

Intel[®] Open Source HD Graphics and Intel Iris[™] Graphics

Programmer's Reference Manual

For the 2014-2015 Intel Core[™] Processors, Celeron[™] Processors and Pentium[™] Processors based on the "Broadwell" Platform

Volume 12: PCIE Configuration Registers

May 2015, Revision 1.0

Creative Commons License

You are free to Share - to copy, distribute, display, and perform the work under the following conditions:

- **Attribution.** You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
- **No Derivative Works.** You may not alter, transform, or build upon this work.

Notices and Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2015, Intel Corporation. All rights reserved.

Table of Contents

GFX PCI Registers	1
GTTMMADR	3
MSA Registers	3
MPGFXTRK_CR_DPFC_CONTROL_SA_0_2_0_GTTMMADR	3
MPGFXTRK_CR_DPFC_CPU_FENCE_OFFSET_0_2_0_GTTMMADR	4
MPGFXTRK_CR_TILECTL_0_2_0_GTTMMADR	5
MPGFXTRK_CR_GFX_FLSH_CNTL_0_2_0_GTTMMADR	6
MPGFXTRK_CR_MTOLUD_0_2_0_GTTMMADR	7
MPGFXTRK_CR_MGGC_0_2_0_GTTMMADR	9
MPGFXTRK_CR_MTOUUD_0_2_0_GTTMMADR	11
MPGFXTRK_CR_MBDSM_0_2_0_GTTMMADR	12
MPGFXTRK_CR_MBGSM_0_2_0_GTTMMADR	13
MPGFXTRK_CR_MGCMD_REG_0_2_0_GTTMMADR	14
MPGFXTRK_CR_MEMRR_BASE_0_2_0_GTTMMADR	19
MPGFXTRK_CR_MEMRR_MASK_0_2_0_GTTMMADR	20
GSA Registers	21

GFX PCI Registers

Address Space	Address	Symbol	Name
PCI: 0/0/0	00050h	GGC_0_0_PCI	GMCH Graphics Control
PCI: 0/0/0	00054h	DEVEN_0_0_0_PCI	Device Enable
PCI: 0/0/0	000B0h	BDSM_0_0_0_PCI	Base Data of Stolen Memory
PCI: 0/0/0	000B4h	BGSM_0_0_0_PCI	Base of GTT Stolen Memory
PCI: 0/0/0	000E4h	CAPIDO_A_0_0_0_PCI	Capabilities A
PCI: 0/0/0	000E8h	CAPID0_B_0_0_PCI	Capabilities B
PCI: 0/2/0	00000h	VID2_0_2_0_PCI	Vendor Identification
PCI: 0/2/0	00002h	DID2_0_2_0_PCI	Device Identification
PCI: 0/2/0	00004h	PCICMD_0_2_0_PCI	PCI Command
PCI: 0/2/0	00006h	PCISTS2_0_2_0_PCI	PCI Status
PCI: 0/2/0	00008h	RID2_0_2_0_PCI	Revision Identification
PCI: 0/2/0	00009h	CC_0_2_0_PCI	Class Code
PCI: 0/2/0	0000Ch	CLS_0_2_0_PCI	Cache Line Size
PCI: 0/2/0	0000Dh	MLT2_0_2_0_PCI	Master Latency Timer
PCI: 0/2/0	0000Eh	HDR2_0_2_0_PCI	Header Type
PCI: 0/2/0	00010h	GTTMMADR_0_2_0_PCI	Graphics Translation Table Memory Mapped Range Address
PCI: 0/2/0	00018h	GMADR_0_2_0_PCI	Graphics Memory Range Address
PCI: 0/2/0	00020h	IOBAR_0_2_0_PCI	I/O Base Address
PCI: 0/2/0	0002Ch	SVID2_0_2_0_PCI	Subsystem Vendor Identification
PCI: 0/2/0	0002Eh	SID2_0_2_0_PCI	Subsystem Identification
PCI: 0/2/0	00030h	ROMADR_0_2_0_PCI	Video BIOS ROM Base Address
PCI: 0/2/0	00034h	CAPPOINT_0_2_0_PCI	Capabilities Pointer
PCI: 0/2/0	0003Ch	INTRLINE_0_2_0_PCI	Interrupt Line
PCI: 0/2/0	0003Dh	INTRPIN_0_2_0_PCI	Interrupt Pin
PCI: 0/2/0	0003Eh	MINGNT_0_2_0_PCI	Minimum Grant
PCI: 0/2/0	0003Fh	MAXLAT_0_2_0_PCI	Maximum Latency
PCI: 0/2/0	00040h	CAPID0_0_2_0_PCI	Capability Identifier
PCI: 0/2/0	00042h	CAPCTRL0_0_2_0_PCI	Capabilities Control
PCI: 0/2/0	00044h	CAPIDO_A_0_2_0_PCI	Mirror of Capabilities A
PCI: 0/2/0	00048h	CAPID0_B_0_2_0_PCI	Mirror of Capabilities B
PCI: 0/2/0	00050h	MGGC0_0_2_0_PCI	Mirror of GMCH Graphics Control
PCI: 0/2/0	00054h	DEVEN0_0_2_0_PCI	Mirror of Device Enable
PCI: 0/2/0	0005Ch	BDSM_0_2_0_PCI	Mirror of Base Data of Stolen Memory
PCI: 0/2/0	00060h	HSRW_0_2_0_PCI	Hardware Scratch Read Write

Address Space	Address	Symbol	Name
PCI: 0/2/0	00062h	MSAC_0_2_0_PCI	Multi Size Aperture Control
PCI: 0/2/0	00090h	MSI_CAPID_0_2_0_PCI	Message Signaled Interrupts Capability ID
PCI: 0/2/0	00092h	MC_0_2_0_PCI	Message Control
PCI: 0/2/0	00094h	MA_0_2_0_PCI	Message Address
PCI: 0/2/0	00098h	MD_0_2_0_PCI	Message Data
PCI: 0/2/0	000A4h	AFCIDNP_0_2_0_PCI	Advanced Features Capabilities Identifier and Next Pointer
PCI: 0/2/0	000A6h	AFLC_0_2_0_PCI	Advanced Features Length and Capabilities
PCI: 0/2/0	000A8h	AFCTL_0_2_0_PCI	Advanced Features Control
PCI: 0/2/0	000A9h	AFSTS_0_2_0_PCI	Advanced Features Status
PCI: 0/2/0	000D0h	PMCAPID_0_2_0_PCI	Power Management Capabilities ID
PCI: 0/2/0	000D2h	PMCAP_0_2_0_PCI	Power Management Capabilities
PCI: 0/2/0	000D4h	PMCS_0_2_0_PCI	Power Management Control and Status
PCI: 0/2/0	000E0h	SWSMI_0_2_0_PCI	Software SMI
PCI: 0/2/0	000E4h	GSE_0_2_0_PCI	Graphics System Event
PCI: 0/2/0	000E8h	SWSCI_0_2_0_PCI	Software SCI
PCI: 0/2/0	000FCh	ASLS_0_2_0_PCI	ASL Storage
PCI: 0/2/0	00100h	PASID_EXTCAP_0_2_0_PCI	PASID Extended Capability Header
PCI: 0/2/0	00104h	PASID_CAP_0_2_0_PCI	PASID Capability
PCI: 0/2/0	00106h	PASID_CTRL_0_2_0_PCI	PASID Control
PCI: 0/2/0	00200h	ATS_EXTCAP_0_2_0_PCI	ATS Extended Capability Header
PCI: 0/2/0	00204h	ATS_CAP_0_2_0_PCI	ATS Capability
PCI: 0/2/0	00206h	ATS_CTRL_0_2_0_PCI	ATS Control
PCI: 0/2/0	00300h	PR_EXTCAP_0_2_0_PCI	Page Request Extended Capability Header
PCI: 0/2/0	00304h	PR_CTRL_0_2_0_PCI	Page Request Control
PCI: 0/2/0	00306h	PR_STATUS_0_2_0_PCI	Page Request Status
PCI: 0/2/0	00308h	OPRC_0_2_0_PCI	Outstanding Page Request Capacity
PCI: 0/2/0	0030Ch	OPRA_0_2_0_PCI	Outstanding Page Request Allocation

GTTMMADR

MSA Registers MPGFXTRK_CR_DPFC_CONTROL_SA_0_2_0_GTTMMADR

B/D/F/Type: 0/2/0/GTTMMADR

Address Offset: 0x100100

Size: 32 bits

Access: RW

This register contains control bits related to Display Frame Buffer Compression Host Invalidation in System Agent.

Bit	Туре	Default Value	RST Type	Description
29:29	RW	0x0	default/uncore/flr	CPUFNCEN: 0: Display Buffer is not in a CPU fence. No modifications are allowed from CPU to the Display Buffer. 1: Display Buffer exists in a CPU fence.
4:0	RW	0x0	default/uncore/flr	CPUFNCNUM: This field specifies the CPU visible FENCE number corresponding to the placement of the uncompressed frame buffer.

MPGFXTRK_CR_DPFC_CPU_FENCE_OFFSET_0_2_0_GTTMMADR

B/D/F/Type: 0/2/0/GTTMMADR

Address Offset: 0x100104

Size: 32 bits

Access: RW

This register contains control bits related to Display Frame Buffer Compression Host Invalidation in System Agent.

Bit	Туре	Default Value	RST Type	Description
21:0	RW	0x0	default/uncore/flr	YFNCDISP:
				Y offset from the CPU fence to the Display Buffer base

MPGFXTRK_CR_TILECTL_0_2_0_GTTMMADR

B/D/F/Type: 0/2/0/GTTMMADR

Address Offset: 0x101000

Size: 32 bits

Access: RW

This register contains control functionality related to GFX Aperture Tiling.

Bit	Туре	Default Value	RST Type	Description
3:3	RW	0x0	default/uncore/flr	BKSNPDIS: This bit allows to disable backsnoop requests as a result of IA requests to the Aperture. 0: Snoops are sent for IA requests that hit the Aperture 1: Snoops are never sent for IA requests that hit the Aperture
2:2	RW	0x0	default/uncore/flr	DISTLBPF: On Tile Y GFX TLB miss, the cacheline read from the GTT contains 16 PTEs. This bit indicates whether all 16 PTEs are required to be cached or only the PTE that was requested. 0 - Prefetch 15 entries into the GFX TLB in addition to the demand-based fetch for Tile Y 1 - Disable TLB prefetch for Tile Y
1:0	RW	0x0	default/uncore/flr	SWZCTL: This register location is updated via GFX Driver prior to enabling DRAM accesses. The Driver needs to obtain the need for memory address swizzling via DRAM configuration registers and set the following bits. 00b - No Address Swizzling 01b - Address bit 6 needs to be swizzled for tiled surfaces 10b - Reserved 11b - Reserved

MPGFXTRK_CR_GFX_FLSH_CNTL_0_2_0_GTTMMADR

B/D/F/Type: 0/2/0/GTTMMADR

Address Offset: 0x101008

Size: 32 bits

Access: WO

This register is used to flush GFX TLBs in the System Agent.

Bit	Туре	Default Value	RST Type	Description
0:0	WO	0x0	default/uncore	GFX_FLSH_CNTL:
				A CPU write to this bit flushes the GFX TLBs in the System Agent. The data associated with the write is discarded and a read returns all 0s.

MPGFXTRK_CR_MTOLUD_0_2_0_GTTMMADR

B/D/F/Type: 0/2/0/GTTMMADR

Address Offset: 0x108000

Size: 32 bits

Access: RO_V

This 32 bit register defines the Top of Low Usable DRAM. TSEG, GTT Graphics memory and Graphics Stolen Memory are within the DRAM space defined. From the top, the Host optionally claims 1 to 64MBs of DRAM for internal graphics if enabled, 1or 2MB of DRAM for GTT Graphics Stolen Memory if enabled and 1, 2, or 8 MB of DRAM for TSEG if enabled.

Programming Example:

C1DRB3 is set to 4GB

TSEG is enabled and TSEG size is set to 1MB

Internal Graphics is enabled, and Graphics Mode Select is set to 32MB

GTT Graphics Stolen Memory Size set to 2MB

BIOS knows the OS requires 1G of PCI space.

BIOS also knows the range from 0FEC00000h to 0FFFFFFFh is not usable by the system. This 20MB range at the very top of addressable memory space is lost to APIC and LT.

According to the above equation, TOLUD is originally calculated to: 4GB 10000000h

The system memory requirements are: 4GB max addressable space - 1GB pci space - 35MB lost memory 3GB - 35MB minimum granularity 0ECB00000h

Since 0ECB00000h PCI and other system requirements is less than 100000000h, TOLUD should be programmed to ECBh.

These bits are Intel TXT lockable.

MPGFXTRK_CR_MTOLUD_0_2_0_GTTMMADR

Bit	Туре	Default Value	RST Type	Description
31:20	RO_V	0x1	default/uncore	TOLUD:
				This register contains bits 31 to 20 of an address one byte above the maximum DRAM memory below 4G that is usable by the operating system. Address bits 31 down to 20 programmed to 01h implies a minimum memory size of 1MB. Configuration software must set this value to the smaller of the following 2 choices: maximum amount memory in the system minus ME stolen memory plus one byte or the minimum address allocated for PCI memory. Address bits 19:0 are assumed to be 00000h for the purposes of address comparison. The Host interface positively decodes an address towards DRAM if the incoming address is less than the value programmed in this register. The Top of Low Usable DRAM is the lowest address above both Graphics Stolen memory by subtracting the Graphics Stolen Memory Size from TOLUD and further decrements by Tseg size to determine base of Tseg. This register must be 1MB aligned when reclaim is enabled.
0:0	RO_V	0x0	default/uncore	LOCK: This bit will lock all writeable settings in this register, including itself.

MPGFXTRK_CR_MGGC_0_2_0_GTTMMADR

B/D/F/Type: 0/2/0/GTTMMADR

Size: 16 bits

Access: RO_V

All the bits in this register are Intel TXT lockable.

Type Value RO_V 0x5	RST Type	Description
$R \cap V = 0 \times 5$		
	default/uncore	

D:4	Trees	Default	DCT Tomo	Description
Bit	Туре	Value	RST Type	Description
7:6	RO_V	0x0	default/uncore	GGMS: This field is used to select the amount of Main Memory that is pre- allocated to support the Internal Graphics Translation Table. The BIOS ensures that memory is pre-allocated only when Internal graphics is enabled. GSM is assumed to be a contiguous physical DRAM space with DSM, and BIOS needs to allocate a contiguous memory chunk. Hardware will derive the base of GSM from DSM only using the GSM size programmed in the register. Hardware functionality in case of programming this value to Reserved is not guaranteed. 0x0:No Preallocated Memory 0x1:2MB of Preallocated Memory 0x2:4MB of Preallocated Memory 0x3:8MB of Preallocated Memory
2:2	RO_V	0x0	default/uncore	VAMEN: Enables the use of the iGFX engines for Versatile Acceleration. 1 - iGFX engines are in Versatile Acceleration Mode. Device 2 Class Code is 048000h. 0 - iGFX engines are in iGFX Mode. Device 2 Class Code is 030000h.
1:1	RO_V	0x0	default/uncore	IVD: 0: Enable. Device 2 IGD claims VGA memory and IO cycles, the Sub-Class Code within Device 2 Class Code register is 00. 1: Disable. Device 2 IGD does not claim VGA cycles Mem and IO, and the Sub- Class Code field within Device 2 function 0 Class Code register is 80. BIOS Requirement: BIOS must not set this bit to 0 if the GMS field bits 7:3 of this register pre-allocates no memory. This bit MUST be set to 1 if Device 2 is disabled either via a fuse or fuse override CAPID0AIGD 1 or via a register DEVEN3 0. 0:Enable 1:Disable
0:0	RO_V	0x0	default/uncore	GGCLCK: When set to 1b, this bit will lock all bits in this register.

MPGFXTRK_CR_MTOUUD_0_2_0_GTTMMADR

B/D/F/Type: 0/2/0/GTTMMADR

Address Offset: 0x108080

Size: 64 bits

Access: RO_V

This 64 bit register defines the Top of Upper Usable DRAM.

Configuration software must set this value to TOM minus all ME stolen memory if reclaim is disabled. If reclaim is enabled, this value must be set to reclaim limit 1byte, 1MB aligned, since reclaim limit is 1MB aligned. Address bits 19:0 are assumed to be 0000000h for the purposes of address comparison. The Host interface positively decodes an address towards DRAM if the incoming address is less than the value programmed in this register and greater than or equal to 4GB.

BIOS Restriction: Minimum value for TOUUD is 4GB.

These bits are Intel TXT lockable.

Bit	Туре	Default Value	RST Type	Description
38:20	RO_V	0x0	default/uncore	TOUUD: This register contains bits 38 to 20 of an address one byte above the maximum DRAM memory above 4G that is usable by the operating system. Configuration software must set this value to TOM minus all ME stolen memory if reclaim is disabled. If reclaim is enabled, this value must be set to reclaim limit 1MB aligned since reclaim limit 1byte is 1MB aligned. Address bits 19:0 are assumed to be 0000000h for the purposes of address comparison. The Host interface positively decodes an address towards DRAM if the incoming address is less than the value programmed in this register and greater than 4GB.
0:0	RO_V	0x0	default/uncore	LOCK: This bit will lock all writeable settings in this register, including itself.

MPGFXTRK_CR_MBDSM_0_2_0_GTTMMADR

B/D/F/Type: 0/2/0/GTTMMADR

Address Offset: 0x1080c0

Size: 32 bits

Access: RO_V

This register contains the base address of graphics data stolen DRAM memory. BIOS determines the base of graphics data stolen memory by subtracting the graphics data stolen memory size PCI Device 0 offset 52 bits 7:4 from TOLUD PCI Device 0 offset BC bits 31:20.

Bit	Туре	Default Value	RST Type	Description
31:20	RO_V	0x0	default/uncore	BDSM: This register contains bits 31 to 20 of the base address of stolen DRAM memory. BIOS determines the base of graphics stolen memory by subtracting the graphics stolen memory size PCI Device 0 offset 52 bits 6:4 from TOLUD PCI Device 0 offset BC bits 31:20.
0:0	RO_V	0x0	default/uncore	LOCK: This bit will lock all writeable settings in this register, including itself.

MPGFXTRK_CR_MBGSM_0_2_0_GTTMMADR

B/D/F/Type: 0/2/0/GTTMMADR

Address Offset: 0x108100

Size: 32 bits

Access: RO_V

This register contains the base address of stolen DRAM memory for the GTT. BIOS determines the base of GTT stolen memory by subtracting the GTT graphics stolen memory size PCI Device 0 offset 52 bits 9:8 from the Graphics Base of Data Stolen Memory PCI Device 0 offset B0 bits 31:20.

Bit	Туре	Default Value	RST Type	Description
31:20	RO_V	0x1	default/uncore	BGSM: This register contains the base address of stolen DRAM memory for the GTT. BIOS determines the base of GTT stolen memory by subtracting the GTT graphics stolen memory size PCI Device 0 offset 50 bits 7:6 from the Graphics Base of Data Stolen Memory PCI Device 0 offset B0 bits 31:20.
0:0	RO_V	0x0	default/uncore	LOCK: This bit will lock all writeable settings in this register, including itself.

MPGFXTRK_CR_MGCMD_REG_0_2_0_GTTMMADR

B/D/F/Type: 0/2/0/GTTMMADR

Address Offset: 0x108300

Size: 32 bits

Access: RO_V/RO/WO

Register to control remapping hardware. If multiple control fields in this register need to be modified, software must serialize the modifications through multiple writes to this register.

Bit	Туре	Default Value	RST Type	Description
31:31	RO_V	0x0	default/uncore	TE: Software writes to this field to request hardware to enabledisable DMA- remapping: 0: Disable DMA remapping 1: Enable DMA remapping Hardware reports the status of the translation enable operation through the TES field in the Global Status register. There may be active DMA requests in the platform when software updates this field. Hardware must enable or disable remapping logic only at deterministic transaction boundaries, so that any in-flight transaction is either subject to remapping or not at all. Hardware implementations supporting DMA draining must drain any in- flight DMA readwrite requests queued within the Root-Complex before completing the translation enable command and reflecting the status of the command through the TES field in the Global Status register. The value returned on a read of this field is undefined.

PCIE Configuration Registers

Bit	Туре	Default Value	RST Type	Description
30:30	WO	0x0	default/uncore	SRTP: Software sets this field to setupdate the root-entry table pointer used by hardware. The root-entry table pointer is specified through the Root-entry Table Address RTAREG register. Hardware reports the status of the "Set Root Table Pointer" operation through the RTPS field in the Global Status register. The "Set Root Table Pointer" operation must be performed before enabling or re-enabling after disabling DMA remapping through the TE field. After a "Set Root Table Pointer" operation, software must globally invalidate the context cache and then globally invalidate of IOTLB. This is required to ensure hardware uses only the remapping structures referenced by the new root table pointer, and not stale cached entries. While DMA remapping hardware is active, software must ensure that the structures referenced by the new root table pointer are programmed to provide the same remapping results as the structures referenced by the previous root-table pointer. Clearing this bit has no effect. The value returned on read of this field is undefined.
29:29	RO	0x0	default/uncore	SFL: This field is valid only for implementations supporting advanced fault logging. Software sets this field to request hardware to setupdate the fault-log pointer used by hardware. The fault-log pointer is specified through Advanced Fault Log register. Hardware reports the status of the 'Set Fault Log' operation through the FLS field in the Global Status register. The fault log pointer must be set before enabling advanced fault logging through EAFL field. Once advanced fault logging is enabled, the fault log pointer may be updated through this field while DMA remapping is active. Clearing this bit has no effect. The value returned on read of this field is undefined.

Bit	Туре	Default Value	RST Type	Description
28:28	RO	0x0		
27:27	RO	0x0	default/uncore	
26:26	RO_V	0x0	default/uncore	QIE: This field is valid only for implementations supporting queued invalidations. Software writes to this field to enable or disable queued invalidations. 0: Disable queued invalidations. 1: Enable use of queued invalidations. Hardware reports the status of queued invalidation enable operation through QIES field in the Global Status register. The value returned on a read of this field is undefined.

PCIE Configuration Registers

Bit	Туре	Default Value	RST Type	Description
25:25	RO_V	0x0	default/uncore	IRE: This field is valid only for implementations supporting interrupt remapping. 0: Disable interrupt-remapping hardware 1: Enable interrupt-remapping hardware Hardware reports the status of the interrupt remapping enable operation through the IRES field in the Global Status register. There may be active interrupt requests in the platform when software updates this field. Hardware must enable or disable interrupt-remapping logic only at deterministic transaction boundaries, so that any in-flight interrupts are either subject to remapping or not at all. Hardware implementations must drain any in-flight interrupts requests queued in the Root-Complex before completing the interrupt-remapping enable command and reflecting the status of the command through the IRES field in the Global Status register. The value returned on a read of this field is undefined.
24:24	WO	0x0	default/uncore	SIRTP: This field is valid only for implementations supporting interrupt- remapping. Software sets this field to setupdate the interrupt remapping table pointer used by hardware. The interrupt remapping table pointer is specified through the Interrupt Remapping Table Address IRTAREG register. Hardware reports the status of the 'Set Interrupt Remap Table Pointer' operation through the IRTPS field in the Global Status register. The 'Set Interrupt Remap Table Pointer' operation must be performed before enabling or re-enabling after disabling interrupt-remapping hardware through the IRE field. After a 'Set Interrupt Remap Table Pointer' operation, software must globally invalidate the interrupt entry cache. This is required to ensure hardware uses only the interrupt-remapping entries referenced by the new interrupt remap table pointer, and not any stale cached entries. While interrupt remapping is active, software may update the interrupt remapping table pointer through this field. However, to ensure valid in- flight interrupt requests are deterministically remapped, software must ensure that the structures referenced by the new interrupt remap table pointer are programmed to provide the same remapping results as the structures referenced by the previous interrupt remap table pointer. Clearing this bit has no effect. The value returned on a read of this field is undefined.

PCIE Configuration Registers

Bit	Туре	Default Value	RST Type	Description
23:23	RO_V	0x0	default/uncore	 CFI: This field is valid only for Intel64 implementations supporting interrupt-remapping. Software writes to this field to enable or disable Compatibility Format interrupts on Intel64 platforms. The value in this field is effective only when interrupt-remapping is enabled and Extended Interrupt Mode x2APIC mode is not enabled. O: Block Compatibility format interrupts. 1: Process Compatibility format interrupts as pass-through bypass interrupt remapping. Hardware reports the status of updating this field through the CFIS field in the Global Status register. The value returned on a read of this field is undefined.

MPGFXTRK_CR_MEMRR_BASE_0_2_0_GTTMMADR

B/D/F/Type: 0/2/0/GTTMMADR

Address Offset: 0x108340

Size: 64 bits

Access: RO_V

The EMRR range is used to protect Xucode memory from unauthorized reads and writes. Any IO access to this range is aborted. This register controls the location of the EMRR range by indicating its starting address.

It functions in tandem with the EMRR mask register.

Bit	Туре	Default Value	RST Type	Description
38:12	RO_V	0x0		RANGE_BASE: This field corresponds to bits 38:12 of the base address memory range which is allocated to EMRR memory.

MPGFXTRK_CR_MEMRR_MASK_0_2_0_GTTMMADR

B/D/F/Type: 0/2/0/GTTMMADR

Address Offset: 0x108380

Size: 64 bits

Access: RO_V

This register controls the size of the EMRR range by indicating which address bits must match the EMRR base register value.

Bit	Туре	Default Value	RST Type	Description
38:12	RO_V	0x0	default/uncore	RANGE_MASK: This field indicates which address bits must match EMRR base in order to qualify as an EMRR access.
11:11	RO_V	0x0	default/uncore	RANGE_EN: Indicates whether the EMRR range is enabled and valid.
10:10	RO_V	0x0	default/uncore	LOCK: Setting this bit locks all writeable settings in this register, including itself.

GSA Registers

Address Space	Address	Symbol	Name
MMIO: 0/2/0	130040h	LCPLL_CTL	LCPLL Control
MMIO: 0/2/0	130044h	GTSP1_0_2_0_GTTMMADR	GT Scratch Pad 1
MMIO: 0/2/0	130048h	GTSP2_0_2_0_GTTMMADR	GT Scratch Pad 2
MMIO: 0/2/0	13004Ch	GTSP3_0_2_0_GTTMMADR	GT Scratch Pad 3
MMIO: 0/2/0	130050h	GTSP4_0_2_0_GTTMMADR	GT Scratch Pad 4
MMIO: 0/2/0	130054h	GTSP5_0_2_0_GTTMMADR	GT Scratch Pad 5
MMIO: 0/2/0	130058h	GTSP6_0_2_0_GTTMMADR	GT Scratch Pad 6
MMIO: 0/2/0	13005Ch	GTSP7_0_2_0_GTTMMADR	GT Scratch Pad 7
MMIO: 0/2/0	130090h	GTFORCEAWAKE_0_2_0_GTTMMADR	GT Force Awake