
$TOG: lbxalg.mif /main/2 1997/11/04 17:55:22 kaleb $

#define GRAY(r, g, b) (30L * r + 59L * g + 11L * b) / 100

sigbits = pVisual->bitsPerRGB;

switch (pVisual->class) {
case PseudoColor:
case DirectColor:
case StaticColor:
 /* rescale to rgb bits */
 *red = RESCALE(*red, sigbits);
 *green = RESCALE(*green, sigbits);
 *blue = RESCALE(*blue, sigbits);
 break;
case GrayScale:
 /* rescale to gray then rgb bits */
 *blue = *green = *red = RESCALE(GRAY(*red, *green, *blue), sigbits);
 break;
case StaticGray:
 /* rescale to gray then [0..limg] then [0..65535] then rgb bits */
 *blue = *green = *red = RESCALE(RESCALE(GRAY(*red, *green, *blue),
 pVisual>numPixelBits), sigbits);
 break;
case TrueColor:
 /* rescale to [0..limN] then [0..65535] then rgb bits */
 *red = RESCALE(RESCALE(*red, pVisual->numRedBits), sigbits);
 *green = RESCALE(RESCALE(*green, pVisual->numGreenBits), sigbits);
 *blue = RESCALE(RESCALE(*blue, pVisual->numBlueBits), sigbits);
 break;
}

The XC-CMAP algorithm matches a color to an existing pixel in static visuals by finding the pixel
with the lowest color match error, computed as follows:

error = errRed * errRed + errGreen * errGreen + errBlue * errBlue

The XC-CMAP algorithm selects a free pixel to allocate by selecting the free pixel with the low-
est index from the free pixels known to the proxy. For direct visuals, it uses the lowest free or
matching pixel subfield known to the proxy for each color.

Extensions
LBX allows for extensions to LBX to enable additional compression or short-circuiting. The con-
sortium implementation does not define any extensions to LBX.

$TOG: lbxalg.mif /main/2 1997/11/04 17:55:22 kaleb $

LBX X Consortium Algorithms

$TOG: lbxalg.mif /main/2 1997/11/04 17:55:22 kaleb $

Introduction
The Low Bandwidth X extension allows for negotiating various algorithms used by LBX. This
document describes the algorithms used in the Consortium implementation of LBX in the X11
Release 6.4.

Streaming Compression
LBX negotiates the use of a stream compressor. The consortium implementation defines a stream
compressor named XC-ZLIB, which is based on the Zlib version 1.0 compression library by
Gailly & Adler.

The XC-ZLIB compressor is presented with a simple byte stream - the X and LBX message
boundaries are not apparent. The data is broken up into fixed sized blocks. Each block is com-
pressed using zlib, then a two byte header is prepended, and then the entire packet is transmitted.
The header has the following information:

out[0] (length & 0xfff) >> 8 | ((compflag) ? 0x80 : 0);
out[1] = length & 0xff;

If the compflag is false, then the contents of the block are not compressed.

Bitmap Compression
LBX also negotiates for bitmap compression. The consortium implementation defines a bitmap
compressor named XC-FaxG42D, which uses the CCITT Group 4 2D compression algorithm.

Pixmap Compression
LBX allows for the negotiation of pixmap compression. The consortium implementation does not
define a pixmap compression algorithm. (A run-length encoding algorithm was proposed, but
experimentation proved it was less efficient than allowing the stream compressor to compress the
image.

Colormap Algorithm
LBX negotiates for use of a colormap algorithm, used for color matching when the proxy allo-
cates pixels in a grabbed colormap. The consortium implementation defines an algorithm named
XC-CMAP. This algorithm consists of three parts, resolving to a hardware color, finding the clos-
est existing color, and what free cell to allocate.

The XC-CMAP algorithm resolves a color to a hardware color in the following manner:

#define RESCALE(x, nbits) (x >> (16 - nbits)) * 65535 / ((1 << nbits) - 1)

