCENT and FONT-DESCENT fields specify the font designer’s logical height
of the font, above and below the baseline, respectively. The sum of the two values is often
used as the vertical line spacing of the font. Individual glyphs are permitted to have ascents
and descents that are greater than these values.

The PROPERTIES field contains the property data associated with this font.

This structure is padded to 32-bit alignment.

4.2. Requests
This section describes the requests that may be sent by the client and the replies or errors that are
generated in response. Versions of the protocol with the same major version are required to be
upward-compatible.
Every request on a given connection is implicitly assigned a sequence number, starting with 1,
that is used in replies, error, and events. Servers are required to generate replies and errors in the
order in which the corresponding requests are received. Servers are permitted to add or remove
fonts to the list visible to the client between any two requests, but requests must be processed
atomically. Each request packet is at least 4 bytes long and contains the following fields:

major-opcode: CARD8
minor-opcode: CARD8
length: CARD16

The MAJOR-OPCODE specifies which core request or extension package this packet represents.
If the MAJOR-OPCODE corresponds to a core request, the MINOR-OPCODE contains 8 bits of
request-specific data. Otherwise, the MINOR-OPCODE specifies which extension request this
packet represents. The LENGTH field specifies the number of 4-byte units contained within the
packet and must be at least one. If this field contains a value greater than one it is followed by
(LENGTH - 1) * 4 bytes of request-specific data. Unless otherwise specified, unused bytes are
not required to be zero.
If a request packet contains too little or too much data, the server returns a Length error. If the
server runs out of internal resources (such as memory) while processing a request, it returns an
Alloc error. If a server is deficient (and therefore non-compliant) and is unable to process a
request, it may return an Implementation error. If a client uses an extension request without pre-
viously having issued a QueryExtension request for that extension, the server responds with a
Request error. If the server encounters a request with an unknown MAJOR-OPCODE or
MINOR-OPCODE, it responds with a Request error. At most one error is generated per request.
If more than one error condition is encountered in processing a requests, the choice of which error
is returned is server-dependent.
Core requests have MAJOR-OPCODE values between 0 and 127, inclusive. Extension requests
have MAJOR-OPCODE values between 128 and 255, inclusive, that are assigned by by the
server. All MINOR-OPCODE values in extension requests are between 0 and 255, inclusive.
Each reply is at least 8 bytes long and contains the following fields:

type: CARD8 value of 0
data-or-unused: CARD8
sequence-number: CARD16
length: CARD32

The TYPE field has a value of zero. The DAT A-OR-UNUSED field may be used to encode one
byte of reply-specific data (see Section 5.2 on request encoding). The least-significant 16 bits of
the sequence number of the request that generated the reply are stored in the SEQUENCE-
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NUMBER field. The LENGTH field specifies the number of 4-byte units in this reply packet,
including the fields described above, and must be at least two. If LENGTH is greater than two,
the fields described above are followed by (LENGTH - 2) * 4 bytes of additional data.
Requests that have replies are described using the following syntax:

RequestName
arg1: type1
arg2: type2
...
argN: typeN

=>
result1: type1
result2: type2

...
resultM: typeM

Errors: kind1, kind2 ..., kindK

Description

If a request does not generate a reply, the‘‘=>’’ and result lines are omitted. If a request may gen-
erate multiple replies, the ‘‘=>’’ is replaced by a ‘‘=>+’’. In the authorization data exchanges in
the initial connection setup and the CreateAC request, ‘‘->’’ indicates data sent by the client in
response to data sent by the server.
The protocol begins with the establishment of a connection over a mutually-understood virtual
stream:

open connection
byte-order: BYTE
client-major-protocol-version: CARD16
client-minor-protocol-version: CARD16
authorization-protocols: LISTofAUTH

The initial byte of the connection specifies the BYTE-ORDER in which subsequent 16-bit and
32-bit numeric values are to be transmitted. The octal value 102 (ASCII uppercase ‘B’) indicates
that the most-significant byte is to be transmitted first; the octal value 154 (ASCII lowercase ‘l’)
indicates that the least-significant byte is to be transmitted first. If any other value is encountered
the server closes the connection without any response.

The CLIENT-MAJOR-PROT OCOL-VERSION and CLIENT-MINOR-PROT OCOL-VER-
SION specify which version of the font service protocol the client would like to use. If the
client can support multiple versions, the highest version should be given. This version of
the protocol has a major version of 2 and a minor version of 0.
The AUTHORIZATION-PROT OCOLS contains a list of protocol names and optional initial
data for which the client can provide information. The server may use this to determine
which protocol to use or as part of the initial exchange of authorization data.
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=>
status: { Success, Continue,

Busy, Denied }
server-major-protocol-version: CARD16
server-minor-protocol-version: CARD16
alternate-servers-hint: LISTofALTERNATESERVER
authorization-index: CARD8
authorization-data: LISTofBYTE

The SERVER-MAJOR-PROT OCOL-VERSION and SERVER-MINOR-PROT OCOL-
VERSION specify the version of the font service protocol that the server expects from the
client. If the server supports the version specified by the client, this version number should
be returned. If the client has requested a higher version than is supported by the server, the
server’s highest version should be returned. Otherwise, if the client has requested a lower
version than is supported by the server, the server’s lowest version should be returned. It is
the client’s responsibility to decide whether or not it can match this version of the protocol.
The ALTERNATE-SERVERS-HINT is a list of other font servers that may have related sets
of fonts (determined by means outside this protocol, typically by the system administrator).
Clients may choose to contact these font servers if the connection is rejected or lost.
The STATUS field indicates whether the server accepted, rejected, or would like more infor-
mation about the connection. It has one of the following alternate values:

Success 0
Continue 1
Busy 2
Denied 3

If STATUS is Denied, the server has rejected the client’s authorization information. If STA-
TUS is Busy, the server has simply decided that it cannot provide fonts to this client at this
time (it may be able to at a later time). In both cases, AUTHORIZATION-INDEX is set to
zero, no authorization-data is returned, and the server closes the connection after sending
the data described so far.
Otherwise the AUTHORIZATION-INDEX is set to the index (beginning with 1) into the
AUTHORIZATION-PROT OCOLS list of the protocol that the server will use for this con-
nection. If the server does not want to use any of the given protocols, this value is set to
zero. The AUTHORIZATION-DAT A field is used to send back authorization protocol-
dependent data to the client (such as a challenge, authentication of the server, etc.).

If STATUS is Success, the following section of protocol is omitted. Otherwise, if STATUS is
Continue, the server expects more authorization data from the client (i.e. the connection setup is
not finished, so no requests or events may be sent):

->
more-authorization-data: STRING8
=>
status: { Success, Continue,

Busy, Denied }
more-authorization-data: LISTofBYTE

The values in STATUS have the same meanings as described above. This section of protocol is
repeated until the server either accepts (sets STATUS to Success) or rejects (sets STATUS to
Denied or Busy) the connection.
Once the connection has been accepted and STATUS is Success, an implicit AccessContext is
created for the authorization data and the protocol continues with the following data sent from the
server:
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=>
remaining-length: CARD32
maximum-request-length: CARD16
release-number: CARD32
vendor: STRING8

The REMAINING-LENGTH specifies the length in 4-byte units of the remaining data to be
transmitted to the client. The MAXIMUM-REQUEST-LENGTH specifies the largest request size
in 4-byte units that is accepted by the server and must have a value of at least 4096. Requests
with a length field larger than this value are ignored and a Length error is returned. The VEN-
DOR string specifies the name of the manufacturer of the font server. The RELEASE-NUMBER
specifies the particular release of the server in a manufacturer-dependent manner.
After the connection is established and the setup information has been exchanged, the client may
issue any of requests described below:
NoOp

Errors: Alloc
This request does nothing. It is typically used in response to a KeepAlive ev ent.

ListExtensions
=>

names: LISTofSTRING8
Errors: Alloc
This request returns the names of the extension packages that are supported by the server.
Extension names are case-sensitive and are encoded in ISO 8859-1.

QueryExtension
name: STRING8

=>
present: BOOL
major-version: CARD16
minor-version: CARD16
major-opcode: CARD8
first-event: CARD8
number-events: CARD8
first-error: CARD8
number-errors: CARD8
Errors: Alloc
This request determines whether or not the extension package specified by NAME (encoded
in ISO 8859-1) is supported by the server and that there is sufficient number of major
opcode, event, and error codes available. If so, then PRESENT is set to True, MAJOR-
VERSION and MINOR-VERSION are set to the respective major and minor version num-
bers of the protocol that the server would prefer; MAJOR-OPCODE is set to the value to
use in extension requests; FIRST-EVENT is set to the value of the first extension-specific
ev ent code or zero if the extension does not have any events; NUMBER-EVENTS is set to
the number of new events that the event defines; FIRST-ERROR is set to the value of the
first extension-specific error code or zero if the extension does not define any new errors;
and NUMBER-ERRORS is set to the number of new errors the extension defines.

Otherwise, PRESENT is set to False and the remaining fields are set to zero.

The server is free to return different values to different clients. Therefore, clients must use
this request before issuing any of the requests in the named extension package or using the
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SetEventMaskrequest this extension’s events. Otherwise, a Request error is returned.
ListCatalogues

pattern: STRING8 max-names: CARD32
=>+

replies-following-hint: CARD32
names: LISTofSTRING8
Errors: Alloc
This request returns a list of at most MAX-NAMES names of collections (called catalogues)
of fonts that match the specified PATTERN. In the pattern (which is encoded in ISO
8859-1), the ‘?’ character (octal 77) matches any single character; the ‘*’ character (octal
52) matches any series of zero or more characters; and alphabetic characters match either
upper- or lowercase. The returned NAMES are encoded in ISO 8859-1 and may contain
mixed character cases.

If PATTERN is of zero length or MAX-NAMES is equal to zero, one reply containing a
zero-length list of names is returned. This may be used to synchronize the client with the
server.

Servers are free to add or remove catalogues to the set returned by ListCatalogues between
any two requests. This request is not cumulative; repeated uses are processed in isolation
and do result in an iteration through the list.

To reduce the amount of buffering needed by the server, the list of names may be split
across several reply packets, so long as the names arrive in the same order that they would
have appeared had they been in a single packet. The REPLIES-FOLLOWING-HINT field
in all but the last reply contains a positive value that specifies the number of replies that are
likely, but not required, to follow. In the last reply, which may contain zero or more names,
this field is set to zero.

SetCatalogues
names: LISTofSTRING8
Errors: Alloc , Name
This request sets the list of catalogues whose fonts should be visible to the client. The
union of the fonts provided by each of the named catalogues forms the set of fonts whose
names match patterns in ListFonts , ListFontsWithXInfo , and OpenBitmapFont
requests. The catalogue names are case-insensitive and are encoded in ISO 8859-1. A zero-
length list resets the client’s catalogue list to the server-dependent default.

If any of the catalogue names are invalid, a Name error is returned and the request is
ignored.

GetCatalogues
=>

names: LISTofSTRING8
Errors: Alloc
This request returns the current list of catalogue names (encoded in ISO 8859-1) associated
with the client. These catalogues determine the set of fonts that are visible to ListFonts ,
ListFontsWithXInfo , and OpenBitmapFont . A zero-length list indicates the server’s
default set of fonts. Catalogue names are case-insensitive and may be returned in mixed
case.

SetEventMask
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extension-opcode: CARD8
event-mask: EVENTMASK
Errors: EventMask , Request
This request specifies the set of maskable events that the extension indicated by EXTEN-
SION-OPCODE (or zero for the core) should generate for the client. Event masks are lim-
ited in scope to the extension (or core) for which they are defined, so expressing interest in
ev ents from one or more extensions requires multiple uses of this request.

The default event mask if SetEventMask has not been called is zero, indicating no interest
in any maskable events. Some ev ents are not maskable and cannot be blocked.

If EXTENSION-OPCODE is not a valid extension opcode previously returned by
QueryExtension or zero, a Request error is returned. If EVENT-MASK contains any bits
that do not correspond to valid events for the specified extension (or core), an EventMask
error is returned and the request is ignored.

GetEventMask
extension-opcode: CARD8

=>
event-mask: EVENTMASK
Errors: Request
This request returns the set of maskable core events the extension indicated by EXTEN-
SION-OPCODE (or the core if zero) should generate for the client. Non-maskable events
are always sent to the client.

If EXTENSION-OPCODE is not a valid extension opcode previously returned by
QueryExtension or zero, a Request error is returned.

CreateAC
ac: ACCESSCONTEXT
authorization-protocols: LISTofAUTH

=>
status: { Success, Continue, Denied }
authorization-index:CARD8
authorization-data:LISTofBYTE
Errors: IDChoice
This request creates a new AccessContext object within the server containing the specified
authorization data. When this AccessContext is selected by the client using the SetAutho-
rization request, the data may be used by the server to determine whether or not the client
should be granted access to particular font information.

If STATUS is Denied, the server rejects the client’s authorization information and does not
associate AC with any valid AccessContext . In this case, AUTHORIZATION-INDEX is
set to zero, and zero bytes of AUTHORIZATION-DAT A is returned.

Otherwise, AUTHORIZATION-INDEX is set to the index (beginning with 1) into the
AUTHORIZATION-PROT OCOLS list of the protocol that the server will use for this con-
nection. If the server does not want to use any of the given protocols, this value is set to
zero. The AUTHORIZATION-DAT A field is used to send back authorization protocol-
dependent data to the client (such as a challenge, authentication of the server, etc.).

If STATUS is Continue, the client is expected to continue the request by sending the
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following protocol and receiving the indicated response from the server. This continues
until STATUS is set to either Success or Denied.

−>
more-authorization-data: STRING8
=>
status: { Success, Continue, Denied }
more-authorization-data: LISTofBYTE

Once the connection has been accepted and STATUS is Success, the request is complete.

If AC is not in the range [1..2ˆ29-1] or is already associated with an access context, an
IDChoice error is returned.

FreeAC
ac: ACCESSCONTEXT
Errors: AccessContext , Alloc
This request indicates that the specified AC should no longer be associated with a valid
access context. If AC is also the current AccessContext (as set by the SetAuthorization
request), an implicit SetAuthorization of None is done to restore the AccessContext
established for the initial connection setup. Operations on fonts that were opened under AC
are not affected. The client may reuse the value of AC in a subsequent CreateAC request.

If AC isn’t associated with any valid authorization previously created by CreateAC ,
AccessContext error is returned.

SetAuthorization
ac: ACCESSCONTEXT
Errors: AccessContext
This request sets the AccessContext to be used for subsequent requests (except for
QueryXInfo , QueryXExtents8 , QueryXExtents16 , QueryXBitmaps8 ,
QueryXBitmaps16 , and CloseFont which are done under the AccessContext of the cor-
responding OpenBitmapFont). An AC of None restores the AccessContext established
for the initial connection setup.

If AC is neither None nor a value associated with a valid AccessContext previously created
by CreateAC , an AccessContext error is returned.

SetResolution
resolutions: LISTofRESOLUTION
Errors: Resolution , Alloc
This request provides a hint as to the resolution and preferred point size of the drawing sur-
faces for which the client will be requesting fonts. The server may use this information to
set the RESOLUTION_X and RESOLUTION_Y fields of scalable XLFD font names, to
order sets of names based on their resolutions, and to choose the server-dependent instance
that is used when a partially-specified scalable fontname is opened.

If a zero-length list of RESOLUTIONS is given, the server-dependent default value is
restored. Otherwise, if elements of all of the specified RESOLUTIONS are non-zero, the
default resolutions for this client are changed.

If a RESOLUTION entry contains a zero, a Resolution error is returned and the default res-
olutions are not changed.

GetResolution
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=>
resolutions: LISTofRESOLUTION
Errors: Alloc
This request returns the current list of default resolutions. If a client has not performed a
SetResolution , a server-dependent default value is returned.

ListFonts
pattern: STRING8 max-names: CARD32

=>+
replies-following-hint: CARD32
names: LISTofSTRING8
Errors: Alloc
This request returns a list of at most MAX-NAMES font names that match the specified
PATTERN, according to matching rules of the X Logical Font Description Conventions [3].
In the pattern (which is encoded in ISO 8859-1) the ‘?’ character (octal 77) matches any sin-
gle character; the ‘*’ character (octal 52) matches any series of zero or more characters; and
alphabetic characters match either upper- or lowercase. The returned NAMES are encoded
in ISO 8859-1 and may contain mixed character cases. Font names are not required to be in
XLFD format.

If PATTERN is of zero length or MAX-NAMES is equal to zero, one reply containing a
zero-length list of names is returned. This may be used to synchronize the client with the
server.

Servers are free to add or remove fonts to the set returned by ListFonts between any two
requests. This request is not cumulative; repeated uses are processed in isolation and do
result in an iteration through the list.

To reduce the amount of buffering needed by the server, the list of names may be split
across several reply packets, so long as the names arrive in the same order that they would
have appeared had they been in a single packet. The REPLIES-FOLLOWING-HINT field
in all but the last reply contains a positive value that specifies the number of replies that are
likely, but not required, to follow. In the last reply, which may contain zero or more names,
this field is set to zero.

ListFontsWithXInfo
pattern: STRING8
max-names: CARD32

=>+
replies-following-hint: CARD32
info: XFONTINFO
name: STRING8
Errors: Alloc
This request is similar to ListFonts except that a separate reply containing the name,
header, and property data is generated for each matching font name. Following these
replies, if any, a final reply containing a zero-length NAME and no INFO is sent.

The REPLIES-FOLLOWING-HINT field in all but the last reply contains a positive value
that specifies the number of replies that are likely, but not required, to follow. In the last
reply, this field is set to zero.

If PATTERN is of zero length or if MAX-NAMES is equal to zero, only the final reply
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containing a zero-length NAME and no INFO is returned. This may be used to synchronize
the client with the server.

OpenBitmapFont
fontid: FONTID
pattern: STRING8
format-mask: BITMAPFORMATMASK
format-hint: BITMAPFORMAT

=>
otherid: FONTID or None
otherid-valid: BOOL
cachable: BOOL
Errors: IDChoice , Name , Format , AccessContext , Alloc
This request looks for a server-dependent choice of the font names that match the specified
PATTERN according to the rules described for ListFonts . If no matches are found, a
Name error is returned. Otherwise, the server attempts to open the font associated with the
chosen name.

Permission to access the font is determined by the server according the licensing policy
used for this font. The server may use the client’s current AccessContext (as set by the
most recent SetAuthorization request or the original connection setup) to determine any
client-specific sets of permissions. After the font has been opened, the client is allowed to
specify a new AccessContext with SetAuthorization or release the AccessContext using
FreeAC . QueryXInfo , QueryXExtents8 , QueryXExtents16 , QueryXBitmaps8 ,
QueryXBitmaps16 , CloseFont requests on this FONTID are performed according to per-
missions granted at the time of the OpenBitmapFont request.

If the server is willing and able to detect that the client has already opened the font success-
fully (possibly under a different name), the OTHERID field may be set to one of the identi-
fiers previously used to open the font. The OTHERID-VALID field indicates whether or not
OTHERID is still associated with an open font: if it is True, the client may use OTHERID
as an alternative to FONTID. Otherwise, if OTHERID-VALID is False, OTHERID is no
longer open but has not been reused by a subsequent OpenBitmapFont request.

If OTHERID is set to None, then OTHERID-VALID should be set to False.

The FORMAT-MASK indicates which fields in FORMAT-HINT the client is likely to use in
subsequent GetXBitmaps8 and GetXBitmaps16 requests. Servers may wish to use this
information to precompute certain values.

If CACHABLE is set to True, the client may cache the font (so that redundant opens of the
same font may be avoided) and use it with all AccessContexts during the life of the client
without violating the font’s licensing policy. This flag is typically set whenever a font is
unlicensed or is licensed on a per-display basis. If CACHABLE is False, the client should
reopen the font for each AccessContext .

The server is permitted to add to or remove from the set of fonts returned by ListFonts
between any two requests, though mechanisms outside the protocol. Therefore, it is possi-
ble for this request (which is atomic) to return a different font than would result from sepa-
rate a ListFonts followed by an OpenBitmapFont with a non-wildcarded font name.

If FONTID is not in the range [1..2ˆ29-1] or if it is already associated with an open font, an
IDChoice error is returned. If no font is available that matches the specified PATTERN, a
Name error is returned. If the font is present but the client is not permitted access, an
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AccessContext error is returned. If FORMAT-MASK has any unspecified bits set or if any
of the fields in FORMAT-HINT indicated by FORMAT-MASK are invalid, a Format error
is returned.

QueryXInfo
fontid: FONTID

=>
info: XFONTINFO
Errors: Font , Alloc
This request returns the font header and property information for the open font associated
with FONTID.

If FONTID is not associated with any open fonts, a Font error is returned.
QueryXExtents8

fontid: FONTID
range: BOOL
chars: STRING8

=>
extents: LISTofXCHARINFO
Errors: Font , Range , Alloc
This request is equivalent to QueryXExtents16 except that it uses 1-byte character codes.

QueryXExtents16
fontid: FONTID
range: BOOL
chars: LISTofCHAR2B

=>
extents: LISTofXCHARINFO
Errors: Font , Range , Alloc
This request returns a list of glyph extents from the open font associated with FONTID for
the series of characters specified by RANGE and CHARS.

If RANGE is True, each succeeding pair of elements in CHARS is treated as a range of
characters for which extents should be returned. If CHARS contains an odd number of ele-
ments, the font’s XFONTINFO.CHAR-RANGE.MAX-CHAR is implicitly appended to the
list. If CHARS contains no elements, the list is implicitly replaced with the font’s
XFONTINFO.CHAR-RANGE. If any of the resulting character ranges are invalid, a Range
error is returned. Otherwise, the character ranges are concatenated in the order given by
CHARS to produce a set of character codes for which extents are returned.

If RANGE is False, then CHARS specifies the set of character codes for which extents are
returned. If CHARS is of zero length, then a zero-length list of extents is returned.

The extents for each character code in the resulting set (which may contain duplicates) are
returned in the order in which the character codes appear in the set. At least one metric for
each character shall be non-zero unless the character is not encoded in the font, in which
case all-zero metrics are returned. A blank, zero-width character can be encoded with non-
zero but equal left and right bearings.

If FONTID is not associated with any open fonts, a Font error is returned. If RANGE is
True and CHARS contains any inv alid ranges, a Range error is returned.
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QueryXBitmaps8
fontid: FONTID
range: BOOL
chars: STRING8
format: BITMAPFORMAT

=>+
replies-following-hint: CARD32
offsets: LISTofOFFSET32
bitmaps: LISTofBYTE
Errors: Font , Range , Format , Alloc
This request is equivalent to QueryXBitmaps16 except that it uses 1-byte character codes.

QueryXBitmaps16
fontid: FONTID
range: BOOL
chars: LISTofCHAR2B
format: BITMAPFORMAT

=>+
replies-following-hint: CARD32
offsets: LISTofOFFSET32
bitmaps: LISTofBYTE
Errors: Font , Range , Format , Alloc
This request returns a list of glyph bitmaps from the open font associated with FONTID for
the series of characters specified by RANGE and CHARS.

If RANGE is True, each succeeding pair of elements in CHARS is treated as a range of
characters for which bitmaps should be returned. If CHARS contains an odd number of ele-
ments, the font’s XFONTINFO.CHAR-RANGE.MAX-CHAR is implicitly appended to the
list. If CHARS contains no elements, the list is implicitly replaced with the font’s
XFONTINFO.CHAR-RANGE. If any of the resulting character ranges are invalid, a Range
error is returned. Otherwise, the character ranges are concatenated in the order given by
CHARS to produce a set of character codes for which bitmaps are returned.

If RANGE is False, then CHARS specifies the set of character codes for which bitmaps are
returned. If CHARS is of zero length, then a single reply containing a zero-length list of
offsets and bitmaps is returned.

If any of the resulting character ranges are invalid, a Range error is returned. Otherwise, the
resulting character ranges are concatenated in the order given by CHARS to produce a set of
character codes for which bitmaps are returned.

The server is free to return the glyph bitmaps in multiple replies to reduce the amount of
buffering that is necessary. In this situation, the set of characters obtained above is parti-
tioned into an implementation-dependent number of ordered, non-overlapping subsets con-
taining runs of one or more consecutive characters. The global ordering of characters must
be maintained such that concatenating the subsets in order that they were produced yields
the original set. A reply is generated for each subset, in the order that it was produced.

For each character in a subset, an image of that character’s glyph is described by a rectangle
of bits corresponding to the pixels specified by FORMAT.IMAGE-RECT. Within the
image, set and clear bits represent inked and non-inked pixels, respectively.
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Each scanline of a glyph image, from top to bottom, is zero-padded on the right to a multi-
ple of the number of bits specified by FORMAT.SCANLINE-PAD. The scanline is then
divided from left to right into a sequence of FORMAT.SCANLINE-UNIT bits. The bits of
each unit are then arranged such that the left-most pixel is stored in the most- or least-signif-
icant bit, according to FORMAT.BIT-ORDER-MSB. The bytes of each unit are then
arranged such that the most- or least-significant byte, according to FORMAT.BYTE-
ORDER-MSB, is transmitted first. Finally, the units are arranged such that the left-most is
transmitted first and the right-most is transmitted last.

The individual images within a subset are then concatenated in a server-dependent order to
form the BITMAPS data of the reply. If a glyph image is duplicated within a reply, the
server is free to return fewer (but at least one) copies of the image. If a character is not
encoded within the font, a zero-length bitmap is substituted for this character. Each glyph
image must begin at a bit position that is a multiple of the FORMAT.SCANLINE-UNIT.

The OFFSETS array in a reply contains one entry for each character in the subset being
returned, in the order that the characters appear in the subset. Each entry specifies the start-
ing location in bytes and size in bytes of the corresponding glyph image in the BITMAPS
data of that reply (i.e. an offset may not refer to data in another reply).

The REPLIES-FOLLOWING-HINT field in all but the last reply contains a positive value
that specifies the number of replies that are likely, but not required, to follow. In the last
reply, which may contain data for zero or more characters, this field is set to zero.

If FONTID is not associated with any open fonts, a Font error is returned. If RANGE is
True and CHARS contains any inv alid ranges, a Range error is returned. If FORMAT is
invalid, a Format error is returned.

CloseFont
fontid: FONTID
Errors: Font , Alloc
This request indicates that the specified FONTID should no longer be associated with an
open font. The server is free to release any client-specific storage or licenses allocated for
the font. The client may reuse the value of FONTID in a subsequent OpenBitmapFont
request.

If FONTID is not associated with any open fonts, a Font error is returned.
close connection

When a connection is closed, a CloseFont is done on all fonts that are open on the connec-
tion. In addition, the server is free to release any storage or licenses allocated on behalf of
the client that made the connection.

4.3. Errors
All errors are at least 16 bytes long and contain the following fields:

type: CARD8 value of 1
error-code: CARD8
sequence-number: CARD16
length: CARD32
timestamp: TIMESTAMP
major-opcode: CARD8
minor-opcode: CARD8
data-or-unused: CARD16
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The TYPE field has a value of one. The ERROR-CODE field specifies which error occurred.
Core errors codes are in the range 0 through 127, extension error codes are in the range 128
through 255. The SEQUENCE-NUMBER field contains the least significant 16 bits of the
sequence number of the request that caused the error. The LENGTH field specifies the length of
the error packet in 4-byte units and must have a value of at least 4. The TIMESTAMP specifies
the server time when the error occurred. The MAJOR-OPCODE and MINOR-OPCODE (zero
for core requests) fields specify the type of request that generated the error. The DAT A-OR-
UNUSED field may be used for 16 bits of error-specific information. If LENGTH is greater than
four, these fields are followed by (LENGTH - 4) * 4 bytes of extra data.
The following errors are defined for the core protocol:
Request

data-or-unused: CARD16 unused
This error is generated by any request that has an unknown combination of major and minor
request numbers, or by any extension request that is issued before a QueryExtension of
that extension.

Format
data-or-unused: CARD16 unused
format: BITMAPFORMAT bad format value
This error is generated by the use of an invalid BITMAPFORMAT in the
OpenBitmapFont , QueryXBitmaps8 , and QueryXBitmaps16 requests. The value that
caused the error is included as extra data.

Font
data-or-unused: CARD16 unused
fontid: FONTID bad font identifier
This error is generated by an invalid FONTID in the QueryXInfo , QueryXExtents8 ,
QueryXExtents16 , QueryXBitmaps8 , QueryXBitmaps16 , and CloseFont requests.
The value that caused the error is included as extra data.

Range
data-or-unused: CARD16 unused
range: RANGE bad range
This error is generated by an invalid RANGE in the QueryXExtents8 , QueryXExtents16 ,
QueryXBitmaps8 , QueryXBitmaps16 requests. The value that caused the error is
included as extra data.

EventMask
data-or-unused: CARD16 unused
event-mask: EVENTMASK bad ev ent mask
This error is generated by an invalid EVENTMASK in the SetEventMask request. The
value that caused the error is included as extra data.

AccessContext
data-or-unused: CARD16 unused
ac: ACCESSCONTEXT unaccepted AccessContext
This error is generated by an invalid ACCESSCONTEXT in the FreeAC or SetAuthoriza-
tion request or by an OpenBitmapFont request performed without sufficient authorization.
In the first two cases, the ACCESSCONTEXT of the errant request is returned as extra data.
In the third case, the current ACCESSCONTEXT is returned as extra data.

IDChoice
data-or-unused: CARD16 unused
id: ID bad identifier
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This error is generated by an invalid or already associated ACCESSCONTEXT identifier in
a CreateAC request or FONTID identifier in an OpenBitmapFont request. The value that
caused the error is included as extra data.

Name
data-or-unused: CARD16 unused
This error is generated by a font name pattern that matches no fonts in an OpenBitmap-
Font request or no catalogue names in a SetCatalogues request.

Resolution
data-or-unused: CARD16 X value of errant resolution
y-resolution: CARD16 Y value of errant resolution
point-size: CARD16 point size of errant resolution
This error is generated in response to an invalid RESOLUTION structure in a SetResolu-
tion request. The value that caused the error is included in the DAT A-OR-UNUSED field
and as extra data.

Alloc
data-or-unused: CARD16 unused
This error is generated by any request for which the server lacks sufficient resources (espe-
cially memory).

Length
data-or-unused: CARD16 unused
length: CARD32 bad length value
This error is generated by any request that has a length field greater than (MAXIMUM-
REQUEST-LENGTH * 4) bytes. The value that caused the error is included as extra data.

Implementation
data-or-unused: CARD16 unused
This error may be generated in response to any request that the server is unable to process
because it is deficient. Use of this error is highly discouraged and indicates lack of confor-
mance to the protocol.

Additional errors may be defined by extensions.

4.4. Events
Events may be generated in response to requests or at the server’s discretion after the initial con-
nection setup information has been exchanged. Each ev ent is at least 12 bytes long and contains
the following fields:

type: CARD8 value of 2
event-code: CARD8
sequence-number: CARD16
length: CARD32
timestamp: TIMESTAMP

The TYPE field contains the value 2. The EVENT-CODE field specifies the number of the event
and is in the range 0-127 for core events or the range 128-255 for extensions. The SEQUENCE-
NUMBER field specifies the least significant 16 bits of the sequence number of the last request to
have been processed by the server. The LENGTH field specifies the number of 4-byte units in
this event packet and must always have a value of at least 3. The TIMESTAMP field specifies the
server time when the event occurred. If LENGTH is greater than three, these fields are followed
by (LENGTH - 3) * 4 bytes of additional data.
Events are described using the following syntax:
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EventName
arg1: type1
...
argN: typeN

Description

If an event does not provide any extra arguments, the arg1...argN lines are omitted from the
description.
The core X Font Service protocol defines the following events:
KeepAlive

This unsolicited, nonmaskable event may be sent by the server to verify that the connection
has not been broken (for transports that do not provide this information). Clients should
acknowledge receipt of this request by sending any request (such as NoOp).

CatalogueListNotify
added: BOOL
deleted: BOOL
This event is sent to clients that have included CatalogueListChangeMask in their core
ev ent mask whenever the list of catalogues that are available has changed. The ADDED
field is True if new catalogues have been added to the server, otherwise it is False. The
DELETED field is True if any existing catalogues have been removed from the server, oth-
erwise it is False.

FontListNotify
added: BOOL
deleted: BOOL
This event is sent to clients that have included FontListChangeMask in their event mask
whenever the list of fonts that are provided by the currently selected catalogues has
changed. The ADDED field is True if new fonts have been added to any of the catalogues
currently used by the client, otherwise it is False. The DELETED field is True if any exist-
ing fonts have been removed from any of catalogues used by the client, otherwise it is False.

Additional events may be defined by extensions.

5. Protocol Encoding
Numbers that are prefixed with ‘‘#x’’ are in hexadecimal (base 16). All other numbers are in dec-
imal. Requests, replies, errors, events, and compound types are described using the syntax:

Name
count contents name
...
count contents name

where COUNT is the number of bytes in the data stream occupied by this field, CONTENTS is
the name of the type as given in Section 4 or the value if this field contains a constant, and NAME
is a description of this field.
Objects containing counted lists use a lowercase single-letter variable (whose scope is limited to
the request, reply, event, or error in which it is found) to represent the number of objects in the
list. These variables, and any expressions in which they are used, should be treated as unsigned
integers. Multiple copies of an object are indicated by CONTENTS prefix ‘‘LISTof ’’.
Unused bytes (whose value is undefined) will have a blank CONTENTS field and a NAME field
of ‘‘unused’’. Zeroed bytes (whose value must be zero) will have a blank CONTENTS field and a
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NAME field of ‘‘zero’’. The expression pad(e) refers to the number of bytes needed to round a
value ‘‘e’’ up to the closed multiple of four:

pad(e) = (4 - (e mod 4)) mod 4

5.1. Data Types

ACCESSCONTEXT

4 CARD32 access context with at least one of the following bits set:

#x1fffffff

but none of the following bits set:

#xe0000000 zero

ALTERNATESERVER

1 BOOL subset
1 n  length of name
n STRING8 name
p unused, p=pad(n+2)

AUTH

2 n  length of name
2 d  length of data
n STRING8 name
p unused, p=pad(n)
d STRING8 data
q unused, q=pad(d)

BITMAPFORMAT

4 CARD32 value, union of the following bits:

#x00000001 ByteOrderMSB
#x00000002 BitOrderMSB
#x00000000 ImageRectMin
#x00000004 ImageRectMaxWidth
#x00000008 ImageRectMax
#x00000000 ScanlinePad8
#x00000100 ScanlinePad16
#x00000200 ScanlinePad32
#x00000300 ScanlinePad64
#x00000000 ScanlineUnit8
#x00001000 ScanlineUnit16
#x00002000 ScanlineUnit32
#x00003000 ScanlineUnit64

except for the following bits which must be zero:

#xffffccf0 zero

and the following of which at most one bit may be set:
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#x0000000c at most one bit can be set

BITMAPFORMATMASK

4 CARD32 value, mask of the following bits:

#x00000001 ByteOrderMask
#x00000002 BitOrderMask
#x00000004 ImageRectMask
#x00000008 ScanlinePadMask
#x00000010 ScanlineUnitMask

except for the following bits which must be zero:

#xffffffe0 zero

BOOL

1 BOOL boolean, one of the following values:

0 False
1 True

BYTE

1 BYTE unsigned byte of data

CARD8

1 CARD8 8-bit unsigned integer

CARD16

2 CARD16 16-bit unsigned integer

CARD32

4 CARD32 32-bit unsigned integer

CHAR2B

1 CARD8 byte1
1 CARD8 byte2

EVENTMASK

4 CARD32 event mask

for core events, this is union of the following bits:

#00000001 CatalogueListChangeMask
#00000002 FontListChangeMask

but none of the following bits set:
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#fffffffc

extensions define their own sets of bits

FONTID

4 CARD32 font identifier with at least one of
the following bits set:

#x1fffffff

but none of the following bits set:

#xe0000000 zero

INT8
1 INT8 8-bit signed integer

INT16
2 INT16 16-bit signed integer

INT32
4 INT32 32-bit signed integer

OFFSET32
4 CARD32 position (or integer value)
4 CARD32 length

PROPINFO
4 n  number of PROPOFFSET components
4 m  number of bytes of property data
20*n PROPOFFSET property offsets into data block
m LISTofBYTE property data block

PROPOFFSET
8 OFFSET32 name in data block
8 OFFSET32 value in data block
1 CARD8 type, one of the following values:

0 String
1 Unsigned
2 Signed

3 zero

RANGE

2 CHAR2B minimum character code
2 CHAR2B maximum character code
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RESOLUTION

2 CARD16 x resolution in pixels per inch
2 CARD16 y resolution in pixels per inch
2 CARD16 point size in decipoints

STRNAME

1 n length of name
n STRING8 name

STRING8

n LISTofBYTE array of 8-bit character values

TIMESTAMP

4 CARD32 milliseconds since server time origin

XCHARINFO

2 INT16 left bearing
2 INT16 right bearing
2 INT16 width
2 INT16 ascent
2 INT16 descent
2 CARD16 attributes

XFONTINFO

4 CARD32 flags, union of the following bits:

#x00000001 AllCharactersExist
#x00000002 InkInside
#x00000004 HorizontalOverlap

but none of the following bits set:

#xfffffff8 zero

4 RANGE range of characters in font
1 CARD8 drawing direction

0 LeftToRight
1 RightToLeft

1 unused
2 CHAR2B default character
12 XCHARINFO minimum bounds
12 XCHARINFO maximum bounds
2 INT16 font ascent
2 INT16 font descent
n PROPINFO property data
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5.2. Requests

open connection

1 BYTE byte order, one of the values:
#x42 Most Significant Byte first
#x6c Least Significant Byte first

1 CARD8 number of auth in auth-data
2 2  client-major-protocol-version
2 0  client-minor-protocol-version
2 a/4 length of auth-data
a LISTofAUTH auth-data
=>
2 CARD16 status

0 Success
1 Continue
2 Busy
3 Denied

2 2  major version
2 0  minor version
1 CARD8 number of alternate-servers-hint
1 CARD8 authorization-index
2 a/4 length of alternate-servers-hint
2 (d+q)/4 length of authorization-data
a LISTofALTERNATESERVER alternate-servers-hint
d LISTofBYTE authorization-data
q unused, q=pad(d)

If STATUS is Busy or Denied, the protocol stops and the connection is closed. If STATUS is
Continue, the client is expected to respond with additional data, to which the server responds with
a new status value and more data. This dialog continues until the status is set to Success, or until
the server sets STATUS to Busy or Denied and closes the connection:

->
4 1+(d+q)/4 length
d LISTofBYTE more-authorization-data
q unused, q=pad(d)
=>
4 2+(d+q)/4 length
2 CARD16 status

0 Success
1 Continue
2 Busy
3 Denied

2 unused
d LISTofBYTE more-authorization-data
q unused, q=pad(d)

When STATUS is Success, the protocol resumes with the following sent by the server:

4 3+(v+w)/4 length of rest of data
2 CARD16 maximum-request-length
2 v  length of vendor string
4 CARD32 release-number
v STRING8 vendor-string
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w unused, w=pad(v)

Once the connection has been established, the client may send the following requests:

NoOp

1 0  major-opcode
1 unused
2 1  length

ListExtensions
1 1  major-opcode
1 unused
2 1  length
=>
1 0  type reply
1 CARD8 number of names
2 CARD16 sequence-number
4 2+(n+p)/4 length
n LISTofSTRNAME names
p unused, p=pad(n)

QueryExtension

1 2  major-opcode
1 n  length of name
2 1+(n+p)/4 length
n STRING8 name
p unused, p=pad(n)
=>
1 0  type reply
1 BOOL present
2 CARD16 sequence-number
4 5  length
2 CARD16 major-version
2 CARD16 minor-version
1 CARD8 major-opcode
1 CARD8 first-event
1 CARD8 number-events
1 CARD8 first-error
1 CARD8 number-errors
3 unused

ListCatalogues
1 3  major-opcode
1 unused
2 3+(n+p)/4 length
4 CARD32 max-names
2 n  length of pattern
2 unused
n STRING8 pattern
p unused, p=pad(n)
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=>+
1 0  type reply
1 unused
2 CARD16 sequence-number
4 4+(n+p)/4 length
4 CARD32 replies-following-hint
4 CARD32 number of catalogue-names
n LISTofSTRNAME catalogue-names
p unused, p=pad(n)

SetCatalogues
1 4  major-opcode
1 CARD8 number of catalogue-names
2 1+(n+p)/4 length
n LISTofSTRNAME catalogue-names
p unused, p=pad(n)

GetCatalogues

1 5  major-opcode
1 unused
2 1  length
=>
1 0  type reply
1 CARD8 number of catalogue-names
2 CARD16 sequence-number
4 2+(n+p)/4 length
n LISTofSTRNAME catalogue-names
p unused, p=pad(n)

SetEventMask

1 6  major-opcode
1 CARD8 extension-opcode
2 2  length
4 EVENTMASK event-mask

GetEventMask

1 7  major-opcode
1 CARD8 extension-opcode
2 1  length
=>
1 0  type reply
1 unused
2 CARD16 sequence-number
4 3  length
4 EVENTMASK event-mask

CreateAC
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1 8  major-opcode
1 CARD8 number of authorization-protocols
2 2+a/4 length
4 ACCESSCONTEXT ac
a LISTofAUTH authorization-protocols
=>
1 0  type reply
1 CARD8 authorization-index
2 CARD16 sequence-number
4 3+(d+q)/4 length
2 CARD16 status

0 Success
1 Continue
2 Busy
3 Denied

2 unused
d LISTofBYTE authorization-data
q unused, q=pad(d)

If STATUS is Continue, the client is expected to respond with additional data, to which the server
responds with a new status value and more data. This dialog continues until the status is set to
Success, Busy, or Denied at which point the request is finished.

->
4 1+(d+q)/4 length
d LISTofBYTE more-authorization-data
q unused, q=pad(d)
=>
4 2+(d+q)/4 length
2 CARD16 status

0 Success
1 Continue
2 Busy
3 Denied

2 unused
d LISTofBYTE authorization-data
q unused, q=pad(d)

FreeAC

1 9  major-opcode
1 unused
2 2  length
4 ACCESSCONTEXT ac

SetAuthorization

1 10 major-opcode
1 unused
2 2  length
4 ACCESSCONTEXT ac
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SetResolution

1 11 major-opcode
1 n  number of resolutions
2 1+(6*n+p)/4 length
6*n LISTofRESOLUTION resolutions
p p=pad(6*n)

GetResolution

1 12 major-opcode
1 unused
2 1  length
=>
1 0  type reply
1 n  number of resolutions
2 CARD16 sequence-number
4 2+(6*n+p)/4 length
6*n LISTofRESOLUTION resolutions
p p=pad(6*n)

ListFonts

1 13 major-opcode
1 unused
2 3+(n+p)/4 length
4 CARD32 max-names
2 n  length of pattern
2 unused
n STRING8 pattern
p unused, p=pad(n)
=>+
1 0  type reply
1 unused
2 CARD16 sequence-number
4 4+(n+p)/4 length
4 CARD32 replies-following-hint
4 CARD32 number of font-names
n LISTofSTRNAME font-names
p unused, p=pad(n)

ListFontsWithXInfo

1 14 major-opcode
1 unused
2 3+(n+p)/4 length
4 CARD32 max-names
2 n  length of pattern
2 unused
n STRING8 pattern
p unused, p=pad(n)
=>+(except for last in series)
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1 0  type reply
1 n  length of name
2 CARD16 sequence-number
4 3+(n+p+f)/4 length
4 CARD32 replies-hint
f XFONTINFO font info
n STRING8 name
p unused, p=pad(n)

=>(last in series)
1 0  type reply
1 0  last-reply indicator
2 CARD16 sequence-number
4 2  reply length

OpenBitmapFont

1 15 major-opcode
1 unused
2 4+(n+p)/4 length
4 FONTID fontid
4 BITMAPFORMATMASK format-mask
4 BITMAPFORMAT format
n STRNAME pattern
p unused, p=pad(n)
=>
1 0  type reply
1 BOOL otherid-valid
2 CARD16 sequence-number
4 4  length
4 FONTID otherid
1 BOOL cachable
3 unused

QueryXInfo

1 16 major-opcode
1 unused
2 2  length
4 FONTID fontid
=>
1 0  type reply
1 unused
2 CARD16 sequence-number
4 2+f/4 length
f XFONTINFO font info
p unused, p=pad(f)

QueryXExtents8

1 17 major-opcode
1 BOOL range
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2 3+(n+p)/4 length
4 FONTID fontid
4 n  number chars entries
n STRING8 chars
p unused, p=pad(n)
=>
1 0  type reply
1 unused
2 CARD16 sequence-number
4 3+3*n length
4 n  number of extents
12*n LISTofXCHARINFO extents

QueryXExtents16

1 18 major-opcode
1 BOOL range
2 3+(2*n+p)/4 length
4 FONTID fontid
4 n  number chars entries
2*n LISTofCHAR2B chars
p unused, p=pad(2*n)
=>
1 0  type reply
1 unused
2 CARD16 sequence-number
4 3+3*n length
4 n  number of extents
12*n LISTofXCHARINFO extents

QueryXBitmaps8

1 19 major-opcode
1 BOOL range
2 4+(n+p)/4 length
4 FONTID fontid
4 BITMAPFORMAT format
4 n  number of chars entries
n STRING8 chars
p unused, p=pad(n)
=>+
1 0  type reply
1 unused
2 CARD16 sequence-number
4 5+2*n+(m+p)/4 length
4 CARD32 replies-following-hint
4 n  number of offsets
4 m  number of bytes of glyph images
8*n LISTofOFFSET32 offsets
m LISTofBYTE glyph images
p unused, p=pad(m)
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QueryXBitmaps16

1 20 major-opcode
1 BOOL range
2 4+(2*n+p)/4 length
4 FONTID fontid
4 BITMAPFORMAT format
4 n  number of chars entries
2*n LISTofCHAR2B chars
p unused, p=pad(2*n)
=>
1 0  type reply
1 unused
2 CARD16 sequence-number
4 5+2*n+(m+p)/4 length
4 CARD32 replies-following-hint
4 n  number of offsets
4 m  number of bytes of glyph images
8*n LISTofOFFSET32 offsets
m LISTofBYTE glyph images
p unused, p=pad(m)

CloseFont

1 21 major-opcode
1 unused
2 2  length
4 FONTID fontid

5.3. Errors

Request

1 1  type error
1 0  Request
2 CARD16 sequence-number
4 4  length
4 TIMESTAMP timestamp
1 CARD8 major-opcode
1 CARD8 minor-opcode
2 unused

Format

1 1  type error
1 1  Format
2 CARD16 sequence-number
4 5  length
4 TIMESTAMP timestamp
1 CARD8 major-opcode
1 CARD8 minor-opcode
2 unused
4 BITMAPFORMAT bad-format
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Font

1 1  type error
1 2  Font
2 CARD16 sequence-number
4 5  length
4 TIMESTAMP timestamp
1 CARD8 major-opcode
1 CARD8 minor-opcode
2 unused
4 FONTID bad-fontid

Range

1 1  type error
1 3  Range
2 CARD16 sequence-number
4 5  length
4 TIMESTAMP timestamp
1 CARD8 major-opcode
1 CARD8 minor-opcode
2 unused
4 RANGE bad-range

EventMask

1 1  type error
1 4  EventMask
2 CARD16 sequence-number
4 5  length
4 TIMESTAMP timestamp
1 CARD8 major-opcode
1 CARD8 minor-opcode
2 unused
4 EVENTMASK event-mask

AccessContext

1 1  type error
1 5  AccessContext
2 CARD16 sequence-number
4 5  length
4 TIMESTAMP timestamp
1 CARD8 major-opcode
1 CARD8 minor-opcode
2 unused
4 ACCESSCONTEXT access context

IDChoice

1 1  type error
1 6  IDChoice
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2 CARD16 sequence-number
4 5  length
4 TIMESTAMP timestamp
1 CARD8 major-opcode
1 CARD8 minor-opcode
2 unused
4 FONTID bad-fontid

Name

1 1  type error
1 7  Name
2 CARD16 sequence-number
4 4  length
4 TIMESTAMP timestamp
1 CARD8 major-opcode
1 CARD8 minor-opcode
2 unused

Resolution

1 1  type error
1 8  Resolution
2 CARD16 sequence-number
4 5  length
4 TIMESTAMP timestamp
1 CARD8 major-opcode
1 CARD8 minor-opcode
6 RESOLUTION resolution

Alloc

1 1  type error
1 9  Alloc
2 CARD16 sequence-number
4 4  length
4 TIMESTAMP timestamp
1 CARD8 major-opcode
1 CARD8 minor-opcode
2 unused

Length

1 1  type error
1 10 Length
2 CARD16 sequence-number
4 5  length
4 TIMESTAMP timestamp
1 CARD8 major-opcode
1 CARD8 minor-opcode
2 unused
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4 CARD32 bad-length

Implementation

1 1  type error
1 11 Implementation
2 CARD16 sequence-number
4 4  length
4 TIMESTAMP timestamp
1 CARD8 major-opcode
1 CARD8 minor-opcode
2 unused

5.4. Events

KeepAlive

1 2  type event
1 0  event KeepAlive
2 CARD16 sequence-number
4 3  length
4 TIMESTAMP timestamp

CatalogueListNotify

1 2  type event
1 1  event CatalogueListNotify
2 CARD16 sequence-number
4 4  length
4 TIMESTAMP timestamp
1 BOOL added
1 BOOL deleted
2 unused

FontListNotify

1 2  type event
1 2  event FontListNotify
2 CARD16 sequence-number
4 4  length
4 TIMESTAMP timestamp
1 BOOL added
1 BOOL deleted
2 unused
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Appendix A

Suggested Licensing Policies

The authorization data passed by the client in the initial connection setup information may be
used by the font server to implement restrictions on which fonts may be accessed. Furthermore,
the font server is free to refuse new connections at any time.
Configuration or management of the license restrictions is outside the scope of the font service
protocol and is done in a server-dependent manner. Possible policies might include, but are not
limited to, combinations of the following:
a. No restrictions - anyone may access any fonts. The server neither refuses any connections

nor generates AccessContext errors on any fonts. For environments without specially-
licensed fonts, this is sufficient.

b. Per-machine - only those clients connecting from a known set of machines are permitted
access. The server could get the address of the connection and look in a list of allowed
machines.

c. Per-user - only a known set of users may access the fonts. The server can use the authoriza-
tion data (such as a Kerberos ticket or a Secure RPC credential) to verify the identity of the
user and then look in a list of allowed users.

d. Simultaneous Use - only a certain number of clients may use a given font at any one time.
Additional clients would receive AccessContext errors if they attempt to open the font. This
is only effective if the initial clients keep the font open for the entire time that it is being
used (even if all of the data has been transmitted and is being cached).

e. Postage Meter - a particular font may only be accessed a limited number of times before its
license must be renewed. Each time the font is opened, the server decrements a counter.
When the counter reaches zero, all further attempts to open the font return an AccessCon-
text error.

It should be noted that chaining of font servers (obtaining font data from other font servers) may
conflict with certain license policies.
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Appendix B

Implementation Suggestions

Font server implementations will probably wish to use techniques such as the following to avoid
limits on the number of simultaneous connections:
a. The initial connection information returned by the font server contains the names of other

font servers that may be used as substitutes. A font server may refuse to accept a connec-
tion, indicating that the client should try one of the alternatives instead.

b. On operating systems that support processing forking, font servers might choose to fork so
that the child can continue processing the existing connections and the parent can accept
new connections. Such implementations are encouraged to use shared memory so that in-
memory font databases can be shared.

c. On operating systems that support passing stream file descriptors between processes, coop-
erating font servers could collect connections in a single process when there are few con-
nections and spread them among several processes as the load increases.

d. If a font client is unable to connect to a server (as opposed to having the connection termi-
nated), it should retry for an implementation-dependent length of time (see Xlib’s handling
of ECONNREFUSED in XConnDis.c).
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