

Doc Ref # IHD-OS-VLV-Vol6-04.14 1

Intel® Open Source HD Graphics
Programmers' Reference Manual (PRM)

Volume 6: Command Stream Programming

For the 2014 Intel Atom™ Processors, Celeron™ Processors, and Pentium™ Processors
based on the "BayTrail" Platform (ValleyView graphics)

© April 2014, Intel Corporation

Command Stream Programming

2 Doc Ref # IHD-OS-VLV-Vol6-04.14

Creative Commons License
You are free to Share — to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any

way that suggests that they endorse you or your use of the work).

No Derivative Works. You may not alter, transform, or build upon this work

Notices and Disclaimers
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,
directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS
FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS
SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES
OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE
ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,
PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,
WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,
OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them. The information here
is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips
Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2014, Intel Corporation. All rights reserved.

Command Stream Programming

Doc Ref # IHD-OS-VLV-Vol6-04.14 3

Table of Contents
Graphics Command Formats .. 4

Command Header .. 5
Memory Interface Commands .. 7
2D Commands ... 9
3D Commands ... 10
MFX Commands ... 15
Blitter Engine Command Interface .. 17

BCS_RINGBUF—Ring Buffer Registers .. 17
Blitter Engine Command Interface .. 17

BCS_RINGBUF—Ring Buffer Registers .. 17
BLT Watchdog Timer Registers .. 17
BLT Interrupt Control Registers ... 17
Hardware-Detected Error Bit Definitions (for EIR, EMR, ESR) .. 18
BLT Logical Context Support... 19
BLT Mode Registers .. 19

MI Commands for Blitter Engine.. 20
Render Engine Command Interface ... 20

Render Engine Command Streamer (RCS) .. 20
RINGBUF — Ring Buffer Registers .. 21
Render Watchdog Timer Registers ... 21
Render Interrupt Control Registers .. 22

Hardware-Detected Error Bit Definitions (for EIR, EMR, ESR) .. 23
Render Logical Context Support ... 23

Context Save Registers ...23
Mode Registers ..23

MI Commands for Render Engine ... 24
Video Command Streamer (VCS)... 24
Video Command Streamer (VCS)... 25

VCS_RINGBUF—Ring Buffer Registers .. 25
Watchdog Timer Registers .. 26
Interrupt Control Registers .. 26

VCS Hardware - Detected Error Bit Definitions (for EIR, EMR, ESR) .. 28
Logical Context Support ... 29
Mode Registers .. 29
Registers in Media Engine.. 29

GAC PWR CTX STORAGE REGISTERS .. 30
GFX TLB In Use Virtual Address Registers ... 30
GFX Pending TLB Cycles Information Registers .. 30

Memory Interface Commands for Video Codec Engine ... 31
Preemption ...32

Ring Buffer Scheduling .. 32

Command Stream Programming

4 Doc Ref # IHD-OS-VLV-Vol6-04.14

Graphics Command Formats
This section describes the general format of the graphics device commands.

Graphics commands are defined with various formats. The first DWord of all commands is called the
header DWord. The header contains the only field common to all commands, the client field that
determines the device unit that processes the command data. The Command Parser examines the client
field of each command to condition the further processing of the command and route the command
data accordingly.

Some products include two Command Parsers, each controlling an independent processing engine.
These are referred to in this document as the Render Command Parser (RCP) and the Video Codec
Command Parser (VCCP).

Valid client values for the Render Command Parser are:

Client # Client

0 Memory Interface (MI_xxx)

1 Miscellaneous

2 2D Rendering (xxx_BLT_xxx)

3 Graphics Pipeline (3D and Media)

4-7 Reserved

Valid client values for the Video Codec Command Parser are:

Client # Client

0 Memory Interface (MI_xxx)

1-2 Reserved

3 AVC and VC1 State and Object Commands

4-7 Reserved

Graphics commands vary in length, though are always multiples of DWords. The length of a command
is either:

• Implied by the client/opcode
• Fixed by the client/opcode yet included in a header field (so the Command Parser explicitly

knows how much data to copy/process)
• Variable, with a field in the header indicating the total length of the command

Note that command sequences require QWord alignment and padding to QWord length to be placed in
Ring and Batch Buffers.

The following subsections provide a brief overview of the graphics commands by client type provides a
diagram of the formats of the header DWords for all commands. Following that is a list of command
mnemonics by client type.

Command Stream Programming

Doc Ref # IHD-OS-VLV-Vol6-04.14 5

Command Header

RCP Command Header Format

Bits

TYPE 31:29 28:24 23 22 21:0

Memory

Interface

(MI)

000 Opcode

00h – NOP

0Xh – Single DWord
Commands

1Xh – Two+ DWord
Commands

2Xh – Store Data
Commands

3Xh – Ring/Batch Buffer
Cmds

 Identification No./DWord Count

Command Dependent Data

5:0 – DWord Count

5:0 – DWord Count

5:0 – DWord Count

Reserved 001 Opcode – 11111 23:19

Sub Opcode 00h –
01h

18:16

Re-served

15:0

DWord
Count

2D 010 Opcode Command Dependent
Data

4:0 – DWord Count

TYPE 31:29 28:27 26:24 23:16 15:8 7:0

Common 011 00 Opcode – 000 Sub Opcode Data DWord Count

Common (NP) 011 00 Opcode – 001 Sub Opcode Data DWord Count

Reserved 011 00 Opcode – 010 – 111

Single Dword
Command

011 01 Opcode – 000 – 001 Sub Opcode N/A

Reserved 011 01 Opcode – 010 – 111

Media State 011 10 Opcode – 000 Sub Opcode Dword Count

Media Object 011 10 Opcode – 001 – 010 Sub Opcode Dword Count

Reserved 011 10 Opcode – 011 – 111

3DState 011 11 Opcode – 000 Sub Opcode Data DWord Count

3DState (NP) 011 11 Opcode – 001 Sub Opcode Data DWord Count

PIPE_Control 011 11 Opcode – 010 Data DWord Count

3DPrimitive 011 11 Opcode – 011 Data DWord Count

Reserved 011 11 Opcode – 100 – 111

Reserved 100 XX

Command Stream Programming

6 Doc Ref # IHD-OS-VLV-Vol6-04.14

Bits

TYPE 31:29 28:24 23 22 21:0

Reserved 101 XX

Reserved 110 XX

Reserved 111 XX

Note: The qualifier "NP" indicates that the state variable is non-pipelined and the render pipe is flushed
before such a state variable is updated. The other state variables are pipelined (default).

VCCP Command Header Format

Bits

TYPE 31:29 28:24 23 22 21:0

Memory

Interface

(MI)

000 Opcode

00h – NOP

0Xh – Single DWord
Commands

1Xh – Reserved

2Xh – Store Data Commands

3Xh – Ring/Batch Buffer Cmds

 Identification No./DWord Count

Command Dependent Data

5:0 – DWord Count

5:0 – DWord Count

5:0 – DWord Count

TYPE 31:29 28:27 26:24 23:16 15:0

Reserved 011 00 Reserved Reserved Reserved

MFX Single DW 011 01 000 Opcode: 0h 0

Reserved 011 01 1XX

Reserved 011 10 0XX

AVC State 011 10 100 Opcode: 0h – 4h DWord Count

AVC Object 011 10 100 Opcode: 8h DWord Count

VC1 State 011 10 101 Opcode: 0h – 4h DWord Count

VC1 Object 011 10 101 Opcode: 8h DWord Count

Reserved 011 10 11X Reserved Reserved

Reserved 011 11 Reserved Reserved Reserved

TYPE 31:29 28:27 26:24 23:21 20:16 15:0

MFX Common 011 10 000 000 subopcode DWord Count

Reserved 011 10 000 001-111 subopcode DWord Count

AVC Common 011 10 001 000 subopcode DWord Count

AVC Dec 011 10 001 001 subopcode DWord Count

AVC Enc 011 10 001 010 subopcode DWord Count

Reserved 011 10 001 011-111 subopcode DWord Count

Command Stream Programming

Doc Ref # IHD-OS-VLV-Vol6-04.14 7

Bits

TYPE 31:29 28:24 23 22 21:0

Reserved (for VC1
Common)

011 10 010 000 subopcode DWord Count

VC1 Dec 011 10 010 001 subopcode DWord Count

Reserved (for VC1 Enc) 011 10 010 010 subopcode DWord Count

Reserved 011 10 010 011-111 subopcode DWord Count

Reserved (MPEG2 Common) 011 10 011 000 subopcode DWord Count

MPEG2 Dec 011 10 011 001 subopcode DWord Count

Reserved (for MPEG2 Enc) 011 10 011 010 subopcode DWord Count

Reserved 011 10 011 011-111 subopcode DWord Count

Reserved 011 10 100-111 Reserved Reserved Reserved

Memory Interface Commands

Memory Interface (MI) commands are basically those commands which do not require processing by
the 2D or 3D Rendering/Mapping engines. The functions performed by these commands include:

• Control of the command stream (e.g., Batch Buffer commands, breakpoints, ARB On/Off,
etc.)

• Hardware synchronization (e.g., flush, wait-for-event)
• Software synchronization (e.g., Store DWORD, report head)
• Graphics buffer definition (e.g., Display buffer, Overlay buffer)
• Miscellaneous functions

All the following commands are defined in Memory Interface Commands.

Memory Interface Commands for RCP

Opcode (28:23) Command
1 DWord

00h MI_NOOP

01h

02h MI_USER_INTERRUPT

03h MI_WAIT_FOR_EVENT

05h MI_ARB_CHECK

06h

07h MI_REPORT_HEAD

08h MI_ARB_ON_OFF

0Ah MI_BATCH_BUFFER_END

0Bh MI_SUSPEND_FLUSH

0Ch MI_PREDICATE

Command Stream Programming

8 Doc Ref # IHD-OS-VLV-Vol6-04.14

Opcode (28:23) Command
0Dh MI_TOPOLOGY_FILTER

2 Dwords

10h Reserved

14h MI_DISPLAY_FLIP

15h Reserved

16h MI_SEMAPHORE_MBOX

17h Reserved

18h MI_SET_CONTEXT

1Ah MI_MATH

1Eh–1Fh Reserved

Store Data

20h MI_STORE_DATA_IMM

21h MI_STORE_DATA_INDEX

22h MI_LOAD_REGISTER_IMM

23h MI_UPDATE_GTT

24h MI_STORE_REGISTER_MEM

26h MI_FLUSH_DW

27h MI_CLFLUSH

28h MI_REPORT_PERF_COUNT

29h MI_LOAD_REGISTER_MEM

Ring/Batch Buffer

30h Reserved

31h MI_BATCH_BUFFER_START

32h–35h Reserved

36h MI_CONDITIONAL_BATCH_BUFFER_END

37h–3Fh Reserved

Command Stream Programming

Doc Ref # IHD-OS-VLV-Vol6-04.14 9

2D Commands

The 2D commands include various flavors of BLT operations, along with commands to set up BLT
engine state without actually performing a BLT. Most commands are of fixed length, though there are a
few commands that include a variable amount of "inline" data at the end of the command.

All the following commands are defined in Blitter Instructions.

Table: 2D Command Map

Opcode
(28:22) Command

00h Reserved

01h XY_SETUP_BLT

02h Reserved

03h XY_SETUP_CLIP_BLT

04h-10h Reserved

11h XY_SETUP_MONO_PATTERN_SL_BLT

12h-23h Reserved

24h XY_PIXEL_BLT

25h XY_SCANLINES_BLT

26h XY_TEXT_BLT

27h-30h Reserved

31h XY_TEXT_IMMEDIATE_BLT

32h-3Fh Reserved

40h COLOR_BLT

41h-42h Reserved

43h SRC_COPY_BLT

44h-4Fh Reserved

50h XY_COLOR_BLT

51h XY_PAT_BLT

52h XY_MONO_PAT_BLT

53h XY_SRC_COPY_BLT

54h XY_MONO_SRC_COPY_BLT

55h XY_FULL_BLT

56h XY_FULL_MONO_SRC_BLT

57h XY_FULL_MONO_PATTERN_BLT

58h XY_FULL_MONO_PATTERN_MONO_SRC_BLT

59h XY_MONO_PAT_FIXED_BLT

5Ah-70h Reserved

71h XY_MONO_SRC_COPY_IMMEDIATE_BLT

72h XY_PAT_BLT_IMMEDIATE

73h XY_SRC_COPY_CHROMA_BLT

Command Stream Programming

10 Doc Ref # IHD-OS-VLV-Vol6-04.14

Opcode
(28:22) Command

74h XY_FULL_IMMEDIATE_PATTERN_BLT

75h XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT

76h XY_PAT_CHROMA_BLT

77h XY_PAT_CHROMA_BLT_IMMEDIATE

78h-7Fh Reserved

3D Commands

The 3D commands are used to program the graphics pipelines for 3D operations.

Refer to the 3D chapter for a description of the 3D state and primitive commands and the Media
chapter for a description of the media-related state and object commands.

For all commands listed in 3D Command Map, the Pipeline Type (bits 28:27) is 3h, indicating the 3D
Pipeline.

Table: 3D Command Map

Opcode
Bits 26:24

Sub Opcode
Bits 23:16 Command Definition Chapter

0h 03h Reserved

0h 04h 3DSTATE_CLEAR_PARAMS 3D Pipeline

0h 05h 3DSTATE_DEPTH_BUFFER 3D Pipeline

0h 06h 3DSTATE_STENCIL_BUFFER 3D Pipeline

0h 07h 3DSTATE_HIER_DEPTH_BUFFER 3D Pipeline

0h 08h 3DSTATE_VERTEX_BUFFERS Vertex Fetch

0h 09h 3DSTATE_VERTEX_ELEMENTS Vertex Fetch

0h 0Ah 3DSTATE_INDEX_BUFFER Vertex Fetch

0h 0Bh 3DSTATE_VF_STATISTICS Vertex Fetch

0h 0Ch Reserved

0h 0Dh 3DSTATE_VIEWPORT_STATE_POINTERS 3D Pipeline

0h 0Eh 3DSTATE_CC_STATE_POINTERS 3D Pipeline

0h 10h 3DSTATE_VS Vertex Shader

0h 11h 3DSTATE_GS Geometry Shader

Command Stream Programming

Doc Ref # IHD-OS-VLV-Vol6-04.14 11

Opcode
Bits 26:24

Sub Opcode
Bits 23:16 Command Definition Chapter

0h 12h 3DSTATE_CLIP Clipper

0h 13h 3DSTATE_SF Strips & Fans

0h 14h 3DSTATE_WM Windower

0h 15h 3DSTATE_CONSTANT_VS Vertex Shader

0h 16h 3DSTATE_CONSTANT_GS Geometry Shader

0h 17h 3DSTATE_CONSTANT_PS Windower

0h 18h 3DSTATE_SAMPLE_MASK Windower

0h 19h 3DSTATE_CONSTANT_HS Hull Shader

0h 1Ah 3DSTATE_CONSTANT_DS Domain Shader

0h 1Bh 3DSTATE_HS Hull Shader

0h 1Ch 3DSTATE_TE Tesselator

0h 1Dh 3DSTATE_DS Domain Shader

0h 1Eh 3DSTATE_STREAMOUT HW Streamout

0h 1Fh 3DSTATE_SBE Setup

0h 20h 3DSTATE_PS Pixel Shader

0h 21h 3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP Strips & Fans

0h 22h Reserved

0h 23h 3DSTATE_VIEWPORT_STATE_POINTERS_CC Windower

0h 24h 3DSTATE_BLEND_STATE_POINTERS Pixel Shader

0h 25h 3DSTATE_DEPTH_STENCIL_STATE_POINTERS Pixel Shader

0h 26h 3DSTATE_BINDING_TABLE_POINTERS_VS Vertex Shader

Command Stream Programming

12 Doc Ref # IHD-OS-VLV-Vol6-04.14

Opcode
Bits 26:24

Sub Opcode
Bits 23:16 Command Definition Chapter

0h 27h 3DSTATE_BINDING_TABLE_POINTERS_HS Hull Shader

0h 28h 3DSTATE_BINDING_TABLE_POINTERS_DS Domain Shader

0h 29h 3DSTATE_BINDING_TABLE_POINTERS_GS Geometry Shader

0h 2Ah 3DSTATE_BINDING_TABLE_POINTERS_PS Pixel Shader

0h 2Bh 3DSTATE_SAMPLER_STATE_POINTERS_VS Vertex Shader

0h 2Ch 3DSTATE_SAMPLER_STATE_POINTERS_HS Hull Shader

0h 2Dh 3DSTATE_SAMPLER_STATE_POINTERS_DS Domain Shader

0h 2Eh 3DSTATE_SAMPLER_STATE_POINTERS_GS Geometry Shader

0h 2Fh Reserved

0h 30h 3DSTATE_URB_VS Vertex Shader

0h 31h 3DSTATE_URB_HS Hull Shader

0h 32h 3DSTATE_URB_DS Domain Shader

0h 33h 3DSTATE_URB_GS Geometry Shader

0h 48h-4Bh Reserved

0h 4Ch 3DSTATE_WM_CHROMA_KEY Windower

0h 4Dh 3DSTATE_PS_BLEND Windower

0h 4Eh 3DSTATE_WM_DEPTH_STENCIL Windower

0h 4Fh 3DSTATE_PS_EXTRA Windower

0h 50h 3DSTATE_RASTER Strips & Fans

0h 51h 3DSTATE_SBE_SWIZ Strips & Fans

0h 52h 3DSTATE_WM_HZ_OP Windower

0h 53h 3DSTATE_INT (internally generated state) 3D Pipeline

0h 56h-FFh Reserved

1h 00h 3DSTATE_DRAWING_RECTANGLE Strips & Fans

1h 02h 3DSTATE_SAMPLER_PALETTE_LOAD0 Sampling Engine

1h 03h Reserved

1h 04h 3DSTATE_CHROMA_KEY Sampling Engine

Command Stream Programming

Doc Ref # IHD-OS-VLV-Vol6-04.14 13

Opcode
Bits 26:24

Sub Opcode
Bits 23:16 Command Definition Chapter

1h 05h Reserved

1h 06h 3DSTATE_POLY_STIPPLE_OFFSET Windower

1h 07h 3DSTATE_POLY_STIPPLE_PATTERN Windower

1h 08h 3DSTATE_LINE_STIPPLE Windower

1h 0Ah 3DSTATE_AA_LINE_PARAMS Windower

1h 0Bh 3DSTATE_GS_SVB_INDEX Geometry Shader

1h 0Ch 3DSTATE_SAMPLER_PALETTE_LOAD1 Sampling Engine

1h 0Dh 3DSTATE_MULTISAMPLE Windower

1h 0Eh 3DSTATE_STENCIL_BUFFER Windower

1h 0Fh 3DSTATE_HIER_DEPTH_BUFFER Windower

1h 10h 3DSTATE_CLEAR_PARAMS Windower

1h 11h 3DSTATE_MONOFILTER_SIZE Sampling Engine

1h 12h 3DSTATE_PUSH_CONSTANT_ALLOC_VS Vertex Shader

1h 13h 3DSTATE_PUSH_CONSTANT_ALLOC_HS Hull Shader

1h 14h 3DSTATE_PUSH_CONSTANT_ALLOC_DS Domain Shader

1h 15h 3DSTATE_PUSH_CONSTANT_ALLOC_GS Geometry Shader

1h 16h 3DSTATE_PUSH_CONSTANT_ALLOC_PS Pixel Shader

1h 17h 3DSTATE_SO_DECL_LIST HW Streamout

1h 18h 3DSTATE_SO_BUFFER HW Streamout

1h 1Ch 3DSTATE_SAMPLE_PATTERN Windower

1h 1Dh 3DSTATE_URB_CLEAR 3D Pipeline

1h 1Eh-FFh Reserved

2h 00h PIPE_CONTROL 3D Pipeline

2h 01h-FFh Reserved

3h 00h 3DPRIMITIVE Vertex Fetch

3h 01h-FFh Reserved

4h-7h 00h-FFh Reserved

Command Stream Programming

14 Doc Ref # IHD-OS-VLV-Vol6-04.14

Pipeline Type
(28:27) Opcode

Sub
Opcode Command

Definition
Chapter

Common
(pipelined)

Bits
26:24

Bits
23:16

0h 0h 03h STATE_PREFETCH Graphics
Processing
Engine

0h 0h 04h-FFh Reserved

Common (non-
pipelined)

Bits
26:24

Bits
23:16

0h 1h 00h Reserved n/a

0h 1h 01h STATE_BASE_ADDRESS Graphics
Processing
Engine

0h 1h 02h STATE_SIP Graphics
Processing
Engine

0h 1h 03h SWTESS BASE ADDRESS 3D Pipeline

0h 1h 04h GPGPU CSR BASE ADDRESS Graphics
Processing
Engine

0h 1h 04h–FFh Reserved n/a

Reserved
Bits

26:24
Bits

23:16

0h 2h–7h XX Reserved n/a

Command Stream Programming

Doc Ref # IHD-OS-VLV-Vol6-04.14 15

MFX Commands

The MFX (MFD for decode and MFC for encode) commands are used to program the multi-format
codec engine attached to the Video Codec Command Parser. See the MFD and MFC chapters for a
description of these commands.

MFX state commands support direct state model and indirect state model. Recommended usage of
indirect state model is provided here (as a software usage guideline).

Pipeline Type
(28:27)

Opcod
e

(26:24
)

Subop
A

(23:21)

Subop
B

(20:16) Command
Chapte

r

Recommend
ed Indirect

State Pointer
Map

Interruptabl
e?

MFX Common
(State)

2h 0h 0h 0h MFX_PIPE_MODE_SELECT MFX IMAGE N/A

2h 0h 0h 1h MFX_SURFACE_STATE MFX IMAGE N/A

2h 0h 0h 2h MFX_PIPE_BUF_ADDR_STATE MFX IMAGE N/A

2h 0h 0h 3h MFX_IND_OBJ_BASE_ADDR_ST
ATE

MFX IMAGE N/A

2h 0h 0h 4h MFX_BSP_BUF_BASE_ADDR_ST
ATE

MFX IMAGE N/A

2h 0h 0h 6h MFX_ STATE_POINTER MFX IMAGE N/A

2h 0h 0h 7-8h Reserved N/A N/A N/A

MFX Common
(Object)

2h 0h 1h 9h MFD_ IT_OBJECT MFX N/A Yes

2h 0h 0h 4-1Fh Reserved N/A N/A N/A

AVC Common
(State)

2h 1h 0h 0h MFX_AVC_IMG_STATE MFX IMAGE N/A

2h 1h 0h 1h MFX_AVC_QM_STATE MFX IMAGE N/A

2h 1h 0h 2h MFX_AVC_DIRECTMODE_STAT
E

MFX SLICE N/A

2h 1h 0h 3h MFX_AVC_SLICE_STATE MFX SLICE N/A

2h 1h 0h 4h MFX_AVC_REF_IDX_STATE MFX SLICE N/A

2h 1h 0h 5h MFX_AVC_WEIGHTOFFSET_STA
TE

MFX SLICE N/A

2h 1h 0h 6-1Fh Reserved N/A N/A N/A

AVC Dec

2h 1h 1h 0-7h Reserved N/A N/A N/A

2h 1h 1h 8h MFD_AVC_BSD_OBJECT MFX N/A No

2h 1h 1h 9-1Fh Reserved N/A N/A N/A

AVC Enc

2h 1h 2h 0-1h Reserved N/A N/A N/A

Command Stream Programming

16 Doc Ref # IHD-OS-VLV-Vol6-04.14

Pipeline Type
(28:27)

Opcod
e

(26:24
)

Subop
A

(23:21)

Subop
B

(20:16) Command
Chapte

r

Recommend
ed Indirect

State Pointer
Map

Interruptabl
e?

2h 1h 2h 2h MFC_AVC_FQM_STATE MFX IMAGE N/A

2h 1h 2h 3-7h Reserved N/A N/A N/A

2h 1h 2h 8h MFC_AVC_PAK_INSERT_OBJEC
T

MFX N/A N/A

2h 1h 2h 9h MFC_AVC_PAK_OBJECT MFX N/A Yes

2h 1h 2h A-1Fh Reserved N/A N/A N/A

2h 1h 2h 0-1Fh Reserved N/A N/A N/A

VC1 Common

2h 2h 0h 0h MFX_VC1_PIC_STATE MFX IMAGE N/A

2h 2h 0h 1h MFX_VC1_PRED_PIPE_STATE MFX IMAGE N/A

2h 2h 0h 2h MFX_VC1_DIRECTMODE_STAT
E

MFX SLICE N/A

2h 2h 0h 2-1Fh Reserved N/A N/A N/A

VC1 Dec

2h 2h 1h 0-7h Reserved N/A N/A N/A

2h 2h 1h 8h MFD_VC1_BSD_OBJECT MFX N/A Yes

2h 2h 1h 9-1Fh Reserved N/A N/A N/A

VC1 Enc

2h 2h 2h 0-1Fh Reserved N/A N/A N/A

MPEG2Comm
on

2h 3h 0h 0h MFX_MPEG2_PIC_STATE MFX IMAGE N/A

2h 3h 0h 1h MFX_MPEG2_QM_STATE MFX IMAGE N/A

2h 3h 0h 2-1Fh Reserved N/A N/A N/A

MPEG2 Dec

2h 3h 1h 1-7h Reserved N/A N/A N/A

2h 3h 1h 8h MFD_MPEG2_BSD_OBJECT MFX N/A Yes

2h 3h 1h 9-1Fh Reserved N/A N/A N/A

MPEG2 Enc

2h 3h 2h 0-1Fh Reserved N/A N/A N/A

The Rest

2h 4-5h,
7h

x x Reserved N/A N/A N/A

Command Stream Programming

Doc Ref # IHD-OS-VLV-Vol6-04.14 17

Blitter Engine Command Interface

BCS_RINGBUF—Ring Buffer Registers

Following is a list of ring buffer registers:

RING_BUFFER_TAIL - Ring Buffer Tail

RING_BUFFER_HEAD - Ring Buffer Head

RING_BUFFER_START - Ring Buffer Start

RING_BUFFER_CTL - Ring Buffer Control

UHPTR - Pending Head Pointer Register

Blitter Engine Command Interface

BCS_RINGBUF—Ring Buffer Registers

Following is a list of ring buffer registers:

RING_BUFFER_TAIL - Ring Buffer Tail

RING_BUFFER_HEAD - Ring Buffer Head

RING_BUFFER_START - Ring Buffer Start

RING_BUFFER_CTL - Ring Buffer Control

UHPTR - Pending Head Pointer Register

BLT Watchdog Timer Registers

These are the Watchdog Timer registers:

BCS_CTR_THRSH - BCS Watchdog Counter Threshold

PR_CTR_THRSH - Watchdog Counter Threshold

PR_CTR_CTL - Watchdog Counter Control

BLT Interrupt Control Registers

The Interrupt Control Registers described below all share the same bit definition. The bit definition is as
follows:

Command Stream Programming

18 Doc Ref # IHD-OS-VLV-Vol6-04.14

Bit Definition for Interrupt Control Registers

Bit Description

31:30 Reserved. MBZ: These bits may be assigned to interrupts on future products/steppings.

29 Reserved

28:27 Reserved. MBZ

26 MI_FLUSH_DW Notify Interrupt: The Pipe Control packet (Fences) specified in 3D pipeline
document may optionally generate an Interrupt. The Store QW associated with a fence is
completed ahead of the interrupt.

25 Blitter Command Parser Master Error: When this status bit is set, it indicates that the hardware has
detected an error. It is set by the device upon an error condition and cleared by a CPU write of a
one to the appropriate bit contained in the Error ID register followed by a write of a one to this
bit in the IIR. Further information on the source of the error comes from the "Error Status
Register" which along with the "Error Mask Register" determine which error conditions will cause
the error status bit to be set and the interrupt to occur.

Page Table Error: Indicates a page table error.

Instruction Parser Error: The Blitter Instruction Parser encounters an error while parsing an
instruction.

24 Sync Status: This bit is set when the Instruction Parser completes a flush with the sync enable bit active in
the INSTPM register. The event will happen after all the blitter engines are flushed. The HW Status DWord
write resulting from this event will cause the CPU’s view of graphics memory to be coherent as well (flush
and invalidate the blitter cache). It is the driver’s responsibility to clear this bit before the next sync flush
with HWSP write enabled.

23 Reserved. MBZ

22 Blitter Command Parser User Interrupt: This status bit is set when an MI_USER_INTERRUPT instruction is
executed on the Render Command Parser. Note that instruction execution is not halted and proceeds
normally. A mechanism such as an MI_STORE_DATA instruction is required to associate a particular
meaning to a user interrupt.

21:0 Reserved. MBZ

BCS_HWSTAM - BCS Hardware Status Mask Register

BCS_IMR - BCS Interrupt Mask Register

Hardware-Detected Error Bit Definitions (for EIR, EMR, ESR)

This section defines the Hardware-Detected Error bit definitions and ordering that is common to the
EIR, EMR and ESR registers. The EMR selects which error conditions (bits) in the ESR are reported in the
EIR. Any bit set in the EIR will cause the Master Error bit in the ISR to be set. EIR bits will remain set until
the appropriate bit(s) in the EIR is cleared by writing the appropriate EIR bits with ‘1’ (except for the
unrecoverable bits described below).

The following table describes the Hardware-Detected Error bits:

Command Stream Programming

Doc Ref # IHD-OS-VLV-Vol6-04.14 19

Table: Hardware-Detected Error Bits

BCS Hardware-Detected Error Bit Definitions

Following are the the EIR, EMR and ESR registers:

BCS_EIR - BCS Error Identity Register

BCS_EMR - BCS Error Mask Register

BCS_ESR - BCS Error Status Register

BLT Logical Context Support

Following are the Logical Context Support Registers:

BB_ADDR - Batch Buffer Head Pointer Register

BCS_SYNC_FLIP_STATUS - BCS Wait for event and Display flip flags Register

SYNC_FLIP_STATUS - Wait For Event and Display Flip Flags Register

SYNC_FLIP_STATUS_1 - Wait For Event and Display Flip Flags Register 1

RING_BUFFER_HEAD_PREEMPT_REG - RING_BUFFER_HEAD_PREEMPT_REG

BLT Mode Registers

Following are BLT Mode Registers:

BCS_CXT_SIZE - BCS Context Sizes

BCS_MI_MODE - BCS Mode Register for Software Interface

BLT_MODE - Blitter Mode Register

BCS_INSTPM - BCS Instruction Parser Mode Register

The BCS_INSTPM register is used to control the operation of the BCS Instruction Parser. Certain
classes of instructions can be disabled (ignored) – often useful for detecting performance
bottlenecks. Also, "Synchronizing Flush" operations can be initiated – useful for ensuring the
completion (vs. only parsing) of rendering instructions.

Programming Notes:

• All Reserved bits are implemented.

BCS_EXCC - BCS Execute Condition Code Register

BRSYNC - Blitter/Render Semaphore Sync Register

BVSYNC - Blitter/Video Semaphore Sync Register

Programming Note: If this register is written, a workload must subsequently be dispatched to the
render command streamer.

HWS_PGA - Hardware Status Page Address Register

Hardware Status Page Layout

Command Stream Programming

20 Doc Ref # IHD-OS-VLV-Vol6-04.14

MI Commands for Blitter Engine

This chapter describes the formats of the "Memory Interface" commands, including brief descriptions of
their use. The functions performed by these commands are discussed fully in the Memory Interface
Functions Device Programming Environment chapter.

This chapter describes MI Commands for the blitter graphics processing engine. The term "for Blitter
Engine" in the title has been added to differentiate this chapter from a similar one describing the MI
commands for the Media Decode Engine and the Rendering Engine.

The commands detailed in this chapter are used across products within the Gen4 family. However, slight
changes may be present in some commands (i.e., for features added or removed), or some commands
may be removed entirely. Refer to the Preface chapter for product specific summary.

MI_NOOP

MI_ARB_CHECK

MI_ARB_ON_OFF

MI_BATCH_BUFFER_START

MI_BATCH_BUFFER_END

MI_DISPLAY_FLIP

MI_FLUSH_DW

MI_REPORT_HEAD

MI_STORE_DATA_IMM

MI_STORE_DATA_INDEX

MI_LOAD_REGISTER_IMM

MI_LOAD_REGISTER_MEM

MI_STORE_REGISTER_MEM

MI_USER_INTERRUPT

MI_WAIT_FOR_EVENT

MI_SEMAPHORE_MBOX

Render Engine Command Interface

Render Engine Command Streamer (RCS)

The RCS (Render Command Streamer) unit primarily serves as the software programming interface
between the O/S driver and the Render Engine. It is responsible for fetching, decoding, and dispatching
of data packets (3D/Media Commands with the header DWord removed) to the front end interface
module of Render Engine.

Its logic functions include:

Command Stream Programming

Doc Ref # IHD-OS-VLV-Vol6-04.14 21

• MMIO register programming interface.
• DMA action for fetching of ring data from memory.
• Management of the Head pointer for the Ring Buffer.
• Decode of ring data and sending it to the appropriate destination: 3D (Vertex Fetch Unit) &

GPGPU.
• Handling of user interrupts.
• Flushing the 3D and GPGPU Engine.
• Handle NOP.

The register programming bus is a DWord interface bus that is driven by the configuration master. The
RCS unit only claims memory mapped I/O cycles that are targeted to its range of 0x2000 to 0x27FF. The
Gx and MFX Engines use semaphore to synchronize their operations.

RCS operates completely independent of the MFx CS.

The simple sequence of events is as follows: a ring (say PRB0) is programmed by a memory-mapped
register write cycle. The DMA inside RCS is kicked off. The DMA fetches commands from memory based
on the starting address and head pointer. The DMA requests cache lines from memory (one cacheline
CL at a time). There is guaranteed space in the DMA FIFO (8 CL deep) for data coming back from
memory. The DMA control logic has copies of the head pointer and the tail pointer. The DMA
increments the head pointer after making requests for ring commands. Once the DMA copy of the head
pointer becomes equal to the tail pointer, the DMA stops requesting.

The parser starts executing once the DMA FIFO has valid commands. All the commands have a header
DWord packet. Based on the encoding in the header packet, the command may be targeted towards
Vertex Fetch Unit or GPPGU engine or the command parser. After execution of every command, the
actual head pointer is updated. The ring is considered empty when the head pointer becomes equal to
the tail pointer.

RINGBUF — Ring Buffer Registers

See the "Device Programming Environment" chapter for detailed information on these registers.

RING_BUFFER_TAIL - Ring Buffer Tail

RING_BUFFER_HEAD - Ring Buffer Head

RING_BUFFER_START - Ring Buffer Start

RING_BUFFER_CTL - Ring Buffer Control

UHPTR - Pending Head Pointer Register

Render Watchdog Timer Registers

These two registers together implement a watchdog timer. Writing ones to the control register enables
the counter, and writing zeroes disables the counter. The 2nd register is programmed with a threshold
value which, when reached, signals an interrupt then resets the counter to 0. Program the threshold
value before enabling the counter or extremely frequent interrupts may result.

Note that the counter itself is not observable. It increments with the main render clock.

Command Stream Programming

22 Doc Ref # IHD-OS-VLV-Vol6-04.14

PR_CTR_CTL - Watchdog Counter Control

PR_CTR_THRSH - Watchdog Counter Threshold

PR_CTR - Render Watchdog Counter

Render Interrupt Control Registers

The Interrupt Control Registers described in this section all share the same bit definition. The bit
definition is as follows:

Bit Definition for Interrupt Control Registers

The following table specifies the settings of interrupt bits stored upon a "Hardware Status Write" due to
ISR changes:

Bit Interrupt Bit

ISR bit Reporting via
Hardware Status

Write (when
unmasked via

HWSTAM)

9 Performance Monitoring Buffer Half-Full Interrupt Set when event occurs,
cleared when event
cleared

8 Reserved

7 Page Fault: This bit is set whenever there is a pending
PPGTT (page or directory) fault.

Set when event
occurs, cleared when
event cleared

6 Media Decode Pipeline Counter Exceeded Notify
Interrupt: The counter threshold for the execution of
the media pipeline is exceeded. Driver needs to
attempt hang recovery.

Not supported to be
unmasked

5 L3 Parity interrupt

4 PIPE_CONTROL packet - Notify Enable 0

3 Master Error Set when error occurs,
cleared when error
cleared

2 Sync Status Toggled every
SyncFlush Event

1

0 User Interrupt 0

Command Stream Programming

Doc Ref # IHD-OS-VLV-Vol6-04.14 23

HWSTAM - Hardware Status Mask Register

IMR - Interrupt Mask Register

Hardware-Detected Error Bit Definitions (for EIR, EMR, ESR)

This section defines the Hardware-Detected Error bit definitions and ordering that is common to the
EIR, EMR and ESR registers. The EMR selects which error conditions (bits) in the ESR are reported in the
EIR. Any bit set in the EIR will cause the Master Error bit in the ISR to be set. EIR bits will remain set until
the appropriate bit(s) in the EIR is cleared by writing the appropriate EIR bits with ‘1’ (except for the
unrecoverable bits described below).

The following table describes the Hardware-Detected Error bits:

Table: Hardware-Detected Error Bits

Hardware-Detected Error Bit Definitions

Following are the the EIR, EMR and ESR registers:

EIR - Error Identity Register

EMR - Error Mask Register

ESR - Error Status Register

Render Logical Context Support

Following are the Logical Context Support Registers:

BB_ADDR - Batch Buffer Head Pointer Register

RCS_BB_STATE - RCS Batch Buffer State Register

CCID - Current Context Register

SYNC_FLIP_STATUS - Wait For Event and Display Flip Flags Register

SYNC_FLIP_STATUS_1 - Wait For Event and Display Flip Flags Register 1

Context Save Registers
Following are the Context Save Registers:

RING_BUFFER_HEAD_PREEMPT_REG - RING_BUFFER_HEAD_PREEMPT_REG

Mode Registers
Following are the Mode Registers:

INSTPM - Instruction Parser Mode Register

EXCC - Execute Condition Code Register

Command Stream Programming

24 Doc Ref # IHD-OS-VLV-Vol6-04.14

NOPID - NOP Identification Register

RVSYNC - Render/Video Semaphore Sync Register

RBSYNC - Render/Blitter Semaphore Sync Register

HWS_PGA - Hardware Status Page Address Register

Hardware Status Page Layout

MI Commands for Render Engine

This chapter describes the formats of the “Memory Interface” commands, including brief descriptions of
their use. The functions performed by these commands are discussed fully in the Memory Interface
Functions Device Programming Environment chapter.

This chapter describes MI Commands for the original graphics processing engine. The term “for
Rendering Engine” in the title has been added to differentiate this chapter from a similar one describing
the MI commands for the Media Decode Engine.

Video Command Streamer (VCS)

The VCS (Video Command Streamer) unit primarily serves as the software programming interface
between the O/S driver and the MFD Engine. It is responsible for fetching, decoding, and dispatching of
data packets (Media Commands with the header DWord removed) to the front end interface module of
MFX Engine.

Its logic functions include:

• MMIO register programming interface.
• Management of the Head pointer for the Ring Buffer.
• Decode of ring data and sending it to the appropriate destination: AVC, VC1, or MPEG2 engine.
• Handling of user interrupts.
• Flushing the MFX Engine.
• Handle NOP.

The register programming (RM) bus is a DWord interface bus that is driven by the Gx Command
Streamer. The VCS unit only claims memory mapped I/O cycles that are targeted to its range of 0x4000
to 0x4FFFF. The Gx and MFX Engines use semaphore to synchronize their operations.

VCS operates completely independent of the Gx CS.

The simple sequence of events is as follows: a ring (say PRB0) is programmed by a memory-mapped
register write cycle. The DMA inside VCS is kicked off. The DMA fetches commands from memory based
on the starting address and head pointer. The DMA requests cache lines from memory (one cacheline
CL at a time). There is guaranteed space in the DMA FIFO (16 CL deep) for data coming back from
memory. The DMA control logic has copies of the head pointer and the tail pointer. The DMA
increments the head pointer after making requests for ring commands. Once the DMA copy of the head
pointer becomes equal to the tail pointer, the DMA stops requesting.

Command Stream Programming

Doc Ref # IHD-OS-VLV-Vol6-04.14 25

The parser starts executing once the DMA FIFO has valid commands. All the commands have a header
DWord packet. Based on the encoding in the header packet, the command may be targeted towards
AVC/VC1/MPEG2 engine or the command parser. After execution of every command, the actual head
pointer is updated. The ring is considered empty when the head pointer becomes equal to the tail
pointer.

Video Command Streamer (VCS)

The VCS (Video Command Streamer) unit primarily serves as the software programming interface
between the O/S driver and the MFD Engine. It is responsible for fetching, decoding, and dispatching of
data packets (Media Commands with the header DWord removed) to the front end interface module of
MFX Engine.

Its logic functions include:

• MMIO register programming interface.
• Management of the Head pointer for the Ring Buffer.
• Decode of ring data and sending it to the appropriate destination: AVC, VC1, or MPEG2 engine.
• Handling of user interrupts.
• Flushing the MFX Engine.
• Handle NOP.

The register programming (RM) bus is a DWord interface bus that is driven by the Gx Command
Streamer. The VCS unit only claims memory mapped I/O cycles that are targeted to its range of 0x4000
to 0x4FFFF. The Gx and MFX Engines use semaphore to synchronize their operations.

VCS operates completely independent of the Gx CS.

The simple sequence of events is as follows: a ring (say PRB0) is programmed by a memory-mapped
register write cycle. The DMA inside VCS is kicked off. The DMA fetches commands from memory based
on the starting address and head pointer. The DMA requests cache lines from memory (one cacheline
CL at a time). There is guaranteed space in the DMA FIFO (16 CL deep) for data coming back from
memory. The DMA control logic has copies of the head pointer and the tail pointer. The DMA
increments the head pointer after making requests for ring commands. Once the DMA copy of the head
pointer becomes equal to the tail pointer, the DMA stops requesting.

The parser starts executing once the DMA FIFO has valid commands. All the commands have a header
DWord packet. Based on the encoding in the header packet, the command may be targeted towards
AVC/VC1/MPEG2 engine or the command parser. After execution of every command, the actual head
pointer is updated. The ring is considered empty when the head pointer becomes equal to the tail
pointer.

VCS_RINGBUF—Ring Buffer Registers

RING_BUFFER_TAIL - Ring Buffer Tail

RING_BUFFER_HEAD - Ring Buffer Head

RING_BUFFER_START - Ring Buffer Start

Command Stream Programming

26 Doc Ref # IHD-OS-VLV-Vol6-04.14

RING_BUFFER_CTL - Ring Buffer Control

UHPTR - Pending Head Pointer Register

Watchdog Timer Registers

The following registers are defined as Watchdog Timer registers:

VCS_CNTR - VCS Counter for the bit stream decode engine

VCS_THRSH - VCS Threshold for the counter of bit stream decode engine

Interrupt Control Registers

The Interrupt Control Registers described below all share the same bit definition. The bit definition is as
follows:

Command Stream Programming

Doc Ref # IHD-OS-VLV-Vol6-04.14 27

Bit Definition for Interrupt Control Registers

Bit Description

31:21
Reserved. MBZ: These bits may be assigned to interrupts on future products/steppings.

20
Reserved

19
Page Fault: This bit is set whenever there is a pending page or directory fault.

This bit is set whenever there is a pending page or directory fault in Video command streamer.

18
Timeout Counter Expired: Set when the VCS timeout counter has reached the timeout thresh-hold
value.

17 Reserved

16
MI_FLUSH_DW Notify Interrupt: The Pipe Control packet (Fences) specified in 3D pipeline document
may optionally generate an Interrupt. The Store QW associated with a fence is completed ahead of the
interrupt.

15
Video Command Parser Master Error: When this status bit is set, it indicates that the hardware has
detected an error. It is set by the device upon an error condition and cleared by a CPU write of a one to
the appropriate bit contained in the Error ID register followed by a write of a one to this bit in the IIR.
Further information on the source of the error comes from the "Error Status Register" which along with
the "Error Mask Register" determine which error conditions will cause the error status bit to be set and
the interrupt to occur.

Page Table Error: Indicates a page table error.

Instruction Parser Error: The Video Instruction Parser encounters an error while parsing an instruction.

14
Sync Status: This bit is set when the Instruction Parser completes a flush with the sync enable bit active
in the INSTPM register. The event will happen after all the MFX engines are flushed. The HW Status
DWord write resulting from this event will cause the CPU’s view of graphics memory to be coherent as
well (flush and invalidate the MFX cache).It is the driver’s responsibility to clear this bit before the next
sync flush with HWSP write enabled

13
Reserved: MBZ

12
Video Command Parser User Interrupt: This status bit is set when an MI_USER_INTERRUPT instruction
is executed on the Video Command Parser. Note that instruction execution is not halted and proceeds
normally. A mechanism such as an MI_STORE_DATA instruction is required to associate a particular
meaning to a user interrupt.

11:0
Reserved: MBZ

The following table specifies the settings of interrupt bits stored upon a "Hardware Status Write" due to
ISR changes:

Command Stream Programming

28 Doc Ref # IHD-OS-VLV-Vol6-04.14

Bit Interrupt Bit

ISR bit Reporting via
Hardware Status

Write (when
unmasked via

HWSTAM)

8 Reserved

7

Page Fault: This bit is set whenever there is a
pending PPGTT (page or directory) fault.

Set when event
occurs, cleared when
event cleared

6

Media Decode Pipeline Counter Exceeded
Notify Interrupt: The counter threshold for the
execution of the media pipeline is exceeded. Driver
needs to attempt hang recovery.

Not supported to be
unmasked

5 Reserved

4 MI_FLUSH_DW packet - Notify Enable 0

3 Master Error Set when error
occurs, cleared when
error cleared

2 Sync Status Set every SyncFlush
Event

0 User Interrupt 0

VCS_HWSTAM - VCS Hardware Status Mask Register

VCS_IMR - VCS Interrupt Mask Register

VCS Hardware - Detected Error Bit Definitions (for EIR, EMR, ESR)

This section defines the Hardware-Detected Error bit definitions and ordering that is common to the
EIR, EMR and ESR registers. The EMR selects which error conditions (bits) in the ESR are reported in the
EIR. Any bit set in the EIR will cause the Master Error bit in the ISR to be set. EIR bits will remain set until
the appropriate bit(s) in the EIR is cleared by writing the appropriate EIR bits with ‘1’(except for the
unrecoverable bits described below).

The following table describes the Hardware-Detected Error bits:

Command Stream Programming

Doc Ref # IHD-OS-VLV-Vol6-04.14 29

Hardware-Detected Error Bits

VCS Hardware-Detected Error Bit Definitions

VCS_EIR - VCS Error Identity Register

VCS_EMR - VCS Error Mask Register

VCS_ESR - VCS Error Status Register

Logical Context Support

This section contains the registers for Logical Context Support.

BB_STATE - Batch Buffer State Register

BB_ADDR - Batch Buffer Head Pointer Register

Mode Registers

Following are Mode Registers:

BBA_LEVEL2 - 2nd Level Batch Buffer Address

VCS_CXT_SIZE - VCS Context Sizes

VCS_MI_MODE - VCS Mode Register for Software Interface

MFX_MODE - Video Mode Register

VCS_INSTPM - VCS Instruction Parser Mode Register

VBSYNC - Video/Blitter Semaphore Sync Register

VRSYNC - Video/Render Semaphore Sync Register

HWS_PGA - Hardware Status Page Address Register

Hardware Status Page Layout

Registers in Media Engine

This chapter describes the memory-mapped registers associated with the Memory Interface, including
brief descriptions of their use. The functions performed by some of these registers are discussed in
more detail in the Memory Interface Functions, Memory Interface Instructions, and Programming
Environment chapters.

Command Stream Programming

30 Doc Ref # IHD-OS-VLV-Vol6-04.14

GAC PWR CTX STORAGE REGISTERS

Following are GAC PWR CTX STORAGE Registers:

GFX_PEND_TLB - TLBPEND Control Register

GAC_ARB_CTL_REG - GAC_GAB Arbitration Counters Register 1

GAC_ERROR - Media Arbiter Error Report Register

GFX TLB In Use Virtual Address Registers

TLB064_VA - TLB064_VA Virtual Page Address Registers

TLB132_VA - TLB132_VA Virtual Page Address Registers

TLB232_VA - TLB232_VA Virtual Page Address Registers

TLB304_VA - TLB304_VA Virtual Page Address Registers

MTTLB064_VLD0 - Valid Bit Vector 0 for TLB064

MTTLB064_VLD1 - Valid Bit Vector 1 for TLB064

MTTLB132_VLD0 - Valid Bit Vector 0 for TLB132

MTTLB132_VLD1 - Valid Bit Vector 1 for TLB132

MTTLB232_VLD0 - Valid Bit Vector 0 for TLB232

MTTLB232_VLD1 - Valid Bit Vector 1 for TLB232

MTTLB304_VLD0 - Valid Bit Vector 0 for TLB304

MTTLB304_VLD1 - Valid Bit Vector 1 for TLB304

GFX Pending TLB Cycles Information Registers

The following registers contain information about cycles that did not complete their TLB translation.

Information is organized as 64 entries, where each entry has a valid and ready bit, collapsed into
separate registers.

VCS_TLBPEND_VLD0 - VCS Valid Bit Vector 0 for TLBPEND Registers

VCS_TLBPEND_VLD1 - VCS Valid Bit Vector 1 for TLBPEND Registers

VCS_TLBPEND_RDY0 - VCS Ready Bit Vector 0 for TLBPEND Registers

VCS_TLBPEND_RDY1 - VCS Ready Bit Vector 1 for TLBPEND Registers

VCS_TLBPEND_SEC0 - VCS Section 0 of TLBPEND Entry

VCS_TLBPEND_SEC1 - VCS Section 1 of TLBPEND Entry

VCS_TLBPEND_SEC2 - VCS Section 2 of TLBPEND Entry

VCS_TIMESTAMP - VCS Reported Timestamp Count

Command Stream Programming

Doc Ref # IHD-OS-VLV-Vol6-04.14 31

Memory Interface Commands for Video Codec Engine

This section describes the formats of the "Memory Interface" commands for the Video Codec Engine,
including brief descriptions of their use. The functions performed by these commands are discussed
fully in the Memory Interface Functions Device Programming Environment chapter.

The commands detailed in this section are used across the later products within the Gen family.
However, slight changes may be present in some commands (i.e., for features added or removed), or
some commands may be removed entirely. Refer to the Preface chapter for details.

MI_ARB_CHECK

MI_ARB_ON_OFF

MI_BATCH_BUFFER_END

MI_CONDITIONAL_BATCH_BUFFER_END

MI_BATCH_BUFFER_START

MI_FLUSH_DW

MI_LOAD_REGISTER_IMM

MI_NOOP

MI_REPORT_HEAD

MI_SEMAPHORE_MBOX

MI_STORE_REGISTER_MEM

MI_STORE_DATA_IMM

MI_STORE_DATA_INDEX

MI_SUSPEND_FLUSH

MI_USER_INTERRUPT

MI_WAIT_FOR_EVENT

MI_LOAD_REGISTER_MEM

Command Stream Programming

32 Doc Ref # IHD-OS-VLV-Vol6-04.14

Preemption
Preemption is a means by which HW is instructed to stop executing an ongoing workload and switch to
the new workload submitted. Preemption flows are different based on the mode of scheduling.

Ring Buffer Scheduling

In Ring Buffer mode of scheduling SW triggers preemption by programming UHPTR (Updated Head
Pointer Register) register with a valid head pointer. UHPTR contains head pointer and head pointer valid
bit, head pointer is valid only when the head pointer valid bit is set.

HW triggers preemption on a preemptable command on detecting Head Pointer Valid bit asserted in
the UHPTR register. Following preemption HW updates it current head pointer with the Head Pointer
from the UHPTR and starts execution i.e all the commands from current head pointer to the updated
head pointer are skipped by HW. HW samples the head pointer and the batch buffer address on
preemption and updates them to the RING_BUFEFR_HEAD_PREEMPT_REG and BB_PREEMPT_ADDR
respectively. RING_BUFFER_HEAD_PREEMPT_REG and BB_PREEMPT_ADDR provide the graphics memory
address of the preemptable command on which last preemption has occurred. HW resets the head
pointer valid bit in UHPTR upon completion of preemption.

Programming Notes:

 Preemption is not supported for Media Workloads. Hence preemption can be achieved only on
Command Buffer boundaries. Media Command Buffers must be bracketed with MI_ARB_OFF and
MI_ARB_ON command to avoid preemption of media command buffers.

Example:

Ring Buffer

.

.

.

MI_ARB_ON_OFF → OFF

MI_BATCH_START – Media Workload

MI_ARB_ON_OFF → ON

MI_ARB_CHK → preemptable command outside media command buffer.

.

.

End Ring Buffer

Command Stream Programming

Doc Ref # IHD-OS-VLV-Vol6-04.14 33

The following table lists the Preemptable Commands in Ring Buffer mode of scheduling:

Preemptable Commands → Engine MI_ARB_CHECK

Render AP*

Blitter AP*

Media AP*

VideoEnhancement AP*

AP*: Allow Preemption on UHPTR valid.

	Graphics Command Formats
	Command Header
	Memory Interface Commands
	3D Commands
	Blitter Engine Command Interface
	BCS_RINGBUF—Ring Buffer Registers

	Blitter Engine Command Interface
	BCS_RINGBUF—Ring Buffer Registers
	BLT Watchdog Timer Registers
	BLT Interrupt Control Registers
	Hardware-Detected Error Bit Definitions (for EIR, EMR, ESR)
	BLT Logical Context Support
	BLT Mode Registers

	MI Commands for Blitter Engine
	Render Engine Command Interface
	Render Engine Command Streamer (RCS)

	RINGBUF — Ring Buffer Registers
	Render Watchdog Timer Registers
	Render Interrupt Control Registers
	Hardware-Detected Error Bit Definitions (for EIR, EMR, ESR)

	Render Logical Context Support

	Context Save Registers
	Mode Registers
	MI Commands for Render Engine
	Video Command Streamer (VCS)
	Video Command Streamer (VCS)
	VCS_RINGBUF—Ring Buffer Registers
	Watchdog Timer Registers
	Interrupt Control Registers
	VCS Hardware - Detected Error Bit Definitions (for EIR, EMR, ESR)

	Logical Context Support
	Mode Registers
	Registers in Media Engine
	GAC PWR CTX STORAGE REGISTERS
	GFX TLB In Use Virtual Address Registers
	GFX Pending TLB Cycles Information Registers

	Memory Interface Commands for Video Codec Engine

	Preemption
	Ring Buffer Scheduling

