

Intel® Open Source HD Graphics and
Intel Iris™ Graphics

Programmer's Reference Manual

For the 2014-2015 Intel Core™ Processors, Celeron™ Processors
and Pentium™ Processors based on the "Broadwell" Platform

Volume 6: Command Stream Programming

May 2015, Revision 1.0

Command Stream Programming

ii Doc Ref # IHD-OS-BDW-Vol 6-05.15

Creative Commons License

You are free to Share - to copy, distribute, display, and perform the work under the following
conditions:

• Attribution. You must attribute the work in the manner specified by the author or licensor (but
not in any way that suggests that they endorse you or your use of the work).

• No Derivative Works. You may not alter, transform, or build upon this work.

Notices and Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,
directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS
FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS
SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES
OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE
ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,
PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,
WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,
OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them. The information here
is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips
Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2015, Intel Corporation. All rights reserved.

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 iii

Table of Contents

Graphics Command Formats ... 1

Command Header .. 2

Memory Interface Commands .. 5

2D Commands ... 7

3D Commands ... 9

VEBOX Commands ..13

MFX Commands ...14

Scheduling ... 16

Execlists ..16

Context Descriptor Format ..18

Logical Ring Context Format ..19

Context Status ...20

RINGBUF — Ring Buffer Registers ..23

Virtual Memory Control ... 24

Render Engine Command Streamer (RCS) .. 25

Batch Buffer Privilege Register ..25

Mode Registers ...26

Logical Context Support ..27

Context Save Registers ..28

MI Commands for Render Engine ...29

User Mode Privileged Commands ..30

Watchdog Timer Registers ...33

Interrupt Control Registers ... 34

Hardware-Detected Error Bit Definitions (for EIR EMR ESR) ...35

Blitter Engine Command Streamer (BCS) ... 36

Watchdog Timer Registers ...37

Hardware-Detected Error Bit Definitions (for EIR EMR ESR) ..37

Logical Context Support ..38

Mode Registers ...39

MI Commands for Blitter Engine..40

User Mode Privileged Commands ..43

Video Command Streamer (VCS) ... 45

Command Stream Programming

iv Doc Ref # IHD-OS-BDW-Vol 6-05.15

Watchdog Timer Registers ...45

VCS Hardware - Detected Error Bit Definitions (for EIR EMR ESR) ..46

Logical Context Support ..46

Mode Registers ...47

Registers in Media Engine ..48

GFX Pending TLB Cycles Information Registers ..48

Memory Interface Commands for Video Codec Engine ...49

User Mode Privileged Commands ..50

Video Enhancement Engine Command Interface .. 52

VECS_RINGBUF — Ring Buffer Registers ..52

Watchdog Timer Registers ...52

Logical Context Support ..53

Mode Registers ...54

MI Commands for Video Enhancement Engine ...55

User Mode Privileged Commands ..56

Preemption .. 57

Ring Buffer Scheduling ..57

ExecList Scheduling ...58

Command Streamer (CS) ALU Programming ... 59

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 1

Graphics Command Formats
This section describes the general format of the graphics device commands.

Graphics commands are defined with various formats. The first DWord of all commands is called the
header DWord. The header contains the only field common to all commands, the client field that
determines the device unit that processes the command data. The Command Parser examines the client
field of each command to condition the further processing of the command and route the command
data accordingly.

Graphics commands vary in length, though are always multiples of DWords. The length of a command
is either:

• Implied by the client/opcode
• Fixed by the client/opcode yet included in a header field (so the Command Parser explicitly knows

how much data to copy/process)
• Variable, with a field in the header indicating the total length of the command

Note that command sequences require QWord alignment and padding to QWord length to be placed in
Ring and Batch Buffers.

The following subsections provide a brief overview of the graphics commands by client type provides a
diagram of the formats of the header DWords for all commands. Following that is a list of command
mnemonics by client type.

Command Stream Programming

2 Doc Ref # IHD-OS-BDW-Vol 6-05.15

Command Header
Render Command Header Format

Bits

TYPE 31:29 28:24 23 22 21:0

Memory
Interface

(MI)

000 Opcode
00h – NOP
0Xh – Single DWord Commands
1Xh – Two+ DWord Commands
2Xh – Store Data Commands
3Xh – Ring/Batch Buffer Cmds

 Identification No./DWord Count
Command Dependent Data
5:0 – DWord Count
5:0 – DWord Count
5:0 – DWord Count

Reserved 001,
010

Opcode – 11111 23:19
Sub Opcode 00h – 01h

18:16
Reserved

15:0
DWord Count

Bits

TYPE 31:29 28:27 26:24 23:16 15:8 7:0

Common 011 00 Opcode – 000 Sub Opcode Data DWord Count

Common (NP)1 011 00 Opcode – 001 Sub Opcode Data DWord Count

Reserved 011 00 Opcode – 010 – 111

Single Dword Command 011 01 Opcode – 000 – 001 Sub Opcode N/A

Reserved 011 01 Opcode – 010 – 111

Media State 011 10 Opcode – 000 Sub Opcode Dword Count

Media Object 011 10 Opcode – 001 – 010 Sub Opcode Dword Count

Reserved 011 10 Opcode – 011 – 111

3DState 011 11 Opcode – 000 Sub Opcode Data DWord Count

3DState (NP)1 011 11 Opcode – 001 Sub Opcode Data DWord Count

PIPE_Control 011 11 Opcode – 010 Data DWord Count

3DPrimitive 011 11 Opcode – 011 Data DWord Count

Reserved 011 11 Opcode – 100 – 111

Reserved 100 XX

Reserved 101 XX

Reserved 110 XX

Notes:
1The qualifier “NP” indicates that the state variable is non-pipelined and the render pipe is flushed
before such a state variable is updated. The other state variables are pipelined (default).

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 3

Video Command Header Format

Bits

TYPE 31:29 28:24 23 22 21:0

Memory
Interface

(MI)

000 Opcode
00h – NOP
0Xh – Single DWord Commands
1Xh – Reserved
2Xh – Store Data Commands
3Xh – Ring/Batch Buffer Cmds

 Identification No./DWord Count
Command Dependent Data
5:0 – DWord Count
5:0 – DWord Count
5:0 – DWord Count

TYPE 31:29 28:27 26:24 23:16 15:0

Reserved 011 00 XXX XX

MFX Single DW 011 01 000 Opcode: 0h 0

Reserved 011 01 1XX

Reserved 011 10 0XX

AVC State 011 10 100 Opcode: 0h – 4h DWord Count

AVC Object 011 10 100 Opcode: 8h DWord Count

VC1 State 011 10 101 Opcode: 0h – 4h DWord Count

VC1 Object 011 10 101 Opcode: 8h DWord Count

Reserved 011 10 11X

Reserved 011 11 XXX

TYPE 31:29 28:27 26:24 23:21 20:16 15:0

MFX Common 011 10 000 000 subopcode DWord Count

Reserved 011 10 000 001-111 subopcode DWord Count

AVC Common 011 10 001 000 subopcode DWord Count

AVC Dec 011 10 001 001 subopcode DWord Count

AVC Enc 011 10 001 010 subopcode DWord Count

Reserved 011 10 001 011-111 subopcode DWord Count

Reserved (for VC1 Common) 011 10 010 000 subopcode DWord Count

VC1 Dec 011 10 010 001 subopcode DWord Count

Reserved (for VC1 Enc) 011 10 010 010 subopcode DWord Count

Reserved 011 10 010 011-111 subopcode DWord Count

Reserved (MPEG2 Common) 011 10 011 000 subopcode DWord Count

MPEG2 Dec 011 10 011 001 subopcode DWord Count

Reserved (for MPEG2 Enc) 011 10 011 010 subopcode DWord Count

Reserved 011 10 011 011-111 subopcode DWord Count

Reserved 011 10 100-111 XXX

Command Stream Programming

4 Doc Ref # IHD-OS-BDW-Vol 6-05.15

Video Enhancement Command Header Format

Bits

TYPE 31:29 28:24 23 22 21:0

Memory
Interface
(MI)

000 Opcode
00h – NOP
0Xh – Single DWord Commands
1Xh – Two+ DWord Commands
2Xh – Store Data Commands
3Xh – Ring/Batch Buffer Cmds

 Identification No./DWord Count
Command Dependent Data
5:0 – DWord Count
5:0 – DWord Count
5:0 – DWord Count

Reserved 001, 010

TYPE 31:29 28:27 26:24 23:21 20:16 15:12 11:0

VEBOX (Parallel
Video Pipe)

011 10: Pipeline
00: Reserved
01: Reserved
11: Reserved

Command
Opcode – 100

Sub
Opcode A

Sub
Opcode B

Reserved Dword
Count

Blitter Command Header Format

Bits

TYPE 31:29 28:24 23 22 21:0

Memory
Interface

(MI)

000 Opcode
00h – NOP
0Xh – Single DWord Commands
1Xh – Two+ DWord Commands
2Xh – Store Data Commands
3Xh – Ring/Batch Buffer Cmds

 Identification No./DWord Count
Command Dependent Data
5:0 – DWord Count
5:0 – DWord Count
5:0 – DWord Count

Reserved 001, 011

TYPE 31:29 28:22 21:9 8:0

Blitter (2D) 010 Command Opcode Command Dependent Data Dword Count

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 5

Memory Interface Commands

Memory Interface (MI) commands are basically those commands which do not require processing by
the 2D or 3D Rendering/Mapping engines. The functions performed by these commands include:

• Control of the command stream (e.g., Batch Buffer commands, breakpoints, ARB On/Off, etc.)
• Hardware synchronization (e.g., flush, wait-for-event)
• Software synchronization (e.g., Store DWORD, report head)
• Graphics buffer definition (e.g., Display buffer, Overlay buffer)
• Miscellaneous functions

All of the following commands are defined in Memory Interface Commands.

Memory Interface Commands for RCP

Opcode
(28:23) Command Pipes

1 DWord

00h MI_NOOP All

01h MI_SET_PREDICATE Render

02h MI_USER_INTERRUPT All

03h MI_WAIT_FOR_EVENT All

05h MI_ARB_CHECK All

06h MI_RS_CONTROL Render

07h MI_REPORT_HEAD All

08h MI_ARB_ON_OFF All except Blitter

09h MI_URB_ATOMIC_ALLOC Render

0Ah MI_BATCH_BUFFER_END All

0Bh MI_SUSPEND_FLUSH All

0Ch MI_PREDICATE Render

0Dh MI_TOPOLOGY_FILTER Render

0Fh MI_RS_CONTEXT Render

2+ DWord

10h Reserved

14h MI_DISPLAY_FLIP Render and Blitter

15h Reserved

16h MI_SEMAPHORE_MBOX All

17h Reserved

18h MI_SET_CONTEXT Render

19h MI_URB_CLEAR Render

1Ah MI_MATH All

Command Stream Programming

6 Doc Ref # IHD-OS-BDW-Vol 6-05.15

Opcode
(28:23) Command Pipes

1 DWord

1Bh MI_SEMAPHORE_SIGNAL All

1Ch MI_SEMAPHORE_WAIT All

1Eh-1Fh Reserved

Store Data

20h MI_STORE_DATA_IMM All

21h MI_STORE_DATA_INDEX All

22h MI_LOAD_REGISTER_IMM All

23h MI_UPDATE_GTT All

24h MI_STORE_REGISTER_MEM All

26h MI_FLUSH_DW All except Render

27h MI_CLFLUSH Render

29h MI_LOAD_REGISTER_MEM All

2Ah MI_LOAD_REGISTER_REG All

2Bh MI_RS_STORE_DATA_IMM Render

2Ch MI_LOAD_URB_MEM Render

2Dh MI_STORE_URB_MEM Render

2Eh MI_MEM_TO_MEM All

2Fh MI_ATOMIC All

Ring/Batch Buffer

30h Reserved

31h MI_BATCH_BUFFER_START Render

32h-35h Reserved

36h MI_CONDITIONAL_BATCH_BUFFER_END All

37h-38h Reserved

39h-3Fh Reserved

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 7

2D Commands

The 2D commands include various flavors of BLT operations, along with commands to set up BLT
engine state without actually performing a BLT. Most commands are of fixed length, though there are a
few commands that include a variable amount of "inline" data at the end of the command.

All the following commands are defined in Blitter Instructions.

2D Command Map

Opcode
(28:22) Command

00h Reserved

01h XY_SETUP_BLT

02h Reserved

03h XY_SETUP_CLIP_BLT

04h-10h Reserved

11h XY_SETUP_MONO_PATTERN_SL_BLT

12h-23h Reserved

24h XY_PIXEL_BLT

25h XY_SCANLINES_BLT

26h XY_TEXT_BLT

27h-30h Reserved

31h XY_TEXT_IMMEDIATE_BLT

32h-3Fh Reserved

40h COLOR_BLT

41h-42h Reserved

43h SRC_COPY_BLT

44h-4Fh Reserved

50h XY_COLOR_BLT

51h XY_PAT_BLT

52h XY_MONO_PAT_BLT

53h XY_SRC_COPY_BLT

54h XY_MONO_SRC_COPY_BLT

55h XY_FULL_BLT

56h XY_FULL_MONO_SRC_BLT

57h XY_FULL_MONO_PATTERN_BLT

58h XY_FULL_MONO_PATTERN_MONO_SRC_BLT

59h XY_MONO_PAT_FIXED_BLT

5Ah-70h Reserved

Command Stream Programming

8 Doc Ref # IHD-OS-BDW-Vol 6-05.15

Opcode
(28:22) Command

71h XY_MONO_SRC_COPY_IMMEDIATE_BLT

72h XY_PAT_BLT_IMMEDIATE

73h XY_SRC_COPY_CHROMA_BLT

74h XY_FULL_IMMEDIATE_PATTERN_BLT

75h XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT

76h XY_PAT_CHROMA_BLT

77h XY_PAT_CHROMA_BLT_IMMEDIATE

78h-7Fh Reserved

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 9

3D Commands

The 3D commands are used to program the graphics pipelines for 3D operations.

Refer to the 3D chapter for a description of the 3D state and primitive commands and the Media
chapter for a description of the media-related state and object commands.

For all commands listed in 3D Command Map, the Pipeline Type (bits 28:27) is 3h, indicating the 3D
Pipeline.

3D Command Map

Opcode
Bits 26:24

Sub Opcode
Bits 23:16 Command Definition Chapter

0h 03h Reserved

0h 04h 3DSTATE_CLEAR_PARAMS 3D Pipeline

0h 05h 3DSTATE_DEPTH_BUFFER 3D Pipeline

0h 06h 3DSTATE_STENCIL_BUFFER 3D Pipeline

0h 07h 3DSTATE_HIER_DEPTH_BUFFER 3D Pipeline

0h 08h 3DSTATE_VERTEX_BUFFERS Vertex Fetch

0h 09h 3DSTATE_VERTEX_ELEMENTS Vertex Fetch

0h 0Ah 3DSTATE_INDEX_BUFFER Vertex Fetch

0h 0Bh 3DSTATE_VF_STATISTICS Vertex Fetch

0h 0Ch Reserved

0h 0Dh 3DSTATE_VIEWPORT_STATE_POINTERS 3D Pipeline

0h 0Eh 3DSTATE_CC_STATE_POINTERS 3D Pipeline

0h 10h 3DSTATE_VS Vertex Shader

0h 11h 3DSTATE_GS Geometry Shader

0h 12h 3DSTATE_CLIP Clipper

0h 13h 3DSTATE_SF Strips & Fans

0h 14h 3DSTATE_WM Windower

0h 15h 3DSTATE_CONSTANT_VS Vertex Shader

0h 16h 3DSTATE_CONSTANT_GS Geometry Shader

0h 17h 3DSTATE_CONSTANT_PS Windower

0h 18h 3DSTATE_SAMPLE_MASK Windower

0h 19h 3DSTATE_CONSTANT_HS Hull Shader

0h 1Ah 3DSTATE_CONSTANT_DS Domain Shader

0h 1Bh 3DSTATE_HS Hull Shader

0h 1Ch 3DSTATE_TE Tesselator

0h 1Dh 3DSTATE_DS Domain Shader

0h 1Eh 3DSTATE_STREAMOUT HW Streamout

Command Stream Programming

10 Doc Ref # IHD-OS-BDW-Vol 6-05.15

Opcode
Bits 26:24

Sub Opcode
Bits 23:16 Command Definition Chapter

0h 1Fh 3DSTATE_SBE Setup

0h 20h 3DSTATE_PS Pixel Shader

0h 21h 3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP Strips & Fans

0h 22h Reserved

0h 23h 3DSTATE_VIEWPORT_STATE_POINTERS_CC Windower

0h 24h 3DSTATE_BLEND_STATE_POINTERS Pixel Shader

0h 25h 3DSTATE_DEPTH_STENCIL_STATE_POINTERS Pixel Shader

0h 26h 3DSTATE_BINDING_TABLE_POINTERS_VS Vertex Shader

0h 27h 3DSTATE_BINDING_TABLE_POINTERS_HS Hull Shader

0h 28h 3DSTATE_BINDING_TABLE_POINTERS_DS Domain Shader

0h 29h 3DSTATE_BINDING_TABLE_POINTERS_GS Geometry Shader

0h 2Ah 3DSTATE_BINDING_TABLE_POINTERS_PS Pixel Shader

0h 2Bh 3DSTATE_SAMPLER_STATE_POINTERS_VS Vertex Shader

0h 2Ch 3DSTATE_SAMPLER_STATE_POINTERS_HS Hull Shader

0h 2Dh 3DSTATE_SAMPLER_STATE_POINTERS_DS Domain Shader

0h 2Eh 3DSTATE_SAMPLER_STATE_POINTERS_GS Geometry Shader

0h 2Fh Reserved

0h 30h 3DSTATE_URB_VS Vertex Shader

0h 31h 3DSTATE_URB_HS Hull Shader

0h 32h 3DSTATE_URB_DS Domain Shader

0h 33h 3DSTATE_URB_GS Geometry Shader

0h 34h 3DSTATE_GATHER_CONSTANT_VS Vertex Shader

0h 35h 3DSTATE_GATHER_CONSTANT_GS Geometry Shader

0h 36h 3DSTATE_GATHER_CONSTANT_HS Hull Shader

0h 37h 3DSTATE_GATHER_CONSTANT_DS Domain Shader

0h 38h 3DSTATE_GATHER_CONSTANT_PS Pixel Shader

0h 39h 3DSTATE_DX9_CONSTANTF_VS Vertex Shader

0h 3Ah 3DSTATE_DX9_CONSTANTF_PS Pixel Shader

0h 3Bh 3DSTATE_DX9_CONSTANTI_VS Vertex Shader

0h 3Ch 3DSTATE_DX9_CONSTANTI_PS Pixel Shader

0h 3Dh 3DSTATE_DX9_CONSTANTB_VS Vertex Shader

0h 3Eh 3DSTATE_DX9_CONSTANTB_PS Pixel Shader

0h 3Fh 3DSTATE_DX9_LOCAL_VALID_VS Vertex Shader

0h 40h 3DSTATE_DX9_LOCAL_VALID_PS Pixel Shader

0h 41h 3DSTATE_DX9_GENERATE_ACTIVE_VS Vertex Shader

0h 42h 3DSTATE_DX9_GENERATE_ACTIVE_PS Pixel Shader

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 11

Opcode
Bits 26:24

Sub Opcode
Bits 23:16 Command Definition Chapter

0h 43h 3DSTATE_BINDING_TABLE_EDIT_VS Vertex Shader

0h 44h 3DSTATE_BINDING_TABLE_EDIT_GS Geometry Shader

0h 45h 3DSTATE_BINDING_TABLE_EDIT_HS Hull Shader

0h 46h 3DSTATE_BINDING_TABLE_EDIT_DS Domain Shader

0h 47h 3DSTATE_BINDING_TABLE_EDIT_PS Pixel Shader

0h 48h 3DSTATE_VF_HASHING Vertex Fetch

0h 49h 3DSTATE_VF_INSTANCING Vertex Fetch

0h 4Ah 3DSTATE_VF_SGVS Vertex Fetch

0h 4Bh 3DSTATE_VF_TOPOLOGY Vertex Fetch

0h 4Ch 3DSTATE_WM_CHROMA_KEY Windower

0h 4Dh 3DSTATE_PS_BLEND Windower

0h 4Eh 3DSTATE_WM_DEPTH_STENCIL Windower

0h 4Fh 3DSTATE_PS_EXTRA Windower

0h 50h 3DSTATE_RASTER Strips & Fans

0h 51h 3DSTATE_SBE_SWIZ Strips & Fans

0h 52h 3DSTATE_WM_HZ_OP Windower

0h 53h 3DSTATE_INT (internally generated state) 3D Pipeline

0h 56h-FFh Reserved

1h 00h 3DSTATE_DRAWING_RECTANGLE Strips & Fans

1h 02h 3DSTATE_SAMPLER_PALETTE_LOAD0 Sampling Engine

1h 03h Reserved

1h 04h 3DSTATE_CHROMA_KEY Sampling Engine

1h 05h Reserved

1h 06h 3DSTATE_POLY_STIPPLE_OFFSET Windower

1h 07h 3DSTATE_POLY_STIPPLE_PATTERN Windower

1h 08h 3DSTATE_LINE_STIPPLE Windower

1h 0Ah 3DSTATE_AA_LINE_PARAMS Windower

1h 0Bh 3DSTATE_GS_SVB_INDEX Geometry Shader

1h 0Ch 3DSTATE_SAMPLER_PALETTE_LOAD1 Sampling Engine

1h 0Dh 3DSTATE_MULTISAMPLE Windower

1h 0Eh 3DSTATE_STENCIL_BUFFER Windower

1h 0Fh 3DSTATE_HIER_DEPTH_BUFFER Windower

1h 10h 3DSTATE_CLEAR_PARAMS Windower

1h 11h 3DSTATE_MONOFILTER_SIZE Sampling Engine

1h 12h 3DSTATE_PUSH_CONSTANT_ALLOC_VS Vertex Shader

1h 13h 3DSTATE_PUSH_CONSTANT_ALLOC_HS Hull Shader

Command Stream Programming

12 Doc Ref # IHD-OS-BDW-Vol 6-05.15

Opcode
Bits 26:24

Sub Opcode
Bits 23:16 Command Definition Chapter

1h 14h 3DSTATE_PUSH_CONSTANT_ALLOC_DS Domain Shader

1h 15h 3DSTATE_PUSH_CONSTANT_ALLOC_GS Geometry Shader

1h 16h 3DSTATE_PUSH_CONSTANT_ALLOC_PS Pixel Shader

1h 17h 3DSTATE_SO_DECL_LIST HW Streamout

1h 18h 3DSTATE_SO_BUFFER HW Streamout

1h 19h 3DSTATE_BINDING_TABLE_POOL_ALLOC Resource Streamer

1h 1Ah 3DSTATE_GATHER_POOL_ALLOC Resource Streamer

1h 1Bh 3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC Resource Streamer

1h 1Ch 3DSTATE_SAMPLE_PATTERN Windower

1h 1Dh 3DSTATE_URB_CLEAR 3D Pipeline

1h 1Eh-FFh Reserved

2h 00h PIPE_CONTROL 3D Pipeline

2h 01h-FFh Reserved

3h 00h 3DPRIMITIVE Vertex Fetch

3h 01h-FFh Reserved

4h-7h 00h-FFh Reserved

Pipeline Type (28:27) Opcode Sub Opcode

Command Definition Chapter Common (pipelined) Bits 26:24 Bits 23:16

0h 0h 03h STATE_PREFETCH Graphics Processing Engine

0h 0h 04h-FFh Reserved

Common (non-pipelined) Bits 26:24 Bits 23:16

0h 1h 00h Reserved N/A

0h 1h 01h STATE_BASE_ADDRESS Graphics Processing Engine

0h 1h 02h STATE_SIP Graphics Processing Engine

0h 1h 03h SWTESS BASE ADDRESS 3D Pipeline

0h 1h 04h GPGPU CSR BASE ADDRESS Graphics Processing Engine

0h 1h 04h–FFh Reserved N/A

Reserved Bits 26:24 Bits 23:16

0h 2h–7h XX Reserved N/A

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 13

VEBOX Commands

The VEBOX commands are used to program the Video Enhancement engine attached to the Video
Enhancement Command Parser.

VEBOX Command Map

Pipeline Type (28:27) Opcode (26:24) SubopA (23:21) SubopB (20:16) Command

2h 4h 0h 0h VEBOX_SURFACE_STATE

2h 4h 0h 2h VEBOX_STATE

Command Stream Programming

14 Doc Ref # IHD-OS-BDW-Vol 6-05.15

MFX Commands

The MFX (MFD for decode and MFC for encode) commands are used to program the multi-format
codec engine attached to the Video Codec Command Parser. See the MFD and MFC chapters for a
description of these commands.

MFX state commands support direct state model and indirect state model. Recommended usage of
indirect state model is provided here (as a software usage guideline).

Pipeline
Type

(28:27)
Opcode
(26:24)

SubopA
(23:21)

SubopB
(20:16) Command Chapter

Recommended
Indirect State
Pointer Map Interruptable?

MFX Common (State)

2h 0h 0h 0h MFX_PIPE_MODE_SELECT MFX IMAGE N/A

2h 0h 0h 1h MFX_SURFACE_STATE MFX IMAGE N/A

2h 0h 0h 2h MFX_PIPE_BUF_ADDR_STATE MFX IMAGE N/A

2h 0h 0h 3h MFX_IND_OBJ_BASE_ADDR_STATE MFX IMAGE N/A

2h 0h 0h 4h MFX_BSP_BUF_BASE_ADDR_STATE MFX IMAGE N/A

2h 0h 0h 6h MFX_ STATE_POINTER MFX IMAGE N/A

2h 0h 0h 7-8h Reserved N/A N/A N/A

MFX Common (Object)

2h 0h 1h 9h MFD_ IT_OBJECT MFX N/A Yes

2h 0h 0h 4-1Fh Reserved N/A N/A N/A

AVC Common (State)

2h 1h 0h 0h MFX_AVC_IMG_STATE MFX IMAGE N/A

2h 1h 0h 1h MFX_AVC_QM_STATE MFX IMAGE N/A

2h 1h 0h 2h MFX_AVC_DIRECTMODE_STATE MFX SLICE N/A

2h 1h 0h 3h MFX_AVC_SLICE_STATE MFX SLICE N/A

2h 1h 0h 4h MFX_AVC_REF_IDX_STATE MFX SLICE N/A

2h 1h 0h 5h MFX_AVC_WEIGHTOFFSET_STATE MFX SLICE N/A

2h 1h 0h 6-1Fh Reserved N/A N/A N/A

AVC Dec

2h 1h 1h 0-7h Reserved N/A N/A N/A

2h 1h 1h 8h MFD_AVC_BSD_OBJECT MFX N/A No

2h 1h 1h 9-1Fh Reserved N/A N/A N/A

AVC Enc

2h 1h 2h 0-1h Reserved N/A N/A N/A

2h 1h 2h 2h MFC_AVC_FQM_STATE MFX IMAGE N/A

2h 1h 2h 3-7h Reserved N/A N/A N/A

2h 1h 2h 8h MFC_AVC_PAK_INSERT_OBJECT MFX N/A N/A

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 15

Pipeline
Type

(28:27)
Opcode
(26:24)

SubopA
(23:21)

SubopB
(20:16) Command Chapter

Recommended
Indirect State
Pointer Map Interruptable?

2h 1h 2h 9h MFC_AVC_PAK_OBJECT MFX N/A Yes

2h 1h 2h A-1Fh Reserved N/A N/A N/A

2h 1h 2h 0-1Fh Reserved N/A N/A N/A

VC1 Common

2h 2h 0h 0h MFX_VC1_PIC_STATE MFX IMAGE N/A

2h 2h 0h 1h MFX_VC1_PRED_PIPE_STATE MFX IMAGE N/A

2h 2h 0h 2h MFX_VC1_DIRECTMODE_STATE MFX SLICE N/A

2h 2h 0h 2-1Fh Reserved N/A N/A N/A

VC1 Dec

2h 2h 1h 0-7h Reserved N/A N/A N/A

2h 2h 1h 8h MFD_VC1_BSD_OBJECT MFX N/A Yes

2h 2h 1h 9-1Fh Reserved N/A N/A N/A

VC1 Enc

2h 2h 2h 0-1Fh Reserved N/A N/A N/A

MPEG2 Common

2h 3h 0h 0h MFX_MPEG2_PIC_STATE MFX IMAGE N/A

2h 3h 0h 1h MFX_MPEG2_QM_STATE MFX IMAGE N/A

2h 3h 0h 2-1Fh Reserved N/A N/A N/A

MPEG2 Dec

2h 3h 1h 1-7h Reserved N/A N/A N/A

2h 3h 1h 8h MFD_MPEG2_BSD_OBJECT MFX N/A Yes

2h 3h 1h 9-1Fh Reserved N/A N/A N/A

MPEG2 Enc

2h 3h 2h 0-1Fh Reserved N/A N/A N/A

The Rest

2h 4-5h,
7h

x x Reserved N/A N/A N/A

Command Stream Programming

16 Doc Ref # IHD-OS-BDW-Vol 6-05.15

Scheduling
Content for this topic is currently under development.

Execlists

Execlists are the method by which new contexts are submitted for execution. Note that this mechanism
cannot be used when the Execlist Enable bit in the corresponding engines MODE register is not set, i.e
GFX_MODE register for Render Engine, BLT_MODE register for Blitter Engine, VCS_MODE register for
Video Engine, or VECS_MODE register for Video Enhancement Engine. If this bit is not set in the
engine's MODE register, writing to the registers in this section is UNDEFINED.

Broadwell implements 2 execlists. Each execlist can have up to 2 context descriptors in it, each
describing a context to run. SW assembles an execlist by writing each of the context descriptor
elements to the Execlist Submit Port register. Writing the final DWord triggers the submission. It is the
responsibility of SW to keep track of when an empty execlist entry is available to receive a new execlist
submitted via the Submit Port. Submitting a new execlist when there is already a pending execlist (in
addition to the current execlist) is UNDEFINED. In general, the interrupt indicating that the pending
execlist has become the current execlist should always be observed before a new pending execlist is
submitted. This includes the case where the ring is idle and the very first execlist is submitted; it should
not be assumed that this execlist becomes the current list instantaneously.

The submission of a new execlist (known as a preemption request) is interpreted as a request to switch
execlists as soon as possible. This is the only trigger for a execlist switch. Within an execlist, a switch
from one element (context) to the next can be triggered for several reasons, all of which are
synchronous to what the running context itself is doing. Once a context is switched out, the relevant
context state and context descriptor doesn’t exist in HW, only way the context can be brought back in
to HW is by SW resubmitting the context through Execlist Submit Port.

SW must ensure the contexts submitted to both the context descriptors in the execlist are different; i.e
SW must not submit the same context descriptor to both the elements of the execlist.

The following are Execlist Registers:

EXECLIST_SUBMITPORT - Execlist Submit Port Register

EXECLIST0_CONTENTS - Execlist 0 Contents Register

EXECLIST1_CONTENTS - Execlist 1 Contents Register

EXECLIST_STATUS - Execlist Status Register

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 17

Execlist Structure

Before submitting a context for the first time, the context image must be properly initialized. Proper
initialization includes the ring context registers (ring location, head/tail pointers, etc.) and the page
directory.

Render CS Only: Render state need not be initialized; the Render Context Restore Inhibit bit in the
Context/Save image in memory should be set to prevent restoring garbage render context. See the
Logical Ring Context Format section for details.

Context Descriptor Format Structure

Command Stream Programming

18 Doc Ref # IHD-OS-BDW-Vol 6-05.15

Context Descriptor Format

Context Descriptor Format

Before submitting a context for the first time, the context image must be properly initialized. Proper
initialization includes the ring context registers (ring location, head/tail pointers, etc.) and the page
directory.

Render CS Only: Render state need not be initialized; the Render Context Restore Inhibit bit in the
Context/Save image in memory should be set to prevent restoring garbage render context. See the
Logical Ring Context Format section for details.

Programming Note on Context ID field in the Context Descriptor

This section describes the current usage by SW.

General Layout:

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

Eng. ID SW Counter HW
Use

SW Context ID

Eng. ID = Engine ID (a software defined enum to identify RCS, BCS etc..)

SW Counter = Submission Counter. (SW generates an unique counter value on every submission to
ensure GroupID + PASID is unique to avoid ambiguity.)

Bit 20 = Is Proxy submission. If Set to true, SW Context ID[19:0] = LRCA [31:20], else it is an index into
the Context Pool.

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 19

Logical Ring Context Format

When execlists are enabled, the Context Image for the each engine (Render, Video, Blitter, Video
Enhancement) consists of Per-Process HW Status Page, Ring Context and Engine Context:

• Per-Process HW Status Page (4K)
• Ring Context (Ring Buffer Control Registers, Page Directory Pointers ..etc)
• Engine Context (PipelineState, Non-pipelineState, Statistics)

When execlists are disabled, the context image doesn’t consist the Per-Process HW status page.

The detailed format of the Blitter/Video/VideoEnhancement logical ring context is documented in the
“GPU Overview” volume, “Memory Data Formats” chapter.

The detailed format of the Render logical Ring and Engine Context including their size is mentioned in
section “Graphics PRM: 3D-Media-GPGPU Engine > Render Command Memory Interface > Render
Engine Logical Context Data > Register/State Context” for each product.

Command Stream Programming

20 Doc Ref # IHD-OS-BDW-Vol 6-05.15

Context Status

A context switch interrupt will be sent anytime a context switch or execlist change occurs (including the
execlist change without context switch scenario described in the ELSP -- Execlist Submit Port Register
section). A status QW for the context that was just switched away from will be written to the Context
Status Buffer in the Global Hardware Status Page. A copy of the Context Status Buffer is also maintained
ON CHIP inside the command streamer, which is MMIO mapped and can be read/written using MMIO
access.

Context Status Buffer in Global Hardware Status Page is exercised when IA based scheduling is done.
The status contains the context ID and the reason for the context switch. Note that since there will have
been no running contexts when the very first (after reset) execlist is submitted or when HW is idle, the
Context ID in the first Context Status Qword will be UNDEFINED, this is indicated by setting IDLE to
ACTIVE bit in the context status.

Format of Context Status QWord

Bits Description

63:32 Context ID

31:28 Reserved

27:24 Reserved

23:20 Reserved

19:16 Reserved

15 Lite Restore. This bit is only valid only when Preempted bit is set. When set, this bit indicates a given
context got preempted with the same context resulting in Lite Restore in HW.

14:12 Display Plane. This indicates the display plane for which Wait on Scnaline/V-Blank/Sync Flip has been
executed leading to context switch. This field is only valid when one of the “Wait on Scanline” or “Wait on
Vblnak” or “Wait on sync Flip” is set.
000b: Display Plane-A
001b: Display Plane-B
010b: Display Plane-C
011b: Display Plane Sprite-A
100b: Display Plane Sprite-B
101b: Display Plane Sprite-C

11 Semaphore Wait Mode
0: Signal Mode
1: Poll Mode
This field is valid and must be looked at only when the "Wait on Semaphore" field is set.

10 Reserved

9 Reserved

8 Wait on Scanline has resulted in context switch.
This may be cleared during context exit if the condition is met. If none of the bits specifying why we exit
and ring is not complete, then scheduler should reschedule the context when possible.

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 21

Bits Description

7 Wait on Semaphore has resulted in context switch.
This may be cleared during context exit if the condition is met. If none of the bits specifying why we exit
and ring is not complete, then scheduler should reschedule the context when possible.

6 Wait on V-Blank has resulted in context switch.
This may be cleared during context exit if the condition is met. If none of the bits specifying why we exit
and ring is not complete, then scheduler should reschedule the context when possible.

5 Wait on Sync Flip has resulted in context switch.
This may be cleared during context exit if the condition is met. If none of the bits specifying why we exit
and ring is not complete, then scheduler should reschedule the context when possible.

5 Wait on Sync Flip has resulted in context switch.

4 Context Complete Element is completely processed (Head eqv to Tail) and resulted in a context switch.

3 ACTIVE to IDLE following this context switch there is no active element available in HW to execute.

2 Element Switch. Context Switch happened from first element in the current execlist to the second
element of the same execlist.

1 Preempted. Submission of a new execlist has resulted in context switch. The switch is from element in
current execlist to element in pending execlist.

0 IDLE to ACTIVE. Execlist Submitted when HW is IDLE.
When this bit is set rest of the fields in CSQ are not valid.

Context Status should be inferred as described in the tables below. In the two tables below only one of
the context switch types will be set and it’s quite possible multiple context switch reasons are set. A “Y”
in a cell indicates the possibility of the context switch type for the corresponding context switch reason.

Inference of Context Status

Ctx Switch Type
Ctx Switch Reason IDLE to Active

Preempted/
Execlist Switch **Element Switch ACTIVE to IDLE

Context Complete X Y Y Y

Wait on Sync Flip X Y Y Y

Wait on V-Blank X Y Y Y

Wait on ScanLine X Y Y Y

Wait on Semaphore X Y Y Y

High Priority Context Y Y X Y

** This field is not valid when High Priority Context field is set and HW must force it to ‘0’.

When SW services a context switch interrupt, it should read the Context Status Buffer beginning where
it left off reading the last time it serviced a context switch interrupt. It should read up to the Context
Status Buffer Write Pointer, which is recorded in the Context Status Buffer Pointer register. At the end
of the context switch interrupt processing SW will update the Context Status Buffer Read Pointer with
the write buffer pointer value. The status QWs can be examined to determine which contexts were
switched out between context interrupt service intervals, and why.

Command Stream Programming

22 Doc Ref # IHD-OS-BDW-Vol 6-05.15

Number of Context Status Entries

Number of Status Entries

6 (QW) Entries

Status QWords are written to the Context Status Buffer at incrementing locations. The Context Status
Buffer has a limited size (see Table Number of Context Status Entries) and simply wraps around to the
beginning when the end is reached. Normally the number of status updates that can occur without SW
intervening to submit a new execlist (and presumably reading any new status) is the number of execlists
times the maximum number of context elements per execlist. Also note that there is no predictable
relationship between a context’s position in an execlist and the position of its corresponding status
QWord in the Context Status Buffer.

The Context Status Buffer fits into a single cacheline so that the whole buffer is read from memory at
once if the driver performs a cacheable read.

Format of the Context Status Buffer

QW Description

7 Last Written Status Offset. The lower byte of this QWord is written on every context switch with the (pre-
increment) value of the b>Context Status Buffer Write Pointer. The lower 3 bits increment for every status
QWord write; bits[7:3] are reserved and must be ‘0’. The lowest 3 bits indicate which of the Context Status
QWords was just written. The rest of the bits [63:8] are reserved.

6 Reserved: MBZ

5:0 Context Status QWords. A circular buffer of context status QWs. As each context is switched away from,
its status is written here at ascending QWs as indicated by the Last Written Status Offset. Once QW 5 has
been written, the pointer wraps around so that the next status will be written at QW0.
Format = ContextStatusDW

The following are Context Status Registers:

CTXT_ST_PTR - Context Status Buffer Pointer Register

CTXT_ST_BUF - Context Status Buffer Contents

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 23

RINGBUF — Ring Buffer Registers

See the “Device Programming Environment” chapter for detailed information on these registers.

RING_BUFFER_TAIL - Ring Buffer Tail

RING_BUFFER_HEAD - Ring Buffer Head

RING_BUFFER_START - Ring Buffer Start

RING_BUFFER_CTL - Ring Buffer Control

UHPTR - Pending Head Pointer Register

Command Stream Programming

24 Doc Ref # IHD-OS-BDW-Vol 6-05.15

Virtual Memory Control
Per-Process GTT (PPGTT) is setup for an engine (Render, Blitter, Video and Video Enhancement) by
programming corresponding Page Directory Pointer (PDP) registers listed below. Refer “Graphics
Translation Tables” in “Memory Overview” for more details on Per-Process page table entries and related
translations.

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 25

Render Engine Command Streamer (RCS)
The RCS (Render Command Streamer) unit primarily serves as the software programming interface
between the O/S driver and the Render Engine. It is responsible for fetching, decoding, and dispatching
of data packets (3D/Media Commands with the header DWord removed) to the front end interface
module of Render Engine.

Logic Functions Included

• MMIO register programming interface.

• DMA action for fetching of ring data from memory.

• Management of the Head pointer for the Ring Buffer.

• Decode of ring data and sending it to the appropriate destination: 3D (Vertex Fetch Unit) & GPGPU.

• Handling of user interrupts.

• Flushing the 3D and GPGPU Engine.

• Handle NOP.

• DMA action for fetching of execlists from memory.

• Handling of ring context switch interrupt.

The register programming bus is a DWord interface bus that is driven by the configuration master. The
RCS unit only claims memory mapped I/O cycles that are targeted to its range of 0x2000 to 0x27FF. The
Gx and MFX Engines use semaphore to synchronize their operations.

RCS operates completely independent of the MFx CS.

The simple sequence of events is as follows: a ring (say PRB0) is programmed by a memory-mapped
register write cycle. The DMA inside RCS is kicked off. The DMA fetches commands from memory based
on the starting address and head pointer. The DMA requests cache lines from memory (one cacheline
CL at a time). There is guaranteed space in the DMA FIFO (8 CL deep) for data coming back from
memory. The DMA control logic has copies of the head pointer and the tail pointer. The DMA
increments the head pointer after making requests for ring commands. Once the DMA copy of the head
pointer becomes equal to the tail pointer, the DMA stops requesting.

The parser starts executing once the DMA FIFO has valid commands. All the commands have a header
DWord packet. Based on the encoding in the header packet, the command may be targeted towards
Vertex Fetch Unit or GPPGU engine or the command parser. After execution of every command, the
actual head pointer is updated. The ring is considered empty when the head pointer becomes equal to
the tail pointer.

Batch Buffer Privilege Register
FORCE_TO_NONPRIV - FORCE_TO_NONPRIV

Command Stream Programming

26 Doc Ref # IHD-OS-BDW-Vol 6-05.15

Mode Registers

The following are the Mode Registers:

INSTPM - Instruction Parser Mode Register

EXCC - Execute Condition Code Register

NOPID - NOP Identification Register

CSPREEMPT - CSPREEMPT

RCS_CTXID_PREEMPTION_HINT - RCS Context Preemption Hint

RCS_PREEMPTION_HINT - RCS_PREEMPTION_HINT

RCS_PREEMPTION_HINT_UDW - RCS_PREEMPTION_HINT_UDW

RS_PRE_HINT - RS Preemption Hint

RS_PREEMPTION_HINT_UDW - RS Preemption Hint UDW

IDLEDLY - Idle Switch Delay

SEMA_WAIT_POLL - Semaphore Polling Interval on Wait

CS_RESET_CTRL - CS Reset Control Register

HWS_PGA - Hardware Status Page Address Register

Hardware Status Page Layout

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 27

Logical Context Support

The following are the Logical Context Support Registers:

BB_ADDR - Batch Buffer Head Pointer Register

BB_ADDR_UDW - Batch Buffer Upper Head Pointer Register

RCS_BB_STATE - RCS Batch Buffer State Register

CTXT_SR_CTL - Context Save/Restore Control Register

CCID - Current Context Register]

CXT_SIZE - Context Sizes

RS_CXT_OFFSET - Resource Streamer Context Offset

URB_CXT_OFFSET - URB Context Offset

CXT_EL_OFFSET - Exec-List Context Offset

SYNC_FLIP_STATUS - Wait For Event and Display Flip Flags Register

SYNC_FLIP_STATUS_1 - Wait For Event and Display Flip Flags Register 1

WAIT_FOR_RC6_EXIT - Control Register for Power Management

SBB_ADDR - Second Level Batch Buffer Head Pointer Register

SBB_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Register

SBB_STATE - Second Level Batch Buffer State Register

PS_INVOCATION_COUNT_SLICE0 - PS Invocation Count for Slice0

PS_INVOCATION_COUNT_SLICE1 - PS Invocation Count for Slice1

PS_INVOCATION_COUNT_SLICE2 - PS Invocation Count for Slice2

PS_DEPTH_COUNT_SLICE0 - PS Depth Count for Slice0

PS_DEPTH_COUNT_SLICE1 - PS Depth Count for Slice1

PS_DEPTH_COUNT_SLICE2 - PS Depth Count for Slice2

DISPLAY_MESSAGE_FORWARD_STATUS - Display Message Forward Status Register

R_PWR_CLK_STATE - Render Power Clock State Register

Command Stream Programming

28 Doc Ref # IHD-OS-BDW-Vol 6-05.15

Context Save Registers

The following are the Context Save Registers:

BB_PREEMPT_ADDR - Batch Buffer Head Pointer Preemption Register

BB_PREEMPT_ADDR_UDW - Batch Buffer Upper Head Pointer Preemption Register

RING_BUFFER_HEAD_PREEMPT_REG - RING_BUFFER_HEAD_PREEMPT_REG

BB_START_ADDR - Batch Buffer Start Head Pointer Register

BB_START_ADDR_UDW - Batch Buffer Start Head Pointer Register for Upper DWord

BB_ADDR_DIFF - Batch Address Difference Register

BB_OFFSET - Batch Offset Register

SBB_PREEMPT_ADDR - Second Level Batch Buffer Head Pointer Preemption Register

SBB_PREEMPT_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Preemption Register

BB_PER_CTX_PTR - Batch Buffer Per Context Pointer

TDL_CONTEXT_SAVE - Context Save Request to TDL

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 29

MI Commands for Render Engine
This chapter describes the formats of the “Memory Interface” commands, including brief descriptions of
their use. The functions performed by these commands are discussed fully in the Memory Interface
Functions Device Programming Environment chapter.

This chapter describes MI Commands for the original graphics processing engine. The term “for
Rendering Engine” in the title has been added to differentiate this chapter from a similar one describing
the MI commands for the Media Decode Engine.

The commands detailed in this chapter are used across products within the Gen4+ family. However,
slight changes may be present in some commands (i.e., for features added or removed), or some
commands may be removed entirely. Refer to the Preface chapter for product specific summary.

MI_NOOP
MI_ARB_CHECK

MI_ARB_ON_OFF
MI_BATCH_BUFFER_START
MI_CONDITIONAL_BATCH_BUFFER_END
MI_DISPLAY_FLIP
MI_DISPLAY_FLIP
MI_LOAD_SCAN_LINES_EXCL
MI_LOAD_SCAN_LINES_INCL
MI_CLFLUSH

MI_MATH
MI_REPORT_HEAD
MI_STORE_DATA_IMM
MI_STORE_DATA_INDEX
MI_ATOMIC
MI_COPY_MEM_MEM
MI_LOAD_REGISTER_IMM

MI_LOAD_REGISTER_REG
MI_LOAD_REGISTER_MEM
MI_STORE_REGISTER_MEM
MI_SUSPEND_FLUSH
MI_UPDATE_GTT
MI_USER_INTERRUPT
MI_WAIT_FOR_EVENT
MI_SEMAPHORE_SIGNAL

MI_SEMAPHORE_WAIT

Command Stream Programming

30 Doc Ref # IHD-OS-BDW-Vol 6-05.15

User Mode Privileged Commands

A subset of the commands are privileged. These commands may be issued only from a privileged batch
buffer or directly from a ring buffer. Batch buffers in GGTT memory are privileged and batch buffers in
PPGTT memory are non-privileged. On parsing privileged command from a non-privileged batch buffer,
a Command Privilege Violation Error is flagged and the command is dropped. Command Privilege
Violation Error is logged in Error identity register of command streamer which gets propagated as
“Command Parser Master Error” interrupt to SW. Privilege access violation checks in HW can be
disabled by setting “Privilege Check Disable” bit in GFX_MODE register. When privilege access checks
are disabled HW will execute the Privilege command as expected.

User Mode Privileged Commands

User Mode Privileged Command Function in Non-Privileged Batch Buffers

MI_UPDATE_GTT Command is converted to NOOP.

MI_STORE_DATA_IMM Command is converted to NOOP if Use Global GTT is enabled.

MI_STORE_DATA_INDEX Command is converted to NOOP.

MI_STORE_REGISTER_MEM Register read is always performed. Memory update is dropped if Use
Global GTT is enabled.

MI_BATCH_BUFFER_START Command when executed from a batch buffer can set its “Privileged” level
to its parent batch buffer or lower.
Chained or Second level batch buffer can be “Privileged” only if the parent
or the initial batch buffer is “Privileged”. This is HW enforced.

MI_LOAD_REGISTER_IMM Command is converted to NOOP if the register accessed is privileged.

MI_LOAD_REGISTER_MEM Command is converted to NOOP if Use Global GTT is enabled.
Command is converted to NOOP, if the register accessed is privileged.

MI_LOAD_REGISTER_REG Register write to a Privileged Register will be discarded.

MI_REPORT_PERF_COUNT Command is converted to NOOP if Use Global GTT is enabled
If a privilege access violation occurs, the Report ID field in the report
generated by the next legitimate MI_REPORT_PERF_COUNT may be
corrupted.

PIPE_CONTROL Still send flush down, Post-Sync Operation is NOOP if Use Global GTT or
Use “Store Data Index” is enabled.

Post-Sync Operation LRI to Privileged Register is discarded.

Programming Note

Context: User Mode Privileged Commands

Command Privilege Violation error will not be set in a predictable fashion
on a Privilege Access Violation from a PIPE_CONTROL command.

MI_SET_CONTEXT Command is converted to NOOP.

MI_ATOMIC Command is converted to NOOP if Use Global GTT is enabled.

MI_COPY_MEM_MEM Command is converted to NOOP if Use Global GTT is used for source or
destination address.

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 31

User Mode Privileged Command Function in Non-Privileged Batch Buffers

MI_SEMAPHORE_WAIT Command is converted to NOOP if Use Global GTT is enabled.

MI_ARB_ON_OFF Command is converted to NOOP.

MI_DISPLAY_FLIP Command is converted to NOOP.

MI_CONDITIONAL_BATCH_BUFFER_E
ND

Command is converted to NOOP if Use Global GTT is enabled.

Parsing one of the commands in the table above from a non-privileged batch buffer will flag an error
and convert the command to a NOOP.

The table below lists the non-privileged registers that can be written to from a non-privileged batch
buffer executed from Render Command Streamer.

User Mode Non-Privileged Registers

MMIO Name MMIO Offset SIZE in DWords

NOPID 0x2094 1

MI_PREDICATE_RESULT_2 0x23BC 1

INSTPM 0x20C0 1

IA_VERTICES_COUNT 0x2310 2

IA_PRIMITIVES_COUNT 0x2318 2

VS_INVOCATION_COUNT 0x2320 2

HS_INVOCATION_COUNT 0x2300 2

DS_INVOCATION_COUNT 0x2308 2

GS_INVOCATION_COUNT 0x2328 2

GS_PRIMITIVES_COUNT 0x2330 2

CL_INVOCATION_COUNT 0x2338 2

CL_PRIMITIVES_COUNT 0x2340 2

PS_INVOCATION_COUNT_0 0x22C8 2

PS_DEPTH_COUNT _0 0x22D8 2

GPUGPU_DISPATCHDIMX 0x2500 1

GPUGPU_DISPATCHDIMY 0x2504 1

GPUGPU_DISPATCHDIMZ 0x2508 1

MI_PREDICATE_SRC0 0x2400 1

MI_PREDICATE_SRC0 0x2404 1

MI_PREDICATE_SRC1 0x2408 1

MI_PREDICATE_SRC1 0x240C 1

MI_PREDICATE_DATA 0x2410 1

MI_PREDICATE_DATA 0x2414 1

MI_PRED_RESULT 0x2418 1

3DPRIM_END_OFFSET 0x2420 1

Command Stream Programming

32 Doc Ref # IHD-OS-BDW-Vol 6-05.15

MMIO Name MMIO Offset SIZE in DWords

3DPRIM_START_VERTEX 0x2430 1

3DPRIM_VERTEX_COUNT 0x2434 1

3DPRIM_INSTANCE_COUNT 0x2438 1

3DPRIM_START_INSTANCE 0x243C 1

3DPRIM_BASE_VERTEX 0x2440 1

GPGPU_THREADS_DISPATCHED 0x2290 2

PS_INVOCATION_COUNT_1 0x22F0 2

PS_DEPTH_COUNT _1 0x22F8 2

BB_OFFSET 0x2158 1

MI_PREDICATE_RESULT_1 0x241C 1

CS_GPR (1-16) 0x2600 32

PS_INVOCATION_COUNT_2 0x2448 2

PS_DEPTH_COUNT_2 0x2450 2

Cache_Mode_0 0x7000 1

Cache_Mode_1 0x7004 1

GT_MODE 0x7008 1

L3_Config 0x7034 1

TD_CTL 0xE400 1

TD_CTL2 0xE404 1

SO_NUM_PRIMS_WRITTEN0 0x5200 2

SO_NUM_PRIMS_WRITTEN1 0x5208 2

SO_NUM_PRIMS_WRITTEN2 0x5210 2

SO_NUM_PRIMS_WRITTEN3 0x5218 2

SO_PRIM_STORAGE_NEEDED0 0x5240 2

SO_PRIM_STORAGE_NEEDED1 0x5248 2

SO_PRIM_STORAGE_NEEDED2 0x5250 2

SO_PRIM_STORAGE_NEEDED3 0x5258 2

SO_WRITE_OFFSET0 0x5280 1

SO_WRITE_OFFSET1 0x5284 1

SO_WRITE_OFFSET2 0x5288 1

SO_WRITE_OFFSET3 0x528C 1

PERF_CNT_1_DW0 0x91b8 1

PERF_CNT_1_DW1 0x91bc 1

PERF_CNT_2_DW0 0x91c0 1

PERF_CNT_2_DW1 0x91c4 1

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 33

Watchdog Timer Registers
These registers together implement a watchdog timer. Writing ones to the control register enables the
counter, and writing zeros disables the counter. The second register is programmed with a threshold
value which, when reached, signals an interrupt that then resets the counter to 0. Program the threshold
value before enabling the counter or extremely frequent interrupts may result.

Note: The counter itself is not observable. It increments with the main render clock.
Programming Notes: When watch dog timer is enabled, HW does not trigger any kind of idle
sequences. SW must enable and disable watch dog timer for any given workload within the same
command buffer dispatch. SW must disable watch dog timer around semaphore waits and wait for
events commands so that HW can trigger appropriate idle sequence for power savings.

PR_CTR - Render Watchdog Counter

PR_CTR_THRSH - Render Watchdog Counter Threshold

Command Stream Programming

34 Doc Ref # IHD-OS-BDW-Vol 6-05.15

Interrupt Control Registers
The Interrupt Control Registers described in this section all share the same bit definition. The bit
definition is as follows:

Bit Definition for Interrupt Control Registers - Render

Bit Definition for Interrupt Control Registers - Blitter

Bit Definition for Interrupt Control Registers Media#1 (VDBOX1)

Bit Definition for Interrupt Control Registers Media#2 (VDBOX2)

Bit Definition for Interrupt Control Registers- Video Enhancement (VDBOX)

The following table specifies the settings of interrupt bits stored upon a “Hardware Status Write” due to
ISR changes:

Bit Interrupt Bit
ISR Bit Reporting Via Hardware Status Write (When

Unmasked Via HWSTAM)

9 Reserved

8 Context Switch Interrupt. Set when a context
switch has just occurred.

Not supported to be unmasked.

7 Reserved

6 Media Decode Pipeline Counter Exceeded
Notify Interrupt. The counter threshold for the
execution of the media pipeline is exceeded.
Driver needs to attempt hang recovery.

Not supported to be unmasked. Only for Media Pipe.

5 L3 Parity interrupt Only for Render Pipe

4 Flush Notify Enable 0

3 Master Error Set when error occurs, cleared when error cleared.

2 Reserved

0 User Interrupt 0

RCS_HWSTAM - Render Hardware Status Mask Register

RCS_IMR - Render Interrupt Mask Register

VCS_HWSTAM - VCS Hardware Status Mask Register

VCS_IMR - VCS Interrupt Mask Register

BCS_HWSTAM - BCS Hardware Status Mask Register

BCS_IMR - BCS Interrupt Mask Register

VECS_HWSTAM - VECS Hardware Status Mask Register

VECS_IMR - VECS Interrupt Mask Register

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 35

Hardware-Detected Error Bit Definitions (for EIR EMR ESR)

This section defines the Hardware-Detected Error bit definitions and ordering that is common to the
EIR, EMR, and ESR registers. The EMR selects which error conditions (bits) in the ESR are reported in the
EIR. Any bit set in the EIR will cause the Master Error bit in the ISR to be set. EIR bits will remain set until
the appropriate bit(s) in the EIR is cleared by writing the appropriate EIR bits with 1 (except for the
unrecoverable bits described below).

The following structures describe the Hardware-Detected Error bits:

RCS Hardware-Detected Error Bit Definitions Structure

BCS Hardware-Detected Error Bit Definitions Structure

VCS Hardware-Detected Error Bit Definitions Structure

VECS Hardware-Detected Error Bit Definitions Structure

The following are the EIR, EMR, and ESR registers:

RCS_EIR - Error Identity Register

RCS_EMR - Error Mask Register

RCS_ESR - Error Status Register

BCS_EIR - BCS Error Identity Register

BCS_EMR - BCS Error Mask Register

BCS_ESR - BCS Error Status Register

VCS_EIR - VCS Error Identity Register

VCS_EMR - VCS Error Mask Register

VCS_ESR - VCS Error Status Register

VECS_EIR - VECS Error Identity Register

VECS_EMR - VECS Error Mask Register

VECS_ESR - VECS Error Status Register

Command Stream Programming

36 Doc Ref # IHD-OS-BDW-Vol 6-05.15

Blitter Engine Command Streamer (BCS)
The BCS (Blitter Command Streamer) unit primarily serves as the software programming interface
between the O/S driver and the Blitter Engine. It is responsible for fetching, decoding, and dispatching
of data packets (Blitter Commands) to the front end interface module of Blitter Engine.

Logic Functions Included

• MMIO register programming interface.

• DMA action for fetching of ring data from memory.

• Management of the Head pointer for the Ring Buffer.

• Decode of ring data and sending it to the blit engine.

• Handling of user interrupts.

• Flushing the Blitter Engine.

• Handle NOP.

• DMA action for fetching of execlists from memory.

• Handling of ring context switch interrupt.

The register programming bus is a DWord interface bus that is driven by the configuration master. The
BCS unit only claims memory mapped I/O cycles that are targeted to its range of 0x22000 to 0x224FF.
The Blitter, Render and Media Engines use semaphore to synchronize their operations.

BCS operates completely independent of the other render and media command streams.

The simple sequence of events is as follows: a ring (say PRB0) is programmed by a memory-mapped
register write cycle. The DMA inside BCS is kicked off. The DMA fetches commands from memory based
on the starting address and head pointer. The DMA requests cache lines from memory (one cacheline
CL at a time). There is guaranteed space in the DMA FIFO (8 CL deep) for data coming back from
memory. The DMA control logic has copies of the head pointer and the tail pointer. The DMA
increments the head pointer after making requests for ring commands. Once the DMA copy of the head
pointer becomes equal to the tail pointer, the DMA stops requesting.

The parser starts executing once the DMA FIFO has valid commands. All the commands have a header
DWord packet. Based on the encoding in the header packet, the command may be targeted towards
Blitter Engine or the command parser. After execution of every command, the actual head pointer is
updated. The ring is considered empty when the head pointer becomes equal to the tail pointer.

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 37

Watchdog Timer Registers

These are the Watchdog Timer registers:

BCS_CNTR - BCS Counter for the Blitter Engine

BCS_CTR_THRSH - BCS Watchdog Counter Threshold

Hardware-Detected Error Bit Definitions (for EIR EMR ESR)
This section defines the Hardware-Detected Error bit definitions and ordering that are common to the
EIR, EMR, and ESR registers. The EMR selects which error conditions (bits) in the ESR are reported in the
EIR. Any bit set in the EIR causes the Master Error bit in the ISR to be set. EIR bits remain set until the
appropriate bits in the EIR are cleared by writing the appropriate EIR bits with 1 (except for the
unrecoverable bits described below).

The following structure describes the Hardware-Detected Error bits:

BCS Hardware-Detected Error Bit Definitions Structure

The following are the EIR, EMR, and ESR registers:

BCS_EIR - BCS Error Identity Register

BCS_EMR - BCS Error Mask Register

BCS_ESR - BCS Error Status Register

Command Stream Programming

38 Doc Ref # IHD-OS-BDW-Vol 6-05.15

Logical Context Support
The following are the Logical Context Support Registers:

BB_ADDR - Batch Buffer Head Pointer Register
BB_ADDR_UDW - Batch Buffer Upper Head Pointer Register
SBB_ADDR - Second Level Batch Buffer Head Pointer Register
SBB_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Register
CTXT_SR_CTL - Context Save/Restore Control Register

BCS_SYNC_FLIP_STATUS - BCS Wait for event and Display flip flags Register
SYNC_FLIP_STATUS - Wait For Event and Display Flip Flags Register
SYNC_FLIP_STATUS_1 - Wait For Event and Display Flip Flags Register 1
DISPLAY_MESSAGE_FORWARD_STATUS - Display Message Forward Status Register
BB_ADDR_DIFF - Batch Address Difference Register
BB_OFFSET - Batch Offset Register
RING_BUFFER_HEAD_PREEMPT_REG - RING_BUFFER_HEAD_PREEMPT_REG
BB_PREEMPT_ADDR - Batch Buffer Head Pointer Preemption Register

BB_PREEMPT_ADDR_UDW - Batch Buffer Upper Head Pointer Preemption Register
SBB_PREEMPT_ADDR - Second Level Batch Buffer Head Pointer Preemption Register
SBB_PREEMPT_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Preemption Register
MI_PREDICATE_RESULT_1 - Predicate Rendering Data Result 1
MI_PREDICATE_RESULT_2 - Predicate Rendering Data Result 2
INDIRECT_CTX - Indirect Context Pointer
INDIRECT_CTX_OFFSET - Indirect Context Offset Pointer

BB_PER_CTX_PTR - Batch Buffer Per Context Pointer

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 39

Mode Registers

The following are Mode Registers:

BCS_CXT_SIZE - BCS Context Sizes

BCS_MI_MODE - BCS Mode Register for Software Interface

BLT_MODE - Blitter Mode Register

BCS_INSTPM - BCS Instruction Parser Mode Register

Programming Note

Context: Mode Registers in Blitter Engine Command Streamer

• The BCS_INSTPM register is used to control the operation of the BCS Instruction Parser. Certain classes of
instructions can be disabled (ignored) – often useful for detecting performance bottlenecks. Also,
“Synchronizing Flush” operations can be initiated – useful for ensuring the completion (vs. only parsing) of
rendering instructions.

• All Reserved bits are implemented.

BCS_EXCC - BCS Execute Condition Code Register

BCS_IDLEDLY - BCS Idle Switch Delay

BCS_SEMA_WAIT_POLL - BCS Semaphore Polling Interval on Wait

BCS_RESET_CTRL - BCS Reset Control Register

BCS_PREEMPTION_HINT - BCS_PREEMPTION_HINT

BCS_PREEMPTION_HINT_UDW - BCS_PREEMPTION_HINT_UDW

BCS_CTXID_PREEMPTION_HINT - BCS Context ID Preemption Hint

HWS_PGA - Hardware Status Page Address Register

Hardware Status Page Layout

Command Stream Programming

40 Doc Ref # IHD-OS-BDW-Vol 6-05.15

MI Commands for Blitter Engine

This chapter describes the formats of the “Memory Interface” commands, including brief descriptions of
their use. The functions performed by these commands are discussed fully in the Memory Interface
Functions Device Programming Environment chapter.

This chapter describes MI Commands for the blitter graphics processing engine. The term “for Blitter
Engine” in the title has been added to differentiate this chapter from a similar one describing the MI
commands for the Media Decode Engine and the Rendering Engine.

The commands detailed in this chapter are used across products. However, slight changes may be
present in some commands (i.e., for features added or removed), or some commands may be removed
entirely. Refer to the Preface chapter for product specific summary.

MI_NOOP

MI_ARB_CHECK

MI_ARB_ON_OFF

MI_BATCH_BUFFER_START

A subset of the commands are privileged. These commands may be issued only from a privileged batch buffer or
directly from a ring. Batch buffers in GGTT memory are privileged and batch buffers in PPGTT memory are non-
privileged. On parsing privileged command from a non-privileged batch buffer, a Command Privilege Violation
Error is flagged and the command is dropped. Command Privilege Violation Error is logged in Error identity
register of command streamer which gets propagated as “Command Parser Master Error” interrupt to SW.
Privilege access violation checks in HW can be disabled by setting “Privilege Check Disable” bit in BLT_MODE
register. When privilege access checks are disabled HW executes privileged commands as expected.

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 41

User Mode Privileged Commands

User Mode Privileged Command Function in Non-Privileged Batch Buffers

MI_UPDATE_GTT Command is converted to NOOP.

MI_STORE_DATA_IMM Command is converted to NOOP if Use Global GTT is enabled.

MI_STORE_DATA_INDEX Command is converted to NOOP.

MI_STORE_REGISTER_MEM Command is converted to NOOP if Use Global GTT is enabled.

MI_BATCH_BUFFER_START Command when executed from a batch buffer can set its “Privileged”
level to its parent batch buffer or lower.
Chained or Second level batch buffer can be “Privileged” only if the
parent or the initial batch buffer is “Privileged”. This is HW enforced.

MI_LOAD_REGISTER_IMM Command is converted to NOOP if the register accessed is privileged.

MI_LOAD_REGISTER_MEM Command is converted to NOOP if Use Global GTT is enabled.
Register write to a Privileged Register is discarded.

MI_LOAD_REGISTER_REG Register write to a Privileged Register is discarded.

MI_ATOMIC Command is converted to NOOP if Use Global GTT is enabled.

MI_COPY_MEM_MEM Command is converted to NOOP if Use Global GTT is used for source
or destination address.

MI_SEMAPHORE_WAIT Command is converted to NOOP if Use Global GTT is enabled.

MI_SEMAPHORE_SIGNAL Command is converted to NOOP.

MI_ARB_ON_OFF Command is converted to NOOP.

MI_DISPLAY_FLIP Command is converted to NOOP.

MI_FLUSH_DW Command is converted to NOOP if Use Global GTT or Use “Store Data
Index” is enabled.

MI_CONDITIONAL_BATCH_BUFFER_END Command is converted to NOOP if Use Global GTT is enabled.

Parsing one of the commands in the table above from a non-privileged batch buffer flags an error and converts
the command to a NOOP.

Command Stream Programming

42 Doc Ref # IHD-OS-BDW-Vol 6-05.15

The following table lists the non-privileged registers that can be written to from a non-secure batch
buffer executed from Render Command Streamer.

User Mode Non-Privileged Registers

MMIO Name MMIO Offset Size in DWords

BCS_GPR 22600h 32

BCS_SWCTRL 22200h 32

MI_BATCH_BUFFER_END

MI_CONDITIONAL_BATCH_BUFFER_END

MI_DISPLAY_FLIP

MI_LOAD_SCAN_LINES_EXCL

MI_LOAD_SCAN_LINES_INCL

MI_FLUSH_DW

MI_MATH

MI_REPORT_HEAD

MI_STORE_DATA_IMM

MI_STORE_DATA_INDEX

MI_ATOMIC

MI_COPY_MEM_MEM

MI_LOAD_REGISTER_IMM

MI_LOAD_REGISTER_REG

MI_LOAD_REGISTER_MEM

MI_STORE_REGISTER_MEM

MI_SUSPEND_FLUSH

MI_UPDATE_GTT

MI_USER_INTERRUPT

MI_WAIT_FOR_EVENT

MI_SEMAPHORE_SIGNAL

MI_SEMAPHORE_WAIT

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 43

User Mode Privileged Commands

A subset of the commands are privileged. These commands may be issued only from a privileged batch buffer or
directly from a ring buffer. Batch buffers in GGTT memory are privileged and batch buffers in PPGTT memory are
non-privileged. On parsing a privileged command from a non-privileged batch buffer, a Command Privilege
Violation Error is flagged and the command is dropped. Command Privilege Violation Error is logged in Error
identity register of command streamer which gets propagated as “Command Parser Master Error” interrupt to SW.
Privilege access violation checks in HW can be disabled by setting “Privilege Check Disable” bit in BLT_MODE
register. When privilege access checks are disabled HW executes privileged commands as expected.

User Mode Privileged Commands

User Mode Privileged Command Function in Non-Privileged Batch Buffers

MI_UPDATE_GTT Command is converted to NOOP.

MI_STORE_DATA_IMM Command is converted to NOOP if Use Global GTT is enabled.

MI_STORE_DATA_INDEX Command is converted to NOOP.

MI_STORE_REGISTER_MEM Command is converted to NOOP if Use Global GTT is enabled.

MI_BATCH_BUFFER_START Command when executed from a batch buffer can set its “Privileged”
level to its parent batch buffer or lower.
Chained or Second level batch buffer can be “Privileged” only if the
parent or the initial batch buffer is “Privileged”. This is HW enforced.

MI_LOAD_REGISTER_IMM Command is converted to NOOP if the register accessed is privileged.

MI_LOAD_REGISTER_MEM Command is converted to NOOP if Use Global GTT is enabled.
Register write to a Privileged Register is discarded.

MI_LOAD_REGISTER_REG Register write to a Privileged Register is discarded.

MI_ATOMIC Command is converted to NOOP if Use Global GTT is enabled.

MI_COPY_MEM_MEM Command is converted to NOOP if Use Global GTT is used for source
or destination address.

MI_SEMAPHORE_WAIT Command is converted to NOOP if Use Global GTT is enabled.

MI_SEMAPHORE_SIGNAL Command is converted to NOOP.

MI_ARB_ON_OFF Command is converted to NOOP.

MI_DISPLAY_FLIP Command is converted to NOOP.

MI_FLUSH_DW Still send flush down, Post-Sync Operation is converted to NOOP if Use
Global GTT or Use “Store Data Index” is enabled.

MI_CONDITIONAL_BATCH_BUFFER_END Command is converted to NOOP if Use Global GTT is enabled.

Parsing one of the commands in the table above from a non-privileged batch buffer will flag an error and convert
the command to a NOOP.

Command Stream Programming

44 Doc Ref # IHD-OS-BDW-Vol 6-05.15

The following table lists the non-privileged registers that can be written to from a non-privileged batch buffer
executed from Blitter Command Streamer.

User Mode Non-Privileged Registers

MMIO Name MMIO Offset Size in DWords

BCS_GPR 22600h 32

BCS_SWCTRL 22200h 32

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 45

Video Command Streamer (VCS)
The VCS (Video Command Streamer) unit primarily serves as the software programming interface
between the O/S driver and the MFD Engine. It is responsible for fetching, decoding, and dispatching of
data packets (Media Commands with the header DWord removed) to the front end interface module of
MFX Engine.

Its logic functions include:

• MMIO register programming interface
• DMA action for fetching of execlists and ring data from memory
• Management of the Head pointer for the Ring Buffer
• Decode of ring data and sending it to the appropriate destination: AVC, VC1, or MPEG2 engine
• Handling of user interrupts
• Handling of ring context switch interrupt
• Flushing the MFX Engine
• Handle NOP

The register programming (RM) bus is a DWord interface bus that is driven by the Gx Command
Streamer. The VCS unit only claims memory mapped I/O cycles that are targeted to its range of 0x4000
to 0x4FFFF. The Gx and MFX Engines use semaphore to synchronize their operations.

VCS operates completely independent of the Gx CS.

The simple sequence of events is as follows: a ring (say PRB0) is programmed by a memory-mapped
register write cycle. The DMA inside VCS is kicked off. The DMA fetches commands from memory based
on the starting address and head pointer. The DMA requests cache lines from memory (one cacheline
CL at a time). There is guaranteed space in the DMA FIFO (16 CL deep) for data coming back from
memory. The DMA control logic has copies of the head pointer and the tail pointer. The DMA
increments the head pointer after making requests for ring commands. Once the DMA copy of the head
pointer becomes equal to the tail pointer, the DMA stops requesting.

The parser starts executing once the DMA FIFO has valid commands. All the commands have a header
DWord packet. Based on the encoding in the header packet, the command may be targeted towards
AVC/VC1/MPEG2 engine or the command parser. After execution of every command, the actual head
pointer is updated. The ring is considered empty when the head pointer becomes equal to the tail
pointer.

Watchdog Timer Registers

The following registers are defined as Watchdog Timer registers:

VCS_CNTR - VCS Counter for the bit stream decode engine

VCS_THRSH - VCS Threshold for the counter of bit stream decode engine

Command Stream Programming

46 Doc Ref # IHD-OS-BDW-Vol 6-05.15

VCS Hardware - Detected Error Bit Definitions (for EIR EMR ESR)

This section defines the Hardware-Detected Error bit definitions and ordering that are common to the
EIR, EMR, and ESR registers. The EMR selects which error conditions (bits) in the ESR are reported in the
EIR. Any bit set in the EIR causes the Master Error bit in the ISR to be set. EIR bits remain set until the
appropriate bits in the EIR are cleared by writing the appropriate EIR bits with 1 (except for the
unrecoverable bits described below).

The following links describe the Hardware-Detected Error bits.

VCS Hardware-Detected Error Bit Definitions

VCS_EIR - VCS Error Identity Register

VCS_EMR - VCS Error Mask Register

VCS_ESR - VCS Error Status Register

Logical Context Support

This section contains the registers for Logical Context Support.

BB_STATE - Batch Buffer State Register

CTXT_SR_CTL - Context Save/Restore Control Register

BB_ADDR_DIFF - Batch Address Difference Register

BB_ADDR - Batch Buffer Head Pointer Register

SBB_ADDR - Second Level Batch Buffer Head Pointer Register

SBB_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Register

BB_OFFSET - Batch Offset Register

RING_BUFFER_HEAD_PREEMPT_REG - RING_BUFFER_HEAD_PREEMPT_REG

BB_PREEMPT_ADDR - Batch Buffer Head Pointer Preemption Register

BB_PREEMPT_ADDR_UDW - Batch Buffer Upper Head Pointer Preemption Register

SBB_PREEMPT_ADDR - Second Level Batch Buffer Head Pointer Preemption Register

SBB_PREEMPT_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Preemption Register

MI_PREDICATE_RESULT_1 - Predicate Rendering Data Result 1

MI_PREDICATE_RESULT_2 - Predicate Rendering Data Result 2

DISPLAY_MESSAGE_FORWARD_STATUS - Display Message Forward Status Register

FORCE_TO_NONPRIV - FORCE_TO_NONPRIV

INDIRECT_CTX - Indirect Context Pointer

INDIRECT_CTX_OFFSET - Indirect Context Offset Pointer

BB_PER_CTX_PTR - Batch Buffer Per Context Pointer

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 47

Mode Registers

The following are Mode Registers:

VCS_CXT_SIZE - VCS Context Sizes

VCS_MI_MODE - VCS Mode Register for Software Interface

MFX_MODE - Video Mode Register

VCS_INSTPM - VCS Instruction Parser Mode Register

VCS_IDLEDLY - VCS Idle Switch Delay

VCS_RESET_CTRL - VCS Reset Control Register

VCS_CTXID_PREEMPTION_HINT - VCS Context ID Preemption Hint

VCS_PREEMPTION_HINT - VCS_PREEMPTION_HINT

VCS_PREEMPTION_HINT_UDW

VCS_SEMA_WAIT_POLL - VCS Semaphore Polling Interval on Wait

HWS_PGA - Hardware Status Page Address Register

Hardware Status Page Layout

Command Stream Programming

48 Doc Ref # IHD-OS-BDW-Vol 6-05.15

Registers in Media Engine

This topic describes the memory-mapped registers associated with the Memory Interface, including
brief descriptions of their use. The functions performed by some of these registers are discussed in
more detail in the Memory Interface Functions, Memory Interface Instructions, and Programming
Environment chapters.

The registers detailed in this chapter are used across multiple projects and are extentions to previous
projects. However, slight changes may be present in some registers (i.e., for features added or
removed), or some registers may be removed entirely. These changes are clearly marked within this
section.

GFX Pending TLB Cycles Information Registers
The following registers contain information about cycles that did not complete their TLB translation.

Information is organized as 64 entries, where each entry has a valid and ready bit, collapsed into
separate registers.

VCS_TIMESTAMP - VCS Reported Timestamp Count

VCS_CTX_TIMESTAMP - VCS Context Timestamp Count

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 49

Memory Interface Commands for Video Codec Engine
This chapter describes the formats of the “Memory Interface” commands, including brief descriptions of
their use. The functions performed by these commands are discussed fully in the Memory Interface
Functions Device Programming Environment chapter.

This chapter describes MI Commands for the Video Codec Engine.
The commands detailed in this chapter are used across the later products within the Gen family.
However, slight changes may be present in some commands (i.e., for features added or removed), or
some commands may be removed entirely. Refer to the Preface chapter for details.

MI_ARB_CHECK

MI_BATCH_BUFFER_END

MI_CONDITIONAL_BATCH_BUFFER_END

MI_BATCH_BUFFER_START

MI_FLUSH_DW

MI_LOAD_REGISTER_IMM

MI_COPY_MEM_MEM

MI_LOAD_REGISTER_REG

MI_MATH

MI_NOOP

MI_REPORT_HEAD

MI_SEMAPHORE_SIGNAL

MI_SEMAPHORE_WAIT

MI_STORE_REGISTER_MEM

MI_STORE_DATA_IMM

MI_STORE_DATA_INDEX

MI_SUSPEND_FLUSH

MI_USER_INTERRUPT

MI_UPDATE_GTT

MI_LOAD_REGISTER_MEM

MI_ATOMIC

Command Stream Programming

50 Doc Ref # IHD-OS-BDW-Vol 6-05.15

User Mode Privileged Commands

A subset of the commands are privileged. These commands may be issued only from a privileged batch buffer or
directly from a ring. Batch buffers in GGTT memory are privileged and batch buffers in PPGTT memory are non-
privileged. On parsing privileged command from a non-privileged batch buffer, a Command Privilege Violation
Error is flagged and the command is dropped. Command Privilege Violation Error is logged in Error identity
register of command streamer which gets propagated as “Command Parser Master Error” interrupt to SW.
Privilege access violation checks in HW can be disabled by setting “Privilege Check Disable” bit in MFX_MODE
register. When privilege access checks are disabled HW will execute the Privilege command as expected.

User Mode Privileged Commands

User Mode Privileged Command Function in Non-Privileged Batch Buffers

MI_UPDATE_GTT Command is converted to NOOP.

MI_STORE_DATA_IMM Command is converted to NOOP if Use Global GTT is enabled.

MI_STORE_DATA_INDEX Command is converted to NOOP.

MI_STORE_REGISTER_MEM Command is converted to NOOP if Use Global GTT is enabled.

MI_BATCH_BUFFER_START Command when executed from a batch buffer can set its “Privileged”
level to its parent batch buffer or lower.
Chained or Second level batch buffer can be “Privileged” only if the
parent or the initial batch buffer is “Privileged”. This is HW enforced.

MI_LOAD_REGISTER_IMM Command is converted to NOOP if the register accessed is privileged.

MI_LOAD_REGISTER_MEM Command is converted to NOOP if Use Global GTT is enabled
Register write to a Privileged Register will be discarded.

MI_LOAD_REGISTER_REG Register write to a Privileged Register will be discarded.

MI_ATOMIC Command is converted to NOOP if Use Global GTT is enabled.

MI_COPY_MEM_MEM Command is converted to NOOP if Use Global GTT is used for source
or destination address.

MI_SEMAPHORE_SIGNAL Command is converted to NOOP.

MI_SEMAPHORE_WAIT Command is converted to NOOP if Use Global GTT is enabled.

MI_ARB_ON_OFF Command is converted to NOOP.

MI_FLUSH_DW Still send flush down, Post-Sync Operation is converted to NOOP if Use
Global GTT or Use “Store Data Index” is enabled.

MI_CONDITIONAL_BATCH_BUFFER_END Command is converted to NOOP if Use Global GTT is enabled.

MI_SEMAPHORE_SIGNAL Command is converted to NOOP.

Parsing one of the commands in the table above from a non-privileged batch buffer flags an error and converts
the command to a NOOP.

The following table lists the non-privileged registers that can be written to from a non-secure batch buffer
executed from Video Command Streamer.

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 51

User Mode Non-Privileged Registers

MMIO Name MMIO Offset Size in DWords

VCS_GPR 12600h 32

VCS_GPR (2nd VCS) 1C600h 32

MFC_VDBOX1 12800h 64

MFC_VDBOX2 1C800h 64

Command Stream Programming

52 Doc Ref # IHD-OS-BDW-Vol 6-05.15

Video Enhancement Engine Command Interface
The following topics describe the Video Enhancement Engine Command Interface.

VECS_RINGBUF — Ring Buffer Registers

The following are Ring Buffer Registers:

RING_BUFFER_TAIL - Ring Buffer Tail

RING_BUFFER_HEAD - Ring Buffer Head

RING_BUFFER_START - Ring Buffer Start

RING_BUFFER_CTL - Ring Buffer Control

UHPTR - Pending Head Pointer Register

Watchdog Timer Registers

The following are Watchdog Timer Registers:

VECS_CNTR - VECS Counter for the Video Enhancement Engine

VECS_CTR_THRSH - VECS Threshold for the Counter of Video Enhancement Engine

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 53

Logical Context Support

The following are Logical Context Support Registers:

BB_ADDR - Batch Buffer Head Pointer Register

BB_ADDR_UDW - Batch Buffer Upper Head Pointer Register

SBB_ADDR - Second Level Batch Buffer Head Pointer Register

SBB_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Register

BB_STATE - Batch Buffer State Register

CTXT_SR_CTL - Context Save/Restore Control Register

VECS_TIMESTAMP - VECS Reported Timestamp Count

VECS_CTX_TIMESTAMP - VECS Context Timestamp Count

BB_ADDR_DIFF - Batch Address Difference Register

BB_OFFSET - Batch Offset Register

RING_BUFFER_HEAD_PREEMPT_REG - RING_BUFFER_HEAD_PREEMPT_REG

BB_PREEMPT_ADDR - Batch Buffer Head Pointer Preemption Register

BB_PREEMPT_ADDR_UDW - Batch Buffer Upper Head Pointer Preemption Register

SBB_PREEMPT_ADDR - Second Level Batch Buffer Head Pointer Preemption Register

SBB_PREEMPT_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Preemption Register

MI_PREDICATE_RESULT_1 - Predicate Rendering Data Result 1

MI_PREDICATE_RESULT_2 - Predicate Rendering Data Result 2

DISPLAY_MESSAGE_FORWARD_STATUS - Display Message Forward Status Register

FORCE_TO_NONPRIV - FORCE_TO_NONPRIV

INDIRECT_CTX - Indirect Context Pointer

INDIRECT_CTX_OFFSET - Indirect Context Offset Pointer

BB_PER_CTX_PTR - Batch Buffer Per Context Pointer

Command Stream Programming

54 Doc Ref # IHD-OS-BDW-Vol 6-05.15

Mode Registers

The following are Mode Registers:

VECS_MI_MODE — VECS Mode Register for Software Interface

VEBOX_MODE - Video Mode Register

VECS_INSTPM—VECS Instruction Parser Mode Register

HWS_PGA - Hardware Status Page Address Register

Hardware Status Page Layout

VECS_RESET_CTRL - VECS Reset Control Register

VECS_PREEMPTION_HINT

VECS_PREEMPTION_HINT_UDW

VECS_CTXID_PREEMPTION_HINT - VECS Context ID Preemption Hint

VECS_SEMA_WAIT_POLL - VECS Semaphore Polling Interval on Wait

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 55

MI Commands for Video Enhancement Engine

This chapter describes the formats of the “Memory Interface” commands, including brief descriptions of
their use. The functions performed by these commands are discussed fully in the Memory Interface
Functions Device Programming Environment chapter.

This chapter describes MI Commands for the Video Codec Engine.

The commands detailed in this chapter are used across the later products within the Gen family.
However, slight changes may be present in some commands (i.e., for features added or removed), or
some commands may be removed entirely. Refer to the Preface chapter for details.

MI_ARB_CHECK

MI_BATCH_BUFFER_END

MI_CONDITIONAL_BATCH_BUFFER_END

MI_BATCH_BUFFER_START

MI_FLUSH_DW

MI_LOAD_REGISTER_IMM

MI_LOAD_REGISTER_REG

MI_MATH

MI_NOOP

MI_REPORT_HEAD

MI_SEMAPHORE_SIGNAL

MI_SEMAPHORE_WAIT

MI_ATOMIC

MI_STORE_REGISTER_MEM

MI_STORE_DATA_IMM

MI_STORE_DATA_INDEX

MI_SUSPEND_FLUSH

MI_USER_INTERRUPT

MI_UPDATE_GTT

MI_COPY_MEM_MEM

MI_LOAD_REGISTER_MEM

Command Stream Programming

56 Doc Ref # IHD-OS-BDW-Vol 6-05.15

User Mode Privileged Commands

A subset of the commands are privileged. These commands may be issued only from a privileged batch buffer or
directly from a ring. Batch buffers in GGTT memory are privileged and batch buffers in PPGTT memory are non-
privileged. On parsing a privileged command from a non-privileged batch buffer, a Command Privilege Violation
Error is flagged and the command is dropped. A Command Privilege Violation Error is logged in the Error identity
register of the command streamer which gets propagated as “Command Parser Master Error” interrupt to SW.
Privilege access violation checks in HW can be disabled by setting “Privilege Check Disable” bit in VEBOX_MODE
register. When privilege access checks are disabled HW executes privileged commands as expected.

User Mode Privileged Commands

User Mode Privileged Command Function in Non-Privileged Batch Buffers

MI_UPDATE_GTT Command is converted to NOOP.

MI_STORE_DATA_IMM Command is converted to NOOP if Use Global GTT is enabled.

MI_STORE_DATA_INDEX Command is converted to NOOP.

MI_STORE_REGISTER_MEM Command is converted to NOOP if Use Global GTT is enabled.

MI_BATCH_BUFFER_START Command when executed from a batch buffer can set its “Privileged”
level to its parent batch buffer or lower.
Chained or Second level batch buffer can be “Privileged” only if the
parent or the initial batch buffer is “Privileged”. This is HW enforced.

MI_LOAD_REGISTER_IMM Command is converted to NOOP if the register accessed is privileged.

MI_LOAD_REGISTER_MEM Command is converted to NOOP if Use Global GTT is enabled.
Register write to a Privileged Register will be discarded.

MI_LOAD_REGISTER_REG Register write to a Privileged Register will be discarded.

MI_ATOMIC Command is converted to NOOP if Use Global GTT is enabled.

MI_COPY_MEM_MEM Command is converted to NOOP if Use Global GTT is used for source
or destination address.

MI_SEMAPHORE_SIGNAL Command is converted to NOOP.

MI_SEMAPHORE_WAIT Command is converted to NOOP if Use Global GTT is enabled.

MI_ARB_ON_OFF Command is converted to NOOP.

MI_FLUSH_DW Still send flush down, Post-Sync Operation is converted to NOOP if Use
Global GTT or Use “Store Data Index” is enabled.

MI_CONDITIONAL_BATCH_BUFFER_END Command is converted to NOOP if Use Global GTT is enabled.

Parsing one of the commands in the table above from a non-privileged batch buffer will flag an error and convert
the command to a NOOP.

The table below lists the non-privileged registers that can be written to from a non-secure batch buffer executed
from the Render Command Streamer.

User Mode Non-Privileged Registers

MMIO Name MMIO Offset Size in DWords

VECS_GPR 1A600h 32

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 57

Preemption
Preemption is a means by which HW is instructed to stop executing an ongoing workload and switch to
the new workload submitted. Preemption flows are different based on the mode of scheduling.

Ring Buffer Scheduling

In Ring Buffer mode of scheduling SW triggers preemption by programming UHPTR (Updated Head
Pointer Register) register with a valid head pointer. UHPTR contains head pointer and head pointer valid
bit; the head pointer is valid only when the head pointer valid bit is set.

HW triggers preemption on a preemptable command on detecting Head Pointer Valid bit asserted in
the UHPTR register. Following preemption HW updates its current head pointer with the Head Pointer
from the UHPTR and starts execution; i.e all the commands from current head pointer to the updated
head pointer are skipped by HW. HW samples the head pointer and the batch buffer address on
preemption and updates them to the RING_BUFFER_HEAD_PREEMPT_REG and BB_PREEMPT_ADDR
respectively. RING_BUFFER_HEAD_PREEMPT_REG and BB_PREEMPT_ADDR provide the graphics memory
address of the preemptable command on which last preemption has occurred. HW resets the head
pointer valid bit in UHPTR upon completion of preemption.

Programming Notes:

Preemption is not supported for Media Workloads. Hence preemption can be achieved only on
Command Buffer boundaries. Media Command Buffers must be bracketed with MI_ARB_OFF and
MI_ARB_ON commands to avoid preemption of media command buffers.

Example:
 Ring Buffer
…
MI_ARB_ON_OFF // OFF
MI_BATCH_START // Media Workload
MI_ARB_ON_OFF // ON
MI_ARB_CHK // Preemptable command outside media command buffer.
…
End Ring Buffer

The following tables list the Preemptable Commands in the Ring Buffer mode of scheduling:

Engine
(below)

Preemptable Commands

MI_ARB_CHECK 3DPRIMITIVE GPGPU_WALKER
PIPE_CONTROL

MEDIA STATE

FLUSH

Render
AP Object Level (if

enabled *)
Mid-Thread (if

enabled **)
PIPESEL-GPGPU

MODE
PIPESEL-GPGPU

MODE

Blitter AP N/A N/A N/A N/A

Media AP N/A N/A N/A N/A

VideoEnhancement AP N/A N/A N/A N/A

AP: Allow preemption on UHPTR valid and arbitration enabled. Arbitration can be
enabled/disabled using MI_ARB_ON_OFF command.

Command Stream Programming

58 Doc Ref # IHD-OS-BDW-Vol 6-05.15

ExecList Scheduling

In ExecList mode of scheduling SW triggers preemption by submitting a new pending execlist to ELSP
(ExecList Submit Port). HW triggers preemption on a preemptable command on detecting the
availability of the new pending execlist, following preemption context switch happens to the newly
submitted execlist. As part of the context switch preempted context state is saved to the preempted
context LRCA, context state contains the details such that on resubmission of the preempted context
HW can resume execution from the point where it was preempted.

Example:
 Ring Buffer

MI_ARB_ON_OFF // OFF
MI_BATCH_START // Media Workload
MI_ARB_ON_OFF // ON
MI_ARB_CHK // Preemptable command outside media command buffer.

The following tables list the Preemptable Commands in ExecList mode of scheduling:

Engine
(below)

Preemptable Commands

MI_ARB_CHECK
Element

Boundary
Semaphore

Wait
Wait for

Event 3DPRIMITIVE GPGPU_WALKER
PIPE_CONTROL

MEDIA
STATE
FLUSH

Render

AP AP Unsuccessful
& AP

Unsuccessful
& AP

Object Level
(if enabled *)

Mid-Thread (if
enabled **)

PIPESEL-GPGPU
MODE

PIPESEL-
GPGPU
MODE

Blitter
AP AP Unsuccessful

& AP
Unsuccessful

& AP
N/A N/A N/A N/A

Media
AP AP Unsuccessful

& AP
N/A N/A N/A N/A N/A

Video
Enhancement

AP AP Unsuccessful
& AP

N/A N/A N/A N/A N/A

Table Notes:

AP - Allow Preemption if arbitration is enabled.
* 0x229c bit 11 determines whether the level of preemption is command or object level.
** 0x20E4 bits 2:1 determine the level of preemption for GPGPU workloads.
*** MI_ATOMIC and MI_SEMAPHORE_SIGNAL commands with Post Sync Op bit set are treated as
PIPE_CONTROL command with Post Sync Operation as Atomics or Semaphore Signal.
**** Any Header with the value [31:29] = "011", [28:27] = "00" OR "11" and [26:24] = "001". Refer
to Graphics Command Formats.

Command Stream Programming

Doc Ref # IHD-OS-BDW-Vol 6-05.15 59

Command Streamer (CS) ALU Programming
The command streamer implements a rudimentary Arithmetic Logic Unit (ALU) which supports basic
arithmetic (Addition and Subtraction) and logical operations (AND, OR, XOR) on two 64-bit operands.

The ALU has two 64-bit registers at the input, SRCA and SRCB, to which source operands are loaded.
The ALU result is written to a 64-bit accumulator. The Zero Flag and Carry Flag are assigned based on
the accumulator output.

See the ALU Programming section in the Render Engine Command Streamer, for a description of the
ALU programming model. That model is the same for all command streamers that support ALU
programming, but each command streamer uses different address offsets for the registers used. The
following subsections describe the ALU registers in the Blitter command streamer.

CS ALU Programming and Design

