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Introduction 
The hardware supports three engines: 

• The Render command streamer interfaces to 3D/IE and display streams.  
• The Media command streamer interfaces to the fixed function media.  
• The Blitter command streamer interfaces to the blit commands.  

Software interfaces of all three engines are very similar and should only differ on engine-specific 
functionality. 

Memory Views Glossary 
Term Definition 

Page 
Walker 

GFX page walker which handles page level translations between GFX virtual memory to physical 
memory domain. 

Graphics Memory Interface Functions 
The major role of an integrated graphics device’s Memory Interface (MI) function is to provide various 
client functions access to "graphics" memory used to store commands, surfaces, and other information 
used by the graphics device. This chapter describes the basic mechanisms and paths by which graphics 
memory is accessed. 

Information not presented in this chapter includes:  

• Microarchitectural and implementation-dependent features (e.g., internal buffering, caching and 
arbitration policies). 

• MI functions and paths specific to the operation of external (discrete) devices attached via external 
connections. 

• MI functions essentially unrelated to the operation of the internal graphics devices, .e.g., traditional 
"chipset functions" . 

• GFX Page Walker and GT interface functions are covered in different chapters.  
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Address Tiling Function Introduction 
When dealing with memory operands (e.g., graphics surfaces) that are inherently rectangular in nature, 
certain functions within the graphics device support the storage/access of the operands using 
alternative (tiled) memory formats to increase performance. This section describes these memory 
storage formats, why and when they should be used, and the behavioral mechanisms within the device 
to support them. 

Linear vs. Tiled Storage  

Regardless of the memory storage format, "rectangular" memory operands have a specific width and 
height, and are considered as residing within an enclosing rectangular region whose width is considered 
the pitch of the region and surfaces contained within. Surfaces stored within an enclosing region must 
have widths less than or equal to the region pitch (indeed the enclosing region may coincide exactly 
with the surface). The following diagram shows these parameters. 

Rectangular Memory Operand Parameters 

 
The simplest storage format is the linear format (see diagram below), where each row of the operand is 
stored in sequentially increasing memory locations. If the surface width is less than the enclosing 
region’s pitch, there will be additional memory storage between rows to accommodate the region’s 
pitch. The pitch of the enclosing region determines the distance (in the memory address space) 
between vertically-adjacent operand elements (e.g., pixels, texels). 

Linear Surface Layout 
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The linear format is best suited for 1-dimensional row-sequential access patterns (e.g., a display surface 
where each scanline is read sequentially). Here the fact that one object element may reside in a different 
memory page than its vertically-adjacent neighbors is not significant; all that matters is that 
horizontally-adjacent elements are stored contiguously. However, when a device function needs to 
access a 2D subregion within an operand (e.g., a read or write of a 4x4 pixel span by the 3D renderer, a 
read of a 2x2 texel block for bilinear filtering), having vertically-adjacent elements fall within different 
memory pages is to be avoided, as the page crossings required to complete the access typically incur 
increased memory latencies (and therefore lower performance). 

One solution to this problem is to divide the enclosing region into an array of smaller rectangular 
regions, called memory tiles. Surface elements falling within a given tile will all be stored in the same 
physical memory page, thus eliminating page-crossing penalties for 2D subregion accesses within a tile 
and thereby increasing performance. 

Tiles have a fixed 4KB size and are aligned to physical DRAM page boundaries. They are either 8 rows 
high by 512 bytes wide or 32 rows high by 128 bytes wide (see diabr). Note that the dimensions of tiles 
are irrespective of the data contained within – e.g., a tile can hold twice as many 16-bit pixels (256 
pixels/row x 8 rows = 2K pixels) than 32-bit pixels (128 pixels/row x 8 rows = 1K pixels). 
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Memory Tile Dimensions 

 
The pitch of a tiled enclosing region must be an integral number of tile widths. The 4KB tiles within a tiled 
region are stored sequentially in memory in row-major order. 

 The figure below shows an example of a tiled surface located within a tiled region with a pitch of 8 tile 
widths (512 bytes * 8 = 4KB). Note that it is the enclosing region that is divided into tiles – the surface is 
not necessarily aligned or dimensioned to tile boundaries. 

Tiled Surface Layout 

 

Tile Formats  

The device supports both X-Major (row-major) and Y-Major (column major) storage of tile data units, as 
shown in the following figures. A 4KB tile is subdivided into an 8-high by 32-wide array of 16-byte 
OWords for X-Major Tiles (X Tiles for short), and 32-high by 8-wide array of OWords for Y-Major Tiles (Y 
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Tiles). The selection of tile direction only impacts the internal organization of tile data, and does not 
affect how surfaces map onto tiles. Note that the diagrams are not to scale – the first format defines the 
contents of an 8-high by 512-byte wide tile, and the second a 32-high by 128-byte wide tile. The 
storage of tile data units in X-Major or Y-Major fashion is sometimes refer to as the walk of the tiling. 

X-Major Tile Layout 

 
Note that an X-major tiled region with a tile pitch of 1 tile is actually stored in a linear fashion. 
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Y-Major Tile Layout 

  

W-Major Tile Format  

The device supports additional format W-Major storage of tile data units, as shown in the following 
figures. A 4 KB tile is subdivided into 8-high by 8-wide array of Blocks for W-Major Tiles (W Tiles). Each 
Block is 8 rows by 8 bytes. The selection of tile direction only impacts the internal organization of tile 
data, and does not affect how surfaces map onto tiles. W-Major Tile Format is used for separate stencil. 
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W-Major Tile Layout 

 
W-Major Block Layout 

 

Tiling Algorithm  

The following pseudocode describes the algorithm for translating a tiled memory surface in graphics 
memory to an address in logical space. 

Inputs: LinearAddress(offset into regular or LT aperture in terms of 
bytes), 

Pitch_programmed(in Surface State or Stencil Buffer State),  

 WalkY (1 for Y and 0 for the rest) 

WalkW (1 for W and 0 for the rest) 

Static Parameters: 

TileH (Height of tile, 8 for X, 32 for Y and 64 for W), 

TileW (Width of Tile in bytes, 512 for X, 128 for Y and 64 for W) 
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TileSize = TileH * TileW; 

Pitch_in_Bytes = WalkW ? (Pitch_programmed+1) div 2 

 : Pitch_programmed+1; 

Pitch_in_Tiles = Pitch_in_Bytes div TileW;  

RowSize = Pitch_in_Tiles * TileSize; 

If (Fenced) { 

LinearAddress = LinearAddress – FenceBaseAddress 

LinearAddrInTileW = LinearAddress div TileW; 

Xoffset_inTile = LinearAddress mod TileW; 

Y = LinearAddrInTileW div Pitch_in_Tiles; 

X = LinearAddrInTileW mod Pitch_in_Tiles + Xoffset_inTile; 

} 

// Internal graphics clients that access tiled memory already have the 
X, Y 

// coordinates and can start here 

YOff_Within_Tile = Y mod TileH; 

XOff_Within_Tile = X mod TileW; 

TileNumber_InY = Y div TileH; 

TileNumber_InX = X div TileW; 

TiledOffsetY = RowSize * TileNumber_InY + TileSize * 
TileNumber_InX + TileH * 16 * (XOff_Within_Tile div 16) + 
YOff_Within_Tile * 16 + (XOff_Within_Tile mod 16); 

TiledOffsetW = RowSize * TileNumber_InY + TileSize * 
TileNumber_InX +  
TileH * 8 * (XOff_Within_Tile div 8) +  
64* (YOff_Within_Tile div 8)+  
32*((YOff_Within_Tile div 4) mod 2) +  
16* ((XOff_Within_Tile div 4) mod 2) +  
8 * ((YOff_Within_Tile div 2) mod 2) +  
4* ((XOff_Within_Tile div 2) mod 2) + 
2 * (YOff_Within_Tile mod 2) +  
(XOff_Within_Tile mod 2); 

TiledOffsetX = RowSize * TileNumber_InY + TileSize * 
TileNumber_InX + TileW * YOff_Within_Tile + 
XOff_Within_Tile; 

TiledOffset = WalkW? TiledOffsetW: (WalkY? TiledOffsetY: 
TiledOffsetX); 

TiledAddress = Tiled? (BaseAddress + TiledOffset): 
(BaseAddress + Y*LinearPitch + X);TiledAddress = (Tiled && 

 (Address Swizzling for Tiled-Surfaces == 01)) ? 

(WalkW || WalkY) ? 

(TiledAddress div 128) * 128 + 
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(((TiledAddress div 64) mod 2) ^ 

((TiledAddress div 512) mod 2)) + 

(TiledAddress mod 32) 

: 

(TiledAddress div 128) * 128 + 

(((TiledAddress div 64) mod 2) ^ 

((TiledAddress div 512) mod 2) 

((TiledAddress Div 1024) mod2) + 

(TiledAddress mod 32) 

: 

TiledAddress; 

} 

For Address Swizzling for Tiled-Surfaces see ARB_MODE – Arbiter Mode Control register, ARB_CTL—
Display Arbitration Control 1 and TILECTL - Tile Control register 

The Y-Major tile formats have the characteristic that a surface element in an even row is located in the 
same aligned 64-byte cacheline as the surface element immediately below it (in the odd row). This 
spatial locality can be exploited to increase performance when reading 2x2 texel squares for bilinear 
texture filtering, or reading and writing aligned 4x4 pixel spans from the 3D Render pipeline. 

On the other hand, the X-Major tile format has the characteristic that horizontally-adjacent elements 
are stored in sequential memory addresses. This spatial locality is advantageous when the surface is 
scanned in row-major order for operations like display refresh. For this reason, the Display and Overlay 
memory streams only support linear or X-Major tiled surfaces (Y-Major tiling is not supported by these 
functions). This has the side effect that 2D- or 3D-rendered surfaces must be stored in linear or X-Major 
tiled formats if they are to be displayed. Non-displayed surfaces, e.g., "rendered textures", can also be 
stored in Y-Major order. 

Tiled Channel Select Decision  

In order to spread DRAM accesses between multiple channels in the most efficient way, address bits are 
used to select the channel. The most common DRAM configuration is 2-channels with 64B interleaving 
where address bit[6] is used as channel select. However for tiled accesses, using bit[6] as is can be an 
issue due to back to back accesses to have different patterns compared to liner streams. 

For linear stream (no-X/Y tiling) address bit[6] has no modification. 

Address Swizzling for Tiled-Y Surfaces  

The following board re-defines the address bit[6] after tiling. 
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As shown in the tiling algorithm, The new address bit[6] becomes : 

Address bit[6] <= TiledAddr bit[6] XOR TiledAddr bit[9] 

Address Swizzling For Tiled-X Surfaces  

Similar to Tiled-Y, we need to redefine the address bit[6] but for Tile-X, field mode needs to be taken 
into account. 

 
 As shown in the tiling algorithm, the new address bit[6] should be: 

Address bit[6] <= TiledAddr bit[6] XOR TiledAddr bit[9] XOR TiledAddr bit[10] 

When and Where to use Tiled Address Swizzling  

Address swizzling for tiled surfaces will be used for certain DRAM channel configurations with 64B (or 
more) interleaving. However it is up to the discretion of the GFX driver to set up the system to enable 
address swizzling. 

The need for address swizzling on Tiled Surfaces is communicated by GFX Driver to HW via MMIO 
register updates. The following register present in three places of GFX MMIO region and driver is 
responsible for consistent programming of all these values 
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[1:0] R/W 00h Address Swizzling for Tiled-Surfaces: This register location is updated via GFX Driver 
before enabling DRAM accesses. Driver needs to obtain the need for memory address 
swizzling via DRAM configuration registers and set the following bits (in Display Engine 
and Render/Media access streams): 

00b: No address Swizzling 

01b: Address bit[6] needs to be swizzled for tiled surfaces 

10b: Reserved 

11b: Reserved 

Note: the bit positions can vary due to assignments. 

For GT => offset 0x0000_4030[5:4] ARB_MODE register 

For DE => offset 0x0004_5000[14:13] Arbiter Control register 

Address swizzling is not supported. 

Tiling Support  

The rearrangement of the surface elements in memory must be accounted for in device functions 
operating upon tiled surfaces. (Note that not all device functions that access memory support tiled 
formats). This requires either the modification of an element’s linear memory address or an alternate 
formula to convert an element’s X,Y coordinates into a tiled memory address. 

However, before tiled-address generation can take place, some mechanism must be used to determine 
whether the surface elements accessed fall in a linear or tiled region of memory, and if tiled, what the 
tile region pitch is, and whether the tiled region uses X-Major or Y-Major format. There are two 
mechanisms by which this detection takes place: (a) an implicit method by detecting that the pre-tiled 
(linear) address falls within a "fenced" tiled region, or (b) by an explicit specification of tiling parameters 
for surface operands (i.e., parameters included in surface-defining instructions). 

The following table identifies the tiling-detection mechanisms that are supported by the various 
memory streams. 

Access Path Tiling-Detection Mechanisms Supported 

Processor access through the Graphics 
Memory Aperture 

Fenced Regions 

3D Render (Color/Depth Buffer access) Explicit Surface Parameters 

Sampled Surfaces Explicit Surface Parameters 

Blt operands Explicit Surface Parameters 

Display and Overlay Surfaces Explicit Surface Parameters 

Tiled (Fenced) Regions  

The only mechanism to support the access of surfaces in tiled format by the host or external graphics 
client is to place them within "fenced" tiled regions within Graphics Memory. A fenced region is a block 
of Graphics Memory specified using one of the sixteen FENCE device registers. (See Memory Interface 
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Registers for details). Surfaces contained within a fenced region are considered tiled from an external 
access point of view. Note that fences cannot be used to untile surfaces in the PGM_Address space 
since external devices cannot access PGM_Address space. Even if these surfaces (or any surfaces 
accessed by an internal graphics client) fall within a region covered by an enabled fence register, that 
enable will be effectively masked during the internal graphics client access. Only the explicit surface 
parameters described in the next section can be used to tile surfaces being accessed by the internal 
graphics clients. 

Each FENCE register (if its Fence Valid bit is set) defines a Graphics Memory region ranging from 4KB to 
the aperture size. The region is considered rectangular, with a pitch in tile widths from 1 tile width (128B 
or 512B) to 256 tile X widths (256 * 512B = 128KB) and 1024 tile Y widths (1024 * 128B = 128KB). Note 
that fenced regions must not overlap, or operation is UNDEFINED. 

Also included in the FENCE register is a Tile Walk field that specifies which tile format applies to the 
fenced region. 

Tiled Surface Parameters  

Internal device functions require explicit specification of surface tiling parameters via information 
passed in commands and state. This capability is provided to limit the reliance on the fixed number of 
fence regions. 

The following table lists the surface tiling parameters that can be specified for 3D Render surfaces 
(Color Buffer, Depth Buffer, Textures, etc.) via SURFACE_STATE. 

Surface 
Parameter Description 

Tiled Surface If ENABLED, the surface is stored in a tiled format. If DISABLED, the surface is stored in a linear 
format. 

Tile Walk If Tiled Surface is ENABLED, this parameter specifies whether the tiled surface is stored in Y-
Major or X-Major tile format. 

Base Address Additional restrictions apply to the base address of a Tiled Surface vs. that of a linear surface. 

Pitch Pitch of the surface. Note that, if the surface is tiled, this pitch must be a multiple of the tile 
width. 

Tiled Surface Restrictions  

Additional restrictions apply to the Base Address and Pitch of a surface that is tiled. In addition, 
restrictions for tiling via SURFACE_STATE are subtly different from those for tiling via fence regions. The 
most restricted surfaces are those that will be accessed both by the host (via fence) and by internal 
device functions. An example of such a surface is a tiled texture that is initialized by the CPU and then 
sampled by the device. 

The tiling algorithm for internal device functions is different from that of fence regions. Internal device 
functions always specify tiling in terms of a surface. The surface must have a base address, and this base 
address is not subject to the tiling algorithm. Only offsets from the base address (as calculated by X, Y 
addressing within the surface) are transformed through tiling. The base address of the surface must 
therefore be 4KB-aligned. This forces the 4KB tiles of the tiling algorithm to exactly align with 4KB 
device pages once the tiling algorithm has been applied to the offset. The width of a surface must be 
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less than or equal to the surface pitch. There are additional considerations for surfaces that are also 
accessed by the host (via a fence region). 

Fence regions have no base address per se. Host linear addresses that fall in a fence region are 
translated in their entirety by the tiling algorithm. It is as if the surface being tiled by the fence region 
has a base address in graphics memory equal to the fence base address, and all accesses of the surfaces 
are (possibly quite large) offsets from the fence base address. Fence regions have a virtual "left edge" 
aligned with the fence base address, and a "right edge" that results from adding the fence pitch to the 
"left edge". Surfaces in the fence region must not straddle these boundaries. 

Base addresses of surfaces that are to be accessed both by an internal graphics client and by the host 
have the tightest restrictions. In order for the surface to be accessed without GTT re-mapping, the 
surface base address (as set in SURFACE_STATE) must be a "Tile Row Start Address" (TRSA). The first 
address in each tile row of the fence region is a Tile Row Start Address. The first TRSA is the fence base 
address. Each TRSA can be generated by adding an integral multiple of the row size to the fence base 
address. The row size is simply the fence pitch in tiles multiplied by 4KB (the size of a tile.) 

Tiled Surface Placement 

 
The pitch in SURFACE_STATE must be set equal to the pitch of the fence that will be used by the host to 
access the surface if the same GTT mapping will be used for each access. If the pitches differ, a different 
GTT mapping must be used to eliminate the "extra" tiles (4KB memory pages) that exist in the excess 
rows at the right side of the larger pitch. Obviously no part of the surface that will be accessed can lie in 
pages that exist only in one mapping but not the other. The new GTT mapping can be done manually 
by SW between the time the host writes the surface and the device reads it, or it can be accomplished 
by arranging for the client to use a different GTT than the host (the PPGTT -- see Logical Memory 
Mapping). 

The width of the surface (as set in SURFACE_STATE) must be less than or equal to both the surface pitch 
and the fence pitch in any scenario where a surface will be accessed by both the host and an internal 
graphics client. Changing the GTT mapping will not help if this restriction is violated. 
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Surface Access Base Address Pitch Width Tile "Walk" 

Host only No restriction Integral multiple of tile 
size <= 128KB 

Must be <= Fence 
Pitch 

No restriction 

Client only 4KB-aligned Integral multiple of tile 
size <= 256KB 

Must be <= 
Surface Pitch Restrictions imposed by 

the client (see Per-
Stream Tile Format 
Support ) 

Host and Client, 
No GTT 
Remapping 

Must be TRSA Fence Pitch = Surface 
Pitch = integral multiple 
of tile size <= 256KB 

Width <= Pitch Surface Walk must meet 
client restriction, Fence 
Walk = Surface Walk 

Host and Client, 
GTT Remapping 

4KB-aligned for 
client (will be tile-
aligned for host) 

Both must be Integral 
multiple of tile size 
<=128KB, but not 
necessarily the same 

Width <= 
Min(Surface Pitch, 
Fence Pitch) 

Surface Walk must meet 
client restriction, Fence 
Walk = Surface Walk 

Per-Stream Tile Format Support  

MI Client Tile Formats Supported 

CPU Read/Write All 

Display/Overlay Y-Major not supported. 
X-Major required for Async Flips 

Blt Linear and X-Major only 
No Y-Major support 

3D Sampler All Combinations of TileY, TileX and Linear are supported. TileY is the fastest, Linear is the 
slowest. 

3D Color,Depth Rendering Mode 
Color-vs-Depth bpp Buffer Tiling Supported 

Classical 

Same Bpp 

Both Linear  
Both TileX 
Both TileY 
Linear & TileX 
Linear & TileY 
TileX & TileY 

Classical 

Mixed Bpp 

Both Linear  
Both TileX 
Both TileY 
Linear & TileX 
Linear & TileY 
TileX & TileY 

NOTE: 
128 BPP format color buffer (render target) supports Linear, TiledX and TiledY. 
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Graphics Translation Tables 

The Graphics Translation Tables GTT (Graphics Translation Table, sometimes known as the global GTT) 
and PPGTT (Per-Process Graphics Translation Table) are memory-resident page tables containing an 
array of DWord Page Translation Entries (PTEs) used in mapping logical Graphics Memory addresses to 
physical memory addresses, and sometimes snooped system memory "PCI" addresses. 

The base address (MM offset) of the GTT and the PPGTT are programmed via the PGTBL_CTL and 
PGTBL_CTL2 MI registers, respectively. The translation table base addresses must be 4KB aligned. The 
GTT size can be either 128KB, 256KB, or 512KB (mapping to 128MB, 256MB, and 512MB aperture sizes 
respectively) and is physically contiguous. The global GTT should only be programmed via the range 
defined by GTTADR. The PPGTT is programmed directly in memory. The per-process GTT (PPGTT) size is 
controlled by the PGTBL_CTL2 register. The PPGTT can, in addition to the above sizes, also be 64KB in 
size (corresponding to a 64MB aperture). Refer to the GTT Range chapter for a bit definition of the PTE 
entries. 

Virtual Memory  

GT supports standard virtual memory models as defined by the IA programmer’s guide. This section 
describes the different paging models, their behaviors and the page-table formats. 

Global Virtual Memory 

Global Virtual Memory is the default target memory if a PPGTT is not enabled. If a PPGTT is also 
present, the method to choose which is targeted by memory and rendering operations varies by 
product. See the sections on Per-Process Virtual Memory for more information. High priority graphics 
clients such as Display and Cursor always access global virtual memory. 



Memory Views  
 

 

20 Doc Ref # IHD-OS-VLV-Vol5-04.14 
 

 

Graphics Translation Table (GTT) Range (GTTADR) 

Address: GTTADR in CPU Physical Space 

Access: Aligned DWord Read/Write 

The GTTADR memory BAR defined in graphics device config space is an alias for the Global GTT.  

Programming Notes: It is recommended that the driver map all graphics memory pages in the GGTT 
to some physical page, if only a dummy page. 
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GTT Page Table Entries (PTEs) 

Page Table Entry: 1 DWord per 4KB Graphics Memory page. 

 

Bit Description 

31: 12 Physical Page Address 31:12: If the Valid bit is set, This field provides the 
page number of the physical memory page backing the corresponding 
Graphics Memory page. 

11:4 Physical Start Address Extension: This field specified Bits 39:32 of the 
page table entry. This field must be zero for 32 bit addresses. 

3 Graphics Data Type (GFDT) 

This field contains the GFDT bit for this surface when writes occur. GFDT can 
also be set by various state commands and indirect objects. The effective 
GFDT is the logical OR of the GTT entry with this field. This field is ignored 
for reads. 

Format = U1 

0: No GFDT (default) 

1: GFDT 

2 Reserved 

1 Write Permission Rights 

This field is used to control whether a GT (GAM agent) is allowed to write to 
this memory page 

0: Page can only be read. Any writes to this page by GT HW will be treated 
as invalid, and logged in bit 1 of the Interrupt Status Register (Offset 
18_20ACh). 
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Bit Description 

1: Page can be read or written. 

Note that writes from the CPU through Graphics Aperture are not affected 
by this attribute. 

This attribute only affects B-0 and later steppings. This field is ignored on 
A-0. 

0 Valid PTE: This field indicates whether the mapping of the corresponding 
Graphics Memory page is valid. 

1: Valid 

0: Invalid. An access (other than a CPU Read) through an invalid PTE will 
result in Page Table Error (Invalid PTE). 

Per Process GTT  

The Valley View/Ivy Bridge family of GPUs supports a 2-level mapping scheme for PPGTT, consisting of 
a second-level page directory containing page table base addresses, and the page tables themselves on 
the first level, consisting of page addresses. The motivation for the 2-level scheme is simple – it allows 
for the lookup table (the collection of page tables) to exist in discontinuous memory, making allocation 
of memory for these structures less problematic for the OS. The directory and each page table fit within 
a single 4K page of memory that can be located anywhere in physical memory space. 

If a PPGTT is enabled, all rendering operations (including blit commands) target Per-process virtual 
memory. This means all commands except the Memory Interface Commands (MI_*). Certain Memory 
Interface Commands have a flag to choose global virtual memory (mapped via the GGTT) instead of 
per-process memory. Global Virtual Memory can be thought of as "privileged" memory in this case. 
Commands that elect to access privileged memory must have sufficient access rights to do so. 
Commands executing directly from a ring buffer or from a "secure" batch buffer (see the 
MI_BATCH_BUFFER_START command in Memory Interface Commands) have these access rights; other 
commands do not and are not permitted to access global virtual memory. 

Page Table Format  

oth have 32bits allowing 1024 entries per page mapping 2^10 pages. 

PTE (1st Level):  

 
PDE (2nd Level):  



 
Memory Views  

Doc Ref # IHD-OS-VLV-Vol5-04.14 23 
 

 

Page Walk  

Page walk starts with the pointer to Page Directory Base and using the Page Directory index, this is for 
the 2nd level page table where PDE is determined. Using the PDE and page table index, the PTE is 
determined which points to the page in physical memory. Using the offset to the page, the actual line is 
accessed. 

 

Two-Level Per-Process Virtual Memory 

 The motivation for the 2-level scheme is simple – it allows for the lookup table (the collection of page 
tables) to exist in discontiguous memory, making allocation of memory for these structures less 
problematic for the OS. The directory and each page table fit within a single 4K page of memory that 
can be located anywhere in physical memory space. 

If a PPGTT is enabled, all rendering operations (including blit commands) target per-process virtual 
memory. This means all commands except the Memory Interface Commands (MI_*). Certain Memory 
Interface Commands have a specifier to choose global virtual memory (mapped via the GGTT) instead 
of per-process memory. Global Virtual Memory can be thought of as "privileged" memory in this case. 
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Commands that elect to access privileged memory must have sufficient access rights to do so. 
Commands executing directly from a ring buffer or from a "secure" batch buffer (see the 
MI_BATCH_BUFFER_START command in Memory Interface Commands) have these access rights; other 
commands do not and are not permitted to access global virtual memory. See the Memory Interface 
Commands chapters for details on command access to privileged memory. 

The PPGTT is disabled by resetting the Per-Process GTT Enable bit. 
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In case of a big page client, the following access path is used: 

 
Note: The starting address of a 32KB page needs to be natively aligned to a 32KB boundary in memory. 
Hardware uses certain bits (15 and up) to check for the TLB lookups. 

Note: 32KB big page implementation has been expanded for all surfaces. 8 consecutive PTEs within the 
32KB Big page need to be programmed to point to their respective 4KB pages.  

If a PDE is marked 32KB, then: 

1. The entire PT pointed to by that PDE must use 32KB pages. 
2. PTEs for each 4KB need to be programmed to their respective pages. There is no difference in 

programming PTEs for PDE that is marked for 32KB pages vs 4KB pages.  
3. The physical addresses of each 32KB page have to be natively 32KB aligned. 
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PPGTT Directory Entries (PDEs) 

Directory Entry: 1 DWord per 4KB page table (4MB Graphics Memory). Page directories must be 
located entirely within the GGTT (the table itself.) Directory entries should be updated only for non-
active contexts. If a directory entry update is done for a running context, it is unknown when that 
update will take effect since the device caches directory entries. Directory entries can only be modified 
using GTTADDR (see Memory Interface Commands for Rendering Engine). 

31 12 11 4 3 2 1 0 

Physical Page Address 31:12 Physical Page Address 39:32 Reserved Size ("0":4KB, "1":32KB) Valid 

 
Bits Description 

31:12 

Physical Page Address 31:12: If the Valid bit is set, This field provides the page number of the 
physical memory page backing the corresponding Graphics Memory page. 

11:4 Physical Page Address Extension: This field specifies bits 39:32 of the directory entry. 

3:2 Reserved: MBZ 

1 

Page Size: Two page sizes are supported through PDE. 

0: 4KB pages 

1: 32KB pages 

0 

Valid PDE: This field indicates whether this directory entry is valid. 

1: Valid 

0: Invalid. An access through an invalid PDE will result in a page fault. 
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PPGTT Table Entries (PTEs) 

Page Table Entry: 1 DWord per 4KB Graphics Memory page. Page Tables must be located in main 
memory (not snooped). They can be updated directly in memory if proper precautions are taken, or 
from the command stream by using the MI_UPDATE_GTT command (see Memory Interface Commands 
for Rendering Engine). 

31:12 11:4 3 2:1 0 

Physical Page Address 31:12 Physical Page Address 39:32 GFDT Cacheability Control Valid 
 
Bits Description 

31:12 

Physical Page Address 31:12: If the Valid bit is set, This field provides the page number of the 
physical memory page backing the corresponding Graphics Memory page. 

11:4 

Physical Start Address Extension: This field specified Bits 39:32 of the page table entry. This 
field must be zero for 32 bit addresses. 

3 Reserved 

2:1 Reserved 

0 

Valid PTE: This field indicates whether the mapping of the corresponding Graphics Memory 
page is valid. 

1: Valid 

0: Invalid. An access (other than a CPU Read) through an invalid PTE will result in Page Table Error 
(Invalid PTE). 

Global GTT  

Global Virtual Memory is the default target memory if a PPGTT is not enabled.  If a PPGTT is also 
present, the method to choose which is targeted by memory and rendering operations varies by 
product.  As Display and Aperture path will use Global GTT even if GT is mapped via per-process GTT.  

The PTE format for global GTT is identical to the format that is used in PPGTT, the difference is that the 
walk is always single level. Driver is assumed to program the GSM (GTT Stolen Memory) with the page 
pointers and all hardware does is to access to corresponding GSM location (Offset is acquired from 
virtual address indexing) and get a pointer to physical page.  
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For pre-Gen8, the GSM was limited to 2MB allowing indexing for 2GB of physical memory.  

 

Memory Types and Cache Interface 
This section has additional information on the types of memory which are accessible via the various GT 
mechanisms. It includes discussion on how the various paging models are used and accessed. See the 
Graphics Translation Tables for more detailed discussions on paging models. 

This section also includes descriptions of how different surface types (MOCS) can be cached in the L3 
and the different behaviors which can be enabled. 

Memory Object Control State (MOCS) 

The memory object control state defines the behavior of memory accesses beyond the graphics core, 
graphics data types that allow selective flushing of data from outer caches, and controlling cacheability 
in the outer caches. 

This control uses several mechanisms. Control state for all memory accesses can be defined page by 
page in the GTT entries. Memory objects that are defined by state per surface generally have additional 
memory object control state in the state structure that defines the other surface attributes. Memory 
objects without state defining them have memory object state control defined per class in the 
STATE_BASE_ADDRESS command, with class divisions the same as the base addresses. Finally, some 
memory objects only have the GTT entry mechanism for defining this control. The table below 
enumerates the memory objects and the location of the control state for each: 

Memory Object Location of Control State 

surfaces defined by SURFACE_STATE: sampling engine surfaces, SURFACE_STATE 
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Memory Object Location of Control State 

render targets, media surfaces, pull constant buffers, streamed vertex 
buffers 

depth, stencil, and hierarchical depth buffers corresponding state command that 
defined the buffer attributes 

stateless buffers accessed by data port STATE_BASE_ADDRESS 

indirect state objects STATE_BASE_ADDRESS 

kernel instructions STATE_BASE_ADDRESS 

push constant buffers 3DSTATE_CONSTANT_(VS | GS | PS) 

index buffers 3DSTATE_INDEX_BUFFER 

vertex buffers 3DSTATE_VERTEX_BUFFERS 

indirect media object STATE_BASE_ADDRESS 

generic state prefetch GTT control only 

ring/batch buffers GTT control only 

context save buffers GTT control only 

store DWord GTT control only 

MOCS Registers 

These registers provide the detailed format of the MOCS table entries, that need to be programmed to 
define each surface state. 

MEMORY_OBJECT_CONTROL_STATE 

Common Surface Formats 
This section documents surfaces and how they are stored in memory, including 3D and video surfaces, 
including the details of compressed texture formats. Also covered are the surface layouts based on 
tiling mode and surface type. 

Non-Video Surface Formats 

This section describes the lowest-level organization of a surfaces containing discrete "pixel" oriented 
data (e.g., discrete pixel (RGB,YUV) colors, subsampled video data, 3D depth/stencil buffer pixel formats, 
bump map values etc. Many of these pixel formats are common to the various pixel-oriented memory 
object types. 

Surface Format Naming 

Unless indicated otherwise, all pixels are stored in "little endian" byte order. i.e., pixel bits 7:0 are 
stored in byte n, pixel bits 15:8 are stored in byte n+1, and so on.  The format labels include color 
components in little endian order (e.g., R8G8B8A8 format is physically stored as R, G, B, A). 

The name of most of the surface formats specifies its format. Channels are listed in little endian order 
(LSB channel on the left, MSB channel on the right), with the channel format specified following the 
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channels with that format. For example, R5G5_SNORM_B6_UNORM contains, from LSB to MSB, 5 bits of 
red in SNORM format, 5 bits of green in SNORM format, and 6 bits of blue in UNORM format. 

Intensity Formats 

All surface formats containing "I" include an intensity value. When used as a source surface for the 
sampling engine, the intensity value is replicated to all four channels (R,G,B,A) before being filtered. 
Intensity surfaces are not supported as destinations. 

Luminance Formats 

All surface formats contaning "L" include a luminance value. When used as a source surface for the 
sampling engine, the luminance value is replicated to the three color channels (R,G,B) before being 
filtered. The alpha channel is provided either from another field or receives a default value. Luminance 
surfaces are not supported as destinations. 

R1_UNORM (same as R1_UINT) and MONO8 

When used as a texel format, the R1_UNORM format contains 8 1-bit Intensity (I) values that are 
replicated to all color channels. Note that T0 of byte 0 of a R1_UNORM-formatted texture corresponds 
to Texel[0,0]. This is different from the format used for monochrome sources in the BLT engine. 

7 6 5 4 3 2 1 0 

T7 T6 T5 T4 T3 T2 T1 T0 
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Bit Description 

T0 Texel 0 

On texture reads, this (unsigned) 1-bit value is replicated to all color channels. 

Format: U1 

... ... 

T7 Texel 7 

On texture reads, this (unsigned) 1-bit value is replicated to all color channels. 

Format: U1 

MONO8 format is identical to R1_UNORM but has different semantics for filtering. MONO8 is the only 
supported format for the MAPFILTER_MONO filter. See the Sampling Engine chapter. 

Palette Formats 

Palette formats are supported by the sampling engine. These formats include an index into the palette 
(Px) that selects the actual channel values from the palette, which is loaded via the 
3DSTATE_SAMPLER_PALETTE_LOAD0 command. 

P4A4_UNORM 

This surface format contains a 4-bit Alpha value (in the high nibble) and a 4-bit Palette Index value (in 
the low nibble). 

7     4 3     0 

Alpha Palette Index 
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Bit Description 

7:4 Alpha 

Alpha value which will be replicated to both the high and low nibble of an 8-bit value, and then 
divided by 255 to yield a [0.0,1.0] Alpha value. 

Format: U4 

3:0 Palette Index 

A 4-bit index which is used to lookup a 24-bit (RGB) value in the texture palette (loaded via 
3DSTATE_SAMPLER_PALETTE_LOADx) 

Format: U4 

A4P4_UNORM 

This surface format contains a 4-bit Alpha value (in the low nibble) and a 4-bit Color Index value (in the 
high nibble). 

7     4 3     0 

Palette Index Alpha 

  

Bit Description 

7:4 Palette Index 

A 4-bit color index which is used to lookup a 24-bit RGB value in the texture palette. 

Format: U4 

3:0 Alpha 

Alpha value which will be replicated to both the high and low nibble of an 8-bit value, and then 
divided by 255 to yield a [0.0,1.0] alpha value. 

Format: U4 
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P8A8_UNORM 

This surface format contains an 8-bit Alpha value (in the high byte) and an 8-bit Palette Index value (in 
the low byte). 

15     8 7     0 

Alpha Palette Index 

  

Bit Description 

15:8 Alpha 

Alpha value which will be divided by 255 to yield a [0.0,1.0] Alpha value. 

Format: U8 

7:0 Palette Index 

An 8-bit index which is used to lookup a 24-bit (RGB) value in the texture palette (loaded via 
3DSTATE_SAMPLER_PALETTE_LOADx) 

Format: U8 

A8P8_UNORM 

This surface format contains an 8-bit Alpha value (in the low byte) and an 8-bit Color Index value (in the 
high byte). 

15     8 7     0 

Palette Index Alpha 

  

Bit Description 

15:8 Palette Index 

An 8-bit color index which is used to lookup a 24-bit RGB value in the texture palette. 

Format: U8 

7:0 Alpha 

Alpha value which will be divided by 255 to yield a [0.0,1.0] alpha value. 

Format: U8 

P8_UNORM 

This surface format contains only an 8-bit Color Index value. 

Bit Description 
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Bit Description 

7:0 Palette Index 

An 8-bit color index which is used to lookup a 32-bit ARGB value in the 
texture palette. 

Format: U8 

P2_UNORM 

This surface format contains only a 2-bit Color Index value. 

Bit Description 

1:0 Palette Index 

A 2-bit color index which is used to lookup a 32-bit ARGB value in the texture palette. 

Format: U2 

Compressed Surface Formats 

This section contains information on the internal organization of compressed surface formats. 

FXT Texture Formats  

There are four different FXT1 compressed texture formats. Each of the formats compress two 4x4 texel 
blocks into 128 bits. In each compression format, the 32 texels in the two 4x4 blocks are arranged 
according to the following diagram: 

 FXT1 Encoded Blocks 

 

Overview of FXT1 Formats 

During the compression phase, the encoder selects one of the four formats for each block based on 
which encoding scheme results in best overall visual quality. The following table lists the four different 
modes and their encodings: 
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FXT1 Format Summary 

Bit 
127 

Bit 
126 

Bit 
125 

Block 
Compression 

Mode Summary Description 

0 0 X CC_HI 2 R5G5B5 colors supplied. Single LUT with 7 interpolated 
color values and transparent black 

0 1 0 CC_CHROMA 4 R5G5B5 colors used directly as 4-entry LUT. 

0 1 1 CC_ALPHA 3 A5R5G5B5 colors supplied. LERP bit selects between 1 
LUT with 3 discrete colors + transparent black and 2 LUTs 
using interpolated values of Color 0,1 (t0-15) and Color 1,2 
(t16-31). 

1 x x CC_MIXED 4 R5G5B5 colors supplied, where Color0,1 LUT is used for 
t0-t15, and Color2,3 LUT used for t16-31. Alpha bit selects 
between LUTs with 4 interpolated colors or 3 interpolated 
colors + transparent black. 

FXT1 CC_HI Format 

In the CC_HI encoding format, two base 15-bit R5G5B5 colors (Color 0, Color 1) are included in the 
encoded block. These base colors are then expanded (using high-order bit replication) to 24-bit RGB 
colors, and used to define an 8-entry lookup table of interpolated color values (the 8th entry is 
transparent black). The encoded block contains a 3-bit index value per texel that is used to lookup a 
color from the table. 
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CC_HI Block Encoding 

The following table describes the encoding of the 128-bit (DQWord) CC_HI block format: 

FXT CC_HI Block Encoding 

Bit Description 

127:126 Mode = ‘00’b (CC_HI) 

125:121 Color 1 Red 

120:116 Color 1 Green 

115:111 Color 1 Blue 

110:106 Color 0 Red 

105:101 Color 0 Green 

100:96 Color 0 Blue 

95:93 Texel 31 Select 

... ... 

50:48 Texel 16 Select 

47:45 Texel 15 Select 

... ... 

2:0 Texel 0 Select 
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CC_HI Block Decoding 

The two base colors, Color 0 and Color 1 are converted from R5G5B5 to R8G8B8 by replicating the 3 
MSBs into the 3 LSBs, as shown in the following table: 

FXT CC_HI Decoded Colors 

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 1 [23:19] Color 1 Red [7:3] [125:121] 

Color 1 [18:16] Color 1 Red [2:0] [125:123] 

Color 1 [15:11] Color 1 Green [7:3] [120:116] 

Color 1 [10:08] Color 1 Green [2:0] [120:118] 

Color 1 [07:03] Color 1 Blue [7:3] [115:111] 

Color 1 [02:00] Color 1 Blue [2:0] [115:113] 

Color 0 [23:19] Color 0 Red [7:3] [110:106] 

Color 0 [18:16] Color 0 Red [2:0] [110:108] 

Color 0 [15:11] Color 0 Green [7:3] [105:101] 

Color 0 [10:08] Color 0 Green [2:0] [105:103] 

Color 0 [07:03] Color 0 Blue [7:3] [100:96] 

Color 0 [02:00] Color 0 Blue [2:0] [100:98] 

These two 24-bit colors (Color 0, Color 1) are then used to create a table of seven interpolated colors 
(with Alpha = 0FFh), along with an eight entry equal to RGBA = 0,0,0,0, as shown in the following table: 
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FXT CC_HI Interpolated Color Table 

Interpolated 
Color Color RGB Alpha 

0 Color0.RGB 0FFh 

1 (5 * Color0.RGB + 1 * Color1.RGB + 3) / 6 0FFh 

2 (4 * Color0.RGB + 2 * Color1.RGB + 3) / 6 0FFh 

3 (3 * Color0.RGB + 3 * Color1.RGB + 3) / 6 0FFh 

4 (2 * Color0.RGB + 4 * Color1.RGB + 3) / 6 0FFh 

5 (1 * Color0.RGB + 5 * Color1.RGB + 3) / 6 0FFh 

6 Color1.RGB 0FFh 

7 RGB = 0,0,0 0 

This table is then used as an 8-entry Lookup Table, where each 3-bit Texel n Select field of the encoded 
CC_HI block is used to index into a 32-bit A8R8G8B8 color from the table completing the decode of the 
CC_HI block. 

FXT1 CC_CHROMA Format 

In the CC_CHROMA encoding format, four 15-bit R5B5G5 colors are included in the encoded block. 
These colors are then expanded (using high-order bit replication) to form a 4-entry table of 24-bit RGB 
colors. The encoded block contains a 2-bit index value per texel that is used to lookup a 24-bit RGB 
color from the table. The Alpha component defaults to fully opaque (0FFh). 

CC_CHROMA Block Encoding 

The following table describes the encoding of the 128-bit (DQWord) CC_CHROMA block format: 
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FXT CC_CHROMA Block Encoding 

Bit Description 

127:125 Mode = ‘010’b (CC_CHROMA) 

124 Unused 

123:119 Color 3 Red 

118:114 Color 3 Green 

113:109 Color 3 Blue 

108:104 Color 2 Red 

103:99 Color 2 Green 

98:94 Color 2 Blue 

93:89 Color 1 Red 

88:84 Color 1 Green 

83:79 Color 1 Blue 

78:74 Color 0 Red 

73:69 Color 0 Green 

68:64 Color 0 Blue 

63:62 Texel 31 Select 

...   

33:32 Texel 16 Select 

31:30 Texel 15 Select 

...   

1:0 Texel 0 Select 

CC_CHROMA Block Decoding 

The four colors (Color 0-3) are converted from R5G5B5 to R8G8B8 by replicating the 3 MSBs into the 3 
LSBs, as shown in the following tables: 
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FXT CC_CHROMA Decoded Colors 

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 3 [23:17] Color 3 Red [7:3] [123:119] 

Color 3 [18:16] Color 3 Red [2:0] [123:121] 

Color 3 [15:11] Color 3 Green [7:3] [118:114] 

Color 3 [10:08] Color 3 Green [2:0] [118:116] 

Color 3 [07:03] Color 3 Blue [7:3] [113:109] 

Color 3 [02:00] Color 3 Blue [2:0] [113:111] 

Color 2 [23:17] Color 2 Red [7:3] [108:104] 

Color 2 [18:16] Color 2 Red [2:0] [108:106] 

Color 2 [15:11] Color 2 Green [7:3] [103:99] 

Color 2 [10:08] Color 2 Green [2:0] [103:101] 

Color 2 [07:03] Color 2 Blue [7:3] [98:94] 

Color 2 [02:00] Color 2 Blue [2:0] [98:96] 

Color 1 [23:17] Color 1 Red [7:3] [93:89] 

Color 1 [18:16] Color 1 Red [2:0] [93:91] 

Color 1 [15:11] Color 1 Green [7:3] [88:84] 

Color 1 [10:08] Color 1 Green [2:0] [88:86] 

Color 1 [07:03] Color 1 Blue [7:3] [83:79] 

Color 1 [02:00] Color 1 Blue [2:0] [83:81] 

Color 0 [23:17] Color 0 Red [7:3] [78:74] 

Color 0 [18:16] Color 0 Red [2:0] [78:76] 

Color 0 [15:11] Color 0 Green [7:3] [73:69] 

Color 0 [10:08] Color 0 Green [2:0] [73:71] 

Color 0 [07:03] Color 0 Blue [7:3] [68:64] 

Color 0 [02:00] Color 0 Blue [2:0] [68:66] 

This table is then used as a 4-entry Lookup Table, where each 2-bit Texel n Select field of the encoded 
CC_CHROMA block is used to index into a 32-bit A8R8G8B8 color from the table (Alpha defaults to 
0FFh) completing the decode of the CC_CHROMA block. 
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FXT CC_CHROMA Interpolated Color Table 

Texel Select Color ARGB 

0 Color0.ARGB 

1 Color1.ARGB 

2 Color2.ARGB 

3 Color3.ARGB 

FXT1 CC_MIXED Format 

In the CC_MIXED encoding format, four 15-bit R5G5B5 colors are included in the encoded block: Color 
0 and Color 1 are used for Texels 0-15, and Color 2 and Color 3 are used for Texels 16-31. 

Each pair of colors are then expanded (using high-order bit replication) to form 4-entry tables of 24-bit 
RGB colors. The encoded block contains a 2-bit index value per texel that is used to lookup a 24-bit 
RGB color from the table. The Alpha component defaults to fully opaque (0FFh). 

CC_MIXED Block Encoding 

The following table describes the encoding of the 128-bit (DQWord) CC_MIXED block format: 
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FXT CC_MIXED Block Encoding 

Bit Description 

127 Mode = ‘1’b (CC_MIXED) 

126 Color 3 Green [0] 

125 Color 1 Green [0] 

124 Alpha [0] 

123:119 Color 3 Red 

118:114 Color 3 Green 

113:109 Color 3 Blue 

108:104 Color 2 Red 

103:99 Color 2 Green 

98:94 Color 2 Blue 

93:89 Color 1 Red 

88:84 Color 1 Green 

83:79 Color 1 Blue 

78:74 Color 0 Red 

73:69 Color 0 Green 

68:64 Color 0 Blue 

63:62 Texel 31 Select 

... ... 

33:32 Texel 16 Select 

31:30 Texel 15 Select 

... ... 

1:0 Texel 0 Select 
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CC_MIXED Block Decoding 

The decode of the CC_MIXED block is modified by Bit 124 (Alpha [0]) of the encoded block. 

Alpha[0] = 0 Decoding 

When Alpha[0] = 0 the four colors are encoded as 16-bit R5G6B5 values, with the Green LSB defined as 
per the following table: 

FXT CC_MIXED (Alpha[0]=0) Decoded Colors 

Encoded Color Bit Definition 

Color 3 Green [0] Encoded Bit [126] 

Color 2 Green [0] Encoded Bit [33] XOR Encoded Bit [126] 

Color 1 Green [0] Encoded Bit [125] 

Color 0 Green [0] Encoded Bit [1] XOR Encoded Bit [125] 

The four colors (Color 0-3) are then converted from R5G5B6 to R8G8B8 by replicating the 3 MSBs into 
the 3 LSBs, as shown in the following table: 

FXT CC_MIXED Decoded Colors (Alpha[0] = 0) 

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 3 [23:17] Color 3 Red [7:3] [123:119] 

Color 3 [18:16] Color 3 Red [2:0] [123:121] 

Color 3 [15:11] Color 3 Green [7:3] [118:114] 

Color 3 [10] Color 3 Green [2] [126] 

Color 3 [09:08] Color 3 Green [1:0] [118:117] 

Color 3 [07:03] Color 3 Blue [7:3] [113:109] 

Color 3 [02:00] Color 3 Blue [2:0] [113:111] 

Color 2 [23:17] Color 2 Red [7:3] [108:104] 

Color 2 [18:16] Color 2 Red [2:0] [108:106] 

Color 2 [15:11] Color 2 Green [7:3] [103:99] 

Color 2 [10] Color 2 Green [2] [33] XOR [126]] 

Color 2 [09:08] Color 2 Green [1:0] [103:100] 

Color 2 [07:03] Color 2 Blue [7:3] [98:94] 

Color 2 [02:00] Color 2 Blue [2:0] [98:96] 

Color 1 [23:17] Color 1 Red [7:3] [93:89] 

Color 1 [18:16] Color 1 Red [2:0] [93:91] 

Color 1 [15:11] Color 1 Green [7:3] [88:84] 

Color 1 [10] Color 1 Green [2] [125] 

Color 1 [09:08] Color 1 Green [1:0] [88:86] 

Color 1 [07:03] Color 1 Blue [7:3] [83:79] 

Color 1 [02:00] Color 1 Blue [2:0] [83:81] 

Color 0 [23:17] Color 0 Red [7:3] [78:74] 
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Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 0 [18:16] Color 0 Red [2:0] [78:76] 

Color 0 [15:11] Color 0 Green [7:3] [73:69] 

Color 0 [10] Color 0 Green [2] [1] XOR [125] 

Color 0 [09:08] Color 0 Green [1:0] [73:71] 

Color 0 [07:03] Color 0 Blue [7:3] [68:64] 

Color 0 [02:00] Color 0 Blue [2:0] [68:66] 

The two sets of 24-bit colors (Color 0,1 and Color 2,3) are then used to create two tables of four 
interpolated colors (with Alpha = 0FFh). The Color0,1 table is used as a lookup table for texel 0-15 
indices, and the Color2,3 table used for texels 16-31 indices, as shown in the following figures: 

FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 0-15) 

Texel 0-15 Select Color RGB Alpha 

0 Color0.RGB 0FFh 

1 (2*Color0.RGB + Color1.RGB + 1) /3 0FFh 

2 (Color0.RGB + 2*Color1.RGB + 1) /3 0FFh 

3 Color1.RGB 0FFh 

FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 16-31) 

Texel 16-31 Select Color RGB Alpha 

0 Color2.RGB 0FFh 

1 (2/3) * Color2.RGB + (1/3) * Color3.RGB 0FFh 

2 (1/3) * Color2.RGB + (2/3) * Color3.RGB 0FFh 

3 Color3.RGB 0FFh 

Alpha[0] = 1 Decoding 

When Alpha[0] = 1, Color0 and Color2 are encoded as 15-bit R5G5B5 values. Color1 and Color3 are 
encoded as RGB565 colors, with the Green LSB obtained as shown in the following table: 

FXT CC_MIXED (Alpha[0]=0) Decoded Colors 

Encoded Color Bit Definition 

Color 3 Green [0] Encoded Bit [126] 

Color 1 Green [0] Encoded Bit [125] 
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All four colors are then expanded to 24-bit R8G8B8 colors by bit replication, as show in the following 
diagram. 

FXT CC_MIXED Decoded Colors (Alpha[0] = 1) 

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 3 [23:17] Color 3 Red [7:3] [123:119] 

Color 3 [18:16] Color 3 Red [2:0] [123:121] 

Color 3 [15:11] Color 3 Green [7:3] [118:114] 

Color 3 [10] Color 3 Green [2] [126] 

Color 3 [09:08] Color 3 Green [1:0] [118:117] 

Color 3 [07:03] Color 3 Blue [7:3] [113:109] 

Color 3 [02:00] Color 3 Blue [2:0] [113:111] 

Color 2 [23:19] Color 2 Red [7:3] [108:104] 

Color 2 [18:16] Color 2 Red [2:0] [108:106] 

Color 2 [15:11] Color 2 Green [7:3] [103:99] 

Color 2 [10:08] Color 2 Green [2:0] [103:101] 

Color 2 [07:03] Color 2 Blue [7:3] [98:94] 

Color 2 [02:00] Color 2 Blue [2:0] [98:96] 

Color 1 [23:17] Color 1 Red [7:3] [93:89] 

Color 1 [18:16] Color 1 Red [2:0] [93:91] 

Color 1 [15:11] Color 1 Green [7:3] [88:84] 

Color 1 [10] Color 1 Green [2] [125] 

Color 1 [09:08] Color 1 Green [1:0] [88:87] 

Color 1 [07:03] Color 1 Blue [7:3] [83:79] 

Color 1 [02:00] Color 1 Blue [2:0] [83:81] 

Color 0 [23:19] Color 0 Red [7:3] [78:74] 

Color 0 [18:16] Color 0 Red [2:0] [78:76] 

Color 0 [15:11] Color 0 Green [7:3] [73:69] 

Color 0 [10:08] Color 0 Green [2:0] [73:71] 

Color 0 [07:03] Color 0 Blue [7:3] [68:64] 

Color 0 [02:00] Color 0 Blue [2:0] [68:66] 

The two sets of 24-bit colors (Color 0,1 and Color 2,3) are then used to create two tables of four colors. 
The Color0,1 table is used as a lookup table for texel 0-15 indices, and the Color2,3 table used for texels 
16-31 indices. The color at index 1 is the linear interpolation of the base colors, while the color at index 
3 is defined as Black (0,0,0) with Alpha = 0, as shown in the following figures: 
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FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 0-15) 

Texel 0-15 Select Color RGB Alpha 

0 Color0.RGB 0FFh 

1 (Color0.RGB + Color1.RGB) /2 0FFh 

2 Color1.RGB 0FFh 

3 Black (0,0,0) 0 

FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 16-31) 

Texel 16-31 Select Color RGB Alpha 

0 Color2.RGB 0FFh 

1 (Color2.RGB + Color3.RGB) /2 0FFh 

2 Color3.RGB 0FFh 

3 Black (0,0,0) 0 

These tables are then used as a 4-entry Lookup Table, where each 2-bit Texel n Select field of the 
encoded CC_MIXED block is used to index into the appropriate 32-bit A8R8G8B8 color from the table, 
completing the decode of the CC_CMIXED block. 

FXT1 CC_ALPHA Format 

In the CC_ALPHA encoding format, three A5R5G5B5 colors are provided in the encoded block. A control 
bit (LERP) is used to define the lookup table (or tables) used to dereference the 2-bit Texel Selects. 

CC_ALPHA Block Encoding 

The following table describes the encoding of the 128-bit (DQWord) CC_ALPHA block format: 
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FXT CC_ALPHA Block Encoding 

Bit Description 

127:125 Mode = ‘011’b (CC_ALPHA) 

124 LERP 

123:119 Color 2 Alpha 

118:114 Color 1 Alpha 

113:109 Color 0 Alpha 

108:104 Color 2 Red 

103:99 Color 2 Green 

98:94 Color 2 Blue 

93:89 Color 1 Red 

88:84 Color 1 Green 

83:79 Color 1 Blue 

78:74 Color 0 Red 

73:69 Color 0 Green 

68:64 Color 0 Blue 

63:62 Texel 31 Select 

... ... 

33:32 Texel 16 Select 

31:30 Texel 15 Select 

... ... 

1:0 Texel 0 Select 

CC_ALPHA Block Decoding 

Each of the three colors (Color 0-2) are converted from A5R5G5B5 to A8R8G8B8 by replicating the 3 
MSBs into the 3 LSBs, as shown in the following tables: 
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FXT CC_ALPHA Decoded Colors 

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit 

Color 2 [31:27] Color 2 Alpha [7:3] [123:119] 

Color 2 [26:24] Color 2 Alpha [2:0] [123:121] 

Color 2 [23:17] Color 2 Red [7:3] [108:104] 

Color 2 [18:16] Color 2 Red [2:0] [108:106] 

Color 2 [15:11] Color 2 Green [7:3] [103:99] 

Color 2 [10:08] Color 2 Green [2:0] [103:101] 

Color 2 [07:03] Color 2 Blue [7:3] [98:94] 

Color 2 [02:00] Color 2 Blue [2:0] [98:96] 

Color 1 [31:27] Color 1 Alpha [7:3] [118:114] 

Color 1 [26:24] Color 1 Alpha [2:0] [118:116] 

Color 1 [23:17] Color 1 Red [7:3] [93:89] 

Color 1 [18:16] Color 1 Red [2:0] [93:91] 

Color 1 [15:11] Color 1 Green [7:3] [88:84] 

Color 1 [10:08] Color 1 Green [2:0] [88:86] 

Color 1 [07:03] Color 1 Blue [7:3] [83:79] 

Color 1 [02:00] Color 1 Blue [2:0] [83:81] 

Color 0 [31:27] Color 0 Alpha [7:3] [113:109] 

Color 0 [26:24] Color 0 Alpha [2:0] [113:111] 

Color 0 [23:17] Color 0 Red [7:3] [78:74] 

Color 0 [18:16] Color 0 Red [2:0] [78:76] 

Color 0 [15:11] Color 0 Green [7:3] [73:69] 

Color 0 [10:08] Color 0 Green [2:0] [73:71] 

Color 0 [07:03] Color 0 Blue [7:3] [68:64] 

Color 0 [02:00] Color 0 Blue [2:0] [68:66] 

LERP = 0 Decoding  

When LERP = 0, a single 4-entry lookup table is formed using the three expanded colors, with the 4th 
entry defined as transparent black (ARGB=0,0,0,0). Each 2-bit Texel n Select field of the encoded 
CC_ALPHA block is used to index into a 32-bit A8R8G8B8 color from the table completing the decode 
of the CC_ALPHA block. 
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FXT CC_ALPHA Interpolated Color Table (LERP=0) 

Texel Select Color Alpha 

0 Color0.RGB Color0.Alpha 

1 Color1.RGB Color1.Alpha 

2 Color2.RGB Color2.Alpha 

3 Black (RGB=0,0,0) 0 

LERP = 1 Decoding 

When LERP = 1, the three expanded colors are used to create two tables of four interpolated colors. The 
Color0,1 table is used as a lookup table for texel 0-15 indices, and the Color1,2 table used for texels 16-
31 indices, as shown in the following figures: 

FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 0-15) 

Texel 0-15 Select Color ARGB 

0 Color0.ARGB 

1 (2*Color0.ARGB + Color1.ARGB + 1) /3 

2 (Color0.ARGB + 2*Color1.ARGB + 1) /3 

3 Color1.ARGB 

FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 16-31) 

Texel 16-31 Select Color ARGB 

0 Color2.ARGB 

1 (2*Color2.ARGB + Color1.ARGB + 1) /3 

2 (Color2.ARGB + 2*Color1.ARGB + 1) /3 

3 Color1.ARGB 

DXT Texture Formats 

 Note that non-power-of-2 dimensioned maps may require the surface to be padded out to the next 
multiple of four texels – here the pad texels are not referenced by the device. 

An 8-byte (QWord) block encoding can be used if the source texture contains no transparency (is 
opaque) or if the transparency can be specified by a one-bit alpha. A 16-byte (DQWord) block encoding 
can be used to support source textures that require more than one-bit alpha: here the 1st QWord is 
used to encode the texel alpha values, and the 2nd QWord is used to encode the texel color values. 

These three types of format are discussed in the following sections: 

• Opaque and One-bit Alpha Textures (DXT1) 
• Opaque Textures (DXT1_RGB) 
• Textures with Alpha Channels (DXT2-5) 

Notes: 
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• Any single texture must specify that its data is stored as 64 or 128 bits per group of 16 texels. If 
64-bit blocks—that is, format DXT1—are used for the texture, it is possible to mix the opaque and 
one-bit alpha formats on a per-block basis within the same texture. In other words, the 
comparison of the unsigned integer magnitude of color_0 and color_1 is performed uniquely for 
each block of 16 texels. 

• When 128-bit blocks are used, then the alpha channel must be specified in either explicit (format 
DXT2 or DXT3) or interpolated mode (format DXT4 or DXT5) for the entire texture. Note that as 
with color, once interpolated mode is selected then either 8 interpolated alphas or 6 interpolated 
alphas mode can be used on a block-by-block basis. Again the magnitude comparison of alpha_0 
and alpha_1 is done uniquely on a block-by-block basis. 

Opaque and One-bit Alpha Textures (DXT1/BC1) 

Texture format DXT1 is for textures that are opaque or have a single transparent color. For each opaque 
or one-bit alpha block, two 16-bit R5G6B5 values and a 4x4 bitmap with 2-bits-per-pixel are stored. This 
totals 64 bits (1 QWord) for 16 texels, or 4-bits-per-texel. 

In the block bitmap, there are two bits per texel to select between the four colors, two of which are 
stored in the encoded data. The other two colors are derived from these stored colors by linear 
interpolation. 

The one-bit alpha format is distinguished from the opaque format by comparing the two 16-bit color 
values stored in the block. They are treated as unsigned integers. If the first color is greater than the 
second, it implies that only opaque texels are defined. This means four colors will be used to represent 
the texels. In four-color encoding, there are two derived colors and all four colors are equally 
distributed in RGB color space. This format is analogous to R5G6B5 format. Otherwise, for one-bit alpha 
transparency, three colors are used and the fourth is reserved to represent transparent texels. Note that 
the color blocks in DXT2-5 formats strictly use four colors, as the alpha values are obtained from the 
alpha block .  

In three-color encoding, there is one derived color and the fourth two-bit code is reserved to indicate a 
transparent texel (alpha information). This format is analogous to A1R5G5B5, where the final bit is used 
for encoding the alpha mask. 
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The following piece of pseudo-code illustrates the algorithm for deciding whether three- or four-color 
encoding is selected: 
if (color_0 > color_1){  // Four-color block: derive the other two colors.   // 00 = color_0, 
01 = color_1, 10 = color_2, 11 = color_3  // These two bit codes correspond to the 2-bit 
fields  // stored in the 64-bit block. color_2 = (2 * color_0 + color_1) / 3; color_3 = 
(color 0 + 2 * color_1) / 3;} else{  // Three-color block: derive the other color.  // 00 = 
color_0, 01 = color_1, 10 = color_2,  // 11 = transparent.  // These two bit codes correspond 
to the 2-bit fields  // stored in the 64-bit block. color_2 = (color_0 + color_1) / 2;  
color_3 = transparent; } 

The following tables show the memory layout for the 8-byte block. It is assumed that the first index 
corresponds to the y-coordinate and the second corresponds to the x-coordinate. For example, 
Texel[1][2] refers to the texture map pixel at (x,y) = (2,1). 

Here is the memory layout for the 8-byte (64-bit) block: 

Word Address 16-bit Word 

0 Color_0 

1 Color_1 

2 Bitmap Word_0 

3 Bitmap Word_1 

Color_0 and Color_1 (colors at the two extremes) are laid out as follows: 

Bits Color 

15:11 Red color component 

10:5 Green color component 

4:0 Blue color component 
 

Bits Texel 

1:0 (LSB) Texel[0][0] 

3:2 Texel[0][1] 

5:4 Texel[0][2] 

7:6 Texel[0][3] 

9:8 Texel[1][0] 

11:10 Texel[1][1] 

13:12 Texel[1][2] 

15:14 Texel[1][3] 
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Bitmap Word_1 is laid out as follows: 

Bits Texel 

1:0 (LSB) Texel[2][0] 

3:2 Texel[2][1] 

5:4 Texel[2][2] 

7:6 Texel[2][3] 

9:8 Texel[3][0] 

11:10 Texel[3][1] 

13:12 Texel[3][2] 

15:14 (MSB) Texel[3][3] 

Example of Opaque Color Encoding 

As an example of opaque encoding, we will assume that the colors red and black are at the extremes. 
We will call red color_0 and black color_1. There will be four interpolated colors that form the uniformly 
distributed gradient between them. To determine the values for the 4x4 bitmap, the following 
calculations are used: 
00 ? color_001 ? color_110 ? 2/3 color_0 + 1/3 color_111 ? 1/3 color_0 + 2/3 color_1 

Example of One-bit Alpha Encoding 

This format is selected when the unsigned 16-bit integer, color_0, is less than the unsigned 16-bit 
integer, color_1. An example of where this format could be used is leaves on a tree to be shown against 
a blue sky. Some texels could be marked as transparent while three shades of green are still available 
for the leaves. Two of these colors fix the extremes, and the third color is an interpolated color. 

The bitmap encoding for the colors and the transparency is determined using the following calculations: 

00 ? color_0 

01 ? color_1 

10 ? 1/2 color_0 + 1/2 color_1 

11 ? Transparent 

Opaque Textures (DXT1_RGB) 

Texture format DXT1_RGB is identical to DXT1, with the exception that the One-bit Alpha encoding is 
removed. Color 0 and Color 1 are not compared, and the resulting texel color is derived strictly from the 
Opaque Color Encoding. The alpha channel defaults to 1.0. 

Compressed Textures with Alpha Channels (DXT2-5 / BC2-3) 

There are two ways to encode texture maps that exhibit more complex transparency. In each case, a 
block that describes the transparency precedes the 64-bit block already described. The transparency is 
either represented as a 4x4 bitmap with four bits per pixel (explicit encoding), or with fewer bits and 
linear interpolation analogous to what is used for color encoding. 

The transparency block and the color block are laid out as follows: 
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Word Address 64-bit Block 

3:0 Transparency block 

7:4 Previously described 64-bit 
block 

Explicit Texture Encoding 

For explicit texture encoding (DXT2 and DXT3 formats), the alpha components of the texels that 
describe transparency are encoded in a 4x4 bitmap with 4 bits per texel. These 4 bits can be achieved 
through a variety of means such as dithering or by simply using the 4 most significant bits of the alpha 
data. However they are produced, they are used just as they are, without any form of interpolation. 

Note: 

DirectDraw’s compression method uses the 4 most significant bits. 

The following tables illustrate how the alpha information is laid out in memory, for each 16-bit word. 

This is the layout for Word 0: 

Bits Alpha 

3:0 (LSB) [0][0] 

7:4 [0][1] 

11:8 [0][2] 

15:12 (MSB) [0][3] 

This is the layout for Word 1: 

Bits Alpha 

3:0 (LSB) [1][0] 

7:4 [1][1] 

11:8 [1][2] 

15:12 (MSB) [1][3] 
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This is the layout for Word 2: 

Bits Alpha 

3:0 (LSB) [2][0] 

7:4 [2][1] 

11:8 [2][2] 

15:12 (MSB) [2][3] 

This is the layout for Word 3: 

Bits Alpha 

3:0 (LSB) [3][0] 

7:4 [3][1] 

11:8 [3][2] 

15:12 (MSB) [3][3] 

Three-Bit Linear Alpha Interpolation 

The encoding of transparency for the DXT4 and DXT5 formats is based on a concept similar to the linear 
encoding used for color. Two 8-bit alpha values and a 4x4 bitmap with three bits per pixel are stored in 
the first eight bytes of the block. The representative alpha values are used to interpolate intermediate 
alpha values. Additional information is available in the way the two alpha values are stored. If alpha_0 is 
greater than alpha_1, then six intermediate alpha values are created by the interpolation. Otherwise, 
four intermediate alpha values are interpolated between the specified alpha extremes. The two 
additional implicit alpha values are 0 (fully transparent) and 255 (fully opaque). 

The following pseudo-code illustrates this algorithm: 
// 8-alpha or 6-alpha block? if (alpha_0 > alpha_1) {  // 8-alpha block: derive the other 6 
alphas.   // 000 = alpha_0, 001 = alpha_1, others are interpolated  alpha_2 = (6 * alpha_0 + 
alpha_1) / 7;   // bit code 010  alpha_3 = (5 * alpha_0 + 2 * alpha_1) / 7; // Bit code 011   
alpha_4 = (4 * alpha_0 + 3 * alpha_1) / 7; // Bit code 100   alpha_5 = (3 * alpha_0 + 4 * 
alpha_1) / 7; // Bit code 101  alpha_6 = (2 * alpha_0 + 5 * alpha_1) / 7; // Bit code 110   
alpha_7 = (alpha_0 + 6 * alpha_1) / 7;   // Bit code 111 } else { // 6-alpha block: derive 
the other alphas.   // 000 = alpha_0, 001 = alpha_1, others are interpolated  alpha_2 = (4 * 
alpha_0 + alpha_1) / 5;   // Bit code 010  alpha_3 = (3 * alpha_0 + 2 * alpha_1) / 5; // Bit 
code 011   alpha_4 = (2 * alpha_0 + 3 * alpha_1) / 5; // Bit code 100   alpha_5 = (alpha_0 + 
4 * alpha_1) / 5;   // Bit code 101  alpha_6 = 0;   // Bit code 110  alpha_7 = 255;   // Bit 
code 111} 

The memory layout of the alpha block is as follows: 

Byte Alpha 

0 Alpha_0 

1 Alpha_1 

2 [0][2] (2 LSBs), [0][1], [0][0] 

3 [1][1] (1 LSB), [1][0], [0][3], 
[0][2] (1 MSB) 

4 [1][3], [1][2], [1][1] (2 MSBs) 

5 [2][2] (2 LSBs), [2][1], [2][0] 

6 [3][1] (1 LSB), [3][0], [2][3], 
[2][2] (1 MSB) 
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Byte Alpha 

7 [3][3], [3][2], [3][1] (2 MSBs) 

BC4 

These formats (BC4_UNORM and BC4_SNORM) compresses single-component UNORM or SNORM 
data. An 8-byte compression block represents a 4x4 block of texels. The texels are labeled as 
texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel. 

The 8-byte compression block is laid out as follows: 

Bit Description 

7:0 red_0 

15:8 red_1 

18:16 texel[0][0] bit code 

21:19 texel[0][1] bit code 

24:22 texel[0][2] bit code 

27:25 texel[0][3] bit code 

30:28 texel[1][0] bit code 

33:31 texel[1][1] bit code 

36:34 texel[1][2] bit code 

39:37 texel[1][3] bit code 

42:40 texel[2][0] bit code 

45:43 texel[2][1] bit code 

48:46 texel[2][2] bit code 

51:49 texel[2][3] bit code 

54:52 texel[3][0] bit code 

57:55 texel[3][1] bit code 

60:58 texel[3][2] bit code 

63:61 texel[3][3] bit code 
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There are two interpolation modes, chosen based on which reference color is larger. The first mode has 
the two reference colors plus six equal-spaced interpolated colors between the reference colors, chosen 
based on the three-bit code for that texel. The second mode has the two reference colors plus four 
interpolated colors, chosen by six of the three-bit codes. The remaining two codes select min and max 
values for the colors. The values of red_0 through red_7 are computed as follows: 
 red_0 = red_0;                           // bit code 000 
 red_1 = red_1;                           // bit code 001 
 if (red_0 > red_1) { 
     red_2 = (6 * red_0 + 1 * red_1) / 7; // bit code 010 
     red_3 = (5 * red_0 + 2 * red_1) / 7; // bit code 011 
     red_4 = (4 * red_0 + 3 * red_1) / 7; // bit code 100 
     red_5 = (3 * red_0 + 4 * red_1) / 7; // bit code 101 
     red_6 = (2 * red_0 + 5 * red_1) / 7; // bit code 110 
     red_7 = (1 * red_0 + 6 * red_1) / 7; // bit code 111 
 } 
 else { 
     red_2 = (4 * red_0 + 1 * red_1) / 5; // bit code 010 
     red_3 = (3 * red_0 + 2 * red_1) / 5; // bit code 011 
     red_4 = (2 * red_0 + 3 * red_1) / 5; // bit code 100 
     red_5 = (1 * red_0 + 4 * red_1) / 5; // bit code 101 
     red_6 = UNORM ? 0.0: -1.0;          // bit code 110 (0 for UNORM, -1 for SNORM) 
     red_7 = 1.0;                         // bit code 111 
 } 
    

BC5 

These formats (BC5_UNORM and BC5_SNORM) compresses dual-component UNORM or SNORM data. 
A 16-byte compression block represents a 4x4 block of texels. The texels are labeled as 
texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel. 

The 16-byte compression block is laid out as follows: 

Bit Description 

7:0 red_0 

15:8 red_1 

18:16 texel[0][0] red bit code 

21:19 texel[0][1] red bit code 

24:22 texel[0][2] red bit code 

27:25 texel[0][3] red bit code 

30:28 texel[1][0] red bit code 

33:31 texel[1][1] red bit code 

36:34 texel[1][2] red bit code 

39:37 texel[1][3] red bit code 

42:40 texel[2][0] red bit code 

45:43 texel[2][1] red bit code 

48:46 texel[2][2] red bit code 

51:49 texel[2][3] red bit code 

54:52 texel[3][0] red bit code 

57:55 texel[3][1] red bit code 
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Bit Description 

60:58 texel[3][2] red bit code 

63:61 texel[3][3] red bit code 

71:64 green_0 

79:72 green_1 

82:80 texel[0][0] green bit code 

85:83 texel[0][1] green bit code 

88:86 texel[0][2] green bit code 

91:89 texel[0][3] green bit code 

94:92 texel[1][0] green bit code 

97:95 texel[1][1] green bit code 

100:98 texel[1][2] green bit code 

103:101 texel[1][3] green bit code 

106:104 texel[2][0] green bit code 

109:107 texel[2][1] green bit code 

112:110 texel[2][2] green bit code 

115:113 texel[2][3] green bit code 

118:116 texel[3][0] green bit code 

121:119 texel[3][1] green bit code 

124:122 texel[3][2] green bit code 

127:125 texel[3][3] green bit code 
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There are two interpolation modes, chosen based on which reference color is larger. The first mode has 
the two reference colors plus six equal-spaced interpolated colors between the reference colors, chosen 
based on the three-bit code for that texel. The second mode has the two reference colors plus four 
interpolated colors, chosen by six of the three-bit codes. The remaining two codes select min and max 
values for the colors. The values of red_0 through red_7 are computed as follows: 
 red_0 = red_0;                           // bit code 000 
 red_1 = red_1;                           // bit code 001 
 if (red_0 > red_1) { 
     red_2 = (6 * red_0 + 1 * red_1) / 7; // bit code 010 
     red_3 = (5 * red_0 + 2 * red_1) / 7; // bit code 011 
     red_4 = (4 * red_0 + 3 * red_1) / 7; // bit code 100 
     red_5 = (3 * red_0 + 4 * red_1) / 7; // bit code 101 
     red_6 = (2 * red_0 + 5 * red_1) / 7; // bit code 110 
     red_7 = (1 * red_0 + 6 * red_1) / 7; // bit code 111 
 } 
 else { 
     red_2 = (4 * red_0 + 1 * red_1) / 5; // bit code 010 
     red_3 = (3 * red_0 + 2 * red_1) / 5; // bit code 011 
     red_4 = (2 * red_0 + 3 * red_1) / 5; // bit code 100 
     red_5 = (1 * red_0 + 4 * red_1) / 5; // bit code 101 
     red_6 = UNORM ? 0.0: -1.0;          // bit code 110 (0 for UNORM, -1 for SNORM) 
     red_7 = 1.0;                         // bit code 111 
 } 
    

The same calculations are done for green, using the corresponding reference colors and bit codes. 

BC6H  

These formats (BC6H_UF16 and BC6H_SF16) compresses 3-channel images with high dynamic range (> 
8 bits per channel). BC6H supports floating point denorms but there is no support for INF and NaN, 
other than with BC6H_SF16 –INF is supported. The alpha channel is not included, thus alpha is returned 
at its default value. 

The BC6H block is 16 bytes and represents a 4x4 block of texels. The texels are labeled as 
texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel. 
BC6H has 14 different modes, the mode that the block is in is contained in the least significant bits 
(either 2 or 5 bits). 

The basic scheme consists of interpolating colors along either one or two lines, with per-texel indices 
indicating which color along the line is chosen for each texel. If a two-line mode is selected, one of 32 
partition sets is indicated which selects which of the two lines each texel is assigned to. 



 
Memory Views  

Doc Ref # IHD-OS-VLV-Vol5-04.14 59 
 

Field Definition 

There are 14 possible modes for a BC6H block, the format of each is indicated in the 14 tables below. 
The mode is selected by the unique mode bits specified in each table. The first 10 modes use two lines 
("TWO"), and the last 4 use one line ("ONE"). The difference between the various two-line and one-line 
modes is with the precision of the first endpoint and the number of bits used to store delta values for 
the remaining endpoints. Two modes (9 and 10) specify each endpoint as an original value rather than 
using the deltas (these are indicated as having no delta values). 

The endpoints values and deltas are indicated in the tables using a two-letter name. The first letter is 
"r", "g", or "b" indicating the color channel. The second letter is "w", "x", "y", or "z" indicating which of 
the four endpoints. The first line has endpoints "w" and "x", with "w" being the endpoint that is fully 
specified (i.e. not as a delta). The second line has endpoints "y" and "z". Modes using ONE mode do not 
have endpoints "y" and "z" as they have only one line. 

In addition to the mode and endpoint data, TWO blocks contain a 5-bit "partition" which selects one of 
the partition sets, and a 46-bit set of indices. ONE blocks contain a 63-bit set of indices. These are 
described in more detail below. 
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Mode 0: (TWO) Red, Green, Blue: 10-bit endpoint, 5-bit deltas 

Bit Description 

1:0 mode = 00 

2 gy[4] 

3 by[4] 

4 bz[4] 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

39:35 rx[4:0] 

40 gz[4] 

44:41 gy[3:0] 

49:45 gx[4:0] 

50 bz[0] 

54:51 gz[3:0] 

59:55 bx[4:0] 

60 bz[1] 

64:61 by[3:0] 

69:65 ry[4:0] 

70 bz[2] 

75:71 rz[4:0] 

76 bz[3] 

81:77 partition 

127:82 indices 
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Mode 1: (TWO) Red, Green, Blue: 7-bit endpoint, 6-bit deltas 

Bit Description 

1:0 mode = 01 

2 gy[5] 

3 gz[4] 

4 gz[5] 

11:5 rw[6:0] 

12 bz[0] 

13 bz[1] 

14 by[4] 

21:15 gw[6:0] 

22 by[5] 

23 bz[2] 

24 gy[4] 

31:25 bw[6:0] 

32 bz[3] 

33 bz[5] 

34 bz[4] 

40:35 rx[5:0] 

44:41 gy[3:0] 

50:45 gx[5:0] 

54:51 gz[3:0] 

60:55 bx[5:0] 

64:61 by[3:0] 

70:65 ry[5:0] 

76:71 rz[5:0] 

81:77 partition 

127:82 indices 
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Mode 2: (TWO) Red: 11-bit endpoint, 5-bit deltas 

Green, Blue: 11-bit endpoint, 4-bit deltas 

Bit Description 

4:0 mode = 00010 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

39:35 rx[4:0] 

40 rw[10] 

44:41 gy[3:0] 

48:45 gx[3:0] 

49 gw[10] 

50 bz[0] 

54:51 gz[3:0] 

58:55 bx[3:0] 

59 bw[10] 

60 bz[1] 

64:61 by[3:0] 

69:65 ry[4:0] 

70 bz[2] 

75:71 rz[4:0] 

76 bz[3] 

81:77 partition 

127:82 indices 
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Mode 3: (TWO) Red, Blue: 11-bit endpoint, 4-bit deltas 

Green: 11-bit endpoint, 5-bit deltas 

Bit Description 

4:0 mode = 00110 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

38:35 rx[3:0] 

39 rw[10] 

40 gz[4] 

44:41 gy[3:0] 

49:45 gx[4:0] 

50 gw[10] 

54:51 gz[3:0] 

58:55 bx[3:0] 

59 bw[10] 

60 bz[1] 

64:61 by[3:0] 

68:65 ry[3:0] 

69 bz[0] 

70 bz[2] 

74:71 rz[3:0] 

75 gy[4] 

76 bz[3] 

81:77 partition 

127:82 indices 
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Mode 4: (TWO) Red, Green: 11-bit endpoint, 4-bit deltas 

Blue: 11-bit endpoint, 5-bit deltas 

Bit Description 

4:0 mode = 01010 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

38:35 rx[3:0] 

39 rw[10] 

40 by[4] 

44:41 gy[3:0] 

48:45 gx[3:0] 

49 gw[10] 

50 bz[0] 

54:51 gz[3:0] 

59:55 bx[4:0] 

60 bw[10] 

64:61 by[3:0] 

68:65 ry[3:0] 

69 bz[1] 

70 bz[2] 

74:71 rz[3:0] 

75 bz[4] 

76 bz[3] 

81:77 partition 

127:82 indices 
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Mode 5: (TWO) Red, Green, Blue: 9-bit endpoint, 5-bit deltas 

Bit Description 

4:0 mode = 01110 

13:5 rw[8:0] 

14 by[4] 

23:15 gw[8:0] 

24 gy[4] 

33:25 bw[8:0] 

34 bz[4] 

39:35 rx[4:0] 

40 gz[4] 

44:41 gy[3:0] 

49:45 gx[3:0] 

50 bz[0] 

54:51 gz[3:0] 

59:55 bx[4:0] 

60 bz[1] 

64:61 by[3:0] 

69:65 ry[4:0] 

70 bz[2] 

75:71 rz[4:0] 

76 bz[3] 

81:77 partition 

127:82 indices 
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Mode 6: (TWO) Red: 8-bit endpoint, 6-bit deltas 

Green, Blue: 8-bit endpoint, 5-bit deltas 

Bit Description 

4:0 mode = 10010 

12:5 rw[7:0] 

13 gz[4] 

14 by[4] 

22:15 gw[7:0] 

23 bz[2] 

24 gy[4] 

32:25 bw[7:0] 

33 bz[3] 

34 bz[4] 

40:35 rx[5:0] 

44:41 gy[3:0] 

49:45 gx[4:0] 

50 bz[0] 

54:51 gz[3:0] 

59:55 bx[4:0] 

60 gz[1] 

64:61 by[3:0] 

70:65 ry[5:0] 

76:71 rz[5:0] 

81:77 partition 

127:82 indices 
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Mode 7: (TWO) Red, Blue: 8-bit endpoint, 5-bit deltas 

Green: 8-bit endpoint, 6-bit deltas 

Bit Description 

4:0 mode = 10110 

12:5 rw[7:0] 

13 bz[0] 

14 by[4] 

22:15 gw[7:0] 

23 gy[5] 

24 gy[4] 

32:25 bw[7:0] 

33 gz[5] 

34 bz[4] 

39:35 rx[4:0] 

40 gz[4] 

44:41 gy[3:0] 

50:45 gx[5:0] 

54:51 gz[3:0] 

59:55 bx[4:0] 

60 bz[1] 

64:61 by[3:0] 

69:65 ry[4:0] 

70 bz[2] 

75:71 rz[4:0] 

76 bz[3] 

81:77 partition 

127:82 indices 
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Mode 8: (TWO) Red, Green: 8-bit endpoint, 5-bit deltas 

Blue: 8-bit endpoint, 6-bit deltas 

Bit Description 

4:0 mode = 11010 

12:5 rw[7:0] 

13 bz[1] 

14 by[4] 

22:15 gw[7:0] 

23 by[5] 

24 gy[4] 

32:25 bw[7:0] 

33 bz[5] 

34 bz[4] 

39:35 rx[4:0] 

40 gz[4] 

44:41 gy[3:0] 

49:45 gx[4:0] 

50 bz[0] 

54:51 gz[3:0] 

60:55 bx[5:0] 

64:61 by[3:0] 

69:65 ry[4:0] 

70 bz[2] 

75:71 rz[4:0] 

76 bz[3] 

81:77 partition 

127:82 indices 
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Mode 9: (TWO) Red, Green, Blue: 6-bit endpoints for all four, no deltas 

Bit Description 

4:0 mode = 11110 

10:5 rw[5:0] 

11 gz[4] 

12 bz[0] 

13 bz[1] 

14 by[4] 

20:15 gw[5:0] 

21 gy[5] 

22 by[5] 

23 bz[2] 

24 gy[4] 

30:25 bw[5:0] 

31 gz[5] 

32 bz[3] 

33 bz[5] 

34 bz[4] 

40:35 rx[5:0] 

44:41 gy[3:0] 

50:45 gx[5:0] 

54:51 gz[3:0] 

60:55 bx[5:0] 

64:61 by[3:0] 

70:65 ry[5:0] 

76:71 rz[5:0] 

81:77 partition 

127:82 indices 
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Mode 10: (ONE) Red, Green, Blue: 10-bit endpoints for both, no deltas 

Bit Description 

4:0 mode = 00011 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

44:35 rx[9:0] 

54:45 gx[9:0] 

64:55 bx[9:0] 

127:65 indices 

Mode 11: (ONE) Red, Green, Blue: 11-bit endpoints, 9-bit deltas 

Bit Description 

4:0 mode = 00111 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

43:35 rx[8:0] 

44 rw[10] 

53:45 gx[8:0] 

54 gw[10] 

63:55 bx[8:0] 

64 bw[10] 

127:65 indices 
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Mode 12: (ONE) Red, Green, Blue: 12-bit endpoints, 8-bit deltas 

Bit Description 

4:0 mode = 01011 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

42:35 rx[7:0] 

43 rw[11] 

44 rw[10] 

52:45 gx[7:0] 

53 gw[11] 

54 gw[10] 

62:55 bx[7:0] 

63 bw[11] 

64 bw[10] 

127:65 indices 
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Mode 13: (ONE) Red, Green, Blue: 16-bit endpoints, 4-bit deltas 

Bit Description 

4:0 mode = 01111 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

38:35 rx[3:0] 

39 rw[15] 

40 rw[14] 

41 rw[13] 

42 rw[12] 

43 rw[11] 

44 rw[10] 

48:45 gx[3:0] 

49 gw[15] 

50 gw[14] 

51 gw[13] 

52 gw[12] 

53 gw[11] 

54 gw[10] 

58:55 bx[3:0] 

59 bw[15] 

60 bw[14] 

61 bw[13] 

62 bw[12] 

63 bw[11] 

64 bw[10] 

127:65 indices 

Undefined mode values (10011, 10111, 11011, and 11111) return zero in the RGB channels. 

The "indices" fields are defined as follows: 
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TWO mode indices field with fix-up index [1] at texel[3][3] 

Bit Description 

83:82 texel[0][0] index 

86:84 texel[0][1] index 

89:87 texel[0][2] index 

92:90 texel[0][3] index 

95:93 texel[1][0] index 

98:96 texel[1][1] index 

101:99 texel[1][2] index 

104:102 texel[1][3] index 

107:105 texel[2][0] index 

110:108 texel[2][1] index 

113:111 texel[2][2] index 

116:114 texel[2][3] index 

119:117 texel[3][0] index 

122:120 texel[3][1] index 

125:123 texel[3][2] index 

127:126 texel[3][3] index 

TWO mode indices field with fix-up index [1] at texel[0][2] 

Bit Description 

83:82 texel[0][0] index 

86:84 texel[0][1] index 

88:87 texel[0][2] index 

91:89 texel[0][3] index 

94:92 texel[1][0] index 

97:95 texel[1][1] index 

100:98 texel[1][2] index 

103:101 texel[1][3] index 

106:104 texel[2][0] index 

109:107 texel[2][1] index 

112:110 texel[2][2] index 

115:113 texel[2][3] index 

118:116 texel[3][0] index 

121:119 texel[3][1] index 

124:122 texel[3][2] index 

127:125 texel[3][3] index 

TWO mode indices field with fix-up index [1] at texel[2][0] 

Bit Description 
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Bit Description 

83:82 texel[0][0] index 

86:84 texel[0][1] index 

89:87 texel[0][2] index 

92:90 texel[0][3] index 

95:93 texel[1][0] index 

98:96 texel[1][1] index 

101:99 texel[1][2] index 

104:102 texel[1][3] index 

106:105 texel[2][0] index 

109:107 texel[2][1] index 

112:110 texel[2][2] index 

115:113 texel[2][3] index 

118:116 texel[3][0] index 

121:119 texel[3][1] index 

124:122 texel[3][2] index 

127:125 texel[3][3] index 

ONE mode indices field 

Bit Description 

67:65 texel[0][0] index 

71:68 texel[0][1] index 

75:72 texel[0][2] index 

79:76 texel[0][3] index 

83:80 texel[1][0] index 

87:84 texel[1][1] index 

91:88 texel[1][2] index 

95:92 texel[1][3] index 

99:96 texel[2][0] index 

103:100 texel[2][1] index 

107:104 texel[2][2] index 

111:108 texel[2][3] index 

115:112 texel[3][0] index 

119:116 texel[3][1] index 

123:120 texel[3][2] index 

127:124 texel[3][3] index 
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Endpoint Computation 

The endpoints can be defined in many different ways, as shown above. This section describes how the 
endpoints are computed from the bits in the compression block. The method used depends on whether 
the BC6H format is signed (BC6H_SF16) or unsigned (BC6H_UF16). 

First, each channel (RGB) of each endpoint is extended to 16 bits. Each is handled identically and 
independently, however in some modes different channels have different incoming precision which 
must be accounted for. The following rules are employed: 

• If the format is BC6H_SF16 or the endpoint is a delta value, the value is sign-extended to 16 bits 
• For all other cases, the value is zero-extended to 16 bits 

If there are no endpoints that are delta values, endpoint computation is complete. For endpoints that 
are delta values, the next step involves computing the absolute endpoint. The "w" endpoint is always 
absolute and acts as a base value for the other three endpoints. Each channel is handled identically and 
independently. 
 x = w + x 
 y = w + y 
 z = w + z 
    

The above is performed using 16-bit integer arithmetic. Overflows beyond 16 bits are ignored (any 
resulting high bits are dropped). 

Palette Color Computation 

The next step involves computing the color palette values that provide the available values for each 
texel’s color. The color palette for each line consists of the two endpoint colors plus 6 (TWO mode) or 
14 (ONE mode) interpolated colors. Again each channel is processed independently. 

First the endpoints are unquantized, with each channel of each endpoint being processed 
independently. The number of bits in the original base "w" value represents the precision of the 
endpoints. The input endpoint is called "e", and the resulting endpoints are represented as 17-bit 
signed integers and called e’ below. 

For the BC6H_UF16 format: 

• if the precision is already 16 bits, e’ = e 
• if e = 0, e’ = 0 
• if e is the maximum representible in the precision, e’ = 0xFFFF 
• otherwise, e’ = ((e << 16) + 0x8000) >> precision 

For the BC6H_SF16 format, the value is treated as sign magnitude. The sign is not changed, e’ and e 
refer only to the magnitude portion: 

• if the precision is already 16 bits, e’ = e 
• if e = 0, e’ = 0 
• if e is the maximum representible in the precision, e’ = 0x7FFF 
• otherwise, e’ = ((e << 15) + 0x4000) >> (precision – 1) 
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Next, the palette values are generated using predefined weights, using the tables below: 
palette[i] = (w’ * (64 – weight[i]) + x’ * weight[i] + 32) >> 6 

TWO mode weights: 

palette index 0 1 2 3 4 5 6 7 

weight 0 9 18 27 37 46 55 64 

ONE mode weights: 

palette index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

weight 0 4 9 13 17 21 26 30 34 38 43 47 51 55 60 64 

Note that the two end palette indices are equal to the two endpoints given that the weights are 0 and 
64. In the above equation w’ and x’ represent the endpoints e’ computed in the previous step 
corresponding to w and x, respectively. For the second line in TWO mode, w and x are replaced with y 
and z. 

The final step in computing the palette colors is to rescale the final results. For BC6H_UF16 format, the 
values are multiplied by 31/64. For BC6H_SF16, the values are multiplied by 31/32, treating them as sign 
magnitude. These final 16-bit results are ultimately treated as 16-bit floats. 

Texel Selection 

The final step is to select the appropriate palette index for each texel. This index then selects the 16-bit 
per channel palette value, which is re-interpreted as a 16-bit floating point result for input into the filter. 
This procedure differs depending on whether the mode is TWO or ONE. 

ONE Mode 

In ONE mode, there is only one set of palette colors, but the "indices" field is 63 bits. This field consists 
of a 4-bit palette index for each of the 16 texels, with the exception of the texel at [0][0] which has only 
3 bits, the missing high bit being set to zero. 

TWO Mode 

32 partitions are defined for TWO, which are defined below. Each of the 32 cases shows the 4x4 block of 
texels, and is indexed by adding its hexadecimal row number (00-1C) to its column number (0-3). Each 
texel in the 4x4 block indicates whether that texel is part of line 0 (endpoints w and x) or line 1 
(endpoints y and z). Each case has one texel each of "[0]" and "[1]", the index that this is at is termed the 
"fix-up index". These texels have one less bit in the index. 

 0 1 2 3 

00 [0] 0 1 1 [0] 0 0 1 [0] 1 1 1 [0] 0 0 1 

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 

0 0 1 [1] 0 0 0 [1] 0 1 1 [1] 0 1 1 [1] 
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 0 1 2 3 

04 [0] 0 0 0 [0] 0 1 1 [0] 0 0 1 [0] 0 0 0 

0 0 0 1 0 1 1 1 0 0 1 1 0 0 0 1 

0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1] 

08 [0] 0 0 0 [0] 0 1 1 [0] 0 0 0 [0] 0 0 0 

0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 

0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1] 

0C [0] 0 0 1 [0] 0 0 0 [0] 0 0 0 [0] 0 0 0 

0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 

1 1 1 [1] 1 1 1 [1] 1 1 1 [1] 1 1 1 [1] 

10 [0] 0 0 0 [0] 1 [1] 1 [0] 0 0 0 [0] 1 [1] 1 

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 

1 1 1 0 0 0 0 0 [1] 0 0 0 0 0 0 1 

1 1 1 [1] 0 0 0 0 1 1 1 0 0 0 0 0 

14 [0] 0 [1] 1 [0] 0 0 0 [0] 0 0 0 [0] 1 1 1 

0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 [1] 1 0 0 [1] 0 0 0 0 0 1 1 

0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 [1] 

18 [0] 0 [1] 1 [0] 0 0 0 [0] 1 [1] 0 [0] 0 [1] 1 

0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 

0 0 0 1 [1] 0 0 0 0 1 1 0 0 1 1 0 

0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 

1C [0] 0 0 1 [0] 0 0 0 [0] 1 [1] 1 [0] 0 [1] 1 

0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 

[1] 1 1 0 [1] 1 1 1 1 0 0 0 1 0 0 1 

1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 

The 46-bit "indices" field consists of a 3-bit palette index for each of the 16 texels, with the exception of 
the bracketed texels that have only two bits each. The high bit of these texels is set to zero. 

BC7  

These formats (BC7_UNORM and BC7_UNORM_SRGB) compresses 3-channel and 4-channel fixed point 
images. 

The BC7 block is 16 bytes and represents a 4x4 block of texels. The texels are labeled as 
texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel. 
BC7 has 8 different modes, the mode that the block is in is contained in the least significant bits (1-8 
bits depending on mode). 
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The basic scheme consists of interpolating colors and alpha in some modes along either one, two, or 
three lines, with per-texel indices indicating which color/alpha along the line is chosen for each texel. If 
a two- or three-line mode is selected, one of 64 partition sets is indicated which selects which of the 
two lines each texel is assigned to, although some modes are limited to the first 16 partition sets. In the 
color-only modes, alpha is always returned at its default value of 1.0. 

Some modes contain the following fields: 

• P-bits. These represent shared LSB for all components of the endpoint, which increases the 
endpoint precision by one bit. In some cases both endpoints of a line share a P-bit. 

• Rotation bits. For blocks with separate color and alpha, this 2-bit field allows selection of which 
of the four components has its own indexes (scalar) vs. the other three components (vector). 

• Index selector. This 1-bit field selects whether the scalar or vector components uses the 3-bit 
index vs. the 2-bit index. 

Field Definition 

There are 8 possible modes for a BC7 block, the format of each is indicated in the 8 tables below. The 
mode is selected by the unique mode bits specified in each table. Each mode has particular 
characteristics described at the top of the table. 
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Mode 0: Color only, 3 lines (THREE), 4-bit endpoints with one P-bit per endpoint, 3-bit indices, 16 
partitions 

Bit Description 

0 mode = 0 

4:1 partition 

8:5 R0 

12:9 R1 

16:13 R2 

20:17 R3 

24:21 R4 

28:25 R5 

32:29 G0 

36:33 G1 

40:37 G2 

44:41 G3 

48:45 G4 

52:49 G5 

56:53 B0 

60:57 B1 

64:61 B2 

68:65 B3 

72:69 B4 

76:73 B5 

77 P0 

78 P1 

79 P2 

80 P3 

81 P4 

82 P5 

127:83 indices 
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Mode 1: Color only, 2 lines (TWO), 6-bit endpoints with one shared P-bit per line, 3-bit indices, 64 
partitions 

Bit Description 

1:0 mode = 10 

7:2 partition 

13:8 R0 

19:14 R1 

25:20 R2 

31:26 R3 

37:32 G0 

43:38 G1 

49:44 G2 

55:50 G3 

61:56 B0 

67:62 B1 

73:68 B2 

79:74 B3 

80 P0 

81 P1 

127:82 indices 
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Mode 2: Color only, 3 lines (THREE), 5-bit endpoints, 2-bit indices, 64 partitions 

Bit Description 

2:0 mode = 100 

8:3 partition 

13:9 R0 

18:14 R1 

23:19 R2 

28:24 R3 

33:29 R4 

38:34 R5 

43:39 G0 

48:44 G1 

53:49 G2 

58:54 G3 

63:59 G4 

68:64 G5 

73:69 B0 

78:74 B1 

83:79 B2 

88:84 B3 

93:89 B4 

98:94 B5 

127:99 indices 
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Mode 3: Color only, 2 lines (TWO), 7-bit endpoints with one P-bit per endpoint, 2-bit indices, 64 
partitions 

Bit Description 

3:0 mode = 1000 

9:4 partition 

16:10 R0 

23:17 R1 

30:24 R2 

37:31 R3 

44:38 G0 

51:45 G1 

58:52 G2 

65:59 G3 

72:66 B0 

79:73 B1 

86:80 B2 

93:87 B3 

94 P0 

95 P1 

96 P2 

97 P3 

127:98 indices 
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Mode 4: Color and alpha, 1 line (ONE), 5-bit color endpoints, 6-bit alpha endpoints, 16 2-bit indices, 16 
3-bit indices, 2-bit component rotation, 1-bit index selector 

Bit Description 

4:0 mode = 10000 

6:5 rotation 

7 index selector 

12:8 R0 

17:13 R1 

22:18 G0 

27:23 G1 

32:28 B0 

37:33 B1 

43:38 A0 

49:44 A1 

80:50 2-bit indices 

127:81 3-bit indices 

Mode 5: Color and alpha, 1 line (ONE), 7-bit color endpoints, 8-bit alpha endpoints, 2-bit color indices, 
2-bit alpha indices, 2-bit component rotation 

Bit Description 

5:0 mode = 100000 

7:6 rotation 

14:8 R0 

21:15 R1 

28:22 G0 

35:29 G1 

42:36 B0 

49:43 B1 

57:50 A0 

65:58 A1 

96:66 color indices 

127:97 alpha indices 
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Mode 6: Combined color and alpha, 1 line (ONE), 7-bit endpoints with one P-bit per endpoint, 4-bit 
indices 

Bit Description 

6:0 mode = 1000000 

13:7 R0 

20:14 R1 

27:21 G0 

34:28 G1 

41:35 B0 

48:42 B1 

55:49 A0 

62:56 A1 

63 P0 

64 P1 

127:65 indices 
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Mode 7: Combined color and alpha, 2 lines (TWO), 5-bit endpoints with one P-bit per endpoint, 2-bit 
indices, 64 partitions 

Bit Description 

7:0 mode = 10000000 

13:8 partition 

18:14 R0 

23:19 R1 

28:24 R2 

33:29 R3 

38:34 G0 

43:39 G1 

48:44 G2 

53:49 G3 

58:54 B0 

63:59 B1 

68:64 B2 

73:69 B3 

78:74 A0 

83:79 A1 

88:84 A2 

93:89 A3 

94 P0 

95 P1 

96 P2 

97 P3 

127:98 indices 

Undefined mode values (bits 7:0 = 00000000) return zero in the RGB channels. 

The indices fields are variable in length and due to the different locations of the fix-up indices 
depending on partition set there are a very large number of possible configurations. Each mode above 
indicates how many bits each index has, and the fix-up indices (one in ONE mode, two in TWO mode, 
and three in THREE mode) each have one less bit than indicated. However, the indices are always 
packed into the index fields according to the table below, with the specific bit assignments of each texel 
following the rules just given. 
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Bit Description 

LSBs texel[0][0] index 

 texel[0][1] index 

 texel[0][2] index 

 texel[0][3] index 

 texel[1][0] index 

 texel[1][1] index 

 texel[1][2] index 

 texel[1][3] index 

 texel[2][0] index 

 texel[2][1] index 

 texel[2][2] index 

 texel[2][3] index 

 texel[3][0] index 

 texel[3][1] index 

 texel[3][2] index 

MSBs texel[3][3] index 

Endpoint Computation 

The endpoints can be defined with different precision depending on mode, as shown above. This 
section describes how the endpoints are computed from the bits in the compression block. Each 
component of each endpoint follows the same steps. 

If a P-bit is defined for the endpoint, it is first added as an additional LSB at the bottom of the endpoint 
value. The endpoint is then bit-replicated to create an 8-bit fixed point endpoint value with a range 
from 0x00 to 0xFF. 

Palette Color Computation 

The next step involves computing the color palette values that provide the available values for each 
texel’s color. The color palette for each line consists of the two endpoint colors plus 2, 6, or 14 
interpolated colors, depending on the number of bits in the indices. Again each channel is processed 
independently. 

The equation to compute each palette color with index i, given two endpoints is as follows, using the 
tables below to determine the weight for each palette index: 
palette[i] = (E0 * (64 – weight[i]) + E1 * weight[i] + 32) >> 6 
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2-bit index weights: 

palette index 0 1 2 3 

weight 0 21 43 64 

3-bit index weights: 

palette index 0 1 2 3 4 5 6 7 

weight 0 9 18 27 37 46 55 64 

4-bit index weights: 

palette index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

weight 0 4 9 13 17 21 26 30 34 38 43 47 51 55 60 64 

Note that the two end palette indices are equal to the two endpoints given that the weights are 0 and 
64. In the above equation E0 and E1 represent the even-numbered and odd-numbered endpoints 
computed in the previous step for the component and line currently being computed. 

Texel Selection 

The final step is to select the appropriate palette index for each texel. This index then selects the 8-bit 
per channel palette value, which is interpreted as an 8-bit UNORM value for input into the filter (In 
BC7_UNORM_SRGB to UNORM values first go through inverse gamma conversion). This procedure 
differs depending on whether the mode is ONE, TWO, or THREE. 

ONE Mode 

In ONE mode, there is only one set of palette colors, thus there is only a single "partition set" defined, 
with all texels selecting line 0 and texel [0][0] being the "fix-up index" with one less bit in the index. 

TWO Mode 

64 partitions are defined for TWO, which are defined below. Each of the 64 cases shows the 4x4 block of 
texels, and is indexed by adding its hexadecimal row number (00-3C) to its column number (0-3). Each 
texel in the 4x4 block indicates whether that texel is part of line 0 (endpoints 0 and 1) or line 1 
(endpoints 2 and 3). Each case has one texel each of "[0]" and "[1]", the index that this is at is termed 
the "fix-up index". These texels have one less bit in the index. 

 0 1 2 3 

00 [0] 0 1 1 [0] 0 0 1 [0] 1 1 1 [0] 0 0 1 

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 

0 0 1 [1] 0 0 0 [1] 0 1 1 [1] 0 1 1 [1] 

04 [0] 0 0 0 [0] 0 1 1 [0] 0 0 1 [0] 0 0 0 

0 0 0 1 0 1 1 1 0 0 1 1 0 0 0 1 

0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 
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 0 1 2 3 

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1] 

08 [0] 0 0 0 [0] 0 1 1 [0] 0 0 0 [0] 0 0 0 

0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 

0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1] 

0C [0] 0 0 1 [0] 0 0 0 [0] 0 0 0 [0] 0 0 0 

0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 

1 1 1 [1] 1 1 1 [1] 1 1 1 [1] 1 1 1 [1] 

10 [0] 0 0 0 [0] 1 [1] 1 [0] 0 0 0 [0] 1 [1] 1 

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 

1 1 1 0 0 0 0 0 [1] 0 0 0 0 0 0 1 

1 1 1 [1] 0 0 0 0 1 1 1 0 0 0 0 0 

14 [0] 0 [1] 1 [0] 0 0 0 [0] 0 0 0 [0] 1 1 1 

0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 [1] 1 0 0 [1] 0 0 0 0 0 1 1 

0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 [1] 

18 [0] 0 [1] 1 [0] 0 0 0 [0] 1 [1] 0 [0] 0 [1] 1 

0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 

0 0 0 1 [1] 0 0 0 0 1 1 0 0 1 1 0 

0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 

1C [0] 0 0 1 [0] 0 0 0 [0] 1 [1] 1 [0] 0 [1] 1 

0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 

[1] 1 1 0 [1] 1 1 1 1 0 0 0 1 0 0 1 

1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 

20 [0] 1 0 1 [0] 0 0 0 [0] 1 0 1 [0] 0 1 1 

0 1 0 1 1 1 1 1 1 0 [1] 0 0 0 1 1 

0 1 0 1 0 0 0 0 0 1 0 1 [1] 1 0 0 

0 1 0 [1] 1 1 1 [1] 1 0 1 0 1 1 0 0 

24 [0] 0 [1] 1 [0] 1 0 1 [0] 1 1 0 [0] 1 0 1 

1 1 0 0 0 1 0 1 1 0 0 1 1 0 1 0 

0 0 1 1 [1] 0 1 0 0 1 1 0 1 0 1 0 

1 1 0 0 1 0 1 0 1 0 0 [1] 0 1 0 [1] 

28 [0] 1 [1] 1 [0] 0 0 1 [0] 0 [1] 1 [0] 0 [1] 1 

0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 

1 1 0 0 [1] 1 0 0 0 1 0 0 1 1 0 1 

1 1 1 0 1 0 0 0 1 1 0 0 1 1 0 0 

2C [0] 1 [1] 0 [0] 0 1 1 [0] 1 1 0 [0] 0 0 0 
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 0 1 2 3 

1 0 0 1 1 1 0 0 0 1 1 0 0 1 [1] 0 

1 0 0 1 1 1 0 0 1 0 0 1 0 1 1 0 

0 1 1 0 0 0 1 [1] 1 0 0 [1] 0 0 0 0 

30 [0] 1 0 0 [0] 0 [1] 0 [0] 0 0 0 [0] 0 0 0 

1 1 [1] 0 0 1 1 1 0 0 [1] 0 0 1 0 0 

0 1 0 0 0 0 1 0 0 1 1 1 [1] 1 1 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 

34 [0] 1 1 0 [0] 0 1 1 [0] 1 [1] 0 [0] 0 [1] 1 

1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 

1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 

0 0 1 [1] 1 0 0 [1] 1 1 0 0 0 1 1 0 

38 [0] 1 1 0 [0] 1 1 0 [0] 1 1 1 [0] 0 0 1 

1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0 

1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 0 

1 0 0 [1] 1 0 0 [1] 0 0 0 [1] 0 1 1 [1] 

3C [0] 0 0 0 [0] 0 [1] 1 [0] 0 [1] 0 [0] 1 0 0 

1 1 1 1 0 0 1 1 0 0 1 0 0 1 0 0 

0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 

0 0 1 [1] 0 0 0 0 1 1 1 0 0 1 1 [1] 

THREE Mode 

64 partitions are defined for THREE, which are defined below. Each of the 64 cases shows the 4x4 block 
of texels, and is indexed by adding its hexadecimal row number (00-3C) to its column number (0-3). 
Each texel in the 4x4 block indicates whether that texel is part of line 0 (endpoints 0 and 1), line 1 
(endpoints 2 and 3), or line 2 (endpoints 4 and 5). Each case has one texel each of "[0]", "[1]", and "[2]", 
the index that this is at is termed the "fix-up index". These texels have one less bit in the index. 

  0 1 2 3 

00 [0] 0 1 [1] [0] 0 0 [1] [0] 0 0 0 [0] 2 2 [2] 

0 0 1 1 0 0 1 1 2 0 0 1 0 0 2 2 

0 2 2 1 [2] 2 1 1 [2] 2 1 1 0 0 1 1 

2 2 2 [2] 2 2 2 1 2 2 1 [1] 0 1 1 [1] 

04 [0] 0 0 0 [0] 0 1 [1] [0] 0 2 [2] [0] 0 1 1 

0 0 0 0 0 0 1 1 0 0 2 2 0 0 1 1 

[1] 1 2 2 0 0 2 2 1 1 1 1 [2] 2 1 1 

1 1 2 [2] 0 0 2 [2] 1 1 1 [1] 2 2 1 [1] 

08 [0] 0 0 0 [0] 0 0 0 [0] 0 0 0 [0] 0 1 2 

0 0 0 0 1 1 1 1 1 1 [1] 1 0 0 [1] 2 

[1] 1 1 1 [1] 1 1 1 2 2 2 2 0 0 1 2 
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  0 1 2 3 

2 2 2 [2] 2 2 2 [2] 2 2 2 [2] 0 0 1 [2] 

0C [0] 1 1 2 [0] 1 2 2 [0] 0 1 [1] [0] 0 1 [1] 

0 1 [1] 2 0 [1] 2 2 0 1 1 2 2 0 0 1 

0 1 1 2 0 1 2 2 1 1 2 2 [2] 2 0 0 

0 1 1 [2] 0 1 2 [2] 1 2 2 [2] 2 2 2 0 

10 [0] 0 0 [1] [0] 1 1 [1] [0] 0 0 0 [0] 0 2 [2] 

0 0 1 1 0 0 1 1 1 1 2 2 0 0 2 2 

0 1 1 2 [2] 0 0 1 [1] 1 2 2 0 0 2 2 

1 1 2 [2] 2 2 0 0 1 1 2 [2] 1 1 1 [1] 

14 [0] 1 1 [1] [0] 0 0 [1] [0] 0 0 0 [0] 0 0 0 

0 1 1 1 0 0 0 1 0 0 [1] 1 1 1 0 0 

0 2 2 2 [2] 2 2 1 0 1 2 2 [2] 2 [1] 0 

0 2 2 [2] 2 2 2 1 0 1 2 [2] 2 2 1 0 

18 [0] 1 2 [2] [0] 0 1 2 [0] 1 1 0 [0] 0 0 0 

0 [1] 2 2 0 0 1 2 1 2 [2] 1 0 1 [1] 0 

0 0 1 1 [1] 1 2 2 [1] 2 2 1 1 2 [2] 1 

0 0 0 0 2 2 2 [2] 0 1 1 0 1 2 2 1 

1C [0] 0 2 2 [0] 1 1 0 [0] 0 1 1 [0] 0 0 0 

1 1 0 2 0 [1] 1 0 0 1 2 2 2 0 0 0 

[1] 1 0 2 2 0 0 2 0 1 [2] 2 [2] 2 1 1 

0 0 2 [2] 2 2 2 [2] 0 0 1 [1] 2 2 2 [1] 

20 [0] 0 0 0 [0] 2 2 [2] [0] 0 1 [1] [0] 1 2 0 

0 0 0 2 0 0 2 2 0 0 1 2 0 [1] 2 0 

[1] 1 2 2 0 0 1 2 0 0 2 2 0 1 [2] 0 

1 2 2 [2] 0 0 1 [1] 0 2 2 [2] 0 1 2 0 

24 [0] 0 0 0 [0] 1 2 0 [0] 1 2 0 [0] 0 1 1 

1 1 [1] 1 1 2 0 1 2 0 1 2 2 2 0 0 

2 2 [2] 2 [2] 0 [1] 2 [1] [2] 0 1 1 1 [2] 2 

0 0 0 0 0 1 2 0 0 1 2 0 0 0 1 [1] 

28 [0] 0 1 1 [0] 1 0 [1] [0] 0 0 0 [0] 0 2 2 

1 1 [2] 2 0 1 0 1 0 0 0 0 1 [1] 2 2 

2 2 0 0 2 2 2 2 [2] 1 2 1 0 0 2 2 

0 0 1 [1] 2 2 2 [2] 2 1 2 [1] 1 1 2 [2] 

2C [0] 0 2 [2] [0] 2 2 0 [0] 1 0 1 [0] 0 0 0 

0 0 1 1 1 2 [2] 1 2 2 [2] 2 2 1 2 1 

0 0 2 2 0 2 2 0 2 2 2 2 [2] 1 2 1 

0 0 1 [1] 1 2 2 [1] 0 1 0 [1] 2 1 2 [1] 

30 [0] 1 0 [1] [0] 2 2 [2] [0] 0 0 2 [0] 0 0 0 
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  0 1 2 3 

0 1 0 1 0 1 1 1 1 [1] 1 2 2 [1] 1 2 

0 1 0 1 0 2 2 2 0 0 0 2 2 1 1 2 

2 2 2 [2] 0 1 1 [1] 1 1 1 [2] 2 1 1 [2] 

34 [0] 2 2 2 [0] 0 0 2 [0] 1 1 0 [0] 0 0 0 

0 [1] 1 1 1 1 1 2 0 [1] 1 0 0 0 0 0 

0 1 1 1 [1] 1 1 2 0 1 1 0 2 1 [1] 2 

0 2 2 [2] 0 0 0 [2] 2 2 2 [2] 2 1 1 [2] 

38 [0] 1 1 0 [0] 0 2 2 [0] 0 2 2 [0] 0 0 0 

0 [1] 1 0 0 0 1 1 1 1 2 2 0 0 0 0 

2 2 2 2 0 0 [1] 1 [1] 1 2 2 0 0 0 0 

2 2 2 [2] 0 0 2 [2] 0 0 2 [2] 2 [1] 1 [2] 

3C [0] 0 0 [2] [0] 2 2 2 [0] 1 0 [1] [0] 1 1 [1] 

0 0 0 1 1 2 2 2 2 2 2 2 2 0 1 1 

0 0 0 2 0 2 2 2 2 2 2 2 [2] 2 0 1 

0 0 0 [1] [1] 2 2 [2] 2 2 2 [2] 2 2 2 0 

Video Pixel/Texel Formats 

This section describes the "video" pixel/texel formats with respect to memory layout. See the Overlay 
chapter for a description of how the Y, U, V components are sampled. 

Packed Memory Organization 

Color components are all 8 bits in size for YUV formats. For YUV 4:2:2 formats each DWord will contain 
two pixels and only the byte order affects the memory organization. 

The following four YUV 4:2:2 surface formats are supported, listed with alternate names: 

• YCRCB_NORMAL (YUYV/YUY2)  
• YCRCB_SWAPUVY (VYUY) (R8G8_B8G8_UNORM)  
• YCRCB_SWAPUV(YVYU) (G8R8_G8B8_UNORM)  
• YCRCB_SWAPY (UYVY)  

The channels are mapped as follows: 

Cr (V) Red 

Y Green 

Cb (U) Blue 
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Memory layout of packed YUV 4:2:2 formats 

 

Planar Memory Organization 

Planar formats use what could be thought of as separate buffers for the three color components. 
Because there is a separate stride for the Y and U/V data buffers, several memory footprints can be 
supported. 

Note: There is no direct support for use of planar video surfaces as textures. The sampling engine can 
be used to operate on each of the 8bpp buffers separately (via a single-channel 8-bit format such as 
I8_UNORM). The U and V buffers can be written concurrently by using multiple render targets from the 
pixel shader. The Y buffer must be written in a separate pass due to its different size. 

The following figure shows two types of memory organization for the YUV 4:2:0 planar video data: 

1. The memory organization of the common YV12 data, where all three planes are contiguous and 
the strides of U and V components are half of that of the Y component. 

2.  An alternative memory structure that the addresses of the three planes are independent but 
satisfy certain alignment restrictions. 
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YUV 4:2:0 Format Memory Organization 

 
The following figure shows memory organization of the planar YUV 4:1:0 format where the planes are 
contiguous. 

YUV 4:1:0 Format Memory Organization 

 

Raw Format  

A new surface format is added that is only supported with the untyped surface read/write and atomic 
operation data port messages. This new format is called simply RAW. It means that the surface has no 
inherent format. Surfaces of type RAW are addressed with byte-based offsets that must be DWord-
aligned (multiple of 4). Data is returned in DWord quantities. The RAW surface format can be applied 
only to surface types of BUFFER and STRBUF. 
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Surface Memory Organizations 

See Memory Interface Functions chapter for a discussion of tiled vs. linear surface formats. 

Display, Overlay, Cursor Surfaces 

These surfaces are memory image buffers (planes) used to refresh a display device in non-VGA mode. 
See the Display chapter for specifics on how these surfaces are defined/used. 

2D Render Surfaces 

These surfaces are used as general source and/or destination operands in 2D BLT operations. 

Note that there is no coherency between 2D render surfaces and the texture cache. Software must 
explicitly invalidate the texture cache before using a texture that has been modified via the BLT engine. 

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used, 
restrictions on their size, placement, etc. 

2D Monochrome Source 

These 1 BPP (bit per pixel) surfaces are used as source operands to certain 2D BLT operations, where the 
BLT engine expands the 1 BPP source to the required color depth. 

The texture cache stores any monochrome sources. There is no mechanism to maintain coherency 
between 2D render surfaces and texture-cached monochrome sources. Software must explicitly 
invalidate the texture cache before using a memory-based monochrome source that has been modified 
via the BLT engine. (Here the assumption is that SW enforces memory-based monochrome source 
surfaces as read-only surfaces.) 

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used, 
restrictions on their size, placement, coherency rules, etc. 

2D Color Pattern 

Color pattern surfaces are used as special pattern operands in 2D BLT operations. 

The device uses the texture cache to store color patterns. There is no mechanism to maintain coherency 
between 2D render surfaces and (texture)-cached color patterns. Software is required to explicitly 
invalidate the texture cache before using a memory-based color pattern that has been modified via the 
BLT engine. (Here the assumption is that SW enforces memory-based color pattern surfaces as read-
only surfaces.) 

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used, 
restrictions on their size, placement, etc. 
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3D Color Buffer (Destination) Surfaces 

3D Color Buffer surfaces hold per-pixel color values for use in the 3D Pipeline. The 3D Pipeline always 
requires a Color Buffer to be defined. 

See the Non-Video Pixel/Texel Formats section in this chapter for details on the Color Buffer pixel 
formats. See the 3D Instruction and 3D Rendering chapters for Color Buffer usage details. 

The Color Buffer is defined as the BUFFERID_COLOR_BACK memory buffer via the 
3DSTATE_BUFFER_INFO instruction. That buffer can be mapped to LMor SM, and can be linear or tiled. 
When both the Depth and Color Buffers are tiled, the respective Tile Walk directions must match. 

When a linear Color Buffer and a linear Depth Buffer are used together: 

• The buffers may have different pitches, though both pitches must be a multiple of 32 bytes. 
• The buffers must be co-aligned with a 32-byte region. 

3D Depth Buffer Surfaces 

Depth Buffer surfaces hold per-pixel depth values and per-pixel stencil values for use in the 3D Pipeline. 
The 3D Pipeline does not require a Depth Buffer in general, though a Depth Buffer is required to 
perform non-trivial Depth Test and Stencil Test operations. 

The Depth Buffer is specified via the 3DSTATE_DEPTH_BUFFER command. See the description of that 
instruction in Windower for restrictions. 

See Depth Buffer Formats below for a summary of the possible depth buffer formats. See the Depth 
Buffer Formats section in this chapter for details on the pixel formats. See the Windower and DataPort 
chapters for details on the usage of the Depth Buffer. 

Table: Depth Buffer Formats 

DepthBufferFormat / 
DepthComponent 

BPP (Bits Per 
Pixel) Description 

D32_FLOAT_S8X24_UINT 64 32-bit floating point Z depth value in first DWord, 8-bit 
stencil in lower byte of second DWord 

D32_FLOAT 32 32-bit floating point Z depth value 

D24_UNORM_S8_UINT 32 24-bit fixed point Z depth value in lower 3 bytes, 8-bit stencil 
value in upper byte 

D16_UNORM 16 16-bit fixed point Z depth value 

3D Separate Stencil Buffer Surfaces  

Separate Stencil Buffer surfaces hold per-pixel stencil values for use in the 3D Pipeline. Note that the 3D 
Pipeline does not require a Stencil Buffer to be allocated, though a Stencil Buffer is required to perform 
non-trivial Stencil Test operations. 

The Depth Buffer Formats table below summarizes Stencil Buffer formats. Refer to the Stencil Buffer 
Formats section in this chapter for details on the pixel formats. Refer to the Windower chapters for 
Stencil Buffer usage details. 
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The Stencil buffer is specified via the 3DSTATE_STENCIL_BUFFER command. See that instruction 
description in Windower for restrictions. 

Table: Depth Buffer Formats 

DepthBufferFormat / DepthComponent BPP (bits per pixel) Description 

R8_ UNIT 8 8-bit stencil value in a byte 

Surface Layout  

In addition to restrictions on maximum height, width, and depth, surfaces are also restricted to a 
maximum size in bytes. This maximum is 2 GB for all products and all surface types. 

Buffers 

A buffer is an array of structures. Each structure contains up to 2048 bytes of elements. Each element is 
a single surface format using one of the supported surface formats depending on how the surface is 
being accessed. The surface pitch state for the surface specifies the size of each structure in bytes. 

The buffer is stored in memory contiguously with each element in the structure packed together, and 
the first element in the next structure immediately following the last element of the previous structure. 
Buffers are supported only in linear memory. 

 

Structured Buffers  

A structured buffer is a surface type that is accessed by a 2-dimensional coordinate. It can be thought 
of as an array of structures, where each structure is a predefined number of DWords in size. The first 
coordinate (U) defines the array index, and the second coordinate (V) is a byte offset into the structure 
which must be a multiple of 4 (DWord-aligned). A structured buffer must be defined with Surface 
Format RAW. 
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The structured buffer has only one dimension programmed in SURFACE_STATE which indicates the 
array size. The byte offset dimension (V) is assumed to be bounded only by the Surface Pitch. 

1D Surfaces 

One-dimensional surfaces are identical to 2D surfaces with height of one. Arrays of 1D surfaces are also 
supported. Please refer to the 2D Surfaces section for details on how these surfaces are stored. 

2D Surfaces 

Surfaces that comprise texture mip-maps are stored in a fixed "monolithic" format and referenced by a 
single base address. The base map and associated mipmaps are located within a single rectangular area 
of memory identified by the base address of the upper left corner and a pitch. The base address 
references the upper left corner of the base map. The pitch must be specified at least as large as the 
widest mip-map. In some cases it must be wider; see the section on Minimum Pitch below. 

These surfaces may be overlapped in memory and must adhere to the following memory organization 
rules: 

• For non-compressed texture formats, each mipmap must start on an even row within the 
monolithic rectangular area. For 1-texel-high mipmaps, this may require a row of padding below 
the previous mipmap. This restriction does not apply to any compressed texture formats; each 
subsequent (lower-res) compressed mipmap is positioned directly below the previous mipmap. 

• Vertical alignment restrictions vary with memory tiling type: 1 DWord for linear, 16-byte 
(DQWord) for tiled. (Note that tiled mipmaps are not required to start at the left edge of a tile 
row.) 

Computing MIP Level Sizes 

Map width and height specify the size of the largest MIP level (LOD 0). Less detailed LOD level (i+1) 
sizes are determined by dividing the width and height of the current (i) LOD level by 2 and truncating to 
an integer (floor). This is equivalent to shifting the width/height by 1 bit to the right and discarding the 
bit shifted off. The map height and width are clamped on the low side at 1. 

In equations, the width and height of an LOD "L" can be expressed as: 

WL = ((width >> L) > 0? width >> L:1) 

HL = ((height >> L) > 0? height >> L:1) 

  

If the surface is multisampled and it is a depth or stencil surface or Multisampled Surface 
StorageFormat in SURFACE_STATE is MSFMT_DEPTH_STENCIL, WL and HL must be adjusted as follows 
before proceeding: 

Number of Multisamples WL = HL = 

2 ceiling(WL / 2) * 4  HL [no adjustment]  

4 ceiling(WL / 2) * 4 ceiling(HL / 2) * 4 
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Number of Multisamples WL = HL = 

8 ceiling(WL / 2) * 8 ceiling(HL / 2) * 4d 

16 ceiling(WL / 2) * 8  ceiling(HL / 2) * 8  

Base Address for LOD Calculation 

It is conceptually easier to think of the space that the map uses in Cartesian space (x, y), where x and y 
are in units of texels, with the upper left corner of the base map at (0, 0). The final step is to convert 
from Cartesian coordinates to linear addresses as documented at the bottom of this section. 

It is useful to think of the concept of "stepping" when considering where the next MIP level will be 
stored in rectangular memory space. We either step down or step right when moving to the next higher 
LOD. 

• for MIPLAYOUT_RIGHT maps: 

o step right when moving from LOD 0 to LOD 1 
o step down for all of the other MIPs 

• for MIPLAYOUT_BELOW maps: 

o step down when moving from LOD 0 to LOD 1 
o step right when moving from LOD 1 to LOD 2 
o step down for all of the other MIPs 

To account for the cache line alignment required, we define i and j as the width and height, respectively, 
of an alignment unit. This alignment unit is defined below. We then define lower-case wL and hL as the 
padded width and height of LOD "L" as follows: 

 
For separate stencil buffer, the width must be mutiplied by 2 and height divided by 2 as follows: 
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Equations to compute the upper left corner of each MIP level are then as follows: 

 
for MIPLAYOUT_RIGHT  maps: 

LOD0 = (0,0) 

LOD1 = (w0,0 ) 

LOD2 = (w0,h1) 

LOD3 = (w0,h1 + h2) 

LOD4 = (w0,h1 + h2 + h3) 

... 

for MIPLAYOUT_BELOW maps: 

LOD0 = (0,0) 
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LOD1 = (0,h0) 

LOD2 = (w1,h0) 

LOD3 = (w1,h0 + h2) 

LOD4 = (w1,h0 + h2 + h3) 

... 

 

Minimum Pitch for MIPLAYOUT_RIGHT and Other Maps 

For MIPLAYOUT_RIGHT maps, the minimum pitch must be calculated before choosing a fence to place 
the map within. This is approximately equal to 1.5x the pitch required by the base map, with possible 
adjustments made for cache line alignment. For MIPLAYOUT_BELOW and MIPLAYOUT_LEGACY maps, 
the minimum pitch required is equal to that required by the base (LOD 0) map. 

A safe but simple calculation of minimum pitch is equal to 2x the pitch required by the base map for 
MIPLAYOUT_RIGHT maps. This ensures that enough pitch is available, and since it is restricted to 
MIPLAYOUT_RIGHT maps, not much memory is wasted. It is up to the driver (hardware independent) 
whether to use this simple determination of pitch or a more complex one. 

Alignment Unit Size 

This section documents the alignment parameters i and j that are used depending on the surface. 

Table: [IVB]: 

Surface Defined By Surface Format Alignment Unit Width "i" Alignment Unit Height "j" 

3DSTATE_DEPTH_BUFFER D16_UNORM 8 4 

not 
D16_UNORM 

4 4 

3DSTATE_STENCIL_BUFFER N/A 8 8 

SURFACE_STATE BC*, ETC*, EAC* 4 4 

FXT1 8 4 

all others set by Surface Horizontal 
Alignment 

set by Surface Vertical 
Alignment 
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Cartesian to Linear Address Conversion 

A set of variables are defined in addition to the i and j defined above. 

• b = bytes per texel of the native map format (0.5 for DXT1, FXT1, and 4-bit surface format, 2.0 for 
YUV 4:2:2, others aligned to surface format) 

• t = texel rows / memory row (4 for DXT1-5 and FXT1, 1 for all other formats) 
• p = pitch in bytes (equal to pitch in dwords * 4) 
• B = base address in bytes (address of texel 0,0 of the base map) 
• x, y = cartestian coordinates from the above calculations in units of texels (assumed that x is 

always a multiple of i and y is a multiple of j) 
• A = linear address in bytes 

 
This calculation gives the linear address in bytes for a given MIP level (taking into account L1 cache line 
alignment requirements). 

Compressed Mipmap Layout 

Mipmaps of textures using compressed (DXTn, FXT) texel formats are also stored in a monolithic format. 
The compressed mipmaps are stored in a similar fashion to uncompressed mipmaps, with each block of 
source (uncompressed) texels represented by a 1 or 2 QWord compressed block. The compressed 
blocks occupy the same logical positions as the texels they represent, where each row of compressed 
blocks represent a 4-high row of uncompressed texels. The format of the blocks is preserved, i.e., there 
is no "intermediate" format as required on some other devices. 

The following exceptions apply to the layout of compressed (vs. uncompressed) mipmaps: 

• Mipmaps are not required to start on even rows, therefore each successive mip level is located on 
the texel row immediately below the last row of the previous mip level. Pad rows are neither 
required nor allowed. 

• The dimensions of the mip maps are first determined by applying the sizing algorithm presented 
in Non-Power-of-Two Mipmaps above. Then, if necessary, they are padded out to compression 
block boundaries. 

Surface Arrays 

Arrays of 1D and 2D surfaces can be treated as a single surface. This section covers the layout of these 
composite surfaces. 
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For All Surface Other Than Separate Stencil Buffer 

Both 1D and 2D surfaces can be specified as an array. The only difference in the surface state is the 
presence of a depth value greater than one, indicating multiple array "slices". 

A value QPitch is defined which indicates the worst-case height for one slice in the texture array. This 
QPitch is multiplied by the array index to and added to the vertical component of the address to 
determine the vertical component of the address for that slice. Within the slice, the map is stored 
identically to a MIPLAYOUT_BELOW 2D surface. MIPLAYOUT_BELOW is the only format supported by 1D 
non-arrays and both 2D and 1D arrays, the programming of the MIP Map Layout Mode state variable is 
ignored when using a TextureArray. 

The following equation is used for surface formats other than compressed textures: 

QPitch = (h0 + h1 + 11j) 

  

The input variables in this equation are defined in sections above. 

The equation for compressed textures (BC* and FXT1 surface formats) follows: 

 

For All Surfaces  

A value QPitch is defined which indicates the worst-case height for one slice in the texture array. This 
QPitch is multiplied by the array index to and added to the vertical component of the address to 
determine the vertical component of the address for that slice. Within the slice, the map is stored 
identically to a 2D surface. 

The Surface Array Spacing field in SURFACE_STATE has two possible values, which affect the QPitch 
formula. 

If Surface Array Spacing is set to ARYSPC_FULL (note that the depth buffer and stencil buffer have an 
implied value of ARYSPC_FULL): 

  

QPitch = (h0 + h1 + 12j) 

 



 
Memory Views  

Doc Ref # IHD-OS-VLV-Vol5-04.14 103 
 

 
Note that h0 and h1 have been halved as described earlier. 

  

If Surface Array Spacing is set to ARYSPC_LOD0: 

  

QPitch = h0 

 

Multisampled Surfaces  

Starting with , multisampled render targets and sampling engine surfaces are supported. There are 
three types of multisampled surface layouts designated as follows: 

• IMS Interleaved Multisampled Surface 
• CMS Compressed Mulitsampled Surface 
• UMS Uncompressed Multisampled Surface 

These surface layouts are described in the following sections. 

Compressed Multisampled Surfaces 

Multisampled render targets can be compressed. If MCS Enable is enabled in SURFACE_STATE, 
hardware handles the compression using a software-invisible algorithm. However, performance 
optimizations in the multisample resolve kernel using the sampling engine are possible if the internal 
format of these surfaces is understood by software. This section documents the formats of the 
Multisample Control Surface (MCS) and Multisample Surface (MSS). 

The MCS surface consists of one element per pixel, with the element size being an 8-bit unsigned 
integer value for 4x multisampled surfaces and a 32-bit unsigned integer value for 8x multisampled 
surfaces. Each field within the element indicates which sample slice (SS) the sample resides on. 

The 4x MCS is 8 bits per pixel. The 8 bits are encoded as follows: 

Table: 4x MCS 

7:6 5:4 3:2 1:0 

sample 3 SS sample 2 SS sample 1 SS sample 0 SS 

Each 2-bit field indicates which sample slice (SS) the sample’s color value is stored. An MCS value of 
0x00 indicates that all four samples are stored in sample slice 0 (thus all have the same color). This is the 
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fully compressed case. An MCS value of 0xff indicates that all samples in the pixel are in the clear state, 
and none of the sample slices are valid. The pixel’s color must be replaced with the surface’s clear value. 

Extending the mechanism used for the 4x MCS to 8x requires 3 bits per sample times 8 samples, or 24 
bits per pixel. The 24-bit MCS value per pixel is placed in a 32-bit footprint, with the upper 8 bits 
unused as shown below. 

Table: 8x MCS 

31:24 23:21 20:18 17:15 14:12 11:9 8:6 5:3 2:0 

reserved sample 7 
SS 

sample 6 
SS 

sample 5 
SS 

sample 4 
SS 

sample 3 
SS 

sample 2 
SS 

sample 1 
SS 

sample 0 
SS 

Other than this, the 8x algorithm is the same as the 4x algorithm. The MCS value indicating clear state is 
0x00ffffff. 

Physical MSS Surface 

The physical MSS surface is stored identically to a 2D array surface, with the height and width matching 
the pixel dimensions of the logical multisampled surface. The number of array slices in the physical 
surface is 2, 4, 8, or 16 times that of the logical surface (depending on the number of multisamples). 
Sample slices belonging to the same logical surface array slice are stored in adjacent physical slices. The 
sampling engine ld2dss message gives direct access to a specific sample slice. 

Uncompressed Multisampled Surfaces  

UMS surfaces similar to CMS, except that the MCS is disabled, and there is no MCS surface. UMS 
contains only an MSS surface, where each sample is stored on its sample slice (SS) of the same index. 

Cube Surfaces 

The 3D Pipeline supports cubic environment maps, conceptually arranged as a cube surrounding the 
origin of a 3D coordinate system aligned to the cube faces. These maps can be used to supply texel 
(color/alpha) data of the environment in any direction from the enclosed origin, where the direction is 
supplied as a 3D "vector" texture coordinate. These cube maps can also be mipmapped. 

Each texture map level is represented as a group of six, square cube face texture surfaces. The faces are 
identified by their relationship to the 3D texture coordinate system. The subsections below describe the 
cube maps as described at the API as well as the memory layout dictated by the hardware. 

DirectX API Definition 

The diagram below describes the cube map faces as they are defined at the DirectX API. It shows the 
axes on the faces as they would be seen from the inside (at the origin). The origin of the U,V texel grid is 
at the top left corner of each face. 

This will be looking directly at face 4, the +z -face. Y is up by default. 

DirectX Cube Map Definition 
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Hardware Cube Map Layout 

The cube face textures are stored in the same way as 2D array surfaces are stored (see section 2D 
Surfaces for details). For cube surfaces, the depth (array instances) is equal to 6. The array index "q" 
corresponds to the face according to the following table: 

"q" coordinate face 

0 +x 

1 -x 

2 +y 

3 -y 

4 +z 

5 -z 

Restrictions 

• The cube map memory layout is the same whether or not the cube map is mip-mapped, and 
whether or not all six faces are "enabled", though the memory backing disabled faces or non-
supplied levels can be used by software for other purposes. 

• The cube map faces all share the same Surface Format 

Cube Arrays 

Cube arrays are stored identically to 2D surface arrays. A group of 6 consecutive array elements makes 
up a single cube map. A cube array with N array elements is stored identically to a 2D array with 6N 
array elements. 
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3D Surfaces 

Multiple texture map surfaces (and their respective mipmap chains) can be arranged into a structure 
known as a Texture3D (volume) texture. A volume texture map consists of many planes of 2D texture 
maps. See Sampler for a description of how volume textures are used. 

Volume Texture Map 

 

Note that the number of planes defined at each successive mip level is halved. Volumetric texture maps 
are stored as follows. All of the LOD=0 q-planes are stacked vertically, then below that, the LOD=1 q-
planes are stacked two-wide, then the LOD=2 q-planes are stacked four-wide below that, and so on. 

The width, height, and depth of LOD "L" are as follows: 

  

WL = ((width >> L) > 0? width >> L:1) 

  

HL = ((height >> L) > 0? height >> L:1) 

  

This is the same as for a regular texture. For volume textures we add: 

DL = ((depth >> L) > 0? depth >> L:1) 

  

Cache-line aligned width and height are as follows, with i and j being a function of the map format as 
shown in Alignment Unit Size. 
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Note that it is not necessary to cache-line align in the "depth" dimension (i.e. lowercase "d"). 

The following equations for LODL,q give the base address Cartesian coordinates for the map at LOD L 
and depth q. 

 
These values are then used as "base addresses" and the 2D MIP Map equations are used to compute 
the location within each LOD/q map. 

Minimum Pitch 

The minimum pitch required to store the 3D map may in some cases be greater than the minimum 
pitch required by the LOD=0 map. This is due to cache line alignment requirements that may impact 
some of the MIP levels requiring additional spacing in the horizontal direction. 

Surface Padding Requirements 

This section covers the requirements for padding around surfaces stored in memory, as there are cases 
where the device will overfetch beyond the bounds of the surface due to implementation of caches and 
other hardware structures. 

Sampling Engine Surfaces 

The sampling engine accesses texels outside of the surface if they are contained in the same cache line 
as texels that are within the surface. These texels will not participate in any calculation performed by the 
sampling engine and will not affect the result of any sampling engine operation, however if these texels 
lie outside of defined pages in the GTT, a GTT error will result when the cache line is accessed. In order 
to avoid these GTT errors, "padding" at the bottom and right side of a sampling engine surface is 
sometimes necessary. 
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It is possible that a cache line will straddle a page boundary if the base address or pitch is not aligned. 
All pages included in the cache lines that are part of the surface must map to valid GTT entries to avoid 
errors. To determine the necessary padding on the bottom and right side of the surface, refer to the 
table in Section Alignment Unit Size for the i and j parameters for the surface format in use. The surface 
must then be extended to the next multiple of the alignment unit size in each dimension, and all texels 
contained in this extended surface must have valid GTT entries. 

For example, suppose the surface size is 15 texels by 10 texels and the alignment parameters are i=4 
and j=2. In this case, the extended surface would be 16 by 10. Note that these calculations are done in 
texels, and must be converted to bytes based on the surface format being used to determine whether 
additional pages need to be defined. 

 For buffers, which have no inherent "height," padding requirements are different. A buffer must be 
padded to the next multiple of 256 array elements, with an additional 16 bytes added beyond that to 
account for the L1 cache line. 

For cube surfaces, an additional two rows of padding are required at the bottom of the surface. This 
must be ensured regardless of whether the surface is stored tiled or linear. This is due to the potential 
rotation of cache line orientation from memory to cache. 

For compressed textures (BC*, FXT1, ETC*, EAC*, ), padding at the bottom of the surface is to an even 
compressed row. This is equivalent to a multiple of 2q, where q is the compression block height in 
texels. Thus, for padding purposes, these surfaces behave as if j = 2q only for surface padding purposes. 
The value of j is still equal to q for mip level alignment and QPitch calculation. 

For packed YUV, 96 bpt, 48 bpt, and 24 bpt surface formats, additional padding is required. These 
surfaces require an extra row plus 16 bytes of padding at the bottom in addition to the general padding 
requirements. 

For linear surfaces, additional padding of 64 bytes is required at the bottom of the surface. This is in 
addition to the padding required above. 

Render Target and Media Surfaces 

The data port accesses data (pixels) outside of the surface if they are contained in the same cache 
request as pixels that are within the surface. These pixels will not be returned by the requesting 
message, however if these pixels lie outside of defined pages in the GTT, a GTT error will result when 
the cache request is processed. In order to avoid these GTT errors, "padding" at the bottom of the 
surface is sometimes necessary. 

If the surface contains an odd number of rows of data, a final row below the surface must be allocated. 
If the surface will be accessed in field mode (Vertical Stride = 1), enough additional rows below the 
surface must be allocated to make the extended surface height (including the padding) a multiple of 4. 
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