
Inter-Client Exchange Library

Version 1.0

X Consortium Standard

X Version 11, Release 6.7

Ralph Mor

X Consortium

Copyright © 1993, 1994, 1996 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the ‘‘Software’’), to deal in the Software without restriction, including without limita-
tion the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Soft-
ware, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X
CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNEC-
TION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or other-
wise to promote the sale, use or other dealings in this Software without prior written authorization from the
X Consortium.

X Window System is a trademark of The Open Group.

1. Overview of ICE
There are numerous possible inter-client protocols, with many similarities and common needs - authentica-
tion, version negotiation, byte order negotiation, and so on. The Inter-Client Exchange (ICE) protocol is
intended to provide a framework for building such protocols, allowing them to make use of common nego-
tiation mechanisms and to be multiplexed over a single transport connection.

2. The ICE Library - C Language Interface to ICE
A client that wishes to utilize ICE must first register the protocols it understands with the ICE library. Each
protocol is dynamically assigned a major opcode ranging from 1-255 (two clients can use different major
opcodes for the same protocol). The next step for the client is either to open a connection with another
client or to wait for connections made by other clients. Authentication may be required. A client can both
initiate connections with other clients and be waiting for clients to connect to itself (a nested session man-
ager is an example). Once an ICE connection is established between the two clients, one of the clients
needs to initiate a ProtocolSetup in order to "activate" a given protocol. Once the other client accepts the
ProtocolSetup (once again, authentication may be required), the two clients are ready to start passing mes-
sages specific to that protocol to each other. Multiple protocols may be active on a single ICE connection.
Clients are responsible for notifying the ICE library when a protocol is no longer active on an ICE connec-
tion, although ICE does not define how each subprotocol triggers a protocol shutdown.

The ICE library utilizes callbacks to process incoming messages. Using callbacks allows ProtocolSetup
messages and authentication to happen behind the scenes. An additional benefit is that messages never
need to be buffered up by the library when the client blocks waiting for a particular message.

3. Intended Audience
This document is intended primarily for implementors of protocol libraries layered on top of ICE. Typi-
cally, applications that wish to utilize ICE will make calls into individual protocol libraries rather than
directly make calls into the ICE library. Howev er, some applications will have to make some initial calls
into the ICE library in order to accept ICE connections (for example, a session manager accepting connec-
tions from clients). But in general, protocol libraries should be designed to hide the inner details of ICE
from applications.

4. Header Files and Library Name
The header file <X11/ICE/ICElib.h> defines all of the ICElib data structures and function prototypes.
ICElib.h includes the header file <X11/ICE/ICE.h>, which defines all of the ICElib constants. Protocol
libraries that need to read and write messages should include the header file <X11/ICE/ICEmsg.h>.

Applications should link against ICElib using -lICE.

5. Note on Prefixes
The following name prefixes are used in the library to distinguish between a client that initiates a Proto-
colSetup and a client that responds with a ProtocolReply:

• IcePo − Ice Protocol Originator

• IcePa − Ice Protocol Acceptor

6. Protocol Registration
In order for two clients to exchange messages for a given protocol, each side must register the protocol with
the ICE library. The purpose of registration is for each side to obtain a major opcode for the protocol and to
provide callbacks for processing messages and handling authentication. There are two separate registration
functions:

• One to handle the side that does a ProtocolSetup
• One to handle the side that responds with a ProtocolReply
It is recommended that protocol registration occur before the two clients establish an ICE connection. If
protocol registration occurs after an ICE connection is created, there can be a brief interval of time in which

− 1 −

Inter-Client Exchange Library X11, Release 6.7

a ProtocolSetup is received, but the protocol is not registered. If it is not possible to register a protocol
before the creation of an ICE connection, proper precautions should be taken to avoid the above race condi-
tion.

The IceRegisterForProtocolSetup function should be called for the client that initiates a ProtocolSetup .

int IceRegisterForProtocolSetup (protocol_name, vendor , release , version_count , version_recs ,
auth_count , auth_names , auth_procs , io_error_proc)

char *protocol_name;
char *vendor;
char *release;
int version_count;
IcePoVersionRec *version_recs;
int auth_count;
char **auth_names;
IcePoAuthProc *auth_procs;
IceIOErrorProc io_error_proc;

protocol_name A string specifying the name of the protocol to register.

vendor A vendor string with semantics specified by the protocol.

release A release string with semantics specified by the protocol.

version_count The number of different versions of the protocol supported.

version_recs List of versions and associated callbacks.

auth_count The number of authentication methods supported.

auth_names The list of authentication methods supported.

auth_procs The list of authentication callbacks, one for each authentication method.

io_error_proc IO error handler, or NULL.

IceRegisterForProtocolSetup returns the major opcode reserved or -1 if an error occurred. In order to
actually activate the protocol, the IceProtocolSetup function needs to be called with this major opcode.
Once the protocol is activated, all messages for the protocol should be sent using this major opcode.

A protocol library may support multiple versions of the same protocol. The version_recs argument speci-
fies a list of supported versions of the protocol, which are prioritized in decreasing order of preference.
Each version record consists of a major and minor version of the protocol as well as a callback to be used
for processing incoming messages.

typedef struct {
int major_version;
int minor_version;
IcePoProcessMsgProc process_msg_proc;

} IcePoVersionRec;

The IcePoProcessMsgProc callback is responsible for processing the set of messages that can be received
by the client that initiated the ProtocolSetup . For further information, see section 6.1, ‘‘Callbacks for Pro-
cessing Messages.’’

Authentication may be required before the protocol can become active. The protocol library must register
the authentication methods that it supports with the ICE library. The auth_names and auth_procs argu-
ments are a list of authentication names and callbacks that are prioritized in decreasing order of preference.
For information on the IcePoAuthProc callback, see section 6.2, ‘‘Authentication Methods.’’

− 2 −

Inter-Client Exchange Library X11, Release 6.7

The IceIOErrorProc callback is invoked if the ICE connection unexpectedly breaks. You should pass
NULL for io_error_proc if not interested in being notified. For further information, see section 13, ‘‘Error
Handling.’’

The IceRegisterForProtocolReply function should be called for the client that responds to a Proto-
colSetup with a ProtocolReply .

int IceRegisterForProtocolReply (protocol_name, vendor , release , version_count , version_recs ,
auth_count , auth_names , auth_procs , host_based_auth_proc , protocol_setup_proc ,
protocol_activate_proc , io_error_proc)

char *protocol_name;
char *vendor;
char *release;
int version_count;
IcePaVersionRec *version_recs;
int auth_count;
char **auth_names;
IcePaAuthProc *auth_procs;
IceHostBasedAuthProc host_based_auth_proc;
IceProtocolSetupProc protocol_setup_proc;
IceProtocolActivateProc protocol_activate_proc;
IceIOErrorProc io_error_proc;

protocol_name A string specifying the name of the protocol to register.

vendor A vendor string with semantics specified by the protocol.

release A release string with semantics specified by the protocol.

version_count The number of different versions of the protocol supported.

version_recs List of versions and associated callbacks.

auth_count The number of authentication methods supported.

auth_names The list of authentication methods supported.

auth_procs The list of authentication callbacks, one for each authentication method.

host_based_auth_proc
Host based authentication callback.

protocol_setup_proc
A callback to be invoked when authentication has succeeded for a ProtocolSetup but
before the ProtocolReply is sent.

protocol_activate_proc
A callback to be invoked after the ProtocolReply is sent.

io_error_proc IO error handler, or NULL.

IceRegisterForProtocolReply returns the major opcode reserved or -1 if an error occurred. The major
opcode should be used in all subsequent messages sent for this protocol.

A protocol library may support multiple versions of the same protocol. The version_recs argument speci-
fies a list of supported versions of the protocol, which are prioritized in decreasing order of preference.
Each version record consists of a major and minor version of the protocol as well as a callback to be used
for processing incoming messages.

− 3 −

Inter-Client Exchange Library X11, Release 6.7

typedef struct {
int major_version;
int minor_version;
IcePaProcessMsgProc process_msg_proc;

} IcePaVersionRec;

The IcePaProcessMsgProc callback is responsible for processing the set of messages that can be received
by the client that accepted the ProtocolSetup . For further information, see section 6.1, ‘‘Callbacks for
Processing Messages.’’

Authentication may be required before the protocol can become active. The protocol library must register
the authentication methods that it supports with the ICE library. The auth_names and auth_procs argu-
ments are a list of authentication names and callbacks that are prioritized in decreasing order of preference.
For information on the IcePaAuthProc callback, see section 6.2, ‘‘Authentication Methods.’’

If authentication fails and the client attempting to initiate the ProtocolSetup has not required authentica-
tion, the IceHostBasedAuthProc callback is invoked with the host name of the originating client. If the
callback returns True , the ProtocolSetup will succeed, even though the original authentication failed.
Note that authentication can effectively be disabled by registering an IceHostBasedAuthProc , which
always returns True . If no host based authentication is allowed, you should pass NULL for
host_based_auth_proc.

typedef Bool (*IceHostBasedAuthProc) ();

Bool HostBasedAuthProc(host_name)
char *host_name;

host_name The host name of the client that sent the ProtocolSetup .

The host_name argument is a string of the form protocol/hostname, where protocol is one of {tcp, decnet,
local}.

Because ProtocolSetup messages and authentication happen behind the scenes via callbacks, the protocol
library needs some way of being notified when the ProtocolSetup has completed. This occurs in two
phases. In the first phase, the IceProtocolSetupProc callback is invoked after authentication has success-
fully completed but before the ICE library sends a ProtocolReply . Any resources required for this proto-
col should be allocated at this time. If the IceProtocolSetupProc returns a successful status, the ICE
library will send the ProtocolReply and then invoke the IceProtocolActivateProc callback. Otherwise,
an error will be sent to the other client in response to the ProtocolSetup .

The IceProtocolActivateProc is an optional callback and should be registered only if the protocol library
intends to generate a message immediately following the ProtocolReply . You should pass NULL for pro-
tocol_activate_proc if not interested in this callback.

− 4 −

Inter-Client Exchange Library X11, Release 6.7

typedef Status (*IceProtocolSetupProc) ();

Status ProtocolSetupProc(ice_conn, major_version , minor_version , vendor , release ,
client_data_ret , failure_reason_ret)

IceConn ice_conn;
int major_version;
int minor_version;
char *vendor;
char *release;
IcePointer *client_data_ret;
char **failure_reason_ret;

ice_conn The ICE connection object.

major_version The major version of the protocol.

minor_version The minor version of the protocol.

vendor The vendor string registered by the protocol originator.

release The release string registered by the protocol originator.

client_data_ret Client data to be set by callback.

failure_reason_retFailure reason returned.

The pointer stored in the client_data_ret argument will be passed to the IcePaProcessMsgProc callback
whenever a message has arrived for this protocol on the ICE connection.

The vendor and release strings should be freed with free when they are no longer needed.

If a failure occurs, the IceProtocolSetupProc should return a zero status as well as allocate and return a
failure reason string in failure_reason_ret. The ICE library will be responsible for freeing this memory.

The IceProtocolActivateProc callback is defined as follows:

typedef void (*IceProtocolActivateProc)();

void ProtocolActivateProc (ice_conn, client_data)
IceConn ice_conn;
IcePointer client_data;

ice_conn The ICE connection object.

client_data The client data set in the IceProtocolSetupProc callback.

The IceIOErrorProc callback is invoked if the ICE connection unexpectedly breaks. You should pass
NULL for io_error_proc if not interested in being notified. For further information, see section 13, ‘‘Error
Handling.’’

6.1. Callbacks for Processing Messages
When an application detects that there is new data to read on an ICE connection (via select), it calls the
IceProcessMessages function (see section 9, ‘‘Processing Messages’’). When IceProcessMessages reads
an ICE message header with a major opcode other than zero (reserved for the ICE protocol), it needs to call
a function that will read the rest of the message, unpack it, and process it accordingly.

If the message arrives at the client that initiated the ProtocolSetup , the IcePoProcessMsgProc callback is
invoked.

− 5 −

Inter-Client Exchange Library X11, Release 6.7

typedef void (*IcePoProcessMsgProc)();

void PoProcessMsgProc(ice_conn, client_data , opcode , length , swap , reply_wait , reply_ready_ret)
IceConn ice_conn;
IcePointer client_data;
int opcode;
unsigned long length;
Bool swap;
IceReplyWaitInfo *reply_wait;
Bool *reply_ready_ret;

ice_conn The ICE connection object.

client_data Client data associated with this protocol on the ICE connection.

opcode The minor opcode of the message.

length The length (in 8-byte units) of the message beyond the ICE header.

swap A flag that indicates if byte swapping is necessary.

reply_wait Indicates if the invoking client is waiting for a reply.

reply_ready_ret If set to True , a reply is ready.

If the message arrives at the client that accepted the ProtocolSetup , the IcePaProcessMsgProc callback is
invoked.

typedef void (*IcePaProcessMsgProc)();

void PaProcessMsgProc (ice_conn, client_data , opcode , length , swap)
IceConn ice_conn;
IcePointer client_data;
int opcode;
unsigned long length;
Bool swap;

ice_conn The ICE connection object.

client_data Client data associated with this protocol on the ICE connection.

opcode The minor opcode of the message.

length The length (in 8-byte units) of the message beyond the ICE header.

swap A flag that indicates if byte swapping is necessary.

In order to read the message, both of these callbacks should use the macros defined for this purpose (see
section 12.2, ‘‘Reading ICE Messages’’). Note that byte swapping may be necessary. As a convenience,
the length field in the ICE header will be swapped by ICElib if necessary.

In both of these callbacks, the client_data argument is a pointer to client data that was registered at Proto-
colSetup time. In the case of IcePoProcessMsgProc , the client data was set in the call to IceProto-
colSetup . In the case of IcePaProcessMsgProc , the client data was set in the IceProtocolSetupProc call-
back.

The IcePoProcessMsgProc callback needs to check the reply_wait argument. If reply_wait is NULL , the
ICE library expects the function to pass the message to the client via a callback. For example, if this is a
Session Management ‘‘Save Yourself ’’ message, this function should notify the client of the ‘‘Save Your-
self ’’ via a callback. The details of how such a callback would be defined are implementation-dependent.

However, if reply_wait is not NULL , then the client is waiting for a reply or an error for a message it previ-

− 6 −

Inter-Client Exchange Library X11, Release 6.7

ously sent. The reply_wait is of type IceReplyWaitInfo .

typedef struct {
unsigned long sequence_of_request;
int major_opcode_of_request;
int minor_opcode_of_request;
IcePointer reply;

} IceReplyWaitInfo;

IceReplyWaitInfo contains the major/minor opcodes and sequence number of the message for which a
reply is being awaited. It also contains a pointer to the reply message to be filled in (the protocol library
should cast this IcePointer to the appropriate reply type). In most cases, the reply will have some fixed-
size part, and the client waiting for the reply will have provided a pointer to a structure to hold this fixed-
size data. If there is variable-length data, it would be expected that the IcePoProcessMsgProc callback
will have to allocate additional memory and store pointer(s) to that memory in the fixed-size structure. If
the entire data is variable length (for example., a single variable-length string), then the client waiting for
the reply would probably just pass a pointer to fixed-size space to hold a pointer, and the IcePoProcessMs-
gProc callback would allocate the storage and store the pointer. It is the responsibility of the client receiv-
ing the reply to free any memory allocated on its behalf.

If reply_wait is not NULL and IcePoProcessMsgProc has a reply or error to return in response to this
reply_wait (that is, no callback was generated), then the reply_ready_ret argument should be set to True .
Note that an error should only be returned if it corresponds to the reply being waited for. Otherwise, the
IcePoProcessMsgProc should either handle the error internally or invoke an error handler for its library.

If reply_wait is NULL, then care must be taken not to store any value in reply_ready_ret, because this
pointer may also be NULL.

The IcePaProcessMsgProc callback, on the other hand, should always pass the message to the client via a
callback. For example, if this is a Session Management ‘‘Interact Request’’ message, this function should
notify the client of the ‘‘Interact Request’’ via a callback.

The reason the IcePaProcessMsgProc callback does not have a reply_wait, like IcePoProcessMsgProc
does, is because a process that is acting as a server should never block for a reply (infinite blocking can
occur if the connecting client does not act properly, denying access to other clients).

6.2. Authentication Methods
As already stated, a protocol library must register the authentication methods that it supports with the ICE
library. For each authentication method, there are two callbacks that may be registered:

• One to handle the side that initiates a ProtocolSetup
• One to handle the side that accepts or rejects this request

IcePoAuthProc is the callback invoked for the client that initiated the ProtocolSetup . This callback must
be able to respond to the initial ‘‘Authentication Required’’ message or subsequent ‘‘Authentication Next
Phase’’ messages sent by the other client.

− 7 −

Inter-Client Exchange Library X11, Release 6.7

typedef IcePoAuthStatus (*IcePoAuthProc)();

IcePoAuthStatus PoAuthProc(ice_conn, auth_state_ptr , clean_up , swap , auth_datalen , auth_data ,
reply_datalen_ret , reply_data_ret , error_string_ret)

IceConn ice_conn;
IcePointer *auth_state_ptr;
Bool clean_up;
Bool swap;
int auth_datalen;
IcePointer auth_data;
int *reply_datalen_ret;
IcePointer *reply_data_ret;
char **error_string_ret;

ice_conn The ICE connection object.

auth_state_ptr A pointer to state for use by the authentication callback procedure.

clean_up If True , authentication is over, and the function should clean up any state it was main-
taining. The last 6 arguments should be ignored.

swap If True , the auth_data may have to be byte swapped (depending on its contents).

auth_datalen The length (in bytes) of the authenticator data.

auth_data The data from the authenticator.

reply_datalen_retThe length (in bytes) of the reply data returned.

reply_data_ret The reply data returned.

error_string_ret If the authentication procedure encounters an error during authentication, it should allo-
cate and return an error string.

Authentication may require several phases, depending on the authentication method. As a result, the Ice-
PoAuthProc may be called more than once when authenticating a client, and some state will have to be
maintained between each invocation. At the start of each ProtocolSetup , *auth_state_ptr is NULL, and
the function should initialize its state and set this pointer. In subsequent invocations of the callback, the
pointer should be used to get at any state previously stored by the callback.

If needed, the network ID of the client accepting the ProtocolSetup can be obtained by calling the Ice-
ConnectionString function.

ICElib will be responsible for freeing the reply_data_ret and error_string_ret pointers with free .

The auth_data pointer may point to a volatile block of memory. If the data must be kept beyond this
invocation of the callback, be sure to make a copy of it.

The IcePoAuthProc should return one of four values:

• IcePoAuthHaveReply − a reply is available.

• IcePoAuthRejected − authentication rejected.

• IcePoAuthFailed − authentication failed.

• IcePoAuthDoneCleanup − done cleaning up.

IcePaAuthProc is the callback invoked for the client that received the ProtocolSetup .

− 8 −

Inter-Client Exchange Library X11, Release 6.7

typedef IcePaAuthStatus (*IcePaAuthProc) ();

IcePaAuthStatus PaAuthProc (ice_conn, auth_state_ptr , swap , auth_datalen , auth_data ,
reply_datalen_ret , reply_data_ret , error_string_ret)

IceConn ice_conn;
IcePointer *auth_state_ptr;
Bool swap;
int auth_datalen;
IcePointer auth_data;
int *reply_datalen_ret;
IcePointer *reply_data_ret;
char **error_string_ret;

ice_conn The ICE connection object.

auth_state_ptr A pointer to state for use by the authentication callback procedure.

swap If True , auth_data may have to be byte swapped (depending on its contents).

auth_datalen The length (in bytes) of the protocol originator authentication data.

auth_data The authentication data from the protocol originator.

reply_datalen_retThe length of the authentication data returned.

reply_data_ret The authentication data returned.

error_string_ret If authentication is rejected or fails, an error string is returned.

Authentication may require several phases, depending on the authentication method. As a result, the
IcePaAuthProc may be called more than once when authenticating a client, and some state will have to be
maintained between each invocation. At the start of each ProtocolSetup , auth_datalen is zero,
*auth_state_ptr is NULL, and the function should initialize its state and set this pointer. In subsequent
invocations of the callback, the pointer should be used to get at any state previously stored by the callback.

If needed, the network ID of the client accepting the ProtocolSetup can be obtained by calling the Ice-
ConnectionString function.

The auth_data pointer may point to a volatile block of memory. If the data must be kept beyond this
invocation of the callback, be sure to make a copy of it.

ICElib will be responsible for transmitting and freeing the reply_data_ret and error_string_ret pointers with
free .

The IcePaAuthProc should return one of four values:

• IcePaAuthContinue − continue (or start) authentication.

• IcePaAuthAccepted − authentication accepted.

• IcePaAuthRejected − authentication rejected.

• IcePaAuthFailed − authentication failed.

7. ICE Connections
In order for two clients to establish an ICE connection, one client has to be waiting for connections, and the
other client has to initiate the connection. Most clients will initiate connections, so we discuss that first.

7.1. Opening an ICE Connection
To open an ICE connection with another client (that is, waiting for connections), use IceOpenConnection .

− 9 −

Inter-Client Exchange Library X11, Release 6.7

IceConn IceOpenConnection(network_ids_list, context , must_authenticate , major_opcode_check ,
error_length , error_string_ret)

char *network_ids_list;
IcePointer context;
Bool must_authenticate;
int major_opcode_check;
int error_length;
char *error_string_ret;

network_ids_list Specifies the network ID(s) of the other client.

context A pointer to an opaque object or NULL. Used to determine if an ICE connection can be
shared (see below).

must_authenticateIf True , the other client may not bypass authentication.

major_opcode_check
Used to force a new ICE connection to be created (see below).

error_length Length of the error_string_ret argument passed in.

error_string_ret Returns a null-terminated error message, if any. The error_string_ret argument points to
user supplied memory. No more than error_length bytes are used.

IceOpenConnection returns an opaque ICE connection object if it succeeds; otherwise, it returns NULL.

The network_ids_list argument contains a list of network IDs separated by commas. An attempt will be
made to use the first network ID. If that fails, an attempt will be made using the second network ID, and so
on. Each network ID has the following format:

tcp/<hostname>:<portnumber> or
decnet/<hostname>::<objname> or
local/<hostname>:<path>

Most protocol libraries will have some sort of open function that should internally make a call into
IceOpenConnection . When IceOpenConnection is called, it may be possible to use a previously opened
ICE connection (if the target client is the same). However, there are cases in which shared ICE connections
are not desired.

The context argument is used to determine if an ICE connection can be shared. If context is NULL, then
the caller is always willing to share the connection. If context is not NULL, then the caller is not willing to
use a previously opened ICE connection that has a different non-NULL context associated with it.

In addition, if major_opcode_check contains a nonzero major opcode value, a previously created ICE con-
nection will be used only if the major opcode is not active on the connection. This can be used to force
multiple ICE connections between two clients for the same protocol.

Any authentication requirements are handled internally by the ICE library. The method by which the
authentication data is obtained is implementation-dependent.†

After IceOpenConnection is called, the client is ready to send a ProtocolSetup (provided that IceRegis-
terForProtocolSetup was called) or receive a ProtocolSetup (provided that IceRegisterForProtocolRe-
ply was called).

7.2. Listening for ICE Connections
Clients wishing to accept ICE connections must first call IceListenForConnections or IceListenForWell-
KnownConnections so that they can listen for connections. A list of opaque "listen" objects are returned,
one for each type of transport method that is available (for example, Unix Domain, TCP, DECnet, and so
on).

† The X Consortium’s ICElib implementation uses an .ICEauthority file (see Appendix A).

− 10 −

Inter-Client Exchange Library X11, Release 6.7

Normally clients will let ICElib allocate an available name in each transport and return listen objects. Such
a client will then use IceComposeNetworkIdList to extract the chosen names and make them available to
other clients for opening the connection. In certain cases it may be necessary for a client to listen for con-
nections on pre-arranged transport object names. Such a client may use IceListenForWellKnownConnec-
tions to specify the names for the listen objects.

Status IceListenForConnections (count_ret, listen_objs_ret , error_length , error_string_ret)
int *count_ret;
IceListenObj **listen_objs_ret;
int error_length;
char *error_string_ret;

count_ret Returns the number of listen objects created.

listen_objs_ret Returns a list of pointers to opaque listen objects.

error_length The length of the error_string_ret argument passed in.

error_string_ret Returns a null-terminated error message, if any. The error_string_ret points to user sup-
plied memory. No more than error_length bytes are used.

The return value of IceListenForConnections is zero for failure and a positive value for success.

Status IceListenForWellKnownConnections (port_id, count_ret, listen_objs_ret , error_length , error_string_ret)
char *port_id;
int *count_ret;
IceListenObj **listen_objs_ret;
int error_length;
char *error_string_ret;

port_id Specifies the port identification for the address(es) to be opened. The value must not con-
tain the slash (‘‘/’’) or comma (‘‘,’’) character; these are reserved for future use.

count_ret Returns the number of listen objects created.

listen_objs_ret Returns a list of pointers to opaque listen objects.

error_length The length of the error_string_ret argument passed in.

error_string_ret Returns a null-terminated error message, if any. The error_string_ret points to user sup-
plied memory. No more than error_length bytes are used.

IceListenForWellKnownConnections constructs a list of network IDs by prepending each known trans-
port to port_id and then attempts to create listen objects for the result. Port_id is the portnumber, objname,
or path portion of the ICE network ID. If a listen object for a particular network ID cannot be created the
network ID is ignored. If no listen objects are created IceListenForWellKnownConnections returns fail-
ure.

The return value of IceListenForWellKnownConnections is zero for failure and a positive value for suc-
cess.

To close and free the listen objects, use IceFreeListenObjs .

void IceFreeListenObjs(count, listen_objs)
int count;
IceListenObj *listen_objs;

− 11 −

Inter-Client Exchange Library X11, Release 6.7

count The number of listen objects.

listen_objs The listen objects.

To detect a new connection on a listen object, use select on the descriptor associated with the listen object.

To obtain the descriptor, use IceGetListenConnectionNumber .

int IceGetListenConnectionNumber(listen_obj)
IceListenObj listen_obj;

listen_obj The listen object.

To obtain the network ID string associated with a listen object, use IceGetListenConnectionString .

char *IceGetListenConnectionString(listen_obj)
IceListenObj listen_obj;

listen_obj The listen object.

A network ID has the following format:

tcp/<hostname>:<portnumber> or
decnet/<hostname>::<objname> or
local/<hostname>:<path>

To compose a string containing a list of network IDs separated by commas (the format recognized by
IceOpenConnection), use IceComposeNetworkIdList .

char *IceComposeNetworkIdList (count, listen_objs)
int count;
IceListenObj *listen_objs;

count The number of listen objects.

listen_objs The listen objects.

7.3. Host Based Authentication for ICE Connections
If authentication fails when a client attempts to open an ICE connection and the initiating client has not
required authentication, a host based authentication procedure may be invoked to provide a last chance for
the client to connect. Each listen object has such a callback associated with it, and this callback is set using
the IceSetHostBasedAuthProc function.

void IceSetHostBasedAuthProc(listen_obj, host_based_auth_proc)
IceListenObj listen_obj;
IceHostBasedAuthProc host_based_auth_proc;

listen_obj The listen object.

host_based_auth_proc
The host based authentication procedure.

By default, each listen object has no host based authentication procedure associated with it. Passing NULL

− 12 −

Inter-Client Exchange Library X11, Release 6.7

for host_based_auth_proc turns off host based authentication if it was previously set.

typedef Bool (*IceHostBasedAuthProc) ();

Bool HostBasedAuthProc(host_name)
char *host_name;

host_name The host name of the client that tried to open an ICE connection.

The host_name argument is a string in the form protocol/hostname, where protocol is one of {tcp, decnet,
local}.

If IceHostBasedAuthProc returns True , access will be granted, even though the original authentication
failed. Note that authentication can effectively be disabled by registering an IceHostBasedAuthProc ,
which always returns True .

Host based authentication is also allowed at ProtocolSetup time. The callback is specified in the IceReg-
isterForProtocolReply function (see section 6, ‘‘Protocol Registration’’).

7.4. Accepting ICE Connections
After a connection attempt is detected on a listen object returned by IceListenForConnections , you should
call IceAcceptConnection . This returns a new opaque ICE connection object.

IceConn IceAcceptConnection(listen_obj, status_ret)
IceListenObj listen_obj;
IceAcceptStatus *status_ret;

listen_obj The listen object on which a new connection was detected.

status_ret Return status information.

The status_ret argument is set to one of the following values:

• IceAcceptSuccess − the accept operation succeeded, and the function returns a new connection
object.

• IceAcceptFailure − the accept operation failed, and the function returns NULL.

• IceAcceptBadMalloc − a memory allocation failed, and the function returns NULL.

In general, to detect new connections, you should call select on the file descriptors associated with the lis-
ten objects. When a new connection is detected, the IceAcceptConnection function should be called.
IceAcceptConnection may return a new ICE connection that is in a pending state. This is because before
the connection can become valid, authentication may be necessary. Because the ICE library cannot block
and wait for the connection to become valid (infinite blocking can occur if the connecting client does not
act properly), the application must wait for the connection status to become valid.

The following pseudo-code demonstrates how connections are accepted:

− 13 −

Inter-Client Exchange Library X11, Release 6.7

new_ice_conn = IceAcceptConnection (listen_obj, &accept_status);
if (accept_status != IceAcceptSuccess)
{

close the file descriptor and return
}

status = IceConnectionStatus (new_ice_conn);
time_start = time_now;

while (status == IceConnectPending)
{

select() on {new_ice_conn, all open connections}

for (each ice_conn in the list of open connections)
if (data ready on ice_conn)
{

status = IceProcessMessages (ice_conn, NULL, NULL);
if (status == IceProcessMessagesIOError)

IceCloseConnection (ice_conn);
}

if (data ready on new_ice_conn)
{

/*
* IceProcessMessages is called until the connection
* is non-pending. Doing so handles the connection
* setup request and any authentication requirements.
*/

IceProcessMessages (new_ice_conn, NULL, NULL);
status = IceConnectionStatus (new_ice_conn);

}
else
{

if (time_now - time_start > MAX_WAIT_TIME)
status = IceConnectRejected;

}
}

if (status == IceConnectAccepted)
{

Add new_ice_conn to the list of open connections
}
else
{

IceCloseConnection (new_ice_conn);
}

After IceAcceptConnection is called and the connection has been validated, the client is ready to receive a
ProtocolSetup (provided that IceRegisterForProtocolReply was called) or send a ProtocolSetup (pro-
vided that IceRegisterForProtocolSetup was called).

− 14 −

Inter-Client Exchange Library X11, Release 6.7

7.5. Closing ICE Connections
To close an ICE connection created with IceOpenConnection or IceAcceptConnection , use IceCloseC-
onnection .

IceCloseStatus IceCloseConnection(ice_conn)
IceConn ice_conn;

ice_conn The ICE connection to close.

To actually close an ICE connection, the following conditions must be met:

• The open reference count must have reached zero on this ICE connection. When IceOpenConnec-
tion is called, it tries to use a previously opened ICE connection. If it is able to use an existing con-
nection, it increments the open reference count on the connection by one. So, to close an ICE con-
nection, each call to IceOpenConnection must be matched with a call to IceCloseConnection . The
connection can be closed only on the last call to IceCloseConnection .

• The active protocol count must have reached zero. Each time a ProtocolSetup succeeds on the con-
nection, the active protocol count is incremented by one. When the client no longer expects to use
the protocol on the connection, the IceProtocolShutdown function should be called, which decre-
ments the active protocol count by one (see section 8, ‘‘Protocol Setup and Shutdown’’).

• If shutdown negotiation is enabled on the connection, the client on the other side of the ICE connec-
tion must agree to have the connection closed.

IceCloseConnection returns one of the following values:

• IceClosedNow − the ICE connection was closed at this time. The watch procedures were invoked
and the connection was freed.

• IceClosedASAP − an IO error had occurred on the connection, but IceCloseConnection is being
called within a nested IceProcessMessages . The watch procedures have been invoked at this time,
but the connection will be freed as soon as possible (when the nesting level reaches zero and IcePro-
cessMessages returns a status of IceProcessMessagesConnectionClosed).

• IceConnectionInUse − the connection was not closed at this time, because it is being used by other
active protocols.

• IceStartedShutdownNegotiation − the connection was not closed at this time and shutdown negoti-
ation started with the client on the other side of the ICE connection. When the connection is actually
closed, IceProcessMessages will return a status of IceProcessMessagesConnectionClosed .

When it is known that the client on the other side of the ICE connection has terminated the connection
without initiating shutdown negotiation, the IceSetShutdownNegotiation function should be called to turn
off shutdown negotiation. This will prevent IceCloseConnection from writing to a broken connection.

void IceSetShutdownNegotiation (ice_conn, negotiate)
IceConn ice_conn;
Bool negotiate;

ice_conn A valid ICE connection object.

negotiate If False , shutdown negotiating will be turned off.

To check the shutdown negotiation status of an ICE connection, use IceCheckShutdownNegotiation .

Bool IceCheckShutdownNegotiation (ice_conn)
IceConn ice_conn;

− 15 −

Inter-Client Exchange Library X11, Release 6.7

ice_conn A valid ICE connection object.

IceCheckShutdownNegotiation returns True if shutdown negotiation will take place on the connection;
otherwise, it returns False . Negotiation is on by default for a connection. It can only be changed with the
IceSetShutdownNegotiation function.

7.6. Connection Watch Procedures
To add a watch procedure that will be called each time ICElib opens a new connection via IceOpenCon-
nection or IceAcceptConnection or closes a connection via IceCloseConnection , use IceAddConnec-
tionWatch .

Status IceAddConnectionWatch (watch_proc, client_data)
IceWatchProc watch_proc;
IcePointer client_data;

watch_proc The watch procedure to invoke when ICElib opens or closes a connection.

client_data This pointer will be passed to the watch procedure.

The return value of IceAddConnectionWatch is zero for failure, and a positive value for success.

Note that several calls to IceOpenConnection might share the same ICE connection. In such a case, the
watch procedure is only invoked when the connection is first created (after authentication succeeds). Simi-
larly, because connections might be shared, the watch procedure is called only if IceCloseConnection
actually closes the connection (right before the IceConn is freed).

The watch procedures are very useful for applications that need to add a file descriptor to a select mask
when a new connection is created and remove the file descriptor when the connection is destroyed.
Because connections are shared, knowing when to add and remove the file descriptor from the select mask
would be difficult without the watch procedures.

Multiple watch procedures may be registered with the ICE library. No assumptions should be made about
their order of invocation.

If one or more ICE connections were already created by the ICE library at the time the watch procedure is
registered, the watch procedure will instantly be invoked for each of these ICE connections (with the open-
ing argument set to True).

The watch procedure is of type IceWatchProc .

typedef void (*IceWatchProc)();

void WatchProc (ice_conn, client_data , opening , watch_data)
IceConn ice_conn;
IcePointer client_data;
Bool opening;
IcePointer *watch_data;

ice_conn The opened or closed ICE connection. Call IceConnectionNumber to get the file
descriptor associated with this connection.

client_data Client data specified in the call to IceAddConnectionWatch .

opening If True , the connection is being opened. If False , the connection is being closed.

watch_data Can be used to save a pointer to client data.

If opening is True , the client should set the *watch_data pointer to any data it may need to save until the
connection is closed and the watch procedure is invoked again with opening set to False .

− 16 −

Inter-Client Exchange Library X11, Release 6.7

To remove a watch procedure, use IceRemoveConnectionWatch .

void IceRemoveConnectionWatch (watch_proc, client_data)
IceWatchProc watch_proc;
IcePointer client_data;

watch_proc The watch procedure that was passed to IceAddConnectionWatch .

client_data The client_data pointer that was passed to IceAddConnectionWatch .

8. Protocol Setup and Shutdown
To activate a protocol on a given ICE connection, use IceProtocolSetup .

IceProtocolSetupStatus IceProtocolSetup(ice_conn, my_opcode , client_data , must_authenticate ,
major_version_ret , minor_version_ret , vendor_ret , release_ret , error_length , error_string_ret)

IceConn ice_conn;
int my_opcode;
IcePointer client_data;
Bool must_authenticate;
int *major_version_ret;
int *minor_version_ret;
char **vendor_ret;
char **release_ret;
int error_length;
char *error_string_ret;

ice_conn A valid ICE connection object.

my_opcode The major opcode of the protocol to be set up, as returned by IceRegisterForProto-
colSetup .

client_data The client data stored in this pointer will be passed to the IcePoProcessMsgProc call-
back.

must_authenticateIf True , the other client may not bypass authentication.

major_version_retThe major version of the protocol to be used is returned.

minor_version_retThe minor version of the protocol to be used is returned.

vendor_ret The vendor string specified by the protocol acceptor.

release_ret The release string specified by the protocol acceptor.

error_length Specifies the length of the error_string_ret argument passed in.

error_string_ret Returns a null-terminated error message, if any. The error_string_ret argument points to
user supplied memory. No more than error_length bytes are used.

The vendor_ret and release_ret strings should be freed with free when no longer needed.

IceProtocolSetup returns one of the following values:

• IceProtocolSetupSuccess − the major_version_ret, minor_version_ret, vendor_ret, release_ret are
set.

• IceProtocolSetupFailure or IceProtocolSetupIOError − check error_string_ret for failure reason.
The major_version_ret, minor_version_ret, vendor_ret, release_ret are not set.

• IceProtocolAlreadyActive − this protocol is already active on this connection. The major_ver-
sion_ret, minor_version_ret, vendor_ret, release_ret are not set.

− 17 −

Inter-Client Exchange Library X11, Release 6.7

To notify the ICE library when a given protocol will no longer be used on an ICE connection, use IcePro-
tocolShutdown .

Status IceProtocolShutdown (ice_conn, major_opcode)
IceConn ice_conn;
int major_opcode;

ice_conn A valid ICE connection object.

major_opcode The major opcode of the protocol to shut down.

The return value of IceProtocolShutdown is zero for failure and a positive value for success.

Failure will occur if the major opcode was never registered OR the protocol of the major opcode was never
activated on the connection. By activated, we mean that a ProtocolSetup succeeded on the connection.
Note that ICE does not define how each sub-protocol triggers a protocol shutdown.

9. Processing Messages
To process incoming messages on an ICE connection, use IceProcessMessages .

IceProcessMessagesStatus IceProcessMessages(ice_conn, reply_wait , reply_ready_ret)
IceConn ice_conn;
IceReplyWaitInfo *reply_wait;
Bool *reply_ready_ret;

ice_conn A valid ICE connection object.

reply_wait Indicates if a reply is being waited for.

reply_ready_ret If set to True on return, a reply is ready.

IceProcessMessages is used in two ways:

• In the first, a client may generate a message and block by calling IceProcessMessages repeatedly
until it gets its reply.

• In the second, a client calls IceProcessMessages with reply_wait set to NULL in response to select
showing that there is data to read on the ICE connection. The ICE library may process zero or more
complete messages. Note that messages that are not blocked for are always processed by invoking
callbacks.

IceReplyWaitInfo contains the major/minor opcodes and sequence number of the message for which a
reply is being awaited. It also contains a pointer to the reply message to be filled in (the protocol library
should cast this IcePointer to the appropriate reply type). In most cases, the reply will have some fixed-
size part, and the client waiting for the reply will have provided a pointer to a structure to hold this fixed-
size data. If there is variable-length data, it would be expected that the IcePoProcessMsgProc callback
will have to allocate additional memory and store pointer(s) to that memory in the fixed-size structure. If
the entire data is variable length (for example, a single variable-length string), then the client waiting for the
reply would probably just pass a pointer to fixed-size space to hold a pointer, and the IcePoProcessMsg-
Proc callback would allocate the storage and store the pointer. It is the responsibility of the client receiving
the reply to free up any memory allocated on its behalf.

typedef struct {
unsigned long sequence_of_request;
int major_opcode_of_request;
int minor_opcode_of_request;
IcePointer reply;

} IceReplyWaitInfo;

− 18 −

Inter-Client Exchange Library X11, Release 6.7

If reply_wait is not NULL and IceProcessMessages has a reply or error to return in response to this
reply_wait (that is, no callback was generated), then the reply_ready_ret argument will be set to True .

If reply_wait is NULL, then the caller may also pass NULL for reply_ready_ret and be guaranteed that no
value will be stored in this pointer.

IceProcessMessages returns one of the following values:

• IceProcessMessagesSuccess − no error occurred.

• IceProcessMessagesIOError − an IO error occurred, and the caller must explicitly close the con-
nection by calling IceCloseConnection .

• IceProcessMessagesConnectionClosed − the ICE connection has been closed (closing of the con-
nection was deferred because of shutdown negotiation, or because the IceProcessMessages nesting
level was not zero). Do not attempt to access the ICE connection at this point, since it has been freed.

10. Ping
To send a ‘‘Ping’’ message to the client on the other side of the ICE connection, use IcePing .

Status IcePing(ice_conn, ping_reply_proc , client_data)
IceConn ice_conn;
IcePingReplyProc ping_reply_proc;
IcePointer client_data;

ice_conn A valid ICE connection object.

ping_reply_proc The callback to invoke when the Ping reply arrives.

client_data This pointer will be passed to the IcePingReplyProc callback.

IcePing returns zero for failure and a positive value for success.

When IceProcessMessages processes the Ping reply, it will invoke the IcePingReplyProc callback.

typedef void (*IcePingReplyProc)();

void PingReplyProc(ice_conn, client_data)
IceConn ice_conn;
IcePointer client_data;

ice_conn The ICE connection object.

client_data The client data specified in the call to IcePing .

11. Using ICElib Informational Functions

IceConnectStatus IceConnectionStatus(ice_conn)
IceConn ice_conn;

IceConnectionStatus returns the status of an ICE connection. The possible return values are:

• IceConnectPending − the connection is not valid yet (that is, authentication is taking place). This is
only relevant to connections created by IceAcceptConnection .

• IceConnectAccepted − the connection has been accepted. This is only relevant to connections cre-
ated by IceAcceptConnection .

− 19 −

Inter-Client Exchange Library X11, Release 6.7

• IceConnectRejected − the connection had been rejected (that is, authentication failed). This is only
relevant to connections created by IceAcceptConnection .

• IceConnectIOError − an IO error has occurred on the connection.

char *IceVendor (ice_conn)
IceConn ice_conn;

IceVendor returns the ICE library vendor identification for the other side of the connection. The string
should be freed with a call to free when no longer needed.

char *IceRelease(ice_conn)
IceConn ice_conn;

IceRelease returns the release identification of the ICE library on the other side of the connection. The
string should be freed with a call to free when no longer needed.

int IceProtocolVersion (ice_conn)
IceConn ice_conn;

IceProtocolVersion returns the major version of the ICE protocol on this connection.

int IceProtocolRevision (ice_conn)
IceConn ice_conn;

IceProtocolRevision returns the minor version of the ICE protocol on this connection.

int IceConnectionNumber(ice_conn)
IceConn ice_conn;

IceConnectionNumber returns the file descriptor of this ICE connection.

char *IceConnectionString(ice_conn)
IceConn ice_conn;

IceConnectionString returns the network ID of the client that accepted this connection. The string should
be freed with a call to free when no longer needed.

unsigned long IceLastSentSequenceNumber(ice_conn)
IceConn ice_conn;

IceLastSentSequenceNumber returns the sequence number of the last message sent on this ICE connec-
tion.

unsigned long IceLastReceivedSequenceNumber (ice_conn)
IceConn ice_conn;

IceLastReceivedSequenceNumber returns the sequence number of the last message received on this ICE

− 20 −

Inter-Client Exchange Library X11, Release 6.7

connection.

Bool IceSwapping (ice_conn)
IceConn ice_conn;

IceSwapping returns True if byte swapping is necessary when reading messages on the ICE connection.

IcePointer IceGetContext (ice_conn)
IceConn ice_conn;

IceGetContext returns the context associated with a connection created by IceOpenConnection .

12. ICE Messages
All ICE messages have a standard 8-byte header. The ICElib macros that read and write messages rely on
the following naming convention for message headers:

CARD8 major_opcode;
CARD8 minor_opcode;
CARD8 data[2];
CARD32length B32;

The 3rd and 4th bytes of the message header can be used as needed. The length field is specified in units of
8 bytes.

12.1. Sending ICE Messages
The ICE library maintains an output buffer used for generating messages. Protocol libraries layered on top
of ICE may choose to batch messages together and flush the output buffer at appropriate times.

If an IO error has occurred on an ICE connection, all write operations will be ignored. For further informa-
tion, see section 13, ‘‘Error Handling.’’

To get the size of the ICE output buffer, use IceGetOutBufSize .

int IceGetOutBufSize(ice_conn)
IceConn ice_conn;

ice_conn A valid ICE connection object.

To flush the ICE output buffer, use IceFlush .

IceFlush (ice_conn)
IceConn ice_conn;

ice_conn A valid ICE connection object.

Note that the output buffer may be implicitly flushed if there is insufficient space to generate a message.

The following macros can be used to generate ICE messages:

− 21 −

Inter-Client Exchange Library X11, Release 6.7

IceGetHeader (ice_conn, major_opcode , minor_opcode , header_size , <C_data_type> , pmsg)
IceConn ice_conn;
int major_opcode;
int minor_opcode;
int header_size;
<C_data_type> *pmsg;

ice_conn A valid ICE connection object.

major_opcode The major opcode of the message.

minor_opcode The minor opcode of the message.

header_size The size of the message header (in bytes).

<C_data_type> The actual C data type of the message header.

pmsg The message header pointer. After this macro is called, the library can store data in the
message header.

IceGetHeader is used to set up a message header on an ICE connection. It sets the major and minor
opcodes of the message, and initializes the message’s length to the length of the header. If additional vari-
able length data follows, the message’s length field should be updated.

IceGetHeaderExtra (ice_conn, major_opcode , minor_opcode , header_size , extra , <C_data_type> , pmsg , pdata)
IceConn ice_conn;
int major_opcode;
int minor_opcode;
int header_size;
int extra;
<C_data_type> *pmsg;
char *pdata;

ice_conn A valid ICE connection object.

major_opcode The major opcode of the message.

minor_opcode The minor opcode of the message.

header_size The size of the message header (in bytes).

extra The size of the extra data beyond the header (in 8-byte units).

<C_data_type> The actual C data type of the message header.

pmsg The message header pointer. After this macro is called, the library can store data in the
message header.

pdata Returns a pointer to the ICE output buffer that points immediately after the message
header. The variable length data should be stored here. If there was not enough room in
the ICE output buffer, pdata is set to NULL.

IceGetHeaderExtra is used to generate a message with a fixed (and relatively small) amount of variable
length data. The complete message must fit in the ICE output buffer.

IceSimpleMessage (ice_conn, major_opcode , minor_opcode)
IceConn ice_conn;
int major_opcode;
int minor_opcode;

− 22 −

Inter-Client Exchange Library X11, Release 6.7

ice_conn A valid ICE connection object.

major_opcode The major opcode of the message.

minor_opcode The minor opcode of the message.

IceSimpleMessage is used to generate a message that is identical in size to the ICE header message, and
has no additional data.

IceErrorHeader (ice_conn, offending_major_opcode , offending_minor_opcode , offending_sequence_num ,
severity , error_class , data_length)

IceConn ice_conn;
int offending_major_opcode;
int offending_minor_opcode;
int offending_sequence_num;
int severity;
int error_class;
int data_length;

ice_conn A valid ICE connection object.

offending_major_opcode
The major opcode of the protocol in which an error was detected.

offending_minor_opcode
The minor opcode of the protocol in which an error was detected.

offending_sequence_num
The sequence number of the message that caused the error.

severity IceCanContinue , IceFatalToProtocol , or IceFatalToConnection .

error_class The error class.

data_length Length of data (in 8-byte units) to be written after the header.

IceErrorHeader sets up an error message header.

Note that the two clients connected by ICE may be using different major opcodes for a given protocol. The
offending_major_opcode passed to this macro is the major opcode of the protocol for the client sending the
error message.

Generic errors, which are common to all protocols, have classes in the range 0x8000..0xFFFF. See the
Inter-Client Exchange Protocol standard for more details.

IceBadMinor 0x8000

IceBadState 0x8001

IceBadLength 0x8002

IceBadValue 0x8003

Per-protocol errors have classes in the range 0x0000-0x7fff.

To write data to an ICE connection, use the IceWriteData macro. If the data fits into the ICE output
buffer, it is copied there. Otherwise, the ICE output buffer is flushed and the data is directly sent.

This macro is used in conjunction with IceGetHeader and IceErrorHeader .

− 23 −

Inter-Client Exchange Library X11, Release 6.7

IceWriteData (ice_conn, bytes , data)
IceConn ice_conn;
int bytes;
char *data;

ice_conn A valid ICE connection object.

bytes The number of bytes to write.

data The data to write.

To write data as 16-bit quantities, use IceWriteData16 .

IceWriteData16 (ice_conn, bytes , data)
IceConn ice_conn;
int bytes;
short *data;

ice_conn A valid ICE connection object.

bytes The number of bytes to write.

data The data to write.

To write data as 32-bit quantities, use IceWriteData32 .

IceWriteData32 (ice_conn, bytes , data)
IceConn ice_conn;
int bytes;
long *data;

ice_conn A valid ICE connection object.

bytes The number of bytes to write.

data The data to write.

To bypass copying data to the ICE output buffer, use IceSendData to directly send data over the network
connection. If necessary, the ICE output buffer is first flushed.

IceSendData (ice_conn, bytes , (char *) data)
IceConn ice_conn;
int bytes;
char *data;

ice_conn A valid ICE connection object.

bytes The number of bytes to send.

data The data to send.

− 24 −

Inter-Client Exchange Library X11, Release 6.7

To force 32-bit or 64-bit alignment, use IceWritePad . A maximum of 7 pad bytes can be specified.

IceWritePad (ice_conn, bytes)
IceConn ice_conn;
int bytes;

ice_conn A valid ICE connection object.

bytes The number of pad bytes.

12.2. Reading ICE Messages
The ICE library maintains an input buffer used for reading messages. If the ICE library chooses to perform
nonblocking reads (this is implementation-dependent), then for every read operation that it makes, zero or
more complete messages may be read into the input buffer. As a result, for all of the macros described in
this section that read messages, an actual read operation will occur on the connection only if the data is not
already present in the input buffer.

To get the size of the ICE input buffer, use IceGetInBufSize .

int IceGetInBufSize(ice_conn)
IceConn ice_conn;

ice_conn A valid ICE connection object.

When reading messages, care must be taken to check for IO errors. If any IO error occurs in reading any
part of a message, the message should be thrown out. After using any of the macros described below for
reading messages, the IceValidIO macro can be used to check if an IO error occurred on the connection.
After an IO error has occurred on an ICE connection, all read operations will be ignored. For further infor-
mation, see section 13, ‘‘Error Handling.’’

Bool IceValidIO (ice_conn)
IceConn ice_conn;

The following macros can be used to read ICE messages.

IceReadSimpleMessage (ice_conn, <C_data_type> , pmsg)
IceConn ice_conn;
<C_data_type> *pmsg;

ice_conn A valid ICE connection object.

<C_data_type> The actual C data type of the message header.

pmsg This pointer is set to the message header.

IceReadSimpleMessage is used for messages that are identical in size to the 8-byte ICE header, but use
the spare 2 bytes in the header to encode additional data. Note that the ICE library always reads in these
first 8 bytes, so it can obtain the major opcode of the message. IceReadSimpleMessage simply returns a
pointer to these 8 bytes; it does not actually read any data into the input buffer.

For a message with variable length data, there are two ways of reading the message. One method involves
reading the complete message in one pass using IceReadCompleteMessage . The second method involves

− 25 −

Inter-Client Exchange Library X11, Release 6.7

reading the message header (note that this may be larger than the 8-byte ICE header), then reading the vari-
able length data in chunks (see IceReadMessageHeader and IceReadData).

IceReadCompleteMessage (ice_conn, header_size , <C_data_type> , pmsg , pdata)
IceConn ice_conn;
int header_size;
<C_data_type> *pmsg;
char *pdata;

ice_conn A valid ICE connection object.

header_size The size of the message header (in bytes).

<C_data_type> The actual C data type of the message header.

pmsg This pointer is set to the message header.

pdata This pointer is set to the variable length data of the message.

If the ICE input buffer has sufficient space, IceReadCompleteMessage will read the complete message
into the ICE input buffer. Otherwise, a buffer will be allocated to hold the variable length data. After the
call, the pdata argument should be checked against NULL to make sure that there was sufficient memory to
allocate the buffer.

After calling IceReadCompleteMessage and processing the message, IceDisposeCompleteMessage
should be called.

IceDisposeCompleteMessage (ice_conn, pdata)
IceConn ice_conn;
char *pdata;

ice_conn A valid ICE connection object.

pdata The pointer to the variable length data returned in IceReadCompleteMessage .

If a buffer had to be allocated to hold the variable length data (because it did not fit in the ICE input buffer),
it is freed here by ICElib.

IceReadMessageHeader (ice_conn, header_size , <C_data_type> , pmsg)
IceConn ice_conn;
int header_size;
<C_data_type> *pmsg;

ice_conn A valid ICE connection object.

header_size The size of the message header (in bytes).

<C_data_type> The actual C data type of the message header.

pmsg This pointer is set to the message header.

IceReadMessageHeader reads just the message header. The rest of the data should be read with the
IceReadData family of macros. This method of reading a message should be used when the variable
length data must be read in chunks.

− 26 −

Inter-Client Exchange Library X11, Release 6.7

To read data directly into a user supplied buffer, use IceReadData .

IceReadData (ice_conn, bytes , pdata)
IceConn ice_conn;
int bytes;
char *pdata;

ice_conn A valid ICE connection object.

bytes The number of bytes to read.

pdata The data is read into this user supplied buffer.

To read data as 16-bit quantities, use IceReadData16 .

IceReadData16 (ice_conn, swap , bytes , pdata)
IceConn ice_conn;
Bool swap;
int bytes;
short *pdata;

ice_conn A valid ICE connection object.

swap If True, the values will be byte swapped.

bytes The number of bytes to read.

pdata The data is read into this user supplied buffer.

To read data as 32-bit quantities, use IceReadData32 .

IceReadData32 (ice_conn, swap , bytes , pdata)
IceConn ice_conn;
Bool swap;
int bytes;
long *pdata;

ice_conn A valid ICE connection object.

swap If True, the values will be byte swapped.

bytes The number of bytes to read.

pdata The data is read into this user supplied buffer.

To force 32-bit or 64-bit alignment, use IceReadPad . A maximum of 7 pad bytes can be specified.

IceReadPad (ice_conn, bytes)
IceConn ice_conn;
int bytes;

ice_conn A valid ICE connection object.

bytes The number of pad bytes.

− 27 −

Inter-Client Exchange Library X11, Release 6.7

13. Error Handling
There are two default error handlers in ICElib:

• One to handle typically fatal conditions (for example, a connection dying because a machine crashed)

• One to handle ICE-specific protocol errors

These error handlers can be changed to user-supplied routines if you prefer your own error handling and
can be changed as often as you like.

To set the ICE error handler, use IceSetErrorHandler .

IceErrorHandler IceSetErrorHandler(handler)
IceErrorHandler handler;

handler The ICE error handler. You should pass NULL to restore the default handler.

IceSetErrorHandler returns the previous error handler.

The ICE error handler is invoked when an unexpected ICE protocol error (major opcode 0) is encountered.
The action of the default handler is to print an explanatory message to stderr and if the severity is fatal,
call exit with a nonzero value. If exiting is undesirable, the application should register its own error han-
dler.

Note that errors in other protocol domains should be handled by their respective libraries (these libraries
should have their own error handlers).

An ICE error handler has the type of IceErrorHandler .

typedef void (*IceErrorHandler)();

void ErrorHandler(ice_conn, swap , offending_minor_opcode , offending_sequence_num , error_class ,
severity , values)

IceConn ice_conn;
Bool swap;
int offending_minor_opcode;
unsigned long offending_sequence_num;
int error_class;
int severity;
IcePointer values;

ice_conn The ICE connection object.

swap A flag that indicates if the values need byte swapping.

offending_minor_opcode
The ICE minor opcode of the offending message.

offending_sequence_num
The sequence number of the offending message.

error_class The error class of the offending message.

severity IceCanContinue , IceFatalToProtocol , or IceFatalToConnection .

values Any additional error values specific to the minor opcode and class.

The following error classes are defined at the ICE level:

IceBadMinor
IceBadState
IceBadLength

− 28 −

Inter-Client Exchange Library X11, Release 6.7

IceBadValue
IceBadMajor
IceNoAuth
IceNoVersion
IceSetupFailed
IceAuthRejected
IceAuthFailed
IceProtocolDuplicate
IceMajorOpcodeDuplicate
IceUnknownProtocol

For further information, see the Inter-Client Exchange Protocol standard.

To handle fatal I/O errors, use IceSetIOErrorHandler .

IceIOErrorHandler IceSetIOErrorHandler(handler)
IceIOErrorHandler handler;

handler The I/O error handler. You should pass NULL to restore the default handler.

IceSetIOErrorHandler returns the previous IO error handler.

An ICE I/O error handler has the type of IceIOErrorHandler .

typedef void (*IceIOErrorHandler)();

void IOErrorHandler(ice_conn)
IceConn ice_conn;

ice_conn The ICE connection object.

There are two ways of handling IO errors in ICElib:

• In the first, the IO error handler does whatever is necessary to respond to the IO error and then
returns, but it does not call IceCloseConnection . The ICE connection is given a ‘‘bad IO’’ status,
and all future reads and writes to the connection are ignored. The next time IceProcessMessages is
called it will return a status of IceProcessMessagesIOError . At that time, the application should
call IceCloseConnection .

• In the second, the IO error handler does call IceCloseConnection , and then uses the longjmp call to
get back to the application’s main event loop. The setjmp and longjmp calls may not work properly
on all platforms, and special care must be taken to avoid memory leaks. Therefore, this second
model is less desirable.

Before the application I/O error handler is invoked, protocol libraries that were interested in being notified
of I/O errors will have their IceIOErrorProc handlers invoked. This handler is set up in the protocol reg-
istration functions (see IceRegisterForProtocolSetup and IceRegisterForProtocolReply) and could be
used to clean up state specific to the protocol.

typedef void (*IceIOErrorProc)();

void IOErrorProc(ice_conn)
IceConn ice_conn;

ice_conn The ICE connection object.

− 29 −

Inter-Client Exchange Library X11, Release 6.7

Note that every IceIOErrorProc callback must return. This is required because each active protocol must
be notified of the broken connection, and the application IO error handler must be invoked afterwards.

14. Multi-Threading Support
To declare that multiple threads in an application will be using the ICE library, use IceInitThreads .

Status IceInitThreads()

The IceInitThreads function must be the first ICElib function a multi-threaded program calls. It must
complete before any other ICElib call is made. IceInitThreads returns a nonzero status if and only if it
was able to initialize the threads package successfully. It is safe to call IceInitThreads more than once,
although the threads package will only be initialized once.

Protocol libraries layered on top of ICElib will have to lock critical sections of code that access an ICE con-
nection (for example, when generating messages). Tw o calls, which are generally implemented as macros,
are provided:

IceLockConn (ice_conn)
IceConn ice_conn;

IceUnlockConn (ice_conn)
IceConn ice_conn;

ice_conn The ICE connection.

To keep an ICE connection locked across several ICElib calls, applications use IceAppLockConn and
IceAppUnlockConn .

void IceAppLockConn(ice_conn)
IceConn ice_conn;

ice_conn The ICE connection to lock.

The IceAppLockConn function completely locks out other threads using the connection until IceAppUn-
lockConn is called. Other threads attempting to use ICElib calls on the connection will block. If the pro-
gram has not previously called IceInitThreads , IceAppLockConn has no effect.

void IceAppUnlockConn(ice_conn)
IceConn ice_conn;

ice_conn The ICE connection to unlock.

The IceAppUnlockConn function allows other threads to complete ICElib calls on the connection that
were blocked by a previous call to IceAppLockConn from this thread. If the program has not previously
called IceInitThreads , IceAppUnlockConn has no effect.

15. Miscellaneous Functions
To allocate scratch space (for example, when generating messages with variable data), use IceAlloc-
Scratch . Each ICE connection has one scratch space associated with it. The scratch space starts off as

− 30 −

Inter-Client Exchange Library X11, Release 6.7

empty and grows as needed. The contents of the scratch space is not guaranteed to be preserved after any
ICElib function is called.

char *IceAllocScratch(ice_conn, size)
IceConn ice_conn;
unsigned long size;

ice_conn A valid ICE connection object.

size The number of bytes required.

Note that the memory returned by IceAllocScratch should not be freed by the caller. The ICE library will
free the memory when the ICE connection is closed.

16. Acknowledgements
Thanks to Bob Scheifler for his thoughtful input on the design of the ICE library. Thanks also to Jordan
Brown, Larry Cable, Donna Converse, Clive Feather, Stephen Gildea, Vania Joloboff, Kaleb Keithley, Stu-
art Marks, Hiro Miyamoto, Ralph Swick, Jim VanGilder, and Mike Wexler.

− 31 −

Inter-Client Exchange Library X11, Release 6.7

Appendix A

Authentication Utility Functions

As discussed in this document, the means by which authentication data is obtained by the ICE library (for
ConnectionSetup messages or ProtocolSetup messages) is implementation-dependent.†

This appendix describes some utility functions that manipulate an ICE authority file. The authority file can
be used to pass authentication data between clients.

The basic operations on the .ICEauthority file are:

• Get file name

• Lock

• Unlock

• Read entry

• Write entry

• Search for entry

These are fairly low-level operations, and it is expected that a program, like "iceauth", would exist to add,
remove, and display entries in the file.

In order to use these utility functions, the <X11/ICE/ICEutil.h> header file must be included.

An entry in the .ICEauthority file is defined by the following data structure:

typedef struct {
char *protocol_name;
unsigned short protocol_data_length;
char *protocol_data;
char *network_id;
char *auth_name;
unsigned short auth_data_length;
char *auth_data;

} IceAuthFileEntry;

The protocol_name member is either ‘‘ICE’’ for connection setup authentication or the subprotocol name,
such as ‘‘XSMP’’. For each entry, protocol specific data can be specified in the protocol_data member.
This can be used to search for old entries that need to be removed from the file.

The network_id member is the network ID of the client accepting authentication (for example, the network
ID of a session manager). A network ID has the following form:

tcp/<hostname>:<portnumber> or
decnet/<hostname>::<objname> or
local/<hostname>:<path>

The auth_name member is the name of the authentication method. The auth_data member is the actual
authentication data, and the auth_data_length member is the number of bytes in the data.

† The X Consortium’s ICElib implementation assumes the presence of an ICE authority file.

− 32 −

Inter-Client Exchange Library X11, Release 6.7

To obtain the default authorization file name, use IceAuthFileName .

char *IceAuthFileName()

If the ICEAUTHORITY environment variable if set, this value is returned. Otherwise, the default autho-
rization file name is $HOME/.ICEauthority. This name is statically allocated and should not be freed.

To synchronously update the authorization file, the file must be locked with a call to IceLockAuthFile .
This function takes advantage of the fact that the link system call will fail if the name of the new link
already exists.

int IceLockAuthFile(file_name, retries , timeout , dead)
char *file_name;
int retries;
int timeout;
long dead;

file_name The authorization file to lock.

retries The number of retries.

timeout The number of seconds before each retry.

dead If a lock already exists that is the specified dead seconds old, it is broken. A value of zero
is used to unconditionally break an old lock.

One of three values is returned:

• IceAuthLockSuccess − the lock succeeded.

• IceAuthLockError − a system error occurred, and errno may prove useful.

• IceAuthLockTimeout − the specified number of retries failed.

To unlock an authorization file, use IceUnlockAuthFile .

void IceUnlockAuthFile(file_name)
char *file_name;

file_name The authorization file to unlock.

To read the next entry in an authorization file, use IceReadAuthFileEntry .

IceAuthFileEntry *IceReadAuthFileEntry(auth_file)
FILE *auth_file;

auth_file The authorization file.

Note that it is the responsibility of the application to open the file for reading before calling this function. If
an error is encountered, or there are no more entries to read, NULL is returned.

Entries should be free with a call to IceFreeAuthFileEntry .

To write an entry in an authorization file, use IceWriteAuthFileEntry .

− 33 −

Inter-Client Exchange Library X11, Release 6.7

Status IceWriteAuthFileEntry(auth_file, entry)
FILE *auth_file;
IceAuthFileEntry *entry;

auth_file The authorization file.

entry The entry to write.

Note that it is the responsibility of the application to open the file for writing before calling this function.
The function returns a nonzero status if the operation was successful.

To search the default authorization file for an entry that matches a given protocol_name/net-
work_id/auth_name tuple, use IceGetAuthFileEntry .

IceAuthFileEntry *IceGetAuthFileEntry(protocol_name, network_id , auth_name)
char *protocol_name;
char *network_id;
char *auth_name;

protocol_name The name of the protocol to search on.

network_id The network ID to search on.

auth_name The authentication method to search on.

If IceGetAuthFileEntry fails to find such an entry, NULL is returned.

To free an entry returned by IceReadAuthFileEntry or IceGetAuthFileEntry , use IceFreeAuthFileEn-
try .

void IceFreeAuthFileEntry(entry)
IceAuthFileEntry *entry;

entry The entry to free.

− 34 −

Inter-Client Exchange Library X11, Release 6.7

Appendix B

MIT-MAGIC-COOKIE-1 Authentication

The X Consortium’s ICElib implementation supports a simple MIT-MAGIC-COOKIE-1 authentication
scheme using the authority file utilities described in Appendix A.

In this model, an application, such as a session manager, obtains a magic cookie by calling IceGener-
ateMagicCookie , and then stores it in the user’s local .ICEauthority file so that local clients can connect.
In order to allow remote clients to connect, some remote execution mechanism should be used to store the
magic cookie in the user’s .ICEauthority file on a remote machine.

In addition to storing the magic cookie in the .ICEauthority file, the application needs to call the IceSet-
PaAuthData function in order to store the magic cookie in memory. When it comes time for the MIT-
MAGIC-COOKIE-1 authentication procedure to accept or reject the connection, it will compare the magic
cookie presented by the requestor to the magic cookie in memory.

char *IceGenerateMagicCookie(length)
int length;

length The desired length of the magic cookie.

The magic cookie returned will be null-terminated. If memory can not be allocated for the magic cookie,
the function will return NULL. Otherwise, the magic cookie should be freed with a call to free .

To store the authentication data in memory, use IceSetPaAuthData . Currently, this function is only used
for MIT-MAGIC-COOKIE-1 authentication, but it may be used for additional authentication methods in the
future.

void IceSetPaAuthData (num_entries, entries)
int num_entries;
IceAuthDataEntry *entries;

num_entries The number of authentication data entries.

entries The list of authentication data entries.

Each entry has associated with it a protocol name (for example, ‘‘ICE’’ for ICE connection setup authenti-
cation, ‘‘XSMP’’ for session management authentication), a network ID for the ‘‘accepting’’ client, an
authentication name (for example, MIT-MAGIC-COOKIE-1), and authentication data. The ICE library
will merge these entries with previously set entries, based on the (protocol_name, network_id, auth_name)
tuple.

typedef struct {
char *protocol_name;
char *network_id;
char *auth_name;
unsigned short auth_data_length;
char *auth_data;

} IceAuthDataEntry;

− 35 −

− 36 −

Table of Contents

1. Overview of ICE .. 1
2. The ICE Library - C Language Interface to ICE ... 1
3. Intended Audience ... 1
4. Header Files and Library Name ... 1
5. Note on Prefixes ... 1
6. Protocol Registration ... 1
6.1. Callbacks for Processing Messages .. 5
6.2. Authentication Methods .. 7
7. ICE Connections .. 9
7.1. Opening an ICE Connection ... 9
7.2. Listening for ICE Connections ... 10
7.3. Host Based Authentication for ICE Connections ... 12
7.4. Accepting ICE Connections ... 13
7.5. Closing ICE Connections ... 15
7.6. Connection Watch Procedures .. 16
8. Protocol Setup and Shutdown .. 17
9. Processing Messages ... 18
10. Ping .. 19
11. Using ICElib Informational Functions .. 19
12. ICE Messages .. 21
12.1. Sending ICE Messages ... 21
12.2. Reading ICE Messages ... 25
13. Error Handling ... 28
14. Multi-Threading Support ... 30
15. Miscellaneous Functions ... 30
16. Acknowledgements .. 31
Appendix A − Authentication Utility Functions ... 32
Appendix B − MIT-MAGIC-COOKIE-1 Authentication .. 35

iii

