

Doc Ref # IHD-OS-VLV-Vol7-04.14 1

Intel® Open Source HD Graphics
Programmers' Reference Manual (PRM)

Volume 7: 3D – Media – GPGPU

For the 2014 Intel Atom™ Processors, Celeron™ Processors, and Pentium™ Processors
based on the "BayTrail" Platform (ValleyView graphics)

© April 2014, Intel Corporation

 3D – Media – GPGPU

2 Doc Ref # IHD-OS-VLV-Vol7-04.14

Creative Commons License
You are free to Share — to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in
any way that suggests that they endorse you or your use of the work).

No Derivative Works. You may not alter, transform, or build upon this work

Notices and Disclaimers
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,
directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS
FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS
SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES
OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE
ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,
PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,
WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,
OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them. The information here
is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips
Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2014, Intel Corporation. All rights reserved.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 3

Table of Contents
Render Engine Command Memory Interface .. 17

Registers in Render Engine .. 17

Mode and Misc Ctrl Registers ... 17

Pipelines Statistics Counter Registers .. 18
Predicate Render Registers ... 18

AUTO_DRAW Registers .. 18

MMIO Registers for GPGPU Indirect Dispatch ... 19

Memory Interface Registers .. 19
Memory Interface Commands for Rendering Engine ... 21

State Commands ... 22

Synchronization of the 3D Pipeline .. 23

Top-of-Pipe Synchronization ... 23
End-of-Pipe Synchronization ... 23

Synchronization Actions .. 24

PIPE_CONTROL Command ... 25

Render Logical Context Data .. 28
Context Layout ... 28

Register/State Context ... 29

Shared Functions ... 34

3D Sampler ... 34
Texture Coordinate Processing .. 35

Texture Coordinate Normalization .. 35

Texture Coordinate Computation .. 36

Texel Address Generation .. 37
Level of Detail Computation (Mipmapping).. 37

Intra-Level Filtering Setup ... 42

Texture Address Control .. 45

Texel Fetch .. 48

Texel Chroma Keying .. 48
Shadow Prefilter Compare ... 49

Texel Filtering... 50

Texel Color Gamma Linearization ... 50

Multisampled Surface Behavior ... 50
Multisample Control Surface ... 51

State ... 51

SURFACE_STATE .. 51

 3D – Media – GPGPU

4 Doc Ref # IHD-OS-VLV-Vol7-04.14

SAMPLER_STATE ... 57

Writeback Message .. 76
Shared Functions – Data Port .. 79

Data Cache .. 80

Sampler Cache ... 81

Surfaces .. 81
Surface State Model .. 81

Stateless Model ... 81

Shared Local Memory (SLM) .. 81

Write Commit .. 82
Read/Write Ordering .. 83

Accessing Buffers ... 83

Accessing Media Surfaces .. 83

Boundary Behavior ... 84
State ... 84

BINDING_TABLE_STATE .. 84

SURFACE_STATE .. 84

COLOR_PROCESSING_STATE ... 84

Messages ... 85
Global Definitions ... 85

Data Port Messages ... 85

OWord Block Read/Write .. 91

Unaligned OWord Block Read .. 93
OWord Dual Block Read/Write ... 95

Media Block Read/Write .. 97

DWord Scattered Read/Write .. 104

Byte Scattered Read/Write ... 107
Typed/Untyped Surface Read/Write and Typed/Untyped Atomic Operation .. 110

Memory Fence ... 147

Pixel Data Port ... 148

DataPort Render Cache Agents ... 148
Accessing Render Targets .. 148

Single Source .. 150

Dual Source ... 150

Replicate Data .. 150
Multiple Render Targets (MRT) ... 151

Total Color Control (TCC) ... 162

ProcAmp .. 163

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 5

Shared Functions Pixel Interpolater ... 166

Messages ... 167

Initiating Message .. 167
Writeback Message .. 171

Shared Functions - Unified Return Buffer (URB) .. 174

URB Size ... 174

URB Access ... 174
URB State ... 175

URB Messages ... 175

Execution Mask .. 176

Message Descriptor ... 176
URB_WRITE and URB_READ.. 178

URB_ATOMIC .. 187

Shared Functions - Message Gateway .. 188

Messages ... 189
Message Descriptor ... 189

OpenGateway Message ... 190

CloseGateway Message.. 192

ForwardMsg Message ... 193
GetTimeStamp Message .. 195

BarrierMsg Message .. 197

MMIOReadWrite Message .. 199

Shared Functions - Media Sampler ... 200
Video Motion Estimation ... 200

Theory of Operation ... 201

Shape Decision .. 201

Early Decisions ... 205
Changes .. 206

Surfaces .. 207

State ... 207

BINDING_TABLE_STATE .. 207
SURFACE_STATE .. 207

VME_STATE .. 207

Change Details .. 211

Record Stream-Out and Stream-In ... 211
MV Definitions and Precision .. 212

Expanded MV Costs ... 213

Remove Skip MV Restriction .. 214

 3D – Media – GPGPU

6 Doc Ref # IHD-OS-VLV-Vol7-04.14

Messages ... 214

VME Motion Search Request ... 215
Message Descriptor ... 215

Input Message.. 216

Writeback Message .. 240

Stream-In\Stream-Out Message .. 252
Adaptive Video Scaler .. 254

Filtering Operations ... 255

Denoise/Deinterlacer .. 257

Introduction .. 257
Denoise Algorithm ... 258

Block Noise Estimate (part of Global Noise Estimate) .. 258

Deinterlacer Algorithm ... 259

Field Motion Detector ... 262
Implementation Overview ... 262

Sample_8x8 State .. 264

SIMD32/64 Messages ... 265

Initiating Message... 265

SIMD32_64 Message Descriptor ... 269
SIMD32_64 Message Header ... 269

SIMD32_64 Payload Parameter Definition .. 271

SIMD32_64 Message Types .. 271

Writeback Message ... 271
SIMD32 Surface State ... 280

SIMD32 Sampler State ... 280

3D Pipeline Stages .. 280

3D Pipeline Stages .. 281
3D Pipeline-Level State .. 282

Statistics ... 284

Statistics Gathering .. 284

3D Pipeline Geometry .. 286
Block Diagram ... 286

3D Primitives Overview .. 287

Vertex Data Overview ... 292

Vertex URB Entry (VUE) Formats .. 293
Vertex Positions ... 295

3D Pipeline – Vertex Fetch (VF) Stage .. 297

Vertex Fetch (VF) Stage Overview ... 297

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 7

State ... 297

3D Primitive Command .. 301

Functions .. 302
Vertex Shader (VS) Stage ... 315

VS Stage Overview .. 315

State ... 315

URB_FENCE .. 315
Functions ... 315

Vertex Shader Cache (VS$) ... 315

SIMD4x2 VS Thread Request Generation ... 317

SIMD4x2 VS Thread Execution .. 317
Vertex Output ... 318

Thread Termination ... 318

Primitive Output .. 318

Statistics Gathering .. 318
Payloads ... 318

SIMD4x2 Payload .. 318

3D Pipeline – Hull Shader (HS) Stage ... 321

State ... 321
Functions ... 322

Patch Object Staging ... 322

HS Thread Execution ... 322

Patch URB Entry (Patch Record) Output ... 322
Statistics Gathering .. 326

ICP Dereferencing ... 326

Payloads ... 326

SINGLE_PATCH Payload ... 326
HW Tessellation ... 331

State ... 331

Functions ... 331

Patch Culling ... 331
Tessellation Factor Limits .. 332

Partitioning .. 332

Domain Types and Output Topologies ... 332

Domain Shader (DS) Stage .. 336
State ... 336

Functions ... 337

SIMD4x2 Thread Execution ... 337

 3D – Media – GPGPU

8 Doc Ref # IHD-OS-VLV-Vol7-04.14

Statistics Gathering .. 337

Payloads ... 337
SIMD4x2 Payload .. 337

3D Pipeline – Geometry Shader (GS) Stage ... 340

GS Stage Overview .. 340

State ... 340
Functions .. 341

Payloads .. 348

Thread Request Generation ... 356

3D Pipeline - Stream Output Logic (SOL) Stage ... 362
State ... 362

Functions ... 362

Input Buffering ... 362

Stream Output Function .. 365
Stream Output Buffers .. 366

Rendering Disable .. 366

Statistics .. 367

3D Pipeline Rasterization ... 367

Common Rasterization State ... 367
3D Pipeline – CLIP Stage Overview... 367

Clip Stage – General-Purpose Processing .. 367

Clip Stage – 3D Clipping .. 367

Fixed Function Clipper .. 368
Concepts .. 368

The Clip Volume .. 368

User-Specified Clipping ... 370

Guard Band.. 370
Vertex-Based Clip Testing Considerations ... 373

3D Clipping .. 375

CLIP Stage Input ... 375

State ... 375
VUE Readback .. 375

VertexClipTest Function .. 376

Object Staging... 381

Partial Object Removal ... 381
ClipDetermination Function ... 381

ClipMode .. 384

Object Pass-Through .. 386

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 9

Primitive Output ... 387

Other Functionality .. 387

Statistics Gathering .. 387
3D Pipeline - Strips and Fans (SF) Stage .. 387

Inputs from CLIP .. 387

Attribute Setup/Interpolation Process ... 388

Outputs to WM .. 389
Primitive Assembly .. 389

Point List Decomposition .. 392

Line List Decomposition ... 393

Line Strip Decomposition .. 394
Triangle List Decomposition .. 396

Triangle Strip Decomposition .. 397

Triangle Fan Decomposition .. 398

Polygon Decomposition .. 400
Rectangle List Decomposition ... 400

Object Setup .. 401

Invalid Position Culling (Pre/Post-Transform) .. 401

Viewport Transformation ... 401
Destination Origin Bias ... 401

Point Rasterization Rule Adjustment .. 402

Drawing Rectangle Offset Application... 403

Point Width Application ... 404
Rectangle Completion .. 405

Vertex X,Y Clamping and Quantization ... 406

Degenerate Object Culling ... 407

Triangle Orientation (Face) Culling ... 407
Scissor Rectangle Clipping .. 408

Line Rasterization .. 409

3DSTATE_SF ... 415

Attribute Interpolation Setup .. 415
Depth Offset ... 417

Other SF Functions .. 417

Statistics Gathering .. 417

Other SF Functions .. 418
Statistics Gathering .. 418

Windower (WM) Stage ... 418

Overview .. 418

 3D – Media – GPGPU

10 Doc Ref # IHD-OS-VLV-Vol7-04.14

Inputs from SF to WM .. 419

Rasterization ... 420
Drawing Rectangle Clipping... 420

Line Rasterization .. 421

Polygon (Triangle and Rectangle) Rasterization .. 422

Multisampling .. 423
Multisample Modes/State ... 423

Other WM Functions .. 424

Statistics Gathering .. 424

Other WM Functions .. 424
Statistics Gathering .. 424

Pixel .. 424

Early Depth/Stencil Processing... 425

Depth Offset ... 425
Early Depth Test/Stencil Test/Write .. 426

Hierarchical Depth Buffer .. 427

Separate Stencil Buffer ... 430

Depth/Stencil Buffer State .. 430

Pixel Shader Thread Generation .. 431
Pixel Grouping (Dispatch Size) Control ... 431

Multisampling Effects on Pixel Shader Dispatch ... 434

PS Thread Payload for Normal Dispatch ... 438

Pixel Backend... 451
Color Calculator (Output Merger) .. 451

Overview .. 451

Alpha Coverage ... 452

Alpha Test .. 453
Depth Coordinate Offset ... 453

Stencil Test ... 454

Depth Test ... 455

Pre-Blend Color Clamping .. 455
Color Buffer Blending .. 456

Post-Blend Color Clamping .. 458

Dithering ... 459

Logic Ops ... 460
Buffer Update ... 460

Pixel Pipeline State Summary.. 462

COLOR_CALC_STATE ... 462

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 11

3DSTATE_CC_STATE_POINTERS .. 462

3DSTATE_BLEND_STATE_POINTERS .. 462

3DSTATE_DEPTH_STENCIL_STATE_POINTERS .. 462
DEPTH_STENCIL_STATE .. 462

BLEND_STATE ... 462

CC_VIEWPORT .. 463

Other Pixel Pipeline Functions .. 463
Statistics Gathering .. 463

MCS Buffer for Render Target(s) ... 463

Render Target Fast Clear ... 466

Render Target Resolve ... 466
L3 Cache and URB ... 467

L3 URB Overview .. 467

L3 Cache Configuration ... 468

Blocks(s) Overview ... 468
L3 Cache Theory of Operation ... 469

Atomics ... 470

Atomics Block .. 472

Atomics in L3 ... 473
Atomics in SLM ... 474

Atomics in URB ... 474

L3 Coherency ... 474

L3 Arbiter Coherency .. 474
Super Q Coherency ... 475

L3 Allocation and Programming ... 475

Non-SLM Mode Allocation .. 476

SLM Mode Allocation ... 476
L3 Interfaces... 476

Client Rules ... 476

Shared Local Memory (SLM) ... 478

L3 Register Space (Bspec) .. 479
config space for L3 .. 479

SARERRST - SARB Error Status .. 481

L3CDERRST1 - L3CD Error Status Register 1 ... 483

L3CDERRST2 - L3CD Error Status register 2 .. 484
L3SQCREG1 - L3 SQC registers 1 ... 485

L3SQCREG2 - L3 SQC registers 2 ... 491

L3SQCREG3 - L3 SQC registers 3 ... 494

 3D – Media – GPGPU

12 Doc Ref # IHD-OS-VLV-Vol7-04.14

L3CNTLREG1 - L3 Control Register1 ... 498

L3CNTLREG2 - L3 Control Register2 ... 500
L3CNTLREG3 - L3 Control Register3 ... 502

L3SLMREG - L3 SLM Register .. 503

GARBCNTLREG - Arbiter Control Register ... 504

L3SQCREG4 - L3 SQC register 4 ... 506
SCRATCH1 - SCRATCH1 ... 508

L3B0REG0 - L3 bank0 reg0 log error .. 508

L3B0REG1 - L3 bank0 reg1 log error .. 509

L3B0REG2 - L3 bank0 reg2 log error .. 510
L3B0REG3 - L3 bank0 reg3 log error .. 511

L3B0REG4 - L3 bank0 reg4 log error .. 512

L3B0REG5 - L3 bank0 reg5 log error .. 513

L3B0REG6 - L3 bank0 reg6 log error .. 514
L3B0REG7 - L3 bank0 reg7 log error .. 516

SARBCSR - SARB config save msg ... 517

Media GPGPU Pipeline .. 517

GPGPU Overview ... 517

Programming the GPGPU Pipeline .. 517
GPGPU Commands.. 518

GPGPU Indirect Thread Dispatch ... 518

GPGPU Context Switch ... 519

Media GPGPU Payload Limitations ... 521
Synchronization of the Media/GPGPU Pipeline ... 521

Mode of Operations .. 521

Generic Media .. 530

Media and General Purpose Pipeline ... 534
Introduction .. 534

Terminologies ... 535

Hardware Feature Map in Products .. 536

Media Pipeline Overview .. 537
Generic Mode ... 538

GPGPU Media Pipe Differences .. 539

Programming Media Pipeline ... 539

Command Sequence ... 539
Parameterized Media Walker .. 542

Scoreboard Control.. 551

Interrupt Latency ... 555

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 13

Thread Spawner Unit .. 555

Root Threads and Child Threads ... 556

Root Threads .. 556
URB Handles ... 556

Root to Child Responsibilities ... 557

Multiple Simultaneous Roots... 557

Synchronized Root Threads ... 558
Deadlock Prevention ... 558

Child Thread Life Cycle ... 559

Arbitration between Root and Child Threads ... 560

Persistent Root Thread (PRT) ... 560
Media State Model .. 560

Media State and Primitive Commands ... 560

Media Messages ... 561

Thread Payload Messages... 562
Thread Spawn Message ... 567

EU Overview ... 570

EU Overview ... 571

Primary Usage Models ... 573
AOS and SOA Data Structures .. 573

SIMD4 Mode of Operation ... 574

SIMD4x2 Mode of Operation .. 575

SIMD16 Mode of Operation ... 576
SIMD8 Mode of Operation ... 578

Message Payload Containing a Header .. 578

Writebacks ... 578

Message Delivery Ordering Rules .. 579
Execution Mask and Messages ... 579

End-Of-Thread (EOT) Message ... 579

Performance .. 580

Message Description Syntax .. 580
Message Errors .. 581

Registers and Register Regions ... 582

Register Files ... 582

GRF Registers .. 583
ARF Registers .. 583

Immediate .. 605

Region Parameters ... 606

 3D – Media – GPGPU

14 Doc Ref # IHD-OS-VLV-Vol7-04.14

Region Addressing Modes.. 610

Access Modes ... 614
Execution Data Type .. 615

Register Region Restrictions .. 615

Destination Operand Description .. 619

SIMD Execution Control .. 619
Predication ... 619

No Predication ... 621

Predication with Horizontal Combination .. 621

Predication with Vertical Combination .. 622
End of Thread .. 623

Assigning Conditional Flags .. 623

Destination Hazard .. 626

Non-present Operands ... 627
Instruction Prefetch ... 627

ISA Introduction .. 628

Execution Units (EUs) .. 636

EU Data Types .. 640

Fundamental Data Types .. 640
Numeric Data Types.. 641

Integer Numeric Data Types .. 641

Floating-Point Numeric Data Types .. 642

Packed Signed Half-Byte Integer Vector .. 644
Packed UnSigned Half-Byte Integer Vector... 644

Packed Restricted Float Vector ... 645

Floating Point Modes ... 647

IEEE Floating Point Mode .. 648
Alternative Floating Point Mode .. 652

Type Conversion ... 653

Float to Integer .. 653

Integer to Integer with Same or Higher Precision .. 654
Integer to Integer with Lower Precision .. 654

Integer to Float .. 654

Double Precision Float to Single Precision Float ... 654

Single Precision Float to Double Precision Float ... 655
Invoking the System Routine ... 658

Returning to the Application Thread .. 659

System IP (SIP).. 660

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 15

System Routine Register Space .. 660

System Scratch Memory Space ... 660

Conditional Instructions Within the System Routine ... 661
Use of NoDDClr ... 661

Illegal Opcode .. 663

Undefined Opcodes ... 663

Software Exception... 663
Context Save and Restore ... 663

Illegal Instruction Format .. 665

Malformed Message .. 665

GRF Register Out of Bounds .. 665
Hung Thread ... 665

Instruction Fetch Out of Bounds .. 665

FPU Math Errors .. 666

Computational Overflow ... 666
SIMD Instructions and SIMD Width .. 670

Instruction Operands and Register Regions ... 670

Instruction Execution ... 671

Instruction Machine Formats .. 671
EU Instruction Formats ... 673

Common Instruction Fields .. 678

Instruction Operation Doubleword (DW0) ... 685

Instruction Destination Doubleword (DW1) .. 691
Instruction Source 0 Doubleword 2 (DW2) .. 697

Instruction Source 1 Doubleword 3 (DW3) .. 702

EU Compact Instructions .. 706

EU Compact Instruction Format ... 707
Opcode Encoding .. 712

Move and Logic Instructions .. 712

Flow Control Instructions .. 714

Miscellaneous Instructions.. 715
Parallel Arithmetic Instructions ... 716

Vector Arithmetic Instructions .. 717

Special Instructions .. 717

Native Instruction BNF ... 718
Instruction Groups .. 718

Destination Register .. 719

Source Register .. 720

 3D – Media – GPGPU

16 Doc Ref # IHD-OS-VLV-Vol7-04.14

Address Registers ... 721

Register Files and Register Numbers ... 721
Relative Location and Stack Control ... 723

Regions ... 723

Types .. 723

Write Mask ... 723
Swizzle Control .. 723

Immediate Values ... 724

Predication and Modifiers ... 724

Instruction Options .. 725
Instruction Set Summary Tables .. 725

Instruction Set Reference .. 731

EUISA Instructions.. 733

EUISA Structures ... 735
EUISA Enumerations ... 736

EU Programming Guide ... 736

Assembler Pragmas ... 736

Declarations .. 736

Defaults and Defines ... 737
Example Pragma Usages ... 738

Assembly Programming Guideline .. 740

Usage Examples .. 741

Vector Immediate ... 741
Destination Mask for DP4 and Destination Dependency Control ... 743

Null Register as the Destination ... 743

Use of LINE Instruction ... 744

Mask for SEND Instruction .. 745
Flow Control Instructions .. 748

Execution Masking ... 749

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 17

Render Engine Command Memory Interface
This chapter describes the memory-mapped registers associated with the Memory Interface, including
brief descriptions of their use. The functions performed by some of these registers are discussed in
more detail in the Memory Interface Functions, Memory Interface Instructions, and Programming
Environment chapters.

The registers detailed in this chapter are used across the DevSNB family of products and are extensions
to previous projects. However, slight changes may be present in some registers (i.e., for features added
or removed), or some registers may be removed entirely. These changes are clearly marked within this
chapter.

Registers in Render Engine

Mode and Misc Ctrl Registers
This section contains various registers for controls and modes.

GT4 Mode Control Register

B/D/F/Type: MBCunit

Address Offset: 9038-903Bh

Default Value: 0h

Access: RW; RO;

Size: 32 bits

Bit Access Default Value RST/PWR Description

1:0 R/W 00b Core GT4 Usage mode:

00: Non-GT4

01: GT4 is used in Alternate Frame rendering Mode (AFR)

10: Basic Split Frame rendering Mode (SFR)

11: Complex Split Frame rendering Mode (SFR w/ CBR)

Basic Split Frame Rendering is like CBR for all units except Windower. Windower should not be doing
any checker boarding in basic SFR. The split programming should be done scissor range programming.

MI_MODE - Render Mode Register for Software Interface

FF_MODE - Thread Mode Register

GFX_MODE - Graphics Mode Register

GT_MODE - GT Mode Register

CACHE_MODE_0 - Cache Mode Register 0

CACHE_MODE_1 - Cache Mode Register 1

 3D – Media – GPGPU

18 Doc Ref # IHD-OS-VLV-Vol7-04.14

GAFS_MODE - Mode Register for GAFS

Pipelines Statistics Counter Registers
These registers keep continuous count of statistics regarding the 3D pipeline. They are saved and
restored with context but should not be changed by software except to reset them to 0 at context
creation time. Write access to the statistics counter in this section must be done through
MI_LOAD_REGISTER_IMM or MI_LOAD_REGISTER_MEM or MI_LOAD_REGISETR_ERG commands in ring
buffer or batch buffer. These registers may be read at any time; however, to obtain a meaningful result,
a pipeline flush just prior to reading the registers is necessary in order to synchronize the counts with
the primitive stream.

IA_VERTICES_COUNT - IA Vertices Count

IA_PRIMITIVES_COUNT - Primitives Generated By VF

VS_INVOCATION_COUNT - VS Invocation Counter

HS_INVOCATION_COUNT - HS Invocation Counter

DS_INVOCATION_COUNT - DS Invocation Counter

GS_INVOCATION_COUNT - GS Invocation Counter

GS_PRIMITIVES_COUNT - GS Primitives Counter

CL_INVOCATION_COUNT - Clipper Invocation Counter

CL_PRIMITIVES_COUNT - Clipper Primitives Counter

PS_INVOCATION_COUNT - PS Invocation Count

TIMESTAMP - Reported Timestamp Count

SO_NUM_PRIMS_WRITTEN[0:3] - Stream Output Num Primitives Written Counter

SO_PRIM_STORAGE_NEEDED[0:3] - Stream Output Primitive Storage Needed Counters

SO_WRITE_OFFSET[0:3] - Stream Output Write Offsets

Predicate Render Registers
MI_PREDICATE_SRC0 - Predicate Rendering Temporary Register0

MI_PREDICATE_SRC1 - Predicate Rendering Temporary Register1

MI_PREDICATE_DATA - Predicate Rendering Data Storage

MI_PREDICATE_RESULT - Predicate Rendering Data Result

AUTO_DRAW Registers
3DPRIM_END_OFFSET - Auto Draw End Offset

3DPRIM_START_VERTEX - Load Indirect Start Vertex

3DPRIM_VERTEX_COUNT - Load Indirect Vertex Count

3DPRIM_INSTANCE_COUNT - Load Indirect Instance Count

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 19

3DPRIM_START_INSTANCE - Load Indirect Start Instance

3DPRIM_BASE_VERTEX - Load Indirect Base Vertex

MMIO Registers for GPGPU Indirect Dispatch
This register is normally written with the MI_LOAD_REGISTER_MEMORY command rather than from the
CPU.

These registers should not be written with 0 for these projects. To avoid this, the
MI_LOAD_REGISTER_MEMORY command which writes them from an address in memory which was
written by a previous GPGPU_WALKER command will need to be checked with the following command
sequence. The commands in red are the additional commands to implement the workaround:

MI_LOAD_REGISTER_MEMORY Xaddress, GPGPU_DISPATCHDIMX

MI_CONDITIONAL_BATCH_BUFFER_END Xaddress, 0 // Compare X dimension to 0, end batch buffer if 0

MI_LOAD_REGISTER_MEMORY GPGPU_DISPATCHDIMY

MI_CONDITIONAL_BATCH_BUFFER_END Yaddress, 0 // Compare Y dimension to 0, end batch buffer if 0

MI_LOAD_REGISTER_MEMORY GPGPU_DISPATCHDIMZ

MI_CONDITIONAL_BATCH_BUFFER_END Zaddress, 0 // Compare Z dimension to 0, end batch buffer if 0

GPGPU_WALKER // Walker with indirect dispatch

This way, if any dimension is 0 we would not execute the GPGPU_WALKER. This has the limitation that
the indirect GPGPU_WALKER has to be the last WALKER of the batch buffer.

These registers are normally written with the MI_LOAD_REGISTER_MEMORY command rather than from
the CPU.

GPGPU_DISPATCHDIMX - GPGPU Dispatch Dimension X

GPGPU_DISPATCHDIMY - GPGPU Dispatch Dimension Y

GPGPU_DISPATCHDIMZ - GPGPU Dispatch Dimension Z

TS_GPGPU_THREADS_DISPATCHED - Count Active Channels Dispatched

Memory Interface Registers

This section contains registers for the memory interface.

PWRCTX_REST_DONE - Power Context Restore Done

WR_WATERMARK - Write Watermark

GFX_PRIO_CTRL - GFX Arbiter Client Priority Control

GFX_PEND_TLB_0 - Max Outstanding Pending TLB Requests 0

GFX_PEND_TLB_1 - Max Outstanding Pending TLB Requests 1

L3_LRA_0 - L3 LRA 0

L3_LRA_1 - L3 LRA 1

 3D – Media – GPGPU

20 Doc Ref # IHD-OS-VLV-Vol7-04.14

CVS_TLB_LRA_0 - CVS TLB LRA 0

CVS_TLB_LRA_1 - CVS TLB LRA 1

CVS_TLB_LRA_2 - CVS TLB LRA 2

ZTLB_LRA_0 - ZTLB LRA 0

ZTLB_LRA_1 - ZTLB LRA 1

RCC_LRA_0 - RCC LRA 0

RCC_LRA_1 - RCC LRA 1

CASC_LRA_0 - CASC LRA 0

CASC_LRA_1 - CASC LRA 1

CASC_LRA_2 - CASC LRA 2

CASC_LRA_3 - CASC LRA 3

MEDIA_MAX_REQ_COUNT - MAX Requests Allowed - CASC

GFX_MAX_REQ_COUNT - MAX Requests Allowed - GAM

GAM_HWSP_REG - GAM Hardware Status Page Address Register

GFX_ENG_FR - Graphics Engine Fault Register

ERROR - Main Graphic Arbiter Error Report

DONE_REG - GAM Fub Done Lookup Register

GAC_HWSP_REG - GAC Hardware Status Page Address Register

MEDIA_ENG_FR - Media Engine Fault Register

GAB_HWSP_REG - GAB Hardware Status Page Address Register

BLT_ENG_FR - Blitter Engine Fault Register

TLB_RD_ADDR - TLB_RD_ADDRESS Register

TLB_RD_DATA - TLB_RD_DATA Register

VLFTLB_VLD_0 - Valid Bit Vector 0 for VLF

CVSTLB_VLD_0 - Valid Bit Vector 0 for CVS

RCCTLB_VLD_0 - Valid Bit Vector 0 for RCC

RCCTLB_VLD_1 - Valid Bit Vector 1 for RCC

ZTLB_VLD_0 - Valid Bit Vector 0 for Z

ZTLB_VLD_1 - Valid Bit Vector 1 for Z

ZTLB_VLD_2 - Valid Bit Vector 2 for Z

ZTLB_VLD_3 - Valid Bit Vector 3 for Z

L3TLB_VLD_0 - Valid Bit Vector 0 for L3

L3TLB_VLD_1 - Valid Bit Vector 1 for L3

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 21

L3TLB_VLD_2 - Valid Bit Vector 2 for L3

L3TLB_VLD_3 - Valid Bit Vector 3 for L3

L3TLB_VLD_4 - Valid Bit Vector 4 for L3

L3TLB_VLD_5 - Valid Bit Vector 5 for L3

L3TLB_VLD_6 - Valid Bit Vector 6 for L3

L3TLB_VLD_7 - Valid Bit Vector 7 for L3

CASCTLB_VLD_0 - Valid Bit Vector 0 for CASC

CASCTLB_VLD_1 - Valid Bit Vector 1 for CASC

CASCTLB_VLD_2 - Valid Bit Vector 2 for CASC

CASCTLB_VLD_3 - Valid Bit Vector 3 for CASC

CASCTLB_VLD_4 - Valid Bit Vector 4 for CASC

Memory Interface Commands for Rendering Engine

MI_SET_CONTEXT

MI_TOPOLOGY_FILTER

The MI_PREDICATE command is used to control the Predicate state bit, which in turn can be used to
enable/disable the processing of 3DPRIMITIVE commands.

MI_PREDICATE

Predicated Rendering Support in HW

DX10 defines predicated rendering, where sequences of rendering commands can be discarded based
on the result of a previous predicate test. A new state bit, Predicate, has been added to the command
stream. In addition, a PredicateEnable bit is added to 3DPRIMITIVE. When the PredicateEnable bit is set,
the command is ignored if the Predicate state bit is set.

A new command, MI_PREDICATE, is added. It contains several control fields which specify how the
Predicate bit is generated.

Refer to the diagram below and the command description for details.

 MI_PREDICATE Function

 3D – Media – GPGPU

22 Doc Ref # IHD-OS-VLV-Vol7-04.14

MI_LOAD_REGISTER_MEM commands can be used to load the MItemp0, MItemp1 and PredicateData
registers prior to MI_PREDIATE. In order to ensure the memory sources of the MI_LOAD_REGISTER_MEM
commands are coherent with previous 3D_PIPECONTROL store-dword operations, software can use the
new Pipe Control Flush Enable bit in the PIPE_CONTROL command.

MI_URB_CLEAR

State Commands
This section covers the following commands:

• STATE_SIP command

STATE_SIP

STATE_BASE_ADDRESS

PIPELINE_SELECT

The Pipeline Select state is contained within the logical context.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 23

Synchronization of the 3D Pipeline

Two types of synchronizations are supported for the 3D pipe: top of the pipe and end of the pipe. Top
of the pipe synchronization really enforces the read-only cache invalidation. This synchronization
guarantees that primitives rendered after such synchronization event fetches the latest read-only data
from memory. End of the pipe synchronization enforces that the read and/or read-write buffers do not
have outstanding hardware accesses. These are used to implement read and write fences as well as to
write out certain statistics deterministically with respect to progress of primitives through the pipeline
(and without requiring the pipeline to be flushed.) The PIPE_CONTROL command (see details below) is
used to perform all of above synchronizations.

Top-of-Pipe Synchronization
Top-of-pipe synchronization refers to SW actions to prepare HW for new state-binding at the
beginning of the rendering sequence in a given context. HW may have residual states cached in the
state-caches and read-only surfaces in various caches. With new rendering sequence, read-only surfaces
may go through change in the binding. Hence read-only invalidation is required before such new
rendering sequence. Read-only cache invalidation is top-of-pipe synchronization. Upon parsing this
specific pipe-control command, HW invalidates all caches in GT domain that have read-only surfaces
but does not guarantee invalidation beyond GT caches . Further, HW does not guarantee that all prior
accesses to those read-only surfaces have completed. Therefore SW must guarantee that there are no
pending accesses to those read-only surfaces before initializing the top-of-pipe synchronization. PIPE-
CONTROL command described below allows for invalidating individual read-only stream type. It is
recommended that driver invalidates only the required caches on the need basis so that cache warm-up
overhead can be reduced.

End-of-Pipe Synchronization
The driver can use end-of-pipe synchronization to know that rendering is complete (although not
necessarily in memory) so that it can de-allocate in-memory rendering state, read-only surfaces,
instructions, and constant buffers. An end-of-pipe synchronization point is also sufficient to guarantee
that all pending depth tests have completed so that the visible pixel count is complete prior to storing it
to memory. End-of-pipe completion is sufficient (although not necessary) to guarantee that read events
are complete (a read fence completion). Read events are still pending if work in the pipeline requires
any type of read except a render target read (blend) to complete.

Write synchronization is a special case of end-of-pipe synchronization that requires that the render
cache and/or depth related caches are flushed to memory, where the data will become globally visible.
This type of synchronization is required prior to SW (CPU) actually reading the result data from memory,
or initiating an operation that will use as a read surface (such as a texture surface) a previous render
target and/or depth/stencil buffer. Exercising the write cache flush bits (Render Target Cache Flush
Enable, Depth Cache Flush Enable, DC Flush) in PIPE_CONTROL only ensures the write caches are
flushed and doesn't guarantee the data is globally visible.

SW can track the completion of the end-of-pipe-synchronization by using Notify Enable and Post-Sync
Operation - Write Immediate Data in the PIPE_CONTROL command. Notify Enable and Post-Sync
Operation - Write Immediate Data generate a fence cycle on achieving end-of-pipe-synchronization for
the corresponding PIPE_CONTROL command. Fence cycle ensures all the write cycles in front of it are to

 3D – Media – GPGPU

24 Doc Ref # IHD-OS-VLV-Vol7-04.14

global visible point before they themselves get processed.It is guaranteed the data flushed out by the
PIPE_CONTROL is updated in memory by the time SW receives the corresponding Pipe Control Notify
interrupt.

In case of the data flushed out by the render engine is to be read back in to the render engine in
coherent manner, then the render engine has to wait for the fence completion before accessing the
flushed data. This can be achieved by following means on various products:

Option1:

PIPE_CONTROL command with the CS Stall and the required write caches flushed with Post-Sync-
Operation as Write Immediate Data followed by eight dummy MI_STORE_DATA_IMM (write to scratch
spce) commands.

Example:

• Worklaod-1
• PIPE_CONTROL (CS Stall, Post-Sync-Operation Write Immediate Data, Required Write Cache Flush

bits set)
• MI_STORE_DATA_IMM (8 times) (Dummy data, Scratch Address)
• WorkLoad-2 (Can use the data produce or outputted by Worklaod-1)

Option-2: This option has overhead of TLBs getting invalidated.

PIPE_CONTROL command with the TLB Invalidate, CS Stall and the required write caches flushed with
Post-Sync-Operation as Write Immediate Data.

Example:

• WorkLoad-1 (3D/GPGPU/MEDIA)
• PIPE_CONTROL (TLB Invalidate, CS Stall, Post-Sync-Operation Write Immediate Data, Required

Write Cache Flush bits set)
• WorkLoad-2 (Can use the data produce or outputted by Worklaod-1)

Synchronization Actions
In order for the driver to act based on a synchronization point (usually the whole point), the reaching of
the synchronization point must be communicated to the driver. This section describes the actions that
may be taken upon completion of a synchronization point which can achieve this communication.

Writing a Value to Memory

The most common action to perform upon reaching a synchronization point is to write a value out to
memory. An immediate value (included with the synchronization command) may be written. In lieu of
an immediate value, the 64-bit value of the PS_DEPTH_COUNT (visible pixel count) or TIMESTAMP
register may be written out to memory. The captured value will be the value at the moment all
primitives parsed prior to the synchronization commands have been completely rendered, and
optionally after all said primitives have been pushed to memory. It is not required that a value be
written to memory by the synchronization command.

Visible pixel or TIMESTAMP information is only useful as a delta between 2 values, because these
counters are free-running and are not to be reset except at initialization. To obtain the delta, two

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 25

PIPE_CONTROL commands should be initiated with the command sequence to be measured between
them. The resulting pair of values in memory can then be subtracted to obtain a meaningful statistic
about the command sequence.

PS_DEPTH_COUNT

If the selected operation is to write the visible pixel count (PS_DEPTH_COUNT register), the
synchronization command should include the Depth Stall Enable parameter. There is more than one
point at which the global visible pixel count can be affected by the pipeline; once the synchronization
command reaches the first point at which the count can be affected, any primitives following it are
stalled at that point in the pipeline. This prevents the subsequent primitives from affecting the visible
pixel count until all primitives preceding the synchronization point reach the end of the pipeline, the
visible pixel count is accurate and the synchronization is completed. This stall has a minor effect on
performance and should only be used in order to obtain accurate visible pixel counts for a sequence of
primitives.

The PS_DEPTH_COUNT count can be used to implement an (API/DDI) Occlusion Query function.

Generating an Interrupt

The synchronization command may indicate that a Sync Completion interrupt is to be generated (if
enabled by the MI Interrupt Control Registers – see Memory Interface Registers) once the rendering of
all prior primitives is complete. Again, the completion of rendering can be considered to be when the
internal render cache has been updated, or when the cache contents are visible in memory, as selected
by the command options.

Invalidating Caches

If software wishes to use the notification that a synchronization point has been reached in order to
reuse referenced structures (surfaces, state, or instructions), it is not sufficient just to make sure
rendering is complete. If additional primitives are initiated after new data is laid over the top of old in
memory following a synchronization point, it is possible that stale cached data will be referenced for the
subsequent rendering operation. In order to avoid this, the PIPE_CONTROL command must be used.
(See PIPE_CONTROL Command description, which follows).

PIPE_CONTROL Command
The PIPE_CONTROL command is used to effect the synchronization described above. Parsing of a
PIPE_CONTROL command stalls 3D pipe only if the stall enable bit is set. Commands after
PIPE_CONTROL will continue to be parsed and processed in the 3D pipeline. This may include additional
PIPE_CONTROL commands. The implementation does enforce a practical upper limit (8) on the number
of PIPE_CONTROL commands that may be outstanding at once. Parsing of a PIPE_CONTROL command
that causes this limit to be reached will stall the parsing of new commands until the first of the
outstanding PIPE_CONTROL commands reaches the end of the pipe and retires.

Note that although PIPE_CONTROL is intended for use with the 3D pipe, it is legal to issue
PIPE_CONTROL when the Media pipe is selected. In this case PIPE_CONTROL will stall at the top of the
pipe until the Media FFs finish processing commands parsed before PIPE_CONTROL. Post-
synchronization operations, flushing of caches and interrupts will then occur if enabled via

 3D – Media – GPGPU

26 Doc Ref # IHD-OS-VLV-Vol7-04.14

PIPE_CONTROL parameters. Due to this stalling behavior, only one PIPE_CONTROL command can be
outstanding at a time on the Media pipe.

For the indirect state pointers disable operation of the pipe control, the following pointers are affected.
The the indirect state pointers disable operation affects the restore of these packets. If the pipe control
the indirect state pointers disable operation is completed before the context save, the indirect pointers
will not be restored from memory.

• Constant Buffer Packet

It is up to software to program the appropriate read-only cache invalidation such as the sampler and
constant read caches or the instruction and state caches. Once notification is observed, new data may
then be loaded (potentially on top of the old data) without fear of stale cache data being referenced for
subsequent rendering.

If software wishes to access the rendered data in memory (for analysis by the application or to copy it
to a new location to use as a texture, for example), it must also ensure that the write cache (render
cache) is flushed after the synchronization point is reached so that memory will be updated. This can be
done by setting the Write Cache Flush Enable bit. Note that the Depth Stall Enable bit must be clear
in order for the flush of the render cache to occur. Depth Stall Enable is intended only for accurate
reporting of the PS_DEPTH counter; the render cache cannot be flushed nor can the read caches be
invalidated (except for the instruction/state cache) in conjunction with this operation.

Vertex caches are only invalidated when the VF invalidate bit is set in PIPE_CONTROL (i.e. decision is
done in software, not hardware) Note that the index-based vertex cache is always flushed between
primitive topologies and of course PIPE_CONTROL can only be issued between primitive topologies.
Therefore only the VF (address-based) cache is uniquely affected by PIPE_CONTROL.

PIPE_CONTROL

Hardware can support up to 8 pending PIPE_CONTROL flushes.

The table below explains all the different flush/invalidation scenerios.

Table: Caches Invalidated/Flushed by PIPE_CONTROL Bit Settings

Write
Cache
Flush

Notification
Enabled

Non-VF RO
Cache

Invalidate
VF RO Cache

Invalidate
Marker

Sent

Pipeline
Marker
Enable

Completion
Requested

Top of Pipe
Invalidate

Pulse from CS

0 0 0 0 N/A N/A N/A N/A

0 0 0 1 Yes No N/A No

0 0 1 0 No N/A N/A Yes

0 0 1 1 Yes No No Yes

X 1 0 X Yes Yes Yes No

X 1 1 X Yes Yes Yes Yes

1 X 0 X Yes Yes Yes No

1 X 1 X Yes Yes Yes Yes

PIPE_CONTROL

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 27

Programming Restrictions for PIPE_CONTROL

PIPE_CONTROL arguments can be split up into three categories:

• Post-sync operations
• Flush Types
• Stall

Post-sync operation is only indirectly affected by the flush type category via the stall bit. The stall
category depends on the both flush type and post-sync operation arguments. A PIPE_CONTROL with no
arguments set is Invalid.

Post-Sync Operation

These arguments relate to events that occur after the marker initiated by the PIPE_CONTROL command
is completed. The table below shows the restrictions:

Arguments Bit Restrictions

LRI Post Sync Operation 23 Post Sync Operation ([15:14] of DW1) must be set to 0x0.

Global Snapshot Count
Reset

19 Requires stall bit ([20] of DW1) set.

Generic Media State
Clear

16 Requires stall bit ([20] of DW1) set.

Indirect State Pointers
Disable

9 Requires stall bit ([20] of DW1) set.

Store Data Index 21 Post-Sync Operation ([15:14] of DW1) must be set to something other than 0.

Sync GFDT 17 Post-Sync Operation ([15:14] of DW1) must be set to something other than 0 or
0x2520[13] must be set.

TLB inv 18 Post-Sync Operation ([15:14] of DW1) must be set to something other
than 0.

Requires stall bit ([20] of DW1) set.

Post Sync Op 15:14 No Restriction.

LRI Post Sync Operation ([23] of DW1) must be set to 0.

Notify En 8 No Restriction.

Flush Types

These are arguments related to the type of read only invalidation or write cache flushing is being
requested. Note that there is only intra-dependency. That is, it is not affected by the post-sync
operation or the stall bit. The table below shows the restrictions:

Arguments Bit Restrictions

Depth Stall 13 Following bits must be clear

• Render Target Cache Flush Enable ([12]

 3D – Media – GPGPU

28 Doc Ref # IHD-OS-VLV-Vol7-04.14

Arguments Bit Restrictions

of DW1)

• Depth Cache Flush Enable ([0] of DW1)

Render Target Cache Flush
12 Depth Stall must be clear ([13] of DW1)

Depth Cache Flush 0 Depth Stall must be clear ([13] of DW1)

Stall Pixel Scoreboard 1 No Restriction

Inst invalidate. 11 No Restriction

Tex invalidate. 10 No Restriction

VF invalidate 4 No Restriction

Constant invalidate 3 No Restriction

State Invalidate 2 No Restriction

Stall

If the stall bit is set, the command streamer waits until the pipe is completely flushed.

Arguments Bit Restrictions

Stall Bit 20 One of the following must also be set

• Render Target Cache Flush Enable ([12] of DW1)

• Depth Cache Flush Enable ([0] of DW1)

• Stall at Pixel Scoreboard ([1] of DW1)

• Depth Stall ([13] of DW1)

• Post-Sync Operation ([13] of DW1)

Render Logical Context Data

Logical Contexts are memory images used to store copies of the device's rendering and ring context.

Logical Contexts are aligned to 256-byte boundaries.

Logical contexts are referenced by their memory address. The format and contents of rendering
contexts are considered device-dependent and software must not access the memory contents directly.
The definition of the logical rendering and power context memory formats is included here primarily for
internal documentation purposes.

Context Layout
The entire context image consists of the Register/State Context, including the pipelined state section.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 29

Register/State Context

Register/State Context
POWER CONTEXT

MAIN CONTEXT

EXTENDED CONTEXT

Description # of DW

NOOP CS 1

Load_Register_Immediate header 0x1100_105D CS 1

RING_BUFFER_START 0x2038 CS 2

RING_BUFFER_CONTROL 0x203C CS 2

RVSYNC 0x2040 CS 2

RBSYNC 0x2044 CS 2

RC_PSMI_CONTROL 0x2050 CS 2

RC_PWRCTX_MAXCNT 0x2054 CS 2

CTX_WA_PTR 0x2058 CS 2

NOPID 0x2094 CS 2

HWSTAM 0x2098 CS 2

FF_THREAD_MODE 0x20A0 CS 2

IMR 0x20A8 CS 2

EIR 0x20B0 CS 2

EMR 0x20B4 CS 2

CMD_CCTL_0 0x20C4 CS 2

GAFS_Mode 0x212C CS 2

UHPTR 0x2134 CS 2

BB_PREEMPT_ADDR 0x2148 CS 2

RING_BUFFER_HEAD_PREEMPT_REG 0x214C CS 2

CXT_SIZE 0x21A8 CS 2

CXT_OFFSET 0x21AC CS 2

CXT_PIPESTATEBASE 0x21B0 CS 2

PREEMPT_DLY 0x2214 CS 2

GFX_MODE 0x229C CS 2

MTCH_CID_RST 0x222C CS 2

RLCONTENT00L 0x2250 CS 2

RLCONTENT00H 0x2254 CS 2

RLCONTENT01L 0x2258 CS 2

RLCONTENT01H 0x225C CS 2

RLCONTENT02L 0x2260 CS 2

 3D – Media – GPGPU

30 Doc Ref # IHD-OS-VLV-Vol7-04.14

Description # of DW

RLCONTENT02H 0x2264 CS 2

RLCONTENT03L 0x2268 CS 2

RLCONTENT03H 0x226C CS 2

RLCONTENT10L 0x2270 CS 2

RLCONTENT10H 0x2274 CS 2

RLCONTENT11L 0x2278 CS 2

RLCONTENT11H 0x227C CS 2

RLCONTENT12L 0x2280 CS 2

RLCONTENT12H 0x2284 CS 2

RLCONTENT13L 0x2288 CS 2

RLCONTENT13H 0x228C CS 2

SYNC_FLIP_STATUS 0x22D0 CS 2

SYNC_FLIP_STATUS_1 0x22D4 CS 2

NOOP CS 12

NOOP GPM 16

NOOP CS 1

Load_Register_Immediate header 0x1100_105F CS 1

EXCC 0x2028 CS 2

MI_MODE 0x209C CS 2

INSTPM 0x20C0 CS 2

PR_CTR_CTL 0x2178 CS 2

PR_CTR_THRSH 0x217C CS 2

IA_VERTICES_COUNT 0x2310 CS 4

IA_PRIMITIVES_COUNT 0x2318 CS 4

VS_INVOCATION_COUNT 0x2320 CS 4

HS_INVOCATION_COUNT 0x2300 CS 4

DS_INVOCATION_COUNT 0x2308 CS 4

GS_INVOCATION_COUNT 0x2328 CS 4

GS_PRIMITIVES_COUNT 0x2330 CS 4

CL_INVOCATION_COUNT 0x2338 CS 4

CL_PRIMITIVES_COUNT 0x2340 CS 4

PS_INVOCATION_COUNT 0x2348 CS 4

PS_DEPTH_COUNT 0x2350 CS 4

VFSKPD 0x2470 CS 2

TIMESTAMP Register (LSB) 0x2358 CS 2

GPUGPU_DISPATCHDIMX 0x2500 CS 2

GPUGPU_DISPATCHDIMY 0x2504 CS 2

GPUGPU_DISPATCHDIMZ 0x2508 CS 2

MI_PREDICATE_SRC0 0x2400 CS 2

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 31

Description # of DW

MI_PREDICATE_SRC0 0x2404 CS 2

MI_PREDICATE_SRC1 0x2408 CS 2

MI_PREDICATE_SRC1 0x240C CS 2

MI_PREDICATE_DATA 0x2410 CS 2

MI_PREDICATE_DATA 0x2414 CS 2

MI_PRED_RESULT 0x2418 CS 2

3DPRIM_END_OFFSET 0x2420 CS 2

3DPRIM_START_VERTEX 0x2430 CS 2

3DPRIM_VERTEX_COUNT 0x2434 CS 2

3DPRIM_INSTANCE_COUNT 0x2438 CS 2

3DPRIM_START_INSTANCE 0x243C CS 2

3DPRIM_BASE_VERTEX 0x2440 CS 2

GPGPU_THREADS_DISPATCHED 0x2290 CS 4

MI_TOPOLOGY_FILTER CS 1

MI_URB_CLEAR CS 2

PIPELINE_SELECT CS 1

STATE_BASE_ADDRESS CS 10

3DSTATE_PUSH_CONSTANT_ALLOC_VS CS 2

3DSTATE_PUSH_CONSTANT_ALLOC_HS CS 2

3DSTATE_PUSH_CONSTANT_ALLOC_DS CS 2

3DSTATE_PUSH_CONSTANT_ALLOC_GS CS 2

3DSTATE_PUSH_CONSTANT_ALLOC_PS CS 2

NOOP CS 5

NOOP SARB 1

Load_Register_Immediate header 0x1100_101D SARB 1

SARB Error Status 0xB004 SARB 2

L3CD Error Status register 1 0xB00C SARB 2

L3CD Error Status register 2 0xB00C SARB 2

L3 SQC registers 1 0xB010 SARB 2

L3 SQC registers 2 0xB014 SARB 2

L3 SQC registers 3 0xB018 SARB 2

L3 Control Register1 0xB01C SARB 2

L3 Control Register2 0xB020 SARB 2

L3 Control Register3 0xB024 SARB 2

L3 SLM Register 0xB028 SARB 2

Arbiter Control Register 0xB02C SARB 2

L3 SQC register 4 0xB034 SARB 2

Scratch Pad Register 0xB038 SARB 2

 3D – Media – GPGPU

32 Doc Ref # IHD-OS-VLV-Vol7-04.14

Description # of DW

NOOP SARB 64

3DSTATE_VS SVG 6

3DSTATE_BINDING_TABLE_POINTERS_VS SVG 2

3DSTATE_SAMPLER_STATE_POINTERS_VS SVG 2

3DSTATE_CONSTANT_VS SVG 7

3DSTATE_URB_VS SVG 2

3DSTATE_HS SVG 7

3DSTATE_BINDING_TABLE_POINTERS_HS SVG 2

3DSTATE_SAMPLER_STATE_POINTERS_HS SVG 2

3DSTATE_CONSTANT_HS SVG 7

3DSTATE_URB_HS SVG 2

3DSTATE_TE SVG 4

3DSTATE_DS SVG 6

3DSTATE_BINDING_TABLE_POINTERS_DS SVG 2

3DSTATE_SAMPLER_STATE_POINTERS_DS SVG 2

3DSTATE_CONSTANT_DS SVG 7

3DSTATE_URB_DS SVG 2

3DSTATE_GS SVG 7

3DSTATE_BINDING_TABLE_POINTERS_GS SVG 2

3DSTATE_SAMPLER_STATE_POINTERS_GS SVG 2

3DSTATE_CONSTANT_GS SVG 7

3DSTATE_URB_GS SVG 2

3DSTATE_STREAMOUT SVG 3

3DSTATE_CLIP SVG 4

3DSTATE_VIEWPORT_STATE_POINTERS_CL_SF SVG 2

3DSTATE_SF SVG 7

3DSTATE_SCISSOR_STATE_POINTERS SVG 2

3DSTATE_MULTISAMPLE SVG 4

3DSTATE_DRAWING_RECTANGLE SVG 4

SWTESS_BASE_ADDRESS SVG 2

NOOP SVG 2

3DSTATE_WM SVL 3

3DSTATE_VIEWPORT_STATE_POINTERS_CC SVL 2

3DSTATE_CC_STATE_POINTERS SVL 2

3DSTATE_DEPTHSTENCIL_STATE_POINTERS SVL 2

3DSTATE_SAMPLE_MASK SVL 2

3DSTATE_SBE SVL 14

3DSTATE_CONSTANT_PS SVL 7

3DSTATE_PS SVL 8

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 33

Description # of DW

3DSTATE_BINDING_TABLE_POINTERS_PS SVL 2

3DSTATE_SAMPLER_STATE_POINTERS_PS SVL 2

3DSTATE_BLEND_STATE_POINTERS SVL 2

Load_Register_Immediate header 0x1100_100B SVL 1

Cache_Mode_0 0x7000 SVL 2

Cache_Mode_1 0x7004 SVL 2

GT_MODE 0x7008 SVL 2

FBC_RT_BASE_ADDR_REGISTER 0x7020 SVL 2

STATE_SIP SVL 2

3DSTATE_DEPTH_BUFFER SVL 7

3DSTATE_STENCIL_BUFFER SVL 3

3DSTATE_HIER_DEPTH_BUFFER SVL 3

3DSTATE_CLEAR_PARAMS SVL 3

NOOP SVL 3

NOOP TDL0 1

Load_Register_Immediate header 0x1100_1011 TDL0 1

TD_CTL2 0xE404 TDL0 2

TD_VF_VS_EMSK 0xE408 TDL0 2

TD_GS_EMSK 0xE40C TDL0 2

TD_WIZ_EMSK 0xE410 TDL0 2

TD_TS_EMSK 0xE428 TDL0 2

TD_HS_EMSK 0xE4B0 TDL0 2

TD_DS_EMSK 0xE4B4 TDL0 2

NOOP TDL0 12

NOOP WM 1

Load_Register_Immediate header 0x1100_1003 WM 1

SuperSpan Count 0x5520 WM 2

3DSTATE_POLY_STIPPLE_PATTERN WM 33

3DSTATE_AA_LINE_PARAMS WM 3

3DSTATE_POLY_STIPPLE_OFFSET WM 2

3DSTATE_LINE_STIPPLE WM 3

NOOP WM 1

NOOP SC0 1

Load_Register_Immediate header 0x1100_1003 SC0 1

NOOP SC0 10

3DSTATE_MONOFILTER_SIZE SC0 2

3DSTATE_CHROMA_KEY SC0 16

NOOP SC0 6

 3D – Media – GPGPU

34 Doc Ref # IHD-OS-VLV-Vol7-04.14

Description # of DW

MEDIA_VFE_STATE VFE 8

MEDIA_CURBE_LOAD VFE 4

MEDIA_INTERFACE_DESCRIPTOR_LOAD VFE 4

MEDIA_OBJECT_PRT/GPGPU_WALKER VFE 16

MEDIA_STATE_FLUSH VFE 2

NOOP VFE 6

3DSTATE_SAMPLER_PALETTE_LOAD0 DM0 257

3DSTATE_SAMPLER_PALETTE_LOAD1 DM0 257

NOOP DM0 14

NOOP SOL 1

Load_Register_Immediate header 0x1100_1027 SOL 1

SO_NUM_PRIMS_WRITTEN0 0x5200 SOL 4

SO_NUM_PRIMS_WRITTEN1 0x5208 SOL 4

SO_NUM_PRIMS_WRITTEN2 0x5210 SOL 4

SO_NUM_PRIMS_WRITTEN3 0x5218 SOL 4

SO_PRIM_STORAGE_NEEDED0 0x5240 SOL 4

SO_PRIM_STORAGE_NEEDED1 0x5248 SOL 4

SO_PRIM_STORAGE_NEEDED2 0x5250 SOL 4

SO_PRIM_STORAGE_NEEDED3 0x5258 SOL 4

SO_WRITE_OFFSET0 0x5280 SOL 2

SO_WRITE_OFFSET1 0x5284 SOL 2

SO_WRITE_OFFSET2 0x5288 SOL 2

SO_WRITE_OFFSET3 0x528C SOL 2

3DSTATE_SO_BUFFER SOL 16

NOOP SOL 3

3DSTATE_SO_DECL_LIST SOL 259

3DSTATE_INDEX_BUFFER VF 3

3DSTATE_VERTEX_BUFFERS VF 133

3DSTATE_VERTEX_ELEMENTS VF 69

3DSTATE_VF_STATISTICS VF 1

NOOP VF 2

Shared Functions
3D Sampler
The 3D Sampling Engine provides the capability of advanced sampling and filtering of surfaces in
memory.

The sampling engine function is responsible for providing filtered texture values to the Gen Core in
response to sampling engine messages. The sampling engine uses SAMPLER_STATE to control filtering
modes, address control modes, and other features of the sampling engine. A pointer to the sampler

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 35

state is delivered with each message, and an index selects one of 16 states pointed to by the pointer.
Some messages do not require SAMPLER_STATE. In addition, the sampling engine uses SURFACE_STATE
to define the attributes of the surface being sampled. This includes the location, size, and format of the
surface as well as other attributes.

Although data is commonly used for texturing of 3D surfaces, the data can be used for any purpose
once returned to the execution core.

The following table summarizes the various subfunctions provided by the Sampling Engine. After the
appropriate subfunctions are complete, the 4-component (reduced to fewer components in some
cases) filtered texture value is provided to the Gen Core in order to complete the sample instruction.

Subfunction Description

Texture
Coordinate
Processing

Any required operations are performed on the incoming pixel's interpolated internal texture
coordinates. These operations may include: cube map intersection.

Texel Address
Generation

The Sampling Engine will determine the required set of texel samples (specific texel values from
specific texture maps), as defined by the texture map parameters and filtering modes. This
includes coordinate wrap/clamp/mirror control, mipmap LOD computation and sample and/or
miplevel weighting factors to be used in the subsequent filtering operations.

Texel Fetch The required texel samples will be read from the texture map. This step may require
decompression of texel data. The texel sample data is converted to an internal format.

Texture Palette
Lookup

For streams which have paletted texture surface formats, this function uses the index values
read from the texture map to look up texel color data from the texture palette.

Shadow Pre-
Filter Compare For shadow mapping, the texel samples are first compared to the 3rd (R) component of

the pixel's texture coordinate. The boolean results are used in the texture filter.

Texel Filtering Texel samples are combined using the filter weight coefficients computed in the Texture
Address Generation function. This combination ranges from simply passing through a nearest
sample to blending the results of anisotropic filters performed on two mipmap levels. The
output of this function is a single 4-component texel value.

Texel Color
Gamma
Linearization

Performs optional gamma decorrection on texel RGB (not A) values.

Denoise/
Deinterlacer

Performs denoise and deinterlacing functions for video content

8x8 Video Scaler Performs scaling using an 8x8 filter

Texture Coordinate Processing

The Texture Coordinate Processing function of the Sampling Engine performs any operations on the
texture coordinates that are required before physical addresses of texel samples can be generated.

Texture Coordinate Normalization
A texture coordinate may have normalized or unnormalized values. In this function, unnormalized
coordinates are normalized.

 3D – Media – GPGPU

36 Doc Ref # IHD-OS-VLV-Vol7-04.14

Normalized coordinates are specified in units relative to the map dimensions, where the origin is
located at the upper/left edge of the upper left texel, and the value 1.0 coincides with the lower/right
edge of the lower right texel . 3D rendering typically utilizes normalized coordinates.

Unnormalized coordinates are in units of texels and have not been divided (normalized) by the
associated map's height or width. Here the origin is the located at the upper/left edge of the upper left
texel of the base texture map.

Normalized vs. Unnormalized Texture Coordinates

Texture Coordinate Computation
Cartesian (2D) and homogeneous (projected) texture coordinate values are projected from
(interpolated) screen space back into texture coordinate space by dividing the pixel's S and T
components by the Q component. This operation is done as part of the pixel shader kernel in the Gen4
Core.

Vector (cube map) texture coordinates are generated by first determining which of the 6 cube map
faces (+X, +Y, +Z, -X, -Y, -Z) the vector intersects. The vector component (X, Y or Z) with the largest
absolute value determines the proper (major) axis, and then the sign of that component is used to
select between the two faces associated with that axis. The coordinates along the two minor axes are
then divided by the coordinate of the major axis, and scaled and translated, to obtain the 2D texture
coordinate ([0,1]) within the chosen face. Note that the coordinates delivered to the sampling engine
must already have been divided by the component with the largest absolute value.

An illustration of this cube map coordinate computation, simplified to only two dimensions, is provided
below:

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 37

Cube Map Coordinate Computation Example

Texel Address Generation

To better understand texture mapping, consider the mapping of each object (screen-space) pixel onto
the textures images. In texture space, the pixel becomes some arbitrarily sized and aligned quadrilateral.
Any given pixel of the object may cover multiple texels of the map, or only a fraction of one texel. For
each pixel, the usual goal is to sample and filter the texture image in order to best represent the
covered texel values, with a minimum of blurring or aliasing artifacts. Per-texture state variables are
provided to allow the user to employ quality/performance/footprint tradeoffs in selecting how the
particular texture is to be sampled.

The Texel Address Generation function of the Sampling Engine is responsible for determining how the
texture maps are to be sampled. Outputs of this function include the number of texel samples to be
taken, along with the physical addresses of the samples and the filter weights to be applied to the
samples after they are read. This information is computed given the incoming texture coordinate and
gradient values, and the relevant state variables associated with the sampler and surface. This function
also applies the texture coordinate address controls when converting the sample texture coordinates to
map addresses.

Level of Detail Computation (Mipmapping)
Due to the specification and processing of texture coordinates at object vertices, and the subsequent
object warping due to a perspective projection, the texture image may become magnified (where a
texel covers more than one pixel) or minified (a pixel covers more than one texel) as it is mapped to an
object. In the case where an object pixel is found to cover multiple texels (texture minification), merely
choosing one (e.g., the texel sample nearest to the pixel's texture coordinate) will likely result in severe
aliasing artifacts.

Mipmapping and texture filtering are techniques employed to minimize the effect of undersampling
these textures. With mipmapping, software provides mipmap levels, a series of pre-filtered texture maps
of decreasing resolutions that are stored in a fixed (monolithic) format in memory. When mipmaps are
provided and enabled, and an object pixel is found to cover multiple texels (e.g., when a textured object

 3D – Media – GPGPU

38 Doc Ref # IHD-OS-VLV-Vol7-04.14

is located a significant distance from the viewer), the device will sample the mipmap level(s) offering a
texel/pixel ratio as close to 1.0 as possible.

The device supports up to 14 mipmap levels per map surface, ranging from 8192 x 8192 texels to a 1 X
1 texel. Each successive level has ½ the resolution of the previous level in the U and V directions (to a
minimum of 1 texel in either direction) until a 1x1 texture map is reached. The dimensions of mipmap
levels need not be a power of 2.

Each mipmap level is associated with a Level of Detail (LOD) number. LOD is computed as the
approximate, log2 measure of the ratio of texels per pixel. The highest resolution map is considered
LOD 0. A larger LOD number corresponds to lower resolution mip level.

The Sampler[]BaseMipLevel state variable specifies the LOD value at which the minification filter vs. the
magnification filter should be applied.

When the texture map is magnified (a texel covers more than one pixel), the base map (LOD 0) texture
map is accessed, and the magnification mode selects between the nearest neighbor texel or bilinear
interpolation of the 4 neighboring texels on the base (LOD 0) mipmap.

Base Level Of Detail (LOD)

The per-pixel LOD is computed in an implementation-dependent manner and approximates the log2 of
the texel/pixel ratio at the given pixel. The computation is typically based on the differential texel-space
distances associated with a one-pixel differential distance along the screen x- and y-axes. These texel-
space distances are computed by evaluating neighboring pixel texture coordinates, these coordinates
being in units of texels on the base MIP level (multiplied by the corresponding surface size in texels).
The q coordinates represent the third dimension for 3D (volume) surfaces, this coordinate is a constant
0 for 2D surfaces.

The ideal LOD computation is included below.

LOD Bias

A biasing offset can be applied to the computed LOD and used to artificially select a higher or lower
miplevel and/or affect the weighting of the selected mipmap levels. Selecting a slightly higher mipmap
level will trade off image blurring with possibly increased performance (due to better texture cache
reuse). Lowering the LOD tends to sharpen the image, though at the expense of more texture aliasing
artifacts.

The LOD bias is defined as sum of the LODBias state variable and the pixLODBias input from the input
message (which can be non-zero only for sample_b messages). The application of LOD Bias is
unconditional, therefore these variables must both be set to zero in order to prevent any undesired
biasing.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 39

Note that, while the LOD Bias is applied prior to clamping and min/mag determination and therefore
can be used to control the min-vs-mag crossover point, its use has the undesired effect of actually
changing the LOD used in texture filtering.

LOD Pre-Clamping

The LOD Pre-Clamping function can be enabled or disabled via the LODPreClampEnable state variable.
Enabling pre-clamping matches OpenGL semantics .

After biasing and/or adjusting of the LOD , the computed LOD value is clamped to a range specified by
the (integer and fractional bits of) MinLOD and MaxLOD state variables prior to use in Min/Mag
Determination.

MaxLOD specifies the lowest resolution mip level (maximum LOD value) that can be accessed, even
when lower resolution maps may be available. Note that this is the only parameter used to specify the
number of valid mip levels that be can be accessed, i.e., there is no explicit number of levels stored in
memory parameter associated with a mip-mapped texture. All mip levels from the base mip level map
through the level specified by the integer bits of MaxLOD must be stored in memory, or operation is
UNDEFINED.

MinLOD specifies the highest resolution mip level (minimum LOD value) that can be accessed, where
LOD==0 corresponds to the base map. This value is primarily used to deny access to high-resolution
mip levels that have been evicted from memory when memory availability is low.

MinLOD and MaxLOD have both integer and fractional bits. The fractional parts will limit the inter-level
filter weighting of the highest or lowest (respectively) resolution map. For example if MinLOD is 4.5 and
MipFilter is LINEAR, LOD 4 can contribute only up to 50% of the final texel color.

Min/Mag Determination

The biased and clamped LOD is used to determine whether the texture is being minified (scaled down)
or magnified (scaled up).

The BaseMipLevel state variable is subtracted from the biased and clamped LOD. The BaseMipLevel state
variable therefore has the effect of selecting the base mip level used to compute Min/Map
Determination. (This was added to match OpenGL semantics). Setting BaseMipLevel to 0 has the effect
of using the highest-resolution mip level as the base map.

If the biased and clamped LOD is non-positive, the texture is being magnified, and a single (high-
resolution) miplevel will be sampled and filtered using the MagFilter state variable. At this point the
computed LOD is reset to 0.0. Note that LOD Clamping can restrict access to high-resolution miplevels.

If the biased LOD is positive, the texture is being minified. In this case the MipFilter state variable
specifies whether one or two mip levels are to be included in the texture filtering, and how that (or
those) levels are to be determined as a function of the computed LOD.

LOD Computation Pseudocode

This section illustrates the LOD biasing and clamping computation in pseudocode, encompassing the
steps described in the previous sections. The computation of the initial per-pixel LOD value LOD is not
shown.

 3D – Media – GPGPU

40 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bias:S4.8

MinLod:U4.8

MaxLod:U4.8

Base:U4.1

MIPCnt:U4

SurfMinLod: U4.8

ResMinLod: U4.8

PerSampleMinLOD: float32

MinLod = max(MinLod, PerSampleMinLOD)

AdjMaxLod = min(MaxLod, MIPCnt)

AdjMinLod = min(MinLod, MIPCnt)

AdjPR_minLOD = ResMinLod – SurfMinLod

AdjMinLod = max(AdjMinLod, AdjPR_minLOD)

Out_of_Bounds = AdjPR_minLOD > MIPCnt

if (sample_b)

LOD += Bias + bias_parameter

else if (sample_l or ld)

LOD = Bias + lod_parameter

else

LOD += Bias

PreClamp = LODPreClampEnable

If (PreClamp)

LOD = min(LOD, MaxLod)

LOD = max(LOD, MinLod)

MagMode = (LOD - Base <= 0)

MagClampMipNone = 1

If ((MagMode && MagClampMipNone) or MipFlt = None)

LOD = 0

LOD = min(LOD, ceil(AdjMaxLod))

LOD = max(LOD, floor(AdjMinLod))

else if (MipFlt = Nearest)

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 41

 LOD = min(LOD, AdjMaxLod)

 LOD = max(LOD, AdjMinLod)

LOD = min(LOD, AdjMaxLod)

LOD = max(LOD, AdjMinLod)

LOD +=0.5

LOD = floor(LOD)

else// MipFlt = Linear

LOD = min(LOD, AdjMaxLod)

LOD = max(LOD, AdjMinLod)

TriBeta = frac(LOD)

LOD0 = floor(LOD)

LOD1 = LOD0 + 1

if (!lod)// LOD message type

Lod += SurfMinLod

If Out_of_Bounds is true, LOD is set to zero and instead of sampling the surface the texels are replaced
with zero in all channels, except for surface formats that don't contain alpha, for which the alpha
channel is replaced with one. These texels then proceed through the rest of the pipeline.

Inter-Level Filtering Setup

The MipFilter state variable determines if and how texture mip maps are to be used and combined. The
following table describes the various mip filter modes:

MipFilter Value Description

MIPFILTER_NONE Mipmapping is DISABLED. Apply a single filter on the highest resolution map available (after
LOD clamping).

MIPFILTER_NEAREST Choose the nearest mipmap level and apply a single filter to it. Here the biased LOD will be
rounded to the nearest integer to obtain the desired miplevel. LOD Clamping may further
restrict this miplevel selection.

MIPFILTER_LINEAR Apply a filter on the two closest mip levels and linear blend the results using the distance
between the computed LOD and the level LODs as the blend factor. Again, LOD Clamping
may further restrict the selection of miplevels (and the blend factor between them).

When minifying and MIPFILTER_NEAREST is selected, the computed LOD is rounded to the nearest mip
level.

When minifying and MIPFILTER_LINEAR is selected, the fractional bits of the computed LOD are used to
generate an inter-level blend factor. The LOD is then truncated. The mip level selected by the truncated
LOD, and the next higher (lower resolution) mip level are determined.

Regardless of MipFilter and the min/mag determination, all computed LOD values (two for
MIPFILTER_LINEAR, otherwise one) are then unconditionally clamped to the range specified by the
(integer bits of) MinLOD and MaxLOD state variables.

 3D – Media – GPGPU

42 Doc Ref # IHD-OS-VLV-Vol7-04.14

Intra-Level Filtering Setup
Depending on whether the texture is being minified or magnified, the MinFilter or MagFilter state
variable (respectively) is used to select the sampling filter to be used within a mip level (intra-level, as
opposed to any inter-level filter). Note that for volume maps, this selection also applies to filtering
between layers.

The processing at this stage is restricted to the selection of the filter type, computation of the number
and texture map coordinates of the texture samples, and the computation of any required filter
parameters. The filtering of the samples occurs later on in the Sampling Engine function.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 43

The following table summarizes the intra-level filtering modes.

Sampler[]Min/MagFilter
value Description

MAPFILTER_NEAREST Supported on all surface types. The texel nearest to the pixel's U,V,Q coordinate is
read and output from the filter.

MAPFILTER_LINEAR Not supported on buffer surfaces. The 2, 4, or 8 texels (depending on 1D, 2D/CUBE,
or 3D surface, respectively) surrounding the pixel's U,V,Q coordinate are read and a
linear filter is applied to produce a single filtered texel value.

MAPFILTER_ANISOTROPIC Not supported on buffer or 3D surfaces. A projection of the pixel onto the texture
map is generated and subpixel samples are taken along the major axis of the
projection (center axis of the longer dimension). The outermost subpixels are
weighted according to closeness to the edge of the projection, inner subpixels are
weighted equally. Each subpixel samples a bilinear 2x2 of texels and the results are
blended according to weights to produce a filtered texel value.

MAPFILTER_MONO Supported only on 2D surfaces. This filter is only supported with the monochrome
(MONO8) surface format. The monochrome texel block of the specified size
surrounding the pixel is selected and filtered.

MAPFILTER_NEAREST

When the MAPFILTER_NEAREST is selected, the texel with coordinates nearest to the pixel's texture
coordinate is selected and output as the single texel sample coordinates for the level.

MAPFILTER_LINEAR

The following description indicates behavior of the MIPFILTER_LINEAR filter for 2D and CUBE surfaces.
1D and 3D surfaces follow a similar method but with a different number of dimensions available.

When the MAPFILTER_LINEAR filter is selected on a 2D surface, the 2x2 region of texels surrounding the
pixel's texture coordinate are sampled and later bilinearly filtered.

Bilinear Filter Sampling

 3D – Media – GPGPU

44 Doc Ref # IHD-OS-VLV-Vol7-04.14

The four texels surrounding the pixel center are chosen for the bilinear filter. The filter weights each
texel's contribution according to its distance from the pixel center. Texels further from the pixel center
receive a smaller weight.

MAPFILTER_ANISOTROPIC

The MAPFILTER_ANISOTROPIC texture filter attempts to compensate for the anisotropic mapping of
pixels into texture map space. A possibly non-square set of texel sample locations will be sampled and
later filtered. The MaxAnisotropy state variable is used to select the maximum aspect ratio of the filter
employed, up to 16:1.

The algorithm employed first computes the major and minor axes of the pixel projection onto the
texture map. LOD is chosen based on the minor axis length in texel space. The anisotropic ratio is equal
to the ratio between the major axis length and the minor axis length. The next larger even integer
above the ratio determines the anisotropic number of ways, which determines how many subpixels are
chosen. A line along the major axis is determined, and subpixels are chosen along this line, spaced one
texel apart, as shown in the diagram below. In this diagram, the texels are shown in light blue, and the
pixels are in yellow.

Each subpixel samples a bilinear 2x2 around it just as if it was a single pixel. The result of each subpixel
is then blended together using equal weights on all interior subpixels (not including the two endpoint
subpixels). The endpoint subpixels have lesser weight, the value of which depends on how close the
ratio is to the number of ways. This is done to ensure continuous behavior in animation.

MAPFILTER_MONO

When the MAPFILTER_MONO filter is selected, a block of monochrome texels surrounding the pixel
sample location are read and filtered using the kernel described below. The size of this block is
controlled by Monochrome Filter Height and Width (referred to here as Nv and Nu, respectively) state.
Filters from 1x1 to 7x7 are supported (not necessarily square).

The figure below shows a 6x5 filter kernel as an example. The footprint of the filter (filter kernel
samples) is equal to the size of the filter and the pixel center lies at the exact center of this footprint.
The position of the upper left filter kernel sample (uf, vf) relative to the pixel center at (u, v) is given by
the following:

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 45

βu and βv are the fractional parts of uf and vf, respectively. The integer parts select the upper left texel for
the kernel filter, given here as T0,0.

Sampling Using MAPFILTER_MONO

The formula for the final filter output F is given by the following. Since this is a monochrome filter, each
texel value (T) is a single bit, and the output F is an intensity value that is replicated across the color and
alpha channels.

Texture Address Control
The [TCX,TCY,TCZ]ControlMode state variables control the access and/or generation of texel data when
the specific texture coordinate component falls outside of the normalized texture map coordinate range
[0,1).

 3D – Media – GPGPU

46 Doc Ref # IHD-OS-VLV-Vol7-04.14

Note: For Wrap Shortest mode, the setup kernel has already taken care of correctly interpolating the
texture coordinates. Software needs to specify TEXCOORDMODE_WRAP mode for the sampler that is
provided with wrap-shortest texture coordinates, or artifacts may be generated along map edges.

TC[X,Y,Z] Control Operation

TEXCOORDMODE_CLAMP Clamp to the texel value at the edge of the map.

TEXCOORDMODE_CLAMP_BORDER Use the texture map's border color for any texel samples falling outside the
map. The border color is specified via a pointer in SAMPLER_STATE.

TEXCOORDMODE_HALF_BORDER Similar to CLAMP_BORDER except texels outside of the map are clamped to a
value halfway between the edge texel and the border color.

TEXCOORDMODE_WRAP Upon crossing an edge of the map, repeat at the other side of the map in the
same dimension.

TEXCOORDMODE_CUBE Only used for cube maps. Here texels from adjacent cube faces can be
sampled along the edges of faces. This is considered the highest quality
mode for cube environment maps.

TEXCOORDMODE_MIRROR Similar to the wrap mode, though reverse direction through the map each
time an edge is crossed. INVALID for use with unnormalized texture
coordinates.

TEXCOORDMODE_MIRROR_ONCE Similar to the wrap mode, though reverse direction through the map each
time an edge is crossed. INVALID for use with unnormalized texture
coordinates.

Separate controls are provided for texture TCX, TCY, TCZ coordinate components so, for example, the
TCX coordinate can be wrapped while the TCY coordinate is clamped. Note that there are no controls
provided for the TCW component as it is only used to scale the other 3 components before addressing
modes are applied.

Maximum Wraps/Mirrors

The number of map wraps on a given object is limited to 32. Going beyond this limit is legal, but may
result in artifacts due to insufficient internal precision, especially evident with larger surfaces. Precision
loss starts at the subtexel level (slight color inaccuracies) and eventually reaches the texel level
(choosing the wrong texels for filtering).

TEXCOORDMODE_MIRROR Mode

TEXCOORDMODE_MIRROR addressing mode is similar to Wrap mode, though here the base map is
flipped at every integer junction. For example, for U values between 0 and 1, the texture is addressed
normally, between 1 and 2 the texture is flipped (mirrored), between 2 and 3 the texture is normal
again, and so on. The second row of pictures in the figure below indicate a map that is mirrored in one
direction and then both directions. You can see that in the mirror mode every other integer map wrap
the base map is mirrored in either direction.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 47

Texture Wrap vs. Mirror Addressing Mode

TEXCOORDMODE_WRAP Mode

In TEXCOORDMODE_WRAP addressing mode, the integer part of the texture coordinate is discarded,
leaving only a fractional coordinate value. This results in the effect of the base map ([0,1)) being
continuously repeated in all (axes-aligned) directions. Note that the interpolation between coordinate
values 0.1 and 0.9 passes through 0.5 (as opposed to WrapShortest mode which interpolates through
0.0).

TEXCOORDMODE_MIRROR_ONCE Mode

The TEXCOORDMODE_MIRROR_ONCE addressing mode is a combination of Mirror and Clamp modes.
The absolute value of the texture coordinate component is first taken (thus mirroring about 0), and then
the result is clamped to 1.0. The map is therefore mirrored once about the origin, and then clamped
thereafter. This mode is used to reduce the storage required for symmetric maps.

TEXCOORDMODE_CLAMP Mode

The TEXCOORDMODE_CLAMP addressing mode repeats the edge texel when the texture coordinate
extends outside the [0,1) range of the base texture map. This is contrasted to
TEXCOORDMODE_CLAMPBORDER mode which defines a separate texel value for off-map samples.
TEXCOORDMODE_CLAMP is also supported for cube maps, where texture samples will only be obtained
from the intersecting face (even along edges).

The figure below illustrates the effect of clamp mode. The base texture map is shown, along with a
texture mapped object with texture coordinates extending outside of the base map region.

Texture Clamp Mode

 3D – Media – GPGPU

48 Doc Ref # IHD-OS-VLV-Vol7-04.14

TEXCOORDMODE_CLAMPBORDER Mode

For non-cube map textures, TEXCOORDMODE_CLAMPBORDER addressing mode specifies that the
texture map's border value BorderColor is to be used for any texel samples that fall outside of the base
map. The border color is specified via a pointer in SAMPLER_STATE.

TEXCOORDMODE_CUBE Mode

For cube map textures TEXCOORDMODE_CUBE addressing mode can be set to allow inter-face filtering.
When texel sample coordinates that extend beyond the selected cube face (e.g., due to intra-level
filtering near a cube edge), the correct sample coordinates on the adjoining face will be computed. This
will eliminate artifacts along the cube edges, though some artifacts at cube corners may still be present.

Texel Fetch

The Texel Fetch function of the Sampling Engine reads the texture map contents specified by the
texture addresses associated with each texel sample. The texture data is read either directly from the
memory-resident texture map, or from internal texture caches. The texture caches can be invalidated by
the Sampler Cache Invalidate field of the MI_FLUSH instruction or via the Read Cache Flush Enable
bit of PIPE_CONTROL. Except for consideration of coherency with CPU writes to textures and rendered
textures, the texture cache does not affect the functional operation of the Sampling Engine pipeline.

When the surface format of a texture is defined as being a compressed surface, the Sampler will
automatically decompress from the stored format into the appropriate [A]RGB values. The compressed
texture storage formats and decompression algorithms can be found in the Memory Data Formats
chapter. When the surface format of a texture is defined as being an index into the texture palette
(format names includiong Px), the palette lookup of the index determines the appropriate RGB values.

Texel Chroma Keying
ChromaKey is a term used to describe a method of effectively removing or replacing a specific range of
texel values from a map that is applied to a primitive, e.g., in order to define transparent regions in an
RGB map. The Texel Chroma Keying function of the Sampling Engine pipeline conditionally tests texel
samples against a key range, and takes certain actions if any texel samples are found to match the key.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 49

Chroma Key Testing

ChromaKey refers to testing the texel sample components to see if they fall within a range of texel
values, as defined by ChromaKey[][High,Low] state variables. If each component of a texel sample is
found to lie within the respective (inclusive) range and ChromaKey is enabled, then an action will be
taken to remove this contribution to the resulting texel stream output. Comparison is done separately
on each of the channels and only if all 4 channels are within range the texel will be eliminated.

The Chroma Keying function is enabled on a per-sampler basis by the ChromaKeyEnable state variable.

The ChromaKey[][High,Low] state variables define the tested color range for a particular texture map.

Chroma Key Effects

There are two operations that can be performed to remove matching texel samples from the image. The
ChromaKeyEnable state variable must first enable the chroma key function. The ChromaKeyMode state
variable then specifies which operation to perform on a per-sampler basis.

The ChromaKeyMode state variable has the following two possible values:

KEYFILTER_KILL_ON_ANY_MATCH: Kill the pixel if any contributing texel sample matches the key.

KEYFILTER_REPLACE_BLACK: Here the sample is replaced with (0,0,0,0).

The Kill Pixel operation has an effect on a pixel only if the associated sampler is referenced by a sample
instruction in the pixel shader program. If the sampler is not referenced, the chroma key compare is not
done and pixels cannot be killed based on it.

Shadow Prefilter Compare

When a sample_c message type is processed, a special shadow-mapping precomparison is performed
on the texture sample values prior to filtering. Specifically, each texture sample value is compared to the
ref component of the input message, using a compare function selected by ShadowFunction, and
described in the table below. Note that only single-channel texel formats are supported for shadow
mapping, and so there is no specific color channel on which the comparison occurs.

ShadowFunction Result

PREFILTEROP_ALWAYS 0.0

PREFILTEROP_NEVER 1.0

PREFILTEROP_LESS (texel < ref) ? 0.0: 1.0

PREFILTEROP_EQUAL (texel == ref) ? 0.0: 1.0

PREFILTEROP_LEQUAL (texel <= ref) ? 0.0: 1.0

PREFILTEROP_GREATER (texel > ref) ? 0.0: 1.0

PREFILTEROP_NOTEQUAL (texel != ref) ? 0.0: 1.0

PREFILTEROP_GEQUAL (texel >= ref) ? 0.0: 1.0

The binary result of each comparison is fed into the subsequent texture filter operation (in place of the
texel's value which would normally be used).

Software is responsible for programming the ref component of the input message such that it
approximates the same distance metric programmed in the texture map (e.g., distance from a specific

 3D – Media – GPGPU

50 Doc Ref # IHD-OS-VLV-Vol7-04.14

light to the object pixel). In this way, the comparison function can be used to generate in shadow status
for each texture sample, and the filtering operation can be used to provide soft shadow edges.

Programming Note: Refer to the Surface Formats table in section RENDER_SURFACE_STATE for the
specific surface formats that are supported with shadow mapping.

Texel Filtering

The Texel Filtering function of the Sampling Engine performs any required filtering of multiple texel
values on and possibly between texture map layers and levels. The output of this function is a single
texel color value.

The state variables MinFilter, MagFilter, and MipFilter are used to control the filtering of texel values. The
MipFilter state variable specifies how many mipmap levels are included in the filter, and how the results
of any filtering on these separate levels are combined to produce a final texel color. The MinFilter and
MagFilter state variables specify how texel samples are filtered within a level.

Texel Color Gamma Linearization

This function is supported to allow pre-gamma-corrected texel RGB (not A) colors to be mapped back
into linear (gamma=1.0) gamma space prior to (possible) blending with, and writing to the Color Buffer.
This permits higher quality image blending by performing the blending on colors in linear gamma
space.

This function is enabled on a per-texture basis by use of a surface format with “_SRGB” in its name. If
enabled, the pre-filtered texel RGB color to be converted to gamma=1.0 space by applying a ^(2.4)
exponential function.

Multisampled Surface Behavior

The ld message has added an additional parameter for sample index (si) to support unfiltered loading
from a multisampled surface.

The sampleinfo message returns specific parameters associated with a multisample surface. The resinfo
message returns the height, width, depth, and MIP count of the surface (in units of pixels, not samples).

Any of the other messages (sample*, LOD, load4) used with a (4x) multisampled surface would sample a
surface with double the height and width as indicated in the surface state. Each pixel position on the
original-sized surface is replaced with 2x2 samples that have the following arrangement:

sample 0 sample 2

sample 1 sample 3

This behavior is useful when implementing the multisample resolve operation by selecting
MAPFILTER_LINEAR and rendering a full-screen rectangle half the size in each dimension of the source
texture map (multisampled surface). If pixel offsets are set correctly, each pixel is the average of the four
underlying samples.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 51

Multisample Control Surface
Three new messages have been defined for the sampling engine, ld_mcs, ld2dms, and ld2dss. A pixel
shader kernel sampling from an multisampled surface using an MCS must first sample from the MCS
surface using the ld_mcs message. This message behaves like the ld message, except that the surface is
defined by the MCS fields of SURFACE_STATE rather than the normal fields. The surface format is
effectively R8_UINT for 4x surfaces and R32_UINT for 8x surfaces, thus data is returned in unsigned
integer format. Following the ld_mcs, the kernel issues a ld2dms message to sample the surface itself.
The integer value from the MCS surface is delivered in the mcs parameter of this messages.

Since sample is no longer supported on multisampled surfaces, the multisample resolve must be done
using ld2dms. For surfaces with Multisampled Surface Storage Format set to MSFMT_MSS and MCS
Enable set to enabled, an optimization is available to enable higher performance for compressed pixels.
The ld2dss message can be used to sample from a particular sample slice on the surface. By examining
the MCS value, software can determine which sample slices to sample from. A simple optimization with
probable large return in performance is to compare the MCS value to zero (indicating all samples are on
sample slice 0), and sample only from sample slice 0 using ld2dss if MCS is zero. Sample slice 0 is the
pixel color in this case. If MCS is not zero, each sample is then obtained using ld2dms messages and the
results are averaged in the kernel after being returned. Refer to the multisample storage format in the
GPU Overview volume for more details.

State

BINDING_TABLE_STATE

SURFACE_STATE
The surface state is stored as individual elements, each with its own pointer in the binding table. Each
surface state element is aligned to a 32-byte boundary.

Surface state defines the state needed for the following objects:

• texture maps (1D, 2D, 3D, cube) read by the sampling engine
• buffers read by the sampling engine
• constant buffers read by the data cache via the data port
• render targets read/written by the render cache via the data port
• streamed vertex buffer output written by the render cache via the data port
• media surfaces read from the texture cache or render cache via the data port
• media surfaces written to the render cache via the data port

RENDER_SURFACE_STATE

Surface Formats

The following table indicates the supported surface formats and the 9-bit encoding for each. Note that
some of these formats are used not only by the Sampling Engine, but also by the Data Port and the
Vertex Fetch unit.

SURFACE_FORMAT

 3D – Media – GPGPU

52 Doc Ref # IHD-OS-VLV-Vol7-04.14

Note: RAW is supported only with buffers and structured buffers accessed via the untyped surface
read/write and untyped atomic operation messages, which do not have a column in the table.

Sampler Output Channel Mapping

The following table indicates the mapping of the channels from the surface to the channels output from
the sampling engine. Formats with all four channels (R/G/B/A) in their name map each surface channel
to the corresponding output, thus those formats are not shown in this table.

Some formats are supported only in DX10/OGL Border Color Mode. Those formats have only that
mode indicated. Formats that behave the same way in both Border Color Modes are indicated by that
column being blank.

Proje
ct Surface Format Name

Filteri
ng

Shad
ow

Map

Chro
ma
Key

Border
Color
Mode R G B A

Bord
er

Colo
r

Mod
e R G B A

Securi
ty

 R32G32B32A32_FLOAT R G B A

 R32G32B32A32_SINT DX10/O
GL

R G B A

 R32G32B32A32_UINT DX10/O
GL

R G B A

 R32G32B32X32_FLOAT R G B 1.0

 R32G32B32_FLOAT R G B 1.0

 R32G32B32_SINT DX10/O
GL

R G B 1.0

 R32G32B32_UINT DX10/O
GL

R G B 1.0

 R16G16B16A16_UNORM R G B A

 R16G16B16A16_SNORM R G B A

 R16G16B16A16_SINT DX10/O
GL

R G B A

 R16G16B16A16_UINT DX10/O
GL

R G B A

 R16G16B16A16_FLOAT R G B A

 R32G32_FLOAT DX10/O
GL

R G 0.0 1.0 DX9 R G 1.
0

1.
0

 R32G32_SINT DX10/O
GL

R G 0.0 1.0

 R32G32_UINT DX10/O
GL

R G 0.0 1.0

 R32_FLOAT_X8X24_TYPEL
ESS

 DX10/O
GL

R 0.0 0.0 1.0

 X32_TYPELESS_G8X24_UI
NT

 DX10/O
GL

0.0 G 0.0 1.0

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 53

Proje
ct Surface Format Name

Filteri
ng

Shad
ow

Map

Chro
ma
Key

Border
Color
Mode R G B A

Bord
er

Colo
r

Mod
e R G B A

Securi
ty

 L32A32_FLOAT DX10/O
GL

L L L A

 R16G16B16X16_UNORM R G B 1.0

 R16G16B16X16_FLOAT R G B 1.0

 A32X32_FLOAT 0.0 0.0 0.0 A

 L32X32_FLOAT L L L 1.0

 I32X32_FLOAT I I I I

 B8G8R8A8_UNORM R G B A

 B8G8R8A8_UNORM_SRGB R G B A

 R10G10B10A2_UNORM R G B A

 R10G10B10A2_UNORM_S
RGB

 R G B A

 R10G10B10A2_UINT DX10/O
GL

R G B A

 R10G10B10_SNORM_A2_
UNORM

 R G B A

 R8G8B8A8_UNORM R G B A

 R8G8B8A8_UNORM_SRGB R G B A

 R8G8B8A8_SNORM R G B A

 R8G8B8A8_SINT DX10/O
GL

R G B A

 R8G8B8A8_UINT DX10/O
GL

R G B A

 R16G16_UNORM DX10/O
GL

R G 0.0 1.0 DX9 R G 1.
0

1.
0

 R16G16_SNORM DX10/O
GL

R G 0.0 1.0 DX9 R G 1.
0

1.
0

 R16G16_SINT DX10/O
GL

R G 0.0 1.0

 R16G16_UINT DX10/O
GL

R G 0.0 1.0

 R16G16_FLOAT DX10/O
GL

R G 0.0 1.0 DX9 R G 1.
0

1.
0

 B10G10R10A2_UNORM R G B A

 B10G10R10A2_UNORM_S
RGB

 R G B A

 R11G11B10_FLOAT R G B 1.0

 3D – Media – GPGPU

54 Doc Ref # IHD-OS-VLV-Vol7-04.14

Proje
ct Surface Format Name

Filteri
ng

Shad
ow

Map

Chro
ma
Key

Border
Color
Mode R G B A

Bord
er

Colo
r

Mod
e R G B A

Securi
ty

 R32_SINT DX10/O
GL

R 0.0 0.0 1.0

 R32_UINT DX10/O
GL

R 0.0 0.0 1.0

 R32_FLOAT DX10/O
GL

R 0.0 0.0 1.0 DX9 R 1.
0

1.
0

1.
0

 R24_UNORM_X8_TYPELES
S

 DX10/O
GL

R 0.0 0.0 1.0

 X24_TYPELESS_G8_UINT DX10/O
GL

0.0 G 0.0 1.0

 L16A16_UNORM L L L A

 I24X8_UNORM I I I I

 L24X8_UNORM L L L 1.0

 A24X8_UNORM 0.0 0.0 0.0 A

 I32_FLOAT I I I I

 L32_FLOAT L L L 1.0

 A32_FLOAT 0.0 0.0 0.0 A

 B8G8R8X8_UNORM R G B 1.0

 B8G8R8X8_UNORM_SRGB R G B 1.0

 R8G8B8X8_UNORM R G B 1.0

 R8G8B8X8_UNORM_SRGB R G B 1.0

 R9G9B9E5_SHAREDEXP R G B 1.0

 B10G10R10X2_UNORM R G B 1.0

 L16A16_FLOAT L L L A

 B5G6R5_UNORM R G B 1.0

 B5G6R5_UNORM_SRGB R G B 1.0

 B5G5R5A1_UNORM R G B A

 B5G5R5A1_UNORM_SRGB R G B A

 B4G4R4A4_UNORM R G B A

 B4G4R4A4_UNORM_SRGB R G B A

 R8G8_UNORM DX10/O
GL

R G 0.0 1.0 DX9 R G 1.
0

1.
0

 R8G8_SNORM DX10/O
GL

R G 0.0 1.0 DX9 R G 1.
0

1.
0

 R8G8_SINT DX10/O
GL

R G 0.0 1.0

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 55

Proje
ct Surface Format Name

Filteri
ng

Shad
ow

Map

Chro
ma
Key

Border
Color
Mode R G B A

Bord
er

Colo
r

Mod
e R G B A

Securi
ty

 R8G8_UINT DX10/O
GL

R G 0.0 1.0

 R16_UNORM DX10/O
GL

R 0.0 0.0 1.0

 R16_SNORM DX10/O
GL

R 0.0 0.0 1.0

 R16_SINT DX10/O
GL

R 0.0 0.0 1.0

 R16_UINT DX10/O
GL

R 0.0 0.0 1.0

 R16_FLOAT DX10/O
GL

R 0.0 0.0 1.0 DX9 R 1.
0

1.
0

1.
0

 A8P8_UNORM_PALETTE0 R G B A

 A8P8_UNORM_PALETTE1 R G B A

 I16_UNORM I I I I

 L16_UNORM L L L 1.0

 A16_UNORM 0.0 0.0 0.0 A

 L8A8_UNORM L L L A

 I16_FLOAT I I I I

 L16_FLOAT L L L 1.0

 A16_FLOAT 0.0 0.0 0.0 A

 L8A8_UNORM_SRGB L L L A

 R5G5_SNORM_B6_UNOR
M

 R G B 1.0

 P8A8_UNORM_PALETTE0 R G B A

 P8A8_UNORM_PALETTE1 R G B A

[VLV]
,

A1B5G5R5_UNORM R G B A

 R8_UNORM DX10/O
GL

R 0.0 0.0 1.0

 R8_SNORM DX10/O
GL

R 0.0 0.0 1.0

 R8_SINT DX10/O
GL

R 0.0 0.0 1.0

 R8_UINT DX10/O
GL

R 0.0 0.0 1.0

 3D – Media – GPGPU

56 Doc Ref # IHD-OS-VLV-Vol7-04.14

Proje
ct Surface Format Name

Filteri
ng

Shad
ow

Map

Chro
ma
Key

Border
Color
Mode R G B A

Bord
er

Colo
r

Mod
e R G B A

Securi
ty

 A8_UNORM 0.0 0.0 0.0 A

 I8_UNORM I I I I

 L8_UNORM L L L 1.0

 P4A4_UNORM_PALETTE0 R G B A

 A4P4_UNORM_PALETTE0 R G B A

 P8_UNORM_PALETTE0 R G B A

 L8_UNORM_SRGB L L L 1.0

 P8_UNORM_PALETTE1 R G B A

 P4A4_UNORM_PALETTE1 R G B A

 A4P4_UNORM_PALETTE1 R G B A

 DXT1_RGB_SRGB R G B 1.0

 R1_UNORM R 0.0 0.0 1.0

 YCRCB_NORMAL Cr Y Cb 1.0

 YCRCB_SWAPUVY Cr Y Cb 1.0

 P2_UNORM_PALETTE0 R G B A

 P2_UNORM_PALETTE1 R G B A

 BC1_UNORM R G B A

 BC2_UNORM R G B A

 BC3_UNORM R G B A

 BC4_UNORM DX10/O
GL

R 0.0 0.0 1.0

 BC5_UNORM DX10/O
GL

R G 0.0 1.0

 BC1_UNORM_SRGB R G B A

 BC2_UNORM_SRGB R G B A

 BC3_UNORM_SRGB R G B A

 MONO8 N/
A

N/
A

N/
A

N/
A

 YCRCB_SWAPUV Cr Y Cb 1.0

 YCRCB_SWAPY Cr Y Cb 1.0

 DXT1_RGB R G B 1.0

 FXT1 R G B A

 BC4_SNORM DX10/O
GL

R 0.0 0.0 1.0

 BC5_SNORM DX10/O
GL

R G 0.0 1.0

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 57

Proje
ct Surface Format Name

Filteri
ng

Shad
ow

Map

Chro
ma
Key

Border
Color
Mode R G B A

Bord
er

Colo
r

Mod
e R G B A

Securi
ty

 R16G16B16_FLOAT R G B 1.0

 BC6H_SF16 R G B 1.0

 BC7_UNORM R G B A

 BC7_UNORM_SRGB R G B A

 BC6H_UF16 R G B 1.0

 ETC1_RGB8 R G B 1.0

 ETC2_RGB8 R G B 1.0

 EAC_R11 R 0.0 0.0 1.0

 EAC_RG11 R G 0.0 1.0

 EAC_SIGNED_R11 R 0.0 0.0 1.0

 EAC_SIGNED_RG11 R G 0.0 1.0

 ETC2_SRGB8 R G B 1.0

 ETC2_RGB8_PTA R G B A

 ETC2_SRGB8_PTA R G B A

 ETC2_EAC_RGBA8 R G B A

 ETC2_EAC_SRGB8_A8 R G B A

SURFACE_STATE for Deinterlace, sample_8x8, and VME

This section contains media surface state definitions.

MEDIA_SURFACE_STATE

Restrictions: The Faulting modes described in the MEMORY_OBJECT_CONTROL_STATE should be set to
the same for the multi-surface Video Analytics functions like LBP Correlation and Correlation Search for
both the surfaces.

SAMPLER_STATE
SAMPLER_STATE has different formats, depending on the message type used:

• For , the sample_8x8 and deinterlace messages use a different format of SAMPLER_STATE as
detailed in the corresponding sections.

• For The Min LOD and Max LOD fields need range increased from [0.0,13.0] to [0.0,14.0] and
fractional bits increased from 6 to 8. This requires a few fields to be moved as indicated in the
text.

SAMPLER_STATE

SAMPLER_STATE for Sample_8x8 Message

 3D – Media – GPGPU

58 Doc Ref # IHD-OS-VLV-Vol7-04.14

DEINTERLACE_SAMPLER_STATE

 This state definition is used only by the deinterlace message. This state is stored as an array of up to 8
elements, each of which contains the dwords described here. The start of each element is spaced 8
dwords apart. The first element of the array is aligned to a 32-byte boundary. The index with range 0-7
that selects which element is being used is multiplied by 2 to determine the Sampler Index in the
message descriptor.

Restrictions

1. VDIWalker can be enabled only when frame is aligned to block size of 16x4 if DI is enabled
(interlaced) and 16x8 if DN only (Progressive).

2. When VDIWalker Frame Sharing is enabled driver should dispatch same number of Media Objects
to both half slice by explicitly programming half slice destination select as 01 and 10 alternately
(Note: Dispatch of threads should be in ping pong fashion to have load balance between both
Halfslice and better L3 utilization).

3. For VDIWalker disabled mode (when frame size is not aligned to 16x4 or 16x8) it is recommended
to have a simplified SW walker. Using Half Slice Destination Select 00 will affect performance
significantly.

Dispatch of Media Object Commands for VDIWalker Enabled

1. Frame Sharing is Disabled:
a. Program all MO commands to have Half Slice destination select as either 01 or 10
b. Y_stride programmed in Sampler State will be ignored

2. Frame Sharing Enabled:
a. if Frame_height (in blocks) % 2 = 0 (where block height = 4 when DI enabled, 8 when DN

only) dispatch MO in ping pong fashion
b. Y_Stride of 0,1,2,3 is valid and VDIwalker will divide frame into multiple slices based on

stride value
c. if Frame_height (in blocks) % 2 > 0, then dispatch MO in ping pong fashion and all threads

for blocks from residual row to be sent to Half Slice0

Psuedo Code for Media Object Dispatch
 // Variables:
 Frame Height in pixels => frame_height
 Frame Width in pixels => frame_width
 Frame Height in Blocks => fh
 Frame Width in Blocks => fw
 Block Height in Pixels => block_height = Interlaced ? 4: 8

 // Code:
 fw = frame_width / 16;
 fh = frame_height / block_height;

Calculate Residual Blocks
 If (fh % (2**stride)) ≠ 0 {
 Y_Blocks_Remainder = (fh % (2**stride))

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 59

 If (Y_Blocks_Remainder > (2**stride) / 2) {
 Y_Blocks_Remainder_HS1 = (2**stride) / 2
 Y_Blocks_Remainder_HS2 = Y_Blocks_Remainder - (2**stride) / 2
 }
 Else {
 Y_Blocks_Remainder_HS1 = Y_Blocks_Remainder
 Y_Blocks_Remainder_HS2 = 0
 }
 }
 Else {
 Y_Blocks_Remainder_HS1 = 0
 Y_Blocks_Remainder_HS2 = 0
 }

Dispatch Media Object
 total_media_obj_cnt = fw * fh;
 reminder_media_obj_cnt_HS1 = fw * Y_Blocks_Remainder_HS1;
 reminder_media_obj_cnt_HS2 = fw * Y_Blocks_Remainder_HS2;

 ping_pong_media_obj_cnt = total_media_obj_cnt – (reminder_media_obj_cnt_HS1 +
reminder_media_obj_cnt_HS1);

 for (i = 0; i < ping_pong_media_obj_cnt; i++) {
 if (i % 2 == 0) {
 dispatch_media_object_hs1;
 }
 else {
 dispatch_media_object_hs2;
 }
 }

 for (i = 0; i < reminder_media_obj_cnt_HS1; i++) {
 dispatch_media_object_hs1;
 }

 for (i = 0; i < reminder_media_obj_cnt_HS2; i++) {
 dispatch_media_object_hs2;
 }

SAMPLER_8x8_STATE

SAMPLER_BORDER_COLOR_STATE

For , if border color is used, all formats must be provided. Hardware will choose the appropriate format
based on Surface Format and Texture Border Color Mode. The values represented by each format
should be the same (other than being subject to range-based clamping and precision) to avoid
unexpected behavior.

DWord Bits Description

0 31:24 Border Color Alpha
Format = UNORM8

23:16 Border Color Blue
Format = UNORM8

15:8 Border Color Green
Format = UNORM8

7:0 Border Color Red
Format = UNORM8

1 31:0 Border Color Red
Format = IEEE_FP

 3D – Media – GPGPU

60 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bits Description

2 31:0 Border Color Green
Format = IEEE_FP

3 31:0 Border Color Blue
Format = IEEE_FP

4 31:0 Border Color Alpha
Format = IEEE_FP

5 31:16 Border Color Green
Format = FLOAT16

15:0 Border Color Red
Format = FLOAT16

6 31:16 Border Color Alpha
Format = FLOAT16

15:0 Border Color Blue
Format = FLOAT16

7 31:16 Border Color Green
Format = UNORM16

15:0 Border Color Red
Format = UNORM16

8 31:16 Border Color Alpha
Format = UNORM16

15:0 Border Color Blue
Format = UNORM16

9 31:16 Border Color Green
Format = SNORM16

15:0 Border Color Red
Format = SNORM16

10 31:16 Border Color Alpha
Format = SNORM16

15:0 Border Color Blue
Format = SNORM16

11 31:24 Border Color Alpha
Format = SNORM8

23:16 Border Color Blue
Format = SNORM8

15:8 Border Color Green
Format = SNORM8

7:0 Border Color Red
Format = SNORM8

Border Color Programming for Interger Surface Formats

For integer formats, there are different possible cases depending on the bits per channel and bits per
texel of the surface format.

Integer Surface Format – Different Types Surface formats

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 61

Integer Surface Format – Different Types Surface formats

32bpc, 128 bpt case(4 types) R32G32B32A32_UINT
R32G32B32_UINT
R32G32B32A32_SINT
R32G32B32_SINT

16bpc, 64bpt case(5 types) R16G16B16A16_UINT, R10G10B10A2_UINT
X32_TYPELESS_G8X24_UINT
R16G16B16_UINT
R16G16B16A16_SINT
R16G16B16_SINT

32bpc, 64bpt case (2 types) R32G32_UINT
R32G32_SINT

8bpc, 32 bpt cases (9 types) R8G8B8A8_UINT

R8G8_UINT

R8_UINT

X24_TYPELESS_G8_UINT

R8G8B8_UINT

R8G8B8A8_SINT

R8G8_SINT

R8_SINT

R8G8B8_SINT

16bpc, 32 bpt cases (4 types) R16G16_UINT
R16_UINT
R16G16_SINT
R16_SINT

32bpc, 32 bpt case (2 types) R32_UINT
R32_SINT

HW supports only 1 index for a given Sampler Border Color state and Sampler State. So, SW will have to
program the table in SAMPLER_BORDER_COLOR_STATE at offsets DWORD16 to 19, as per the integer
surface format type (depends on the bits per channel and bits per texel of the surface format). If any
color channel is missing from the surface format, corresponding border color should be programmed as
zero and if alpha channel is missing, corresponding Alpha border color should be programmed as 1.
Some of the representative cases are listed below:

Case1: R32G32B32A32_UINT (32bpc, 128 bpt 4 channels)

Case2: R32G32B32A32_SINT (32bpc, 128 bpt, 4 channel, SINT)

Each of the values in the above table would have be to programmed as sint32 value.

Case3: R32G32B32_UINT (32bpc, 128 bpt, 3 channel)

R/G/B values would be programmed like in Case1. Alpha channel value at DWORDN+3 would have to
be programmed as Integer 1.

 3D – Media – GPGPU

62 Doc Ref # IHD-OS-VLV-Vol7-04.14

Case4: R32_UINT (32bpc, 32 bpt case with 1 channel)

Case5: R16G16B16A16_UINT (16bpc, 64 bpt, 4 channel, UINT)

Case6: R8G8B8A8_SINT (8bpc, 32 bpt, 4 channels, SINT)

Case7: R32G32_UINT (32bpc, 64bpt, 2 channel case))

Case8: R8_UINT (8bpc, 32 bpt, 1 channel case)

Case9: R16G16_UINT (16bpc, 32 bpt case)

3DSTATE_CHROMA_KEY

3DSTATE_SAMPLER_PALETTE_LOAD0

3DSTATE_MONOFILTER_SIZE

Messages

Restrictions:

• Use of any message to the Sampling Engine function with the End of Thread bit set in the
message descriptor is not allowed.

Initiating Message

Execution Mask

SIMD16. The 16-bit execution mask forms the valid pixel signals. This determines which pixels are
sampled and results returned to the GRF registers. Samples for invalid pixels are not overwritten in the
GRF. However, if LOD needs to be computed for a subspan based on the message type and MIP filter
mode and at least one pixel in the subspan being valid, the sampling engine assumes that the
parameters for the upper left, upper right, and lower left pixels in the subspan are valid regardless of
the execution mask, as these are needed for the LOD computation.

SIMD8. The lower 8 bits of the execution mask forms the valid pixel signals. If LOD needs to be
computed based on MIP filter mode and at least one pixel in the subspan being valid, the sampling
engine assumes that the parameters for the upper left, upper right, and lower left pixels in the subspan
are valid regardless of the execution mask, since these are needed for the LOD computation.

SIMD4x2. The lower 8 bits of the execution mask is interpreted in groups of four. If any of the high 4
bits are asserted, that sample is valid. If any of the low 4 bits are asserted, that sample is valid. The
Write Channel Mask rather than the execution mask determines which channels are written back to
the GRF.

SIMD32. The execution mask is ignored, all pixels are considered valid and all channels are returned
regardless of the execution mask.

Message Descriptor

Bit Description

19 Header Present: Specifies whether the message includes a header phase. If the header is not
present (this field is zero), all of the fields normally contained in the header are assumed to be 0.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 63

Bit Description

Format = Enable

18:17 SIMD Mode: Specifies the SIMD mode of the message being sent.

Format = U2

0 = SIMD4x2

1 = SIMD8

2 = SIMD16

3 = SIMD32/64

16:12 Message Type: Specifies the type of message being sent.

Format = U5

Refer to the table in section Payload Parameter Definition for encoding details.

11:8 Sampler Index: Specifies the index into the sampler state table. Ignored for ld, resinfo, sampleinfo
and cache_flushtype messages.

Format = U4

Range = [0,15]

Programming Notes:

• for the deinterlace message, this field must be a multiple of 2 (even)

• for the sample_8x8 message, this field must be a multiple of 4

7:0 Binding Table Index: Specifies the index into the binding table. Ignored for cache_flush type
messages.

Format = U8

Range = [0,255]

Message Header

The message header for the sampling engine is the same regardless of the message type. If the header
is not present, behavior is as if the message was sent with all fields in the header set to zero (write
channel masks are all enabled and offsets are zero). When Response length is 0 for sample_8x8
message then the data from sampler is directly written out to memory using media write message.

DWord Bits Description

M0.7 31:0

M0.6 31:0

M0.5 31:0 Ignored

 4:0 Reserved

M0.4 31:0 Reserved

 3D – Media – GPGPU

64 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bits Description

M0.3 31:5 Ignored

 4:0 Ignored

M0.2 31:22 Ignored

M0.2 31:24 Ignored

 23 Reserved

 19:18 SIMD32/64 Output Format Control

The contents of this field are ignored. The 16 bit Full mode is always selected.

 17

 17:16 Gather4 Source Channel Select: Selects the source channel to be sampled in the
gather4* messages. Ignored for other message types.

0: Red channel

1: Green channel

2: Blue channel

3: Alpha channel

Programming Note:

• For gather4*_c messages, this field must be set to 0 (Red channel).

16 Ignored

 15 Alpha Write Channel Mask: Enables the alpha channel to be written back to the
originating thread.

0: Alpha channel will be written back

1: Alpha channel will not be written back

Programming Notes:

• a message with all four channels masked is not allowed.

• this field is ignored for the deinterlace message.

• this field must be set to zero for sample_8x8 in VSA mode.

• This field must be set to zero for all gather4* messages.

 14 Blue Write Channel Mask: See Alpha Write Channel Mask

 13 Green Write Channel Mask: See Alpha Write Channel Mask

 12 Red Write Channel Mask: See Alpha Write Channel Mask

 11:8 U Offset: the u offset from the _aoffimmi modifier on the sample or ld instruction in

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 65

DWord Bits Description

DX10. Must be zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER. Must
be set to zero if _aoffimmi is not specified. Format is S3 2's complement.

Programming Note:

• this field is ignored for the sample_unorm*, sample_8x8, and deinterlace messages

• this field is ignored if the offu parameter is included in the gather4* messages

• Issues: offu/offv are calculated in normalized space and hence subject to small truncation
error.

 7:4 V Offset: the v offset from the _aoffimmi modifier on the sample or ld instruction in
DX10. Must be zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER. Must
be set to zero if _aoffimmi is not specified. Format is S3 2's complement.

Programming Note:

• this field is ignored for the sample_unorm*, sample_8x8, and deinterlace
messages

• this field is ignored if the offu parameter is included in the gather4* messages
• Issues: offu/offv are calculated in normalized space and hence subject to

small truncation error.

 3:0 R Offset: the r offset from the _aoffimmi modifier on the sample or ld instruction in
DX10. Must be zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER. Must
be set to zero if _aoffimmi is not specified. Format is S3 2's complement.

Programming Note:

• this field is ignored for the sample_unorm*, sample_8x8, and deinterlace messages

M0.1 31:0 Ignored

M0.0 31:0 Ignored

Payload Parameter Definition

The following sections show all of the messages supported by the sampling engine. The message type
field in the message descriptor in combination with the message length determines which message is
being sent. The table defines all of the parameters sent for each message type. The position of the
parameters in the payload is given in the section following corresponding to the SIMD mode given in
the table. The instruction column indicates the DX10 shader instructions expected to be translated to
each message type.

All parameters are of type IEEE_Float, except those in the ld and resinfo instruction message types,
which are of type S31. Any parameter indicated with a blank entry in the table is unused. A message
register containing only unused parameters not included as part of the message. The response lengths
given below assume all channels are unmasked. SIMD16 messages with masked channels will have
reduced response length.

 3D – Media – GPGPU

66 Doc Ref # IHD-OS-VLV-Vol7-04.14

Payload Parameter Definition

The table below shows all of the message types supported by the sampling engine. The Message Type
field in the message descriptor determines which message is being sent. The SIMD Mode field
determines the number of instances (i.e. pixels) and the formatting of the initiating and writeback
messages. The Header Present field determines whether a header is delivered as the first phase of the
message or the default header from R0 of the thread's dispatch is used. The Message Length field is
used to vary the number of parameters sent with each message. Higher-numbered parameters are
optional, and default to a value of 0 if not sent but needed for the surface being sampled. Parameter 0
is required except for the sampleinfo message for [Pre-DevSKL], which has no parameter 0.

The message lengths are computed as follows, where N is the number of parameters (N is rounded up
to the next multiple of 4 for SIMD4x2), and H is 1 if the header is present, 0 otherwise. The maximum
message length allowed to the sampler is 11.

SIMD Mode Message Length Project

SIMD4x2 H + (N/4)

SIMD8
SIMD8D

H + N

SIMD16 H + (2*N)

The response lengths are computed as follows:

SIMD Mode
Response Length

Return Format = 32-bit
Response Length

Return Format = 16-bit ***

SIMD4x2 1 not allowed

SIMD8 sample+killpix 5 not allowed

all other message types 4 2 **

SIMD16 8 * 4 *

* For SIMD16, phases in the response length are reduced by 2 for each channel that is masked.

SIMD16 messages with six or more parameters exceed the maximum message length allowed, in which
case they are not supported. This includes some forms of sample_b_c, sample_l_c, and gather4_po_c
message types. Note that even for these messages, if 5 or fewer parameters are included in the
message, the SIMD16 form of the message is allowed. SIMD16 forms of sample_d and sample_d_c are
not allowed, regardless of the number of parameters sent.

Message Types

The behavior of each message type is as follows:

Message
Type Description

sample The surface is sampled using the indicated sampler state. LOD is computed using gradients
between adjacent pixels. One, two, or three parameters may be specified depending on
how many coordinate dimensions the indicated surface type uses. Extra parameters

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 67

Message
Type Description

specified are ignored. Missing parameters are defaulted to 0.

Programming Notes:

• The Surface Type of the associated surface must be SURFTYPE1D,
SURFTYPE_2D, SURFTYPE_3D, or SURFTYPE_CUBE.

• The Surface Format of the associated surface cannot be MONO8.
• If the Surface Format of the associated surface is UINT or SINT, the Surface

Type cannot be SURFTYPE_3D or SURFTYPE_CUBE and Address Control Mode
cannot be CLAMP_BORDER or HALF_BORDER.

• sample is not supported in SIMD4x2 mode.
• Number of Multisamples on the associated surface must be

MULTISAMPLECOUNT_1.

sample+killp
ix

The surface is sampled as in the sample message type. An additional register is returned
after the sample results which contains the kill pixel mask. This message type is required to
allow the result of a chroma key enabled sampler in KEYFILTER_KILL_ON_ANY_MATCH
mode to affect the final pixel mask.

Programming Notes:

• The Surface Type of the associated surface must be SURFTYPE1D,
SURFTYPE_2D, SURFTYPE_3D, or SURFTYPE_CUBE.

• The Surface Format of the associated surface cannot be MONO8.
• If the Surface Format of the associated surface is UINT or SINT, the Surface

Type cannot be SURFTYPE_3D or SURFTYPE_CUBE and Address Control Mode
cannot be CLAMP_BORDER or HALF_BORDER.

• sample+killpix is supported only in SIMD8 mode.
• Number of Multisamples on the associated surface must be

MULTISAMPLECOUNT_1.

sample_b The surface is sampled using the indicated sampler state. LOD is computed using gradients
between adjacent pixels, then the value in the parameter is added to the LOD for each
pixel. The LOD bias delivered in the bias parameter is restricted to a range of [-16.0, +16.0).
Values outside this range produce undefined results.

Programming Notes:

• The Surface Type of the associated surface must be SURFTYPE1D, SURFTYPE_2D,
SURFTYPE_3D, or SURFTYPE_CUBE.

• The Surface Format of the associated surface cannot be MONO8
• If the Surface Format of the associated surface is UINT or SINT, the Surface Type

cannot be SURFTYPE_3D or SURFTYPE_CUBE and Address Control Mode cannot be
CLAMP_BORDER or HALF_BORDER.

 3D – Media – GPGPU

68 Doc Ref # IHD-OS-VLV-Vol7-04.14

Message
Type Description

• sample_b is not supported in SIMD4x2 mode.
• Number of Multisamples on the associated surface must be

MULTISAMPLECOUNT_1.

sample_l
sample_lz The surface is sampled using the indicated sampler state. LOD is not computed, but

instead is taken from the lod parameter.

Programming Notes:

• The Surface Type of the associated surface must be SURFTYPE1D, SURFTYPE_2D,
SURFTYPE_3D, or SURFTYPE_CUBE.

• If the Surface Format of the associated surface is UINT or SINT, the Surface Type
cannot be SURFTYPE_3D or SURFTYPE_CUBE and Address Control Mode cannot be
CLAMP_BORDER or HALF_BORDER.

• Number of Multisamples on the associated surface must be
MULTISAMPLECOUNT_1.

sample_c
sample_c_lz The surface is sampled using the indicated sampler state. All four coordinates must be

specified, however v and r may not be used depending on the indicated surface type. The
ai parameter indicates the array index for a cube surface.The ref parameter specifies the
reference value that is compared against the red channel of the sampled surface, and the
texel is replaced with either white or black depending on the result of the comparison.

The WGF sample_c_lz instruction is implemented by issuing the sample_c message with
Force LOD to Zero enabled in the message header or by issuing the sample_l_c message
with the LOD parameter set to zero.

Programming Notes:

• The Surface Type of the associated surface must be SURFTYPE1D, SURFTYPE_2D, or
SURFTYPE_CUBE.

• The Surface Format of the associated surface must be indicated as supporting
shadow mapping as indicated in the surface format table.

• With sample_c, MIPFILTER_LINEAR, MAPFILTER_LINEAR, MAPFILTER_ANISOTROPIC
are allowed even for surface formats that are listed as not supporting filtering in the
surface formats table.

• Use of the SIMD4x2 form of sample_c without Force LOD to Zero enabled in the
message header is not allowed, as it is not possible for the hardware to compute
LOD for SIMD4x2 messages. Sample_c is not supported in SIMD4x2 mode.

• Use of sample_c with DX9 Texture Border Color Mode and either of the following is
undefined:
• any applicable Address Control Mode (depending on Surface Type) is set to

TEXCOORDMODE_CLAMP_BORDER or TEXCOORDMODE_HALF_BORDER
• Surface Type is SURFTYPE_CUBE and any Cube Face Enable is disabled

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 69

Message
Type Description

• Use of sample_c with SURFTYPE_CUBE surfaces is undefined with the following
surface formats: I24X8_UNORM, L24X8_UNORM, A24X8_UNORM, I32_FLOAT,
L32_FLOAT, A32_FLOAT.

• Number of Multisamples on the associated surface must be
MULTISAMPLECOUNT_1.

sample_b_c This is a combination of sample_b and sample_c. Both the LOD bias and reference values
are delivered. All restrictions applying to both sample_b and sample_c must be honored.

sample_l_c This is a combination of sample_l and sample_c. Both the LOD and reference values are delivered.
All restrictions applying to both sample_l and sample_c must be honored. However, unlike sample_c,
sample_l_c is allowed as a SIMD4x2 message.

sample_g
sample_d The surface is sampled using the indicated sampler state. LOD is computed using the

gradients present in the message. The r coordinate and its gradients are required only for
surface types that use the third coordinate. Usage of this message type on cube surfaces
assumes that the u, v, and gradients have already been transformed onto the appropriate
face, but still in [-1,+1] range. The r coordinate contains the faceid, and the r gradients are
ignored by hardware.

Programming Notes:

• The Surface Type of the associated surface must be SURFTYPE1D,
SURFTYPE_2D, SURFTYPE_3D, or SURFTYPE_CUBE.

• The Surface Format of the associated surface cannot be MONO8.
• If the Surface Format of the associated surface is UINT or SINT, the Surface

Type cannot be SURFTYPE_3D or SURFTYPE_CUBE and Address Control Mode
cannot be CLAMP_BORDER or HALF_BORDER.

• Number of Multisamples on the associated surface must be
MULTISAMPLECOUNT_1.

sample_g_c
sample_d_c

This is a combination of sample_g and sample_c. Both the gradients for calculating LOD and
reference values are delivered. All restrictions applying to both sample_g and sample_c must be
honored. However, unlike sample_c, sample_g_c is allowed as a SIMD4x2 message.

resinfo The surface indicated in the surface state is not sampled. Instead, the width, height, depth,
and MIP count of the surface are returned as indicated in the table below. The format of
the returned data is UINT32. The width, height, and depth may be shifted right, per pixel,
by the LOD value provided in the lod parameter to give the dimensions of the specified
mip level. The lod parameter is an unsigned 32-bit integer in this mode (note that sending
a signed 32-bit integer always has the same effect, as negative values are out-of-range
when interpreted as unsigned integers). The Sampler State Pointer and Sampler Index are
ignored.

For SURFTYPE_1D, 2D, 3D, and CUBE surfaces, if the delivered LOD is outside of the range
[0..MipCount-1], the returned values in red, green, and blue channels are 0.

 3D – Media – GPGPU

70 Doc Ref # IHD-OS-VLV-Vol7-04.14

Message
Type Description

surface type red green blue alpha

SURFTYPE1D (Width+1)>>LOD Surface Array?

Depth+1: 0

0 MIPCount

SURFTYPE_2D (Width+1)>>LOD
(Height+1)>>LOD

Surface Array?

Depth+1: 0

MIPCount

SURFTYPE_3D (Width+1)>>LOD (Height+1)>>LOD (Depth+1)>>LOD MIPCount

SURFTYPE_CUBE (Width+1)>>LOD (Height+1)>>LOD Depth==0 ? 0:
Depth+1

Surface Array ?

Depth+1 : 0

MIPCount

SURFTYPE_BUFFER

SURFTYPE_STRBUF

Buffer size (from
combined
Depth/Height/Width)

If buffer size is exactly
2^32, zero is
returned in this field.

undefined undefined undefined

SURFTYPE_NULL 0 0 0 0

ld

ld2dms
Id2dms_w

ld_mcs

Id2dss

ld_lz

The surface is sampled using a default sampler state, indicated below. The lod parameter
contains the LOD of the mip map to be sampled. If the message doesn't include an lod
parameter, the message samples from LOD 0. The parameter si contains the sample index,
which is clamped to the number of samples on the surface (supported by some messages).
The v and r channel may be ignored depending on the indicated surface type. All incoming
values are unsigned 32-bit integers in this mode. The u, v, and r parameters contain integer
texel addresses on the LOD indicated in the parameter. The Sampler State Pointer and
Sampler Index are ignored.

For these message types, the sampler state is defaulted as follows:

• min, mag, and mip filter modes are "nearest"
• all address control modes are zero (a special mode in which any texel off the map or

outside the MIP range of the surface has a value of zero in all channels, except for
surface formats without an alpha channel, which will return a value of one in the
alpha channel)

Issues:Address offset needs to be zero for ld2dms/ld2dss messages

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 71

Message
Type Description

The mcs parameter in the ld2dms message defines the multisample control data and is
used only to sample from a multisampled surface.

The ld_mcs message uses the MCS Base Address and MCS Surface Pitch fields in
SURFACE_STATE to determine the base address and pitch of the surface. Surface Format is
overridden to R8_UINT if Number of Multisamples is 4, or R32_UINT if Number of
Multisamples is 8. This message cannot be used on a non-multisampled surface.
Otherwise, ld_mcs behaves like the ld message. If ld_mcs is issued on a surface with MCS
disabled, this message returns zeros in all channels.

The ssi parameter in the Id2dss message defines the sample slice that will be sampled
from. Refer to the multisample storage format in the GPU Overview volume for more
details.

Programming Notes:

• The Surface Type of the associated surface must be SURFTYPE1D,
SURFTYPE_2D, SURFTYPE_3D, or SURFTYPE_BUFFER for the ld message.

• The Surface Type of the associated surface must be SURFTYPE_2D for the
ld_mcs , ld2dms , and Id2dss messages.

• The Surface Format of the associated surface cannot be MONO8.
• Number of Multisamples on the associated surface must be

MULTISAMPLECOUNT_1 for the ld message type.
• Issues: Surface formats R32G32B32X32_FLOAT, X32_TYPELESS_G8X24_UINT,

R16G16B16X16_UNORM, R16G16B16X16_FLOAT, X24_TYPELESS_G8_UINT,
L24X8_UNORM, L32_FLOAT, B8G8R8X8_UNORM, B8G8R8X8_UNORM_SRGB,
R8G8B8X8_UNORM, R8G8B8X8_UNORM_SRGB, B10G10R10X2_UNORM,
B5G6R5_UNORM, B5G6R5_UNORM_SRGB, L16_UNORM,
R5G5_SNORM_B6_UNORM, L8_UNORM, L8_UNORM_SRGB, R1_UNORM,
BC4_UNORM (DXT4/5) will return zero in the alpha channel, for out of bound
case.

sampleinfo The surface indicated in the surface state is not sampled. Instead, the number of samples
(UINT32) and the sample position palette index (UINT32) for the surface are returned in the
red and alpha channels respectively as UINT32 values. The sample position palette index
returned in alpha is incremented by one from its value in the surface state. The Sampler
State Pointer and Sampler Index are ignored.

Programming Notes:

• The Surface Type of the associated surface must be SURFTYPE_2D or SURFTYPE_NULL

LOD The surface indicated in the surface state is not sampled. Instead, LOD is computed as if
the surface will be sampled, using the indicated sampler state, and the clamped and
unclamped LOD values are returned in the red and green channels, respectively, in
FLOAT32 format. The blue and alpha channels are undefined, and can be masked to avoid

 3D – Media – GPGPU

72 Doc Ref # IHD-OS-VLV-Vol7-04.14

Message
Type Description

returning them. LOD is computed using gradients between adjacent pixels. Three
parameters are always specified, with extra parameters not needed for the surface being
ignored.

Programming Notes:

• The Surface Type of the associated surface must be SURFTYPE1D,
SURFTYPE_2D, SURFTYPE_3D, or SURFTYPE_CUBE.

• The Surface Format of the associated surface cannot be MONO8
• The Surface Format of the associated surface cannot be any UINT or SINT

format.
• LOD is not supported in SIMD4x2 mode.
• Number of Multisamples on the associated surface must be

MULTISAMPLECOUNT_1.

gather4

gather4_po

(load4)

The surface is sampled using bilinear filtering, regardless of the filtering mode specified in
the sampler state. For SURFTYPE_2D LOD is forced to zero before sampling. The samples
are not filtered, but instead the four samples are returned directly in the sample's
corresponding four channels as follows:

upper left sample = alpha channel upper right sample = blue channel

lower left sample = red channel lower right sample = green channel

Two or three parameters may be specified depending on how many coordinate
dimensions the indicated surface type uses. Extra parameters specified are ignored.
Missing parameters default to 0.

The gather4_po message has offu and offv parameters, which contain texel-space offsets
that override the U/V Offset fields in the message header. Unlike the message header
fields however, these offsets have a wider range [-32,+31], and can differ per pixel or
sample. The format of the data is 32-bit 2's complement signed integer, but hardware only
interprets the least significant 6 bits of each value, treating it as a 6-bit 2's complement
signed integer.

Programming Notes:

• The Surface Type of the associated surface must be SURFTYPE_2D or
SURFTYPE_CUBE. If the message type is gather4_po, only SURFTYPE_2D is allowed.

• The Surface Format of the associated surface cannot be MONO8
• The Surface Format of the associated surface cannot be any UINT or SINT format.
• Issues: selecting green on R32G32_float will have some erratic behavior according to

the table below:

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 73

Message
Type Description

 DirectX OpenGL

gather4 only on this resource Erratic
output

Will return erroneous value if alpha
selected

gather4 + other sample operations on
this resource

 Erratic output

• The channel selected is determined by the Gather4 Source Channel Select field in the
message header.

• Mip Mode Filter must be set to MIPFILTER_NONE
• For the case of gather4 when the fetch component color is not part of the map,

Sampler will need to return 1 on all channel if the return component is alpha (and
doesn't exist) and 0 if the return component is red, green, blue that doesn't exist.

• Number of Multisamples on the associated surface must be
MULTISAMPLECOUNT_1.

• Use of gather4 or gather4_po with DX9 Border Color Mode and either of the
following is underfined:
o any applicable Address Control Mode (depending on Surface Type) is set to

TEXCOORDMODE_CLAMP_BORDER or TEXCOORDMODE_HALF_BORDER
o Surface Type is SURFTYPE_CUBE and any Cube Face Enable is disabled

• Issues: offu/offv are calculated in normalized space and hence subject to small
truncation error.

gather4_c
gather4_po_
c

The surface is sampled using bilinear filtering, regardless of the filtering mode specified in
the sampler state. For SURFTYPE_2D LOD is forced to zero before sampling. The samples
are not filtered, but instead the four samples are returned, after being compared with the
ref paramater as in the sample_c message. Each texel is replaced with either white or block
depending on the result of the comparison. The four samples are returned in the sample's
corresponding four channels in the same mapping as the gather4 message. The offu and
offv parameters in the gather4_po_c message cause offset override behavior as described
in the gather4 message.

Programming Notes:

• The Surface Type of the associated surface must be SURFTYPE_2D or
SURFTYPE_CUBE. If the message type is gather4_po_c, only SURFTYPE_2D is allowed.

• The Surface Format of the associated surface must be one of the following:
R32_FLOAT_X8X24_TYPELESS, R32_FLOAT, R24_UNORM_X8_TYPELESS, R16_UNORM.

• The channel selected is determined by the Gather4 Source Channel Select field in the
message header.

• Mip Mode Filter must be set to MIPFILTER_NONE
• Use of gather4_c or gather4_po_c with DX9 Border Color Mode and either of the

following is underfined:

 3D – Media – GPGPU

74 Doc Ref # IHD-OS-VLV-Vol7-04.14

Message
Type Description

o Surface Type is SURFTYPE_CUBE and any Cube Face Enable is disabled
o any applicable Address Control Mode (depending on Surface Type) is set to

TEXCOORDMODE_CLAMP_BORDER or TEXCOORDMODE_HALF_BORDER
• Number of Multisamples on the associated surface must be

MULTISAMPLECOUNT_1.
• Issues: offu/offv are calculated in normalized space and hence subject to small

truncation error.

sample_unor
m The surface is sampled using the indicated sampler state. 32 contiguous pixels in a 8-wide

by 4-high arrangement are sampled. The U and V addresses for the upper left pixel is
delivered in this message along with a Delta U and Delta V parameter. Given a pixel at (x,y)
relative to the upper left pixel (where (0,0) is the upper left pixel), the U and V for that pixel
are computed as follows:

U(x,y) = U(0,0) + DeltaU * x

V(x,y) = V(0,0) + DeltaV * y

Programming Notes:

• The Surface Type of the associated surface must be SURFTYPE_2D

• The Surface Format of the associated surface must be UNORM with <= 8 bits per channel

• The MIP Count, Depth, Surface Min LOD, Resource Min LOD, and Min Array Element of the
associated surface must be 0

• The Min and Mag Mode Filter must be MAPFILTER_NEAREST or MAPFILTER_LINEAR

• The Mip Mode Filter must be MIPFILTER_NONE

• The TCX and TCY Address Control Mode cannot be
TEXCOORDMODE_CLAMP_BORDERTEXCOORDMODE_HALF_BORDERTEXCOORDMODE_MIRRORTEXCOORD
MODE_MIRROR_ONCETEXCOORDMODE_WRAP

• DeltaU * Width of the associated surface must be less than or equal to 3.0

• DeltaV * Height of the associated surface must be less than or equal to 3.0

• Number of Multisamples on the associated surface must be
MULTISAMPLECOUNT_1.

sample_unor
m_RG

sample_unor
m_RG
+killpix

sample_unor
m
+killpix

This message is identical to the sample_unorm message except it returns a kill pixel mask
in addition to the selected channels in the writeback message. This message type is
required to allow the result of a chroma key enabled sampler in
KEYFILTER_KILL_ON_ANY_MATCH mode to affect the final pixel mask. All restrictions of the

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 75

Message
Type Description

sample_unorm message apply to this message also.

deinterlace The surface is deinterlaced and/or denoised, using state defined in SAMPLER_STATE. The U
and V addresses for the upper left pixel are delivered in this message.

Programming Notes:

• For surfaces of type SURFTYPE_CUBE, the sampling engine requires u, v, and r parameters
that have already been divided by the absolute value of the parameter (u, v, or r) with the
largest absolute value.

Parameter Types

sample*, LOD, and gather4 messages

For all of the sample*, LOD, and gather4 message types, all parameters are 32-bit floating point, except
the mcs, offu, and offv parameters. Usage of the u, v, and r parameters is as follows based on Surface
Type. Normalized values range from [0,1] across the surface, with values outside the surface behaving
as specified by the Address Control Mode in that dimension. Unnormalized values range from [0,n-1]
across the surface, where n is the size of the surface in that dimension, with values outside the surface
being clamped to the surface.

Surface Type u v r ai

SURFTYPE1D normalized x
coordinate

unnormalized array
index

ignored ignored

SURFTYPE_2D normalized x
coordinate

normalized y
coordinate

unnormalized array
index

ignored

SURFTYPE_3D normalized x
coordinate

normalized y
coordinate

normalized z
coordinate

ignored

SURFTYPE_CUBE normalized x
coordinate

normalized y
coordinate

normalized z
coordinate

unnormalized array
index

mcs parameter

The mcs parameter delivers the multisample control data. The format of this parameter is always a 32-
bit unsigned integer. Refer to the section titled Multisampled Surface Behavior for details on this
parameter.

Ld* messages

For the ld message types, all parameters are 32-bit unsigned integers, except the mcs parameter. Usage
of the u, v, and r parameters is as follows based on Surface Type. Unnormalized values range from [0,n-
1] across the surface, where n is the size of the surface in that dimension. Input of any value outside of
the range returns zero.

Surface Type u v r

SURFTYPE1D unnormalized x coordinate unnormalized array index ignored

SURFTYPE_2D unnormalized x coordinate unnormalized y coordinate unnormalized array index

 3D – Media – GPGPU

76 Doc Ref # IHD-OS-VLV-Vol7-04.14

Surface Type u v r

SURFTYPE_3D unnormalized x coordinate unnormalized y coordinate unnormalized z coordinate

SURFTYPE_BUFFER unnormalized x coordinate ignored ignored

Writeback Message
Corresponding to the four input message definitions are four writeback messages. Each input message
generates a corresponding writeback message of the same type (SIMD16, SIMD8, SIMD4x2, or
SIMD32/64).

SIMD16

Return Format = 32-bit

A SIMD16 writeback message consists of up to 8 destination registers. Which registers are returned is
determined by the write channel mask received in the corresponding input message. Each asserted
write channel mask results in both destination registers of the corresponding channel being skipped in
the writeback message, and all channels with higher numbered registers being dropped down to fill in
the space occupied by the masked channel. For example, if only red and alpha are enabled, red is sent
to regid+0 and regid+1, and alpha to regid+2 and regid+3. The pixels written within each destination
register is determined by the execution mask on the send instruction.

DWord Bit Description

W0.7 31:0 Subspan 1, Pixel 3 (lower right) Red: Specifies the value of the pixel's red channel.

Format = IEEE Float, S31 signed 2's comp integer, or U32 unsigned integer. Format
depends on the Data Return Format programmed for the surface being sampled.

W0.6 31:0 Subspan 1, Pixel 2 (lower left) Red

W0.5 31:0 Subspan 1, Pixel 1 (upper right) Red

W0.4 31:0 Supspan 1, Pixel 0 (upper left) Red

W0.3 31:0 Subspan 0, Pixel 3 (lower right) Red

W0.2 31:0 Subspan 0, Pixel 2 (lower left) Red

W0.1 31:0 Subspan 0, Pixel 1 (upper right) Red

W0.0 31:0 Supspan 0, Pixel 0 (upper left) Red

W1.7 31:0 Subspan 3, Pixel 3 (lower right) Red

W1.6 31:0 Subspan 3, Pixel 2 (lower left) Red

W1.5 31:0 Subspan 3, Pixel 1 (upper right) Red

W1.4 31:0 Supspan 3, Pixel 0 (upper left) Red

W1.3 31:0 Subspan 2, Pixel 3 (lower right) Red

W1.2 31:0 Subspan 2, Pixel 2 (lower left) Red

W1.1 31:0 Subspan 2, Pixel 1 (upper right) Red

W1.0 31:0 Supspan 2, Pixel 0 (upper left) Red

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 77

DWord Bit Description

W2 Subspans 1 and 0 of Green: See W0 definition for pixel locations

W3 Subspans 3 and 2 of Green: See W1 definition for pixel locations

W4 Subspans 1 and 0 of Blue: See W0 definition for pixel locations

W5 Subspans 3 and 2 of Blue: See W1 definition for pixel locations

W6 Subspans 1 and 0 of Alpha: See W0 definition for pixel locations

W7 Subspans 3 and 2 of Alpha: See W1 definition for pixel locations

W8.7:1 Reserved (not written): W8 is only delivered when Pixel Fault Mask Enable is enabled.

W8.0 31:16 Reserved: always written as 0xffff

15:0 Pixel Null Mask: This field has the bit for all pixels set to 1 except those pixels in which a null
page was source for at least one texel.

SIMD8/SIMD8D

Return Format = 32-bit

This writeback message consists of four registers, or five in the case of sample+killpix. As opposed to
the SIMD16 writeback message, channels that are masked in the write channel mask are not skipped, all
four channels are always returned. The masked channels, however, are not overwritten in the
destination register.

For the sample+killpix message types, an additional register (W4) is included after the last channel
register.

DWord Bits Description

W0.7 31:0 Subspan 1, Pixel 3 (lower right) Red: Specifies the value of the pixel's red channel.

Format = IEEE Float, S31 signed 2's comp integer, or U32 unsigned integer. Format
depends on the Data Return Format programmed for the surface being sampled.

W0.6 31:0 Subspan 1, Pixel 2 (lower left) Red

W0.5 31:0 Subspan 1, Pixel 1 (upper right) Red

W0.4 31:0 Supspan 1, Pixel 0 (upper left) Red

W0.3 31:0 Subspan 0, Pixel 3 (lower right) Red

W0.2 31:0 Subspan 0, Pixel 2 (lower left) Red

W0.1 31:0 Subspan 0, Pixel 1 (upper right) Red

W0.0 31:0 Supspan 0, Pixel 0 (upper left) Red

W1 Subspans 1 and 0 of Green: See W0 definition for pixel locations

 3D – Media – GPGPU

78 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bits Description

W2 Subspans 1 and 0 of Blue: See W0 definition for pixel locations

W3 Subspans 1 and 0 of Alpha: See W0 definition for pixel locations

W4.7:1 Reserved (not written): This W4 is only delivered for the sample+killpix message type

W4.0 31:16 Dispatch Pixel Mask: This field is always 0xffff to allow dword-based ANDing with the R0
header in the pixel shader thread.

 15:0 Active Pixel Mask: This field has the bit for all pixels set to 1 except those pixels that
have been killed as a result of chroma key with kill pixel mode. Since the SIMD8 message
applies to only 8 pixels, only the low 8 bits within this field are used. The high 8 bits are
always set to 1.

W4.7:1 Reserved (not written): This W4 is only delivered when Pixel Fault Mask Enable is enabled.

W4.0 31:8 Reserved: always written as 0xffffff

7:0 Pixel Null Mask: This field has the bit for all pixels set to 1 except those pixels in which a null
page was source for at least one texel.

SIMD4x2

A SIMD4x2 writeback message always consists of a single message register containing all four channels
of each of the two pixels (called samples here, as they are not really pixels) of data. The write channel
mask bits as well as the execution mask on the send instruction are used to determine which of the
channels in the destination register are overwritten. If any of the four execution mask bits for a sample
is asserted, that sample is considered to be active. The active channels in the write channel mask will be
written in the destination register for that sample. If the sample is inactive (all four execution mask bits
deasserted), none of the channels for that sample will be written in the destination register.

DWord Bit Description

W0.7 31:0 Sample 1 Alpha: Specifies the value of the pixel's alpha channel.

Format = IEEE Float, S31 signed 2's comp integer, or U32 unsigned integer. Format
depends on the Data Return Format programmed for the surface being sampled.

W0.6 31:0 Sample 1 Blue

W0.5 31:0 Sample 1 Green

W0.4 31:0 Sample 1 Red

W0.3 31:0 Sample 0 Alpha

W0.2 31:0 Sample 0 Blue

W0.1 31:0 Sample 0 Green

W0.0 31:0 Sample 0 Red

W1.7:1 Reserved (not written): W4 is only delivered when Pixel Fault Mask Enable is enabled.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 79

DWord Bit Description

W1.0 31:2 Reserved: always written as 0x3fffffff

1:0 Pixel Null Mask: This field has the bit for all samples set to 1 except those pixels in which a null
page was source for at least one texel.

Shared Functions – Data Port
The Data Port provides all memory accesses for the Gen subsystem other than those provided by the
sampling engine. These include render target writes, constant buffer reads, scratch space reads/writes,
and media surface accesses.

 The diagram below shows the three parts of the Data Port (Sampler Cache, Constant Cache, and
Render Cache) and how they connect with the caches and memory subsystem. The execution units and
sampling engine are shown for clarity.

The kernel programs running in the execution units communicate with the data port via messages, the
same as for the other shared function units. The three data ports are considered to be separate shared
functions, each with its own shared function identifier.

 The diagram below shows the four parts of the Data Port (Sampler Cache, Constant Cache, Data Cache
and Render Cache) and how they connect with the caches and memory subsystem. The execution units
and sampling engine are shown for clarity.

 3D – Media – GPGPU

80 Doc Ref # IHD-OS-VLV-Vol7-04.14

The kernel programs running in the execution units communicate with the data port via messages, the
same as for the other shared function units. The four data ports are considered to be separate shared
functions, each with its own shared function identifier.

Data Cache
The data cache is a read/write cache that is coherent across the physical instances of this cache. It is
intended to be used for the following surfaces:

• constant buffers
• destination surfaces for media applications
• intermediate working surfaces for media applications
• scratch space buffers
• general read/write access of surfaces
• atomic operations
• shared memory for GPGPU thread groups

The data cache can be accessed via the Data Cache Data Port shared function, and via the load and
store EU messages. Ordering from a single thread is maintained when accessing the data cache using
only one of these mechanisms, but is not maintained when using both of these mechanisms from the
same thread. In these instances, software must ensure ordering by utilizing write commits and/or
waiting for read data to be returned.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 81

Sampler Cache
The sampler cache is a read-only cache that supports both linear and tiled memory. In addition to being
used by the sampling engine (via the sampling engine messages), the sampler cache is intended to be
used for source surfaces in media applications via the data port. The same application may use the
sampler cache via the sampling engine and data port without flushing the pipeline between accesses.

Surfaces

The data elements accessed by the data port are called surfaces. There are two models used by the data
port to access these surfaces: surface state model and stateless model.

Surface State Model
The data port uses the binding table to bind indices to surface state, using the same mechanism used
by the sampling engine. The surface state model is used when a Binding Table Index (specified in the
message descriptor) of less than 255 is specified. In this model, the Binding Table Index is used to
index into the binding table, and the binding table entry contains a pointer to the SURFACE_STATE.
SURFACE_STATE contains the parameters defining the surface to be accessed, including its location,
format, and size.

This model is intended to be used for constant buffers, render target surfaces, and media surfaces.

Stateless Model
The stateless model is used when a Binding Table Index (specified in the message descriptor) of 255 is
specified. In this model, the binding table is not accessed, and the parameters that define the surface
state are overloaded as follows:

• Surface Type = SURFTYPE_BUFFER
• Surface Format = R32G32B32A32_FLOAT
• Vertical Line Stride = 0
• Surface Base Address = General State Base Address + Immediate Base Address
• Buffer Size = checked only against General State Access Upper Bound
• Surface Pitch = 16 bytes
• Utilize Fence = false
• Tiled = false

This model is primarily intended to be used for scratch space buffers.

When General State Access Upper Bound is zero, no bounds checking is performed.

Shared Local Memory (SLM)
The shared local memory (SLM) is a high bandwidth memory that is not backed up by system memory.
It is enabled by configuring the L3 cache to use a portion of its space for the SLM. One SLM is present
in each half slice, and its contents are shared between all of the active threads in that half slice. Its
contents are uninitialized after creation, and its contents disappear when deallocated.

 3D – Media – GPGPU

82 Doc Ref # IHD-OS-VLV-Vol7-04.14

The SLM is accessed when a Binding Table Index (specified in the message descriptor) of 254 is
specified. The binding table is not accessed, and the parameters that define the surface state are
overloaded as follows:

• Surface Type = SURFTYPE_BUFFER
• Surface Format = RAW
• Surface Base Address = points to the start of the internal SLM (no memory address is applicable)
• Surface Pitch = 1 byte

Due to the predefined surface state attributes for the SLM, only a subset of the data port messages can
be used. This includes the Byte Scattered Read/Write, Untyped Surface Read/Write, and Untyped
Atomic Operation messages. In addition, only the data cache data port is supported; the other data
ports treat Binding Table Index 254 as a normal surface state access.

Programming Note: Accesses to SLM don't have any bounds checking. Addresses beyond the size
(64KB) of the SLM will wrap around.

Write Commit

For write messages, an optional write commit writeback message can be requested via the Send Write
Commit Message bit in the message descriptor. This bit causes a return message to the thread
indicating when the write has been committed to the in-order cache pipeline and it is safe to issue
another access to the same data with the assurance that it will happen after the first write. A read issued
after the write commit ensures that the read will get the newly written data, and another write issued
after the write commit will be the last to modify the data. "Committed" does not guarantee that the
data has been actually written to the memory subsystem, but only that the write has been scheduled
and cannot be passed by another read or write issued subsequently.

If Send Write Commit Message is used on a Flush Render Cache message, the write commit is sent
only when the render cache has completed its flush to memory. A read issued to another cache after
the write commit is received will be guaranteed to retrieve the new data that was written before the
Flush Render Cache message was issued.

The write commit does not modify the destination register, but merely clears the dependency
associated with the destination register. Thus, a simple mov instruction using the register as a source is
sufficient to wait for the write commit to occur. The following code sequence indicates this:

send r12 m1 DPWRITE; issue write to render cache

mov m1 r3; assemble read message

mov r12 r12; block on write commit

send r13 m1 DPREAD; read same location as write

 Prior to End of Thread with a URB_WRITE, the kernel must ensure all writes are complete by sending
the final write as a committed write for all non-pixel shaders.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 83

Read/Write Ordering

Reads and writes issued from the same thread are guaranteed to be processed in the same order as
issued. Software mechanisms must still ensure any needed ordering of accesses issued from different
threads.

Accessing Buffers

There are four data port messages used to access buffers. Three of these are used for both constant
buffers and scratch space buffers, the fourth is used by the geometry shader kernel to write to streamed
vertex buffers. All of these messages support only buffers, and can use the surface state model as well
as the stateless model.

The following table indicates the intended applications of each of the buffer messages.

Message Applications

OWord Block
Read/Write

• constant buffer reads of a single constant or multiple contiguous constants

• scratch space reads/writes where the index for each pixel/vertex is the same

• block constant reads, scratch memory reads/writes for media

OWord Dual Block
Read/Write

• SIMD4x2 constant buffer reads where the indices of each vertex/pixel are different (if
there are two indices and they are the same, hardware will optimize the cache accesses
and do only one cache access)

• SIMD4x2 scratch space reads/writes where the indices are different.

DWord Scattered
Read/Write

• SIMD8/16 constant buffer reads where the indices of each pixel are different (read one
channel per message)

• SIMD8/16 scratch space reads/writes where the indices are different (read/write one
channel per message)

• general purpose DWord scatter/gathering, used by media

Streamed Vertex
Buffer Write

• geometry shader streaming vertex data out

These messages generally ignore the surface format field of the state and perform no format
conversion. The exception is the Streamed Vertex Buffer Write, which uses the surface format field to
determine only how many channels are to be written. The data contained in each channel is still not
converted in any way.

Accessing Media Surfaces

The Media Block Read/Write message is intended to be used to access 2D media surfaces. The message
specifies an X/Y coordinate into the 2D surface as input. Since this message only supports 2D surfaces,
the stateless model cannot be used with this message.

 3D – Media – GPGPU

84 Doc Ref # IHD-OS-VLV-Vol7-04.14

Boundary Behavior
The table below summarizes the behavior of the Media Boundary Pixel Mode field (SURFACE_STATE)
in combination with the Vertical Line Stride and Vertical Line Stride Offset fields (both of which are
subject to being overridden by the Data Port message descriptor fields). The Behavior column illustrates
behavior for a surface with four rows numbered 0 to 3. The bold indicators are off-surface behavior and
the non-bold indicators are on-surface behavior. Input row addresses range from -3 to +7 going left to
right.

Media Boundary Pixel
Mode

Vertical Line
Stride

Vertical Line Stride
Offset Usage Model Behavior

0 0 X normal frame 000001233333

0 1 0 normal field even 000002222222

0 1 1 normal field odd 111113333333

2 0 X frame / progressive 000001233333

2 1 0 field even /
progressive

000002333333

2 1 1 field odd /
progressive

000013333333

3 0 X frame / interlaced 010101232323

3 1 0 field even / interlaced 000002222222

3 1 1 field odd / interlaced 111113333333

State

BINDING_TABLE_STATE
The data port uses the binding table to retrieve surface state. Refer to State in the Sampling Engine
section for the definition of this state.

SURFACE_STATE
The data port uses the surface state for constant buffers, render targets, and media surfaces.

COLOR_PROCESSING_STATE
The following state structures contain different states used by the color processing function.

COLOR_PROCESSING_STATE - STD/STE State

COLOR_PROCESSING_STATE - ACE State

COLOR_PROCESSING_STATE - TCC State

COLOR_PROCESSING_STATE - PROCAMP State

COLOR_PROCESSING_STATE - CSC State

COLOR_PROCESSING_STATE - CGC State

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 85

Messages

Global Definitions
For data port messages, part of the message descriptor is used to determine the message type. This
field is documented here. The remainder of the message descriptor is defined differently depending on
the message type, and is documented in the section for the corresponding message.

The Data Port is actually separate targets, Data Port,Sampler Cache, Data Port Constant Cache, and
Data Port Render Cache, each with its own target unit ID. Each target has its own set of message type
encodings as shown below.

Note: Data port messages may not have the End of Thread bit set in the message descriptor other
than the following exeptions:

• The Render Target Write message may have End of Thread set for pixel shader threads
dispatched by the windower in non-contiguous dispatch mode.

• The Render Target UNORM Write message may have End of Thread set for pixel shader threads
dispatched by the windower in contiguous dispatch mode.

• The Media Block Write message may have End of Thread set for pixel shader threads dispatched
by the windower in contiguous dispatch mode.

Data Port Messages
Most of the messages have an existing definition that is not expected to change. There are several new
messages that are documented here.

Table: Data Cache Data Port Message Summary

Message Type
Header

Required
Shared Local Memory

Support
Stateless
Support

Address
Modes

Vector
Width

OWord Block Read yes no yes global 1

OWord Block Write yes no yes global 1

Unaligned OWord
Block Read

yes no yes global 1

OWord Dual Block
Read

no for stated
yes for
stateless

no yes global +
offset

2

OWord Dual Block
Write

no for stated
yes for
stateless

no yes global +
offset

2

DWord Scattered Read no for stated
yes for
stateless

no yes global +
offset

8, 16

DWord Scattered Write no for stated
yes for
stateless

no yes global +
offset

8, 16

Byte Scattered Read no for stated yes global + 8, 16

 3D – Media – GPGPU

86 Doc Ref # IHD-OS-VLV-Vol7-04.14

Message Type
Header

Required
Shared Local Memory

Support
Stateless
Support

Address
Modes

Vector
Width

yes for
stateless

offset

Byte Scattered Write no for stated
yes for
stateless

yes global +
offset

8, 16

Untyped Surface Read no for stated
yes for
stateless

yes 1D or 2D 2, 8, 16

Untyped Surface Write no for stated
yes for
stateless

yes 1D or 2D 2, 8, 16

Untyped Atomic
Operation

no for stated
yes for
stateless

yes 1D or 2D 8, 16

Scratch Block Read yes no yes (only) Imm_Buf +
offset

Scratch Block Write yes no yes (only) Imm_Buf +
offset

Memory Fence yes N/A N/A N/A N/A

global is the Global Offset in the message header (if header is not present, Global Offset is zero).
imm_buf is the Immediate Buffer Base Address provided in message header register M0.5.
offset is in the message payload, and is per-slot.
handle is the handle address in the message header.
URBoffset is the Global Offset field in the URB message descriptor.
1D and 2D are the address payload.

[Pre-DevHSW] Render Cache Data Port Message Summary

Message Type Header Required Address Modes Vector Width

Media Block Read yes 2D 1

Media Block Write yes 2D 1

Render Target Write No1 2D + RTAI 8, 16

Typed Surface Read yes 1D, 2D, 3D, 4D 8

Typed Surface Write yes 1D, 2D, 3D, 4D 8

Typed Atomic Operation yes 1D, 2D, 3D, 4D 8

Memory Fence yes N/A N/A

4D address refers to U/V/R/LOD for mip-mapped surfaces
2D + RTAI address refers to a basic 2D address with render target array index for the third dimension

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 87

Message Descriptor

Message Descriptor

SAMPLER CACHE DATA PORT RENDER CACHE DATA PORT

Bit Description Bit Description

19 Header Present. If set, indicates that the message includes the header.

Programming Notes:

For the Render Cache Data Port, the header must be present for the following message types:

Typed Surface Read/Write

Typed Surface Atomic Operation

Memory Fence

For the Sampler Cache Data Port, the header must be present for the following message types:

Unaligned OWord Block Read

Media Block Read.

Format = Enable

18 Ignored 18 Ignored

17:14 Message Type

0001: Unaligned OWord Block Read

0100: Media Block Read

All other encodings are reserved.

17:14 Message Type

0100: Media Block Read

0101: Typed Surface Read

0110: Typed Atomic Operation

0111: Memory Fence

1010: Media Block Write

1100: Render Target Write

1101: Typed Surface Write

All other encodings are reserved.

13:8 Message Specific Control. Refer to the specific message section for the definition of these bits.

7:0 Binding Table Index. Specifies the index into the binding table for the specified surface.

Format = U8

Range = [0,255]

CONSTANT CACHE DATA PORT DATA CACHE DATA PORT

Bit Description Bit Description

 3D – Media – GPGPU

88 Doc Ref # IHD-OS-VLV-Vol7-04.14

CONSTANT CACHE DATA PORT DATA CACHE DATA PORT

Bit Description Bit Description

19 Header Present. If set, indicates that the message includes the header. Some messages require
or forbid a message header depending on their usage. See "Data Port Messages" overview for the
list.

Programming Notes:

For the Data Cache Data Port, the header must be present for the following message types:

OWord Block Read/Write

Unaligned OWord Block Read

Memory Fence

Scratch read/write

For the Constant Cache Data Port, the header must be present for the following message types:

OWord Block Read

Unaligned OWord Block Read.

Format = Enable

18 Ignored 18 Category

0: Legacy DAP-DC messages

1: Scratch Block Read/Write messages

17:14 Message Type

0000: OWord Block Read

0001: Unaligned OWord Block Read

0010: OWord Dual Block Read

0011: DWord Scattered Read

All other encodings are reserved.

17:14 Category=0 (legacy dataport)

Message Type

0000: OWord Block Read

0001: Unaligned OWord Block Read

0010: OWord Dual Block Read

0011: DWord Scattered Read

0100: Byte Scattered Read

0101: Untyped Surface Read

0110: Untyped Atomic Operation

0111: Memory Fence

1000: OWord Block Write

1010: OWord Dual Block Write

1011: DWord Scattered Write

1100: Byte Scattered Write

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 89

CONSTANT CACHE DATA PORT DATA CACHE DATA PORT

Bit Description Bit Description

1101: Untyped Surface Write

All other encodings are reserved.

Category=1 (scratch)

 [17]: 0=Read; 1=write

[16]:Type;

 0=Oword, 1= Dword

 [15]:Invalidate after read;

 [14]:<Reserved, mbz>

[13:12]: Block Size

11: 4 registers

10: <reserved>

01: 2 registers

00: 1 register

[11:0]: Addr offset (Hword based)

13:8 Message Specific Control. Refer to the specific message section for the definition of these bits.

7:0 Binding Table Index. Specifies the index into the binding table for the specified surface.

For the data cache data port, two binding table indexes are used to select special surfaces:

254: A binding table index of 254 indicates that the shared local memory (SLM) is to be used. The
SLM is only supported with the Byte Scattered Read/Write, Untyped Surface Read/Write, and
Untyped Atomic Operation messages. Refer to the Shared Local Memory section earlier in this
chapter for further details on its behavior.

255: A binding table index of 255 indicates that a stateless model is to be used. Stateless model is
only supported with the OWord Block Read/Write, Unaligned OWord Block Read, Dual OWord
Block Read/Write and DWord Scattered Read/Write messages. Refer to section Stateless Model
section for details on the stateless model.

Format = U8

Range = [0,255]

Message Header

This header applies to the following data port messages:

• OWord Block Read/Write
• Unaligned OWord Block Read

 3D – Media – GPGPU

90 Doc Ref # IHD-OS-VLV-Vol7-04.14

• OWord Dual Block Read/Write
• DWord Scattered Read/Write
• Byte Scattered Read/Write
• Scratch Block Read/Write

The header definitions for the other data port messages is in the section for each message.

DWord Bit Description

M0.7 31:0

M0.6 31:0

M0.5 31:10 Immediate Buffer Base Address. Specifies the surface base address for messages in
which the Binding Table Index is 255 (stateless model), otherwise this field is ignored. This
pointer is relative to the General State Base Address.

Format = GeneralStateOffset[31:10]

 9:8 Ignored

 7:0 Dispatch ID. This ID is assigned by the fixed function unit and is a unique identifier for
the thread. It is used to free up resources used by the thread upon thread completion.

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:4 Ignored

M0.2 31:0 Global Offset.

Specifies the global element offset into the buffer.

For the Unaligned OWord messages, this offset is in units of Bytes but must be DWord
aligned (bits 1:0 MBZ)

For the other OWord messages, this offset is in units of OWords

For the DWord messages, this offset is in units of DWords

For the Byte messages, this offset is in units of Bytes

Format = U32

Range = [0,FFFFFFFCh] for Unaliged OWord messages

Range = [0,0FFFFFFFh] for other OWord messages

Range = [0,3FFFFFFFh] for DWord messages

Range = [0,FFFFFFFFh] for Byte messages

M0.1 31:0 Ignored

M0.0 31:0 Ignored

Write Commit Writeback Message

The writeback message is only sent on Data Port Write messages if the Send Write Commit Message
bit in the message descriptor is set. The destination register is not modified. Write messages without

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 91

the Send Write Commit Message bit set will not return anything to the thread (response length is 0
and destination register is null).

DWord Bit Description

W0.7:0 Reserved

OWord Block Read/Write
This message takes one offset (Global Offset), and reads or writes 1, 2, 4, or 8 contiguous OWords
starting at that offset.

Restrictions:

• the only surface type allowed is SURFTYPE_BUFFER.
• The surface format is ignored; data is returned from the constant buffer to the GRF without

format conversion.
• , The surface pitch is ignored. The surface is treated as a 1-dimensional surface. An element size

(pitch) of 16 bytes is used to determine the size of the buffer for out-of-bounds checking if using
the surface state model.

• The surface cannot be tiled
• The surface base address must be OWord-aligned.
• the Render Cache Read Write Mode field in SURFACE_STATE must be set to read/write mode

when using this message with the render cache in the surface state model.
• the Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be set

to read/write mode when using this message with the render cache in the stateless model.

Applications:

• Constant buffer reads of a single constant or multiple contiguous constants.
• Scratch space reads/writes where the index for each pixel/vertex is the same.
• Block constant reads, scratch memory reads/writes for media.

Execution Mask. The low 8 bits of the execution mask are used to enable the 8 channels in the first and
third GRF registers returned (W0, W2) for read, or the first and third write registers sent (M1, M3). The
high 8 bits are used similarly for the second and fourth registers (W1, W3 or M2, M4). For reads, any
mask bit set within a group of four causes the entire OWord to be read and returned to the destination
GRF register. For writes, each mask bit is considered for its corresponding DWord written to the
destination surface.

For the 1-OWord messages, only the low 8 bits of the execution mask are used. Either the low 4 bits or
the high 4 bits, depending on the position of the OWord to be read or written, are used as the single
group of four with behavior following that in the preceding paragraph.

The above behavior enables a SIMD16 thread to use the 8-OWord form of this message to access two
channels (red and green) of a single scratch register across 16 pixels. A second message would access
the other two channels (blue and alpha). The execution mask is used to ensure that data associated with
inactive pixels are not overwritten.

 3D – Media – GPGPU

92 Doc Ref # IHD-OS-VLV-Vol7-04.14

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the
surface are dropped and do not modify memory.

Message Descriptor
Bit Description

13 Invalidate After Read Enable

only

This field, if enabled, causes all lines in the L3 cache accessed by the message to be invalidated
after the read occurs, regardless of whether the line contains modified data. It is intended as a
performance hint indicating that the data will no longer be used to avoid writing back data to
memory. This field is ignored for write messages.

Enabling this field is intended for scratch and spill/fill, where the memory is used only by a single
thread and thus does not need to be maintained after the thread completes.

Format = Enable

12 Ignored

11 Ignored

10:8 Block Size. Specifies the number of contiguous OWords to be read or written

000: 1 OWord, read into or written from the low 128 bits of the destination register

001: 1 OWord, read into or written from the high 128 bits of the destination register

010: 2 OWords

011: 4 OWords

100: 8 OWords

all other encodings are reserved.

Programming Notes:

The 6 OWord block size is valid only with Data Port Constant Cache.

Message Payload (Write)

For the write operation, the message payload consists of one, two, or four registers (not including the
header) depending on the Block Size specified in the message. For the one-constant case, data is taken
from either the high or low half of the payload register depending on the half selected in Block Size. In
this case, the other half of the payload register is ignored.

The Offset referred to below is the Global Offset and is in units of OWords. The OWord array index is
also in units of OWords.

DWord Bits Description

M1.7:4 127:0 OWord[Offset + 1]. If the block size is 1, OWord to be written from the high 128 bits of the
destination, OWord[Offset] will appear in this location.

M1.3:0 127:0 OWord[Offset]

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 93

DWord Bits Description

M2.7:4 127:0 OWord[Offset+3]

M2.3:0 127:0 OWord[Offset+2]

M3.7:4 127:0 OWord[Offset+5]

M3.3:0 127:0 OWord[Offset+4]

M4.7:4 127:0 OWord[Offset+7]

M4.3:0 127:0 OWord[Offset+6]

Writeback Message (Read)

For the read operation, the writeback message consists of one, two, three, or four registers depending
on the Block Size specified in the message. For the one-constant case, data is placed in either the high
or low half of the returned register depending on the half selected in Block Size. In this case, the other
half of the register is not changed.

The Offset referred to below is the Global Offset and is in units of OWords. The OWord array index is
also in units of OWords.

DWord Bits Description

W0.7:4 127:0 OWord[Offset + 1]. If the block size is 1, OWord to be loaded into the high 128 bits of the
destination, OWord[Offset] will appear in this location.

W0.3:0 127:0 OWord[Offset]

W1.7:4 127:0 OWord[Offset+3]

W1.3:0 127:0 OWord[Offset+2]

W2.7:4 127:0 OWord[Offset+5]

W2.3:0 127:0 OWord[Offset+4]

W3.7:4 127:0 OWord[Offset+7]

W3.3:0 127:0 OWord[Offset+6]

Unaligned OWord Block Read
This message takes one DWord aligned offset (Global Offset), and reads 1, 2, 4, or 8 contiguous
OWords starting at that offset. This message is identical to the OWord Block Read message except the
offset alignment. For read/write cache, only the read path supports this unaligned OWord Block access.

Restrictions:

1. The only surface type allowed is SURFTYPE_BUFFER.
2. The surface format is ignored, data is returned from the constant buffer to the GRF without

format conversion.
3. The surface pitch is ignored, the surface is treated as a 1-dimensional surface. An element size

(pitch) of 16 bytes is used to determine the size of the buffer for out-of-bounds checking if using
the surface state model.

4. The surface cannot be tiled
5. The surface base address must be OWord aligned

 3D – Media – GPGPU

94 Doc Ref # IHD-OS-VLV-Vol7-04.14

6. The Render Cache Read Write Mode field in SURFACE_STATE must be set to read/write mode
when using this message with the render cache in the surface state model

7. The Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be set
to read/write mode when using this message with the render cache in the stateless model

Applications:

• Reads with offset that is not aligned with data size, such as row store usage in media
• Execution Mask. The execution mask is ignored by this message.
• Out-of-Bounds Accesses. Reads to areas outside of the surface return 0.

Message Descriptor
Bit Description

13 Ignored

12:11 Ignored

10:8 Block Size. Specifies the number of contiguous OWords to be read

000: 1 OWord, read into the low 128 bits of the destination register

001: 1 OWord, read into the high 128 bits of the destination register

010: 2 OWords

011: 4 OWords

100: 8 OWords

all other encodings are reserved.

Writeback Message (Read)

For the read operation, the writeback message consists of one, two, or four registers depending on the
Block Size specified in the message. For the one-constant case, data is placed in either the high or low
half of the returned register depending on the half selected in Block Size. In this case, the other half of
the register is not changed.

The Global Offset is in units of Bytes, aligned to DWord (two LSBs set to zero). The OWordX array in
units of OWord starts at Global Offset.

DWord Bit Description

W0.7:4 127:0 OWord1 = *(&OWord0 + 1). If the block size is 1 OWord to be loaded into the high 128
bits of the destination, OWord0 will appear in this location

W0.3:0 127:0 OWord0 = Buffer[Global Offset]

W1.7:4 127:0 OWord3 = *(&OWord2 + 1)

W1.3:0 127:0 OWord2 = *(&OWord1 + 1)

W2.7:4 127:0 OWord5= *(&OWord4 + 1)

W2.3:0 127:0 OWord4 = *(&OWord3 + 1)

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 95

DWord Bit Description

W3.7:4 127:0 OWord7 = *(&OWord6 + 1)

W3.3:0 127:0 OWord6 = *(&OWord5 + 1)

OWord Dual Block Read/Write
This message takes two offsets, and reads or writes 1 or 4 contiguous OWords starting at each offset.
The Global Offset is added to each of the specific offsets.

 The message header is no longer required for the OWord Dual Block Read/Write messages if sent to
the data cache data port. If header is not sent, the Global Offset field is assumed to be zero. The
header is required, however, if the binding table index is 255 (stateless model), as the Immediate
Buffer Base Address field is required.

Programming Restrictions: Writes to overlapping addresses will have undefined write ordering.

Restrictions:

1. The only surface type allowed is SURFTYPE_BUFFER.
2. The surface format is ignored, data is returned from the constant buffer to the GRF without

format conversion.
3. The surface pitch is ignored, the surface is treated as a 1-dimensional surface. An element size

(pitch) of 16 bytes is used to determine the size of the buffer for out-of-bounds checking if using
the surface state model.

4. The surface cannot be tiled
5. The surface base address must be OWord aligned
6. The Render Cache Read Write Mode field in SURFACE_STATE must be set to read/write mode

when using this message with the render cache in the surface state model
7. the Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be set

to read/write mode when using this message with the render cache in the stateless model

Applications:

SIMD4x2 constant buffer reads where the indices of each vertex/pixel are different (if there are two
indices and they are the same, hardware will optimize the cache accesses and do only one cache access)

SIMD4x2 scratch space reads/writes where the indices are different

Execution Mask. The low 8 bits of the execution mask are used to enable the 8 channels in the GRF
registers returned for read, or each of the write registers sent. For reads, any mask bit asserted within a
group of four will cause the entire OWord to be read and returned to the destination GRF register. For
writes, each mask bit is considered for its corresponding DWord written to the destination surface.

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the
surface are dropped and will not modify memory contents.

Message Descriptor
Bit Description

 3D – Media – GPGPU

96 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bit Description

13 Invalidate After Read Enable

only

This field, if enabled, causes all lines in the L3 cache accessed by the message to be invalidated
after the read occurs, regardless of whether the line contains modified data. It is intended as a
performance hint indicating that the data will no longer be used to avoid writing back data to
memory. This field is ignored for write messages.

Enabling this field is intended for scratch and spill/fill, where the memory is used only by a single
thread and thus does not need to be maintained after the thread completes.

Format = Enable

12 Ignored

11:10 Ignored

9:8 Block Size: Specifies the number of OWords in each block to be read or written

00: 1 OWord
10: 4 OWords

all other encodings are reserved.

Message Payload
DWord Bits Description

M1.7 31:0 Ignored

M1.6 31:0 Ignored

M1.5 31:0 Ignored

M1.4 31:0 Block Offset 1. Specifies the OWord offset of OWord Block 1 into the surface.

Format = U32

Range = [0,0FFFFFFFh]

M1.3 31:0 Ignored

M1.2 31:0 Ignored

M1.1 31:0 Ignored

M1.0 31:0 Block Offset 0

Additional Message Payload (Write)

For the write operation, the message payload consists of one or four registers (not including the header
or the first part of the payload) depending on the Block Size specified in the message.

The Offset1/0 referred to below is the Global Offset added to the corresponding Block Offset 1/0
and is in units of OWords. The OWord array index is also in units of OWords.

DWord Bit Description

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 97

DWord Bit Description

M2.7:4 127:0 OWord[Offset1]

M2.3:0 127:0 OWord[Offset0]

M3.7:4 127:0 OWord[Offset1+1]

M3.3:0 127:0 OWord[Offset0+1]

M4.7:4 127:0 OWord[Offset1+2]

M4.3:0 127:0 OWord[Offset0+2]

M4.7:4 127:0 OWord[Offset1+3]

M4.3:0 127:0 OWord[Offset0+3]

Writeback Message (Read)

For the read operation, the writeback message consists of one or four registers depending on the Block
Size specified in the message.

The Offset1/0 referred to below is the Global Offset added to the corresponding Block Offset 1/0
and is in units of OWords. The OWord array index is also in units of OWords.

DWord Bits Description

W0.7:4 127:0 OWord[Offset1]

W0.3:0 127:0 OWord[Offset0]

W1.7:4 127:0 OWord[Offset1+1]

W1.3:0 127:0 OWord[Offset0+1]

W2.7:4 127:0 OWord[Offset1+2]

W2.3:0 127:0 OWord[Offset0+2]

W3.7:4 127:0 OWord[Offset1+3]

W3.3:0 127:0 OWord[Offset0+3]

Media Block Read/Write
The read form of this message enables a rectangular block of data samples to be read from the source
surface and written into the GRF. The write form enables data from the GRF to be written to a
rectangular block.

Restrictions:

1. The only surface type allowed is non-arrayed, non-mipmapped SURFTYPE_2D. Because of this, the
stateless surface model is not supported with this message.

2. The surface format is used to determine the pixel structure for boundary clamp, the raw data
from the surface is returned to the thread without any format conversion nor filtering operation

3. The target cache cannot be the data cache
4. The surface base address must be 32-byte aligned
5. When a surface is XMajor tiled, (tilewalk field in the surface state is set to TILEWALK_XMAJOR), a

memory area mapped through the Render Cache cannot be read and/or wrote in mixed frame
and field modes. For example, if a memory location is first written with a zero Vertical Line Stride

 3D – Media – GPGPU

98 Doc Ref # IHD-OS-VLV-Vol7-04.14

(frame mode), and later on (without render cache flush) read back using Vertical Line Stride of
one (field mode), the read data stored in GRF are uncertain.

6. The block width and offset should be aligned to the size of pixels stored in the surface. For a
surface with 8bpp pixels for example, the block width and offset can be byte aligned. For a
surface with 16bpp pixels, it is word aligned.

7. For YUV422 formats, the block width and offset must be pixel pair aligned (i.e. dword aligned).
8. The write form of message has the additional restriction that both X Offset and Block Width

must be DWord aligned.
9. When Color Processing is enabled for media write message, the render target must be TileY or

TileX.
10. Pitch must be a multiple of 64 bytes when the surface is linear.

Applications:

Block reads/writes for media

Execution Mask. The execution mask on the send instruction for this type of message is ignored. The
data that is read or written is determined completely by the block parameters.

Out-of-Bounds Accesses. Reads outside of the surface results in the address being clamped to the
nearest edge of the surface and the pixel in the position being returned. Writes outside of the surface
are dropped and will not modify memory contents.

Determining the boundary pixel value depends on the surface format. Surface format definitions can be
found in the Surface Formats Section of the Sampling Engine Chapter.

For a surface with 8bpp pixels, the boundary byte is replicated. For example, for a boundary dword
B0B1B2B3, to replicate the left boundary byte pixel, the out of bound dwords have the format of
B0B0B0B0, and that for right boundary is B3B3B3B3.

This rule applies to all surface formats with BPE of 8. As the data port does not perform format
conversion, the most likely used surface formats are R8_UINT and R8_SINT.

For any other surfaces with 16bpp pixels, boundary pixel replication is on words. For example, for a
boundary dword B0B1B2B3, to replicate the left boundary word pixel, the out of bound dwords have
the format of B0B1B0B1, and that for right boundary is B2B3B2B3.

This rule applies to all surface formats with BPE of 16. As the data port does not perform format
conversion, only the formats with integer data types may be useful in practice.

For special surfaces with 16bpp pixels YUV422 packed format, there are two basic cases depending on
the Y location: YUYV (surface format YCRCB_NORMAL) and UYVY (surface format YCRCB_SWAPY).
Boundary handling for YVYU (surface format YCRCB_SWAPUV) is the same as that for YUYV. Similarly,
boundary handling for VYUY (surface format YCRCB_SWAPUVY) is the same as that for UYVY. Note that
these four surface formats have 16bpp pixels, even though the BPE fields are set to zero according to
the table in the Surface Formats Section.

For a boundary dword Y0U0Y1V0, to replicate the left boundary, we get Y0U0Y0V0, and to replicate the
right boundary, we get Y1U0Y1V0.

For a boundary dword U0Y0V0Y1, to replicate the left boundary, we get U0Y0V0Y0, and to replicate the
right boundary, we get U0Y1V0Y1.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 99

For a surface with 32bpp pixels, the boundary dword pixel is replicated.

This rule applies to all surface formats with BPE of 32. As the data port does not perform format
conversion, some of the formats may not be useful in practice.

Hardware behavior for any other surface types is undefined.

When Color Processing Enable is set to 1 and the IECP output surface to be written is NV12 format
(R16_UNORM surface format 0x10A, should be used if the output surface is NV12 format).

NV12 surface state: The width of the surface should be always multiples of 4pixels. For 16bpp input
message (422 8-bit) the width will always need to be in multiples of 8bytes and for 32bpp input
message (422 16-bit or 444 8-bit) the width should be in multiples of 16bytes. Height should be in
multiples of 2pixel high. (presently the MFX restriction is that width should be in multiples of 2pixels).

y-offset of the media block write from the EU should be always even

x-offset of the media block write from the EU should be in multiples of 4 pixel.

The media block dword write can have only the following combinations (for IECP when NV12 output
format is used):

• 8pixel wide for 422 8-bit mode
• 4pixel wide for 422 8-bit mode
• 4pixel wide for 422 16-bit
• 4pixel wide for 444 8-bit.
• 444 16-bit input format cannot be supported when the output format is NV12 (s/w should not

use this combination).
• It has to be in multiples of 2pixel high for all above modes.

If 444-format is used then we use only the pixel_0 UV values of the 2x2 pixel and the rest are dropped
and in case of 422-format the top UV values are used and the bottom UV values is dropped if the
output format is NV12 format.

Assuming IECP messages will always have vertical stride = 0. (since this is only for pre-processing before
the encoder).

Message Descriptor
Bit Description

13 Reserved: MBZ.

12 Reserved: MBZ.

11 Reserved: MBZ.

10 Vertical Line Stride Override

Specifies whether the Vertical Line Stride and Vertical Line Stride Offset fields in the surface state
should be replaced by bits 9 and 8 below.

If this field is 1, Height in the surface state (see SURFACE_STATE section of Sampling Engine
chapter) is modified according the following rules:

 3D – Media – GPGPU

100 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bit Description

Vertical Line
Stride

(in surface state)
Override Vertical Line

Stride

Derived 1-based Surface Height
(As a function of the 0-based Height in Surface

State)

0 0 Height + 1

(Normal)

0 1 (Height +1) / 2

Restriction: (Height + 1) must be an even number.

1 0 (Height + 1) * 2

1 1 Height + 1

(Normal)

For example, for a 720x480 standard resolution video buffer, if Vertical Line Stride in surface state is
0, i.e. a frame, Height (of the frame) should be 479. When accessing the bottom field of this frame
video buffer, if both Override Vertical Line Stride and Override Vertical Line Stride Offset are set to
1, then the derived surface height (of the field) is 240 ((Height + 1) / 2). In contrast, if Vertical Line
Stride in surface state is 1 and Vertical Line Stride Offset in surface state is 0, the surface state
represents the top field of the video buffer. In this case, Height (of the top field) should be
programmed as 239. Accessing the bottom video field uses the same surface height of 240.
Accessing the video frame (with Override Vertical Line Stride and Override Vertical Line Stride Offset
of 0) results in a derived surface height of 480 ((Height + 1) * 2).

0: Use parameters in the surface state and ignore bits 9:8.

1: Use bits 9:8 to provide the Vertical Line Stride and Vertical Line Stride Offset.

9 Override Vertical Line Stride

Specifies number of lines (0 or 1) to skip between logically adjacent lines – provides support of
interleaved (field) surfaces as textures.

Format = U1 in lines to skip between logically adjacent lines.

8 Override Vertical Line Stride Offset

Specifies the offset of the initial line from the beginning of the buffer. Ignored when Override
VerticalLine Stride is 0.

Format = U1 in lines of initial offset (when Vertical Line Stride == 1).

Message Header
DWord Bit Description

M0.7 31:0

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 101

DWord Bit Description

M0.6 31:0

M0.5 31:8 Ignored

 7:0 FFTID. This ID is assigned by the fixed function unit and is a unique identifier for the
thread. It is used to free up resources used by the thread upon thread completion.

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:5 Color Processing State Pointer. Defines the pointer to COLOR_PROCESSING_STATE.
Ignored on read messages and when Color Processing Enable is not set. This pointer is
relative to the General State Base Address.

Programming Notes:

This pointer is not delivered via state variables like most other pointers are delivered. It
must be delivered via another software-defined mechanism such as CURBE.

Format = GeneralStateOffset[31:5]

 4 Message Mode

This field selects the mode of this message as follows:

0: NORMAL. The Block Height and Block Width fields are set in M0.2. The Pixel Mask is
not explicitly set but behaves as if it is set to all ones.

1: PIXEL_MASK: The Pixel Mask field is set in M0.2. The Block Height and Block Width
are not explicitly set but behave as if they are set to 4 rows and 32 bytes, respectively.

Programming Note: Only NORMAL mode is allowed for Block width > 32 Byte.

For the Sampler Cache Data Port, this field is also ignored, behaving as if always set to
NORMAL.

 3:2 Message Format . Defines the format of the message if Color Processing Enable is set.

0: YUV 4:2:2, 8 bits per channel

1: YUV 4:4:4, 8 bits per channel

2: YUV 4:2:2, 16 bits per channel

3: YUV 4:4:4, 16 bits per channel

 1 Area of Interest . This field controls whether the statistic for the luma pixels is collected
at VSC for ACE histogram. This field is effective only when the state variable
Full_image_histogram is disabled.

 0 Color Processing Enable . This field controls whether color processing is enabled on a
media block write message.

Format = Enable

 3D – Media – GPGPU

102 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

This bit must be set to zero on a Media Block Read to the Render Cache.

The following M0.2 definition applies only if the Message Mode field is set to NORMAL:

M0.2 31:29 Ignored

 21:16 Block Height. Height in rows of block being accessed.

Programming Notes:

The Block Height is restricted to the following maximum values depending on the Block
Width:

Block Width
(bytes)

Maximum Block Height
(rows)

1-4 64

5-8 32

9-16 16

17-32 8

33-64 4

Format = U6

Range = [0,63] representing 1 to 64 rows

Programming Note: Block width > 32 Byte is allowed only for linear and Tile X surfaces.

 15:10 Ignored

 7:6 Ignored

 5:0 Block Width. Width in bytes of the block being accessed.

Programming Notes:

Must be DWord aligned for the write form of the message.

Range = [0,63] representing 1 to 64 Bytes

The following M0.2 definition applies only if the Message Mode field is set to PIXEL_MASK:

MO.2 31:0 Pixel Mask. One bit per pixel (each pixel being a DWord) indicating which pixels are to
be written. This field is ignored by the read message, all pixels are always returned..

The bits in this mask correspond to the pixels (DWords) as follows:

0 1 4 5 16 17 20 21

2 3 6 7 18 19 22 23

8 9 12 13 24 25 28 29

10 11 14 15 26 27 30 31

M0.1 31:0 Y offset. The Y offset of the upper left corner of the block into the surface.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 103

DWord Bit Description

Format = S31

Programming Notes:

If Message Mode is set to PIXEL_MASK, this field must be a multiple of 4

M0.0 31:0 X offset. The X offset of the upper left corner of the block into the surface.

Must be DWord aligned (Bits 1:0 MBZ) for the write form of the message.

The X offset field defines the offset in the input message block. This may differ from the
offset in the surface if Color Processing is enabled due to format conversion.

Format = S31

Programming Notes:

If Message Mode is set to PIXEL_MASK, this field must be a multiple of 32

Programming Note: The legal combinations of block width, pitch control, sub-register offset and block
height are given below:

Block Height for given block width, pitch control, subreg offsets

 sub-register offsets

block width pitch control 0 1 2 3 4 5 6 7

1-4 00 1-64 1 1 1 1 1 1 1

01 1-64 1-64 illegal illegal 1-2 1-2 illegal illegal

10 illegal illegal illegal illegal illegal illegal illegal illegal

11 1-64 1-64 1-64 1-64 illegal illegal illegal illegal

5-8 00 1-32 illegal 1 illegal 1 illegal 1 illegal

01 1-32 illegal 1-32 illegal illegal illegal illegal illegal

10 illegal illegal illegal illegal illegal illegal illegal illegal

11 1-32 illegal 1-32 illegal 1-32 illegal 1-32 illegal

9-16 00 1-16 illegal illegal illegal 1 illegal illegal illegal

01 1-16 illegal illegal illegal 1-16 illegal illegal illegal

10 illegal illegal illegal illegal illegal illegal illegal illegal

11 1-16 illegal illegal illegal 1-16 illegal illegal illegal

7-32 00 1-8 illegal illegal illegal illegal illegal illegal illegal

01 1-8 illegal illegal illegal illegal illegal illegal illegal

10 illegal illegal illegal illegal illegal illegal illegal illegal

11 1-8 illegal illegal illegal illegal illegal illegal illegal

Message Payload (Write)
DWord Bit Description

M1:n Write Data. The format of the write data depends on the Block Height and Block Width.

 3D – Media – GPGPU

104 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

The data is aligned to the least significant bits of the first register, and the register pitch is
equal to the next power-of-2 that is greater than or equal to the Block Width.

If Color Processing Enable is enabled, the write data is divided into pixels according to the Message
Format field. The fields within each pixel are defined below. For the 4:2:2 modes, each pixel position
includes channels for two pixels.

Message Format 31:24 23:16 15:8 7:0

YUV 4:2:2, 8 bits per channel Cr (V) right pixel lum (Y1) Cb (U) left pixel lum (Y0)

YUV 4:4:4, 8 bits per channel alpha (A) luminance (Y) Cb (U) Cr (V)

 63:48 47:32 31:16 15:0

YUV 4:2:2, 16 bits per channel Cr (V) right pixel lum (Y1) Cb (U) left pixel lum (Y0)

YUV 4:4:4, 16 bits per channel alpha (A) Cr (V) luminance (Y) Cb (U)

Writeback Message (Read)
DWord Bit Description

W0:n Read Data. The format of the read data depends on the Block Height and Block Width.
The data is aligned to the least significant bits of the first register, and the register pitch is
equal to the next power-of-2 that is greater than or equal to the Block Width.

.

DWord Scattered Read/Write
This message takes a set of offsets, and reads or writes 8 or 16 scattered DWords starting at each offset.
The Global Offset is added to each of the specific offsets.

 The message header is no longer required for the OWord DWord Scattered Read/Write messages if sent
to the data cache data port. If header is not sent, the Global Offset field is assumed to be zero. The
header is required, however, if the binding table index is 255 (stateless model), as the Immediate
Buffer Base Address field is required.

Programming Restrictions: Writes to overlapping addresses will have undefined write ordering.

For read messages with X/Y offsets that are outside the bounds of the surface, the address is clamped
to the nearest edge of the surface. For write messages with X/Y offsets that are outside the bounds of
the surface, the behavior is undefined.

 Hardware does check for and optimize for cases where offsets are equal or contiguous, however for
optimal performance in some these cases a different message may provide higher performance.

Restrictions:

The only surface type allowed is SURFTYPE_BUFFER.

The surface format is ignored, data is returned from the constant buffer to the GRF without format
conversion.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 105

The surface pitch is ignored, the surface is treated as a 1-dimensional surface. An element size (pitch) of
16 bytes is used to determine the size of the buffer for out-of-bounds checking if using the surface
state model.

the surface cannot be tiled

the surface base address must be DWord aligned

the Render Cache Read Write Mode field in SURFACE_STATE must be set to read/write mode when
using this message with the render cache in the surface state model

the Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be set to
read/write mode when using this message with the render cache in the stateless model

Applications:

SIMD8/16 constant buffer reads where the indices of each pixel are different (read one channel per
message)

SIMD8/16 scratch space reads/writes where the indices are different (read/write one channel per
message)

general purpose DWord scatter/gathering, used by media

Execution Mask. Depending on the block size, either the low 8 bits or all 16 bits of the execution mask
are used to determine which DWords are read into the destination GRF register (for read), or which
DWords are written to the surface (for write).

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the
surface are dropped and will not modify memory contents.

Message Descriptor
Bit Description

13 Invalidate After Read Enable

only

This field, if enabled, causes all lines in the L3 cache accessed by the message to be invalidated
after the read occurs, regardless of whether the line contains modified data. It is intended as a
performance hint indicating that the data will no longer be used to avoid writing back data to
memory. This field is ignored for write messages.

Enabling this field is intended for scratch and spill/fill, where the memory is used only by a single
thread and thus does not need to be maintained after the thread completes.

Format = Enable

12 Ignored

11:10 Ignored

9:8 Block Size. Specifies the number of DWords to be read or written

10: 8 DWords

 3D – Media – GPGPU

106 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bit Description

11: 16 DWords

All other encodings are reserved.

Message Payload
DWord Bits Description

M1.7 31:0 Offset 7. Specifies the DWord offset of DWord 7 into the surface.

Format = U32

Range = [0,3FFFFFFFh]

M1.6 31:0 Offset 6

M1.5 31:0 Offset 5

M1.4 31:0 Offset 4

M1.3 31:0 Offset 3

M1.2 31:0 Offset 2

M1.1 31:0 Offset 1

M1.0 31:0 Offset 0

M2.7 31:0 Offset 15. This message register is included only if the block size is 16 DWords.

M2.6 31:0 Offset 14

M2.5 31:0 Offset 13

M2.4 31:0 Offset 12

M2.3 31:0 Offset 11

M2.2 31:0 Offset 10

M2.1 31:0 Offset 9

M2.0 31:0 Offset 8

Additional Message Payload (Write)

For the write operation, either one or two additional registers (depending on the block size) of payload
contain the data to be written.

The Offsetn referred to below is the Global Offset added to the corresponding Offset n and is in units
of DWords. The DWord array index is also in units of DWords.

DWord Bit Description

M3.7 31:0 DWord[Offset7]

M3.6 31:0 DWord[Offset6]

M3.5 31:0 DWord[Offset5]

M3.4 31:0 DWord[Offset4]

M3.3 31:0 DWord[Offset3]

M3.2 31:0 DWord[Offset2]

M3.1 31:0 DWord[Offset1]

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 107

DWord Bit Description

M3.0 31:0 DWord[Offset0]

M4.7 31:0 DWord[Offset15]. This message register is included only if the block size is 16 DWords

M4.6 31:0 DWord[Offset14]

M4.5 31:0 DWord[Offset13]

M4.4 31:0 DWord[Offset12]

M4.3 31:0 DWord[Offset11]

M4.2 31:0 DWord[Offset10]

M4.1 31:0 DWord[Offset9]

M4.0 31:0 DWord[Offset8]

Writeback Message (Read)

For the read operation, the writeback message consists of either one or two registers depending on the
block size.

 The DWord array index is also in units of DWords.

DWord Bits Description

W0.7 31:0 DWord[Offset7]

W0.6 31:0 DWord[Offset6]

W0.5 31:0 DWord[Offset5]

W0.4 31:0 DWord[Offset4]

W0.3 31:0 DWord[Offset3]

W0.2 31:0 DWord[Offset2]

W0.1 31:0 DWord[Offset1]

W0.0 31:0 DWord[Offset0]

W1.7 31:0 DWord[Offset15]. This writeback message register is included only if the block size is 16 DWords.

W1.6 31:0 DWord[Offset14]

W1.5 31:0 DWord[Offset13]

W1.4 31:0 DWord[Offset12]

W1.3 31:0 DWord[Offset11]

W1.2 31:0 DWord[Offset10]

W1.1 31:0 DWord[Offset9]

W1.0 31:0 DWord[Offset8]

Byte Scattered Read/Write
These messages are supported on only.

These messages take a set of offsets, and read or write 8 or 16 scattered and possibly misaligned bytes,
words, or dwords starting at each offset. The Global Offset from the message header is added to each
of the specific offsets.

Restrictions:

 3D – Media – GPGPU

108 Doc Ref # IHD-OS-VLV-Vol7-04.14

the only surface type allowed is SURFTYPE_BUFFER.

the surface format is ignored, data is returned from the buffer to the GRF without format conversion.

the surface pitch is ignored, the surface is treated as a 1-dimensional surface. An element size (pitch) of
4 bytes is used to determine the size of the buffer for out-of-bounds checking if using the surface state
model.

the surface cannot be tiled

the surface base address must be DWord aligned

the stateless model is not supported.

The bounds checking for the stateless message is 4GB overflow and < General State upper bound.

Applications:

Byte aligned buffer accesses in GPGPU programs.

Execution Mask. Depending on the block size, either the low 8 bits or all 16 bits of the execution mask
are used to determine which slots are read into the destination GRF register (for read), or which slots
are written to the surface (for write).

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the
surface are dropped and will not modify memory contents.

Programming Restrictions: Writes to overlapping addresses will have undefined write ordering.

Message Descriptor
Bit Description

13:12 Ignored

11:10 Data Size. Specifies the data size for each slot.

0: 1 byte

1: 2 bytes

2: 4 bytes

3: Reserved

9 Ignored

8 SIMD Mode. Specifies the SIMD mode of the message (number of slots processed).

0: SIMD8

1: SIMD16

Message Payload
DWord Bits Description

M1.7 31:0 Offset 7.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 109

DWord Bits Description

Specifies the byte offset of DWord 7 into the surface.

Format = U32

Range = [0,FFFFFFFFh]

M1.6 31:0 Offset 6

M1.5 31:0 Offset 5

M1.4 31:0 Offset 4

M1.3 31:0 Offset 3

M1.2 31:0 Offset 2

M1.1 31:0 Offset 1

M1.0 31:0 Offset 0

M2.7 31:0 Offset 15. This message register is included only if the SIMD Mode is SIMD16.

M2.6 31:0 Offset 14

M2.5 31:0 Offset 13

M2.4 31:0 Offset 12

M2.3 31:0 Offset 11

M2.2 31:0 Offset 10

M2.1 31:0 Offset 9

M2.0 31:0 Offset 8

Additional Message Payload (Write)

For the write operation, either one or two additional registers (depending on the block size) of payload
contain the data to be written.

The Offsetn referred to below is the Global Offset added to the corresponding Offset n and is in units
of bytes. The length of Data written depends on the Data Size and is right-justified within the 32-bit
field. The upper bits are ignored for 1 byte and 2 byte Data Size.

DWord Bit Description

M3.7 31:0 Data[Offset7]

M3.6 31:0 Data[Offset6]

M3.5 31:0 Data[Offset5]

M3.4 31:0 Data[Offset4]

M3.3 31:0 Data[Offset3]

M3.2 31:0 Data[Offset2]

M3.1 31:0 Data[Offset1]

M3.0 31:0 Data[Offset0]

M4.7 31:0 Data[Offset15]. This message register is included only if the SIMD Mode is SIMD16.

M4.6 31:0 Data[Offset14]

 3D – Media – GPGPU

110 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

M4.5 31:0 Data[Offset13]

M4.4 31:0 Data[Offset12]

M4.3 31:0 Data[Offset11]

M4.2 31:0 Data[Offset10]

M4.1 31:0 Data[Offset9]

M4.0 31:0 Data[Offset8]

Writeback Message (Read)

For the read operation, the writeback message consists of either one or two registers depending on the
block size.

The Offsetn referred to below is the Global Offset added to the corresponding Offset n and is in units
of bytes. The length of Data written depends on the Data Size and is right-justified within the 32-bit
field and only the requeted bytes are written to the GRF.

DWord Bit Description

W0.7 31:0 Data[Offset7]

W0.6 31:0 Data[Offset6]

W0.5 31:0 Data[Offset5]

W0.4 31:0 Data[Offset4]

W0.3 31:0 Data[Offset3]

W0.2 31:0 Data[Offset2]

W0.1 31:0 Data[Offset1]

W0.0 31:0 Data[Offset0]

W1.7 31:0 Data[Offset15]. This message register is included only if the SIMD Mode is SIMD16.

W1.6 31:0 Data[Offset14]

W1.5 31:0 Data[Offset13]

W1.4 31:0 Data[Offset12]

W1.3 31:0 Data[Offset11]

W1.2 31:0 Data[Offset10]

W1.1 31:0 Data[Offset9]

W1.0 31:0 Data[Offset8]

Typed/Untyped Surface Read/Write and Typed/Untyped Atomic Operation
Six data port messages (Typed Surface Read, Typed Surface Write, Typed Atomic Operation, Untyped
Surface Read, Untyped Surface Write, and Untyped Atomic Operation) allow direct read/write accesses
to surfaces. These messages support three major categories of surfaces:

Typed surfaces. These surfaces are of type SURFTYPE_1D, 2D, 3D, or BUFFER and have a supported
surface format other than RAW. Supported via the render cache data port..

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 111

Programming Restriction: Vertical stride & Vertical Offset fields of the surface state object is only
supported for 2D non-array surfaces.

Raw buffer (untyped). These surfaces are of type SURFTYPE_BUFFER and have a surface format of
RAW and a surface pitch of 1 byte. Supported via the data cache data port. All SLM accesses are in this
category.

Structured buffer (untyped). These surfaces are of type SURFTYPE_STRBUF and have a surface format
of RAW. Supported via the data cache data port.

A typed surface uses U, V, R, and LOD address parameters (number of parameters utilized depends on
surface type), and performs conversion of type to/from the selected surface format as follows:

Surface formats with UINT require the message data in U32 format

Surface formats with SINT require the message data in S32 format

All other surface formats require the message data in FLOAT32 format

The untyped surface categories, both of which use the RAW surface format, perform no type
conversion. A raw buffer uses just the U address parameter, which specifies the byte offset into the
surface, which must be a multiple of 4. A structured buffer uses the U address parameter as an array
index and the V address parameter as a byte offset into the array element (which also must be a
multiple of 4).

For both raw and structured buffers, up to 4 dwords are accessed beginning at the byte address
determined. These 4 dwords correspond to the red, green, blue, and alpha channels in that order with
red mapping to the lowest order dword. The atomic operation messages will only access the first dword
(corresponding to the red channel for typed messages).

The atomic operation messages causes atomic read-modify-write operations on the destination location
addressed. In the table below, the new value of the destination (new_dst) is computed as indicated
based on the old value of the destination (old_dst) and up to two sources included in the message (src0
and src1). Optionally, a value can be returned by the message (ret).

The atomic operations guarantee that the read and the write are performed atomically, meaning that
no read or write to the same memory location from this thread or any other thread can occur between
the read and the write.

The following atomic operations are available, along with the specific operation performed for each and
the return value:

Atomic Operation new_dst ret

AOP_AND old_dst & src0 old_dst

AOP_OR old_dst | src0 old_dst

AOP_XOR old_dst ^ src0 old_dst

AOP_MOV src0 old_dst

AOP_INC old_dst + 1 old_dst

AOP_DEC old_dst – 1 old_dst

AOP_ADD old_dst + src0 old_dst

AOP_SUB old_dst – src0 old_dst

 3D – Media – GPGPU

112 Doc Ref # IHD-OS-VLV-Vol7-04.14

Atomic Operation new_dst ret

AOP_REVSUB src0 – old_dst old_dst

AOP_IMAX imax(old_dst, src0) old_dst

AOP_IMIN imin(old_dst, src0) old_dst

AOP_UMAX umax(old_dst, src0) old_dst

AOP_UMIN umin(old_dst, src0) old_dst

AOP_CMPWR (src0 == old_dst) ? src1: old_dst old_dst

AOP_PREDEC old_dst – 1 new_dst

AOP_CMPWR8B (src08B == old_dst8B) ? src18B: old_dst8B old_dst8B

Programming Note: src08B is 8 bytes, src18B is 8 Bytes and old_dst8B is 8 bytes in length.

Programming Note: AOP_CMPWR8B is not supported for SLM.

Programming Note: AOP_CMPWR8B addresses must be QWORD aligned.

Note: imax/imin assume operands are signed integers, umax/umin assume operands are unsigned
integers. All other operations treat all values as 32-bit unsigned integers. Add and subtract operations
will wrap without any special indication.

These messages are supported on only.

Restrictions:

For untyped messages, the Tile Mode must be LINEAR.

For untyped messages, the Surface Format must be RAW and the Surface Type must be
SURFTYPE_BUFFER or SURFTYPE_STRBUF.

For typed messages, the Surface Type must be SURFTYPE_1D, 2D, 3D, or BUFFER.

The Surface Format for typed surface reads must be:

Project Surface Format Name Security

 R32_SINT

 R32_UINT

 R32_FLOAT

The Surface Format for typed surface writes must be

Project Surface Format Name Security

 R32G32B32A32_FLOAT

 R32G32B32A32_SINT

 R32G32B32A32_UINT

 R16G16B16A16_UNORM

 R16G16B16A16_SNORM

 R16G16B16A16_SINT

 R16G16B16A16_UINT

 R16G16B16A16_FLOAT

 R32G32_FLOAT

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 113

Project Surface Format Name Security

 R32G32_SINT

 R32G32_UINT

 B8G8R8A8_UNORM

 R10G10B10A2_UNORM

 R10G10B10A2_UINT

 R8G8B8A8_UNORM

 R8G8B8A8_SNORM

 R8G8B8A8_SINT

 R8G8B8A8_UINT

 R16G16_UNORM

 R16G16_SNORM

 R16G16_SINT

 R16G16_UINT

 R16G16_FLOAT

 B10G10R10A2_UNORM

 R11G11B10_FLOAT

 R32_SINT

 R32_UINT

 R32_FLOAT

 B5G6R5_UNORM

 B5G5R5A1_UNORM

 B4G4R4A4_UNORM

 R8G8_UNORM

 R8G8_SNORM

 R8G8_SINT

 R8G8_UINT

 R16_UNORM

 R16_SNORM

 R16_SINT

 R16_UINT

 R16_FLOAT

 B5G5R5X1_UNORM

 R8_UNORM

 R8_SNORM

 R8_SINT

 R8_UINT

 A8_UNORM

The Surface Format for typed atomic operations must be R32_UINT or R32_SINT.

 3D – Media – GPGPU

114 Doc Ref # IHD-OS-VLV-Vol7-04.14

For untyped messages accessing SURFTYPE_STRBUF, the V address (byte offset) must be DWord aligned
(low 2 bits must be zero).

For untyped messages accessing SURFTYPE_BUFFER, the U address (byte offset) must be DWord aligned
(low 2 bits must be zero).

Typed messages only support SIMD8.

The stateless model support is limited to untyped messages.

Issues [IVB Astep]: Use SIMD8 messages only for untyped surface reads.

Execution Mask:

SIMD16: The 16 bits of the execution mask are ANDed with the 16 bits of the Pixel/Sample Mask from
the message header and the resulting mask is used to determine which slots are read into the
destination GRF register (for read), or which slots are written to the surface (for write). If the header is
not present, only the execution mask is used.

SIMD8: The low 8 bits of the execution mask are ANDed with 8 bits of the Pixel/Sample Mask from
the message header. For the typed messages, the Slot Group in the message descriptor selects either
the low or high 8 bits. For the untyped messages, the low 8 bits are always selected. The resulting mask
is used to determine which slots are read into the destination GRF register (for read), or which slots are
written to the surface (for write). If the header is not present, only the low 8 bits of the execution mask
are used.

Issues If resulting mask is 0, the slot is still read into the destination GRF register.

SIMD4x2: Each group of 4 bits within the low 8 bits of the execution mask are ORed together to create
two bits which are used to determine which slots are read into the destination GRF register.

Out–of–Bounds Accesses: Reads to areas outside of the surface return 0, except for the Typed Surface
Read message which returns 1 in the alpha channel and 0 in the other channels. Writes to areas outside
of the surface are dropped and will not modify memory contents.

Issues: The Typed Surface Read returns 0 in all channels for out-of-bounds accesses.

Programming Restrictions: Writes to overlapping addresses will have undefined write ordering.

The following table summarizes the SIMD Mode support for each message type:

 Untyped Typed

Read Write Atomic Read Write Atomic

SIMD16 x x x

SIMD8 x x x x x x

The following table indicates the hardware interpretation of each input parameter based on surface
type. Parameters with blank entries are ignored by hardware if delivered.

Surface Type Surface Array field in
SURFACE_STATE

U Address V
Address

R
Address

LOD

SURFTYPE_1
D

disabled X pixel address LOD

 enabled X pixel address array
index

 LOD

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 115

SURFTYPE_2
D

disabled X pixel address Y pixel
address

 LOD

 enabled X pixel address Y pixel
address

array
index

LOD

SURFTYPE_3
D

disabled X pixel address Y pixel
address

Z pixel
address

LOD

SURFTYPE_B
UFFER

disabled buffer index

SURFTYPE_S
TRBUF

disabled buffer index byte
offset

Typed Surface Read/Write Message Descriptor
Bit Description

13 Slot Group

This field controls which 8 bits of Pixel/Sample Mask in the message header are ANDed with the
execution mask to determine which slots are accessed. This field is ignored if the header is not
present.

Format = U1

0: Use low 8 slots

1: Use high 8 slots

12 Ignored

11 Alpha Channel Mask

For the read message, indicates that alpha will be included in the writeback message. For the write
message, indicates that alpha is included in the message payload, and that alpha will be written to
the surface.

0: Alpha channel included

1: Alpha channel not included

Programming Notes:

At least one of the channels must be unmasked (the 4-bit channel mask cannot be 1111b).

10 Blue Channel Mask

9 Green Channel Mask

8 Red Channel Mask

Untyped Surface Read/Write Message Descriptor
Bit Description

13:12 SIMD Mode

Format = U2

 3D – Media – GPGPU

116 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bit Description

0: SIMD4x2 (valid for read message only) (valid for read message only) ,

1: SIMD16

2: SIMD8

3: Reserved

11 Alpha Channel Mask

For the read message, indicates that alpha will be included in the writeback message. For the
write message, indicates that alpha is included in the message payload, and that alpha will be
written to the surface.

0: Alpha channel included

1: Alpha channel not included

Programming Notes:

For the Untyped Surface Write message, each channel mask cannot be 0 unless all of the lower
mask bits are also zero. This means that the only 4-bit channel mask values allowed are 0000b,
1000b, 1100b, and 1110b. Other messages allow any combination of channel masks.

For the Untyped Surface Read message, at least one of the channels must be unmasked (the 4-bit
channel mask cannot be 1111b).

10 Blue Channel Mask

9 Green Channel Mask

8 Red Channel Mask

Typed Atomic Operation Message Descriptor
Bit Description

13 Return Data Control

Specifies whether return data is sent back to the thread.

Format = Enable

12 Slot Group

This field controls which 8 bits of Pixel/Sample Mask in the message header are ANDed with the
execution mask to determine which slots are accessed.

Format = U1

0: Use low 8 slots

1: Use high 8 slots

11:8 Atomic Operation Type

Specifies the atomic operation to be performed.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 117

Bit Description

0000: Reserved

0001: AOP_AND

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV

0101: AOP_INC

0110: AOP_DEC

0111: AOP_ADD

1000: AOP_SUB

1001: AOP_REVSUB

1010: AOP_IMAX

1011: AOP_IMIN

1100: AOP_UMAX

1101: AOP_UMIN

1110: AOP_CMPWR

1111: AOP_PREDEC

Typed Atomic Operation SIMD4x2 Message Descriptor
Bit Description

13 Return Data Control

Specifies whether return data is sent back to the thread.

Format = Enable

12 Reserved

11:8 Atomic Operation Type

Specifies the atomic operation to be performed.

0000: reserved

0001: AOP_AND

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV

0101: AOP_INC

 3D – Media – GPGPU

118 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bit Description

0110: AOP_DEC

0111: AOP_ADD

1000: AOP_SUB

1001: AOP_REVSUB

1010: AOP_IMAX

1011: AOP_IMIN

1100: AOP_UMAX

1101: AOP_UMIN

1110: AOP_CMPWR

1111: AOP_PREDEC

Untyped Atomic Operation Message Descriptor
Bit Description

13 Return Data Control

Specifies whether return data is sent back to the thread.

Format = Enable

12 SIMD Mode

Format = U1

0: SIMD16

1: SIMD8

11:8 Atomic Operation Type

Specifies the atomic operation to be performed.

0000: 0000: AOP_CMPWR8B

0001: AOP_AND

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV

0101: AOP_INC

0110: AOP_DEC

0111: AOP_ADD

1000: AOP_SUB

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 119

Bit Description

1001: AOP_REVSUB

1010: AOP_IMAX

1011: AOP_IMIN

1100: AOP_UMAX

1101: AOP_UMIN

1110: AOP_CMPWR

1111: AOP_PREDEC

Untyped Atomic Operation SIMD4x2 Message Descriptor
Bit Description

13 Return Data Control

Specifies whether return data is sent back to the thread.

Format = Enable

12 Reserved

11:8 Atomic Operation Type

Specifies the atomic operation to be performed.

0000: AOP_CMPWR8B

0001: AOP_AND

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV

0101: AOP_INC

0110: AOP_DEC

0111: AOP_ADD

1000: AOP_SUB

1001: AOP_REVSUB

1010: AOP_IMAX

1011: AOP_IMIN

1100: AOP_UMAX

1101: AOP_UMIN

1110: AOP_CMPWR

 3D – Media – GPGPU

120 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bit Description

1111: AOP_PREDEC

Atomic Counter Operation Message Descriptor
Bit Description

13 Return Data Control

Specifies whether return data is sent back to the thread.

Format = Enable

12 SIMD Mode

Format: U1

0: Reserved

1: SIM8 (low 8 slots)

11:8 Atomic Operation Type

Specifies the atomic operation to be performed.

0000: Reserved

0001: AOP_AND

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV

0101: AOP_INC

0110: AOP_DEC

0111: AOP_ADD

1000: AOP_SUB

1001: AOP_REVSUB

1010: AOP_IMAX

1011: AOP_IMIN

1100: AOP_UMAX

1101: AOP_UMIN

1110: Reserved

1111: AOP_PREDEC

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 121

For Append Counter Operations there is no address payload as the address is provided by the append
counter field in the surface state. The write data payloads are the same as untyped atomic. The write
back are the same as untyped atomic.

When accessing a surface with the Append Counter Operation, if the Append Counter enable field of
the surface state is not 1, it the access will be treated as out of bounds, w/ the writes being ignored and
the reads returning 0.

Atomic Counter Operation SIMD4x2 Message Descriptor
Bit Description

13 Return Data Control

Specifies whether return data is sent back to the thread.

Format = Enable

12 Reserved

11:8 Atomic Operation Type

Specifies the atomic operation to be performed.

0000: Reserved

0001: AOP_AND

0010: AOP_OR

0011: AOP_XOR

0100: AOP_MOV

0101: AOP_INC

0110: AOP_DEC

0111: AOP_ADD

1000: AOP_SUB

1001: AOP_REVSUB

1010: AOP_IMAX

1011: AOP_IMIN

1100: AOP_UMAX

1101: AOP_UMIN

1110: Reserved

1111: AOP_PREDEC

For Append Counter Operations there is no address payload as the address is provided by the append
counter field in the surface state. The write data payloads are the same as untyped atomic 4x2. The
write back are the same as untyped atomic 4x2.

 3D – Media – GPGPU

122 Doc Ref # IHD-OS-VLV-Vol7-04.14

When accessing a surface with the Append Counter Operation, if the Append Counter enable field of
the surface state is not 1, it the access will be treated as out of bounds, w/ the writes being ignored and
the reads returning 0.

Message Header

The message header for the untyped messages only needs to be delivered for pixel shader threads,
where the execution mask may indicate pixels/samples that are enabled only due to derivative (LOD)
calculations, but the corresponding slot on the surface must not be accessed. Typed messages (which
go to render cache data port) must include the header.

DWord Bit Description

M0.7 31:16 Ignored

 15:0 Pixel/Sample Mask. This field contains the 16-bit pixel/sample mask to be used for
SIMD16 and SIMD8 messages. All 16 bits are used for SIMD16 messages. For typed
SIMD8 messages, Slot Group selects with 8 bits of this field are used. For untyped SIMD8
messages, the low 8 bits of this field are used.

If the header is not delivered, this field defaults to all ones. The field is ignored for
SIMD4x2 messages.

M0.6 31:0 Ignored

M0.5 31:0 Format = GeneralStateOffset[31:10]

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:0 Ignored

M0.2 31:0 Ignored

M0.1 31:0 Ignored

M0.0 31:0 Ignored

Message Payload

The message payload consists of the following:

• For the read messages, only an address payload is delivered.
• For the write messages, an address payload is followed by the write data payload.
• For the atomic operation messages, an address payload is followed by the source payload.
• For SIMD16 and SIMD8 messages, the message length is used to determine how many address

parameters are included in the message. The number of message registers in the write data
payload is determined by the number of channel mask bits that are enabled, and the number of
message registers in the source payload is determined by the atomic operation operation. Thus,
one or neither of these two values (depending on the message type), plus one for the header, can
be subtracted from the message length to determine the number of message registers in the
address payload, from which the number of address parameters can be determined.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 123

SIMD16 Address Payload

The payload of a SIMD16 message provides address parameters to process 16 slots. The possible
address parameters are U and V (since SIMD16 is only supported with untyped messages). The number
of parameters required depends on the surface type being accessed. Each parameter takes two
message registers. Each parameter always takes a consistent position in the input payload. The length
field can be used to send a shorter message, but intermediate parameters cannot be skipped as there is
no way to signal this.

DWord Bit Description

M1.7 31:0 Slot 7 U Address

Specifies the U Address for slot 7.

Format = U32

M1.6 31:0 Slot 6 U Address

M1.5 31:0 Slot 5 U Address

M1.4 31:0 Slot 4 U Address

M1.3 31:0 Slot 3 U Address

M1.2 31:0 Slot 2 U Address

M1.1 31:0 Slot 1 U Address

M1.0 31:0 Slot 0 U Address

M2.7 31:0 Slot 15 U Address

M2.6 31:0 Slot 14 U Address

M2.5 31:0 Slot 13 U Address

M2.4 31:0 Slot 12 U Address

M2.3 31:0 Slot 11 U Address

M2.2 31:0 Slot 10 U Address

M2.1 31:0 Slot 9 U Address

M2.0 31:0 Slot 8 U Address

M3 Slots 7:0 V Address

M4 Slots 15:8 V Address

SIMD16 Source Payload (Atomic Operation Message Only)

The source payload follows the address payload for atomic operation messages. Depending on the
atomic operation, zero, one, or two sources are required. If the source is not required, it must not be
included. Message registers given here could be a lower number if some of the address parameters are
not included.

The following atomic operations require no sources, thus the source payload is not delivered: AOP_INC,
AOP_DEC, AOP_PREDEC

The following atomic operations require both Source0 and Source1: AOP_CMPWR

 3D – Media – GPGPU

124 Doc Ref # IHD-OS-VLV-Vol7-04.14

All of the remaining atomic operations require Source0 only.

DWord Bit Description

M5.7 31:0 Slot 7 Source0

Specifies Source0 for slot 7.

Format = S31 for AOP_IMAX and AOP_IMIN, U32 for all other operations

M5.6 31:0 Slot 6 Source0

M5.5 31:0 Slot 5 Source0

M5.4 31:0 Slot 4 Source0

M5.3 31:0 Slot 3 Source0

M5.2 31:0 Slot 2 Source0

M5.1 31:0 Slot 1 Source0

M5.0 31:0 Slot 0 Source0

M6.7 31:0 Slot 15 Source0

M6.6 31:0 Slot 14 Source0

M6.5 31:0 Slot 13 Source0

M6.4 31:0 Slot 12 Source0

M6.3 31:0 Slot 11 Source0

M6.2 31:0 Slot 10 Source0

M6.1 31:0 Slot 9 Source0

M6.0 31:0 Slot 8 Source0

M7 Slots 7:0 Source1

M8 Slots 15:8 Source1

SIMD16 Source Payload (AOP_CMPWR8B Only)

DWord Bit Description

M5.7 31:0 Slot 7 Source0[31:0]

Specifies Source0[31:0] for slot 7.

Format = U32

M5.6 31:0 Slot 6 Source0[31:0]

M5.5 31:0 Slot 5 Source0[31:0]

M5.4 31:0 Slot 4 Source0[31:0]

M5.3 31:0 Slot 3 Source0[31:0]

M5.2 31:0 Slot 2 Source0[31:0]

M5.1 31:0 Slot 1 Source0[31:0]

M5.0 31:0 Slot 0 Source0[31:0]

M6.7 31:0 Slot 15 Source0[31:0]

M6.6 31:0 Slot 14 Source0[31:0]

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 125

DWord Bit Description

M6.5 31:0 Slot 13 Source0[31:0]

M6.4 31:0 Slot 12 Source0[31:0]

M6.3 31:0 Slot 11 Source0[31:0]

M6.2 31:0 Slot 10 Source0[31:0]

M6.1 31:0 Slot 9 Source0[31:0]

M6.0 31:0 Slot 8 Source0[31:0]

M7 Slots 7:0 Source0[63:32]

M8 Slots 15:8 Source0[63:32]

M9 Slots 7:0 Source1[31:0]

M10 Slots 15:8 Source1[31:0]

M11 Slots 7:0 Source1[63:32]

M12 Slots 15:8 Source1[63:32]

SIMD16 Write Data Payload (Write Message Only)

The write data payload follows the address payload for write messages. Actual position within the
message may vary if some of the parameters are not included or if some of the channel mask bits are
asserted. Any parameter or write channel not included in the payload is skipped, with message phases
below it being renumbered to take up the vacated space.

DWord Bit Description

M5.7 31:0 Slot 7 Red

Specifies the value of the red channel to be written for slot 7.

Format = 32 bits raw data.

M5.6 31:0 Slot 6 Red

M5.5 31:0 Slot 5 Red

M5.4 31:0 Slot 4 Red

M5.3 31:0 Slot 3 Red

M5.2 31:0 Slot 2 Red

M5.1 31:0 Slot 1 Red

M5.0 31:0 Slot 0 Red

M6.7 31:0 Slot 15 Red

M6.6 31:0 Slot 14 Red

M6.5 31:0 Slot 13 Red

M6.4 31:0 Slot 12 Red

M6.3 31:0 Slot 11 Red

M6.2 31:0 Slot 10 Red

M6.1 31:0 Slot 9 Red

M6.0 31:0 Slot 8 Red

 3D – Media – GPGPU

126 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

M7 Slots 7:0 Green

M8 Slots 15:8 Green

M9 Slots 7:0 Blue

M10 Slots 15:8 Blue

M11 Slots 7:0 Alpha

M12 Slots 15:8 Alpha

SIMD8 Address Payload

The payload of a SIMD8 message provides address parameters to process 8 slots. The possible address
parameters are U, V, R, and LOD. The number of parameters required depends on the surface type
being accessed. Each parameter takes one message register. Each parameter always takes a consistent
position in the input payload. The length field can be used to send a shorter message, but intermediate
parameters cannot be skipped as there is no way to signal this.

DWord Bit Description

M1.7 31:0 Slot 7 U Address

Specifies the U Address for slot 7.

Format = U32

M1.6 31:0 Slot 6 U Address

M1.5 31:0 Slot 5 U Address

M1.4 31:0 Slot 4 U Address

M1.3 31:0 Slot 3 U Address

M1.2 31:0 Slot 2 U Address

M1.1 31:0 Slot 1 U Address

M1.0 31:0 Slot 0 U Address

M2 Slots 7:0 V Address

M3 Slots 7:0 R Address

Programming Notes:

This register can only be delivered for the Typed message types.

M4 Slots 7:0 LOD

Programming Notes:

This register can only be delivered for the Typed message types.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 127

SIMD8 Source Payload (Atomic Operation Message Only)

The source payload follows the address payload for atomic operation messages. Depending on the
atomic operation, zero, one, or two sources are required. If the source is not required, it must not be
included. Message registers given here could be a lower number if some of the address parameters are
not included.

The following atomic operations require no sources, thus the source payload is not delivered: AOP_INC,
AOP_DEC, AOP_PREDEC

The following atomic operations require both Source0 and Source1: AOP_CMPWR

All of the remaining atomic operations require Source0 only.

DWord Bit Description

M5.7 31:0 Slot 7 Source0

Specifies Source0 for slot 7.

Format = S31 for AOP_IMAX and AOP_IMIN, U32 for all other operations

M5.6 31:0 Slot 6 Source0

M5.5 31:0 Slot 5 Source0

M5.4 31:0 Slot 4 Source0

M5.3 31:0 Slot 3 Source0

M5.2 31:0 Slot 2 Source0

M5.1 31:0 Slot 1 Source0

M5.0 31:0 Slot 0 Source0

M6 Slots 7:0 Source1

SIMD8 Write Data Payload (Write Message Only)

The write data payload follows the address payload for write messages. Actual position within the
message may vary if some of the parameters are not included or if some of the channel mask bits are
asserted. Any parameter or write channel not included in the payload is skipped, with message phases
below it being renumbered to take up the vacated space.

DWord Bit Description

M5.7 31:0 Slot 7 Red

Specifies the value of the red channel to be written for slot 7.

For Untyped messages:

Format = 32 bits raw data.

For Typed messages:

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being
accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.

M5.6 31:0 Slot 6 Red

 3D – Media – GPGPU

128 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

M5.5 31:0 Slot 5 Red

M5.4 31:0 Slot 4 Red

M5.3 31:0 Slot 3 Red

M5.2 31:0 Slot 2 Red

M5.1 31:0 Slot 1 Red

M5.0 31:0 Slot 0 Red

M6 Slots 7:0 Green

M7 Slots 7:0 Blue

M8 Slots 7:0 Alpha

SIMD8 Write Data Payload (Tile W Write Message Only)

The write data payload follows the address payload for write messages. Actual position within the
message may vary if some of the parameters are not included.

DWord Bit Description

M5.7 31:8 Ignored

7:0 Slot 7 Red

Specifies the value of the red channel to be written for slot 7.

For Typed messages:

Format = U8

M5.6 31:8 Ignored

7:0 Slot 6 Red

M5.5 31:8 Ignored

7:0 Slot 5 Red

M5.4 31:8 Ignored

7:0 Slot 4 Red

M5.3 31:8 Ignored

7:0 Slot 3 Red

M5.2 31:8 Ignored

7:0 Slot 2 Red

M5.1 31:8 Ignored

7:0 Slot 1 Red

M5.0 31:8 Ignored

7:0 Slot 0 Red

SIMD4x2 Address Payload

The payload of a SIMD4x2 message provides address parameters to process 2 slots.

DWord Bit Description

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 129

DWord Bit Description

M1.7 31:0

Programming Notes:

This register can only be delivered for the Typed message types.

M1.6 31:0

Programming Notes:

This register can only be delivered for the Typed message types.

M1.5 31:0 Slot 1 V Address
Format = U32

M1.4 31:0 Slot 1 U Address
Format = U32

M1.3 31:0

M1.2 31:0

M1.1 31:0 Slot 0 V Address

M1.0 31:0 Slot 0 U Address

SIMD4x2 Source Payload (Atomic Operation Message Only)

The source payload follows the address payload for atomic operation messages. Depending on the
atomic operation, zero, one, or two sources are required. If the source is not required, it must not be
included. Message registers given here could be a lower number if some of the address parameters are
not included.

The following atomic operations require no sources, thus the source payload is not delivered: AOP_INC,
AOP_DEC, AOP_PREDEC

The following atomic operations require both Source0 and Source1: AOP_CMPWR

All of the remaining atomic operations require Source0 only.

DWord Bit Description

M2.7 31:0 Ignored

M2.6 31:0 Ignored

M2.5 31:0 Slot 1 Source1

Specifies Source1 for slot 1.

Format = S31 for AOP_IMAX and AOP_IMIN, U32 for all other operations

M2.4 31:0 Slot 1 Source0

M2.3 31:0 Ignored

M2.2 31:0 Ignored

 3D – Media – GPGPU

130 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

M2.1 31:0 Slot 0 Source1

M2.0 31:0 Slot 0 Source0

SIMD4x2 Source Payload (AOP_CMPWR8B Only)

DWord Bit Description

M2.7 31:0 Slot 1 Source1 [63:32]

M2.6 31:0 Slot 1 Source1 [31:0]

M2.5 31:0 Slot 1 Source0 [63:32]

M2.4 31:0 Slot 1 Source0 [31:0]

M2.3 31:0 Slot 0 Source1 [63:32]

M2.2 31:0 Slot 0 Source1 [31:0]

M2.1 31:0 Slot 0 Source0 [63:32]

M2.0 31:0 Slot 0 Source0 [31:0]

SIMD4x2 Write Data Payload (Write Message Only)

The write data payload follows the address payload for write messages.

DWord Bit Description

M2.7 31:0 Slot 1 Alpha

Specifies the value of the red channel to be written for slot 7.

For Untyped messages:

Format = 32 bits raw data.

For Typed messages:

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being
accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.

M2.6 31:0 Slot 1 Blue

M2.5 31:0 Slot 1 Green

M2.4 31:0 Slot 1 Red

M2.3 31:0 Slot 0 Alpha

M2.2 31:0 Slot 0 Blue

M2.1 31:0 Slot 0 Green

M2.0 31:0 Slot 0 Red

Writeback Message

SIMD8 DWORD Read

DWord Bit Description

W0.7 31:0 DWord[Offset7]

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 131

DWord Bit Description

W0.6 31:0 DWord[Offset6]

W0.5 31:0 DWord[Offset5]

W0.4 31:0 DWord[Offset4]

W0.3 31:0 DWord[Offset3]

W0.2 31:0 DWord[Offset2]

W0.1 31:0 DWord[Offset1]

W0.0 31:0 DWord[Offset0]

SIMD8 QWORD Read

DWord Bit Description

W0.7
W0.6

63:0 QWord[Offset3]

W0.5
W0.4

63:0 QWord[Offset2]

W0.3
W0.2

63:0 QWord[Offset1]

W0.1
W0.0

63:0 QWord[Offset0]

W1.7
W1.6

63:0 QWord[Offset7]

W1.5
W1.4

63:0 QWord[Offset6]

W1.3
W1.2

63:0 QWord[Offset5]

W1.1
W1.0

63:0 QWord[Offset4]

SIMD16 Read

A SIMD16 writeback message consists of up to 8 destination registers. Which registers are returned is
determined by the channel mask in the message descriptor. Each asserted channel mask results in the
destination register of the corresponding channel being skipped in the writeback message, and all
channels with higher numbered registers being dropped down to fill in the space occupied by the
masked channel. For example, if only red and alpha are enabled, red is sent to regid+0 and regid+1,
and alpha to regid+2 and regid+3. The slots written within each destination register is determined by
the execution mask on the send instruction.

DWord Bit Description

W0.7 31:0 Slot 7 Red: Specifies the value of the red channel for slot 7.

Format = 32 bits raw data.

W0.6 31:0 Slot 6 Red

W0.5 31:0 Slot 5 Red

 3D – Media – GPGPU

132 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

W0.4 31:0 Slot 4 Red

W0.3 31:0 Slot 3 Red

W0.2 31:0 Slot 2 Red

W0.1 31:0 Slot 1 Red

W0.0 31:0 Slot 0 Red

W1.7 31:0 Slot 15 Red

W1.6 31:0 Slot 14 Red

W1.5 31:0 Slot 13 Red

W1.4 31:0 Slot 12 Red

W1.3 31:0 Slot 11 Red

W1.2 31:0 Slot 10 Red

W1.1 31:0 Slot 9 Red

W1.0 31:0 Slot 8 Red

W2 Slots 7:0 Green

W3 Slots 15:8 Green

W4 Slots 7:0 Blue

W5 Slots 15:8 Blue

W6 Slots 7:0 Alpha

W7 Slots 15:8 Alpha

SIMD8 Read

A SIMD8 writeback message consists of up to 4 destination registers. Which registers are returned is
determined by the channel mask in the message descriptor. Each asserted channel mask results in the
destination register of the corresponding channel being skipped in the writeback message, and all
channels with higher numbered registers being dropped down to fill in the space occupied by the
masked channel. For example, if only red and alpha are enabled, red is sent to regid+0, and alpha to
regid+1. The slots written within each destination register is determined by the execution mask on the
send instruction.

DWord Bit Description

W0.7 31:0 Slot 7 Red: Specifies the value of the red channel for slot 7.

For Untyped messages:

Format = 32 bits raw data.

For Typed messages:

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being
accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.

W0.6 31:0 Slot 6 Red

W0.5 31:0 Slot 5 Red

W0.4 31:0 Slot 4 Red

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 133

DWord Bit Description

W0.3 31:0 Slot 3 Red

W0.2 31:0 Slot 2 Red

W0.1 31:0 Slot 1 Red

W0.0 31:0 Slot 0 Red

W1 Slots 7:0 Green

W2 Slots 7:0 Blue

W3 Slots 7:0 Alpha

SIMD8 Read (Tile W)

The slots written within each destination register is determined by the execution mask on the send
instruction.

DWord Bit Description

M5.7 31:8 Reserved (0)

7:0 Slot 7 Red

Specifies the value of the red channel to be written for slot 7.

For Typed messages:

Format = U8

M5.6 31:8 Reserved (0)

7:0 Slot 6 Red

M5.5 31:8 Reserved (0)

7:0 Slot 5 Red

M5.4 31:8 Reserved (0)

7:0 Slot 4 Red

M5.3 31:8 Reserved (0)

7:0 Slot 3 Red

M5.2 31:8 Reserved (0)

7:0 Slot 2 Red

M5.1 31:8 Reserved (0)

7:0 Slot 1 Red

M5.0 31:8 Reserved (0)

7:0 Slot 0 Red

SIMD4x2 Read

A SIMD4x2 writeback message always consists of a single message register containing all four color
channels of each of the two slots. The channel mask bits as well as the execution mask on the send
instruction are used to determine which of the channels in the destination register are overwritten. If
any of the four execution mask bits for a slot is asserted, that slot is considered to be active. The active
channels in the channel mask will be written in the destination register for that slot. If the slot is inactive

 3D – Media – GPGPU

134 Doc Ref # IHD-OS-VLV-Vol7-04.14

(all four execution mask bits deasserted), none of the channels for that slot will be written in the
destination register.

DWord Bit Description

W0.7 31:0 Slot 1 Alpha: Specifies the value of the pixel's alpha channel.

Format = 32 bits raw data.

W0.6 31:0 Slot 1 Blue

W0.5 31:0 Slot 1 Green

W0.4 31:0 Slot 1 Red

W0.3 31:0 Slot 0 Alpha

W0.2 31:0 Slot 0 Blue

W0.1 31:0 Slot 0 Green

W0.0 31:0 Slot 0 Red

SIMD16 Atomic Operation

A writeback message is only returned for an Atomic Operation message if the Send Return Data field
in the message descriptor is enabled. The execution mask on the send instruction indicates which
channels in the destination registers are overwritten.

DWord Bit Description

W0.7 31:0 Slot 7 Return Data: Specifies the value of the return data for slot 7.

Format = U32

W0.6 31:0 Slot 6 Return Data

W0.5 31:0 Slot 5 Return Data

W0.4 31:0 Slot 4 Return Data

W0.3 31:0 Slot 3 Return Data

W0.2 31:0 Slot 2 Return Data

W0.1 31:0 Slot 1 Return Data

W0.0 31:0 Slot 0 Return Data

W1.7 31:0 Slot 15 Return Data

W1.6 31:0 Slot 14 Return Data

W1.5 31:0 Slot 13 Return Data

W1.4 31:0 Slot 12 Return Data

W1.3 31:0 Slot 11 Return Data

W1.2 31:0 Slot 10 Return Data

W1.1 31:0 Slot 9 Return Data

W1.0 31:0 Slot 8 Return Data

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 135

SIMD16 Atomic Operation (AOP_CMPWR8B Only)

A writeback message is only returned for an Atomic Operation AOP_CMPWR8B message if the Send
Return Data field in the message descriptor is enabled. The execution mask on the send instruction
indicates which channels in the destination registers are overwritten.

DWord Bit Description

W0.7 31:0 Slot 7 Return Data[31:0]: Specifies the value of the return data for slot 7.

Format = U32

W0.6 31:0 Slot 6 Return Data[31:0]

W0.5 31:0 Slot 5 Return Data[31:0]

W0.4 31:0 Slot 4 Return Data[31:0]

W0.3 31:0 Slot 3 Return Data[31:0]

W0.2 31:0 Slot 2 Return Data[31:0]

W0.1 31:0 Slot 1 Return Data[31:0]

W0.0 31:0 Slot 0 Return Data[31:0]

W1.7 31:0 Slot 15 Return Data[31:0]

W1.6 31:0 Slot 14 Return Data[31:0]

W1.5 31:0 Slot 13 Return Data[31:0]

W1.4 31:0 Slot 12 Return Data[31:0]

W1.3 31:0 Slot 11 Return Data[31:0]

W1.2 31:0 Slot 10 Return Data[31:0]

W1.1 31:0 Slot 9 Return Data[31:0]

W1.0 31:0 Slot 8 Return Data[31:0]

W2 Slot 7:0 Return Data[63:32]

W3 Slot 15:8 Return Data[63:32]

SIMD8 Atomic Operation

A writeback message is only returned for an Atomic Operation message if the Send Return Data field
in the message descriptor is enabled. The execution mask on the send instruction indicates which
channels in the destination registers are overwritten.

DWord Bit Description

W0.7 31:0 Slot 7 Return Data: Specifies the value of the return data for slot 7.

Format = U32

W0.6 31:0 Slot 6 Return Data

W0.5 31:0 Slot 5 Return Data

W0.4 31:0 Slot 4 Return Data

W0.3 31:0 Slot 3 Return Data

W0.2 31:0 Slot 2 Return Data

 3D – Media – GPGPU

136 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

W0.1 31:0 Slot 1 Return Data

W0.0 31:0 Slot 0 Return Data

SIMD8 Atomic Operation (AOP_CMPWR8B Only)

A writeback message is only returned for an Atomic Operation AOP_CMPWR8B message if the Send
Return Data field in the message descriptor is enabled. The execution mask on the send instruction
indicates which channels in the destination registers are overwritten.

DWord Bit Description

W0.7 31:0 Slot 7 Return Data[31:0]: Specifies the value of the return data for slot 7.

Format = U32

W0.6 31:0 Slot 6 Return Data[31:0]

W0.5 31:0 Slot 5 Return Data[31:0]

W0.4 31:0 Slot 4 Return Data[31:0]

W0.3 31:0 Slot 3 Return Data[31:0]

W0.2 31:0 Slot 2 Return Data[31:0]

W0.1 31:0 Slot 1 Return Data[31:0]

W0.0 31:0 Slot 0 Return Data[31:0]

W1.7 31:0 Slot 7 Return Data[63:32]

W1.6 31:0 Slot 6 Return Data[63:32]

W1.5 31:0 Slot 5 Return Data[63:32]

W1.4 31:0 Slot 4 Return Data[63:32]

W1.3 31:0 Slot 3 Return Data[63:32]

W1.2 31:0 Slot 2 Return Data[63:32]

W1.1 31:0 Slot 1 Return Data[63:32]

W1.0 31:0 Slot 0 Return Data[63:32]

SIMD4x2 Atomic Operation

A writeback message is only returned for an Atomic Operation message if the Send Return Data field
in the message descriptor is enabled. The execution mask on the send instruction indicates which
channels in the destination registers are overwritten.

DWord Bit Description

W0.7 31:0 reserved – not written to GRF

W0.6 31:0 reserved – not written to GRF

W0.5 31:0 reserved – not written to GRF

W0.4 31:0 Slot 1 Return Data: Specifies the value of the return data for slot 1.

Format = U32

W0.3 31:0 reserved – not written to GRF

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 137

DWord Bit Description

W0.2 31:0 reserved – not written to GRF

W0.1 31:0 reserved – not written to GRF

W0.0 31:0 Slot 0 Return Data

SIMD4x2 Atomic Operation (AOP_CMPWR8B Only)

A writeback message is only returned for an Atomic Operation AOP_CMPWR8B message if the Send
Return Data field in the message descriptor is enabled. The execution mask on the send instruction
indicates which channels in the destination registers are overwritten.

DWord Bit Description

W0.7 31:0 reserved – not written to GRF

W0.6 31:0 reserved – not written to GRF

W0.5 31:0 Slot 1 Return Data: [63:32]

W0.4 31:0 Slot 1 Return Data: [31:0]

W0.3 31:0 reserved – not written to GRF

W0.2 31:0 reserved – not written to GRF

W0.1 31:0 Slot 0 Return Data: [63:32]

W0.0 31:0 Slot 0 Return Data[31:0]

Message Descriptor
Bit Description

13 Invalidate After Read Enable

only

This field, if enabled, causes all lines in the L3 cache accessed by the message to be invalidated
after the read occurs, regardless of whether the line contains modified data. It is intended as a
performance hint indicating that the data will no longer be used to avoid writing back data to
memory. This field is ignored for write messages.

Enabling this field is intended for scratch and spill/fill, where the memory is used only by a single
thread and thus does not need to be maintained after the thread completes.

Format = Enable

12:11 Message sub-type:

00: OWord Block Read/Write
01: Unaligned OWord Block Read
10: OWord Dual Block Read/Write
11: HWord Block Read/Write

10:8 Block Size. Specifies the number of elements transferred see table below

 3D – Media – GPGPU

138 Doc Ref # IHD-OS-VLV-Vol7-04.14

Message Header
DWord Bit Description

M0.7 31:0

M0.6 31:0

M0.5 31 HWord Read/Write Channel Mode:This field is only used for HWord read/write
messages.

0: Oword – Channel enables in effect at the time of send are interpreted such if one or
more are enabled, the read or write operation occurs on all four dwords.

1: Dword – Channel enables in effect at the time of the send are used as dword enables,
causing the read or write operation to occur only on the dwords whose corresponding
channel enable is set..

M0.5 30:0 Ignored

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3
M0.2

 Block Offset 1.

Specifies the Byte offset of OWord Block 1 for OWord Dual reads

Format = U64

Dual OWord Range = [0,00007FFFFFFFFFF0h] or [FFFF800000000000,FFFFFFFFFFFFFFF0h]

M0.1
M0.0

 Block Offset 0.

Specifies the Byte offset of Block 0.

Format = U64

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 139

DWord Bit Description

Unaliged OWord Range = [0,00007FFFFFFFFFFCh] or
[FFFF800000000000,FFFFFFFFFFFFFFFCh]

Dual OWord Range = [0,00007FFFFFFFFFF0h] or [FFFF800000000000,FFFFFFFFFFFFFFF0h]

OWord Range = [0,00007FFFFFFFFFF0h] or [FFFF800000000000,FFFFFFFFFFFFFFF0h]

HWord Range = [0,00007FFFFFFFFFE0h] or [FFFF800000000000,FFFFFFFFFFFFFFE0h]

Message Payload (OWord Write)

For the write operation, the message payload consists of one, two, or four registers (not including the
header) depending on the Block Size specified in the message. For the one-constant case, data is taken
from either the high or low half of the payload register depending on the half selected in Block Size. In
this case, the other half of the payload register is ignored.

DWord Bit Description

M1.7:4 127:0 OWord[Offset + 1]. If the block size is 1 OWord to be written from the high 128 bits of
the destination, OWord[Offset] will appear in this location

M1.3:0 127:0 OWord[Offset]

M2.7:4 127:0 OWord[Offset+3]

M2.3:0 127:0 OWord[Offset+2]

M3.7:4 127:0 OWord[Offset+5]

M3.3:0 127:0 OWord[Offset+4]

M4.7:4 127:0 OWord[Offset+7]

M4.3:0 127:0 OWord[Offset+6]

Writeback Message (OWord Read)

For the read operation, the writeback message consists of one, two, three, or four registers depending
on the Block Size specified in the message. For the one-constant case, data is placed in either the high
or low half of the returned register depending on the half selected in Block Size. In this case, the other
half of the register is not changed.

DWord Bit Description

W0.7:4 127:0 OWord[Offset + 1]. If the block size is 1 OWord to be loaded into the high 128 bits of
the destination, OWord[Offset] will appear in this location

W0.3:0 127:0 OWord[Offset]

W1.7:4 127:0 OWord[Offset+3]

W1.3:0 127:0 OWord[Offset+2]

W2.7:4 127:0 OWord[Offset+5]

W2.3:0 127:0 OWord[Offset+4]

W3.7:4 127:0 OWord[Offset+7]

W3.3:0 127:0 OWord[Offset+6]

 3D – Media – GPGPU

140 Doc Ref # IHD-OS-VLV-Vol7-04.14

Writeback Message (Unaligned OWord Read)

For the read operation, the writeback message consists of one, two, or four registers depending on the
Block Size specified in the message. For the one-constant case, data is placed in either the high or low
half of the returned register depending on the half selected in Block Size. In this case, the other half of
the register is not changed.

DWord Bit Description

W0.7:4 127:0 OWord1 = *(&OWord0 + 1). If the block size is 1 OWord to be loaded into the high 128
bits of the destination, OWord0 will appear in this location

W0.3:0 127:0 OWord0 = *Offset

W1.7:4 127:0 OWord3 = *(&OWord2 + 1)

W1.3:0 127:0 OWord2 = *(&OWord1 + 1)

W2.7:4 127:0 OWord5= *(&OWord4 + 1)

W2.3:0 127:0 OWord4 = *(&OWord3 + 1)

W3.7:4 127:0 OWord7 = *(&OWord6 + 1)

W3.3:0 127:0 OWord6 = *(&OWord5 + 1)

Message Payload (Dual OWord Write)

For the write operation, the message payload consists of one or four registers (not including the header
or the first part of the payload) depending on the Block Size specified in the message.

DWord Bit Description

M2.7:4 127:0 OWord[Offset1]

M2.3:0 127:0 OWord[Offset0]

M3.7:4 127:0 OWord[Offset1+1]

M3.3:0 127:0 OWord[Offset0+1]

M4.7:4 127:0 OWord[Offset1+2]

M4.3:0 127:0 OWord[Offset0+2]

M4.7:4 127:0 OWord[Offset1+3]

M4.3:0 127:0 OWord[Offset0+3]

Writeback Message (Dual Oword Read)

For the read operation, the writeback message consists of one or four registers depending on the Block
Size specified in the message.

DWord Bit Description

W0.7:4 127:0 OWord[Offset1]

W0.3:0 127:0 OWord[Offset0]

W1.7:4 127:0 OWord[Offset1+1]

W1.3:0 127:0 OWord[Offset0+1]

W2.7:4 127:0 OWord[Offset1+2]

W2.3:0 127:0 OWord[Offset0+2]

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 141

DWord Bit Description

W3.7:4 127:0 OWord[Offset1+3]

W3.3:0 127:0 OWord[Offset0+3]

Message Payload (HWord Write)

The listing below illustrates the write payload for a message of block size = 4;

DWord Bit Description

M1.7:0 255:0 HWord[Offset]

M2.7:0 255:0 HWord[Offset+1]

M3.7:0 255:0 HWord[Offset+2]

M3.7:0 255:0 HWord[Offset+3]

Writeback Message (HWord Read)

The table below illustrates an example where 4 Hwords are read through a scratch block read.

DWord Bit Description

W0.7:0 255:0 HWord[Offset]

W1.7:0 255:0 HWord[Offset+1]

W2.7:0 255:0 HWord[Offset+2]

W3.7:0 255:0 HWord[Offset+3]

Untyped Atomic Float Add Operation Message Descriptor
Bit Description

13 Return Data Control

Specifies whether return data is sent back to the thread.

Format = Enable

12 SIMD Mode

Format = U1

0: SIMD16

1: SIMD8

11 Data Size

This field controls the data size of the operation

Format = U1

0: DWORD size

1: QWORD

10:8 Reserved

 3D – Media – GPGPU

142 Doc Ref # IHD-OS-VLV-Vol7-04.14

Message Header

The message header for the untyped messages only needs to be delivered for pixel shader threads,
where the execution mask may indicate pixels/samples that are enabled only due to derivative (LOD)
calculations, but the corresponding slot on the surface must not be accessed.

DWord Bit Description

M0.7 31:16 Ignored

 15:0 Pixel/Sample Mask. This field contains the 16-bit pixel/sample mask to be used for
SIMD16 and SIMD8 messages. All 16 bits are used for SIMD16 messages. For untyped
SIMD8 messages, the low 8 bits of this field are used.

If the header is not delivered, this field defaults to all ones. The field is ignored for
SIMD4x2 messages.

M0.6 31:0 Ignored

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:0 Ignored

M0.2 31:0 Ignored

M0.1 31:0 Ignored

M0.0 31:0 Ignored

Message Payload

SIMD16 Address Payload

The payload of a SIMD16 message provides address parameters to process 16 slots. The possible
address parameters are U and V (since SIMD16 is only supported with untyped messages). The number
of parameters required depends on the surface type being accessed. Each parameter takes two
message registers. Each parameter always takes a consistent position in the input payload. The length
field can be used to send a shorter message, but intermediate parameters cannot be skipped as there is
no way to signal this.

DWord Bit Description

M1.7 31:0 Slot 7 U Address

Specifies the U Address for slot 7.

Format = U32

M1.6 31:0 Slot 6 U Address

M1.5 31:0 Slot 5 U Address

M1.4 31:0 Slot 4 U Address

M1.3 31:0 Slot 3 U Address

M1.2 31:0 Slot 2 U Address

M1.1 31:0 Slot 1 U Address

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 143

DWord Bit Description

M1.0 31:0 Slot 0 U Address

M2.7 31:0 Slot 15 U Address

M2.6 31:0 Slot 14 U Address

M2.5 31:0 Slot 13 U Address

M2.4 31:0 Slot 12 U Address

M2.3 31:0 Slot 11 U Address

M2.2 31:0 Slot 10 U Address

M2.1 31:0 Slot 9 U Address

M2.0 31:0 Slot 8 U Address

M3 Slots 7:0 V Address

M4 Slots 15:8 V Address

SIMD8 Address Payload

The payload of a SIMD8 message provides address parameters to process 8 slots. The possible address
parameters are U, V. The number of parameters required depends on the surface type being accessed.
Each parameter takes one message register. Each parameter always takes a consistent position in the
input payload. The length field can be used to send a shorter message, but intermediate parameters
cannot be skipped as there is no way to signal this.

DWord Bit Description

M1.7 31:0 Slot 7 U Address

Specifies the U Address for slot 7.

Format = U32

M1.6 31:0 Slot 6 U Address

M1.5 31:0 Slot 5 U Address

M1.4 31:0 Slot 4 U Address

M1.3 31:0 Slot 3 U Address

M1.2 31:0 Slot 2 U Address

M1.1 31:0 Slot 1 U Address

M1.0 31:0 Slot 0 U Address

M2 Slots 7:0 V Address

SIMD16/SIMD8 DWORD Source Payload (Write message only)

Either one or two additional registers (depending on the SIMD mode) of payload contain the sources to
be used.

DWord Bit Description

M3.7 31:0 DWord[slot7]

 3D – Media – GPGPU

144 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

M3.6 31:0 DWord[slot6]

M3.5 31:0 DWord[slot5]

M3.4 31:0 DWord[slot4]

M3.3 31:0 DWord[slot3]

M3.2 31:0 DWord[slot2]

M3.1 31:0 DWord[slot1]

M3.0 31:0 DWord[slot0]

M4.7 31:0 DWord[slot15]. This message register is included only for SIMD16

M4.6 31:0 DWord[slot14]

M4.5 31:0 DWord[slot13]

M4.4 31:0 DWord[slot12]

M4.3 31:0 DWord[slot11]

M4.2 31:0 DWord[slot10]

M4.1 31:0 DWord[slot9]

M4.0 31:0 DWord[slot8]

SIMD16/SIMD8 QWORD Source Payload (Write message only)

Either two or four additional registers (depending on the SIMD mode) of payload contain the sources to
use.

DWord Bits Description

M3.7
M3.6

63:0 QWord[slot3]

M3.5
M3.4

63:0 QWord[slot2]

M3.3
M3.2

63:0 QWord[slot1]

M3.1
M3.0

63:0 QWord[slot0]

M4.7
M4.6

63:0 QWord[slot7]

M4.5
M4.4

63:0 QWord[slot6]

M4.3
M4.2

63:0 QWord[slot5]

M4.1
M4.0

63:0 QWord[slot4]

M5 Qword[slot11:slot8]. This register is only included for SIMD16.

M6 Qword[slot15:slot12]. This register is only included for SIMD16.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 145

Scratch Block Read/Write

This message performs a read or write operation of between 1 and 4 simd-8 registers to a Hword
aligned offset to scratch memory. The Hword offset into the scratch memory is provided in the message
descriptor, allowing a single instruction read|write block operation in a single source instruction. 12b are
provided for the Hword offset, allowing addressing of 4K Hword locations (128KB).

Two modes of channel-enable interpretation are provided: Dword, which support a simd-8 or simd-16
dword channel-serial view of a register, and Oword, which supports a simd-4x2 view of a register. For
operations under conditions of simd-32 processing, two messages should be used, with one of them
indicating H2 to select the upper 16b of execution mask.

This message type can only be used with stateless model memory access. Thus binding table entry 0xFF
is hard-coded into the execution of this message.

Applications:

scratch space reads/writes for register spill/fill operations.

Execution Mask. The low 8 bits of the execution mask are used to enable the 8 channels in the first and
third GRF registers returned (W0, W2) for read, or the first and third write registers sent (M1, M3). The
high 8 bits are used similarly for the second and fourth (W1, W3 or M2, M4).

For Dword mode, the execution mask delivered with the message dictates dword-based control of read
or write operations. For Oword mode, any one or more asserted bits within the Oword's corresponding
execution mask nibble causes read or write operations to occur across all four dwords of the Oword
regardless of the setting of any particular dword's bit.

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the
surface are dropped and will not modify memory contents.

Message Descriptor
Bits Description

17 Operation Type: 0 = Read, 1 = write

16 Channel Mode:

0: Oword – Channel enables in effect at the time of send are interpreted such if one or more are
enabled, the read or write operation occurs on all four dwords.

1: Dword – Channel enables in effect at the time of the send are used as dword enables, causing
the read or write operation to occur only on the dwords whose corresponding channel enable is
set..

15 Invalidate after read – Indicates the cache line should invalidated after the read.

1: Invalidate cache line

0: no Invalidate

14 Reserved - MBZ

13:12 Block Size – indicates the number of SIMD-8 registers to be read|written.

 3D – Media – GPGPU

146 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bits Description

11: 4 registers

10: <reserved>

01: 2 registers

00: 1 register

11:0 Offset – A 12b Hword offset into the memory Immediate Memory buffer as specified by binding
table 0xFF.

Message Header
DWord Bit Description

M0.7 31:16 Ignored

 15:0 Ignored

M0.6 31:0 Ignored

M0.5 31:0 Immediate Buffer Base Address. Specifies the surface base address for messages in
which the Binding Table Index is 255 (stateless model), otherwise this field is ignored. This
pointer is relative to the General State Base Address.

Format = GeneralStateOffset[31:10]

M0.4 31:0 Ignored

M0.3 31:0 Ignored

M0.2 31:0 Ignored

M0.1 31:0 Ignored

M0.0 31:0 Ignored

Message Payload (Write)

The listing below illustrates the write payload for a message of block size = 4;

DWord Bit Description

M1.7:0 255:0 HWord[Offset]

M2.7:0 255:0 HWord[Offset+1]

M3.7:0 255:0 HWord[Offset+2]

M3.7:0 255:0 HWord[Offset+3]

Message Payload (Read)

Only required a message header.

Writeback Message (Read)

The table below illustrates an example where 4 Hwords are read through a scratch block read.

DWord Bit Description

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 147

DWord Bit Description

W0.7:0 255:0 HWord[Offset]

W1.7:0 255:0 HWord[Offset+1]

W2.7:0 255:0 HWord[Offset+2]

W3.7:0 255:0 HWord[Offset+3]

Memory Fence
 A memory fence message issued by a thread causes further messages issued by the thread to be
blocked until all previous messages issued by the thread to that data port (data cache or render cache)
have been globally observed from the point of view of other threads in the system. This includes both
read and write messages.

 Data is called globally observable by other threads in the system when the data values written to the
memory or data cache will now be returned by other threads' read messages when using that same
data port. To read globally observable data that was written to a different data port, the thread issuing
the data port read message needs to be flush its cache (using a memory fence or pipe control) after the
program knows that the writing thread issued the memory fence that ensured the global observability.

 The memory fence message has an optional commit writeback message. The commit will be sent only
after all previous messages by this thread to that data port have been globally observed. This writeback
can be used by threads to ensure that a fence is honored across both data ports, as each data port's
memory fence only honors the corresponding data port messages.

 The untyped UAV support is provided by the data cache, while typed UAV support is provided by the
render cache. In order for a thread to ensure both untyped and typed UAV are visible, the thread would
issue a memory fence message to both data ports with Commit Enable enabled on both. It would then
insert an instruction that sources the destination registers from both memory fences before any further
data port messages are sent.

Programming Note:

The memory fence operation is not required to guarantee SLM memory access ordering between
multiple threads in a thread group for the sequence of a write message, a barrier message, and then a
read message. (This optimization is due to implementation details of the organization of threads in a
thread group, SLM memory, data port messages and gateway barrier messages.) Beware that the
memory fence is still required for non-SLM memory ordering and observability.

Message Header

The fence messages consist of a single phase, and is completely ignored. The message length is always
one.

DWord Bit Description

M0.7:0 31:0 Ignored

 3D – Media – GPGPU

148 Doc Ref # IHD-OS-VLV-Vol7-04.14

Writeback Message

The writeback message is only sent if Commit Enable in the message descriptor is set. The destination
register is not modified. Memory fence messages without the Commit Enable set will not return
anything to the thread (response length is 0 and destination register is null).

DWord Bit Description

W0.7:0 Reserved

Pixel Data Port

DataPort Render Cache Agents

The data port allows access to memory via various caches. The choice of which cache to use for a given
application is dictated by its restrictions, coherency issues, and how heavily that cache is used for other
purposes.

The cache to use is selected by the shared function accessed.

Accessing Render Targets

Render targets are the surfaces that the final results of pixel shaders are written to. The render targets
support a large set of surface formats (refer to surface formats table in Sampling Engine for details) with
hardware conversion from the format delivered by the thread. The render target message also causes
numerous side effects, including potentially alpha test, depth test, stencil test, alpha blend (which
normally causes a read of the render target), and other functions. These functions are covered in the
Windower chapter as some of them (depth/stencil test) are also partially done in the Windower.

The render target write messages are specifically for the use of pixel shader threads that are spawned
by the windower, and may not be used by any other threads. This is due to the pixel scoreboard side-
effects that sending of this message entails. The pixel scoreboard ensures that incorrect ordering of
reads and writes to the same pixel does not occur.

Message Sequencing Summary

This section summarizes the sequencing that occurs for each legal render target write message. All
messages have the M0 and M1 header registers if the header is present. If the header is not present, all
registers below are renumbered starting with M0 where M2 appears. All cases not shown in this table
are illegal.

Key:

s0, s1 = source 0, source 1

1/0 = slots 15:8

3/2 = slots 7:0

sZ = source depth

oM = oMask

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 149

Messa
ge

Type

oMas
k

Prese
nt

Sourc
e

Dept
h

Prese
nt

Sourc
e 0

Alpha
Prese

nt M2 M3 M4 M5 M6 M7 M8 M9 M10
M1
1

M1
2

M1
3

M1
4

000 0 0 0 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A

000 0 0 1 1/0s
0A

3/2s
0A

1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2
A

000 0 1 0 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A 1/0s
Z

3/2s
Z

000 0 1 1 1/0s
0A

3/2s
0A

1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2
A

1/0s
Z

3/2s
Z

000 1 0 0 oM 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A

000 1 0 1 1/0s
oA

3/2s
0A

oM 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0
A

3/2
A

000 1 1 0 oM 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A 1/0s
Z

3/2s
Z

000 1 1 1 1/0s
0A

3/2s
0A

oM 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0
A

3/2
A

1/0s
Z

3/2s
Z

001 0 0 0 RGB
A

001 1 0 0 oM RGB
A

010 0 0 0 1/0s
0R

1/0s
0G

1/0s
0B

1/0s
0A

1/0s
1R

1/0s
1G

1/0s
1B

1/0s
1A

010 0 1 0 1/0s
0R

1/0s
0G

1/0s
0B

1/0s
0A

1/0s
1R

1/0s
1G

1/0s
1B

1/0s
1A

1/0s
Z

010 1 0 0 oM 1/0s
0R

1/0s
0G

1/0s
0B

1/0s
0A

1/0s
1R

1/0s
1G

1/0s
1B

1/0s
1A

010 1 1 0 oM 1/0s
0R

1/0s
0G

1/0s
0B

1/0s
0A

1/0s
1R

1/0s
1G

1/0s
1B

1/0s
1A

1/0s
Z

011 0 0 0 3/2s
0R

3/2s
0G

3/2s
0B

3/2s
0A

3/2s
1R

3/2s
1G

3/2s
1B

3/2s
1A

011 0 1 0 3/2s
0R

3/2s
0G

3/2s
0B

3/2s
0A

3/2s
1R

3/2s
1G

3/2s
1B

3/2s
1A

3/2s
Z

011 1 0 0 oM 3/2s
0R

3/2s
0G

3/2s
0B

3/2s
0A

3/2s
1R

3/2s
1G

3/2s
1B

3/2s
1A

011 1 1 0 oM 3/2s
0R

3/2s
0G

3/2s
0B

3/2s
0A

3/2s
1R

3/2s
1G

3/2s
1B

3/2s
1A

3/2s
Z

100 0 0 0 R G B A

100 0 0 1 s0A R G B A

100 0 1 0 R G B A sZ

100 0 1 1 s0A R G B A sZ

 3D – Media – GPGPU

150 Doc Ref # IHD-OS-VLV-Vol7-04.14

Messa
ge

Type

oMas
k

Prese
nt

Sourc
e

Dept
h

Prese
nt

Sourc
e 0

Alpha
Prese

nt M2 M3 M4 M5 M6 M7 M8 M9 M10
M1
1

M1
2

M1
3

M1
4

100 1 0 0 oM R G B A

100 1 0 1 s0A oM R G B A

100 1 1 0 oM R G B A sZ

100 1 1 1 s0A oM R G B A sZ

Single Source
The normal render target messages are single source. There are two forms, SIMD16 and SIMD8,
intended for the equivalent-sized pixel shader threads. A single color (4 channels) is delivered for each
of the 16 or 8 pixels in the message payload. Optional depth, stencil, and antialias alpha information
can also be delivered with these messages.

The pixel scoreboard bits corresponding to the dispatched pixel mask (or half of the mask in the case of
SIMD8 messages) are cleared only if the Last Render Target Select bit is set in the message descriptor.

 The single source message will not cause a write to the render target if Dual Source Blend Enable in
3DSTATE_WM is enabled. However, if Last Render Target Select is set, the message will still cause pixel
scoreboard clear and depth/stencil buffer updates if enabled.

Dual Source
The dual source render target messages only have SIMD8 forms due to maximum message length
limitations. SIMD16 pixel shaders must send two of these messages to cover all of the pixels. Each
message contains two colors (4 channels each) for each pixel in the message payload. In addition to the
first source, the second source can be selected as a blend factor (BLENDFACTOR_*_SRC1_* options in
the blend factor fields of COLOR_CALC_STATE or BLEND_STATE). Optional depth, stencil, and antialias
alpha information can also be delivered with these messages.

Each dual source message delivered clears the corresponding pixel scoreboard bits if the Last Render
Target Select bit in the message descriptor is set.

The dual source message reverts to a single source message using source 0 if Dual Source Blend
Enable in 3DSTATE_WM is disabled.

Replicate Data
The replicate data render target message is used for fast clear functionality in cases where the color
data for each pixel is identical. This message performs better than the other messages due to its smaller
message length. This message does not support depth, stencil, or antialias alpha data being sent with it.
This message must target only tiled memory. Access of linear memory using this message type is
UNDEFINED. The depth buffer can be cleared through the early depth function in conjunction with a
pixel shader using this message. Refer to the Windower chapter for more details on the early depth
function.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 151

The pixel scoreboard bits corresponding to the dispatched pixel mask are cleared only if the Last
Render Target Select bit is set in the message descriptor.

Multiple Render Targets (MRT)
Multiple render targets are supported with the single source and replicate data messages. Each render
target is accessed with a separate Render Target Write message, each with a different surface indicated
(different binding table index). The depth buffer is written only by the message(s) to the last render
target, indicated by the Last Render Target Select bit set to clear the pixel scoreboard bits.

MRT is not supported when one or more RTs have this surface formats: YCRCB_SWAPUVY,
YCRCB_SWAPUV, YCRCB_SWAPY, YCRCB_NORMAL

Subspan/Pixel to Slot Mapping

The following table indicates the mapping of subspans, pixels, and samples to slots in the pixel shader
dispatch depending on the number of samples and message size. This table applies to all devices.
However NumSamples = 4X is supported only on . NumSamples = 8X is supported.

Pixels are numbered as follows within a subspan:

0 = upper left

1 = upper right

2 = lower left

3 = lower right

sspi = Starting Sample Pair Index (from the message header)

Dispatch Size Num Samples
Slot Mapping

(SSPI = Starting Sample Pair Index)

SIMD32 1X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

Slot[11:8] = Subspan[2].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[3].Pixel[3:0].Sample[0]

Slot[19:16] = Subspan[4].Pixel[3:0].Sample[0]

Slot[23:20] = Subspan[5].Pixel[3:0].Sample[0]

Slot[27:24] = Subspan[6].Pixel[3:0].Sample[0]

Slot[31:28] = Subspan[7].Pixel[3:0].Sample[0]

2X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[1].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[1].Pixel[3:0].Sample[1]

 3D – Media – GPGPU

152 Doc Ref # IHD-OS-VLV-Vol7-04.14

Dispatch Size Num Samples
Slot Mapping

(SSPI = Starting Sample Pair Index)

Slot[19:16] = Subspan[2].Pixel[3:0].Sample[0]

Slot[23:20] = Subspan[2].Pixel[3:0].Sample[1]

Slot[27:24] = Subspan[3].Pixel[3:0].Sample[0]

Slot[31:28] = Subspan[3].Pixel[3:0].Sample[1]

4X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]

Slot[19:16] = Subspan[1].Pixel[3:0].Sample[0]

Slot[23:20] = Subspan[1].Pixel[3:0].Sample[1]

Slot[27:24] = Subspan[1].Pixel[3:0].Sample[2]

Slot[31:28] = Subspan[1].Pixel[3:0].Sample[3]

SIMD16 8X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]

Slot[19:16] = Subspan[0].Pixel[3:0].Sample[4]

Slot[23:20] = Subspan[0].Pixel[3:0].Sample[5]

Slot[27:24] = Subspan[0].Pixel[3:0].Sample[6]

Slot[31:28] = Subspan[0].Pixel[3:0].Sample[7]

1X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

Slot[11:8] = Subspan[2].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[3].Pixel[3:0].Sample[0]

2X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[1].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[1].Pixel[3:0].Sample[1]

Restriction:

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 153

When SIMD32 or SIMD16 PS threads send render target writes with multiple SIMD8 and SIMD16
messages, the following must hold:

All the slots (as described above) must have a corresponding render target write irrespective of the
slot's validity. A slot is considered valid when at least one sample is enabled. For example, a SIMD16 PS
thread must send two SIMD8 render target writes to cover all the slots.

PS thread must send SIMD render target write messages with increasing slot numbers. For example,
SIMD16 thread has Slot[15:0] and if two SIMD8 render target writes are used, the first SIMD8 render
target write must send Slot[7:0] and the next one must send Slot[15:8].

Message Descriptor

This section contains descriptors for the render target read and write functions.

Message Descriptor - Render Target Write

Message Descriptor - Render Target Read

Bit Description

13 Reserved.

12 Reserved.

11 Slot Group Select. This field selects whether slots 15:0 or slots 31:16 are used for bypassed data.

Bypassed data includes the antialias alpha, multisample coverage mask, and if the header is not
present also includes the X/Y addresses and pixel enables. For 8- and 16-pixel dispatches,
SLOTGRP_LO must be selected on every message.

0: SLOTGRP_LO:choose bypassed data for slots 15:0.

1: SLOTGRP_HI:choose bypassed data for slots 31:16.

10 Reserved.

9 Reserved.

8 Message Type. This field specifies the type of render target message.

0: SIMD16:SIMD16 message.

1: SIMD8_LO use slots 7:0.

Note: the above slots indicated are within the 16 slots selected by Slot Group Select. If
SLOTGRP_HI is selected, the SIMD8 message types above reference slots 23:16 or 31:24 instead of
7:0 or 15:8, respectively.

Message Header

The render target write message has a two-register message header.

Message Header
DWord Bit Description

 3D – Media – GPGPU

154 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

M0.7 31:0

M0.6 31:0

M0.5 31:8 Ignored

 7:0 Dispatch ID. This ID is assigned by the fixed function unit and is a unique identifier for the
thread. It is used to free up resources used by the thread upon thread completion.

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:0 Ignored

M0.2 31:0 Pixel Mask. One bit per pixel indicating which pixels are lit, possibly impacted by kill
instruction activity in the pixel shader. This mask is used to control actual writes to the
color buffer. This field is ignored by the read message, all pixels are always returned.

The bits in this mask correspond to the pixels as follows:

0 1 4 5 16 17 20 21

2 3 6 7 18 19 22 23

8 9 12 13 24 25 28 29

10 11 14 15 26 27 30 31

M0.1 31:0 Y offset. The Y offset of the upper left corner of the block into the surface. Must be 4-row
aligned (Bits 1:0 MBZ).

Format = S31

M0.0 31:0 X offset. The X offset of the upper left corner of the block into the surface. This is a pixel
offset assuming a 32-bit pixel. Must be 8-pixel aligned (Bits 2:0 MBZ).

Format = S31

Writeback Message (Read)

A SIMD16 writeback message consists of up to 8 destination registers. If a channel/component is not
present in the RT format, the corresponding GRF is filled with zeroes or 1.0 in float/int depending on
whether RGB or Alpha are disabled.

DWord Bits Description

W0.7 31:0 Slot 7 Red. Specifies the value of the red channel for slot 7.

Format = 32 bits raw data.

W0.6 31:0 Slot 6 Red

W0.5 31:0 Slot 5 Red

W0.4 31:0 Slot 4 Red

W0.3 31:0 Slot 3 Red

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 155

DWord Bits Description

W0.2 31:0 Slot 2 Red

W0.1 31:0 Slot 1 Red

W0.0 31:0 Slot 0 Red

W1.7 31:0 Slot 15 Red

W1.6 31:0 Slot 14 Red

W1.5 31:0 Slot 13 Red

W1.4 31:0 Slot 12 Red

W1.3 31:0 Slot 11 Red

W1.2 31:0 Slot 10 Red

W1.1 31:0 Slot 9 Red

W1.0 31:0 Slot 8 Red

W2 Slots 7:0 Green

W3 Slots 15:8 Green

W4 Slots 7:0 Blue

W5 Slots 15:8 Blue

W6 Slots 7:0 Alpha

W7 Slots 15:8 Alpha

A SIMD8 writeback message consists of up to 4 destination registers. Which registers are returned is
determined by the channel mask in the message descriptor. Each asserted channel mask results in the
destination register of the corresponding channel being filled with zeroes or 1.0 in float/int depending
on whether RGB or Alpha are disabled.

DWord Bits Description

W0.7 31:0 Slot 7 Red. Specifies the value of the red channel for slot 7.

Format = 32 bits raw data.

W0.6 31:0 Slot 6 Red

W0.5 31:0 Slot 5 Red

W0.4 31:0 Slot 4 Red

W0.3 31:0 Slot 3 Red

W0.2 31:0 Slot 2 Red

W0.1 31:0 Slot 1 Red

W0.0 31:0 Slot 0 Red

W1 Slots 7:0 Green

W2 Slots 7:0 Blue

W3 Slots 7:0 Alpha

Header for SIMD8_IMAGE_WRITE
DWord Bit Description

 3D – Media – GPGPU

156 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

M0.7 31:0

M0.6 31:0

M0.5 31:10 Ignored

 9:8 Color Code: This ID is assigned by the Windower unit and is used to track synchronizng
events.

Format: Reserved for HW Implementation Use.

 7:0 FFTID. The Fixed Function Thread ID is assigned by the fixed function unit and is a unique
identifier for the thread. It is used to free up resources used by the thread upon thread
completion.

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:0 Ignored

M0.2 31:3 Ignored

 2:0 Render Target Index. Specifies the render target index that will be used to select blend
state from BLEND_STATE.

Format = U3

M0.1 31:6 ColorCalculatorState Pointer. Specifies the 64-byte aligned pointer to the color
calculator state. This pointer is relative to the General State Base Address.

Format = GeneralStateOffset[31:6]

For SIMD8_IMAGE_WR message under normal GPGPU usage model, SW is recommended
to program a dummy color-calc state such that all operations controlled by this state are
disabled.

 5:0 Ignored

M0.0 31 Ignored

 30:27 Viewport Index. Specifies the index of the viewport currently being used.

Format = U4

Range = [0,15]

SIMD8_IMAGE_WR message type this field is ignored by hardware.

 26:16 Render Target Array Index. Specifies the array index to be used for the following
surface types:

SURFTYPE_1D: specifies the array index. Range = [0,511]

SURFTYPE_2D: specifies the array index. Range = [0,511]

SURFTYPE_3D: specifies the z or r coordinate. Range = [0,2047]

SURFTYPE_CUBE: specifies the face identifier. Range = [0,5]

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 157

DWord Bit Description

SURFTYPE_BUFFER: must be zero.

face Render Target Array Index

+x 0

-x 1

+y 2

-y 3

+z 4

-z 5

Format = U11

The Render Target Array Index used by hardware for access to the Render Target is
overridden with the Minimum Array Element defined in SURFACE_STATE if it is out of
the range between Minimum Array Element and Depth. For cube surfaces, a depth
value of 5 is used for this determination.

For SMD8_IMAGE_WRITE :

For SURFTYPE_2D, this field must be 0.

For SURFTYPE_3D, this field may not be 0 for "Write-3D-Image" operation.

 15:8 Ignored

 7:0 Pixel Maks for SIMD8 messages.

1: Pixel is enabled

0: Pixel is disabled , in this case the corresponding (x,y) should be ignored by hardware.

M1.7 31:16 Y7: y-coordinate for pixel 7
Format = U16

 15:0 X7: x-coordinate for pixel 7
Format = U16

M1.6 31:16 Y6: y-coordinate for pixel 6
Format = U16

 15:0 X6: x-coordinate for pixel 6
Format = U16

M1.5 31:16 Y5: y-coordinate for pixel 5
Format = U16

 15:0 X5: x-coordinate for pixel 5
Format = U16

M1.4 31:16 Y4: y-coordinate for pixel 4
Format = U16

 15:0 X4: x-coordinate for pixel 4
Format = U16

M1.3 31:16 Y3: y-coordinate for pixel 3

 3D – Media – GPGPU

158 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

Format = U16

 15:0 X3: x-coordinate for pixel 3
Format = U16

M1.2 31:16 Y2: y-coordinate for pixel 2
Format = U16

 15:0 X2: x-coordinate for pixel 2
Format = U16

M1.1 31:16 Y1: y-coordinate for pixel 1
Format = U16

 15:0 X1: x-coordinate for pixel 1
Format = U16

M1.0 31:16 Y0: y-coordinate for pixel 0
Format = U16

 15:0 X0: x-coordinate for pixel 0
Format = U16

Source 0 Alpha Payload

The source 0 alpha registers, if included, appear in M2 and M3, immediately following the header (if
present).

For the SIMD8 single source message, only slot 7:0 data is sent (M2). The source 0 alpha phases are not
supported for dual source messages.

DWord Bit Description

M2.7 31:0 Source 0 Alpha for Slot 7

Format = IEEE_Float

This and the next register is only included if Source 0 Alpha Present bit is set.

M2.6 31:0 Source 0 Alpha for Slot 6

M2.5 31:0 Source 0 Alpha for Slot 5

M2.4 31:0 Source 0 Alpha for Slot 4

M2.3 31:0 Source 0 Alpha for Slot 3

M2.2 31:0 Source 0 Alpha for Slot 2

M2.1 31:0 Source 0 Alpha for Slot 1

M2.0 31:0 Source 0 Alpha for Slot 0

M3.7 31:0 Source 0 Alpha for Slot 15

M3.6 31:0 Source 0 Alpha for Slot 14

M3.5 31:0 Source 0 Alpha for Slot 13

M3.4 31:0 Source 0 Alpha for Slot 12

M3.3 31:0 Source 0 Alpha for Slot 11

M3.2 31:0 Source 0 Alpha for Slot 10

M3.1 31:0 Source 0 Alpha for Slot 9

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 159

DWord Bit Description

M3.0 31:0 Source 0 Alpha for Slot 8

oMask Payload

The oMask payload, if present, follows source 0 alpha. The value of p depends on whether the header
and source 0 alpha are present.

Sample n for that pixel will be killed (not written to the render target or depth buffer) if bit n of the
oMask is zero. Bits numbers where n is larger than the number of multisamples are ignored.

For the SIMD8 messages, only slots 7:0 data is used, or only slots 15:8 depending on the Message Type
encoding.

DWord Bit Description

Mp.7 31:16 oMask for Slot 15

Format = 16-bit mask

This register is only included if oMask Present bit is set.

 15:0 oMask for Slot 14

Mp.6 31:16 oMask for Slot 13

 15:0 oMask for Slot 12

Mp.5 31:16 oMask for Slot 11

 15:0 oMask for Slot 10

Mp.4 31:16 oMask for Slot 9

 15:0 oMask for Slot 8

Mp.3 31:16 oMask for Slot 7

 15:0 oMask for Slot 6

Mp.2 31:16 oMask for Slot 5

 15:0 oMask for Slot 4

Mp.1 31:16 oMask for Slot 3

 15:0 oMask for Slot 2

Mp.0 31:16 oMask for Slot 1

 15:0 oMask for Slot 0

Color Payload: SIMD16 Single Source

Color Payload

This payload is included if the Message Type is SIMD16 single source. The value of m depends on
whether the header, source 0 alpha, and oMask are present.

DWord Bit Description

Mm.7 31:0 Slot 7 Red. Specifies the value of the slot's red component.

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being

 3D – Media – GPGPU

160 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.

Mm.6 31:0 Slot 6 Red

Mm.5 31:0 Slot 5 Red

Mm.4 31:0 Slot 4 Red

Mm.3 31:0 Slot 3 Red

Mm.2 31:0 Slot 2 Red

Mm.1 31:0 Slot 1 Red

Mm.0 31:0 Slot 0 Red

M(m+1).7 31:0 Slot 15 Red

M(m+1).6 31:0 Slot 14 Red

M(m+1).5 31:0 Slot 13 Red

M(m+1).4 31:0 Slot 12 Red

M(m+1).3 31:0 Slot 11 Red

M(m+1).2 31:0 Slot 10 Red

M(m+1).1 31:0 Slot 9 Red

M(m+1).0 31:0 Slot 8 Red

M(m+2) Slot[7:0] Green. See Mm definition for slot locations

M(m+3) Slot[15:8] Green. See M(m+1) definition for slot locations

M(m+4) Slot[7:0] Blue. See Mm definition for slot locations

M(m+5) Slot[15:8] Blue. See M(m+1) definition for slot locations

M(m+6) Slot[7:0] Alpha. See Mm definition for slot locations

M(m+7) Slot[15:8] Alpha. See M(m+1) definition for slot locations

Color Payload: SIMD8 Single Source

This payload is included if the Message Type is SIMD8 single source or SIMD8 Image Write. The value of
m depends on whether the header, source 0 alpha, and oMask are present.

DWord Bit Description

Mm.7 31:0 Slot 7 Red. Specifies the value of the slot's red component.

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being
accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.

Mm.6 31:0 Slot 6 Red

Mm.5 31:0 Slot 5 Red

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 161

DWord Bit Description

Mm.4 31:0 Slot 4 Red

Mm.3 31:0 Slot 3 Red

Mm.2 31:0 Slot 2 Red

Mm.1 31:0 Slot 1 Red

Mm.0 31:0 Slot 0 Red

M(m+1) Slot[7:0] Green. See Mm definition for slot locations

M(m+2) Slot[7:0] Blue. See Mm definition for slot locations

M(m+3) Slot[7:0] Alpha. See Mm definition for slot locations

Color Payload: SIMD16 Replicated Data

This payload is included if the Message Type specifies a single source message with replicated data.
One set of R/G/B/A data is included in the message, and this data is replicated to all 16 pixels.

This message is legal with color data; oMask is also legal with this message. The registers for depth,
stencil, and antialias alpha data cannot be included with this message, and the corresponding bits in the
message header must indicate that these registers are not present.

The value of m depends on whether the header and oMask are present.

Note: This message is allowed only on tiled surfaces.

DWord Bits Description

Mm.7:4 31:0 Reserved

Mm.3 31:0 Alpha. Specifies the value of the alpha channel for all slots.

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being
accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.

Mm.2 31:0 Blue

Mm.1 31:0 Green

Mm.0 31:0 Red

Color Payload: SIMD8 Dual Source

This payload is included if the Message Type specifies dual source message. The value of m depends
on whether the header, source 0 alpha, and oMask are present.

The dual source message contains only 2 subspans (8 pixels) due to limitations in message length.

DWord Bit Description

Mm.7 31:0 Slot 7 Source 0 Red. Specifies the value of the slot's red component.

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being
accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.

 3D – Media – GPGPU

162 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

Mm.6 31:0 Slot 6 Source 0 Red

Mm.5 31:0 Slot 5 Source 0 Red

Mm.4 31:0 Slot 4 Source 0 Red

Mm.3 31:0 Slot 3 Source 0 Red

Mm.2 31:0 Slot 2 Source 0 Red

Mm.1 31:0 Slot 1 Source 0 Red

Mm.0 31:0 Slot 0 Source 0 Red

M(m+1) Slot[7:0] Source 0 Green. See Mm definition for slot locations

M(m+2) Slot[7:0] Source 0 Blue. See Mm definition for slot locations

M(m+3) Slot[7:0] Source 0 Alpha. See Mm definition for slot locations

M(m+4) Slot[7:0] Source 1 Red. See Mm definition for slot locations

M(m+5) Slot[7:0] Source 1 Green. See Mm definition for slot locations

M(m+6) Slot[7:0] Source 1 Blue. See Mm definition for slot locations

M(m+7) Slot[7:0] Source 1 Alpha. See Mm definition for slot locations

Total Color Control (TCC)

TCC adjusts the color saturation level of the input image based on six anchor colors (Red, Green, Blue,
Magenta, Yellow, and Cyan). The TCC algorithm operates on the UV-color components in the YUV color
space on a per-pixel basis.

Input and output pixels are in the YUV444 12bpc format. The input to the TCC block is:

• U and V color components (10 bit)
• Skin-tone detection value (5 bit)
• External control parameters

The output of the TCC block is:

• Updated U and V values (10 bit)

The TCC block includes three sub-blocks: Angle_Calculator, Saturation_Factor_Calculator,
UV_Modification.

Angle_Calculator

This sub-block computes the color hue angle, θ, in radians (10 bit approximation with maximal error of
0.005 rad).

Saturation_Factor_Calculator

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 163

This sub-block uses the angle θ to find the corresponding anchor colors and calculates the
multiplicative saturation factor in 8-bit per pixel.

This block requires several external input parameters such as:

 BaseColor1, ..., BaseColor6 – Six basic user-defined colors (anchor colors)
 SatFactor1, ..., SatFactor6 – Six user-defined saturation factors for anchor colors
 ColorTransitSlope12, ..., ColorTransit61 – Six calculation results of 1/(BaseColorX – BaseColorY) for

anchor colors
 ColorBias1,..., ColorBias6 – Six color biases for anchor colors
 STDscore – Skin-Tone Detection score (from the STD/E block)

There are four intermediate saturation factors, SFs1, SFs2, SFs3, and SFs4. The final saturation factor
SFfinal is equal to SFs4.

The first saturation factor SFs1 is computed from the external input parameters (SatFactori, BaseColori,
ColorTransitSlopei, ColorBiasi) and the color hue angle θ.

Computation of the saturation factor SFs2 involves (UVMaxColor, Inv_UVMaxColor) where UVMaxColor
is the maximum (and legal) absolute UV values, which in the case of YUV color space equals 448 in 10-
bit representation. Inv_UVMaxColor is the inverse calculation of UVMaxColor , that is, 1/UVMaxColor.

The third saturation factor SFs3 involves CLF which is Color Limiting Factor and ranges from 0 to 1. CLF
is computed using a threshold value UV_Threshold.

The last and forth saturation factor SFs4 considers the skin-tone pixels and a threshold value
STE_Threshold.

UV Modification

The input UV pixels are multiplied by the saturation factor SFfinal in this sub-block.

The calculation of the modified output Unew, and Vnew values are:
 Unew = U * SFfinal
 Vnew = V * SFfinal

where (U, V) are the input color components.

ProcAmp

The PROCAMP block modifies the brightness, contrast, hue and saturation of the input image in YUV
color space.

Input and output pixels are in the YCbCr 444 12bpc (bits per channel) format. Precision=12.

 3D – Media – GPGPU

164 Doc Ref # IHD-OS-VLV-Vol7-04.14

Y Processing:

An offset of 256 (that is, 16 in 8bpc) is subtracted from the 12-bit Y values to position the black level at
zero. This removes the DC offset so that adjusting the contrast does not vary the black level. Since Y
values may be less than 256, negative Y values should be supported at this point. Contrast is adjusted
by multiplying the YUV pixel values by a constant. If U and V are adjusted, a color shift will result
whenever the contrast is changed. The brightness property value is added (or subtracted) from the
contrast adjusted Y values; this is done to avoid introducing a DC offset due to adjusting the contrast.
Finally the offset 256 is added back to reposition the black level at 256.

The equation for processing of Y values is:
 Yout' = ((Yin-256) x C) + B + 256,

where C is the Contrast adjustment value and B is the Brightness adjustment value.

UV Processing:

An offset of 2048 (that is, 128 in 8bpc) is subtracted from the 12-bit U and V values. The hue adjustment
is implemented by combining the U and V input values together as in:
 Uout' = (Uin-2048) x Cos(H) + (Vin-2048) x Sin(H)
 Vout' = (Vin-2048) x Cos(H) – (Uin-2048) x Sin(H)

where H represents the desired Hue angle; Saturation is adjusted by multiplying the U and V input
values by a constant S.

Finally, the offset value 2048 is added back to both U and V.

The combined processing of Hue, Saturation and Contrast on the UV data is:
 Uout' = (((Uin-2048) x Cos(H) + (Vin-2048) x Sin(H)) x C x S) + 2048
 Vout' = (((Vin-2048) x Cos(H) - (Uin-2048) x Sin(H)) x C x S) + 2048

where C is the contrast, H is Hue angle and S is the Saturation.

 The multiplication factors Cos(H)x*Cx*S and Sin(H)x*Cx*S are programmed by the parameters Cos_c_s
and Sin_c_s.

Color Space Conversion

The CSC block enables linear conversion between different color spaces such as YCbCr and RGB using
vector shifts and matrix multiplication.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 165

The CSC algorithm is a linear coordinate transformation, comprising of the following steps:

1. Shift the input color coordinate
2. Multiply by 3x3 matrix
3. Shift the output color coordinate

The formula representation of the 3 steps is:

where

 aij are the 3x3 matrix elements [C0, C1, C2, C3, C4, C5, C6, C7, C8] in S2.10
 vin_i are the color components of the input pixel in U12
 vout_i are the color components of the output pixel in U12
 v0_i are the input offset vector elements [Offset_in_1, Offset_in_2, Offset_in_3] in S10
 u0_1_i are the output offset vector elements [Offset_out_1, Offset_out_2, Offset_out_3] in S10

The output pixel values are clipped to ensure that each color component is within the valid range.

Color Gamut Compression

Background of Color Gamut Compression

While most photography today complies with the sRGB standard color space, which covers around 72%
of the color perceived by humans, this 72% content looks incorrect/unnatural on wide gamut displays,
which can extend more than 100%. Therefore, a gamut mapping (GM) algorithm is required to adjust
when the input gamut range is different from the output gamut range such as an input sRGB color
space displayed on a wide gamut display, or to adjust wide gamut content to display on traditional
lower gamut displays.

The easiest compression method applied to displaying wider gamut content on lower gamut displays is
to clip the out of range primary values to the valid range (i.e., 0-1). Although this simple clipping
procedure leads to acceptable visual appearance in most cases, loss of color depth can be observed in
the video containing out-of-range pixels. The reason behind this effect should be the uniform
quantization process applied to out-of-range values (e.g., two distinct out-of-range red colors are
mapped to the same boundary red color). Moreover, the simple clipping method treats each color
channel independently. This may lead to unexpected perceptual loss since the composite ratios of three
primaries have been changed. An approach which takes these two factors into account while scaling
down the out of range values can possibly maintain the detail information of the image.

Input and output pixel is 444 format and 12bits per channel.

Usage Models

There are two usage models depending on the set up of the FullRangeMappingEnable bit:

 3D – Media – GPGPU

166 Doc Ref # IHD-OS-VLV-Vol7-04.14

• Basic mode: fixed-hue color gamut clipping mode
• Advanced mode: fixed-hue full range mapping mode

The application of basic mode of the fixed-hue color gamut clipping is preferred when the content
having the smaller percentage of out-of-range pixels in the scene. The advanced mode of fixed-hue full
range mapping mode may also change the in-range pixels and is thus preferred when the percentage
of out-of-range pixel is large. The outcome of the in/out range pixel percentage is derived from the
out-of range color gamut detection module to provide an indicator to operate among basic mode and
advanced mode.

Gamut Compression Module Overview

The main goal of color gamut compression module algorithm is to compress out-of-range pixel values
while keeping their hue values same as it is before compression. A block diagram to color gamut
compress the xv Color video into sRGB format is shown below.

At the pipeline level, the input into Gamut compression unit is from STDE unit and the output from the
Gamut compression goes to the TCC unit. The Gamut compression comprises of the following stages:

• xvYCC decoding
• YUV2LCH color space conversion
• Out of range Gamut pixel detection
• Scaling factor calculation
• Find out the Euclidean distance for the out of range pixel for advance mode
• Fixed-hue Gamut compression
• Bring the out of range pixel to the boundary for basic mode
• Bring the out of range pixel depending on the distance and apply uniform quantization process in

advance mode
• xvYCC encoding

Shared Functions Pixel Interpolater

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 167

The Pixel Interpolator provides barycentric parameters at various offsets relative to the pixel location.
These barycentric parameters are in the same format and layout as those received in the pixel shader
dispatch. Please refer to the Windower chapter in the 3D Pipeline volume for more details on
barycentric parameters.

Barycentric parameters delivered in the pixel shader payload are at pre-defined positions based on
Barycentric Interpolation Mode bits selected in 3DSTATE_WM. The pixel interpolator allows
barycentric parameters to be computed at additional locations.

Messages

The following is the message definition for the Pixel Interpolator shared function.

Restrictions:

• Pixel Interpolator messages can only be delivered by pixel shader kernels.
• Hang possible if linear PI message when Barycentric Interpolation mode has any perspective bits

set, or Pixel Shader Uses Source W is set.
• Hang possible if perspective PI message when Barycentric Interpolation mode has any non-

perspective bits set.

Execution Mask. Each bit in the execution mask enables the corresponding slot's barycentric parameter
return to the destination registers.

Initiating Message

Message Descriptor

Bit Description

19 Header Present: Specifies whether the message includes a header phase. Must be zero for all
Pixel Interpolator messages.

Format = Enable

18:17 Ignored

16 SIMD Mode. Specifies the SIMD mode of the message being sent.

Format = U1

0: SIMD8 mode

1: SIMD16 mode

15 Ignored

14 Interpolation Mode. Specifies which interpolation mode is to be used.

Format = U1

0: Perspective Interpolation

 3D – Media – GPGPU

168 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bit Description

1: Linear Interpolation

Programming Notes:

• This field cannot be set to Linear Interpolation unless Non-Perspective Barycentric Enable in
3DSTATE_CLIP is enabled.

13:12 Message Type. Specifies the type of message being sent when pixel-rate evaluation requested.

Format = U2

0: Per Message Offset (eval_snapped with immediate offset)

1: Sample Position Offset (eval_sindex)

2: Centroid Position Offset (eval_centroid)

3: Per Slot Offset (eval_snapped with register offset)

11 Slot Group Select. This field selects whether slots 15:0 or slots 31:16 are used for bypassed data.

Bypassed data includes the X/Y addresses and centroid position. For 8- and 16-pixel dispatches,
SLOTGRP_LO must be selected on every message. For 32-pixel dispatches, this field must be set
correctly for each message based on which slots are currently being processed.

0: SLOTGRP_LO:choose bypassed data for slots 15:0

1: SLOTGRP_HI:choose bypassed data for slots 31:16

Programming Notes:

This field must be set to SLOTGRP_LO for SIMD8 messages. SIMD8 messages always use
bypassed data for slots 7:0.

10:8 Ignored

11:8 Ignored

Project: [REMOVEDBY(GEN10:HAS:144479)]

7:0 Message Specific Control. Refer to the sections below for the definition of these bits based on
Message Type.

Per Message Offset Message Descriptor

Bit Description

7:4 Per Message Y Pixel Offset

Specifies the Y Pixel Offset that applies to all slots.

Format = S4 2's complement representing units of 1/16 pixel.

Range = [-8/16, +7/16]

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 169

Bit Description

3:0 Per Message X Pixel Offset

Specifies the X Pixel Offset that applies to all slots.

Format = S4 2's complement representing units of 1/16 pixel.

Range = [-8/16, +7/16]

Sample Position Offset Message Descriptor

Bit Description

7:4 Sample Index

Specifies the sample index that applies to all slots.

Format = U4

Range = [0,7

3:0 Ignored

Centroid Position and Per Slot Offset Message Descriptor

Bit Description

7:0 Ignored

Message Payload for Most Messages

This message payload applies to the following message types:

• Per Message Offset
• Sample Position Offset
• Centroid Position Offset

DWord Bit Description

M0.7:0 Ignored

SIMD8 Per Slot Offset Message Payload

This message payload applies only to the SIMD8 Per Slot Offset message type. The message length is 2.

DWord Bit Description

M0.7 31:0 Slot 7 X Pixel Offset

Specifies the X pixel offset for slot 7.

Format = S4 2's complement representing units of 1/16 pixel. The upper 28 bits are
ignored.

Range = [-8/16, +7/16]

M0.6 31:0 Slot 6 X Pixel Offset

 3D – Media – GPGPU

170 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

M0.5 31:0 Slot 5 X Pixel Offset

M0.4 31:0 Slot 4 X Pixel Offset

M0.3 31:0 Slot 3 X Pixel Offset

M0.2 31:0 Slot 2 X Pixel Offset

M0.1 31:0 Slot 1 X Pixel Offset

M0.0 31:0 Slot 0 X Pixel Offset

M1.7 31:0 Slot 7 Y Pixel Offset

Specifies the Y pixel offset for slot 7.

Format = S4 2's complement representing units of 1/16 pixel. The upper 28 bits are
ignored.

Range = [-8/16, +7/16]

M1.6 31:0 Slot 6 Y Pixel Offset

M1.5 31:0 Slot 5 Y Pixel Offset

M1.4 31:0 Slot 4 Y Pixel Offset

M1.3 31:0 Slot 3 Y Pixel Offset

M1.2 31:0 Slot 2 Y Pixel Offset

M1.1 31:0 Slot 1 Y Pixel Offset

M1.0 31:0 Slot 0 Y Pixel Offset

SIMD16 Per Slot Offset Message Payload

This message payload applies only to the SIMD16 Per Slot Offset message type. The message length is
4.

DWord Bit Description

M0.7 31:0 Slot 7 X Pixel Offset

Specifies the X pixel offset for slot 7.

Format = S4 2's complement representing units of 1/16 pixel. The upper 28 bits are
ignored.

Range = [-8/16, +7/16]

M0.6 31:0 Slot 6 X Pixel Offset

M0.5 31:0 Slot 5 X Pixel Offset

M0.4 31:0 Slot 4 X Pixel Offset

M0.3 31:0 Slot 3 X Pixel Offset

M0.2 31:0 Slot 2 X Pixel Offset

M0.1 31:0 Slot 1 X Pixel Offset

M0.0 31:0 Slot 0 X Pixel Offset

M1.7 31:0 Slot 15 X Pixel Offset

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 171

DWord Bit Description

M1.6 31:0 Slot 14 X Pixel Offset

M1.5 31:0 Slot 13 X Pixel Offset

M1.4 31:0 Slot 12 X Pixel Offset

M1.3 31:0 Slot 11 X Pixel Offset

M1.2 31:0 Slot 10 X Pixel Offset

M1.1 31:0 Slot 9 X Pixel Offset

M1.0 31:0 Slot 8 X Pixel Offset

M2.7 31:0 Slot 7 Y Pixel Offset

Specifies the Y pixel offset for slot 7.

Format = S4 2's complement representing units of 1/16 pixel. The upper 28 bits are
ignored.

Range = [-8/16, +7/16]

M2.6 31:0 Slot 6 Y Pixel Offset

M2.5 31:0 Slot 5 Y Pixel Offset

M2.4 31:0 Slot 4 Y Pixel Offset

M2.3 31:0 Slot 3 Y Pixel Offset

M2.2 31:0 Slot 2 Y Pixel Offset

M2.1 31:0 Slot 1 Y Pixel Offset

M2.0 31:0 Slot 0 Y Pixel Offset

M3.7 31:0 Slot 15 Y Pixel Offset

M3.6 31:0 Slot 14 Y Pixel Offset

M3.5 31:0 Slot 13 Y Pixel Offset

M3.4 31:0 Slot 12 Y Pixel Offset

M3.3 31:0 Slot 11 Y Pixel Offset

M3.2 31:0 Slot 10 Y Pixel Offset

M3.1 31:0 Slot 9 Y Pixel Offset

M3.0 31:0 Slot 8 Y Pixel Offset

Writeback Message

SIMD8

The response length for all SIMD8 messages is 2. The data for each slot is written only if its
corresponding execution mask bit is set.

DWord Bit Description

W0.7 31:0 Barycentric[1] for Slot 7
Format = IEEE_Float

W0.6 31:0 Barycentric[1] for Slot 6

 3D – Media – GPGPU

172 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

W0.5 31:0 Barycentric[1] for Slot 5

W0.4 31:0 Barycentric[1] for Slot 4

W0.3 31:0 Barycentric[1] for Slot 3

W0.2 31:0 Barycentric[1] for Slot 2

W0.1 31:0 Barycentric[1] for Slot 1

W0.0 31:0 Barycentric[1] for Slot 0

W1.7 31:0 Barycentric[2] for Slot 7

Format = IEEE_Float

W1.6 31:0 Barycentric[2] for Slot 6

W1.5 31:0 Barycentric[2] for Slot 5

W1.4 31:0 Barycentric[2] for Slot 4

W1.3 31:0 Barycentric[2] for Slot 3

W1.2 31:0 Barycentric[2] for Slot 2

W1.1 31:0 Barycentric[2] for Slot 1

W1.0 31:0 Barycentric[2] for Slot 0

SIMD16

The response length for all SIMD16 messages is 4. The data for each slot is written only if its
corresponding execution mask bit is set.

DWord Bit Description

W0.7 31:0 Barycentric[1] for Slot 7
Format = IEEE_Float

W0.6 31:0 Barycentric[1] for Slot 6

W0.5 31:0 Barycentric[1] for Slot 5

W0.4 31:0 Barycentric[1] for Slot 4

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 173

DWord Bit Description

W0.3 31:0 Barycentric[1] for Slot 3

W0.2 31:0 Barycentric[1] for Slot 2

W0.1 31:0 Barycentric[1] for Slot 1

W0.0 31:0 Barycentric[1] for Slot 0

W1.7 31:0 Barycentric[2] for Slot 7

Format = IEEE_Float

W1.6 31:0 Barycentric[2] for Slot 6

W1.5 31:0 Barycentric[2] for Slot 5

W1.4 31:0 Barycentric[2] for Slot 4

W1.3 31:0 Barycentric[2] for Slot 3

W1.2 31:0 Barycentric[2] for Slot 2

W1.1 31:0 Barycentric[2] for Slot 1

W1.0 31:0 Barycentric[2] for Slot 0

Format = IEEE_Float

W2.7 31:0 Barycentric[1] for Slot 15

W2.6 31:0 Barycentric[1] for Slot 14

W2.5 31:0 Barycentric[1] for Slot 13

W2.4 31:0 Barycentric[1] for Slot 12

W2.3 31:0 Barycentric[1] for Slot 11

W2.2 31:0 Barycentric[1] for Slot 10

W2.1 31:0 Barycentric[1] for Slot 9

W2.0 31:0 Barycentric[1] for Slot 8

 3D – Media – GPGPU

174 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

W3.7 31:0 Barycentric[2] for Slot 15

W3.6 31:0 Barycentric[2] for Slot 14

W3.5 31:0 Barycentric[2] for Slot 13

W3.4 31:0 Barycentric[2] for Slot 12

W3.3 31:0 Barycentric[2] for Slot 11

W3.2 31:0 Barycentric[2] for Slot 10

W3.1 31:0 Barycentric[2] for Slot 9

W3.0 31:0 Barycentric[2] for Slot 8

Shared Functions - Unified Return Buffer (URB)
The Unified Return Buffer (URB) is a general-purpose buffer used for sending data between different
threads, and, in some cases, between threads and fixed-function units (or vice-versa). A thread accesses
the URB by sending messages.

URB Size

A URB entry is a logical entity within the URB, referenced by an entry handle and comprised of some
number of consecutive rows. A row corresponds in size to a 256-bit EU GRF register. Read/write access
to the URB is generally supported on a row-granular basis.

Product URB Size URB Rows URB Rows when SLM Enabled

VLV 96k 3072 1024

URB Access

The URB can be written by the following agents:

• Command Stream (CS) can write constant data into Constant URB Entries (CURBEs) as a result of
processing CONSTANT_BUFFER commands.

• The Video Front End (VFE) fixed-function unit of the Media pipeline can write thread payload data
in to its URB entries.

• The Vertex Fetch (VF) fixed-function unit of the 3D pipeline can write vertex data into its URB
entries

• Threads can write data into URB entries via URB_WRITE messages sent to the URB shared
function.

The URB can be read by the following agents:

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 175

• The Thread Dispatcher (TD) is the main source of URB reads. As a part of spawning a thread,
pipeline fixed-functions provide the TD with a number of URB handles, read offsets, and lengths.
The TD reads the specified data from the URB and provide that data in the thread payload pre-
loaded into GRF registers.

• The Geometry Shader (GS) and Clipper (CLIP) fixed-function units of the 3D pipeline can read
selected parts of URB entries to extract vertex data required by the pipeline.

• The Windower (WM) FF unit reads back depth coefficients from URB entries written by the
Strip/Fan unit.

Note that the CPU cannot read the URB directly.

URB State

The URB function is stateless, with all information required to perform a function being passed in the
write message.

See URB Allocation (Graphics Processing Engine) for a discussion of how the URB is divided amongst
the various fixed functions.

URB Messages

This section documents the global aspects of the URB messages. The actual data stored in URB entries
differs for each fixed function – refer to 3D Pipeline and the fixed-function chapters or details on 3D
URB data formats and Media for media-specific URB data formats.

URB Handles: Unlike prior products where the URB handle contents was not specified for software use,
URB handles are now specified as offsets into the URB partition in the L3 cache, in 512-bit units. Thus,
kernels are now allowed to perform math operations on URB handles.

• The End of Thread bit in the message descriptor may be set on URB messages only in threads
dispatched by the vertex shader (VS), hull shader (HS), domain shader (DS), and geometry shader
(GS). The End of Thread bit cannot be set on URB_READ* or URB_ATOMIC* messages.

Execution Mask. The low 8 bits of the execution mask on the send instruction determines which
DWords from each write data phase are written or which DWords from each read phase are written to
the destination GRF register. The execution mask is ignored on URB_ATOMIC* messages, since this is a
scalar operation that is always enabled.

Out-of-Bounds Accesses. Reads to addresses outside of the URB region allocated in the L3 cache
return 0. Writes to addresses outside of the URB region are dropped and will not modify any URB data.

Message Type
Header

Required
Shared Local Memory

Support
Stateless
Support Address Modes

Vector
Width

URB Read
HWORD

yes N/A N/A handle + URBoffset

or

handle + URBoffset +
offset

1, 2

 3D – Media – GPGPU

176 Doc Ref # IHD-OS-VLV-Vol7-04.14

Message Type
Header

Required
Shared Local Memory

Support
Stateless
Support Address Modes

Vector
Width

URB Write
HWORD

yes N/A N/A handle + URBoffset

or

handle + URBoffset +
offset

1, 2

URB Read
OWORD

yes N/A N/A handle + URBoffset

or

handle + URBoffset +
offset

1, 2

URB Write
OWORD

yes N/A N/A handle + URBoffset

or

handle + URBoffset +
offset

1, 2

URB Atomic
MOV

yes N/A N/A handle + URBoffset 1

URB Atomic
INC

yes N/A N/A handle + URBoffset 1

 offset is in the message payload, and is per-slot.
handle is the handle address in the message header.
URBoffset is the Global Offset field in the URB message descriptor.

Execution Mask
The Execution Mask specified in the send instruction determines which DWords within each message
register are read/written to the URB.

Message Descriptor

Bit Description

19 Header Present

This bit must be set to one for all URB messages.

18:17 Ignored

16 Per Slot offset: If clear, the slot offset fields in the header are ignored.

If set the slot offset fields are added to the global offset to obtain the overall offset.

Programming Notes:

• This bit must be 0 for URB_ATOMIC_* messages.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 177

Bit Description

15 Complete

For URB_WRITE*, URB_SIMD8_WRITE and URB_ATOMIC*: This bit is ignored.

For URB_READ* and URB_SIMD8_READ: If set, this signals that the thread is finished reading
from the URB entry(s) referenced by the handles(s), causing the entry(s) to be deallocated.

This bit is strictly control information passed to snooping FF units. The URB shared function itself
does not use this bit for any purpose.

14 Swizzle Control. This field is used to specify which swizzle operation is to be performed on the
write data. It indirectly specifies whether one or two handles are valid.

0: URB_NOSWIZZLE

The message accesses a single URB entry (using URB Handle 0).

1: URB_INTERLEAVED

The message accesses two URB entries. The data is interleaved such that the upper DWords (7:4)
of each 256-bit unit contain data associated with URB Handle 1, and the lower DWords (3:0)
contain data associated with URB Handle 0.

13:3 Global Offset. This field specifies a destination offset (in 256-bit units) from the start of the URB
entry(s), as referenced by URB Handle n, at which the data (if any) will be written to or read from.

When URB_INTERLEAVED is used, this field provides a 256-bit granular offset applied to both URB
entries.

If the Per Slot Offset bit is set, this offset is added to the per-slot offsets in the header to obtain
the overall offset.

For the URB_*_OWORD messages, this offset is in 128-bit units instead of 256-bit units.

For the URB_ATOMIC* messages, this offset is in 32-bit units instead of 256-bit units.

Format = U11

Range = [0, 1023] for URB_*_HWORD messages.

Range = [0, 2047] for URB_*_OWORD messages.

Range = [0, 2047] for URB_ATOMIC* messages.

2:0 URB Opcode

0: URB_WRITE_HWORD

1: URB_WRITE_OWORD

2: URB_READ_HWORD

3: URB_READ_OWORD

4: URB_ATOMIC_MOV

 3D – Media – GPGPU

178 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bit Description

5: URB_ATOMIC_INC

6-7: Reserved

URB_WRITE and URB_READ
The URB_WRITE and URB_READ messages share the same header definition. URB_WRITE has additional
payload containing the write data, but has no writeback message. URB_READ has no payload beyond
the header (message length is always one), but always has a writeback message. URB_WRITE_SIMD4x2
has a single-phase payload with the per-slot offsets followed by the write data, and has no writeback
message. URB_READ_SIMD4x2 has a single phase payload containing the per-slot offsets.

Message Header

M0.5[7:0] bits in message header are used for enabling DWs in cull test, at HDC unit by HS kernel, while
writing TF data using URB write messages. Cull test is performed on outside TF and HS kernel set the
appropriate DW enable, which carry the TF for different domain types. When DW is enabled and if cull
test is positive, HS stage will be informed by HDC unit, to cull the HS handle early at HS stage itself.

DWord Bits Description

M0.7 31:0

M0.6 31:0

M0.5 31:17 Ignored

16 High OWORD Enable

For URB_READ_OWORD and URB_WRITE_OWORD with NOSWIZZLE indicates whether
the 128 bits of the GRF register is used.

0: 1 OWord, read into or written from the low 128 bits of the GRF register.

1: 1 OWord, read into or written from the high 128 bits of the GRF register.

15 Vertex 1 DATA [3] / Vertex 0 DATA[7] Channel Mask

When Swizzle Control = URB_INTERLEAVED this bit controls Vertex 1 DATA[3].

When Swizzle Control = URB_NOSWIZZLE this bit controls Vertex 0 DATA[7].

This bit is ANDed with the corresponding channel enable to determine the final channel
enable. For the URB_READ_OWORD & URB_READ_HWORD messages, when final channel
enable is 1 it indicates that Vertex 1 DATA [3] will be included in the writeback message.
For the URB_WRITE_OWORD & URB_WRITE_HWORD messages, when final channel
enable is 1 it indicates that Vertex 1 DATA [3] will be written to the surface.

0: Vertex 1 DATA [3] / Vertex 0 DATA[7] channel not included.

1: Vertex DATA [3] / Vertex 0 DATA[7] channel included.

14 Vertex 1 DATA [2] Channel Mask

13 Vertex 1 DATA [1] Channel Mask

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 179

DWord Bits Description

12 Vertex 1 DATA [0] Channel Mask

11 Vertex 0 DATA [3] Channel Mask

10 Vertex 0 DATA [2] Channel Mask

9 Vertex 0 DATA [1] Channel Mask

8 Vertex 0 DATA [0] Channel Mask

7:0 Reserved

M0.4 31:0 Slot 1 Offset. This field, after adding to the Global Offset field in the message
descriptor, specifies the offset (in 256-bit units) from the start of the URB entry, as
referenced by URB Handle 1, at which the data will be accessed. This field is ignored
unless Swizzle Control is set to URB_INTERLEAVED.

For the URB_*_OWORD messages, this offset is in 128-bit units instead of 256-bit units.

Format = U32

Range = [0, 1023] for URB_*_HWORD messages. The range of the calculated offset must
fall within the range [0, 1023] or behavior is undefined.

Range = [0, 2047] for URB_*_OWORD messages. The range of the calculated offset must
fall within the range [0, 2047] or behavior is undefined.

M0.3 31:0 Slot 0 Offset. This field, after adding to the Global Offset field in the message
descriptor, specifies the offset (in 256-bit units) from the start of the URB entry, as
referenced by URB Handle 0, at which the data will be accessed.

For the URB_*_OWORD messages, this offset is in 128-bit units instead of 256-bit units.

Format = U32

Range = [0, 1023] for URB_*_HWORD messages. The range of the calculated offset must
fall within the range [0, 1023] or behavior is undefined.

Range = [0, 2047] for URB_*_OWORD messages. The range of the calculated offset must
fall within the range [0, 2047] or behavior is undefined.

M0.2 31:16 GS Number of Output Vertices for Slot 1. Indicates the number of vertices output for
geometry shader slot 1 primitive. This field is only defined if end-of-thread is set on the
message. It is ignored for all messages from non-GS threads.

Format = U16

15:0 GS Number of Output Vertices for Slot 0. Indicates the number of vertices output for
geometry shader slot 0 primitive. This field is only defined if end-of-thread is set on the
message. It is ignored for all messages from non-GS threads.

Format = U16

M0.1 31:16 [Handle ID 1. This ID is assigned by the fixed function unit and links the work in channel
1 to a specific entry within the fixed function unit. This field is ignored unless Swizzle

 3D – Media – GPGPU

180 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bits Description

Control indicates Interleave mode.

15:0 URB Handle 1. This is the URB handle where channel 1's results are to be written or read. This
field is ignored unless Swizzle Control indicates interleave mode.

M0.0 31:16 Handle ID 0. This ID is assigned by the fixed function unit and links the work in channel 0
to a specific entry within the fixed function unit.

15:0 URB Handle 0. This is the URB handle where channel 0's results are to be written or read.

URB_WRITE_HWORD Write Data Payload

For the URB_WRITE_HWORD messages, the message payload will be written to the URB entries
indicated by the URB return handles in the message header.

Payload Usage

URB_NOSWIZZLE The message payload contains data to be written to a single URB entry (e.g., one
Vertex URB entry). The Swizzle Control field of the message descriptor must be set
to NoSwizzle.

URB_INTERLEAVED The message payload contains data to be written to two separate URB entries. The
payload data is provided in a high/low interleaved fashion. The Swizzle Control field
of the message descriptor must be set to Interleave.

URB_NOSWIZZLE

URB_NOSWIZZLE is used to simply write data into consecutive URB locations (no data swizzling
applied).

Programming Notes:

• The URB function will use (not ignore) the Channel Enables associated with this message.

When URB_NOSWIZZLE is used to write vertex data, the following table shows an example layout of a
URB_NOSWIZZLE payload containing one (non-interleaved) vertex containing n pairs of 4-DWord vertex
elements (where for the example, n is >2).

DWord Bit Description

M1.7 31:0 Vertex Data [7]

M1.6 31:0 Vertex Data [6]

M1.5 31:0 Vertex Data [5]

M1.4 31:0 Vertex Data [4]

M1.3 31:0 Vertex Data [3]

M1.2 31:0 Vertex Data [2]

M1.1 31:0 Vertex Data [1]

M1.0 31:0 Vertex Data [0]

M2.7 31:0 Vertex Data [15]

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 181

DWord Bit Description

M2.6 31:0 Vertex Data [14]

M2.5 31:0 Vertex Data [13]

M2.4 31:0 Vertex Data [12]

M2.3 31:0 Vertex Data [11]

M2.2 31:0 Vertex Data [10]

M2.1 31:0 Vertex Data [9]

M2.0 31:0 Vertex Data [8]

… …

Mn.7 31:0 Vertex Data [8(n-1)+7]

Mn.6 31:0 Vertex Data [8(n-1)+6]

Mn.5 31:0 Vertex Data [8(n-1)+5]

Mn.4 31:0 Vertex Data [8(n-1)+4]

Mn.3 31:0 Vertex Data [8(n-1)+3]

Mn.2 31:0 Vertex Data [8(n-1)+2]

Mn.1 31:0 Vertex Data [8(n-1)+1]

Mn.0 31:0 Vertex Data [8(n-1)+0]

URB_INTERLEAVED

The following table shows an example layout of a URB_INTERLEAVED payload containing two
interleaved vertices, each containing n 4-DWord vertex elements (n>1).

Programming Restrictions:

• The URB function will use (not ignore) the Channel Enables associated with this message.
• Writes to overlapping addresses of vertex0 and vertex1 will have undefined write ordering.

DWord Bit Description

M1.7 31:0 Vertex 1 Data [3]

M1.6 31:0 Vertex 1 Data [2]

M1.5 31:0 Vertex 1 Data [1]

M1.4 31:0 Vertex 1 Data [0]

M1.3 31:0 Vertex 0 Data [3]

M1.2 31:0 Vertex 0 Data [2]

M1.1 31:0 Vertex 0 Data [1]

M1.0 31:0 Vertex 0 Data [0]

M2.7 31:0 Vertex 1 Data [7]

M2.6 31:0 Vertex 1 Data [6]

M2.5 31:0 Vertex 1 Data [5]

M2.4 31:0 Vertex 1 Data [4]

M2.3 31:0 Vertex 0 Data [7]

M2.2 31:0 Vertex 0 Data [6]

 3D – Media – GPGPU

182 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

M2.1 31:0 Vertex 0 Data [5]

M2.0 31:0 Vertex 0 Data [4]

… …

Mn.7 31:0 Vertex 1 Data [4(n-1)+3]

Mn.6 31:0 Vertex 1 Data [4(n-1)+2]

Mn.5 31:0 Vertex 1 Data [4(n-1)+1]

Mn.4 31:0 Vertex 1 Data [4(n-1)+0]

Mn.3 31:0 Vertex 0 Data [4(n-1)+3]

Mn.2 31:0 Vertex 0 Data [4(n-1)+2]

Mn.1 31:0 Vertex 0 Data [4(n-1)+1]

Mn.0 31:0 Vertex 0 Data [4(n-1)+0]

URB_READ_HWORD Writeback Message

For the URB_READ_HWORD messages, the URB entries indicated by the URB handles in the message
header are read and returned in the writeback message. The amount of read data returned is
determined by the Response Length field.

While GS threads will read one vertex at a time to the URB, the VS will read two interleaved vertices. The
description of the URB read messages will refer to the per-vertex DWords described in the Vertex URB
Entry Formats section of the 3D Overview chapter.

Payload Usage

URB_NOSWIZZLE The writeback message contains data read from a single URB entry (e.g., one Vertex
URB entry). The Swizzle Control field of the message descriptor must be set to
NoSwizzle.

URB_INTERLEAVED The writeback message contains data read from two separate URB entries. The data
is provided in a high/low interleaved fashion. The Swizzle Control field of the
message descriptor must be set to Interleave.

URB_NOSWIZZLE

URB_NOSWIZZLE is used to simply read data into consecutive URB locations (no data interleaving
applied).

When URB_NOSWIZZLE is used to read vertex data, the following table shows an example layout of a
URB_NOSWIZZLE writeback message containing one (non-interleaved) vertex containing n pairs of 4-
DWord vertex elements (where for the example, n is >2).

DWord Bit Description

W0.7 31:0 Vertex Data [7]

W0.6 31:0 Vertex Data [6]

W0.5 31:0 Vertex Data [5]

W0.4 31:0 Vertex Data [4]

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 183

DWord Bit Description

W0.3 31:0 Vertex Data [3]

W0.2 31:0 Vertex Data [2]

W0.1 31:0 Vertex Data [1]

W0.0 31:0 Vertex Data [0]

W1.7 31:0 Vertex Data [15]

W1.6 31:0 Vertex Data [14]

W1.5 31:0 Vertex Data [13]

W1.4 31:0 Vertex Data [12]

W1.3 31:0 Vertex Data [11]

W1.2 31:0 Vertex Data [10]

W1.1 31:0 Vertex Data [9]

W1.0 31:0 Vertex Data [8]

… …

Wn.7 31:0 Vertex Data [8n+7]

Wn.6 31:0 Vertex Data [8n+6]

Wn.5 31:0 Vertex Data [8n+5]

Wn.4 31:0 Vertex Data [8n+4]

Wn.3 31:0 Vertex Data [8n+3]

Wn.2 31:0 Vertex Data [8n+2]

Wn.1 31:0 Vertex Data [8n+1]

Wn.0 31:0 Vertex Data [8n+0]

URB_INTERLEAVED

The following table shows an example layout of a URB_INTERLEAVED payload containing two
interleaved vertices, each containing n 4-DWord vertex elements (n>1).

DWord Bit Description

W0.7 31:0 Vertex 1 Data [3]

W0.6 31:0 Vertex 1 Data [2]

W0.5 31:0 Vertex 1 Data [1]

W0.4 31:0 Vertex 1 Data [0]

W0.3 31:0 Vertex 0 Data [3]

W0.2 31:0 Vertex 0 Data [2]

W0.1 31:0 Vertex 0 Data [1]

W0.0 31:0 Vertex 0 Data [0]

W1.7 31:0 Vertex 1 Data [7]

W1.6 31:0 Vertex 1 Data [6]

W1.5 31:0 Vertex 1 Data [5]

W1.4 31:0 Vertex 1 Data [4]

 3D – Media – GPGPU

184 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

W1.3 31:0 Vertex 0 Data [7]

W1.2 31:0 Vertex 0 Data [6]

W1.1 31:0 Vertex 0 Data [5]

W1.0 31:0 Vertex 0 Data [4]

… …

Wn.7 31:0 Vertex 1 Data [4n+3]

Wn.6 31:0 Vertex 1 Data [4n+2]

Wn.5 31:0 Vertex 1 Data [4n+1]

Wn.4 31:0 Vertex 1 Data [4n+0]

Wn.3 31:0 Vertex 0 Data [4n+3]

Wn.2 31:0 Vertex 0 Data [4n+2]

Wn.1 31:0 Vertex 0 Data [4n+1]

Wn.0 31:0 Vertex 0 Data [4n+0]

URB_WRITE_OWORD Write Data Payload

For the URB_WRITE_OWORD messages, the message payload will be written to the URB entries
indicated by the URB return handles in the message header.

Payload Usage

URB_NOSWIZZLE The message payload contains data to be written to a single URB entry (e.g., one
Vertex URB entry). The Swizzle Control field of the message descriptor must be set
to NoSwizzle.

URB_INTERLEAVED The message payload contains data to be written to two separate URB entries. The
payload data is provided in a high/low interleaved fashion. The Swizzle Control field
of the message descriptor must be set to Interleave.

URB_NOSWIZZLE

URB_NOSWIZZLE is used to simply write data into a single 128-bit URB location (no data swizzling
applied).

Programming Notes:

• The URB function will use (not ignore) the Channel Enables associated with this message.

When URB_NOSWIZZLE is used to write vertex data, the following table shows an example layout of a
URB_NOSWIZZLE payload containing one (non-interleaved) vertex containing 4-DWord vertex elements
and HIGH OWORD ENABLE is 0.

DWord Bit Description

M1.7 31:0 Ignored

M1.6 31:0 Ignored

M1.5 31:0 Ignored

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 185

DWord Bit Description

M1.4 31:0 Ignored

M1.3 31:0 Vertex 0 Data [3]

M1.2 31:0 Vertex 0 Data [2]

M1.1 31:0 Vertex 0 Data [1]

M1.0 31:0 Vertex 0 Data [0]

When URB_NOSWIZZLE is used to write vertex data, the following table shows an example layout of a
URB_NOSWIZZLE payload containing one (non-interleaved) vertex containing 4-DWord vertex elements
and HIGH OWORD ENABLE is 1.

DWord Bit Description

M1.7 31:0 Vertex 0 Data [3]

M1.6 31:0 Vertex 0 Data [2]

M1.5 31:0 Vertex 0 Data [1]

M1.4 31:0 Vertex 0 Data [0]

M1.3 31:0 Ignored

M1.2 31:0 Ignored

M1.1 31:0 Ignored

M1.0 31:0 Ignored

URB_INTERLEAVED

The following table shows an example layout of a URB_INTERLEAVED payload containing two
interleaved vertices, each containing 4-DWord vertex elements.

Programming Restrictions:

• The URB function will use (not ignore) the Channel Enables associated with this message.
• Writes to overlapping addresses of vertex0 and vertex1 will have undefined write ordering.

DWord Bit Description

M1.7 31:0 Vertex 1 Data [3]

M1.6 31:0 Vertex 1 Data [2]

M1.5 31:0 Vertex 1 Data [1]

M1.4 31:0 Vertex 1 Data [0]

M1.3 31:0 Vertex 0 Data [3]

M1.2 31:0 Vertex 0 Data [2]

M1.1 31:0 Vertex 0 Data [1]

M1.0 31:0 Vertex 0 Data [0]

URB_READ_OWORD Writeback Message

For the URB_READ_HWORD messages, the URB entries indicated by the URB handles in the message
header are read and returned in the writeback message. The amount of read data returned is
determined by the Response Length field.

 3D – Media – GPGPU

186 Doc Ref # IHD-OS-VLV-Vol7-04.14

Programming Restrictions:

• Response Length must be set to 1.

While GS threads will read one vertex at a time to the URB, the VS will read two interleaved vertices. The
description of the URB read messages will refer to the per-vertex DWords described in the Vertex URB
Entry Formats section of the 3D Overview chapter.

Payload Usage

URB_NOSWIZZLE The writeback message contains data read from a single URB entry (e.g., one Vertex URB
entry). The Swizzle Control field of the message descriptor must be set to NoSwizzle.

URB_INTERLEAVED The writeback message contains data read from two separate URB entries. The data is
provided in a high/low interleaved fashion. The Swizzle Control field of the message
descriptor must be set to Interleave.

URB_NOSWIZZLE

URB_NOSWIZZLE is used to simply read data into consecutive URB locations (no data interleaving
applied).

When URB_NOSWIZZLE is used to read vertex data, the following table shows an example layout of a
URB_NOSWIZZLE writeback message containing one (non-interleaved) vertex containing 4-DWord
vertex elements and HIGH OWORD ENABLE is 0.

DWord Bit Description

W0.7 31:0 Reserved (not written to GRF)

W0.6 31:0 Reserved (not written to GRF)

W0.5 31:0 Reserved (not written to GRF)

W0.4 31:0 Reserved (not written to GRF)

W0.3 31:0 Vertex Data [3]

W0.2 31:0 Vertex Data [2]

W0.1 31:0 Vertex Data [1]

W0.0 31:0 Vertex Data [0]

When URB_NOSWIZZLE is used to read vertex data, the following table shows an example layout of a
URB_NOSWIZZLE writeback message containing one (non-interleaved) vertex containing 4-DWord
vertex elements and HIGH OWORD ENABLE is 1.

DWord Bit Description

W0.7 31:0 Vertex Data [3]

W0.6 31:0 Vertex Data [2]

W0.5 31:0 Vertex Data [1]

W0.4 31:0 Vertex Data [0]

W0.3 31:0 Reserved (not written to GRF)

W0.2 31:0 Reserved (not written to GRF)

W0.1 31:0 Reserved (not written to GRF)

W0.0 31:0 Reserved (not written to GRF)

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 187

URB_INTERLEAVED

The following table shows an example layout of a URB_INTERLEAVED payload containing two
interleaved vertices, each containing 4-DWord vertex elements.

DWord Bit Description

W0.7 31:0 Vertex 1 Data [3]

W0.6 31:0 Vertex 1 Data [2]

W0.5 31:0 Vertex 1 Data [1]

W0.4 31:0 Vertex 1 Data [0]

W0.3 31:0 Vertex 0 Data [3]

W0.2 31:0 Vertex 0 Data [2]

W0.1 31:0 Vertex 0 Data [1]

W0.0 31:0 Vertex 0 Data [0]

URB_ATOMIC
The URB_ATOMIC messages implement atomic operations on a single DWord in the URB. The location
of the DWord within the URB is specified by the single URB handle and the Global Offset field in the
message descriptor, which for these messages is a DWord offset from the URB handle. The DWord
selected will be operated on according to the following table:

URB Opcode new_dst ret

URB_ATOMIC_MOV src0 none

URB_ATOMIC_INC old_dst + 1 old_dst

The previous contents of the DWord are returned in the destination register for the URB_ATOMIC_INC.
The URB_ATOMIC_MOV opcode does not return data (response length must be zero).

The URB_ATOMIC* messages consist only of the header. A single URB handle is specified.

Message Header
DWord Bit Description

M0.7 31:0

M0.6 31:0

M0.5 31:0 Ignored

M0.4 31:0 Ignored

M0.3 31:0 Ignored

M0.2 31:0 Source0 Data

Specifies the source 0 data for the atomic operation. This field is ignored for the
URB_ATOMIC_INC message.

Format = U32

M0.1 31:0 Ignored

 3D – Media – GPGPU

188 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

M0.0 31:16 Ignored

 15:0 URB Handle. This specifies the URB handle to be accessed.

Writeback Message

A writeback message is only returned for the URB_ATOMIC_INC message. Only the low 32 bits of the
destination GRF register are overwritten with the return data.

DWord Bit Description

W0.7:1 Reserved (not written to GRF)

W0.0 31:0 Return Data

Specifies the value of the return data for the atomic operation.

Format = U32

Shared Functions - Message Gateway

The Message Gateway shared function provides a mechanism for active thread-to-thread
communication. Such thread-to-thread communication is based on direct register access. One thread, a
requester thread, is capable of writing into the GRF register space of another thread, a recipient thread.
Such direct register access between two threads in a multi-processor environment some time is referred
to as remote register access. Remote register access may include read or write. The architecture supports
remote register write, but not remote register read (natively). Message Gateway facilitates such remote
register write via message passing. The requester thread sends a message to Message Gateway
requesting a write to the recipient thread's GRF register space. Message Gateway sends a writeback
message to the recipient thread to complete the register write on behave of the requester. The
requester thread and the recipient thread may be on the same EU or on different EUs.

When Bypass Gateway Control is set to 1, the commands OpenGateway and CloseGateway are no
longer used, the gateway parameters are taking the default values as the following:

• RegBase = 0
• Gateway Size check and Key check are bypassed.
• Gateway Open (an internal signal that is used to be set by OpenGateway message) check is

bypassed

A separate Gateway exists per half-slice in the architecture. For ForwardMsg this is handled
transparently, but barriers can only be accessed by threads in the local half-slice. This means that all
threads that access a shared barrier need to use the half-slice select in GPGPU_OBJECT and
MEDIA_OBJECT to stay on a single half-slice. GPGPU_WALKER handles this automatically.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 189

Messages

Message Gateway supports such thread-to-thread communication with the following three messages:

• OpenGateway: opens a gateway for a requester thread. Once a thread successfully opens its
gateway, it can be a recipient thread to receive remote register write.

• CloseGateway: closes the gateway for a requester thread. Once a thread successfully closes its
gateway, Message Gateway will block any future remote register writes to this thread.

• ForwardMsg: forwards a formatted message (remote register write) from a requester thread to a
recipient thread.

• GetTimeStamp reads absolute and relative timestamps for a requester thread.
• BarrierMsg : A set of threads sends this message to the Gateway. When all threads in a group

have sent the message, a reply (both a register write and an N0 notification) is sent to each
member of the group.

• UpdateGatewayState updates the internal state of the Message Gateway.

One example usage is to allow a control thread to change Barrier Byte to convey dynamic state
information. This may be used to support interrupt when persistent compute/worker threads are
synchronized using Barrier.

• MMIO Read/Write: allows a message to read or write an MMIO register. The MEDIA_VFE_STATE
command has a field which limits the accesses for security.

Message Descriptor
The following message descriptor applies to all messages supported by Message Gateway.

Bits Description

19 Header Present. This bit must be 0 for all Message Gateway messages.

18:17 Ignored.

16:15 Notify. Send Notification Signal. This is a two-bit field indicating which notify event is sent.

00b: No notify.

01b: Increment recipient thread's N0 notification counter.

10b: Increment recepient thread's N2 notification counter.

11b: Reserved.

This field is only valid for a ForwardMsg message. It is ignored for other messages. The
BarrierMsg message always increments the N0 notification counter.

14 AckReq. Acknowledgment Required. When this bit is set, an acknowledgment return message is
required. Message Gateway sends a writeback message containing the error code to the
requester thread using the post destination register address. When this bit is 0, no writeback
message is sent to the requesting thread by Message Gateway, even if an error occurs.

This field is valid for OpenGateway, CloseGateway, ForwardMsg, and BarrierMsg messages.

 3D – Media – GPGPU

190 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bits Description

When this bit is 1, post destination register must be valid and the response length must be 1.

When this bit is 0, post destination register must be null and the response length must be 0.

This bit cannot be set when EOT is set; otherwise, hardware behavior is undefined.

0: No Acknowledgement is required.

1: Acknowledgement is required.

13:3 Reserved: MBZ

2:0 SubFuncID. Identify the supported sub-functions by Message Gateway. Encodings are:

000b: OpenGateway. Open the gateway for the requester thread.

001b: CloseGateway. Close the gateway for the requester thread.

010b: ForwardMsg. Forward the formatted message to the recipient thread with the given offset
from the recipient's register base.

011b: GetTimeStamp. Read absolute and relative timestamps.

100b: BarrierMsg. Record an additional thread reaching the barrier.

101b: UpdateGatewayState. Update the barrier byte for a barrier.

110b: MMIO Read/Write.

111b: Reserved.

OpenGateway Message
The OpenGateway message opens a communication channel between the requesting thread and other
threads. It specifies a key for other threads to access its gateway, as well as the GRF register range
allowed to be written. The message consists of a single 256-bit message payload.

If the AckReq bit is set, a single 256-bit payload writeback message is sent back to the requesting
thread after completion of the OpenGateway function. Only the least significant DWord in the post
destination register is overwritten.

If the EOT is set for this message, Message Gateway will ignore this message; instead, it will close the
gateway for the requesting thread regardless of the previous state of the gateway.

It is software's policy to determine how to generate the key.

The BarrierMsg command does not use an OpenGateway message.

Message Payload
DWord Bits Description

M0.7 31:0

M0.6 31:0

M0.5 31:29 Reserved: MBZ

28:21 RegBase: The register base address to be stored in the Message Gateway. It is used to

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 191

DWord Bits Description

compute the destination GRF register address from the offset field in ForwardMsg.
RegBase contains 256-bit GRF aligned register address.

Note 1: This field aligns with bits [28:21] of the Offset field of the message payload for
ForwardMsg.

Note 2: the most significant bit of this field must be zero.

Format = U8

Range = [0,127]

20:11 Reserved: MBZ

10:8 Gateway Size: The range limit for messages through the Message Gateway.

000b: 1 GRF Register

001b: 2 GRF Registers

010b: 4 GRF Registers

011b: 8 GRF Registers

100b: 16 GRF Registers

101b: 32 GRF Registers

110b: 64 GRF Registers

111b: 128 GRF Registers

7:0 Dispatch ID: This ID is assigned by the fixed function unit and is a unique identifier for
the thread. It is used to free up resources used by the thread upon thread completion.

This field is ignored by Message Gateway.

This field is only required for a thread that is created by a fixed function (therefore, not a
child thread) and EOT bit is set for the message.

M0.4 31:16 Reserved: MBZ

15:0 Reserved: MBZ.

M0.3:0 31:0 Ignored

Writeback Message to Requester Thread

The writeback message is only sent if the AckReq bit in the message descriptor is set.

DWord Bits Description

W0.7:1 31:0 Reserved (not overwritten)

W0.0 31:20 Reserved

19:16 Shared Function ID. The message gateway's shared function ID.

15:3 Reserved

 3D – Media – GPGPU

192 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bits Description

2:0 Error Code

000b: Successful. No Error (Normal).

101b: Opcode Error. Attempt to send a message which is not either open/close/forward.

Other codes: Reserved.

CloseGateway Message
The CloseGateway message closes a communication channel for the requesting thread that was
previously opened with OpenGateway. Each thread is allowed to have only one open gateway at a time,
thus no additional information in the message payload is required to close the gateway. The message
consists of a single 256-bit message payload.is

If the AckReq bit is set, a single 256-bit payload writeback message is sent back to the requesting
thread after completion of the CloseGateway function. Only the least significant DWord in the post
destination register is overwritten.

The BarrierMsg command does not use a CloseGateway message.

Message Payload
DWord Bit Description

M0.7:6 Ignored

M0.5 31:8 Ignored

7:0 Dispatch ID: This ID is assigned by the fixed function unit and is a unique identifier for the
thread. It is used to free up resources used by the thread upon thread completion.

This field is ignored by Message Gateway

This field is only required for a thread that is created by a fixed function (therefore, not a
child thread) and EOT bit is set for the message.

M0.4:0 Ignored

Writeback Message to Requester Thread

The writeback message is only sent if the AckReq bit in the message descriptor is set.

DWord Bit Description

W0.7:1 Reserved (not overwritten)

W0.0 31:20 Reserved

19:16 Shared Function ID: Contains the message gateway's shared function ID.

15:3 Reserved

2:0 Error Code

000: Successful. No Error (Normal)

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 193

DWord Bit Description

101: Opcode Error. Attempt to send a message which is not either open/close/forward

other codes: Reserved

ForwardMsg Message
The ForwardMsg message gives the ability for a requester thread to write a data segment in the form
of a byte, a dword, 2 dwords, or 4 dwords to a GRF register in a recipient thread. The message consists
of a single 256-bit message payload, which contains the specially formatted data segment.

The ForwardMsg message utilizes a communication channel previously opened by the recipient thread.
The recipient thread has communicated its EUID, TID, and key to the requester thread previously via
some other mechanism. Generally, this is done through the thread spawn message from parent to child
thread, allowing each child (requester) to then communicate with its parent through a gateway opened
by the parent (recipient). The child could then use ForwardMsg message to communicate its own EUID,
TID, and key back to the parent to enable bi-directional communication after opening its own gateway.

If the AckReq bit is set, a single 256-bit payload writeback message is sent back to the requester thread
after completion of the ForwardMsg function. Only the least significant DWord in the post destination
register is overwritten.

If the Notify bit in the message descriptor is set, a notification is sent to the recipient thread in order to
increment the recipient thread's notification counter. This allows multiple messages to be sent to the
recipient without waking up the recipient thread. The last message, having this bit set, will then wake up
the recipient thread.

Message Payload
DWord Bit Description

M0.7 31:0

M0.6 31:0

M0.5 31:29 Reserved: MBZ

28:16 Offset: It provides the destination register position in the recipient thread GRF register
space as the offset from the RegBase stored in the recipient thread's gateway entry. The
offset is in unit of byte, such that bits [28:21] is the 256-bit aligned register offset and bits
[4:0] is the sub-register offset. The sub-register offset must be aligned to the Length field
in bits [10:8]. The subfields of Offset are further illustrated as the following.

Offset[28:21]: Register offset from the gateway base (Range [0, 127]: bit 12 MBZ)

Offset[20:18]: DW offset

Offset[17:16]: Byte offset (must be 00 for all DW length cases)

Programming restriction: R0 can not be used as destination GRF register for
ForwardMsg. NULL register is also not allowed as destination.

15:11 Reserved: MBZ

 3D – Media – GPGPU

194 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

10:8 Length: The length of the data segment.

000: 1 byte

001: 1 word

010: 1 dword

011: 2 dwords

100: 4 dwords

101-111: Reserved

7:0 Dispatch ID: This ID is assigned by the fixed function unit and is a unique identifier for
the thread. It is used to free up resources used by the thread upon thread completion.

This field is ignored by Message Gateway

This field is only required for a thread that is created by a fixed function (therefore, not a
child thread) and EOT bit is set for the message.

M0.4 31:30 Ignored

29

28

31:30

29:28

27:24 EUID: The Execution Unit ID as part of the Recipient field is used to identify the recipient
thread to whom the message is forwarded.

23:19 Ignored

18:16 TID: The Thread ID as part of the Recipient field is used to identify the recipient thread to
whom the message is forwarded.

15:0 Key

The key to match with the one stored in the recipient thread's entry in Message Gateway.

Ignored

M0.3 31:0 Data Segment DWord 3: valid only for the 4-DWord data segment length

M0.2 31:0 Data Segment DWord 2: valid only for the 4-DWord data segment length

M0.1 31:0 Data Segment Dword 1: valid only for the 2- and 4-DWord data segment lengths

M0.0 31:24 Data Segment Byte 0: the same byte must be
copied to all four positions within this DWord. Valid

Data Segment Dword 0: valid
only for the 1-, 2- and 4-Dword

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 195

DWord Bit Description

only for the 1-Byte data segment length. data segment lengths

23:16 Data Segment Byte 0

15:8 Data Segment Byte 0

7:0 Data Segment Byte 0

Writeback Message to Requester Thread

The writeback message is only sent if the AckReq bit in the message descriptor is set.

DWord Bits Description

W0.7:1 31:0 Reserved (not overwritten)

W0.0 31:20 Reserved

19:16 Shared Function ID. The message gateway's shared function ID.

15:3 Reserved

2:0 Error Code

000b: Successful. No Error (Normal).

001b: Reserved.

010b: Gateway Closed. Attempt to send a message through a closed gateway.

011b: Reserved.

100b: Reserved.

101b: Opcode Error. Attempt to send a message which is not either open/close/forward.

110b: Invalid Message Size. Attempt to forward a message with length greater than 4
DWords.

111b: Reserved.

Writeback Message to Recipient Thread

This message contains the byte or dwords data segment indicated in the message written to the GRF
register offset indicated. Only the byte/dword(s) will be enabled, all other data in the GRF register is
untouched.

GetTimeStamp Message
The GetTimeStamp message gives the ability for a requester thread to read the timestamps back from
the message gateway. The message consists of a single 256-bit message payload.

AbsoluteTimeLap is based on an absolute wall clock in unit of nSec/uSec that is independent of context
switch or GPU frequency adjustment. Message Gateway shares the same GPU timestamp.

RelativeTimeLap is based on a relative time count that is counting the GPU clocks for the context. The
relative time count is saved/restored during context switch.

 3D – Media – GPGPU

196 Doc Ref # IHD-OS-VLV-Vol7-04.14

Message Payload
DWord Bit Description

M0.7 31:0

M0.6 31:0

M0.5 31 Return to High GRF:

0: the return 128-bit data goes to the first half of the destination GRF register

1: the return 128-bit data goes to the second half of the destination GRF register

30:8 Reserved: MBZ

7:0 Dispatch ID: This ID is assigned by the fixed function unit and is a unique identifier for the
thread. It is used to free up resources used by the thread upon thread completion.

This field is ignored by Message Gateway

This field is only required for a thread that is created by a fixed function (therefore, not a
child thread) and EOT bit is set for the message.

M0.4 31:0 Ignored

M0.3 31:0 Ignored

M0.2 31:0 Ignored

M0.1 31:0 Ignored

M0.0 31:0 Ignored

Writeback Message to Requester Thread

As the writeback message is only sent if the AckReq bit in the message descriptor is set, AckReq bit
must be set for this message.

Only half of the destination GRF register is updated (via write-enables). The other half of the register is
not changed. This is determined by the Return to High GRF control field.

Writeback Message if Return to High GRF is set to 0:

DWord Bit Description

W0.7:4 Reserved (not overwritten)

W0.3 31:0 RelativeTimeLapHigh: This field returns the MSBs of time lap for the relative clock since
the previous reset. This field represents 1.024 uSec increment of the time stamp.
Hardware handles the wraparound (over 64 bit boundary) of the timestamp.

Format: U12

W0.2 31:20 RelativeTimeLapLow: This field returns the LSBs of time lap for the relative clock since
the previous reset. This field represents 1/4 nSec increment of the time stamp. Hardware
handles the wraparound (over 64 bit boundary) of the timestamp.

Format: U12

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 197

DWord Bit Description

19:0 Reserved: MBZ

W0.1 31:0 AbsoluteTimeLapHigh: This field returns the MSBs of time lap for the absolute clock
since the previous reset. This field represents 1.024 uSec increment of the time stamp.
Hardware handles the wraparound (over 64 bit boundary) of the timestamp.

Format: U12

W0.0 31:20 AbsoluteTimeLapLow: This field returns the LSBs of time lap for the absolute clock since
the previous reset. This field represents 1/4 nSec increment of the time stamp. Hardware
handles the wraparound (over 64 bit boundary) of the timestamp.

Format: U12

19:0 Reserved: MBZ

Writeback Message if Return to High GRF is set to 1:

DWord Bit Description

W0.7 31:0 RelativeTimeLapHigh

W0.6 31:20 RelativeTimeLapLow

19:0 Reserved: MBZ

W0.5 31:0 AbsoluteTimeLapHigh

W0.4 31:20 AbsoluteTimeLapLow

19:0 Reserved: MBZ

W0.3:0 Reserved: MBZ

BarrierMsg Message
The BarrierMsg message gives the ability for multiple threads to synchronize their progress. This is
useful when there are data shared between threads. The message consists of a single 256-bit message
payload.

Upon receiving one such message, Message Gateway increments the Barrier counter and mark the
Barrier requester thread. There is no immediate response from the Message Gateway. When the counter
value equates Barrier Thread Count, Message Gateway will send response back to all the Barrier
requesters.

Message Payload
DWord Bit Description

M0.7 31:0

M0.6 31:0

M0.5 31:0 Ignored

M0.4 31:0 Ignored

M0.3 31:0 Ignored

 3D – Media – GPGPU

198 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

M0.2 31 Ignored

30 Ignored

30:28 Ignored

 27:24 BarrierID. This field indicates which one from the 16 Barrier States is
updated.

Format: U4

Note: this field location matches with that of R0 header.

23:16 Ignored

15 Barrier Count Enable: Allows the message to reprogram the barrier
count.

If set, the current value of the barrier state is compared to the Barrier
Count field (below). If these values are equal, the barrier is
considered satisfied, barrier responses are sent to the waiting
thread(s) including the sending thread, and the barrier state is reset
to 0. If these values are not equal, the barrier state is incremented
and the sending thread is added to the list of threads waiting on this
barrier.

If clear, the Message Gateway increments the Barrier counter and
marks the Barrier requester thread. There is no immediate response
from the Gateway. When the counter value equates Barrier Thread
Count, Gateway will send response back to all the Barrier requesters.

Format: Enable

14:9 Barrier Count:

If Barrier Count Enable is set, this field specifies the terminating
barrier count. Otherwise this field is ignored. All threads that belong
to a single barrier must deliver the same value for this field for a
particular barrier iteration.

8:0 Ignored

M0.1 31:0 Ignored

M0.0 31:4 Ignored

Writeback Message to Requester Thread

The writeback message is only sent if the AckReq bit in the message descriptor is set.

DWord Bit Description

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 199

DWord Bit Description

W0.7:1 Reserved (not overwritten)

W0.0 31:20 Reserved

 19:16 Shared Function ID: Contains the message gateway's shared function ID.

 15:3 Reserved

 2:0 Error Code

000: Successful. No Error (Normal)

001: Error (Barrier is inactive).

Other encodings are reserved.

Broadcast Writeback Message

When the count for a Barrier reaches Barrier.Count, the Message Gateway sends the notification bit N0
to each EU/Thread that reached the barrier. A Barrier Return Byte is not sent.

DWord Bit Description

W0.7:1 Reserved (not overwritten)

W0.0 31:16 Reserved (not overwritten)

15:8 Reserved (not overwritten)

7:0 Reserved (not overwritten)

7:0 If Barrier Count Enable was set on the barrier-completing BarrierMsg,
this byte has a value of 0.

If Barrier Count Enable was clear on the barrier-completing
BarrierMsg, the value written is obtained from the Interface
Descriptor.

Format: U8

MMIOReadWrite Message
MMIO read/write is not allowed to registers that are associated with a particular slice .

Message Payload
DWord Bit Description

M0.7 31:0

M0.6 31:0

M0.5 31:0 Ignored

M0.4 31:0 Ignored

M0.3 31:1 Ignored

 0 MMIO R/W:

 3D – Media – GPGPU

200 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

 0 – MMIO Read – a response will be sent to the EU with read data

 1 – MMIO Write – no response is sent to EU (unless acknowledge requested in sideband)

M0.2 31:28 Ignored

22:0 MMIO Address:

The MMIO Byte address to be accessed.

The bottom 2 bits must be zero.

M0.1 31:0 Ignored

M0.0 31:0 MMIO Write Data (Only if MMIO R/W = 1, otherwise ignored).

Writeback Message to Requester Thread (MMIO Read Only)
DWord Bit Description

R0.7 31:0 Ignored

R0.6 31:0 Ignored

R0.5 31:0 Ignored

R0.4 31:0 Ignored

R0.3 31:0 Ignored

R0.2 31:0 Ignored

R0.1 31:0 Ignored

R0.0 31:0 MMIO Read Data

Shared Functions - Media Sampler
This section describes the functionality of the Media Sampler.

Video Motion Estimation
The Video Motion Estimation (VME) engine is a shared function that provides motion estimation
services. It includes motion estimation for various block sizes and also standard specific operations such
as

• Motion estimation and mode decision for AVC
• Intra prediction and mode decision for AVC
• Motion estimation and mode decision for MPEG2
• Motion estimation and mode decision for VC1

The motion estimation engine may also be used for other coding standards or other video processing
applications.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 201

Theory of Operation

VME performs a sequence of operations to find the best mode for a given macroblock. Each operation
step can be enabled/disabled through the control of the income message. Early termination, skipping of
subsequent operation steps, is also supported when certain search criteria are met.

VME contains the following operation steps:

1. Skip check
2. IME: Integer motion estimation
3. FME: Fractional motion estimation
4. BME: Bidirectional motion estimation
5. IPE: Intra prediction estimation (AVC only)

Shape Decision
As a terminology, we call sub-block shapes: 8x4, 4x8, and 4x4 minor shapes (corresponding to sub-
partitions of 8x8 sub-macroblock), and 16x16, 16x8, 8x16, and 8x8 major shapes (corresponding to sub-
macroblocks of a 16x16 macroblock).

If the maximal allowed number of motion vectors MaxNumMVs (MaxNumMVs =
MaxNumMVsMinusOne + 1) is less than 4, we will set minor MV flag off: MinorMVsFlag = 0, i.e. no
minor motion vectors will be generated.

The reason of having this parameter MaxNumMVs is due to high level AVC conformance restrictions
for certain profiles: the total number of motion vectors of any two consecutive macroblocks not exceeding
16 (or 32). The mechanism here allows a reasonable degree of user control. In disable cases,
MaxNumMVs should be set to 32.

In the coding process of VME, the shape decision is done in multiple locations:

1. After IME and before FME, intermediate shape decision is performed to reduce the FME searching
candidates

2. After FME and before BME, existing shape decision is revised among the remaining candidates
and to see if there is further reduction.

3. Final shape decision is done after BME.

Partition decision before BME uses unidirectional motion vector count to meet MaxNumMVs
requirement. Adding BME for the partition candidates may exceed MaxNumMVs. As BME is performed
on a block by block basis using the block order for a given partition, BME step for a given block is
skipped and the best unidirectional motion vectors are used for the block if the overall motion vector
count exceeds MaxNumMVs when that particular block is switched to bidirectional. The process
continues to the last block of the partition.

Note: This is a sub-optimal solution to simplify the hardware implementation. For some cases,
bidirectional modes with larger sub-partitions might be better than unidirectional modes with finer sub-
partitions.

The VME implementation has the following restriction: Multiple partition candidates are only enabled if
PartCandidateEn is set. And this only applies to source block of size 16x16.

 3D – Media – GPGPU

202 Doc Ref # IHD-OS-VLV-Vol7-04.14

If PartCandidateEn is not set, only the best partition is kept in state 1 (after IME) above and carried
through FME and BME. In other words, FME if enabled only operates on one partition candidate, and
BME if enabled only operates on one partition candidate. Bidirectional mode check only applies to the
partition candidates that meet the bidirectional restriction provided by BiSubMbPartMask. For
example, if a minor partition determined based on best unidirectional cost function is not 8x8 but one
of 4x8, 8x4 or 4x4, VME skips the bidirectional mode check.

If PartCandidateEn is set, up to two sets of candidates are maintained by VME hardware, if the second
best partition candidate is within PartToleranceThrhd from the best one. The second best partition is
selected only from the two major partition candidates based on the unidirectional motion vector count,
subject to that the major partition is enabled:

• 1MV: The 16x16 partition
• 4MV: The 4x(8x8) partition with no minor shape

The following partitions are not supported as alternative partition.

• 2MV: The best of 2x(16x8) and 2x(8x16) partitions
• More than 4MV: The best of all 4x(8x8) partitions with at least one 8x8 having minor shape of 8x4,

4x8 or 4x4

Minor Shape Decision Prior to FME

If any minor shapes are selected, we decide the best minor first.

For each 8x8 sub-block, before performing bidirectional, we reduce code candidates to no more than
three based on the best unidirectional motion search results (best of the forward and backward):

0)One MV, i.e. the best in shape of 8x8.

1)Up to two MVs, i.e. the best in shapes 8x8, 8x4, or 4x8. And

2)Up to four MVs, i.e. the best for the sub-block 8x8.

Now for the first and the second sub-blocks, we can merge them into up to six candidates of 2, 3, 4, 5,
6, and 8 possible motion vectors.

Do the same to the third and the fourth sub-blocks; we have similarly up to six candidates.

Now we further combine these two groups, and find the best solution under the constraint of not
exceeding the number of motion vectors more than MaxNumMVs (see pseudo-code below for detail).

Consequently, we have the best combined 8x8 solutions with N motion vectors for some N less or
equal to MaxNumMVs.

Assume distA[k][s] is the cost-adjusted distortion of the best forward or backward motion vector mix
of the k-th 8x8 sub-block of the sub-shape s, where s=0, 1, 2, and 3 represent shape partitioning 8x8,
8x4, 4x8, and 4x4 respectively. Assume distA[k][s] is the bidirectional one of the corresponding bus-
block and sub-shape. And assume some large number, say 128x16=2048 is assigned to the variable, if
there were no valid corresponding codes. Hence, the following pseudo-code explains the code selection
algorithm.

Let's first explain the case where MaxNumMVs is disabled, i.e. MaxNumMVs>=16:

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 203

 void SelectBestCombinedMinors(
 short *distA,
 short *MinorShape,
 short *MinorDisto)
 {
 short s[4], d[4];
 s = ShapeList;
 d = DistoList;
 for (int k=0; k<4; k++) {
 s[k] = 0;
 d[k] = distA[k][0];
 if (distA[k][1])<d[k]) { d[k] = distA[k][1]; s[k] = 1; }
 if (distA[k][2])<d[k]) { d[k] = distA[k][3]; s[k] = 2; }
 if (distA[k][3])<d[k]) { d[k] = distA[k][3]; s[k] = 3; }
 }
 * MinorDisto = d[0] + d[1] + d[2] + d[3];
 * MinorShape = s[0] | (s[1]<<2) | (s[2]<<4) | ({s[3]<<6};
 }

Now for the case of using MaxNumMVs control:
 void SelectBestCombinedMinors(
 short *distA,
 int MaxNumMVs,
 short *MinorShape,
 short *MinorDisto)
 {
 int k, n;
 short dist, best0 = 0, best1 = 0;
 if (MaxNumMVs < 4) { // We reset other parameters.
 switch (MaxNumMvs) {
 case 0:
 DoIntraInter &= (~DO_INTER); // Not do Inter
 break;

 case 1:
 ShapeMask |= (NO_16X8 | NO_8X16);
 BidirMask |= NO_16X16;
 break;

 case 2:
 case 3:
 ShapeMask |= (NO_8X8 | NO_8X4 | NO_4X8 | NO_4X4);
 BidirMask |= (NO_16X8 | NO_8X16);
 break;
 }
 }
 if (MaxNumMVs >= 16) { // It should use unrestricted code selection.
 SelectBestCombinedMinors(DistA,MinorShape,MinorDisto);
 return;

 }
 short *s, ShapeList[18];
 short *d, DistoList[18];
 s = ShapeList;
 d = DistoList;
 for (k=0; k<4; k++){
 s[0] = 0; // 1 mv
 d[0] = distA[k][0];
 s[4] = (distA[k][2] < distA[k][1]) + 1; // 2 mvs
 d[4] = distA[k][s[1]];
 s[8] = 3; // 4 mvs
 d[8] = distA[k][3];
 s ++, d ++;
 }
 // Merge two:

 3D – Media – GPGPU

204 Doc Ref # IHD-OS-VLV-Vol7-04.14

 s = ShapeList;
 d = DistoList;
 for (k=0; k<2; k++) {
 s[16] = 0x33; // 8 mvs
 d[16] = d[8] + d[10];

 s[12] = (d[4] + d[10] < d[6] + d[8]) ? (s[4] | 0x30): (0x03 | (s[6] << 4)); // 6
mvs
 d[12] = (d[4] + d[10] < d[6] + d[8]) ? (d[4] + d[10]) < (d[6] + d[8]);

 s[10] = (d[0] + d[10] < d[8] + d[2]) ? 0x30: 0x03; // 5 mvs
 d[10] = (d[0] + d[10] < d[8] + d[2]) ? (d[0] + d[10]) < (d[8] + d[2]);

 s[8] = s[4] | (s[6] << 4); // 4 mvs
 d[8] = d[4] + d[6];

 s[6] = (d[4] + d[2] < d[0] + d[6]) ? s[4]: (s[6] << 4); // 3 mvs
 d[6] = (d[4] + d[2] < d[0] + d[6]) ? (d[4] + d[2]) < (d[0] + d[6]);

 s[4] = 0; // 2 mvs
 d[4] = d[0] + d[2];

 if (d[6] > d[4]) d[6] = d[4];
 if (d[8] > d[6]) d[8] = d[6];
 if (d[10] > d[8]) d[10] = d[8];
 if (d[12] > d[10]) d[12] = d[10];
 d[14] = d[12];
 if (d[16] > d[12]) d[16] = d[12];

 s ++; d ++;
 }
 s = ShapeList;
 d = DistoList;
 * MinorDisto = 2048;
 for (k=0; k<8; k++) {
 n = MaxNumMVs – k;
 if ((n>=2 && n<=8) <2) {
 dist = d[(k << 1) + 1] + d[n << 1];
 if (dist < *MinorDisto) {
 *MinorDisto = dist;
 best0 = (n << 1);
 best1 = (k << 1) + 1;
 }
 }
 }
 while (best0 > 1 && d[best0] == d[best0-2]) best0 -= 2;
 while (best1 > 1 && d[best1] == d[best1-2]) best1 -= 2;
 *MinorShape = s[best0] | (s[best1] << 2);
 }

Major Shape Decision Prior to FME

Now considering the best of each 8x8 is done, and we have the total cost-adjusted-distortion for this
sub-block level partition. Now among the four choices: the resulting 8x8 sub-partitioning, one 16x16,
two 16x8, and two 8x16, the one gives the best cost-adjusted-distortion, will determine the final
decision of partitioning shape. Any among these four, if its cost-adjusted-distortion is within the
intermediate tolerance (which is a predefined system state) from the best distortion will be marked as
candidate shapes.

Notice that, when the intermediate tolerance is set to 0, only the best shape will be selected as the
candidate. When the intermediate tolerance is large, all four shapes will become candidates.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 205

Assume we have all the distortions for majors enumerated in DistoMajor[k], where k = 0, 1, 2, 3, 4,
and 5, for 16x16, 16x8, 8x16, the combined minors, 16x8 field, and 8x8 field respectively. Assume
BestDisto is equal to the minimal of the six values DistoMajor[k], for k = 0, …5. Assume the
intermediate tolerance is IntTol, the major shape k is a candidate shape if and only if
DistoMajor[k]<=BestDisto+IntTol.

Shape Update after FME

Among all the candidate shapes, we recheck the distortion, if any of them is no longer with in the
intermediate tolerance DistortionTolerance from the best choice; we drop it for reduced calculation.

Final Code Decision after BME

For any given candidate shape, for each motion vector, if we do have improved distortion by switch
from the single direction to bi-direction, then we do it, unless the increased number of motion vectors
hits above MaxNumMVs; in this case, we take as many as possible first the ones generate the most
improvement.

Then, we choose the best among the improved candidate shapes.

Early Decisions
There are 5 programmable early decision states are available for fine control of the VME process. All
stored in one byte of U4U4 format to representing a value of (B<<S), (where B, called base, is the 4-LSB
of the byte and S, called shift, is the 4-MSB of the byte,) they are the following:

 a) ESS: EarlySkipSuccess = Early successful return after Skip is checked

 b) EIS: EarlyImeStop = Early IME stop when a good match is found inside of IME process.

 b) ITG: ImeTooGood = Early successful return after IME is done when a good enough match is found.

 a) ITB: ImeTooBad = Early termination do skip fractional and bidirectional refinement after IME is done
with a hopelessly bad match as the best result.

 c) EFS: EarlyFmeSuccess = Early Success after Fractional ME to skip bidirectional search.

 3D – Media – GPGPU

206 Doc Ref # IHD-OS-VLV-Vol7-04.14

Note. For any reason, if all possible code types are not chosen, VME will return Intra16x16 type with all
modes set to 0, and the MinDist is set to 0x3FFF.

Changes
VME will remain fundamentally unchanged (same sub-functions, etc). However there are a few features
being added:

• Bilinear interpolation,
• AVC Intra mode mask,

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 207

• Native multi-call support,
• Expanded MV cost distance),
• Motion vector, Skip center, and Cost center redefinitions to be relative to source MB,
• Removal of a skip motion vector restriction that required skip centers must be contained within

the search window.

These have a non-trivial impact to the input & output message format and it is cleaner to describe a new
message, which can be found in section 6.5 and 6.6 along with further details.

Surfaces

The data elements accessed by VME are called surfaces. Surfaces are accessed using the surface state
model.

VME uses the binding table to bind indices to surface state, using the same mechanism used by the
sampling engine. A Binding Table Index (specified in the message descriptor) of less than 255 is used
to index into the binding table, and the binding table entry contains a pointer to the SURFACE_STATE.
SURFACE_STATE contains the parameters defining the surface to be accessed, including its location,
format, and size.

State

BINDING_TABLE_STATE
VME uses the binding table to retrieve surface state. Refer to Sampling Engine for the definition of this
state.

SURFACE_STATE
VME uses the surface state for current and reference surfaces. Refer to Sampling Engine for the
definition of this state.

VME_STATE
This state structure contains the state used by the VME engine for data processing. VME state contains
the motion search path location tables and rate-distortion weight look-up-tables. As the two sets of
tables are fairly large, they are accessed as two separate states via state indexing mechanism so that
applications can inter-mix the use of the search path tables and RDLUT tables.

Even though VME engine has its unique shared function ID (see Target Function ID field in the SEND
instruction), the VME state is delivered through the Sampler State Pointer. When the General Purpose
Pipe is used, the Sampler State Pointer is programmed in the MEDIA_INTERFACE_DESCRIPTOR_LOAD
command and delivered directly to Sampler/VME by hardware. This posts one usage limitation. As the
VME state is overloaded on top of the Sampler State Pointer, VME messages cannot be intermixed with
other Sampler messages.

Each VME state may contain up to 8 VME_SEARCH_PATH_LUT_STATE. When multiple
VME_SEARCH_PATH_LUT_STATE are used, they need to be stored in memory contiguously. Each
VME_SEARCH_PATH_LUT_STATE contains 32 dwords in comparison of 4 dwords of a Sampler State.

 3D – Media – GPGPU

208 Doc Ref # IHD-OS-VLV-Vol7-04.14

When enabling sampler state pre-fetch (programming the Sampler Count field in the
MEDIA_INTERFACE_DESCRIPTOR_LOAD command), one VME_SEARCH_PATH_LUT_STATE is equivalent
to 8 Samplers. Hardware may support up to two VME_SEARCH_PATH_LUT_STATE to be pre-fetched (See
See 3D_Media_GPGPU chapter, Media_GPGPU_Pipeline for more details).

VME_SEARCH_PATH_LUT_STATE

Up to eight VME_SEARCH_PATH_LUT_STATE allowed for a message to select. Each state contains one
set of search path locations, and four sets of rate distortion cost function LUT for various modes and
rate distortion cost function LUT for motion vectors (relative to cost center). Motion vector cost function
is provided as a piece-wise-linear curve with only the values of the power-of-2 positions provided.

DWord Bit Description

0:13 Search Path

0 31:24 Search Path Location [3] (X, Y) – Relative distance from location [2]

 23:16 Search Path Location [2] (X, Y) – Relative distance from location [1]

 15:8 Search Path Location [1] (X, Y) – Relative distance from location [0]

 7:4 Search Path location [0] (Y) – specifies relative Y distance of the next walk from the
starting position in unit of Search Unit (SU) in U4

Format = U4, (e.g. 0x3 + 0xE = 0x1)

 3:0 Search Path Distance [0] (X) – specifies relative X distance of the next walk from the starting
position in unit of SU.
Format = U4

1:13 Search Path Location [4 – 55] (X, Y)

14:31 RD LUT SET 0-4

14 31:24 LUT_MbMode [9] for Set 1
Format = U4U4 (encoded value must fit in 12-bits)

 23:16 LUT_MbMode [8] for Set 1
Format = U4U4 (encoded value must fit in 12-bits)

 15:8 LUT_MbMode [9] for Set 0
Format = U4U4 (encoded value must fit in 12-bits)

 7:0 LUT_MbMode [8] for Set 0
Format = U4U4 (encoded value must fit in 12-bits)

15 31:24 LUT_MbMode [9] for Set 3
Format = U4U4 (encoded value must fit in 12-bits)

 23:16 LUT_MbMode [8] for Set 3
Format = U4U4 (encoded value must fit in 12-bits)

 15:8 LUT_MbMode [9] for Set 2
Format = U4U4 (encoded value must fit in 12-bits)

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 209

DWord Bit Description

 7:0 LUT_MbMode [8] for Set 2
Format = U4U4 (encoded value must fit in 12-bits)

16 31:24 LUT_MbMode [3] for Set 0
Format = U4U4 (encoded value must fit in 12-bits)

 23:16 LUT_MbMode [2] for Set 0
Format = U4U4 (encoded value must fit in 12-bits)

 15:8 LUT_MbMode [1] for Set 0
Format = U4U4 (encoded value must fit in 12-bits)

 7:0 LUT_MbMode [0] for Set 0
Format = U4U4 (encoded value must fit in 10-bits)

17 31:24 LUT_MbMode [7] for Set 0
Format = U4U4 (encoded value must fit in 10-bits)

 23:16 LUT_MbMode [6] for Set 0
Format = U4U4 (encoded value must fit in 10-bits)

 15:8 LUT_MbMode [5] for Set 0
Format = U4U4 (encoded value must fit in 10-bits)

 7:0 LUT_MbMode [4] for Set 0
Format = U4U4 (encoded value must fit in 12-bits)

18 31:24 LUT_MV [3] – For MV = 4 for Set 0
Format = U4U4 (encoded value must fit in 10-bits)

 23:16 LUT_MV [2] – For MV = 2 for Set 0
Format = U4U4 (encoded value must fit in 10-bits)

 15:8 LUT_MV [1] – For MV = 1 for Set 0
Format = U4U4 (encoded value must fit in 10-bits)

 7:0 LUT_MV [0] – For MV = 0 for Set 0
Format = U4U4 (encoded value must fit in 10-bits)

19 31:24 LUT_MV [7] – For MV = 64 for Set 0
Format = U4U4 (encoded value must fit in 10-bits)

 23:16 LUT_MV [6] – For MV = 32 for Set 0
Format = U4U4 (encoded value must fit in 10-bits)

 15:8 LUT_MV [5] – For MV = 16 for Set 0
Format = U4U4 (encoded value must fit in 10-bits)

 7:0 LUT_MV [4] – For MV = 8 for Set 0
Format = U4U4 (encoded value must fit in 10-bits)

20-23 Finish RD LUT SET 1

24-27 Finish RD LUT SET 2

28-31 Finish RD LUT SET 3

The assignment of LUT_MbMode entries is according to the MbTypeEx definition:

 3D – Media – GPGPU

210 Doc Ref # IHD-OS-VLV-Vol7-04.14

Index to
LUT_MbMode MbTypeEx Description AVC VC1 MPEG2

0 MODE_INTRA_NONPRED For INTRA8x8 and INTRA4x4 only. Added per
8x8 for INTRA8x8, and per 4x4 for INTRA4x4

Yes n/a n/a

1 MODE_INTRA
MODE_INTRA_16x16

Added per 16x16 macroblock Yes Yes Yes

2 MODE_INTRA_8x8 Added per 16x16 macroblock Yes n/a n/a

3 MODE_INTRA_4x4 Added per 16x16 macroblock Yes n/a n/a

8 MODE_INTER
MODE_INTER_16x16

Added per 16x16 macroblock Yes Yes Yes

9 MODE_INTER_BWD Added for RefIdx (per partition for major
type or 8x8 for minor types)

Yes Yes Yes

4 MODE_INTER_16x8
MODE_INTER_8x16

Added per 16x16 macroblock Yes n/a n/a

5 MODE_INTER_8x8q Added per 8x8 subblock Yes Yes n/a

6 MODE_INTER_8x4q Added per 8x8 subblock Yes n/a n/a

6 MODE_INTER_4x8q Added per 8x8 subblock Yes n/a n/a

7 MODE_INTER_4x4q Added per 8x8 subblock Yes n/a n/a

6 MODE_INTER_FIELD_16x8 Added per 16x16 macroblock n/a ? Yes

7 MODE_INTER_FIELD_8x8q Added per 16x16 macroblock n/a n/a n/a

The value of each byte of the LUTs will be viewed as a pair of 4-bit units: (shift, base), and constructed
as

base << shift.

For example, an entry 0x4A represents the value (0xA<<0x4) = 10*16 = 160. Encoded value must fit in
12-bits (unsigned number); otherwise, the hardware behavior is undefined.

The only exception is for Index of 9, MODE_INTER_BWD, which is used as a bias for the two search
directions. It is a signed number instead, in the form of (SU3U4) = (sign, shift, base). The sign bit
indicates whether the bias is added to the forward (if sign = 1) or the backward (if sign = 0). The bias
has a magnitude of (base << shift), which has 11-bits precision. It should be noted that the number is
always added, there is no subtraction.

Intra Modes only apply to AVC standard. The mode penalty doesn't apply to Skip Mode Checking. Note
that while other mode penalty applies to a fixed macroblock partition, MODE_INTRA_NONPRED applies
to all three intra modes. It is a constant cost adder for intra-mode coding regardless of the block size.

For source block that is less than 16x16 (like a 16x8 source block), the proper mode penalty that is
stated as added per 16x16 macroblock is added once to the source block (like MODE_INTER_16x8 is
added once to a 16x8 source block). It will not be divided by the source block size.

The LUT_MV is added to all motion vector coordinate deltas in quarter-pel unit except for the SKIP
mode, which no costing penalty applies. Given motion vector coordinate, e.g. mvx, which is in quarter-
pel precision (S5.2), the mv delta is defined to be its difference from the given costing center, e.g. ccx,
and the costing penalty is applied to dx = |mvx-ccx|. The cost penalty is a piecewise linear interpolation

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 211

from the LUT_MV table whereas the values on power-of-2 integer samples are provided. The piecewise
linear interpolation is performed using quarter-pel precision, while the LUT_MV are only provided for
the given power-of-2 integer positions. The maximum distance provided in the table is 64 pixels. A
linear ramp with gradient of 1 on integer distance is applied for bigger distances with maximum penalty
capped to 0x3FF (10 bits). Thus,

Costing_penalty_x = LUT_MV[int(dx)], if dx < 3 and dx = int(dx);

Costing_penalty_x = LUT_MV[p+1], else if dx = 2p, for any p≤6;.

Costing_penalty_x = LUT_MV[p+1] + ((LUT_MV[p+2] – LUT_MV[p+1])*k)>>p,
else if dx = 2p+k, for any p<6 and k<.2p, and

Costing_penalty_x = min (LUT_MV[7] + int(dx)– 64, 255), else if dx > 64.

The total costing penalty for a motion vector is

Costing_penalty = Costing_penalty_x + Costing_penalty_y

As a convention, a (0,0) relative search path distance (meaning a repeat search path location) is treated
as the ending of the search path. Or the search path may also end when Max Predetermined Search
Path Length is reached, or one of the Early Success conditions is reached.

Software must program the search path to terminate with at least one (0,0).

Change Details

Record Stream-Out and Stream-In

Overview

VME internally keeps track of the best motion vectors for all shapes and sub-shapes, totaling 41 for
each record of the two records (forward and backward). Once IME is finished, each record is mined for
the best combination of shapes (i.e. the combination of the least distortion). The return message from
VME to the EU contains only the best shape combination and the remainder of the record is discarded.

For cases when the user wants to search beyond the VME window limits (64x32 for single reference,
32x32 for dual reference) the user must call VME multiple times. Since only partial information is
returned to the kernel, extracting the best shape combination across multiple calls is impossible. The
best workarounds require the kernel to limit the types of shapes VME is allowed to return and then the
kernel will manually merge shapes from multiple calls, cumbersome and suboptimal with respect to
quality.

By returning more of the record to the kernel and allowing the kernel to feed in that information on
subsequent calls as initialization information, the process of searching beyond VME size limitations is
vastly improved. Now the merging of best shapes will occur inside VME and the global best shape
combination is more optimized.

If both records are returned in their entirety, this would require 16 additional message phases (each
shape requires 3 DWs, total of 82 shapes) for both input and output messages. A compromise to reduce
this burden yet still gain the bulk of the improvement is to stream-out only the best major shapes (9
shapes, one 16x16, two 16x8, two 8x16, and four 8x8) for both records. This adds only 4 additional

 3D – Media – GPGPU

212 Doc Ref # IHD-OS-VLV-Vol7-04.14

message phases (when under search control == 111b, otherwise 2 additional phases) and carries the
most important shape data across multiple calls.

Implementation Details

In essence this feature creates two types of records inside VME, a local and a global record. The local
record contains the best shapes within a single call to VME, i.e. the current call only. The local record is
initialized to the maximum distortion value. The global record is carried via stream-in and stream-out,
containing the best major shapes.

VME should only consider the local record during IME and FME, finding the local call's optimal shapes
independent of the global record. For purposes of partitioning, the merging of the global record's
shapes into the local record should occur after FME is finished on the current call and prior to
repartitioning. Otherwise local shapes identified during IME might not be considered for FME if the
global shape was superior to the IME result.

Compared to the previous generation, there is a new stage immediately following FME where the local
record major shapes are compared to the stream-in data, replacing the local record's major shapes with
the stream-in shape if it has a lower distortion. Steps following this (repartitioning, BME, final mode
decision) proceeds like the previous generation.

As a part of the final stage, the stream-out record is generated simply taking the 9 major shapes out of
the local record (which was merged with local record earlier).

The merging of global and local motion vectors prior to BME could allow the winning shape
combination to not have all of its corresponding pixels in the SC (since the SC would only have local
motion vector pixels). Hence, a simple check is required prior to performing BME that ensures the
motion vectors are from the local call only, passing cases will perform BME and failing cases will not
(test is applied on a per-shape basis).

No native support within VME for multi-reference unidirectional surface mixing, the kernel can
implement a workaround if required, but there is no justification for such feature in the HW at this time.

MV Definitions and Precision

Overview

Given that VME is trying to natively support larger search windows with stream-in, due to both
necessity and general improvements a number of input and output vectors (aka centers) must grow in
precision. At the same time, the points from which they are relative to are also being redefined.

All vectors will be defined relative to the source MB location (and the source MB will be defined relative
to the picture origin).

Implementation Details

The following diagrams provide details regarding the precision, range, and origin of all input (4 types),
output (1 type), and internal vectors (first shown all together, then individually). Many vectors are
composed from input or other internal vectors (via addition or subtract) and those equations are
present.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 213

Expanded MV Costs

Overview

Given that VME will be searching larger areas with the Record Stream-out feature, it is also necessary
that we revisit our MV costing methodology.

We would like to expand this range by implementing a variable scaling factor (i.e. right shift, binary
divide) of the MV distance prior to comparison to the user-defined intervals (where VME previously
looked at the lsbs only). This will be provided to VME as a 2 bit value, specifying the shift amount (0:

 3D – Media – GPGPU

214 Doc Ref # IHD-OS-VLV-Vol7-04.14

qpel, 1: hpel, 2: single-pel, 3: two-pel). For instance, if the user a selects the MV cost scaling to be 3, this
expands the maximum MV costing interval to a distance of 128 pixels.

Remove Skip MV Restriction

Overview

We will remove a previous restriction and allow the 8 skip centers to be located anywhere within the
legal AVC motion vector definitions (Horizontal motion vector range does not exceed the range of -2048
to 2047.75, inclusive, in units of luma samples. And Vertical MV component range MaxVmvR (luma frame
samples) = [-512, +511.75]).

This restriction was originally imposed to reduce the complexity and cost of the hardware for
processing skips and directs require pixels beyond that of the reference window used for IME, FME and
BME.

Implementation Details

Skips must still be associated with the same surface state as their corresponding reference window (4
skip centers are for ref0, 4 are for ref1).

Skip centers are still bound as pairs. Hence, if the fwd x-component was 0xff, that meant this skip
center pair was unidirectional and only in the bwd direction. If neither x-component are 0xff, then this is
a bidirectional pair.

However, mv.x = 0xff is now a legal motion vector value and thus we cannot overload this field to
control the skip center pair's type.We will incorporate a new 8b field, Skip Center Enables (M1-DW7-
31:24), to control which of the 8 skip center pairs is valid. At least 1 of the skip centers for each pair
must be valid when in 4MVP mode (in 1MVP mode only 1 of the skip centers for the 1st pair must be
valid).

Bilinear Interpolation

Since MPEG2 only allows for half-pel interpolation, implementation of this bilinear filter is required only
for half-pel mode. However, if there are no HW concerns implementing bilinear for quarter-pel also,
please go ahead as there could be users who prefer it over our general purpose filter.

AVC Intra Mode Mask

AVC has 9 different intra modes for both 4x4 and 8x8 transforms and 4 modes for 16x16 transform. A
mask will be feed into VME (9b+9b+4b), telling it which modes cannot be selected as output
candidates. This will be a 9 bit field, disabling a given mode for the entire macroblock.

Messages

Request message bearing SFID of VME is routed to VME engine.

Programming Notes:

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 215

• Use of any message to the Video Motion Estimation function with the End of Thread bit set in
the message descriptor is not allowed.

• Use of any messages to the Video Motion Estimation function while there are any messages to
any sampler function is not allowed.

VME Motion Search Request

Restrictions:

• the only surface type allowed is SURFTYPE_BUFFER.
• the surface format is ignored, data is returned from the constant buffer to the GRF without format

conversion.

Applications:

• Motion search for video encoding
• Motion search for video processing such as deinterlace, frame rate conversion, etc.

Execution Mask. The execution mask is ignored.

Out-of-Bounds Accesses. Pixel replication is invoked for reads to areas outside of the surface.

Message Descriptor

Bit Description

Same as
Previous

Generation?

19 Header Present. If set, indicates that the message includes the header.
This bit must be 1 for all VME messages.

Format = Enable

yes

18:17 Reserved: MBZ. yes

16 Stream-In Enable. If set, additional message phases of record stream-in
are present with the input: 4 additional phases only when search control
(M0.3 10:8) is 111b (dual reference & dual record) and 2 additional phases
otherwise.

Format = Enable

no

15 Stream-Out Enable. If set, additional message phases of record stream-
out are present with the output: 4 additional phases only when search
control (M0.3 10:8) is 111b (dual reference & dual record) and 2 additional
phases otherwise.

Format = Enable

no

14:13 Message Type yes

 3D – Media – GPGPU

216 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bit Description

Same as
Previous

Generation?

00b: Reserved.

01b: Inter-search only.

10b: Intra-search only.

11b: Inter- and intra-search enabled.

12:11 LUT_SUBINDEX. Specifies the index into the RDLUT state table. yes

10:8 VME_SEARCH_PATH_LUT State Index. Specifies the index into the
VME_SEARCH_PATH_LUT state table. When dual records are used, both records
share the same predetermined search path.

yes

7:0 Binding Table Index. Specifies the index into the binding table for the
current surface.

Forward reference surface is implied as [Binding Table Index + 1] and the
backward reference surface is implied as [Binding Table Index + 2].

Format = U8

Range = [0,254]

yes

Input Message

Message Header and Payload

The message header and payload size is determined based on the Message Type:

Message Type Mnemonic Message Length Response Length

01 Inter-search only 5 + (stream-in) 6 + (stream-out)

10 Intra-search only 5 1

11 Inter- and intra-search enabled 5 + (stream-in) 6 + (stream-out)

When stream-in is enabled:

• If (search control == 111b), the message length is +4 for total of 9 phases.
• Else (search control != 111b), the message length is +2 for total of 7 phases.

When stream-out is enabled:

• If (search control == 111b), the response length is +4 for total of 10 phases.
• Else (search control != 111b), the response length is +2 for total of 8 phases.

For Message Type of 01, the VME request message contains the following two phases:

DWord Bit Description

Same as
Prev.

Generation?

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 217

DWord Bit Description

Same as
Prev.

Generation?

M0.7 31:0 yes

M0.6 31:0 yes

M0.5 31:24 Reference Region Height (RefHeight): This field specifies the reference
region height in pixels. When bidirectional search is enabled, this applies to
both search regions. Minus 16 provides the number of search point in
vertical direction.

The value must be a multiple of 4.

Format = U8

Range = [20, 64]

yes

 23:16 Reference Region Width (RefWidth): This field specifies the search region
width in pixels. When bidirectional search is enabled, this applies to both
search regions. Minus 16 provides the number of search point in horizontal
direction.

The value must be a multiple of 4.

Format = U8

Range = [20, 64]

Note: Please make sure the reference windows are not completely outside
of the video frame, in that case, VME behavior is undefined.

yes

 15:8 Ignored yes

 7:0 Dispatch ID. This ID is assigned by the fixed function unit and is a unique
identifier for the thread. It is used to free up resources used by the thread
upon thread completion.

yes

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer) yes

M0.3 31 Reserved: MBZ

(for Bidirectional Mirror mode, which is used for AVS mode. 0: disable for
non-AVS mode; 1: enabled: the best forward and the best backward MV will
be mirrored for AVS bidirectional search. Notice that, the mv cost penalty
shall be applied only for one set of mvs in this case.)

yes

 30:24 Sub-Macroblock Sub-Partition Mask (SubMbPartMask): This field
defines the bit-mask for disabling sub-partition and sub-macroblock
modes.

The lower 4 bits are for the major partitions (sub-macroblock) and the

yes

 3D – Media – GPGPU

218 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

Same as
Prev.

Generation?

higher 3 bits for minor partitions (with sub-partition for 4x(8x8) sub-
macroblocks.

xxxxxx1: 16x16 sub-macroblock disabled

xxxxx1x: 2x(16x8) sub-macroblock within 16x16 disabled

xxxx1xx: 2x(8x16) sub-macroblock within 16x16 disabled

xxx1xxx: 1x(8x8) sub-partition for 4x(8x8) within 16x16 disabled

xx1xxxx: 2x(8x4) sub-partition for 4x(8x8) within 16x16 disabled

x1xxxxx: 2x(4x8) sub-partition for 4x(8x8) within 16x16 disabled

1xxxxxx: 4x(4x4) sub-partition for 4x(8x8) within 16x16 disabled

Usage node: one example usage of only enabling 4x(4x4) sub-partition while
all other partitions are disabled is for video processing, whereas parallel
motion searches are performed for 16 4x4 blocks. For that no further block
combination (into larger sub-partitions/sub-macroblocks) is needed.

 23:22 Intra SAD Measure Adjustment (IntraSAD): This field specifies distortion
measure adjustments used for the motion search SAD comparison.

This field must be set to 00 if Source Block Field Mode is 1 (interleaved).

00: none

01: Reserved

Better set to 00 if Source Block Field Mode is 1 (interleaved).

yes

 21:20 Inter SAD Measure Adjustment (InterSAD): This field specifies distortion
measure adjustments used for the motion search SAD comparison.

00: none

01: Reserved

10: Haar transform adjusted

11: Reserved

Better set to 00 if Source Block Field Mode is 1 (interleaved).

yes

M0.3 19 Block-Based Skip Enabled: when this field is set on the skip thresholding
passing criterion will be based on the maximal distortion of individual
blocks (8x8s or 4x4s) instead of their sum (i.e. the distortion of 16x16). The
block size is 8x8 if and only if the Transform 8x8 Flag is set to ON and the
source size is 16x16..

yes

 18 Not implemented. no

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 219

DWord Bit Description

Same as
Prev.

Generation?

Reserved: MBZ

 17 Disable Aligned VME Source Fetch: This field, when set disables the
VMEunit functionality that aligns source data requests to 16 pixels. (This bit
is ignored if SrcX and SrcSize are such that requests for source data
cannot be aligned to 16 pixels. The source data requests will be misaligned
in these cases)

yes

 16 Disable Aligned VME Reference Fetch: This field, when set disables the
VMEunit functionality that fragments reference data requests which are not
aligned to 16 pixels into 16 pixel aligned requests. This may be used when
the surface is not a multiple of 16 pixels and a portion of the reference data
is outside the surface.

yes

 15 Disable Field Cache Allocation: This field, when set to 1, disables the
optimized field cache line method in the Sampler Cache for reference block
data when RefAccess is 1 (field based). It is ignored by hardware if
RefAccess is 0.

0 – frame cache lines

1 – field cache lines

yes

 14 Skip Mode Type (SkipType):

For B_DIRECT_16x16, both motion vectors of the skip center pair 0 are used.

For B_DIRECT_8x8s, all four skip center pairs are fully used (VME will never
try to combine them with non-skip shapes from IME, FME or BME).

0: SKIP_1MVP – one MV pair for 16x16

1: SKIP_4MVP – Four MV pairs for 8x8s (in this case and only this case,
SkipCenter Delta 1-3 will be used)

Note: SkipTypeMode should be programmed to 1MVP for non-16x16
Source size

yes

 13:12 Sub-Pel Mode (SubPelMode):This field defines the half/quarter pel
modes. The mode is inclusive, ie., higher precision mode samples lower
precision locations.

00: integer mode searching

01: half-pel mode searching

10: reserved

11: quarter-pel mode searching

yes

 3D – Media – GPGPU

220 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

Same as
Prev.

Generation?

 11 Dual Search Path Option: Used only for dual record cases, this field flags
whether two searching records uses the same or the different paths.

0: use the same path as specified by the Search Path Location array

1: use the different paths, the first one uses the even entries of the Search
Path Location array and the second one uses the odd entries of the Search
Path Location array.

yes

 10:8 Search Control (SearchCtrl): This field specifies how the motion search is
performed.

The following table shows the valid encodings. Other encodings are
reserved.

Code Mode

000 Single reference, single record and single start.

Search is performed only on reference 0; only cost center 0 and start
0 are used. There is only one record. Adaptive search is also allowed.
However, when AdaptiveEn is on, LenSU must be at least 2 as the
adaptive search in VME is one-step delayed.

This is the common single directional motion search mode.

001 Single reference, single record and dual start.

Search is performed only on reference 0; only cost center 0 is used.
There is only one record. Search performs first on start 0 and then
on start 1. Then if LenSP is not reached, the predetermined search
path will start on start 1 with increment added to start 1 location. It
then is followed by adaptive search.

This is used for single direction adaptive search.

011 Single reference, dual record (and implied dual start).

Search is performed only on reference 0; both cost center 0 and 1
and start 0 and 1 are used. Two records are used for both paths
during IME.

When integer search is complete, the two records are combined to
find the best search. Sub-pel refinement is only performed from the
best one.

This may be used for search for multiple motion search
candidates/predicators.

yes

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 221

DWord Bit Description

Same as
Prev.

Generation?

111 Dual reference, dual record (and implied dual start).

Search is performed on references 0/1 with both cost centers 0/1
and starts 0/1. Two records are used for both paths during IME.

When integer search is complete, and then sub-pel refinement is
also performed separately, the two records are combined to find the
best search on a subblock basis.

This may be used for bidirectional motion search, or multi-reference
P search. Whether bidirectional is enabled or not depends on the
bidirection sub-macroblock mask.

If BiSubMbPartMask is set to 1111'b, bidirectional search is
disabled. VME will output only the best unidirectional search results.
Otherwise, BME will be performed.

Note that bidirectional search and sub-pel refinement are orthogonal
features that can be enabled indepdently.

 7 Reference Access (RefAccess): This field defines how the reference blocks
are accessed from the reference frames. It indicates if the source picture is a
frame picture or a field picture.

Programming Note: For all known video coding standards, reference pictures
always have the same picture type as the source picture. Therefore, this field
should be programmed to be the same as SrcAccess.

0: frame based

1: field based

yes

 6 Source Access (SrcAccess): This field defines how the source block is
accessed from the source frame. It indicates if the source picture is a frame
picture or a field picture. It is similar to the Picture Type used in video
standards.

0: frame based

1: field based

yes

 5:4 Inter MbType Remap (MbTypeRemap): This field controls the mapping
of the output MbType when the VME output is an Inter (IntraMbFlag =
INTER). The intended usage, for example, is for two forward (or backward)
references or for two search regions from the same reference picture in one
VME call. Hardware ignores this field if the VME output is an intra type
(IntraMbFlag = INTRA).

yes

 3D – Media – GPGPU

222 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

Same as
Prev.

Generation?

00: no remapping

01: remapping MbType to forward only (1-3 mapped to 1, even numbers in
[4-14h] mapped to 4, odd numbers in [5-15h] mapped to 5, and 16h is
unchanged)

10: remapping MbType to backward only (1-3 mapped to 2, even numbers
in [4-14h] mapped to 6, odd numbers in [5-15h] mapped to 7, and 16h is
unchanged)

11: reserved

 3 Reserved: MBZ

(

Issue: The following text needs to be maintained so that we can bring
back the feature in the next opportunity.

Will be used for Field 8x8 Enabled: This field enables 8x8 interlaced–block
partitioning (used for VC-1).

Note: Enabling Field 8x8 prevents use of subpartitions types 4x4, 4x8 and
8x4, RefAccess and SrcAccess must be 0 and SrcSize must be 16x16 (00).
Field8x8 and Field16x8 are mutually exclusive.

)

yes

 2 Reserved: MBZ

(

Issue: The following text needs to be maintained so that we can bring
back the feature in the next opportunity.

Wll be used for Field 16x8 Enabled: This field enables 16x8 interlaced–
block partitioning for MPEG-2.

Note: Enabling Field 16x8 prevents use of subpartitions types 8x16, 4x4, 4x8
and 8x4, RefAccess and SrcAccess must be 0 and SrcSize must be 16x16
(00). Field8x8 and Field16x8 are mutually exculsive.

yes

 1:0 Source Block Size (SrcSize): This field defines how the 16x16 source block
is formed. When Source Block Size is less than 16x16, SU larger than 4x4
will be used.

00: 16x16

01: 16x8

10: Reserved (for 8x16)

yes

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 223

DWord Bit Description

Same as
Prev.

Generation?

11: 8x8

M0.2 31:16 Source Y (SrcY): This field defines the vertical position (of the block's
upper-left pixel) in unit of pixels for the source block in the source picture
(relative to picture origin, not frame origin).

For field source (SrcAccess=1), the SrcFieldPolarity (M1.7-19), is required by
hardware to identify if this is top or bottom field of an interleaved memory
surface.

The resulting Y address in the reference picture must be in even line aligned
within the reference picture. Specifically, if the reference picture is a frame
picture. the resulting Y address must be 2-line aligned; if the reference
picture is a field picture within a frame storage, and the resulting Y address
must be 2-line aligned within the field. i.e. it must be an even number for
the frame case, and must be equal to 0 or 1 modulo 4 for the field case.

Format = U16

no

 15:0 Source X (SrcX): This field defines the horizontal position (of the block's
upper-left pixel) in unit of pixels for the source block in the source picture.

The source block must be within the source picture starting at any integer
grid.

Format = U16

yes

M0.1 31:16 Reference 1 Y Delta (Ref1Y): This field defines the vertical position (of the
upper-left corner of the reference region) in unit of pixels for Reference 1
region relative to the source MB Y value on its respective picture.

For field reference (RefAccess=1), the Ref1FieldPolarity (M1.7-21), is
required by hardware to identify if this is top or bottom field of an
interleaved memory surface.

The resulting Y address in the reference picture must be in even line aligned
within the reference picture. Specifically, if the reference picture is a frame
picture. the resulting Y address must be 2-line aligned; if the reference
picture is a field picture within a frame storage, and the resulting Y address
must be 2-line aligned within the field. i.e. it must be an even number for
the frame case, and must be equal to 0 or 1 modulo 4 for the field case.

Note: For search control=3, this must equal Ref0Y.

Format = S15

Hardware Range: [-2048 to 2047]

no

 3D – Media – GPGPU

224 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

Same as
Prev.

Generation?

 15:0 Reference 1 X Delta (Ref1X): This field defines the horizontal position (of
the upper-left corner of the reference region) in unit of pixels for Reference
1 region relative to the source MB X value on its respective picture.

The resulting reference region is allowed to be outside the picture. Pixel
replication is applied to generate out of bound reference pixels.

This field is only valid when dual reference mode is selected

Note: For search control=3, this must equal Ref0X.

Format = S15

Hardware Range: [-2048 to 2047]

no

M0.0 31:16 Reference 0 Y Delta (Ref0Y): This field defines the vertical position (of the
upper-left corner of the reference region) in unit of pixels for Reference 0
region relative to the source MB Y value on its respective picture.

For field reference (RefAccess=1), the Ref0FieldPolarity (M1.7-20), is
required by hardware to identify if this is top or bottom field of an
interleaved memory surface.

The resulting Y address in the reference picture must be in even line aligned
within the reference picture. Specifically, if the reference picture is a frame
picture. the resulting Y address must be 2-line aligned; if the reference
picture is a field picture within a frame storage, and the resulting Y address
must be 2-line aligned within the field. i.e. it must be an even number for
the frame case, and must be equal to 0 or 1 modulo 4 for the field case.

Format = S15

Hardware Range: [-2048 to 2047]

no

 15:0 Reference 0 X Delta (Ref0X): This field defines the horizontal position (of
the upper-left corner of the reference region) in unit of pixels for Reference
0 region relative to the source MB X value on its respective picture.

The resulting reference region is allowed to be outside the picture. Pixel
replication is applied to generate out of bound reference pixels.

Format = S15

Hardware Range: [-2048 to 2047]

no

M1.7 31:24 Skip Center Enable Mask (SkipCenterMask):

[bit 31…24]

xxxx xxx1: Ref0 Skip Center 0 is enabled [corresponds to M2.0]

no

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 225

DWord Bit Description

Same as
Prev.

Generation?

xxxx xx1x: Ref1 Skip Center 0 is enabled [corresponds to M2.1]

xxxx x1xx: Ref0 Skip Center 1 is enabled [corresponds to M2.2]

xxxx 1xxx: Ref1 Skip Center 1 is enabled [corresponds to M2.3]

xxx1 xxxx: Ref0 Skip Center 2 is enabled [corresponds to M2.4]

xx1x xxxx: Ref1 Skip Center 2 is enabled [corresponds to M2.5]

x1xx xxxx: Ref0 Skip Center 3 is enabled [corresponds to M2.6]

1xxx xxxx: Ref1 Skip Center 3 is enabled [corresponds to M2.7]

Illegal cases:

Disable both Ref0 and Ref1 Skip Center 0 in case of Skip_1MVP.

Disable both Ref0 and Ref1 for any Skip Center pair in case of Skip_4MVP.

23:22 Reserved: MBZ yes

21 Reference1 Field Polarity Select (Ref1FieldPolarity):

If RefAccess = 1 (M0.3-7), meaning field based, than the hardware requires
this value is to derive the correct location on the reference surface in
memory to fetch pixels. This is because the reference is stored as a frame
picture with both fields interleaved in memory and the Ref1Y (M0.1-31:16)
is relative to the SrcY location on a field picture.

Hence, the starting y-pixel coordinate that will be fetched from the memory
will be:

(SrcY+Ref1Y) * 2 + Ref1FieldPolarity

Else, this field is ignored by the hardware.

Format = U1

no

20 Reference0 Field Polarity Select (Ref0FieldPolarity):

If RefAccess = 1 (M0.3-7), meaning field based, than the hardware requires
this value is to derive the correct location on the reference surface in
memory to fetch pixels. This is because the reference is stored as a frame
picture with both fields interleaved in memory and the Ref0Y (M0.0-31:16)
is relative to the SrcY location on a field picture.

Hence, the starting y-pixel coordinate that will be fetched from the memory
will be:

(SrcY+Ref0Y) * 2 + Ref0FieldPolarity

Else, this field is ignored by the hardware.

no

 3D – Media – GPGPU

226 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

Same as
Prev.

Generation?

Format = U1

19 Source Field Polarity Select (SrcFieldPolarity):

If SrcAccess = 1 (M0.3-6), meaning field based, than the hardware requires
this value is to derive the correct location on the source surface in memory
to fetch pixels. This is because the source is stored as a frame picture with
both fields interleaved in memory and the SrcY value (M0.2-31:16) is the
location on the field picture (in other words, it does not convey the field
polarity).

Hence, the starting y-pixel coordinate that will be fetched from the memory
will be:

SrcY* 2 + SrcFieldPolarity

Else, this field is ignored by the hardware.

Format = U1

no

18 Bilinear Filter Enable (BilinearEnable):

If set, the fractional filter will implement a simple bilinear interpolation filter
instead of the 4-tap filter. Note: this is supported for both hpel and qpel
interpolation.

Format = Enable

no

17:16 MV Cost Scaling Factor (MVCostScaleFactor):

This term allows the user to redefine the precision of the lookup into the
LUT_MV based on the MV cost difference from the cost center. The
piecewise linear cost function is defined from 0 to 64 in powers of 2
intervals, and the precision of the difference is set by this field. There are 4
precision choices:

00: qpel [Qpel difference between MV and cost center: eff cost range 0-
15pel]

01: hpel [Hpel difference between MV and cost center: eff cost range 0-
31pel]

10: pel [Pel difference between MV and cost center: eff cost range 0-63pel]

11: 2pel [2Pel difference between MV and cost center: eff cost range 0-
127pel]

Format = U2

no

15:8 Macroblock Intra Structure (MbIntraStruct): This is a bitmask specifies yes

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 227

DWord Bit Description

Same as
Prev.

Generation?

neighbor macroblock availability. This allows software to constrain intra
prediction mode search.

Note: user must set Bit6=Bit5.

Bits MotionVerticalFieldSelect Index

7 Reserved: MBZ (for IntraPredAvailFlagF – F (pixel[-1,7] available
for MbAff)

6 Reserved: MBZ (for IntraPredAvailFlagA/E – A (left neighbor top
half for MbAff)

5 IntraPredAvailFlagE/A – A (Left neighbor or Left bottom half)

4 IntraPredAvailFlagB – B (Upper neighbor)

3 IntraPredAvailFlagC – C (Upper left neighbor)

2 IntraPredAvailFlagD – D (Upper right neighbor)

1:0 Reserved: MBZ (for ChromaIntraPredMode)

 7 Luma Intra Source Corner Swap (IntraCornerSwap): This field specifies
the format of the intra luma neighbor pixel format in the message.

0: top neighbors are in sequential order

1: Left-top corner is swapped with the last left-edge neighbor

yes

 6 Non Skip MB Mode Cost Added (NonSkipModeAdded): This field
indicates that the distortion of the survived motion vectors will become
non-skip, and the MB mode cost will be added to its distortion.

yes

 5 Non Skip Zero MV Cost Added (NonSkipZMvAdded): This field indicates
that the distortion of the survived motion vectors will become non-skip,
and the zero MV component costs will be added to its distortion.

yes

 4:0 Luma Intra Partition Mask (IntraPartMask): This field specifies which
Luma Intra partition is enabled/disabled for intra mode decision.

xxxx1: luma_intra_16x16 disabled

xxx1x: luma_intra_8x8 disabled

xx1xx: luma_intra_4x4 disabled

yes

 3D – Media – GPGPU

228 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

Same as
Prev.

Generation?

Bits [4:3] MBZ

M1.6 31:0 Reserved: MBZ no

M1.5 31:16 CostCenter 1 Delta Y (CostCenter0Y): This field defines the Y value for the
second cost center (associated with the second start) relative to the picture
source MB Y value.

Format = S13.2 (2's comp)

Hardware Range: [-512.00 to 511.75]

no

15:0 CostCenter 1 Delta X (CostCenter1X): This field defines the X value for the
second cost center (associated with the second start) relative to the picture
source MB X value.

Format = S13.2 (2's comp)

Hardware Range: [-2048.00 to 2047.75]

no

M1.4 31:16 CostCenter 0 Delta Y (CostCenter0Y): This field defines the Y value for the
first cost center (associated with the first start) relative to the picture source
MB Y value.

Format = S13.2 (2's comp)

Hardware Range: [-512.00 to 511.75]

no

15:0 CostCenter 0 Delta X (CostCenter0X): This field defines the X value for the
first cost center (associated with the first start) relative to the picture source
MB X value.

Format = S13.2 (2's comp)

Hardware Range: [-2048.00 to 2047.75]

no

M1.3 31:24 IME Success & FME/BME Bypass Threshold (ImeTooGood): This field
specifies the threshold value for the ME distortion computes above which
sub-pel refinement search and bidirectional search are skipped (as the
integer-pel distortion is deemed to be good enough).

This value, if used, should be set to be greater than Early Success Threshold.

Format = U4U4 (encoded value should fit in 14-bits)

yes

 23:16 Quit Inter Search Threshold (ImeTooBad): This field specifies the
threshold value for the ME distortion computes above which sub-pel
refinement search and bidirectional search are skipped (as the integer-pel

yes

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 229

DWord Bit Description

Same as
Prev.

Generation?

distortion is deemed to be too bad).

This value, if used, should be set to be greater than Early Success Threshold.

Format = U4U4 (encoded value should fit in 14-bits)

 15:8 Partition Distortion Tolerance Threshold (PartToleranceThrhd): defines
the distortion tolerance used in the intermediate shape decision. (See
Shape Decision for more detail).

This field is only valid when PartCandidateEn is set.

Format = U4U4 (encoded value should fit in 14-bits)

yes

 7:0 FME/BME Pruning Tolerance Threshold (FBPrunThrhd): This field
specifies the threshold when a normalized absolute difference of the two
uni-directional distortions is bigger than that, FME is skipped for the losing
direction and BME is skipped as well if bidirectional is enabled. The
difference is normalized by the number of 4x4 pixels in the tested partition.
For example, for an 8x8 partition, the absolute difference of the distortions
is divided by 4 (right shifted by 2); and for a 16x16 partition, it is right
shifted by 4. With the unsigned byte, this field provides a control of per
pixel distortion difference with a large range from 1/16 to 16.

This field is only valid when FBPrunEn is set to 1 (and for Search Control set
to 111 - dual reference and dual record).

Format = U4U4 (encoded value should fit in 14-bits)

Reserved: MBZ

no

M1.2 31:28 Start Center 1 Y (Start1Y): This field defines the Y position of Search Path
1 relative to the reference Y location. It is in unit of SU.

Format = U4

yes

 27:24 StartCenter 1 (Start1X): This field defines the X position of Search Path 1
relative to the reference X location. It is in unit of SU.

The corresponding reference block must be fully within the reference
region.

Format = U4

yes

 23:20 Start Center 0 Y (Start0Y): This field defines the Y position of Search Path
1 relative to the reference Y location. It is in unit of SU.

Format = U4

yes

 3D – Media – GPGPU

230 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

Same as
Prev.

Generation?

 19:16 StartCenter 0 X (Start0X): This field defines the X position of Search Path 1
relative to the reference X location. It is in unit of SU.

The corresponding reference block must be fully within the reference
region.

Format = U4

yes

 15:8 Maximum Search Path Length (MaxNumSU): This field defines the
maximum number of SUs per reference including the predetermined SUs
and the adaptively generated SUs.
Note: every SU in fixed path will be counted (including the out-bound ones
and repeated ones), and in addition for adaptive SUs only the ones actually
searched will be added.

Format = U8, with valid range of [1,63]

yes

 7:0 Max Fixed Search Path Length (LenSP): This field defines the maximum
number of SUs per reference which are evaluated by the predetermined
SUs. When adaptive walk is enabled, adaptive walk starts when this number
is reached.

Note: every SU in fixed path will be counted (including the out-bound ones
and repeated ones)

Format = U8, with valid range of [1,63]

yes

M1.1 31 Extented FME Repartition Enable (RepartEn): This field specifies whether
the repartitioning after FME as described in 6.1.3.3 is enabled.

0: disable

1: enable

yes

 30 FME/BME Pruning Enable (FBPrunEn): This field specifies whether
FME/BME pruning is enabled. This is used to speedup the VME operation
with low quality impact.

This field is only valid for dual reference case (when Search Control is 111).
Otherwise, it must be set to zero.

0: disable

1: enable

Reserved: MBZ

no

 29 Reserved: MBZ yes

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 231

DWord Bit Description

Same as
Prev.

Generation?

 28 Unidirectional Mix Disable (UniMixDisable): if it is on, all unidirectional
resulting motion vectors must share the same direction, i.e. either all are
forward, or all are backward. If this field is off, each partition, down to 8x8
subblock, may have a different mix of forward and backward motion
vectors. (Within each 8x8 subblock, only one common choice is allowed.)

This field is MBZ except for cases of Search Control = 111'b (e.g. 7, dual
reference).

yes

 27:24 Bidirectional Sub-Macroblock and Sub-Partition Mask
(BiSubMbPartMask): This field defines the bit-mask for disabling sub-
macroblock and sub-partition modes. The enabled ones must be a subset
of that enabled by SubMbPartMask.

Note that 16x8 and 8x16 share the same bit and all sub-partitions share the
same bit.

xxx1: 16x16 disabled

xx1x: 2x(16x8) and 2x(8x16) within 16x16 disabled

x1xx: 4x(8x8) within 16x16 disabled

1xxx: sub-partitions 2x(8x4) and 2x(4x8) and 4x(4x4) within 8x8 are disabled

yes

 23:22 Reserved: MBZ yes

 21:16 Bidirectional Weight (BiWeight): This field defines the weighting for the
backward and forward terms to generate the bidirectional term. This field is
only valid for bidirectional search (SearchCtrl = 111).

Format = U6

Valid Values: [16, 21, 32, 43, 48]

yes

 15:6 Reserved: MBZ yes

 5:0 Maximum Number of Motion Vectors (MaxNumMVs): This field
specifies the maximum number of motion vectors allowed for the current
macroblock. This field affects the macroblock partition decision. VME will
return the best partition with MvQuantity not exceeding MaxNumMVs.
MaxNumMVs = 0 will only allow skip as a valid Inter mode.

Note: This value is used ONLY for 16x16 source MB mode.

Usage Example: Certain profiles/levels for AVC standard have restriction for
the maximum number of motion vectors allowed for two consecutive

yes

 3D – Media – GPGPU

232 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

Same as
Prev.

Generation?

macroblocks (MaxMvsPer2Mb may be 16 or 32).

Format = U6

Note: When skip is enabled, MaxNumMVs must be greater or equal to the
number of skip MVs.

M1.0 31:24 Early IME Successful Stop Threshold (EarlyImeStop): This field specifies
the threshold value for the IME distortion computes of single 16x16 mode
below which no more search will be performed within the IME unit.

This field only takes effect if EarlyImeSuccessEn is set.

Note: Early IME exit only looks at ref0, and uses 8x8 for source 8x8 and
16x8 0 for source 16x8.

Format = U4U4 (encoded value should fit in 14-bits)

yes

 23:16 Early Fme Success Threshold (EarlyFmeSuccess): Applying after fractional
ME, this field defines the threshold value for the ME distortion computes
below which the search process will exit early.

This field only takes effect if EarlySuccessEn is set.

This field only looks at primary candidate

Format = U4U4 (encoded value should fit in 14-bits)

yes

 15:8 Skip Success Threshold (SkipSuccess): Applying after skip mode checking
(if enabled), this field defines the threshold value for the ME distortion
computes below which the search process will exit early.

This threshold is always used for setting MbSkipFlag, when the
corresponding raw distortion is less than or equal to the threshold.

This field causes early VME termination only if EarlySuccessEn is set to 1.

Format = U4U4 (encoded value should fit in 14-bits)

yes

 7 Transform 8x8 Flag For Inter Enable (T8x8FlagForInterEn): This field
specifies whether Transform8x8Flag is updated for inter mode according
the resulting inter-mode sub-partition size.

0: disable

1: enable

yes

 6 Quit Inter Search Enable (QuitInterEn): This field specifies whether the
inter search may be prematurely terminated after IME when the IME
distortion is worse than the predetermined threshold QuitInterThrhd.

yes

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 233

DWord Bit Description

Same as
Prev.

Generation?

When this field is not set, if early out does occur on full-pel location,
hardware switches to local sub-pel refinement search. When this field is set,
however, the local sub-pel refinement step is skipped.

This field takes effect independent of EarlySuccessEn.

0: disable

1: enable

 5 Early IME Success Enable (EarlyImeSuccessEn): This field specifies
whether the Early Success may terminate on full-pel precision. When this
field is not set, if early out does occur on full-pel location, hardware
continues to local sub-pel refinement search and so on. When this field is
set, however, the local sub-pel refinement step is skipped and intra search
is also skipped.

This field only takes effect if EarlySuccessEn is set.

Usage example: This may be used for cases with large static area where (0,0)
motion vector delivers very good results that no FME refinement is needed
and also intra check is also skipped. This may also be used in place of Skip
Mode Checking when the skip center(s) happens to be an integer location
inside the SU of the Start Center(s).

0: disable

1: enable

yes

 4 Early Success Enable (EarlySuccessEn): This field enables Early Success of
the motion search when the ME distortion is below EarlySuccessThrhd.
Early Success may occur during skip mode check, integer search and sub-
pel search stages. Termination directly out of integer search is controlled by
the EarlySuccessImeEn field.

0: disable

1: enable

yes

 3 Partition Candidates Enable (PartCandidateEn): This field enables
multiple partition candidates (VME hardware supports only up to two
candidates). When it is set, a second partition candidate that is within
PartToleranceThrhd from the best partition is kept for subsequent inter-
search operations.

This field is only allowed to be set to 1 if SrcSize is 16x16.

0: a single partition is determined by IME

yes

 3D – Media – GPGPU

234 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

Same as
Prev.

Generation?

1: multiple partition candidates are allowed

 2 Bidirectional Mix Disable (BiMixDis): if it is on, all resulting motion
vectors must share the same direction, i.e. either all are unidirectional (i.e.
forward or backward), or all bidirectional. If this field is off, each partition
may have different search direction (forward, backward or bidirectional).

Usage Example: MPEG2 bidirectional decision is at whole macroblock level,
while AVC decision is at subblock level.

0: bidirectional decision on subblock level that bidirectional mode is
enabled

1: bidirectional decision on whole macroblock

yes

 1 Adaptive Search Enable (AdaptiveEn): This field defines whether adaptive
searching is enabled for IME. When Adaptive Search is enabled, there must
be at least two search steps preceded. It is either from a single start with
step of >=2 or from a dual-start.

0: disable

1: enable

yes

 0 Skip Mode Enable (SkipModeEn): This field specifies whether the skip
mode checking is performed before the motion search. If this field is set,
Skip Center, which may have a sub-pel precision, is first tested before IME.

0: disable

1: enable

Note: It must be 0 if Inter is not ON in Message Type or if SrcType!=00
(less than 16x16)

yes

M2.7 31:0 Ref1 SkipCenter 3 Delta XY (for definition see M2.0) no

M2.6 31:0 Ref0 SkipCenter 3 Delta XY (for definition see M2.0) no

M2.5 31:0 Ref1 SkipCenter 2 Delta XY (for definition see M2.0) no

M2.4 31:0 Ref0 SkipCenter 2 Delta XY (for definition see M2.0) no

M2.3 31:0 Ref1 SkipCenter 1 Delta XY (for definition see M2.0) no

M2.2 31:0 Ref0 SkipCenter 1 Delta XY (for definition see M2.0) no

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 235

DWord Bit Description

Same as
Prev.

Generation?

M2.1 31:0 Ref1 SkipCenter 0 Delta XY (for definition see M2.0) no

M2.0 31:16 Ref0 Skip Center 0 Delta Y:

This field defines the Y value for the forward skip center relative to the 8x8
block offset from the source MB Y location in quarter-pel precision
associated with Ref0.

To match the relative 8x8 block location, the HW will add fixed offsets to
the 4 skip centers in each direction to generate the correct pixel location to
fetch the data.

For SkipCenter 0: VME will add 0 to the user-input Y value.

For SkipCenter 1: VME will add 0 to the user-input Y value.

For SkipCenter 2: VME will add 32 to the user-input Y value.

For SkipCenter 3: VME will add 32 to the user-input Y value.

Format = S13.2 (2's comp)

Hardware Range: [-512.00 to 511.75]

no

15:0 Ref0 SkipCenter 0 Delta X:

This field defines the X value for the forward skip center relative to the 8x8
block offset from the source MB X location in quarter-pel precision
associated with Ref0.

To match the relative 8x8 block location, the HW will add fixed offsets to
the 4 skip centers in each direction to generate the correct pixel location to
fetch the data.

For SkipCenter 0: VME will add 0 to the user-input X value.

For SkipCenter 1: VME will add 32 to the user-input X value.

For SkipCenter 2: VME will add 0 to the user-input X value.

For SkipCenter 3: VME will add 32 to the user-input X value.

Format = S13.2 (2's comp)

Hardware Range: [-2048.00 to 2047.75]

no

For Message Type of 10 and 11, the VME request message has additional two phases to deliver the
neighbor macroblock pixels for intra prediction. Here the neighbor pixel location [x, y] is relative to the
current 16x16 macroblock, with [x,y] = [-1, -1] for the upper-left corner edge pixel in neighbor D, [-1,
0…15] for the left edge pixels in neighbor A, and [0…15…23, -1] for the upper and upper-right edge
pixels in neighbors B and C.

 3D – Media – GPGPU

236 Doc Ref # IHD-OS-VLV-Vol7-04.14

Note that for Message Type of 10, which is intra-search only mode, the fields regarding reference
windows and inter-prediction control in the command are ignored by hardware (and no pixels are
fetched from the reference window(s)).

 To help with vector data access in software, horizontal neighbor pixels from D, B, and C are stored in
one register in raster order with 8 pixel alignment. Vertical neighbor pixels from A are stored in a
separate register.

DWord Bit Description

Same as
Prev.

Generation?

M3.7 31:0 Neighbor pixel Luma value [23, -1] to [20, -1]. Upper-right pixels from
neighbor macroblock C

yes, but was
M2

M3.6 31:0 Neighbor pixel Luma value [19, -1] to [16, -1]. Upper-right edge pixels
from neighbor macroblock C

yes, but was
M2

M3.5 31:0 Neighbor pixel Luma value [15, -1] to [12, -1]. Top edge pixels from
neighbor macroblock B

yes, but was
M2

M3.4 31:0 Neighbor pixel Luma value [11, -1] to [8, -1]. Top edge pixels from
neighbor macroblock B

yes, but was
M2

M3.3 31:0 Neighbor pixel Luma value [7, -1] to [4, -1]. Top edge pixels from
neighbor macroblock B

yes, but was
M2

M3.2 31:24 Neighbor pixel Luma value [3, -1]. Fourth top edge pixel from neighbor
macroblock B

yes, but was
M2

 23:16 Neighbor pixel Luma value [2, -1]. Third top edge pixel from neighbor
macroblock B

yes, but was
M2

 15:8 Neighbor pixel Luma value [1, -1]. Second top edge pixel from neighbor
macroblock B

yes, but was
M2

 7:0 Neighbor pixel Luma value [0, -1]. First top edge pixel from neighbor
macroblock B

yes, but was
M2

M3.1 31:24 Corner Neighbor pixel 0. Its content depends on IntraCornerSwap field.
It swaps with Corner Neighbor pixel 1.

Neighbor pixel Luma value [-1, -1]. The one upper-left edge pixel from
neighbor macroblock D, which is the right most edge pixel of D, if
IntraCornerSwap field is 0. Or

Neighbor pixel Luma value [-1, 15]. The last left edge pixel from
neighbor macroblock A, which is the left most edge pixel of D, if

yes, but was
M2

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 237

DWord Bit Description

Same as
Prev.

Generation?

IntraCornerSwap field is 1.

23:4 Reserved: MBZ (Hardware ignores this field) no

3:0 AVC Intra 16x16 Mode Mask (Intra16x16ModeMask):

Disables given intra mode as follows.

xxx1:

xx1x:

x1xx:

1xxx:

no

M3.0 31:25 Reserved: MBZ (Hardware ignores this field) no

24:16 AVC Intra 8x8 Mode Mask (Intra16x16ModeMask):

Disables given intra mode as follows.

x xxxx xxx1:

x xxxx xx1x:

x xxxx x1xx:

x xxxx 1xxx:

x xxx1 xxxx:

x xx1x xxxx:

x x1xx xxxx:

x 1xxx xxxx:

1 xxxx xxxx:

no

15:9 Reserved: MBZ (Hardware ignores this field) no

8:0 AVC Intra 4x4 Mode Mask (Intra16x16ModeMask):

Disables given intra mode as follows.

x xxxx xxx1:

x xxxx xx1x:

x xxxx x1xx:

x xxxx 1xxx:

no

 3D – Media – GPGPU

238 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

Same as
Prev.

Generation?

x xxx1 xxxx:

x xx1x xxxx:

x x1xx xxxx:

x 1xxx xxxx:

1 xxxx xxxx:

M4.7 31:0 Reserved: MBZ no

M4.6 31:0 Reserved: MBZ no

M4.5 31:0 Reserved: MBZ no

M4.4 31:28 Intra Predictor Mode for Neighbor B15 (IntraMxMPredModeB15): This
field carries the intra prediction mode of the fourth bottom 4x4 block
(Block 15 in Numbers of Block4x4 in a 16x16 region) of the top neighbor
macroblock B. Definition of the term is according to Sections 8.3.1 and 8.3.2
of the AVC specification.

yes, but was
M3

 27:24 Intra Predictor Mode for Neighbor B14 (IntraMxMPredModeB14): This
field carries the intra prediction mode of the third bottom 4x4 block (Block
14 in Numbers of Block4x4 in a 16x16 region) of the top neighbor
macroblock B. Definition of the term is according to Sections 8.3.1 and 8.3.2
of the AVC specification.

yes, but was
M3

 23:20 Intra Predictor Mode for Neighbor B11 (IntraMxMPredModeB11): This
field carries the intra prediction mode of the second bottom 4x4 block
(Block 11 in Numbers of Block4x4 in a 16x16 region) of the top neighbor
macroblock B. Definition of the term is according to Sections 8.3.1 and 8.3.2
of the AVC specification.

yes, but was
M3

 19:16 Intra Predictor Mode for Neighbor B10 (IntraMxMPredModeB10): This
field carries the intra prediction mode of the first bottom 4x4 block (Block
10 in Numbers of Block4x4 in a 16x16 region)of the top neighbor
macroblock B. Definition of the term is according to Sections 8.3.1 and 8.3.2
of the AVC specification.

yes, but was
M3

 15:12 Intra Predictor Mode for Neighbor A15 (IntraMxMPredModeA15): This
field carries the intra prediction mode of the fourth rightmost 4x4 block
(Block 15 in Numbers of Block4x4 in a 16x16 region) of the left neighbor A.
Definition of the term is according to Sections 8.3.1 and 8.3.2 of the AVC

yes, but was
M3

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 239

DWord Bit Description

Same as
Prev.

Generation?

specification.

 11:8 Intra Predictor Mode for Neighbor A13 (IntraMxMPredModeA13): This
field carries the intra prediction mode of the third rightmost 4x4 block
(Block 13 in Numbers of Block4x4 in a 16x16 region) of the left neighbor A.
Definition of the term is according to Sections 8.3.1 and 8.3.2 of the AVC
specification.

yes, but was
M3

 7:4 Intra Predictor Mode for Neighbor A7 (IntraMxMPredModeA7): This
field carries the intra prediction mode of the second rightmost 4x4 block
(Block 7 in Numbers of Block4x4 in a 16x16 region) of the left neighbor A.

yes, but was
M3

 3:0 Intra Predictor Mode for Neighbor A5 (IntraMxMPredModeA5): This
field carries the intra prediction mode of the first rightmost 4x4 block
(Block 5 in Numbers of Block4x4 in a 16x16 region) of the left neighbor A.
Definition of the term is according to Sections 8.3.1 and 8.3.2 of the AVC
specification.

Intra Predictor Modes for Neighbor A and B are only used if
MODE_INTRA_NOPRED is not zero.

For intra mode selection, bias is applied to the predicted mode if a
predictor is present for a partition. This is achieved by applying a penalty
term MODE_INTRA_NONPRED defined in the VME state to the cost
functions for non-predicted modes.

The predictor for a given partition is from its left neighbor and top
neighbor. The intra decision for a partition serves as the predictor for the
next partition in the partition order as defined in Numbers of Block4x4 in a
16x16 region and Numbers of Block4x4 in an 8x8 region or numbers of
Block8x8 in a 16x16 region.

This set of intra predictor mode for neighbor macroblocks are only used for
INTRA8x8 and INTRA4x4 modes.

Format : U4 (The value of this field is defined in Definition of
Intra4x4PredMode which is the same as that in Definition of
Intra8x8PredMode.)

yes, but was
M3

M4.3 31:24 Corner Neighbor pixel 1. Its content depends on IntraCornerSwap field.
It swaps with Corner Neighbor pixel 0.

Neighbor pixel Luma value [-1, -1]. The one upper-left edge pixel from
neighbor macroblock D, which is the right most edge pixel of D, if
IntraCornerSwap field is 1. Or

Neighbor pixel Luma value [-1, 15]. The last left edge pixel from

yes, but was
M3

 3D – Media – GPGPU

240 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

Same as
Prev.

Generation?

neighbor macroblock A, which is the left most edge pixel of D, if
IntraCornerSwap field is 0.

 23:0 Neighbor pixel Luma value [-1, 14] to [-1, 12]. Left edge pixels from
neighbor macroblock A

yes, but was
M3

M4.2 31:0 Neighbor pixel Luma value [-1, 11] to [-1, 8]. Left edge pixels from
neighbor macroblock A

yes, but was
M3

M4.1 31:0 Neighbor pixel Luma value [-1, 7] to [-1, 4]. Left edge pixels from
neighbor macroblock A

yes, but was
M3

M4.0 31:24 Neighbor pixel Luma value [-1, 3]. Fourth left edge pixel from neighbor
macroblock A

yes, but was
M3

 23:16 Neighbor pixel Luma value [-1, 2]. Third left edge pixel from neighbor
macroblock A

yes, but was
M3

 15:8 Neighbor pixel Luma value [-1, 1]. Second left edge pixel from neighbor
macroblock A

yes, but was
M3

 7:0 Neighbor pixel Luma value [-1, 0]. First left edge pixel from neighbor
macroblock A

yes, but was
M3

Writeback Message

In order to minimize kernel software overhead, the PLACEMENTS of the bit-fields as well as the
words/dwords are specifically designed to match with the inline data of the MFC_PAK_OBJECT
command of MFX.

DWord Bit Description
Same as
DevSNB

W0.7 31:28 VME Decisions – Other: These 4 bits are used to expose internal behavior of
VME to the kernel, specifically whether or not FME or BME had a positive
impact, whether or not the ExtraCandidate adds any value to be checked, and
whether or not the MaxMV value limited partitioning to a larger shape
decision.

xxx1: After FME, the primary candidate's distortion was improved.

xx1x: After BME, the primary candidate's distortion was improved.

x1xx: When VME concludes, the ExtraCandidate ends up beating the

yes

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 241

DWord Bit Description
Same as
DevSNB

initial primary candidate.

1xxx: The MaxMV value restricted the final partition decision (VME would
have picked a more detailed shape, but couldn't due to motion vector
constraint). This field only applies to the final partition decision of the
main partitioning or candidate and not the alternate candidate. It is only
valid incase of SrcSize 16x16. Otherwise it is MBZ.

 27:23 VME Decisions – Early Exit Conditions: These 5 bits expose to the kernel
that VME finished prior to completing all subfunctions and for what early exit
criteria this occurred. Note, these values are only set when the VmeFlag
EarlySuccess is enabled.

xxxx1: EarlySkipExit Occurred

xxx1x: EarlyImeStop Occurred

xx1xx: ImeTooGood Occurred

x1xxx: ImeTooBad Occurred

1xxxx: EarlyFmeExit Occurred

yes

 22:16 VME Decisions – Sub-Functions Performed: These 7 bits expose to the
kernel which sub-functions VME performed. Also, each sub-function is
explicitly listed for primary or extra candidate for FME and BME. There is
some redundancy with respect to Skipcheck and Intra based on input state to
VME.

xxxxxx1: Performed Skipcheck

xxxxx1x: Performed IME

xxxx1xx: Performed FME on primary

xxx1xxx: Performed FME on extra candidate

xx1xxxx: Performed BME on primary

x1xxxxx: Performed BME on extra candidate

yes

 15:8 Sub-Macroblock Prediction Mode (SubMbPredMode): If InterMbMode is
INTER8x8, this field describes the prediction mode of the sub-partitions in
the four 8x8 sub-macroblock. It contains four subfields each with 2-bits,
corresponding to the four 8x8 sub-macroblocks in sequential order.

This field is derived from sub_mb_type for a BP_8x8 macroblock.

This field is derived from MbType for a non-BP_8x8 inter macroblock, and
carries redundant information as MbType).

If InterMbMode is INTER16x16, INTER16x8 or INTER8x16, this field carries

yes

 3D – Media – GPGPU

242 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description
Same as
DevSNB

the prediction modes of the sub macroblock (one 16x16, two 16x8 or two
8x16). The unused bits are set to zero.

Bits [1:0]: SubMbPredMode[0]

Bits [3:2]: SubMbPredMode[1]

Bits [5:4]: SubMbPredMode[2]

Bits [7:6]: SubMbPredMode[3]

 7:0 Sub-Macroblock Shape (SubMbShape): This field describes the subdivision
of the four 8x8 sub-macroblocks. It contains four subfields each with 2-bits,
corresponding to the four 8x8 sub macroblocks in sequential order.

This field is derived from sub_mb_type for a BP_8x8 or equivalent
macroblock.

This field is forced to 0 for a non-BP_8x8 inter macroblock, and effectively
carries redundant information as MbType).

This field is only valid If InterMbMode is INTER8x8, Otherwise, it is set to
zero.

Bits [1:0]: SubMbShape[0]

Bits [3:2]: SubMbShape[1]

Bits [5:4]: SubMbShape[2]

Bits [7:6]: SubMbShape[3]

yes

W0.6 31:26 Alternate Search Path Length: Counts the number of unique search units
computed by VME for the alternate search path for dual reference or dual
search path. If the search path would return to a previously processed SU, it
would not be reprocessed and hence not recounted. The value of [W0.1 15:8]
is the overall total search units processed from both paths whereas this value
is the contribution only from the second search path. Note: Whenever VME
is in a mode that processes only a single search path, this field will be 0x0.

Format: U6, Range of 0-48

yes

 25:16 Total VME Stalled Clocks by 16: Counts the number of clocks VME is
stalled\starved while processing this request, due to cache misses. The result
is returned in units of 16 clock intervals. If the maximum value is returned, the
full range was exceeded and the value clipped to the max (this is very
unlikely).

Format: U10, Range of 0-1023 [logical range of 0-16383 in 16 clock intervals]

yes

 15:8 Total VME Compute Clocks by 16: Counts the number of clocks VME is yes

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 243

DWord Bit Description
Same as
DevSNB

processing this request, but not stalled\starved as a result of cache misses.
The result is returned in units of 16 clock intervals. If the maximum value is
returned, the full range was exceeded and the value clipped to the max (this
is very unlikely).

 7:0 Macroblock Intra Structure (MbIntraStruct): This is a bitmask specifies
neighbor macroblock availability. This allows software to constrain intra
prediction mode search.

This field is simply copied from the input message (to reduce software
overhead of forming the output message to PAK).

Bits MotionVerticalFieldSelect Index

7 Reserved: MBZ (for IntraPredAvailFlagF – F (pixel[-1,7] available for
MbAff)

6 Reserved: MBZ (for IntraPredAvailFlagA/E – A (left neighbor top
half for MbAff)

5 IntraPredAvailFlagE/A – A (Left neighbor or Left bottom half)

4 IntraPredAvailFlagB – B (Upper neighbor)

3 IntraPredAvailFlagC – C (Upper left neighbor)

2 IntraPredAvailFlagD – D (Upper right neighbor)

1:0 Reserved: MBZ (for ChromaIntraPredMode)

yes

W0.5 31:16 LumaIntraPredModes[3]
Specifies the Luma Intra Prediction mode for four 4x4 sub-block of a MB, 4-bit each.

yes

 15:0 LumaIntraPredModes[2]
Specifies the Luma Intra Prediction mode for four 4x4 sub-block of a MB, 4-bit each.

yes

W0.4 31:16 LumaIntraPredModes[1]
Specifies the Luma Intra Prediction mode for four 4x4 sub-block of a MB, 4-bit each.

yes

 15:0 LumaIntraPredModes[0]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block, four 8x8
block or one intra16x16 of a MB.

4-bit per 4x4 sub-block (Transform8x8Flag=0, Mbtype=0 and intraMbFlag=1)
or 8x8 block (Transform8x8Flag=1, Mbtype=0, MbFlag=1), since there are 9
intra modes.

4-bit for intra16x16 MB (Transform8x8Flag=0, Mbtype=1 to 24 and

yes

 3D – Media – GPGPU

244 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description
Same as
DevSNB

intraMbFlag=1), but only the LSBit[1:0] is valid, since there are only 4 intra
modes.

W0.3 31:28 Direct8x8Pattern

This field indicates whether each of the four 8x8 sub macroblocks is using the
predicted MVs and will not be explicitly coded in the bitstream (the sub
macroblock will be coded as direct mode). It contains four 1-bit subfields,
corresponding to the 4 sub macroblocks in sequential order. The whole
macroblock may be actually coded as B_Direct_16x16 or B_Skip, according to
the macroblock type conversion rules described in a later sub section.

This field is only valid for a B slice. It is ignored by hardware for a P slice.

0 in a bit – Corresponding MVs are sent in the bitstream

1 in a bit – Corresponding MVs are not sent in the bitstream

yes

 27:14 Reserved: MBZ yes

 13:0 BestIntraDistortion

The IntraMbMode will indicate if this is a 16x16/8x8/4x4 distortion.

Format = U14

yes

W0.2 31 Reserved: MBZ yes

 30 SkipRawDistortionInvalid

Format = U14

yes

 29:16 SkipRawDistortion

Format = U14

yes

 15:14 Reserved: MBZ yes

 13:0 InterDistortion

Format = U14

yes

W0.1 31:30 Reserved: MBZ yes

 29:16 Minimal Distortion: This field contains the overall distortion for the source
block associated with the winning MbType, which could be one of intra or
inter modes.

Format = U14

yes

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 245

DWord Bit Description
Same as
DevSNB

 15:8 Search Path Length: This field returns the number of SU it takes in the
integer search. It includes predetermined search path and dynamic search
path.

Format: U8

yes

 7:4 Reference 1 border reached: bitmask indicating whether any border of
reference 1 is reached by one or more motion vectors in the winning inter
mode.

xxx1: left border reached

xx1x: right border reached

x1xx: top border reached

1xxx: bottom border reached

yes

 3:0 Reference 0 border reached: bitmask indicating whether any border of
reference 0 is reached by one or more motion vectors in the winning inter
mode.

xxx1: left border reached

xx1x: right border reached

x1xx: top border reached

1xxx: bottom border reached

yes

W0.0 31 ExtendedForm

 This field specifies that LumaIntraModes are fully replicated in 4x4 sub-
blocks respectively. And motion vectors must be in unpacked form as well.
This non-DXVA form is used for optimal kernel performance.

yes

 30:29 Reserved: MBZ

 28:24 MvQuantity

Specify the number of MVs in packed format (in unit of motion vectors).

Note: this field is provided to help with software to meet conformance
requirements such as maximum number of motion vectors for two consecutive
macroblocks.

Format: U5, valid from 0 to 32

yes

 23 Reserved: MBZ

(reserved for ExternalMvBufFlag. It is always 0 in this case, since MVs are

yes

 3D – Media – GPGPU

246 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description
Same as
DevSNB

included)

 22:20 MvSize (Motion Vector Size). This field specifies the size and format of the
output motion vectors.

This field is reserved (MBZ) when the output signal IntraMbFlag = 1.

The valid encodings are:

000 = 0: No motion vector

100 = 8MV: Four 8x8 motion vector pairs

110 = 32MV: 16 4x4 motion vector pairs

Others are reserved.

(The following encodings are intended for future usages:

001 = 1MV: one 16x16 motion vector

010 = 2MV: One 16x16 motion vector pair

011 = 4MV: Four 8x8 motion vectors

101 = 16MV: 16 4x4 motion vectors

111 = Packed, number of MVs is given by MvQuantity.)

yes

 19 DcBlockCodedYFlag. This field specifies if the Luma DC sub-block is coded.

1 – the 4x4 DC-only Luma sub-block of the Intra16x16 coded MB is present; it
is still possible that all DC coefficients are zero.

0 – no 4x4 DC-only Luma sub-block is present; either not in Intra16x16 MB
mode or all DC coefficients are zero.

VME hardware forces this output to be 1.

yes

 18 DcBlockCodedCbFlag. This field specifies if the Chroma Cb DC sub-block is
coded.

1 – the 2x2 DC-only Chroma Cb sub-block of all coded MB (any type) is
present; it is still possible that all DC coefficients are zero.

0 – no 2x2 DC-only Chroma Cb sub-block is present; all DC coefficients are
zero.

VME hardware forces this output to be 1.

yes

 17 DcBlockCodedCrFlag. This field specifies if the Chroma Cb DC sub-block is
coded.

1 – the 2x2 DC-only Chroma Cr sub-block of all coded MB (any type) is

yes

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 247

DWord Bit Description
Same as
DevSNB

present; it is still possible that all DC coefficients are zero.

0 – no 2x2 DC-only Chroma Cr sub-block is present; all DC coefficients are
zero.

VME hardware forces this output to be 1.

 16 Reserved: MBZ yes

 15 Transform8x8Flag (Transform 8x8 Flag)

This field indicates that 8x8 transform is recommended.

It is set to 1 if IntraMbFlag = INTRA and IntraMbMode = INTRA_8x8.

For IntraMbFlag = INTER. If T8x8FlagForInterEn = 0, this field is set to 0 by
VME hardware. If T8x8FlagForInterEn = 1, this field is set to 1 if there is no
sub macroblock size less than 8x8 (noSubMbPartSizeLessThan8x8Flag = 1).

0: 4x4 integer transform

1: 8x8 integer transform

Note: This bit will be always 0 for non-16x16 source block cases.

yes

 14 FieldMbFlag

This field indicates the inter prediction result is field or frame.

It is always set to SrcAccess.

0: frame macroblock

1: field macroblock

yes

 13 IntraMbFlag

This field specifies whether the current macroblock is an Intra (I) macroblock.
Even though I_PCM is considered as Intra MB, VME hardware cannot
generate I_PCM output.

For I-picture MB (IntraPicFlag =1), this field must be set to 1.

This flag must be set in consistent with the interpretation of MbType (inter
or intra modes).

0: INTER (inter macroblock)

1: INTRA (intra macroblock)

yes

 12:8 MbType
This field is encoded to match with the best macroblock type determined as
described in the next section. It follows an unified encoding for inter and intra
macroblocks according to AVC Spec.

yes

 3D – Media – GPGPU

248 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description
Same as
DevSNB

 7 FieldMbPolarityFlag

This field indicates the field polarity of the current macroblock.

Unique for AVC standard, within an MbAff frame picture, this field may be
different per macroblock and is set to 1 only for the second macroblock in an
MbAff pair if FieldMbFlag is set. Otherwise, it is set to 0.

Within a field picture in most coding standard, this field is a constant for the
whole field picture. It is set to 1 if the current picture is the bottom field
picture. Otherwise, it is set to 0.

This field is reserved and MBZ for a progressive frame picture.

VME hardware set this field to 1 if the source block is a field block from the
bottom field and otherwise sets it to 0. This is accomplished by the following
equation using input signals SrcAccess and SrcY: SrcAccess && (bit0(SrcY)
==1).

0 = Current macroblock is a field macroblock from the top field

1 = Current macroblock is a field macroblock from the bottom field

yes

 6 Reserved: MBZ yes

 5:4 IntraMbMode

This field is provided to carry redundant information as that in MbType. The
full extended definition of this field allows kernel software to help update the
MbType field when outputting controls to the MFX PAK encoding.

VME outputs this field regardless of MbIntraFlag value if intra mode is
enabled.

yes

3 Reserved: MBZ yes

2 MbSkipFlag

As an output of VME, this bit indicates whether one skip center (possibly of
several skip centers for each partition) is the winning motion vector position.

VME outputs this field regardless of MbIntraFlag value.

Note that the meaning of this field in VME is not the same as that used in PAK.

yes

1:0 InterMbMode

This field is provided to carry redundant information as that in MbType. The
full extended definition of this field allows kernel software to help update the
MbType field when outputting controls to the MFX PAK encoding.

yes

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 249

DWord Bit Description
Same as
DevSNB

VME outputs this field regardless of MbIntraFlag value if inter mode is
enabled.

W1.7 to
W1.2

31:0
Each MVb[3] to MVb[1]. Motion vectors 3 to 1 for Reference 1, and

MVa[3] to MVa[1]. Motion vectors 3 to 1 for Reference 0

no

W1.1 31:16 MVb[0].y: returning the y-coordinate of Motion Vector 0 for Reference 1,
relative to source MB location.

Format = S13.2 (2's comp)

Hardware Range: [-512.00 to 511.75]

no

15:0 MVb[0].x: returning the x-coordinate of Motion Vector 0 (co-located w/
sublbock_4x4_0) for Reference 1, relative to source MB location. Its meaning
is determined by MbType.

Format = S13.2 (2's comp)

Hardware Range: [-2048.00 to 2047.75]

no

W1.0 31:16 MVa[0].y: returning the y-coordinate of Motion Vector 0 for Reference 0,
relative to source MB location.

Format = S13.2 (2's comp)

Hardware Range: [-512.00 to 511.75]

no

15:0 MVa[0].x: returning the x-coordinate of Motion Vector 0 (co-located w/
sublbock_4x4_0) for Reference 0, relative to source MB location. Its meaning
is determined by MbType.

The returned motion vectors are placed in a fixed data format, with up to 16
motion vectors for one reference and the motion vectors from reference 0
and 1 interleaved.

Format = S13.2 (2's comp)

Hardware Range: [-2048.00 to 2047.75]

no

W2.7 to
W2.0

31:0
Each MVb[7] to MVb[4]. Motion vectors 7 to 4 for Reference 1, and

MVa[7] to MVa[4]. Motion vectors 7 to 4 for Reference 0

no

W3.7 to
W3.0

31:0
Each MVb[11] to MVb[8]. Motion vectors 11 to 8 for Reference 1, and

MVa[11] to MVa[8]. Motion vectors 11 to 8 for Reference 0

no

W4.7 to
W4.0

31:0
Each MVb[15] to MVb[12]. Motion vectors 15 to 12 for Reference 1, and no

 3D – Media – GPGPU

250 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description
Same as
DevSNB

MVa[15] to MVa[12]. Motion vectors 15 to 12 for Reference 0

W5.7 to
W5.1 31:0

Each

InterDistortion[15] to InterDistortion[2]. Inter-prediction-distortion
associated with motion vector 15 to 2. Its meaning is determined by sub-
shape.

yes, but
was M3

W5.0 31:30 Reserved: MBZ yes, but
was M3

 29:16 InterDistortion[1]. Inter-prediction-distortion with motion vector 1 (co-
located with subblock_4x4_1). Its meaning is determined by sub-shape.

Format = U14

yes, but
was M3

 15:14 Reserved: MBZ yes, but
was M3

 13:0 InterDistortion[0]. Inter-prediction-distortion associated with motion vector
0 (co-located with subblock_4x4_0). Its meaning is determined by sub-shape.
It must be zero if the corresponding sub-shape is not chosen.

This field may be associated with MVa[0] and/or MVb[0], depending on the
resulting prediction mode for the sub-block. If the corresponding MV field is
created by duplication, this field must be zero.

Format = U14

yes, but
was M3

1. mv_format_pic = vin_mv_format * vin_codec_select
2. Change vin_mvunpackenable to (vin_mvunpackenable + mv_format_pic) on all location.
3. extended_form_pic = vin_extended_form * vin_codec_select
4. (vctrl_it_Transform8x8Flag * !extended_form_pic) ? h000 & vctrl_it_lumaintrapredmode0[15:12] &

h000 & vctrl_it_lumaintrapredmode0[11:8] & h000 & vctrl_it_lumaintrapredmode0[7:4] & h000 &
vctrl_it_lumaintrapredmode0[3:0]: vctrl_it_lumaintrapredmode3[15:0] &
vctrl_it_lumaintrapredmode2

MV Fub:

Table: Mux Output Table

Value Output Input Description

 Select: ref_index_rep_size[3:0]

0001 enc_refidx_L0addr_B0_int[4:0] enc_mode_bind_fwd_B0[4:0]

0001 enc_refidx_L0addr_B1_int[4:0] enc_mode_bind_fwd_B1[4:0]

0001 enc_refidx_L0addr_B2_int[4:0] enc_mode_bind_fwd_B2[4:0]

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 251

Value Output Input Description

0001 enc_refidx_L0addr_B3_int[4:0] enc_mode_bind_fwd_B3[4:0]

0001 enc_refidx_L1addr_B0_int[4:0] enc_mode_bind_bkd_B0[4:0]

0001 enc_refidx_L1addr_B1_int[4:0] enc_mode_bind_bkd_B1[4:0]

0001 enc_refidx_L1addr_B2_int[4:0] enc_mode_bind_bkd_B2[4:0]

0001 enc_refidx_L1addr_B3_int[4:0] enc_mode_bind_bkd_B3[4:0]

0010 enc_refidx_L0addr_B0_int[4:0] enc_mode_bind_fwd_B0[4:0]

0010 enc_refidx_L0addr_B1_int[4:0] enc_mode_bind_fwd_B1[4:0]

0010 enc_refidx_L0addr_B2_int[4:0] enc_mode_bind_fwd_B0[4:0]

0010 enc_refidx_L0addr_B3_int[4:0] enc_mode_bind_fwd_B1[4:0]

0010 enc_refidx_L1addr_B0_int[4:0] enc_mode_bind_bkd_B0[4:0]

0010 enc_refidx_L1addr_B1_int[4:0] enc_mode_bind_bkd_B1[4:0]

0010 enc_refidx_L1addr_B2_int[4:0] enc_mode_bind_bkd_B0[4:0]

0010 enc_refidx_L1addr_B3_int[4:0] enc_mode_bind_bkd_B1[4:0]

0100 enc_refidx_L0addr_B0_int[4:0] enc_mode_bind_fwd_B0_ext[4:0]

0100 enc_refidx_L0addr_B1_int[4:0] enc_mode_bind_fwd_B0_ext[4:0]

0100 enc_refidx_L0addr_B2_int[4:0] enc_mode_bind_fwd_B1_ext[4:0]

0100 enc_refidx_L0addr_B3_int[4:0] enc_mode_bind_fwd_B1_ext[4:0]

0100 enc_refidx_L1addr_B0_int[4:0] enc_mode_bind_bkd_B0_ext[4:0]

0100 enc_refidx_L1addr_B1_int[4:0] enc_mode_bind_bkd_B0_ext[4:0]

0100 enc_refidx_L1addr_B2_int[4:0] enc_mode_bind_bkd_B1_ext[4:0]

0100 enc_refidx_L1addr_B3_int[4:0] enc_mode_bind_bkd_B1_ext[4:0]

1000 enc_refidx_L0addr_B0_int[4:0] enc_mode_bind_fwd_B0[4:0]

1000 enc_refidx_L0addr_B1_int[4:0] enc_mode_bind_fwd_B0[4:0]

1000 enc_refidx_L0addr_B2_int[4:0] enc_mode_bind_fwd_B0[4:0]

1000 enc_refidx_L0addr_B3_int[4:0] enc_mode_bind_fwd_B0[4:0]

1000 enc_refidx_L1addr_B0_int[4:0] enc_mode_bind_bkd_B0[4:0]

1000 enc_refidx_L1addr_B1_int[4:0] enc_mode_bind_bkd_B0[4:0]

1000 enc_refidx_L1addr_B2_int[4:0] enc_mode_bind_bkd_B0[4:0]

1000 enc_refidx_L1addr_B3_int[4:0] enc_mode_bind_bkd_B0[4:0]

Table: Combinatorial Signals Table

Signal Equation

extended_form_pic vin_extended_form * vin_codec_selectR

enc_mode_bind_fwd_B0_ext[4:0] extended_form_pic?
enc_mode_bind_fwd_B0[4:0]: enc_mode_bind_fwd_B0[4:0]

enc_mode_bind_fwd_B1_ext[4:0] extended_form_pic?
enc_mode_bind_fwd_B2[4:0]: enc_mode_bind_fwd_B1[4:0]

enc_mode_bind_bkd_B0_ext[4:0] extended_form_pic?

 3D – Media – GPGPU

252 Doc Ref # IHD-OS-VLV-Vol7-04.14

Signal Equation

enc_mode_bind_bkd_B0[4:0]: enc_mode_bind_bkd_B0[4:0]

enc_mode_bind_bkd_B1_ext[4:0] extended_form_pic?
enc_mode_bind_bkd_B2[4:0]: enc_mode_bind_bkd_B1[4:0]

Stream-In\Stream-Out Message

Each reference will require 2 message phases when performing multi-call. These phases will be added
onto the basic input or output message. Hence, the first stream-in or stream-out message phase
location is variable and represented below by M(X+?), where X equals the number of phases present in
the input or output message, respectively.

When both records are being streamed in or out, phases M+0 and M+1 will contain record0 (associated
with RefA) and M+2 and M+3 will contain record1 (associated with RefB). If there is only one reference
being searched (SearchControl != 111b) then only one record will be streamed in or out, specifically,
only M+0 and M+1 will be present.

Usage note: if only 1 record is being streamed out, it will be associated with RefA and record0 (since we
are not in SearchControl=111b, only 1 reference is present). This does not restrict the user from
associating RefA with forward reference on call N and RefA with a backward reference on call N+1, so
long as the user does not overwrite the records in their local GRF this will work OK.

DWord Bit Description

M(X+0).7 31:0 Reserved MBZ

M(X+0).6 31:0 Reserved MBZ

M(X+0).5 31:16 Rec0 Shape 16x16 Y (relative to source MB)

Format = S13.2 (2's comp)

Hardware Range: [-512.00 to 511.75]

15:0 Rec0 Shape 16x16 X (relative to source MB)

Format = S13.2 (2's comp)

Hardware Range: [-2048.00 to 2047.75]

M(X+0).4 31:16 Reserved MBZ

15:14 Reserved MBZ

13:0 Rec0 Shape 16x16 Distortion

Format = U14

M(X+0).3 31:16 Rec0 Shape 8x8_3 Distortion
Hardware only uses 14 bits. Upper bits ignored (True for all 8x8_X Distortions).

15:0 Rec0 Shape 8x8_2 Distortion

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 253

DWord Bit Description

M(X+0).2 31:16 Rec0 Shape 8x8_1 Distortion

15:0 Rec0 Shape 8x8_0 Distortion

M(X+0).1 31:16 Rec0 Shape 8x16_1 Distortion
Hardware only uses 15 bits. Upper bits ignored (True for all 8x16_X Distortions).

15:0 Rec0 Shape 8x16_0 Distortion

M(X+0).0 31:16 Rec0 Shape 16x8_1 Distortion
Hardware only uses 15 bits. Upper bits ignored (True for all 16x8_X Distortions).

15:0 Rec0 Shape 16x8_0 Distortion

M(X+1).7 31:16 Rec0 Shape 8x8_3 Y (relative to source MB)

15:0 Rec0 Shape 8x8_3 X (relative to source MB)

M(X+1).6 31:16 Rec0 Shape 8x8_2 Y (relative to source MB)

15:0 Rec0 Shape 8x8_2 X (relative to source MB)

M(X+1).5 31:16 Rec0 Shape 8x8_1 Y (relative to source MB)

15:0 Rec0 Shape 8x8_1 X (relative to source MB)

M(X+1).4 31:16 Rec0 Shape 8x8_0 Y (relative to source MB)

15:0 Rec0 Shape 8x8_0 X (relative to source MB)

M(X+1).3 31:16 Rec0 Shape 8x16_1 Y (relative to source MB)

15:0 Rec0 Shape 8x16_1 X (relative to source MB)

M(X+1).2 31:16 Rec0 Shape 8x16_0 Y (relative to source MB)

15:0 Rec0 Shape 8x16_0 X (relative to source MB)

M(X+1).1 31:16 Rec0 Shape 16x8_1 Y (relative to source MB)

15:0 Rec0 Shape 16x8_1 X (relative to source MB)

M(X+1).0 31:16 Rec0 Shape 16x8_0 Y (relative to source MB)

15:0 Rec0 Shape 16x8_0 X (relative to source MB)

M(X+2).7 31:0 Reserved MBZ

M(X+2).6 31:0 Reserved MBZ

M(X+2).5 31:16 Rec1 Shape 16x16 Y (relative to source MB)

Format = S13.2 (2's comp)

Hardware Range: [-512.00 to 511.75]

15:0 Rec1 Shape 16x16 X (relative to source MB)

Format = S13.2 (2's comp)

Hardware Range: [-2048.00 to 2047.75]

M(X+2).4 31:16 Reserved MBZ

 3D – Media – GPGPU

254 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

15:14 Reserved MBZ

13:0 Rec1 Shape 16x16 Distortion

Format = U14

M(X+2).3 31:16 Rec1 Shape 8x8_3 Distortion
Hardware only uses 14 bits. Upper bits ignored (True for all 8x8_X Distortions).

 15:0 Rec1 Shape 8x8_2 Distortion

M(X+2).2 31:16 Rec1 Shape 8x8_1 Distortion

 15:0 Rec1 Shape 8x8_0 Distortion

M(X+2).1 31:16 Rec1 Shape 8x16_1
Hardware only uses 15 bits. Upper bits ignored (True for all 8x16_X Distortions).

 15:0 Rec1 Shape 8x16_0 Distortion

M(X+2).0 31:16 Rec1 Shape 16x8_1 Distortion
Hardware only uses 15 bits. Upper bits ignored (True for all 16x8_X Distortions).

 15:0 Rec1 Shape 16x8_0 Distortion

M(X+3).7 31:16 Rec1 Shape 8x8_3 Y (relative to source MB)

 15:0 Rec1 Shape 8x8_3 X (relative to source MB)

M(X+3).6 31:16 Rec1 Shape 8x8_2 Y (relative to source MB)

 15:0 Rec1 Shape 8x8_2 X (relative to source MB)

M(X+3).5 31:16 Rec1 Shape 8x8_1 Y (relative to source MB)

 15:0 Rec1 Shape 8x8_1 X (relative to source MB)

M(X+3).4 31:16 Rec1 Shape 8x8_0 Y (relative to source MB)

 15:0 Rec1 Shape 8x8_0 X (relative to source MB)

M(X+3).3 31:16 Rec1 Shape 8x16_1 Y (relative to source MB)

 15:0 Rec1 Shape 8x16_1 X (relative to source MB)

M(X+3).2 31:16 Rec1 Shape 8x16_0 Y (relative to source MB)

 15:0 Rec1 Shape 8x16_0 X (relative to source MB)

M(X+3).1 31:16 Rec1 Shape 16x8_1 Y (relative to source MB)

 15:0 Rec1 Shape 16x8_1 X (relative to source MB)

M(X+3).0 31:16 Rec1 Shape 16x8_0 Y (relative to source MB)

 15:0 Rec1 Shape 16x8_0 X (relative to source MB)

Adaptive Video Scaler

The adaptive video scaler consists of a pair of filters. The sharp filter is an 8x8 and the smooth filter is
bilinear. The results of the two filters are alpha blended together using an alpha factor determined
separately from an algorithm that examines the pixel values in the each vector.

There are a total of four different coefficient tables with two in each direction. For both directions is it
possible to use either of the two tables that are assigned to it or use both at once with one table for the

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 255

Y and the other table for the U/V. The coefficients are programmable by software and loaded via a new
command streamer instruction. The coefficients are considered to be nonpipelined state, with a full
pipeline flush being required before a new set of coefficients is loaded.

The above diagram shows two pixels (red and green) mapped onto a texture map, with the texel centers
blue. The red/green boxes around the pixels indicate the area where the pixel would choose the same
8x8 footprint for its filter, while the large transparent box indicates the footprint for each pixel.

The u/v addresses for each pixel (in texel space) are as follows:

red pixel: u=3.3, v=3.3 (betau=0.3, betav=0.3)

green pixel: u=4.3, v=4.7 (betau=0.3, betav=0.7)

The integer u/v address of the upper left pixel of the footprint is a function of the pixel u/v address as
follows:

u(UL) = floor(u(pix)) – 3

v(UL) = floor(v(pix)) – 3

When the 8x8 filter is selected, the 8x8 texel block surrounding the pixel sample point is selected. The
blend factors "beta" (horizontal and vertical) are determined by the relative distance between the pixel
center and the nearest 4 texels (2x2). The betas are first truncated to 5 bits (i).

The beta value is used to look up two sets of 8 coefficients, one set of 8 for horizontal (called Kh0..7),
and one set of 8 for vertical (called Kv0..7).

Filtering Operations

There are two separate filters, sharp and smooth, which are blended in an adaptive manner.

 3D – Media – GPGPU

256 Doc Ref # IHD-OS-VLV-Vol7-04.14

Sharp

The following formula is used to compute the filtered texture color for the sharp filter:

R0 = T00*Kh0 + T01*Kh1 + T02*Kh2 + T03*Kh3 + T04*Kh4 + T05*Kh5 + T06*Kh6 + T07*Kh7

R1 = T10*Kh0 + T11*Kh1 + T12*Kh2 + T13*Kh3 + T14*Kh4 + T15*Kh5 + T16*Kh6 + T17*Kh7

R2 = T20*Kh0 + T21*Kh1 + T22*Kh2 + T23*Kh3 + T24*Kh4 + T25*Kh5 + T26*Kh6 + T27*Kh7

R3 = T30*Kh0 + T31*Kh1 + T32*Kh2 + T33*Kh3 + T34*Kh4 + T35*Kh5 + T36*Kh6 + T37*Kh7

R4 = T40*Kh0 + T41*Kh1 + T42*Kh2 + T43*Kh3 + T44*Kh4 + T45*Kh5 + T46*Kh6 + T47*Kh7

R5 = T50*Kh0 + T51*Kh1 + T52*Kh2 + T53*Kh3 + T54*Kh4 + T55*Kh5 + T56*Kh6 + T57*Kh7

R6 = T60*Kh0 + T61*Kh1 + T62*Kh2 + T63*Kh3 + T64*Kh4 + T65*Kh5 + T66*Kh6 + T67*Kh7

R7 = T70*Kh0 + T71*Kh1 + T72*Kh2 + T73*Kh3 + T74*Kh4 + T75*Kh5 + T76*Kh6 + T77*Kh7

F' = R0*Kv0 + R1*Kv1 + R2*Kv2 + R3*Kv3 + R4*Kv4 + R5*Kv5 + R6*Kv6 + R7*Kv7

F_sharp = Clamp F' to [0.0, 1.0)

where:

• Trc is the texel color in row r ([0..3]) and column c ([0..3]) of the 8x8 array of neighboring texel
colors

• F_sharp is the final output color of the sharp filter.

Smooth

The following formula is used to compute the filtered texture color for the smooth filter:

F_smooth = (T33 * (1-betaU) + T34 * betaU) * (1-betav) + (T43 * (1-betaU) + T44 * betaU) * betav

Adaptive Filtering

The adaptive filter only supports RGB or YUV packed formats. For YUV formats, the alpha value is
determined only by the Y channel (green), with this alpha value being applied to all three channels. For
the RGB formats the alpha value is determined based on an average of all three channels with G having
double the weight as the other channels.

Each horizontal or vertical filter has 8 texels input which feeds into an eight tap filter. On the center two
there is a linear blend using the betaV. Then using the Y channel an adaptive part weight is calculated
and the two filters are alpha blended. The adaptive part calculated on the Y channel is used on all three
channels. Only the 8 MSBs are used in these calculations.

The adaptive part is done to classify a pixel as prone to ringing or not. This is done by analyzing the 8 Y
samples from the interpolation window (Wy0… Wy7).

Restriction For AVS

For AVS scaling, the following are the restrictions on the input image size:

Image Width > MAX((19*deltaU_nn + 139*ddu_nn + 7), 32)

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 257

Image Height > MAX((19*deltaV_nn + 139*ddv_nn + 7), 32)

The non-normalized input co-ordinate should be in the following range:

-width < (U_nn+2*deltaU_nn+3*ddu_nn) < (2*width – U – 17*deltaU_nn – 136*ddu_nn – 7)

-height < (V_nn+2*deltaV_nn+3*ddv_nn) < (2*height – 17*deltaV_nn – 136*ddv_nn – 7)

Where

U_nn = U_normaized * width

V_nn = V_normaized * height

deltaU_nn = deltaU_normaized * width

deltaV_nn = deltaV_normaized * height

ddU_nn = ddU_normaized * width

ddV_nn = ddV_normaized * height

Denoise/Deinterlacer

The Denoise/Deinterlacer function takes a 4:2:0 or 4:2:2 video stream, applies a denoise filter to it, and
then deinterlaces it.

The denoise filter is applied before the deinterlacer. The denoise filter detects and tries to minimize
noise in the input field, while the deinterlacer takes a field consisting of every other line and converts a
field into a frame. This block also gathers statistics for a global noise estimate made in software at the
end of the frame, which is used in following frames to tune the denoise filter.

The deinterlacer takes the top and bottom fields of each frame and converts them into two individual
frames. This block also gathers statistics for a film mode detector in software run at the end of the
frame. If the film mode detector for the previous frame concludes that the input is progressive rather
than interlaced then the fields will be put together in the best order rather than being interlaced.

Introduction

• Denoise Filter – detects noise and motion and filters the block with either a temporal filter when
little motion is detected or a spatial filter. Noise estimates are kept between frames and blended
together. Since the filter is before the deinterlacer it works on individual fields rather than frames.
This usually improves the operation since the deinterlacer can take a single pixel of noise and
spread it to an adjacent pixel, making it harder to remove. The denoise filter works the same
whether deinterlacing or progressive cadence reconstruction is being done.

• Block Noise Estimate (BNE) – part of the Global Noise Estimate (GNE) algorithm, this estimates
the noise over the entire block. The GNE will be calculated at the end of the frame by combining
all the BNEs. The final GNE value is used to control the denoise filter for the next frame.

• Film Mode Detection (FMD) Variances – FMD determines if the input fields were created by
sampling film and converting it to interlaced video. If so the deinterlacer is turned off in favor of
reconstructing the frame from adjacent fields. Various sum-of-absolute differences are calcluated
per block. The FMD algorithm is run at the end of the frame by looking at the variances of all
blocks for both fields in the frame.

 3D – Media – GPGPU

258 Doc Ref # IHD-OS-VLV-Vol7-04.14

• Deinterlacer – Estimates how much motion is occuring across the fields. Low motion scenes are
reconstructed by averaging pixels from fields from nearby times (temporal deinterlacer), while
high motion scenes are reconstructed by interpolating pixels from nearby space (spatial
deinterlacer).

• Progressive Cadence Reconstruction – If the FMD for the previous frame determines that film
was converted into interlaced video, then this block reconstructs the original frame by directly
putting together adjacent fields.

• Chroma Upsampling – If the input is 4:2:0 then chroma will be doubled vertically to convert to
4:2:2. Chroma will then either go through its own version of the deinterlacer or progressive
cadence reconstruction.

When DI is enabled, the output for a 16x4 block is sent to the EU for further processing and writing to
memory. When DI is disabled and DN enabled the output for a 16x8 block is sent to the EU.

Formats supported are:

• NV12 is supported for hardware video decode.
• UYVY, YUY2 and NV12 are required for WHQL.
• YV12 and I420 are supported for software video decode.
• IMC3 and IMC4 are supported as internal temporary formats.
• NV11 and P208 are not supported, since they have been removed from the WHQL logo

requirement.

Denoise Algorithm

Temporal Filter

For each pixel we need to filter we look at the noise history for the associated 4x4.

Context Adaptive Spatial Filter

For each pixel in the local 3x3, compare its luma to the lumas of the pixel to be filtered. Each pixel for
which the absolute difference is less than or equal to good_neighbor_th is marked as a good neighbor:

Denoise Blend

The denoise blend combines the temporal and spatial denoise outputs.

Block Noise Estimate (part of Global Noise Estimate)

Edge detection is done on every pixel in the 16x4 (DI enabled) or 16x8 (DN only) by estimating a
gradient on the 3x3 neighborhood of pixels in the current field.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 259

Deinterlacer Algorithm

The overall goal of the motion adaptive deinterlacer is to convert an interlaced video stream made of
fields of alternating lines into a progressive video stream made of frames in which every line is
provided.

If there is no motion in a scene, then the missing lines can be provided by looking at the previous or
next fields, both of which have the missing lines. If there is a great deal of motion in the scene, then
objects in the previous and next fields will have moved, so we can't use them for the missing pixels.
Instead we have to interpolate from the neighboring lines to fill in the missing pixels. This can be
thought of as interpolating in time if there is no motion and interpolating in space if there is motion.

This idea is implemented by creating a measure of motion called the Spatial-Temporal Motion Measure
(STMM). If this measure shows that there is little motion in an area around the pixels, then the missing
pixels are created by averaging the pixel values from the previous and next frame. If the STMM shows
that there is motion, then the missing pixels are filled in by interpolating from neighboring lines with
the Spatial Deinterlacer (SDI). The two different ways to interpolate the missing pixels are blended for
intermediate values of STMM to prevent sudden transitions.

The Deinterlacer uses two frames for reference. The current frame contains the field that we are
deinterlacing. The reference frame is the closest frame in time to the field that we are deinterlacing – if
we are working on the 1st field then it is the previous frame, if it is the 2nd field then it is the next frame.

Spatial-Temporal Motion Measure

This algorithm combines a complexity measure with an estimate of motion. This prevents high
complexity scenes from incorrectly causing motion to be detected.

The resulting STMM is used as a blending factor between the spatial and temporal deinterlacer.

Spatial Deinterlacer Angle Detection

Deciding the best pixels to interpolate in the current field is the job of the spatial deinterlacer. The
simplest method would be to interpolate directly from the pixels above and below the missing pixels,
but this can look bad; edges and lines particularly look jagged with this solution.

A better solution is to detect the direction of edges in the pixel neighborhood and interpolate along the
edge direction.

 3D – Media – GPGPU

260 Doc Ref # IHD-OS-VLV-Vol7-04.14

Spatial Deinterlacer Interpolation

Once the best angle is picked, the interpolation is done on a per pixel basis. Both the chroma and luma
need to be interpolated (see section Chroma Up-Sampler for chroma). Only 422 output is needed, so
there will be a chroma pair for each 2 lumas. The interpolation itself is very simple: take a pixel from the
line above and the line below along one of the 9 possible angles, and average the 8-bit luma and
chroma values to get the result pixel.

Chroma Up-Sampler

The DN/DI block supports 4:2:0, 4:1:1 and 4:2:2 inputs, but only outputs 4:2:2. For 4:2:0 and 4:1:1 the
chroma needs to be up-sampled to 4:2:2 before interpolation.

The 4:2:0 input has chroma at ¼ the rate of the luma; ½ in the horizontal and ½ in the vertical
directions. The output needs to be 4:2:2, where chroma is ½ the rate of luma; ½ the horizontal but the
same in the vertical direction. Then chroma can be de-interlaced in the vertical direction. For luma we
are working with 16x4 blocks, so for chroma we will have 8x2 in 4:2:0 and 8x4 in 4:2:2.

The 4:2:0 to 4:2:2 conversion requires doubling the chroma in the vertical direction to match the luma.

4:1:1 also has chroma at ¼ the rate of luma; ¼ in the horizontal direction and the same in the vertical
direction. To convert to 4:2:2 we need to double the chroma horizontally. This will be done by averaging
the chromas to the right and left to produce the new chroma.

The above diagram shows how the existing chroma values (both U and V) are averaged between C0 and
C1 to produce the new C½. C0 is the chroma asociated with lumas L0 through L3, while C1 is associated
with L4 through L7.

Chroma Deinterlace

The next step is to do the deinterlacing. Chroma uses the output of the luma angle decision, but
reduces the number of angles. The actual spatial deinterlace algorithm is a little different for chroma,
since there are only 1 chroma per 2 lumas: some of the chromas are missing and must be filled in.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 261

The diagram shows the chromas used in red. Only 90°, -27° and 27° are directly available. The chromas
for +/-45° are derived by a simple average of the 90° and 27° chromas. +/-18° and +/-11° both use the
chroma for +/-27°.

Static Image Fallback Mode

This algorithm has a problem with static images – alternate fields use different luma angle detections
and can select different angles, causing noticable flicker. Rather than calculating a separate set of angles
for chroma, we instead will blend with STMM so that a static image will use 90 degrees.

Temporal Deinterlacer and Final Deinterlacer Blend

The temporal deinterlacer is a simple average between the previous and next field; when deinterlacing
the 1st field of current the average is between the 2nd field of previous and the 2nd field of current.

Progressive Cadence Reconstruction

When the FMD for the previous frame indicates that a progressive mode is being used rather than
interlaced, the luma and chroma will be taken from adjacent fields rather than spatially interpolated.
The exact fields needed depend on state variables written to memory by a thread at the end of the
previous frame. The thread will use the FMD variances written to memory via CSunit on the flush at the
end of a frame.

Since we are deinterlacing 2 fields at a time – one from the previous frame and one from the current
frame (see section Implementation Overview) we will need a state variable which says how each one
should be put together. In each case there are only two possibilities – either the field should be put
together with the matching field in the same frame or it should be put together with the adjacent field
in the other frame.

If we are deinterlacing the 2nd field from frame N and the 1st field from frame N+1, then the FMD
decision (which is made on frame boundaries) will be from frame N-1.

Chroma is reconstructed the same as luma – only the first step of doubling chroma is done in the
chroma upsampling block for the two needed fields.

 3D – Media – GPGPU

262 Doc Ref # IHD-OS-VLV-Vol7-04.14

Field Motion Detector

The Field Motion Detector is generated in either the EU or in the driver with a set of differences
gathered across entire fields. It is used to detect when a non-interlaced source like a film has been
converted to interlaced video – in this case there will be pairs of fields which can be put back together
to make frames rather than interpolating. The variances for the block are sent to the VSCunit to be
summed across the entire frame. The results are available in MMIO registers.

Implementation Overview

Input and Output Frames

Two frames are needed to do deinterlacing, but for any two frames, two fields can be deinterlaced,
doubling the output for the same input bandwidth. This also allows the denoise filter to only filter a
frame once.

The above picture shows that two frames are read in, called current and previous. The two fields of the
next frame are denoised using adjacent fields. The 2nd field of previous can be deinterlaced using
current as the reference, and the 1st field of current can be deinterlaced using previous as reference.

Since we are producing 2 16x4 outputs, and the performance goal is to output 2 pixels per clock, we
have 64 clocks to run 2 denoise filters and 2 deinterlacers.

The fields are referred to as 1st and 2nd because either the top or bottom field can be the first in the
sequence depending on a state variable.

Statistics Surface Memory Format

The statistics memory page is used to store both STMM and Denoise history. The STMM and Denoise
history are stored in separate areas addressed by a single base address pointer:

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 263

The STMM for any pixel pair is addressed by:

 STMM_X = pixelX / 2

 STMM_Y = pixelY

The Denoise History for any 4x4 block is addressed by

 DH_X = Pitch/2 + pixelX/4

 DH_Y = pixelY/4

Where the pixelX/Y comes from the address of the left pixel for STMM and the upper-left pixel for the
Denoise History. The Pitch is from the surface state.

The read and write surfaces for each frame must be separate, since any individual block will not know if
the neighbor blocks have been updated yet. This can be implemented as a ping-pong buffer pair with
the write surface for each frame becoming the read surface for the next.

First Frame Special Case

The first frame in the sequence is a special case for both denoise and deinterlace. Only data from the
current frame address is read, the previous frame, clean previous, statistics and control addresses are
ignored. Behavior for each function is as follows:

1. Denoise – The denoise filter needs to use the spatial filter, since there is no previous frame from
which to do a temporal filter.

a. The Denoise Motion History is not read.
b. The blend between the temporal and spatial is forced to 100% spatial.
c. The Denoise Motion History output values are written to 0.

1. BNE – The Block Noise Estimate only uses current frame values and so works normally.
2. Deinterlacer – Only the 1st field of the current frame is deinterlaced in this case – the 2nd of

previous does not exist.

a. The spatial deinterlacer is used to produce the output.

 3D – Media – GPGPU

264 Doc Ref # IHD-OS-VLV-Vol7-04.14

b. The STMM input values are not read.
c. The STMM output values are written as the maximum 255 value so that the next frame is

correctly told that spatial deinterlacing was used in this frame.

3. FMD – variances between the top and bottom of the current field should be output correctly.
Variances that read from the previous field should indicate a maximum difference.

4. Progressive Cadence Reconstruction – the FMD input is not read, so always assume interlaced (is
there ever a case where progressive should be assumed? If so maybe the control memory space
should be used by the driver to indicate this).

Sample_8x8 State
This section contains different state definitions.

DEINTERLACE_SAMPLER_STATE

This state definition is used only by the deinterlace message. This state is stored as an array of up to 8
elements, each of which contains the dwords described here. The start of each element is spaced 8
dwords apart. The first element of the array is aligned to a 32-byte boundary. The index with range 0-7
that selects which element is being used is multiplied by 2 to determine the Sampler Index in the
message descriptor.

SAMPLER_8x8_STATE

SURFACE_STATE for Deinterlace, sample_8x8, and VME

This section contains media surface state definitions.

MEDIA_SURFACE_STATE

Cr(V)/Cb(U) Pixel Offset V Direction

The position of Y is brown and the position of Cr(V)/Cb(U) is blue.

full frame top field bottom field

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 265

V Offset 0.5 V Offset 0.25 V Offset 0.75

SIMD32/64 Messages
Initiating Message

SIMD32/64 Payload

Pixel Shader

This position of Delta U/V in the pixel shader payload layout is to allow the register delivered in the
pixel shader dispatch containing the coefficients for the texture coordinates to be left in their original
position (Delta U = Cxs, Delta V = Cyt). The values for U and V are computed in the pixel shader into the
unused positions in this register.

DWord Bits Description

M1.7 31:0 Ignored

M1.6 31:0 Pixel 0 V Address

Format:

sample_unorm* and sample_8x8: IEEE_Float in normalized space

deinterlace: U32 (Range: [0,2046])

M1.5 31:0 Delta V: defines the difference in V for adjacent pixels in the Y direction.

Programming Notes:

• Delta V multiplied by Height in SURFACE_STATE must be less than or equal to 3 for
sample_unorm* message types.

• Delta V multiplied by Height in SURFACE_STATE must be less than 16 for the sample_8x8
message type.

• This field is ignored for the deinterlace message type.

Format = IEEE_Float in normalized space

M1.4
31:0 Ignored

M1.3 31:0 Ignored

M1.2 31:0 Pixel 0 U Address

Format:

sample_unorm* and sample_8x8: IEEE_Float in normalized space

deinterlace: U32 (Range: [0,4095])

M1.1 31:0 U 2nd Derivative

Defines the change in the delta U for adjacent pixels in the X direction.

 3D – Media – GPGPU

266 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bits Description

Programming Notes:

• This field is ignored for messages other than sample_8x8.

Format = IEEE_Float in normalized space

M1.0 31:0 Delta U: defines the difference in U for adjacent pixels in the X direction.

Programming Notes:

• Delta U multiplied by Width in SURFACE_STATE must be less than or equal to 3 for
sample_unorm* message types.

• This field is ignored for the deinterlace message type.

Format = IEEE_Float in normalized space

SIMD32/64 Payload

Pixel Shader

This position of Delta U/V in the pixel shader payload layout is to allow the register delivered in the
pixel shader dispatch containing the coefficients for the texture coordinates to be left in their original
position (Delta U = Cxs, Delta V = Cyt). The values for U and V are computed in the pixel shader into the
unused positions in this register.

DWord Bits Description

M1.7 31:0 Ignored

M1.6 31:0 Pixel 0 V Address

Format:

sample_unorm* and sample_8x8: IEEE_Float in normalized space

deinterlace: U32 (Range: [0,2046])

M1.5 31:0 Delta V: defines the difference in V for adjacent pixels in the Y direction.

Programming Notes:

• Delta V multiplied by Height in SURFACE_STATE must be less than or equal to 3 for
sample_unorm* message types.

• Delta V multiplied by Height in SURFACE_STATE must be less than 16 for the sample_8x8
message type.

• This field is ignored for the deinterlace message type.

Format = IEEE_Float in normalized space

M1.4
31:0 Ignored

M1.3 31:0 Ignored

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 267

DWord Bits Description

M1.2 31:0 Pixel 0 U Address

Format:

sample_unorm* and sample_8x8: IEEE_Float in normalized space

deinterlace: U32 (Range: [0,4095])

M1.1 31:0 U 2nd Derivative

Defines the change in the delta U for adjacent pixels in the X direction.

Programming Notes:

• This field is ignored for messages other than sample_8x8.

Format = IEEE_Float in normalized space

M1.0 31:0 Delta U: defines the difference in U for adjacent pixels in the X direction.

Programming Notes:

• Delta U multiplied by Width in SURFACE_STATE must be less than or equal to 3 for
sample_unorm* message types.

• This field is ignored for the deinterlace message type.

Format = IEEE_Float in normalized space

Media

DWord Bits Description

M1.7 31:0 Group ID Number

Used to group messages for reorder for sample_8x8 messages. All messages with the
same Group ID must have the following in common: SURFACE_STATE, SAMPLER_STATE,
destination register on send instruction, M0, and M1 except for Horizontal and Vertical
Block Number.

M1.6 31:0 U 2nd Derivative

Defines the change in the delta U for adjacent pixels in the X direction.

Programming Notes:

• This field is ignored for messages other than sample_8x8.

• (64 – (2*du))/35 >= ddu >= -du/18

Format = IEEE_Float in normalized space.

M1.5 31:0 Delta V: defines the difference in V for adjacent pixels in the Y direction.

 3D – Media – GPGPU

268 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bits Description

Programming Notes:

• Delta V multiplied by Height in SURFACE_STATE must be less than or equal to 3 for
sample_unorm* message types.

• Delta V multiplied by Height in SURFACE_STATE must be less than 16 for the sample_8x8
message type.

• This field is ignored for the deinterlace message type.

• Negative Delta V are not supported and should be clamped to 0.

Format = IEEE_Float in normalized space.

M1.4 31:0 Delta U: defines the difference in U for adjacent pixels in the X direction.

Programming Notes:

• Delta U multiplied by Width in SURFACE_STATE must be less than or equal to 3 for
sample_unorm* message types.

• Delta U multiplied by Width in SURFACE_STATE must be less than 16 for the sample_8x8
message type.

• This field is ignored for the deinterlace message type.

• Negative Delta U are not supported and should be clamped to 0.

Format = IEEE_Float in normalized space.

M1.3 31:0 Pixel 0 V Address

Format: sample_unorm* and sample_8x8: IEEE_Float in normalized space.

Deinterlace: U32 (Range: [0,2046])

 Specifies the address for the pixel at the top left of the group and not the top of the
message block sent in.

M1.2 31:0 Pixel 0 U Address

Format: sample_unorm* and sample_8x8: IEEE_Float in normalized space.

Deinterlace: U32 (Range: [0,4095])

Specifies the address for the pixel at the top left of the group and not the top of the
message block sent in.

M1.1 31:0 Vertical Block Number

Specifies the vertical block offset for the 8x8 block being sent for the sample_8x8 message.
This will be equal to the vertical pixel offset from the given address pixel 0 V address
divided by 8.

Format: U9

M1.0 31:0 Ignored

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 269

SIMD32_64 Message Descriptor
Please refer to the 3D Sampler Message Descriptor definition at Message Descriptor DevIVB.htm.

SIMD32_64 Message Header
Please refer to the 3D Sampler Message Header definition at Message Header.htm.

Message Header

The message header for the sampling engine is the same regardless of the message type. If the header
is not present, behavior is as if the message was sent with all fields in the header set to zero (write
channel masks are all enabled and offsets are zero). When Response length is 0 for sample_8x8
message then the data from sampler is directly written out to memory using media write message.

DWord Bits Description

M0.7 31:0

M0.6 31:0

M0.5 31:0 Ignored

M0.4 31:0 Reserved

M0.3 31:5 Ignored

4:0 Ignored

M0.2 31:22 Ignored

M0.2 31:24 Ignored

 23 Reserved

 19:18 SIMD32/64 Output Format Control

The contents of this field are ignored. The 16 bit Full mode is always selected.

 17

 17:16 Gather4 Source Channel Select: Selects the source channel to be sampled in
the gather4* messages. Ignored for other message types.

0: Red channel

1: Green channel

2: Blue channel

3: Alpha channel

Programming Note:

• For gather4*_c messages, this field must be set to 0 (Red channel).

16 Ignored

 15 Alpha Write Channel Mask: Enables the alpha channel to be written back to the

 3D – Media – GPGPU

270 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bits Description

originating thread.

0: Alpha channel will be written back

1: Alpha channel will not be written back

Programming Notes:

• a message with all four channels masked is not allowed.

• this field is ignored for the deinterlace message.

• this field must be set to zero for sample_8x8 in VSA mode.

• This field must be set to zero for all gather4* messages.

 14 Blue Write Channel Mask: See Alpha Write Channel Mask

 13 Green Write Channel Mask: See Alpha Write Channel Mask

 12 Red Write Channel Mask: See Alpha Write Channel Mask

 11:8 U Offset: the u offset from the _aoffimmi modifier on the sample or ld
instruction in DX10. Must be zero if the Surface Type is SURFTYPE_CUBE or
SURFTYPE_BUFFER. Must be set to zero if _aoffimmi is not specified. Format is S3
2's complement.

Programming Note:

• this field is ignored for the sample_unorm*, sample_8x8, and deinterlace messages

• this field is ignored if the offu parameter is included in the gather4* messages

• Issues: IVB offu/offv are calculated in normalized space and hence subject to small
truncation error.

 7:4 V Offset: the v offset from the _aoffimmi modifier on the sample or ld
instruction in DX10. Must be zero if the Surface Type is SURFTYPE_CUBE or
SURFTYPE_BUFFER. Must be set to zero if _aoffimmi is not specified. Format is S3
2's complement.

Programming Note:

• this field is ignored for the sample_unorm*, sample_8x8, and deinterlace messages

• this field is ignored if the offu parameter is included in the gather4* messages

• Issues: IVB offu/offv are calculated in normalized space and hence subject to small
truncation error.

 3:0 R Offset: the r offset from the _aoffimmi modifier on the sample or ld instruction
in DX10. Must be zero if the Surface Type is SURFTYPE_CUBE or
SURFTYPE_BUFFER. Must be set to zero if _aoffimmi is not specified. Format is S3
2's complement.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 271

DWord Bits Description

Programming Note:

• this field is ignored for the sample_unorm*, sample_8x8, and deinterlace messages

M0.1 31:0 Ignored

M0.0 31:0 Ignored

SIMD32_64 Payload Parameter Definition
Please refer to the 3D Sampler Payload Parameter Definition at Payload Parameter Definition
DevIVB.htm.

SIMD32_64 Message Types
Please refer to the 3D Sampler Message Types definition at Message Types.

Writeback Message

SIMD32

Pixels are numbered as follows:

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

 Which registers are returned is determined by the write channel mask received in the corresponding
input message. Each asserted write channel mask results in both destination registers of the
corresponding channel being skipped in the writeback message, and all channels with higher numbered
registers being dropped down to fill in the space occupied by the masked channel. For example, if only
red and alpha are enabled, red is sent to regid+0 and regid+1, and alpha to regid+2 and regid+3 (using
16 bit Full mode as an example).

DWord Bits Description

W0.7 31:16 Pixel 15 Red

Format = 16-bit UNORM with an 8-bit range (the value FF00h maps to a real value of 1.0)

Range = [0000h:FF00h]

15:0 Pixel 14 Red

W0.6 Pixel 13 & 12 Red

W0.5 Pixel 7 & 6 Red

W0.4 Pixel 5 & 4 Red

W0.3 Pixel 11 & 10 Red

W0.2 Pixel 9 & 8 Red

W0.1 Pixel 3 & 2 Red

 3D – Media – GPGPU

272 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bits Description

W0.0 Pixel 1 & 0 Red

W1.7 Pixel 31 & 30 Red

W1.6 Pixel 29 & 28 Red

W1.5 Pixel 23 & 22 Red

W1.4 Pixel 21 & 20 Red

W1.3 Pixel 27 & 26 Red

W1.2 Pixel 25 & 24 Red

W1.1 Pixel 19 & 18 Red

W1.0 Pixel 17 & 16 Red

W2.7:0 Pixels 15:0 Green

W3.7:0 Pixels 31:16 Green

W4.7:0 Pixels 15:0 Blue
W4-W7 are not sent for the _RG versions of the sample_unorm message

W5.7:0 Pixels 31:16 Blue
W4-W7 are not sent for the _RG versions of the sample_unorm message

W6.7:0 Pixels 15:0 Alpha
W2 and W3 are not sent for the _RG versions of the sample_unorm message

W7.7:0 Pixels 31:16 Alpha
W4-W7 are not sent for the _RG versions of the sample_unorm message

For the sample_unorm_RG+killpix and sample_unorm+killpix messages, an additional writeback phase is
returned. For sample_unorm_RG+killpix, n is equal to 4, for sample_unorm+killpix, n depends on which
channels are enabled for return, this register will immediately follow the first part of the writeback
message.

DWord Bit Description

Wn.7:1 Reserved (not written)

Wn.0 31:0 Active Pixel Mask: This field has the bit for all pixels set to 1 except those pixels that have
been killed as a result of chroma key with kill pixel mode.

The bits in this mask correspond to the pixels as follows and they are listed from upper left
(MSB) lower right LSB:

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Sample_unorm*

Pixels are numbered as follows:

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 273

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

Which registers are returned is determined by the write channel mask received in the corresponding
input message. Each asserted write channel mask results in both destination registers of the
corresponding channel being skipped in the writeback message, and all channels with higher numbered
registers being dropped down to fill in the space occupied by the masked channel. For example, if only
red and alpha are enabled, red is sent to regid+0 and regid+1, and alpha to regid+2 and regid+3 (using
16 bit Full mode as an example).

16 bit Full Output Format Control Mode

DWord Bit Description

W0.7 31:16 Pixel 15 Red

Format = 16-bit UNORM with an 8-bit range (the value FF00h maps to a real value of 1.0)

Range = [0000h:FF00h]

15:0 Pixel 14 Red

W0.6 Pixel 13 & 12 Red

W0.5 Pixel 11 & 10 Red

W0.4 Pixel 9 & 8 Red

W0.3 Pixel 7 & 6 Red

W0.2 Pixel 5 & 4 Red

W0.1 Pixel 3 & 2 Red

W0.0 Pixel 1 & 0 Red

W1.7 Pixel 31 & 30 Red

W1.6 Pixel 29 & 28 Red

W1.5 Pixel 27 & 26 Red

W1.4 Pixel 25 & 24 Red

W1.3 Pixel 23 & 22 Red

W1.2 Pixel 21 & 20 Red

W1.1 Pixel 19 & 18 Red

W1.0 Pixel 17 & 16 Red

W2 Pixels 15:0 Green

W3 Pixels 31:16 Green

W4 Pixels 15:0 Blue

W5 Pixels 31:16 Blue

W6 Pixels 15:0 Alpha

W7 Pixels 31:16 Alpha

Additional Writeback Phase for sample_unorm+killpix

 3D – Media – GPGPU

274 Doc Ref # IHD-OS-VLV-Vol7-04.14

For the sample_unorm+killpix messages, an additional writeback phase is returned. The value of n
depends on which channels are enabled for return and the Output Format Control Mode, this register
will immediately follow the first part of the writeback message.

DWord Bit Description

Wn.7:1 Reserved (not written)

Wn.0 31:0 Active Pixel Mask: This field has the bit for all pixels set to 1 except those pixels that have
been killed as a result of chroma key with kill pixel mode.

The bits in this mask correspond to the pixels as follows and they are listed from upper left
(MSB) lower right LSB:

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Sample_8x8 Writeback Messages

The writeback message for sample_8x8 consists of up to 16 destination registers. Which registers are
returned is determined by the write channel mask received in the corresponding input message. Each
asserted write channel mask results in all four destination registers of the corresponding channel being
skipped in the writeback message, and all channels with higher numbered registers being dropped
down to fill in the space occupied by the masked channel.

Pixels are numbered as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

16 bit Full Output Format Control Mode

DWord Bits Description

W0.7 31:16 Pixel 15 Red

Format = 16-bit UNORM with an 8-bit range (the value FF00h maps to a real value of 1.0)

Range = [0000h:FF00h]

15:0 Pixel 14 Red

W0.6 Pixel 13 & 12 Red

W0.5 Pixel 11 & 10 Red

W0.4 Pixel 9 & 8 Red

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 275

DWord Bits Description

W0.3 Pixel 7 & 6 Red

W0.2 Pixel 5 & 4 Red

W0.1 Pixel 3 & 2 Red

W0.0 Pixel 1 & 0 Red

W1 Pixel 31:16 Red

W2 Pixels 47:32 Red

W3 Pixels 63:33 Red

W4 Pixels 15:0 Green

W5 Pixels 31:16 Green

W6 Pixels 47:32 Green

W7 Pixels 63:33 Green

W8 Pixels 15:0 Blue

W9 Pixels 31:16 Blue

W10 Pixels 47:32 Blue

W11 Pixels 63:33 Blue

W12 Pixels 15:0 Alpha

W13 Pixels 31:16 Alpha

W14 Pixels 47:32 Alpha

W15 Pixels 63:33 Alpha

Deinterlace Writeback Messages

The deinterlace message has different writeback messages, depending on the DI Enable and DI Partial
fields of SAMPLER_STATE.

Pixels are indicated by an (X, Y) pair. The following tables indicate the format of common Luma,
Chroma, STMM, and Block Noise Estimate/Denoise History blocks defined as portions of the specific
writeback messages defined in the following sections. Each block defines one register.

Luma block definition:

DWord Bits Description

Wn.7 31:24 Luma (15,1)
Format = U8

23:16 Luma (14,1)

15:8 Luma (13,1)

7:0 Luma (12,1)

Wn.6 31:0 Luma (11:8,1)

Wn.5 31:0 Luma (7:4,1)

Wn.4 31:0 Luma (3:0,1)

Wn.3 31:0 Luma (15:12,0)

Wn.2 31:0 Luma (11:8,0)

 3D – Media – GPGPU

276 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bits Description

Wn.1 31:0 Luma (7:4,0)

Wn.0 31:0 Luma (3:0,0)

Chroma block definition:

DWord Bits Description

Wp.7 31:24 Cb (14,1)
Format = U8

23:16 Cr (14,1)
Format = U8

15:8 Cb (12,1)

7:0 Cr (12,1)

Wp.6 31:0 Cr & Cb (10:8,1)

Wp.5 31:0 Cr & Cb (6:4,1)

Wp.4 31:0 Cr & Cb (2:0,1)

Wp.3 31:0 Cr & Cb (14:12,0)

Wp.2 31:0 Cr & Cb (10:8,0)

Wp.1 31:0 Cr & Cb (6:4,0)

Wp.0 31:0 Cr & Cb (2:0,0)

STMM block definition:

DWord Bits Description

Wr.7 31:24 STMM (14,3)
Format = U8

23:16 STMM (12,3)

15:8 STMM (10,3)

7:0 STMM (8,3)

Wr.6 31:0 STMM (6:0,3)

Wr.5 31:0 STMM (14:8,2)

Wr.4 31:0 STMM (6:0,2)

Wr.3 31:0 STMM (14:8,1)

Wr.2 31:0 STMM (6:0,1)

Wr.1 31:0 STMM (14:8,0)

Wr.0 31:0 STMM (6:0,0)

Table: Block Noise Estimate/Denoise History Block Definition: (DI Enabled)

DWord Bits Description

Wq.7 31:16 Y[15:0]

15:0 X[15:0]

Wq.6 31:16 STAD - Sum in time of absolute differences for 16x4 – value is 0 if DN disabled.
Format = U16

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 277

DWord Bits Description

15:0 SHCM - Sum horizontaly of absolute differences – value is 0 if DN is disabled.
Format = U16

Wq.5 31:16 SVCM - Sum vertically of absolute differences – value is 0 if DN is disabled..
Format = U16

15:0 Diff_cTpT - Sum of differences in top fields of current and previous frame
Format = U16

Wq.4 31:16 Diff_cBpB - Sum of differences in bottom field of current and previous frame
Format = U16

15:0 Diff_cTcB - Sum of differences between top and bottom field in current frame.
Format = U16

Wq.3 31:16 Diff_cTpB - Sum of differences between current top and previous bottom
Format = U16

15:0 Diff_cBpT - Sum of differences between current bottom and previous top.
Format = U16

Wq.2 31:0 Reserved

Wq.1 31:24 Tearing_Count - number of pixels that have (diff_cTcB > diff_cTcT + diff_cBcB)
Format = U8

23:16 Fitting_Count - number of pixels that have (diff_cTcB<=diff_cTcT + diff_cBcB)
Format = U8

15:8 Motion_Count - number of pixels that are moving (different above a threshold)
Format = U8

7:0 Block Noise Estimate
Format = U8

Wq.0 31:24 Denoise History for 4x4 at Y = 15 to 12, X = 3 to 0
Format = U8

23:16 Denoise History for 4x4 at Y = 11 to 8, X = 3 to 0

15:8 Denoise History for 4x4 at Y = 7 to 4, X = 3 to 0

7:0 Denoise History for 4x4 at Y = 3 to 0, X = 3 to 0

Table: Block Noise Estimate/Denoise History Block Definition: (DI Disabled)

DWord Bits Description

Wq.7 31:16 Y[15:0]

15:0 X[15:0]

Wq.6 31:16 STAD - Sum in time of absolute differences for top 16x4
Format = U16

15:0 SHCM - Sum horizontaly of absolute differences for top 16x4
Format = U16

Wq.5 31:16 SVCM - Sum vertically of absolute differences for top 16x4
Format = U16

15:0 STAD - Sum in time of absolute differences for bottom 16x4
Format = U16

Wq.4 31:16 SHCM - Sum horizontaly of absolute differences for bottom 16x4

 3D – Media – GPGPU

278 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bits Description

Format = U16

15:0 SVCM - Sum vertically of absolute differences for bottom 16x4
Format = U16

Wq.3 31:0 Reserved

Wq.2 31:8 Reserved

7:0 Block Noise Estimate
Format = U8

Wq.1 31:24 Denoise History for 4x4 at X = 15 to 12, Y = 7 to 4
Format = U8

23:16 Denoise History for 4x4 at X = 11 to 8, Y = 7 to 4

15:8 Denoise History for 4x4 at X = 7 to 4, Y = 7 to 4

7:0 Denoise History for 4x4 at X = 3 to 0, Y = 7 to 4

Wq.0 31:24 Denoise History for 4x4 at X = 15 to 12, Y = 3 to 0
Format = U8

23:16 Denoise History for 4x4 at X = 11 to 8, Y = 3 to 0

15:8 Denoise History for 4x4 at X = 7 to 4, Y = 3 to 0

7:0 Denoise History for 4x4 at X = 3 to 0, Y = 3 to 0

DI Enabled (Only)

This writeback message is returned when the DI Enable field in SAMPLER_STATE is enabled. The
response length possibilities are:

• & DN Enabled & surface_format == 4:2:2 packed: 12
• & DN Enabled & surface_format != 4:2:2 packed: 11
• & DN Disabled: 10

DWord Bits Description

W0 31:0 Previous 2nd Field Deinterlaced Luma for Y=0,1
Refer to Luma block above for definition.

W1 31:0 Previous 2nd Field Deinterlaced Luma for Y=2,3

W2 31:0 Previous 2nd Field Deinterlaced Chroma for Y=0,1
Refer to Chroma block above for definition.

W3 31:0 Previous 2nd Field Deinterlaced Chroma for Y=2,3

W4 31:0 Current 1st Field Deinterlaced Luma for Y=0,1

W5 31:0 Current 1st Field Deinterlaced Luma for Y=2,3

W6 31:0 Current 1st Field Deinterlaced Chroma for Y=0,1

W7 31:0 Current 1st Field Deinterlaced Chroma for Y=2,3

W8 31:0 STMM
Refer to STMM block above for definition.

W9 31:0 Block Noise Estimate/Denoise History
Refer to Block Noise Estimate/Denoise History block above for definition.

W10 31:0 Current 2nd Field Luma for 16x2

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 279

DWord Bits Description

This register is only included if DN Enable is enabled.

W11 31:0 Current 2nd Field Chroma
This register is only included if DN Enable is enabled.
Only valid if input surface format is 4:2:2

The denoised luma for both the current 1st and 2nd field needs to be written out, but only the 2nd field
has a dedicated location. This is because the denoised data for the 1st field is in the deinterlaced output
for the 1st field – Y=0 and Y=2 are the denoised data, while Y=1 and Y=3 either the deinterlaced lines or
copied from the previous or current frame if progressive.

DI Disabled

This writeback message is returned when the DI Enable field in SAMPLER_STATE is disabled. The DN
with DI disabled responses with a 16x8 block rather than a 16x4 with a response length of 9 for a 4:2:2
input format, or 5 for other formats. Two denoised luma and chroma fields are combined into an
interleaved top/bottom format.

Dword Bits Description

W0 31:0 Luma for Y=0 & 1
Refer to Luma block above for definition.

W1 31:0 Luma for Y=2 & 3
Refer to Luma block above for definition, but add 2 to Y to get location

W2 31:0 Luma for Y=4 & 5

W3 31:0 Luma for Y=6 & 7

W4.7 31:16 Y[15:0]
Y co-ordinate of the current block within the frame

15:0 X[15:0]
X co-ordinate of the current block within the frame

W4.6 31:24 STAD0 – Sum in time of absolute differences for the 1st 4x8
Format = U8

23:16 STAD1 – Sum in time of absolute differences for the 2nd 4x8

15:8 STAD2 – Sum in time of absolute differences for the 3rd 4x8

7:0 STAD3 – Sum in time of aboslute differences for the 4th 4x8

W4.5 31:24 SHCM0 – Sum horizontaly of absolute differences

23:16 SHCM1

15:8 SHCM2

7:0 SHCM3

W4.4 31:24 SVCH0 – Sum vertically of absolute differences

23:16 SVCH1

15:8 SVCH2

7:0 SVCH3

W4.3 31:0 Reserved: MBZ

W4.2 31:8 Reserved: MBZ

7:0 Block Noise Estimate

 3D – Media – GPGPU

280 Doc Ref # IHD-OS-VLV-Vol7-04.14

Dword Bits Description

Format = U8

W4.1 31:24 Denoise History for 4x4 at X = 15 to 12, Y = 7 to 4

23:16 Denoise History for 4x4 at X = 11 to 8, Y = 7 to 4

15:8 Denoise History for 4x4 at X = 7 to 4, Y = 7 to 4

7:0 Denoise History for 4x4 at X = 3 to 0, Y = 7 to 4

W4.0 31:24 Denoise History for 4x4 at X = 15 to 12, Y = 3 to 0

23:16 Denoise History for 4x4 at X = 11 to 8, Y = 3 to 0

15:8 Denoise History for 4x4 at X = 7 to 4, Y = 3 to 0

7:0 Denoise History for 4x4 at X = 3 to 0, Y = 3 to 0

W5 31:0 Chroma for Y=0 & 1
Refer to Chroma block above for definition.
Only delivered if input surface format is 4:2:2

W6 31:0 Chroma for Y=2 & 3
Refer to Chroma block above for definition, but add 2 to Y to get location.
Only delivered if input surface format is 4:2:2

W7 31:0 Chroma for Y=4 & 5
Only valid if input surface format is 4:2:2

W8 31:0 Chroma for Y=6 & 7
Only sent if input surface format is 4:2:2

SIMD32 Surface State
Please refer to the 3D Surface State definition at Surface State.

SIMD32 Sampler State
Please refer to the 3D Sampler State definition at Sampler State.

3D Pipeline Stages

The following table lists the various stages of the 3D pipeline and describes their major functions.

Pipeline Stage Functions Performed

Command Stream
(CS)

The Command Stream stage is responsible for managing the 3D pipeline and passing
commands down the pipeline. In addition, the CS unit reads constant data from memory
buffers and places it in the URB.
Note that the CS stage is shared between the 3D and Media pipelines.

Vertex Fetch (VF) The Vertex Fetch stage, in response to 3D Primitive Processing commands, is responsible for
reading vertex data from memory, reformatting it, and writing the results into Vertex URB
Entries. It then outputs primitives by passing references to the VUEs down the pipeline.

Vertex Shader (VS) The Vertex Shader stage is responsible for processing (shading) incoming vertices by
passing them to VS threads.

Hull Shader (HS) The Hull Shader is responsible for processing (shading) incoming patch primitives as part of
the tessellation process.

Tesselation Engine The Tessellation Engine is responsible for using tessellation factors (computed in the HS

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 281

Pipeline Stage Functions Performed

(TE) stage) to tessellate U,V parametric domains into domain point topologies.

Domain Shader (DS) The Domain Shader stage is responsible for processing (shading) the domain points
(generated by the TE stage) into corresponding vertices.

Geometry Shader
(GS)

The Geometry Shader stage is responsible for processing incoming objects by passing each
object's vertices to a GS thread.

Stream Output Logic
(SOL)

The Stream Output Logic is responsible for outputting incoming object vertices into Stream
Out Buffers in memory.

Clipper (CLIP) The Clipper stage performs Clip Tests on incoming objects and clips objects if required.
Objects are clipped using fixed-function hardware.

Strip/Fan (SF) The Strip/Fan stage performs object setup. Object setup uses fixed-function hardware.

Windower/Masker
(WM)

The Windower/Masker performs object rasterization and determines visibility coverage.

3D Pipeline Stages

The following table lists the various stages of the 3D pipeline and describes their major functions.

Pipeline Stage Functions Performed

Command Stream
(CS)

The Command Stream stage is responsible for managing the 3D pipeline and passing
commands down the pipeline. In addition, the CS unit reads constant data from memory
buffers and places it in the URB.
Note that the CS stage is shared between the 3D and Media pipelines.

Vertex Fetch (VF) The Vertex Fetch stage, in response to 3D Primitive Processing commands, is responsible for
reading vertex data from memory, reformatting it, and writing the results into Vertex URB
Entries. It then outputs primitives by passing references to the VUEs down the pipeline.

Vertex Shader (VS) The Vertex Shader stage is responsible for processing (shading) incoming vertices by
passing them to VS threads.

Hull Shader (HS) The Hull Shader is responsible for processing (shading) incoming patch primitives as part of
the tessellation process.

Tesselation Engine
(TE)

The Tessellation Engine is responsible for using tessellation factors (computed in the HS
stage) to tessellate U,V parametric domains into domain point topologies.

Domain Shader (DS) The Domain Shader stage is responsible for processing (shading) the domain points
(generated by the TE stage) into corresponding vertices.

Geometry Shader
(GS)

The Geometry Shader stage is responsible for processing incoming objects by passing each
object's vertices to a GS thread.

Stream Output Logic
(SOL)

The Stream Output Logic is responsible for outputting incoming object vertices into Stream
Out Buffers in memory.

Clipper (CLIP) The Clipper stage performs Clip Tests on incoming objects and clips objects if required.
Objects are clipped using fixed-function hardware.

Strip/Fan (SF) The Strip/Fan stage performs object setup. Object setup uses fixed-function hardware.

Windower/Masker
(WM)

The Windower/Masker performs object rasterization and determines visibility coverage.

 3D – Media – GPGPU

282 Doc Ref # IHD-OS-VLV-Vol7-04.14

3D Pipeline-Level State

This section contains table commands for the 3D Pipeline Level.

Push Constant URB Allocation

The push constants are stored into the URB which is part of the L3$. Software is required to program
the hardware to allocate space in the URB for each shader push constant. The software is limited to the
bottom address of the URB and must ensure that none of the shaders have overlapping handles. Below
is a diagram that represents a possible programming of the URB with Push Constants:

 URB Allocation

In the above scheme we are allocating 16KB of push constants and 240KB of URB space. The handle
allocation is shown in the order of the FF pipeline but with the current hardware and state, the software
can program these to be any order and may size them to zero. Software may also use some if not all of
the 16KB above as handle allocations as long as none of the push constants or handle allocations
overlap. The only limitations are the sizes based off the table below and the restrictions in granularity
which are specified in the command descriptions of the URB state and the push constant allocation
state for each fixed function.

Below is a diagram that represents how the hardware may move and store one CONSTANT_BUFFER
command for a fixed function shader:

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 283

The bubbles in the URB are caused by the constant buffer in memory starting on a half cacheline and
being an even number in length. If the constant buffer starts on an odd cacheline and has an odd
number length then there will only be a bubble at the beginning of the buffer in the URB. If the
constant buffer in memory starts on a cache line boundary and has an odd number length then the
bubble will only be at the end of the constant buffer in the URB. Once the constant buffer is written to
the GRF space then all the bubbles will be removed.

 3D – Media – GPGPU

284 Doc Ref # IHD-OS-VLV-Vol7-04.14

Software must guarantee that there is enough space in the push constant buffer in the URB to hold one
constant buffer from memory. This includes any buffering to write the 512b aligned requests from
memory into the URB. Because the L3$ only supports writes from memory in 512b chunks, the URB may
have some bubbles between each constant buffer fetch.

Statistics

Statistics Gathering

The table below describes support for the required API statistics counters.

DX Statistic HW Support

IAVertices = # of vertices IA generated. May or may not
include (a) vertices in partial primitives, (b) unused
adjacent-only vertices. Not affected by vertex caching.

VF maintains IA_VERTICES_COUNT.

Will include unused adjacent-only vertices.
Will not include vertices in partial primitives.

IAPrimitives = # of primitives (objects) IA generated.
May or may not include partial primitives.

VF maintains IA_PRIMITIVES_COUNT.

Will not include partial primitives. Will not
count patch topologies that do not match
what the HS or GS expects as input , if
enabled (i.e., mismatching patch topologies
are discarded by VF).

VSInvocations = # of times VS is executed. May be
affected by vertex caching. May or may not include (a)
shared vertices in non-indexed strips, (b) vertices in
partial primitives, (c) unused adjacent-only vertices.

VS maintains VS_INVOCATION_COUNT.

Impacted by vertex caching. Will not include
vertices in partial primitives. Will include
unused adjacent-only vertices. Will not
include shared vertices in non-indexed strips,
unless pre-empted. Increments even if VS
Function Enable is DISABLED.

HSInvocations = # of patches executed by HS. HS maintains HS_INVOCATION_COUNT. This
gets incremented by 1 for each patch
whenever HS is enabled.

DSInvocations = # of times DS is executed to shade a
domain point. Allows HW to shade identical domain
points multiple times, with the exception of point
outputs where only unique domain points can be
generated.

DS maintains DS_INVOCATION_COUNT. This
is incremented for each domain point passed
to a DS thread.

GSInvocations = # of times GS is executed. Obviously
does not include partial primitives. May be incremented
when StreamOut enabled, even if NULL_GS.

GS maintains GS_INVOCATION_COUNT,
incrementing it by GSInvocations Increment
Value for each dispatched instance.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 285

DX Statistic HW Support

Will not be incremented if NULL_GS.

GSPrimitives = # of primitives GS generated. Does not
include primitives passing through a disabled GS stage.
May or may not include partial primitives output by GS.

GS maintains GS_PRIMITIVE_COUNT. GS unit
will increment this as it parses the GS thread
output.

Will not include partial primitives output by
GS threads.

NumPrimitivesWritten[<stream#>] = # of complete
primitives written to the stream's SO buffer, subject to
buffer overflow.

SOL maintains
SO_NUM_PRIMS_WRITTEN[0-3].

PrimitiveStorageNeeded[<stream#>] = # of complete
primitives which would have been written to the
stream's SO buffer ignoring any overflow.

SOL maintains
SO_PRIM_STORAGE_NEEDED[0-3].

CInvocations = # of primitives entering rasterization
(which starts with the clipper) and isn't affected by any
actual clipping. Does not increment when rasterization is
disabled (e.g., when StreamOut is the last enabled
stage). May or may not include partial primitives.

CL OSB maintains CL_INVOCATION_COUNT.

Will not include partial primitives. Note that
the SOL (regardless of SO enabled) will
discard primitives if rendering is disabled, so
these primitives will not reach the CL unit.

CPrimitives = # of primitives output from clipper. I.e.,
doesn't increment if TrivReject or dropped due to NaNs,
increments by 1 if TrivAccept, or increments by number
of primitives generated if MustClip. Does not increment
when rasterization is disabled. May or may not include
partial primitives. Accomodates infinite or no
guardband.

SF OSB maintains CL_PRIMITIVES_COUNT.

Will not include partial primitives.

PSInvocations = # of times PS is executed, including
unlit helper pixels within a subspan that need to go
through the PS shader to provide 2x2 gradients.
Accomodates early depth/stencil. Does not increment if
NULL PS. Multisampling: counts pixels shaded If
PERPIXEL or samples shaded if PERSAMPLE.

WIZ maintains PS_INVOCATION_COUNT.

Occlusion = # of visible multisamples which passed
both depth and stencil testing. doesn't include PS-
discarded pixels or oMask/AlphaToCoverage-killed
samples. Both (a) a disabled test (depth or stencil) and
(b) no bound RT or Depth/Stencil buffer conditions
count as always passing.

WIZ & PBE maintain PS_DEPTH_COUNT.

 3D – Media – GPGPU

286 Doc Ref # IHD-OS-VLV-Vol7-04.14

3D Pipeline Geometry

Block Diagram

The following block diagram shows the stages of the Geometry Pipeline and where they are positioned
in the overall 3D Pipeline.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 287

3D Primitives Overview

The 3DPRIMITIVE command (defined in the VF Stage chapter) is used to submit 3D primitives to be
processed by the 3D pipeline. Typically the processing results in the rendering of pixel data into the
render targets, but this is not required.

Terminology Note: There is considerable confusion surrounding the term primitive, e.g., is a triangle
strip a primitive, or is a triangle within a triangle strip a primitive?

In this spec, we will try to avoid ambiguity by using the term object to represent the basic shapes (point,
line, triangle), and topology to represent input geometry (strips, lists, etc.). Unfortunately, terms like
‘3DPRIMITIVE’ must remain for legacy reasons.

The following table describes the basic primitive topology types supported in the 3D pipeline.

Notes:

• There are several variants of the basic topologies. These have been introduced to allow slight
variations in behavior without requiring a state change.

• Number of vertices and Dangling Vertices: Topologies have an "expected" number of vertices in
order to form complete objects within the topologies (e.g., LINELIST is expected to have an even
number of vertices). The actual number of vertices specified in the 3DPRIMITIVE command, and
as output from the GS unit, is allowed to deviate from this expected number, in which case any
"dangling" vertices are discarded. The removal of dangling vertices is initially performed in the VF
unit. To filter out dangling vertices emitted by GS threads, the CLIP unit also performs dangling-
vertex removal at its input.

Table: 3D Primitive Topology Types

3D Primitive
Topology Type

(ordered
alphabetically) Description

QUADLIST A list of independent quad objects (4 vertices per quad).

The QUADLIST topology is converted to POLYGON topology at the
beginning of the 3D pipeline.

Programming Restrictions:

Normal usage expects a multiple of 4 vertices, though incomplete objects
are silently ignored.

QUADSTRIP A list of vertices connected such that, after the first two vertices, each
additional pair of vertices are associated with the previous two vertices to
define a connected quad object.

Programming Restrictions:

Normal usage expects an even number (4 or greater) of vertices, though
incomplete objects are silently ignored.

 3D – Media – GPGPU

288 Doc Ref # IHD-OS-VLV-Vol7-04.14

3D Primitive
Topology Type

(ordered
alphabetically) Description

RECTLIST A list of independent rectangles, where only 3 vertices are provided per
rectangle object, with the fourth vertex implied by the definition of a
rectangle. V0=LowerRight, V1=LowerLeft, V2=UpperLeft. Implied V3 = V0-
V1+V2.

Programming Restrictions:

Normal usage expects a multiple of 3 vertices, though incomplete objects
are silently ignored.

The RECTLIST primitive is supported specifically for 2D operations (e.g.,
BLTs and "stretch" BLTs) and not as a general 3D primitive. Due to this, a
number of restrictions apply to the use of RECTLIST:

Must utilize "screen space" coordinates (VPOS_SCREENSPACE) when the
primitive reaches the CLIP stage. The W component of position must be
1.0 for all vertices. The 3 vertices of each object should specify a screen-
aligned rectangle (after the implied vertex is computed).

Clipping: Must not require clipping or rely on the CLIP unit’s ClipTest logic
to determine if clipping is required. Either the CLIP unit should be
DISABLED, or the CLIP unit’s Clip Mode should be set to a value other than
CLIPMODE_NORMAL.

Viewport Mapping must be DISABLED (as is typical with the use of screen-
space coordinates).

TRIFAN Triangle objects arranged in a fan (or polygon). The initial vertex is
maintained as a common vertex. After the second vertex, each additional
vertex is associated with the previous vertex and the common vertex to
define a connected triangle object.

Programming Restrictions:

Normal usage expects at least 3 vertices, though incomplete objects are
silently ignored.

TRIFAN_NOSTIPPLE Similar to TRIFAN, but poylgon stipple is not applied (even if enabled).

This can be used to support "point" polygon fill mode, under the
combination of the following conditions:

(a) when the frontfacing and backfacing polygon fill modes are different
(so the final fill mode is not known to the driver),

(b) one of the fill modes is "point" and the other is "solid",

(c) point mode is being emulated by converting the point into a trifan,

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 289

3D Primitive
Topology Type

(ordered
alphabetically) Description

(d) polygon stipple is enabled. In this case, polygon stipple should not be
applied to the points-emulated-as-trifans.

TRILIST A list of independent triangle objects (3 vertices per triangle).

Programming Restrictions:

Normal usage expects a multiple of 3 vertices, though incomplete objects
are silently ignored.

TRILIST_ADJ A list of independent triangle objects with adjacency information (6
vertices per triangle).

Programming Restrictions:

Normal usage expects a multiple of 6 vertices, though incomplete objects
are silently ignored.

Not valid as output from GS thread.

TRISTRIP A list of vertices connected such that, after the first two vertices, each
additional vertex is associated with the last two vertices to define a
connected triangle object.

Programming Restrictions:

Normal usage expects at least 3 vertices, though incomplete objects are
silently ignored.

TRISTRIP_ADJ A list of vertices where the even-numbered (including 0th) vertices are
connected such that, after the first two vertex pairs, each additional even-
numbered vertex is associated with the last two even-numbered vertices to
define a connected triangle object. The odd-numbered vertices are
adjacent-only vertices.

Programming Restrictions:

Normal usage expects at least 6 vertices, though incomplete objects are
silently ignored.

Not valid as output from GS thread.

TRISTRIP_REVERSE Similar to TRISTRIP, though the sense of orientation (winding order) is reversed –
this allows SW to break long tristrips into smaller pieces and still maintain correct
face orientations.

PATCHLIST_n List of n-vertex "patch" objects. These topologies cannot be rendered directly –
the tessellation units must be used to convert them into points, lines, or
triangles to produce rasterization results. (VS, GS, and StreamOutput operations

 3D – Media – GPGPU

290 Doc Ref # IHD-OS-VLV-Vol7-04.14

3D Primitive
Topology Type

(ordered
alphabetically) Description

can also be performed.)

The following diagrams illustrate the basic 3D primitive topologies. (Variants are not shown if they have
the same definition with respect to the information provided in the diagrams).

A note on the arrows you see below: These arrows are intended to show the vertex ordering of triangles
that are to be considered having "clockwise" winding order in screen space. Effectively, the arrows show
the order in which vertices are used in the cross-product (area, determinant) computation. Note that for
TRISTRIP, this requires that either the order of odd-numbered triangles be reversed in the cross-product
or the sign of the result of the normally-ordered cross-product be flipped (these are identical
operations).

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 291

 3D – Media – GPGPU

292 Doc Ref # IHD-OS-VLV-Vol7-04.14

Vertex Data Overview

The 3D pipeline FF stages (past VF) receive input 3D primitives as a stream of vertex information
packets. (These packets are not directly visible to software). Much of the data associated with a vertex is
passed indirectly via a VUE handle. The information provided in vertex packets includes:

• The URB Handle of the VUE: This is used by the FF unit to refer to the VUE and perform any
required operations on it (e.g., cause it to be read into the thread payload, dereference it, etc.).

• Primitive Topology Information: This information is used to identify/delineate primitive
topologies in the 3D pipeline. Initially, the VF unit supplies this information, which then passes
through the VS stage unchanged. GS and CLIP threads must supply this information with each
vertex they produce (via the URB_WRITE message). If a FF unit directly outputs vertices (that were
not generated by a thread they spawned), that FF unit is responsible for providing this
information.

o PrimType: The type of topology, as defined by the corresponding field of the
3DPRIMITIVE command.

o StartPrim: TRUE only for the first vertex of a topology.
o EndPrim: TRUE only for the last vertex of a topology.

o The FF unit which owns the VUE
o Sequence numbers which uniquely identify (with some limits) the VUE output by the

owning FF unit. (This data can be used to trap on a specific vertex)

• (Possibly, depending on FF unit) Data read back from the Vertex Header of the VUE.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 293

Vertex URB Entry (VUE) Formats

In general, vertex data is stored in Vertex URB Entries (VUEs) in the URB, processed by CLIP threads, and
only referenced by the pipeline stages indirectly via VUE handles. Therefore (for the most part) the
contents/format of the vertex data is not exposed to 3D pipeline hardware – the FF units are typically
only aware of the handles and sizes of VUEs.

VUEs are written in two ways:

• At the top of the 3D Geometry pipeline, the VF's InputAssembly function creates VUEs and
initializes them from data extracted from Vertex Buffers as well as internally-generated data.

• VS, GS, and CLIP threads can compute, format, and write new VUEs as thread output.

There are only two points in the 3D FF pipeline where the FF units are exposed to the VUE data.
Otherwise the VUE remains opaque to the 3D pipeline hardware.

• Just prior to the CLIP stage, all VUEs are read-back: Optional readback of ClipDistance values (up
to 8 floats in an aligned 256-bit URB row).

• Just after the CLIP stage, on clip-generated VUEs are read-back: Readback of the Vertex Header
(first 256 bits of the VUE).

Software must ensure that any VUEs subject to readback by the 3D pipeline start with a valid Vertex
Header. This extends to all VUEs with the following exceptions:

• If the VS function is enabled, the VF-written VUEs are not required to have Vertex Headers, as the
VS-incoming vertices are guaranteed to be consumed by the VS (i.e., the VS thread is responsible
for overwriting the input vertex data).

• If the GS FF is enabled, neither VF-written VUEs nor VS thread-generated VUEs are required to
have Vertex Headers, as the GS will consume all incoming vertices.

• (There is a pathological case where the CLIP state can be programmed to guarantee that all CLIP-
incoming vertices are consumed – regardless of the data read back prior to the CLIP stage – and
therefore only the CLIP thread-generated vertices would require Vertex Headers.)

The following table defines the Vertex Header. The Position fields are described in further detail below.

Table: VUE Vertex Header

DWord Bits Description

D0 31:0 Reserved: MBZ

D1 31:0 Render Target Array Index (RTAIndex). This value is (eventually) used to index into a
specific element of an array Render Target. It is read back by the GS unit (for all exiting
vertices) and the Clip unit (for all clip-generated vertices), subsequently routed into the PS
thread payload, and eventually included in the RTWrite DataPort message header for use
by the DataPort shared function.

Software is responsible for ensuring this field is zero whenever a programmable index
value is not required. When a programmable index value is required, software must ensure
that the correct 11-bit value is written to this field. Specifically, the kernels must perform a
reange check of computed index values against [0,2047], and output zero if that range is

 3D – Media – GPGPU

294 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bits Description

exceeded. Note that the unmodified renderTargetArrayIndex must be maintained in the
VUE outside of the Vertex Header.

Software can force an RTAIndex of 0 to be used (effectively ignoring the setting of this
DWord) by use of the ForceZeroRTAIndex bit (3DSTATE_CLIP). Otherwise the read-back
value will be used to select an RTArray element, after being clamped to the RTArray
surface's [MinimumArrayElement, Depth] range (SURFACE_STATE).

Format: 0-based U32 index value

D2 31:0 Viewport Index. This value is used to select one of a possible 16 sets of viewport (VP)
state parameters in the Clip unit's VertexClipTest function and in the SF unit's
ViewportMapping and Scissor functions.

The GS unit (even if disabled) will read back this value for all vertices exiting the GS stage
and entering the Clip stage. When enabled, the GS unit will range-check the value against
[0,Maximum VPIndex] (see GS_STATE, CLIP_STATE). After this range-check the values are
sent down the pipeline and used in the Clip unit's VertexClipTest function. For vertices
passing through the Clip stage, these values will also be sent to the SF unit for use in
ViewportMapping and Scissor functions.

The Clip unit (if enabled) will read back this value only for vertices generated by CLIP
threads. The Clip unit will perform a range clamp similar to the GS unit.

Software can force a value of 0 to be used by programming Maximum VPIndex to 0.

Format: 0-based U32 index value

D3 31:0 Point Width. This field specifies the width of POINT objects in screen-space pixels. It is
used only for vertices within POINTLIST and POINTLIST_BF primitive topologies, and is
ignored for vertices associated with other primitive topologies.

This field is read back by both the GS and Clip units.

Format: FLOAT32

D4 31:0 Vertex Position X Coordinate. This field contains the X component of the vertex's 4D
space position.

Format: FLOAT32

D5 31:0 Vertex Position Y Coordinate. This field contains the Y component of the vertex's 4D
space position

Format: FLOAT32

D6 31:0 Vertex Position Z Coordinate. This field contains the Z component of the vertex's NDC
space position

Format: FLOAT32

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 295

DWord Bits Description

D7 31:0 Vertex Position W Coordinate. This field contains the Z component of the vertex's 4D
space position

Format: FLOAT32

D8 31:0 ClipDistance 0 Value (optional). If the UserClipDistance Clip Test Enable Bitmask bit
(3DSTATE_CLIP) is set, this value will be read from the URB in the Clip stage. If the value is
found to be less than 0 or a NaN, the vertex's UCF<0> bit will set in the Clip unit's
VertexClipTest function.

If the UserClipDistance Clip Test Enable Bitmask bit is clear, this value will not be read
back, and the vertex's UCF<0> bit will be zero by definition.

Format: FLOAT32

D9 31:0 ClipDistance 1 Value (optional). See above

D10 31:0 ClipDistance 2 Value (optional). See above

D11 31:0 ClipDistance 3 Value (optional). See above

D12 31:0 ClipDistance 4 Value (optional). See above

D13 31:0 ClipDistance 5 Value (optional). See above

D14 31:0 ClipDistance 6 Value (optional). See above

D15 31:0 ClipDistance 7 Value (optional). See above

 31:0 (Remainder of Vertex Elements).

The absolute maximum size limit on this data is specified via a maximum limit on the
amount of data that can be read from a VUE (including the Vertex Header) (Vertex Entry
URB Read Length has a maximum value of 63 256-bit units). Therefore the Remainder of
Vertex Elements has an absolute maximum size of 62 256-bit units. Of course the actual
allocated size of the VUE can and will limit the amount of data in a VUE.

Vertex Positions

(For brevity, the following discussion uses the term map as a shorthand for compute screen space
coordinate via perspective divide followed by viewport transform.)

The Position fields of the Vertex Header are the only vertex position coordinates exposed to the 3D
Pipeline. The CLIP and SF units are the only FF units which perform operations using these positions.
The VUE will likely contain other position attributes for the vertex outside of the Vertex Header, though
this information is not directly exposed to the FF units. For example, the Clip Space position will likely

 3D – Media – GPGPU

296 Doc Ref # IHD-OS-VLV-Vol7-04.14

be required in the VUE (outside of the Vertex Header) to perform correct and robust 3D Clipping in the
CLIP thread.

In the CLIP unit, the read-back Position fields are interpreted as being in one of two coordinate systems,
depending on the CLIP_STATE.VertexPositionSpace bit. The CLIP unit modifies its VertexClipTest
function depending on the coordinate space of the incoming vertices.

VPOS_CLIPSPACE (Homogeneous 4D Clip-space coordinates, pre-perspective division): The Clip
Space position is defined in a homogeneous 4D coordinate space (pre-perspective divide), where the
visible view volume is defined by the APIs. The API's VS or GS shader program will include geometric
transforms in the computation of this clip space position such that the resulting coordinate is
positioned properly in relation to the view volume (i.e., it will include a view transform in this
computation path). When this coordinate system is selected, the 3D FF pipeline will perform a
perspective projection (division of x,y,z by w), perform clip-test on the resulting NDC (Normalized
Device Coordinates), and eventually perform viewport mapping (in the SF unit) to yield screen-space
(pixel) coordinates.

VPOS_SCREENSPACE (Screen Space position): Under certain circumstances, the position in the Vertex
Header will contain the screen-space (pixel) coordinates (post viewport mapping).

The SF unit does not have a state bit defining the coordinate space of the incoming vertex positions.
Software must use the Viewport Mapping function of the SF unit in order to ensure that screen-space
coordinates are available after that function. If screen space coordinates are passed into SF, then
software will likely turn off the Viewport Mapping function.

The following subsections briefly describe the three relevant coordinate spaces.

Clip Space Position

The clip-space position of a vertex is defined in a homogeneous 4D coordinate space where, after
perspective projection (division by W), the visible view volume is some canonical (3D) cuboid. Typically
the X/Y extents of this cuboid are [-1,+1], while the Z extents are either [-1,+1] or [0,+1]. The API's VS or
GS shader program will include geometric transforms in the computation of this clip space position
such that the resulting coordinate is positioned properly in relation to the view volume (i.e., it will
include a view transform in this computation path).

Note that, under typical perspective projections, the clip-space W coordinate is equal to the view-space
Z coordinate.

A vertex's clip-space coordinates must be maintained in the VUE up to 3D clipping, as this clipping is
performed in clip space.

In , vertex clip-space positions must be included in the Vertex Header, so that they can be read-back
(prior to Clipping) and then subjected to perspective projection (in hardware) and subsequent use by
the FF pipeline.

NDC Space Position

A perspective divide operation performed on a clip-space position yields a [X,Y,Z,RHW] NDC
(Normalized Device Coordinates) space position. Here normalized means that visible geometry is
located within the [-1,+1] or [0,+1] extent view volume cuboid (see clip-space above).

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 297

• The NDC X,Y,Z coordinates are the clip-space X,Y,Z coordinates (respectively) divided by the clip-
space W coordinate (or, more correctly, the clip-space X,Y,Z coordinates are multiplied by the
reciprocal of the clip space W coordinate).

o Note that the X,Y,Z coordinates may contain INFINITY or NaN values (see below).

• The NDC RHW coordinate is the reciprocal of the clip-space W coordinate and therefore, under
normal perspective projections, it is the reciprocal of the view-space Z coordinate. Note that NDC
space is really a 3D coordinate space, where this RHW coordinate is retained in order to perform
perspective-correct interpolation, etal. Note that, under typical perspective projections.

o Note that the RHW coordinate make contain an INFINITY or NaN value (see below).

Screen-Space Position

Screen-space coordinates are defined as:

• X,Y coordinates are in absolute screen space (pixel coordinates, upper left origin). See Vertex X,Y
Clamping and Quantization in the SF section for a discussion of the limitations/restrictions placed
on screenspace X,Y coordinates.

• Z coordinate has been mapped into the range used for DepthTest.
• RHW coordinate is actually the reciprocal of clip-space W coordinate (typically the reciprocal of

the view-space Z coordinate).

3D Pipeline – Vertex Fetch (VF) Stage

Vertex Fetch (VF) Stage Overview

The VF stage performs one major function: executing 3DPRIMITIVE commands. This is handled by the
VF's InputAssembly function.

The following subsections describe some high-level concepts associated with the VF stage.

State

This section contains various state registers.

Control State

Index Buffer (IB) State

The 3DSTATE_INDEX_BUFFER command is used to define an Index Buffer (IB) used in subsequent
3DPRIMITIVE commands.

The RANDOM access mode of the 3DPRIMITIVE command involves the use of a memory-resident IB.
The IB, defined via the 3DSTATE_INDEX_BUFFER command described below, contains a 1D array of 8, 16
or 32-bit index values. These index values will be fetched by the InputAssembly function, and
subsequently used to compute locations in VERTEXDATA buffers from which the actual vertex data is to

 3D – Media – GPGPU

298 Doc Ref # IHD-OS-VLV-Vol7-04.14

be fetched. (This is opposed to the SEQUENTIAL access mode were the vertex data is simply fetched
sequentially from the buffers).

Software is responsible for ensuring that accesses outside the IB do not occur. This is possible as software can
compute the range of IB values referenced by a 3DPRIMITIVE command (knowing the StartVertexLocation,
InstanceCount, and VerticesPerInstance values) and can then compare this range to the IB extent.

 3DSTATE_INDEX_BUFFER

The following table lists which primitive topology types support the presence of Cut Indices.

Description

When 3DSTATE_INDEX_BUFFER has Cut Index Enable set, it is UNDEFINED to issue a
3DPRIMITIVE with a primitive topology type not supporting a Cut Index (even if no cut
indices are actually present in the index buffer).

Definition Cut Index?

3DPRIM_POINTLIST Y

3DPRIM_LINELIST Y

3DPRIM_LINESTRIP Y

3DPRIM_TRILIST Y

3DPRIM_TRISTRIP Y

3DPRIM_TRIFAN Cut
Index?

N

3DPRIM_QUADLIST Cut
Index?

N

3DPRIM_QUADSTRIP Cut
Index?

N

3DPRIM_LINELIST_ADJ Y

3DPRIM_LINESTRIP_ADJ Y

3DPRIM_TRILIST_ADJ Y

3DPRIM_TRISTRIP_ADJ Y

3DPRIM_TRISTRIP_REVERSE Y

3DPRIM_POLYGON Cut
Index?

N

3DPRIM_RECTLIST N

3DPRIM_LINELOOP Cut
Index?

N

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 299

Definition Cut Index?

3DPRIM_POINTLIST_BF Y

3DPRIM_LINESTRIP_CONT Y

3DPRIM_LINESTRIP_BF Y

3DPRIM_LINESTRIP_CONT_BF Y

3DPRIM_TRIFAN_NOSTIPPLE N

3DPRIM_PATCHLIST_n Cut
Index?

Y

Vertex Buffers (VB) State

The 3DSTATE_VERTEX_BUFFERs and 3DSTATE_INSTANCE_STEP_RATE commands are used to define
Vertex Buffers (VBs) used in subsequent 3DPRIMITIVE commands.

Most input vertex data is sourced from memory-resident VBs. A VB is a 1D array of structures, where
the size of the structure as defined by the VB’s BufferPitch. VBs are accessed either as VERTEXDATA
buffers or INSTANCEDATA buffers, as defined by the VB’s BufferAccessType. The VB’s access type will
determine whether the VF-computed VertexIndex or InstanceIndex is used to access data in the VB.

Given that the RANDOM access mode of the 3DPRIMITIVE command utilizes an IB (possibly provided
by an application) to compute VB index values, VB definitions contain a MaxIndex value used to detect
accesses beyond the end of the VBs. Any access outside the extent of a VB returns 0.

VERTEXDATA Buffers – SEQUENTIAL Access

Description

Instead of "VBState.StartingBufferAddress + VBState.MaxIndex x VBState.BufferPitch",
the address of the byte immediately beyond the last valid byte of the buffer is
determined by "VBState.EndAddress + 1".

 3D – Media – GPGPU

300 Doc Ref # IHD-OS-VLV-Vol7-04.14

VERTEXDATA Buffers – RANDOM Access

Description

Instead of "VBState.StartingBufferAddress + VBState.MaxIndex x VBState.BufferPitch",
the address of the byte immediately beyond the last valid byte of the buffer is
determined by "VBState.EndAddress + 1".

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 301

INSTANCEDATA Buffers

Description

Instead of "VBState.StartingBufferAddress + VBState.MaxIndex x VBState.BufferPitch",
the address of the byte immediately beyond the last valid byte of the buffer is
determined by "VBState.EndAddress + 1".

Vertex Definition State

The following subsections define the state information for vertex data and describe some related
processing.

Input Vertex Definition

The 3DSTATE_VERTEX_ELEMENTS command is used to define the source and format of input vertex
data and the format of how it is stored in the destination VUE as part of 3DPRIMITIVE processing in the
VF unit.

Refer to 3DPRIMITIVE Processing below for the general flow of how input vertices are input and stored
during processing of the 3DPRIMITIVE command.

3D Primitive Command

Following are 3D Primitive Commands:

3DPRIMITIVE

 3D – Media – GPGPU

302 Doc Ref # IHD-OS-VLV-Vol7-04.14

Table: 3D Primitive Topology Type Encoding

The following table defines the encoding of the Primitive Topology Type field. See 3D Pipeline for
details, programming restrictions, diagrams, and a discussion of the basic primitive types.

3D_PrimTopoType

Functions

This section covers the various functions for Vertex Fetch.

Input Assembly

The VF’s InputAssembly function includes (for each vertex generated):

• Generation of VertexIndex and InstanceIndex for each vertex, possibly via use of an Index Buffer.
• Lookup of the VertexIndex in the Vertex Cache (if enabled)
• If a cache miss is detected:

• Use of computed indices to fetch data from memory-resident vertex buffers
• Format conversion of the fetched vertex data
• Assembly of the format conversion results (and possibly some internally generated data) to

form the complete "input" (raw) vertex
• Storing the input vertex data in a Vertex URB Entry (VUE) in the URB
• Output of the VUE handle of the input vertex to the VS stage

• If a cache hit is detected, the VUE handle from the Vertex Cache is passed to the VS stage
(marked as a cache hit to prevent any VS processing).

Vertex Assembly

The VF utilizes a number of VERTEX_ELEMENT state structures to define the contents and format of the
vertex data to be stored in Vertex URB Entries (VUEs) in the URB. See below for a detailed description of
the command used to define these structures (3DSTATE_VERTEX_ELEMENTS).

Each active VERTEX_ELEMENT structure defines up to 4 contiguous DWords of VUE data, where each
DWord is considered a "component" of the vertex element. The starting destination DWord offset of
the vertex element in the VUE is specified, and the VERTEX_ELEMENT structures must be defined with
monotonically increasing VUE offsets. For each component, the source of the component is specified.
The source may be a constant (0, 0x1, or 1.0f), a generated ID (VertexID, InstanceID or PrimitiveID), or a
component of a structure in memory (e.g,. the Y component of an XYZW position in memory). In the
case of a memory source, the Vertex Buffer sourcing the data, and the location and format of the source
data with that VB are specified.

The VF’s Vertex Assembly process can be envisioned as the VF unit stepping through the
VERTEX_ELEMENT structures in order, fetching and format-converting the source information (if
memory resident), and storing the results in the destination VUE.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 303

Vertex Cache

The VF stage communicates with the VS stage in order to implement a Vertex Cache function in the 3D
pipeline. The Vertex Cache is strictly a performance-enhancing feature and has no impact on 3D
pipeline results (other than a few statistics counters).

The Vertex Cache contains the VUE handles of VS-output (shaded) vertices if the VS function is enabled,
and the VUE handles of VF-output (raw) vertices if the VS function is disabled. (Note that the actual
vertex data is held in the URB, and only the handles of the vertices are stored in the cache). In either
case, the contents of the cache (VUE handles) are tagged with the VertexIndex value used to fetch the
input vertex data. The rationale for using the VertexIndex as the tag is that (assuming no other state or
parameters change) a vertex with the same VertexIndex as a previous vertex will have the same input
data, and therefore the same result from the VF+VS function.

Note that any change to the state controlling the InputAssembly function (e.g., vertex buffer definition),
or any change to the state controlling the VS function (if enabled) (e.g., VS kernel), will result in the
Vertex Cache being invalidated. In addition, any non-trivial use of instancing (i.e., more than one
instance per 3DPRIMITIVE command and the inclusion of instance data in the input vertex) will
effectively invalidate the cache between instances, as the InstanceIndex is not included in the cache tag.
See Vertex Caching in Vertex Shader for more information on the Vertex Cache (e.g., when it is implicitly
disabled, etc.)

Input Data: Push Model vs. Pull Model

Given the programmability of the pipeline, and the ability of shaders to input (load/sample) data from
memory buffers in an arbitrary fashion, the decision arises in whether to push instance/vertex data into
the front of the pipeline or defer the data access (pull) to the shaders that require it.

There are tradeoffs involved in deciding between these models. For vertex data, it is probably always
better to push the data into the pipeline, as the VF hardware attempts to cover the latency of the data
fetch. The decision is less clear for instance data, as pushing instance data leads to larger Vertex URB
entries which will be holding redundant data (as the instance data for vertices of an object are by
definition the same). Regardless, the GEN 3D pipeline supports both models.

Generated IDs

Note that the generated IDs are considered separate from any offset computations performed by the
VF unit, and are therefore described separately here.

The VF generates InstanceID, VertexID, and PrimitiveID values as part of the InputAssembly process.

VertexID and InstanceID are only allowed to be inserted into the input vertex data as it is gathered and
written into the URB as a VUE.

The definition/use of PrimitiveID is more complicated than the other auto-generated IDs. PrimitiveID is
associated with an "object" and not a particular vertex.

 3D – Media – GPGPU

304 Doc Ref # IHD-OS-VLV-Vol7-04.14

Description

It is only available to the GS and HS as a special non-vertex input and the PS as a constant-
interpolated attribute. It is not seen by the VS or DS at all.

The PrimitiveID therefore is kept separate from the vertex data. Take for example a TRILIST primitive
topology: It should be possible to share vertices between triangles in the list (i.e., reuse the VS output of
a vertex), even though each triangle has a different PrimitiveID associated with it.

 Generated IDs

Description

The InstanceID, VertexID, and PrimitiveID values associated with each vertex can be stored in the
vertex's VUE, via use of the Component n Control fields in the VERTEX_ELEMENT structure. This
makes the values available to the VS thread.

While the PrimitiveID can still be stored in the VUE (see above), there should be no API-specific
reason to do so. The 32-bit PrimitiveIDs associated with objects are passed down the FF pipeline
and made available to GS and Setup threads as payload header data. A side effect of this feature
is that the vertex cache can operate even when PrimitiveIDs are being used.

3D Primitive Processing

Content for this heading is under development.

Functional Overview

The following pseudocode summarizes the general flow of 3D Primitive Processing.
 CommandInit
 InstanceLoop {
 VertextLoop {
 VertexIndexGeneration
 if (cutFlag)
 TerminatePrimitive
 else {
 OutputBufferedVertex
 VertexCacheLookup
 if (miss) {
 VertexElementLoop {
 SourceElementFetch
 FormatConversion
 DestinationComponentSelection
 PrimitiveInfoGeneration
 URBWrite
 }
 }
 }
 }
 TerminatePrimitive
 }

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 305

CommandInit

The InstanceID value is initialized to 0.

InstanceLoop

The InstanceLoop is the outermost loop, iterating through each instance of primitives. There is no
special "non-instanced" mode – at a minimum there is one instance of primitives.

For SEQUENTIAL accessing, the VertexID value is initialized to 0 at the start of each instance. (For
RANDOM accessing, there is no initial value for VertexID, as it is derived from the fetched IB value).

The PrimitiveID is also initialized to 0 at the start of each instance. StartPrim is initialized to TRUE.

The VertexLoop (see below) is then executed to iterate through the instance vertices and output
vertices to the pipeline as required.

The end of each iteration of InstanceLoop includes an implied "cut" operation.

The InstanceID value is incremented at the end of each InstanceLoop. Note that each instance will
produce the same vertex outputs with the exception of any data dependent on InstanceID (i.e.,
"instance data").

VertexLoop

The VertexLoop iterates VertexNumber through the VertexCountPerInstance vertices for the instance.

For each iteration, a number of processing steps are performed (see below) to generate the information
that comprises a vertex. Note that, due to CutProcessing, each iteration does not necessarily output a
vertex to the pipeline. When a vertex is to be output, the following information is generated for that
vertex:

• PrimitiveType associated with the vertex. This is simply a copy of the PrimitiveTopologyType field
of the 3DPRIMITIVE

• VUE handle at which the vertex data is stored:
• For a Vertex Cache hit, the VUE handle is marked with a VCHit boolean, so that the VS unit

will not attempt to process (shade) that vertex.
• Otherwise, the VertexLoop will generate and store the input vertex data into the VUE

referenced by this handle.
• The PrimitiveID associated with the vertex. See PrimitiveInfoGeneration.
• PrimStart and PrimEnd booleans associated with the vertex. See PrimitiveInfoGeneration.

(Note that a single vertex of buffering is required in order to associate PrimEnd with a vertex, as this
information may not be known until the next iteration through the VertexLoop (see
OutputPrimitiveDelimiter).

VertexNumber value is incremented by 1 at the end of the loop.

 3D – Media – GPGPU

306 Doc Ref # IHD-OS-VLV-Vol7-04.14

VertexIndexGeneration

A VertexIndex value needs to be derived for each vertex. With the exception of the "cut" index, this
index value is used as the vertex cache tag and as a structure index into all VERTEXDATA VBs.

For SEQUENTIAL accessing, the VertexID and VertexIndex value is derived as shown below:
 VertexIndex = StartVertexLocation + VertexNumber
 VertexID = VertexNumber

For RANDOM access, the VertexID and VertexIndex is derived from an IBValue read from the IB, as
shown below:
 IBIndex = StartVertexLocation + VertexNumber
 VertexID = IB[IBIndex]
 if (CutIndexEnable && VertexID == CutIndex)
 CutFlag = 1
 else
 VertexIndex = VertexID + BaseVertexLocation
 CutFlag = 0
 endif

Index Buffer Access

The following figure illustrates how the Index Buffer is accessed.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 307

TerminatePrimitive

For RANDOM accessing, and when enabled via Cut Index Enable, a fetched IBValue of ‘all ones’ (0xFF,
0xFFFF, or 0xFFFFFFFF depending on Index Format) is interpreted as a ‘cut value’ and signals the
termination of the current primitive and the possible start of the next primitive. This allows the
application to specify an instance as a sequence of variable-sized strip primitives (though the cut value
applies to any primitive type).

Also, there is an implied primitive termination at the end of each InstanceLoop (and so strip primitives
cannot span multiple instances).

In either case, the currently-buffered vertex (if any) is marked with EndPrim and then flushed out to the
pipeline.

The next-output vertex (if any) is marked with StartPrim.

Whenever a primitive delimiter is encountered, the PIDCounterS and PIDCounterR counters are reset to
0. These counters control the incrementing (in PrimitiveInfoGeneration, below) of PrimitiveID within
each primitive topology of an instance.

 if (PIDCounterS != 0) // There is a buffered vertex
 if (primType == TRISTRIP_ADJ)
 if (PIDCounterS== 6 || PIDCounterR == 1)
 PrimitiveID ++
 endif
 endif
 PrimEnd = TRUE
 OutputBufferedVertex
 endif
 PrimEnd = FALSE
 PrimStart = TRUE

VertexCacheLookup

The VertexIndex value is used as the tag value for the VertexCache (see Vertex Cache above). If the
Vertex Cache is enabled and the VertexIndex value hits in the cache, the VUE handle is read from the
cache and inserted into the vertex stream. It is marked with a VCHit boolean to surpress processing
(shading) in the VS unit.

Otherwise, for Vertex Cache misses, a VUE handle is obtained to provide storage for the generated
vertex data. VertexLoop processing then proceeds to iterate through the VEs to generate the
destination VUE data.

VertexElementLoop

The VertexElementLoop generates and stores vertex data in the destination VUE one VE at a time.

 3D – Media – GPGPU

308 Doc Ref # IHD-OS-VLV-Vol7-04.14

Vertex Element Data Path

The following diagram shows the path by which a vertex element within the destination VUE is
generated and how the fields of the VERTEX_ELEMENT_STATE structure is used to control the
generation.

SourceElementFetch

The following assumes the VE requires data from a VB, which is the typical case. In the case that the VE
is completely comprised of constant and/or auto-generated IDs, the SourceElementFetch and
FormatConversion steps are skipped.

The structure index within the VE’s selected VB is computed as follows:
 if (VB is a VERTEXDATA VB)
 VBIndex = VertexIndex
 else // INSTANCEDATA VB
 VBIndex = StartInstanceLocation
 if (VB.InstanceDataStepRate > 0)
 VBIndex += InstanceID/VB.InstanceDataStepRate
 endif
 endif

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 309

If VBIndex is invalid (i.e., negative or past Max Index), the data returned from the VB fetch is defined to
be zero. Otherwise, the address of the source data required for the VE is then computed and the data is
read from the VB. The amount of data read from the VB is determined by the Source Element Format.
 if ((VBIndex < 0) || (VBIndex > VB.MaxIndex))
 srcData = 0
 else
 pSrcData = VB.BufferStartingAddress + (VBIndex * VB.BufferPitch) +
VE.SourceElementOffset
 srcData = MemoryRead(pSrcData, VE.SourceElementFormat)
 endif

FormatConversion

Once the VE source data has been fetched, it is subjected to format conversion. The output of format
conversion is up to four 32-bit components, each either integer or floating-point (as specified by the
Source Element Format). See Sampler for conversion algorithms.

Issue: If a 32 bit uscaled or sscaled format is used, then a float format needs to be used so VF will keep the data as
is and the kernel needs to convert the format to 32 bit float.

The following table lists the valid Source Element Format selections, along with the format and
availability of the converted components (if a component is listed as -, it cannot be used as the source
of a VUE component). Note: This table is a subset of the list of supported surface formats defined in the
Sampler chapter. Please refer to that table as the "master list". This table is here only to identify the
components available (per format) and their format.

Table: Source Element Formats Supported in VF Unit

Source Element Converted Component

Surface Format Name Format 0 1 2 3

R32G32B32A32_FLOAT FLOAT R G B A

R32G32B32A32_SINT SINT R G B A

R32G32B32A32_UINT UINT R G B A

R32G32B32A32_UNORM FLOAT R G B A

R32G32B32A32_SNORM FLOAT R G B A

R64G64_FLOAT FLOAT R G - -

R32G32B32A32_SSCALED FLOAT R G B A

R32G32B32A32_USCALED FLOAT R G B A

R32G32B32A32_SFIXED FLOAT R G B A

R32G32B32_FLOAT FLOAT R G B -

R32G32B32_SINT SINT R G B -

R32G32B32_UINT UINT R G B -

R32G32B32_UNORM FLOAT R G B -

R32G32B32_SNORM FLOAT R G B -

R32G32B32_SSCALED FLOAT R G B -

 3D – Media – GPGPU

310 Doc Ref # IHD-OS-VLV-Vol7-04.14

Source Element Converted Component

Surface Format Name Format 0 1 2 3

R32G32B32_USCALED FLOAT R G B -

R32G32B32_SFIXED FLOAT R G B -

R16G16B16A16_UNORM FLOAT R G B A

R16G16B16A16_SNORM FLOAT R G B A

R16G16B16A16_SINT SINT R G B A

R16G16B16A16_UINT UINT R G B A

R16G16B16A16_FLOAT FLOAT R G B A

R32G32_FLOAT FLOAT R G - -

R32G32_SINT SINT R G - -

R32G32_UINT UINT R G - -

R32G32_UNORM FLOAT R G - -

R32G32_SNORM FLOAT R G - -

R64_FLOAT FLOAT R - - -

R16G16B16A16_SSCALED FLOAT R G B A

R16G16B16A16_USCALED FLOAT R G B A

R32G32_SSCALED FLOAT R G - -

R32G32_USCALED FLOAT R G - -

R32G32_SFIXED FLOAT R G - -

B8G8R8A8_UNORM FLOAT B G R A

R10G10B10A2_UNORM FLOAT R G B A

R10G10B10A2_UINT UINT R G B A

R10G10B10_SNORM_A2_UNORM FLOAT R G B A

R8G8B8A8_UNORM FLOAT R G B A

R8G8B8A8_SNORM FLOAT R G B A

R8G8B8A8_SINT SINT R G B A

R8G8B8A8_UINT UINT R G B A

R16G16_UNORM FLOAT R G - -

R16G16_SNORM FLOAT R G - -

R16G16_SINT SINT R G - -

R16G16_UINT UINT R G - -

R16G16_FLOAT FLOAT R G - -

B10G10R10A2_UNORM FLOAT R G B A

R11G11B10_FLOAT FLOAT R G B -

R32_SINT SINT R - - -

R32_UINT UINT R - - -

R32_FLOAT FLOAT R - - -

R32_UNORM FLOAT R - - -

R32_SNORM FLOAT R - - -

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 311

Source Element Converted Component

Surface Format Name Format 0 1 2 3

R10G10B10X2_USCALED FLOAT R G B -

R8G8B8A8_SSCALED FLOAT R G B A

R8G8B8A8_USCALED FLOAT R G B A

R16G16_SSCALED FLOAT R G - -

R16G16_USCALED FLOAT R G - -

R32_SSCALED FLOAT R - - -

R32_USCALED FLOAT R - - -

R8G8_UNORM FLOAT R G - -

R8G8_SNORM FLOAT R G - -

R8G8_SINT SINT R G - -

R8G8_UINT UINT R G - -

R16_UNORM FLOAT R - - -

R16_SNORM FLOAT R - - -

R16_SINT SINT R - - -

R16_UINT UINT R - - -

R16_FLOAT FLOAT R - - -

R8G8_SSCALED FLOAT R G - -

R8G8_USCALED FLOAT R G - -

R16_SSCALED FLOAT R - - -

R16_USCALED FLOAT R - - -

R8_UNORM FLOAT R - - -

R8_SNORM FLOAT R - - -

R8_SINT SINT R - - -

R8_UINT UINT R - - -

R8_SSCALED FLOAT R - - -

R8_USCALED FLOAT R - - -

R8G8B8_UNORM FLOAT R G B -

R8G8B8_SNORM FLOAT R G B -

R8G8B8_SSCALED FLOAT R G B -

R8G8B8_USCALED FLOAT R G B -

R8G8B8_SINT SINT R G B -

R8G8B8_UINT UINT R G B -

R64G64B64A64_FLOAT FLOAT R G B A

R64G64B64_FLOAT FLOAT R G B A

R16G16B16_FLOAT FLOAT R G B -

R16G16B16_UNORM FLOAT R G B -

R16G16B16_SNORM FLOAT R G B -

 3D – Media – GPGPU

312 Doc Ref # IHD-OS-VLV-Vol7-04.14

Source Element Converted Component

Surface Format Name Format 0 1 2 3

R16G16B16_SSCALED FLOAT R G B -

R16G16B16_USCALED FLOAT R G B -

R16G16B16_UINT UINT R G B -

R16G16B16_SINT SINT R G B -

R32_SFIXED FLOAT R - - -

R10G10B10A2_SNORM FLOAT R G B A

R10G10B10A2_USCALED FLOAT R G B A

R10G10B10A2_SSCALED FLOAT R G B A

R10G10B10A2_SINT SINT R G B A

B10G10R10A2_SNORM FLOAT R G B A

B10G10R10A2_USCALED FLOAT R G B A

B10G10R10A2_SSCALED FLOAT R G B A

B10G10R10A2_UINT UINT R G B A

B10G10R10A2_SINT SINT R G B A

DestinationFormatSelection

The Component Select 0..3 bits are then used to select, on a per-component basis, which destination
components will be written and with which value. The supported selections are the converted source
component, VertexID, InstanceID, PrimitiveID, the constants 0 or 1.0f, or nothing (VFCOMP_NO_STORE).
If a converted component is listed as ‘-‘ (not available) in Source Element Formats supported in VF Unit,
it must not be selected (via VFCOMP_STORE_SRC), or an UNPREDICTABLE value will be stored in the
destination component.

The selection process sequences from component 0 to 3. Once a Component Select of
VFCOMP_NO_STORE is encountered, all higher-numbered Component Select settings must also be
programmed as VFCOMP_NO_STORE. It is therefore not permitted to have ‘holes’ in the destination VE.

PrimitiveInfoGeneration

A PrimitiveID value and PrimStart boolean need to be associated with the vertex.

If the vertex is either the first vertex of an instance or the first vertex following a ‘cut index’, the vertex is
marked with PrimStart.

PrimitiveID gets incremented such that subsequent per-object processing (i.e., in the GS or SF/WM)
sees an incrementing value associated with each sequential object within an instance. The PrimitiveID
associated with the provoking, non-adjacent vertex of an object is applied to the object.

The following pseudocode describe the logic used in the VertexLoop to compute the PrimitiveID value
associated with the vertex. Recall that PrimitiveID is reset to 0 at the start of each InstanceLoop.
 if (PIDCounterS < S[primType])
 PIDCounterS ++
 else

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 313

 if (PIDCounterR < R[primType])
 PIDCounterR ++
 else
 PrimitiveID ++
 PIDCounterR = 0
 endif
 endif

Two counters are employed to control the incrementing of PrimitiveID. The counters are compared
against two corresponding parameters associated with the primitive topology type.

The PIDCounterS is used to ‘skip over’ some number (possibly zero) initial vertices of the primitive
topology. This counter gets reset to 0 after each primitive is terminated.

Then the PIDCounterR is used to periodically increment the PrimitiveID, where the incrementing interval
(vertex count) is topology-specific.

The following table lists the S[] and R[] values associated with each primitive topology type.

PrimTopologyType S, R PrimitiveID Outputs

POINTLIST
POINTLIST_BF

1, 0 0,1,2,3, ...

LINELIST 1, 1 0,0,1,1,2,2,3,3, ...

LINELIST_ADJ 1, 3 0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3, ...

LINESTRIP

LINESTRIP_BF

LINESTRIP_CONT

2, 0 0,0,1,2,3, ...

LINESTRIP_ADJ 3, 0 0,0,1,2,3, ...

TRILIST
 RECTLIST

1, 2 0,0,0,1,1,1,2,2,2,3,3,3, ...

TRILIST_ADJ 1, 5 0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2, ...

TRISTRIP
 TRISTRIP_REV

3, 0 0,0,0,1,2,3, ...

TRISTRIP_ADJ 5, 1 0,0,0,0,0,0,1,1,2,2,3,3, ...

TRIFAN

TRIFAN_NOSTIPPL
E

POLYGON

3, 0 0,0,0,1,2,3, ...

QUADLIST 1, 3 0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3, ...

Note: The QUADLIST topology is converted to POLYGON
topology at the beginning of the 3D pipeline.

QUADSTRIP 3, 1 0,0,0,0,1,1,2,2,3,3, ...

 3D – Media – GPGPU

314 Doc Ref # IHD-OS-VLV-Vol7-04.14

PrimTopologyType S, R PrimitiveID Outputs

Note: The QUADSTRIP topology is converted to
POLYGON topology at the beginning of the 3D pipeline.

PATCHLIST_n

with S, R of 1, n-1

PATCHLIST_1: 0,1,2,3, ...

PATCHLIST_2: 0,0,1,1,2,2,3,3, ...

URBWrite

The selected destination components are written into the destination VUE starting at Destination
Offset Select. See the description of 3DPRIMITIVE for restrictions on this field.

OutputBufferedVertex

In order to accommodate ‘cut’ processing, the VF unit buffers one output vertex. The generation of a
new vertex or the termination of a primitive causes the buffered vertex to be output to the pipeline.

Dangling Vertex Removal

The last functional stage of processing of the 3DPRIMITIVE command is the removal of "dangling"
vertices. This stage includes the discarding of primitive topologies without enough vertices for a single
object (e.g., a TRISTRIP with only two vertices), as well as the discarding of trailing vertices that do not
form a complete primitive (e.g., the last two vertices of a 5-vertex TRILIST).

This function is best described as a filter operating on the vertex stream emitted from the processing of
the 3DPRIMITIVE. The filter inputs the PrimType, PrimStart, and PrimEnd values associated with the
generated vertices. The filter only outputs primitive topologies without dangling vertices. This requires
the filter to (a) be able to buffer some number of vertices, and (b) be able to remove dangling vertices
from the pipeline and dereference the associated VUE handles.

Statistics Gathering

 Vertices Generated

VF will increment the IA_VERTICES_COUNT Register (see Memory Interface Registers in Volume Ia, GPU)
for each vertex it fetches, even if that vertex comes from a cache rather than directly from a vertex
buffer in memory. Any "dangling" vertices (fetched vertices that are part of an incomplete object) will
not be included.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 315

Objects Generated

VF will increment the IA_PRIMITIVES_COUNT Register (see Memory Interface Registers in System
Overview) for each object (point, line, triangle, or quadrilateral) that it forwards down the pipeline.

Note

For LINELOOP, the last (closing) line object is not counted.

Vertex Shader (VS) Stage

VS Stage Overview

The VS stage of the 3D Pipeline is used to perform processing (shading) of vertices after being
assembled and written to the URB by the VF function. The primary function of the VS stage is to pass
vertices that miss in the Vertex Cache to VS threads, and then pass the VS thread-generated vertices
down the pipeline. Vertices that hit in the Vertex Cache are passed down the pipeline unmodified.

When the VS stage is disabled, vertices flow through the unit unmodified (i.e., as written by the VF unit).

Refer to the Common 3D FF Unit Functions subsection in the 3D Overview chapter for a general
description of a 3D pipeline stage, as much of the VS stage operation and control falls under these
common functions; i.e., most stage state variables and VS thread payload parameters are described in
3D Overview, and although they are listed here for completeness, that chapter provides the detailed
description of the associated functions.

Refer to this chapter for an overall description of the VS stage, and any exceptions the VS stage exhibits
with respect to common FF unit functions.

State

URB_FENCE

Refer to 3D Overview for a description of how the VS stage processes this command.

Functions

The following pages describe the Vertex Shader Functions.

Vertex Shader Cache (VS$)

Note: The VS$ should not be confused with input data caches used by the VF stage when fetching data
from index or vertex buffers in memory.

The 3D Pipeline employs a Vertex Shader Cache (VS$) that is shared between the VF and VS stages. (See
Vertex Fetch chapter for additional information). The vertex index generated by the VF stage is used as
the cache tag. The cached data contains the URB handle of a VUE, which in turn typically contains the

 3D – Media – GPGPU

316 Doc Ref # IHD-OS-VLV-Vol7-04.14

vertex data output from a previously-executed VS shader, though if the VS function is disabled the VUE
will contain the input vertex data generated by the VF stage.

When the VF stage processes a vertex, it will first perform a lookup in the VS$. If the vertex hits in the
VS$, the VS stage will return the hit VUE handle to the VF stage, and the VF stage will subsequently pass
the returned VUE handle back down the FF pipeline to VS. If the vertex misses in the VS$ (or always, if
the VS$ is disabled), the VS stage will allocate a VUE handle for the miss vertex and return this to the VF
stage. The VF stage will then proceed to fetch/generate the input vertex data, store the results into the
VUE, and then pass the VUE down to the VS stage. If the VS function is enabled, the VUE handle/data
will be used as input to a VS shader thread, and that thread will overwrite the VUE with the shader
results.

The VS$ may be explicitly DISABLED via the Vertex Cache Disable bit in 3DSTATE_VS. Even when
explicitly ENABLED, the VS stage will (by default) implicitly disable the VS$ whenever it detects one of
the following conditions:

Condition

Sequential indices are used in the 3DPRIMITIVE command (though this is effectively a
don’t care as there would not be any VS$ hits).

PrimitiveID is selected as part of the vertex data stored in the URB.

The implicit disable persists as long as one of these conditions persist, afterwhich the VS$ is invalidated.

The VS$ is implicitly invalidated between 3DPRIMITIVE commands and between instances within a
3DPRIMITIVE command – therefore use of InstanceID in a Vertex Element is not a condition under
which the cache is implicitly disabled.

The following table summarizes the modes of operation of the VS$.

VS$

VS
Function
Enable Mode of Operation

DISABLED
(implicitly or

explicitly)

DISABLED The VS$ is not used. VF stage assembles all vertices and writes them into the VUE
supplied by the VS stage. VS stage subsequently passes references to these VUEs
down the pipeline without spawning any VS threads.
 Usage Model: This is an exceptional condition, only required when the VF-
generated vertices contain PrimitiveID. Otherwise the VS$ should be enabled.

ENABLED The VS$ is not used. VF stage assembles all vertices and writes them into the VUE
supplied by the VS stage. VS stage subsequently spawns VS threads to process all
vertices, overwriting the input data with the results. The VS stage pass references to
these VUEs down the pipeline.
 Usage Model: This mode is only used when the VS function is required, but either
(a) the VS kernel produces a side effect (e.g., writes to a memory buffer) which in
turn requires every vertex to be processed by a VS thread, or (b) the input vertex
contains PrimitiveID.

ENABLED DISABLED The VS$ is used to provide reuse of VF-generated vertices. The VF stage checks the
cache and only processes (assembles/writes) vertices that miss in the VS$. In either
case, the VS stage passes references to vertices (that hit or miss) down the pipeline
without spawning any VS threads.
 Usage Model: Normal operation when the VS function is not required (e.g., SW has
detected a VS shader that simply copies outputs to inputs).

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 317

VS$

VS
Function
Enable Mode of Operation

ENABLED The VS$ is used to provide reuse of VS-processed vertices. The VF stage checks the
cache and only processes (assembles/writes) vertices that miss in the VS$. The VS
stage only processes (shades) the vertices that missed in the VS$. The VS stage
sends references to hit or missed vertices down the pipeline in the correct order.
 Usage Model: Normal operation when the VS function is required and use of the
VS$ is permissible.

SIMD4x2 VS Thread Request Generation

Description

This section describes SIMD4x2 thread request generation, which is the only mode available.

The following discussion assumes the VS Function is ENABLED.

When the Vertex Cache is disabled, the VS unit passes each pair of incoming vertices to a VS thread.
Under certain circumstances (e.g., prior to a state change or pipeline flush) the VS unit spawns a VS
thread to process a single vertex. Note that, in this case, the "unused" vertex slot is "disabled" via the
Execution Mask provided by the VS unit to the GEN4 subsystem as part of the thread dispatch (See the
EU ISA volume). The VS thread is itself unaware of the single-vertex case, and therefore a single VS
kernel can be used to process one or two vertices. (The performance of single-vertex processing
roughly equals the two-vertex case.)

When the Vertex Cache is enabled, the VF unit detects vertices that hit in the cache and marks these
vertices so that they bypass VS thread processing and are output via a reference to the cached VUE. The
VS unit keeps track of these cache-hit vertices as it proceeds to process cache-miss vertices. The VS unit
guarantees that vertices exit the unit in the order they are received. This may require the VS unit to
issue single-vertex VS threads to process a cache-miss vertex that has yet to be paired up with another
cache-miss vertex (if this condition is preventing the VS unit from producing any output).

SIMD4x2 VS Thread Execution

Description

This section describes SIMD4x2 thread execution, which is the only mode available.

A VS kernel (with one exception mentioned below) assumes it is to operate on two vertices in parallel.
Input data is either passed directly in the thread payload (including the input vertex data) or indirectly
via pointers passed in the payload.

Refer to the EU ISA chapters for specifics on writing kernels that operate in SIMD4x2 fashion.

Refer to the 3D Pipeline Stage Overview (3D Overview) for information on FF-unit/thread interactions.

In the (unlikely) event that the VS kernel needs to determine whether it is processing one or two
vertices, the kernel can compare the URB Return Handle 0 and URB Return Handle 1 fields of the
thread payload. These fields differ if two vertices are being processed, and identical if one vertex is

 3D – Media – GPGPU

318 Doc Ref # IHD-OS-VLV-Vol7-04.14

being processed. An example of when this test may be required is if the kernel outputs some vertex-
dependent results into a memory buffer; without the test the single vertex case might incorrectly output
two sets of results. Note that this is not the case for writing the URB destinations, as the Execution Mask
prevents the write of an undefined output.

Vertex Output

VS threads must always write the destination URB handles passed in the payload. VS threads are not
permitted to request additional destination handles. Refer to 3D Pipeline Stage Overview (3D Overview)
for details on how destination vertices are written and any required contents/formats.

Thread Termination

VS threads must signal thread termination, in all likelihood on the last message output to the URB
shared function. Refer to the ISA doc for details on End-Of-Thread indication.

Primitive Output

The VS unit will produce an output vertex reference for every input vertex reference received from the
VF unit, in the order received. The VS unit simply copies the PrimitiveType, StartPrim, and EndPrim
information associated with input vertices to the output vertices, and does not use this information in
any way. Neither does the VS unit perform any readback of URB data.

Statistics Gathering

The VS stage tracks a single pipeline statistic, the number of times a vertex shader is executed. A vertex
shader is executed for each vertex that is fetched on behalf of a 3DPRIMITIVE command, unless the
shaded results for that vertex are already available in the vertex cache. If the Statistics Enable bit in
VS_STATE is set, the VS_INVOCATION_COUNT Register (see Memory Interface Registers in Volume Ia,
GPU) will be incremented for each vertex that is dispatched to a VS thread. This counter will often need
to be incremented by 2 for each thread invoked since 2 vertices are dispatched to one VS thread in the
general case.

Project Description

 When VS Function Enable is DISABLED and Statistics Enable is ENABLED, VS_INVOCATION_COUNT
increments by one for every vertex that passes through the VS stage, even though no VS threads are
spawned.

Payloads

The following pages describe the Vertex Shader Payloads.

SIMD4x2 Payload

The following table describes the payload delivered to VS threads.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 319

Table: VS Thread Payload (SIMD4x2)

DWord Bits Description

 30:0 Reserved

R0.6 31:24 Reserved

 23:0 Thread ID. This field uniquely identifies this thread within the threads spawned by this
FF unit, over some period of time.

Format: Reserved for HW Implementation Use.

R0.5 31:10 Scratch Space Offset: Specifies the extent of the scratch space allocated to the thread,
specified as a 1KB-granular offset from the General State Base Address. See Scratch
Space Base Offset description in VS_STATE.

(See 3D Pipeline for further description on scratch space allocation).

Format = GeneralStateOffset[31:10]

 9 Reserved

 8:0 FFTID: This ID is assigned by the FF unit and used to identify the thread within the set
of outstanding threads spawned by the FF unit.

Format: Reserved for HW Implementation Use.

Format:

Format

U7

Range:

Range

0-127

R0.4 31:5 Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It is
specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

 4:0 Reserved

R0.3 31:5 Sampler State Pointer. Specifies the location of the Sampler State Table to be used by
this thread, specified as a 32-byte granular offset from the General State Base
Addressor the Dynamic State Base Address.

Format = DynamicStateOffset[31:5]

 4 Reserved

 3:0 Per Thread Scratch Space: Specifies the amount of scratch space allowed to be used
by this thread. The value specifies the power that two will be raised to (over determine
the amount of scratch space).

 3D – Media – GPGPU

320 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bits Description

(See 3D Pipeline for further description).

Format = U4 power of two (in excess of 10)

Range = [0,11] indicating [1K Bytes, 2M Bytes]

R0.2 31:0 Reserved: delivered as zeros (reserved for message header fields)

R0.1 31:16 Reserved

 15:0 URB Return Handle 1: This is the 64B-aligned URB offset where the EU’s upper
channels (DWords 7:4) results are to be stored.

If only one vertex is to be processed (shaded) by the thread, this field will effectively be
ignored (no results are stored for these channels, as controlled by the thread’s Channel
Mask).

(See Generic FF Unit for further description).

Format:

Format

U12 64B-aligned URB offset; bit 12 is reserved.

R0.0 31:16 Reserved

 15:0 URB Return Handle 0: This is the 64B-aligned URB offset where the EU’s lower
channels (DWords 3:0) results are to be stored.

(See Generic FF Unit for further description).

Format:

Format

U12 64B-aligned URB offset; bit 12 is reserved.

[Varies]
optional

255:0 Constant Data (optional):

Some amount of constant data (possible none) can be extracted from the push
constant buffer (PCB) and passed to the thread following the R0 Header. The amount
of data provided is defined by the sum of the read lengths in the last
3DSTATE_CONSTANT_VS command (taking the buffer enables into account).

The Constant Data arrives in a non-interleaved format.

Varies 255:0 Vertex Data: Data from (possibly) one or (more typically) two Vertex URB Entries is
passed to the thread in the thread payload. The Vertex URB Entry Read Offset and
Vertex URB Entry Read Length state variables define the regions of the URB entries
that are read from the URB and passed in the thread payload. These SVs can be used to
provide a subset of the URB data as required by SW.

The vertex data is laid out in the thread header in an interleaved format. The lower
DWords (0-3) of these GRF registers always contain data from a Vertex URB Entry. The
upper DWords (4-7) may contain data from another Vertex URB Entry. This allows two

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 321

DWord Bits Description

vertices to be processed (shaded) in parallel SIMD8 fashion. The VS kernel is not aware
of the validity of the upper vertex.

3D Pipeline – Hull Shader (HS) Stage
The Hull Shader (HS) stage of the pipeline is used to process patchlist (PATCHLIST_n) topologies in
support of higher-order surface (HOS) tessellaton. If the HS stage is enabled, each incoming patch
object is processed by a possible series of HS threads. The combined output of these threads is a Patch
URB Entry (patch record) written to the URB. This patch record is used by subsequent stages (TE, DS) to
complete the HOS tessellation operations.

For SW Tessellation mode, the HS thread can also write tessellated domain point topologies to memory.
The domain point count and starting memory address of the domain points are passed via the Patch
Header in the patch record.

The vertices associated with patchlist primitives are also referred to as Input Control Points (ICPs) to
contrast them with any Output Control Points the HS threads may write to the patch record. (The
definition and use of OCPs are outside the scope of this document).

The HS stage also performs statistics counting. Incomplete topologies do not reach the HS stage.

The HS, TE, and DS stages must be enabled and disabled together. When these stages are disabled, all
topologies (including patchlist topologies) simply pass through to the GS stage. When these stages are
enabled, only patchlist topologies should be issued to the pipeline, otherwise behavior is UNDEFINED.

State

This section contains the state registers for the Hull Shader.

3DSTATE_HS

The state used by HS is defined with the following 3DSTATE_HS inline state packet.

3DSTATE_HS

3DSTATE_PUSH_CONSTANT_ALLOC_HS

3DSTATE_CONSTANT_HS

3DSTATE_CONSTANT(Body)

3DSTATE_BINDING_TABLE_POINTERS_HS

3DSTATE_SAMPLER_STATE_POINTERS_HS

3DSTATE_URB_HS

 3D – Media – GPGPU

322 Doc Ref # IHD-OS-VLV-Vol7-04.14

Functions

Patch Object Staging

The HS unit accepts patchlist topologies as a stream of incoming vertices. Depending on the number of
vertices per patch object (as specified by the PATCHLIST_n topology), the HS thread assembles each
complete patch object and passes it (its vertices, PrimitiveID, etc.) to HS thread(s) as described below.

HS Thread Execution

Input to HS threads is comprised of:

• Input Control Points (incoming patch vertices), pushed into the payload and/or passed indirectly
via URB handles.

• Push Constants (common to all threads)
• Patch Data handle
• Resources available via binding table entries (accessed through shared functions)
• Miscellaneous payload fields (Instance Number, etc.)

Typically the only output of the HS threads is the Patch URB Entry (patch record). All thread instances
for an input patch are passed the same patch record handle. As the (possibly concurrent) threads can
both read and write the patch record, it is up to the kernels to ensure deterministic results. One
approach would be to use the thread’s Instance Number as an index for URB write destinations.

Dispatch Mask

HS threads are dispatched with the dispatch mask set to 0xFFFF. It is the responsibility of the kernel to
modify the execution mask as required (e.g., if operating in SIMD4x2 mode but only the lower half is
active, as would happen in one thread if the threads were computing an odd number of OCPs via
SIMD4x2 operation).

Patch URB Entry (Patch Record) Output

For each patch, the HS thread(s) generate a single patch record, starting with a fixed 32B Patch Header.

When the final thread instance terminates, the patch record handle is passed down the pipeline to the
Tessellation Engine (TE).

Patch Header DW0-7

The first 8 DWords of the patch record is defined as a Patch Header. The Patch Header is written by an
HS thread and read by the TE stage. It normally contains up to six Tessellation Factors (TFs) that
determine how finely the TE stage needs to tessellate a domain (if at all).

 In SW Tessellation mode, the header contains Domain Point Count and Domain Point Buffer
Starting Address fields which identify the domain points generated by an HS thread. The following
tables show the fixed layouts of the Patch Header DW0-7, depending on DomainType and SW
Tessellation Mode.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 323

Patch Header (SW Tessellation Mode)

DWord Bits Description

7 31:0 Domain Point Count

Specifies the number of DOMAIN_POINT structures in
the domain point list in memory. If 0, there are no
domain points defined, the patch will considered culled,
and the TE stage will discard the patch. Otherwise the TS
stage will send this number of domain points down the
pipeline.

Format: U32

6 31:6 Domain Point Buffer Starting Address (DPBSA)

This field specifies the starting memory offset from SW
Tessellation Base Address (set by the
SWTESS_BASE_ADDRESS command) at which the HS
thread has written a list of DOMAIN_POINT structures.
This field is ignored if Domain Point Count is 0.

Format: 64B-aligned offset from SW Tessellation Base
Address

5:0 Reserved: MBZ

5-0 31:0 Reserved: MBZ

Table: Patch Header (QUAD Domain)

DWord Bits Description

7 31:0 UEQ0 Tessellation Factor
Format: FLOAT32

6 31:0 VEQ0 Tessellation Factor
Format: FLOAT32

5 31:0 UEQ1 Tessellation Factor
Format: FLOAT32

4 31:0 VEQ1 Tessellation Factor
Format: FLOAT32

3 31:0 Inside U Tessellation Factor
Format: FLOAT32

2 31:0 Inside V Tessellation Factor
Format: FLOAT32

1 31:0 Reserved: MBZ

0 31:1 Reserved: MBZ

0 Reserved: MBZ

 3D – Media – GPGPU

324 Doc Ref # IHD-OS-VLV-Vol7-04.14

Patch Header (TRI Domain)

DWord Bits Description

7 31:0 UEQ0 Tessellation Factor
Format: FLOAT32

6 31:0 VEQ0 Tessellation Factor
Format: FLOAT32

5 31:0 WEQ0 Tessellation Factor
Format: FLOAT32

4 31:0 Inside Tessellation Factor
Format: FLOAT32

3-1 31:0 Reserved: MBZ

0 31:1 Reserved: MBZ

0 Reserved: MBZ

Patch Header (ISOLINE Domain)

DWord Bits Description

7 31:0 Line Detail Tessellation Factor
Format: FLOAT32

6 31:0 Line Density Tessellation Factor
Format: FLOAT32

5-0 31:0 Reserved: MBZ

NOTE: The Tessellation stage will incorrectly add domain points along patch edges under the following
conditions, which may result in conformance failures and/or cracking artifacts:

• QUAD domain
• INTEGER partitioning
• All three TessFactors in a given U or V direction (e.g., V direction: UEQ0, InsideV, UEQ1) are all

exactly 1.0
• All three TessFactors in the other direction are > 1.0 and all round up to the same integer vaule

(e.g, U direction: VEQ0 = 3.1, InsideU = 3.7, VEQ1 = 3.4)

The suggested workaround (to be implemented as part of the postamble to the HS shader in the HS
kernel) is:
if (

 (TF[UEQ0] > 1.0) ||

 (TF[VEQ0] > 1.0) ||

 (TF[UEQ1] > 1.0) ||

 (TF[VEQ1] > 1.0) ||

 (TF[INSIDE_U] > 1.0) ||

 (TF[INSIDE_V] > 1.0))

{

 TF[INSIDE_U] = (TF[INSIDE_U] == 1.0) ? 2.0: TF[INSIDE_U];

 TF[INSIDE_V] = (TF[INSIDE_V] == 1.0) ? 2.0: TF[INSIDE_V];

}

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 325

DOMAIN_POINT Structure

In SW Tessellation Mode (i.e., when the TE State is SW_TESS), the TE stage reads a sequence of
DOMAIN_POINT structures from memory, starting at the Domain Point Buffer Starting Address field of
the patch header. (The DPBSA is treated as an offset from the SW Tessellation Base Address as set by
the SWTESS_BASE_ADDRESS command.)

Table: DOMAIN_POINT Memory Structure (SW Tessellation)

DWord Bits Description

0 31 PrimStart
Set on the first domain point of the topology (e.g., first vertex in a TRISTRIP).

30 PrimEnd

Set on the last domain point of the topology (e.g., last vertex in a TRISTRIP).

Programming note: Software must ensure that incomplete primitives are not output, or
behavior is UNDEFINED.

29 PatchEnd

Set on the last domain point for the patch. By definition, PrimEnd must also be set.

Programming Note: Software must ensure that the Domain Point Count coincides with
the domain point marked with PatchEnd.

28:24 PrimType

This is the primitive topology type.

Format: See 3DPRIMITIVE for encodings

Valid values:POINTLIST, LINESTRIP, LINELIST, TRISTRIP, TRISTRIP_REV, TRILIST, TRIFAN.

23:19 Reserved

18:17 DS Tag [16:15]

This field provides bits [16:15] of the DS Tag value for this domain point. See DS Tag
[14:0].

Format: U2

16:0 U Coordinate
Format: U1.16

1 31:17 DS Tag [14:0]

This field provides bits [14:0] of the DS Tag value for this domain point.

In order to utilize the DS cache, the 17-bit DS Tag must be unique for the associated U,V
coordinate. If software cannot guarantee this, the DS cache must be disabled when in SW

 3D – Media – GPGPU

326 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bits Description

Tessellation mode.

Format: U15

16:0 V Coordinate
Format: U1.16

Statistics Gathering

HS Invocations

The HS unit controls the HS_INVOCATIONS counter, which counts the number of patches processed by
the HS stage.

ICP Dereferencing

If ICPs are only pushed in HS payloads (i.e., the Include Vertex Handles state bit is clear), the ICP
handles are automatically released after the last instance for the patch is dispatched.

If Include Vertex Handles is set, the HS thread(s) will be reading ICP data in from the URB; it is the
responsibility of the HS thread instances to explicitly dereference all the ICP handles via use of the
Complete bit in URB_READ_xxx commands.

• If only one instance is used, that instance can dereference the ICP handles as soon as they are no
longer needed, by setting Complete in the last URB_READ from that handle. Otherwise all (or the
remaining) ICP handles need to be explicitly dereferenced via (possibly null-response-length)
URB_READ commands prior to thread EOT.

• If more than one instance is spawned, the last-terminating instance is responsible for
dereferencing all the ICP handles before it terminates. Instances can detect that they are the last-
terminating thread via use of the semaphore allocated to the patch (via the Semaphore Handle
and Semaphore Index payload fields). An URB_ATOMIC_INC operation (URB_ATOMIC command)
can be performed on this semaphore by each instance prior to terminating. Only the last-
terminating thread will observe the value (InstanceCount – 1) as a return value. After
dereferencing all the ICPs, the last-terminating thread must also reset the semaphore to 0 via the
URB_ATOMIC_MOV operation.

Payloads

SINGLE_PATCH Payload

The following table shows the layout of the payload delivered to HS threads. Refer to 3D Pipeline Stage
Overview (3D Pipeline) for details on those fields that are common amongst the various pipeline stages.

Patch object vertex (ICP) data can be passed by value (data pushed in the payload) and/or by reference
(URB handle pushed in the payload).

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 327

Table: SINGLE_PATCH HS Thread Payload

GRF
DWord Bits Description

R0.7 31

30:0 Reserved.

R0.6 31
Dereference Thread

This bit is defined to send back the Handle ID back to HS to dereference the input
handles for this thread.

30:24 Reserved.

23:0
Thread ID. This field uniquely identifies this thread within the threads spawned by
this FF unit, over some period of time.

Format: Reserved for HW Implementation Use.

R0.5 31:10
Scratch Space Pointer. Specifies the location of the scratch space allocated to this
thread, specified as a 1KB-aligned offset from the General State Base Address.

Format = GeneralStateOffset[31:10]

9.0 Reserved.

8:0
FFTID. This ID is assigned by the fixed function unit and is relative identifier for the
thread. It is used to free up resources used by the thread upon thread completion.

Format:

Format

U7

Range:

Range

0-127

R0.4 31:5
Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding Table. It
is specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

4:0 Reserved.

R0.3 31:5
Sampler State Pointer. Specifies the location of the Sampler State Table to be used
by this thread, specified as a 32-byte granular offset from the General State Base
Address or Dynamic State Base Address.

Format = DynamicStateOffset[31:5]

4 Reserved.

3:0
Per Thread Scratch Space. Specifies the amount of scratch space allowed to be used

 3D – Media – GPGPU

328 Doc Ref # IHD-OS-VLV-Vol7-04.14

GRF
DWord Bits Description

by this thread. The value specifies the power that two will be raised to (over determine
the amount of scratch space).

Programming Notes:

This amount is available to the kernel for information only. It is passed verbatim (if not
altered by the kernel) to the Data Port in any scratch space access messages, but the
Data Port ignores it.

Format = U4 power of two (in excess of 10)

Range = [0,11] indicating [1K Bytes, 2M Bytes]

R0.2 31:24
Semaphore Index. This is a Dword index to be used in URB_ATOMIC commands if
the thread is using data pulled from input handles. This information is only required
for pull-model vertex inputs and InstanceCount>1.

Format = U8

23 Reserved.

22:16
Instance Number. A patch-relative instance number between 0 and InstanceCount-1.

Format = U7

15:12
Barrier Index. This index is to be used in any BarrierMsgs sent by this thread to the
Gateway.

Format = U4

11:0
Semaphore Handle: This is the URB handle pointing to the first HS semaphore
DWord in the URB. Software is responsible for statically allocating the semaphore
Dwords in the URB. Refer to Semaphore Handle field in 3DSTATE_HS for size of
semaphore allocation.

Format: U12 64B-aligned URB Offset

R0.1 31:0
Primitive ID. This field contains the Primitive ID associated with the patch.

Format: U32

R0.0 31:16 Reserved.

15:0
Patch Data Record URB Return Handle.

Format:

Format

U12 64B-aligned URB offset.

 R1 is only included for dispatches that have Include Vertex Handles enabled.

R1.7 31:16 ICP 7 Handle ID

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 329

GRF
DWord Bits Description

15:0
ICP 7 Handle

Format:

Format

U12 64B-aligned URB offset.

R1.6 31:16 ICP 6 Handle ID

15:0 ICP 6 Handle

R1.5 31:16 ICP 5 Handle ID

15:0 ICP 5 Handle

R1.4 31:16 ICP 4 Handle ID

15:0 ICP 4 Handle

R1.3 31:16 ICP 3 Handle ID

15:0 ICP 3 Handle

R1.2 31:16 ICP 2 Handle ID

15:0 ICP 2 Handle

R1.1 31:16 ICP 1 Handle ID

15:0 ICP 1 Handle

R1.0 31:16 ICP 0 Handle ID

15:0 ICP 0 Handle

 R2 is only included for dispatches that have Include Vertex Handles enabled and when ICP Count >7

R2.7 31:16 ICP 15 Handle ID

15:0 ICP 15 Handle

R2.6 31:16 ICP 14 Handle ID

15:0 ICP 14 Handle

R2.5 31:16 ICP 13 Handle ID

15:0 ICP 13 Handle

R2.4 31:16 ICP 12 Handle ID

15:0 ICP 12 Handle

R2.3 31:16 ICP 11 Handle ID

15:0 ICP 11 Handle

R2.2 31:16 ICP 10 Handle ID

15:0 ICP 10 Handle

R2.1 31:16 ICP 9 Handle ID

15:0 ICP 9 Handle

R2.0 31:16 ICP 8 Handle ID

15:0 ICP 8 Handle

 R3 is only included for dispatches that have Include Vertex Handles enabled and when ICP Count >15

R3.7 31:16 ICP 23 Handle ID

15:0 ICP 23 Handle

R3.6 31:16 ICP 22 Handle ID

15:0 ICP 22 Handle

 3D – Media – GPGPU

330 Doc Ref # IHD-OS-VLV-Vol7-04.14

GRF
DWord Bits Description

R3.5 31:16 ICP 21 Handle ID

15:0 ICP 21 Handle

R3.4 31:16 ICP 20 Handle ID

15:0 ICP 20 Handle

R3.3 31:16 ICP 19 Handle ID

15:0 ICP 19 Handle

R3.2 31:16 ICP 18 Handle ID

15:0 ICP 18 Handle

R3.1 31:16 ICP 17 Handle ID

15:0 ICP 17 Handle

R3.0 31:16 ICP 16 Handle ID

15:0 ICP 16 Handle

 R4 is only included for dispatches that have Include Vertex Handles enabled and when ICP Count >23

R4.7 31:16 ICP 31 Handle ID

15:0 ICP 31 Handle

R4.6 31:16 ICP 30 Handle ID

15:0 ICP 30
Handle

R4.5 31:16 ICP 29 Handle ID

15:0 ICP 29 Handle

R4.4 31:16 ICP 28 Handle ID

15:0 ICP 28 Handle

R4.3 31:16 ICP 27 Handle ID

15:0 ICP 27 Handle

R4.2 31:16 ICP 26 Handle ID

15:0 ICP 26 Handle

R4.1 31:16 ICP 25 Handle ID

15:0 ICP 25 Handle

R4.0 31:16 ICP 24 Handle ID

15:0 ICP 24 Handle

[Varies]
optional

255:0
Constant Data (optional):

Some amount of constant data (possible none) can be extracted from the push
constant buffer (PCB) and passed to the thread following the R0 Header. The amount
of data provided is defined by the sum of the read lengths in the last
3DSTATE_CONSTANT_HS command (taking the buffer enables into account).

[Varies]
optional

255:0
ICP Vertex Data (optional):

There can be up to 32 vertices supplied, each with a size defined by the Vertex URB
Entry Read Length state.

Vertex 0 DWord 0 is located at Rn.0, Vertex 0 DWord 1 is located at Rn.1, etc. Vertex 1

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 331

GRF
DWord Bits Description

DWord 0 immediately follows the last DWord of Vertex 0, and so on.

HW Tessellation
When enabled, the Tessellation Engine (TE) stage performs fixed-function domain tessellation
(decomposition into smaller objects) of incoming patches, as referenced by an HS-generated input PDR
handle and as controlled by TE state and Tessellation Factors (TFs) read from the Patch URB Entry (patch
record). The TE stage is entirely fixed-function and does not spawn threads.

Description

The TE stage can also operate in SW Tessellation mode, where it simply reads "pre-tessellated"
domain point topologies from memory and passes them down the pipeline.

The fixed-function tessellation algorithm is considered an implementation detail and is therefore
beyond the scope of this document. That detail includes both the order of output topologies as well as
the order of vertices (domain points) within the output topologies. Only a high-level overview is
provided to describe how the (few) state variables can be used to control aspects of tessellation
behavior. The implementation will generate deterministic results (given the same exact inputs it will
produce exactly the same outputs).

Several domain types (QUAD, TRI, and ISOLINE) are supported. Depending on the domain type, the TE
stage outputs the required point/line/triangle topologies including a domain point per vertex. These
topologies will be output to the DS stage, where the domain points will be converted to 3D object
vertices, resulting in 3D objects as typically input to the 3D pipeline when HOS tessellation is not used.

The HS, TE, and DS stages must be enabled and disabled together. When these stages are disabled, all
topologies (including patchlist topologies) simply pass through to the GS stage. When these stages are
enabled, only patchlist topologies should be issued to the pipeline, else behavior is UNDEFINED. The
MI_TOPOLOGY_FILTER command can be used to ensure this happens, i.e., it can be used to have the
Command Stream ignore 3DPRIMITIVE commands that do not match a specific topology type.

State

This section contains the state registers for the Tessellation Engine.

3DSTATE_TE

Functions

Patch Culling

Normally, if any outside TF is <= 0.0 or NaN, the entire patch is culled at the TE stage.

Inside TFs are not used to cull patches.

 In SW Tessellation mode, a Domain Point Count of 0 indicates that a patch is to be culled.

 3D – Media – GPGPU

332 Doc Ref # IHD-OS-VLV-Vol7-04.14

Tessellation Factor Limits

After the Patch Culling test is performed, the TessFactors undergo a min() clamp to either the
MaxTessFactorOdd (for FRACTIONAL_ODD partitioning) or MaxTessFactorNotOdd (for
FRACTIONAL_EVEN or INTEGER partitioning). Exception: If the ISOLINE domain is specified, the
LineDensity TessFactor will be clamped to the MaxFactorNotOdd value even if FRACTIONAL_ODD
partitioning is specified).

Usage Note: Except for the purposes of experimentation, these max TessFactor values shall be
programmed to values required by the APIs (refer to the 3DSTATE_TE definition).

Partitioning

The Partitioning state controls how the TFs are used to divide their corresponding edges.

• INTEGER: The edge is divided into an integral number of equal segments (given some fixed-point
tolerance).

After clamping, the TF is rounded up to an integer value. The edge is divided into that many
equal segments.

• EVEN_FRACTIONAL: The edge is divided into an even number of possibly-unequal segments. The
total number of segments is determined by rounding up the post-clamped TF to an even number.

More specifically, the edge is divided exactly in half. Like the endpoints of the edge, the midpoint
of the edge is by definition a tessellation point. Each half contains some number of equal
segments and possibly one smaller segment. The size of the smaller segment is determined by
the position of the TF value within the range defined by the TF rounded down and up to even
numbers. The closer the TF is to the smaller value, the smaller the segment size is. When the TF
reaches the smaller even value, the smaller segment disappears. The closer the TF gets to the
larger even value, the closer the smaller segment size approaches the size of the other segments.
When the TF reaches the larger even value, all segments are equal. The position of the smaller
segment along the half edge varies as a function of the TF value.

• ODD_FRACTIONAL: The edge is divided into an odd number of possibly-unequal segments. The
tessellation scheme is very similar to EVEN_FRACTIONAL partitioning, except that the edge
midpoint is not included as a tessellation point. This, and the fact that the tessellation points are
mirrored about the edge midpoint, causes an "odd" segment (which may or may not be the
"smaller" segment) to straddle the edge midpoint, therefore resulting in the number of segments
for the edge always being odd.

Domain Types and Output Topologies

The major (if only) task of the TE stage is to tessellate a 2D (u,v) domain region, as selected by the
Domain state, into some number of 2D object topologies. (If the patch is culled, that number may be
zero). The options for Domain state are:

• QUAD: A square 2D region within a u,v Cartesian (rectanguar) space. The region extends from the
origin to u=1 and v=1. Within the region, tessellation domain locations are determined. The
possible output topologies include points, clockwise triangles, and counter-clockwise triangles.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 333

• TRI: A triangular 2D region with u,v,w barycentric (areal) coordinates. The three edges correspond
to u=0, v=0, and w=0 boundaries. In barycentric coordinates, w = 1 – u – v, therefore points
within the region are fully defined as 2D (u,v) coordinates. Within the region, tessellation domain
locations are determined. The possible output topologies include points, clockwise triangles, and
counter-clockwise triangles.

• ISOLINE: A series of points within a QUAD domain, where the points lie on lines parallel to the u
axis and extending from [0,1) in the v direction. Either the segmented lines (linestrips) or
individual point topologies can be output.

QUAD Domain Tessellation

The four outside TFs (TF.UEQ0, TF.VEQ0, TF.UEQ1, TF.VEQ1) are used to specify the level of tessellation
along the four corresponding edges of the 2D quad domain. The two inside TFs (TF.InsideU, TF.InsideV)
are used to determine the level of tessellation within a 2D interior region. Typically the interior region
appears as a regularly-tessellated 2D grid, however under certain conditions the interior region may
collapse in which case only the outside TFs are relevant.

In general, a transition region exists between each edge of the interior region and the corresponding
outside edge. The topologies generated for these regions effectively stitch together locations along the
outside and inside edges, as each of these edges can contain a different number of tessellated
segments. In the case where all TFs in a given direction (e.g., TF.VEQ0, TF.InsideU, and TF.VEQ1) are the
same value, it appears as if the regularly-tessellated interior region extends all the way to the outside
edges. If this condition simultaneously exists for both u and v directions, the entire domain will appear
to be tessellated into a regular grid, with no noticeable transition regions.

QUAD Domain

 3D – Media – GPGPU

334 Doc Ref # IHD-OS-VLV-Vol7-04.14

TRI Domain Tessellation

Tessellation of the TRI domain is similar to the QUAD domain, except only three outside edges/TFs are
used, and the tessellation of the interior region is controlled by a single TF.

TRI Domain

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 335

ISOLINE Domain Tessellation

Tessellation of the ISOLINE domain is different but much simpler than QUAD and TRI domains. The
TF.LineDetail TF controls how finely the U direction is tessellated, while the TF.LineDensity TF controls
how finely the V direction is tessellated. When LINE output topology is selected, a series of segmented
lines parallel to the U axis (constant V) are output. When POINT output topology is selected, only the
line segment endpoints are output (as point objects). In either case there is no topology output for the
V=1 edge, which avoids overlapping lines for adjacent patches.

ISOLINE Domain

 3D – Media – GPGPU

336 Doc Ref # IHD-OS-VLV-Vol7-04.14

Domain Shader (DS) Stage
The DS stage is very similar to the VS stage in that it is responsible for dispatching EU threads to shade
vertices and maintaining a cache (with reference counts) of the shaded vertex outputs of these threads.
Major differences are as follows:

• The DS receives topologies with domain points instead of vertices. The only data specific to a
domain point are its U,V coordinates. These coordinates (plus a default or computed W
coordinate) are passed directly in the DS thread payload. There is no other vertex-specific input
vertex data.

• The concatenation of the domain point U,V coordinates (vs. a vertex index) is used as the cache
tag.

• The cache is invalidated between patches.

The DS stage accepts state information via the inline 3DSTATE_DS command.

State

This section contains the state registers for the Domain Shader.

3DSTATE_DS

3DSTATE_DS

3DSTATE_PUSH_CONSTANT_ALLOC_DS

3DSTATE_CONSTANT_DS

3DSTATE_CONSTANT(Body)

3DSTATE_BINDING_TABLE_POINTERS_DS

3DSTATE_SAMPLER_STATE_POINTERS_DS

3DSTATE_URB_DS

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 337

Functions

SIMD4x2 Thread Execution

A DS kernel assumes it is to operate on two domain points in parallel using the EU's SIMD4x2 execution
model . Refer to ISA chapters for specifics on writing kernels that operate in SIMD4x2 fashion.

DS threads must always write the destination URB handles passed in the payload. DS threads are not
permitted to request additional destination handles. Refer to 3D Pipeline Stage Overview (3D Overview)
for details on how destination vertices are written and any required contents/formats.

DS threads must signal thread termination on the last message output to the URB shared function.

Statistics Gathering

Payloads

SIMD4x2 Payload

The following table describes the payload delivered to DS threads.

DS Thread Payload (SIMD4x2)

DWord Bits Description

R0.7 31 Snapshot Flag

30:0 Reserved

R0.6 31:24 Reserved

23:0 Thread ID: This field uniquely identifies this thread within the threads spawned by
this FF unit, over some period of time.

Format: Reserved for HW Implementation Use.

R0.5 31:10 Scratch Space Offset: Specifies the of the scratch space allocated to the thread,
specified as a 1KB-granular offset from the General State Base Address. See Scratch
Space Base Offset description in VS_STATE.

(See 3D Pipeline for further description on scratch space allocation).

Format = GeneralStateOffset[31:10]

9.0 Reserved

8:0 FFTID: This ID is assigned by the FF unit and used to identify the thread within the set
of outstanding threads spawned by the FF unit.

Format: Reserved for HW Implementation Use.

Format:

 3D – Media – GPGPU

338 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bits Description

U9

R0.4 31:5 Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It
is specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

4:0 Reserved

R0.3 31:5 Sampler State Pointer. Specifies the location of the Sampler State Table to be used
by this thread, specified as a 32-byte granular offset from the General State Base
Address or Dynamic State Base Address.

Format = DynamicStateOffset[31:5]

4 Reserved

3:0 Per Thread Scratch Space: Specifies the amount of scratch space allowed to be used
by this thread. The value specifies the power that two will be raised to (over
determine the amount of scratch space).

Format = U4 power of two (in excess of 10)

Range = [0,11] indicating [1K Bytes, 2M Bytes]

R0.2 31:0 Reserved: delivered as zeros (reserved for message header fields)

R0.1 31:26 Reserved

25:16 Handle ID 1: This ID is assigned by the FF unit and used to identify the URB Return
Handle 1 to the FF unit (as FF-specific index value, not a URB address).

If only one vertex is to be processed (shaded) by the thread, this field will effectively
be ignored (no results are stored for these channels, as controlled by the thread's
Channel Mask).

Format = Reserved for HW Implementation Use.

15:14 Reserved

13:0 URB Return Handle 1: This is the URB handle where Vertex 1 data (the EU's upper
channels (DWords 7:4)) results are to be stored.

If only one vertex is to be processed (shaded) by the thread, this field will effectively
be ignored (no results are stored for these channels, as controlled by the thread's
Channel Mask).

Format:

U12 handle (512-bit granular); Bit 13:12 Reserved

R0.0 31:26 Reserved

25:16 Handle ID 0: This ID is assigned by the FF unit and used to identify the URB Return

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 339

DWord Bits Description

Handle 0 to the FF unit (as FF-specific index value, not a URB address).

Format = Reserved for HW Implementation Use.

15:14 Reserved

13:0 URB Return Handle 0: This is the URB handle where Vertex 0 data (the EU's lower
channels (DWords 3:0)) results are to be stored.

Format:

U12 handle (512-bit granular); Bit 13:12 Reserved

R1.7 31:0 PrimitiveID: This is the 32-bit PrimitiveID value associated with the patch. It is
common to all output vertices resulting from the tessellation of the patch.

Format: U32

R1.6 31:0 Domain Point 1 W Coordinate: (See Domain Point 0 W Coordinate)
Format: FLOAT32

R1.5 31:0 Domain Point 1 V Coordinate: (See Domain Point 0 V Coordinate)
Format: FLOAT32

R1.4 31:0 Domain Point 1 U Coordinate: (See Domain Point 0 U Coordinate)
Format: FLOAT32

R1.3 31:14 Reserved

13:0 Patch URB Handle: This is the URB handle of the Patch Record (common to both
vertices).

Format:

U12 handle; Bit 13:12 Reserved

R1.2 31:0 Domain Point 0 W Coordinate: If Compute W Coordinate Enable is set, this field
will receive the computed value (1 – U – V) for Domain Point 0. Otherwise it is passed
as 0.0.

Format: FLOAT32

R1.1 31:0 Domain Point 0 V Coordinate: V coordinate associated with Domain Point 0.

Format: FLOAT32

R1.0 31:0 Domain Point 0 U Coordinate: U coordinate associated with Domain Point 0.

Format: FLOAT32

Varies
[Optional]

255:0 Constant Data (optional) :

Some amount of constant data (possible none) can be extracted from the push
constant buffer (PCB) and passed to the thread following the R0 Header. The amount

 3D – Media – GPGPU

340 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bits Description

of data provided is defined by the sum of the read lengths in the last
3DSTATE_CONSTANT_DS command (taking the buffer enables into account).

The Constant Data arrives in a non-interleaved format.

Varies
[Optional]

255:0 Patch URB Data (optional): Some amount of Patch Data (possible none) can be
extracted from the URB and passed to the thread in this location in the payload. The
amount of data provided is defined by the Patch URB Entry Read Length state
(3DSTATE_DS)

The Patch Data arrives in a non-interleaved format.

3D Pipeline – Geometry Shader (GS) Stage

GS Stage Overview

The GS stage of the 3D Pipeline converts objects within incoming primitives into new primitives through
use of a spawned thread. When enabled, the GS unit buffers incoming vertices, assembles the vertices
of each individual object within the primitives, and passes those object vertices (along with other data)
to the graphics subsystem for processing by a GS thread.

When the GS stage is disabled, vertices flow through the unit unmodified.

Refer to the Common 3D FF Unit Functions subsection in the 3D Pipeline chapter for a general
description of a 3D Pipeline stage, as much of the GS stage operation and control falls under these
common functions. I.e., most stage state variables and GS thread payload parameters are described in
3D Pipeline, and although they are listed here for completeness, that chapter provides the detailed
description of the associated functions.

Refer to this chapter for an overall description of the GS stage, and any exceptions the GS stage exhibits
with respect to common FF unit functions.

State

This sections contains the state registers for the Geometry Shader.

The state used by GS is defined with this inline state packet.

Note: Software needs to flush the whole fixed function pipeline when the GS enable changes value in the
3DSTATE_GS.

The state used by GS is defined with this inline state packet.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 341

Functions

Object Staging

The GS unit's Object Staging Buffer (OSB) accepts primitive topologies as a stream of incoming vertices,
and spawns a thread for each individual object within the topology.

Thread Request Generation

Object Vertex Ordering

The following table defines the number and order of object vertices passed in the Vertex Data portion
of the GS thread payload, assuming an input topology with N vertices. The ObjectType passed to the
thread is, by default, the incoming PrimTopologyType. Exceptions to this rule (for the TRISTRIP variants)
are called out.

The following table also shows which vertex is selected to provide PrimitiveID (bold, underlined vertex
number). In general, the vertex selected is the last vertex for non-adjacent prims, and the next-to-last
vertex for adjacent prims. Note, however, that there are exceptions:

• reorder-enabled TRISTRIP[_REV]
• "odd-numbered" objects in TRISTRIP_ADJ

PrimTopologyType Order of Vertices in Payload GS Notes

<PRIMITIVE_TOPOLOGY>

(N = # of vertices) [<object#>] = (<vert#>,…); [{modified PrimType
passed to thread}]

POINTLIST [0] = (0);

[1] = (1); …;

[N-2] = (N-2);

POINTLIST_BF N/A

LINELIST
 (N is multiple of 2) [0] = (0,1);

[1] = (2,3); …;

[(N/2)-1] = (N-2,N-1)

LINELIST_ADJ
 (N is multiple of 4) [0] = (0,1,2,3);

[1] = (4,5,6,7); …;

[(N/4)-1)] = (N-4,N-3,N-2,N-1)

LINESTRIP
 (N >= 2) [0] = (0,1);

[1] = (1,2); …;

 3D – Media – GPGPU

342 Doc Ref # IHD-OS-VLV-Vol7-04.14

PrimTopologyType Order of Vertices in Payload GS Notes

<PRIMITIVE_TOPOLOGY>

(N = # of vertices) [<object#>] = (<vert#>,…); [{modified PrimType
passed to thread}]

[N-2] = (N-2,N-1)

LINESTRIP_ADJ
 (N >= 4) [0] = (0,1,2,3);

[1] = (1,2,3,4); …;

[N-4] = (N-4,N-3,N-2,N-1)

LINESTRIP_BF N/A

LINESTRIP_CONT Same as LINESTRIP Handled same as
LINESTRIP

LINESTRIP_CONT_BF Same as LINESTRIP Handled same as
LINESTRIP

LINELOOP
 (N >= 2) [0] = (0,1);

[1] = (1,2);

[N] = (N-1,0);

Not supported after
GS.

TRILIST
 (N is multiple of 3) [0] = (0,1,2);

[1] = (3,4,5); …;

[(N/3)-1] = (N-3,N-2,N-1)

RECTLIST Same as TRILIST Handled same as
TRILIST

TRILIST_ADJ
 (N is multiple of 6) [0] = (0,1,2,3,4,5);

[1] = (6,7,8,9,10,11); …;

[(N/6)-1] = (N-6,N-5,N-4,N-3,N-2,N-1)

TRISTRIP (Reorder
ENABLED)

(N >= 3)

[0] = (0,1,2); {TRISTRIP}

[1] = (1,3,2); {TRISTRIP_REV}

[k even] = (k,k+1,k+2) {TRISTRIP}

[k odd] = (k,k+2,k+1) {TRISTRIP_REV}

[N-3] = (see above)

TRISTRIP (Reorder DISABLED)

(N >= 3)

[0] = (0,1,2) {TRISTRIP}

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 343

[1] = (1,2,3) {TRISTRIP_REV}; …

[N-3] = (N-3,N-2,N-1) {TRISTRIP or TRISTRIP_REV}

"Odd" triangles do not have vertices reordered, though identified as TRISTRIP_REV so the thread knows
this.

TRISTRIP_REV (Reorder ENABLED)

(N >= 3)

[0] = (0,2,1) {TRISTRIP_REV};

[1] = (1,2,3) {TRISTRIP}; …;

[k even] = (k,k+2,k+1) {TRISTRIP_REV}

[k odd] = (k,k+1,k+2) {TRISTRIP}

[N-3] = (see above)

TRISTRIP_REV (Reorder DISABLED)

(N >= 3)

[0] = (0,1,2) {TRISTRIP_REV}

[1] = (1,2,3) {TRISTRIP}; …;

[N-3] = (N-3,N-2,N-1) {TRISTRIP or TRISTRIP_REV}

"Odd" triangles do not have vertices reordered, though identified as TRISTRIP so the thread knows this.

TRISTRIP_ADJ

(N even, N >= 6)

N = 6 or 7:

[0] = (0,1,2,5,4,3)

N = 8 or 9:

[0] = (0,1,2,6,4,3);

[1] = (2,5,6,7,4,0); …;

N >= 10:

[0] = (0,1,2,6,4,3);

[1] = (2,5,6,8,4,0); …;

[k>1, even] = (2k,2k-2, 2k+2, 2k+6,2k+4, 2k+3);

[k>2, odd] = (2k, 2k+3, 2k+4, 2k+6, 2k+2, 2k-2);…;

Trailing object:

[(N/2)-3, even] = (N-6,N-8,N-4,N-1,N-2,N-3);

[(N/2)-3, odd] = (N-6,N-3,N-2,N-1,N-4,N-8);

TRIFAN

 3D – Media – GPGPU

344 Doc Ref # IHD-OS-VLV-Vol7-04.14

(N > 2)

[0] = (0,1,2);

[1] = (0,2,3); …;

[N-3] = (0, N-2, N-1);

Only used by OGL TRIFAN_NOSTIPPLE Same as TRIFAN POLYGON Same as TRIFAN

QUADLIST

(N is multiple of 4)

[0] = (0,1,2,3);

[1] = (4,5,6,7); …;

[(N/4)-1] = (N-4,N-3,N-2,N-1);

Not supported after GS.

QUADSTRIP

(N is multiple of 2, N >=4)

[0] = (0,1,3,2);

[1] = (2,3,5,4); … ;

[(N/2)-2] = (N-4,N-3,N-1,N-2);

Not supported after GS.

PATCHLIST_1

PATCHLIST_2

PATCHLIST_3..32

[0] = (0);

[1] = (1); …;

[N-2] = (N-2);

[0] = (0,1);

[1] = (2,3); …;

[(N/2)-1] = (N-2,N-1)

similar to above

Thread Execution

A GS thread is capable of performing arbritrary algorithms given the thread payload (especially vertex)
data and associated data structures (binding tables, sampler state, etc.) as input. Output can take the
form of vertices output to the FF pipeline (at the GS unit) and/or data written to memory buffers via the
DataPort.

The primary usage models for GS threads include (possible combinations of):

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 345

• Compiled application-provided GS shader programs, specifying an algorithm to convert the
vertices of an input object into some output primitives. For example, a GS shader may convert
lines of a line strip into polygons representing a corresponding segment of a blade of grass
centered on the line. Or it could use adjacency information to detect silhouette edges of triangles
and output polygons extruding out from the those edges. Or it could output absolutely nothing,
effectively terminating the pipeline at the GS stage.

• Driver-generated instructions used to write pre-clipped vertices into memory buffers (see Stream
Output below). This may be required whether or not an app-provided GS shader is enabled.

• Driver-generated instructions used to emulate API functions not supported by specialized
hardware. These functions might include (but are not limited to):

• Conversion of API-defined topologies into topologies that can be rendered (e.g., LINELOOP
LINESTRIP, POLYGON TRIFAN, QUADs TRIFAN, etc.)

• Emulation of Polygon Fill Mode, where incoming polygons can be converted to points, lines
(wireframe), or solid objects.

• Emulation of wide/sprite points.

When rendering is required, concurrent GS threads must use the FF_SYNC message (URB shared
function) to request an initial VUE handle and synchronize output of VUEs to the pipeline (see URB in
Shared Functions). Only one GS thread can be outputting VUEs to the pipeline at a time. To achieve
parallelism, GS threads should perform the GS shader algorithm (along with any other required
functions) and buffer results (either in the GRF or scratch memory) before issuing the FF_SYNC message.
The issuing GS thread is stalled on the FF_SYNC writeback until it is that thread's turn to output VUEs.
As only one GS thread at a time can output VUEs, the post-FF_SYNC output portion of the kernel should
be optimized as much as possible to maximize parallelism.

Thread Execution

GS URB Entry

All outputs of a GS thread are stored in the single GS thread output URB entry. Cut (1 bit/vertex) or
StreamID (2 bits/vertex) bits are packed into an optional 1-8 32B header. The Control Data Format and
Control Data Header Size states specify the size and contents of the header data (if any).

Following the optional header is a variable number of 16B or 32B-aligned/granular vertices:

• When rendering is DISABLED, typically output vertices are 32B-aligned, with the exception of 16B-
alignment for vertices <= 16B in length.

• The absolute worst case size comes from three DW scalars output per vertex. If these are,
say, three ".x" outputs, you need to store each DW in a 128b (16B) element, plus another

 3D – Media – GPGPU

346 Doc Ref # IHD-OS-VLV-Vol7-04.14

pad 16B to keep the 32B alignment. So you require 4*16B = 64B/vertex. You have to have
room for 1024 scalars / 3 scalar/vtx = 341 vertices. 341*64B = 21,824B. Then add 96B to
hold 2b/vtx streamID and you get 21,920B entries.

• When rendering is ENABLED, each output vertex is 32B-aligned. Here the vertex header and
vertex ‘position’ are required and therefore the minimum size vertex is 32B.

• Here the worst case size isn’t as bad as render-disabled, as you have to have a 4DW
position output, plus any additional output. So, say you output 5 DW per vertex. You need
64B/vertex (16B vtx header, 16B position, 16B for the 2nd element, and 16B of pad). You
have to have room for 1024 scalars / 5 = 204 vertices. 204*64 = 13,056B. Then add 64B to
hold 2b/vtx streamID and you get 13,120B entries.

The size of the URB entry should be based on the declared maximum # of output vertices and the
declared output vertex size (the union of per-stream vertex structures, if required).

GS Output Topologies

The following table lists which primitive topology types are valid for output by a GS thread.

PrimTopologyType Supported for GS Thread Output?

LINELIST Yes

LINELIST_ADJ No

LINESTRIP Yes

LINESTRIP_ADJ No

LINESTRIP_BF Yes

LINESTRIP_CONT Yes

LINESTRIP_CONT_BF Yes

LINELOOP No

POINTLIST Yes

POINTLIST_BF Yes

POLYGON Yes

QUADLIST No

QUADSTRIP No

RECTLIST Yes

TRIFAN Yes

TRIFAN_NOSTIPPLE Yes

TRILIST Yes

TRILIST_ADJ No

TRISTRIP Yes

TRISTRIP_ADJ No

TRISTRIP_REV Yes

PATCHLIST_xxx Yes

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 347

GS Output StreamID

When the GS Enable is DISABLED, output vertices are assigned a StreamID = 0;

When the GS Enable is ENABLED, output vertices are assigned a StreamID = Default StreamID under
the following conditions:

• Control Data Format = 0, or
• Control Data Format > 0 and Control Data Format = GSCTL_CUT

When the GS is enabled, Control Data Format > 0 and Control Data Format = GSCTL_SID, output
vertices are assigned a StreamID as programmed in the Control Data output by the thread.

Thread Termination

GS threads must terminate by sending a URB_WRITE_xxx message with the EOT and Complete bits set.
The message header must contain correct values for the GS Number of Output Handles for Slot 0,
Handle ID 0, and URB Handle 0 fields. If in DUAL_INSTANCE or DUAL_OBJECT mode, the
corresponding Object 1 fields must also be correct.

Primitive Output

(This section refers to output from the GS unit to the pipeline, not output from the GS thread)

The GS unit will output primitives (either passed-through or generated by a GS thread) in the proper
order. This includes the buffering of a concurrent GS thread's output until the preceding GS thread
terminates. Note that the requirement to buffer subsequent GS thread output until the preceding GS
thread terminates has ramifications on determining the number of VUEs allocated to the GS unit and
the number of concurrent GS threads allowed.

Statistics Gathering

There are a number of GS/StreamOutput pipeline statistics counters associated with the GS stage and
GS threads. This subsection describes these counters and controls depending on device, even in the
cases where functions outside of the GS stage (e.g., DataPort) are involved in the statistics gathering.

Refer to the Statistics Gathering summary provided earlier in this specification. Refer to the Memory
Interface Registers chapter for details on these MMIO pipeline statistics counter registers, as well as the
chapters corresponding to the other functions involved (e.g., DataPort, URB shared functions).

GS Invocations

Project:

The GS_INVOCATIONS counter is incremented by the GSInvocations Increment Value state for every input
object, with the exception of DUAL_OBJECT dispatch where the counter is incremented by twice that amount. This
allows software to (for example) support multiple instances in the GS kernel.

 3D – Media – GPGPU

348 Doc Ref # IHD-OS-VLV-Vol7-04.14

Payloads

Thread Payload High-Level Layout

Thread Payload High-Level Layoutshows the high-level layout of the payload delivered to GS threads.

 GS Dispatch Layouts

Subsequent sections provide detailed layouts for different processor generations.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 349

SIMD 4x2 Thread Payload

The table below shows the layout of the payload delivered to GS threads.

Refer to 3D Pipeline Stage Overview for details on fields that are common among the various pipeline
stages.

GRF
 DWord Bits Description

R0.7 31

30:0 Reserved.

R0.6 31 Dereference Thread. This bit is defined to send back the Handle ID back to HS to dereference
the input handles for this thread.

30:24 Reserved.

23:0 Thread ID. This field uniquely identifies this thread within the threads spawned by this
FF unit, over some period of time.

Format: Reserved for HW Implementation Use.

R0.5 31:10 Scratch Space Pointer. Specifies the location of the scratch space allocated to this
thread, specified as a 1KB-aligned offset from the General State Base Address.

Format = GeneralStateOffset[31:10]

9.0 Reserved

8:0 FFTID. This ID is assigned by the fixed function unit and is relative identifier for the
thread. It is used to free up resources used by the thread upon thread completion.

Format:

Project Format

 U7

Range:

Project Range

 0-127

R0.4 31:5 Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding Table. It is
specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

4:0 Reserved.

R0.3 31:5 Sampler State Pointer. Specifies the location of the Sampler State Table used by this
thread, specified as a 32-byte granular offset from the Dynamic State Base Address.

Format = DynamicStateOffset[31:5]

4 Reserved.

 3D – Media – GPGPU

350 Doc Ref # IHD-OS-VLV-Vol7-04.14

GRF
 DWord Bits Description

3:0 Per Thread Scratch Space.Specifies the amount of scratch space allowed for this
thread. The value specifies the power that two is raised to (over determine the amount
of scratch space).

Programming Notes:

This amount is available to the kernel for information only. It is passed verbatim (if not
altered by the kernel) to the Data Port in any scratch space access messages, but the
Data Port ignores it.

Format = U4 power of two (in excess of 10)

Range = [0,11] indicating [1K Bytes, 2M Bytes]

R0.2 31:24 Semaphore Index. This is a DWord index used in URB_ATOMIC commands if the
thread is using data pulled from input handles. This information is only required for
pull-model vertex inputs and InstanceCount > 1.

Format = U8

23 Reserved.

22 Hint. This is a copy of the corresponding 3DSTATE_GS bit.

Format: U1

21:16 Primitive Topology Type. This field identifies the Primitive Topology Type associated
with the primitive containing this object. It indirectly specifies the number of input
vertices included in the thread payload. Note that the GS unit may toggle this value
between TRISTRIP and TRISTRIP_REV. If the Discard Adjacency bit is set, the topology
type passed in the payload is UNDEFINED.

Format: See 3D Pipeline.

15:13 Reserved

12:0 Semaphore Handle. This is the URB offset pointing to the first GS semaphore DWord
in the URB. Software is responsible for statically allocating the semaphore DWords in
the URB. Refer to Semaphore Handle field in 3DSTATE_GS for size of semaphore
allocation.

Format:

Project Format

 U12 64B-aligned URB offset; bit 12 is reserved.

R0.1 31:27 GS Instance ID 1. For each input object, the GS unit can spawn multiple threads
(instances). This field starts at zero for the first instance of an object and increments for
subsequent instances.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 351

GRF
 DWord Bits Description

If "dispatch mode" is DUAL_OBJECT this field is not valid.

Format: U5

26:16 Reserved.

15:0 URB Return Handle 1. This is the URB offset where the EU’s upper channels (DWords
7:4) results are stored.

If only one object/instance is processed (shaded) by the thread, this field is effectively
ignored (no results are stored for these channels, as controlled by the thread’s Channel
Mask).

Format:

Project Format

 U12 64B-aligned URB offset; bit 12 is reserved.

R0.0 31:27 GS Instance ID 0. For each input object, the GS unit can spawn multiple threads
(instances). This field starts at zero for the first instance of an object and increments for
subsequent instances.

If "dispatch mode" is DUAL_OBJECT, this field is not valid.

Format: U5

26:16 Reserved.

15:0 URB Return Handle 0. This is the URB offset where the EU’s lower channels (DWords
3:0) results are stored.

Format:

Project Format

 U12 64B-aligned URB offset; bit 12 is reserved.

 The following register is included only if Include PrimitiveID is enabled.

R1.7-R1.5 31:0 Reserved: MBZ.

R1.4 31:0 Primitive ID 1. This field contains the Primitive ID associated with (all instances) of
input object 1. Only valid in DUAL_OBJECT mode.

Format: U32

R1.3-R1.1 31:0 Reserved: MBZ.

R1.0 31:0 Primitive ID 0. This field contains the Primitive ID associated with (all instances) of
input object 0.

Format: U32

 The following register is included only if SINGLE or DUAL_INSTANCE mode and Include Vertex Handles is
enabled.

 3D – Media – GPGPU

352 Doc Ref # IHD-OS-VLV-Vol7-04.14

GRF
 DWord Bits Description

Rn.7 31:16 ICP 7 Handle ID

15:0 ICP 7 Handle

Rn.6 31:16 ICP 6 Handle ID

15:0 ICP 6 Handle

Rn.5 31:16 ICP 5 Handle ID

15:0 ICP 5 Handle

Rn.4 31:16 ICP 4 Handle ID

15:0 ICP 4 Handle

Rn.3 31:16 ICP 3 Handle ID

15:0 ICP 3 Handle

Rn.2 31:16 ICP 2 Handle ID

15:0 ICP 2 Handle

Rn.1 31:16 ICP 1 Handle ID

15:0 ICP 1 Handle

Rn.0 31:16 ICP 0 Handle ID

15:0 ICP 0 Handle

 The following register is included only if SINGLE or DUAL_INSTANCE mode and Include Vertex Handles is enabled
and ICP Count > 7.

Rn+1.7 31:16 ICP 15 Handle ID

15:0 ICP 15 Handle

Rn+1.6 31:16 ICP 14 Handle ID

15:0 ICP 14 Handle

Rn+1.5 31:16 ICP 13 Handle ID

15:0 ICP 13 Handle

Rn+1.4 31:16 ICP 12 Handle ID

15:0 ICP 12 Handle

Rn+1.3 31:16 ICP 11 Handle ID

15:0 ICP 11 Handle

Rn+1.2 31:16 ICP 10 Handle ID

15:0 ICP 10 Handle

Rn+1.1 31:16 ICP 9 Handle ID

15:0 ICP 9 Handle

Rn+1.0 31:16 ICP 8 Handle ID

15:0 ICP 8 Handle

 The following register is included only if SINGLE or DUAL_INSTANCE mode and Include Vertex Handles is enabled
and ICP Count > 15.

Rn+2.7 31:16 ICP 23 Handle ID

15:0 ICP 23 Handle

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 353

GRF
 DWord Bits Description

Rn+2.6 31:16 ICP 22 Handle ID

15:0 ICP 22 Handle

Rn+2.5 31:16 ICP 21 Handle ID

15:0 ICP 21 Handle

Rn+2.4 31:16 ICP 20 Handle ID

15:0 ICP 20 Handle

Rn+2.3 31:16 ICP 19 Handle ID

15:0 ICP 19 Handle

Rn+2.2 31:16 ICP 18 Handle ID

15:0 ICP 18 Handle

Rn+2.1 31:16 ICP 17 Handle ID

15:0 ICP 17 Handle

Rn+2.0 31:16 ICP 16 Handle ID

15:0 ICP 16 Handle

 The following register is included only if SINGLE or DUAL_INSTANCE mode and Include Vertex Handles is enabled
and ICP Count > 23.

Rn+3.7 31:16 ICP 31 Handle ID

15:0 ICP 31 Handle

Rn+3.6 31:16 ICP 30 Handle ID

15:0 ICP 30 Handle

Rn+3.5 31:16 ICP 29 Handle ID

15:0 ICP 29 Handle

Rn+3.4 31:16 ICP 28 Handle ID

15:0 ICP 28 Handle

Rn+3.3 31:16 ICP 27 Handle ID

15:0 ICP 27 Handle

Rn+3.2 31:16 ICP 26 Handle ID

15:0 ICP 26 Handle

Rn+3.1 31:16 ICP 25 Handle ID

15:0 ICP 25 Handle

Rn+3.0 31:16 ICP 24 Handle ID

15:0 ICP 24 Handle

 The following register is included only if DUAL_OBJECT mode and Include Vertex Handles is enabled.

Rn.7 31:16 Object 1 ICP 3 Handle ID

15:0 Object 1 ICP 3 Handle

Rn.6 31:16 Object 1 ICP 2 Handle ID

15:0 Object 1 ICP 2 Handle

Rn.5 31:16 Object 1 ICP 1 Handle ID

 3D – Media – GPGPU

354 Doc Ref # IHD-OS-VLV-Vol7-04.14

GRF
 DWord Bits Description

15:0 Object 1 ICP 1 Handle

Rn.4 31:16 Object 1 ICP 0 Handle ID

15:0 Object 1 ICP 0 Handle

Rn.3 31:16 Object 0 ICP 3 Handle ID

15:0 Object 0 ICP 3 Handle

Rn.2 31:16 Object 0 ICP 2 Handle ID

15:0 Object 0 ICP 2 Handle

Rn.1 31:16 Object 0 ICP 1 Handle ID

15:0 Object 0 ICP 1 Handle

Rn.0 31:16 Object 0 ICP 0 Handle ID

15:0 Object 0 ICP 0 Handle

 The following register is included only if DUAL_OBJECT mode and Include Vertex Handles is enabled and ICP
Count > 3.

Rn+1.7 31:16 Object 1 ICP 7 Handle ID

15:0 Object 1 ICP 7 Handle

Rn+1.6 31:16 Object 1 ICP 6 Handle ID

15:0 Object 1 ICP 6 Handle

Rn+1.5 31:16 Object 1 ICP 5 Handle ID

15:0 Object 1 ICP 5 Handle

Rn+1.4 31:16 Object 1 ICP 4 Handle ID

15:0 Object 1 ICP 4 Handle

Rn+1.3 31:16 Object 0 ICP 7 Handle ID

15:0 Object 0 ICP 7 Handle

Rn+1.2 31:16 Object 0 ICP 6 Handle ID

15:0 Object 0 ICP 6 Handle

Rn+1.1 31:16 Object 0 ICP 5 Handle ID

15:0 Object 0 ICP 5 Handle

Rn+1.0 31:16 Object 0 ICP 4 Handle ID

15:0 Object 0 ICP 4 Handle

 The following register is included only if DUAL_OBJECT mode and Include Vertex Handles is enabled and ICP
Count > 7.

Rn+2.7 31:16 Object 1 ICP 11 Handle ID

15:0 Object 1 ICP 11 Handle

Rn+2.6 31:16 Object 1 ICP 10 Handle ID

15:0 Object 1 ICP 10 Handle

Rn+2.5 31:16 Object 1 ICP 9 Handle ID

15:0 Object 1 ICP 9 Handle

Rn+2.4 31:16 Object 1 ICP 8 Handle ID

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 355

GRF
 DWord Bits Description

15:0 Object 1 ICP 8 Handle

Rn+2.3 31:16 Object 0 ICP 11 Handle ID

15:0 Object 0 ICP 11 Handle

Rn+2.2 31:16 Object 0 ICP 10 Handle ID

15:0 Object 0 ICP 10 Handle

Rn+2.1 31:16 Object 0 ICP 9 Handle ID

15:0 Object 0 ICP 9 Handle

Rn+2.0 31:16 Object 0 ICP 8 Handle ID

15:0 Object 0 ICP 8 Handle

 The following register is included only if DUAL_OBJECT mode and Include Vertex Handles is enabled and ICP
Count > 11.

Rn+3.7 31:16 Object 1 ICP 15 Handle ID

15:0 Object 1 ICP 15 Handle

Rn+3.6 31:16 Object 1 ICP 14 Handle ID

15:0 Object 1 ICP 14 Handle

Rn+3.5 31:16 Object 1 ICP 13 Handle ID

15:0 Object 1 ICP 13 Handle

Rn+3.4 31:16 Object 1 ICP 12 Handle ID

15:0 Object 1 ICP 12 Handle

Rn+3.3 31:16 Object 0 ICP 15 Handle ID

15:0 Object 0 ICP 15 Handle

Rn+3.2 31:16 Object 0 ICP 14 Handle ID

15:0 Object 0 ICP 14 Handle

Rn+3.1 31:16 Object 0 ICP 13 Handle ID

15:0 Object 0 ICP 13 Handle

Rn+3.0 31:16 Object 0 ICP 12 Handle ID

15:0 Object 0 ICP 12 Handle

Varies

(optional)

31:0 Constant Data (optional):

Some amount of constant data (possibly none) can be extracted from the push
constant buffer (PCB) and passed to the thread following the R0 Header. The amount of
data provided is defined by the sum of the read lengths in the last
3DSTATE_CONSTANT_GS command (taking the buffer enables into account).

The Constant Data arrives in a non-interleaved format.

Varies 31:0 Pushed Vertex Data. There can be up to 32 vertices supplied, each with a size defined
by the Vertex URB Entry Read Length state. The amount of data provided for each
vertex is defined by the Vertex URB Entry Read Length state.

For SINGLE or DUAL_INSTANCE dispatch modes, the pushed data for Vertex 0

 3D – Media – GPGPU

356 Doc Ref # IHD-OS-VLV-Vol7-04.14

GRF
 DWord Bits Description

immediately follows any pushed constant data. The pushed data for Vertex 1
immediately follows Vertex 0, and so on. There is no upper/lower swizzling of data.

For DUAL_OBJECT dispatch mode, the pushed vertex data is split into upper and lower
halves with Object 0 input vertices in the lower half, and Object 1 input vertices in the
upper half.

Thread Request Generation

Once a FF unit determines that a thread can be requested, it must gather all the information required to
submit the thread request to the Thread Dispatcher. This information is divided into several categories,
as listed below and subsequently described in detail.

• Thread Control Information: This is the information required (from the FF unit) to establish the
execution environment of the thread.

• Thread Payload Header: This is the first portion of the thread payload passed in the GRF,
starting at GRF R0. This is information passed directly from the FF unit. It precedes the Thread
Payload Input URB Data.

• Thread Payload Input URB Data: This is the second portion of the thread payload. It is read
from the URB using entry handles supplied by the FF unit.

Thread Control Information

The following table describes the various state variables that a FF unit uses to provide information to
the Thread Dispatcher and which affect the thread execution environment. Note that this information is
not directly passed to the thread in the thread payload (though some fields may be subsequently
accessed by the thread via architectural registers).

Table: State Variables Included in Thread Control Information

State
Variable Usage FFs

Kernel Start
Pointer This field, together with the General State Pointer, specifies the starting

location (1st GEN4 core instruction) of the kernel program run by threads
spawned by this FF unit. It is specified as a 64-byte-granular offset from
the General State Pointer.

All FFs spawning
threads

GRF Register
Block Count

Specifies, in 16-register blocks, how many GRF registers are required to run the
kernel. The Thread Dispatcher will only seek candidate EUs that have a sufficient
number of GRF register blocks available. Upon selecting a target EU, the Thread
DIspatcher will generate a logical-to-physical GRF mapping and provide this to
the target EU.

All FFs spawning
threads

Single
Program Specifies whether the kernel program has a single program flow All FFs spawning

threads

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 357

State
Variable Usage FFs

Flow (SPF) (SIMDnxm with m = 1) or multiple program flows (SIMDnxm with m > 1).
See CR0 description in ISA Execution Environment.

Thread
Priority

The Thread Dispatcher will give priority to those thread requests with Thread
Priority of HIGH_PRIORITY over those marked as LOW_PRIORITY. Within these
two classes of thread requests, the Thread Dispatcher applies a priority order
(e.g., round-robin --- though this algorithm is considered a device
implementation-dependent detail).

All FFs spawning
threads

Floating
Point Mode This determines the initial value of the Floating Point Mode bit of the

EU’s CR0 architectural register that controls floating point behavior in
the EU core. (See ISA.)

All FFs spawning
threads

Exceptions
Enable

This bitmask controls the exception handing logic in the EU. (See ISA.) All FFs spawning
threads

Sampler
Count This is a hint which specifies how many indirect SAMPLER_STATE

structures should be prefetched concurrent with thread initiation. It is
recommended that software program this field to equal the number of
samplers, though there may be some minor performance impact if this
number gets large.

This value should not exceed the number of samplers accessed by the
thread as there would be no performance advantage. Note that the data
prefetch is treated as any other memory fetch (with respect to page
faults, etc.).

All stages
supporting
sampling (VS,
GS, WM)

Binding
Table Entry
Count

This is a hint which specifies how many indirect BINDING_TABLE_STATE
structures should be prefetched concurrent with thread initiation. (The
notes included in Sampler Count (above) also apply to this field).

All FFs spawning
threads

Thread Payload Generation

FF units are responsible for generating a thread payload – the data pre-loaded into the target EU's GRF
registers (starting at R0) that serves as the primary direct input to a thread's kernel. The general format
of these payloads follow a similar structure, though the exact payload size/content/layout is unique to
each stage. This subsection describes the common aspects – refer to the specific stage's chapters for
details on any differences.

The payload data is divided into two main sections: the payload header followed by the payload URB
data. The payload header contains information passed directly from the FF unit, while the payload URB
data is obtained from URB locations specified by the FF unit.

NOTE: The first 256 bits of the thread payload (the initial contents of R0, aka the R0 header) is specially
formatted to closely match (and in some cases exactly match) the first 256 bits of thread-generated
messages (i.e., the message header) accepted by shared functions. In fact, the send instruction supports

 3D – Media – GPGPU

358 Doc Ref # IHD-OS-VLV-Vol7-04.14

having a copy of a GR's contents (such as R0) used as the message header. Software must take this
intention into account (i.e., don't muck with R0 unless you know what you're doing). This is especially
important given the fact that several fields in the R0 header are considered opaque to SW, where use or
modification of their contents might lead to UNDEFINED results.

The payload header is further (loosely) divided into a leading fixed payload header section and a trailing,
variable-sized extended payload header section. In general the size, content and layout of both payload
header sections are FF-specific, though many of the fixed payload header fields are common amongst
the FF stages. The extended header is used by the FF unit to pass additional information specific to that
FF unit. The extended header is defined to start after the fixed payload header and end at the offset
defined by Dispatch GRF Start Register for URB Data. Software can cause use the Dispatch GRF
Start Register for URB Data field to insert padding into the extended header in order to maintain a
fixed offset for the start of the URB data.

Fixed Payload Header

The payload header is used to pass FF pipeline information required as thread input data. This
information is a mixture of SW-provided state information (state table pointers, etc.), primitive
information received by the FF unit from the FF pipeline, and parameters generated/computed by the
FF unit. Most of the fields of the fixed header are common between the FF stages. These non-FF-specific
fields are described in Fixed Payload Header Fields (non-FF-specific). Note that a particular stage’s
header may not contain all these fields, so they are not "common" in the strictest sense.

Table: Fixed Payload Header Fields (non-FF-specific)

Fixed
Payload
Header

Field
 (non-FF-
specific) Description FFs

FF Unit ID Function ID of the FF unit. This value identifies the FF unit within the GEN4
subsystem. The FF unit uses this field (when transmitted in a Message Header to
the URB Function) to detect messages emanating from its spawned threads.

All FFs spawning
threads

Snapshot
Flag

 All FFs spawning
threads

Thread ID This field uniquely identifies this thread within the FF unit over some
period of time.

All FFs spawning
threads

Scratch
Space
Pointer

This is the starting location of the thread’s allocated scratch space, specified as
an offset from the General State Base Address. Note that scratch space is
allocated by the FF unit on a per-thread basis, based on the Scratch Space Base
Pointer and Per-Thread Scratch Space Size state variables. FF units assign a
thread an arbitrarily-positioned region within this space. The scratch space for
multiple (API-visible) entities (vertices, pixels) is interleaved within the thread’s
scratch space.

All FFs spawning
threads

Dispatch ID This field identifies this thread within the outstanding threads spawned by All FFs spawning
threads

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 359

Fixed
Payload
Header

Field
 (non-FF-
specific) Description FFs

the FF unit. This field does not uniquely identify the thread over any
significant period of time.

Implementation Note: This field is effectively an "active thread index". It
is used on a thread’s URB allocation request to identify which thread’s
handle pool is to source the allocation. It is used upon thread termination
to free up the thread’s scratch space allocation.

Binding
Table
Pointer

This field, together with the Surface State Base Pointer, specifies the
starting location of the Binding Table used by threads spawned by the FF
unit. It is specified as a 64-byte-granular offset from the Surface State
Base Pointer.

See Shared Functions for a description of a Binding Table.

All FFs spawning
threads

Sampler
State
Pointer

This field, together with the General State Base Pointer, specifies the
starting location of the Sampler State Table used by threads spawned by
the FF unit. It is specified as a 64-byte-granular offset from the General
State Base Pointer.

See Shared Functions for a description of a Sampler State Table.

All FFs spawning
threads which
sample (VS, GS,
WM)

Per Thread
Scratch
Space

This field specifies the amount of scratch space allocated to each thread
spawned by the FF unit.

The driver must allocate enough contiguous scratch space, starting at the
Scratch Space Base Pointer, to ensure that the Maximum Number of
Threads can each get Per-Thread Scratch Space size without exceeding
the driver-allocated scratch space.

All FFs spawning
threads

Handle ID
<n>

This ID is assigned by the FF unit and links the thread to a specific entry within
the FF unit. The FF unit will use this information upon detecting a URB_WRITE
message issued by the thread.
 Threads spawned by the GS, CLIP, and SF units are provided with a single Handle
ID / URB Return Handle pair. Threads spawned by the VS are provided with one
or two pairs (depending on how many vertices are to be processed). Threads
spawned by the WM do not write to URB entries, and therefore this info is not
supplied.

VS, GS, CLIP, SF

URB Return
Handle <n>

This is an initial destination URB handle passed to the thread. If the thread does
output URB entries, this identifies the destination URB entry.
 Threads spawned by the GS, CLIP, and SF units are provided with a single Handle
ID / URB Return Handle pair. Threads spawned by the VS are provided with one
or two pairs (depending on how many vertices are to be processed). Threads

VS, GS, CLIP, SF

 3D – Media – GPGPU

360 Doc Ref # IHD-OS-VLV-Vol7-04.14

Fixed
Payload
Header

Field
 (non-FF-
specific) Description FFs

spawned by the WM do not write to URB entries, and therefore this info is not
supplied.

Primitive
Topology
Type

As part of processing an incoming primitive, a FF unit is often required to
spawn a number of threads (e.g., for each individual triangle in a
TRIANGLE_STRIP). This field identifies the type of primitive which is being
processed by the FF unit, and which has lead to the spawning of the
thread.

GEN4 kernels written to process different types of objects can use this
value to direct that processing. E.g., when a CLIP kernel is to provide
clipping for all the various primitive types, the kernel would need to
examine the Primitive Topology Type to distinguish between point, lines,
and triangle clipping requests.

Note: In general, this field is identical to the Primitive Topology Type
associated with the primitive vertices as received by the FF unit. Refer to
the individual FF unit chapters for cases where the FF unit modifies the
value before passing it to the thread. (E.g., certain units perform toggling
of TRIANGLESTRIP and TRIANGLESTRIP_REV).

GS, CLIP, SF, WM

Extended Payload Header

The extended header is of variable-size, where inclusion of a field is determined by FF unit state
programming.

In order to permit the use of common kernels (thus reducing the number of kernels required), the
Dispatch GRF Start Register for URB Data state variable is supported in all FF stages. This SV is used
to place the payload URB data at a specific starting GRF register, irrespective of the size of the extended
header. A kernel can therefore reference the payload URB data at fixed GRF locations, while
conditionally referencing extended payload header information.

Payload URB Data

In each thread payload, following the payload header, is some amount of URB-sourced data required as
input to the thread. This data is divided into an optional Constant URB Entry (CURBE), following either
by a Primitive URB Entry (WM) or a number of Vertex URB Entries (VS, GS, CLIP, SF). A FF unit only
knows the location of this data in the URB, and is never exposed to the contents. For each URB entry,
the FF unit will supply a sequence of handles, read offsets and read lengths to the GEN4 subsystem. The
subsystem will read the appropriate 256-bit locations of the URB, optionally perform swizzling (VS only),

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 361

and write the results into sequential GRF registers (starting at Dispatch GRF Start Register for URB
Data).

Table: State Variables Controlling Payload URB Data

State Variable Usage FFs

Dispatch GRF
Start Register
for URB Data

This SV identifies the starting GRF register receiving payload URB data.
Software is responsible for ensuring that URB data does not overwrite the Fixed or
Extended Header portions of the payload.

h

Vertex URB
Entry Read
Offset

This SV specifies the starting offset within VUEs from which vertex data is to be
read and supplied in this stage's payloads. It is specified as a 256-bit offset into
any and all VUEs passed in the payload.

This SV can be used to skip over leading data in VUEs that is not required by
the stage's threads (e.g., skipping over the Vertex Header data at the SF stage,
as that information is not required for setup calculations). Skipping over
irrelevant data can only help to improve performance.

Specifying a vertex data source extending beyond the end of a vertex entry is
UNDEFINED.

h,
VS,
GS

Vertex URB
Entry Read
Length

This SV determines the amount of vertex data (starting at Vertex URB Entry
Read Offset) to be read from each VUEs and passed into the payload URB
data. It is specified in 256-bit units.

A zero value is INVALID (at very least one 256-bit unit must be read).

Specifying a vertex data source extending beyond the end of a VUE is
UNDEFINED.

 h,
VS,
GS

Programming Restrictions: (others may already been mentioned)

• The maximum size payload for any thread is limited by the number of GRF registers available to
the thread, as determined by min(128, 16 * GRF Register Block Count). Software is responsible
for ensuring this maximum size is not exceeded, taking into account:

o The size of the Fixed and Extended Payload Header associated with the FF unit.
o The Dispatch GRF Start Register for URB Data SV.
o The amount of CURBE data included (via Constant URB Entry Read Length)
o The number of VUEs included (as a function of FF unit, its state programming, and

incoming primitive types)
o The amount of VUE data included for each vertex (via Vertex URB Entry Read Length)
o (For WM-spawned PS threads) The amount of Primitive URB Entry data.

• For any type of URB Entry reads:

o Specifying a source region (via Read Offset, Read Length) that goes past the end of the
URB Entry allocation is illegal.

 3D – Media – GPGPU

362 Doc Ref # IHD-OS-VLV-Vol7-04.14

 The allocated size of Vertex/Primitive URB Entries is determined by the URB
Entry Allocation Size value provided in the pipeline state descriptor of the FF
unit owning the VUE/PUE.

 The allocated size of CURBE entries is determined by the URB Entry Allocation
Size value provided in the CS_URB_STATE command.

3D Pipeline - Stream Output Logic (SOL) Stage
The Stream Output Logic (SOL) stage receives 3D topologies originating in the VF or GS stage. If
enabled, the SOL stage uses programmed state information to copy portions of the vertex data
associated with the incoming topologies across one or more Stream Output (SO) Buffers.

State

This section contains registers and commands for the 3D State Streamout.

3DSTATE_STREAMOUT

The 3DSTATE_STREAMOUT command specifies control information for the SOL stage. Included are
enables and sizes for input streams and enables for output buffers.

Anytime the SOL unit MMIO registers or non-pipeline state are written, the SOL unit needs to receive a pipeline
state update with SOL unit dirty state for information programmed in MMIO/NP to get loaded into the SOL unit.

The SOL unit incorrectly double buffers MMIO/NP registers and only moves them into the design for
usage when control topology is received with the SOL unit dirty state.

If the state does not change, need to resend the same state.

3DSTATE_SO_DECL_LIST Command

The 3DSTATE_SO_DECL_LIST instruction defines a list of Stream Output (SO) declaration entries
(SO_DECLs) and associated information for all specific SO streams in parallel.

The 3DSTATE_SO_BUFFER command specifies the location and characteristics of an SO buffer in
memory.

Functions

Input Buffering

For the purposes of stream output, the SOL stage breaks incoming topologies into independent objects
without adjacency information. In the process, any adjacent-only vertices are ignored. For example,
convert TRISTRIP_ADJ into independent 3-vertex triangles. However, if rendering is enabled, incoming
topologies are passed to the Clip stage unmodified and therefore the Clip unit must be enabled if there
is any possibility of "ADJ" topologies reaching it.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 363

Note that the SOL unit should not see incomplete objects: the VF will remove incomplete input objects,
and the GS will remove GS-generated incomplete objects.

The OSB (Object Staging Buffer) reorders the vertices of odd-numbered triangles in TRISTRIP topologies
to match API requirements.

Incoming topologies are tagged with a 2-bit StreamID. The StreamID is 0 for topologies originating
from the VF stage (i.e., 3DPRIMITIVE_xxx). For topologies output from the GS stage, the StreamID is set
by the GS shader. A Stream n Vertex Length is associated with each stream, and defines how much data
is read from the URB for vertices in that stream.

The following table specifies how the SOL stage streams out object vertices for each incoming topology
type.

PrimTopologyType
Order of Vertices

Streamed Out Any SOL Notes

<PRIMITIVE_TOPOLOGY>
 (N = # of vertices)

[<object#>] =
(<vert#>,…);

POINTLIST
 POINTLIST_BF

[0] = (0);
 [1] = (1); …;
 [N-2] = (N-2);

LINELIST
 (N is multiple of 2)

[0] = (0,1);
 [1] = (2,3); …;
 [(N/2)-1] = (N-2,N-1)

LINELIST_ADJ
 (N is multiple of 4)

[0] = (1,2);
 [1] = (5,6); …;
 [(N/4)-1)] = (N-3,N-2)

LINESTRIP
 LINESTRIP_BF
 LINESTRIP_CONT
 LINESTRIP_CONT_BF
 (N >= 2)

[0] = (0,1);
 [1] = (1,2); …;
 [N-2] = (N-2,N-1)

LINESTRIP_ADJ
 (N >= 4)

[0] = (1,2);
 [1] = (2,3); …;
 [N-4] = (N-3,N-2)

LINELOOP N/A Not supported after VF.

TRILIST
 (N is multiple of 3)

[0] = (0,1,2);
 [1] = (3,4,5); …;
 [(N/3)-1] = (N-3,N-
2,N-1)

RECTLIST Same as TRILIST Handled same as TRILIST.

TRILIST_ADJ
 (N is multiple of 6)

[0] = (0,2,4);
 [1] = (6,8,10); …;
 [(N/6)-1] = (N-6,N-
4,N-2)

TRISTRIP
 (N >= 3)
 REORDER_LEADING

[0] = (0,1,2);
 [1] = (1,3,2);
 [k even] = (k,k+1,k+2)

"Odd" triangles have vertices reordered to yield increasing
leading vertices starting with v0.

 3D – Media – GPGPU

364 Doc Ref # IHD-OS-VLV-Vol7-04.14

PrimTopologyType
Order of Vertices

Streamed Out Any SOL Notes

 [k odd] = (k,k+2,k+1)
 [N-3] = (see above)

TRISTRIP
 (N >= 3)
 REORDER_TRAILING

[0] = (0,1,2);
 [1] = (2,1,3);
 [k even] = (k,k+1,k+2)
 [k odd] = (k+1,k,k+2)
 [N-3] = (see above)

"Odd" triangles have vertices reordered to yield increasing
trailing vertices starting with v2.

TRISTRIP_REV
 (N >= 3)
 REORDER_LEADING

[0] = (0,2,1)
 [1] = (1,2,3);…;
 [k even] = (k,k+2,k+1)
 [k odd] = (k,k+1,k+2)
 [N-3] = (see above)

"Even" triangles have vertices reordered to yield increasing
leading vertices starting with v0.

TRISTRIP_REV
 (N >= 3)
 REORDER_TRAILING

[0] = (1,0,2)
 [1] = (1,2,3);…;
 [k even] = (k+1,k,k+2)
 [k odd] = (k,k+1,k+2)
 [N-3] = (see above)

"Even" triangles have vertices reordered to yield increasing
trailing vertices starting with v2.

TRISTRIP_ADJ
 (N even, N >= 6)
 REORDER_LEADING

N = 6 or 7:
 [0] = (0,2,4)
 N = 8 or 9:
 [0] = (0,2,4);
 [1] = (2,6,4); …;
 N > 10:
 [0] = (0,2,4);
 [1] = (2,6,4); …;
 [k>1, even] = (2k,
2k+2, 2k+4);
 [k>2, odd] = (2k, 2k+4,
2k+2);…;
 Trailing object:
 [(N/2)-3, even] = (N-
6,N-4,N-2);
 [(N/2)-3, odd] = (N-
6,N-2,N-4);

"Odd" objects have vertices reordered to yield
increasing-by-2 leading vertices starting with v0.

TRISTRIP_ADJ
 (N even, N >= 6)
 REORDER_TRAILING

N = 6 or 7:
 [0] = (0,2,4)
 N = 8 or 9:
 [0] = (0,2,4);
 [1] = (4,2,6); …;
 N > 10:
 [0] = (0,2,4);
 [1] = (4,2,6); …;
 [k>1, even] = (2k,
2k+2, 2k+4);
 [k>2, odd] = (2k+2,2k,
2k+4,);…;
 Trailing object:

"Odd" objects have vertices reordered to yield
increasing-by-2 trailing vertices starting with v4.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 365

PrimTopologyType
Order of Vertices

Streamed Out Any SOL Notes

 [(N/2)-3, even] = (N-
6,N-4,N-2);
 [(N/2)-3, odd] = (N-
4,N-6,N-2);

TRIFAN
 (N > 2)

[0] = (0,1,2);
 [1] = (0,2,3); …;
 [N-3] = (0, N-2, N-1);

TRIFAN_NOSTIPPLE Same as TRIFAN

POLYGON Same as TRIFAN

QUADLIST
 QUADSTRIP

N/A Not supported after VF.

PATCHLIST_1 [0] = (0);
 [1] = (1); …;
 [N-2] = (N-2);

PATCHLIST_2 [0] = (0,1);
 [1] = (2,3); …;
 [(N/2)-1] = (N-2,N-1)

PATCHLIST_3..32 similar to above

Stream Output Function

As previously mentioned, incoming 3D topologies are targeted at one of the four streams. The SOL
stage contains state information specific to each of the four streams.

A stream's list of SO declarations (SO_DECL structures) is used to perform the SO function for objects
targeted to that particular stream. The 3DSTATE_SO_DECL_LIST command is used to specify the list of
SO_DECL structures for all four streams in parallel. Software is required to scan the SO_DECL lists of
streams to determine which SO buffers are targeted. The Stream To Buffer Selects bits in
3DSTATE_SO_DECL_LIST must be programmed accordingly (if the buffer is targeted, the select bit must
set, else it must be cleared).

If a stream has no SO_DECL state defined (NumEntries is 0), incoming objects targeting that stream are
effectively ignored. As there is no attempt to perform stream output, overflow detection is neither
required nor performed.

Otherwise, an overflow check is performed. First any attempt to output to a disabled buffer is detected.
This occurs when the stream has a Stream To Buffer Selects bit set but the corresponding SO Buffer
Enable is clear. Assuming all targeted buffers are enabled, an additional check is made to ensure that
there is enough room in each targeted buffer to hold the number of vertices which be output to it (for
the input object). Here the buffer's current end address is compared to what the write offset would be if
the output was performed. The latter value is computed as (write_offset + vertex_count * buffer_pitch).
If this value is greater than the end address, an overflow is signalled. This check is performed for each
buffer included in Stream To Buffer Selects.

 3D – Media – GPGPU

366 Doc Ref # IHD-OS-VLV-Vol7-04.14

If an overflow is not signaled, the SO function is performed. The SO_DECL list for the targeted stream is
traversed independently for each object vertex, and the operation specified by the SO_DECL structure is
performed (typically causing data to be appended to an SO buffer). In the process, SO buffer Write
Offsets are incremented.

Stream Output Buffers

Up to four SO buffers are supported. The SO buffer parameters (start/end address, etc.) are specified by
the 3DSTATE_SO_BUFFER command.

The 3DSTATE_STREAMOUT command specifies an SO Buffer Enable bit for each of the buffers. If a
buffer is disabled, its state is ignored and no output will be attempted for that buffer. Any attempt to
output to that buffer will immediately signal an overflow condition.

The SOL stage maintains a current Write Offset register value for each SO buffer. These registers can be
written via MI_LOAD_REGISTER_MEM or MI_LOAD_REGISTER_IMM commands. The SOL stage will
increment the Write Offsets as a part of the SO function. Software can cause a Write Offset register to
be written to memory via an MI_STORE_REGISTER_MEM command, though a preceding flush operation
may be required to ensure that any previous SO functions have completed.

Project Surface Format Name Security

 R32G32B32A32_FLOAT

 R32G32B32A32_SINT

 R32G32B32A32_UINT

 R32G32B32_FLOAT

 R32G32B32_SINT

 R32G32B32_UINT

 R32G32_FLOAT

 R32G32_SINT

 R32G32_UINT

 R32_SINT

 R32_UINT

 R32_FLOAT

Rendering Disable

Independent of SOL function enable, if rendering (i.e, 3D pipeline functions past the SOL stage) is
enabled (via clearing the Rendering Disable bit), the SOL stage will pass topologies for a specific input
stream (as selected by Render Stream Select) down the pipeline, with the exception of PATCHLIST_n
topologies which are never passed downstream. Software must ensure that the vertices exiting the SOL
stage include a vertex header and position value so that the topologies can be correctly processed by
subsequent pipeline stages. Specifically, rendering must be disabled whenever 128-bit vertices are
output from a GS thread.

If Rendering Disable is set, the SOL stage will prevent any topologies from exiting the SOL stage.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 367

Statistics

The SOL stage controls the incrementing of two 64-bit statistics counter registers for each of the four
output buffer slots, SO_NUM_PRIMS_WRITTEN[] and SO_PRIM_STORAGE_NEEDED[].

3D Pipeline Rasterization
Common Rasterization State
This section contains rasterization state pointers.

3DSTATE_VIEWPORT_STATE_POINTERS_CC

3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP

3DSTATE_SCISSOR_STATE_POINTERS

3D Pipeline – CLIP Stage Overview

The CLIP stage of the GEN 3D Pipeline is similar to the GS stage in that it can be used to perform
general processing on incoming 3D objects via spawned GEN4 threads. However, the CLIP stage also
includes specialized logic to perform a ClipTest function on incoming objects. These two usage models
of the CLIP stage are outlined below.

Refer to the Common 3D FF Unit Functions subsection in the 3D Overview chapter for a general
description of a 3D Pipeline stage, as much of the CLIP stage operation and control falls under these
common functions. I.e., many of the CLIP stage state variables and CLIP thread payload parameters are
described in 3D Overview, and although they are listed here for completeness, that chapter provides the
detailed description of the associated functions.

Refer to this chapter for an overall description of the CLIP stage, details on the ClipTest function, and
any exceptions the CLIP stage exhibits with respect to common FF unit functions.

Clip Stage – General-Purpose Processing

Numerous state variable controls are provided to tailor the ClipTest function as required by the API or
primitive characteristics. These controls allow a mode where all objects are passed to CLIP threads, and
in this regard the CLIP stage can be used as a second GS stage. However, unlike the GS stage, primitives
output by CLIP threads will not be subject to 3D Clipping, and therefore any clip-testing/clipping of
these primitives (if required) would need to be performed by the CLIP thread itself.

Clip Stage – 3D Clipping

The ClipTest fixed function is provided to optimize the CLIP stage for support of generalized 3D
Clipping. The CLIP FF unit examines the position of incoming vertices, performs a fixed function
VertexClipTest on these positions, and then examines the results for the vertices of each independent
object in ClipDetermination.

The results of ClipDetermination indicate whether an object is to be processed by a thread (MustClip),
discarded (TrivialReject) or passed down the pipeline unmodified (TrivialAccept). In the MustClip case,
the spawned thread is responsible for performing the actual 3D Clipping algorithm. The CLIP thread is

 3D – Media – GPGPU

368 Doc Ref # IHD-OS-VLV-Vol7-04.14

passed the source object vertex data and is able to output a new, arbitrary 3D primitive (e.g., the
clipped primitive), or no output at all. Note that the output primitive is independent in that it is
comprised of newly-generated VUEs, and does not share vertices with the source primitive or other
CLIP-generated primitives.

New vertices produced by the CLIP threads are stored in the URB. Their Vertex Headers are then read
from the VUEs in order to insert the relevant information into the 3D pipeline. The CLIP unit maintains
the proper ordering of CLIP-generated primitives and any surrounding trivially-accepted primitives. The
CLIP unit also supports multiple concurrent CLIP threads and maintains the proper ordering of the
thread outputs as dictated by the order of the source objects.

The outgoing primitive stream is sent down the pipeline to the Strip/Fan (SF) FF stage (now including
the read-back VUE Vertex Header data such as Vertex Rosition (NDC or screen space), RTAIndex,
VPIndex, PointWidth) and control information (PrimType, PrimStart, PrimEnd) while the remainder of the
vertex data remains in the VUE in the URB.

Fixed Function Clipper

The GPU supports Fixed Function Clipping.

Note: In an earlier generation, clipping was done in the EU. However the clipper thread latency was
high and caused a bottleneck in the pipeline. Hence the motivation for a fixed function clipper.

Concepts

This section provides an overview of 3D clip-testing and clipping concepts, as defined by the Direct3D*
and OpenGL* APIs. It is provided as background material. Some of the concepts impact HW
functionality while others impact CLIP kernel functionality.

* Other names and brands may be claimed as the property of others.

The Clip Volume

3D objects are optionally clipped to the clip volume. The clip volume is defined as the intersection of a
set of clip half-spaces. Six of these half-spaces define the view volume, while additional, user-defined
half-spaces can be employed to perform clipping (or at least culling) within the view volume.

The CLIP stage design will permit the enable/disable of certain subsets of these clip half-spaces. This
capability can be used, for example, to disable viewport, guardband, and near and far clipping as
required by the API and other conditions.

View Volume

The intersection of the six view half-spaces defines the view volume. The view volume is defined in 4D
clip space coordinates as:

View Clip Plane

Outside Condition

 4D Clip Space NDC space, positive w

XMIN
(NDC Left)

clip.x < -clip.w ndc.x < -1

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 369

View Clip Plane

Outside Condition

 4D Clip Space NDC space, positive w

XMAX
(NDC Right)

clip.w < clip.x ndc.x > 1

YMIN
(NDC Bottom)

clip.y < -clip.w ndc.y < -1

YMAX
(NDC top)

clip.w < clip.y ndc.y > 1

ZMIN
(NDC Near) OGL: clip.z < -clip.w OGL: ndc.z < -1.0

ZMAX
(NDC Far)

clip.w < clip.z ndc.z > 1.0

Note that, since the 2D (X,Y) extent of the projected view volume is subsequently mapped to the 2D
pixel space viewport, the terms viewport and view volume are used somewhat interchangeably in this
discussion.

The CLIP unit will perform view volume clip test using NDC coordinates (the results of the speculative
PerspectiveDivide). The treatment of negative ndc.w and invalid (NaN, +/-INF) coordinates is clarified
below.

Negative W Coordinates

Consider for a moment vertices with a negative clip.w coordinate. Examination of the API definitions for
outside shows that it is impossible for that vertex to be considered inside both the XMIN (NDC Left) and
XMAX (NDC Right) planes. The clip.x coordinate would need to be greater than or equal to some
positive value (-clip.w) to be considered inside the XMIN plane, while also being less than or equal to
the negative (clip.w) value to be considered inside the XMAX plane. Obviously both these conditions
cannot be met simultaneously, so a vertex with a negative clip.w coordinate will always appear outside.

Surprisingly, it is possible for a vertex to be outside both the XMIN and XMAX planes (and likewise for
the Y axis). This arises when clip.w is negative and clip.x falls between clip.w and -clip.w. Note, however,
that in NDC space (post perspective-divide), this same vertex would be considered inside. This disparity
arises from the loss of information from the perspective divide operation, specifically the signs of the
input operands. The CLIP stage will avoid this artifact by supporting an additional clip.w=0 clip plane – a
negative ndc.rhw value indicates the point is outside of the clip.w=0 plane.

The assumption made in the Clip stage is that only the w>0 portion of clip space is considered visible.
The VertexClipTest function tests each incoming 1/w value and, if negative, the vertex is tagged as
being outside the w=0 plane. These vertex outcodes are combined in ClipDetermination to determine
TA/TR/MC status.

A negative w coordinate poses an additional issue due to the fact that VertexClipTest is performed
using post-perspection-projection coordinates (NDC or screen space). This disparity arises from the loss
of information from the perspective divide operation, specifically the signs of the input operands. For
example, to test for (x>w) using NDC coordinates, (x/w>1) must be used when w>0, and (x/w<1) must
be used when w<0. The VertexClipTest function therefore uses the sign of the incoming 1/w coordinate
to select the appropriate comparison function for each of the VP and GB clip planes.

 3D – Media – GPGPU

370 Doc Ref # IHD-OS-VLV-Vol7-04.14

As the CLIP thread performs clipping in 4D clip space, only the truly visible portions of objects (i.e.,
meeting the 4D clip space visibility criteria) will be considered. The CLIP thread should not output
negative w (clip or NDC) coordinates.

User-Specified Clipping

The various APIs define mechanisms by which objects can be clipped or culled according to some user-
specified parameter(s) in addition to the implied viewport clipping. In GEN, the HW support of these
mechanisms is restricted to use of the 8 UserClipFlags (UCFs) of the VUE Vertex Header. Software is
required to provide the remaining support (e.g., the JITTER including GEN4 instructions to cause a
distance value to be computed, tested for visibility, and generation of the appropriate UCF bit.)

Guard Band

Note: Refer to Vertex X,Y Clamping and Quantization in the SF stage section for device-specific
guardband size information.

During ClipDetermination, if an object is not trivially-rejected from the 2D viewport, the XMIN_GB,
XMAX_GB, YMIN_GB and YMAX_GB guardband outcodes are used instead of the XMIN, XMAX, YMIN,
YMAX view volume outcodes to determine trivial-accept. This allows objects that fall within the
guardband and possibly intersect the viewport to be trivially-accepted and passed down the pipeline.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 371

The diagram below shows some examples of objects (triangles) in relation to the viewport and
guardband. The shaded triangles are examples of triangles that are not trivially accepted to the
viewport but trivially accepted to the guardband and therefore passed to down the pipeline. Without
the guardband, these triangles would have to be submitted to a CLIP thread.

Normal Guardband Operation

The CLIP stage needs to handle the case where the viewport XY is larger than the screen space
coordinate range supported by the SF and WM units. This condition may arise when the API defines an
implicit 2D clip between the viewport XY extent and the render target. In the GEN4 3D pipeline, the
guardband must be used to force explicit clipping in order to ensure legal coordinates are passed out
of the CLIP stage. Therefore the CLIP unit supports a guardband that can be larger or smaller than the
viewport (in any particular direction). The following diagram illustrates a case with a very large viewport,
extending well beyond the guardband. Note that the only trivial accept case is where objects are
completely within the guardband.

Very Large Viewport Case

 3D – Media – GPGPU

372 Doc Ref # IHD-OS-VLV-Vol7-04.14

NDC Guardband Parameters

Note: Refer to Vertex X,Y Clamping and Quantization in the SF stage section for device-specific
guardband size information.

When the CLIP unit performs VertexClipTest in NDC space, the guardband limits must be provided as
NDC coordinates. The diagram below shows how the guardband NDC coordinates are derived.
Specifically, the XMIN_GB NDC coordinate is simply the ratio of the (screen space) distance from the
screen space VP center to the screen space GB XMin boundary over the distance from the VP center to
the VP XMin (left) boundary. A similar computation yields the XMAX_GB (right), YMIN_GB (bottom) and
YMAX_GB (top) guardband NDC coordinates.

As these guardband parameters are defined relative to the viewport, each of the up-to-16 sets of
viewport specifications supported in the 3D pipeline will require a corresponding set of guardband
parameters. These guardband parameters are provided as a separate memory-resident state structure

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 373

(CLIP_VIEWPORT), and referenced via the Clipper Viewport State Pointer contained in the CLIP_STATE
structure. Note that the CLIP_VIEWPORT structure has a different definition than the SF_VIEWPORT
structure used by the SF unit.

Vertex-Based Clip Testing Considerations

The CLIP unit performs clip test and determines whether objects need to be clipped based solely on
information (position, UserClipFlags) provided at the vertices of the object as they arrive at the clip
stage. Issues arise if and when the corresponding rendered object is not constrained to the convex hull
of the object. Different APIs impose different treatment of these conditions.

In addition and in the more general case, a CLIP thread could be used to convert the object (as defined
by its vertices) into some arbitrary output primitive. In this case, the CLIP unit's
ClipTest/ClipDetermination logic may not be suitable for determination of when to reject/accept/clip
objects. In this case the ClipMode can be used to route all (or all non-rejected) objects to CLIP threads,
where the proper clip-test and clipping can occur in the CLIP kernel.

One issue that arises is whether a trivial-reject to the VPXY is suitable. If this were allowed, an object
might be discarded even if it would have been partially visible in the viewport. A second issue is
whether a TA against the GB is suitable. If this were allowed, portions of the rendered object might be
visible in the VP even if the object should have been clipped out of the VP.

Triangle Objects

In the normal processing of triangle-based primitives (tristrip/trilist/polygon/etc.), the footprint of each
triangle is constrained to the 2D convex hull. I.e., the rendering of these triangles will not produce pixels
outside of the triangle. Therefore the normal operation of the CLIP unit functions will support the
proper clip testing and clip determination for triangle objects:

• Both the VPXY and GB clip boundaries can be utilized (as described above). If the triangle is TR
against the VP, it can be discarded. Otherwise, if the triangle is TA against the GB, it can be
passed down the pipeline (assuming it is TA against VPZ, UCFs, etc.) and properly handled by
2DClipping.

• The GB parameters can be programmed to coincide with the maximum allowable screen space
extent (though making the GB marginally smaller than this max extent is highly recommended).

Non-Wide Line Objects

In the normal processing of non-wide, line-based primitives (linestrip/linelist/etc.), the footprint of each
line is constrained to the 2D convex hull. I.e., the rendering of these lines will not produce pixels off of
the line. Therefore the normal operation of the CLIP unit functions will support the proper clip testing
and clip determination for non-wide line objects. (See Triangle Objects above).

Wide Line Objects

The GEN rendering hardware supports wide lines (solid lines with a line width or anti-aliased lines).
When rendered, pixels outside of the convex hull will be generated.

 3D – Media – GPGPU

374 Doc Ref # IHD-OS-VLV-Vol7-04.14

The following diagram shows an example of a wide line that normally would be TA against the GB. If the
TA is allowed, the partially-visible region of the line would be rendered.

In general, OpenGL dictates that the partially-visible region must not be rendered. In this case the line
must be clipped-out against the VPXY (not TA against the GB). To accomplish this, SW could disable the
GB when drawing wide lines.

Wide Points

The GEN rendering hardware supports a width parameter for native line objects. When rendered, pixels
surrounding the point (center) vertex will be generated.

The following diagram shows an example wide point that normally would be TR against the VPXY. If the
TR is allowed, the partially-visible region of the point would not be rendered.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 375

In general, OpenGL dictates that the partially-visible region must not be rendered. In this case the point
must be TR against the VPXY (not TA against the GB). To accomplish this, SW could disable the GB
when drawing wide points.

RECTLIST

The CLIP unit treats RECTLIST exactly like TRILIST. No special consideration is made for the implied 4th
vertex of each rectangle (although ViewportXY and Guardband VertexClipTest theoretically should be
sufficient to drive ClipDetermination). Given this, and the fact that RECTLIST is primarily intended for
driver-generated BLT functions, there are number of restrictions on the use of RECTLIST, especially
regarding the CLIP unit. Refer to the RECTLIST definition in 3D Pipeline.

3D Clipping

If an object needs to be clipped, it is passed to the CLIP thread. The CLIP thread performs some
(arbitrary) algorithm to clip the primitive, and subsequently output new vertices as a primitive defining
the visible region of the input object (assuming there is a visible region). In the process of spawning the
CLIP thread, the input vertices may be considered consumed and therefore dereferenced. Therefore the
CLIP thread needs to copy (if required) any input VUE data to a new output VUE; there is no mechanism
to output input vertices other than copying.

Supports only Fixed function Clipping.

CLIP Stage Input

As a stage of the GEN 3D pipeline, the CLIP stage receives inputs from the previous (GS) stage. Refer to
3D Overview for an overview of the various types of input to a 3D Pipeline stage. The remainder of this
subsection describes the inputs specific to the CLIP stage.

State

This section contains state clips for the Clip Stage.

3DSTATE_CLIP

The state used by the Clip Stage is defined by this inline state packet.

VUE Readback

Starting with the CLIP stage, the 3D pipeline requires vertex information in addition to the VUE handle.
For example, the CLIP unit's VertexClipTest function needs the vertex position, as does the SF unit's
functions. This information is obtained by the 3D pipeline reading a portion of each vertex's VUE data
directly from the URB. This readback (effectively) occurs immediately before the CLIP VertexClipTest
function, and immediately after a CLIP thread completes the output of a destination VUE.

The Vertex Header (first 256 bits) of the VUE data is read back. (See the previous VUE Formats
subsection (above) for details on the content and format of the Vertex Header.) : Additional Clip/Cull
data (located immediately past the Vertex Header) may be read prior to clipping.

 3D – Media – GPGPU

376 Doc Ref # IHD-OS-VLV-Vol7-04.14

This readback occurs automatically and is not under software control. The only software implication is
that the Vertex Header must be valid at the readback points, and therefore must have been previously
loaded or written by a thread.

VertexClipTest Function

The VertexClipTest function compares each incoming vertex position (x,y,z,w) with various viewport and
guardband parameters (either hard-coded values or specified by state variables).

The RHW component of the incoming vertex position is tested for NaN value, and if a NaN is detected,
the vertex is marked as "BAD" by setting the outcode[BAD]. If a NaN is detected in any vertex
homogeneous x,y,z,w component or an enabled ClipDistance value, the vertex is marked as "BAD" by
setting the outcode[BAD].

In general, any object containing a BAD vertex will be discarded, as how to clip/render such objects is
undefined.

However, in the case of CLIP_ALL mode, a CLIP thread will be spawned even for objects with "BAD"
vertices. The CLIP kernel is required to handle this case, and can examine the Object Outcode [BAD]
payload bit to detect the condition. (Note that the VP and GB Object Outcodes are UNDEFINED when
BAD is set.)

If the incoming RHW coordinate is negative (including negative 0) the NEGW outcode is set. Also, this
condition is used to select the proper comparison functions for the VP and GB outcode tests (below).

Next, the VPXY and GB outcodes are computed, depending on the corresponding enable SV bits. If one
of VPXY or GB is disabled, the enabled set of outcodes are copied to the disabled set of outcodes. This
effectively defines the disabled boundaries to coincide with the enabled boundaries (i.e., disabling the
GB is just like setting it to the VPXY values, and vice versa).

The VPZ outcode is computed as required by the API mode SV.

Finally, the incoming UserClipFlags are masked and copied to corresponding outcodes.

The following algorithm is used by VertexClipTest:

 //

 // Vertex ClipTest

 //

 // On input:

 // if (CLIP.PreMapped)

 // x,y are viewport mapped

 // z is NDC ([0,1] is visible)

 // else

 // x,y,z are NDC (post-perspective divide)

 // w is always 1/w

 //

 // Initialize outCodes to "inside"

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 377

 //

 outCode[*] = 0

 //

// Check if w is NaN

 // Any object containing one of these "bad" vertices will likely be
discarded

//

 if (ISNAN(homogeneous x,y,z,w or enabled ClipDistance value)

{

 outCode[BAD] = 1

 }

 //

 // If 1/w is negative, w is negative and therefore outside of the w=0 plane

 //

 //

 rhw_neg = ISNEG(rhw)

 if (rhw_neg)

{

 outCode[NEGW] = 1

 }

 //

 // View Volume Clip Test

 // If Premapped, the 2D viewport is defined in screen space

 // otherwise the canonical NDC viewvolume applies ([-1,1])

 //

 if (CLIP_STATE.PreMapped)

 {

 vp_XMIN = CLIP_STATE.VP_XMIN

 vp_XMAX = CLIP_STATE.VP_XMAX

 vp_YMIN = CLIP_STATE.VP_YMIN

 vp_YMAX = CLIP_STATE.VP_YMAX

 } else {

 vp_XMIN = -1.0f

 vp_XMAX = +1.0f

 vp_YMIN = -1.0f

 vp_YMAX = +1.0f

 }

 3D – Media – GPGPU

378 Doc Ref # IHD-OS-VLV-Vol7-04.14

 if (CLIP_STATE.ViewportXYClipTestEnable) {

 outCode[VP_XMIN] = (x < vp_XMIN)

 outCode[VP_XMAX] = (x > vp_XMAX)

 outCode[VP_YMIN] = (y < vp_YMIN)

 outCode[VP_YMAX] = (y > vp_YMAX)

 #ifdef (DevBW-E0)

 if (rhw_neg) {

outCode[VP_XMIN] = (x >= vp_XMIN)

 outCode[VP_XMAX] = (x <= vp_XMAX)

 outCode[VP_YMIN] = (y >= vp_XMIN)

 outCode[VP_YMAX] = (y <= vp_XMAX)

 }

 #endif

 if (rhw_neg) {

outCode[VP_XMIN] = (x > vp_XMIN)

 outCode[VP_XMAX] = (x < vp_XMAX)

 outCode[VP_YMIN] = (y > vp_XMIN)

 outCode[VP_YMAX] = (y < vp_XMAX)

 }

 }

 if (CLIP_STATE.ViewportZClipTestEnable) {

 if (CLIP_STATE.APIMode == APIMODE_D3D) {

vp_ZMIN = 0.0f

 vp_ZMAX = 1.0f

 } else { // OGL

 vp_ZMIN = -1.0f

 vp_ZMAX = 1.0f

 }

 outCode[VP_ZMIN] = (z < vp_ZMIN)

 outCode[VP_ZMAX] = (z > vp_ZMAX)

 #ifdef (DevBW-E0)

 if (rhw_neg) {

outCode[VP_ZMIN] = (z >= vp_ZMIN)

 outCode[VP_ZMAX] = (z <= vp_ZMAX)

 }

 #endif

 if (rhw_neg) {

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 379

outCode[VP_ZMIN] = (z > vp_ZMIN)

 outCode[VP_ZMAX] = (z < vp_ZMAX)

 }

 }

 //

 // Guardband Clip Test

 //

 if {CLIP_STATE.GuardbandClipTestEnable) {

 gb_XMIN = CLIP_STATE.Viewport[vpindex].GB_XMIN

 gb_XMAX = CLIP_STATE.Viewport[vpindex].GB_XMAX

 gb_YMIN = CLIP_STATE.Viewport[vpindex].GB_YMIN

 gb_YMAX = CLIP_STATE.Viewport[vpindex].GB_YMAX

outCode[GB_XMIN] = (x < gb_XMIN)

 outCode[GB_XMAX] = (x > gb_XMAX)

 outCode[GB_YMIN] = (y < gb_YMIN)

 outCode[GB_YMAX] = (y > gb_YMAX)

 #ifdef (DevBW-E0)

 if (rhw_neg) {

outCode[GB_XMIN] = (x >= gb_XMIN)

 outCode[GB_XMAX] = (x <= gb_XMAX)

 outCode[GB_YMIN] = (y >= gb_YMIN)

 outCode[GB_YMAX] = (y <= gb_YMAX)

 }

 #endif

 if (rhw_neg) {

outCode[GB_XMIN] = (x > gb_XMIN)

 outCode[GB_XMAX] = (x < gb_XMAX)

 outCode[GB_YMIN] = (y > gb_YMIN)

 outCode[GB_YMAX] = (y < gb_YMAX)

 }

 }

 //

 // Handle case where either VP or GB disabled (but not both)

 // In this case, the disabled set take on the outcodes of the enabled set

 //

 if (CLIP_STATE.ViewportXYClipTestEnable &&
!CLIP_STATE.GuardbandClipTestEnable) {

 3D – Media – GPGPU

380 Doc Ref # IHD-OS-VLV-Vol7-04.14

outCode[GB_XMIN] = outCode[VP_XMIN]

 outCode[GB_XMAX] = outCode[VP_XMAX]

 outCode[GB_YMIN] = outCode[VP_YMIN]

 outCode[GB_YMAX] = outCode[VP_YMAX]

 } else if (!CLIP_STATE.ViewportXYClipTestEnable &&
CLIP_STATE.GuardbandClipTestEnable) {

outCode[VP_XMIN] = outCode[GB_XMIN]

 outCode[VP_XMAX] = outCode[GB_XMAX]

 outCode[VP_YMIN] = outCode[GB_YMIN]

 outCode[VP_YMAX] = outCode[GB_YMAX]

 }

 //

// X/Y/Z NaN Handling

 //

 xyorgben = (CLIP_STATE.ViewportXYClipTestEnable ||
CLIP_STATE.GuardbandClipTestEnable)

 if (isNAN(x)) {

 outCode[GB_XMIN] = xyorgben

 outCode[GB_XMAX] = xyorgben

 outCode[VP_XMIN] = xyorgben

 outCode[VP_XMAX] = xyorgben

 }

 if (isNAN(y)) {

 outCode[GB_YMIN] = xyorgben

 outCode[GB_YMAX] = xyorgben

 outCode[VP_YMIN] = xyorgben

 outCode[VP_YMAX] = xyorgben

 }

 if (isNaN) {

outCode[VP_ZMIN] = CLIP_STATE.ViewportZClipTestEnable

outCode[VP_ZMAX] = CLIP_STATE.ViewportZClipTestEnable

 }

 //

 // UserClipFlags

 //

 ExamineUCFs

 for (i=0; i<7; i++)

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 381

 {

 outCode[UC0+i] = userClipFlag[i] &
CLIP_STATE.UserClipFlagsClipTestEnableBitmask[i]

 }

 outCode[UC7] = userClipFlag[i] &
CLIP_STATE.UserClipFlagsClipTestEnableBitmask[7]

Object Staging

The CLIP unit's Object Staging Buffer (OSB) accepts streams of input vertex information packets, along
with each vertex's VertexClipTest result (outCode). This information is buffered until a complete object
or the last vertex of the primitive topology is received. The OSB then performs the ClipDetermination
function on the object vertices, and takes the actions required by the results of that function.

Partial Object Removal

The OSB is responsible for removing incomplete LINESTRIP and TRISTRIP objects that it may receive
from the preceding stage (GS). Partial object removal is not supported for other primitive types due to
either (a) the GS is not permitted to output those primitive types (e.g., primitives with adjacency info),
and the VF unit will have removed the partial objects as part of 3DPRIMITIVE processing, or (b) although
the GS thread is allowed to output the primitive type (e.g., LINELIST), it is assumed that the GS kernel
will be correctly implemented to avoid outputting partial objects (or pipeline behavior is UNDEFINED).

An object is considered ‘partial’ if the last vertex of the primitive topology is encountered (i.e., PrimEnd
is set) before a complete set of vertices for that object have been received. Given that only LINESTRIP
and TRISTRIP primitive types are subject to CLIP unit partial object removal, the only supported cases of
partial objects are 1-vertex LINESTRIPs and 1 or 2-vertex TRISTRIPs.

ClipDetermination Function

In ClipDetermination, the vertex outcodes of the primitive are combined in order to determine the clip
status of the object (TR: trivially reject; TA: trivial accept; MC: must clip; BAD: invalid coordinate). Only
those vertices included in the object are examined (3 vertices for a triangle, 2 for a line, and 1 for a
point). The outcode bit arrays for the vertices are separately ANDed (intersection) and ORed (union)
together (across vertices, not within the array) to yield objANDCode and objORCode bit arrays.

TR/TA against interesting boundary subsets are then computed. The TR status is computed as the
logical OR of the appropriate objANDCode bits, as the vertices need only be outside of one common
boundary to be trivially rejected. The TA status is computed as the logical NOR of the appropriate
objORCode bits, as any vertex being outside of any of the boundaries prevents the object from being
trivially accepted.

If any vertex contains a BAD coordinate, the object is considered BAD and any computed TR/TA results
will effectively be ignored in the final action determination.

Next, the boundary subset TR/TA results are combined to determine an overall status of the object. If
the object is TR against any viewport or enabled UC plane, the object is considered TR. Note that, by

 3D – Media – GPGPU

382 Doc Ref # IHD-OS-VLV-Vol7-04.14

definition, being TR against a VPXY boundary implies that the vertices will be TR agains the
corresponding GB boundary, so computing TR_GB is unnecessary.

The treatment of the UCF outcodes is conditional on the UserClipFlags MustClip Enable state. If
DISABLED, an object that is not TR against the UCFs is considered TA against them. Put another way,
objects will only be culled (not clipped) with respect to the UCFs. If ENABLED, the UCF outcodes are
treated like the other outcodes, in that they are used to determine TR, TA or MC status, and an object
can be passed to a CLIP thread simply based on it straddling a UCF.

Finally, the object is considered MC if it is neither TR or TA.

The following logic is used to compute the final TR, TA, and MC status.

//

// ClipDetermination

//

//

// Compute objANDCode and objORCode

//

switch (object type) {

case POINT:

{

objANDCode[…] = v0.outCode[…]

objORCode[…] = v0.outCode[…]

} break

case LINE:

{

objANDCode[…] = v0.outCode[…] & v1.outCode[…]

objORCode[…] = v0.outCode[…] | v1.outCode[…]

} break

case TRIANGLE:

{

objANDCode[…] = v0.outCode[…] & v1.outCode[…] & v2.outCode[…]

objORCode[…] = v0.outCode[…] | v1.outCode[…] | v2.outCode[…]

} break

//

// Determine TR/TA against interesting boundary subsets

//

TR_VPXY = (objANDCode[VP_L] | objANDCode[VP_R] | objANDCode[VP_T] |
objANDCode[VP_B])

TR_GB = (objANDCode[GB_L] | objANDCode[GB_R] | objANDCode[GB_T] |
objANDCode[GB_B])

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 383

TA_GB = !(objORCode[GB_L] | objORCode[GB_R] | objORCode[GB_T] |
objORCode[GB_B])

TA_VPZ = !(objORCode[VP_N] | objORCode[VP_Z])

TR_VPZ = (objANDCode[VP_N] | objANDCode[VP_Z])

TA_UC = !(objORCode[UC0] | objORCode[UC1] | … | objORCode[UC7])

TR_UC = (objANDCode[UC0] | objANDCode[UC1] | … | objANDCode[UC7])

BAD = objORCode[BAD]

TA_NEGW = !objORCode[NEGW]

TR_NEGW = objANDCode[NEGW]

//

// Trivial Reject

//

// An object is considered TR if all vertices are TR against any common
boundary

// Note that this allows the case of the VPXY being outside the GB

//

TR = TR_GB || TR_VPXY || TR_VPZ || TR_UC || TR_NEGW

#else

TR = TR_GB || TR_VPXY || TR_VPZ || TR_UC

//

// Trivial Accept

//

// For an object to be TA, it must be TA against the VPZ and GB, not TR,

// and considered TA against the UC planes and NEGW

// If the UCMC mode is disabled, an object is considered TA against the UC

// as long as it isn't TR against the UC.

// If the UCMC mode is enabled, then the object really has to be TA against
the UC

// to be considered TA

// In this way, enabling the UCMC mode will force clipping if the object is
neither

// TA or TR against the UC

//

TA = !TR && TA_GB && TA_VPZ && TA_NEGW

UCMC = CLIP_STATE.UserClipFlagsMustClipEnable

TA = TA && ((UCMC && TA_UC) || (!UCMC && !TR_UC))

//

// MustClip

 3D – Media – GPGPU

384 Doc Ref # IHD-OS-VLV-Vol7-04.14

// This is simply defined as not TA or TR

// Note that exactly one of TA, TR and MC will be set

//

MC = !(TA || TR)

ClipMode

The ClipMode state determines what action the CLIP unit takes given the results of ClipDetermination.
The possible actions are:

• PASSTHRU: Pass the object directly down the pipeline. A CLIP thread is not spawned.
• DISCARD: Remove the object from the pipeline and dereference object vertices as required (i.e.,

dereferencing will not occur if the vertices are shared with other objects).
• SPAWN: Pass the object to a CLIP thread. In the process of initiating the thread, the object

vertices may be dereferenced.

The following logic is used to determine what to do with the object (PASSTHRU or DISCARD or
SPAWN).

//

// Use the ClipMode to determine the action to take

 //

switch (CLIP_STATE.ClipMode) {

 case NORMAL: {

PASSTHRU = TA && !BAD

DISCARD = TR || BAD

SPAWN = MC && !BAD

 }

 case CLIP_ALL: {

PASSTHRU = 0

DISCARD = 0

SPAWN = 1

 }

 case CLIP_NOT_REJECT: {

 PASSTHRU = 0

DISCARD = TR || BAD

SPAWN = !(TR || BAD)

 }

 case REJECT_ALL: {

PASSTHRU = 0

DISCARD = 1

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 385

SPAWN = 0

 }

 case ACCEPT_ALL: {

PASSTHRU = !BAD

DISCARD = BAD

SPAWN = 0

 }

} endswitch

NORMAL ClipMode

In NORMAL mode, objects will be discarded if TR or BAD, passed through if TA, and passed to a CLIP
thread if MC. Those mode is typically used when the CLIP kernel is only used to perform 3D Clipping
(the expected usage model).

CLIP_ALL ClipMode

In CLIP_ALL mode, all objects (regardless of classification) will be passed to CLIP threads. Note that this
includes BAD objects. This mode can be used to perform arbritrary processing in the CLIP thread, or as
a backup if for some reason the CLIP unit fixed functions (VertexClipTest, ClipDetermination) are not
sufficient for controlling 3D Clipping.

CLIP_NON_REJECT ClipMode

This mode is similar to CLIP_ALL mode, but TR and BAD objects are discarded an all other (TA, MC)
objects are passed to CLIP threads. Usage of this mode assumes that the CLIP unit fixed functions
(VertexClipTest, ClipDetermination) are sufficient at least in respect to determining trivial reject.

REJECT_ALL ClipMode

In REJECT_ALL mode, all objects (regardless of classification) are discarded. This mode effectively clips
out all objects.

ACCEPT_ALL ClipMode

In ACCEPT_ALL mode, all non-BAD objects are passed directly down the pipeline. This mode partially
disables the CLIP stage. BAD objects will still be discarded, and incomplete primitives (generated by a
GS thread) will be discarded.

Primitive topologies with adjacency are also handled, in that the adjacent-only vertices are dereferenced
and only non-adjacent objects are passed down the pipeline. This condition can arise when primitive
topologies with adjacency are generated but the GS stage is disabled. If this condition is allowed, the
CLIP stage must not be completely disabled – as this would allow adjacent vertices to pass through the
CLIP stage and lead to UNPREDICATBLE results as the rest of the pipeline does not comprehend
adjacency.

 3D – Media – GPGPU

386 Doc Ref # IHD-OS-VLV-Vol7-04.14

Object Pass-Through

Depending on ClipMode, objects may be passed directly down the pipeline. The PrimTopologyType
associated with the output objects may differ from the input PrimTopologyType, as shown in the table
below.

Programming Note: The CLIP unit does not tolerate primitives with adjacency that have dangling
vertices. This should not be an issue under normal conditions, as the VF unit does not generate these
sorts of primitives and the GS thread is restricted (though by specification only) to not output these
sorts of primitives.

Input
PrimTopologyType

Pass-Through Output
PrimTopologyType Notes

POINTLIST POINTLIST

POINTLIST_BF POINTLIST_BF

LINELIST LINELIST

LINELIST_ADJ LINELIST Adjacent vertices removed.

LINESTRIP LINESTRIP

LINESTRIP_ADJ LINESTRIP Adjacent vertices removed.

LINESTRIP_BF LINESTRIP_BF

LINESTRIP_CONT LINESTRIP_CONT

LINESTRIP_CONT_BF LINESTRIP_CONT_BF

LINELOOP N/A Not supported after GS.

TRILIST TRILIST

RECTLIST RECTLIST

TRILIST_ADJ TRILIST Adjacent vertices removed.

TRISTRIP TRISTRIP or
TRISTRIP_REV

Depends on where the incoming strip is broken (if at all) by
discarded or clipped objects
See Tristrip Clipping Issues subsection.

TRISTRIP_REV TRISTRIP or
TRISTRIP_REV

Depends on where the incoming strip is broken (if at all) by
discarded or clipped objects.
See Tristrip Clipping Issues subsection.

TRISTRIP_ADJ TRISTRIP or
TRISTRIP_REV Depends on where the incoming strip is broken (if at all) by

discarded or clipped objects.

Adjacent vertices removed.

See Tristrip Clipping Issues subsection.

TRIFAN TRIFAN

TRIFAN_NOSTIPPLE TRIFAN_NOSTIPPLE

POLYGON POLYGON

QUADLIST N/A Not supported after GS.

QUADSTRIP N/A Not supported after GS.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 387

Primitive Output

(This section refers to output from the CLIP unit to the pipeline, not output from the CLIP thread)

The CLIP unit will output primitives (either passed-through or generated by a CLIP thread) in the proper
order. This includes the buffering of a concurrent CLIP thread's output until the preceding CLIP thread
terminates. Note that the requirement to buffer subsequent CLIP thread output until the preceding CLIP
thread terminates has ramifications on determining the number of VUEs allocated to the CLIP unit and
the number of concurrent CLIP threads allowed.

Other Functionality

Statistics Gathering

The CLIP unit includes logic to assist in the gathering of certain pipeline statistics . The statistics take the
form of MI counter registers (see Memory Interface Registers), where the CLIP unit provides signals
causing those counters to increment.

Software is responsible for controlling (enabling) these counters in order to provide the required
statistics at the DDI level. For example, software might need to disable statistics gathering before
submitting non-API-visible objects (e.g., RECTLISTs) for processing.

The CLIP unit must be ENABLED (via the CLIP Enable bit of PIPELINED_STATE_POINTERS) for it to affect
the statistics counters. This might lead to a pathological case where the CLIP unit needs to be ENABLED
simply to provide statistics gathering. If no clipping functionality is desired, Clip Mode can be set to
ACCEPT_ALL to effectively inhibit clipping while leaving the CLIP stage ENABLED.

The statistic the CLIP unit affects (if enabled) is CL_INVOCATION_COUNT, incremented for every object
received from the GS stage.

CL_INVOCATION_COUNT

If the Statistics Enable bit (CLIP_STATE) is set, the CLIP unit increments the CL_INVOCATION_COUNT
register for every complete object received from the GS stage.

To maintain a count of application-generated objects, software must clear the CLIP unit's Statistic
Enable whenever driver-generated objects are rendered.

3D Pipeline - Strips and Fans (SF) Stage
The Strips and Fan (SF) stage of the 3D pipeline is responsible for performing setup operations required
to rasterize 3D objects.

This functionality is handled completely in hardware, and the SF unit no longer has the ability to spawn
threads.

Inputs from CLIP

The following table describes the per-vertex inputs passed to the SF unit from the previous (CLIP) stage
of the pipeline.

 3D – Media – GPGPU

388 Doc Ref # IHD-OS-VLV-Vol7-04.14

SF's Vertex Pipeline Inputs

Variable Type Description

primType enum Type of primitive topology the vertex belongs to. Primitive Assembly for
a list of primitive types supported by the SF unit. See 3D Pipeline for
descriptions of these topologies.

Notes:

The CLIP unit will convert any primitive with adjacency
(3DPRIMxxx_ADJ) it receives from the pipeline into the corresponding
primitive without adjacency (3DPRIMxxx).

QUADLIST, QUADSTRIP, LINELOOP primitives are not supported by the
SF unit. Software must use a GS thread to convert these to some other
(supported) primitive type.

 If an object is clipped by the hardware clipper, the CLunit would force
this field to 3DPRIM_POLYGON. SFunit would process this incoming
object just as it would any other 3DPRIM_POLYGON. SFunit selects
vertex 0 as the provoking vertex.

primStart,primEnd boolean Indicate vertex's position within the primitive topology

vInX[] float Vertex X position (screen space or NDC space)

vInY[] float Vertex Y position (screen space or NDC space)

vInZ[] float Vertex Z position (screen space or NDC space)

vInInvW[] float Reciprocal of Vertex homogeneous (clip space) W

hVUE[] URB
address

Points to the vertex's data stored in the URB (one VUE handle per vertex)

renderTargetArrayIndex uint Index of the render target (array element or 3D slice), clamped to 0 by the GS
unit if the max value was exceeded.
If this vertex is the leading vertex of an object within the primitive topology,
this value will be associated with that object in subsequent processing.

viewPortIndex uint Index of a viewport transform matrix within the SF_VIEWPORT structure used
to perform Viewport Transformation on object vertices and scissor operations
on an object.
If this vertex is the leading vertex of an object within the primitive topology,
this value will be associated with that object in the Viewport Transform and
Scissor subfunctions, otherwise the value is ignored. Note that for primitive
topologies with vertices shared between objects, this means a shared vertex
may be subject to multiple Viewport Transformation operations if the
viewPortIndex varies within the topology.

pointSize uint If this vertex is within a POINTLIST[_BF] primitive topology, this value specifies
the screen space size (width,height) of the square point to be rasterized about
the vertex position. Otherwise the value is ignored.

Attribute Setup/Interpolation Process

The following sections describe the Attribute Setup/Interpolation Process.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 389

Attribute Setup/Interpolation Process

Hardware computes all needed parameters, as there is no setup thread.

Outputs to WM

The outputs from the SF stage to the WM stage are mostly comprised of implementation-specific
information required for the rasterization of objects. The types of information is summarized below, but
as the interface is not exposed to software a detailed discussion is not relevant to this specification.

• PrimType of the object
• VPIndex, RTAIndex associated with the object
• Coefficients for Z, 1/W, perspective and non-perspective b1 and b2 per vertex, and attribute

vertex deltas a0, a1, and a2 per attribute.
• Information regarding the X,Y extent of the object (e.g., bounding box, etc.).
• Edge or line interpolation information (e.g., edge equation coefficients, etc.).
• Information on where the WM is to start rasterization of the object.
• Object orientation (front/back-facing).
• Last Pixel indication (for line drawing).

Primitive Assembly

The first subfunction within the SF unit is Primitive Assembly. Here 3D primitive vertex information is
buffered and, when a sufficient number of vertices are received, converted into basic 3D objects which
are then passed to the Viewport Transformation subfunction.

The number of vertices passed with each primitive is constrained by the primitive type. Primitive
Assembly. Passing any other number of vertices results in UNDEFINED behavior. Note that this
restriction only applies to primitive output by GS threads (which is under control of the GS kernel). See
the Vertex Fetch chapter for details on how the VF unit automatically removes incomplete objects
resulting from processing a 3DPRIMITIVE command.

SF-Supported Primitive Types & Vertex Count Restrictions

primType VertexCount Restriction

3DPRIM_TRILIST nonzero multiple of 3

3DPRIM_TRISTRIP
3DPRIM_TRISTRIP_REVERSE

>=3

3DPRIM_TRIFAN

3DPRIM_TRIFAN_NOSTIPPLE

3DPRIM_POLYGON

>=3

3DPRIM_LINELIST nonzero multiple of 2

3DPRIM_LINESTRIP >=2

 3D – Media – GPGPU

390 Doc Ref # IHD-OS-VLV-Vol7-04.14

primType VertexCount Restriction

3DPRIM_LINESTRIP_CONT

3DPRIM_LINESTRIP_BF

3DPRIM_LINESTRIP_CONT_BF

3DPRIM_RECTLIST nonzero multiple of 3

3DPRIM_POINTLIST
3DPRIM_POINTLIST_BF

nonzero

Primitive Assembly for a list of the 3D object types.

3D Object Types

objectType generated by primType Vertices/Object

3DOBJ_POINT 3DPRIM_POINTLIST
3DPRIM_POINTLIST_BF

1

3DOBJ_LINE 3DPRIM_LINELIST

3DPRIM_LINESTRIP

3DPRIM_LINESTRIP_CONT

3DPRIM_LINESTRIP_BF

3DPRIM_LINESTRIP_CONT_BF

2

3DOBJ_TRIANGLE 3DPRIM_TRILIST

3DPRIM_TRISTRIP

3DPRIM_TRISTRIP_REVERSE

 3DPRIM_TRIFAN

3DPRIM_TRIFAN_NOSTIPPLE

3DPRIM_POLYGON

3

3DOBJ_RECTANGLE 3DPRIM_RECTLIST 3 (expanded to 4 in RectangleCompletion)

Primitive Assembly for the outputs of Primitive Decomposition.

Primitive Decomposition Outputs

Variable Type Description

objectType enum Type of object. Primitive Assembly

nV uint The number of object vertices passed to Object Setup. Primitive Assembly

v[0..nV-1]* various Data arrays associated with object vertices. Data in the array consists of X, Y,
Z, invW and a pointer to the other vertex attributes. These additional

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 391

Variable Type Description

attributes are not used by directly by the 3D fixed functions but are made
available to the SF thread. The number of valid vertices depends on the
object type. Primitive Assembly

invertOrientation enum Indicates whether the orientation (CW or CCW winding order) of the vertices of a
triangle object should be inverted. Ignored for non-triangle objects.

backFacing enum Valid only for points and line objects, indicates a back facing object. This is used later
for culling.

provokingVtx uint Specifies the index (into the v[] arrays) of the vertex considered the provoking
vertex (for flat shading). The selection of the provoking vertex is
programmable via SF_STATE (xxx Provoking Vertex Select state variables.)

polyStippleEnable boolean TRUE if Polygon Stippling is enabled. FALSE for TRIFAN_NOSTIPPLE. Ignored for non-
triangle objects.

continueStipple boolean Only applies to line objects. TRUE if Line Stippling should be continued (i.e., not
reset) from where the previous line left off. If FALSE, Line Stippling is reset for each
line object.

renderTargetIndex uint Index of the render target (array element or 3D slice), clamped to 0 by the GS unit if
the max value was exceeded. This value is simply passed in SF thread payloads and
not used within the SF unit.

viewPortIndex uint Index of a viewport transform matrix within the SF_VIEWPORT structure used to
perform Viewport Transformation on object vertices and scissor operations on an
object.

pointSize unit For point objects, this value specifies the screen space size (width,height) of the
square point to be rasterized about the vertex position. Otherwise the value is
ignored.

The following table defines, for each primitive topology type, which vertex's VPIndex/RTAIndex applies
to the objects within the topology.

VPIndex/RTAIndex Selection

PrimTopologyType Viewport Index Usage

POINTLIST
POINTLIST_BF

Each vertex supplies the VPIndex for the corresponding point object

LINELIST The leading vertex of each line supplies the VPIndex for the corresponding line
object.

V0.VPIndex Line(V0,V1)

V2.VPIndex Line(V2,V3)

…

LINESTRIP

LINESTRIP_BF

The leading vertex of each line segment supplies the VPIndex for the
corresponding line object.

 3D – Media – GPGPU

392 Doc Ref # IHD-OS-VLV-Vol7-04.14

PrimTopologyType Viewport Index Usage

LINESTRIP_CONT

LINESTRIP_CONT_BF

V0.VPIndex Line(V0,V1)

V1.VPIndex Line(V1,V2)

…

NOTE: If the VPIndex changes within the topology, shared vertices will be
processed (mapped) multiple times.

TRILIST
RECTLIST The leading vertex of each triangle/rect supplies the VPIndex for the

corresponding triangle/rect objects.

V0.VPIndex Tri(V0,V1,V2)

V3.VPIndex Tri(V3,V4,V5)

…

TRISTRIP
TRISTRIP_REVERSE The leading vertex of each triangle supplies the VPIndex for the corresponding

triangle object.

V0.VPIndex Tri(V0,V1,V2)

V1.VPIndex Tri(V1,V2,V3)

…

NOTE: If the VPIndex changes within the primitive, shared vertices will be
processed (mapped) multiple times.

TRIFAN

TRIFAN_NOSTIPPLE

POLYGON

The first vertex (V0) supplies the VPIndex for all triangle objects.

Point List Decomposition

The 3DPRIM_POINTLIST and 3DPRIM_POINTLIST_BACKFACING primitives specify a list of independent
points.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 393

3DPRIM_POINTLIST Primitive

The decomposition process divides the list into a series of basic 3DOBJ_POINT objects that are then
passed individually and in order to the Object Setup subfunction. The provokingVertex of each object is,
by definition, v[0].

Points have no winding order, so the primitive command is used to explicitly state whether they are
back-facing or front-facing points. Primitives of type 3DPRIM_POINTLIST_BACKFACING are
decomposed exactly the same way as 3DPRIM_POINTLIST primitives, but the backFacing variable is set
for resulting point objects being passed on to object setup.
PointListDecomposition() {

objectType = 3DOBJ_POINT

nV = 1

provokingVtx = 0

if (primType == 3DPRIM_POINTLIST)

 backFacing = FALSE

else // primType == 3DPRIM_POINTLIST_BACKFACING

 backFacing = TRUE

for each (vertex I in [0..vertexCount-1]) {

v[0] vIn[i]// copy all arrays (e.g., v[]X, v[]Y, etc.)

ObjectSetup()

}
}

Line List Decomposition

The 3DPRIM_LINELIST primitive specifies a list of independent lines.

 3D – Media – GPGPU

394 Doc Ref # IHD-OS-VLV-Vol7-04.14

3DPRIM_LINELIST Primitive

The decomposition process divides the list into a series of basic 3DOBJ_LINE objects that are then
passed individually and in order to the Object Setup stage. The lines are generated with the following
object vertex order: v0, v1; v2, v3; and so on. The provokingVertex of each object is taken from the Line
List/Strip Provoking Vertex Select state variable, as programmed via SF_STATE.
LineListDecomposition() {

objectType = 3DOBJ_LINE

nV = 2

provokingVtx = Line List/Strip Provoking Vertex Select

continueStipple = FALSE

for each (vertex I in [0..vertexCount-2] by 2) {

v[0] arrays vIn[i] arrays

v[1] arrays vIn[i+1] arrays

ObjectSetup()

}
}

Line Strip Decomposition

The 3DPRIM_LINESTRIP, 3DPRIM_LINESTRIP_CONT, 3DPRIM_LINESTRIP_BF, and
3DPRIM_LINESTRIP_CONT_BF primitives specify a list of connected lines.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 395

3DPRIM_LINESTRIP_xxx Primitive

The decomposition process divides the strip into a series of basic 3DOBJ_LINE objects that are then
passed individually and in order to the Object Setup stage. The lines are generated with the following
object vertex order: v0,v1; v1,v2; and so on. The provokingVertex of each object is taken from the Line
List/Strip Provoking Vertex Select state variable, as programmed via SF_STATE.

Lines have no winding order, so the primitive command is used to explicitly state whether they are
back-facing or front-facing lines. Primitives of type 3DPRIM_LINESTRIP[_CONT]_BF are decomposed
exactly the same way as 3DPRIM_LINESTRIP[_CONT] primitives, but the backFacing variable is set for the
resulting line objects being passed on to object setup. Likewise 3DPRIM_LINESTRIP_CONT[_BF]
primitives are decomposed identically to basic line strips, but the continueStipple variable is set to true
so that the line stipple pattern will pick up from where it left off with the last line primitive, rather than
being reset.
LineStripDecomposition() {

objectType = 3DOBJ_LINE

nV = 2

provokingVtx = Line List/Strip Provoking Vertex Select

if (primType == 3DPRIM_LINESTRIP) {

 backFacing = FALSE

 continueStipple = FALSE

} else if (primType == 3DPRIM_LINESTRIP_BF) {

 backFacing = TRUE

 continueStipple = FALSE

} else if (primType == 3DPRIM_LINESTRIP_CONT) {

 backFacing = FALSE

 continueStipple = TRUE

} else if (primType == 3DPRIM_LINESTRIP_CONT_BF) {

 3D – Media – GPGPU

396 Doc Ref # IHD-OS-VLV-Vol7-04.14

 backFacing = TRUE

 continueStipple = TRUE

}

for each (vertex I in [0..vertexCount-1]) {

v[0] arrays vIn[i] arrays

v[1] arrays vIn[i+1] arrays

ObjectSetup()

continueStipple = TRUE

}

}

Triangle List Decomposition

The 3DPRIM_TRILIST primitive specifies a list of independent triangles.

3DPRIM_TRILIST Primitive

The decomposition process divides the list into a series of basic 3DOBJ_TRIANGLE objects that are then
passed individually and in order to the Object Setup stage. The triangles are generated with the
following object vertex order: v0,v1,v2; v3,v4,v5; and so on. The provokingVertex of each object is taken
from the Triangle List/Strip Provoking Vertex Select state variable, as programmed via SF_STATE.
TriangleListDecomposition() {

objectType = 3DOBJ_TRIANGLE

nV = 3

invertOrientation = FALSE

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 397

provokingVtx = Triangle List/Strip Provoking Vertex Select

polyStippleEnable = TRUE

for each (vertex I in [0..vertexCount-3] by 3) {

v[0] arrays vIn[i] arrays

v[1] arrays vIn[i+1] arrays

v[2] arrays vIn[i+2] arrays

ObjectSetup()

}
}

Triangle Strip Decomposition

The 3DPRIM_TRISTRIP and 3DPRIM_TRISTRIP_REVERSE primitives specify a series of triangles arranged
in a strip, as illustrated below.

3DPRIM_TRISTRIP[_REVERSE] Primitive

The decomposition process divides the strip into a series of basic 3DOBJ_TRIANGLE objects that are
then passed individually and in order to the Object Setup stage. The triangles are generated with the
following object vertex order: v0,v1,v2; v1,v2,v3; v2,v3,v4; and so on. Note that the winding order of the
vertices alternates between CW (clockwise), CCW (counter-clockwise), CW, etc. The provokingVertex of
each object is taken from the Triangle List/Strip Provoking Vertex Select state variable, as
programmed via SF_STATE.

The 3D pipeline uses the winding order of the vertices to distinguish between front-facing and back-
facing triangles (Triangle Orientation (Face) Culling below). Therefore, the 3D pipeline must account for
the alternation of winding order in strip triangles. The invertOrientation variable is generated and used
for this purpose.

 3D – Media – GPGPU

398 Doc Ref # IHD-OS-VLV-Vol7-04.14

To accommodate the situation where the driver is forced to break an input strip primitive into multiple
tristrip primitive commands (e.g., due to ring or batch buffer size restrictions), two tristrip primitive
types are supported. 3DPRIM_TRISTRIP is used for the initial section of a strip, and wherever a
continuation of a strip starts with a triangle with a CW winding order. 3DPRIM_TRISTRIP_REVERSE is
used for a continuation of a strip that starts with a triangle with a CCW winding order.
TriangleStripDecomposition() {

objectType = 3DOBJ_TRIANGLE

nV = 3

provokingVtx = Triangle List/Strip Provoking Vertex Select

if (primType == 3DPRIM_TRISTRIP)

 invertOrientation = FALSE

else // primType == 3DPRIM_TRISTRIP_REVERSE

 invertOrientation = TRUE

polyStippleEnable = TRUE

for each (vertex I in [0..vertexCount-3]) {

v[0] arrays vIn[i] arrays

v[1] arrays vIn[i+1] arrays

v[2] arrays vIn[i+2] arrays

ObjectSetup()

invertOrientation = ! invertOrientation

}
}

Triangle Fan Decomposition

The 3DPRIM_TRIFAN and 3DPRIM_TRIFAN_NOSTIPPLE primitives specify a series of triangles arranged
in a fan, as illustrated below.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 399

3DPRIM_TRIFAN Primitive

The decomposition process divides the fan into a series of basic 3DOBJ_TRIANGLE objects that are then
passed individually and in order to the Object Setup stage. The triangles are generated with the
following object vertex order: v0,v1,v2; v0,v2,v3; v0,v3,v4; and so on. As there is no alternation in the
vertex winding order, the invertOrientation variable is output as FALSE unconditionally. The
provokingVertex of each object is taken from the Triangle Fan Provoking Vertex state variable, as
programmed via SF_STATE.

Primitives of type 3DPRIM_TRIFAN_NOSTIPPLE are decomposed exactly the same way, except the
polyStippleEnable variable is FALSE for the resulting objects being passed on to object setup. This will
inhibit polygon stipple for these triangle objects.
TriangleFanDecomposition() {

objectType = 3DOBJ_TRIANGLE

nV = 3

invertOrientation = FALSE

provokingVtx = Triangle Fan Provoking Vertex Select

if (primType == 3DPRIM_TRIFAN)

 polyStippleEnable = TRUE

else // primType == 3DPRIM_TRIFAN_NOSTIPPLE

 polyStippleEnable = FALSE

v[0] arrays vIn[0] arrays// the 1st vertex is common

for each (vertex I in [1..vertexCount-2]) {

v[1] arrays vIn[i] arrays

v[2] arrays vIn[i+1] arrays

 3D – Media – GPGPU

400 Doc Ref # IHD-OS-VLV-Vol7-04.14

ObjectSetup()

}
}

Polygon Decomposition

The 3DPRIM_POLYGON primitive is identical to the 3DPRIM_TRIFAN primitive with the exception that
the provokingVtx is overridden with 0. This support has been added specifically for OpenGL support,
avoiding the need for the driver to change the provoking vertex selection when switching between
trifan and polygon primitives.

Rectangle List Decomposition

The 3DPRIM_RECTLIST primitive command specifies a list of independent, axis-aligned rectangles. Only
the lower right, lower left, and upper left vertices (in that order) are included in the command – the
upper right vertex is derived from the other vertices (in Object Setup).

3DPRIM_RECTLIST Primitive

The decomposition of the 3DPRIM_RECTLIST primitive is identical to the 3DPRIM_TRILIST
decomposition, with the exception of the objectType variable.
RectangleListDecomposition() {

objectType = 3DOBJ_RECTANGLE

nV = 3

invertOrientation = FALSE

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 401

provokingVtx = 0

for each (vertex I in [0..vertexCount-3] by 3) {

v[0] arrays vIn[i] arrays

v[1] arrays vIn[i+1] arrays

v[2] arrays vIn[i+2] arrays

ObjectSetup()

}
}

Object Setup

The Object Setup subfunction of the SF stage takes the post-viewport-transform data associated with
each vertex of a basic object and computes various parameters required for scan conversion. This
includes generation of implied vertices, translations and adjustments on vertex positions, and culling
(removal) of certain classes of objects. The final object information is passed to the Windower/Masker
(WM) stage where the object is rasterized into pixels.

Invalid Position Culling (Pre/Post-Transform)

At input the the SF stage, any objects containing a floating-point NaN value for Position X, Y, Z, or RHW
will be unconditionally discarded. Note that this occurs on an object (not primitive) basis.

If Viewport Transformation is enabled, any objects containing a floating-point NaN value for post-
transform Position X, Y or Z will be unconditionally discarded.

Viewport Transformation

If the Viewport Transform Enable bit of SF_STATE is ENABLED, a viewport transformation is applied to
each vertex of the object.

The VPIndex associated with the leading vertex of the object is used to obtain the Viewport Matrix
Element data from the corresponding element of the SF_VIEWPORT structure in memory. For each
object vertex, the following scale and translate transformation is applied to the position coordinates:

x' = m00 * x + m30

y' = m11 * y + m31

z' = m22 * z + m32

Software is responsible for computing the matrix elements from the viewport information provided to it
from the API.

Destination Origin Bias

The positioning of the pixel sampling grid is programmable and is controlled by the Destination Origin
Horizontal/Vertical Bias state variables (set via SF_STATE). If these bias values are both 0, pixels are

 3D – Media – GPGPU

402 Doc Ref # IHD-OS-VLV-Vol7-04.14

sampled on an integer grid. Pixel (0,0) will be considered inside the object if the sample point at XY
coordinate (0,0) falls within the primitive.

If the bias values are both 0.5, pixels are sampled on a half integer grid (i.e., X.5, Y.5). Pixel (0,0) will be
considered inside the object if the sample point at XY coordinate (0.5,0.5) falls within the primitive. This
positioning of the sample grid corresponds with the OpenGL rasterization rules, where fragment centers
lay on a half-integer grid. It also corresponds with the Intel740 rasterizer (though that device did not
employ top left rules).

Note that subsequent descriptions of rasterization rules for the various objects will be with reference to
the pixel sampling grid.

Destination Origin Bias

Point Rasterization Rule Adjustment

POINT objects are rasterized as square RECTANGLEs, with one exception: The Point Rasterization Rule
state variable (in SF_STATE) controls the rendering of point object edges that fall directly on pixel
sample points, as the treatment of these edge pixels varies between APIs.

RASTRULE_UPPER_LEFT

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 403

Drawing Rectangle Offset Application

The Drawing Rectangle Offset subfunction offsets the object's vertex X,Y positions by the pixel-exact,
unclipped drawing rectangle origin (as programmed via the Drawing Rectangle Origin X,Y values in
the 3DSTATE_DRAWING_RECTANGLE command). The Drawing Rectangle Offset subfunction (at least
with respect to Color Buffer access) is unconditional, and therefore to (effectively) turn off the offset
function the origin would need to be set to (0,0). A non-zero offset is typically specified when window-
relative or viewport-relative screen coordinates are input to the device. Here the drawing rectangle
origin would be loaded with the absolute screen coordinates of the window's or viewport's upper-left
corner.

Clipping of objects which extend outside of the Drawing Rectangle occurs later in the pipeline. Note
that this clipping is based on the clipped draw rectangle (as programmed via the Clipped Drawing
Rectangle values in the 3DSTATE_DRAWING_RECTANGLE command), which must be clamped by
software to the rendertarget boundaries. The unclipped drawing rectangle origin, however, can extend
outside the screen limits in order to support windows whose origins are moved off-screen. This is
illustrated in the following diagrams.

 3D – Media – GPGPU

404 Doc Ref # IHD-OS-VLV-Vol7-04.14

Onscreen Draw Rectangle

Partially-offscreen Draw Rectangle

3DSTATE_DRAWING_RECTANGLE

Point Width Application

This stage of the pipeline applies only to 3DOBJ_POINT objects. Here the point object is converted from
a single vertex to four vertices located at the corners of a square centered at the point's X,Y position.
The width and height of the square are specified by a point width parameter. The Use Point Width
State value in SF_STATE determines the source of the point width parameter: the point width is either
taken from the Point Width value programmed in SF_STATE or the PointWidth specified with the vertex
(as read back from the vertex VUE earlier in the pipeline).

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 405

The corner vertices are computed by adding and subtracting one half of the point width. Point Width
Application.

Point Width Application

Z and W vertex attributes are copied from the single point center vertex to each of the four corner
vertices.

Rectangle Completion

This stage of the pipeline applies only to 3DOBJ_RECTANGLE objects. Here the X,Y coordinates of the 4th
(upper right) vertex of the rectangle object is computed from the first 3 vertices as shown in the
following diagram. The other vertex attributes assigned to the implied vertex (v[3]) are UNDEFINED as
they are not used. The Object Setup subfunction will use the values at only the first 3 vertices to
compute attribute interpolants used across the entire rectangle.

 3D – Media – GPGPU

406 Doc Ref # IHD-OS-VLV-Vol7-04.14

Rectangle Completion

Vertex X,Y Clamping and Quantization

At this stage of the pipeline, vertex X and Y positions are in continuous screen (pixel) coordinates. These
positions are quantized to subpixel precision by rounding the incoming values to the nearest subpixel
(using round-to-nearest-or-even rules matching the DirectX reference device). The device supports
rasterization with either 4 or 8 fractional (subpixel) position bits, as specified by the Vertex SubPixel
Precision Select bit of SF_STATE.

The vertex X and Y screenspace coordinates are also clamped to the fixed-point guardband range
supported by the rasterization hardware, as listed in the following table:

Table: Per-Device Guardband Extents

Supported X,Y ScreenSpace Guardband Extent Maximum Post-Clamp Delta (X or Y)

[-32K,32K-1] N/A

Note that this clamping occurs after the Drawing Rectangle Origin has been applied and objects have
been expanded (i.e., points have been expanded to squares, etc.). In almost all circumstances, if an
object's vertices are actually modified by this clamping (i.e., had X or Y coordinates outside of the
guardband extent the rendered object will not match the intended result. Therefore software should
take steps to ensure that this does not happen – e.g., by clipping objects such that they do not exceed
these limits after the Drawing Rectangle is applied.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 407

In addition, in order to be correctly rendered, objects must have a screenspace bounding box not
exceeding 8K in the X or Y direction. This additional restriction must also be comprehended by
software, i.e., enforced by use of clipping.

Degenerate Object Culling

At this stage of the pipeline, degenerate objects are discarded. This operation is automatic and cannot
be disabled. (The object rasterization rules would by definition cause these objects to be invisible – this
culling operation is mentioned here to reinforce that the device implementation optimizes these
degeneracies as early as possible).

Degenerate Object Culling for definitions of degenerate objects.

Degenerate Objects

objType Degenerate Object Definition

3DOBJ_POINT Two or more corner vertices are coincident (i.e., the radius quantized to zero)

3DOBJ_LINE The endpoints are coincident

3DOBJ_TRIANGLE All three vertices are collinear or any two vertices are coincident and SOLID fill mode applies
to the triangle

3DOBJ_RECTANGLE Two or more corner vertices are coincident

Triangle Orientation (Face) Culling

At this stage of the pipeline, 3DOBJ_TRIANGLE objects can be optionally discarded based on the face
orientation of the object. This culling operation does not apply to the other object types.

This operation is typically called back face culling, though front facing objects (or all 3DOBJ_TRIANGLE
objects) can be selected to be discarded as well. Face culling is typically used to eliminate triangles
facing away from the viewer, thus reducing rendering time.

The winding order of a triangle is defined by the the triangle vertex's 2D (X,Y) screen space position
when traversed from v0 to v1 to v2. That traversal proceeds in either a clockwise (CW) or counter-
clockwise (CCW) direction. The winding order of a triangle is defined by the the triangle vertex's 2D (X,Y)
screen space position when traversed from v0 to v1 to v2. That traversal will proceed in either a
clockwise (CW) or counter-clockwise (CCW) direction. A degenerate triangle is considered backfacing,
regardless of the FrontWinding state.

Triangle Winding Order

 3D – Media – GPGPU

408 Doc Ref # IHD-OS-VLV-Vol7-04.14

The Front Winding state variable in SF_STATE controls whether CW or CCW triangles are considered as
having a front-facing orientation (at which point non-front-facing triangles are considered back-facing).
The internal variable invertOrientation associated with the triangle object is then used to determine
whether the orientation of a that triangle should be inverted. Recall that this variable is set in the
Primitive Decomposition stage to account for the alternating orientations of triangles in strip primitives
resulting form the ordering of the vertices used to process them.

The Cull Mode state variable in SF_STATE specifies how triangles are discarded according to their
resultant orientation. See Degenerate Objects.

Table: Cull Mode

CullMode Definition

CULLMODE_NONE The face culling operation is disabled.

CULLMODE_FRONT Triangles with front facing orientation are discarded.

CULLMODE_BACK Triangles with back facing orientation are discarded.

CULLMODE_BOTH All triangles are discarded.

Scissor Rectangle Clipping

A scissor operation can be used to restrict the extent of rendered pixels to a screen-space aligned
rectangle. If the scissor operation is enabled, portions of objects falling outside of the intersection of
the scissor rectangle and the clipped draw rectangle are clipped (pixels discarded).

The scissor operation is enabled by the Scissor Rectangle Enable state variable in SF_STATE. If enabled,
the VPIndex associated with the leading vertex of the object is used to select the corresponding
SF_VIEWPORT structure. Up to 16 structures are supported. The Scissor Rectangle X,Y Min,Max fields
of the SF_VIEWPORT structure defines a scissor rectangle as a rectangle in integer pixel coordinates
relative to the (unclipped) origin of the Drawing Rectangle. The scissor rectangle is defined relative to
the Drawing Rectangle to better support the OpenGL API. (OpenGL specifies the Scissor Box in window-
relative coordinates). This allows instruction buffers with embedded Scissor Rectangle definitions to
remain valid even after the destination window (drawing rectangle) moves.

Specifying either scissor rectangle xmin > xmax or ymin > ymax will cause all polygons to be discarded
for a given viewport (effectively a null scissor rectangle).

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 409

Line Rasterization

The device supports three styles of line rendering: zero-width (cosmetic) lines, non-antialiased lines, and
antialiased lines. Non-antialiased lines are rendered as a polygon having a specified width as measured
parallel to the major axis of the line. Antialiased lines are rendered as a rectangle having a specified
width measured perpendicular to the line connecting the vertices.

The functions required to render lines are split between the SF and WM units. The SF unit is responsible
for computing the overall geometry of the object to be rendered, including the pixel-exact bounding
box, edge equations, etc., and therefore is provided with the screen-geometry-related state variables.
The WM unit performs the actual scan conversion, determining the exact pixels included/excluded and
coverage values for anti-aliased lines.

Zero-Width (Cosmetic) Line Rasterization

Note: The specification of zero-width line rasterization would be more correctly included in the WM
Unit chapter, though is being included here to keep it with the rasterization details of the other line
types.

When the Line Width is set to zero, the device will use special rules to rasterize zero-width (cosmetic)
lines. The Anti-Aliasing Enable state variable is ignored when Line Width is zero.

When the LineWidth is set to zero, the device will use special rules to rasterize cosmetic lines. The
rasterization rules also comply with the OpenGL conformance requirements (for 1-pixel wide non-
smooth lines). Refer to the appropriate API specifications for details on these requirements.

The GIQ rules basically intersect the directed, ideal line connecting two endpoints with an array of
diamond-shaped areas surrounding pixel sample points. Wherever the line exits a diamond (including
passing through a diamond), the corresponding pixel is lit. Special rules are used to define the subpixel
locations that are considered interior to the diamonds, as a function of the slope of the line. When a
line ends in a diamond (and therefore does not exit that diamond), the corresponding pixel is not
drawn. When a line starts in a diamond and exits that diamond, the corresponding pixel is drawn.

GIQ (Diamond) Sampling Rules – Legacy Mode

When the Legacy Line Rasterization Enable bit in WM_STATE is ENABLED, zero-width lines are
rasterized according to the algorithm presented in this subsection. Also note that the Last Pixel Enable
bit of SF_STATE controls whether the last pixel of the last line in a LINESTRIP_xxx primitive or the last
pixel of each line in a LINELIST_xxx primitive is rendered.

Refer to the following figure, which shows the neighborhood of subpixels around a given pixel sample
point. Note that the device divides a pixel into a 16x16 array of subpixels, referenced by their upper left
corners.

 3D – Media – GPGPU

410 Doc Ref # IHD-OS-VLV-Vol7-04.14

The solid-colored subpixels are considered interior to the diamond centered on the pixel sample point.
Here the Manhattan distance to the pixel sample point (center) is less than ½.

The subpixels falling on the edges of the diamond (Manhattan distance = ½) are exclusive, with the
following exceptions:

1. The bottom corner subpixel is always inclusive. This is to ensure that lines with slopes in the
open range (-1,1) touch a diamond even when they cross exactly between pixel diamonds.

2. The right corner subpixel is inclusive as long as the line slope is not exactly one, in which
case the left corner subpixel is inclusive. Including the right corner subpixel ensures that lines
with slopes in the range (1, +infinity] or [-infinity, -1) touch a diamond even when they cross
exactly between pixel diamonds. Including the left corner on slope=1 lines is required for proper
handling of slope=1 lines (see (3) below) – where if the right corner was inclusive, a slope=1 line
falling exactly between pixel centers would wind up lighting pixel on both sides of the line (not
desired).

3. The subpixels along the bottom left edge are inclusive only if the line slope = 1. This is to
correctly handle the case where a slope=1 line falls enters the diamond through a left or bottom
corner and ends on the bottom left edge. One does not consider this passing through the
diamond (where the normal rules would have us light the pixel). This is to avoid the following
case: One slope=1 line segment enters through one corner and ends on the edge, and another
(continuation) line segments starts at that point on the edge and exits through the other corner.
If simply passing through a corner caused the pixel to be lit, this case would case the pixel to be
lit twice – breaking the rule that connected line segments should not cause double-hits or
missing pixels. So, by considering the entire bottom left edge as inside for slope=1 lines, we will
only light the pixel when a line passes through the entire edge, or starts on the edge (or the left
or bottom corner) and exits the diamond.

4. The subpixels along the bottom right edge are inclusive only if the line slope = -1. Similar
case as (3), except slope=-1 lines require the bottom right edge to be considered inclusive.

The following equation determines whether a point (point.x, point.y) is inside the diamond of the pixel
sample point (sample.x, sample.y), given additional information about the slope (slopePosOne,
slopeNegOne).

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 411

 delta_x = point.x – sample.x
 delta_y = point.y – sample.y
 distance = abs(delta_x) + abs(delta_y)
 interior = (distance < 0.5)
 bottom_corner = (delta_x == 0.0) && (delta_y == 0.5)
 left_corner = (delta_x == –0.5) && (delta_y == 0.0)
 right_corner = (delta_x == 0.5) && (delta_y == 0.0)
 bottom_left_edge = (distance == 0.5) && (delta_x < 0) && (delta_y > 0)
 bottom_right_edge = (distance == 0.5) && (delta_x > 0) && (delta_y > 0)

 inside = interior || bottom_corner || (slopePosOne ? left_corner: right_corner) ||
(slopePosOne && left_edge) || (slopeNegOne && right_edge)

GIQ (Diamond) Sampling Rules – DX10 Mode

When the Legacy Line Rasterization Enable bit in WM_STATE is DISABLED, zero-width lines are
rasterized according to the algorithm presented in this subsection. Also note that the Last Pixel Enable
bit of SF_STATE controls whether the last pixel of the last line in a LINESTRIP_xxx primitive or the last
pixel of each line in a LINELIST_xxx primitive is rendered.

Refer to the following figure, which shows the neighborhood of subpixels around a given pixel sample
point. Note that the device divides a pixel into a 16x16 array of subpixels, referenced by their upper left
corners.

The solid-colored subpixels are considered interior to the diamond centered on the pixel sample point.
Here the Manhattan distance to the pixel sample point (center) is less than ½.

The subpixels falling on the edges of the diamond (Manhattan distance = ½) are exclusive, with the
following exceptions:

1. The bottom corner subpixel is always inclusive. This is to ensure that lines with slopes in the
open range (-1,1) touch a diamond even when they cross exactly between pixel diamonds.

 3D – Media – GPGPU

412 Doc Ref # IHD-OS-VLV-Vol7-04.14

2. The right corner subpixel is inclusive as long as the line is not X Major (X Major is defined
as -1 <= slope <= 1). Including the right corner subpixel ensures that lines with slopes in the
range (>1, +infinity] or [-infinity, <-1) touch a diamond even when they cross exactly between
pixel diamonds.

3. The left corner subpixel is never inclusive. For Y Major lines, having the right corner subpixel as
always inclusive requires that the left corner subpixel should never be inclusive, since a line falling
exactly between pixel centers would wind up lighting pixel on both sides of the line (not desired).

4. The subpixels along the bottom left edge are always inclusive. This is to correctly handle the
case where a line enters the diamond through a left or bottom corner and ends on the bottom
left edge. One does not consider this passing through the diamond (where the normal rules
would have us light the pixel). This is to avoid the following case: One line segment enters
through one corner and ends on the edge, and another (continuation) line segments starts at that
point on the edge and exits through the other corner. If simply passing through a corner caused
the pixel to be lit, this case would cause the pixel to be lit twice – breaking the rule that
connected line segments should not cause double-hits or missing pixels. So, by considering the
entire bottom left edge as inside, the pixel is only lit when a line passes through the entire edge,
or starts on the edge (or the left or bottom corner) and exits the diamond.

5. The subpixels along the bottom right edge are always inclusive. Same as case as (4), except
slope=-1 lines require the bottom right edge to be considered inclusive.

The following equation determines whether a point (point.x, point.y) is inside the diamond of the pixel
sample point (sample.x, sample.y), given additional information about the slope (XMajor).

 delta_x = point.x – sample.x
 delta_y = point.y – sample.y
 distance = abs(delta_x) + abs(delta_y)
 interior = (distance < 0.5)
 bottom_corner = (delta_x == 0.0) && (delta_y == 0.5)
 left_corner = (delta_x == –0.5) && (delta_y == 0.0)
 right_corner = (delta_x == 0.5) && (delta_y == 0.0)
 bottom_left_edge = (distance == 0.5) && (delta_x < 0) && (delta_y > 0)
 bottom_right_edge = (distance == 0.5) && (delta_x > 0) && (delta_y > 0)

 inside = interior || bottom_corner || (!XMajor && right_corner) || (bottom_left_edge)
|| (bottom_right_edge)

Non-Antialiased Wide Line Rasterization

Non-anti-aliased, non-zero-width lines are rendered as parallelograms that are centered on, and
aligned to, the line joining the endpoint vertices. Pixels sampled interior to the parallelogram are
rendered; pixels sampled exactly on the parallelogram edges are rendered according to the polygon top
left rules.

The parallelogram is formed by first determining the major axis of the line (diagonal lines are
considered x-major). The corners of the parallelogram are computed by translating the line endpoints
by +/-(Line Width / 2) in the direction of the minor axis, as shown in the following diagram.

Non-Antialiased Line Rasterization

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 413

Anti-Aliased Line Rasterization

Anti-aliased lines are rendered as rectangles that are centered on, and aligned to, the line joining the
endpoint vertices. For each pixel in the rectangle, a fractional coverage value (referred to as Antialias
Alpha) is computed – this coverage value is normally used to attenuate the pixel's alpha in the pixel
shader thread. The resultant alpha value is therefore available for use in those downstream pixel
pipeline stages to generate the desired effect (e.g., use the attenuated alpha value to modulate the
pixel's color, and add the result to the destination color, etc.). Note that software is required to explicitly
program the pixel shader and pixel pipeline to obtain the desired anti-aliasing effect – the device simply
makes the coverage-attenuated pixel alpha values available for use in the pixel shader.

The dimensions of the rendered rectangle, and the parameters controlling the coverage value
computation, are programmed via the Line Width, Line AA Region, and Line Cap AA Region state
variables, as shown below. The edges parallel to the line are located at the distance (LineWidth/2) from
the line (measured in screen pixel units perpendicular to the line). The end-cap edges are perpendicular
to the line and located at the distance (LineCapAARegion) from the endpoints.

Anti-aliased Line Rasterization

 3D – Media – GPGPU

414 Doc Ref # IHD-OS-VLV-Vol7-04.14

Along the parallel edges, the coverage values ramp from the value 0 at the very edges of the rectangle
to the value 1 at the perpendicular distance (LineAARegion/2) from a given edge (in the direction of the
line). A pixel's coverage value is computed with respect to the closest edge. In the cases where
(LineAARegion/2) < (LineWidth/2), this results in a region of fractional coverage values near the edges of
the rectangle, and a region of fully-covered coverage values (i.e., the value 1) at the interior of the line.
When (LineAARegion/2) == (LineWidth/2), only pixel sample points falling exactly on the line can
generate fully-covered coverage values. If (LineAARegion/2) > (LineWidth/2), no pixels can be fully-
covered (it is expected that this case is not typically desired).

Along the end cap edges, the coverage values ramp from the value 1 at the line endpoint to the value 0
at the cap edge – itself at a perpendicular distance (LineCapAARegion) from the endpoint. Note that,
unlike the line-parallel edges, there is only a single parameter (LineCapAARegion) controlling the
extension of the line at the end caps and the associated coverage ramp.

The regions near the corners of the rectangle have coverage values influenced by distances from both
the line-parallel and end cap edges – here the two coverage values are multiplied together to provide a
composite coverage value.

The computed coverage value for each pixel is passed through the Windower Thread Dispatch payload.
The Pixel Shader kernel should be passed (unmodified) by the shader to the Render Cache as part of its
output message.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 415

3DSTATE_SF

SF_CLIP_VIEWPORT

The viewport-specific state used by both the SF and CL units (SF_CLIP_VIEWPORT) is stored as an array
of up to 16 elements, each of which contains the DWords described below. The start of each element is
spaced 16 DWords apart. The location of first element of the array, as specified by both Pointer to
SF_VIEWPORT and Pointer to CLIP_VIEWPORT, is aligned to a 64-byte boundary.

SF_CLIP_VIEWPORT

SCISSOR_RECT

Attribute Interpolation Setup

With the attribute interpolation setup function being implemented in hardware for , a number of state
fields in 3DSTATE_SF are utilized to control interpolation setup.

Number of SF Output Attributes sets the number of attributes that will be output from the SF stage,
not including position. This can be used to specify up to 32, and may differ from the number of input
attributes. The number of input attributes is derived from the Vertex URB Entry Read Length field.
Note that this field is also used to specify whether swizzling is to be performed on Attributes 0-15 or
Attributes 16-32. See the state field definition for details.

Attribute Swizzling

The first or last set of 16 attributes can be swizzled according to certain state fields. Attribute Swizzle
Enable enables the swizzling for all 16 of these attributes, and each of the attributes has a 2-bit Swizzle
Select field that controls swizzling with the following settings:

• INPUTATTR – This attribute is sourced from AttrInputReg[SourceAttribute].
• INPUTATTR_FACING – This attribute is sourced from AttrInputReg[SourceAttribute] if the object is

front-facing, otherwise it is sourced from AttrInputReg[SourceAttribute+1].
• INPUTATTR_W – This attribute is sourced from AttrInputReg[SourceAttribute]. WYZW (the W

component of the source is copied to the X component of the destination).
• INPUTATTR_FACING – If the object is front-facing, this attribute is sourced from

AttrInputReg[SourceAttribute]. WYZW (the W component of the source is copied to the X
component of the destination). If the object is front-facing, this attribute is sourced from
AttrInputReg[SourceAttribute+1]. WYZW.

Each of the first or last set of 16 attributes also has a 5-bit Source Attribute field which specify, per
output attribute (not component), which input attribute sources the output attribute when INPUTATTR
is selected for Swizzle Select. A Source Attribute value of 0 corresponds to the 128-bit attribute
immediately following the vertex 4D position. If INPUTATTR_FACING is selected, this specifies the first of
two consecutive (front,back) input attributes, where the SourceAttribute value can be an odd or even
number (just not 31, as that would place the back-face input attribute past the end of the input max
complement of input attributes).

 3D – Media – GPGPU

416 Doc Ref # IHD-OS-VLV-Vol7-04.14

Constant overriding is also available for the first or last set of 16 attributes. Each attribute has a
Constant Source field which specifies the constant values per swizzled attribute, with the following
settings available:

• XYZW = 0000
• XYZW = 0001
• XYZW = 1111

Each channel of each attribute has a Component Override field to control whether the corresponding
channel is overridden with the constant value defined in Constant Source.

Interpolation Modes

All 32 attributes have a Constant Interpolation Enable state field bit to specify whether all
components of the post-swizzled attribute are to be interpolated as constant values (not varying over
the pixels of the object). If set, the attribute at the provoking vertex is copied to a0, and a1 and a2 are
set to zero – this results in a constant interpolation of the provoking vertex value. If clear, the attribute
is linearly interpolated. Attributes 0-15 are further subjected to Wrap Shortest processing on a per-
component basis, via the Attribute WrapShortest Enables state bitfields. WrapShortest processing
modifies the a1 and/or a2 values depending on attribute deltas. All

The table below indicates the output values of a0, a1, and a2 depending on interpolation mode
settings.

 a0 a1 a2

Constant A0 0.0 0.0

Linear A0 A1-A0 A2-A0

Wrap Shortest

A0 (A1-A0)+1 (A1-A0) <= -0.5

(A1-A0)-1 (A1-A0) >= 0.5

(A1-A0) otherwise

(A2-A0)+1 (A2-A0) <= -0.5

(A2-A0)-1 (A2-A0) >= 0.5

(A2-A0) otherwise

Point Sprites

Normally all vertex attributes (including texture coordinates) other than position are simply replicated
from the incoming point center vertex to the generated point object (corner) vertices. However, both
DX9 and OGL support "sprite points", where some/all texture coordinates are replaced with full-scale 2D
texture coordinates.

A 32-bit PointSprite TextureCoordinate Enable bit mask controls whether the corresponding vertex
attribute is to be replaced by a sprite point texture coordinate. The global (not per-attribute) Point
Sprite TextureCoordinate Origin field controls how the point object vertex (top/bottom, left/right)
texture coordinates are generated:

UPPERLEFT Left Right

Top (0,0,0,1) (1,0,0,1)

Bottom (0,1,0,1) (1,1,0,1)

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 417

LOWERLEFT Left Right

Top (0,1,0,1) (1,1,0,1)

Bottom (0,0,0,1) (1,0,0,1)

The state used by "setup backend" is defined by the following inline state packet.

Barycentric Attribute Interpolation

Given hardware clipper and setup, some of the previous flexibility in the algorithm used to interpolate
attributes is no longer available. Hardware uses barycentric parameters to aid in attribute interpolation,
and these parameters are computed in hardware per-pixel (or per-sample) and delivered in the thread
payload to the pixel shader. Also delivered in the payload are a set of vertex deltas (a0, a1, and a2) per
channel of each attribute.

There are six different barycentric parameters that can be enabled for delivery in the pixel shader
payload. These are enabled via the Barycentric Interpolation Mode bits in 3DSTATE_WM.

In the pixel shader kernel, the following computation is done for each attribute channel of each
pixel/sample given the corresponding attribute channel a0/a1/a2 and the pixel/sample’s b1/b2
barycentric parameters, where A is the value of the attribute channel at that pixel/sample:

A = a0 + (a1 * b1) + (a2 * b2)

Depth Offset

The state for depth offset in 3DSTATE_SF controls the depth offset function. Since this function was
previously contained in the Windower stage, refer to the Depth Offset section in the Windower chapter
for more details on this function.

Other SF Functions

Statistics Gathering

The SF stage itself does not have any associated pipeline statistics; however, it counts the number of
objects being output by the clipper on the clipper's behalf, since it less feasible to have the CLIP unit
figure out how many objects have been output by a clip thread. It is easy for the SF unit to count the
number of objects it receives from the CLIP stage since it is decomposing the output primitive
topologies into objects anyway.

If the Statistics Enable bit is set in SF_STATE, then SF will increment the CL_PRIMITIVES_COUNT
Register (see Memory Interface Registers in Volume Ia, GPU) once for each object in each primitive
topology it receives from the CLIP stage. This bit should always be set if clipping is enabled and pipeline
statistics are desired.

 3D – Media – GPGPU

418 Doc Ref # IHD-OS-VLV-Vol7-04.14

Software should always clear the Statistics Enable bit in SF_STATE if the clipper is disabled since objects
SF receives are not considered primitives output by the clipper unless the clipper is enabled. Note that
the clipper can be disabled either using bypass mode via a PIPELINE_STATE_POINTERS command with
Clip Enable clear or by setting Clip Mode in CLIP_STATE to CLIPMODE_ACCEPT_ALL.

Other SF Functions

Statistics Gathering

The SF stage itself does not have any associated pipeline statistics; however, it counts the number of
objects being output by the clipper on the clipper's behalf, since it less feasible to have the CLIP unit
figure out how many objects have been output by a clip thread. It is easy for the SF unit to count the
number of objects it receives from the CLIP stage since it is decomposing the output primitive
topologies into objects anyway.

If the Statistics Enable bit is set in SF_STATE, then SF will increment the CL_PRIMITIVES_COUNT
Register (see Memory Interface Registers in Volume Ia, GPU) once for each object in each primitive
topology it receives from the CLIP stage. This bit should always be set if clipping is enabled and pipeline
statistics are desired.

Software should always clear the Statistics Enable bit in SF_STATE if the clipper is disabled since objects
SF receives are not considered primitives output by the clipper unless the clipper is enabled. Note that
the clipper can be disabled either using bypass mode via a PIPELINE_STATE_POINTERS command with
Clip Enable clear or by setting Clip Mode in CLIP_STATE to CLIPMODE_ACCEPT_ALL.

Windower (WM) Stage

Overview

As mentioned in the SF Unit chapter, the SF stage prepares an object for scan conversion by the
Window/Masker (WM) unit Refer to the SF Unit chapter for details on the screen-space geometry of
objects to be rendered The WM unit uses the parameters provided by the SF unit in the object-specific
rasterization algorithms.

The WM stage of the 3D pipeline performs the following operations (at a high level)

• Pre-scan-conversion modification of some primitive attributes, including

o Application of Depth Offset to the position Z attribute

• Scan-conversion of the various primitive types, including

o 2D clipping to the scissor/draw rectangle intersection

• Spawning of Pixel Shader (PS) threads to process the pixels resulting from scan-conversion

The spawned Pixel Shader (PS) threads are responsible for the following (high-level) operations

• interpolation of vertex attributes (other than X,Y,Z) to the pixel location
• performing any Pixel Shader operations dictated by the API PS program

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 419

o Using the Sampler shared function to sample data from texture surfaces
o Using the DataPort to perform general memory I/O

• Submitting the shaded pixel results to the DataPort for any subsequent blending (aka Output
Merger) operation and write to the RenderCache.

The WM unit keeps a scoreboard of pixels being processed in outstanding PS threads in order to
guarantee in-order rasterization results This allows the WM unit to overlap processing of several
objects.

Inputs from SF to WM

The outputs from the SF stage to the WM stage are mostly comprised of implementation-specific
information required for the rasterization of objects The types of information is summarized below, but
as the interface is not exposed to software a detailed discussion is not relevant to this specification.

• PrimType of the object
• VPIndex, RTAIndex associated with the object
• Handle of the Primitive URB Entry (PUE) that was written by the SF (Setup) thread. This handle will

be passed to all WM (PS) threads spawned from the WM's rasterization process.
• Information regarding the X,Y extent of the object (e.g., bounding box, etc.)
• Edge or line interpolation information (e.g., edge equation coefficients, etc.)
• Information on where the WM is to start rasterization of the object
• Object orientation (front/back-facing)
• Last Pixel indication (for line drawing)

Windower Pipelined State

3DSTATE_WM

The following inline state packets define the state used by the windower stage for different generations.

3DSTATE_WM

Programming Note: WM Unit also receives 3DSTATE_WM_HZ_OP, 3DSTATE_RASTER,
3DSTATE_MULTISAMPLE, 3DSTATE_WM_CHROMAKEY, 3DSTATE_PS_BLEND, and 3DSTATE_PS_EXTRA.

3DSTATE_SAMPLE_MASK

The following inline state packets define the sample mask state used by the windower stage for
different generations.

State
Stencil

buffer Clear
Depth

buffer clear
Depth Buffer

Resolve Enable
Hierarchical Depth Buffer

Resolve Enable Project

 3D – Media – GPGPU

420 Doc Ref # IHD-OS-VLV-Vol7-04.14

Rasterization

The WM unit uses the setup computations performed by the SF unit to rasterize objects into the
corresponding set of pixels Most of the controls regarding the screen-space geometry of rendered
objects are programmed via the SF unit.

The rasterization process generates pixels in 2x2 groups of pixels called subspans (see Pixels with a
SubSpan below) which, after being subjected to various inclusion/discard tests, are grouped and passed
to spawned Pixel Shader (PS) threads for subsequent processing Once these PS threads are spawned,
the WM unit provides only bookkeeping functions on the pixels Note that the WM unit can proceed on
to rasterize subsequent objects while PS threads from previous objects are still executing.

Pixels with a SubSpan

Drawing Rectangle Clipping

The Drawing Rectangle defines the maximum extent of pixels which can be rendered Portions of objects
falling outside the Drawing Rectangle will be clipped (pixels discarded) Implementations will typically
discard objects falling completely outside of the Drawing Rectangle as early in the pipeline as possible
There is no control to turn off Drawing Rectangle clipping – it is unconditional.

For the purposes of clipping, the Drawing Rectangle must itself be clipped to the destination buffer
extents (The Drawing Rectangle Origin, used to offset relative X,Y coordinates earlier in the pipeline, is
permitted to lie offscreen). The Clipped Drawing Rectangle X,Y Min,Max state variables (programmed
via 3DSTATE_DRAWING_RECTANGLE – See SF Unit) defines the intersection of the Drawing Rectangle
and the Color Buffer It is specified with non-negative integer pixel coordinates relative to the
Destination Buffer upper-left origin.

Pixels with coordinates outside of the Drawing Rectangle cannot be rendered (i.e., the rectangle is
inclusive) For example, to render to a full-screen 1280x1024 buffer, the following values would be
required: Xmin=0, Ymin=0, Xmax=1279 and Ymax=1023

For full screen rendering, the Drawing Rectangle coincides with the screen-sized buffer For front-buffer
windowed rendering it coincides with the destination window.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 421

Line Rasterization

See SF Unit chapter for details on the screen-space geometry of the various line types.

Coverage Values for Anti-Aliased Lines

The WM unit is provided with both the Line Anti-Aliasing Region Width and Line End Cap Anti-
aliasing Region Width state variables (in WM_STATE) in order to compute the coverage values for
anti-aliased lines.

3DSTATE_AA_LINE_PARAMS

3DSTATE_AA_LINE_PARAMETERS

The slope and bias values should be computed to closely match the reference rasterizer results Based
on empirical data, the following recommendations are offered:

The final alpha for the center of the line needs to be 148 to match the reference rasterizer In this case,
the Lo to edge 0 and edge 3 will be the same Since the alpha for each edge is multiplied together, we
get:

edge0alpha * edge1alpha = 148/255 = 0.580392157

Since edge0alpha = edge3alpha we get:

(edge0alpha)2 = 0.580392157

edge0alpha = sqrt(0.580392157) = 0.761834731 at the center pixel

The desired alpha for pixel 1 = 54/255 = 0.211764706

The slope is (0.761834731 – 0.211764706) = 0.550070025

Since we are using 8 bit precision, the slope becomes

AA Coverage [EndCap] Slope = 0.55078125

The alpha value for Lo = 0 (second pixel from center) determines the bias term and is equal to

(0.211764706 – 0.550070025) = -0.338305319

With 8 bits of precision the programmed bias value

Line Stipple

Line stipple, controlled via the Line Stipple Enable state variable in WM_STATE, discards certain pixels
that are produced by non-AA line rasterization.

The line stipple rule is specified via the following state variables programmed via
3DSTATE_LINE_STIPPLE: the 16-bit Line Stipple Pattern (p), Line Stipple Repeat Count I, and Line
Stipple Inverse Repeat Count. Sofware must compute Line Stipple Inverse Repeat Count as 1.0f /
Line Stipple Repeat Count and then converted from float to the required fixed point encoding (see
3STATE_LINE_STIPPLE).

 3D – Media – GPGPU

422 Doc Ref # IHD-OS-VLV-Vol7-04.14

The WM unit maintains an internal Line Stipple Counter state variable (s) The initial value of s is zero; s
is incremented after production of each pixel of a line segment (pixels are produced in order, beginning
at the starting point and working towards the ending point). S is reset to 0 whenever a new primitive is
processed (unless the primitive type is LINESTRIP_CONT or LINESTRIP_CONT_BF), and before every line
segment in a group of independent segments (LINELIST primitive).

During the rasterization of lines, the WM unit computes:

A pixel is rendered if the bth bit of p is 1, otherwise it is discarded. The bits of p are numbered with 0
being the least significant and 15 being the most significant.

3DSTATE_LINE_STIPPLE

Polygon (Triangle and Rectangle) Rasterization

The rasterization of LINE, TRIANGLE, and RECTANGLE objects into pixels requires a pixel sampling grid
to be defined This grid is defined as an axis-aligned array of pixel sample points spaced exactly 1 pixel
unit apart If a sample point falls within one of these objects, the pixel associated with the sample point
is considered inside the object, and information for that pixel is generated and passed down the
pipeline

For TRIANGLE and RECTANGLE objects, if a sample point intersects an edge of the object, the
associated pixel is considered inside the object if the intersecting edge is a left or top edge (or, more
exactly, the intersected edge is not a right or bottom edge) Note that top and bottom edges are by
definition exactly horizontal. See TRIANGLE and RECTANGLE Edge Types below for the edge types for
representative TRIANGLE and RECTANGLE objects (solid edges are inclusive, dashed edges are
exclusive).

TRIANGLE and RECTANGLE Edge Types

Polygon Stipple

The Polygon Stipple function, controlled via the Polygon Stipple Enable state variable in WM_STATE,
allows only selected pixels of a repeated 32x32 pixel pattern to be rendered Polygon stipple is applied
only to the following primitive types:

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 423

3DPRIM_POLYGON

3DPRIM_TRIFAN

3DPRIM_TRILIST

3DPRIM_TRISTRIP

3DPRIM_TRISTRIP_REVERSE

Note that the 3DPRIM_TRIFAN_NOSTIPPLE object is never subject to polygon stipple.

The stipple pattern is defined as a 32x32 bit pixel mask via the 3DSTATE_POLY_STIPPLE_PATTERN
command. This is a non-pipelined command which incurs an implicit pipeline flush when executed.

The origin of the pattern is specified via Polygon Stipple X,Y Offset state variables programmed via
the 3DSTATE_POLY_STIPPLE_OFFSET command The offsets are pixel offsets from the Color Buffer origin
to the upper left corner of the stipple pattern. This is a non-pipelined command which incurs an implicit
pipeline flush when executed.

3DSTATE_POLY_STIPPLE_OFFSET

3DSTATE_POLY_STIPPLE_PATTERN

Multisampling

The multisampling function has two components:

• Multisample Rasterization: multisample rasterization occurs at a subpixel level, wherein each
pixel consists of a number of "samples" at state-defined positions within the pixel footprint.
Coverage of the primitive as well as color calculator operations (stencil test, depth test, color
buffer blending, etc.) are done at the sample level. In addition the pixel shader itself can
optionally run at the sample level depending on a separate state field.

• Multisample Render Targets (MSRT): The render targets, as well as the depth and stencil
buffers, now have the ability to store per-sample values. When combined with multisample
rasterization, color calculator operations such as stencil test, depth test, and color buffer blending
are done with the destination surface containing potentially different values per sample.

Multisample Modes/State

A number of state variables control the operation of the multisampling function. The following list
indicates the state and their location. Refer to the state definition for more details.

• Multisample Rasterization Mode (3DSTATE_SF and 3DSTATE_WM): controls whether
rasterization of non-lines is performed on a pixel or sample basis (PIXEL vs. PATTERN), and
whether multisample rasterization of lines enabled (OFF vs. ON). In [IVB], the mode is controlled
directly.

• Multisample Dispatch Mode (3DSTATE_WM): controls whether the pixel shader is executed per
pixel or per sample.

• Number of Multisamples (3DSTATE_MULTISAMPLE and SURFACE_STATE): indicates the number
of samples per pixel contained on the surface. This field in 3DSTATE_MULTISAMPLE must match

 3D – Media – GPGPU

424 Doc Ref # IHD-OS-VLV-Vol7-04.14

the corresponding field in SURFACE_STATE for each render target. The depth, hierarchical depth,
and stencil buffers inherit this field from 3DSTATE_MULTISAMPLE.

• Pixel Location (3DSTATE_MULTISAMPLE): indicates the subpixel location where values specified
as pixel are sampled. This is either the upper left corner or the center.

• MSAA Sample Offsets (3DSTATE_MULTISAMPLE): for each of the N samples, specifies the
subpixel location of each sample.

Other WM Functions

Statistics Gathering

If Statistics Enable is set in WM_STATE or 3DSTATE_WM, the Windower increments the
PS_INVOCATIONS_COUNT register once for each unmasked pixel (or sample) that is dispatched to a
Pixel Shader thread.

PS_INVOCATIONS_COUNT register counts all the pixels/samples present in a 2X2 dispatched to Pixel
Shader.

If Early Depth Test Enable is set it is possible for pixels or samples to be discarded before reaching the
Pixel Shader due to failing the depth or stencil test. PS_INVOCATIONS_COUNT will still be incremented
for these pixels or samples since the depth test occurs after the pixel shader from the point of view of
SW.

When Early Depth Test is forced and when Statistics Enable is set, PS_INVOCATIONS_COUNT register
may not have the correct value.

Other WM Functions

Statistics Gathering

If Statistics Enable is set in WM_STATE or 3DSTATE_WM, the Windower increments the
PS_INVOCATIONS_COUNT register once for each unmasked pixel (or sample) that is dispatched to a
Pixel Shader thread.

PS_INVOCATIONS_COUNT register counts all the pixels/samples present in a 2X2 dispatched to Pixel
Shader.

If Early Depth Test Enable is set it is possible for pixels or samples to be discarded before reaching the
Pixel Shader due to failing the depth or stencil test. PS_INVOCATIONS_COUNT will still be incremented
for these pixels or samples since the depth test occurs after the pixel shader from the point of view of
SW.

When Early Depth Test is forced and when Statistics Enable is set, PS_INVOCATIONS_COUNT register
may not have the correct value.

Pixel
This section contains the following subsections:

• Depth and Stencil, which covers the Depth and Stencil test functions

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 425

• Pixel Dispatch, which covers pixel shader state, pixel grouping, multisampling effects on pixel
shader dispatch, and pixel shader thread payload

• Pixel Backend, which covers backend processing

Early Depth/Stencil Processing

The Windower/IZ unit provides the Early Depth Test function, a major performance-optimization feature
where an attempt is made to remove pixels that fail the Depth and Stencil Tests prior to pixel shading.
This requires the WM unit to perform the interpolation of pixel (source) depth values, read the current
(destination) depth values from the cached depth buffer, and perform the Depth and Stencil Tests As
the WM unit has per-pixel source and destination Z values, these values are passed in the PS thread
payload, if required.

Depth Offset

Note: The depth offset function is contained in SF unit, thus the state to control it is also contained in
SF unit.

There are occasions where the Z position of some objects need to be slightly offset to reduce artifacts
due to coplanar or near-coplanar primitives. A typical example is drawing the edges of triangles as
wireframes – the lines need to be drawn slightly closer to the viewer to ensure they will not be occluded
by the underlying polygon. Another example is drawing objects on a wall – without a bias on the z
positions, they might be fully or partially occluded by the wall.

The device supports global depth offset, applied only to triangles, that bases the offset on the object’s z
slope Note that there is no clamping applied at this stage after the Z position is offset – clamping to
[0,1] can be performed later after the Z position is interpolated to the pixel. This is preferable to
clamping prior to interpolation, as the clamping would change the Z slope of the entire object.

The Global Depth Offset function is controlled by the Global Depth Offset Enable state variable in
WM_STATE Global Depth Offset is only applied to 3DOBJ_TRIANGLE objects.

When Global Depth Offset Enable is ENABLED, the pipeline will compute:

MaxDepthSlope = max(abs(dZ/dX),abs(dz/dy)) // approximation of max depth slope for polygon

When UNORM Depth Buffer is at Output Merger (or no Depth Buffer):
 Bias = GlobalDepthOffsetConstant * r + GlobalDepthOffsetScale * MaxDepthSlope

Where r is the minimum representable value > 0 in the depth buffer format, converted to float32 (note:
If state bit Legacy Global Depth Bias Enable is set, the r term will be forced to 1.0)

When Floating Point Depth Buffer at Output Merger:

 Bias = GlobalDepthOffsetConstant * 2^(exponent(max z in primitive) – r) +
GlobalDepthOffsetScale * MaxDepthSlope

 3D – Media – GPGPU

426 Doc Ref # IHD-OS-VLV-Vol7-04.14

Where r is the # of mantissa bits in the floating point representation (excluding the hidden bit), e.g. 23
for float32 (note: If state bit Legacy Global Depth Bias Enable is set, no scaling is applied to the
GobalDepthOffsetConstant).

Adding Bias to z:

 if (GlobalDepthOffsetClamp > 0)

 Bias = min(DepthBiasClamp, Bias)

 else if(GlobalDepthOffsetClamp < 0)

 Bias = max(DepthBiasClamp, Bias)

 // else if GlobalDepthOffsetClamp == 0, no clamping occurs

 z = z + Bias

Biasing is constant for a given primitive. The biasing formulas are performed with float32 arithmetic
Global Depth Bias is not applied to any point or line primitives.

Early Depth Test/Stencil Test/Write

When Early Depth Test Enable is ENABLED, the WM unit will attempt to discard depth-occluded pixels
during scan conversion (before processing them in the Pixel Shader). Pixels are only discarded when the
WM unit can ensure that they would have no impact to the ColorBuffer or DepthBuffer. This function is
therefore only a performance feature.

Note: For , the Early Depth Test Enable bit is no longer present. This function is always enabled.

If some pixels within a subspan are discarded, only the pixel mask is affected indicating that the
discarded pixels are not active. If all pixels within a subspan are discarded, that subspan will not even be
dispatched.

Software-Provided PS Kernel Info

For the WM unit to properly perform Early Depth Test and supply the proper information in the PS
thread payload (and even determine if a PS thread needs to be dispatched), it requires information
regarding the PS kernel operation This information is provided by a number of state bits in WM_STATE,
as summarized in the following table.

State Bit Description

Pixel Shader
Kill Pixel

This must be set when there is a chance that valid pixels passed to a PS thread may be discarded.
This includes the discard of pixels by the PS thread resulting from a killpixel or alphatest function
or as dictated by the results of the sampling of a chroma-keyed texture The WM unit needs this
information to prevent early depth/stencil writes for pixels which might be killed by the PS
thread, etc.
See WM_STATE/3DSTATE_WM for more information.

Pixel Shader
Computed
Depth

This must be set when the PS thread computes the source depth value (i.e., from the API POV,
writes to the oDepth output) In this case the WM unit can't make any decisions based on the
WM-interpolated depth value.
See WM_STATE/3DSTATE_WM for more information.

Pixel Shader Must be set if the PS thread requires the WM-interpolated source depth value. This forces the

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 427

State Bit Description

Uses Source
Depth

source depth to be passed in the thread payload where otherwise the WM unit would not have
seen it as required.
See WM_STATE/3DSTATE_WM for more information.

Hierarchical Depth Buffer

A hierarchical depth buffer is supported to reduce memory traffic due to depth buffer accesses. This
buffer is supported only in Tile Y memory.

The Surface Type, Height, Width, Depth, Minimum Array Element, Render Target View Extent, and
Depth Coordinate Offset X/Y of the hierarchical depth buffer are inherited from the depth buffer. The
height and width of the hierarchical depth buffer that must be allocated are computed by the following
formulas, where HZ is the hierarchical depth buffer and Z is the depth buffer. The Z_Height, Z_Width,
and Z_Depth values given in these formulas are those present in 3DSTATE_DEPTH_BUFFER incremented
by one.

The value of Z_Height and Z_Width must each be multiplied by 2 before being applied to the table below if
Number of Multisamples is set to NUMSAMPLES_4. The value of Z_Height must be multiplied by 2 and Z_Width
must be multiplied by 4 before being applied to the table below if Number of Multisamples is set to
NUMSAMPLES_8.

Since Hierarchical Depth Buffer supports multiple LODs. The HZ_height is different as shown in the table
below:

Surface Type HZ_Width (Bytes) HZ_Height (Rows)

SURFTYPE_1D ceiling(Z_Width / 16) * 16 Ceiling ((Q_pitch * Z_depth/2) /8) * 8

SURFTYPE_2D ceiling(Z_Width / 16) * 16 Ceiling ((Q_pitch * Z_depth/2) /8) * 8

SURFTYPE_3D ceiling(Z_Width / 16) * 16 see below

SURFTYPE_CUBE ceiling(Z_Width / 16) * 16 Ceiling ((Q_pitch * Z_depth * 6/2) /8) * 8

Where, Qpitch is computed using vertical alignment j=8. Please refer to the GPU overview volume for
Qpitch definition.

The minimum HZ_Height required for a 3D surface must be computed based on hL parameters
documented in the GPU Overview volume, and the The minimum HZ_Height m:

The format of the data in the hierarchical depth buffer is not documented here, as this surface needs
only to be allocated by software. Hardware will read and write this surface during operation and its
contents are discarded once the last primitive is rendered that uses the hierarchical depth buffer.

The hierarchical depth buffer can be enabled whenever a depth buffer is defined, with its effect being
invisible other than generally higher performance. The only exception is the hierarchical depth buffer
must be disabled when using software tiled rendering.

If HiZ is enabled, you must initialize the clear value by either:

 3D – Media – GPGPU

428 Doc Ref # IHD-OS-VLV-Vol7-04.14

1. Perform a depth clear pass to initialize the clear value.
2. Send a 3dstate_clear_params packet with valid = 1.

Without one of these events, context switching will fail, as it will try to save off a clear value even
though no valid clear value has been set. When context restore happens, HW will restore an
uninitialized clear value.

Depth Buffer Clear

With the hierarchical depth buffer enabled, performance is generally improved by using the special
clear mechanism described here to clear the hierarchical depth buffer and the depth buffer. This is
enabled though the Depth Buffer Clear field in WM_STATE or 3DSTATE_WM or using the
3DSTATE_WM_HZ_OP. This bit can be used to clear the depth buffer in the following situations:

• Complete depth buffer clear.
• Partial depth buffer clear with the clear value the same as the one used on the previous clear.
• Partial depth buffer clear with the clear value different than the one used on the previous clear

can use this mechanism if a depth buffer resolve is performed first.

The following is required when performing a depth buffer clear using any of the above clearing
methods (WM_STATE, 3DSTATE_WM or 3DSTATE_WM_HZ_OP).

• The fields in 3DSTATE_CLEAR_PARAMS are set to indicate the source of the clear value and (if
source is in this command) the clear value itself.

• The clear value must be between the min and max depth values (inclusive) defined in the
CC_VIEWPORT. If the depth buffer format is D32_FLOAT, then NaN values are also allowed.

The following is required when performing a depth buffer clear with using the WM_STATE or
3DSTATE_WM:

• If other rendering operations have preceded this clear, a PIPE_CONTROL with depth cache flush
enabled, Depth Stall bit enabled must be issued before the rectangle primitive used for the depth
buffer clear operation.

• A rectangle primitive representing the clear area is delivered. The primitive must adhere to the
following restrictions on size:

 Project Restriction

 If Number of Multisamples is NUMSAMPLES_1, the rectangle must be aligned to an
8x4 pixel block relative to the upper left corner of the depth buffer, and contain an
integer number of these pixel blocks, and all 8x4 pixels must be lit.

 If Number of Multisamples is NUMSAMPLES_4, the rectangle must be aligned to a
4x2 pixel block (8x4 sample block) relative to the upper left corner of the depth buffer,
and contain an integer number of these pixel blocks, and all samples of the 4x2 pixels
must be lit.

 If Number of Multisamples is NUMSAMPLES_8, the rectangle must be aligned to a
2x2 pixel block (8x4 sample block) relative to the upper left corner of the depth buffer,
and contain an integer number of these pixel blocks, and all samples of the 2x2 pixels
must be lit.

• Depth Test Enable must be disabled and Depth Buffer Write Enable must be enabled (if depth
is being cleared).

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 429

• Stencil buffer clear can be performed at the same time by enabling Stencil Buffer Write Enable.
Stencil Test Enable must be enabled and Stencil Pass Depth Pass Op set to REPLACE, and the
clear value that is placed in the stencil buffer is the Stencil Reference Value from
COLOR_CALC_STATE.

• Note also that stencil buffer clear can be performed without depth buffer clear. For stencil only
clear, Depth Test Enable and Depth Buffer Write Enable must be disabled.

In some cases Depth Buffer Clear cannot be enabled and the legacy method of clearing must be used:

• If the depth buffer format is D32_FLOAT_S8X24_UINT or D24_UNORM_S8_UINT.
• If stencil test is enabled but the separate stencil buffer is disabled.

Depth buffer clear pass using any of the methods (WM_STATE, 3DSTATE_WM or 3DSTATE_WM_HZ_OP)
must be followed by a PIPE_CONTROL command with DEPTH_STALL bit and Depth FLUSH bits "set"
before starting to render. DepthStall and DepthFlush are not needed between consecutive depth clear
passes nor is it required if the depth-clear pass was done with "full_surf_clear" bit set in the
3DSTATE_WM_HZ_OP.

Note: If using the optimized depth buffer clear, this pipecontrol should be done after the resetting of
the clear/resolve bits in the 3DSTATE_WM_HZ_OP (step #8).

Depth Buffer Resolve

If the hierarchical depth buffer is enabled, the depth buffer may contain incorrect results after rendering
is complete If the depth buffer is retained and used for another purpose (i.e as input to the sampling
engine as a shadow map), it must first be "resolved" This is done by setting the Depth Buffer Resolve
Enable field in WM_STATE or 3DSTATE_WM and rendering a full render target sized rectangle. Once
this is complete, the depth buffer will contain the same contents as it would have had the rendering
been performed with the hierarchical depth buffer disabled. In a typical usage model, depth buffer
needs to be resolved after rendering on it and before using a depth buffer as a source for any
consecutive operation. Depth buffer can be used as a source in three different cases: using it as a
texture for the nest rendering sequence, honoring a lock on the depth buffer to the host OR using the
depth buffer as a blit source.

The following is required when performing a depth buffer resolve:

• A rectangle primitive of the same size as the previous depth buffer clear operation must be
delivered, and depth buffer state cannot have changed since the previous depth buffer clear
operation.

• Depth Test Enable must be enabled with the Depth Test Function set to NEVER. Depth Buffer
Write Enable must be enabled. Stencil Test Enable and Stencil Buffer Write Enable must be
disabled.

• Pixel Shader Dispatch, Alpha Test, Pixel Shader Kill Pixel and Pixel Shader Computed Depth
must all be disabled.

 3D – Media – GPGPU

430 Doc Ref # IHD-OS-VLV-Vol7-04.14

Hierarchical Depth Buffer Resolve

If the hierarchical depth buffer is enabled, the hierarchical depth buffer may contain incorrect results if
the depth buffer is written to outside of the 3D rendering operation If this occurs, the hierarchical depth
buffer must be "resolved" to avoid incorrect device behavior. This is done by setting the Hierarchical
Depth Buffer Resolve Enable field in WM_STATE or 3DSTATE_WM and rendering a full render target
sized rectangle. Once this is complete, the hierarchical depth buffer will contain contents such that
rendering will give the same results as it would have had the rendering been performed with the
hierarchical depth buffer disabled.

The following is required when performing a hierarchical depth buffer resolve:

• A rectangle primitive covering the full render target must be delivered.
• Depth Test Enable must be disabled. Depth Buffer Write Enable must be enabled. Stencil Test

Enable and Stencil Buffer Write Enable must be disabled.
• Pixel Shader Dispatch, Alpha Test, Pixel Shader Kill Pixel, and Pixel Shader Computed Depth

must all be disabled.

Separate Stencil Buffer

The following subsections describe the separate stencil buffer for different generations.

 Separate Stencil Buffer

The separate stencil buffer is always enabled, thus the field in 3DSTATE_DEPTH_BUFFER to explicitly
enable the separate stencil buffer has been removed. Surface formats with interleaved depth and stencil
are no longer supported.

The stencil buffer has a format of R8_UNIT, and shares Surface Type, Height, Width, and Depth,
Minimum Array Element, Render Target View Extent, Depth Coordinate Offset X/Y, LOD, and
Depth Buffer Object Control State fields of the depth buffer.

Depth/Stencil Buffer State

This section contains the state registers for the Depth/Stencil Buffers.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 431

 3DSTATE_STENCIL_BUFFER

 3DSTATE_HIER_DEPTH_BUFFER

 3DSTATE_CLEAR_PARAMS

Pixel Shader Thread Generation

After a group of object fragments have been rasterized, the Pixel Shader (PSD) function is invoked to
further compute output information and cause results to be written to output surfaces (like color,
depth, stencil, UAvs etc). Fragments can be P or S.

For each fragment, the Pixel Shader calculates the values of the various vertex attributes that are to be
interpolated across the object using the interpolation coefficients. It then executes an API-supplied Pixel
Shader Program. Instructions in this program permit the accessing of texture map data, where Texture
Samplers are employed to sample and filter texture maps (see the Shared Functions chapter). Arithmetic
operations can be performed on the texture data, input fragment information, and Pixel Shader
Constants to compute the resultant fragment’s output. The Pixel Shader program also allows the pixel
to be discarded from further processing.

3DSTATE_PS

This command is used to set state used by the pixel shader dispatch stage.

Pixel Grouping (Dispatch Size) Control

The WM unit can pass a grouping of 2 subspans (8 pixels), 4 subspans (16 pixels), or 8 subspans (32
pixels) to a Pixel Shader thread. Software should take into account the following considerations when
determining which groupings to support/enable during operation. This determination involves a
tradeoff of these likely conflicting issues. Note that the size of the dispatch has significant impact on the
kernel program. (It is certainly not transparent to the kernel.) Also note that there is no implied spatial
relationship between the subspans passed to a PS thread, other than the fact that they come from the
same object.

• Thread Efficiency: In general, there is some amount of overhead involved with PS thread
dispatch, and if this can be amortized over a larger number of pixels, efficiency will likely increase.
This is especially true for very short PS kernels, as may be used for desktop composition, etc.

• GRF Consumption: Processing more pixels per thread requires a larger thread payload and likely
more temporary register usage, both of which translate into a requirement for a larger GRF
register allocation for the threads. This increased GRF usage could lead to increased use of
scratch space (for spill/fill, etc.) and possibly less efficient use of the EUs (as it would be less likely
to find an EU with enough free physical GRF registers to service the thread).

• Object Size: If the number of very small objects (e.g., covering 2 subspans or fewer) is expected
to comprise a significant portion of the workload, supporting the 8-pixel dispatch mode may be
advantageous. Otherwise there could be a large number of 16-pixel dispatches with only 1 or 2
valid subspans, resulting in low efficiency for those threads.

 3D – Media – GPGPU

432 Doc Ref # IHD-OS-VLV-Vol7-04.14

• Intangibles: Kernel footprint & Instruction Cache impact; Complexity; ….

The groupings of subspans that the WM unit is allowed to include in a PS thread payload is controlled
by the 32,16,8 Pixel Dispatch Enable state variables programmed in WM_STATE. Using these state
variables, the WM unit attempts to dispatch the largest allowed grouping of subspans. The following
table lists the possible combinations of these state variables.

Please note that, the valid column in the table indicates which products supports the combination
dispatch. Combinations that are not listed in the table are not available on any product.

The letter codes A, B, D, and E used in the Variable Pixel Dispatch table below are valid for all projects
with some specific mode restrictions for specific projects for B, D, and E as indicated in the next few
tables.

D is like B with an added general restriction, that it cannot be used in non-1x PERSAMPLE mode.

E cannot be used in PERSAMPLE mode with number of multisamples >= 2.

Table: Variable Pixel Dispatch

Contiguous

64 Pixel
Dispatch
Enable

Contiguous

32 Pixel
Dispatch
Enable

 32 Pixel
Dispatch
Enable

 16 Pixel
Dispatch
Enable

 8 Pixel
Dispatch
Enable

Valid

 IP for n-
pixel

Contiguous
Dispatch

IP for n-pixel
Dispatch

(KSP offsets are in
128-bit instruction

units)

n=64 n=32 n=32 n=16 n=8

0 0 0 0 1 A KSP[0]

0 0 0 1 0 B KSP[0]

0 0 0 1 1 D KSP[2] KSP[0]

0 0 1 0 0 B KSP[0]

0 0 1 1 0 E KSP[1] KSP[2]

0 0 1 1 1 D KSP[1] KSP[2] KSP[0]

0 1 1 1 0 D KSP[2] KSP[1] KSP[0]

1 0 1 1 0 D KSP[2] KSP[1] KSP[0]

Each of the three KSP values is separately specified. In addition, each kernel has a separately-specified
GRF register count.

Depending on the subspan grouping selected, the WM unit will modify the starting PS Instruction
Pointer (derived from the Kernel Start Pointer in WM_STATE) as a means to inform the PS kernel of the
number of subspans included in the payload. The modified IP is a function of the enabled modes and
the dispatch size, as shown in the table below.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 433

The driver must ensure that the PS kernel begins with a corresponding jump table to properly handle
the number of subspans dispatched. The WM unit will "OR" in the two LSBs of the Kernel Pointer (bits
5:4) to create an instruction level address. (Note that the pointer from WM_STATE is 64-byte aligned
which corresponds to four 128-bit instructions.)

If only one dispatch mode is enabled, the Jitter should not include any jump table entries at the
beginning of the PS kernel. If multiple dispatch modes are enabled, a two entry jump table should
always be inserted, regardless of which modes are enabled (jump table entry for 8 pixel dispatch,
followed by jump table entry for 32 pixel dispatch).

Note that for SIMD32 dispatch, pixel shader dispatch function increments GRF Start Register for URB
Data state by 2 to account for the additional SIMD16 payload. The Pixel Shader kernel needs to
comprehend this modification for SIMD32.
 if (32PixelDispatchEnable && n > 7)
 Dispatch 32 Pixels
 else if (16PixelDispatchEnable && (n > 2 || ! 8PixelDispatchEnable))
 Dispatch 16 Pixels
 else
 Dispatch 8 Pixels
 end if

Contiguous Dispatch Modes

There are three cases to consider depending on which dispatch modes are enabled based on the legal
combinations in the table above:

• Only normal dispatch modes are enabled. This is the normal operating mode in which all
features are supported.

• Only contiguous dispatch modes are enabled. In this case, software must ensure that the fast
composite restrictions are met.

• Both normal and contiguous dispatch modes are enabled. In this case, a combination of
software and the setup kernel must check all of the restrictions required by the contiguous
dispatch pixel shader code. The result of the check in the setup kernel is indicated in the message
descriptor of the URB write message The windower then chooses a dispatch mode from either
the normal category or the contiguous category depending on whether the restriction check fails
or passes, respectively.

If both the 32- and 64-pixel contiguous dispatch modes are enabled together, the windower chooses
which one to use based on whether at least one pixel from the upper and lower 8x4 halves of the 8x8
block is active. If one half has no pixel active, the half that does have pixels active is dispatched as a 32-
pixel thread.

The following logic describes how the windower chooses the dispatch mode based on which modes are
enabled:

d32 = normal 32-pixel dispatch mode enabled

d16 = normal 16-pixel dispatch mode enabled

d8 = normal 8-pixel dispatch mode enabled

c64 = contiguous 64-pixel dispatch mode enabled

 3D – Media – GPGPU

434 Doc Ref # IHD-OS-VLV-Vol7-04.14

c32 = contiguous 32-pixel dispatch mode enabled

ContiguousSelect = (c64 || c32) && [!(d32 || d16 || d8) || RestrictionCheckPass]

Table: For ContiguousSelect true:

contiguous area available first priority second priority

both superspan halves c64 c32

one superspan half c32 c64

Table: For ContiguousSelect false:

subspans available first priority second priority third priority

s >= 4 d32 d16 d8

4 > s >= 2 d16 d8 d32

2 > s >= 1 d8 d16 d32

Multisampling Effects on Pixel Shader Dispatch

The pixel shader payloads are defined in terms of subspans and pixels. The slots in the pixel shader
thread previously mapped 1:1 with pixels. With multisampling, a slot could contain a pixel or may just
contain a single sample, depending on the mode. Payload definitions now refer to slot to make the
definition independent of multisampling mode.

MSDISPMODE_PERPIXEL Thread Dispatch

In PERPIXEL mode, the pixel shader kernel still works on 2/4/8 separate subspans, depending on
dispatch mode. The fact that rasterization and the depth/stencil tests are being performed on a per-
sample (not per-pixel) basis is transparent to the pixel shader kernel.

MSDISPMODE_PERSAMPLE Thread Dispatch

In PERSAMPLE mode, the pixel shader needs to operate on a sample vs. pixel basis (although this
collapses in NUMSAMPLES_1 mode) Instead of processing strictly different subspans in parallel , the PS
kernel processes different sample indices of one or more subspans in parallel For example, a SIMD16
dispatch in PERSAMPLE/NUMSAMPLES_4 mode would operate on a single subspan, with the usual 4
Subspan0 pixel slots used for the 4 Sample0 locations of the (single) subspan Subspan1 slots would be
used for the Sample1 locations, and so on This layout allows the pixel shader to compute
derivatives/LOD based on deltas between corresponding sample locations in the subspan in the same
fashion as LEGACY pixel shader execution, and as required by DX10.1.

Depending on the dispatch mode (8/16/32 pixels) and multisampling mode (1X/4X), there are different
mappings of subspans/samples onto dispatches and slots-within-dispatch In some cases, more than
one subspan may be included in a dispatch, while in other cases multiple dispatches are be required to
process all samples for a single subspan In the latter case, the StartingSamplePairIndex value is
included in the payload header so the Render Target Write message will access the correct samples with
each message.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 435

PERSAMPLE SIMD16 4X Dispatch

PERSAMPLE SIMD8 4X Dispatch

The following table provides the complete dispatch/slot mappings for all the MS/Dispatch
combinations.

Dispatch Size Num Samples
Slot Mapping

 (SSPI = Starting Sample Pair Index)

SIMD32 1X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

Slot[11:8] = Subspan[2].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[3].Pixel[3:0].Sample[0]

Slot[19:16] = Subspan[4].Pixel[3:0].Sample[0]

 3D – Media – GPGPU

436 Doc Ref # IHD-OS-VLV-Vol7-04.14

Dispatch Size Num Samples
Slot Mapping

 (SSPI = Starting Sample Pair Index)

Slot[23:20] = Subspan[5].Pixel[3:0].Sample[0]

Slot[27:24] = Subspan[6].Pixel[3:0].Sample[0]

Slot[31:28] = Subspan[7].Pixel[3:0].Sample[0]

2X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[1].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[1].Pixel[3:0].Sample[1]

Slot[19:16] = Subspan[2].Pixel[3:0].Sample[0]

Slot[23:20] = Subspan[2].Pixel[3:0].Sample[1]

Slot[27:24] = Subspan[3].Pixel[3:0].Sample[0]

Slot[31:28] = Subspan[3].Pixel[3:0].Sample[1]

4X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]

Slot[19:16] = Subspan[1].Pixel[3:0].Sample[0]

Slot[23:20] = Subspan[1].Pixel[3:0].Sample[1]

Slot[27:24] = Subspan[1].Pixel[3:0].Sample[2]

Slot[31:28] = Subspan[1].Pixel[3:0].Sample[3]

8X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]

Slot[19:16] = Subspan[0].Pixel[3:0].Sample[4]

Slot[23:20] = Subspan[0].Pixel[3:0].Sample[5]

Slot[27:24] = Subspan[0].Pixel[3:0].Sample[6]

Slot[31:28] = Subspan[0].Pixel[3:0].Sample[7]

SIMD16 1X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 437

Dispatch Size Num Samples
Slot Mapping

 (SSPI = Starting Sample Pair Index)

Slot[11:8] = Subspan[2].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[3].Pixel[3:0].Sample[0]

2X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[1].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[1].Pixel[3:0].Sample[1]

4X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]

8X Dispatch[i]: (i=0, 2)

SSPI = i

Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[SSPI*2+2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[SSPI*2+3]

SIMD8 1X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]
Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

2X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]
Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

4X Dispatch[i]: (i=0..1)

 SSPI = i

 Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]

 Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]

8X Dispatch[i]: (i=0, 1, 2, 3)

 SSPI = i

 Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]

 Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]

 3D – Media – GPGPU

438 Doc Ref # IHD-OS-VLV-Vol7-04.14

PS Thread Payload for Normal Dispatch

The following table lists all possible contents included in a PS thread payload, in the order they are
provided. Certain portions of the payload are optional, in which case the corresponding phase is
skipped.

This payload does not apply to the contiguous dispatch modes. The payload for these modes is
documented in the section titled PS Thread Payload for Contiguous Dispatch.

PS Thread Payload for Normal Dispatch

The following payload (UNRESOLVED CROSS REFERENCE, PS Thread Payload for Normal Dispatch)
applies to . All registers are numbered starting at 0, but many registers are skipped depending on
configuration. This causes all registers below to be renumbered to fill in the skipped locations. The only
case where actual registers may be skipped is immediately before the constant data and again before
the setup data.

PS Thread Payload for Normal Dispatch

DWord Bits Description Project

R0.7 31

30:24 Reserved

23:0
Primitive Thread ID: This field contains the primitive thread
count passed to the Windower from the Strips Fans Unit.

Format: Reserved for HW Implementation Use.

R0.6 31:24 Reserved

23:0
Thread ID: This field contains the thread count which is
incremented by the Windower for every thread that is dispatched.

Format: Reserved for HW Implementation Use.

R0.5 31:10
Scratch Space Pointer: Specifies the 1K-byte aligned pointer to
the scratch space available for this PS thread. This is specified as
an offset to the General State Base Address.

Format = GeneralStateOffset[31:10]

9:8 Reserved

7:0
FFTID: This ID is assigned by the WM unit and is an identifier for
the thread. It is used to free up resources used by the thread upon
thread completion.

Format: Reserved for HW Implementation Use.

R0.4 31:5
Binding Table Pointer: Specifies the 32-byte aligned pointer to
the Binding Table. It is specified as an offset from the Surface

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 439

DWord Bits Description Project

State Base Address.

Format = SurfaceStateOffset[31:5]

4:0 Reserved

R0.3 31:5
Sampler State Pointer: Specifies the 32-byte aligned pointer to
the Sampler State table. It is specified as an offset from the
Dynamic State Base Address.

Format = DynamicStateOffset[31:5]

4 Reserved

3:0
Per Thread Scratch Space: Specifies the amount of scratch space
allowed to be used by this thread.

Programming Notes: This amount is available to the kernel for
information only. It will be passed verbatim (if not altered by the
kernel) to the Data Port in any scratch space access messages, but
the Data Port will ignore it.

Format = U4

Range = [0,11] indicating [1k bytes, 2M bytes] in powers of two

R0.2 31:0 Reserved: Delivered as zeros (reserved for message header fields).

R0.1 31:6
Color Calculator State Pointer: Specifies the 64-byte aligned
pointer to the Color Calculator state (COLOR_CALC_STATE
structure in memory). It is specified as an offset from the Dynamic
State Base Address. This value is eventually passed to the
ColorCalc function in the DataPort and is used to fetch the
corresponding CC_STATE data.

Format = DynamicStateOffset[31:5]

5:0 Reserved

R0.0 31 Reserved

30:27
Viewport Index: Specifies the index of the viewport currently
being used.

Format = U4

Range = [0,15]

26:16
Render Target Array Index: Specifies the array index to be used
for the following surface types:

SURFTYPE_1D: specifies the array index Range = [0,2047]

SURFTYPE_2D: specifies the array index Range = [0,2047]

 3D – Media – GPGPU

440 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bits Description Project

SURFTYPE_3D: specifies the “r” coordinate Range = [0,2047]

SURFTYPE_CUBE: specifies the face identifier Range = [0,5]

Face Render Target Array Index

+x 0

-x 1

+y 2

-y 3

+z 4

-z 5

Format = U11

15
Front/Back Facing Polygon: Determines whether the polygon is
front or back facing. Used by the render cache to determine which
stencil test state to use.

0: Front Facing

1: Back Facing

14 Reserved

13
Source Depth to Render Target: Indicates that source depth will
be sent to the render target.

12
oMask to Render Target: Indicates that oMask will be sent to the
render target.

11:9 Reserved

8 Reserved for expansion of Starting Sample Pair Index.

7:6
Starting Sample Pair Index: Indicates the index of the first
sample pair of the dispatch.

Format = U2

Range = [0,3]

5 Reserved

4:0
Primitive Topology Type: This field identifies the Primitive
Topology Type associated with the primitive spawning this object.
The WM unit does not modify this value (e.g., objects within
POINTLIST topologies see POINTLIST).

Format: (See 3DPRIMITIVE command in 3D Pipeline.)

R1.7 31:16
Pixel/Sample Mask (SubSpan[3:0]): Indicates which pixels within

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 441

DWord Bits Description Project

the four subspans are lit. If 32 pixel dispatch is enabled, this field
contains the pixel mask for the first four subspans.

Note: This is not a duplicate of the Dispatch Mask that is
delivered to the thread. The dispatch mask has all pixels within a
subspan as active if any of them are lit to enable LOD calculations
to occur correctly.

This field must not be modified by the Pixel Shader kernel.

15:0
Pixel/Sample Mask Copy (SubSpan[3:0]): This is a duplicate
copy of the pixel mask. This copy can be modified as the pixel
shader thread executes in order to turn off pixels based on kill
instructions.

R1.6 31:0 Reserved

R1.5 31:16
Y3: Y coordinate (screen space) for upper-left pixel of subspan 3
(slot 12).

Format = U16

15:0
X3: X coordinate (screen space) for upper-left pixel of subspan 3
(slot 12).

Format = U16

R1.4 31:16
Y2: Y coordinate (screen space) for upper-left pixel of subspan 2
(slot 8).

Format = U16

15:0
X2: X coordinate (screen space) for upper-left pixel of subspan 2
(slot 8).

Format = U16

R1.3 31:16
Y1: Y coordinate (screen space) for upper-left pixel of subspan 1
(slot 4).

Format = U16

15:0
X1: X coordinate (screen space) for upper-left pixel of subspan 1
(slot 4).

Format = U16

R1.2 31:16
Y0: Y coordinate (screen space) for upper-left pixel of subspan 0
(slot 0).

 3D – Media – GPGPU

442 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bits Description Project

Format = U16

15:0
X0: X coordinate (screen space) for upper-left pixel of subspan 0
(slot 0).

Format = U16

R1.1 31:0 Reserved

R1.0 31:20 Reserved

15:12
Slot 3 SampleID (if pixel or sample dispatch)

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

11:8
Slot 2 SampleID (if pixel or sample dispatch)

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

7:4
Slot 1 SampleID (if pixel or sample dispatch)

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

3:0
Slot 0 SampleID (if pixel or sample dispatch)

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 443

DWord Bits Description Project

R2: Delivered only if this is a 32-pixel dispatch.

R2.7 31:16
Pixel/Sample Mask (SubSpan[7:4]): Indicates which pixels within
the upper four subspans are lit. This field is valid only when the 32
pixel dispatch state is enabled. This field must not be modified by
the pixel shader thread.

Note: This is not a duplicate of the dispatch mask that is delivered
to the thread. The dispatch mask has all pixels within a subspan as
active if any of them are lit to enable LOD calculations to occur
correctly.

This field must not be modified by the Pixel Shader kernel.

15:0
Pixel/Sample Mask Copy (SubSpan[7:4]): This is a duplicate
copy of pixel mask for the upper 16 pixels. This copy will be
modified as the pixel shader thread executes to turn off pixels
based on kill instructions.

R2.6 31:0 Reserved

R2.5 31:16
Y7: Y coordinate (screen space) for upper-left pixel of subspan 7
(slot 28)

Format = U16

15:0
X7: X coordinate (screen space) for upper-left pixel of subspan 7
(slot 28)

Format = U16

R2.4 31:16 Y6

15:0 X6

R2.3 31:16 Y5

15:0 X5

R2.2 31:16 Y4

15:0 X4

R2.1 31:0 Reserved

R2.0 31:16 Reserved

15:12
Slot 7 SampleID

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

 3D – Media – GPGPU

444 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bits Description Project

8X MSAA range [0..7]

16X MSAA range [0..15]

11:8
Slot 6 SampleID

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

16X MSAA range [0..15]

7:4
Slot 5 SampleID

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

16X MSAA range [0..15]

3:0
Slot 4 SampleID

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

16X MSAA range [0..15]

R3-R26: Delivered only if the corresponding Barycentric
Interpolation Mode bit is set. Register phases containing Slot 8-
15 data are not delivered in 8-pixel dispatch mode.

R3.7 31:0
Perspective Pixel Location Barycentric[1] for Slot 7

This and the next register phase is only included if the
corresponding enable bit in Barycentric Interpolation Mode is
set.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 445

DWord Bits Description Project

Format = IEEE_Float

R3.6 31:0 Perspective Pixel Location Barycentric[1] for Slot 6

R3.5 31:0 Perspective Pixel Location Barycentric[1] for Slot 5

R3.4 31:0 Perspective Pixel Location Barycentric[1] for Slot 4

R3.3 31:0 Perspective Pixel Location Barycentric[1] for Slot 3

R3.2 31:0 Perspective Pixel Location Barycentric[1] for Slot 2

R3.1 31:0 Perspective Pixel Location Barycentric[1] for Slot 1

R3.0 31:0 Perspective Pixel Location Barycentric[1] for Slot 0

R4 Perspective Pixel Location Barycentric[2] for Slots 7:0

R5.7 31:0 Perspective Pixel Location Barycentric[1] for Slot 15

R5.6 31:0 Perspective Pixel Location Barycentric[1] for Slot 14

R5.5 31:0 Perspective Pixel Location Barycentric[1] for Slot 13

R5.4 31:0 Perspective Pixel Location Barycentric[1] for Slot 12

R5.3 31:0 Perspective Pixel Location Barycentric[1] for Slot 11

R5.2 31:0 Perspective Pixel Location Barycentric[1] for Slot 10

R5.1 31:0 Perspective Pixel Location Barycentric[1] for Slot 9

R5.0 31:0 Perspective Pixel Location Barycentric[1] for Slot 8

R6 Perspective Pixel Location Barycentric[2] for Slots 15:8

R7:10 Perspective Centroid Barycentric

R11:14 Perspective Sample Barycentric

R15:18 Linear Pixel Location Barycentric

R19:22 Linear Centroid Barycentric

R23:26 Linear Sample Barycentric

R27: Delivered only if Pixel Shader Uses Source Depth is set.

R27.7 31:0
Interpolated Depth for Slot 7

Format = IEEE_Float

This and the next register phase is only included if Pixel Shader
Uses Source Depth (WM_STATE) is set.

R27.6 31:0 Interpolated Depth for Slot 6

R27.5 31:0 Interpolated Depth for Slot 5

R27.4 31:0 Interpolated Depth for Slot 4

R27.3 31:0 Interpolated Depth for Slot 3

R27.2 31:0 Interpolated Depth for Slot 2

R27.1 31:0 Interpolated Depth for Slot 1

R27.0 31:0 Interpolated Depth for Slot 0

R28: Delivered only if Pixel Shader Uses Source Depth is set and
this is not an 8-pixel dispatch.

R28.7 31:0 Interpolated Depth for Slot 15

 3D – Media – GPGPU

446 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bits Description Project

R28.6 31:0 Interpolated Depth for Slot 14

R28.5 31:0 Interpolated Depth for Slot 13

R28.4 31:0 Interpolated Depth for Slot 12

R28.3 31:0 Interpolated Depth for Slot 11

R28.2 31:0 Interpolated Depth for Slot 10

R28.1 31:0 Interpolated Depth for Slot 9

R28.0 31:0 Interpolated Depth for Slot 8

R29: Delivered only if Pixel Shader Uses Source W is set.

R29.7 31:0
Interpolated W for Slot 7

Format = IEEE_Float

This and the next register phase are only included if Pixel Shader
Uses Source W (WM_STATE) is set.

R29.6 31:0 Interpolated W for Slot 6

R29.5 31:0 Interpolated W for Slot 5

R29.4 31:0 Interpolated W for Slot 4

R29.3 31:0 Interpolated W for Slot 3

R29.2 31:0 Interpolated W for Slot 2

R29.1 31:0 Interpolated W for Slot 1

R29.0 31:0 Interpolated W for Slot 0

R30: Delivered only if Pixel Shader Uses Source W is set and this
is not an 8-pixel dispatch.

R30.7 31:0 Interpolated W for Slot 15

R30.6 31:0 Interpolated W for Slot 14

R30.5 31:0 Interpolated W for Slot 13

R30.4 31:0 Interpolated W for Slot 12

R30.3 31:0 Interpolated W for Slot 11

R30.2 31:0 Interpolated W for Slot 10

R30.1 31:0 Interpolated W for Slot 9

R30.0 31:0 Interpolated W for Slot 8

R31: Delivered only if Position XY Offset Select is either
POSOFFSET_CENTROID or POSOFFSET_SAMPLE.

R31.7 31:24
Position Offset Y for Slot 15

This field contains either the CENTROID or SAMPLE position offset
for Y, depending on the state of Position XY Offset Select.

Format = U4.4

Range = [0.0,1.0)

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 447

DWord Bits Description Project

23:16
Position Offset X for Slot 15

This field contains either the CENTROID or SAMPLE position offset
for X, depending on the state of Position XY Offset Select.

Format = U4.4

Range = [0.0,1.0)

15:8 Position Offset Y for Slot 14

7:0 Position Offset X for Slot 14

R31.6 31:24 Position Offset Y for Slot 13

23:16 Position Offset X for Slot 13

15:8 Position Offset Y for Slot 12

7:0 Position Offset X for Slot 12

R31.5:4 Position Offset X/Y for Slot[11:8]

R31.3:2 Position Offset X/Y for Slot[7:4]

R31.1:0 Position Offset X/Y for Slot[3:0]

R32: Delivered only if Pixel Shader Uses Input Coverage Mask is
set.

R32.7 31:0
Input Coverage Mask for Slot 7

Format = U32

This and the next register phase is only included if Pixel Shader
Uses Input Coverage Mask (3DSTATE_PS) is set.

This field always encodes sample Coverage Mask.

R32.6 31:0 Input Coverage Mask for Slot 6

R32.5 31:0 Input Coverage Mask for Slot 5

R32.4 31:0 Input Coverage Mask for Slot 4

R32.3 31:0 Input Coverage Mask for Slot 3

R32.2 31:0 Input Coverage Mask for Slot 2

R32.1 31:0 Input Coverage Mask for Slot 1

R32.0 31:0 Input Coverage Mask for Slot 0

R33: Delivered only if Pixel Shader Uses Input Coverage Mask is
set and this is not an 8-pixel dispatch.

R33.7 31:0 Input Coverage Mask for Slot 15

R33.6 31:0 Input Coverage Mask for Slot 14

R33.5 31:0 Input Coverage Mask for Slot 13

R33.4 31:0 Input Coverage Mask for Slot 12

R33.3 31:0 Input Coverage Mask for Slot 11

R33.2 31:0 Input Coverage Mask for Slot 10

 3D – Media – GPGPU

448 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bits Description Project

R33.1 31:0 Input Coverage Mask for Slot 9

R33.0 31:0 Input Coverage Mask for Slot 8

R34-R57: Delivered only if the corresponding Barycentric
Interpolation Mode bit is set and this is a 32-pixel dispatch.

R34.7 31:0
Perspective Pixel Location Barycentric[1] for Slot 23

This and the next register phase is only included if the
corresponding enable bit in Barycentric Interpolation Mode is
set.

Format = IEEE_Float

R34.6 31:0 Perspective Pixel Location Barycentric[1] for Slot 22

R34.5 31:0 Perspective Pixel Location Barycentric[1] for Slot 21

R34.4 31:0 Perspective Pixel Location Barycentric[1] for Slot 20

R34.3 31:0 Perspective Pixel Location Barycentric[1] for Slot 19

R34.2 31:0 Perspective Pixel Location Barycentric[1] for Slot 18

R34.1 31:0 Perspective Pixel Location Barycentric[1] for Slot 17

R34.0 31:0 Perspective Pixel Location Barycentric[1] for Slot 16

R35 Perspective Pixel Location Barycentric[2] for Slots 23:16

R36.7 31:0 Perspective Pixel Location Barycentric[1] for Slot 31

R36.6 31:0 Perspective Pixel Location Barycentric[1] for Slot 30

R36.5 31:0 Perspective Pixel Location Barycentric[1] for Slot 29

R36.4 31:0 Perspective Pixel Location Barycentric[1] for Slot 28

R36.3 31:0 Perspective Pixel Location Barycentric[1] for Slot 27

R36.2 31:0 Perspective Pixel Location Barycentric[1] for Slot 26

R36.1 31:0 Perspective Pixel Location Barycentric[1] for Slot 25

R36.0 31:0 Perspective Pixel Location Barycentric[1] for Slot 24

R37 Perspective Pixel Location Barycentric[2] for Slots 31:24

R38:41 Perspective Centroid Barycentric

R42:45 Perspective Sample Barycentric

R46:49 Linear Pixel Location Barycentric

R50:53 Linear Centroid Barycentric

R54:57 Linear Sample Barycentric

R58-R59: Delivered only if Pixel Shader Uses Source Depth is
set and this is a 32-pixel dispatch.

R58.7 31:0
Interpolated Depth for Slot 23

Format = IEEE_Float

This and the next register phase is only included if Pixel Shader
Uses Source Depth (WM_STATE) bit is set.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 449

DWord Bits Description Project

R58.6 31:0 Interpolated Depth for Slot 22

R58.5 31:0 Interpolated Depth for Slot 21

R58.4 31:0 Interpolated Depth for Slot 20

R58.3 31:0 Interpolated Depth for Slot 19

R58.2 31:0 Interpolated Depth for Slot 18

R58.1 31:0 Interpolated Depth for Slot 17

R58.0 31:0 Interpolated Depth for Slot 16

R59.7 31:0 Interpolated Depth for Slot 31

R59.6 31:0 Interpolated Depth for Slot 30

R59.5 31:0 Interpolated Depth for Slot 29

R59.4 31:0 Interpolated Depth for Slot 28

R59.3 31:0 Interpolated Depth for Slot 27

R59.2 31:0 Interpolated Depth for Slot 26

R59.1 31:0 Interpolated Depth for Slot 25

R59.0 31:0 Interpolated Depth for Slot 24

 R60-R61: Delivered only if Pixel Shader Uses Source W is set and this is a 32-
pixel dispatch.

R60.7 31:0
Interpolated W for Slot 23

Format = IEEE_Float

This and the next register phase are only included if Pixel Shader
Uses Source W (WM_STATE) bit is set.

R60.6 31:0 Interpolated W for Slot 22

R60.5 31:0 Interpolated W for Slot 21

R60.4 31:0 Interpolated W for Slot 20

R60.3 31:0 Interpolated W for Slot 19

R60.2 31:0 Interpolated W for Slot 18

R60.1 31:0 Interpolated W for Slot 17

R60.0 31:0 Interpolated W for Slot 16

R61.7 31:0 Interpolated W for Slot 31

R61.6 31:0 Interpolated W for Slot 30

R61.5 31:0 Interpolated W for Slot 29

R61.4 31:0 Interpolated W for Slot 28

R61.3 31:0 Interpolated W for Slot 27

R61.2 31:0 Interpolated W for Slot 26

R61.1 31:0 Interpolated W for Slot 25

R61.0 31:0 Interpolated W for Slot 24

R62: Delivered only if Position XY Offset Select is either
POSOFFSET_CENTROID or POSOFFSET_SAMPLE and this is a 32-
pixel dispatch.

 3D – Media – GPGPU

450 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bits Description Project

R62.7 31:24
Position Offset Y for Slot 31

This field contains either the CENTROID or SAMPLE position offset
for Y, depending on the state of Position XY Offset Select.

Format = U4.4

Range = [0.0,1.0)

23:16
Position Offset X for Slot 31

This field contains either the CENTROID or SAMPLE position offset
for X, depending on the state of Position XY Offset Select.

Format = U4.4

Range = [0.0,1.0)

15:8 Position Offset Y for Slot 30

7:0 Position Offset X for Slot 30

R62.6 31:24 Position Offset Y for Slot 29

23:16 Position Offset X for Slot 29

15:8 Position Offset Y for Slot 28

7:0 Position Offset X for Slot 28

R62.5:4 Position Offset X/Y for Slot[27:24]

R62.3:2 Position Offset X/Y for Slot[23:20]

R62.1:0 Position Offset X/Y for Slot[19:16]

 R63-R64: Delivered only if Pixel Shader Uses Input Coverage Mask is set and
this is a 32-pixel dispatch.

R63.7 31:0
Input Coverage Mask for Slot 23

Format = U32

This and the next register phase are only included if Pixel Shader
Uses Input Coverage Mask (3DSTATE_PS) is set.

R63.6 31:0 Input Coverage Mask for Slot 22

R63.5 31:0 Input Coverage Mask for Slot 21

R63.4 31:0 Input Coverage Mask for Slot 20

R63.3 31:0 Input Coverage Mask for Slot 19

R63.2 31:0 Input Coverage Mask for Slot 18

R63.1 31:0 Input Coverage Mask for Slot 17

R63.0 31:0 Input Coverage Mask for Slot 16

R64.7 31:0 Input Coverage Mask for Slot 31

R64.6 31:0 Input Coverage Mask for Slot 30

R64.5 31:0 Input Coverage Mask for Slot 29

R64.4 31:0 Input Coverage Mask for Slot 28

R64.3 31:0 Input Coverage Mask for Slot 27

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 451

DWord Bits Description Project

R64.2 31:0 Input Coverage Mask for Slot 26

R64.1 31:0 Input Coverage Mask for Slot 25

R64.0 31:0 Input Coverage Mask for Slot 24

 R65 delivered ONLY if Pixel Shader Requires
RequiredCoarsePixelShadingSize is set.

Pixel Backend
This section contains the following subsections:

• MCS Buffer for Render Target(s)
• Render Target Fast Clear
• Render TargetResolve

Color Calculator (Output Merger)

 Overview

Note: The Color Calculator logic resides in the Render Cache backing Data Port (DAP) shared
function. It is described in this chapter as the Color Calc functions are naturally an extension of the 3D
pipeline past the WM stage. See the DataPort chapter for details on the messages used by the Pixel
Shader to invoke Color Calculator functionality.

The Color Calculator (referred to as "Output Merger in the DX Spec) function within the Data Port
shared function completes the processing of rasterized pixels after the pixel color and depth have been
computed by the Pixel Shader. This processing is initiated when the pixel shader thread sends a Render
Target Write message (see Shared Functions) to the Render Cache. (Note that a single pixel shader
thread may send multiple Render Target Write messages, with the result that multiple render targets
get updated.) The pixel variables pass through a pipeline of fixed (yet programmable) functions, and the
results are conditionally written into the appropriate buffers.

The word "pixel" used in this section is effectively replaced with the word "sample" if multisample
rasterization is enabled.

Pipeline Stage Description

Alpha Coverage It generates coverage masks using AlphaToCoverage AND/OR AlphaToOne functions based
on src0.alpha.

Alpha Test Compare pixel alpha with reference alpha and conditionally discard pixel.

Stencil Test Compare pixel stencil value with reference and forward result to Buffer Update stage.

Depth Test Compare pix.Z with corresponding Z value in the Depth Buffer and forward result to Buffer
Update stage.

Color Blending Combine pixel color with corresponding color in color buffer according to programmable
function.

Gamma
Correction

Adjust pixel’s color according to gamma function for SRGB destination surfaces.

Color Convert "full precision" pixel color values to fixed precision of the color buffer format.

 3D – Media – GPGPU

452 Doc Ref # IHD-OS-VLV-Vol7-04.14

Pipeline Stage Description

Quantization

Logic Ops Combine pixel color logically with existing color buffer color (mutually exclusive with Color
Blending).

Buffer Update Write final pixel values to color and depth buffers or discard pixel without update.

The following logic describes the high-level operation of the Pixel Processing pipeline:
 PixelProcessing() {
 AlphaCoverage()
 AlphaTest()
 DepthBufferCoordinateOffsetDisable
 StencilTest()
 DepthTest()
 ColorBufferBlending()
 GammaCorrection()
 ColorQuantization()
 LogicalOps()
 BufferUpdate()
 }

Alpha Coverage

Alpha coverage logic is supported and can be controlled using three state variables:

• AlphaToCoverage Enable, when enabled Color Calculator modifies the sample mask. This function
(along with AlphaToOne) come at the top of the pixel pipeline. The sample's Source0.Alpha value
(possibly being replicated from the pixel's Source0.Alpha) is used to compute a (optionally dithered)
1/2/4-bit mask (depending on NumSamples).

• The AlphaToCoverage Dither Enable SV is used to control the dithering of the AlphaToCoverage
mask. The bit corresponding to the sample# is then ANDed with the sample's incoming mask bits –
allowing the sample to be masked off depending on alpha.

• AlphaToOne Enable, when enabled, Color Calculator must replace Source0.Alpha (if present) with
1.0f.

• If AlphaToCoverage is disabled, AlphaToCoverage Dither does not have any impact.
•

NOTE:

• Src0.alpha needs to be first multiplied with AA alpha before applying AlphaToCoverage and
AlphaToOne functions.

• An alpha value of NaN results in a no coverage (zero) mask.
• .
• Alpha values from the pixel shader are treated as FLOAT32 format for computing the

AlphaToCoverage Mask.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 453

Alpha Test

The Alpha Test function can be used to discard pixels based on a comparison between the incoming
pixel's alpha value and the Alpha Test Reference state variable in COLOR_CALC_STATE. This operation
can be used to remove transparent or nearly-transparent pixels, though other uses for the alpha
channel and alpha test are certainly possible.

This function is enabled by the Alpha Test Enable state variable in COLOR_CALC_STATE. If ENABLED,
this function compares the incoming pixel's alpha value (pixColor.Alpha) and the reference alpha value
specified by via the Alpha Test Reference state variable in COLOR_CALC_STATE. The comparison
performed is specified by the Alpha Test Function state variable in COLOR_CALC_STATE.

The Alpha Test Format state variable is used to specify whether Alpha Test is performed using fixed-
point (UNORM8) or FLOAT32 values. Accordingly, it determines whether the Alpha Reference Value is
passed in a UNORM8 or FLOAT32 format. If UNORM8 is selected, the pixel's alpha value will be
converted from floating-point to UNORM8 before the comparison.

Pixels that pass the Alpha Test proceed for further processing. Those that fail are discarded at this point
in the pipeline.

If Alpha Test Enable is DISABLED, this pipeline stage has no effect.

 The Alpha Test function is supported in conjunction with Multiple Render Targets (MRTs). If delivered
in the incoming render target write message, source 0 alpha is used to perform the alpha test. If source
0 alpha is not delivered, the normal alpha value is used to perform the alpha test.

Depth Coordinate Offset

The Depth Coordinate Offset function applies a programmable constant offset to the RenderTarget X,Y
screen space coordinates in order to generate DepthBuffer coordinates.

The function has been specifically added to allow the OpenGL driver to deal with a RenderTarget and
DepthBuffer of differing sizes.

OpenGL defines a lower-left screen coordinate origin. This requires the driver to incorporate a Y
coordinate flipping transformation into the viewport mapping function. The Y extent of the RT is used in
this flipping transformation. If the DepthBuffer extent is different, the wrong pixel Y locations within the
DepthBuffer will be accessed.

The least expensive solution is to provide a translation offset to be applied to the post-viewport-
mapped DepthBuffer Y pixel coordinate, effectively allowing the alignment of the lower-left origins of
the RT and DepthBuffer. [Note that the previous DBCOD feature performed an optional translation of
post-viewport-mapping RT pixel (screen) coordinates to generate DepthBuffer pixel (window)
coordinates. Specifically, the Draw Rect Origin X,Y state could be subtracted from the RT pixel
coordinates.]

This function uses Depth Coordinate Offset X,Y state (signed 16-bit values in
3DSTATE_DEPTH_RECTANGLE) that is unconditionally added to the RT pixel coordinates to generate
DepthBuffer pixel coordinates.

 3D – Media – GPGPU

454 Doc Ref # IHD-OS-VLV-Vol7-04.14

The previous DBCOB feature can be supported by having the driver program Depth Coordinate X,Y
Offset to the two's complement of the the Draw Rect Origin. By programming Depth Coordinate X,Y
Offset to zeros, the current normal operation (DBCOD disabled) can be achieved.

Programming Restrictions:

• Only simple 2D RTs are supported (no mipmaps).
• Software must ensure that the resultant DepthBuffer Coordinate X,Y values are non-negative.
• There are alignment restrictions – see 3DSTATE_DEPTH_BUFFER command.

Stencil Test

The Stencil Test function can be used to discard pixels based on a comparison between the [Backface]
Stencil Test Reference state variable and the pixel's stencil value. This is a general purpose function
used for such effects as shadow volumes, per-pixel clipping, etc. The result of this comparison is used in
the Stencil Buffer Update function later in the pipeline.

This function is enabled by the Stencil Test Enable state variable. If ENABLED, the current stencil buffer
value for this pixel is read.

Programming Note:

• If the Depth Buffer is either undefined or does not have a surface format of
D32_FLOAT_S8X24_UINT or D24_UNORM_S8_UINT and separate stencil buffer is disabled, Stencil
Test Enable must be DISABLED.

A 2nd set of the stencil test state variables is provided so that pixels from back-facing objects, assuming
they are not culled, can have a stencil test performed on them separate from the test for normal front-
facing objects. The separate stencil test for back-facing objects can be enabled via the Double Sided
Stencil Enable state variable. Otherwise, non-culled back-facing objects will use the same test function,
mask and reference value as front-facing objects. The 2nd stencil state for back-facing objects is most
commonly used to improve the performance of rendering shadow volumes which require a different
stencil buffer operation depending on whether pixels rendered are from a front-facing or back-facing
object. The backface stencil state removes the requirement to render the shadow volumes in 2 passes
or sort the objects into front-facing and back-facing lists.

The remainder of this subsection describes the function in term of [Backface] <state variable name>.
The Backface set of state variables are only used if Double Sided Stencil Enable is ENABLED and the
object is considered back-facing. Otherwise the normal (front-facing) state variables are used.

This function then compares the [Backface] Stencil Test Reference value and the pixel's stencil value
value after logically ANDing both values by [Backface] Stencil Test Mask. The comparison performed
is specified by the [Backface] Stencil Test Function state variable. The result of the comparison is
passed down the pipeline for use in the Stencil Buffer Update function. The Stencil Test function does
not in itself discard pixels.

If Stencil Test Enable is DISABLED, a result of stencil test passed is propagated down the pipeline.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 455

Depth Test

The Depth Test function can be used to discard pixels based on a comparison between the incoming
pixel's depth value and the current depth buffer value associated with the pixel. This function is typically
used to perform the Z Buffer hidden surface removal. The result of this pipeline function is used in the
Stencil Buffer Update function later in the pipeline.

This function is enabled by the Depth Test Enable state variable. If enabled, the pixel's (source) depth
value is first computed. After computation the pixel's depth value is clamped to the range defined by
Minimum Depth and Maximum Depth in the selected CC_VIEWPORT state. Then the current
(destination) depth buffer value for this pixel is read.

This function then compares the source and destination depth values. The comparison performed is
specified by the Depth Test Function state variable.

The result of the comparison is propogated down the pipeline for use in the subsequent Depth Buffer
Update function. The Depth Test function does not in itself discard pixels.

If Depth Test Enable is DISABLED, a result of depth test passed is propagated down the pipeline.

Programming Note:

• Enabling the Depth Test function without defining a Depth Buffer is UNDEFINED.

Pre-Blend Color Clamping

Pre-Blend Color Clamping, controlled via Pre-Blend Color Clamp Enable OR Pre-Blend Source Only
Clamp Enable and Color Clamp Range states in COLOR_CALC_STATE, is affected by the enabling of
Color Buffer Blend as described below.

The following table summarizes the requirements involved with Pre-/Post-Blend Color Clamping.

Blending RT Format Pre-Blend Color Clamp Post-Blend Color Clamp

Off UNORM,
UNORM_SRGB,YCRCB

Must be enabled with range =
RT range or [0,1] (same function)

N/A, state ignored

 SNORM Must be enabled with range =
RT range or [-1,1] (same
function)

N/A, state ignored

 FLOAT (except for
R11G11B10_FLOAT)

Must be enabled (with any
desired range)

N/A, state ignored

 R11G11B10_FLOAT Must be enabled with either [0,1]
or RT range

N/A, state ignored

 UINT, SINT State ignored, implied clamp to
RT range

N/A, state ignored

On

(where
permitted)

UNORM, UNORM_SRGB Must be enabled with range =
RT range or [0,1] (same function)

Must be enabled with range =
RT range or [0,1] (same function)

 SNORM Must be enabled with range =
RT range or [-1,1] (same

Must be enabled with range =
RT range or [-1,1] (same

 3D – Media – GPGPU

456 Doc Ref # IHD-OS-VLV-Vol7-04.14

Blending RT Format Pre-Blend Color Clamp Post-Blend Color Clamp

function) function)

 FLOAT (except for
R11G11B10_FLOAT)

Can be disabled or enabled (with
any desired range)

Must be enabled (with any
desired range)

 R11G11B10_FLOAT Can be disabled or enabled (with
any desired range)

Must be enabled with either [0,1]
or RT range

Pre-Blend Color Clamping When Blending is Disabled

The clamping of source color components is controlled by Pre-Blend Color Clamp Enable. If ENABLED,
all source color components are clamped to the range specified by Color Clamp Range. If DISABLED,
no clamping is performed.

Programming Notes:

• Given the possibility of writing UNPREDICTABLE values to the Color Buffer, it is expected and
highly recommended that, when blending is disabled, software set Pre-Blend Color Clamp
Enable to ENABLED and select an appropriate Color Clamp Range.

• When using SINT or UINT rendertarget surface formats, Blending must be DISABLED. The Pre-
Blend Color Clamp Enable and Color Clamp Range fields are ignored, and an implied clamp to
the rendertarget surface format is performed.

Pre-Blend Color Clamping When Blending is Enabled

The clamping of source, destination and constant color components is controlled by Pre-Blend Color
Clamp Enable. If ENABLED, all these color components are clamped to the range specified by Color
Clamp Range. If DISABLED, no clamping is performed on these color components prior to blending.

Color Buffer Blending

The Color Buffer Blending function is used to combine one or two incoming source pixel color+alpha
values with the destination color+alpha read from the corresponding location in a RenderTarget.

Blending is enabled on a global basis by the Color Buffer Blend Enable state variable (in
COLOR_CALC_STATE). If DISABLED, Blending and Post-Blend Clamp functions are disabled for all
RenderTargets, and the pixel values (possibly subject to Pre-Blend Clamp) are passed through
unchanged.

The Color Buffer Blend Enable is in the per-render-target BLEND_STATE, and the field in
SURFACE_STATE is no longer supported.

Programming Notes:

• Color Buffer Blending and Logic Ops must not be enabled simultaneously, or behavior is
UNDEFINED.

• Dual source blending: The DataPort only supports dual source blending with a SIMD8-style
message.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 457

• Only certain surface formats support Color Buffer Blending. Refer to the Surface Format tables in
Sampling Engine. Blending must be disabled on a RenderTarget if blending is not supported.

The incoming source pixel values are modulated by a selected source blend factor, and the possibly
gamma-decorrected destination values are modulated by a destination blend factor. These terms are
then combined with a blend function. In general:

src_term = src_blend_factor * src_color

dst_term = dst_blend_factor * dst_color

color output = blend_function(src_term, dst_term)

If there is no alpha value contained in the Color Buffer, a default value of 1.0 is used and,
correspondingly, there is no alpha component computed by this function.

Dual Source Blending: When using Dual Source Render Target Write messages, the Source1 pixel
color+alpha passed in the message can be selected as a src/dst blend factor. See Color Buffer Blend
Color Factors. In single-source mode, those blend factor selections are invalid. If SRC1 is included in a
src/dst blend factor and a DualSource RT Write message is not used, results are UNDEFINED. (This
reflects the same restriction in DX APIs, where undefined results are produced if o1 is not written by a
PS – there are no default values defined). If SRC1 is not included in a src/dst blend factor, dual source
blending must be disabled.

The blending of the color and alpha components is controlled with two separate (color and alpha) sets
of state variables. However, if the Independent Alpha Blend Enable state variable in
COLOR_CALC_STATE is DISABLED, then the color (rather than alpha) set of state variables is used for
both color and alpha. Note that this is the only use of the Independent Alpha Blend Enable state – it
does not control whether Blending occurs, only how.

Per Render Target Blend State: Blend state is selected based on Render Target Index contained in
the message header, and appropriate blend state is applied to Render Target Write messages.

The following table describes the color source and destination blend factors controlled by the Source
[Alpha] Blend Factor and Destination [Alpha] Blend Factor state variables in COLOR_CALC_STATE.
Note that the blend factors applied to the R,G,B channels are always controlled by the
Source/Destination Blend Factor, while the blend factor applied to the alpha channel is controlled
either by Source/Destination Blend Factor or Source/Destination Alpha Blend Factor.

Table: Color Buffer Blend Color Factors

Blend Factor Selection

Blend Factor Applied for R,G,B,A channels
(oN = output from PS to RT#N)

(o1 = 2nd output from PS in Dual-Souce mode only)
(rtN = destination color from RT#N)

(CC = Constant Color)

BLENDFACTOR_ZERO 0.0, 0.0, 0.0, 0.0

BLENDFACTOR_ONE 1.0, 1.0, 1.0, 1.0

BLENDFACTOR_SRC_COLOR oN.r, oN.g, oN.b, oN.a

BLENDFACTOR_INV_SRC_COLOR 1.0-oN.r, 1.0-oN.g, 1.0-oN.b, 1.0-oN.a

BLENDFACTOR_SRC_ALPHA oN.a, oN.a, oN.a, oN.a

 3D – Media – GPGPU

458 Doc Ref # IHD-OS-VLV-Vol7-04.14

Blend Factor Selection

Blend Factor Applied for R,G,B,A channels
(oN = output from PS to RT#N)

(o1 = 2nd output from PS in Dual-Souce mode only)
(rtN = destination color from RT#N)

(CC = Constant Color)

BLENDFACTOR_INV_SRC_ALPHA 1.0-oN.a, 1.0-oN.a, 1.0-oN.a, 1.0-oN.a

BLENDFACTOR_SRC1_COLOR o1.r, o1.g, o1.b, o1.a

BLENDFACTOR_INV_SRC1_COLOR 1.0-o1.r, 1.0-o1.g, 1.0-o1.b, 1.0-o1.a

BLENDFACTOR_SRC1_ALPHA o1.a, o1.a, o1.a, o1.a

BLENDFACTOR_INV_SRC1_ALPHA 1.0-o1.a, 1.0-o1.a, 1.0-o1.a, 1.0-o1.a

BLENDFACTOR_DST_COLOR rtN.r, rtN.g, rtN.b, rtN.a

BLENDFACTOR_INV_DST_COLOR 1.0-rtN.r, 1.0-rtN.g, 1.0-rtN.b, 1.0-rtN.a

BLENDFACTOR_DST_ALPHA rtN.a, rtN.a, rtN.a, rtN.a

BLENDFACTOR_INV_DST_ALPHA 1.0-rtN.a, 1.0-rtN.a, 1.0-rtN.a, 1.0-rtN.a

BLENDFACTOR_CONST_COLOR CC.r, CC.g, CC.b, CC.a

BLENDFACTOR_INV_CONST_COLOR 1.0-CC.r, 1.0-CC.g, 1.0-CC.b, 1.0-CC.a

BLENDFACTOR_CONST_ALPHA CC.a, CC.a, CC.a, CC.a

BLENDFACTOR_INV_CONST_ALPHA 1.0-CC.a, 1.0-CC.a, 1.0-CC.a, 1.0-CC.a

BLENDFACTOR_SRC_ALPHA_SATURATE f,f,f,1.0 where f = min(1.0 – rtN.a, oN.a)

The following table lists the supported blending operations defined by the Color Blend Function state
variable and the Alpha Blend Function state variable (when in independent alpha blend mode).

Table: Color Buffer Blend Functions

Blend Function Operation (for each color component)

BLENDFUNCTION_ADD SrcColor*SrcFactor + DstColor*DstFactor

BLENDFUNCTION_SUBTRACT SrcColor*SrcFactor - DstColor*DstFactor

BLENDFUNCTION_REVERSE_SUBTRACT DstColor*DstFactor - SrcColor*SrcFactor

BLENDFUNCTION_MIN min (SrcColor*SrcFactor, DstColor*DstFactor)

Programming Note: This is a superset of the OpenGL min
function.

BLENDFUNCTION_MAX max (SrcColor*SrcFactor, DstColor*DstFactor)

 Programming Note: This is a superset of the OpenGL max
function.

Post-Blend Color Clamping

(See Pre-Blend Color Clamping above for a summary table regarding clamping)

Post-Blend Color clamping is available only if Blending is enabled.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 459

If Blending is enabled, the clamping of blending output color components is controlled by Post-Blend
Color Clamp Enable. If ENABLED, the color components output from blending are clamped to the
range specified by Color Clamp Range. If DISABLED, no clamping is performed at this point.

Regardless of the setting of Post-Blend Color Clamp Enable, when Blending is enabled color
components will be automatically clamped to (at least) the rendertarget surface format range at this
stage of the pipeline.

Dithering

Dithering is used to give the illusion of a higher resolution when using low-bpp channels in color
buffers (e.g., with 16bpp color buffer). By carefully choosing an arrangement of lower resolution colors,
colors otherwise not representable can be approximated, especially when seen at a distance where the
viewer's eyes will average adjacent pixel colors. Color dithering tends to diffuse the sharp color bands
seen on smooth-shaded objects.

A four-bit dither value is obtained from a 4x4 Dither Constant matrix depending on the pixel's X and Y
screen coordinate. The pixel's X and Y screen coordinates are first offset by the Dither Offset X and
Dither Offset Y state variables (these offsets are used to provide window-relative dithering). Then the
two LSBs of the pixel's screen X coordinate are used to address a column in the dither matrix, and the
two LSBs of the pixel's screen Y coordinate are used to address a row. This way, the matrix repeats every
four pixels in both directions.

The value obtained is appropriately shifted to align with (what would be otherwise) truncated bits of the
component being dithered. It is then added with the component and the result is truncated to the bit
depth of the component given the color buffer format.

Dithering Process (5-Bit Example)

 3D – Media – GPGPU

460 Doc Ref # IHD-OS-VLV-Vol7-04.14

Logic Ops

The Logic Ops function is used to combine the incoming source pixel color/alpha values with the
corresponding destination color/alpha contained in the ColorBuffer, using a logic function.

The Logic Op function is enabled by the LogicOp Enable state variable. If DISABLED, this function is
ignored and the incoming pixel values are passed through unchanged.

Programming Notes:

• Color Buffer Blending and Logic Ops must not be enabled simultaneously, or behavior is
UNDEFINED.

• [IVB]: Logic Ops are only supported on *_UNORM surfaces, otherwise Logic Ops must be
DISABLED.

The following table lists the supported logic ops. The logic op is selected using the Logic Op Function
field in COLOR_CALC_STATE.

Table: Logic Ops

LogicOp Function Definition (S=Source, D=Destination)

LOGICOP_CLEAR all 0s

LOGICOP_NOR NOT (S OR D)

LOGICOP_AND_INVERTED (NOT S) AND D

LOGICOP_COPY_INVERTED NOT S

LOGICOP_AND_REVERSE S AND NOT D

LOGICOP_INVERT NOT D

LOGICOP_XOR S XOR D

LOGICOP_NAND NOT (S AND D)

LOGICOP_AND S AND D

LOGICOP_EQUIV NOT (S XOR D)

LOGICOP_NOOP D

LOGICOP_OR_INVERTED (NOT S) OR D

LOGICOP_COPY S

LOGICOP_OR_REVERSE S OR NOT D

LOGICOP_OR S OR D

LOGICOP_SET all 1's

Buffer Update

The Buffer Update function is responsible for updating the pixel's Stencil, Depth and Color Buffer
contents based upon the results of the Stencil and Depth Test functions. Note that Kill Pixel and/or
Alpha Test functions may have already discarded the pixel by this point.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 461

Stencil Buffer Updates

If and only if stencil testing is enabled, the Stencil Buffer is updated according to the Stencil Fail Op,
Stencil Pass Depth Fail Op, and Stencil Pass Depth Pass Op state (or their backface counterparts if
Double Sided Stencil Enable is ENABLED and the pixel is from a back-facing object) and the results of
the Stencil Test and Depth Test functions.

Stencil Fail Op and Backface Stencil Fail Op specify how/if the stencil buffer is modified if the stencil
test fails. Stencil Pass Depth Fail Op and Backface Stencil Pass Depth Fail Op specify how/if the
stencil buffer is modified if the stencil test passes but the depth test fails. Stencil Pass Depth Pass Op
and Backface Stencil Pass Depth Pass Op specify how/if the stencil buffer is modified if both the
stencil and depth tests pass. The operations (on the stencil buffer) that are to be performed under one
of these (mutually exclusive) conditions is summarized in the following table.

Stencil Buffer Operations

Stencil Operation Description

STENCILOP_KEEP Do not modify the stencil buffer

STENCILOP_ZERO Store a 0

STENCILOP_REPLACE Store the StencilTestReference reference value

STENCILOP_INCRSAT Saturating increment (clamp to max value)

STENCILOP_DECRSAT Saturating decrement (clamp to 0)

STENCILOP_INCR Increment (possible wrap around to 0)

STENCILOP_DECR Decrement (possible wrap to max value)

STENCILOP_INVERT Logically invert the stencil value

Any and all writes to the stencil portion of the depth buffer are enabled by the Stencil Buffer Write
Enable state variable.

When writes are enabled, the Stencil Buffer Write Mask and Backface Stencil Buffer Write Mask
state variables provide an 8-bit mask that selects which bits of the stencil write value are modified.
Masked-off bits (i.e., mask bit == 0) are left unmodified in the Stencil Buffer.

Programming Notes:

• The Stencil Buffer can be written even if depth buffer writes are disabled via Depth Buffer Write
Enable.

Depth Buffer Updates

Any and all writes to the Depth Buffer are enabled by the Depth Buffer Write Enable state variable. If
there is no Depth Buffer, writes must be explicitly disabled with this state variable, or operation is
UNDEFINED.

If depth testing is disabled or the depth test passed, the incoming pixel's depth value is written to the
Depth Buffer. If depth testing is enabled and the depth test failed, the pixel is discarded – with no
modification to the Depth or Color Buffers (though the Stencil Buffer may have been modified).

 3D – Media – GPGPU

462 Doc Ref # IHD-OS-VLV-Vol7-04.14

Color Gamma Correction

Computed RGB (not A) channels can be gamma-corrected prior to update of the Color Buffer.

This function is automatically invoked whenever the destination surface (render target) has an SRGB
format (see surface formats in Sampling Engine). For these surfaces, the computed RGB values are
converted from gamma=1.0 space to gamma=2.4 space by applying a ^(2.4) exponential function.

Color Buffer Updates

Finally, if the pixel has not been discarded by this point, the incoming pixel color is written into the
Color Buffer. The Surface Format of the color buffer indicates which channel(s) are written (e.g.,
R8G8_UNORM are written with the Red and Green channels only). The Color Buffer Component Write
Disables from the Color buffer's SURFACE_STATE provide an independent write disable for each
channel of the Color Buffer.

Pixel Pipeline State Summary

COLOR_CALC_STATE

This following pages describe the Pipeline State and Color Calculator registers.

3DSTATE_CC_STATE_POINTERS

3DSTATE_CC_STATE_POINTERS

3DSTATE_BLEND_STATE_POINTERS

3DSTATE_BLEND_STATE_POINTERS

3DSTATE_DEPTH_STENCIL_STATE_POINTERS

3DSTATE_DEPTH_STENCIL_STATE_POINTERS

 COLOR_CALC_STATE

COLOR_CALC_STATE

DEPTH_STENCIL_STATE

DEPTH_STENCIL_STATE

BLEND_STATE

BLEND_STATE

Programming Note: CC Unit also receives 3DSTATE_WM_HZ_OP and 3DSTATE_PS_EXTRA.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 463

Description AlphaTestEnable

Formula

= BLEND_STATE::AlphaTestEnable &&

!3DSTATE_WM_HZ_OP::DepthBufferResolveEnable &&

!3DSTATE_WM_HZ_OP::DepthBufferClear &&

!3DSTATE_WM_HZ_OP::StencilBufferClear

Description AlphaToCoverageEnable

Formula
= BLEND_STATE::AlphaToCoverageEnable &&
!3DSTATE_PS_EXTRA::PixelShaderDisableAlphaToCoverage

CC_VIEWPORT

CC_VIEWPORT

Other Pixel Pipeline Functions

Statistics Gathering

If Statistics Enable is set in 3DSTATE_WM, the PS_DEPTH_COUNT register (see Memory Interface
Registers in Volume 1a, GPU Overview) is incremented once for each pixel (or sample) that passes the
depth, stencil and alpha tests. Note that each of these tests is treated as passing if disabled. This count
is accurate regardless of whether Early Depth Test Enable is set. To obtain the value from this register
at a deterministic place in the primitive stream without flushing the pipeline, however, the
PIPE_CONTROL command must be used. See Volume 2a, 3D Pipeline, for details on PIPE_CONTROL.

MCS Buffer for Render Target(s)

MCS buffer can be enabled for two purposes described below. MCS buffer can be controlled using two
mechanisms:

1. MMIO bit Cache Mode 1 (0x2124) register bit 5

2. RT surface state

The following table summarizes modes of operation related to MCS buffer:

Cache Mode
MMIO Bit

(Please refer to
Vol 1c)

MSC Enable

(Surface
State) Operation

1 (feature disable) X Normal mode of operation i.e. no MSAA compression and no color clear

 3D – Media – GPGPU

464 Doc Ref # IHD-OS-VLV-Vol7-04.14

0 0 Normal mode of operation i.e. no MSAA compression and no color clear

0 1 Depending on the Number of multi-samples, either MSAA compression
OR color clear is enabled

Project MSAA Width of Clear Rect Height of Clear Rect

 4X Ceil(1/8*width) Ceil(1/2*height)

 8X Ceil(1/2*width) Ceil(1/2*height)

• MSAA Compression: Multi-sample render target is bound to the pipeline and MSAA
compression feature is enabled. In this case, MCS buffer stores the information required for
MSAA compression algorithm. The size and layout of the MCS buffer is based on per-pixel RT. For
4X and 8X MSAA, MCS buffer element is 8bpp and 32bpp respectively. Height, width, and layout
of MCS buffer in this case must match with Render Target height, width, and layout. MCS buffer is
tiledY. When MCS buffer is enabled and bound to MSRT, it is required that it is cleared prior to
any rendering. A clear value can be specified optionally in the surface state of the corresponding
RT. Clear pass for this case requires that scaled down primitive is sent down with upper left
coordinate to coincide with actual rectangle being cleared. For MSAA, clear rectangle’s height
and width need to as show in the following table in terms of (width,height) of the RT.

• Fast Color Clear: When non multi-sample render target is bond to the pipeline and MSC buffer is
enabled, MCS buffer is used as an intermediate (coarse granular) buffer per RT. Hence, MCS
buffer is used to improve render target clear. When MCS is buffer is used for color clear of non-
multisampler render target, the following restrictions apply:

Table: Color Clear of Non-MultiSampler Render Target Restrictions

 Project Restrictions

 Support is limited to tiled render targets.

 Support is for non-mip-mapped and non-array surface types only.

 Clear is supported only on the full RT; i.e., no partial clear or overlapping clears.

 The following table describes the RT alignment:

 Pixels Lines

 TiledY RT CL

 bpp

 32 8 4

 64 4 4

 128 2 4

 TiledX RT CL

 bpp

 32 16 2

 64 8 2

 128 4 2

 MCS buffer for non-MSRT is supported only for RT formats 32bpp, 64bpp, and 128bpp.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 465

 Project Restrictions

 Clear pass must have a clear rectangle that must follow alignment rules in terms of
pixels and lines as shown in the table below. Further, the clear-rectangle height and
width must be multiple of the following dimensions. If the height and width of the
render target being cleared do not meet these requirements, an MCS buffer can be
created such that it follows the requirement and covers the RT.

 Clear rectangle must be aligned to two times the number of pixels in the table shown
below due to 16X16 hashing across the slice.

 Pixels Lines

TiledY RT

bpp

32 128 128

64 64 128

128 32 128

TiledX RT

bpp

32 256 64

64 128 64

128 64 64

To optimize the performance MCS buffer (when bound to 1X RT) clear similarly to MCS buffer clear for
MSRT case, clear rect is required to be scaled by the following factors in the horizontal and vertical
directions:

 Horizontal Scale Down Factor Vertical Scale Down Factor

MCS CL for TiledY RCC

bpp

32 64 64

64 32 64

128 16 64

MCS CL for TiledX RCC

bpp

32 128 32

64 64 32

128 32 32

 3D – Media – GPGPU

466 Doc Ref # IHD-OS-VLV-Vol7-04.14

Resolve rectangle must not be scaled if MCS Resolve Optimization is disabled in the Cache Mode
register.

The following are the general SW requirements for MCS buffer clear functionality:

• At the time of Render Target creation, SW needs to create clear-buffer, i.e., MCS buffer.
• At the clear time, clear value for that RT must be programmed and clear enable bit must be set in

the surface state of the corresponding RT.
• SW must clear the RT with setting a RT clear bit set in the PS state during the clear pass as

described in the following sub-section.
• Since only one RT is bound with a clear pass, only one RT can be cleared at a time. To clear

multiple RTs, multiple clear passes are required.
• If Software wants to enable Color Compression without Fast clear, Software needs to initialize

MCS with zeros.
• Before binding the "cleared" RT to texture OR honoring a CPU lock OR submitting for flip, SW

must ensure a resolve pass. Such a resolve pass is described in the following sub-section.

Render Target Fast Clear

Fast clear of the render target is performed by setting the Render Target Fast Clear Enable field in
3DSTATE_PS and rendering a rectangle The size of the rectangle is related to the size of the MCS.

The following is required when performing a render target fast clear:

• The render target(s) is/are bound as they normally would be, with the MCS surface defined in
SURFACE_STATE.

• A rectangle primitive of the same size as the MCS surface is delivered.
• The pixel shader kernel requires no attributes, and delivers a value of 0xFFFFFFFF in all channels of

the render target write message The replicated color message should be used.

• Depth Test Enable, Depth Buffer Write Enable, Stencil Test Enable, Stencil Buffer Write
Enable, and Alpha Test Enable must all be disabled.

• After Render target fast clear, pipe-control with color cache write-flush must be issued before
sending any DRAW commands on that render target.

Render Target Resolve

If the MCS is enabled on a non-multisampled render target, the render target must be resolved before
being used for other purposes (display, texture, CPU lock) The clear value from SURFACE_STATE is
written into pixels in the render target indicated as clear in the MCS. This is done by setting the Render
Target Resolve Enable field in 3DSTATE_PS and rendering a full render target sized rectangle. Once
this is complete, the render target will contain the same contents as it would have had the rendering
been performed with MCS surface disabled. In a typical usage model, the render target(s) need to be
resolved after rendering and before using it as a source for any consecutive operation.

The following is required when performing a render target resolve:

• PIPE_CONTROL with end of pipe sync must be delivered.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 467

• A rectangle primitive must be scaled down by the following factors with respect to render target
being resolved.

Resolve rectangle
scaling for TiledY RCC

bpp width scale down factor height scale down factor

32 4 2

64 2 2

128 1 2

Resolve rectangle scaling for TiledX RCC

bpp

32 8 1

64 4 1

128 2 1

• [Pre-DevSKL]: The pixel shader kernel requires no attributes, but must deliver a render target
write message covering all pixels and all render targets desired to be resolved The color data in
these messages is ignored (the replicated color message is required).

• Depth Test Enable, Depth Buffer Write Enable, Stencil Test Enable, Stencil Buffer Write
Enable, and Alpha Test Enable must all be disabled.

Note that this render target resolve procedure is not supported on multisampled render targets.
Unresolved multisampled render targets are directly supported by the sampling engine, which resolves
clear values in addition to decompressing the surface This applies to both ld2dms and sample2dms
messages.

L3 Cache and URB
This section discusses the GFX L3 cache. The included topics are:

• Overview
• Atomics
• L3 Coherency
• L3 Allocation & Programming
• L3 Interfaces
• Shared Local Memory (SLM)
• L3 Register Space

L3 URB Overview

The GFX L3 cache is introduced for the Gen7 core as a large storage which backs up various L2/L1
caches on many clients. It provides a simple way-based partitioning option for each or a cluster of

 3D – Media – GPGPU

468 Doc Ref # IHD-OS-VLV-Vol7-04.14

clients to get a dedicated chunk of the cache. It also acts as a GFX URB and can be configured as highly
banked memory for EUs/ROWs. The GFX L3 cache size is 192 KB.

L3 is a single bank, consisting of:

• Data Array
• Tag Array
• LRU Array (implements a Pseudo Least Recently Used algorithm)
• State Array
• SuperQ Data Buffer
• Atomic Processing Unit

The rest of the support logic around L3 is:

• SuperQ (main scheduler)
• Ingress/Egress queues to L3/SQ (L3 arbiter)
• CAM structures to maintain coherency
• Crossbars for data routing

L3 Cache Configuration

The GFX L3 cache size is 192 KB cache, by adding 64 KB to the URB space.

• 64B Cacheline with a portion capable of highly banked memory (with 16x4B capability)
• Interface 64B to SQDB for the fill/write path, 64B Read/Evict path to SQDB
• Data Array built via 6T cells

• Data protection via parity
• TAG/LRU/STATE (using gen-ram via RLS flows)

• 32-bit GFX addressing support in TAG
• 2 bit state
• Pseudo-LRU implementation for selecting the line to be replaced

• Repetition rates for each operation
• All operations – 1 every clock

Blocks(s) Overview

 The major blocks in each logical banks

• L3 Cache Arrays & Controller
• Super Q and related data buffer
• Ingress queues and related CAMs with arbitration
• Atomics Block/SLM pipeline & crossbar for data routing

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 469

Rest of the document will go through the details of these blocks and provide details of their logical
operation. In addition there will be specific sections that will go through the requirements for
coherency.

L3 Cache Theory of Operation

L3 Cache/URB operation is required for various clients to access L3 as their back-up cache or memory
space. The following clients are listed as L3/URB clients:

L3 Clients:

• Data Cluster (i.e. spill/fills, load/stores, global memory accesses, constants, ...) (read/write)
• Sampler (L2$ - MT) (read)
• IME (motion estimation) (read)
• SVSM for state data on behalf of Sampler and IME (state read)
• I$ (Instruction Cache) (read)
• State Arbiter (L3 is state cache replacement) (read)

• SVSM
• TDL
• DC
• CL
• TS
• SF
• Windower
• SVGL
• RCPBE
• RCPFE
• IECP
• DAPR0
• DAPR1
• MCS
• RCC

URB Clients:

• TD-L (read client) – Local Thread Dispatcher
• SFBE (read client) – SF Backend
• SOL (read client) – Stream Out
• CL (read client) – Clipper
• GS (read client) – Geometry Shader
• TE (read Client) – Tessalator
• DC (read/write client) – Data Cluster

 3D – Media – GPGPU

470 Doc Ref # IHD-OS-VLV-Vol7-04.14

• VF/(VFE/CS) (write client) – VF acts on behalf of all

L3 vs URB accesses are separated with a simple field on the request field; for most clients this is only
one direction with the exception of DC. DC could address L3 or URB. The destination field is part of the
request and could be set to re-direct the request to:

1. L3 cache
2. URB
3. State Arbiter
4. SLM (highly banked memory)

L3 access/cacheability is determined via request field as well; such parameter will be part of the surface
state or base address programming of L3 clients and will be communicated to L3 Cluster along with the
request packet.

During the MISS time of L3 look-up there is no pre-allocation. Only after the miss data is returned, the
fill will be sent to L3 (it is guaranteed not a match due to single address processing) and allocation
takes place during the Fill time.

If the allocated entry is not modified, than FILL will override the location and pipeline moves on. If the
allocated entry carries dirty data, eviction takes place and dirty data will be moved to SQ for writing out
to memory.

Allocation on Fill eliminates many boundary cases via regulating the entry invalidation at the last phase
of the data servicing.

The L3 uses a way partitioned pseudo-LRU replacement algorithm. The basic pseudo-LRU is a tree-LRU
which tries to emulate a true LRU, by pointing nodes in path to the MRU (either hit or replaced) away
the MRU.

In other words the nodes in the tree point to the pseudo-LRU way. In the way partitioned pseudo-LRU,
we add forcing to nodes in the tree such that the LRU only points to legal ways for that partition. To
accomplish this each partition has a pair of vectors: force[46:0], force_d[46:0] (63 bits for 64 way LRU)
corresponding to the nodes to be forced and the data to force the node to. When updating a forced
node is left unchanged since it may contain useful history for another partition. The pair of vectors for
each partition is provided by the driver to configure the cache partitioning. The partitions may be non-
overlapped, partially or fully overlapped. There is no requirement that the ways of a partition are
consecutive.

Restriction: Every enabled partition must have at least one legal way in it. Disabled partitions must not
make any L3 requests.

Security:

Note: A strong_mutex (i.e. exactly one hot) assertion should be placed on C[47:0] for every valid tag
cycle. The next L state logic updates the LRU according to the pseudo-LRU rules with the exception that
a force bit being on suppresses that update.

Atomics

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 471

An atomic operation may involve both reading from and then writing to a memory location. Atomic
operations apply only to either u# (Unordered Access Views) or g# (Thread Group Shared Memory). It is
guaranteed that when a thread issues an atomic operation on a memory address, no write to the same
address from outside the current atomic operation by any thread can occur between the atomic read
and write.

If multiple atomic operations from different threads target the same address, the operations are
serialized in an undefined order. This serialization happens outside of the L3 control logic.

Atomic operations do not imply a memory or thread fence. If the program author/compiler does not
make appropriate use of fences, it is not guaranteed that all threads see the result of any given memory
operation at the same time, or in any particular order with respect to updates to other memory
addresses.

Atomicity is implemented at 32-bit granularity. If a load or store operation spans more than 32-bits, the
individual 32-bit operations are atomic, but not the whole.

In L3 or SLM, the atomic operation leads to a read-modify-write operation on the destination location
with the option of returning value back to requester. The table below is defined as a list of atomic
operations needed:

Atomic
Operation

Description New
Destination
Value

Return Value
(optional)

Atomic_AND Single component 32-bit bitwise AND of operand
src0 into dst at 32-bit per component address
dstAddress, performed atomically.

“old_dst”
AND “src0”

old_dst

Atomic_OR Single component 32-bit bitwise OR of operand src0
into dst at 32-bit per component address
dstAddress, performed atomically.

“old_dst” OR
“src0”

old_dst

Atomic_XOR Single component 32-bit bitwise XOR of operand
src0 into dst at 32-bit per component address
dstAddress, performed atomically.

“old_dst” XOR
“src0”

old_dst

Atomic_MOVE Replacement of the dst with src0. “src0” old_dst

Atomic_INC Single component 32-bit integer increment of dst
back into dst

“old_dst + 1” old_dst

Atomic_DEC Single component 32-bit integer decrement of dst
back into dst

“old_dst - 1” old_dst

Atomic_ADD Single component 32-bit integer add of operand
src0 into dst at 32-bit per component address
performed atomically. Insensitive to sign

“old_dst +
src0” old_dst

Atomic_SUB Single component 32-bit integer subtraction of
operand src0 into dst at 32-bit per component
address performed atomically. Insensitive to sign

“old_dst -
src0” old_dst

Atomic_RSUB Single component 32-bit integer subtraction of
operand dst from src0 into dst at 32-bit per
component address performed atomically.
Insensitive to sign

“src0 -
old_dst” old_dst

Atomic_IMAX Single component 32-bit signed MAX of operand IMAX old_dst

 3D – Media – GPGPU

472 Doc Ref # IHD-OS-VLV-Vol7-04.14

src0 into dst at 32-bit per component address
dstAddress, performed atomically.

(old_dst, src0)

Atomic_IMIN Single component 32-bit signed MIN of operand
src0 into dst at 32-bit per component address
dstAddress, performed atomically.

IMIN (old_dst,
src0)

old_dst

Atomic_UMAX Single component 32-bit unsigned MAX of operand
src0 into dst at 32-bit per component address
dstAddress, performed atomically.

UMAX
(old_dst, src0)

old_dst

Atomic_UMIN Single component 32-bit unsigned MIN of operand
src0 into dst at 32-bit per component address
dstAddress, performed atomically.

UMIN
(old_dst, src0)

old_dst

Atomic_CMP/WR Single component 32-bit value compare of
operand src0 with dst at 32-bit per component
address dstAddress

If the compared values are identical, the single-
component 32-bit value in src1 is written to
destination memory, else the destination is not
changed

The entire compare+write operation is
performed atomically

(src0 ==
old_dst)?

src1:

old_dst

old_dst

Atomic_PREDEC Single component 32-bit integer decrement of dst
back into dst

“old_dst - 1” new_dst

Atomics for unstructured data types will take place in L3 each via a single DW atomics engine. Each L3
bank will have 2 independent atomics engines, one for L3 and one for SLM. Both L3 or SLM atomic
requests are going to be reduced to a single index (1 DW) request by DC before getting pushed to L3.
In L3, a single 32bit atomics engine is suffice to service DC requests.

The DC request for atomic will have the proper DW only byte enables set for the 32 bit of interest. The
address down to bit[2] (dword address) will also be provided to point to correct DW out of 16 lanes in
64Bytes.

The processing of atomics will follow 2 separate pipelines of operation (either SLM or L3) depending on
the destination of the access.

Atomics Block

A simple ALU is implemented to perform the atomic operations needed by any controller.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 473

Atomics in L3

Atomics in L3 are handled separately in each bank, to achieve this function 2 Atomics blocks are
instantiated along with each bank. Each operand being moved to SQ also moves its data (up to 2 DWs)
into an assigned atomics block to be used later on (when he destination data is available).

 3D – Media – GPGPU

474 Doc Ref # IHD-OS-VLV-Vol7-04.14

A separate credit is given to L3 arbiter for atomics, once an atomic request is moved from L3 arbiter to
SQ – both the SQ credits and Atomics credits need to be deducted to regulate the number of atomic
requests in SQ. For GT2, this process allows upto 8 atomics to be performed in a given clock.

The request interface allows only 1 DW of atomics per request, data from DC will be given on DW0 (also
in DW1 if src1 is given) for all atomic operations regardless of the address of byte enables. Cacheline
address will be provided on the interface with proper Byte Enables singling the DW location of the
destination.

If final data is returned to client (optional), the DW of interest will be given in the same position pointed
out by byte enables (in fact the same DW will be replicated over 16 positions).

Atomics in SLM

SLM pipeline has a mechanism to handle atomics similar to L3/URB pipeline. There is only 1 ALU per
SLM bank. The protocol between DC and L3 allows one atomics to be performed at a given time, the
SLM controller will stall the interface if needed. Per atomics request from the DC, only ONE DW can be
active on one SLM bank. SLM pipeline can execute b2b atomics request (1 every 1x clock) as long as
b2b operations do not conflict on the same bank. If conflict is detected a single clock of bubble is
inserted into pipeline in order to update the corresponding bank with SLM output before next
operation can be performed (see SLM pipeline details)

Data from DC will be always given on DW0 and DW (if needed) and VALIDs will point to the bank of
interest out of 16 banks of SLM. Correct set of byte enables should be provided which is active for the
valid bank.

DW of interest is returned to DC on the byte enable corresponding lane of the cacheline.

Atomics in URB

Simple atomics are possible to be processed for URB locations as well. The process should fall out from
the L3 path of the atomics and is restricted similar to L3 atomics.

L3 Coherency
There are two mechanisms independently used for L3 coherency. For DC purposes where the fencing is
handled within the DC itself, and posting a write to L3 arbiter is the GO point. For the remaining
coherency items, the fabric is built to guarantee the internal coherency via CAMs

L3 Arbiter Coherency

At the L3 arbiter level the arrival order should be maintained for the same address cycles received.
Coherency needs to be maintained between all clients (with the exception of half-slice requests) as
producers and consumers. This would lead cross client ingress queues to be CAM’ed to each other to
ensure ordering towards SQ.

Also L3 arbiter is guaranteed not to present two address matching requests to SQ in the same clock
from both its outlet ports.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 475

Super Q Coherency

All L3 fabric needs to be sensitive to same cacheline addressing accesses to be ordered with respect to
their arrival order from the client. This should lead to older requests being completed ahead of the
younger requests to the same line address.

SQ inlet would CAM the pre-existing requests to match the younger accesses to older requests. If such
match is observed the link will be formed between the two SQ entries and youngest flag be updated to
newer request for future matches to the same line address. The linkage will prevent the younger
request to become eligible for selection until the older request is retired, at when the link is broken
setting the younger request to be eligible.

There is a case where multiple evictions could be present in SQ to the same address, such case would
lead to coherency problem unless ordering between evicted cycles is maintained. The issue happens
when an eviction is present in SuperQ and a new full line write is accepted. Note that there is no
ordering check for evicted cycles and new requests accepted into SuperQ. The same issue is also
possible when a new request for a full line write is given to L3 meanwhile a dirty eviction to the same
line is returned from L3 to SuperQ. At any point the line that is written to L3 could also be evicted
before the previous eviction to the same line is retired.

The proposed solution to this problem is to make eviction retirement from superQ in order. Once in
order, the retirement order from L3 will be kept in SQ eviction port as well where rest of the fabric
already comprehends consecutive writes to the same address.

L3 Allocation and Programming
L3 Cache allocation is done on a per way basis. The way allocation between URB and any of the L3
clients can only be changed post pipeline flush where L3 contains no data. This is required for stream
based flushes to be dependent on the way allocation of these corresponding streams. S/W should not
be removing ways under a particular stream and expect a later pipelined stream flush to target all the
corresponding locations. The stream based flush will be performed on the existing way allocation of
that stream, there is no history of previous way allocation tracked in the hardware.

L3 Cache has been divided into following client pools:

• Shared Local Memory: When enabled its size is always fixed to 64KB
• URB: Local memory space, provides a flexible allocation on per 8KB granularity
• DC: Data Cluster Data type
• Inst/State: Both instructions and state allocation is combined
• Constants: Pull constants for EUs
• Textures: texture allocation to back-up L2$

In addition to these sub-groups, a collection of groups are generated to bundle multiple clients under
the same allocation set:

• Read-Only Clients: Inst/State, Constants & Textures

Each of the L3 way allocations are managed via pLRU, hence best performance can be attained via
assigning a power-of-2 number of ways. This is to ensure pLRU to distribute the ways w/o hot spotting

 3D – Media – GPGPU

476 Doc Ref # IHD-OS-VLV-Vol7-04.14

within that client’s group. Even though design provides a flexible (per way basis) programming model
for way allocation for each client following table is given for software programming models. The
programming options in the following table represents the most likely cases for different operation
modes.

Non-SLM Mode Allocation

The following allocation is a suggested programming model. Note all numbers below are given in
KBytes. Other pools are to be configured to size 0.

Non-SLM Config

Normal Banked Memory

SLM URB DC RO Sum

0 0 160 0 32 192

1 0 160 16 16 192

2 (default) 0 128 32 32 192

3 0 128 0 64 192

4 0 120 8 64 192

SLM Mode Allocation

With the existence of Shared Local Memory, a 64KB chunk is reserved for SLM usage. The remaining
cache space is divided between the remaining clients.

The SLM mode configurations are usable.

SLM Config

Shared Local Memory Mode

SLM URB DC RO Sum

0 64 64 32 32 192

1 64 80 16 32 192

2 64 80 32 16 192

L3 Interfaces
This topic is currently under development.

Client Rules

Client Destination Access
Type

Description

DC URB Read Always 64 Bytes in size

Write Can be down to 4B granularity.

Most common case is 32B and 64B which SQ should not
use partial write flow. Anything less than 32B should use
partial write flow where a read-merge-write has to be

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 477

done.

Read
Atomics

DW in size

Write
Atomics

DW in size – any byte enables

L3 Read Always 64 Bytes in size

Write Can be down to 4B granularity.

Note: can only be done to DC data area – should not write
to RO area of L3

Read
Atomics

DW in size

Write
Atomics

DW in size – any byte enables

SLM Read Any of the 16 DW lanes can be active

Write Any of the 16DW lanes can be active – allows bytes enables

Read
Atomics

DW in size

Write
Atomics

DW in size – any byte enables

SARB Read Surface State Read

TDL URB Read Always 64 Bytes in size

SARB Read
(prefetch)

Goes through Half-Slice arbiter, generates pre-fetches into L3

SBE URB Read Always 64-Bytes in size

SARB L3 Read Only State area of L3 and always 64-Bytes in size

GAFS (FF
Clients)

URB Read Can be 32B or 64B (no partial flow)

Read to
URB

Always 64B in size, there is no data return from URB but a
request to memory to fill into URB

Write Can be 32B or 64B (no partial flow)

L3 Read Only used in s/w tessellation and could be 32B or 64B.

SARB Read - see state arbiter section for individual clients -

DAPRHS SARB Surface (BTP) State read

I$ L3 Read Instruction reads, always 64B in size

 3D – Media – GPGPU

478 Doc Ref # IHD-OS-VLV-Vol7-04.14

SVSM SARB Read Surface (BTP) and Sampler State read

MT L3 Texture reads, always 64B in size

Shared Local Memory (SLM)
Shared local memory (aka highly-banked memory) is a portion of L3 which will be dedicated to EUs as a
local memory when enabled. The accesses are only possible through data cluster with the destination
flag set as SLM. In order to support a highly banked design, the L3 bank is structured to have 16x4KB
portion which could be accessed independently per clock. This part of the L3 can support 16 dw size
accesses (per SLM) in a given clock cycle.

These 16 banks can either be used as L3/URB or used as shared local memory with parallel accesses to
all banks. The choice of enabling SLM mode is done through MMIO programming.

Bit Access
Default
Value Description

0 RW/C 0 Enable Shared Local Memory: When set, it enables the use of a part L3 as
shared local memory which allows 64KB of L3 to be banked as 16x4KB and allows
independent accesses to all banks within the same clock cycle.

Note: This mode can only be enabled once L3 content is completely flushed.

The SLM is structured as sixteen 4KB chunks and allows up to 16 accesses. Each 4KB bank is addressed
separately where their requests are placed on a 160bit address bus where each 10-bit correspond to a
bank sequentially. Each bank gets addressed with 10bits and provides 4B access with a total of 4KB per
bank. When SLM mode is not enabled, SLM banks are considered a part of L3 and used for cache or
URB.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 479

SLM requests are forked around the L3 arbiter, post ingress FIFOs for DC. L3 arbiter delivers
request/data to SLM controller upon the availability of credits. Request will be crossed to 2x clock
domain routed to corresponding banks. Individual bank controls are managed via SLM controller which
are muxed with L3/URB accesses. Note that SLM accesses do carry byte enables and needs to be
honored towards the banks. If the request has atomic requirements, SLM controller will provide the
data to ALU along with the atomic type. Output data is again managed with SLM controller towards the
output cross bars.

SLM should not be accessed through the 3D pipe.

L3 Register Space (Bspec)
This topic is currently under development.

config space for L3

 Register Name
 Register
Symbol

 Register
Start

 Register
End

 Default
Value Access

 SARB Error Status SARERRST B004 B007 00000000h RO;

 L3CD Error Status
register 1

 L3CDERRST1 B008 B00B 00000080h RW; RO;

 L3CD Error Status
register 2

 L3CDERRST2 B00C B00F 00000000h RO;

 3D – Media – GPGPU

480 Doc Ref # IHD-OS-VLV-Vol7-04.14

 Register Name
 Register
Symbol

 Register
Start

 Register
End

 Default
Value Access

 L3 SQC registers
1

 L3SQCREG1 B010 B013 01730000h RW; RO;

 L3 SQC registers
2

 L3SQCREG2 B014 B017 00004567h RO; RW;

 L3 SQC registers
3

 L3SQCREG3 B018 B01B 00001ABFh RO; RW;

 L3 Control
Register1

 L3CNTLREG1 B01C B01F 8C47FF80h RW; RO;

 L3 Control
Register2

 L3CNTLREG2 B020 B023 00080040h RW; RO;

 L3 Control
Register3

 L3CNTLREG3 B024 B027 00000000h RO; RW;

 L3 SLM Register L3SLMREG B028 B02B 40000000h RO; RW;

 Arbiter Control
Register

 GARBCNTLREG B02C B02F 29000000h RO; RW;

 L3 SQC register 4 L3SQCREG4 B034 B037 88000000h RW; RO;

 L3 bank0 reg0
log error

 L3B0REG0 B070 B073 00000000h RW; RO;

 L3 bank0 reg1
log error

 L3B0REG1 B074 B077 00000000h RW; RO;

 L3 bank0 reg2
log error

 L3B0REG2 B078 B07B 00000000h RW; RO;

 L3 bank0 reg3
log error

 L3B0REG3 B07C B07F 00000000h RW; RO;

 L3 bank0 reg4
log error

 L3B0REG4 B080 B083 00000000h RW; RO;

 L3 bank0 reg5
log error

 L3B0REG5 B084 B087 00000000h RW; RO;

 L3 bank0 reg6
log error

 L3B0REG6 B088 B08B 00000000h RW; RO;

 L3 bank0 reg7
log error

 L3B0REG7 B08C B08F 00000000h RW; RO;

 L3 bank1 reg0
log error

 L3B1REG0 B090 B093 00000000h RW; RO;

 L3 bank1 reg1
log error

 L3B1REG1 B094 B097 00000000h RW; RO;

 L3 bank1 reg2
log error

 L3B1REG2 B098 B09B 00000000h RW; RO;

 L3 bank1 reg3
log error

 L3B1REG3 B09C B09F 00000000h RW; RO;

 L3 bank1 reg4
log error

 L3B1REG4 B0A0 B0A3 00000000h RW; RO;

 L3 bank1 reg5
log error

 L3B1REG5 B0A4 B0A7 00000000h RW; RO;

 L3 bank1 reg6
log error

 L3B1REG6 B0A8 B0AB 00000000h RW; RO;

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 481

 Register Name
 Register
Symbol

 Register
Start

 Register
End

 Default
Value Access

 L3 bank1 reg7
log error

 L3B1REG7 B0AC B0AF 00000000h RW; RO;

 L3 bank2 reg0
log error

 L3B2REG0 B0B0 B0B3 00000000h RW; RO;

 L3 bank2 reg1
log error

 L3B2REG1 B0B4 B0B7 00000000h RW; RO;

 L3 bank2 reg2
log error

 L3B2REG2 B0B8 B0BB 00000000h RW; RO;

 L3 bank2 reg3
log error

 L3B2REG3 B0BC B0BF 00000000h RW; RO;

 L3 bank2 reg4
log error

 L3B2REG4 B0C0 B0C3 00000000h RW; RO;

 L3 bank2 reg5
log error

 L3B2REG5 B0C4 B0C7 00000000h RW; RO;

 L3 bank2 reg6
log error

 L3B2REG6 B0C8 B0CB 00000000h RW; RO;

 L3 bank2 reg7
log error

 L3B2REG7 B0CC B0CF 00000000h RW; RO;

 L3 bank3 reg0
log error

 L3B3REG0 B0D0 B0D3 00000000h RW; RO;

 L3 bank3 reg1
log error

 L3B3REG1 B0D4 B0D7 00000000h RW; RO;

 L3 bank3 reg2
log error

 L3B3REG2 B0D8 B0DB 00000000h RW; RO;

 L3 bank3 reg3
log error

 L3B3REG3 B0DC B0DF 00000000h RW; RO;

 L3 bank3 reg4
log error

 L3B3REG4 B0E0 B0E3 00000000h RW; RO;

 L3 bank3 reg5
log error

 L3B3REG5 B0E4 B0E7 00000000h RW; RO;

 L3 bank3 reg6
log error

 L3B3REG6 B0E8 B0EB 00000000h RW; RO;

 L3 bank3 reg7
log error

 L3B3REG7 B0EC B0EF 00000000h RW; RO;

 SARB config save
msg

 SARBCSR B1FC B1FF 00000000h RWHC;
RO;

SARERRST - SARB Error Status

B/D/F/Type: 0/0/0/SARBunit_Config

Address Offset: B004-B007h

Default Value: 00000000h

Access: RO;

Size: 32 bits

Reports the error if any has occurred for certain sarb features.

 3D – Media – GPGPU

482 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bit Access Default Value RST/PWR Description

31 RO 0b Core Error if general bound is zero (ERRGENBDZO):

Error if general bound is zero set by sarbunit

1: general bound address is 0

sarbcf_csr_gen_bnd_zero_err

30 RO 0b Core Error if dynamic bound is zero (ERRDYDNZO):

Error if dynamic bound is zero- set by sarbunit

0:no error

1: dynamic address is 0

sarbcf_csr_dyn_bnd_zero_err

29 RO 0b Core Reserved (RSVD):

28 RO 0b Core General Bound Check Overflow Error (GENBNDOVF):

General Bound Check Overflow Error - set by sarbunit

1: overflow for general bound check

sarbcf_csr_gen_bnd_ovflw_err

27 RO 0b Core Dynamic Bound Check Overflow Error (DYNBDOVF):

Dynamic Bound Check Overflow Error -set by sarbunit

1: overflow for dynamic bound check

sarbcf_csr_dyn_bnd_ovflw_err

26 RO 0b Core Lower Bound Check Overflow Error (LWRBDOVF):

Lower Bound Check Overflow Error-set by sarbunit

lower bound overflow

sarbcf_csr_lower_bnd_err

25:21 RO 00000b Core INVALIDATION FLUSH STATUS REPORTING (INVSTRPT):

invalidation status for l3 is reported in this register.

20:18 RO 000b Core SARB invalidation Status reporting (SARBINVSTRPT):

invalidation status of sarb is reported in this register.

17:0 RO 00000h Core Reserved (RSVD):

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 483

Bit Access Default Value RST/PWR Description

Reserved

L3CDERRST1 - L3CD Error Status Register 1

B/D/F/Type: 0/0/0/SARBunit_Config

Address Offset: B008-B00Bh

Default Value: 00000080h

Access: RW; RO; WO;

Size: 32 bits

Bits Access Default Value RST/PWR Description

31:25 RO 0000000b Core Reserved (RSVD)

24:14 RWC 00000000000b Core Parity row address error (PRTYROWNUM):

Data array address which has parity B1:

Report the data array address which has the Error

ltcd_sarb_parity_err_rownum[10:0]

Once set by HW, it can be cleared only by MMIO Write of 1 to
this register bit 13.

13 RWC 0b Core Parity Error Valid (PRTYERRVLD):

Parity Error valid

Report the Parity Error

ltcd_sarb_parity_err_valid

Once set by HW, it can be cleared only by MMIO Write of 1 to
this register bit 13.

12:11 RWC 00b Core Parity error bank number (PRTYBNKNUM):

bank number which has parity error

Report the bank no. which has the Error

ltcd_sarb_parity_err_banknum[1:0]

Once set by HW, it can be cleared only by MMIO Write of 1 to
this register bit 13.

10:8 RWC 000b Core Parity Error sub-bank no (PRTYSBNKNUM):

Parity Error in sub bank:

ltcd0_sarb_parity_err_subanknum[2:0]

Once set by HW, it can be cleared only by MMIO Write of 1 to

 3D – Media – GPGPU

484 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bits Access Default Value RST/PWR Description

this register bit 13.

7 RW 1b Core Parity report enable (LCPRTYRPTEN):

sarbcf_csr_lc_parity_report_en

this is the parity reporting enable, by default it is enabled.

When enabled parity will be reported by ltcd to sarb.

When disabled by driver, ltcd should not send out any parity
error to SARB.

6:0 RO 00h Core Reserved (RSVD)

L3CDERRST2 - L3CD Error Status register 2

B/D/F/Type: 0/0/0/SARBunit_Config

Address Offset: B00C-B00Fh

Default Value: 00000000h

Access: RO; RWC;

Size: 32 bits

Bit Access
Default
Value RST/PWR Description

31:29 RO 000b Core Reserved (RSVD):

reserved

28 RWC 0b Core URB High Limit Error on B3 (URBHLB3):

URB High Limit Error on B3:

Report the URB High Limit Error- Address Bound check

Once set, it can be cleared only by MMIO Write to this register. A
write of value 1 will clear it

(LTCC generates a Pulse to SARB Config , Sarb Config sets and
reflect it in the MMIO as Error status. This can be only cleared by
MMIO Write to that Bit.)

ltcc3_sarb_urboff_error

27 RWC 0b Core URB High Limit Error on B2 (URBHLB2):

URB High Limit Error on B2:

Report the URB High Limit Error- Address Bound check

Once set, it can be cleared only by MMIO Write to this register.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 485

Bit Access
Default
Value RST/PWR Description

(LTCC generates a Pulse to SARB Config , Sarb Config sets and
reflect it in the MMIO as Error status. This can be only cleared by
MMIO Write to that Bit.)

ltcc2_sarb_urboff_error

26 RWC 0b Core URB High Limit Error on B1 (URBHLB1):

URB High Limit Error on B1:

Report the URB High Limit Error - Address Bound check

Once set, it can be cleared only by MMIO Write to this register.

(LTCC generates a Pulse to SARB Config , Sarb Config sets and
reflect it in the MMIO as Error status. This can be only cleared by
MMIO Write to that Bit.)

ltcc1_sarb_urboff_error

25 RWC 0b Core URB High Limit Error on B0 (URBHLB0):

URB High Limit Error on B0 :

Report the URB High Limit Error - Address Bound check

Once set, it can be cleared only by MMIO Write to this register.

(LTCC generates a Pulse to SARB Config , Sarb Config sets and
reflect it in the MMIO as Error status. This can be only cleared by
MMIO Write to that Bit.)

ltcc0_sarb_urboff_error

24:0 RO 0000000h Core Reserved (RSVD):

L3SQCREG1 - L3 SQC registers 1

 B/D/F/Type: 0/0/0/SARBunit_Config

 Address Offset: B010-B013h

 Default Value: 01730000h

 Access: RW; RO;

 Size: 32 bits

 Bit

Access

Default
Value

RST/PWR Description

31:29

 RO 0000b Core
 Reserved (RSVD):

 3D – Media – GPGPU

486 Doc Ref # IHD-OS-VLV-Vol7-04.14

 Bit

Access

Default
Value

RST/PWR Description

 Reserved

 27 RW 0b Core
 Convert L3 cycle for texture to uncachable (CON4TXTUNC):

 Convert L3 cycle for texture to uncachable

 1: texture has no way allocation in L3

 0: texture has atleast 1 way allocated in L3 (default)

 sarbcf_csr_lsqc_cnvt_txt_unchble

 This bit should be set/cleared according to L3 configuration in
registers at offset 0xB020 and 0xB024

 26 RW 0b Core
 Convert L3 cycle for constant to uncachable
(CON4CONSUNC):

 Convert L3 cycle for constant to uncachable

 1: constant has no way allocation in L3

 0: constant has atleast 1 way allocated in L3 (default)

 sarbcf_csr_lsqc_cnvt_const_unchble

 This bit should be set/cleared according to L3 configuration in
registers at offset 0xB020 and 0xB024

 25 RW 0b Core
 Convert L3 cycle for Inst/State to uncachable
(CON4INSSTUNC):

 Convert L3 cycle for Inst/State to uncachable

 1: Inst/State has no way allocation in L3

 0: Inst/State has atleast 1 way allocated in L3 (default)

 sarbcf_csr_lsqc_cnvt_ins_st_unchble

 This bit should be set/cleared according to L3 configuration in
registers at offset 0xB020 and 0xB024

 24 RW 0b Core
 Convert L3 cycle for DC to uncachable (CON4DCUNC):

 Convert L3 cycle for DC to uncachable

 1: DC has no way allocation in L3

 0: DC has atleast 1 way allocated in L3 (default)

 sarbcf_csr_lsqc_cnvt_dc_unchble

23:20

 RW 1101b Core
 L3SQ General Priority Credit Initialization (SQGHPCI):

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 487

 Bit

Access

Default
Value

RST/PWR Description

 L3SQGeneral Priority Credit Initialization (SQGHPCI)Number of
general priority credits that SQ presents to L3 Arbiter blocks. This
inherently also determines the depth of the SQ; reduce the
number of credits and SQ will use fewer slots.Any value not
listed here, is considered Reserved.

 B0 values

 Value # General Pri Credits

 0000 0

 0001
 2

 0010 4

 0011 6

 0100 8

 0101
 10

 0110 12

 0111 14

 1000 16

 1001
 18

 1010 20

 1011 22

 1100 24

 1101
 26 (default)

 1110 28

 1111 30

 Total of High and General purpose credits need to be 32

A0 Values:

 // 1010 = 24 credits

 // 1001 = 22 credits

 // 1000 = 20 credits

 // 0111 = 18 credits

 // 0110 = 16 credits

 3D – Media – GPGPU

488 Doc Ref # IHD-OS-VLV-Vol7-04.14

 Bit

Access

Default
Value

RST/PWR Description

 // 0101 = 12 credits

 // 0100 = 8 credits

 // 0011 = 6 credits

 // 0010 = 4 credits

 // 0001 = 2 credits

 // 0000 = 0 credits

 Total of High and General purpose credits need to be 24

19:16

 RW 0011b Core
 L3SQ High Priority Credit Initialization (SQGHPCI):

 L3SQ High Priority Credit Initialization (SQGHPCI)Number of
high priority credits that SQ presents to L3 Arbiter blocks. This
inherently also determines the depth of the SQ; reduce the
number of credits and SQ will use fewer slots.Any value not
listed here, is considered Reserved.

 Value # High Pri Credits

 0000 0

 0001
 2

 0010 4

 0011 6 (default)

 0100 8

 0101
 10

 0110 12

 Total of High and General purpose credits need to be 32

15:14

 RO 00b Core
 Reserved (RSVD):

 Reserved

13:12

 RW 00b Core
 L3SQ Atomics Credit Initialization (SQACI):

 L3SQ Atomics Credit Initialization (SQACI)Number of atomics
credits that SQ presents to L3 Arbiter blocks.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 489

 Bit

Access

Default
Value

RST/PWR Description

 00 = 2 Credits (default)

 01 = 1 Credit1X = Reserved

 sarbcf_csr_lsqc_atom_credit_init[1:0]

11:10

 RW 00b Core
 L3SQ Data Credit Initialization (SQDCI):

 L3SQ Data Credit Initialization (SQDCI)Number of data credits
that SQ presents to L3 Arbiter blocks.

 00 = 4 Credits (default)

 01 = 1 Credit

 10 = 2 Credits

 11 = 3 Credit

 ssarbcf_csr_lsqc_data_credit_init[1:0]

 Due to hardware could not guarantee the IDLEness of the system.
These bits should not be changed at all.

 The feature is removed

 9 RW 0b Core
 L3SQ Read Once Enable for Sampler Client (SQROE):

 L3SQ Read Once Enable for Sampler Client (SQROE): Enables
Read Once indications to L3 Cache from SQ. Once enabled, any
reads from Sampler client (MT) will be sent as Read Once

 0 = Reads from Sampler clients issue Read to L3 Cache (default)

 1 = Reads from Sampler clients issue Read Once to L3 Cache

 sarbcf_csr_sampler_readonce_en

 8:6 RW 000b Core
 L3SQ Outstanding GAP Reads (SQOUTSGAP):

 L3SQ Outstanding GAP Reads (SQOUTSGAP): Identifies the
number of Pixel Arbiter Reads that can be outstanding before SQ
throttles the puts to GAP. This is not an exact limit, but instead it
is used as a threshold to throttling; once the read count is
greater than or equal to the threshold, then no reads will be
issued until data returns are received to bring the outstanding
count back below the threshold.

 000 = No limit (default)

 3D – Media – GPGPU

490 Doc Ref # IHD-OS-VLV-Vol7-04.14

 Bit

Access

Default
Value

RST/PWR Description

 001 = 1 read

 010 = 2 reads

 011 = 4 reads100 = 8 reads

 101 = 16 reads11X = Reserved

 sarbcf_csr_lsqc_outs_gaprd[2:0]

 5:3 RW 000b Core
 L3SQ Outstanding L3 Fills (SQOUTSL3F):

 L3SQ Outstanding L3 Fills (SQOUTSL3F): Identifies the number
of L3 Fills that can be outstanding before SQ throttles the fill
requests to L3 Cache. This is not an exact limit, but instead it is
used as a threshold to throttling; once the fill count is greater
than or equal to the threshold, then no fills will be issued until
the fill responses are received to bring the outstanding count
back below the threshold.

 000 = No limit (default)

 001 = 1 fill

 010 = 2 fills

 011 = 4 fills

 100 = 8 fills

 101 = 16 fills

 11X = Reserved

 sarbcf_csr_lsqc_outs_fill[2:0]

 2:0 RW 000b Core
 L3SQ Outstanding L3 Lookups (SQOUTSL3L):

 L3SQ Outstanding L3 Lookups (SQOUTSL3L): Identifies the
number of L3 lookups that can be outstanding before SQ
throttles the lookup requests to L3 Cache. This is not an exact
limit, but instead it is used as a threshold to throttling; once the
lookup count is greater than or equal to the threshold, then no
lookups will be issued until the lookup responses are received to
bring the outstanding count back below the threshold.

 000 = No limit (default)

 001 = 1 lookup

 010 = 2 lookups

 011 = 4 lookups

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 491

 Bit

Access

Default
Value

RST/PWR Description

 100 = 8 lookups

 101 = 16 lookups

 11X = Reserved

 sarbcf_csr_lsqc_outs_lookup[2:0]

L3SQCREG2 - L3 SQC registers 2

B/D/F/Type: 0/0/0/SARBunit_Config

Address Offset: B014-B017h

Default Value: 00004567h

Access: RO; RW;

Size: 32 bits

Bit Access Default Value RST/PWR Description

31:17 RO 000000000000000b Core Reserved (RSVD):

Reserved

16 RW 0b Core L3SQ Priority Selection Disable (SQPRIDIS):

L3SQ Priority Selection Disable (SQPRIDIS)Enables the use of
priority selection based on client ID decodes. If disabled, all
cycles in SQ will be treated as same priority

0 = Priority selection is enabled (default)

1 = Priority selection is disabled

sarbcf_csr_priority_cnt_disable

15 RW 0b Core L3SQ Priority 3 Pool Count Disable (SQPRI3CNTDIS):

L3SQ Priority 3 Pool Count Disable (SQPRI3CNTDIS): When
set, priority3 pool becomes unlimited. And priority3 pool
count value should not be used in reset of the remaining
counters.

 0 = Priority 3 pool count is enabled (default)

1 = Priority 3 pool count is disabled

sarbcf_csr_priority3_cnt_disable

14:12 RW 100b Core L3SQ Priority 3 Pool Counter (SQPRI3CNT):

 3D – Media – GPGPU

492 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bit Access Default Value RST/PWR Description

L3SQ Priority 3 Pool Counter (SQPRI3CNT): The count of
cycles will be selected from priority3 pool before switching
to other priority pools. Count is used as the power of 2.

000 = 1 request

001 = 2 requests

010 = 4 requests

011 = 8 requests

 ..

111 = 128 requests

sarbcf_csr_priority3_cnt[2:0]

11 RW 0b Core L3SQ Priority 2 Pool Count Disable (SQPRI2CNTDIS):

L3SQ Priority 2 Pool Count Disable (SQPRI2CNTDIS): When
set, priority2 pool becomes unlimited. And priority2 pool
count value should not be used in reset of the remaining
counters.

0 = Priority 2 pool count is enabled (default)

1 = Priority 2 pool count is disabled

sarbcf_csr_priority2_cnt_disable

10:8 RW 101b Core L3SQ Priority 2 Pool Counter (SQPRI2CNT):

L3SQ Priority 2 Pool Counter (SQPRI2CNT): The count of
cycles will be selected from priority2 pool before switching
to other priority pools. Count is used as the power of 2.

 000 = 1 request

001 = 2 requests

010 = 4 requests

011 = 8 requests

 ..

111 = 128 requests

sarbcf_csr_priority2_cnt[2:0]

7 RW 0b Core L3SQ Priority 1 Pool Count Disable (SQPRI1CNTDIS):

L3SQ Priority 1 Pool Count Disable (SQPRI1CNTDIS): When
set, priority1 pool becomes unlimited. And priority1 pool
count value should not be used in reset of the remaining

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 493

Bit Access Default Value RST/PWR Description

counters.

0 = Priority 1 pool count is enabled (default)

1 = Priority 1 pool count is disabled

sarbcf_csr_priority1_cnt_disable

6:4 RW 110b Core L3SQ Priority 1 Pool Counter (SQPRI1CNT):

L3SQ Priority 1 Pool Counter (SQPRI1CNT): The count of
cycles will be selected from priority1 pool before switching
to other priority pools. Count is used as the power of 2.

 000 = 1 request

001 = 2 requests

010 = 4 requests

011 = 8 requests

 ..

111 = 128 requests

sarbcf_csr_priority1_cnt[2:0]

3 RW 0b Core L3SQ Priority 0 Pool Count Disable (SQPRI0CNTDIS):

L3SQ Priority 0 Pool Count Disable (SQPRI0CNTDIS): When
set, priority0 pool becomes unlimited. And priority0 pool
count value should not be used in reset of the remaining
counters.

 0 = Priority 0 pool count is enabled (default)

1 = Priority 0 pool count is disabled

sarbcf_csr_priority0_cnt_disable

2:0 RW 111b Core L3SQ Priority 0 Pool Counter (SQPRI0CNT):

L3SQ Priority 0 Pool Counter (SQPRI0CNT): The count of
cycles will be selected from priority0 pool before switching
to other priority pools. Count is used as the power of 2.

000 = 1 request

001 = 2 requests

010 = 4 requests

011 = 8 requests

 ..

 3D – Media – GPGPU

494 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bit Access Default Value RST/PWR Description

111 = 128 requests (default)

sarbcf_csr_priority0_cnt[2:0]

L3SQCREG3 - L3 SQC registers 3

B/D/F/Type: 0/0/0/SARBunit_Config

Address Offset: B018-B01Bh

Default Value: 00001ABFh

Access: RO; RW;

Size: 32 bits

Bit Access
Default
Value RST/PWR Description

31:30 RO 00b Core Reserved (RSVD):

Reserved

29:28 RW 00b Core SOLunit Priority Value (SQSOLPRIVAL):

SOLunit Priority Value (SQSOLPRIVAL): Identifies the priority value for
all cycles that are initiated by SOLunit. Priority is used in the L3 Super
Queue (L3SQ).

00 = Priority 0 (default)

 01 = Priority 1

10 = Priority 2

11 = Priority 3

sarbcf_csr_sol_priority[1:0]

27:26 RW 00b Core GSunit Priority Value (SQGSPRIVAL):

GSunit Priority Value (SQGSPRIVAL): Identifies the priority value for
all cycles that are initiated by GSunit. Priority is used in the L3 Super
Queue (L3SQ).

00 = Priority 0 (default)

 01 = Priority 1

10 = Priority 2

11 = Priority 3

sarbcf_csr_gs_priority[1:0]

25:24 RW 00b Core TEunit Priority Value (SQTEPRIVAL):

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 495

Bit Access
Default
Value RST/PWR Description

TEunit Priority Value (SQTEPRIVAL): Identifies the priority value for all
cycles that are initiated by TEunit. Priority is used in the L3 Super
Queue (L3SQ).

00 = Priority 0 (default)

 01 = Priority 1

10 = Priority 2

11 = Priority 3

sarbcf_csr_te_priority[1:0]

23:22 RW 00b Core CLunit Priority Value (SQCLPRIVAL):

CLunit Priority Value (SQCLPRIVAL): Identifies the priority value for all
cycles that are initiated by CLunit. Priority is used in the L3 Super
Queue (L3SQ).

00 = Priority 0 (default)

01 = Priority 1

10 = Priority 2

11 = Priority 3

sarbcf_csr_cl_priority[1:0]

21:20 RW 00b Core TSunit Priority Value (SQTSPRIVAL):

TSunit Priority Value (SQTSPRIVAL): Identifies the priority value for all
cycles that are initiated by TSunit. Priority is used in the L3 Super
Queue (L3SQ).

00 = Priority 0 (default)

 01 = Priority 1

10 = Priority 2

11 = Priority 3

sarbcf_csr_ts_priority[1:0]

19:18 RW 00b Core SFunit Priority Value (SQSFPRIVAL):

SFunit Priority Value (SQSFPRIVAL): Identifies the priority value for all
cycles that are initiated by SFunit. Priority is used in the L3 Super
Queue (L3SQ).

00 = Priority 0 (default)

01 = Priority 1

 3D – Media – GPGPU

496 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bit Access
Default
Value RST/PWR Description

10 = Priority 2

11 = Priority 3

sarbcf_csr_sf_priority[1:0]

17:16 RW 00b Core SVSM Priority Value (SQSVSMPRIVAL):

SVSM Priority Value (SQSVSMPRIVAL): Identifies the priority value for
all cycles that are initiated by SVSM. Priority is used in the L3 Super
Queue (L3SQ).

00 = Priority 0 (default)

01 = Priority 110 = Priority 2

11 = Priority 3

sarbcf_csr_svsm_priority[1:0]

15:14 RW 00b Core SARB Priority Value (SQSARBPRIVAL):

SARB Priority Value (SQSARBPRIVAL): Identifies the priority value for
all cycles that are initiated by State Arbiter (SARB). Priority is used in
the L3 Super Queue (L3SQ).

00 = Priority 0 (default)

01 = Priority 1

10 = Priority 2

11 = Priority 3

sarbcf_csr_sarb_priority[1:0]

13:12 RW 01b Core SBE Priority Value (SQSBEPRIVAL):

SBE Priority Value (SQSBEPRIVAL): Identifies the priority value for all
cycles that are initiated by SBE. Priority is used in the L3 Super Queue
(L3SQ).

00 = Priority 0

01 = Priority 1 (default)

10 = Priority 2

11 = Priority 3

sarbcf_csr_sbe_priority[1:0]

11:10 RW 10b Core IC$ Priority Value (SQICPRIVAL):

IC$ Priority Value (SQICPRIVAL): Identifies the priority value for all

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 497

Bit Access
Default
Value RST/PWR Description

cycles that are initiated by Instruction Cache (IC$). Priority is used in
the L3 Super Queue (L3SQ).

00 = Priority 0

 01 = Priority 1

10 = Priority 2 (default)

11 = Priority 3

sarbcf_csr_ic_priority[1:0]

9:8 RW 10b Core TDL Priority Value (SQTDLPRIVAL):

TDL Priority Value (SQTDLPRIVAL): Identifies the priority value for all
cycles that are initiated by TDL. Priority is used in the L3 Super Queue
(L3SQ).

00 = Priority 0

01 = Priority 1

10 = Priority 2 (default)

11 = Priority 3

sarbcf_csr_tdl_priority[1:0]

7:6 RW 10b Core DCunit Priority Value (SQDCPRIVAL):

DCunit Priority Value (SQDCPRIVAL): Identifies the priority value for
all cycles that are initiated by DC. Priority is used in the L3 Super
Queue (L3SQ).

00 = Priority 0

 01 = Priority 1

10 = Priority 2 (default)

11 = Priority 3

sarbcf_csr_dc_priority[1:0]

5:4 RW 11b Core DAPR Priority Value (SQDAPRPRIVAL):

DAPR Priority Value (SQDAPRPRIVAL): Identifies the priority value for
all cycles that are initiated by DAPR. Priority is used in the L3 Super
Queue (L3SQ).

00 = Priority 0

01 = Priority 1

 3D – Media – GPGPU

498 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bit Access
Default
Value RST/PWR Description

10 = Priority 2

11 = Priority 3 (default)

sarbcf_csr_dapr_priority[1:0]

3:2 RW 11b Core MTunit Priority Value (SQMTPRIVAL):

MTunit Priority Value (SQMTPRIVAL): Identifies the priority value for
all cycles that are initiated by Sampler (MT). Priority is used in the L3
Super Queue (L3SQ).

00 = Priority 0

 01 = Priority 1

10 = Priority 2

11 = Priority 3 (default)

sarbcf_csr_mt_priority[1:0]

1:0 RW 11b Core LSQCunit Priority Value (SQPRIVAL):

LSQCunit Priority Value (SQPRIVAL): Identifies the priority value for all
cycles that are initiated by Super Queue (L3 Evictions). Priority is used
in the L3 Super Queue (L3SQ).

00 = Priority 0

01 = Priority 1

10 = Priority 2

11 = Priority 3 (default)

sarbcf_csr_lsqc_priority[1:0]

L3CNTLREG1 - L3 Control Register1

B/D/F/Type: 0/0/0/SARBunit_Config

Address Offset: B01C-B01Fh

Default Value: 8C47FF80h

Access: RW; RO;

Size: 32 bits

Bit Access
Default
Value RST/PWR Description

31:28 RW 1000b Core Data Fifo Depth Control (DFIFODC):

Data Fifo Depth Control (TS mode)

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 499

Bit Access
Default
Value RST/PWR Description

Stall Control: 1100b.

sarbcf_csr_lc_datafifo_depth[3:0]

27:24 RW 1100b Core Data Clock off time (DCLKOFFT):

Data Clock off time (DATACLKOFF): Data Clock off time - Data block
is shut off after these many number of clocks programmed in this
register bits.

sarbcf_csr_lc_dataclkoff_time[3:0]

23:20 RW 0100b Core TAG CLK OFF TIME (TAGCLKOFF):

TAG CLK OFF TIME (TAGCLKOFF): TAG Clock Off time. This is the
time, which Clock gating Logic check before it turn off the clock.

sarbcf_csr_lc_tagclkoff_time[3:0]

19 RW 0b Core L3 Aging Disable Bit (L3AGDIS):

L3 Aging Disable Bit (L3AGDIS): Aging Disable

sarbcf_csr_lc_agingdis

18:15 RW 1111b Core Fill aging (L3AGF):

Fill aging (L3AGF): Aging Counter for Fill

sarbcf_csr_lc_fill_aging_cnt[3:0]

14:11 RW 1111b Core Aging Counter for Read 1 Port (L3AGR1):

Aging Counter for Read 1 Port (L3AGR1): Aging Counter for Read 1
Port

sarbcf_csr_lc_rd1_aging_cnt[3:0]

10:7 RW 1111b Core L3 Aging Counter for R0 (L3AGR0):

L3 Aging Counter for R0 (L3AGR0): Aging Counter for R0 Port

sarbcf_csr_lc_rd0_aging_cnt[3:0]

6:3 RW 0000b Core Number of NOPs (L3NOP):

Number of NOPs (L3NOP): Number of NOPs to be inserted between
the Tag commands.

sarbcf_csr_lc_num_nop[3:0]

 3D – Media – GPGPU

500 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bit Access
Default
Value RST/PWR Description

2 RW 0b Core OP0/OP1 Disable (L3OPDIS):

OP0/OP1 Disable (L3OPDIS): This bit is used to enable the feature of
inserting the number of cycles between the tag pipeline operation.

sarbcf_csr_lc_op0op1_disable

1 RW 0b Core L3 OP1 Disable Mode (L3OP1DIS):

L3 OP1 Disable Mode (L3OP1DIS):

OP1 in L3 can be disabled which means there will be one Command
transferred to the Tag pipeline in 1X Domain

sarbcf_csr_lc_op1_disable

Note: If this bit is set Aging mode needs to be disabled as well.

0 RO 0b Core Reserved (RSVD):

Reserved

L3CNTLREG2 - L3 Control Register2

B/D/F/Type: 0/0/0/SARBunit_Config

Address Offset: B020-B023h

Default Value: 02040040h

Access: RW; RO;

Size: 32 bits

Bit Access
Default
Value Description

31:28 RO 0 Reserved

27 RO 0 Reserved

26:21 R/W 010000 DC Way Assignment: Number of ways allocated for DC. Note this allocation
is only for DC data types.

000000: 0KB (no allocation)

000001: 2KB (1 way)

000010: 4KB (2 ways)

……

010000: 32KB (16 ways) default

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 501

Bit Access
Default
Value Description

100000: 64KB (32 ways)

Note: If DC Client pool is zero, B010[24] should be set to indicate to SQ
that DC has no ways allocated (to bypass pipeflush) .

20 RO 0 Reserved

19:14 R/W 010000 Read Only Client Pool: Number of ways allocated for ROnly L3 clients. This is
a combined pool for all RO clients.

000000: 0KB (no allocation)

000001: 2KB (1 way)

000010: 4KB (2 ways)

…….

010000: 32KB (16 ways) - default

……

100000: 64KB (32 ways)

Note: If all ROClient pool is non-zero, than Inst/state, Const and Texture
client allocation should have 0KB allocation.

13:8 RW 000000 All L3 Client Pool (ALL3CLPL):

All L3 Client Pool: Number of ways allocated for all L3 clients. This is a
combined pool for all L3 clients.

000000: 0KB (no allocation) -default

000001: 2KB (1 way)

000010: 4KB (2 ways)

……

100000: 64KB (32 ways)

Note: If all L3 Client pool is non-zero, than all L3 client pools should have
0KB allocation.

7 RO 0 Reserved

6:1 R/W 100000 URB Allocation: Number of ways allocated for URB usage

000000: 0KB (no allocation)

000001: 2KB (1 way)

000010: 4KB (2 ways)

 3D – Media – GPGPU

502 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bit Access
Default
Value Description

……

010000: 32KB (16 ways)

.........

100000: 64KB (32 ways)…….. - default

110000 96KB (48 ways)

000000: 64KB

000001: 66KB

000010: 68KB

……

010000: 96KB

.........

100000: 128KB …….. - default

110000 160KB

0 R/W 0 SLM Mode Enable: When enabled, a 64KB region of L3 is reserved for SLM.

0: SLM is disabled

1: SLM is enabled

L3CNTLREG3 - L3 Control Register3

B/D/F/Type: 0/0/0/SARBunit_Config

Address Offset: B024-B027h

Default Value: 00000000h

Access: RO; RW;

Size: 32 bits

Bit Access
Default
Value Description

31:22 RO 0 Reserved

21 RO 0 Reserved

20:15 R/W 000000 Textures Way Allocation: Number of ways allocated for Textures.

000000: 0KB (no allocation)

000001: 2KB (1 way)

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 503

Bit Access
Default
Value Description

000010: 4KB (2 ways)

……

100000: 64KB (32 ways)

Note: This field must be 0KB if “Read-Only Client Pool” is non-zero.

14 RO 0 Reserved

13:8 R/W 000000 Constants Way Allocation: Number of ways allocated for Constants.

000000: 0KB (no allocation)

000001: 2KB (1 way)

000010: 4KB (2 ways)

……

100000: 64KB (32 ways)

Note: This field must be 0KB if “Read-Only Client Pool” is non-zero..

7 R/O 0 Reserved

6:1 R/W 000000 Instruction/State Way Allocation: Number of ways allocated for
Instruction/State usage

000000: 0KB (no allocation)

000001: 2KB (1 way)

000010: 4KB (2 ways)

……

100000: 64KB (32 ways)

Note: This field must be 0KB if “Read-Only Client Pool” is non-zero

0 RO 0 Reserved

L3SLMREG - L3 SLM Register

B/D/F/Type: 0/0/0/SARBunit_Config

Address Offset: B028-B02Bh

Default Value: 40000000h

Access: RO; RW;

Size: 32 bits

 3D – Media – GPGPU

504 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bit Access
Default
Value RST/PWR Description

31 RW 0b Core Disable Periodic SLM/SQ slot allocation (DPSLMALL):

Disable Periodic SLM/SQ slot allocation: When
cfg_lslm_livelock_fairarb_dis=1 lslm unit will always have the higher
priority and lslm_lsqc_block to lsqcunit is asserted as long as there
are requests in SLM FIFO

sarbcf_csr_lslm_livelock_fairarb_dis

30:27 RW 1000b Core LSLM_SQ_PENDING_MAX (LSLMSQPEND):

If lslmunit has read data to be sent to lcbrunit this cfg register
specifies the maximum number of clocks for which LSLMunit can
block SQ request from being sent o lcbrunitDefault value = 8

sarbcf_csr_lslm_sqpend_max[3:0]

26:0 RO 0000000h Core Reserved (RSVD):

GARBCNTLREG - Arbiter Control Register

B/D/F/Type: 0/0/0/SARBunit_Config

Address Offset: B02C-B02Fh

Default Value: 29000000h

Access: RW; RO;

Size: 32 bits

Bit Access
Default
Value RST/PWR Description

31

30 RW 0b Core Disables hashing function (DISHHF):

Disables hashing function to generate bank_id[1:0] for L3$ bank
accessing, and forces the use of address[7:6] for bank_id[1:0].

0 : (default) Hash function enabled to generate L3$ bank IDs.

1 : L3$ address[7:6] used as L3$ bank IDs.

sarbcf_csr_l3bankidhashdis

29:28 RW 10b Core Arbitration priority order between RCC and MSC (APORM):

Arbitration priority order between RCC and MSC.

00/11: Invalid; default setting used

10 : Default setting; RCC < MSC (i.e., MSC has higher priority)

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 505

Bit Access
Default
Value RST/PWR Description

01: RCC > MSC (i.e., RCC has higher priority)

sarbcf_csr_rcc_msc_pri[1:0]

27:22 RW 100100b Core Arbitration priority order between RCZ, STC, and HIZ
(APORSH):

Arbitration priority order between RCZ, STC, and HIZ.

100100 : Default setting; RCZ < STC < HIZ (i.e., RCZ has
lowest priority; HIZ has highest priority)

100001 : RCZ < HIZ < STC

011000 : STC < RCZ < HIZ

010010 : STC < HIZ < RCZ

001001 : HIZ < RCZ < STC

000110 : HIZ < STC < RCZ

Note: Others settings are invalid, and result in use of default.

sarbcf_csr_rcz_stc_hiz_pri[5:0]

21:19 RW 000b Core Write data port arbitration priority between Z client writes and
L3$ evictions (WDPAGAPZ):

Write data port arbitration priority between Z client writes and L3$
evictions.

000 : L3:Z=1:0 - i.e., L3$ evictions > Z writes; Fixed priority; Default
setting.

001 : L3:Z=1:1 - i.e., L3$ evictions = Z writes; Round-robin priority

010 : L3:Z=2:1 - i.e., Z writes will have higher priority after 2 L3$
evictions have been continuously granted earlier

011 : L3:Z=3:1 - i.e., Z writes will have higher priority after 3 L3$
evictions have been continuously granted earlier

...

111 : L3:Z=7:1 - i.e., Z writes will have higher priority after 7 L3$
evictions have been continuously granted

sarbcf_csr_wdpagapz[2:0]

18:16 RW 000b Core Write data port arbitration priority between C client writes and
Z/L3$ writes/evictions (WDPAGAPC):

Write data port arbitration priority between C client writes and

 3D – Media – GPGPU

506 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bit Access
Default
Value RST/PWR Description

Z/L3$ writes/evictions.

000 : L3:Z=1:0 – i.e., Z/L3$ writes/evictions > C writes; Fixed priority;
Default setting.

001 : L3:Z=1:1 – i.e., Z/L3$ writes/evictions = C writes; Round-robin
priority

010 : L3:Z=2:1 – i.e., C writes will have higher priority after 2 Z/L3$
writes/evictions have been continuously granted earlier

011 : L3:Z=3:1 – i.e., C writes will have higher priority after 3 Z/L3$
writes/evictions have been continuously granted earlier

...

111 : L3:Z=7:1 – i.e., C writes will have higher priority after 7 Z/L3$
writes/evictions have been continuously granted earlier

sarbcf_csr_wdpagapc[2:0]

15:0 RO 0000h Core Reserved (RSVD):

L3SQCREG4 - L3 SQC register 4

B/D/F/Type: 0/0/0/SARBunit_Config

Address Offset: B034-B037h

Default Value: 08000000h

Access: RWHC; RO; RW;

Size: 32 bits

Bit Access
Default
Value RST/PWR Description

31 RO 0b Core Reserved (RSVD):

30 RW 0b Core L3SQ Mode select for FF32 cycles on Crossbar 0/2
(SQFF32MODE):

L3SQ Mode select for FF32 cycles on Crossbar 0/2 (SQFF32MODE):

Selects the mode in which SQ arbitrates FF32 cycles versus Half slice
clients during Crossbar 2 arbitration. Qualified with the assertion of
the crossbar 0/2 enable (SQFF32EN).

In mode 0, crossbar 0/2 arbitration operates normally, and is
determined strictly by the priority bits assigned by client (SQ*PRIVAL).

In mode 1, FF32 priority values are determined by the FF32 priority
override (SQFF32PRIOVER) when an indication is observed from GAFS

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 507

Bit Access
Default
Value RST/PWR Description

(greater than 32 FF cycles are pending)

1 = all FF32 cycles will receive the overridden value instead of the
default client priority value when indicated by GAFS counter

0 = all FF32 cycles will receive normal priority values (default)

29:28 RW 00b Core L3SQ Priority Override for FF32 cycles on Crossbar 0/2
(SQFF32PRIOVER):

L3SQ Priority Override for FF32 cycles on Crossbar 0/2
(SQFF32PRIOVER):

Identifies the priority value for all FF32 cycles that are initiated by
GAL3. Priority is used in the L3 Super Queue (L3SQ). Qualified with
the assertion of the crossbar 0/2 enable (SQFF32EN) and the
assertion of ff32 mode select (SQFF32MODE).

00 = Priority 0 (default)

01 = Priority 1

10 = Priority 2

11 = Priority 3

27 RW 1b Core L3SQ URB Read CAM Match Disable (SQURBRDCAMDIS):

L3SQ URB Read CAM Match Disable (SQURBRDCAMDIS):

Disables the L3SQ Cam Match ability for URB Reads. By disabling, this
allows a performance mode where URB reads are not dependent
upon one another but only on any previous URB writes to the same
address. This allows many URB reads to the same cacheline at any
given time instead of serializing the requests.

1 = URB Read CAM matching is disabled; multiple URB reads to the
same cacheline are allowed to be concurrent(default)

0 = URB Read CAM matching is enabled; multiple URB reads to the
same cacheline are serialized

26 RWHC 0b Core LSQC reset fcount (LSQCRFCNT):

self clearing register bit - Write to this register generates 1 clock
pulse

sarbcf_csr_lsqc_rst_fcount to lsqc and also used to clear the register

25 RWHC 0b Core LSLM1 reset fcount (LSLM1RFCNT):

self clearing register bit - Write to this register generates 1 clock

 3D – Media – GPGPU

508 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bit Access
Default
Value RST/PWR Description

pulse

sarbcf_csr_lslm1_rst_fcount goes to lslm1 and also used to clear this
register bit

sarbcf_csr_lslm1_rst_fcount_lvl is ouput of configdb

24 RWHC 0b Core LSLM3 reset fcount (LSLM3RFCNT):

self clearing register bit - Write to this register generates 1 clock
pulse

sarbcf_csr_lslm3_rst_fcount goes to lslm3 and used to clear this
register too

sarbcf_csr_lslm1_rst_fcount_lvl is output of configdb.

23:0 RO 000000h Core reserved (RSVD):

SCRATCH1 - SCRATCH1

B/D/F/Type: 0/0/0/SARBunit_Config

Address Offset: B038-B03Bh

Default Value: 00000000h

Access: RW;

Size: 32 bits

Bit Access Default Value RST/PWR Description

31:0 RW 00000000h Core SCRATCH (SCRATCH):

L3B0REG0 - L3 bank0 reg0 log error

B/D/F/Type: 0/0/0/SARBunit_Config

Address Offset: B070-B073h

Default Value: 00000000h

Access: RW; RO;

Size: 32 bits

The ERROR LOG registers of L3 will maintain the bad row information for each of the 16KB subbank
groups. The LOG will be programmed by driver before any workloads are submitted.

The contents of the LOG register will be context Save&Restored by h/w around rc6 events.

Bit Access
Default
Value RST/PWR Description

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 509

Bit Access
Default
Value RST/PWR Description

31:21 RW 000h Core Row Number for Error1 (RNUMERR1):

Row Number for Error1:

The physical row number where the parity error has been detected.
The number of rows vary between 4K vs 8K/16K subbanks which
requires 10bits vs 11bits respectively.

This field contains the row# with the error

20:17 RO 0000b Core Reserved (RSVD):

16 RW 0b Core Valid Error 1 (VLDERR1):

Valid Error:

The error located in field 15:5 is valid and corresponding logical
16KB group should bypass this row.

15:5 RW 000h Core Row Number for Error0 (RNUMERR0):

Row Number for Error0:

 The physical row number where the parity error has been detected.
The number of rows vary between 4K vs 8K/16K subbanks which
requires 10bits vs 11bits respectively.

This field contains the row# with the error

4:1 RO 0000b Core Reserved (RSVD):

0 RW 0b Core Valid Error 0 (VLDERR0):

Valid Error:

The error located in field 15:5 is valid and corresponding logical
16KB group should bypass this row.

L3B0REG1 - L3 bank0 reg1 log error

B/D/F/Type: 0/0/0/SARBunit_Config

Address Offset: B074-B077h

Default Value: 00000000h

Access: RW; RO;

Size: 32 bits

The ERROR LOG registers of L3 will maintain the bad row information for each of the 16KB subbank
groups. The LOG will be programmed by driver before any workloads are submitted.

 3D – Media – GPGPU

510 Doc Ref # IHD-OS-VLV-Vol7-04.14

The contents of the LOG register will be context Save&Restored by h/w around rc6 events.

Bit Access
Default
Value RST/PWR Description

31:21 RW 000h Core Row Number for Error1 (RNUMERR1):

Row Number for Error1:

The physical row number where the parity error has been detected.
The number of rows vary between 4K vs 8K/16K subbanks which
requires 10bits vs 11bits respectively.

This field contains the row# with the error

20:17 RO 0000b Core Reserved (RSVD):

16 RW 0b Core Valid Error 1 (VLDERR1):

Valid Error:

The error located in field 15:5 is valid and corresponding logical
16KB group should bypass this row.

15:5 RW 000h Core Row Number for Error0 (RNUMERR0):

Row Number for Error0:

 The physical row number where the parity error has been detected.
The number of rows vary between 4K vs 8K/16K subbanks which
requires 10bits vs 11bits respectively.

 This field contains the row# with the error

4:1 RO 0000b Core Reserved (RSVD):

0 RW 0b Core Valid Error 0 (VLDERR0):

Valid Error:

The error located in field 15:5 is valid and corresponding logical
16KB group should bypass this row.

L3B0REG2 - L3 bank0 reg2 log error

B/D/F/Type: 0/0/0/SARBunit_Config

Address Offset: B078-B07Bh

Default Value: 00000000h

Access: RW; RO;

Size: 32 bits

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 511

The ERROR LOG registers of L3 will maintain the bad row information for each of the 16KB subbank
groups. The LOG will be programmed by driver before any workloads are submitted.

The contents of the LOG register will be context Save&Restored by h/w around rc6 events.

Bit Access
Default
Value RST/PWR Description

31:21 RW 000h Core Row Number for Error1 (RNUMERR1):

Row Number for Error1:

The physical row number where the parity error has been detected.
The number of rows vary between 4K vs 8K/16K subbanks which
requires 10bits vs 11bits respectively.

This field contains the row# with the error

20:17 RO 0000b Core Reserved (RSVD):

16 RW 0b Core Valid Error 1 (VLDERR1):

Valid Error:

The error located in field 15:5 is valid and corresponding logical
16KB group should bypass this row.

15:5 RW 000h Core Row Number for Error0 (RNUMERR0):

Row Number for Error0:

The physical row number where the parity error has been detected.
The number of rows vary between 4K vs 8K/16K subbanks which
requires 10bits vs 11bits respectively.

 This field contains the row# with the error

4:1 RO 0000b Core Reserved (RSVD):

0 RW 0b Core Valid Error 0 (VLDERR0):

Valid Error:

 The error located in field 15:5 is valid and corresponding logical
16KB group should bypass this row.

L3B0REG3 - L3 bank0 reg3 log error

B/D/F/Type: 0/0/0/SARBunit_Config

Address Offset: B07C-B07Fh

Default Value: 00000000h

Access: RW; RO;

 3D – Media – GPGPU

512 Doc Ref # IHD-OS-VLV-Vol7-04.14

Size: 32 bits

The ERROR LOG registers of L3 will maintain the bad row information for each of the 16KB subbank
groups. The LOG will be programmed by driver before any workloads are submitted.

The contents of the LOG register will be context Save&Restored by h/w around rc6 events.

Bit Access
Default
Value RST/PWR Description

31:21 RW 000h Core Row Number for Error1 (RNUMERR1):

Row Number for Error1:

 The physical row number where the parity error has been detected.
The number of rows vary between 4K vs 8K/16K subbanks which
requires 10bits vs 11bits respectively.

 This field contains the row# with the error

20:17 RO 0000b Core Reserved (RSVD):

16 RW 0b Core Valid Error 1 (VLDERR1):

Valid Error:

 The error located in field 15:5 is valid and corresponding logical
16KB group should bypass this row.

15:5 RW 000h Core Row Number for Error0 (RNUMERR0):

Row Number for Error0:

 The physical row number where the parity error has been detected.
The number of rows vary between 4K vs 8K/16K subbanks which
requires 10bits vs 11bits respectively.

This field contains the row# with the error

4:1 RO 0000b Core Reserved (RSVD):

0 RW 0b Core Valid Error 0 (VLDERR0):

Valid Error:

 The error located in field 15:5 is valid and corresponding logical
16KB group should bypass this row.

L3B0REG4 - L3 bank0 reg4 log error

B/D/F/Type: 0/0/0/SARBunit_Config

Address Offset: B080-B083h

Default Value: 00000000h

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 513

Access: RW; RO;

Size: 32 bits

The ERROR LOG registers of L3 will maintain the bad row information for each of the 16KB subbank
groups. The LOG will be programmed by driver before any workloads are submitted.

The contents of the LOG register will be context Save&Restored by h/w around rc6 events.

Bit Access
Default
Value RST/PWR Description

31:21 RW 000h Core Row Number for Error1 (RNUMERR1):

Row Number for Error1:

The physical row number where the parity error has been detected.
The number of rows vary between 4K vs 8K/16K subbanks which
requires 10bits vs 11bits respectively.

This field contains the row# with the error

20:17 RO 0000b Core Reserved (RSVD):

16 RW 0b Core Valid Error 1 (VLDERR1):

Valid Error:

 The error located in field 15:5 is valid and corresponding logical
16KB group should bypass this row.

15:5 RW 000h Core Row Number for Error0 (RNUMERR0):

Row Number for Error0:

 The physical row number where the parity error has been detected.
The number of rows vary between 4K vs 8K/16K subbanks which
requires 10bits vs 11bits respectively.

This field contains the row# with the error

4:1 RO 0000b Core Reserved (RSVD):

0 RW 0b Core Valid Error 0 (VLDERR0):

Valid Error:

 The error located in field 15:5 is valid and corresponding logical
16KB group should bypass this row.

L3B0REG5 - L3 bank0 reg5 log error

B/D/F/Type: 0/0/0/SARBunit_Config

Address Offset: B084-B087h

 3D – Media – GPGPU

514 Doc Ref # IHD-OS-VLV-Vol7-04.14

Default Value: 00000000h

Access: RW; RO;

Size: 32 bits

The ERROR LOG registers of L3 will maintain the bad row information for each of the 16KB subbank
groups. The LOG will be programmed by driver before any workloads are submitted.

The contents of the LOG register will be context Save&Restored by h/w around rc6 events.

Bit Access
Default
Value RST/PWR Description

31:21 RW 000h Core Row Number for Error1 (RNUMERR1):

Row Number for Error1:

 The physical row number where the parity error has been detected.
The number of rows vary between 4K vs 8K/16K subbanks which
requires 10bits vs 11bits respectively.

This field contains the row# with the error

20:17 RO 0000b Core Reserved (RSVD):

16 RW 0b Core Valid Error 1 (VLDERR1):

Valid Error:

The error located in field 15:5 is valid and corresponding logical
16KB group should bypass this row.

15:5 RW 000h Core Row Number for Error0 (RNUMERR0):

Row Number for Error0:

 The physical row number where the parity error has been detected.
The number of rows vary between 4K vs 8K/16K subbanks which
requires 10bits vs 11bits respectively.

This field contains the row# with the error

4:1 RO 0000b Core Reserved (RSVD):

0 RW 0b Core Valid Error 0 (VLDERR0):

Valid Error:

The error located in field 15:5 is valid and corresponding logical
16KB group should bypass this row.

L3B0REG6 - L3 bank0 reg6 log error

B/D/F/Type: 0/0/0/SARBunit_Config

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 515

Address Offset: B088-B08Bh

Default Value: 00000000h

Access: RW; RO;

Size: 32 bits

The ERROR LOG registers of L3 will maintain the bad row information for each of the 16KB subbank
groups. The LOG will be programmed by driver before any workloads are submitted.

The contents of the LOG register will be context Save&Restored by h/w around rc6 events.

Bit Access
Default
Value RST/PWR Description

31:21 RW 000h Core Row Number for Error1 (RNUMERR1):

Row Number for Error1:

The physical row number where the parity error has been detected.
The number of rows vary between 4K vs 8K/16K subbanks which
requires 10bits vs 11bits respectively.

 This field contains the row# with the error

20:17 RO 0000b Core Reserved (RSVD):

16 RW 0b Core Valid Error 1 (VLDERR1):

Valid Error:

The error located in field 15:5 is valid and corresponding logical
16KB group should bypass this row.

15:5 RW 000h Core Row Number for Error0 (RNUMERR0):

Row Number for Error0:

 The physical row number where the parity error has been detected.
The number of rows vary between 4K vs 8K/16K subbanks which
requires 10bits vs 11bits respectively.

This field contains the row# with the error

4:1 RO 0000b Core Reserved (RSVD):

0 RW 0b Core Valid Error 0 (VLDERR0):

Valid Error:

The error located in field 15:5 is valid and corresponding logical
16KB group should bypass this row.

 3D – Media – GPGPU

516 Doc Ref # IHD-OS-VLV-Vol7-04.14

L3B0REG7 - L3 bank0 reg7 log error

B/D/F/Type: 0/0/0/SARBunit_Config

Address Offset: B08C-B08Fh

Default Value: 00000000h

Access: RW; RO;

Size: 32 bits

The ERROR LOG registers of L3 will maintain the bad row information for each of the 16KB subbank
groups. The LOG will be programmed by driver before any workloads are submitted.

The contents of the LOG register will be context Save&Restored by h/w around rc6 events.

Bit Access
Default
Value RST/PWR Description

31:21 RW 000h Core Row Number for Error1 (RNUMERR1):

Row Number for Error1:

 The physical row number where the parity error has been detected.
The number of rows vary between 4K vs 8K/16K subbanks which
requires 10bits vs 11bits respectively.

 This field contains the row# with the error

20:17 RO 0000b Core Reserved (RSVD):

16 RW 0b Core Valid Error 1 (VLDERR1):

Valid Error:

The error located in field 15:5 is valid and corresponding logical 16KB
group should bypass this row.

15:5 RW 000h Core Row Number for Error0 (RNUMERR0):

Row Number for Error0:

The physical row number where the parity error has been detected.
The number of rows vary between 4K vs 8K/16K subbanks which
requires 10bits vs 11bits respectively. This field contains the row#
with the error

4:1 RO 0000b Core Reserved (RSVD):

0 RW 0b Core Valid Error 0 (VLDERR0):

Valid Error:

The error located in field 15:5 is valid and corresponding logical 16KB
group should bypass this row.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 517

SARBCSR - SARB config save msg

B/D/F/Type: 0/0/0/SARBunit_Config

Address Offset: B1FC-B1FFh

Default Value: 00000000h

Access: RWHC; RO;

Size: 32 bits

This register is not context saved

Bit Access
Default
Value RST/PWR Description

31:2 RO 00000000h Core Reserved (RSVD):

1 RWHC 0b Core Context restore ack (CTXRSTRACK):

A write from cs to this bit along with mask bit 17 will prompt sarb
to ack ctx restore ack .

sarb_ctx_restore - ctx restore from cs

clr_sarb_ctx_restore - sarb clr this bit.

0 RWHC 0b Core Context save bit (SARBCS):

A write from cs to this bit along with mask bit 16 will prompt sarb
to start context save to cs.

sarb_ctx_save - ctx save from cs

clr_sarb_ctx_save - sarb clr this bit once ctx save sm kicks in .

Media GPGPU Pipeline

GPGPU Overview

Programming the GPGPU Pipeline

1. In MEDIA_VFE_STATE choose whether to set DW2.6 Bypass Gateway Control. Usually this will be
set, allowing the gateway to be used without OpenGateway/CloseGateway.

2. Set up interface descriptor with # of threads in barrier. The barrier id is not specified here
because can Gen7 automatically assigns barriers to thread groups when they are free. The
amount of CURBE data to deliver per thread dispatch is set in the interface descriptor.

3. Set up CURBE with thread ids and common data for all thread dispatches in the thread group.
4. Set up a GPGPU_WALKER command or a set of GPGPU_OBJECT commands with the thread

group ids to dispatch the threads. The CURBE data is sent in sections for each thread dispatch in
the thread group; a new thread group starts sending the CURBE data from the beginning of the
buffer.

 3D – Media – GPGPU

518 Doc Ref # IHD-OS-VLV-Vol7-04.14

Note: Gen7 can either have the barriers and SLM automatically managed by hardware or specified by
software. Mixing software managed and hardware managed in the same set of threads is allowed, but
may cause stalls if there is an allocation conflict.

Note: When using GPGPU_OBJECT, finish dispatching a thread group before starting a different one.

The kernel should handle the barriers as follows:

The BarrierMsg message contains the barrier id and a way to reprogram the barrier count. The barrier
count reprogram is not normally used for GPGPU workloads. When all threads in the group have
reached the barrier, the gateway returns a notification bit 0.

The kernel must wait for the barrier to finish with a WAIT N0.

GPGPU Commands

This section contains various commands for GPGPU, including a number of them shared with media
mode.

MEDIA_VFE_STATE

MEDIA_CURBE_LOAD

MEDIA_INTERFACE_DESCRIPTOR_LOAD

Interface Descriptor Data payload as pointed by the Interface Descriptor Data Start Address:

INTERFACE_DESCRIPTOR_DATA

The MEDIA_STATE_FLUSH command is updated to specify all the resources required for the next thread
group via an interface descriptor – if the resources are not available the group cannot start.

 Two MEDIA_STATE_FLUSH commands need to be used to ensure that the flush is complete.

MEDIA_STATE_FLUSH

GPGPU_WALKER

GPGPU_OBJECT

GPGPU Indirect Thread Dispatch

Indirect thread dispatch allows one thread group to control the group size of a following thread group.

This is the sequence of commands in the ring buffer:

GPGPU_OBJECT/WALKER // Either a set of objects or a walker to dispatch a thread group which will write the next
groups properties to memory

MI_FLUSH // Make sure the thread group has finished executing

MEDIA_CURBE_LOAD // Load the thread ids for new group

MI_LOAD_REGISTER_MEMORY

// Load the indirect MMIO GPGPU registers from the mem written by the previous group

GPGPU_WALKER (indirect) // A walker with the indirect bit set.

The first thread group writes this data to memory:

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 519

1. The thread ids delivered in the CURBE - written where the following MEDIA_CURBE_LOAD will
read them.

2. The GPGPU_WALKER parameters are written to memory where the MI_LOAD_REGISTER_MEMORY
will read them.

a. GPGPU_DISPATCHDIMX - the X dimension of the number of thread groups to dispatch in
dword 7>.

b. GPGPU_DISPATCHDIMY - the Y dimension of the number of thread groups to dispatch in
dword 6 .

c. GPGPU_DISPATCHDIMZ - the Z dimension of the number of thread groups to dispatch in
dword 8 .

See vol1c Memory Interface and Command Stream for the MMIO register addresses and formats.

The indirect registers are not supposed to be set to 0, but sometimes the kernel computing the value
wants no work done and sets them to 0. This does not work correctly, so a work-around in the
command stream is needed:

GPGPU_WALKER // The thread group which writes the indirect values to memory locations

MI_CONDITIONAL_BATCH_BUFFER_END DIMX StartX // End batch buffer if X dim in memory = StartX in
DW3

MI_CONDITIONAL_BATCH_BUFFER_END DIMY 0 StartY // End batch buffer if Y dim in memory = StartY
in DW5

MI_CONDITIONAL_BATCH_BUFFER_END DIMZ 0 StartZ // End batch buffer if Z dim in memory = StartZ
in DW7

MI_LOAD_REGISTER_MEM GPGPU_DISPATCHDIMX DIMX // Normal load of register from memory

MI_LOAD_REGISTER_MEM GPGPU_DISPATCHDIMY DIMY

MI_LOAD_REGISTER_MEM GPGPU_DISPATCHDIMZ DIMZ

GPGPU_WALKER // The thread groups which depend on the indirect dimensions

GPGPU Context Switch

The GPGPU pipeline supports interruption of GPGPU workloads on thread group boundaries. This is
needed for general purpose GPGPUs that are so large that there is a risk of the display becoming n on-
responsive if the work cannot be interrupted for other jobs.

A workload is interrupted with the MI_ARB_CHECK command with the UHPTR register. The
MI_ARB_CHECK command is placed throughout the command buffer. The driver updates the UHPTR
register when a new context is needed; MI_ARB_CHECK checks for this and reprograms the head and
tail pointers to the new batch of commands. The driver waits for the pre-emption to occur without
going into RS2.

The GPGPU needs to modify this to allow a GPGPU_WALKER command to be interrupted. This is done
by following each GPGPU_WALKER command with a MEDIA_STATE_FLUSH. This causes the CS to stop
fetching commands until either the command completes or until the UHPTR valid bit is set.

 3D – Media – GPGPU

520 Doc Ref # IHD-OS-VLV-Vol7-04.14

GPGPU workloads can be dispatched with either GPGPU_OBJECT commands or GPGPU_WALKER
commands. In the case of GPGPU_OJBECT, the MEDIA_STATE_FLUSH/ MI_ARB_CHECK pair must be
placed in the batch buffer at thread group boundaries, since preemption cannot occur with a thread
group partially dispatched. GPGPU_WALKER commands can dispatch multiple thread groups, in this
case the MEDIA_STATE_FLUSH/ MI_ARB_CHECK follows each GPGPU_WALKER and the hardware takes
care of noticing the UHPTR update and stopping at the next thread group boundary.

The commands in the batch buffer will look something like this:

Command Ring Notes

MI_SET_CONTEXT Go to GPGPU context

MI_BATCH_BUFFER_START If new context, set address to top of batch. Otherwise, address needs to be set to the
command preempted (given in the HWSP). The GP GPGPU bit must be set.

Command Batch Notes

GPGPU_OBJECT

GPGPU_OBJECT

... (more threads forming a complete thread group)

MEDIA_STATE_FLUSH Check for preemption at thread group boundary. Preemption defined by the UHPTR
valid bit set.

MI_ARB_CHECK Move the head only if UHPTR valid bit is set.

…

GPGPU_WALKER

MEDIA_STATE_FLUSH Check for preemption at thread group boundary internal to GPGPU_WALKER command.
Preemption defined by the UHPTR valid bit set.

MI_ARB_CHECK Move the head only if UHPTR valid bit is set.

...

MI_BATCH_BUFFER_END GPCS batch workload bit is cleared.

The context saved will consist of the state commands for VFE and a modified GPGPU_WALKER
command with a new starting thread group id. On context restore, the commands are executed to start
the GPGPU_WALKER where it left off before continuing with the rest of the command buffer.

An example software model for starting a preemption goes like this:

1. The UHPTR is reprogrammed to point to the current tail of the ring buffer.
2. Insert new commands:

a. LRI to UHPTR to clear valid.
b. Store Register to mem the preempted batch offset.
c. Store Register to mem the preempted ring offset.
d. Pipe_control notification.
e. An MI_SET_CONTEXT to the new context is put into the ring.

3. Insert commands for new context. i.e. batch buffers.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 521

4. Update Tail Pointer.

Note: 2-3 items above could happen during execution of a thread group so the HW may see the tail
pointer updated before preemption starts.

Note: The driver needs to turn off RC6 during items 1 and 4.

Media GPGPU Payload Limitations

There are 3 types of payload that the media/GPGPU instructions can have, but not all of them are
allowed. The following table lists the legal combinations:

WorkLoad Commands Data Stored

GPGPU GPGPU_WALKER CURBE

 GPGPU_OBJECT CURBE

Media(Legacy) Media_Object CURBE

 Media_Object INDIRECT

 Media_Object INLINE

 Media_Object CURBE+INLINE

 Media_Object CURBE+INDIRECT

 Media_Object INLINE+INDIRECT

 Media_Object CURBE+
INLINE+INDIRECT

 Media_Object_Walke
r

CURBE

 Media_Object_Walke
r

INLINE

 Media_Object_Walke
r

CURBE+INLINE

Synchronization of the Media/GPGPU Pipeline

The Media/GPGPU Pipeline is synchronized in the same way as the 3D pipeline using the
PIPE_CONTROL command.

See the Bspec section on 3D pipe synchronization: vol2a 3D Pipeline - Overview > 3D Pipeline >
Synchronization of the 3D Pipeline.

Mode of Operations

This section contains registers for GPGPU Object and GPGPU Command. It also covers GPGPU Mode.

GPGPU Thread R0 Header

The RO header of the Thread Dispatch Payload for the GPGPU thread:

DWord Bit Description

 3D – Media – GPGPU

522 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

R0.7 31:0 Thread Group ID Z: This field identifies the Z component of the thread group. That this
thread belongs to.

R0.6 31:0 Thread Group ID Y: This field identifies the Y component of the thread group that this
thread belongs to.

R0.5 31:10 Scratch Space Pointer. Specifies the 1k-byte aligned pointer to the scratch space (used
for the GPGPU local memory space).

Format = GeneralStateOffset[31:10]

9 GPGPU Dispatch

Reserved: MBZ

8 Reserved: MBZ.

8:0 FFTID. This ID is assigned by TS and is a unique identifier for the thread in comparison to
other concurrent threads (of any thread group). It is used to free up resources used by
the thread upon thread completion.

Format = U8. Bit 8 is Reserved, MBZ.

R0.4 31:5 Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It is
specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

4 Reserved

3:0 Range = [0,11] indicating [1K Bytes, 2M Bytes]

R0.3 31:5 Sampler State Pointer. Specifies the 32-byte aligned pointer to the sampler state table.

Format = GeneralStateOffset[31:5]

4 Reserved: MBZ

3:0 Per Thread Scratch Space. Specifies the amount of scratch space, in 16-byte quantities,
allowed to be used by this thread. The value specifies the power that two is raised to, to
determine the amount of scratch space.

Format = U4

Range = [0,11] indicating [1K bytes, 2M bytes].

R0.2 31 Reserved: MBZ

30 Reserved: MBZ

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 523

DWord Bit Description

29 Barrier Enable: This field indicates that a barrier has been allocated for this kernel

Reserved: MBZ.

28 SLM Enable: This field indicates that Shared Local Memory has been allocated for this
kernel

 Reserved: MBZ.

27:24 BarrierID: This field indicates the barrier that this kernel is associated with.

Format: U4

23:15

23:16 This key is a free running count of the number of dispatches.

14:10 Reserved: MBZ

9:4 Interface Descriptor Offset. This field specifies the offset from the interface descriptor
base pointer to the interface descriptor which will be applied to this object. It is specified
in units of interface descriptors.

Format = U5

3:0 Reserved. MBZ

R0.1 31:0 Thread Group ID X: This field identifies the X component of the thread group that this
thread belongs to.

R0.0 31:28 Reserved: MBZ

27:24 Shared Local Memory Index: Indicates the starting index for the shared local memory
for the thread group. Each index points to the start of a 4k memory block, 16 possibilities
cover the entire 64k shared memory per half-slice.

Format = U4

23:16 Reserved: MBZ

15:0 URB Handle. This is the URB handle where indicating the URB space for use by the
thread.

Cross-thread CURBE if present is in R1 and above, followed by the X/Y/Z thread id values for each
channel in the thread.

GPGPU_OBJECT

This command is modified from the MEDIA_OBJECT command.

GPGPU_OBJECT

 3D – Media – GPGPU

524 Doc Ref # IHD-OS-VLV-Vol7-04.14

This command is modified from the MEDIA_OBJECT command.

GPGPU_WALKER

GPGPU Mode

The general purpose (GPGPU) mode allows the Gen7 architecture to be used by general purpose
parallel APIs:

• GPGPU
• DX11 GPGPU

This is similar to the Generic mode with additional support for automatic generation of threads, Shared
Local Memory, and Barriers.

Automatic Thread Generation

A single GPGPU job may require thousands or even millions of GPU_OBJECT commands. Rather than
create them separately, it would be better to generate them algorithmically. To do this a
GPGPU_WALKER command is created.

Rather than modifying the Media Walker, a simple Thread Group Walker is created instead:

The X/Y/Z counters for the thread group will have an initial and maximum value. The thread group id
sent with each dispatch consists of these 3 numbers. These counters are 32-bits since the spec does not
give a limit to the size of the thread id.

 The 3 thread counters count the number of dispatches in a single thread group – up to 32 dispatches
for SIMD32 or 64 dispatches for SIMD16/8. There are 3 of them in order to select the execution masks
correctly – see section Execution Masks on execution masks. Each one is 6-bits in order to allow full
flexibility of any dimension going to 64 while the rest do not increment.

A thread is generated each time one of the thread counters increment. When all the counters reach
their maximum values, the thread group is done and the thread group counter can increment and start
a new thread group. When the thread group X counter reaches its maximum it is reset to 0, and the Y
counter is incremented.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 525

The compiler determines how many SIMD channels are needed per thread group, and then decides
how these will be split among EU threads. The number of threads is programmed in the thread counter,
and the SIMD mode (SIMD8/SIMD16/SIMD32) is specified in the GPGPU_WALKER command.

The maximum thread group size is limited by the SLM and barriers to fit into a single subslice, so a
thread group without both SLM and barriers can be unlimited size and will be executed in pieces as the
threads fit into the hardware.

Thread Payload

The payload to each thread dispatched is:

1. A thread group id which identifies the group the set of threads belong to. This is in the form of a
set of 3, 32-bit X/Y/Z values.

2. The set of X/Y/Z that form the thread ID for each channel. If Z is not used then only X/Y are
needed.

3. The execution mask which indicates which channels are active.

Thread IDs form a 2D or 3D surface which has to be mapped into SIMD32, SIMD16 or SIMD8
dispatches. Rather than have the hardware force a particular mapping of thread IDs to channels, the
mapping will be supplied by the compiler. The VFE will receive a simple count of the number of threads
per thread group which will be used to count the number of dispatches. The thread IDs for all threads in
a thread group are put in a constant buffer with the MEDIA_CURBE_LOAD command. A single set of
thread IDs can be used repeatedly for all thread groups, since the thread IDs are the same for each
thread group ID output by the GPGPU_WALKER.

The data required is up to the compiler, but here is an example set of payloads for a 2 Z x 2Y x 12 X and
a SIMD16 dispatch. This thread group requires 3 dispatches:

In this case the thread counter width would be programmed with a maximum value of 3 (since all the
execution masks are all F, it doesn't matter how the thread counters are programmed as long as they
count to 3 before finishing the thread group).

The first dispatch would tell the TS (who would tell the TD) that the payload starts at the beginning of
the constant buffer and has a length of 3. The next dispatch would have a payload starting at
constant_buffer_start + 3. The final dispatch payload starts at constant_buffer_start + 6. If there are
more thread groups in the command they would get exactly the same payload – the only difference is
the thread group ID (as well as a different barrier and shared local memory space).

 3D – Media – GPGPU

526 Doc Ref # IHD-OS-VLV-Vol7-04.14

Execution Masks

The number of channels required by the GPGPU job may not evenly fit into the number of SIMD
channels. That can leave some channels idle. The execution mask is used to tell the hardware which
channels are to be used.

A thread group is modeled as a 3D solid with each channel acting as one X/Y/Z point in the solid. This
can take the form of a line with 1024 channels with X from 0 to 1023 and constant Y/Z, a square with
X=0 to 32 and Y=0 to 32, or a cube with X=0 to 9, Y=0 to 9, Z=0 to 9. Software needs to determine how
these shapes are mapped onto the 32 SIMD32 channels per dispatch (or 16 SIM16, etc). The mapping
per thread is assumed to be a 2D square of channels such as 8x4, 16x2, 32x1. Below is a diagram of a
22x6 thread group that is mapped onto a set of 8x4 SIMD32 channels:

Note that the dispatches to the top and left have execution masks of all-F, while all the right edge
dispatches have the same execution mask; likewise all the bottom edge dispatches have the same
execution mask. The bottom right is the logical-AND of the right and bottom edge dispatches.

A 32-bit right and bottom mask is sent with the GPGPU_WALKER command, and the thread width,
height and depth counters are used to determine when they are used (width, height and depth are used
instead of X/Y/Z, since it is not required that width = X – width and height are the two variables that are
changing in a single SIMD dispatch even if they are Y and Z).

For each dispatch the width counter is incremented until it reaches the maximum – the dispatch with
width=max will use the right execution mask. The height counter is then incremented and process
repeated. If at any time the height counter = max then the execution mask is the bottom execution
mask. When the height and width counters are both max then the dispatch will be the AND of the right
and bottom and the depth counter will increment.

The same 2Z x 2Y x 12X thread group described above dispatched as SIMD32 with each dispatch
delivering a 16X x 2Y shape would require 2 dispatches with empty bits in the right execution mask and
all F in the bottom.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 527

The width and height counter would have a maximum of 1, and the depth counter would have a
maximum of 2. The two dispatches would use the AND of the two masks, but since the bottom mask is
F it would be the same as just the right mask.

The execution masks can also be used when the software wants to pack the channels rather than lay
them out in a regular pattern:

In this case the width counter can have a maximum of 2, and the height and depth counters with a
maximum of 1. The first dispatch will use the bottom mask only (all-F) and the second will use the right
AND bottom mask to remove the channels that are not used.

Payload Storage

The MEDIA_CURBE_LOAD constant data is stored in the URB by CS and read out by TDL when the
dispatch occurs. The inline payload with the execution counts is sent to VFE from CS. The execution
counts are stored internal to VFE.

 3D – Media – GPGPU

528 Doc Ref # IHD-OS-VLV-Vol7-04.14

Only 32 threads are allowed for SIMD32 to match the 1024 thread limit, requiring 32 execution count
bytes, or 8 DW payload. SIMD16 and SIMD8 allow the full 64 thread per half-slice, and so require as
much as 16 DWords.

The X/Y/Z payload size per dispatch is specified in the command, but a maximum size is 3 16-bit
numbers per 1024 SIMD channels, or 6 kbytes.

URB Management

The VFE manages the URB in GPGPU and generic/media modes. The first 32 URB entries are reserved
for the interface descriptor, and CURBE data is placed after the IDs. URB handles are needed for indirect
data and parent/child communication; when the VFE starts up it creates up to 64 handles by
partitioning the remaining URB space into evenly spaced addresses and saving the resulting handles in
a FIFO. The handles can then be treated just like ones created by the URBM – send to TD on dispatch
and recovered on the handle return bus.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 529

MEDIA_VFE_STATE specifies the amount of CURBE space, the URB handle size and the number of URB
handles. The driver must ensure that ((URB_handle_size * URB_num_handle) – CURBE – 32) <=
URB_allocation_in_L3.

Thread Group Tracking

The TSG needs to keep track of the threads outstanding in a group to know when the thread group
barrier and Shared Local Memory can be reclaimed. This can be done by keeping a counter per active
thread group (up to 16 per half-slice) which increments when a new thread is sent out and
decremented when the thread retires. The assigned barrier ID (with half-slice bit) is unique per thread
group and much smaller than the thread group ID and so will be used to keep track of the thread group
instead.

Since TSL sends the thread retirement via the Message Channel rather than the thread retirement bus,
the barrier ID used to identify the thread group can be sent at the same time. A CAM will then match
the ID with the counter to decrement.

There is a potential corner case of a thread group without barriers being partly dispatched, then retiring
before the rest of the thread group is sent. This should be OK, since the lack of barriers means that
there are no dependencies between threads.

Shared Local Memory Allocation

The Shared Local Memory is a 64k block per half-slice in the L3 that must be shared between all thread
groups on that half-slice. A new memory manager simular to the Scratch Space memory manager is
used to allocate this space.

We are only dispatching threads from a single Interface Descriptor at a time. If a new Interface
Descriptor is requested the pipe is drained and all shared memory recovered before starting to allocate
new shared memory. This means that only a single size of shared memory needs to be supported at
once.

For simplicity, only power-of-2 sizes from 4k to 64k are allowed. The thread request will specify how
much is needed. The first thread of a Thread Group is marked as requiring a new shared local memory –
if not the old Shared Local Memory offset is sent with the dispatch.

A simple set of 16-bits is used to allocate 4k shared memory, with fewer bits used for larger sizes. A
priority encoder finds the first unused bit and the offset remembered as being associated with a
particular barrier id. The barrier id is then used to track the thread group.

When the Thread Group Tracking indicates that a thread group is completely retired, that section of
shared local memory can be reclaimed.

Software Managed Shared Local Memory

Software can optionally manage shared local memory. In this case, each thread command or thread
group command will have the shared memory offset included – each command in a thread group must
have the same offset, of couse. If the offset requested is still being used then the command is stalled
until the thread group using that offset is done.

 3D – Media – GPGPU

530 Doc Ref # IHD-OS-VLV-Vol7-04.14

Hardware will track the usage of this section of shared memory as before, recording the offset as being
used and recording it as being available after the thread group is done.

Automatic Barrier Management

The previous generation barrier implementation required that the driver allocate and program the
barrier and tell the thread group which barrier to use. Since we have an automatic shared memory
allocation it makes sense to make barrier management automatic too.

Instead of the barrier id in the Interface Descriptor, there is now a thread count per thread group. If a
new thread group id comes in without a barrier allocated (checked with a CAM match across 16 barriers
), the TSG picks a unused barrier and sends this count in a message to GWunit. It then needs to wait for
an accept message back from GW before sending the dispatch to ensure that a barrier message doesn't
arrive at the GW before the barrier is programmed. The barrier id picked is sent with every dispatch
from this thread group.

When the thread group tracker determines that a thread group has finished, the barrier becomes
available to new thread groups.

Local Memory/Scratch Space

The Local Memory (not to be confused with Shared Local Memory, which is shared by all threads in a
thread group) is allocated per thread dispatched to the EU.

The existing Scratch Space manager is used to provide between 1k and 12k bytes memory per thread. A
small change to the kernel can be used to provide more scratch space – the pointer that TSG provides is
simply:

Scratch Space Pointer = Scratch Space Base Pointer + FFTID * Per Thread Scratch Space

To increase the amount of scratch space per thread, each kernel needs to do this operation on its
Scratch Space Pointer:

New Scratch Space Pointer = Old Scratch Space Pointer + FFTID * (New Per Thread Scratch Space
– Old Per Thread Scratch Space)

The old Scratch Space Pointer and FFTID are available in the R0 header. The driver needs to allocate
enough memory for the total number of threads in the system * the new per thread scratch space.

Dispatch Payload

The payload for a general purpose thread will have to include the execution mask with a bit per 32-
channel. SIMD16 and SIMD8 use the LSB bits of the execution mask. The 5-bit number transferred from
VFE will be expanded to produce the 32-bit mask. This will use the Dmask currently used by the pixel
shader dispatch in the transparent header.

Generic Media

This introduction provides a brief overview of the Media product features,which includes Media's
functions, feature benefits, and how the features fit into graphics products as part of a whole solution.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 531

Media normally refers to products and services on digital computer-based systems that presents
content, such as text, graphics, animation, video, audio, games, etc.

Media product features, as described in this Bspec, include:

• Multi-format codec engine
• Video front end
• Media fixed functions
• Video encoding
• Video decoding
• Sampling

Media product features support specific applications, such as interactive gaming, videogames, social
media, virtual reality, and augmented reality.

The following block diagram shows the Main Render Engine, unified for 3D graphics and Media.

• Note: VLV has two EUs.

• Fixed Function (FF) pipelines: Provide thread generation and control.
• 3D graphics or Media FF Controls EU array at a given time. The EU (Execution Unit) array is

shared between 3D and Media and ISA is optimized for both.

 3D – Media – GPGPU

532 Doc Ref # IHD-OS-VLV-Vol7-04.14

• Shared functions: Include accelerators for filtered load, scatter, gather, and filter/blended store
operations.

• MFX: A parallel codec engine that runs in a separate context.

Product Evolution

Block diagrams in this section describe the evolution of Media products, by project, beginning with the
previous generation. They include definitions of the main components and how they integrate with
each other.

Previous Generation Media Pipeline

The main components of the previous generation Media Pipeline are:

• High performance multi-format codec: Hardware Fixed Function for video encoding and
decoding, which contains MPEG2, VC-1, AVC, MVC decode, AVC encode..

• RC: Cache in which pixel color and depth information is written prior to being written to memory,
and where prior pixel destination attributes are read in preparation for blending and Z test.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 533

• GA*: GA* refers to Memory Global Arbitration blocks that are distributed over the floorplan and
physically placed close to their corresponding clients.

• Command Streamer: Functional unit of the Graphics Processing Engine that fetches commands,
parses them, and routes them to the appropriate pipeline.

• VFE: The Video Front End is the first fixed function in the generic pipeline; it performs fixed-
function media operations.

• The Walker Sequencer: The Media Walker is a HW thread generator that creates
threads associated with units in a generalized 2D space. With a small number of unit
step vectors, the walker can implement a large number of walking patterns, which
provides functions that are normally handled by the host SW.

• TS: The Thread Spawner is the last fixed function stage of the media pipeline that initiates new
threads on behalf of generic/media processing.

• Supports mixed kernels and thread-spawn threads
• Scoreboard controls thread execution order

• Sub-Slice:
• TD: The Thread dispatcher arbitrates thread initiation requests from Fixed Functions units

and instantiates the threads on EUs.
• EUs: Each EU is a fully-capable processor containing instruction fetch and decode, register

files, source operand swizzle, and SIMD ALU, along with:
• Zero overhead thread switching
• Native media ISA
• Vector/matrix oriented operations
• 2D & indexed RF addressing
• Large register file (4KB per thread)

• DAP: Data Port
• MT: Multi-texture
• Dedicated video processing in Media Sampler:

• VME: Video Motion Engine provides motion estimation services for encoders and
video processing.

• AVS: Adaptive Video Scalar, which consists of a pair of filters (sharp filter and smooth
filter).

• DN/DI: De-Noise/De-Interlace – De-Noise refers to a process of reducing noise
artifacts on a picture. The de-Interlacing process converts interlaced video to
progressive video.

• VDBOX
• Decode: Process of decompressing video stream.
• PAK: A Hardware unit that does residue packing and entrophy coding.

Media Pipelines

 3D – Media – GPGPU

534 Doc Ref # IHD-OS-VLV-Vol7-04.14

Additions/Changes:

• TDL: The Thread Dispatcher Local is used to flow-control and forward threads and URB contents
to execution units. It chooses which logical thread of work to dispatch to what physical thread.

• Subslice: Increased media sampler throughput and quality for scaling and other filters. Sampler
Applications Media applications benefit from infrastructure changes in EU/L3$/URB. GEN7
introduces an L3 cache in the cache hierarchy, which fills misses in relatively low latency; higher
performance EUs with new EU instructions, and configurable URB (Unified Return Buffer) sizing.

• HDC: Shared function unit that performs a majority of the memory access types.
• L3$: L3 Cache that sits between clients and system memory.

• 2XDecode: Enhances performance for Multi-Format CODEC.

Media and General Purpose Pipeline

Introduction

This section covers the programming details for the media (general purpose) fixed function pipeline.
The media pipeline is positioned in parallel with the 3D fixed function pipeline. It provides media
functions and has media specific fixed function capability. However, the fixed functions are designed to
have the general capability of controlling the shared functions and resources, feeding generic threads
to the Execution Units to be executed, and interacting with these generic threads during run time. The
media pipeline can be used for non-media applications, and therefore, can also be referred to as the
general purpose pipeline. For the rest of this chapter, we refer to this fixed function pipeline as the
media pipeline, keeping in mind its general purpose capability.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 535

Concurrency of the media pipeline and the 3D pipeline is not supported. In other words, only one
pipeline can be activated at a given time. Switching between the two pipelines within a single context is
supported using the MI_PIPELINE_SELECT command.

Following are some media application examples that can be mapped onto the media pipeline. All these
applications are functional; however, the level of performance that can be achieved depends on the
hardware configuration and is beyond the scope of this document.

• MPEG-2 decode acceleration with HWMC (e.g. DXVA HWMC interface)
• MPEG-2 decode acceleration with IS/IDCT and forward (e.g. DXVA IDCT interface)
• MPEG-2 decode acceleration with VLD and forward (e.g. DXVA VLD interface)
• AVC decode acceleration with HWMC and forward including Loop Filter
• VC1 decode acceleration with HWMC and forward including Loop Filter
• Advanced deinterlace filter (motion detected or motion compensated deinterlace filter)
• Video encode acceleration (with various level of hardware assistant)

Terminologies

Term Definition/Explanation

AVC Advanced Video Coding. An international video coding standard jointly developed by MPEG
and ITU. It is also known as H.264 (ITU), or MPEG-4 Part 10 (MPEG).

Child Thread A thread corresponding to a leaf-node or a branch-node in a thread generation hierarchy. All
thread originated from kernels running on the GEN4 execution units are child threads.

EOB End of Block. It is a 1-bit flag in the non-zero DCT coefficient data structure indicating the
end of an 8x8 block in a DCT coefficient data buffer.

IDCT Inverse Discrete Cosine Transform. It is the stage in the video decoding pipe between IQ and
MC.

ILDB In-loop Deblocking Filter – the deblocking filter operation in the decoding loop. It is a stage
after MC in the video decoding pipe.

IQ Inverse Quantization. It is a stage in the video decoding pipe between IS and IDCT.

IS Inverse Scan. It is a stage in the video decoding pipe between VLD and IQ. In this stage, a
sequence of none-zero DCT coefficients are converted into a block (e.g. an 8x8 block) of
coefficients. VFE unit has fixed functions to support IS for MPEG-2.

IT Inverse Integer Transform. It is the stage in AVC or VC1 video decoding pipe between IQ and
MC.

MPEG Motion Picture Expert Group. MPEG is the international standard body JTC1/SC29/WG11
under ISO/IEC that has defined audio and video compression standards such as MPEG-1,
MPEG-2, and MPEG-4, etc.

MC Motion Compensation. It is part of the video decoding pipe.

MVFS Motion Vector Field Selection – a four-bit field selecting reference fields for the motion
vectors of the current macroblock.

PRT A persistent root thread in general stays in the system for a long period of time. It is normally
a parent thread. Only one PRT is allowed in the system. Hardware is responsible of re-
dispatching the incomplete PRT at context restore, and a PRT can continue operations from
that previously left-over state.

 3D – Media – GPGPU

536 Doc Ref # IHD-OS-VLV-Vol7-04.14

Term Definition/Explanation

Parent Thread A thread corresponding to a root-node or a branch-node in thread generation hierarchy. A
parent thread may be a root thread or a child thread depending on its position in the thread
generation hierarchy.

Root Thread A thread corresponding to a root-node in a thread generation hierarchy. In the GEN4
general-purpose pipeline, all threads originated from VFE unit are root threads.

Synchronized Root
Thread

A root thread that is dispatched by TS upon a dispatch root thread message.

TS Thread Spawner. It is the second (and the last) fixed function in the GEN4 general-purpose
pipeline.

Unsynchronized
Root Thread

A root thread that is automatically dispatched by TS.

VFE Video Front End. It is the first fixed function in the GEN4 general-purpose pipeline.

VLD Variable Length Decode. It is the first stage of the video decoding pipe that consists mainly of
bit-wide operations. GEN4 supports hardware MPEG-2 VLD acceleration in the VFE fixed
function stage.

Hardware Feature Map in Products

The following table lists the hardware features in the media pipe.

Video Front End Features in Device Hardware

Features/

Device

Generic Mode Y

Root Threads Y

Parent/Child Threads Y

SRT (Synchronized Root Threads) Y

PRT (Persistent Root Thread) Y

Interface Descriptor Remapping N

IS Mode (HW Inverse Scan) N

VLD Mode (HW MPEG2 VLD) N

AVC MC Mode N

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 537

Features/

Device

AVC IT Mode (HW AVC IT) N

AVC ILDB Filter (in Data Port) N

VC1 MC Mode N

VC1 IT Mode (HW VC1 IT) N

Stalling HW Scoreboard Y

Non-stalling HW Scoreboard Y

HW Walker Y

HW Timer Y

Pipelined State Flush Y

HW Barrier Y

Media Pipeline Overview

The media (general purpose) pipeline consists of two fixed function units: Video Front End (VFE) unit
and Thread Spawner (TS) unit. VFE unit interfaces with the Command Streamer (CS), writes thread
payload data into the Unified Return Buffer (URB), and prepares threads to be dispatched through TS
unit. VFE unit also contains a hardware Variable Length Decode (VLD) engine for MPEG-2 video decode.
TS unit is the only unit of the media pipeline that interfaces to the Thread Dispatcher (TD) unit for new
thread generation. It is responsible for spawning root threads (short for the root-node parent threads)
originated from VFE unit and for spawning child threads (can be either a leaf-node child thread or a
branch-node parent thread) originated from the Execution Units (EU) by a parent thread (can be a root-
node or a branch-node parent thread).

The fixed functions, VFE and TS, in the media pipeline, in most cases, share the same basic building
blocks as the fixed functions in the 3D pipeline. However, there are some unique features in media fixed
functions as highlighted by the followings.

• VFE manages URB and only has write access to URB; TS does not interface to URB.
• When URB Constant Buffer is enabled, VFE forwards TS the URB Handler for the URB Constant

Buffer received from CS.
• TS interfaces to TD; VFE does not.

 3D – Media – GPGPU

538 Doc Ref # IHD-OS-VLV-Vol7-04.14

• TS can have a message directed to it like other shared functions (and thus TS has a shared
function ID), and it does not snoop the Output Bus as some other fixed functions in the 3D
pipeline do.

• A root thread generated by the media pipeline can only have up to one URB return handle.
• If a root thread has a URB return handle, VFE creates the URB handle for the payload to initiating

the root thread and also passes it alone to the root thread as the return handle. The root thread
then uses the same URB handle for child thread generation.

• If URB Constant Buffer is enabled and an interface descriptor indicates that it is also used for the
kernel, TS requests TD to load constant data directly to the thread's register space. For root
thread, constant data are loaded after R0 and before the data from the other URB handle. For
child thread, as the R0 header is provided by the parent thread, Thread Spawner splits the URB
handles from the parent thread into two and inserts the constant data after the R0 header.

• A root thread must terminate with a message to TS. A child thread should also terminate with a
message to TS.

• High streaming performance of indirect media object load is achieved by utilizing the large vertex
cache available in the Vertex Fetch unit (of the 3D pipeline).

Top level block diagram of the Media Pipeline

Generic Mode

In the Generic mode, VFE serves as a conduit for general-purpose kernels fully configured by the host
software. As there is no special fixed function logic used, the Generic mode can also be viewed as a
pass-through mode. In this mode, VFE generates a new thread for each MEDIA_OBJECT command. The
payload contained in the MEDIA_OBJECT command (inline and/or indirect) is streamed into URB. The
interface descriptor pointer is computed by VFE based on the interface descriptor offset value and the
interface descriptor base pointer stored in the VFE state. VFE then forwards the interface descriptor
pointer and the URB handle to TS to generate a new root thread. Many media processing applications

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 539

can be supported using the Generic mode: MPEG-2 HWMC, frame rate conversion, advanced
deinterface filter, to name a few.

GPGPU Media Pipe Differences

You can access the GPGPU pipe with the GPGPU_OBJECT and GPGPU_WALKER commands. A thread
group id is associated with every dispatch, which is used to allocate and track barriers and Shared Local
Memory. The GPGPU pipe has access to all the shared functions. The GPGPU pipe does not use the
Scoreboard and should not dispatch child threads.

You can access the Media pipe with the various MEDIA_OBJECT* commands. Barriers and Shared Local
Memory are not allocated for them. All shared functions are available. The Scoreboard is available to
control dispatch depending on the completion of neighboring blocks.

Programming Media Pipeline

The Programming Media Pipeline is programmed with command sequences. The media hardware
threads are created through the parameterized media walker. The dispatch of thread is controlled by a
scoreboard mechanism.

Command Sequence

Media pipeline uses a simple programming model. Unlike the 3D pipeline, it does not support pipelined
state changes. Any state change requires an MI_FLUSH or PIPE_CONTROL command. When
programming the media pipeline, it should be cautious to not use the pipelining capability of the
commands described in the Graphics Processing Engine chapter.

To emphasize the non-pipeline nature of the media pipeline programming model, the programmer
should note that if any one command is issued in the Primitive Command step, none of the state
commands described in the previous steps cannot be issued without preceding with a MI_FLUSH or
PIPE_CONTROL command.

Note for With the addition of MEDIA_STATE_FLUSH command, pipelined state changes are allowed on the
media pipeline. The MEDIA_STATE_FLUSH serves as a fence for state change by flushing the VFE/TS front
ends but not waiting for threads to retire.

The basic steps in programming the media pipeline are listed below. Some of the steps are optional;
however, the order must be followed strictly. Some usage restrictions are highlighted for illustration
purpose. For details, refer to the respective chapters for these commands.

Command Sequence

For , the media pipeline is further simplified with fixed functions like MPEG2 VLD and AVC/VC1 IT
removed. The addition includes (1) CURBE command is now unique to the media pipeline and (2) the
interface descriptors are delivered directly as a media state command instead of being loaded through
indirect state.

The programming model is listed as the following.

• Step1: MI_FLUSH/PIPE_CONTROL

 3D – Media – GPGPU

540 Doc Ref # IHD-OS-VLV-Vol7-04.14

o This step is mandatory.
o Multiple such commands in step 1 are allowed, but not recommended for performance

reason.

• Step2: State command PIPELINE_ SELECT

o This step is optional. This command can be omitted if it is known that within the same
context media pipeline was selected before Step 1.

o Multiple such commands in step 2 are allowed, but not recommended for performance
reason.

• Step3: State commands configuring pipeline states

o STATE_BASE_ADDRESS

 This command is mandatory for this step (i.e. at least one).
 Multiple such commands in this step are allowed. The last one overwrites

previous ones.
 This command must precede any other state commands below.
 Particularly, the fields Indirect Object Base Address and Indirect Object Access

Upper Bound are used to control indirect Media object load in VF.
 The fields Dynamics Base Address and Dynamics Base Access Upper Bound

are used to control indirect Curbe and Interface Descriptor object load in VF.
 Note: This command may be inserted before (and after) any commands listed in

the previous steps (Step 1 and 2). For example, this command may be placed in the
ring buffer while the others are put in a batch buffer.

o STATE_SIP

 This command is optional for this step. It is only required when SIP is used by the
kernels.

o MEDIA_VFE_STATE

 This command is mandatory for this step (i.e. at least one).
 This command cause destruction of all outstanding URB handles in the system. A

new set of URB handles will be generated based on state parameters, no. of URB
and URB length, programmed in VFE FF state.

 Multiple such commands in this step are allowed. The last one overwrites
previous ones.

o MEDIA_CURBE_LOAD

 This command is optional.
 Multiple such commands in this step are allowed. The last one overwrites

previous ones.

o MEDIA_INTERFACE_DESCRIPTOR_LOAD

 This command is mandatory for this step (i.e. at least one).

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 541

 Multiple such commands in this step are allowed. The last one overwrites
previous ones.

• Step4: Primitive commands

o MEDIA_OBJECT

 This step is optional, but it doesn't make practical sense not issuing media
primitive commands after being through previous steps to set up the media
pipeline.

 Multiple such commands in step 4 can be issued to continue processing media
primitives.

With the addition of MEDIA_STATE_FLUSH command, pipelined state changes are allowed on the media
pipeline. In order to support context switch for barrier groups, watermark and barrier dependencies are
added to the MEDIA_STATE_FLUSH command. The usage of barrier group may have strict restriction
that all threads belonging to a barrier group must all be present in order to avoid deadlock during
context switch. Here are the example programming sequences to allow context switch. Note that the
use of MEDIA_OBJECT_PRT and MI_ARB_ON_OFF are optional.

• MEDIA_VFE_STATE
• MEDIA_INTERFACE_DESCRIPTOR_LOAD
• MEDIA_CURBE_LOAD (optional)
• MEDIA_GATEWAY_STATE (for example for barrier group 1)
• MEDIA_OBJECT_PRT (with VFE_STATE_FLUSH set and PRT NEEDED set.)
• MEDIA_STATE_FLUSH (with watermark set for group 1)
• MI_ARB_ON_OFF (OFF)// Arbitration must be turned off while sending objects for group 1
• Several MEDIA_OBJECT command (for barrier group 1)
• MI_ARB_ON_OFF (ON)// Arbitration is allowed
• MEDIA_STATE_FLUSH (optional, only if barrier dependency is needed)
• MEDIA_INTERFACE_DESCRIPTOR_LOAD (optional)
• MEDIA_CURBE_LOAD (optional)
• MEDIA_GATEWAY_STATE (for example for barrier group 2)
• MEDIA_STATE_FLUSH (with watermark set for group 1)
• MI_ARB_ON_OFF (OFF)// Arbitration must be turned off while sending objects for group 2
• Several MEDIA_OBJECT command (for barrier group 2)
• MI_ARB_ON_OFF (ON)// Arbitration is allowed
• …
• MI_FLUSH

Commands for the GPGPU pipe (GPGPU_OBJECT and GPGPU_WALKER) should be separated from
commands for the Media pipe (MEDIA_OBJECT*) by an MI_FLUSH.

 3D – Media – GPGPU

542 Doc Ref # IHD-OS-VLV-Vol7-04.14

Parameterized Media Walker

The Parameterized Media Walker is a hardware thread generation mechanism that creates threads
associated with units in a generalized 2-dimensional space, for example, blocks in a 2D image. With a
small number of unit step vectors, the walker can implement a large number of walking patterns as
described hereafter. This command may provide functions that are normally handled by the host
software, thus, may be used to simplify the host software and GPU interface.

The walker described herein is doubly nested, where essentially a local walker can perform a variety of
2-dimensional walking patterns and a global walker can perform similar 2-dimensional walking patterns
upon many local walkers. The local walker has 3 levels (outer, middle, and inner) while the global walker
has 2 levels (outer and inner). Thus, the algorithm has 5-nested loops that modify local state based on
user-defined unit step vectors.

The Walker's programmability is derived from:

• The walker traverses a unit-normalized surface. Some example unit sizes:
o 1x1: Walking pixels
o 4x4: Walking sub-blocks
o 16x16: Walking macro-blocks
o 32x16: Walking macro-block-pairs

• The use of unit step vectors to describe the motion at each of level of nesting
• Starting locations for the local and global walkers
• Block sizes of the local and global walker
• And a small number of special mode controls for the inner-most loop which are aimed at

efficiently dividing an image into two balanced workloads for dual-slice designs.

Walker Parameter Description

The global and local loops are both described by the same four parameters:

• Resolution,
• Starting location,
• Outer unit vector,
• Inner unit vector

The local inner loop has some special modes that will be described later. A table of the user inputs and
some example values are given below:

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 543

It should be emphasized that the value of what a unit represents is implicitly defined by the user. In
other words, the walker traverses a unit normalized space that is not inherently bound to pixel walking.
If the smallest unit of work the user wants to walk is a 4x3 block of pixels, you can program the inner
loop to step (4,3) or (1,1):

• In the first case (4,3) the user is walking in units of pixels
• In the second case (1,1) the user is walking in units of 4x3 blocks of pixels.

It should be noted that hardware doesn't contain enough bits for pixel walking for pixel resolution like
1920x1088. The intended usage of the walker is for block walking whereas the block size is not relevant
to the walker parameters.

Basic Parameters for the Local Loop

The local inner and outer loop xy-pair parameters alone can describe a large variety of primitive walking
patterns. Below are 9 primitive walking patterns generated by varying only the inner and outer unit step
vectors of the local loop:

 3D – Media – GPGPU

544 Doc Ref # IHD-OS-VLV-Vol7-04.14

• The top row shows the outer unit vector pointing down (+Y) and the inner unit vector pointing
right (+X). Rows and columns can easily be skipped by increasing the unit step vectors above one.

• The middle row the outer unit vector pointing right (+X) and the inner unit vector pointing down
(+Y). Again, rows and columns are skipped by increasing the unit step vectors beyond one.

• The last row shows the capability to walk angles not perpendicular to the edge. The 1st shows a
45º walking pattern by setting the inner unit vector to (-1,1). The 2nd shows a checkerboard
pattern by skipping every other outer loop and retaining the inner unit vector of (-1,1). The 3rd
shows a 26.5º walking pattern by setting the inner unit vector to (-2,1).

The block resolution, shown as [8,8], and the starting location, currently [0,0], can be varied and the
above patterns can be stretched and rotated many ways. The diagram below shows an example of
where the start position and unit step vectors can be set to achieve a full rotation of the same pattern:

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 545

Dual Mode of Local Loop

The local Inner Loop Special mode selects are included to aid in the distribution of work, specifically
with two slices in mind. Essentially, the local inner loop can be bisected and each half-walk can be
directed inward towards the center of the image (dual). The local inner loop need not be bisected, and
can either move away from the outer loop (repel) or move towards it (attract) when an even split is not
desired:

 3D – Media – GPGPU

546 Doc Ref # IHD-OS-VLV-Vol7-04.14

In Dual mode, the sequence will alternate between two half-walks such that every-other output would
go to the same slice. This effect will produce a more balanced workload to two slices as shown in the
example below where the color of the block represents which slice it was dispatched to. This is the
walker approach to fine-grained parallelism.

MbAff-Like Special Case in Local Loop

The local loop has an additional middle loop that is used to achieve some specific walking patterns,
with MBAFF mode especially in mind. A pattern to handle MBAFF AVC content is to walk the top
macroblocks of all macroblock pairs (MB-pairs) on a wavefront followed by the respective bottom
macroblocks. The pattern is shown below.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 547

The outer loop unit step vector would be [1, 0] and the inner loop unit step vector would be [-2, 2]. A
third loop is necessary to repeat the inner loop, only shifted down a unit before restarting. Thus, a
middle loop with a unit step vector of [0,1] would achieve this MBAFF pattern. Additionally, the number
of extra steps taken by the middle loop would be 1 in this case.

The addition of a middle loop also creates more overall flexibility, which seems necessary due to the
integer-based unit step vector solution proposed (Manhattan distance issues etc.).

Global Loop

The same set of general parameters is used to describe the global loop as well. Thus, a global loop that
is walking a raster-scan pattern can be combined with a local loop that is walking a 26.5º pattern (or
vice-versa). As shown in the example below, if the local block size [8,8] is not an even multiple of the
global resolution [20,20], the slack is still processed by dynamically changing the local block resolution.

The global loop will always resolve to be the upper-left corner of the local loop, shown above black
circles. Note that local loop can still start in any corner of the local block, but the local (0,0) will always
be the location where global loop begins the local loop, hence the upper-left corner.

 3D – Media – GPGPU

548 Doc Ref # IHD-OS-VLV-Vol7-04.14

The user can specify the starting location of the global loop as with the local loop. If the user were to
set the global starting location to (16,16) in the previous example, after inverting the global outer and
global inner unit step vectors the same pattern would be achieved in the reverse order. Note that the
slack would still be handled along the right and bottom edge of the global image in that case. The user
could have also started at (12,12) in which case the slack would be handled on the left and top faces.

Walker Algorithm Description

The walker algorithm has been tested and optimized in software. A high-level pseudo-code description
is given below:

 Walker(){ //C-Style Pseudo-Code of Walker Algorithm

 Load_Inputs_And_Initialize();

While (Global_Outer_Loop_In_Bounds()){

 Global_Inner_Loop_Intialization();

While (Global_Inner_Loop_In_Bounds()){

 Local_Block_Boundary_Adjustment();

 Local_Outer_Loop_Initialization();

While (Local_Outer_Loop_In_Bounds()){

 Local_Middle_Loop_Initialization();

While (Local_Middle_Steps_Remaining()){

 Local_Inner_Loop_Initialization();

While (Local_Inner_Loop_Is_Shrinking()){

 Execute();

 Calculate_Next_Local_Inner_X_Y();

 } //End Local Inner Loop

 Calculate_Next_Local_Middle_X_Y();

 } //End Local Middle Loop

 Calculate_Next_Local_Outer_X_Y();

 Calculate_Next_Local_Inverse_Outer_X_Y();

 } //End Local Outer Loop

 Calculate_Next_Global_Inner_X_Y();

 } //End Global Inner Loop

 Calculate_Next_Global_Outer_X_Y();

 } //End Global Outer Loop

 } //End Walker

The pseudo-code has the following characteristics:

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 549

• There are 5 levels of iteration
• The highest 2 levels are called global and the lowest 3 levels are called local

o The global loop is split into an outer and an inner loop.
o The local loop is split into an outer, a middle, and an inner loop.
o A bounding box for the global and local resolution is defined by the user.
o The starting location within each bounding box is also specified by the user.

• Each of the 5 loops has its own persistent

o Current position (x,y)
o Unit step vector (x,y)

• The final output (x,y) is a summation of the global x,y and the local x,y.
• The next (x,y) for given level can be calculated while the next lower level is still executing.

Additionally, the result can be used to check to see if the current level will execute again once
control is returned.

The flow of the global outer and inner loops is:

1. Check a bound condition
2. Initialize the next level loop
3. Execute the next level loop
4. When the next level loop fails its condition, calculate the next position for the current loop

level and repeat.

 3D – Media – GPGPU

550 Doc Ref # IHD-OS-VLV-Vol7-04.14

Walker algorithm flowchart for the Global Loop

Take note of the grey box Local Block Boundary Adjustment. This logic is necessary to adjust the local
block size when the distance between the current global position to the edge of the image is less than
the local resolution. Additionally, the local starting positions might be modified here as well if the
defined starting position is larger than the new local block size.

The flow of the 3 local loops does not vary much from the 2 global loops. The differences are:

• In addition to a boundary check, the local middle loop also ensures the number of middle
steps is less than or equal to the user defined number of extra steps.

• The local inner loop only checks to see if the prior distance between the x,y starting and
ending points are greater than their current distance. If this is true, it implies that the two
inner loops are converging towards each other.

• When the middle loop check fails, both the starting points (local outer) and ending points
(local inner) are updated.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 551

Walker algorithm flowchart for the Local Loop

Scoreboard Control

A hardware mechanism controls the dispatch of root threads. Without using this hardware mechanism,
only the dispatch of a SRT is managed by a parent root thread using the SRT message to TS.

There is a scoreboard hardware in TS unit. The scoreboard is addressed by the 18-bit (X, Y) scoreboard
field in VFE DWord, where (X, Y) is typically used as the Cartesian coordinate of the working unit in a 2D
frame but may be interpolated in other ways. When a root thread is dispatched, the entry at (X, Y) is
marked. When the root thread is terminated, the corresponding bit in the scoreboard is cleared.

Each root thread may have up to eight dependencies. The dependency relation is described by the state
value of Scoreboard Controls in terms of related distance of (deltaX, deltaY). There is a global
scoreboard enabling in the state as well as the-per thread enabling for each dependency.

TS stalls the dispatch of a root thread if any scoreboard entry, which is denoted by (Scoreboard X +
deltaX, Scoreboard Y + deltaY), matching with any enabled dependencies is marked as in-flight. The
thread is dispatched only after all dependencies are cleared.

 3D – Media – GPGPU

552 Doc Ref # IHD-OS-VLV-Vol7-04.14

For a root thread, TS stalls the dispatch of the thread only if the dependent scoreboard entries of the
thread are marked. It does not automatically stalls the dispatch for destination collision if (deltaX = 0,
deltaY=0) is not set in the scoreboard state. This kind of scoreboard destination collision is due to the
scoreboard wrap-around (or aliasing), which must be avoided. With 9-bit per X, Y field, the hardware
scoreboard can support a frame that is subdivided up to 512x512 threads without a scoreboard aliasing.

In addition to the above stalling scoreboard, Media Pipe may also support a non-stalling scoreboard.
With non-stalling, a thread is dispatched with the dependent threads marked. The thread dependency
affects the issuing of a sendc instruction. See vol5d Execution Unit ISA for details.

Scoreboard Support in Device Hardware

Device Stalling scoreboard Non-Stalling scoreboard

 Yes Yes

Restrictions:

• The hardware scoreboard only handles root threads, but not child threads. This limitation may be
revisited when future application requirement changes.

• The usage of hardware scoreboard and SRT are mutually exclusive. In other words, when
hardware scoreboard is used, SRT should not be issued.

AVC-Style Dependency Example

For AVD decoding, dependencies for a given macroblock may be set based on the availability of
neighbor macroblocks, namely A, B, C, D and left-bottom neighbors (left-bottom only if MbAff = 1), as
well as the current macroblock's address, MbAff flag and FieldMbFlag. For a macroblock in a
progressive frame picture or a field picture, one macroblock may depend on up to four neighbors, A, B,
C and D as shown in AVC-Style Dependency Example. For a macroblock in a MbAff pair, it may depend
on up to three, five or eight neighbors as shown in AVC-Style Dependency Example and AVC-Style
Dependency Example, based on the current macroblock's address and FieldMbFlag.

The neighbor's availability depends on the corresponding IntraPredAvailFlagA|B|C|D|E flags for the
macroblock (or the macroblock pair). Hardware assumes that the flags are set correctly in the
MEDIA_OBJECT_EX command as shown in Macroblock indices for field picture destination. For
simplicity, the left neighbor pair (A0 and A1) availability for a MbAff macroblock can be determined as a
group by IntraPredAvailFlagA | IntraPredAvailFlagE. For the second macroblock in a frame MbAff
pair, it depends on the first macroblock in the pair and it is always available.

Neighbor addresses of a macroblock in a progressive frame picture (MbAff = 0) or a field picture
with up to 4 dependencies

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 553

Neighbor addresses of the first macroblock in a MbAff frame picture (MbAff = 1) with up to 8
dependencies

Neighbor addresses of the second macroblock in a MbAff frame picture (MbAff = 1) with up to 8
dependencies

 3D – Media – GPGPU

554 Doc Ref # IHD-OS-VLV-Vol7-04.14

Table: Neighbor Availability

MbAff FieldMbFlag VertOrigin[0] A B C D LB Description

0 0/1 0/1 √ √ √ √ Progressive or Field picture

1 0 0 √ √ √ √ √ 1st Frame MbAff macroblock

1 0 1 √ na 0 na √ 2nd Frame MbAff macroblock

1 1 0 √ √ √ √ √ 1st Field MbAff macroblock

1 1 1 √ √ √ √ √ 2nd Field MbAff macroblock

VC1-Style Dependency Example

For VC1, only one dependency may be set depending on the availability of the upper neighbor
macroblock.

Table: Macroblock sequence order in a VC-1 picture with WidthInMblk = 5 and HeightInMblk = 6

 0 1 2 3 4

0 0 1 2 3 4

1 5 6 7 8 9

2 10 11 12 13 14

3 15 16 17 18 19

4 20 21 22 23 24

5 25 26 27 28 29

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 555

Interrupt Latency

Command Streamer is capable of context switching between primitive commands.

For all independent threads, it is not much a problem. The interrupt latency is dictated by the longest
command that is likely to have the largest number of threads. For VLD mode, such a command may be
corresponding to a largest slice in a high definition video frame. This is application dependent, there are
not much host software can do. For Generic mode, programmer should consider to constrain the
compute workload size of each thread.

In modes with child threads, a root thread may persist in the system for long period of time – staying
until its child threads are all created and terminated. Therefore, the corresponding primitive command
may also last for long time. The Software designer should partition the workload to restrict the duration
of each root thread. For example, this may be achieved by partitioning a video frame and assigning
separate primitive commands for different data partitions.

In modes with synchronized root threads, a synchronized root thread is dependent on a previous root
or child thread. This means context switch is not allowed between the primitive command for the
synchronized root thread and the one for the depending thread. So no command queue arbitration
should be allowed between them. Software designer should also restrict the duration of such non-
interruptible primitive command segments.

Thread Spawner Unit

The Thread Spawner (TS) unit is responsible for making thread requests (root and child) to the Thread
Dispatcher, managing scratch memory, maintaining outstanding root thread counts, and monitoring the
termination of threads.

Thread Spawner block diagram

 3D – Media – GPGPU

556 Doc Ref # IHD-OS-VLV-Vol7-04.14

Root Threads and Child Threads

Thread requests sourced from VFE are called root threads. These threads may be creating subsequent
child threads.

Root Threads

A root thread may be a macroblock thread created by VFE as in VLD mode, or may be a general-
purpose thread assembled by VFE according to full description provided by host software in Generic
mode. Thread requests are stored in the Root Thread Queue. TS keeps everything needed to get the
root threads ready for dispatch and then tracks dispatched threads until their retirement.

TS arbitrates between root thread and child thread. The root thread request queue is in the arbitration
only if the number of outstanding threads does not exceed the maximum root thread state variable.
Otherwise, the root thread request queue is stalled until some other root threads retire/terminate.

Once a root thread is selected to be dispatched, its lifecycle can be described by the following steps:

1. TS forwards the interface descriptor pointer to the L1 interface descriptor cache (a small fully
associated cache containing up to 4 interface descriptors). The interface descriptor is either
found in the cache or a corresponding request is forwarded to the L2 cache. Interface
descriptors return back to TS in requesting order.

• Once TS receives the interface descriptor, it checks whether maximum concurrent root
thread number has reached to determine whether to make a thread dispatch request or to
stall the request until some other root threads retire. If the thread requests the use of scratch
memory, it also generates a pointer into the scratch space.

2. TS then builds the transparent header and the R0 header.
3. Finally, TS makes a thread request to the Thread Dispatcher.
4. TS keeps track of dispatched thread, and monitors messages from the thread (resource

dereference and/or thread termination). When it receives a root thread termination message, it
can recover the scratch space and thread slot allocated to it. The URB handle may also be
dereferenced for a terminated root thread for future reuse. It should be noted that URB handle
dereference may occur before a root thread terminates. See detailed description in the Media
Message section.

• It is the root thread's responsibility (software) to guarantee that all its children have retired
before the root thread can retire.

URB Handles

VFE is in charge of allocating URB handles for root threads. One URB handle is assigned to each root
thread. The handle is used for the payload into the root thread.

Children Present is a command variable in the _OBJECT command.

If Children Present is not set (root-without-child case), TS signals VFE to dereference the URB handle
immediately after it receives acknowledgement from TD that the thread is dispatched.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 557

If Children Present is set (root-with-child case), the URB handle is forwarded to the root thread and
serves as the return URB handle for the root thread. TS does not signal deference at the time of
dispatch. TS signals URB handle deference only when it receives a resource dereference message from
the thread.

Root to Child Responsibilities

Any thread created by another thread running in an EU is called a child thread. Child threads can create
additional threads, all under the tree of a root which was requested via the VFE path.

A root thread is responsible of managing pre-allocated resources such as URB space and scratch space
for its direct and indirect child threads. For example, a root thread may split its URB space into sections.
It can use one section for delivering payload to one child thread as well as forwarding the section to the
child thread to be used as return URB space. The child thread may further subdivide the URB section
into subsections and use these subsections for its own child threads. Such process may be iterated.
Similarly, a root thread may split its scratch memory space into sections and give one scratch section for
one child thread.

TS unit only enforces limitation on number of outstanding root threads. It is the root threads'
responsibility to limit the number of child threads in their respected trees to balance performance and
avoid deadlock.

Multiple Simultaneous Roots

Multiple root threads are allowed concurrently running in GEN4 execution units. As there is only one
scratch space state variable shared for all root threads, all concurrent root thread requiring scratch
space share the same scratch memory size. Multiple Simultaneous Roots depicts two examples of
thread-thread relationship. The left graph shows one single tree structure. This tree starts with a single
root thread that generates many child threads. Some child threads may create subsequent child
threads. The right graph shows a case with multiple disconnected trees. It has multiple root threads,
showing sibling roots of disconnected trees. Some roots may have child threads (branches and leafs)
and some may not.

There is another case (as shown in Multiple Simultaneous Roots) where multiple trees may be connected.
If a root is a synchronized root thread, it may be dependent on a preceding sibling root thread or on a
child thread.

Examples of thread relationship

 3D – Media – GPGPU

558 Doc Ref # IHD-OS-VLV-Vol7-04.14

A example of thread relationship with root sibling dependency

Synchronized Root Threads

A synchronized root thread (SRT) originates from a MEDIA_OBJECT command with Thread
Synchronization field set. Synchronized root threads share the same root thread request queue with the
non-synchronized roots. A SRT is not automatically dispatched. Instead, it stays in the root thread
request queue until a spawn-root message is at the head of the child thread request queue. Conversely,
a spawn-root message in the child thread request queue will block the child thread request queue until
the head of root thread request queue is a SRT. When they are both at the head of queues, they are
taken out from the queue at the same time.

A spawn-root message may be issued by a root thread or a child thread. There is no restriction.
However, the number of spawn-root messages and the number of SRT must be identical between state
changes. Otherwise, there can be a deadlock. Furthermore, as both requests are blocking, synchronized
root threads must be used carefully to avoid deadlock.

When Scoreboard Control is enabled, the dispatch of a SRT originated from a MEDIA_OBJECT_EX
command is still managed by the same way in addition to the hardware scoreboard control.

Deadlock Prevention

Root threads must control deadlock within their own child set. Each root is given a set of preallocated
URB space; to prevent deadlock it must make sure that all the URB space is not allocated to
intermediate children who must create more children before they can exit.

There are limits to the number of concurrent threads. The upper bound is determined by the number of
execution units and the number of threads per EU. The actual upper bound on number of concurrent
threads may be smaller if the GRF requirement is large. Deadlock may occur if a root or intermediate
parent cannot exit until it has started its children but there is no space (for example, available thread
slot in execution units) for its children to start.

To prevent deadlock, the maximum number of root threads is provided in VFE state. The Thread
Spawner keeps track of how many roots have been spawned and prevents new roots if the maximum
has been reached. When child threads are present, it is software's responsibility to constrain child
thread generation, particularly the generation of child threads that may also spawn more child threads.

Child thread dispatch queue in TS is another resource that needs to be considered in preventing
deadlock. The child thread dispatch queue in TS is used for (1) message to spawn a child thread, (2)
message to spawn a synchronized root thread, and (3) thread termination message. If this queue is full,
it will prevent any thread to terminate, causing deadlock.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 559

For example, if an application only has one root thread (max # of root threads is programmed to be
one). This root thread spawns child threads. In order to avoid deadlock, the maximum number of
outstanding child thread that this root thread can spawn is the sum of the maximum available thread
slots plus the depth of the child thread dispatch queue minus one.

Max_Outstanding_Child_Threads = (Thread Slot Number – 1) + (TS Child Queue Depth – 1)

Adding other root threads (synchronized and/or non-synchronized) to the above example, the situation
is more complicated. A conservative measure may have to use to prevent deadlock. For example, the
root thread spawning child threads may have to exclude the max number of root threads as in the
following equation to compute the maximum number of outstanding child threads to be dispatched.

Max_Outstanding_Child_Threads = (Thread Slot Number – 1) + (TS Child Queue Depth – 1) –
(Max Root Threads-1)

Child Thread Life Cycle

When a (parent) thread creates a child thread, the parent thread behaves like a fixed function. It
provides all necessary information to start the child thread, by assembling the payload in URB (including
R0 header) and then sending a spawn thread message to TS with following data:

• An interface descriptor pointer for the child thread.
• A pointer for URB data

The interface descriptor for a child may be different from the parent – how the parent determines the
child interface descriptor is up to the parent, but it must be one from the interface descriptor array on
the same interface descriptor base address.

The URB pointer is not the same as a URB handle. It does not have an URB handle number and does not
appear in any handle table. This is acceptable because the URB space is never reclaimed by TS after a
child is dispatched, but rather when the parent releases its original handles and/or retires.

The child request is stored in the child thread queue. The depth of the queue is limited to 8, overrun is
prevented by the message bus arbiter which controls the message bus. The arbiter knows the depth of
the queue and will only allow 8 requests to be outstanding until the TS signals an entry has been
removed.

As mentioned previously, child threads have higher priority over root threads. Once TS selects a child
thread to dispatch, it follows these steps:

1. TS forwards the interface descriptor pointer to the L1 interface descriptor cache (a small fully
associated cache containing up to 4 interface descriptors). The interface descriptor is either
found in the cache or a corresponding request is forwarded to the L2 cache. Interface
descriptors return back to TS in requesting order.

2. TS then builds the transparent header but not the R0 header.
3. Finally, TS makes a thread request to the Thread Dispatcher.
4. Once the dispatch is done, TS can forget the child – unlike roots, no bookkeeping is done that

has to be updated when the child retires.

If more data needs to be transferred between a parent thread and its child thread than that can fit in a
single URB payload, extra data must be communicated via shared memory through data port.

 3D – Media – GPGPU

560 Doc Ref # IHD-OS-VLV-Vol7-04.14

Arbitration between Root and Child Threads

When both root thread queue and child thread queue are both non-empty, TS serves the child thread
queue. In other words, child threads have higher priority over root threads. The only condition that the
child thread queue is stalled by the root thread queue is that the head of child thread queue is a root-
synchronization message and the head of root thread queue is not a synchronized root thread.

Persistent Root Thread (PRT)

A persistent root thread in general stays in the system for a long period of time. It is normally a parent
thread, and only one PRT is allowed in the system at a time.

Because only one PRT can execute at a time, once the next PRT starts, the previous one will never be
restarted, thus the context save surface can be reused from one PRT to the next.

A PRT may check the Thread Restart Enable bit in the R0 header to find out whether it is a fresh start or
resumed from a previous interrupt and then can continue operations from that previously saved
context.

A PRT can be interleaved with other root (such as parent root thread, or synchronized root thread) and
child threads. A parent root thread is not necessarily a PRT.

Use of PRT must follow the following rule:

• There can only be one PRT in the media pipeline at a given time. That means, there shall not be
any other media primitive commands (MEDIA_OBJECT or MEDIA_OBJECT_EX) between it and the
previous MI_FLUSH command. In other words, when multiple such PRTs are used in a sequence of
media primitive commands, MI_FLUSH must be inserted.

Media State Model

The media state model is based on in-line state load mechanism. VFE state, URB configuration and
Interface Descriptors are loaded to VFE hardware through state commands.

All Interface Descriptors have the same size and are organized as a contiguous array in memory. They
can be selected by Interface Descriptor Index for a given kernel. This allows different kinds of kernels to
coexist in the system.

Pipeline
(Media)

Bits[28:27]
Opcode

Bits[26:24]
Sub Opcode
Bits[23:16] Command

2h 0h 00h MEDIA_VFE_STATE

2h 0h 01h MEDIA_CURBE_LOAD

2h 0h 02h MEDIA_INTERFACE_DESCRIPTOR_LOAD

Media State and Primitive Commands

This section contains various commands for media.

MEDIA_VFE_STATE

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 561

MEDIA_VFE_STATE

MEDIA_CURBE_LOAD

MEDIA_INTERFACE_DESCRIPTOR_LOAD

Interface Descriptor Data payload as pointed to by the Interface Descriptor Data Start Address:

INTERFACE_DESCRIPTOR_DATA

Interface Descriptor Data payload as pointed by the Interface Descriptor Data Start Address:

INTERFACE_DESCRIPTOR_DATA

The MEDIA_STATE_FLUSH command is updated to specify all the resources required for the next thread
group via an interface descriptor – if the resources are not available the group cannot start.

 Two MEDIA_STATE_FLUSH commands need to be used to ensure that the flush is complete.

MEDIA_STATE_FLUSH

The MEDIA_OBJECT command is the basic media primitive command for the media pipeline. It supports
loading of inline data as well as indirect data. At least one form of payload (either inline, indirect or
CURBE) must be sent with the MEDIA_OBJECT.

MEDIA_OBJECT

MEDIA_OBJECT_PRT

MEDIA_OBJECT_WALKER

The MEDIA_OBJECT_WALKER command uses the hardware walker in VFE for generating threads
associated with a rectangular shaped object. It only supports loading of inline data or CURBE but not
indirect data. At least one form of payload must be sent. Control of scoreboards (up to 8) is implicit
based on the (X, Y) address of the generated thread and the scoreboard control state.

The command can be used only in Generic modes.

When Use Scoreboard field is set, the (X, Y) address and the Color field of the generated thread are
used in the hardware scoreboard and the thread dependencies are set by states from the
MEDIA_VFE_STATE command.

One or more threads may be generated by this command. This command does not support indirect
object load. When inline data is present, it is repeated for all threads it generates. Unlike CURBE, which
requires pipeline flush for change, continued change of this kind of global (in the sense of shared by
multiple threads from this command) data is supported when MEDIA_OBJECT_WALKER commands are
issued without a pipeline flush in between.

Media Messages

All message formats are given in terms of dwords (32 bits) using the following conventions:

 Dispatch Messages: Rp.d
 SEND Instruction Messages: Mp.d

 3D – Media – GPGPU

562 Doc Ref # IHD-OS-VLV-Vol7-04.14

Thread Payload Messages

The root thread's register contents differ from that of child threads, as shown in Thread Payload
Messages. The register contents for a synchronized root thread (also referred to as spawned root thread)
and an unsynchronized one are also different. Whether the URB Constant data field is present or not is
determined by the interface descriptor of a given thread. This applies to both root and child threads.
When URB Constant data field is present for a synchronized root thread, URB constant data field is
before the data field received from the spawning thread, which is also before the URB payload data.

Thread payload message formats for root and child threads

Generic Mode Root Thread

The following table shows the R0 register contents for a Generic mode root thread, which is generated
by TS. The remaining payloads are application dependent.

Table: R0 Header of a Generic Mode Root Thread

DWord Bit Description

R0.5 31:10 Scratch Space Pointer. Specifies the 1k-byte aligned pointer to the scratch space. This
field is only valid when Scratch Space is enabled.

Format = GeneralStateOffset[31:10]

9:8 Reserved: MBZ.

9:0 FFTID. This ID is assigned by TS and is a unique identifier for the thread in comparison to
other concurrent root threads. It is used to free up resources used by the thread upon
thread completion.

Format = U8. Bits 9:8 are Reserved, MBZ.

R0.4 31:5 Binding Table Pointer. The 32-byte aligned pointer to the Binding Table. It is specified
as an offset from the Surface State Base Address.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 563

DWord Bit Description

Format = SurfaceStateOffset[31:5]

4:0 Reserved: MBZ

R0.3 31:5 Sampler State Pointer. Specifies the 32-byte aligned pointer to the sampler state table.

Format = GeneralStateOffset[31:5]

4 Reserved: MBZ

3:0 Per Thread Scratch Space. The amount of scratch space, in 1K-byte quantities, allowed
to be used by this thread. The value specifies the power that two is raised to, to
determine the amount of scratch space.

Format = U4

Range = [0,11] indicating [1K bytes, 2M bytes] in powers of two

 27:24 BarrierID. This field indicates which one from the 16 Barriers this kernel is associated.

Format: U4

 23:16 Barrier.Offset. The offset for the Barrier to indicate the offset from the requester's
RegBase (which may be 0 if Bypass Gateway Control is set to 1) for the broadcast barrier
message. Barrier.Offset + RegBase must be in the valid GRF range. Otherwise, hardware
behavior is undefined. It is in units of 256-bit GRF registers. The most significant bit of
this field must be zero.

Format = U8

Range = [0,127]

 15:9 Reserved: MBZ

 8:4 Interface Descriptor Offset. The offset from the interface descriptor base pointer to the
interface descriptor that applies to this object, in units of interface descriptors.

Format = U5

 3:0 Scoreboard Color (only with MEDIA_OBJECT_EX): This field specifies which dependency
color the current thread belongs to. It affects the dependency scoreboard control.

Format = U4

R0.2 31:10 Reserved: MBZ.

9:4 Interface Descriptor Offset. The offset from the interface descriptor base pointer to the
interface descriptor that applies to this object, in units of interface descriptors.

Format = U5

3:0 Scoreboard Color (only with MEDIA_OBJECT_EX): The dependency color that the current

 3D – Media – GPGPU

564 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

thread belongs to. It affects the dependency scoreboard control.

Format = U4

R0.1 31:28 Reserved: MBZ.

27:26 Reserved: MBZ.

25 Reserved: MBZ.

24:16 Scoreboard Y.

This field provides the Y term of the scoreboard value of the current thread.

Format = U9

15:12 Reserved: MBZ.

11:9 Reserved: MBZ.

8:0 Scoreboard X.

This field provides the X term of the scoreboard value of the current thread.

Format = U9

R0.0 31:24 Scoreboard Mask. Each bit indicates the corresponding dependency scoreboard is
dependent on. This field is ANDed with the corresponding Scoreboard Mask field in the
MEDIA_VFE_STATE.

Bit n (for n = 0…7): Scoreboard n is dependent, where bit 24 maps to n = 0.

Format = TRUE/FALSE

23:16 Reserved: MBZ

15:0 URB Handle. This is the URB handle indicating the URB space for use by the root thread and its
children.

Root Thread from MEDIA_OBJECT_PRT

The root thread payload message for an MEDIA_OBJECT_PRT command has a fixed format independent
of the VFE mode (e.g. Generic mode or AVC-IT mode). One example GRF register location is given for
the condition that CURBE is disabled.

Root thread payload layout for a MEDIA_OBJECT_PRT command

GRF Register Example Description

R0 R0 R0 header

R1 – R(m) n/a Constants from CURBE when CURBE is enabled
m is a non-negative value

 R(m+1) R1 In-line Data block.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 565

The R0 header field is as the following, which is the same as in other modes except the Thread Restart
Enable bit (bit 0 of R0.2).

R0 header of the thread payload of a MEDIA_OBJECT_PRT command

DWord Bit Description

R0.7 31

27:24

23:0

R0.6 31:24

23:0

R0.5 31:10 Scratch Space Pointer. Specifies the 1k-byte aligned pointer to the scratch space. This
field is only valid when Scratch Space is enabled.

Format = GeneralStateOffset[31:10]

9:8 Reserved: MBZ

7:0 FFTID. This ID is assigned by TS and is a unique identifier for the thread in comparison to
other concurrent root threads. It is used to free up resources used by the thread upon
thread completion.

R0.4 31:5 Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding Table. It is
specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

4:0 Reserved: MBZ

R0.3 31:5 Sampler State Pointer. Specifies the 32-byte aligned pointer to the sampler state table.

Format = GeneralStateOffset[31:5]

4 Reserved: MBZ

3:0 Per Thread Scratch Space. Specifies the amount of scratch space, in 16-byte quantities,
allowed to be used by this thread. The value specifies the power that two will be raised
to, to determine the amount of scratch space.

Format = U4

Range = [0,11] indicating [1k bytes, 2M bytes] in powers of two

R0.2 31:4 Interface Descriptor Pointer. Specifies the 16-byte aligned pointer to this thread's
interface descriptor. Can be used as a base from which to offset child thread's interface
descriptor pointers from.

Format = GeneralStateOffset[31:4]

3:1 Reserved: MBZ

0 Thread Restart Enable. If set, indicates that the persistent root thread (PRT) is being

 3D – Media – GPGPU

566 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bit Description

restarted, and context should be restored from the context save area before executing.

Format = Enable

R0.1 31:0 Reserved: MBZ

R0.0 31:16 Reserved: MBZ

15:0 URB Handle. This is the URB handle where indicating the URB space for use by the root
thread and its children.

The inline data block field is the same as in the MEDIA_OBJECT_EX command with zero-filled partial
GRF.

Root Thread from MEDIA_OBJECT_WALKER

The root thread payload message for an MEDIA_OBJECT_WALKER command, which must be in Generic
mode, has the same format as that of the generic mode root thread format.

Root thread payload layout for a MEDIA_OBJECT_WALKER command

GRF Register Example Description

R0 R0 R0 header

R1 – R(m) n/a Constants from CURBE when CURBE is enabled
m is a non-negative value

 R(m+1) R1 In-line Data block.

The R0 header field is identical to that of Generic Mode Root Thread.

The inline data block field is the same as in the MEDIA_OBJECT command with zero-filled partial GRF.

There is no indirect data block field.

Child Thread

The thread initiation for the child thread is determined by the data stored in the URB by the parent that
spawns it. No hardware-defined header is generated. However, software should follow the header field
definition similar to that for a root thread, when the same fields are used, to be consistent and to
reduce message header assemble overhead.

The Parent Thread Count field should be the Thread Count field of the parent thread itself (e.g. copying
R0.6[23:0] to R0.7[23:0]. The Thread Count field should have a unique value for each child thread and
the unique value should not be dependent on the execution order. This is mostly important for the
cases when the child thread generation order may vary depending on the thread completion order. For
example, when generating child threads for macroblock-based processing, the Thread Count field for a
child thread should be deterministic for a macroblock position.

The following table shows the R0 register contents for a child thread, which is generated by its parent
thread. The remaining payloads are application dependent.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 567

DWord Bit Description

R0.7 31

27:24

23:0

R0.6 31:24

23:0

R0.5-R0.0 31:0 Software defined

Thread Spawn Message

The thread spawn message is issued to the TS unit by a thread running on an EU. This message contains
only one 8-DWord register. The thread spawn message may be used to:

• Spawn a child thread.
• Spawn a root thread (start dispatching a synchronized root thread).
• Dereference an URB handle.
• Indicate a thread termination, dereference other TS managed resource and may or may not

dereference URB handle.
• Release a PRT_Fence.

To end a root thread, the end of thread message must be targeted at the thread spawner. In this case,
the root thread sends a message with a dereference resource in the Opcode field. The thread spawner
does not snoop the messages sideband to determine when a root thread has ended. Thread Spawner
does not track when a child thread terminates, to be consistent a child thread should also terminate
with a dereference resource message to the Thread Spawner. Software must set the Requester Type
(root or child thread) field correctly.

TS dispatches one synchronized root thread upon receiving a spawn root thread message (from a
synchronization thread). The synchronizing thread must send the number of spawn root thread message
exactly the same as the subsequent synchronized root thread. No more, no less. Otherwise, hardware
behavior is undefined.

URB Handle Offset field in this message (in M0.4) has 10 bits, allowing addressing of a large URB space.
However, when a parent thread writes into the URB, it subjects to the maximum URB offset limitation of
the URB write message, which is only 6 bits (see Unified Return Buffer Chapter for details). In this case,
the parent thread may have to modify the URB Return Handle 0 field of the URB write message to
subdivide the large URB space that the thread manages.

Only a persistent root thread can use this message to dispatch a root thread if preemption exceptions
are possible. The root thread requested by this message is not guaranteed to dispatch, and the
persistent root thread must handle the case where it does not dispatch.

Child threads requested by this message are guaranteed to dispatch in all cases, so long as the
persistent root thread does not also dispatch synchronized root threads. A child thread does not
dispatch if it is behind a synchronized root thread that is not dispatched due to a preemption
exception.

 3D – Media – GPGPU

568 Doc Ref # IHD-OS-VLV-Vol7-04.14

In addition to monitor end of thread message targeted to Thread Spawner, Thread Spawner also
monitors the message targeting to Message Gateway for EOT signal. Therefore, a child thread, who
doesn't hold any hardware resource (URB handle or scratch memory) that Thread Spawner manages,
can terminate with a Gateway message with EOT on. The reason of this new TS feature is to avoid a
possible risk condition as described below.

In a system running child threads, a parent thread is monitoring the status of the child threads by
communications through Message Gateway. When a child thread is about to terminate, it sends a
message to the parent through Message Gateway and then sends a second message of EOT (end of
thread) to TS.

There is a latency between sending a message to parent thread and the EOT to TS due to message bus
arbitration. The parent thread may acknowledge the GW message and issue a new child dispatch before
the EOT was processed; basically threads are issued faster than retired.

Because the messages for new child dispatch and EOT go to the same queue in TS, if the queue gets
full, EOTs will get blocked. In the case when all the EUs/Threads are full, this will create a system
deadlock: no EOTs can be acknowledged by TS (to free up EU resource) and no child threads can be
dispatched (to free up TS queue to receive EOT message).

Message Descriptor

The following table shows the lower 20 bits of the message descriptor within the SEND instruction for a
thread spawn message.

Thread Spawn Message Descriptor

Message Payload

DWord Bits Description

M0.7 31:0

M0.6 31:0

M0.5 31:8 Ignored.

7:0 FFTID. This ID is assigned by TS and is a unique identifier for the thread in comparison to
other concurrent root threads. It is used to free up resources used by a root thread upon
thread completion.

This field is valid only if the Opcode is dereference resource, and is ignored by hardware
otherwise.

M0.4 31:16 Ignored.

15:10 Dispatch URB Length. Indicates the number of 8-DWord URB entries contained in the
Dispatch URB Handle that will be dispatched. When spawning a child thread, the URB
handle contains most of the child thread's payload including the R0 header. When
spawning a root thread, the URB handle contains the message passed from the
requesting thread to the spawned peer root thread. The number of GRF registers that are
initialized at the start of the spawned child thread is the addition of this field and the
number of URB constants if present. The number of GRF registers that are initialized at

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 569

DWord Bits Description

the start of a spawned root thread is the sum of this field, the number of URB constants if
present, and the URB handle received from VFE.

This field is ignored if the Opcode is dereference resource.

A Length of 0 can be used while spawning child threads to indicate that there is no
payload beyond the required R0 header. A Length of 0 while spawning a root thread
indicates that there is no payload at all from the parent thread. A spawned root has R0
supplied by the Media_Object command indirect/inline data.

Format = U6

Range = [0,63] for child threads.

9:0 URB Handle Offset. Specifies the 8-DWord URB entry offset into the URB handle that
determines where the associated dispatch payload will be retrieved from when the
spawned child or root thread is dispatched.

This field is ignored if the Opcode is dereference resource.

Format = U10

Range = [0,1023]

M0.3 31:0 Ignored.

M0.2 31:28 Ignored.

27:24 BarrierID. This field indicates which one of the 16 Barriers this kernel is associated with.

Format: U4

23:16 Ignored.

15:10 Ignored.

9:4 Interface Descriptor Offset. This field specifies the offset from the interface descriptor
base pointer to the interface descriptor that is applied to this object. It is specified in
units of interface descriptors.

Format = U5

3:0 Scoreboard Color (only with MEDIA_OBJECT_EX). This field specifies which dependency
color the current thread belongs to. It affects the dependency scoreboard control.

Format = U4

M0.1 31:0 Ignored.

M0.0 31:28 Ignored.

27:24 Shared Local Memory Index. Indicates the starting index for the shared local memory
for the thread group. Each index points to the start of a 4K memory block, 16 possibilities
cover the entire 64K shared memory per half-slice.

 3D – Media – GPGPU

570 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bits Description

Format = U4

23:16 Reserved: MBZ

15:0 Dispatch URB Handle.

If Opcode (and Requester Type) is spawn a child thread: Specifies the URB handle for the
child thread.

If Opcode (and Requester Type) is spawn a root thread: Specifies the URB handle
containing message (e.g. requester gateway information) from the requesting thread to
the spawned root thread.

If Opcode is dereference resource: This field is required on end of thread messages if the
Children Present bit is set, as the handle must be dereferenced, otherwise this field is
ignored.

EU Overview

The GEN instruction set is a general-purpose data-parallel instruction set optimized for graphics and
media computations. Support for 3D graphics API (Application Programming Interface) Shader
instructions is mostly native, meaning that GEN efficiently executes Shader programs. Depending on
Shader program operation modes (for example, a Vertex Shader may be executed on a base of a vertex
pair, while a Pixel Shader may be executed on a base of a 16-pixel group), translation from 3D graphics
API Shader instruction streams into GEN native instructions may be required. In addition, there are
many specific capabilities that accelerate media applications. The following feature list summarizes the
GEN instruction set architecture:

• SIMD (single instruction multiple data) instructions. The maximum number of data elements per
instruction depends on the data type.

• SIMD parallel arithmetic, vector arithmetic, logical, and SIMD control/branch instructions.
• Instruction level variable-width SIMD execution.
• Conditional SIMD execution via destination mask, predication, and execution mask.
• Instruction compaction.
• An instruction may executed in multiple cycles over a SIMD execution pipeline.
• Most GEN instructions have three operands. Some instructions have additional implied source or

destination operands. Some instructions have explicit dual destinations.
• Region-based register addressing.
• Direct or indirect (indexed) register addressing.
• Scalar or vector immediate source operand.
• Higher precision accumulator registers are architecturally visible.
• Self-modifying code is not allowed (instruction streams, including instruction caches, are read-

only).

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 571

CoIssue/Dual Issue:

This generation of EU allows two instructions to be issued at the same time (sometimes referred to as
dual-issue or more generally co-issue). The two instructions issued are always from different threads.
The terms FPU Pipe and EM Pipe are the terms used when refering to the two simultaneous pipes. The
Gen7 implementation dual-issue capability is limited to only the most popular instructions and source
operand modes. Later generations of EU expand on this concept to allow more operations.

Description

• Opcodes: add, mov, mad, mul, cmp
• Datatype: single precision floats.
• Accessmode:

o Align1:
 No Scattering or Gathering data. This means data in source and destination registers

are aligned and packed (data is contiguous in a register).
 //Example:
 // allowed, data is contiguous and source and destination regioning map one
to one.
 mov (8) r10.0:f r11.0<8;8,1>:f

 // not allowed, data from source is strided and requires gathering to write
to destination
 mov (8) r10.0:f r11.0<4;4,2>:f

 // not allowed, data from source is contiguous but not aligned with
destination. Destination register requires scattering
 mov (8) r10.0<2>:w r11.0<8;8,1>:w

 //not allowed, data from source is contiguous but destination is not
aligned to source
 mov (8) r10.1:f r11.0<4;4,1>:f

 // allowed. Source and destination have stride but are aligned
 mov (4) r10.1:f r11.1<4;4,1>:f

 A single precision float scalar is allowed.
o Align16

• Addressmode: Direct Addressing
• Register File: GRF/NULL. No access to Accumulator.
• Condition modifiers supported only for cmp.

EU Overview

The GEN instruction set is a general-purpose data-parallel instruction set optimized for graphics and
media computations. Support for 3D graphics API (Application Programming Interface) Shader
instructions is mostly native, meaning that GEN efficiently executes Shader programs. Depending on
Shader program operation modes (for example, a Vertex Shader may be executed on a base of a vertex
pair, while a Pixel Shader may be executed on a base of a 16-pixel group), translation from 3D graphics
API Shader instruction streams into GEN native instructions may be required. In addition, there are

 3D – Media – GPGPU

572 Doc Ref # IHD-OS-VLV-Vol7-04.14

many specific capabilities that accelerate media applications. The following feature list summarizes the
GEN instruction set architecture:

• SIMD (single instruction multiple data) instructions. The maximum number of data elements per
instruction depends on the data type.

• SIMD parallel arithmetic, vector arithmetic, logical, and SIMD control/branch instructions.
• Instruction level variable-width SIMD execution.
• Conditional SIMD execution via destination mask, predication, and execution mask.
• Instruction compaction.
• An instruction may executed in multiple cycles over a SIMD execution pipeline.
• Most GEN instructions have three operands. Some instructions have additional implied source or

destination operands. Some instructions have explicit dual destinations.
• Region-based register addressing.
• Direct or indirect (indexed) register addressing.
• Scalar or vector immediate source operand.
• Higher precision accumulator registers are architecturally visible.
• Self-modifying code is not allowed (instruction streams, including instruction caches, are read-

only).

CoIssue/Dual Issue:

This generation of EU allows two instructions to be issued at the same time (sometimes referred to as
dual-issue or more generally co-issue). The two instructions issued are always from different threads.
The terms FPU Pipe and EM Pipe are the terms used when refering to the two simultaneous pipes. The
Gen7 implementation dual-issue capability is limited to only the most popular instructions and source
operand modes. Later generations of EU expand on this concept to allow more operations.

Description

• Opcodes: add, mov, mad, mul, cmp
• Datatype: single precision floats.
• Accessmode:

o Align1:
 No Scattering or Gathering data. This means data in source and destination registers

are aligned and packed (data is contiguous in a register).
 //Example:
 // allowed, data is contiguous and source and destination regioning map one
to one.
 mov (8) r10.0:f r11.0<8;8,1>:f

 // not allowed, data from source is strided and requires gathering to write
to destination
 mov (8) r10.0:f r11.0<4;4,2>:f

 // not allowed, data from source is contiguous but not aligned with
destination. Destination register requires scattering
 mov (8) r10.0<2>:w r11.0<8;8,1>:w

 //not allowed, data from source is contiguous but destination is not
aligned to source

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 573

 mov (8) r10.1:f r11.0<4;4,1>:f

 // allowed. Source and destination have stride but are aligned
 mov (4) r10.1:f r11.1<4;4,1>:f

 A single precision float scalar is allowed.
o Align16

• Addressmode: Direct Addressing
• Register File: GRF/NULL. No access to Accumulator.
• Condition modifiers supported only for cmp.

Primary Usage Models

In describing the usage models of the GEN instruction set, the following sections forward reference
terminology, syntax, and instructions described later in this specification. For clarity reasons, not all
forward references are explained at the point of reference. See the Instruction Set Summary chapter for
information about instruction fields and syntax.

AOS and SOA Data Structures

With the Align1 and Align16 access modes, the GEN instruction set provides effective SIMD
computation whether data is arranged in array of structures (AOS) form or in structure of arrays (SOA)
form. The AOS and SOA data structures are illustrated by the examples in AOS and SOA Data Structures.
The example shows two different ways of storing four vectors in four SIMD registers. For simplicity, the
data vector and the SIMD register both have four data elements. The four data elements in a vector are
denoted by X, Y, Z, and W just as for a vertex in 3D geometry. The AOS structure stores one vector in a
register and the next vector in another register. The SOA structure stores one data element of each
vector in a register and the next element of each vector in the next register and so on. The two
structures can be related by a matrix transpose operation.

AOS and SOA Data Structures

GEN 3D and media applications take advantage of such broad architecture support and use both AOS
and SOA data arrangements.

 3D – Media – GPGPU

574 Doc Ref # IHD-OS-VLV-Vol7-04.14

• Vertices in 3D Geometry (Vertex Shader and Geometry Shader) are arranged in AOS form and use
SIMD4x2 and SIMD4 modes, respectively, as detailed below.

• Pixels in 3D Rasterization (Pixel Shader) are arranged in SOA form and use SIMD8 and SIMD16
modes as detailed below.

• Pixels in media are primarily arranged in SOA form, and occasionally in AOS form with possibly
mixed modes of operation that uses region-based addressing extensively.

These are preferred methods; alternative arrangements may also be possible. Shared function resources
provide data transpose capability to support both modes of operations: The sampler has a transpose
for sample reads, the data port has a transpose for render cache writes, and the URB unit has a
transpose for URB writes.

The following 3D graphics API Shader instruction is used in the following sections to illustrate various
operation modes:
 add dst.xyz src0.yxzw src1.zwxy

This example is a SIMD instruction that takes two source operands src0 and src1, adds them, and stores
the result to the destination operand dst. Each operand contains four floating-point data elements. The
data type is determined by the instruction opcode. This instruction also uses source swizzles (.yxzw for
src0 and .zwxy for src1) and a destination mask (.xyz). Please refer to the programming specifications of
3D graphics API Shader instructions for more details.

A general register has 256 bits, which can store 8 floating point data elements. For 3D graphics, the
mode of operation is (loosely) termed after the data structure as SIMDmxn, where m is the size of the
vector and n is the number of concurrent program flows executed in SIMD.

Execution with AOS data structures:

• SIMD4 (short for SIMD4x1) indicates that a SIMD instruction operates on 4-element vectors
storedin registers. There is one program flow.

• SIMD4x2 indicates that a SIMD instruction operates on a pair of 4-element vectors in registers.
There are effectively two programs running side by side with one vector per program.

Execution with SOA data structures, also referred to as channel serial execution, mostly uses:

• SIMD8 (short for SIMD1x8) indicates a SIMD instruction based on the SOA data structure where
one register contains one data element (the same one) for each of 8 vectors. Effectively, there are
8 concurrent program flows.

• SIMD16 (short for SIMD1x16) indicates that a SIMD instruction operates on a pair of registers
that contain one data element (the same one) for each of 16 vectors. SIMD16 has 16 concurrent
program flows.

SIMD4 Mode of Operation

With a register mapping of src0 to doublewords 0-3 of r2, src1 to doublewords 4-7 of r2 and dst to
doublewords 0-3 of r3, the example 3D graphics API Shader instruction can be translated into the
following GEN instruction:

add (4) r3<4>.xyz:f r2<4>.yzwx:f r2.4<4>.zwxy:f {NoMask}

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 575

Without diving too much into the syntax definition of a GEN instruction, it is clear that a GEN instruction
also takes two source operands and one destination operands. The second term, (4), is the execution
size that determines the number of data elements processed by the SIMD instruction. It is similar to the
term SIMD Width used in the literature. Each operand is described by the register region parameters
such as <4> and data type (e.g. :f). These will be detailed in the SIMD8 Mode of Operation section. The
instruction option field, {NoMask}, ensure that the execution occurs for the execution channels shown in
the instruction, instead of, possibly, being masked out by the conditional masks of the thread (See
Instruction Summary chapter for definition of MaskCtrl instruction field).

The operation of this GEN instruction is illustrated in the following figure. In this example, both source
operands share the same physical GRF register r2. The two are distinguished by the subregister number.
The source swizzles control the routing of source data elements to the parallel adders corresponding to
the destination data elements. The shaded areas in the destination register r3 are not modified. In
particular, doublewords 4-7 are unchanged as the execution size is 4; doubleword 3 is unchanged due
to the destination mask setting.

In this mode of operation, there is only one program flow – any branch decision will be based on a
scalar condition and apply to the whole vector of four elements. Option {NoMask} ensures that the
instruction is not subject to the masks. In fact, most of the instructions in a thread should have
{NoMask} set.

Even though the execution only performs four parallel add operations, the GEN instruction still executes
in 2 cycles (with no useful computation in the second cycle).

 A SIMD4 Example

SIMD4x2 Mode of Operation

In this mode, two corresponding vectors from the two program flows fill a GEN register. With a register
mapping of src0 to r2, src1 to r3 and dst to r4, the example 3D graphics API Shader instruction can be
translated into the following GEN instruction:

add (8) r4<4>.xyz:f r2<4>.yxzw:f r3<4>.zwxy:f

This instruction is subject to the execution mask, which initiated from the dispatch mask. If both
program flows are available (e.g. Vertex Shader executed with two active vertices), the dispatch mask is
set to 0x00FF. The operation of this GEN instruction is illustrated in SIMD4x2 Mode of Operation (a). The
source swizzles control the routing of source data elements to the parallel adders corresponding to the
destination data elements. The shaded areas in the destination register r3 (doublewords 3 and 7) are
unchanged due to the destination mask setting. If only one program flow is available (e.g. the same

 3D – Media – GPGPU

576 Doc Ref # IHD-OS-VLV-Vol7-04.14

SIMD4x2 Vertex Shader with only one active vertex), the dispatch mask is set to 0x000F. The operation
of the same instruction is shown in SIMD4x2 Mode of Operation (b).

SIMD4x2 Examples with Different Emasks

The two source operands only need to be 16-byte aligned, not have to be GRF register aligned. For
example, the first source operand could be a 4-element vector (e.g. a constant) stored in doublewords
0-3 in r2, which is shared by the two program flows. The example 3D graphics API Shader instruction
can then be translated into the following GEN instruction:

add (8) r4<4>.xyz:f r2<0>.yzwx:f r3<4>.zwxy:f

The only difference here is that the vertical stride of the first source is 0. The operation of this GEN
instruction is illustrated in SIMD4x2 Mode of Operation.

A SIMD4x2 Example with a Constant Vector Shared by Two Program Flows

SIMD16 Mode of Operation

With 16 concurrent program flows, one element of a vector would take two GRF registers. In this mode,
two corresponding vectors from the two program flows fill a GEN register.

With the following register mappings,

src0:r2-r9 (with 16 X data elements in r2-r3, Y in r4-5, Z in r6-7 and W in r8-9),

src1: r10-r17,

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 577

dst:r18-r25,

the example 3D graphics API Shader instruction can be translated into the following three GEN
instructions:

add (16) r18<1>:f r4<8;8,1>:f r14<8;8,1>:f// dst.x = src0.y + src1.z

add (16) r20<1>:f r6<8;8,1>:f r16<8;8,1>:f// dst.y = src0.z + src1.w

add (16) r22<1>:f r8<8;8,1>:f r10<8;8,1>:f // dst.z = src0.w + src1.x

The three GEN instructions correspond to the three enabled destination masks As there is no output for
the W elements of dst, no instruction is needed for that element. The first instruction inputs the Y
elements of src0 and the Z elements of src1 and outputs the X elements of dst. The operation of this
instruction is shown in SIMD16 Mode of Operation.

With more than one program flow, the above instructions are also subject to the execution mask. The
16-bit dispatch mask is partitioned into four groups with four bits each. For Pixel Shader generated by
the Windower, each 4-bit group corresponds to a 2x2 pixel subspan. If a subspan is not valid for a Pixel
Shader instance, the corresponding 4-bit group in the dispatch mask is not set. Therefore, the same
instructions can be used independent of the number of available subspans without creating bogus data
in the subspans that are not valid.

A SIMD16 Example

Similar to SIMD4x2 mode, a constant may also be shared for the 16 program flows. For example, the
first source operand could be a 4-element vector (e.g. a constant) stored in doublewords 0-3 in r2 (AOS
format). The example 3D graphics API Shader instruction can then be translated into the following GEN
instruction:

add (16) r18<1>:f r2.1<0;1,0>:f r14<8;8,1>:f {Compr}// dst.x = src0.y + src1.z

add (16) r20<1>:f r2.2<0;1,0>:f r16<8;8,1>:f {Compr}// dst.y = src0.z + src1.w

add (16) r22<1>:f r2.3<0;1,0>:f r10<8;8,1>:f {Compr}// dst.z = src0.w + src1.x

The register region of the first source operand represents a replicated scalar. The operation of the first
GEN instruction is illustrated in SIMD16 Mode of Operation.

 Another SIMD16 Example with an AOS Shared Constant

 3D – Media – GPGPU

578 Doc Ref # IHD-OS-VLV-Vol7-04.14

SIMD8 Mode of Operation

Each compressed instruction has two corresponding native instructions. Taking the example instruction
shown in SIMD16 Mode of Operation, it is equivalent to the following two instructions.

add (8) r18<1>:f r4<8;8,1>:f r14<8;8,1>:f // dst.x[7:0] = src0.y + src1.z

add (8) r19<1>:f r5<8;8,1>:f r15<8;8,1>:f {SecHalf}// dst.x[15:8] = src0.y + src1.z

Therefore, SIMD8 can be viewed as a special case for SIMD16.

There are other reasons that SIMD8 instructions may be used. Within a program with 16 concurrent
program flows, some time SIMD8 instruction must be used due to architecture restrictions. For example,
the address register a0 only have 8 elements, if an indirect GRF addressing is used, SIMD16 instructions
are not allowed.

Message Payload Containing a Header

For most shared functions, the first register of the message payload contains the header payload of the
message (or simply the message header). Consequently, the rest of the message payload is referred to
as the data payload.

Messages to Extended Math do not have a header and only contain data payload. Those messages may
be referred to as header-less messages. Messages to Gateway combine the header and data payloads
in a single message register.

Writebacks

Some messages generate return data as dictated by the function-control (opcode) field of the send
instruction (part of the <desc> field). The Gen4 execution unit and message passing infrastructure do
not interpret this field in any way to determine if writeback data is to be expected. Instead explicit fields
in the send instruction to the execution unit the starting GRF register and count of returning data. The
execution unit uses this information to set in-flight bits on those registers to prevent execution of any
instruction which uses them as an operand until the register(s) is(are) eventually written in response to
the message. If a message is not expected to return data, the send instruction's writeback destination

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 579

specifier (<post_dest>) must be set to null and the response length field of <desc> must be 0 (see send
instruction for more details).

The writeback data, if called for, arrives as a series of register writes to the GRF at the location specified
by the starting GRF register and length as specified in the send instruction. As each register is written
back to the GRF, its in-flight flag is cleared and it becomes available for use as an instruction operand. If
a thread was suspended pending return of that register, the dependency is lifted and the thread is
allowed to continue execution (assuming no other dependency for that thread remains outstanding).

Message Delivery Ordering Rules

All messages between a thread and an individual shared function are delivered in the ordered they were
sent. Messages to different shared functions originating from a single thread may arrive at their
respective shared functions out of order.

The writebacks of various messages from the shared functions may return in any order. Further
individual destination registers resulting from a single message may return out of order, potentially
allowing execution to continue before the entire response has returned (depending on the dependency
chain inherent in the thread).

Execution Mask and Messages

The architecture defines an Execution Mask (EMask) for each instruction issued. This 16b bit-field
identifies which SIMD computation channels are enabled for that instruction. Since the send instruction
is inherently scalar, the EMask is ignored as far as instruction dispatch is concerned. Further the
execution size has no impact on the size of the send instruction's implicit move (it is always 1 register
regardless of specified execution size).

The 16b EMask is forwarded with the message to the destination shared function to indicate which
SIMD channels were enabled at the time of the send. A shared function may interpret or ignore this field
as dictated by the functionality it exposes. For instance, the Extended Math shared function observes
this field and performs the specified operation only on the operands with enabled channels, while the
DataPort writes to the render cache ignore this field completely, instead using the pixel mask included
in-band in the message payload to indicate which channels carry valid data.

End-Of-Thread (EOT) Message

The final instruction of all threads must be a send instruction that signals End-Of-Thread (EOT). An EOT
message is one in which the EOT bit is set in the send instruction's 32b <desc> field. When issuing
instructions, the EU looks for an EOT message, and when issued, shuts down the thread from further
execution and considers the thread completed.

Only a subset of the shared functions can be specified as the target function of an EOT message, as
shown in the table below.

Target Shared Functions

supporting EOT messages

Target Shared Functions

not supporting EOT messages

Null, DataPortWrite, URB, MessageGateway, ThreadSpawner DataPortRead, Sampler

 3D – Media – GPGPU

580 Doc Ref # IHD-OS-VLV-Vol7-04.14

Both the fixed-functions and the thread dispatcher require EOT notification at the completion of each
thread. The thread dispatcher and fixed functions in the 3D pipeline obtain EOT notification by
snooping all message transmissions, regardless of the explicit destination, looking for messages which
signal end-of-thread. The Thread Spawner in the media pipeline does not snoop for EOT. As it is also a
shared function, all threads generated by Thread Spawner must send a message to Thread Spawner to
explicity signal end-of-thread.

The thread dispatcher, upon detecting an end-of-thread message, updates its accounting of resource
usage by that thread, and is free to issue a new thread to take the place of the ended thread. Fixed
functions require end-of-thread notification to maintain accounting as to which threads it issued have
completed and which remain outstanding, and their associated resources such as URB handles.

Unlike the thread dispatcher, fixed-functions discriminate end-of-thread messages, only acting upon
those from threads which they originated, as indicated by the 4b fixed-function ID present in R0 of end-
of-thread message payload. This 4b field is attached to the thread at new-thread dispatch time and is
placed in its designated field in the R0 contents delivered to the GRF. Thus to satisfy the inclusion of the
fixed-function ID, the typical end-of-thread message generally supplies R0 from the GRF as the first
register of an end-of-thread message.

As an optimization, an end-of-thread message may be overload upon another productive message,
saving the cost in execution and bandwidth of a dedicated end-of-thread message. Outside of the end-
of-thread message, most threads issue a message just prior to their termination (for instance, a
Dataport write to the framebuffer) so the overloaded end-of-thread is the common case. The
requirement is that the message contains R0 from the GRF (to supply the fixed-function ID), and that
destination shared function be either (a) the URB; (b) the Read or Write Dataport; or, (c) the Gateway, as
these functions reside on the O-Bus. In the case where the last real message of a thread is to some
other shared function, the thread must issue a separate message for the purposes of signaling end-of-
thread to the null shared function.

Performance

The architecture imposes no requirement as to a shared function's latency or throughput. Due to this as
well as factors such as message queuing, shared bus arbitration, implementation choices in bus
bandwidth, and instantaneous demand for that function, the latency in delivering and obtaining a
response to a message is non-deterministic. It is expected that a Gen4 implementation has some notion
of fairness in transmission and servicing of messages so as to keep latency outliers to a minimum.

Other factors to consider with regard to performance:

• Software prefetching techniques may be beneficial for long latency data fetches (i.e. issue a load
early in the thread for data that is required late in the thread).

Message Description Syntax

All message formats are defined in terms of DWords (32 bits). The message registers in all cases are 256
bits wide, or 8 DWords. The registers and DWords within the registers are named as follows, where n is
the register number, and d is the DWord number from 0 to 7, from the least significant DWord at bits
[31:0] within the 256-bit register to the most significant DWord at bits [255:224], respectively. For

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 581

writeback messages, the register number indicates the offset from the specified starting destination
register.

Dispatch Messages: Rn.d

Dispatch messages are sent by the fixed functions to dispatch threads. See the fixed function chapters
in the 3D and Media volume.

SEND Instruction Messages: Mn.d

These are the messages initiated by the thread via the SEND instruction to access shared functions. See
the chapters on the shared functions later in this volume.

Writeback Messages: Wn.d

These messages return data from the shared function to the GRF where it can be accessed by thread
that initiated the message.

The bits within each DWord are given in the second column in each table.

Message Errors

Messages are constructed via software, and not all possible bit encodings are legal, thus there is the
possibility that a message may be sent containing one or more errors in its descriptor or payload
contents. There are two points of error detection in the message passing system: (a) the message
delivery subsystem is capable of detecting bad FunctionIDs and some cases of bad message lengths; (b)
the shared functions contain various error detection mechanisms which identify bad sub-function
codes, bad message lengths, and other misc errors. The error detection capabilities are specific to each
shared function. The execution unit hardware itself does not perform message validation prior to
transmission.

In both cases, information regarding the erroneous message is captured and made visible through
MMIO registers, and the driver notified via an interrupt mechanism . The set of possible errors is listed
in Message Errors with the associated outcome.

Error Cases

Error Outcome

Bad Shared Function ID The message is discarded before reaching any shared function. If the message specified
a destination, those registers will be marked as in-flight, and any future usage by the
thread of those registers will cause a dependency which will never clear, resulting in a
hung thread and eventual time-out.

Unknown opcode
Incorrect message
length

The destination shared function detects unknown opcodes (as specified in the send
instructions <desc> field), and known opcodes where the message payload is either too
long or too short, and threats these cases as errors. When detected, the shared function
latches and makes available via MMIO registers the following information: the EU and
thread ID which sent the message, the length of the message and expected response,
and any relevant portions of the first register (R0) of the message payload. The shared
function alerts the driver of an erroneous message through and interrupt mechanism,
then continues normal operation with the subsequent message.

Bad message contents
in payload

Detection of bad data is an implementation decision of the shared function. Not all
fields may be checked by the shared function, so an erroneous payload may return

 3D – Media – GPGPU

582 Doc Ref # IHD-OS-VLV-Vol7-04.14

Error Outcome

bogus data or no data at all. If an erroneous value is detected by the shared function, it
is free to discard the message and continue with the subsequent message. If the thread
was expecting a response, the destination registers specified in the associated send
instruction are never cleared potentially resulting in a hung thread and time-out.

Incorrect response
length

Case: too few registers specified – the thread may proceed with execution prior to all
the data returning from the shared function, resulting in the thread operating on bad
data in the GRF.
Case: too many registers specified – the message response does not clear all the
registers of the destination. In this case, if the thread references any of the residual
registers, it may hand and result in an eventual time-out.

Improper use of End-
Of-Thread (EOT) Any send instruction which specifies EOT must have a null destination register.

The EU enforces this and, if detected, will not issue the send instruction,
resulting in a hung thread and an eventual time-out.

The send instruction specifies that EOT is only recognized if the <desc> field of
the instruction is an immediate. Should a thread attempt to end a thread using a
<desc> sourced from a register, the EOT bit will not be recognized. In this case,
the thread will continue to execute beyond the intended end of thread, resulting
in a wide range of error conditions.

Two outstanding
messages using
overlapping GRF
destinations ranges

This is not checked by HW. Due to varying latencies between two messages, and out-of-
order, non-contiguous writeback cycles, the outcome in the GRF is indeterminate; may
be the result from the first message, or the result from the second message, or a
combination of both.

Registers and Register Regions

Register Files

GEN registers are grouped into different name spaces called register files. There are two register files,
the General Register File and the Architecture Register File. A third encoding of some register file
instruction fields indicates immediate operands within instructions rather than a register file.

• General Register File (GRF): The GRF contains general-purpose read-write registers.
• Architecture Register File (ARF): The ARF contains all architectural registers defined for specific

purposes, including address registers (a#), accumulators (acc#), flags (f#), notification count (n#),
instruction pointer (ip), null register (null), etc.

• Immediate: Certain instructions can take immediate source operands. A distinct register file field
encoding indicates an immediate operand.

Each thread executed in an EU has its own thread context, a dedicated register space that is not shared
between threads, whether executing on a common EU or on a different EU. In the rest of the chapters in
this volume, register access is relative to a given thread.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 583

GRF Registers

Number of Registers:Various

Default Value:None

Normal Access:RW

Elements:Various

Element Size:Various

Element Type:Various

Access Granularity:Byte

Write Mask Granularity:Byte

Indexable?Yes

Registers in the General Register File are the most commonly used read-write registers. During the
execution of a thread, GRF registers are used to store the temporary data, and serve as the destination
to receive data from shared function units (and some times from a fixed function unit). They are also
used to store the input (initialization) data when a thread is created. By allowing fixed function hardware
to initialize some portion of GRF registers during thread dispatch time, GEN architecture can achieve
better parallelism. A thread's execution efficiency can also be improved as some data are already in the
register to be executed upon. Besides these registers containing thread's payload, the rest of GRF
registers of a thread are not initialized.

Table: Summary of GRF Registers

Register File Register Name Description

General Register File (GRF) r# General purpose read write registers

Each execution unit has a fixed size physical GRF register RAM. The GRF register RAM is shared by all
threads on the EU. Each thread has a dedicated space of 128 register, r0 through r127.

GRF registers can be accessed using region-based addressing at byte granularity (both read and write).
A source operand must be contained within two adjacent registers. A destination operand must be
contained within one register. GRF registers support direct addressing and register-indirect addressing.
Register-indirect addressing uses the address registers (ARF registers a#) and an immediate address
offset value.

When accessing (read and/or write) outside the GRF register range allocated for a given thread either
through direct or indirect addressing, the result is unpredictable.

ARF Registers

ARF Registers Overview

Besides GRF and DevSNB MRF registers that are directly indicated by unique register file coding, all
other registers belong to the Architecture Register File (ARF). Encodings of architecture register types

 3D – Media – GPGPU

584 Doc Ref # IHD-OS-VLV-Vol7-04.14

are based on the MSBs of the register number field, RegNum, in the instruction word. The RegNum field
has 8 bits. The 4 MSBs, RegNum[7:4], represent the architecture register type. This is summarized in the
following table.

Table: Summary of Architecture Registers

Register Type
(RegNum [7:4]) Register Name Register Count Description

0000b null 1 Null register

0001b a0.# 1 Address register

0010b acc# 2 Accumulator register

0011b f#.# 2 Flag register

0100b ce# 1 Channel Enable register

0101b Reserved Reserved

0110b Reserved Reserved

0111b sr0.# 1 State register

1000b cr0.# 1 Control register

1001b n# 2 Notification Count register

1010b ip 1 Instruction Pointer register

1011b tdr 1 Thread Dependency register

1100b tm0 2 TimeStamp register

1101b Reserved Reserved

1110b Reserved Reserved

The remaining register number field RegNum[3:0] is used to identify the register number of a given
architecture register type. Therefore, the maximum number of registers for a given architecture register
type is limited to 16. The subregister number field, SubRegNum, in the instruction word has 5 bits. It is
used to address subregister regions for an architecture register supporting register subdivision. The
SubRegNum field is in units of bytes. Therefore, the maximum number of bytes of an architecture
register is limited to 32. Depending on the alignment restriction of a register type, only certain
encodings of SubRegNum field apply for an architecture register. The detailed definitions are provided
in the following sections.

In general an ARF register can be dst (destination) or src0 (source 0, first source operand) for an
instruction. Depending on the register and the instruction, other restrictions may apply.

Access Granularity

ARF registers may be accessed with subregister granularity according to the descriptions below and
following the same rule of region-based addressing for GRF and DevSNB MRF. The machine code for
register number and subregister number of ARF follows the same rule as for other register files with
byte granularity. For an ARF as a source operand, the region-based address controls the source swizzle
mux. The destination subregister number and destination horizontal stride can be used to generate the
destination write mask at byte level.

Subregister fields of an ARF register may not all be populated (indicated by the subregister being
indicated as reserved). Writes to unpopulated subregisters are dropped; there are no side effect. Reads
from unpopulated subregisters, if not specified, return unpredictable data.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 585

Some ARF registers are read-only. Writes to read-only ARF registers are dropped and there are no side
effects.

Null Register

Table: Null Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 0000b

Number of Registers: 1

Default Value: N/A

Normal Access: N/A

Elements: N/A

Element Size: N/A

Element Type: N/A

Access Granularity: N/A

Write Mask Granularity: N/A

SecHalf Control? N/A

Indexable? No

The null register is a special encoding for an operand that does not have a physical mapping. It is
primarily used in instructions to indicate non-existent operands. Writing to the null register has no side
effect. Reading from the null register returns an undefined result.

The null register can be used where a source operand is absent. For example, for a single source
operand instruction such as MOV or NOT, the second source operand src1 must be a null register.

When the null register is used as the destination operand of an instruction, it indicates the computed
results are not stored in any registers. However, implied writes to the accumulator register, if applicable,
may still occur for the instruction. When the conditional modifier is present, updates to the selected flag
register also occur. In this case, the register region fields of the null operand are valid.

Another example use is to use the null register as the posted destination of a send instruction for data
write to indicate that no write completion acknowledgement is required. In this case, however, the
register region fields are still valid. The null register can also be the first source operand for a send
instruction indicating the absent of the implied move. See the send instruction for details.

Address Register

Table: Address Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 0001b

Number of Registers: 1

Default Value: None

Normal Access: RW

 3D – Media – GPGPU

586 Doc Ref # IHD-OS-VLV-Vol7-04.14

Attribute Value

Elements: 8

Element Size: 16 bits

Element Type: UW or UD

Access Granularity: Word

Write Mask Granularity: Word

SecHalf Control? N/A

Indexable? No

There are eight address subregisters forming an 8-element vector. Each address subregister contains 16
bits. Address subregisters can be used as regular source and destination operands, as the indexing
addresses for register-indirect-addressed access of GRF registers, and also as the source of the message
descriptor for the send instruction.

When used as a source or destination operand, the address subregisters can be accessed individually or
as a group. In the following example, the first instruction moves 8 address subregisters to the first half
of GRF register r1, the second instruction replicates a0.4:uw as an unsigned word to the second half of
r1, the third instruction moves the first 4 words in r1 into the first 4 address subregisters, and the fourth
instruction replicates r1.4 as a unsigned word to the next 4 address subregisters.
mov (8) r1.0<1>:uw a0.0<8;8,1>:uw // r1.n = a0.n for n = 0 to 7 in words
mov (8) r1.8<1>:uw a0.4<0;1,0>:uw // r1.m = a0.4 for m = 8 to 15 in words
mov (4) a0.0<1>:uw r1.0<4;4,1>:uw // a0.n = r1.n for n = 0 to 3 in words
mov (4) a0.4<1>:uw r1.4<0;1,0>:uw // a0.m = r1.4 for m = 4 to 7 in words

When used as the register-indirect addressing for GRF registers, the address subregisters can be
accessed individually or as a group. When accessed as a group, the address subregisters must be
group-aligned. For example, when two address subregisters are used for register indirect addressing,
they must be aligned to even address subregisters. In the following example, the first instruction is
legal. However, the second one is not. As ExecSize = 8 and the width of src0 is 4, two address
subregisters are used as row indices, each pointing to 4 data elements spaced by HorzStride = 1 dword.
For the first instruction, the two address subregisters are a0.2:uw and a0.3:uw. The two align to a DWord
group in the address register. However, the two address subregisters for the second instruction are
a0.3:uw and a0.4:uw. They are not DWord-aligned in the address register and therefore violate the
above mentioned alignment rule.
mov (8) r1.0<1>:d r[a0.2]<4,1>:d // a0.2 and a0.3 are used for src1
mov (8) r1.0<1>:d r[a0.3]<4,1>:d // ILLEGAL use of register indirect

Implementation restriction: GEN ISA supports per channel indexing for a source operand. As there are
only 8 sub-fields in the address register (to save hardware cost), the execution size of an instruction
using per-channel indexing is limited to 8. Software may reload the address register and use
compression control SecHalf to complete a 16-channel computation.

Implementation restriction: When used as the source operand <desc> for the send instruction, only
the first dword subregister of a0 register is allowed (i.e. a0.0:ud, which can be viewed as the
combination of a0.0:uw and a0.1:uw). In addition, it must be of UD type and in the following form
<desc> = a0.0<0;1,0>:ud.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 587

 Implementation restriction: Elements a0.0 and a0.1 have 16 bits each, but the rest of the elements
(a0.2:uw through a0.7:uw) only have 12 bits populated each. 12-bit precision supports full indirect-
addressing capability for the largest GRF register range. Software must observe the asymmetry of the
implementation. When a0.0:uw and a0.1:uw are the source or destination, full 16-bit precision is
preserved. However, when a0.2:uw to a0.7:uw are the destination, the high 4 bits for each element are
dropped; when they are the source, hardware inserts zero to the high 4 bits for each element.

Accumulator Registers

Table: Accumulator Registers Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 0010b

Number of Registers: 2

Default Value: None

Normal Access: RW

Accumulator registers can be accessed either as explicit or implied source and/or destination registers.
To a programmer, each accumulator register may contain either 8 DWords or 16 Words of data
elements. However, as described in the Implementation Precision Restriction notes below, each data
element may have higher precision with added guard bits not indicated by the numeric data type.

Accumulator capabilities vary by data type, not just data size, as described in the Accumulator Channel
Precision table below. For example, D and F are both 32-bit data types, but differ in accumulator
support.

See the Accumulator Restrictions section for information about additional general accumulator
restrictions and also accumulator restrictions for specific instructions.

Accumulator Registers

There are two accumulator registers, acc0 and acc1.

Table: Register and Subregister Numbers for Accumulator Registers

RegNum[3:0] SubRegNum[4:0]

0000b = acc0

0001b = acc1

All other encodings are reserved

Reserved: MBZ

• Accumulators are updated implicitly only if the AccWrCtrl bit is set in the instruction. The
Accumulator Disable bit in control register cr0.0 allows software to disable the use of AccWrCtrl
for implicit accumulator updates. The write enable in word granularity for the instruction is used
to update the accumulator. Data in disabled channels is not updated.

• When an accumulator register is an implicit source or destination operand, hardware always uses
acc0 by default and also uses acc1 if the execution size exceeds the number of elements in acc0.
When implicit access to acc1 is required, QtrCtrl is used. Note that QtrCtrl can be used only if

 3D – Media – GPGPU

588 Doc Ref # IHD-OS-VLV-Vol7-04.14

acc1 is accessible for a given data type. If acc1 is not accessible for a given data type, QtrCtrl
defaults to acc0.

Accumulator Registers

acc0 and acc1 are supported for single-precision Float (F) only. Use QtrCtrl of Q2 or Q4 to access acc1.

Examples:
 // Updates acc0 and acc1 because it is SIMD16:
 add (16) r10:f r11:f r12:f {AccWrEn}
 // Updates acc0 because it is SIMD8:
 add (8) r10:f r11:f r12:f {AccWrEn}
 // Updates acc1. Implicit access to acc1 using QtrCtrl:
 add (8) r10:f r11:f r12:f {AccWrEn, Q2}
 // Updates acc1 for Half Floats using QtrCtrl:
 add (16) r10:hf r11:hf r12:hf {AccWrEn, H2}

• It is illegal to specify different accumulator registers for source and destination operands in an
instruction (e.g. add (8) acc1:f acc0:f). The result of such an instruction is unpredictable.

• Swizzling is not allowed when an accumulator is used as an implicit source or an explicit source in
an instruction.

• For any DWord operation, including DWord multiply, accumulator can store up to 8 channels of
data, with only acc0 supported.

• When an accumulator register is an explicit destination, it follows the rules of a destination
register. If an accumulator is an explicit source operand, its register region must match that of the
destination register with the exception(s) described below.

Implementation Precision Restriction: As there are only 64 bits per channel in DWord mode (D and
UD), it is sufficient to store the multiplication result of two DWord operands as long as the post source
modified sources are still within 32 bits. If any one source is type UD and is negated, the negated result
becomes 33 bits. The DWord multiplication result is then 65 bits, bigger than the storage capacity of
accumulators. Consequently, the results are unpredictable.

Implementation Precision Restriction: As there are only 33 bits per channel in Word mode (W and
UW), it is sufficient to store the multiplication result of two Word operands with and without source
modifier as the result is up to 33 bits. Integers are stored in accumulator in 2's complement form with
bit 32 as the sign bit. As there is no guard bit left, the accumulator can only be sourced once before
running into a risk of overflowing. When overflow occurs, only modular addition can generate a correct
result. But in this case, conditional flags may be incorrect. When saturation is used, the output is
unpredictable. This is also true for other operations that may result in more than 33 bits of data. For
example, adding UD (FFFFFFFFh) with D (FFFFFFFFh) results in 1FFFFFFFEh. The sign bit is now at bit 34
and is lost when stored in the accumulator. When it is read out later from the accumulator, it becomes a
negative number as bit 32 now becomes the sign bit.

Table: Accumulator Channel Precision

Data
Type

Accumulator
Number

Number
of

Channels
Bits Per
Channel Description

DF acc0 4 64 When accumulator is used for Double Float, it has the exact same
precision as any GRF register.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 589

Data
Type

Accumulator
Number

Number
of

Channels
Bits Per
Channel Description

F acc0/acc1 8 32 When accumulator is used for Float, it has the exact same precision as
any GRF register.

Q N/A N/A N/A Not supported data type.

D
(UD)

acc0 8 33/64 When the internal execution data type is doubleword integer,
each accumulator register contains 8 channels of (extended)
doubleword integer values. The data are always stored in
accumulator in 2's complement form with 64 bits total
regardless of the source data type. This is sufficient to construct
the 64-bit D or UD multiplication results using an instruction
macro sequence consisting of mul, mach, and shr (or mov).

W
(UW)

acc0 16 33 When the internal execution data type is word integer, each
accumulator register contains 16 channels of (extended) word integer
values. The data are always stored in accumulator in 2's complement
form with 33 bits total. This supports single instruction multiplication
of two word sources in W and/or UW format.

B
(UB)

N/A N/A N/A Not supported data type.

Flag Register

Table: Flag Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 0011b

Number of Registers: 2

Default Value: None

Normal Access: RW

Elements: 2

Element Size: 32 bits

Element Type: UD

Access Granularity: Word

Write Mask Granularity: Word

SecHalf Control? Yes

Indexable? No

There are two flag registers, f0 and f1.

Each flag register contains two 16-bit subregisters. Each flag bit corresponds to a data channel.
Predication uses flag values to enable or disable channels. Conditional modifiers assign flag values. If an

 3D – Media – GPGPU

590 Doc Ref # IHD-OS-VLV-Vol7-04.14

instruction uses both predication and conditional modifiers, both features use the same flag register or
subregisters.

Flags can be split to halfs, quarters, or eighths using the QtrCtrl and NibCtrl instruction fields. Those
fields affect the selection of flags for predication and conditional modifiers, but do not affect reading or
writing flags as explicit instruction operands.

The values held in the individual bits of a flag register are the result of the most recent instruction with
a conditional modifier and specifying that flag register. For example:
 add.nz.f0.0 ...

Updates flag subregister f0.0 with the per-channel results of the not zero condition.

The flag register has per-bit write enables. When being updated as the secondary destination
associated with a conditional modifier, only the bits corresponding to the enabled channels in EMask
are updated. Other bits in the flag subregister are unchanged.

Flag registers and subregisters can also be explicit source or destination operands.

The sel instruction does not update flags.

Note: When branching instructions are predicated, branching is evaluated on all channels enabled at
dispatch. This means, the appropriate number of flag register bits must be initialized or used in
predication depending on the execution mask (EMask). Uninitalized flags may result in undesired
branching. For example, if using DMask as EMask and if all 32 channels of DMask are enabled, a SIMD8
kernel must initialize unused flag bits so that predication on branching is evaluated correctly.

Table: Register and Subregister Numbers for Flag Register

RegNum[3:0] SubRegNum[4:0]

0000b = f0:ud

0001b = f1:ud

Other encodings are reserved.

00000b = fn.0:uw

00010b = fn.1:uw

Other encodings are reserved.

Reference an entire flag register as f0:ud or f1:ud. Reference the flag subregisters as f0.0:uw, f0.1:uw,
f1.0:uw, and f1.1:uw.

State Register

Table: State Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 0111b

Number of Registers: 1

Default Value: Provided by the Dispatcher

Normal Access: RW

Elements: 4

Element Size: 32 bits

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 591

Attribute Value

Element Type: UD

Access Granularity: Byte

Write Mask Granularity: N/A

SecHalf Control? No

Indexable? No

Table: Register and Subregister Numbers for State Register

RegNum[3:0] SubRegNum[4:0]

0000b = sr0

All other encodings are reserved.

Valid encoding range:

00000b – 01100b

All other encodings are reserved.

Table: State Register Fields

DWord Bits Description

0

(sr0.0:ud)

31:28 Reserved. MBZ.

27:24 FFID (Fixed Function Identifier). Specifies which fixed function unit generates the current thread.
This field is set at thread dispatch and is forwarded on the message bus for all out-going
messages from this thread.

23 Priority Class. This field, when set, indicates the thread belongs to the high priority
class, which has higher scheduling priority over any thread with this field cleared. The
priority field below determines the relative priority within the same priority class. This
field is initialized by the thread dispatcher at thread dispatch time and stays unchanged
throughout the life span of the thread.

This field is forwarded on the message bus to the message bus arbiter for all out-going
messages. It serves as a priority hint for the target shared function. See the Shared
Function chapters for whether and how a shared function uses this priority hint.

0 = Low priority class.

1 = High priority class.

22:19 Reserved. MBZ.

18:16 Priority. This field is the relative aging priority of the thread. This field indicates the age
of this thread relative to other threads within the EU. No two threads in the same EU
can have the same priority number (independent of the priority class value). Within the
same priority class, an older thread (with a larger priority number) has higher schedule
priority over a younger thread.

This field is set to zero at a thread's dispatch.

During a thread's run time, this field may or may not be incremented when a new
thread is dispatched to the same EU. It is only incremented when another thread's

 3D – Media – GPGPU

592 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bits Description

priority number is incremented and reaches the same value. For example, if currently
there is a thread with priority 0 on an EU, then dispatching a new thread to that EU
causes the old thread's priority number to increment to 1. However, if the active thread
(assuming for simplicity that there is only one) on an EU has a priority number 1 (or 2
or 3), then dispatching a new thread to this EU does not change the old thread's
priority number. As threads on an EU may terminate in arbitrary order, the exact
number for a thread depends on the dynamic execution of threads.

15:8 [15:13] Reserved. MBZ.

[12] HSID. HalfSlice Identifier for the EU.

[11:8] EUID[3:0]. Execution Unit Identifier. The MSB of this field is the RowID.

7:3 Reserved. MBZ.

2:0 TID (The thread identifier). Specifies the thread slot that the current thread is assigned to. This
field is set at thread dispatch.

1

(sr0.1:ud)

31:24 FFTID (Fixed Function Thread ID). There is no connection between this thread ID, assigned in
fixed functions, and the TID assigned in the EUs.

23:0 Reserved. MBZ.

2

(sr0.2:ud)

31:0 Dispatch Mask (DMask). This 32-bit field specifies which channels are active at
Dispatch time. This field is used by hardware to initialize the mask register.

Format: U32

3

(sr0.3:ud)

31:0 Vector Mask (VMask). This 32-bit field contains, for each 4-bit group, the OR of the
corresponding 4-bit group in the dispatch mask. This field is used by hardware to
initialize the mask register.

Format: U32

0

(sr1.0:ud)

31:0 Hardware Defined State Register. The contents of these register are hardware defined and are
required only for handling page-fault. These bits are saved and restored by SIP when threads
are pre-empted. Writes to these registers must follow the sequence described in send
instruction for the correct behavior of hardware.

1

(sr1.1:ud)

31:0 Hardware Defined State Register. Same as sr1.0

2

(sr1.2:ud)

31:0 Hardware Defined State Register. Same as sr1.0

3

(sr1.3:ud)

31:0 Hardware Defined State Register. Same as sr1.0

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 593

Control Register

Table: Control Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 1000b

Number of Registers: 1

Default Value: Provided by the Dispatcher

Normal Access: RW

Elements: 4

Element Size: 32 bits

Element Type: UD

Access Granularity: DWord

Write Mask Granularity: DWord

SecHalf Control? No

Indexable? No

The Control register is a read-write register. It contains four 32-bit subregisters that can be accessed
individually.

Subregister cr0.0:ud contains normal operation control fields such as the floating-point mode and the
accumulator disable. It also contains the master exception status/control field that allows software to
switch back to the application thread from the System Routine.

Subregister cr0.1:ud contains the mask and status/control fields for all exceptions. The exception fields
are arranged in significance-decreasing order from MSB to LSB. This arrangement allows the System
Routine to use the lzd instruction to find the high priority exceptions and handle them first. As each
exception is mapped to a single bit, another exception priority order may be implemented by software.
The System Routine may choose to handle one exception at a time, by handling the exception detected
by an lzdinstruction and returning to the application thread. Or it may choose to handle all the
concurrent exceptions, by looping through the exception fields until all outstanding exceptions are
handled before returning back to the application thread.

Exception enable bits (bits 15:0 in cr0.1:ud) control whether an exception causes hardware to jump to
the System Routine or not. Exception status and control bits (bits 31:16 in cr0.1:ud) indicate which
exceptions have occurred, and are used by the system routine to clear the exception. Even if a given
exception is disabled, the corresponding exception status and control bit still reflects its status, whether
an exception event has occurred or not.

cr0.2:ud contains the Application IP (AIP) indicating the current thread IP when an exception occurs.

cr0.3:ud is reserved. Values written to this subregister are dropped; the result of reading from this
subregister is unpredictable.

Fields in Control registers also reference a virtual register called System IP (SIP). SIP is the virtual
register holding the global System IP, which is the initial instruction pointer for the System Routine.
There is only one SIP for the whole system. It is virtual only from a thread's point of view, as it is not
visible (i.e. not readable and not writeable) to the thread software executed on a GEN EU. It can only be
accessed indirectly by the hardware to respond to exception events. Upon an exception, hardware

 3D – Media – GPGPU

594 Doc Ref # IHD-OS-VLV-Vol7-04.14

performs some bookkeeping (e.g. saving the current IP into AIP) and then jumps to SIP. Upon finishing
exception handling, the System Routine may return back to the application by clearing the Master
Exception Status and Control field in cr0, which causes the hardware to load AIP to IP register. See the
STATE_SIP command for how to set SIP.

Table: Register and Subregister Numbers for Control Register

RegNum[3:0] SubRegNum[4:0]

0000b = cr0

All other encodings are reserved.

00000b = cr0.0:ud. It contains general thread control fields.

00100b = cr0.1:ud. It contains exception status and control.

01000b = cr0.2:ud. It contains AIP.

All other encodings are reserved.

Table: Control Register Fields

DWord Bits Description

0 31 Master Exception State and Control. This bit is the master state and control for all
exceptions. Reading a 0 indicates that the thread is in normal operation state and a 1
means the thread is in exception handle state. Upon an exception event, hardware sets
this bit to 1 and switches to SIP. Writing 1 to this bit has no effect. Writing 0 to this bit
also has no effect if the previous value is 0. In both cases, the bit keeps the previous
value. If the previous value of this bit is 1, software writing a 0 causes the thread to
return to AIP. This transition is automatic – software does not have to move AIP to IP.
The value of this bit then stays as 0. This bit is initialized to 0.

0 = The thread is in normal state.

1 = The thread is in exception state.

30:16 Reserved. MBZ.

15 Breakpoint Suppress. This bit specifies whether breakpoint exception is suppressed or
not. This bit is normally set by software and cleared by hardware. If Master Exception
Status and Control bit is 1, this bit is ignored by hardware. If Master Exception Status
and Control bit is 0 (i.e. not in System Routine) and Breakpoint is enabled: If this bit is
set, breakpoint is temporally ignored (suppressed); Upon a breakpoint condition, the
instruction is executed and this bit is automatically reset by hardware.

This bit is provided to prevent infinite loops of jumping to the System Routine on a
breakpoint condition. The System Routine must set this bit (and also clear the
corresponding status and control bit) before returning to the application thread.

This bit has no effect when Breakpoint Enable bits are cleared. This bit is initialized to 0.

0 = Breakpoint exception is not suppressed.

1 = Breakpoint exception is suppressed.

14:11 Reserved. MBZ.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 595

DWord Bits Description

10 Reserved.

9 Reserved.

7 Reserved.

6 Double Precision Denorm Mode. This bit determines how denormal numbers are
handled for the DF (Double Float) type. It is initialized by Thread Dispatch.

0 = Flush denorms to zero when reading source operands and flush denorm
calculation results to zero. Denorm flushing preserves sign.

1 = Allow denorm source values and denorm results.

5:4 Rounding Mode. This field specifies the FPU rounding mode. It is initialized by Thread
Dispatch.

00b = Round to Nearest or Even (RTNE)

01b = Round Up, toward +inf (RU)

10b = Round Down, toward -inf (RD)

11b = Round Toward Zero (RTZ)

3 Vector Mask Enable (VME). This bit indicates DMask or Vmask should be used by EU for
execution. This bit is set by the Thread Dispatch.
 0: Use Dispatch Mask (DMASK) 1: Use Vector Mask (VMASK)

2 Single Program Flow (SPF). Specifies whether the thread has a single program flow
(SIMDnxm with m = 1) or multiple program flows (SIMDnxm with m > 1). This bit
affects the operation of all branch instructions. In Single Program Flow mode, all
execution channels branch and/or loop identically. This bit is initialized by the Thread
Dispatch.

0: Multiple Program Flows

1: Single Program Flow

Programming Restrictions:

Only H1/Q1/N1 are allowed in SPF mode.

Power Optimization: If an entire shader does not do SIMD branching, the driver can set
the SPF bit to 1 to save power in HW.

1 Accumulator Disable. This bit controls the update of the accumulator by the
instruction field AccWrCtrl. If this bit is cleared, the accumulator is updated for all
instructions with AccWrCtrl enabled. If set, the accumulator is disabled for all update
operations, maintaining its value prior to being disabled. Setting this bit has no effect if
the accumulator is the explicit destination operand for an instruction. This bit is

 3D – Media – GPGPU

596 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bits Description

initialized to 0.

0: Enable accumulator update.
 1: Disable accumulator update.

Usage Notes:

This control bit is primarily designed for the System Routine. That routine is not
expected to use the accumulator,though it may need to use instructions that implicitly
update the accumulator. To use such instructions in the System Routine, but still
preserve the accumulator contents on returning to the application kernel, the System
Routine would either (a) save and restore the accumulator, or (b) prevent the
accumulator from being unintentionally modified. This control bit has been added for
the latter method.

Software has the option to limit the setting of this control bit to strictly within the
System Routine. If, by convention, this bit is clear within application kernels, the System
Routine can simply set the bit upon entry and clear it before returning control to the
application kernel. This usage model would not necessarily require cr0.0 to be saved/
restored in the System Routine. However, if by convention application kernels are
permitted to set this bit, then the System Routine is required to preserve the content of
this bit.

0 Single Precision Floating Point Mode (FP Mode). This bit specifies whether the
current single-precision floating-point operation mode is IEEE mode (IEEE Standard
754) or the ALT (alternative mode). This bit does not affect the floating-point mode
used for other floating-point data types. This bit is also forwarded on the message
sideband for all out-going messages, for example, to control the floating-point mode
of the Sampler. Software may modify this bit to dynamically switch between the two
floating-point modes. This bit is initialized by Thread Dispatch.

0 = IEEE floating-point mode for the F (Float) type.

1 = ALT (alternative) floating-point mode for the F (Float) type.

 30 External Halt Exception Status and Control. This bit indicates the External Halt
exception. It is set by EU hardware on receiving the broadcast External Halt signal. The
System Routine should reset this bit before returning to an application routine to avoid
infinite loops.

This bit may be set or cleared by software. This bit is initialized to 0.

 29 Software Exception Control. This bit is the control bit for software exceptions. Setting
this bit to 1 in an application routine causes an exception. Clearing this bit in an
application routine has no effect. Upon entering the system routine, the hardware
maintains this bit as 1 to signify a software exception. The System Routine should reset
this bit before returning to an application routine.

This bit may be set or cleared by software. This bit is initialized to 0.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 597

DWord Bits Description

 28 Illegal Opcode Exception Status. This bit, when set, indicates an illegal opcode
exception. The exception handler routine normally does not return back to the
application thread upon an illegal opcode exception. Leaving this bit set has no effect
on hardware; if system software adversely returns to an application routine leaving this
bit set, it doesn't cause any exception. This bit should not be set by software or left set
by the system routine to avoid confusion.

This bit is initialized to 0.

 27 Stack Overflow Exception Status. This bit when set, indicates a stack overflow
exception. The exception handler routine normally does not return back to the
application thread upon a stack overflow exception. Leaving this bit set has no effect
on hardware; if system software adversely returns to an application routine leaving this
bit set, it doesn't cause any exception. This bit should not be set by software or left set
by the system routine to avoid confusion.

This bit is initialized to 0.

 26:24 Reserved

 23:16 Reserved. MBZ.

 15 Breakpoint Enable. Specifies whether the breakpoint exception is enabled or not.

This bit is initialized by the Thread Dispatcher.

Format = ENABLED:
 0: Disabled
 1: Enabled

 13 Software Exception Enable. This bit enables or disables the software exception.
Enabling or disabling this bit may allow host software to turn on/off certain features
(such as profiling) without changing the kernel program.

This bit is initialized by the Thread Dispatcher.

Format = ENABLED:
 0: Disabled
 1: Enabled

 12 Illegal Opcode Exception Enable. This bit specifies whether the illegal opcode
exception is enabled or not. The Illegal opcode exception includes illegal opcodes and
undefined opcodes, caused by bad programs or run-time data corruption.

This bit is initialized by the Thread Dispatcher.

Software should normally assign this bit in the interface descriptor. Even though this
mechanism is provided to disable the illegal opcode exception, it should be used with
extreme caution.

Format = ENABLED:

 3D – Media – GPGPU

598 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bits Description

 0: Disabled
 1: Enabled

 11 Stack Overflow Exception Enable. This bit specifies whether the stack overflow
exception is enabled or not. The stack overflow exception includes an overflow or an
underflow in the stack space allocated for the thread.

This bit is initialized by the Thread Dispatcher.

Software should normally assign this bit in the interface descriptor.

Format = ENABLED:
 0: Disabled
 1: Enabled

 10:0 Reserved. MBZ.

2

(cr0.2:ud)

31:3 Application IP (AIP). This is the register storing the instruction pointer before an
exception is handled. Upon an exception, hardware automatically saves the current IP
into the AIP register, and then sets the Master Exception State and Control field to 1,
which forces a switch to the System IP (SIP). The AIP register may contain either the
pointer to the instruction that causes the exception or the one after (such as masked
stack overflow/underflow exceptions). This is shown in the following table, where IP is
the instruction that generated the exception.

Exception Type AIP Value

Breakpoint IP

External Halt N/A (1)

Software Exception IP + 1

Illegal Opcode IP

(1) External Halt exception is asynchronous and not associated with an instruction.

When the System Routine changes the Master Exception State and Control field from 1
to 0, hardware restores IP from this register. This field is writable allowing the returning
IP to be altered after an exception is handled.

2:0 Reserved. MBZ.

Implementation Restriction on Register Access:When the control register is used as an explicit
source and/or destination, hardware does not ensure execution pipeline coherency. Software must set
the thread control field to switch for an instruction that uses control register as an explicit operand. This
is important as the control register is an implicit source for most instructions. For example, fields like
FPMode and Accumulator Disable control the arithmetic and/or logic instructions. Therefore, if the
instruction updating the control register doesn't set switch, subsequent instructions may have
undefined results.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 599

Notification Registers

Table: Notification Registers Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 1001b

Number of Registers: 3

Default Value: No

Normal Access: RO (RW – Context save/restore only)

Elements: 3

Element Size: 32 bits

Element Type: UD

Access Granularity: DWord

Write Mask Granularity: DWord

SecHalf Control? No

Indexable? No

There are three notification registers (n0.0:ud, n0.1:ud, and n0.2:ud) used by the wait instruction. These
registers are read-only, except under context restore, and can be accessed in 32-bit granularity. Write
access to this register is allowed only when context is restored.

It should be noted that in the extreme case, it is possible to have more notifications to a thread than the
maximum allowed number of concurrent threads in the system. Therefore, the range of the thread-to-
thread notification count in n0, is larger than the maximum number of threads computed by EUID * TID.

There is only one bit for the host-to-thread notification count in n1.

When directly accessed, this register is read-only. If the value is non zero, the only way to alter the value
is to use the wait instruction to decrement the value until zero is reached. A wait instruction on a zero
notification subregister causes the thread to stall, waiting for a notification signal from outside targeting
the same subregister. See the wait instruction for details.

Implementation Restriction: The notification registers are initialized to 0 after hardware/software
reset. However, these registers are not reset at thread dispatch time.

Table: Register and Subregister Numbers for Notification Registers

RegNum[3:0] SubRegNum[4:0]

0000b = n0

All other encodings are reserved.

00000b = n0.0:ud

00100b = n0.1:ud

01000b = n0.2:ud

All other encodings are reserved.

Table: Notification Register 0 Fields

DWord Bits Description

 3D – Media – GPGPU

600 Doc Ref # IHD-OS-VLV-Vol7-04.14

DWord Bits Description

0 31:16 Reserved. MBZ.

15:0 Thread to Thread Notification Count. This register is used by the WAIT instruction for
thread-to-thread synchronization. The value read from this register specifies the
outstanding notifications received from other threads. It can be changed indirectly by
using the WAIT instruction. See the WAIT instruction for details.

Format: U16

Table: Notification Register 1 Fields

DWord Bits Description

0 31:1 Reserved. MBZ.

Table: Notification Register 2 Fields

DWord Bits Description

0 31:16 Reserved. MBZ.

15:0 Thread to Thread Notification Count. This register is used by the WAIT instruction for
thread-to-thread synchronization. The value read from this register specifies the
outstanding notifications received from other threads. It can be changed indirectly by
using the WAIT instruction. See the WAIT instruction for details.

Format: U16

Format of the Notification Register

IP Register

Table: IP Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 1010b

Number of Registers: 1

Default Value: Provided by the Dispatcher

Normal Access: RW

Elements: 1

Element Size: 32 bits

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 601

Attribute Value

Element Type: UD

Access Granularity: DWord

Write Mask Granularity: DWord

SecHalf Control? No

Indexable? No

The ip register can be accessed as a 32-bit quantity. It is a read-write register, containing the current
instruction pointer, which is relative to the Generate State Base Address. Reading this register returns
the instruction pointer of the current instruction. The 3 LSBs are always read as zero. Writing this
register causes program flow to jump to the new address. When it is written, the 3 LSBs are dropped by
hardware.

Table: Register and Subregister Numbers for IP Register

RegNum[3:0] SubRegNum[4:0]

0000b = ip

All other encodings are reserved.

00000b = ip:ud

All other encodings are reserved.

Table: IP Register Fields

DWord Bits Subfield Description

0 31:3 Ip. Specifies the current instruction pointer. This pointer is relative to the General State Base
Address.

2:0 Reserved. MBZ.

TDR Registers

Table: TDR Registers Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 1011b

Number of Registers: 8

Default Value: No

Normal Access: RO/CW

Elements: 8

Element Size: 16 bits

Element Type: UW

Access Granularity: Word

Write Mask Granularity: Word

SecHalf Control? No

Indexable? No

 3D – Media – GPGPU

602 Doc Ref # IHD-OS-VLV-Vol7-04.14

There are 8 thread dependency registers (tdr0.0:uw to tdr0.7:uw) used by HW for the sendc instruction.
These registers are read-only and can be accessed in 16-bit granularity.

When accessed explicitly, each thread dependency register has FFTID in the lower 8 bits, bits 8 to 14 are
forced to zero by HW. Bit 15 is the valid bit, which indicate whether the current thread has a
dependency on the dependency thread stored in this thread dependency register.

The thread dependency registers are read only, the valids can only be set with a thread dispatch, and
are reset by broadcasting end of thread messages after a thread retired. The FFTID's can only be
changed with a therad dispatch. Any write into any of the TDR registers will clear the valid bit for the
particular TDR if the write enable is true, the FFTID portion is strictly read only.

Table: Register and Subregister Numbers for TDR Registers

RegNum[3:0] SubRegNum[4:0]

1011b = tdr0

All other encodings are reserved.

00000b = tdr0.0:uw

00010b = tdr0.1:uw

00100b = tdr0.2:uw

00110b = tdr0.3:uw

01000b = tdr0.4:uw

01010b = tdr0.5:uw

01100b = tdr0.6:uw

01110b = tdr0.7:uw

All other encodings are reserved.

Table: TDR Registers Fields

DWord Bits Description

3 31 Valid7. This field indicates whether the thread specified by FFTID7 is still in-flight.

30:24 Reserved. MBZ

23:16 FFTID7. This field is the FFTID of the third thread that the current thread depends on. It
can be changed by the end of thread broadcasting messages.

Format: U8

15 Valid6. This field indicates whether the thread specified by FFTID6 is still in-flight.

14:8 Reserved. MBZ

7:0 FFTID6. This field is the FFTID of the third thread that the current thread depends on. It
can be changed by the end of thread broadcasting messages.

Format: U8

2 31 Valid5. This field indicates whether the thread specified by FFTID5 is still in-flight.

30:24 Reserved. MBZ

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 603

DWord Bits Description

23:16 FFTID5. This field is the FFTID of the third thread that the current thread depends on. It
can be changed by the end of thread broadcasting messages.

Format: U8

15 Valid4. This field indicates whether the thread specified by FFTID4 is still in-flight.

14:8 Reserved. MBZ

7:0 FFTID4. This field is the FFTID of the third thread that the current thread depends on. It
can be changed by the end of thread broadcasting messages.

Format: U8

1 31 Valid3. This field indicates whether the thread specified by FFTID3 is still in-flight.

30:24 Reserved. MBZ

23:16 FFTID3. This field is the FFTID of the third thread that the current thread depends on. It
can be changed by the end of thread broadcasting messages.

Format: U8

15 Valid2. This field indicates whether the thread specified by FFTID2 is still in-flight.

14:8 Reserved. MBZ

7:0 FFTID2. This field is the FFTID of the third thread that the current thread depends on. It
can be changed by the end of thread broadcasting messages.

Format: U8

0 31 Valid1. This field indicates whether the thread specified by FFTID1 is still in-flight.

30:24 Reserved. MBZ

23:16 FFTID1. This field is the FFTID of the third thread that the current thread depends on. It
can be changed by the end of thread broadcasting messages.

Format: U8

15 Valid0. This field indicates whether the thread specified by FFTID0 is still in-flight.

14:8 Reserved. MBZ

7:0 FFTID0. This field is the FFTID of the third thread that the current thread depends on. It
can be changed by the end of thread broadcasting messages.

Format: U8

Performance Registers

Table: Performance Registers Summary

Attribute Value

 3D – Media – GPGPU

604 Doc Ref # IHD-OS-VLV-Vol7-04.14

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 1100b

Number of Registers: 1

Default Value: 0h

Normal Access: RO/RW

Elements: 3

Element Size: 32 bits

Element Type: UD

Timestamp Register

This register is a low latency timestamp source, TM, available as part of a thread's Architectural Register
File (ARF). This is a is free running counter, 64b in size, and exposed to the ISA as individual 32b high
TmHigh and low TmLow unsigned integer source operands. As part of the EU's register space, access to
the timestamp has a low and deterministic latency and therefore can be used for intra-kernel high
resolution performance profiling. This feature also covers the DirectX 11 requirement for a 64b
timestamp to be made available to shader kernels, again for DirectX source-level profiling.

The TM features provides a 1-bit indicator TmEvent which identifies the occurrence of a time-impacting
event such as context switch or frequency change since the last time any portion of the Timestamp
register value was read by that thread. Software that uses the Timestamp capability should check this
bit to identify when a relative time calculation may be suspect. To properly use this additional
information, the instrumentation code should operate on the Timestamp register value as a whole (i.e.
as an 8 dword register) so that the 64b time and this 1b value are captured simultaneously, as opposed
to 32b portions, to eliminate a the chance of missing a TmEvent that might occur between accesses to
32b portions of this register.

Note: The Timestamp register is saved as part of thread state on context-save, but only TmEvent is
restored (and technically always restored to 1 as a context switch had occurred).

Table: Register and Subregister Numbers for Performance Register

RegNum[3:0] SubRegNum[4:0]

0000b = tm0

All other encodings are
reserved.

00000b = tm0.0:ud.

00100b = tm0.1:ud.

01000b = tm0.2:ud

01100b = tm0.3:ud

10000b = tm0.4:ud

All other encodings are
reserved

Table: Performance Register Fields

DWord Bits Description

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 605

DWord Bits Description

0

(tm0.0:ud)

31:0 TmLow. The lower 32b of the 64b timestamp value sourced from Cr clock. Read-only.
Format: U32

1

tm0.1:ud

31:0 TmHigh. The upper 32b of the 64b timestamp value sourced from Cr clock. Read-only.
Format: U32

2

tm0.2:ud

31:1 Reserved

0 TmEvent. Indicates a discontinuous time-impacting event (e.g. context switch, frequency
change) occurred since any portion of the Timestamp register was last read, thus making any
relative duration calculation based on this counter suspect. This bit is reset at the time a new
thread is loaded, and on each read of any portion of the Timestamp register..

3

tm0.3

(pm0)

31:0 Undefined

Format: U32

4

tm0.4:ud

(tp0)

31:16 Reserved

15:0 Pause Counter. The pause duration. A non-zero value written to this register causes
execution of the thread to halt for the corresponding number of clocks. Lower 5 bits
are always zero and therefore, writing value less than 64 must not result in a pause

[15:10] – Reserved, must be written as zero; when read, returns zero.

[9:5] - Count value.

[4:0] – Reserved, must be zero.

Format: U16

Immediate

Two forms of immediate are provided as a source operand: scalar and vector.

The immediate field in a GEN instruction has 32 bits. For a word or an unsigned word immediate data,
software must replicate the same 16-bit immediate value to both the lower word and the high word of
the 32-bit immediate field in a GEN instruction.

For a scalar immediate, it can be of any of the specified numeric data types from a word to a dword.
Byte and unsigned byte are not supported as the smallest internal type of the execution pipeline is
word. These two numeric types are reserved for future extensions.

The immediate form of vector allows a constant vector to be in-lined in the instruction stream. Both
integer and float immediate vectors are supported.

 3D – Media – GPGPU

606 Doc Ref # IHD-OS-VLV-Vol7-04.14

An immediate integer vector is denoted by type v or uv as imm32:v or imm32:uv, where the 32-bit
immediate field is partitioned into 8 4-bit subfields. Refer to the Numeric DataType Section for
description of the packing of vector integers to a dword.

An immediate float vector is denoted by type vf as imm32:vf, where the 32-bit immediate field is
partitioned into 4 8-bit subfields. Refer to the Numeric DataType Section for the description of the
packing of vector floats to a dword.

Restriction: When an immediate vector is used in an instruction, the destination must be 128-bit aligned
with destination horizontal stride equivalent to a word for an immediate integer vector (v) and equivalent
to a dword for an immediate float vector (vf).

Region Parameters

Unlike conventional SIMD architectures where an N-bit wide SIMD instruction can only operate on N-
bit aligned SIMD data registers, a region-based register addressing scheme is employed in GEN
architecture. The region-based register addressing capability significantly improves the SIMD
computation efficiency by providing per-instruction-based multiple data gathering from register file.
This avoids instruction overhead to perform data pack, unpack, and shuffling, which has been observed
on other SIMD architectures. One benefit of such capability is allowing various kinds of 3D Graphics API
Shader compute models to run efficiently on GEN. Another benefit is allowing high throughput of
media applications, which tend to operate on byte or word data elements.

This can be illustrated by the example shown in Region Parameters and Region Parameters. As shown in
Region Parameters, a sequence of SIMD instruction is executed on a conventional load/store based
superscalar machine with SIMD instruction extension. The data parallelism can be achieved by first level
of loop unrolling. As shown, there is a second level of loop for the task. Before a given SIMD compute
instruction, Process (i), can proceed, there might be a load, a data rearrange and a data unpack (and
conversion) instruction to load and prepare the input data. After the compute instruction is complete, it
might also require pack, re-arrange and store instructions, to format and save the same to memory. At
the loop, other scalar computations such as loop count and address generation may be needed. For the
same program, when the data can fit in the large GEN GRF register file, the outer loop may be unrolled
for GEN. Here one or a few block loads (using send instruction) may be sufficient to move the working
set into GRF. Then the data shuffle can be combined with the processing operation with region-based
addressing capability. Per operand float type and mixed data type operation may also allow GEN to
combine data conditioning operations with computing operations. These techniques in GEN
architecture help to achieve high compute efficiency and throughput for graphics and media
applications.

Conventional SIMD Instruction Sequence

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 607

GEN SIMD Instruction Sequence for the Same Program

In a GEN instruction, each operand defines a region in the register file. A region may contain multiple
data elements. Each data element is assigned to an execution channel in the EU. The total number of
data elements of a region is called the size of the region, or the size of the operand. The number of
execution channels is called the execution size (ExecSize), which is specified in the instruction word.
ExecSize determines the size of region for source and destination operands in an instruction.

• For an instruction with two source operands, the sizes of the two source operands must be the
same.

• The size of a destination operand generally matches the execution size, therefore equals to the
number of source operand(s) in the same instruction.

 3D – Media – GPGPU

608 Doc Ref # IHD-OS-VLV-Vol7-04.14

o Exception of this rule is present for the integer reduction instructions (such as sad2 and
sada2) where the destination area is smaller than the source area.

Regions are generalized 2-dimensional (2D) arrays in row-major order. The first dimension is named
the horizontal dimension (data elements within a row) and the second dimension is termed the
vertical dimension (data elements in a column). Here, horizontal/vertical and row/column are just
symbolic notations. When the GRF or DevSNB MRF registers are viewed as a row-major 2D array of
memory, such a notation normally matches well with the geometric locations of the data elements of an
operand. However, as the register region is fully described by the parameters discussed below, the data
elements of a register region may not form a regular rectangular shape. For example, Vertical Stride
parameter is allowed to be smaller than Horizontal Stride, making the rows of a register region
interleave with each other. It should also note that the meanings of horizontal/vertical here is different
than that used for the flag control in Section Flag Register.

Specifically, a region-based description of a source operand can take the following format

RegFile RegNum.SubRegNum<VertStride;Width,HorzStride>:type

Parameters are as the follows.

 Register Region Origin (RegFile, RegNum and SubRegNum): This set of parameters, including the
register file, RegFile, the register number, RegNum, and the subregister number, SubRegNum,
describes the register region origin, which is the location of the first data element of the
operand. RegNum is in unit of 256-bit and SubRegNum is in unit of the data element size.

 Width (Width): Width specifies the number of data elements along the horizontal dimension, or
the number of data elements of a row.

 Horizontal Stride (HorzStride): HorzStride specifies the step size between two adjacent data
elements within a row. It is in unit of data element size, which is determined by the data element
Type.

 Vertical Stride (VertStride): VertStride specifies the step size between two adjacent data elements
along the vertical dimension (or the step size between two rows). It is again in unit of data
element size, which is determined by the data element Type.

 Data Element Type (Type): Type specifies numeric data type (float, word, byte, etc.) of the data
elements. All data elements within a region must have the same type.

In GEN, GRF and register files consist of a sequence of 256-bit registers. When viewing the register file
(GRF for example) as a sequence of 256-bit aligned registers, RegNum field provides the register
number, thus for the name. SubRegNum provides the sub-field addressing within a register. However,
when viewing the register file as a byte addressable memory array, (RegNum and SubRegNum) is just a
byte address within the register file with SubRegNum providing the lower 5 bits and RegNum providing
the higher bits.

The execution size is specified for each instruction by the parameter ExecSize. The size of the vertical
dimension is ExecSize/Width, based on the rule that the size of regions must equal to the execution size.

Region Parameters depicts the register region description. The example shows a register region of
r4.1<16;8,2>:w, where the shaded fields denote the data elements in the region and the numbers in
these fields are the execution channel assignments. The register region assumes that an ExecSize of 16
is set for the instruction. Each data element is a word (as noted by the type field :w). The origin of the
region is at the second word of r4, denoted by r4.1. Each row of the region has 8 data elements (words)

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 609

that are 2 data elements (words) apart. The distance between two rows is 16 words. Note that the
region shown is for illustration purpose only. It does not represent a typical usage model nor a
performance optimized mode.

An example of a register region (r4.1<16;8,2>:w) with 16 elements

Region Parameters shows another example where the rows are interleaved. The region, having word
data elements, starts at location r5.0:w. HorzStride, the distance within a row, is 2 words. So the second
element (channel number 1) is at location 5.2:w. And there are 8 elements per row. VertStride, the
distance between two rows, is only 1 word, which is less than HorzStride. Therefore, the first element of
the second row (channel number 8) is at r5.1:w, just next to channel number 0. It is clear from the
picture that the two rows are interleaved.

By varying the region parameters, reader may construct other configurations. The next section provides
more details on the region-based register addressing. However, there are restrictions imposed by
hardware implementation, which can be found in the later sections of this chapter.

A 16-element register region with interleaved rows (r5.0<1;8,2>:w)

Without considering the source channel swizzle and destination register region description, the above
row-major-order region description provides the data assignment to each execution channel. The
following pseudo code computes the addresses of data elements assigned to execution channels for a
special case when the destination register is aligned to 256-bit register boundary.

 3D – Media – GPGPU

610 Doc Ref # IHD-OS-VLV-Vol7-04.14

// Input: Type: ub | b | uw | w | ud | d | f | v

//RegNum: In unit of 256-bit register

//SubRegNum: In unit of data element size

//ExecSize, Width, VertStride, HorzStride: In unit of data elements

// Output: Address[0:ExecSize-1] for execution channels

int ElementSize = (Type==b||Type==ub) ? 1: (Type==w|Type==uw) ? 2: 4;

int Height = ExecSize / Width;

int Channel = 0;

int RowBase = RegNum<<5 + SubRegNum * ElementSize;

for (int y=0; y<Height; y++) {

int Offset = RowBase;

for (int x=0; x<Width; x++) {

Address [Channel++] = Offset;

Offset += HorzStride*ElementSize;

}

RowBase += VertStride * ElementSize;

}

As HorzStride and VertStride are specified independently (note that VertStride might be smaller than or
equal to HorzStride), the region may take various shapes from a replicated scalar, a replicated vector, a
vector of replicated scalars, a sliding window, to a non-overlapped 2D array.

A region-based description of a destination operand can take the following simplified format

RegFile RegNum.SubRegNum<HorzStride>:type

The destination operand is only allowed to have a 1 dimensional region. The Register Region Origin and
Type are the same as for a source operand. The total number of elements is given by ExecSize. However,
only HorzStride is required to describe the 1D region, not VertStride and Width.

As a source register region may cross multiple physical GRF registers, an instruction with such source
operands may take more than two execution cycles to gather source data elements for execution. The
destination register region is restricted to be within a physical GRF register. In other words, destination
scatter writes over multiple registers are not supported.

Region Addressing Modes

There are two different register addressing modes: Direct register addressing and register-indirect
register addressing. Depending on the register region description, the register-indirect register
addressing mode can be further divided into three usages: 1x1 index region where only the origin of
register region is provided by the address register, Vx1 index region where the offset of each row of the
register region is provided by an address register, VxH index region where the offset of each data
element is provided by an address register.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 611

Direct Register Addressing

In this mode, all register region parameters are specified for an operand using fields in the instruction
word.

Direct Register Addressing and Direct Register Addressing are two examples of direct register addressing.

For the example in Direct Register Addressing, all operands are 2D rectangular regions having the same
size of 16 data elements. The two source operands, Src0 and Src1, have 16 bytes. The destination
operand, Dst, has 16 words. There are 8 elements in a row for Src0 and Src1. The vertical stride of 16
bytes for Src0 and Src1 indicates that the first element and the 9th element are 16 bytes apart in the
register file. Note that Src0 falls into the 256-bit physical GRF register starting at r1.0, but Src1 crosses
the 256-bit physical GRF register boundary between r2 and r3. The numbers in the shaded regions are
the values of the data elements. Observing the upper right corners of the source/destination regions
(first data element), we have C = 3+9.

A region description example in direct register addressing

For the example in Direct Register Addressing, the sizes of areas of Src0 and Src1 are the same, but Src0
contains a vector of replicated scalars. With HorzStride = 0 and Width = 8, the first row of 8 elements in
Src0 is a replication of the byte at r1.14. Comparing ExecSize of 16 to Width of 8 indicates that there is a
second row of 8 elements in Src0. With VertStride = 16, the second row in Src0 is a replication of the
byte at r1.20 (20 = 14+16). Effectively, the 16 data elements of Src0 are {1,1,1,1,1,1,1,1, 4,4,4,4,4,4,4,4}.

A region description example in direct register addressing with src0 as a vector of replicated
scalars

 3D – Media – GPGPU

612 Doc Ref # IHD-OS-VLV-Vol7-04.14

Register-Indirect Register Addressing with a 1x1 Index Region

In the register-indirect register addressing mode with 1x1 index region, the region origin is provided by
the content of the address register, the rest of region parameters are provided by the fields in the
instruction word.

Register-Indirect Register Addressing with a 1x1 Index Region depicts an example for this addressing
mode. For example, the presence of a full region description <16;8,1> for Src0 indicates that only the
origin of the region is provided by the address register a0.0.

An example illustrating register-indirect register addressing mode with a 1x1 index region

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 613

 Register-Indirect Register Addressing with a Vx1 Index Region

In the register-indirect register addressing mode with Vx1 index region, the horizontal dimension is
described by the fields in the instruction word and the vertical dimension is described by an address
register region. Specifically, the origin of each row of the data region is provided by the contents of an
address register region. The rows are described by the width and the horizontal stride. The first address
register is provided and the following contiguous address registers are for the following rows. The total
number of address registers used is inferred from the parameters ExecSize and Width.

Within the 16-bit address register, bits 15:5 determine RegNum and bits 4:0 determine SubRegNum.

An example is provided in Register-Indirect Register Addressing with a Vx1 Index Region. The assembly
syntax notion of a register region without vertical stride, <4,1>, corresponding to the special encoding
of vertical stride of 0xF in the instruction word, indicates the VxH or Vx1 mode of indirect register
addressing. In this case, the origin for each row of src0 is provided by the address register. As
ExecSize/Width = 2, there are two address registers a0.0 and a0.1, each pointing to a row of 4 data
elements.

 An example illustrating register-indirect-register addressing mode with a Vx1 index region
(src0)

Register-Indirect Register Addressing with a VxH Index Region

In the register-indirect register addressing mode with VxH index region, the position of each data
element is provided by the contexts in an address register region. This mode has the identical syntax as
the Vx1 index region mode, and in fact, can be viewed as a special case of the Vx1 mode. When Width
of the region is 1, the number of address registers used equals ExecSize.

An example is provided in Register-Indirect Register Addressing with a VxH Index Region. The absent of
vertical stride in the region description <1,0> with width = 1 indicates that the origin for each row of 1

 3D – Media – GPGPU

614 Doc Ref # IHD-OS-VLV-Vol7-04.14

data element of Src0 is provided by the address register. As ExecSize/Width = 8, there are 8 address
registers from a0.0 to a0.7, each pointing to a single data elements.

An example illustrating register-indirect register addressing mode with a VxH index region
(Src0).

Access Modes

There are two basic GEN register access modes controlled by a single bit instruction subfield called
Access Mode.

• 16-byte Aligned Access Mode (align16): In this mode, the origins of all operands (sources and
destination), whether it is by direct addressing or register-indirect addressing, are 16-byte
aligned. For example a row in the region description starts at 16-bype aligned and the width the
row must be 4 and the 4 data elements within a row must span 16-bytes. In this access mode
(and with other restrictions put forward later), full-channel swizzle for both source operands and
per-channel mask for destination operand are supported on a 4-component basis. In other
words, the control and setting of full source swizzle and destination mask are repeated for every 4
components up to total of ExecSize channels.

o The align16 access mode can be used for AOS operations. See examples provided in the
Primary Usage Model section for SIMD4x2 and SIMD4x1 modes of operation to support
3D API Vertex Shader and Geometric Shader execution.

• 1-byte Aligned Access Mode (align1): In this mode, the origins of all operands may be aligned to
their data type and could be 1-byte if the operand is of byte type. In this access mode, full region
register descriptions are supported, however, source swizzle or destination mask are not
supported.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 615

o The align1 access mode can be used for SOA operations. See examples provided in the
Primary Usage Model section for SIMD8 and SIMD16 modes of operation to support 3D
API Pixel Shader. Many media applications also operate well in align1 access mode.

Execution Data Type

The GEN architecture carries out arithmetic and logical operations using a smaller set of data types than
the variety supported as source or destination operands. These are the execution data types. A particular
arithmetic or logical instruction has one execution data type, from those listed in the table.

Table: Execution Data Types

Type Description

W Word. 16-bit signed integer.

D Doubleword. 32-bit signed integer.

F Float. 32-bit single precision floating-point number.

DF Double Float. 64-bit double precision floating-point number.

The following rules explain the conversion of multiple source operand types, possibly a mix of different
types, to one common execution type:

• For floating-point sources, all source operands must have the same floating-point type, with the
exceptions below

• A two-source floating-point instruction can have Float as the src0 type and VF (Packed
Restricted Float Vector) as the immediate src1 type.

• Mixing floating-point and integer source types is not allowed. Either all source types must be one
floating-point type or all source types must be integer types.

• Unsigned integers are converted to signed integers.
• Byte (B) or Unsigned Byte (UB) values are converted to a Word or wider integer execution type.
• If source operands have different integer widths, use the widest width specified to choose the

signed integer execution type.

Note that when the execution data type is an integer type, it is always a signed integer type. For integer
execution types, extra precision is provided within the hardware, including the accumulators, so that
conversions from unsigned to signed do not affect instruction correctness.

Register Region Restrictions

A register region is described as packed if its elements are adjacent in memory, with no intervening
space, no overlap, and no replicated values. If there is more than one element in a row, elements must
be adjacent. If there is more than one row, rows must be adjacent. When two registers are used, the
registers must be adjacent and both must exist.

The following register region rules apply to the GEN implementation. Rules and restrictions for
compressed instructions are in the Instruction Compression section.

1. General Restrictions Based on Operand Types

 3D – Media – GPGPU

616 Doc Ref # IHD-OS-VLV-Vol7-04.14

There are these general restrictions based on operand types:

1. Where n is the largest element size in bytes for any source or destination operand type,
ExecSize * n must be <= 64.

2. When the Execution Data Type is wider than the destination data type, the destination must
be aligned as required by the wider execution data type and specify a HorzStride equal to
the ratio in sizes of the two data types. For example, a mov with a D source and B
destination must use a 4-byte aligned destination and a Dst.HorzStride of 4.

2. General Restrictions on Regioning Parameters

The mapping of data elements within the region of a source operand is in row-major order and is
determined by the region description of the source operand, the destination operand, and the
ExecSize, with these restrictions:

1. ExecSize must be greater than or equal to Width.
2. If ExecSize = Width and HorzStride ≠ 0, VertStride must be set to Width * HorzStride.
3. If ExecSize = Width and HorzStride = 0, there is no restriction on VertStride.
4. If Width = 1, HorzStride must be 0 regardless of the values of ExecSize and VertStride.
5. If ExecSize = Width = 1, both VertStride and HorzStride must be 0.
6. If VertStride = HorzStride = 0, Width must be 1 regardless of the value of ExecSize.
7. Dst.HorzStride must not be 0.
8. VertStride must be used to cross GRF register boundaries. This rule implies that elements

within a Width cannot cross GRF boundaries.

A. Region Alignment Rules for Direct Register Addressing
1. In Direct Addressing mode, a source cannot span more than 2 adjacent GRF registers.
2. A destination cannot span more than 2 adjacent GRF registers.
3. When an instruction has a source region spanning two registers and a destination region

contained in one register the number of elements must be the same between two sources
and one of the following must be true:

1. The destination region is entirely contained in the lower OWord of a register.
2. The destination region is entirely contained in the upper OWord of a register.
3. The destination elements are evenly split between the two OWords of a register.

4. When an instruction has a source region that spans two registers and the destination spans
two registers, the destination elements must be evenly split between the two registers and
each destination register must be entirely derived from one source register. Note: In such
cases, the regioning parameters must ensure that the offset from the two source registers is
the same.

The examples below illustrate the behavior of the cases permitted:

 // Case (a) First 8 elements are from r12 to r10 and second from r13 to r11:
 mov (16) r10.0<2>:w r12<16;8,1>:w
 // The above instruction behaves the same as the following two instructions:
 mov (8) r10.0<2>:w r12<8;8,1>:w
 mov (8) r11.0<2>:w r13<8;8,1>:w

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 617

 // Case (b) First 8 elements from r12.8 to r10 and second from r13 to r11:
 mov (16) r10.0<2>:w r12.8<16;8,1>:w
 // The above instruction behaves the same as the following two instructions:
 mov (8) r10.0<2>:w r12.8<8;8,1>:w
 mov (8) r11.0<2>:w r13.8<8;8,1>:w

The following examples indicate cases that are not allowed:
 // Not allowed, because the source has 12 elements from r12 and 4 from r13:
 mov (16) r10.0<2>:w r12.4<4;4,1>:w

 // Not allowed, because the destination has 14 elements in r10 and 2 in r11:
 mov (16) r10.2<1>:w r12<16;8,1>:w

5. When destination spans two registers, the source MUST span two registers. The exception
to the above rule:

1. When source is scalar, the source registers are not incremented.
2. When source is packed integer Word and destination is packed integer DWord, the

source register is not incremented but the source sub register is incremented. When
lower 8 channels are disabled, the sub register of source1 operand is not
incremented. If the lower 8 channels are expected to be disabled, say by predication,
the instruction must be split into pair of simd8 operations.

The examples below illustrate the behavior of the cases permitted:

 // Case (a) Scalar source:
 mov (16) r10.0<2>:w r12.0<0;1,0>:w
 // The above instruction behaves the same as the following two instructions:
 mov (8) r10.0<2>:w r12.0<0;1,0>:w
 mov (8) r11.0<2>:w r12.0<0;1.0>:w

 // Case (b) First 8 elements from r12 to r10 and second from r12.8 to r11:
 mov (16) r10.0<1>:d r12<8;8,1>:w
 // The above instruction behaves the same as the following two instructions:
 mov (8) r10.0<1>:d r12<8;8,1>:w
 mov (8) r11.0<1>:d r12.8<8;8,1>:w

 // Case (c) Example for Issues
 add (16) r10.0<1>:d r12<8;8,1>:w r13<8;8,1>:w
 // The above instruction must be split into
 add (8) r10.0<1>:d r12.0<8;8,1>:w r13.0<8;8,1>:w {Q1}
 add (8) r11.0<1>:d r12.8<8;8,1>:w r13.8<8;8,1>:w {Q2}

1. Special Cases for Byte Operations
1. When the destination type is byte (UB or B) only a raw move using the mov instruction

supports a packed byte destination register region: Dst.HorzStride = 1 and Dst.DstType =
(UB or B). This packed byte destination register region is not allowed for any other
instructions, including a raw move using the selinstruction, because the sel instruction is
based on Word or DWord wide execution channels.

2. There is a relaxed alignment rule for byte destinations. When the destination type is byte
(UB or B), destination data types can be aligned to either the lowest byte or the second

 3D – Media – GPGPU

618 Doc Ref # IHD-OS-VLV-Vol7-04.14

lowest byte of the execution channel. For example, if one of the source operands is in word
mode (a signed or unsigned word integer), the execution data type will be signed word
integer. In this case the destination data bytes can be either all in the even byte locations or
all in the odd byte locations. This rule has two implications illustrated by this example:

 // Example:
 mov (8) r10.0<2>:b r11.0<8;8,1>:w
 mov (8) r10.1<2>:b r11.0<8;8,1>:w

 // Dst.HorzStride must be 2 in the above example so that the destination
 // subregisters are aligned to the execution data type, which is :w.
 // However, the offset may be .0 or .1.
 // This special handling applies to byte destinations ONLY.

2. Special Requirements for Handling Double Precision Data Types
1. In Align1 mode, all regioning parameters like stride, execution size, and width must use the

syntax of a pair of packed floats. The offsets for these data types must be 64-bit aligned.
The execution size and regioning parameters are in terms of floats.

 // Example:
 mov (8) r10.0<1>:df r11.0<8;8,1>:df
 // The above instruction moves four double floats.

2. In Align1 mode, all regioning parameters must use the syntax of a pair of packed floats,
including channel selects and channel enables.

 // Example:
 mov (8) r10.0.xyzw:df r11.0.xyzw:df
 // The above instruction moves four double floats. The .x picks the
 // low 32 bits and the .y picks the high 32 bits of the double float.

3. Regioning Rules for Register Indirect Addressing
1. When the execution size and destination regioning parameters require two registers, each

register is pointed to by adjacent index registers.

 // Example:
 mov (16) r[a0.0]:f r10:f
 // The above instruction behaves the same as the following two instructions:
 mov (8) r[a0.0]:f r10:f
 mov (8) r[a0.1]:f r11:f

2. When the destination requires two registers and the sources are indirect, the sources must
use 1x1 regioning mode. In addition, the sources must be assembled from GRF registers
each accessed by adjacent index registers in 1x1 regioning modes. The data for each
destination GRF register is entirely derived from one source register.

 // Example:
 // Case (a):
 add (16) r[a0.0]:f r[a0.2]:f r[a0.4]:f
 // The above instruction behaves the same as the following two instructions:
 add (8) r[a0.0]:f r[a0.2]:f r[a0.4]:f
 add (8) r[a0.1]:f r[a0.3]:f r[a0.5]:f
 // Each access, source and destination, is a 1x1 regioning access.

 // Case (b):
 add (16) r[a0.0]:f r[a0:2]:f r[a0.4]<0;1,0>:f
 // The above instruction behaves the same as the following two instructions:

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 619

 add (8) r[a0.0]:f r[a0.2]:f r[a0.4]<0;1,0>:f
 add (8) r[a0.1]:f r[a0.3]:f r[a0.5]<0;1,0>:f

3. Indirect addressing on src1 must be a 1x1 indexed region mode.
4. When a Vx1 or a VxH addressing mode is used on src0, the destination must use ONLY one

register.
5. Indirect addressing on the destination must be a 1x1 indexed region mode.
6. Data elements referenced by a single index within a source region cannot cross a 256-bit

register boundary.

4. Special Restrictions
1. In Align16 access mode, SIMD16 is not allowed for DW operations and SIMD8 is not

allowed for DF operations.
2. When an instruction is SIMD32, the low 16 bits of the execution mask are applied for both

halves of the SIMD32 instruction. If different execution mask channels are required, split the
instruction into two SIMD16 instructions.

3. Instructions with condition modifiers must not use SIMD32.
4. All flow control (branching) instructions must use the Align1 access mode.
5. When using Align16 mode for conversion of data elements of different sizes, both source

and destination must be one register each.

Destination Operand Description

Destination Region Parameters

Based on the above restrictions, a subset of register region parameters are sufficient to describe the
destination operand:

• Destination Register Origin

o Destination Register Number and Destination Subregister Number for direct register
addressing mode

o A Scalar Destination Register Index for register-indirect-register addressing mode

• Destination Register Region – Note that destination register region does not have full region
description parameters

o Destination Horizontal Stride

SIMD Execution Control

Predication

Predication is the conditional SIMD channel selection for execution on a per instruction basis. It is an
efficient way of dynamic SIMD channel enabling without paying branch instruction overhead. When
predication is enabled for an instruction, a Predicate Mask (PMask), which contains 16-bit channel

 3D – Media – GPGPU

620 Doc Ref # IHD-OS-VLV-Vol7-04.14

enables, is generated internally in EU. Note that PMask is not a software visible register. It is provided
here to explain how SIMD execution control works. PMask generation is based on the Predication
Control (PredCtrl) field, Predication Inversion (PredInv) field and the flag source register in the
instruction word. See Instruction Summary chapter for definition of these fields.

Predication shows the block diagram of the hardware logic to generate PMask. PMask is generated
based on combinatory logic operation of the bits in the flag register. Instruction field PredCtrl controls
the horizontal evaluation unit and vertical evaluation unit. MUX A in the figure selects whether
horizontally-evaluated results or vertically-evaluated results are sent to the Predication Invertion unit.
The PredInv field controls the Prediction Inversion unit. Either one 16-bit flag subregister or the whole
flag register may be selected to generate the PMask depending on the predication control modes. MUX
B indicates that predication can be enabled and disabled. Predication can be grouped into the following
three categories. Predication functionality also depends on the Access Mode of the instruction.

• No predication: Of course, predication can be disabled. This is the most commonly used case.
• Predication with horizontal combination: the predicate mask is generated based on combinatory

logic operation of bits within a selected flag subregister.
• Predication with vertical combination: the predicate mask is generated based on combinatory

logic operation of bits across flag multiple subregisters.

Generation of predication mask

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 621

No Predication

When PredCtrl field of a given instruction is set to 0 (no predication), it indicates that no predication is
applied to this instruction. Effectively, the resulting PMask is all 1's. This is shown by the 2:1 multiplexer
B controlled by the Pred Enable signal in Predication. Where predication is not enabled for an
instruction, multiplex B is selected to output 0xFF to PMask.

Predication with Horizontal Combination

Predication with horizontal combination inputs the 16 bits of a single flag subregister (f0.0:uw or
f0.1:uw) and passes them through combinatory logic of the Horizontal Evaluation unit to create PMask.

The simplest combination is no combination – the same 16 bits from selected flag subregister are
output to MUX A. In this case, a bit in the selected flag subregister controls the conditional execution of
the corresponding execution channel. Let the selected flag subregister be denoted as f0.#, the following
pseudo code describes the predicate mask generation for predication with sequential flag channel
mapping.

If (PredCtrl == Sequential flag channel mapping) {

For (ch=0; ch<16; ch++)

PMask[ch] = (PredInv == TRUE) ? ~f0.#[ch]: f0.#[ch];

}

More complex horizontal evaluation is based on channel grouping. A group of adjacent channels (bits
from flag subregister) are evaluated together and a single bit is replicated to the group. The size of
groups is in power of 2. The supported combination depends on the Access Mode of an instruction.

In Align16 access mode, horizontal combination is based on 4-channel groups.

• Channel replication: PredCtrl of .x, .y, .z and .w select a single channel from each 4-channel group
and replicate it as the output for the group. For example, PredCtrl = .x means that channel 0 in
each group is replicated.

• OR combination: PredCtrl of .any4h means that if any of the channel in a group is enabled,
outputs for the 4 channels in the group are all enabled.

• AND combination: PredCtrl of .all4h means that only when all of the channels in a group are
enabled, the output for the group is enabled.

These combinations in Align16 mode can be described by the following pseudo-code.

If (Access Mode == Align16) {

For (ch = 0; ch < 16; ch += 4)

Switch (PredCtrl) {

Case .x: bTmp = f0.#[ch]; break;

Case .y: bTmp = f0.#[ch+1]; break;

Case .z: bTmp = f0.#[ch+2]; break;

Case .w: bTmp = f0.#[ch+3]; break;

 3D – Media – GPGPU

622 Doc Ref # IHD-OS-VLV-Vol7-04.14

Case .any4h: bTmp = f0.#[ch] | f0.#[ch+1] | f0.#[ch+2] | f0.#[ch+3]; break;

Case .all4h: bTmp = f0.#[ch] & f0.#[ch+1] & f0.#[ch+2] & f0.#[ch+3]; break;

}

bTmp = (PredInv == TRUE) ? ~bTmp: bTmp;

PMask[ch] = PMask[ch+1] = PMask[ch+2] = PMask[ch+3] = bTmp;

}

}

In Align1 access mode, horizontal combination is based on AND combination .any#h and OR
combination .all#h on channel groups with various sizes, where # is the number of channels in a group
ranging from 2 to 16. This is described by the following pseudo-code.

If (Access Mode == Align1) {

Switch (PredCtrl) {

Case .any2h: groupSize = 2; <op> = |; break;

Case .all2h: groupSize = 2; <op> = &; break;

Case .any4h: groupSize = 4; <op> = |; break;

Case .all4h: groupSize = 4; <op> = &; break;

Case .any8h: groupSize = 8; <op> = |; break;

Case .all8h: groupSize = 8; <op> = &; break;

Case .any16h: groupSize = 16; <op> = |; break;

Case .all16h: groupSize = 16; <op> = &; break;

}

For (ch = 0; ch < 16; ch += groupSize) {

For (inc = 0, bTmp = FALSE; inc < groupSize; inc ++)

bTmp = bTmp <op> f0.#[ch+inc];

For (inc = 0; inc < groupSize; inc ++)

PMask[ch+inc] = bTmp;

}

}

Predication with Vertical Combination

Predication with vertical combination uses both flag subregister as inputs. The AND or OR combination
is across the subregisters on a channel by channel basis. This is shown by the following pseudo-code.

If (Access Mode == Align1) {

For (ch = 0; ch < 16; ch ++) {

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 623

If (PredCtrl == any2v)

PMask[ch] = f0.0[ch] | f0.1[ch]

Else If (PredCtrl == any2h)

PMask[ch] = f0.0[ch] & f0.1[ch]

}

}

End of Thread

There is no special instruction opcode (such as an END instruction) to cause the thread to terminate
execution. Instead, the end of thread is signified by a send instruction with the end-of-thread (EOT)
sideband bit set. Upon executing a send instruction with EOT set, the EU stops on the thread. Upon
observing an EOT signal on the output message bus, the Thread Dispatcher makes the thread's
resource available. If a thread uses pre-allocated resource managed by a fixed function, such as URB
handles and scratch memory, some fixed function protocol also requires the thread to terminate with
the message header phase to carry the information in order for the fixed function to release the pre-
allocated resource.

EU hardware guarantees that if a terminated thread has in-flight read messages or loads at the time of
end that their writebacks will not interfere with either other threads in the system or new threads loaded
in the system in the future.

More details can be found in the send instruction description in Instruction Reference chapter.

Assigning Conditional Flags

Instructions can output two sets of conditional signals, one set from before the outputs clamping/re-
normalizing/format conversion logic, we call this the pre conditional signals. The second set is
generated from the final results after clamping and re-normalizing/format conversion logic, and we call
this the post conditional signals. The post conditional signals are used for fusing the DirectX compare
instruction. Note: The flags generated from the post conditional signals should be equivalent to the
flags generated by a separate cmp instruction after the current arithmetic instruction.

The pre conditional signals are used to generated flags for cmp/cmpn instructions only, this logically
does the compare of the two input sources. The post conditional signals are used to generated flags for
all the other arithmetic instructions, this logically does the compare of the result with zero.

cmpn with both sources as NaNs is a don't care case as this doesn't impact the MIN/MAX operations.

The pre conditional signals include the following:

• pre_sign bit: This bit reflects the sign of the computed result before going through any kind of
clamping, normalizing, or format conversion logic.

• pre_zero bit: This bit reflects whether the computed result is zero before any kind of clamping,
normalizing, or format conversion logic.

The post conditional signals include the following:

 3D – Media – GPGPU

624 Doc Ref # IHD-OS-VLV-Vol7-04.14

• post_sign bit: This bit reflects the sign of the final result after all the clamping, normalizing, or
format conversion logic.

• post_zero bit: This bit reflects whether the final result is zero after all the clamping, normalizing,
or format conversion logic.

• OF bit: This bit reflects whether an overflow occured in any of the computation of the current
instruction, including clamping, re-normalizing, and format conversion.

• NC bit: The NaN computed bit indicates whether the computed result is not a number. It carries
valid information for instructions operating on floating point values. For an operation on integer
operands, this bit is always 0.

• NS0 bit: The NaN Source 0 bit indicates whether src0 of an execution channel is not a number. It
carries valid information for instructions operating on floating point values. For an operation on
integer operands, this bit is always 0.

• NS1 bit: The NaN Source 1 bit indicates whether src1 of an execution channel is not a number. It
carries valid information for instructions operating on floating point values. For an operation on
integer operands, this bit is always 0. For an operation with one source operand, this bit is also set
to 0. This bit is only used for the comparison instruction cmpn, which is specifically provided to
emulate MIN/MAX operations. For any other instructions, this bit is undefined.

• Note that the bits generated at the output of a compute are before the .sat.

Table: Flag Generation for cmp Instructions (The Supported Conditional Modifiers are .e, .ne, .g,
.ge, .l, and .le.)

Conditional
Modifier Meaning Resulting Flag Value (for an execution channel)

.e Equal-to (pre_zero & ! (NS0 | NS1)). This conditional modifier tests whether
the two sources are equal.

If either source is NaN (i.e. NC is true), the flag is forced to false.

.ne Not-Equal-to ! (pre_zero & ! (NS0 | NS1)). This conditional modifier test whether
the two sources are equal. It takes exactly the reverse polarity as the
modifier .e.

.g Greater-than (! pre_sign & ! pre_zero & ! (NS0 | NS1)). This conditional modifier
tests whether src0 is greater than src1.

If either source is a NaN (i.e. NC is true), the flag is forced to false.

.ge Greater-than-
or-equal-to ((! pre_sign | pre_zero) & ! (NS0 | NS1)). This conditional modifier

tests whether src0 is greater than or equal to src1.

If either source is a NaN (i.e. NC is true), the flag is forced to false.

.l Less-than (pre_sign & !pre_zero & ! (NS0 | NS1)). This conditional modifier
tests whether src0 is less than src1.

If either source is a NaN (i.e. NC is true), the flag is forced to false.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 625

Conditional
Modifier Meaning Resulting Flag Value (for an execution channel)

.le Less-than-or-
equal-to ((pre_sign | pre_zero) & ! (NS0 | NS1)). This conditional modifier

tests whether src0 is less than or equal to src1.

If either source is a NaN (i.e. NC is true), the flag is forced to false.

Table: Flag Generation for cmpn Instructions (The Supported Conditional Modifiers are .ge, and
.l)

Conditional
Modifier Meaning Resulting Flag Value (for an execution channel)

.ge Greater-than-
or-equal-to (! pre_sign | (NS1 & (Opcode == cmpn | Opcode == sel with CMod)))

& ! (NS0 & (Opcode == cmpn)). This conditional modifier tests whether
src0 is greater than or equal to src1.

If src1 is a NaN (i.e. NS is true), the flag is forced to true.

.l Less-than (pre_sign | (NS1 & (Opcode == cmpn | Opcode == sel with CMod)))
& ! (NS0 & (Opcode == cmpn)). This conditional modifier tests whether
src0 is less than src1.

If src1 is a NaN (i.e. NS is true), the flag is forced to true.

Table: Flag Generation for All Instructions Other than cmp/cmpn Instructions (The Supported
Conditional Modifiers are .e, .ne, .g, .ge, .l, .le, .o, and .u.)

Conditional
Modifier Meaning Resulting Flag Value (for an execution channel)

.e Equal-to (post_zero & ! NC). This conditional modifier tests whether the result is
equal to zero.

If either source is NaN (i.e. NC is true), the flag is forced to false.

.ne Not-Equal-to ! (post_zero & ! NC). This conditional modifier test whether the result is
not equal to zero.

It takes exactly the reverse polarity as modifier .e.

.g Greater-than (! post_sign & ! post_zero & ! NC). This conditional modifier tests
whether result is greater than zero.

If either source is a NaN (i.e. NC is true), the flag is forced to false.

.ge Greater-than-
or-equal-to ((! post_sign | post_zero) & ! NC). This conditional modifier tests

whether result is greater than or equal to zero.

If either source is a NaN (i.e. NC is true), the flag is forced to false.

 3D – Media – GPGPU

626 Doc Ref # IHD-OS-VLV-Vol7-04.14

Conditional
Modifier Meaning Resulting Flag Value (for an execution channel)

.l Less-than (post_sign & ! post_zero & ! NC). This conditional modifier tests
whether result is equal to zero.

If either source is a NaN (i.e. NC is true), the flag is forced to false.

.le Less-than-or-
equal-to ((post_sign | post_zero) & ! NC). This conditional modifier tests

whether result is equal to or less than zero.

If either source is a NaN (i.e. NC is true), the flag is forced to false.

.o Overflow OF. This conditional modifier tests whether the computed result causes
overflow – the computed result is outside the range of the destination
data type.

Note: The legacy condition modifier behavior is different from IEEE
exception Overflow flag. For inf float to int conversion, .o will set the
legacy Overflow flag, but IEEE exception Overflow flag won't be set.

All other internal conditional signals are ignored.

.u Unordered NC. This conditional modifier tests whether the computed result is a NaN
(unordered).

All other internal conditional signals are ignored.

Destination Hazard

GEN architecture has built-in hardware to avoid destination hazard.

Destination Hazard stands for the risk condition when multiple operations are trying to write to the
same destination and the result of the destination may be ambiguous. This may or may not happen on
GEN for two instructions with the same destination, or with destinations that have overlapped register
region, depending on the ordering of the arrival of destination results. Let's consider two instructions in
a thread with potential destination hazard. There may be other instruction between them as long as
there is no instruction sourcing the same destination. Using register scoreboards, GEN hardware
automatically takes care of the destination hazard by not issuing the second instruction until the
destination scoreboard is cleared. However, for certain cases, in fact for most cases, such destination
hazard indicated by the register scoreboard is false, causing unnecessary delay of instruction issuing.
This may result in lower performance. The destination dependency control field in the instruction word
{NoDDClr, NoDDhk} allows software to selectively override such hardware destination dependency
mechanism. Such performance optimization hooks must be used with extreme caution. When it is not
certain that it is a false destination hazard, the programmer should rely on hardware to resolve the
dependency.

 As the destination dependency control field does not apply to send instruction, there is only one
condition that a programmer may use the {NoDDClr, NoDDChk} capability.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 627

• If none of the two instructions is send, there CANNOT be any destination hazard. This is because
instructions within a thread are dispatched in order (single-issued) and the execution pipeline is
in-order and has a fixed latency.

 When a sequence of NoDDChk and NoDDClr are used, the last instruction that completes the
scoreboard clear must have a non-zero execution mask. This means, if any kind of predication can
change the execution mask or channel enable of the last instruction, the optimization must be avoided.
This is to avoid instructions being shot down the pipeline when no writes are required.

 Example:

 (f0.0) mov r10.0 r11.0 {NoDDClr}

 (-f0.0) mov r10.0 r11.0 {NoDDChk, NoDDClr}

 In the above case, if predication can disable all writes to r10 for the second instructions, the instruction
maybe shot down the pipeline resulting in un-deterministic behavior. Hence, This optimization must not
be used in these cases.

Non-present Operands

Some instructions do not have two source operands and one destination operand. If an operand is not
present for an instruction the operand field in the binary instruction must be filed with null. Otherwise,
results are unpredictable.

Specifically, for instructions with a single source, it only uses the first source operand src0. In this case,
the second source operand src1 must be set to null and also with the same type as the first source
operand src0. It is a special case when src0 is an immediate, as an immediate src0 uses DW3 of the
instruction word, which is normally used by src1. In this case, src1 must be programmed with register
file ARF and the same data type as src0.

Instruction Prefetch

Due to prefetch of the instruction stream, the EUs may attempt to access up to 8 instructions (128
bytes) beyond the end of the kernel program – possibly into the next memory page. Although these
instructions will not be executed, software must account for the prefetch in order to avoid invalid page
access faults. One possible (though inefficient) solution would be to pad the end of all kernel programs
with 8 NOOP instructions. A more efficient approach would be to ensure that the page after all kernel
programs is at least valid (even if mapped to a dummy page). Note that the General State Access
Upper Bound field of the STATE_BASE_ADDRESS command can be used to prevent memory accesses
past the end of the General State heap (where kernel programs must reside).

 3D – Media – GPGPU

628 Doc Ref # IHD-OS-VLV-Vol7-04.14

ISA Introduction
This chapter discusses the following topics:

• Introducing the Execution Unit
• EU Terms and Acronyms
• EU Changes by Processor Generation
• EU Notation

Subsequent chapters cover:

• EU Data Types
• Execution Environment
• Exceptions
• Instruction Set Summary
• Instruction Set Reference
• EU Programming Guide

The EU Programming Guide provides some useful examples and information but is not a complete or
comprehensive programming guide.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 629

Introducing the Execution Unit

This section introduces the Execution Unit (EU), a simple and capable processor within the GPU that
supports graphics processing within the graphics pipelines, can do general purpose computing
(GPGPU), and responds to exceptional conditions via the System Routine.

The EU provides parallelism at two levels: thread and data element. Multiple threads can execute on the
EU; the number executing concurrently depends on the processor and is transparent to EU code. Each
thread has its own registers (GRF and ARF, described below). Most EU instructions operate on arrays of
data elements; the number of data elements is normally the ExecSize (execution size) or number of
channels for the instruction. A channel is a logical unit of execution for data element access, masking,
and flow control within instructions. The number of channels is independent of the number of physical
ALUs or FPUs for a particular graphics processor.

EU native instructions are 128 bits (16 bytes) wide. Some combinations of instruction options can use
compact instruction formats that are 64 bits (8 bytes) wide. Identifying instructions that can be
compacted and creating the compact representations is done by software tools, including compilers
and assemblers.

Data manipulation instructions have a destination operand (dst) and one, two, or three source operands
(src0, src1, or src2). The instruction opcode determines the number of source operands. An instruction's
last source operand can be an immediate value rather than a register.

Data read or written by a thread is generally in the thread's GRF (General Register File), 128 general
registers, each 32 bytes. A data element address within the GRF is denoted by a register number (r0 to
r127) and a subregister number. In the instruction syntax, subregister numbers are in units of data
element size. For example, a :d (Signed Doubleword Integer) element can be in subregister 0 to 7,
corresponding to byte numbers in the instruction encoding of 0, 4, ... 28.

Note: The EU cannot directly read or write data in system memory.

Specialized registers used to implement the ISA are in a distinct per thread Architecture Register File
(ARF). Each such register or group of related registers has its own distinct name. For example, ip is the
instruction pointer and f0 is a flags register. An ARF register can be a src0 or dst operand but not a src1
or src2 operand. There are restrictions on how particular ARF registers are accessed that should be
understood before directly reading or writing those registers. See the ARF Registers section for more
information.

The EU supports both integer and floating-point data types, as described in the Numeric Data Types
section.

For EU flow control, each channel has its own per-channel instruction pointer (PcIP[n]) and only
executes an instruction when IP == PcIP[n] and any other masks enable the channel. Most flow control
instructions use signed offsets from the current instruction address to reference their targets.
Unconditional branches are done using mov with IP as the destination. Flow control can also use SPF
(Single Program Flow) mode to execute with a single instruction pointer (IP).

The EU ISA supports predication, masking, regioning, swizzling, some type conversions, source
modification, saturation, accumulator updates, and flag updates as part of instruction execution:

 3D – Media – GPGPU

630 Doc Ref # IHD-OS-VLV-Vol7-04.14

• Predication creates a bit mask (PMask) to enable or disable channels for a particular instruction
execution. Pmask is derived from flag register and subregister values using boolean formulas
determined by the PredCtrl (Predicate Control) and PredInv (Predicate Inversion) instruction fields.
See the Predication section.

• Masking is the overall process of determining which channels execute for a given instruction
based on five factors:

• Number of channels (only channels in [0, ExecSize - 1] can execute)
• Execution mask (EMask)
• Whether the channel is on the instruction (if not in Single Program Flow mode and

MaskCtrl is not NoMask)
• Predicate mask (PMask)
• In Align16 mode, any enabling of channels using the Dst.ChanEn instruction field (if

MaskCtrl is not NoMask).
• Regioning specifies an array of data elements contained in one or two registers, with options for

scattering, interleaving, or repeating data elements in registers using width and stride values,
subject to significant constraints. Regioning also includes access mode (Align1 or Align16) and
addressing mode (Direct or Indirect). See the Registers and Register Regions section.

• Swizzling allows small scale reordering of data elements within groups of four at the input using
the modulo 4 channel names x, y, z, and w. For example, a swizzle of .wzyx with an ExecSize of 8
reads execution channels 0 to 7 from these input channels: 3, 2, 1, 0, 7, 6, 5, and 4. Swizzling is
only available in the Align16 access mode, described in the Execution Environment chapter.

• Type Conversions do any needed conversion from source data type to execution data type and
from execution data type to destination data type. See Execution Data Type for more information.
Each instruction description indicates what combinations of data types are supported.

• Source Modification modifies a source operand just before doing the requested operation. For a
numeric operation, the choices are:

• No modification (normal).
• - indicating negation.
• (abs) indicating absolute value.
• -(abs) indicating a forced negative value.

Source modification logically occurs after any conversion from source data type to execution data
type. Each instruction description indicates whether it supports source modification.

• Saturation clamps result values to the nearest value within a saturation range determined by the
destination type. For a floating-point type, the saturation range is [0.0, 1.0]. For an integer type,
the saturation range is the entire range for that type, for example [0, 65535] for the UW
(Unsigned Word) type. Each instruction description indicates whether it supports saturation.

• Accumulator Updates optionally update the accumulator register or registers in the ARF with
destination values as a side effect of instruction execution. The AccWrCtrl instruction field enables
accumulator updates. The Accumulator Disable flag in control register 0 (cr0) can be used to
disable accumulator updates, regardless of AccWrCtrl values; for example, this flag may be used
in the System Routine.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 631

• Flag Updates optionally update a flags register and subregister (f0.0, f0.1, f1.0, or f1.1) with
conditional flags based on the CondModifier (Condition Modifier) instruction field. For example, a
CondModifier of .nz (not zero) assigns flag bits based on whether result elements are not zero (1)
or zero (0). Each instruction description indicates whether it supports the Condition Modifier and
any restrictions on the values supported.

Note: The EU is not required to execute steps in its internal pipeline sequentially or in order, so long as
it produces correct results.

The assembler syntax uses spaces between operands and encloses ExecSize and any predicate in
parentheses. Instruction mnemonics, register names, conditional modifiers, predicate controls, and type
designators use lowercase. Function names used with the math instruction are UPPERCASE.
(pred) inst cmod sat (exec_size) dst src0 src1 { inst_opt, ... }

General register destination regions use the syntax rm.n<HorzStride>:type. General register directly
addressed source regions use the syntax rm.n<VertStride;Width,HorzStride>:type. You need to
understand more about register regioning to understand all of these terms.

The following example assembly language instruction adds two packed 16-element single-precision
Float arrays in r4/r5 and r2/r3 writing results to r0/r1, only on those channels enabled by the predicate
in f0.0 along with any other applicable masks.
 (f0.0) add (16) r0.0<1>:f r2.0<8;8,1>:f r4.0<8;8,1>:f

 3D – Media – GPGPU

632 Doc Ref # IHD-OS-VLV-Vol7-04.14

EU Terms and Acronyms

This section provides three tables describing EU general terms and acronyms, EU data types, and EU
selected ARF registers.

Table: EU General Terms and Acronyms

Term Description

ALT mode A floating-point execution mode that maps +/- inf to +/- fmax, +/- denorm to +/-0, and NaN to
+0 at the FPU inputs and never produces infinities, denormals, or NaN values as outputs. See IEEE
mode.

ALU Arithmetic Logic Unit. A functional block that performs integer arithmetic and logic operations, as
distinct from instruction fetch and decode, floating-point operations (see FPU), or messaging.

AOS Array Of Structures. Also see SOA.

ARF Architecture Register File, a distinct register file containing registers used to implement specific
ISA features. For example the Instruction Pointer and condition flags are in ARF registers. See GRF.

Byte An 8-bit value aligned on an 8-bit boundary and the basic unit of addressing. Bits within a byte
are denoted 0 to 7 from LSB to MSB.

Channel A logical unit of SIMD data parallel execution within a thread and within the EU. The number of
physical ALUs or FPUs is not directly related to the number of channels.
Supports up to 32 channels.

Compact
Instruction

A 64-bit instruction encoded as described in the EU Compact Instructions section. Only some
combinations of instruction parameters can be encoded as compact instructions. See native
instruction.

Compressed
Instruction

An instruction that writes to two destination registers. For example a SIMD16 instruction with
Float operands can write channels 0 to 7 to one 32-byte general register and channels 8 to 15 to
a second, consecutive 32-byte general register.

Denorm A very small but nonzero number in IEEE mode, with a magnitude less than the smallest
normalized floating-point number representable in a particular floating-point format. Denormals
lose precision as their values approach zero, called gradual underflow.

DWord Doubleword. A 32-bit (4-byte) value aligned on a 32-bit (4-byte) boundary. Bits within a DWord
are denoted 0 to 31 from LSB to MSB.

EOT End of Thread. A flag set on a send or sendc instruction to terminate a thread's execution on the
EU.

EU Execution Unit. The single GPU unit described in this volume. This volume describes individual
data parallel execution paths within a thread in the EU as channels. A few fields, like EUID, use EU
to refer to a particular hardware resource used to implement the overall EU.

Exception An error or interrupt condition that arises during execution that may transfer control to the
System Routine. Some exceptions can be disabled, preventing such transfers. As defined in this
volume, some errors do not produce exceptions.

ExecSize The number of execution channels for a particular instruction. Channels within that number are
enabled or disabled by various masks.

Floating-point Numeric types that allow fractional values and often a wider range than integer types. The EU
supports binary floating-point types including the single precision type and the double precision
typedefined by the IEEE 754 standard.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 633

Term Description

GEN GEN is used to refer to Intel's mainstream GPU architecture integrated with recent CPU
generations.

GRF General Register File, a distinct register file containing 128 general registers, r0 to r127. Each
general register is 256 bits (32 bytes), can contain any type of data, and can be accessed with any
valid combination of addressing mode, access mode, and region parameters. A general register is
directly addressed using a register number and subregister number, or indirectly addressed using
an address subregister (index register) and an address immediate offset.

IEEE mode A floating-point execution mode that supports all the kinds of floating-point values described by
the IEEE 754 standard: normalized finite nonzero binary floating-point numbers, signed zeros,
signed infinities, signed denormals that are closer to zero than any normalized value but still
nonzero, and NaN (not a number) values. See ALT mode.

Index Register An address subregister when used for indirect addressing.

inf Infinity, +inf or -inf, as a floating-point value in IEEE mode.

Instruction In this volume, instruction always refers to an EU instruction.

ISA Instruction Set Architecture, processor aspects visible to programs and programmers and
independent of a particular implementation, including data types, registers, memory access,
addressing modes, exceptions, instruction encodings, and the instruction set itself. An ISA does
not include instruction timing, hardware pipeline details, or the number of physical resources
(ALUs, FPUs, instruction decoders) mapped to logical constructs (threads, channels). This volume
also includes a recommended assembly language syntax, closely related to the ISA but logically
distinct from it.

LSB Least significant bit.

Message A data structure transmitted from a thread to another thread, to a shared function, or to a fixed
function. Message passing is the primary communication mechanism of the GEN architecture.

MSB Most significant bit.

NaN Not a Number. A non-numeric value allowed in the standard single precision and double
precision floating-point number formats. Quiet NaNs propagate through calculations and
signaling NaNs cause exceptions. NaNs are not used in the ALT floating-point mode.

Native
Instruction

A 128-bit instruction, the regular instruction format that allows all defined instruction parameters
and options. Some instructions can also be encoded using a 64-bit compact instruction format.

OWord Octword. A 128-bit (16-byte) value aligned on a 128-bit (16-byte) boundary. Bits within an
OWord are denoted 0 to 127 from LSB to MSB. This term is used rarely and may be dropped from
future versions of this volume.

Packed A register region is described as packed if its elements are adjacent in memory, with no
intervening space, no overlap, and no replicated values. If there is more than one
element in a row, elements must be adjacent. If there is more than one row, rows must
be adjacent. When two registers are used, the registers must be adjacent and both must
exist.

The immediate vector data types are all described as Packed because each such type
packs several small data elements into a 32-bit immediate value.

QWord Quadword. A 64-bit (8-byte) value aligned on a 64-bit (8-byte) boundary. Bits within a QWord are
denoted 0 to 63 from LSB to MSB.

Region A collection of data locations in registers and subregisters for a source or destination operand.

 3D – Media – GPGPU

634 Doc Ref # IHD-OS-VLV-Vol7-04.14

Term Description

The associated regioning parameters allow regions to be arrays with various layouts.

Register Part of the directly accessible state of an EU program, such as a general register in the GRF or an
architecture register in the ARF. Note that system memory is not directly accessible.

SIMD Single Instruction Multiple Data. Each EU instruction can operate on multiple data elements in
parallel, as specified by the instruction's ExecSize.

SIP System Instruction Pointer, the starting IP value for the System Routine.

SOA Structure of Arrays. Also see AOS.

SPF Single Program Flow. A mode in which every execution channel uses the common instruction
pointer, IP in the ip register. The SPF bit in the control register is 1 to enable SPF and 0 to disable
it. If SPF is disabled, then each execution channel n has its own instruction pointer, PcIP[n] and
each channel n is only eligible to execute, subject to other masking, when PcIP[n] == IP.

Swizzle Rearrange data elements within a vector. The EU supports modulo four swizzling of register
source operands at the input in the Align16 access mode.

System
Routine

A global EU exception handling routine. Any enabled exception from any EU thread transfers
control to this routine.

Thread An instance of a program executing on the EU. The life cycle for a thread on the EU starts with the
first instruction after being dispatched to the EU by the Thread Dispatcher and ends after
executing a send or sendc instruction with EOT set, signaling thread termination. Threads can be
independent or can communicate with each other via the Message Gateway shared function.

Word A 16-bit (2-byte) value aligned on a 16-bit (2-byte) boundary. Bits within a word are denoted 0 to
15 from LSB to MSB. Word has denoted a 16-bit unit for Intel processors since the 8086 and 8088
processors were introduced in 1978.

The next table lists all EU numeric data types. See the Numeric Data Types section for more information
about each data type.

Table: EU Numeric Data Types (Listed Alphabetically by Short Name)

Short
Name

Assembler
Syntax

Long
Name

Size
in

Bytes

Size
in

Bits
Integral
or Float Description

B :b Signed Byte Integer 1 8 I Signed integer in the range -128 to 127.

D :d Signed Doubleword
Integer

4 32 I Signed integer in the range -231 to 231 - 1.

DF :df Double Float 8 64 F Double precision floating-point number.

F :f Float 4 32 F Single precision floating-point number.

UB :ub Unsigned Byte Integer 1 8 I Unsigned integer in the range 0 to 255.

UD :ud Unsigned Doubleword
Integer

4 32 I Unsigned integer in the range 0 to 232 - 1.

UV :uv Packed Unsigned Half
Byte Integer Vector

4 32 I Eight 4-bit unsigned integer values each in
the range 0 to 15. Only used as an
immediate value.

UW :uw Unsigned Word Integer 2 16 I Unsigned integer in the range 0 to 65,535.

V :v Packed Signed Half
Byte Integer Vector

4 32 I Eight 4-bit signed integer values each in the
range -8 to 7. Only used as an immediate

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 635

Short
Name

Assembler
Syntax

Long
Name

Size
in

Bytes

Size
in

Bits
Integral
or Float Description

value.

VF :vf Packed Restricted Float
Vector

4 32 F Four 8-bit restricted float values. Only used
as an immediate value.

W :w Signed Word Integer 2 16 I Signed integer in the range -32,768 to
32,767.

The next table lists the seven ARF registers that you should understand first, omitting several others.
See the ARF Registers section for more information, including descriptions of additional registers not
listed below.

Table: EU Selected ARF Registers (Listed Alphabetically by Name)

Name
Assembler

Syntax Description

Accumulators acc0, acc1 Data registers that can hold integer or
floating-point values of various sizes. Many
instructions can implicitly update
accumulators with a copy of destination
values, done by setting the AccWrCtrl
instruction option. A few instructions, like
mac (Multiply Accumulate), use the
accumulators as an implicit source operand,
useful for some iterative calculations.

Address Register a0.s Holds subregisters primarily used for indirect
addressing. Each subregister is a 16-bit UW
(Unsigned Word) value. For an indirectly
addressed operand or element, the
subregister value plus an AddrImm signed
offset field determines the byte address
(RegNum and SubRegNum) within the
register file (GRF).

There are 8 address subregisters.

Control Register cr0.s Contains bit fields for floating-point modes, flow
control modes, and exception enable/disable.
Also contains exception indicator flags and saves
the AIP (Application Instruction Pointer) on
transferring control to the System Routine to
handle an exception.

Flags fr.s Used as the outputs for various channel
conditional signals, such as equality/zero or
overflow. Used as the inputs for predication.
There are two 32-bit flags registers each

 3D – Media – GPGPU

636 Doc Ref # IHD-OS-VLV-Vol7-04.14

Name
Assembler

Syntax Description

containing two 16-bit subregisters.

Instruction
Pointer
(IP)

ip References the current instruction in
memory, as an unsigned offset from the
General State Base Address. IP is the thread's
overall instruction pointer. Each channel n
can have its own instruction pointer (PcIP[n]).
If not in Single Program Flow mode (SPF is 0)
then only those channels where PcIP[n] == IP
are eligible to execute the instruction, if
enabled by all other applicable masks.

Null Register null Indicates a non-existent operand. Unused
operands in the instruction format, like the
unused second source operand field in a mov
instruction, are encoded as null.

For present source operands, reading a null
source operand returns undefined values.

For null destination operands, results are
discarded but any implicit updates to
accumulators or flags still occur.

State Register sr0.s Contains thread identification and scheduling
fields, and mask fields for enabling or disabling
channels.

Execution Units (EUs)

Each EU is a vector machine capable of performing a given operation on as many as 16 pieces of data
of the same type in parallel (though not necessarily on the same instant in time). In addition, each EU
can support a number of execution contexts called threads that are used to avoid stalling the EU during
a high-latency operation (external to the EU) by providing an opportunity for the EU to switch to a
completely different workload with minimal latency while waiting for the high-latency operation to
complete.

For example, if a program executing on an EU requires a texture read by the sampling engine, the EU
may not necessarily idle while the data is fetched from memory, arranged, filtered and returned to the
EU. Instead the EU will likely switch execution to another (unrelated) thread associated with that EU. If
that thread encounters a stall, the EU may switch to yet another thread and so on. Once the Sampler
result arrives back at the EU, the EU can switch back to the original thread and use the returned data as
it continues execution of that thread.

The fact that there are multiple EU cores each with multiple threads can generally be ignored by
software. There are some exceptions to this rule: e.g., for

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 637

• thread-to-thread communication (see Message Gateway, Media)
• synchronization of thread output to memory buffers (see Geometry Shader).

In contrast, the internal SIMD aspects of the EU are very much exposed to software.

This volume will not deal with the details of the EUs.

 3D – Media – GPGPU

638 Doc Ref # IHD-OS-VLV-Vol7-04.14

EU Changes by Processor Generation

This section describes how the EU changes for particular processor generations. Instruction compaction
tables can differ for each generation, so that is not mentioned in these lists. Particular readers and
audiences can see only certain content in this section. Issues and workarounds for particular
generations, SKUs, or steppings are not included in these lists. Some small changes in instruction
layouts are not included in these lists.

(This version of this section is specific to the Valleyview open source release.)

These features or behaviors are added, continuing to later generations:

• The maximum ExecSize increases to 32, for byte or word operands.
• Increase the number of flag registers from one to two.
• Add the NibCtrl field, used with QtrCtrl to select groups of channels or flags.
• Add the DF (Double Float) data type, the first time an 8-byte data type is supported. DF only

supports the IEEE floating-point mode and not the ALT floating-point mode.
• Add a shared source data type field and a destination data type field for instructions with three

source operands, allowing F (Float), DF (Double Float), D (Signed Doubleword Integer), or UD
(Unsigned Doubleword Integer) types to be specified.

• Add bit manipulation instructions: bfi1, bfi2, bfrev, cbit, fbh, and fbl.
• Add the integer addc (Add with Carry) and subb (Subtract with Borrow) instructions.
• Add the brc (Branch Converging) and brd (Branch Diverging) instructions.
• For the cmp and cmpn instructions, relax the accumulator restrictions.
• For the sel instruction, remove the accumulator restriction.
• Add the Rounding Mode and Double Precision Denorm Mode fields in Control Register 0.

These features or behaviors are specific to this generation and may not continue to later generations:

• Each DF (Double Float) operand uses an element size of 4 rather than 8 and all regioning
parameters are twice what the values would be based on the true element Size: ExecSize, Width,
HorzStride, and VertStride. Each DF operand uses a pair of channels and all masking and swizzling
should be adjusted appropriately.

• The f16to32 and f32to16 instructions convert between half-precision float and Float.
• The mul instruction limits integer multiplication involving DWords so that only the low 16 bits of

src1 are used even if src1 is a DWord.
• The sel (Select) instruction does not support an ExecSize of 32.
• SIMD16 execution on DWords is not allowed when an accumulator is an explicit source or

destination operand.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 639

EU Notation

The Courier New font is used for code examples and for the Syntax, Format, and Pseudocode
sections in the instruction reference.

The italic font style is used for instruction mnemonics outside of code (e.g., the send instruction), for
syntactic production names, for key values in algorithms (ExecSize), and to emphasize a word or phrase.
For example: When bit 10 is set, the destination register scoreboard is not cleared.

The bold font weight is used for the short name and long name of a bit field being described, for value
names being defined, for syntactic terminals, for unnumbered subheadings, and for the terms Note,
Issue/Issues, or Workaround used to introduce a paragraph.

Bit field names and value names used where not being defined and not as syntactic terminals are in
plain text.

Bit field values in hex use the 0x prefix. The BSpec currently uses the 0x prefix for hex in some parts and
the h suffix for hex in other parts. For single bits, values appear as simply 0 or 1. For multi-bit binary
values, the appropriate number of binary digits appears with a b suffix.

Instruction mnemonics are lowercase. Function names invoked using the math instruction are
UPPERCASE. For example, SQRT.

Device names are in plain text in square brackets. For example, [VLV].

Tables describing bit field layouts or registers proceed from most significant to least significant bits.
Figures showing bit fields or registers show most significant bits on the left and least significant bits on
the right.

Any bit, field, or register described as Reserved should be regarded as undefined and unpredictable.
Such bits should be treated as follows:

• When testing values, do not depend on the state of reserved bits. Mask out or otherwise ignore
such bits.

• Sometimes software must initialize reserved bits. For example, a compiler must write complete
instruction values when creating an instruction stream, including reserved bits. In such cases,
write reserved bits as zeros unless otherwise indicated.

• Do not use reserved bits as extra storage for software-defined values; put nothing in such bits.
• When saving state and restoring state, save and restore any reserved bits as well.
• Do not assume that reserved bits are invariant between explicit writes. Software should function

even if reserved bits change in undefined and unpredictable ways.

Any value, encoding, or combination of values or encodings described as Reserved must not be used.
The EU's behavior is undefined in this case.

When a combination of instruction parameters or an EU state is described as producing undefined
results or behavior, do not assume that undefined results or behavior are confined to specific
instructions, operands, registers, or channels.

 3D – Media – GPGPU

640 Doc Ref # IHD-OS-VLV-Vol7-04.14

EU Data Types
Fundamental Data Types

Numeric Data Types

Floating Point Modes

o IEEE Floating Point Mode
o Partial Listing of Honored IEEE 754 Rules
o Complete Listing of Deviations or Additional Requirements vs IEEE 754
o Comparison of Floating Point Numbers]
o Min/Max of Floating Point Numbers

o Alternative Floating Point Mode

Type Conversion

Fundamental Data Types

The fundamental data types in the GEN architecture are halfbyte, byte, word, doubleword (DW),
quadword (QW), double quadword (DQ) and quad quadword (QQ). They are defined based on the
number of bits of the data type, ranging from 4 bits to 256 bits. As shown in the figure below, a
halfbyte contains 4 bits, a byte contains 8 bits, a word contains two bytes, a doubleword (DWord)
contains two words, and so on. Halfbyte is a special data type that is not accessed directly as a
standalone data element; it is only allowed as a subfield of the numeric data type of packed signed
halfbyte integer vector described in the next section.

Fundamental Data Types

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 641

With the exception of halfbyte, the access of a data element to/from a GEN register or to/from memory
must be aligned on the natural boundaries of the data type. The natural boundary for a word has an
even-numbered address in units of bytes. The natural boundary for a doubleword has an address
divisible by 4 bytes. Similarly, the natural boundary for a quadword, double quadword, and quad
quadword has an address divisible by 8, 16, and 32 bytes, respectively. Double quadword, and quad
quadword do not have corresponding numeric data types. Instead, they are used to describe a group (a
vector) of numeric data elements of smaller size aligned to larger natural boundaries.

Numeric Data Types

The numeric data types defined in the GEN architecture include signed and unsigned integers and
floating-point numbers (floats) of various sizes. These numeric data types are described below.

Integer Numeric Data Types

The Execution Unit supports the following integer data types. Signed integer types use two's
complement representation for negative numbers.

Table: UB: Unsigned Byte, 8-bit Unsigned Integer

7 0

Table: B: Byte, 8-bit Signed Integer

7 6 0

S

Table: UW: Unsigned Word, 16-bit Unsigned Integer

1
5 0

Table: W: Word, 16-bit Signed Integer

1
5

1
4 0

S

Table: UD: Unsigned Doubleword, 32-bit Unsigned Integer

3
1 0

 3D – Media – GPGPU

642 Doc Ref # IHD-OS-VLV-Vol7-04.14

Table: D: Doubleword, 32-bit Signed Integer

3
1

3
0 0

S

Table: UV: Packed Unsigned Half-Byte Integer Vector, 8 x 4-Bit Unsigned Integer
3

1

2

8

2

7

2

4

2

3

2

0

1

9

1

6

1

5

1

2

1

1 8 7 4 3 0

Table: V: Packed Signed Half-Byte Integer Vector, 8 x 4-Bit Signed Integer
3

1

2

8

2

7

2

4

2

3

2

0

1

9

1

6

1

5

1

2

1

1 8 7 4 3 0

S S S S S S S S

The following table summarizes the EU integer data types.

Table: Execution Unit Integer Data Types

Notation
Size in

Bits Name Range Generation

UB 8 Unsigned Byte Integer [0, 255]

B 8 Signed Byte Integer [-128, 127]

UW 16 Unsigned Word Integer [0, 65535]

W 16 Signed Word Integer [-32768, 32767]

UD 32 Unsigned Doubleword
Integer

[0, 232 – 1]

D 32 Signed Doubleword
Integer

[–231, 231 – 1]

UV 32 Packed Unsigned Half-Byte
Integer Vector

[0, 15] in each of eight 4-bit immediate vector
elements.

V 32 Packed Signed Half-Byte
Integer Vector

[-8, 7] in each of eight 4-bit immediate vector
elements.

Restriction: Only a raw move using the mov instruction supports a packed byte destination register
region. For information about raw moves, refer to the Description in .

Floating-Point Numeric Data Types

The Execution Unit supports the following floating-point data types. The Float type uses the single
precision format specified in IEEE Standard 754-1985 for Binary Floating-Point Arithmetic. The Double
Float type uses the double precision format specified in IEEE Standard 754-1985 for Binary Floating-
Point Arithmetic. In the ALT floating-point mode, representations for infinities, denorms, and NaNs
within those formats are not used. The EU does not support the double extended precision (80-bit)
floating-point format found in the x86/x87/Intel 64 floating-point registers. All floating-point formats
are signed using signed magnitude representation (a distinct sign bit, separate from the magnitude
information).

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 643

The F (Float) type supports both the ALT and IEEE floating-point modes, controlled by the Single
Precision Floating-Point Mode bit in the Control Register.

In IEEE mode, F calculations flush denormalized values to zero and gradual underflow is not supported.

The DF (Double Float) type only supports the IEEE floating-point mode. Whether DF calculations
support denorms or flush denormalized values to zero is controlled by the Double Precision Denorm
Mode bit in the Control Register.

Table: F: Float, 32-bit Single-Precision Floating-Point Number

3
1

3
0

2
3

2
2 0

S biased
exponent

fraction

Table: DF: Double Float, 64-bit Double-Precision Floating-Point Number DevIVB+

6
3

6
2

5
2

5
1 0

S biased exponent fraction

Table: VF: Packed Restricted Float Vector, 4 x 8-Bit Restricted Precision Floating-Point Number
3

1

3

0

2

8

2

7

2

4

2

3

2

2

2

0

1

9

1

6

1

5

1

4

1

2

1

1 8 7 6 4 3 0

S b. exp. frac. S b. exp. frac. S b. exp. frac. S b. exp. frac.

The following table summarizes the EU floating-point data types.

Table: Execution Unit Floating-Point Data Types

Notation
Size in

Bits Name Range Generation

F 32 Float Single precision, 1 sign bit, 8 bits for the biased exponent,
and 23 bits for the significand:

[–(2–2-23)127…–2-149, 0.0, 2-149… (2–2-23)127]

DF 64 Double Float Double precision, 1 sign bit, 11 bits for the biased
exponent, and 52 bits for the significand:

[–(2–2-52)1023…–2-1074, 0.0, 2-1074… (2–2-52)1023]

VF 32 Packed
Restricted
Float Vector

Restricted precision. Each of four 8-bit immediate vector
elements has 1 sign bit,
3 bits for the biased exponent (bias of 3), and 4 bits for
the significand:

[–31…–0.125, 0, 0.125… 31]

 3D – Media – GPGPU

644 Doc Ref # IHD-OS-VLV-Vol7-04.14

Packed Signed Half-Byte Integer Vector

A packed signed halfbyte integer vector consists of 8 signed halfbyte integers contained in a
doubleword. Each signed halfbyte integer element has a range from -8 to 7 with the sign on bit 3. This
numeric data type is only used by an immediate source operand of doubleword in a GEN instruction. It
cannot be used for the destination operand or a non-immediate source operand. GEN hardware
converts the vector into an 8-element signed word vector by sign extension. This is illustrated in
Numeric Data Types.

The short hand format notation for a packed signed half-byte vector is V.

Converting a Packed Half-Byte Vector to a 128-bit Signed Integer Vector

Packed UnSigned Half-Byte Integer Vector

A packed unsigned halfbyte integer vector consists of 8 unsigned halfbyte integers contained in a
doubleword. Each unsigned halfbyte integer element has a range from 0 to 15. This numeric data type
is only used by an immediate source operand of doubleword in a GEN instruction. It cannot be used for
the destination operand or a non-immediate source operand. GEN hardware converts the vector into an
8-element signed word vector.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 645

Packed Restricted Float Vector

A packed restricted float vector consists of 4 8-bit restricted floats contained in a doubleword. Each
restricted float has the sign at bit 7, a 3-bit coded exponent in bits 4 to 6, a 4-bit fraction in bits 0 to 3,
and an implied integer 1. The exponent is in excess-3 format – having a bias of 3. Restricted float
provides zero, positive/negative normalized numbers with a small range (3-bit exponent) and small
precision (4-bit fraction). This numeric data type is only used by an immediate source operand of
doubleword in a GEN instruction. It cannot be used for the destination operand, or a non-immediate
source operand.

The following figure shows how to convert an 8-bit restricted float into a single precision float.
Converting a 3-bit exponent with a bias of 3 to an 8-bit exponent with a bias of 127 is by adding 4, or
equivalently copying bit 2 to bit 7 and putting the inverted bit 2 to bits 6:2. A special logic is also
needed to take care of positive/negative zeros.

Conversion from a Restricted 8-bit Float to a Single-Precision Float

 3D – Media – GPGPU

646 Doc Ref # IHD-OS-VLV-Vol7-04.14

The following table shows all possible numbers of the restricted 8-bit float. Only normalized float
numbers can be represented, including positive and negative zero, and positive and negative finite
numbers. Normalized infinites, NaN, and denormalized float numbers cannot be represented by this
type. It should be noted that this 8-bit floating point format does not follow IEEE-754 convention in
describing numbers with small magnitudes. Specifically, when the exponent field is zero and the fraction
field is not zero, an implied one is still present instead of taking a denormalized form (without an
implied one). This results in a simple implementation but with a smaller dynamic range – the magnitude
of the smallest non-zero number is 0.125.

Table: Examples of Restricted 8-bit Float Numbers

Class Hex #
Sign
[7]

Exponent
[6:4]

Fraction
[3:0]

Extended
8-bit

Exponent
Floating Number

in Decimal

Positive Normalized
Float

0x70-0x7F 0 111 0000 … 1111 1000 0011 16 … 31

0x60-0x6F 0 110 0000 … 1111 1000 0010 8 … 15.5

0x50-0x5F 0 101 0000 … 1111 1000 0001 4 … 7.75

0x40-0x4F 0 100 0000 … 1111 1000 0000 2 … 3.875

0x30-0x3F 0 011 0000 … 1111 0111 1111 1 … 1.9375

0x20-0x2F 0 010 0000 … 1111 0111 1110 0.5 … 0.96875

0x10-0x1F 0 001 0000 … 1111 0111 1101 0.25 … 0.484375

0x01-0x0F 0 000 0001 … 1111 0111 1100 0.125 … 0.2421875

0x00 0 000 0000 0000 0000 0 (+zero)

Negative Normalized
Float

0xF0-0xFF 1 111 0000 … 1111 1000 0011 -16 … -31

0xE0-0xEF 1 110 0000 … 1111 1000 0010 -8 … -15.5

0xD0-
0xDF

1 101 0000 … 1111 1000 0001 -4 … -7.75

0xC0-
0xCF

1 100 0000 … 1111 1000 0000 -2 … -3.875

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 647

Class Hex #
Sign
[7]

Exponent
[6:4]

Fraction
[3:0]

Extended
8-bit

Exponent
Floating Number

in Decimal

0xB0-0xBF 1 011 0000 … 1111 0111 1111 -1 … -1.9375

0xA0-
0xAF

1 010 0000 … 1111 0111 1110 -0.5 … -0.96875

0x90-0x9F 1 001 0000 … 1111 0111 1101 -0.25 … -0.484375

0x81-0x8F 1 000 0001 … 1111 0111 1100 -0.125 … -
0.2421875

0x80 1 000 0000 0000 0000 -0 (-zero)

The following figure shows the conversion of a packed exponent-only float to a 4-element vector of
single precision floats.

The shorthand format notation for a packed signed half-byte vector is VF.

-->

Floating Point Modes

GEN architecture supports two floating point operation modes, namely IEEE floating point mode (IEEE
mode) and alternative floating point mode (ALT mode). Both modes follow mostly the requirements in
IEEE-754 but with different deviations. The deviations will be described in details in later sections. The
primary difference between these modes is on the handling of Infs, NaNs and denorms. The IEEE
floating point mode may be used to support newer versions of 3D graphics API Shaders and the
alternative floating point mode may be used to support early Shader versions. Taking DirectX 3D
graphics API Shaders for example, shader models before version 3.0 may use the alternative floating
point mode, while version 3.0 and following shader models may use the IEEE floating point mode.

These two modes are supported by all units that perform floating point computations, including GEN
execution units, GEN shared functions like Extended Math, the Sampler and the Render Cache color
calculator, and fixed functions like VF, Clipper, SF and WIZ. Host software sets floating point mode
through the fixed function state descriptors for 3D pipeline and the interface descriptor for media
pipeline. Therefore different modes may be associated with different threads running concurrently.
Floating point mode control for EU and shared functions are based on the floating point mode field (bit
0) of cr0 register.

 3D – Media – GPGPU

648 Doc Ref # IHD-OS-VLV-Vol7-04.14

IEEE Floating Point Mode

Partial Listing of Honored IEEE-754 Rules

Here is a summary of expected 32-bit floating point behaviors in GEN architecture. Refer to IEEE-754 for
topics not mentioned.

• INF – INF = NaN
• 0 * (+/–)INF = NaN
• 1 / (+INF) = +0 and 1 / (–INF) = –0

o (+/–)INF / (+/–)INF = NaN as A/B = A * (1/B)

• INV (+0) = RSQ (+0) = +INF, INV (–0) = RSQ (–0) = –INF, and SQRT (–0) = –0
• RSQ (–finite) = SQRT (–finite) = NaN
• LOG (+0) = LOG (–0) = –INF, LOG (–finite) = LOG (–INF) = NaN
• NaN (any OP) any-value = NaN with one exception for min/max mentioned below. Resulting NaN

may have different bit pattern than the source NaN.
• Normal comparison with conditional modifier of EQ, GT, GE, LT, LE, when either or both operands

is NaN, returns FALSE. Normal comparison of NE, when either or both operands is NaN, returns
TRUE.

o Note: Normal comparison is either a cmp instruction or an instruction with conditional
modifier

• Special comparison cmpn with conditional modifier of EQ, GT, GE, LT, LE, when the second source
operand is NaN, returns TRUE, regardless of the first source operand, and when the second
source operand is not NaN, but first one is, returns FALSE. Cmpn of NE, when the second source
operand is NaN, returns FALSE, regardless of the first source operand, and when the second
source operand is not NaN, but first one is, returns TRUE.

o This is used to support the proposed IEEE-754R rule on min or max operations. For
which, if only one operand is NaN, min and max operations return the other operand as
the result.

• Both normal and special comparisons of any non-NaN value against +/– INF return exact result
according to the conditional modifier. This is because that infinities are exact representation in
the sense that +INF = +INF and –INF = –INF.

o NaN is unordered in the sense that NaN != NaN.

• IEEE-754 requires floating point operations to produce a result that is the nearest representable
value to an infinitely precise result, known as "round to nearest even" (RTNE). 32-bit floating point
operations must produce a result that is within 0.5 Unit-Last-Place (0.5 ULP) of the infinitely
precise result. This applies to addition, subtraction, and multiplication.

• All arithmetic floating point instructions does Round To Nearest Even at the end of the
computation, except the round instructions.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 649

Complete Listing of Deviations or Additional Requirements vs. IEEE-754

For a result that cannot be represented precisely by the floating point format, the EU uses rounding to
nearest or even to produce a result that is within 0.5 Unit-Last-Place(0.5 ULP) of the infinitely precise
result.

The rounding mode is specified by the Rounding Mode field in the Control Register.

The EU can report floating point overflow and NaN into conditional flags. However, there is no support
for floating point exceptions, status bits, or traps.

Handle denorms as follows:

• Single precision (F, Float) denorms are flushed to sign-preserved zero on input and output of any
floating-point mathematical operation.

• Double precision (DF, Double Float) denorms are kept or flushed in mathematical operations
based on the Double Precision Denorm Mode in the Control Register.

• Denorms are not flushed for format conversions, irrespective of any denorm mode.
• Denorms are not flushed for raw mov operations. For information about raw mov operations,

refer to the Description in Instruction Move EUISA.

• Input denorms are not flushed for half precision to single precision floating-point conversion.

Other information regarding floating-point behaviors:

• NaN input to an operation always produces NaN on output, however the exact bit pattern of the
NaN is not required to stay the same (unless the operation is a raw mov instruction which does
not alter data at all.)

• x*1.0f must always result in x (except denorm flushed and possible bit pattern change for NaN).
• x +/- 0.0f must always result in x (except denorm flushed and possible bit pattern change for

NaN). But -0 + 0 = +0.
• Fused operations (such as mac, dp4, dp3, etc.) may produce intermediate results out of 32-bit

float range, but whose final results would be within 32-bit float range if intermediate results were
kept at greater precision. In this case, implementations are permitted to produce either the
correct result, or else ±inf. Thus, compatibility between a fused operation, such as mac, with the
unfused equivalent, mul followed by add in this case, is not guaranteed.

• As the accumulator registers have more precision than 32-bit float, any instruction with
accumulator as a source/destination operand may produce a different result than that using GRF
or DevSNB MRF registers.

• API Shader divide operations are implemented as x*(1.0f/y). With the two-step method, x*(1.0f/y),
the multiply and the divide each independently operate at the 32-bit floating point precision level
(accuracy to 1 ULP).

• See the Type Conversion section for rules on converting to and from float representations.

Comparison of Floating Point Numbers

The following tables detail the Pre-DevBDW rules for floating point comparison. In the tables, +/-Fin
stands for a positive or negative finite precision floating point number. Result is either a true (T) or false

 3D – Media – GPGPU

650 Doc Ref # IHD-OS-VLV-Vol7-04.14

(F). Each row corresponds to a fixed src0 and each column corresponds to a fixed src1. When comparing
two positive finite numbers (or two negative finite numbers), the result can be T or F depending on the
values. Therefore, the corresponding fields in the following tables are marked as T/F. When comparing
two double float numbers, the result can be T or F depending on the values and the denorm mode
(enabled/disabled). The corresponding fields in the following tables are marked T/F*.

Table: Results of Greater-Than Comparison – CMP.

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf F F F F F F F F F

-Fin T T/F F F F F F F F

-denorm T T T/F* F F F F F F

-0 T T T/F* F F F F F F

+0 T T T/F* F F F F F F

+denorm T T T/F* T/F* T/F* T/F* F F F

+Fin T T T T T T T T/F F

+inf T T T T T T T T F

NaN F F F F F F F F F

Table: Results of Less-Than Comparison – CMP.L

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf F T T T T T T T F

-Fin F T/F T T T T T T F

-denorm F F T/F* T/F* T/F* T/F* T T F

-0 F F F F F T/F* T T F

+0 F F F F F T/F* T T F

+denorm F F F F F T/F* T T F

+Fin F F F F F F T/F T F

+inf F F F F F F F F F

NaN F F F F F F F F F

Table: Results of Equal-To Comparison – CMP.E

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf T F F F F F F F F

-Fin F T/F F F F F F F F

-denorm F F T/F* T/F* T/F* T/F* F F F

-0 F F T/F* T T T/F* F F F

+0 F F T/F* T T T/F* F F F

+denorm F F T/F* T/F* T/F* T/F* F F F

+Fin F F F F F F T/F F F

+inf F F F F F F F T F

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 651

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

NaN F F F F F F F F F

Table: Results of Not-Equal-To Comparison – CMP.NE

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf FALSE T T T T T T T T

-Fin T T/F T T T T T T T

-denorm T T T/F* T/F* T/F* T/F* T T T

-0 T T T/F* FALSE FALSE T/F* T T T

+0 T T T/F* FALSE FALSE T/F* T T T

+denorm T T T/F* T/F* T/F* T/F* T T T

+Fin T T T T T T T/F T T

+inf T T T T T T T FALSE T

NaN T T T T T T T T T

Table: Results of Less-Than Or Equal-To Comparison – CMP.LE

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf T T T T T T T T F

-Fin F T/F T T T T T T F

-denorm F F T/F* T/F* T/F* T/F* T T F

-0 F F T/F* T T T/F* T T F

+0 F F T/F* T T T/F* T T F

+denorm F F T/F* T/F* T/F* T/F* T T F

+Fin F F F F F F T/F T F

+inf F F F F F F F T F

NaN F F F F F F F F F

Table: Results of Greater-Than or Equal-To Comparison – CMP.GE

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf T F F F F F F F F

-Fin T T/F F F F F F F F

-denorm T T T/F* T/F* T/F* T/F* F F F

-0 T T T/F* T T T/F* F F F

+0 T T T/F* T T T/F* F F F

+denorm T T T/F* T/F* T/F* T/F* F F F

+Fin T T T T T T T/F F F

+inf T T T T T T T T F

NaN F F F F F F F F F

 3D – Media – GPGPU

652 Doc Ref # IHD-OS-VLV-Vol7-04.14

Min/Max of Floating Point Numbers

A special comparison called Compare-NaN is introduced in the GEN architecture to handle the
difference of above mentioned floating-point comparison and the rules on supporting MIN/MAX. To
compute the MIN or MAX of two floating-point numbers, if one of the numbers is NaN and the other is
not, MIN or MAX of the two numbers returns the one that is not NaN. When two numbers are NaN,
MIN or MAX of the two numbers returns source1.

Min and Max is supported by conditional select.

Note even though f0.0 is specified in the instruction, the flag register is not touched by this instruction.

The following tables detail the rules for this special compare-NaN operation for floating-point numbers.
Notice that excepting Not-Equal-To comparison-NaN, last columns in all other tables have T.

Alternative Floating Point Mode

The key characteristics of the alternative floating point mode is that NaN, Inf, and denorm are not
expected for an application to pass into the graphics pipeline, and the graphics hardware must not
generate NaN, Inf, or denorm as computation result. For example, a result that is larger than the
maximum representable floating point number is expected to be flushed to the largest representable
floating point number, i.e., +fmax. The fmax has an exponent of 0xFE and a mantissa of all one's, which
is the same for IEEE floating point mode.

Note that this mode is applicable ONLY to Single Precision Float datatype.

This also implies that ALT mode is not supported when Single precision datatype is involved in format
conversion to double precision or half precision.

Here is the complete list of the differences of legacy graphics mode from the relaxed IEEE-754 floating
point mode.

• Any +/- INF result must be flushed to +/- fmax, instead of being output as +/- INF.
• Extended mathematics functions of log(), rsq(), and sqrt() take the absolute value of the sources

before computation to avoid generating INF and NaN results.

Alternative Floating Point Modeshows the support of these differences in various hardware units.

Table: Supported Legacy Float Mode and Impacted Units

IEEE-754 Deviations VF Clipper SF WIZ EU EM Sampler RC

Any +/- INF result flushed to
+/- fmax

Y Y Y Y Y Y Y Y

Log, rsq, sqrt take abs() of sources N/A N/A N/A N/A N/A Y N/A N/A

Alternative Floating Point Mode shows some of the desired or recommended alternative floating point
mode behaviors that do not have hardware design impact. The reasons of not needing special hardware
support for these items are also provided. This is based on the compliance requirementthat can be
found in the DirectX 9 specification: Handling of NaNs, Infs, and denorms is undefined.
Applications should not pass in such values into the graphics pipeline.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 653

Table: Dismissed Legacy Behaviors

Suggested IEEE-754 Deviations Reason for Dismiss

Mov forces (+/-)INF to (+/-)fmax (+/-)INF is never present as input

(+/-)INF – (+/-)INF = +/- fmax instead of NaN (+/-)INF is never present as input

Denorm must be flushed to zero in all cases (including
trivial mov and point sampling)

Denorm is never present as input

Anything*0=0 (including NaN*0=0 and INF*0=0) NaN and INF are never present as input

Except propagated NaN, NaN is never generated NaN is never present as input and GEN never generates
NaN based on rules in the previous table

An input NaN gets propagated excepting (a)-(d) NaN is never present as input

(a) Rcp (and rsq) of 0 yields fmax N/A, as it is already covered by the general rule Any +/-
INF result flushed to +/- fmax

(b) Sampler honors 0/0 = 0 as if (1/0)*0 There is no divide in Sampler

I Rcp (and rsq) of INF yields +/- 0 (+/-)INF is never present as input

(d) Sampler honors INF/INF = 0 as if (1/INF)=0
followed by Anything*0 = 0

There is no divide in Sampler

Type Conversion

Float to Integer

Converting from float to integer is based on rounding toward zero. If the floating point value is +0, -0,
+Denorm, -Denorm, +NaN –r -NaN, the resulting integer value is always 0. If the floating point value is
positive infinity (or negative infinity), the conversion result takes the largest (or the smallest) represent-
able integer value. If the floating point value is larger (or smaller) than the largest (or the smallest)
represent-able integer value, the conversion result takes the largest (or the smallest) represent-able
integer value. The following table shows these special cases. The last two rows are just examples. They
can be any number outside the represent-able range of the output integer type (UD, D, UW, W, UB and
B).

Input Format Output Format

F UD D UW W UB B

+/- Zero 00000000 00000000 00000000 00000000 00000000 00000000

+/- Denorm 00000000 00000000 00000000 00000000 00000000 00000000

NAN 00000000 00000000 00000000 00000000 00000000 00000000

-NAN 00000000 00000000 00000000 00000000 00000000 00000000

INF FFFFFFFF 7FFFFFFF 0000FFFF 00007FFF 000000FF 0000007F

-INF 00000000 80000000 00000000 00008000 00000000 00000080

+232 (*) FFFFFFFF 7FFFFFFF 0000FFFF 00007FFF 000000FF 0000007F

-232-1 (*) 00000000 80000000 00000000 00008000 00000000 00000080

 3D – Media – GPGPU

654 Doc Ref # IHD-OS-VLV-Vol7-04.14

Integer to Integer with Same or Higher Precision

Converting an unsigned integer to a signed or an unsigned integer with higher precision is based on
zero extension.

Converting an unsigned integer to a signed integer with the same precision is based on modular wrap-
around. Without saturation, a larger than represent-able number becomes a negative number. With
saturation, a larger than represent-able number is saturated to the largest positive represent-able
number.

Converting a signed integer to a signed integer with higher precision is based on sign extension.

Converting a signed integer to an unsigned integer with higher precision is based on sign extension.
Without saturation, a negative number becomes a large positive number with the sign bit wrapped-up.
With saturation, a negative number is saturated to zero.

Integer to Integer with Lower Precision

Converting a signed or an unsigned integer to a signed or an unsigned integer with lower precision is
based on bit truncation. Without saturation, only the lower bits are kept in the output regardless of the
sign-ness of input and output. With saturation, a number that is outside the represent-able range is
saturated to the closest represent-able value.

Integer to Float

Converting a signed or an unsigned integer to a single precision float number is to round to the closest
representable float number. For any integer number with magnitude less than or equal to 24 bits,
resulting float number is a precise representation of the input. However, if it is more than 24 bits, by
default a round to nearest even is performed.

Double Precision Float to Single Precision Float

Converting a double precision floating-point number to a single precision floating-point number uses
the round to zero rounding mode.

Double Precision Float Single Precision Float

-inf -inf

-finite -finite/-denorm/-0

-denorm -0

-0 -0

+0 +0

+denorm +0

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 655

Double Precision Float Single Precision Float

+finite +finite/+denorm/+0

+inf +inf

NaN NaN

The upper Dword of every Qword will be written with undefined value when converting DF to F.

Single Precision Float to Double Precision Float

Converting a single precision floating-point number to a double precision floating-point number will
produce a precise representation of the input.

Single Precision Float Double Precision Float

-inf -inf

-finite -finite

-denorm -finite

-0 -0

+0 +0

+denorm +finite

+finite +finite

+inf +inf

NaN NaN

 3D – Media – GPGPU

656 Doc Ref # IHD-OS-VLV-Vol7-04.14

Exceptions
The GEN Architecture defines a basic exception handling mechanism for several exception cases. This
mechanism supports both normal operations such as extensions of the mask-stack depth, as well as
detecting some illegal conditions .

Table: Exception Types

Type Trigger / Source Sync/Async Recognition

Software Exception Thread code Synchronous

Breakpoint • A bit in the instruction word

• Breakpoint IP match

• Breakpoint Opcode match

Synchronous

Illegal Opcode
Hardware Synchronous

Halt MMIO register write Asynchronous

Context Save/Restore Preemption Interrupt Asynchronous

Threads may choose which exceptions to recognize and which to ignore. This mask information is
specified on a per-kernel basis in fixed function state generated by the driver, and delivered to the EU
as part of a new thread dispatch. Upon arrival at the EU, the exception-mask information is used to
initialize the exception enable fields of that thread's cr0.1 register, which controls exception recognition.
This register is instantiated on a per-thread basis, allowing independent control of exception type
recognition across hardware threads. The exception enable bits in the cr0.1 register are read/write, and
thus can be enabled/disabled via software at any time during thread execution.

The exception handling mechanism relies on the System Routine, a single subroutine that provides
common exception handling for all threads on all EUs in the system. This System Routine is defined per-
context and is identified via a System IP (SIP) register in context state. At the time of each context
switch, the appropriate SIP for that context is loaded into each EU, allowing each context to have
custom implementation of exception handling routines if so desired.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 657

Exception-Related Architecture Registers

Exception-related registers are architecture registers cr0.0 through cr0.2. These registers are instantiated
on a per-thread basis providing each hardware thread with unique control over exception recognition
and handling. The registers provide the capability to mask exception types, determine the type of raised
exception, store the return address, and control exiting from the System Routine back to the application
thread.

Many of the bits in these registers are manipulated by both hardware and software. In all cases, the
read/write operations by hardware and software occur at exclusive times in a thread's lifetime, thus
there is no need for atomic read-modify-write operations when accessing these registers.

 3D – Media – GPGPU

658 Doc Ref # IHD-OS-VLV-Vol7-04.14

System Routine

The following diagram illustrates the basic flow of exception handling and the structure of the System
Routine.

Invoking the System Routine

The System Routine is invoked in response to a raised exception. Once an exception is raised, no further
instructions from the application thread are issued until the System Routine has executed and returned
control back to the application thread.

After an exception is recognized by hardware, the EU saves the thread's IP into its AIP register (cr0.2),
and then moves the System Routine offset, SIP, into the thread's IP register. At this point the next
instruction issued for that thread is the first instruction of the System Routine.

The System Routine maintains the same execution priority, GRF register space, and thread state as the
application thread from which it is invoked. Due to assuming the same priority, there may be significant
absolute time between an exception being raised and invoking the System Routine, as other higher

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 659

priority threads within the EU continue to execute. From a thread's perspective, once an exception is
recognized, the next instruction issued is from the System Routine.

At the time of System Routine invocation, there may still be outstanding registers in-flight from the
application thread. Depending on the instruction sequence in the System Routine, an in-flight register
may be referenced by the System Routine and cause a register-in-flight dependency. These
dependencies are honored by the System Routine and may cause the System Routine to be suspended
until the register retires.

Exception processing is not nested within the System Routine. If a future exception is detected while
executing the System Routine, the exception is latched into cr0.1, but does not cause a nested re-
invocation of the System Routine. The exception recognition hardware recognizes only one outstanding
exception of each type; i.e., once a specific exception type is detected and latched in cr0.1, and until the
exception is cleared, any further exception of that type is lost.

Accumulators are not natively preserved across the System Routine. To make sure the accumulators are
in the identical state once control is returned to the application thread, the System Routine must either
set the Accumulator Disable bit of cr0.0 before using any instruction that modifies an accumulator, or
save and restore the accumulators (using GRF registers or system thread scratch memory) around the
System Routine. Saving and restoring accumulators, including their extended precision bits, can be
accomplished by a short series of moves and shifts of the accumulator register. Also note that the state
of the Accumulator Disable bit itself must be preserved unless, by convention, the driver software limits
its manipulation to only the System Routine.

Further, upon System Routine entry, the execution-related masks (Continue, Loop, If, and Active masks,
contained in the Mask Register) will remain set as they were in the application thread. Thus only a
subset of channels may be active for execution. To enable execution on all channels, the System Routine
may choose to use the instruction option NoMask, or may choose to set the mask registers to the
desired value so long as it saves/restores the original masks upon System Routine entry/exit.

Similarly there is no hardware mechanism to preserve flags, mask-stacks, or other architecture registers
across the System Routine. The System Routine must ensure that these values are preserved (see the
Conditional Instructions Within the System Routine section for related information).

Returning to the Application Thread

Prior to returning control to the application thread, the System Routine should clear the proper
Exception Status and Control bit in cr0.1. Failure to do so forces the thread's execution to reenter the
System Routine before any further instructions are executed from the application thread. (Note that
single-stepping functionality is the one exception where the exception's Status and Control bit is not
reset before exit.)

The System Routine may choose to loop within a single invocation of the System Routine until all
pending exceptions are serviced, or may choose to service exceptions one at a time (a simpler solution,
but less efficient).

The System Routine is exited, and control returned to the application thread, via a write to the Master
Exception State and Control bit in cr0.0. Upon clearing this bit, the value of AIP (cr0.2) is restored to the
thread's IP register and, with no further exceptions pending, execution resumes at that address. The
System Routine must follow any write to the Master Exception State and Control bit with at least one

 3D – Media – GPGPU

660 Doc Ref # IHD-OS-VLV-Vol7-04.14

SIMD-16 nop instruction to allow control to transition. Throughout the System Routine, the AIP register
maintains its value at the time the exception was raised unless directly modified by the System Routine.
(See the AIP register definition for specifics on the IP value saved to AIP).

System IP (SIP)

The System IP (SIP) is the 16 byte-aligned offset of the first instruction of the System Routine, relative to
the General State Base Address. SIP is assigned by the STATE_SIP command to the command streamer
which updates SIP in the EU.

When the System Routine is invoked, the application thread's current IP is first saved into the AIP field
of cr0.2. The SIP address is then loaded into the thread's IP register and execution continues within the
System Routine. Thus each invocation of the System Routine has a common entry point. Returning from
the System Routine loads IP from AIP, continuing thread execution.

System Routine Register Space

The System Routine uses the same GRF space as the thread that invokes it. As such all of the calling
thread's registers and their contents are visible to the System Routine. Further, the System Routine must
only use r0..r15 of the GRF, as a minimal thread may have requested and been allocated this few. If the
System Routine requires more registers than this, the driver should establish a higher minimum
allocation for all threads.

The System Routine may encounter any residual register dependencies of the calling thread until such
time that they clear by the return of in-flight writebacks.

Only one 32-bit GRF location, r0.4, is reserved for System Routine use. This location is sufficient to allow
the System Routine to calculate the appropriate offset of its private scratch memory in the larger system
scratch memory space (as dictated by binding table entry 254). The offset is left as a driver convention,
but is likely based on a combination of Thread and EU IDs (see the example system handler in the
System Scratch Memory Space) section. Other than the reserved r0.4 register field, there is no explicit
GRF register space dedicated to the System Routine, and any GRF needs must be accomplished via (a)
convention between the System Routine and application code, or (b) the System Routine temporarily
spilling the thread's GRF register contents to scratch memory and restoring those contents before
System Routine exit.

No persistent storage is automatically allocated to the System Routine, although a driver
implementation may set aside part of system scratch memory for the System Routine.

Any parameter passing to the System Routine (for use by software exceptions) is done via the GRF
based on system thread/application thread convention.

System Scratch Memory Space

There is a single unified system scratch memory space per context shared by all EUs. It is anticipated
that block is further partitioned into a unique scratch sub-space per thread via conventions
implemented in the System Routine, with each hardware thread having a uniform block size at a
calculated offset from the base address. The block address for a thread can be based on an offset
derived from the thread's execution unit ID and thread ID made available through the TID and EUID
field of architecture register sr0.0.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 661

Per_Thread_Block_Size = System_Scratch_Block_Size / (EU_Count * Thread_Per_EU);

Offset = (sr0.0.EID * Threads_Per_EU + sr0.0.TID) * Per_Thread_Block_Size;

where in GEN:

Threads_Per_EU = 4

EU_Count = 8

System_Scratch_Block_Size is a driver choice.

Access to system scratch memory is performed through the Data Port via linear single register or block-
based read/write messages. The driver may choose to use any binding table index for system scratch
surface description. As a practical matter, the same index is expected to be used across all binding
tables, as the index is typically hard coded in Data Port messages used within the System Routine
coupled with the fact that a single System Routine is used for all threads. Read/write messages to the
Data Port contain the address of the binding table (provided in r0 of all threads) and an offset, from
which the Data Port calculates the final target address.

It is expected that the system scratch memory space is allocated by the driver at context-create time
and remains persistent at a constant memory address throughout a context's lifetime.

Conditional Instructions Within the System Routine

It is expected that most, if not all, control flow within the System Routine is scalar in nature. If so, the
System Routine should set SPF (Single Program Flow, cr0.0) to enable scalar branching. In this mode,
conditional/loop instructions do not update the mask stacks and therefore do not have restrictions on
their use nor require the save/restore of hardware mask stack registers.

If SIMD branching is desired within the System Routine, special considerations must be taken. Upon
entry to the System Routine, the depth of the mask stacks is unknown at that point, and may be near
full. If so, a subsequent conditional instruction and its associated mask push may cause a stack overflow.
This would generate an exception within the system routine, an unsupported occurrence. To prevent
this, if the System Routine uses SIMD conditional instructions, it must save the mask stacks prior to the
first SIMD conditional instruction, and restore them after the last SIMD conditional instruction. As a
general solution, it may be easiest to simply implement the save/restore as part of the entry/exit code
sequence, using an available GRF register pair as a storage location. Once saved, the stacks should be
reset to their empty condition, namely depth = 0 and top of stack = 0xFFFFFFFF.

Use of NoDDClr

The GEN instruction word defines an instruction option NoDDClr that overrides the native register
dependency clearing mechanism of the typical instruction. When specified, NoDDClr does not clear, at
register writeback time, the dependency placed on the destination register of the instruction. Use of this
mechanism may provided increased performance when a kernel can guarantee no dependency issues
between instructions, but may cause issues with exception handling in some circumstances as discussed
here.

Typically NoDDClr is used in an instruction series to enable a sequence of writes to sub-fields of a GRF
register without paying a dependency penalty on each instruction. In this case, NoDDClr and NoDDChk
are used across an instruction sequence to allow the first instruction to set the destination dependency,

 3D – Media – GPGPU

662 Doc Ref # IHD-OS-VLV-Vol7-04.14

interior instructions to write to the GRF register without dependency checks, and the last instruction to
clear the dependency. (This sequence is referred to as a NoDDClr code block going forward). By only
allowing the last instruction to clear the dependency, program execution is prevented from going
beyond a certain point until all writes of that sequence are known to retire.

The problem arises if an exception is raised within a NoDDClr code block. In this case, there exists the
potential for the System Routine to hang while attempting to save/restore a register used as a
destination register by the NoDDCLr code block, as the outstanding dependency on that register will
not clear until the final instruction of the NoDDCLr block is executed, sometime after the System
Routine returns. Should the System Routine attempt to use that register, it hangs waiting on a
dependency to be cleared by an instruction not yet issued.

Note: This is a known condition and will in some cases not allow the full GRF contents to be externally
visible in System Routine scratch space during a break or halt exception.

To avoid this condition, guidelines are provided below for consideration. (Note that these are general
guidelines, some of which can be alleviated through careful coding and register usage conventions and
restrictions.)

• NoDDClr code blocks should only be used where absolutely necessary.
• Instructions that may generate exceptions should not be placed within NoDDClr blocks. This

includes most conditional branch instructions (if, do, while, ...) .
• If possible, use NoDDClr on registers high in the thread's register allocation (e.g. r120), thus even

if a System Routine hang occurs, as much of the GRF is visible as possible. (Note that this would
also require the System Routine to update the progress of the GRF dump, perhaps with each GRF
block written, or to initialize the System Routine's scratch space to a known value, to be able to
distinguish valid/locations from unwritten locations).

Also a driver implementation may consider a disable-NoDDclr option in which jitted code does not use
the NoDDClr capability. In this case, there is no change to the code that is jitted other than removal of
the NoDDClr instruction option. The code executes as normal, but with a higher number of thread
switches in what would have been a NoDDClr code block.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 663

Exception Descriptions

This section describes conditions that can cause exceptions and transfer control to the System Routine.

Illegal Opcode

The GEN ISA defines a single illegal opcode. The byte value of the illegal opcode is 0x00 due to it being
a likely byte value encountered by a wayward instruction pointer value. The illegal instruction signals an
exception if exception handling is enabled and invokes the system interrupt routine. If exception
handling is NOT enabled, the illegal opcode is executed resulting in undetermined behavior including a
system hang. Hardware decodes all legal opcodes supported. Any byte value that is not in the legal
opcode list is decoded as an illegal opcode to trigger exception.

Undefined Opcodes

All undefined opcodes in the 8-bit opcode space (which includes instruction bit 7, reserved for future
opcode expansion) are detected by hardware. If an undefined opcode is detected, the opcode is
overridden by hardware, forcing the opcode value within the pipeline to the defined illegal opcode. The
offending instruction, should it eventually be issued down the execution unit's pipeline, generates an
Illegal Opcode exception as described in the section Illegal Opcode. The memory location of the
offending opcode keeps its original value. That location can be queried to determine the opcode value.

Software Exception

A mechanism is provided to allow an application thread to invoke an exception and is triggered using
the Software Exception Set and Clear bit of cr0.1. Sub-function determination and parameter passing
into and out of the exception handler is left to convention between the system-thread and application-
thread. The thread's IP is incremented before saving AIP and entering the System Routine, causing
execution to resume at the next application-thread instruction after returning from the System Routine.

Context Save and Restore

The System Routine is also used to save and restore the context of the Execution Unit. This feature is
enabled in GPGPU workloads only.

When the execution engine receives a preemption or an interrupt, the application thread invokes the
System Routine. The System Routine is invoked only when all in-flight registers have retired. The system
routine is used to save all the state of the EU to memory. When the sequence is complete, the master
exception control bit is cleared. This action stops all execution for the given thread and invalidates the
thread. This means a new thread from a different context may be loaded. When the master exception
control bit is cleared, software must ensure that all outstanding messages from the EU are dispatched
out of the execution message pipeline. This is achieved by creating a dependency on the last send that
is saving EU state. A dummy instruction before clearing the master exception control bit ensures that
this is achieved.

The System Routine is also invoked on a context restore request. In this case a dummy thread is loaded
into the EU which starts with the System Routine. This routine now restores the state of the EU. The

 3D – Media – GPGPU

664 Doc Ref # IHD-OS-VLV-Vol7-04.14

restore sequence used in such a case should be consistent with the save sequence to ensure that state
is restored correctly. After completing the restore sequence, the System Routine must clear the master
exception control bit in the Control Register. This enables hardware to switch to the application thread
which continues execution.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 665

Events That Do Not Generate Exceptions

The conditions described in this section are either not recognized or do not generate an exception.

Illegal Instruction Format

This condition includes malformed instructions in which the opcode is legal, but the source or
destination operands or other instruction attributes do not comply with the instruction specification.
There is no direct hardware support to detect these cases and the outcome of issuing a malformed
instruction is undefined.

Note that GEN does not support self-modifying code, therefore the driver has an opportunity to detect
such cases before the thread is placed in service.

Malformed Message

A message's contents, destination registers, lengths, and descriptors are not interpreted in any way by
the execution unit. Errors in specifying message fields do not raise exceptions in the EU but may be
detected and reported by the shared functions .

GRF Register Out of Bounds

Unique GRF storage is allocated to each thread which, at a minimum, satisfies the register requirements
specified in the thread's declaration. References to GRF register numbers beyond that called for in the
thread's declaration do not generate exceptions. Depending on the implementation, out-of-bounds
register numbers may be remapped to r0..r15, although this functionality should not be relied upon by
the thread. The hardware guarantees the isolation of each thread's register space, thus there is no
possibility of direct register manipulation via an out-of-bounds register access.

Hung Thread

There is no hardware mechanism in the EU to detect a hung thread and such a thread may remain hung
indefinitely. It is expected that one or more hung threads will eventually cause the driver to recognize a
context timeout and take appropriate recovery action.

Instruction Fetch Out of Bounds

The EU implements a full 32-bit instruction address range (with the 4 LSBs don't care), making it
possible for a thread to attempt to jump to any 16-byte aligned offset in the 32-bit instruction address
range. (Instruction addresses are offsets from the General State Base Address.) The EU does not provide
any type of address checking on instruction fetch requests sent to the memory/cache hierarchy,
although error conditions for memory addresses are reported via the Page Table Error Register and
other memory interface registers.

 3D – Media – GPGPU

666 Doc Ref # IHD-OS-VLV-Vol7-04.14

FPU Math Errors

The EU's floating point units (FPUs) have defined behaviors for traditional floating point errors and do
not generate exceptions. There is no support for signaling FPU math errors as exceptions.

Computational Overflow

Depending on source operand types and values, destination type, and the operation being performed,
overflows may occur in the execution pipelines. Many instructions support the overflow (.o) conditional
modifier that assigns flag bits based on whether or not an overflow occurs.

The EU never signals exceptions for overflows. Software must provide any overflow handling.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 667

System Routine Example

The following code sequence illustrates some concepts of the System Routine. It is intended to be just a
shell, without getting into the specifics of each exception handler.

This example contains DevSNB code for the message registers in the MRF. All message register and
MRF references are specific to DevSNB. Other code in this example is useful for other processor
generations.

The example frees enough MRF and GRF space to get the routine started, then jumps to the handler for
the specific exception. Many other implementations are also valid, including single exception servicing
(as opposed to looping) per invocation, and saving only the GRF or MRF space required by the
exception being serviced.
 #define ACC_DISABLE_MASK 0xFFFFFFFD
 #define MASTER_EXCP_MASK 0x7FFFFFFF
 #define SYSROUTINE_SCRATCH_BLKSIZE 16384 // for example

 // Shared function IDs:
 #define DPR 0x04000000
 #define DPW 0x05000000

 // Message lengths:
 #define ML5 0x00500000
 #define ML9 0x00900000

 // Response lengths:
 #define RL0 0x00000000
 #define RL4 0x00040000
 #define RL8 0x00080000

 // Data port block sizes:
 #define BS1_LOW 0x0000
 #define BS1_HIGH 0x0100
 #define BS2 0x0200
 #define BS4 0x0300

 // Scratch Layout:
 #define SCR_OFFSET_MRF 0 // MRF is specific to DevSNB.
 #define SCR_OFFSET_GRF 512 // + 16 MRF registers
 #define SCR_OFFSET_ARF 512 + 4096 // + 16 MRF + 128 GRF registers

 // Write data port constants:
 // target=dcache, type= oword_block_wr, binding_tbl_offset=0
 #define DPW 0x000

 // Read data port constants:
 // target=dcache, type= oword_block_rd, binding_tbl_offset=0
 #define DPR 0x000

 Sys_Entry: // Entry point to the System Routine.

 // Disable accumulator for system routine:
 and (1) cr0.0 cr0.0 ACC_DISABLE_MASK {NoMask}

 // Calc scratch offset for this thread into r0.4:
 shr (1) r0.4 sr0.0:uw 6 {NoMask}
 add (1) r0.4 r0.4 sr0.0:ub {NoMask}
 mul (1) r0.4 r0.4 SYSROUTINE_SCRATCH_BLKSIZE {NoMask}

 // Setup m0 with block offset:
 mov (8) m0 r0{NoMask}

 3D – Media – GPGPU

668 Doc Ref # IHD-OS-VLV-Vol7-04.14

 // Save MRF 7..0 (may choose to save the whole MRF). MRF is specific to DevSNB:
 add (1) m0.2 r0.4 SCR_OFFSET_MRF {NoMask}
 send (8) null m0 null DPW|ML9|RL0 {NoMask}

 // Save MRF 8..15 (optional; req'd if sys-routine stays w/in mrf7-0). MRF is specific to
DevSNB.
 mov (8) m7 r0 {NoMask}
 add (1) m7.2 r0.4 (SCR_OFFSET_MRF + 256) {NoMask}
 send (8) null m7 null DPW|ML9|RL0 {NoMask}

 // Save r0..r1 to system scratch:
 // Note: done as a single register to guarantee external visibility
 // See Use of NoDDClr mov (16) m1 r0 {NoMask}
 send (8) m0 null null DPW|ML2|RL0 {NoMask}

 // Save r2..r3 to free some room:
 mov (16) m3 r2 {NoMask}
 add (1) m0.2 r0.4 SCR_OFFSET_GRF + 64 {NoMask}
 send (8) m0 null null DPW|ML4|RL0 {NoMask}

 // Save r4..r7 to free some room (optional, depending on needs):
 mov (16) m8 r4 {NoMask}
 mov (16) m10 r6 {NoMask}
 add (1) m7.2 r0.4 (SCR_OFFSET_GRF + 128) {NoMask}
 send (8) m7 null null DPW|ML5|RL0 {NoMask}

 // Save r8..r11 to free some room (optional, depending on needs):
 mov (16) m1 r8 {NoMask}
 mov (16) m3 r10 {NoMask}
 add (1) m0.2 r0.4 (SCR_OFFSET_GRF + 256) {NoMask}
 send (8) m0 null null DPW|ML5|RL0 {NoMask}

 // Save r12..r15 to free some room (optional, depending on needs):
 mov (16) m8 r12 {NoMask}
 mov (16) m10 r14 {NoMask}
 add (1) m7.2 r0.4 (SCR_OFFSET_GRF + 384) {NoMask}
 send (8) m7 null null DPW|ML5|RL0 {NoMask}

 // Save selected ARF registers (optional, depending on use):
 // flags, others ...
 // Save f0.0:
 mov (1) r1.0:uw f0.0 {NoMask}

 Next: // Exceptions pending? If not, exit.

 cmp.e (1) f0.0 cr0.4:uw 0:uw {NoMask}
 (f0.0) mov (1) IP EXIT {NoMask}

 // Find highest priority exception:
 lzd (1) r1.1:uw cr0.4:uw {NoMask}

 // Jump table to service routine:
 jmpi (1) r1.1:uw{NoMask}
 mov (1) IP CRService_0 {NoMask}
 mov (1) IP CRService_1 {NoMask}
 mov (1) IP CRService_2 {NoMask}
 ...
 mov (1) IP CRService_15{NoMask}
 mov (1) IP Next

 Service_0:
 // Clear exception from cr0.1.
 // Perform service routine.
 // Jump to exit (or if looping on exceptions, go to next loop).
 ...

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 669

 Service_15:
 // Clear exception from cr0.1.
 // Perform service routine.
 // Jump to exit (or if looping on exceptions, go to next loop).

 Exit:
 // Restore f0.0.
 // Restore other ARF registers (as required).
 // Restore r12..r15.
 // Restore r8..r11.
 // Restore r4..r7.
 // Restore r0..r3.
 // Restore m8..m15.
 // Restore m0..m7.
 // Clear Master Exception State bit in cr0.0:
 and (1) cr0.0 cr0.0 MASTER_EXCP_MASK
 nop (16)

Below is a code sequence to programmatically clear the GRF scoreboard in case of a timeout waiting on
a register that may never return.

At this point, all we know is we have a hung thread. We would like to copy the GRF to scratch memory
to make it visible , but there may be a register that is hung with an outstanding dependency. To get
around any hung dependency, walk the GRF using NoDDChk, using an execution mask of f0 == 0 so we
don't touch the register contents.

 Clear_Dep:
 mov f0 0x00
 (f0) mov r0 0x00 {NoDDChk}
 (f0) mov r1 0x00 {NoDDChk}
 (f0) mov r2 0x00 {NoDDChk}
 ...
 (f0) mov r127 0x00 {NoDDChk}
 // GRF scoreboard now cleared.

 3D – Media – GPGPU

670 Doc Ref # IHD-OS-VLV-Vol7-04.14

Instruction Set Summary

SIMD Instructions and SIMD Width

GEN instructions are SIMD (single instruction multiple data) instructions. The number of data elements
per instruction, or the execution size, depends on the data type. For example, the execution size for
GEN instructions operating on 256-bit wide vectors can be up to 8 for 32-bit data types, and be up to
16 for 16-bit data. The maximum execution size for GEN instructions for 8-bit data types is also limited
to 16.

An instruction compression mode is supported for 32-bit instructions (including mixed 32-bit and 16-
bit data computation). A compressed GEN instruction works on twice as much SIMD data as that for a
non-compressed GEN instruction. A compressed instruction is converted into two native instructions by
the instruction dispatcher in the EU.

GEN instructions are executed on a narrower SIMD execution pipeline. Therefore, GEN native
instructions take multiple execution cycles to complete. See SIMD Instructions and SIMD Width for
parameters for difference device hardware.

Instruction Operands and Register Regions

Most GEN instructions may have up to three operands, two sources and one destination. Each operand
is able to address a register region. Source operands support negate and absolute modifier and channel
swizzle, and the destination operand supports channel mask.

Dual destination instructions are also supported (four-operand instructions in a general sense): One
case is for the implied destination – flag register, where the conditional modifiers and the predicate
modifiers may apply. Another case is the message header creation (implied move or implied assembling
of the header) in the send instruction.

Each execution channel contains an accumulator that is wider than the input data to support back-to-
back accumulation operations with increased precision. The added precision (see accumulator register
description in Execution Environment chapter) determines the maximum number of accumulations
before possible overflow. The accumulator can be pre-loaded through the use of mov. It can also be
pre-loaded by arithmetic instructions such as add or mul, since the result of these instructions can go to
the accumulator. The accumulator registers are per thread and therefore safe for thread switching.

Register access can be direct or register-indirect. Register-indirect register access uses address registers
plus an immediate offset term to compute the register addresses, and only applies to the first source
operand (src0) and/or the destination operand.

There is one address register. There are 8 address sub-registers. Each sub-register contains a 16-bit
unsigned value. The leading two sub-registers form a special doubleword that can be used as the
descriptor for the send instruction.

Source operand can also be immediate value (also referred to as inline constants). For instructions with
two source operands, only the second operand src1 is allowed to be immediate. For instructions with
only one source operand, the source operand src0 is used and it can be an immediate.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 671

An immediate source operand can be a scalar value of specified type up to 32-bit wide, which is
replicated to create a vector with length of Execution Size. An immediate operand can also be a special
32-bit vector with 8 elements each of 4-bit signed integer value, or a 32-bit vector with 4 elements each
of 8-bit restricted float value.

Instruction Execution

It is implied that all instructions operate across all channels of data unless otherwise specified either via
destination mask, predication, execution mask (caused by SIMD branch and loop instructions), or
execution size.

Instruction execution size can be specified per instruction, from scalar (ExecSize = 1) up to the maximal
execution size supported for the data type, with the restriction that execution size can only be in power
of 2.

Instruction Machine Formats

This section shows the machine formats of the GEN instruction set. The instructions in the GEN
architecture have a fixed length of 128 bits in the native format. A compact format, discussed separately
in this volume, can represent some instructions using 64 bits. Out of the 128 bits in the native format,
there are 120 bits in use, and the remaining bits are reserved for future extensions. One instruction
consists of instruction fields that control various stages of execution. These fields are roughly grouped
into the 4 DWords as follows:

• Instruction Operation Doubleword (DW0) contains the Opcode and other general instruction
control fields.

• Instruction Destination Doubleword (DW1) specifies the destination operand (dst) and the
register file and type of source operands.

• Instruction Source 0 Doubleword (DW2) contains the first source operand (src0).
• Instruction Source 1 Doubleword (DW3) contains the second source operand (src1) and is used to

hold any 32-bit immediate source (imm32 as src0 or src1).

Most instructions have 1 or 2 source operands and use a common instruction format. Within that
format, there are variations based on AddrMode and AccessMode. There is a separate instruction
format for a small number of instructions with 3 source operands. Send, math, and branching
instructions have format variations described separately.

The 3-source instructions have the following restrictions:

• Only GRF registers can be sources, and only GRF or DevSNB MRF registers can be the destination.
• Subregister numbers have DWord granularity.
• AccessMode is Align16, uses Align16-style swizzling, with extra replication control. There is no

other regioning support.

The next two subsections describe the instruction formats for various processor generations using
tables. The following diagrams provide another view of the same information. The first two diagrams
are for native instructions with one or two source operands.

 3D – Media – GPGPU

672 Doc Ref # IHD-OS-VLV-Vol7-04.14

GEN Instruction Format – 1-src and 2-src

The next two diagrams are for instructions with three source operands.

GEN Instruction Format – 3-src

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 673

EU Instruction Formats

This section describes the Execution Unit instruction formats.

This section covers the layout of instruction fields, not changes in allowed field encodings from
generation to generation.

DWord 0, bits 31:0 of the 128-bit instruction, has the same format regardless of the number of source
operands.

The following three tables cover the most common instruction format, for instructions with 1 or 2
source operands; then the format for the few instructions with 3 source operands; and finally format
variations used by a few exceptional instructions.

 3D – Media – GPGPU

674 Doc Ref # IHD-OS-VLV-Vol7-04.14

Table: Execution Unit Instruction Format for 1 or 2 Source Operands

Bits Description

AddrMode and AccessMode Variations

AddrMode = Direct AddrMode = Indirect

Align16 Align1 Align16 Align1

Any Imm32 32-bit immediate operand uses bits 127:96, replacing the following fields.

127:121 Reserved

120:117 Src1.VertStride

116 Varies based on
AccessMode

Reserved Src1.Width Reserved Src1.Width

115:114 Src1.ChanSel[7:4] Src1.ChanSel[7:4]

113:112 Src1.HorzStride

111 Src1.AddrMode

110:109 Src1.SrcMod

108:106 Varies based on AddrMode
and AccessMode

Src1.RegNum Src1.AddrSubRegNum

105:101 Src1.AddrImm[9:4] Src1.AddrImm[9:0]

100

99:96 Src1.ChanSel[3:0] Src1.ChanSel[3:0]

95:91 Reserved

90 FlagRegNum

89 FlagSubRegNum

88:85 Src0.VertStride

84 Varies based on
AccessMode

Reserved Src0.Width Reserved Src0.Width

83:82 Src0.ChanSel[7:4] Src0.ChanSel[7:4]

81:80 Src0.HorzStride

79 Src0.AddrMode

78:77 Src0.SrcMod

76:74 Varies based on AddrMode
and AccessMode

Src0.RegNum Src0.AddrSubRegNum

73:69 Src0.AddrImm[9:4] Src0.AddrImm[9:0]

68

67:64 Src0.ChanSel[3:0] Src0.ChanSel[3:0]

63 Dst.AddrMode

62:61 Varies based on
AccessMode

Reserved Dst.HorzStride Reserved Dst.HorzStride

60:58 Varies based on AddrMode
and AccessMode

Dst.RegNum Dst.AddrSubRegNum

57:53 Dst.AddrImm[9:4] Dst.AddrImm[9:0]

52

51:48 Dst.ChanEn[3:0] Dst.ChanEn[3:0]

47 NibCtrl

46:44 Src1.SrcType

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 675

Bits Description

AddrMode and AccessMode Variations

AddrMode = Direct AddrMode = Indirect

Align16 Align1 Align16 Align1

43:42 Src1.RegFile

41:39 Src0.SrcType

38:37 Src0.RegFile

36:34 Dst.DstType

33:32 Dst.RegFile

31 Saturate

29 CmptCtrl

28 AccWrCtrl

27:24 CondModifier

23:21 ExecSize

20 PredInv

19:16 PredCtrl

15:14 ThreadCtrl

13:12 QtrCtrl

11:10 DepCtrl

9 MaskCtrl

8 AccessMode

7 Reserved (for future
Opcode expansion)

6:0 Opcode

The 3-source operand instructions are:

bfe - Bit Field Extract

bfi2 - Bit Field Insert 2

lrp - Linear Interpolation

mad - Multiply Add

In the 3-source instruction format, the upper QWord contains three groups of 21 bits for the three
source operands, where each group contains four fields in 20 bits and otherwise adjacent groups are
separated by single reserved bits.

Table: Execution Unit Instruction Format for 3 Source Operands

Bits Description

127:126 Reserved

125:118 Src2.RegNum

117:115 Src2.SubRegNum

114:107 Src2.ChanSel

106 Src2.RepCtrl

 3D – Media – GPGPU

676 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bits Description

105 Reserved

104:97 Src1.RegNum

96 Src1.SubRegNum[2]

95:94 Src1.SubRegNum[1:0]

93:86 Src1.ChanSel

85 Src1.RepCtrl

84 Reserved

83:76 Src0.RegNum

75:73 Src0.SubRegNum

72:65 Src0.ChanSel

64 Src0.RepCtrl

63:56 Dst.RegNum

55:53 Dst.SubRegNum

52:49 Dst.ChanEnable

48 Reserved

47 NibCtrl

46 Reserved

45:44 DstType

43:42 SrcType

41:40 Src2.Modifier

39:38 Src1.Modifier

37:36 Src0.Modifier

35 Reserved

34 FlagRegNum

33 FlagSubRegNum

32 Reserved

31 Saturate

29 CmptCtrl

28 AccWrCtrl

27:24 CondModifier

23:21 ExecSize

20 PredInv

19:16 PredCtrl

15:14 ThreadCtrl

13:12 QtrCtrl

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 677

Bits Description

11:10 DepCtrl

9 MaskCtrl

8 AccessMode

7 Reserved (for future Opcode expansion)

6:0 Opcode

Specific instructions have different instruction formats as described below. These instructions include
send / sendc, math, and branch instructions.

Table: Execution Unit Instruction Format for Specific Instructions

Bits

Regular 1 or 2
Source Operands

Description

Empty white areas mean Same, use the regular description

send / sendc math
Branch

Instructions

127 Reserved EOT UIP[15:0]
(2-offset

branches)
126:125

124:121 Imm[28:0] /
Reg32 120:117 Src1.VertStride

116:112 Varies based on
AccessMode

111 Src1.AddrMode JIP[15:0]

110:109 Src1.SrcMod

108:96 Varies based on AddrMode
and AccessMode

95:91 Reserved

90 FlagRegNum

89 FlagSubRegNum

88:85 Src0.VertStride

84:80 Varies based on AccessMode

79 Src0.AddrMode

78:77 Src0.SrcMod

76:64 Varies based on AddrMode and
AccessMode

63 Dst.AddrMode Any branch
instruction:
Same as regular

62:61 Varies based on AccessMode

60:48 Varies based on AddrMode and
AccessMode

47 NibCtrl

46:44 Src1.SrcType

43:42 Src1.RegFile

 3D – Media – GPGPU

678 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bits

Regular 1 or 2
Source Operands

Description

Empty white areas mean Same, use the regular description

send / sendc math
Branch

Instructions

41:39 Src0.SrcType

38:37 Src0.RegFile

36:34 Dst.DstType

33:32 Dst.RegFile

31 Saturate

29 CmptCtrl

28 AccWrCtrl

27:24 CondModifier SFID[3:0] FC[3:0] Any branch
instruction: MBZ

23:21 ExecSize

20 PredInv

19:16 PredCtrl

15:14 ThreadCtrl Same as regular

13:12 QtrCtrl

11:10 DepCtrl

9 MaskCtrl

8 AccessMode

7 Reserved (for future Opcode
expansion)

6:0 Opcode

Common Instruction Fields

As shown in the table below, the meanings (encoding) of certain bit fields in the 128-bit native
instruction format varies depending on the values of other bit fields.

Definitions of Common Instruction Fields (below) provides the definition of common fields in the native
instruction format. The Width column specifies the width of the field in bits. These common fields are
referenced in describing the fields of different doublewords of the instruction. The definition for fields
that have unique representations can be found in the sections for the corresponding instruction
DWords.

Table: Definitions of Common Instruction Fields

Field Description Width

CondModifier Conditional Modifier. This field sets the flag register based on the internal
conditional signals output from the execution pipe such as sign, zero,
overflow and NaNs, etc. If this field is set to 0000, no flag registers are
updated. Flag registers are not updated for instructions with embedded

4

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 679

Field Description Width

compares.

This field applies to all instructions except send, sendc, and math.

0000 = Do not modify the flag register (normal)

0001 = Zero or Equal (.z or .e)

0010 = Not Zero or Not Equal (.nz or .ne)

0011 = Greater-than (.g)

0100 = Greater-than-or-equal (.ge)

0101 = Less-than (.l)

0110 = Less-than-or-equal (.le)

0111 = Reserved

1000 = Overflow (signed overflow) (.o)

1001 = Unordered with Computed NaN (.u)

1010 -1111 = Reserved

AddrMode Addressing Mode. This field determines the addressing method of the
operand. Normally the destination operand and each source operand each
have a distinct addressing mode field.

 When it is cleared, the register address of the operand is directly provided by
bits in the instruction word. It is called a direct register addressing mode.
When it is set, the register address of the operand is computed based on the
address register value and an address immediate field in the instruction word.
This is referred to as a register-indirect register addressing mode.

This field applies to the destination operand and the first source operand,
src0. Support for src1 is device dependent. See Table (Indirect source
addressing support available in device hardware) in ISA Execution
Environment for details.

0 = Direct. Direct register addressing

1 = Register-Indirect (or in short Indirect). Register-indirect register addressing

1

RegNum Register Number. This field provides the register number for the operand.
For GRF register operand, it provides the portion of register address aligning
to 256-bit. For an ARF register operand, this field is encoded such that MSBs
identify the architecture register type and LSBs provide its register number.

This field together with the corresponding SubRegNum field provides the
byte aligned address for the origin of the register region. Specifically, this
field provides bits [12:5] of the byte address, while SubRegNum field provides
bits [4:0].

8

 3D – Media – GPGPU

680 Doc Ref # IHD-OS-VLV-Vol7-04.14

Field Description Width

This field applies to the destination operand and the source operands. It is
ignored (or not present in the instruction word) for an immediate source
operand.

This field is present if the operand is in direct addressing mode; it is not
present if the operand is register-indirect addressed.

Format = U8, if RegFile = GRF.

0x00 to 0x7F = Register number in the range of [0, 127]

0x80 to 0xFF = Reserved

Format = U8.

0x00 to 0x0F = Register number in the range of [0, 15]

0x10 to 0xFF = Reserved

Format = 8-bit encoding, if RegFile = ARF.

This field is used to encode the architecture register as well as providing the
register number. See GEN Execution Environment chapter for details.

SubRegNum Sub-Register Number. This field provides the sub-register number for the
operand. For a GRF register operand, it provides the byte address within a
256-bit register. For an ARF register operand, this field also provides the sub-
register number according to the encoding defined for the given architecture
register.

This field together with the corresponding RegNum field provides the byte
aligned address for the origin of the register region. Specifically, this field
provides bits [4:0] of the byte address, while the RegNum field provides bits
[12:5].

This field applies to the destination operand and the source operands. It is
ignored (or not present in the instruction word) for an immediate source
operand.

This field is present if the operand is in direct addressing mode; it is not
present if the operand is register-indirect addressed.

Note: The recommended instruction syntax uses subregister numbers within
the GRF in units of actual data element size, corresponding to the data type
used. For example for the F (Float) type, the assembler syntax uses subregister
numbers 0 to 7, corresponding to subregister byte addresses of 0 to 28 in
steps of 4, the element size.

Format = U5, if RegFile = GRF

0x00 to 0x1F = Sub-Register number in the range of [0, 31]

Format = 5-bit encoding, if RegFile = ARF.

This field is used to encode the architecture register as well as providing the

5

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 681

Field Description Width

register number. See GEN Execution Environment chapter for details.

AddrSubRegNum Address Sub-Register Number. This field provides the subregister number
for the address register. The address register contains 8 sub-registers. The
size of each subregister is one word. The address register contains the
register address of the operand, when the operand is in register-indirect
addressing mode.

This field applies to the destination operand and the source operands. It is
ignored (or not present in the instruction word) for an immediate source
operand.

This field is present if the operand is in register-indirect addressing mode; it is
not present if the operand is directly addressed.

An address subregister used for indirect addressing is often called an index
register.

Format = U3

0x0 to 0x7 = Address Sub-Register number in the range [0, 7]

3

AddrImm Address Immediate. This field provides the immediate value in units of bytes
added to the address register to compute the register address (byte-aligned
region origin) for the operand. It is a signed integer.

This field is present if the operand is in register-indirect addressing mode; it is
not present if the operand is directly addressed.

Note: that the address immediate field may not be able to cover the whole GRF
register range for a thread, as the maximum GRF register space for a thread is
4KB.

Format = S9

Valid range: [-512, 511]

10

SrcMod Source Modifier. This field specifies the numeric modification of a source
operand. The value of each data element of a source operand can optionally
have its absolute value taken and/or its sign inverted prior to delivery to the
execution pipe. The absolute value is prior to negate such that a guaranteed
negative value can be produced.

This field only applies to source operand. It does not apply to destination.

This field is not present for an immediate source operand.

00 = No modification (normal)

01 = (abs). Absolute

10 = –. Negate

2

 3D – Media – GPGPU

682 Doc Ref # IHD-OS-VLV-Vol7-04.14

Field Description Width

11 = –(abs). Negate of the absolute (forced negative value)

VertStride Vertical Stride. The field provides the vertical stride of the register region in
unit of data elements for an operand.

Encoding of this field provides values of 0 or powers of 2, ranging from 1 to
32 elements. Larger values are not supported due to the restriction that a
source operand must reside within two adjacent 256-bit registers (64 bytes
total).

Special encoding 1111b (0xF) is only valid when the operand is in register-
indirect addressing mode (AddrMode = 1). If this field is set to 0xF, one or
more sub-registers of the address registers may be used to compute the
addresses. Each address sub-register provides the origin for a row of data
element. The number of address sub-registers used is determined by the
division of ExecSize of the instruction by the Width fields of the operand.

This field only applies to source operand. It does not apply to destination.

This field is not present for an immediate source operand.

Note 1: Vertical Stride larger than 32 is not allowed due to the restriction that a
source operand must reside within two adjacent 256-bit registers (64 bytes
total).

Note 2: In Align16 access mode, as encoding 0xF is reserved, only single-index
indirect addressing is supported.

Note 3: If indirect address is supported for src1, encoding 0xF is reserved for
src1 – only single-index indirect addressing is supported.

0000 = 0 Elements

0001 = 1 Element

0010 = 2 Elements

0011 = 4 Elements

0100 = 8 Elements

0101 = 16 Elements (applies to byte or word operand only)

0110 = 32 Elements (applies to byte operand only)

0111-1110 = Reserved

1111 = VxH or Vx1 mode (only valid for register-indirect addressing in
Align1 mode)

4

Width Width. This field specifies the number of elements in the horizontal
dimension of the region for a source operand. This field cannot exceed the
ExecSize field of the instruction.

3

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 683

Field Description Width

This field only applies to source operand. It does not apply to destination.

This field is not present for an immediate source operand.

000 = 1 Elements

001 = 2 Elements

010 = 4 Elements

011 = 8 Elements

100 = 16 Elements

101-111 = Reserved

HorzStride Horizontal Stride. This field provides the distance in unit of data elements
between two adjacent data elements within a row (horizontal) in the register
region for the operand.

This field applies to both destination and source operands.

This field is not present for an immediate source operand.

00 = 0 Elements

01 = 1 Element

10 = 2 Elements

11 = 4 Elements

2

Imm32 32-bit Immediate. The 32-bit immediate data field for the operand. It may
contain any legal bit pattern for its associated type. Only one 32-bit
immediate value may be present in an instruction, therefore binary operations
only support src1 as an immediate value.

The low order bits are directly used when fewer than 32-bits are needed to
describe the desired type; the 32-bits are not coerced into the designated
type.

For UW and W data types, programmer is required to replicate the lower
word to the upper word of this field.

This field only applies to the last source operand.

Signed and unsigned byte integer data types are not supported for an
immediate operand.

See the Numeric Data Types section for information about data types and
their ranges.

32

ChanEn Channel Enable. Four channel enables are defined for controlling which
channels will be written into the destination region. These channel mask bits
are applied in a modulo-four manner to all ExecSize channels. There is 1-bit

4

 3D – Media – GPGPU

684 Doc Ref # IHD-OS-VLV-Vol7-04.14

Field Description Width

Channel Enable for each channel within the group of 4. If the bit is cleared,
the write for the corresponding channel is disabled. If the bit is set, the write
is enabled. Mnemonic for the bit being set for the group of 4 is x, y, z, and w,
respectively, where x corresponds to Channel 0 in the group and w
corresponds to channel 3 in the group.

This field only applies to destination operand.

This field is only present in Align16 mode.

0 = Write Disabled

1 = Write Enabled (normal)

ChanSel Channel Select. This field controls the channel swizzle for a source operand.
The normally sequential channel assignment can be altered by explicitly
identifying neighboring data elements for each channel. Out of the 8-bit field,
2 bits are assigned for each channel within the group of 4. ChanSel[1:0], [3.2],
[5.4] and [7,6] are for channel 0 (x), 1 (y), 2 (z), and 3 (w) in the group,
respectively.

For example with an execution size of 8, r0.0<4>.zywz:f would assign the
channels as follows: Chan0 = Data2, Chan1 = Data1, Chan2 = Data3, Chan3 =
Data2; Chan4 = Data6, Chan5 = Data5, Chan6 = Data7, Chan7 = Data6.

This field only applies to source operand.

This field is only present in Align16 mode. It is not present for an immediate
source operand.

The 2-bit Channel Selection field for each channel within the group of 4 is
defined as the following.

00 = x. Channel 0 is selected for the corresponding execution channel

01 = y. Channel 1 is selected for the corresponding execution channel

10 = z. Channel 2 is selected for the corresponding execution channel

11 = w. Channel 3 is selected for the corresponding execution channel

8

RepCtrl Replicate Control. This field controls the replication of the starting channel
to all channels in the execution size.

This field applies to all three source operands.

0 = No replication

1 = Replicate across all channels

1

MsgDscpt31 Message Description. This field, containing 31-bit immediate values,
provides the description of the message to be sent.

This field only applies to the send instruction. It is not present for other

31

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 685

Field Description Width

instructions.

The meaning of the field depends on the type of message as well as the
message shared function target.

Format: U31

EOT End of Thread. This field controls the termination of the thread. For a send
instruction, if this field is set, EU will terminate the thread and also set the EOT
bit in the message sideband.

This field only applies to the send instruction. It is not present for other
instructions.

0 = The thread is not terminated

1 = EOT

1

Instruction Operation Doubleword (DW0)

Most fields in Instruction Operation Doubleword (DW0) apply to all instructions. Bit field [27:24] is one
exception. It is CondModifier for most instructions but is SFID[3:0] field for the send instruction.

The descriptions in the table below are shared between the 1-src/2-src instructions and 3-src
instructions.

Table: Definitions of Fields in Operation Doubleword (DW0)

Bits Description

31 Saturate. This field controls the destination saturation.

When it is set, output data to the destination register are saturated. The saturation operation
depends on the destination data type. Saturation is the operation that converts any data that is
outside the saturation target range for the data type to the closest represented value with the
target range. If destination type is float, saturation target range is [0, 1]. For example, any positive
number greater than 1 (including +INF) is saturated to 1 and any negative number (including –
INF) is saturated to 0. A NaN is saturated to 0, For integer data types, the maximum range for the
given numeric data type is the saturation target range.

When it is not set, output data to the destination register are not saturated. For example, a
wrapped result (modular) is output to the destination for an overflowed integer data.

More details can be found in the Data Types chapter.

0 = No destination modification (normal)

1 = sat. Saturate the output

Destination Type Saturation Target Range (inclusive)

Float (F) [0.0, 1.0]

Byte (UB) [0, 255]

 3D – Media – GPGPU

686 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bits Description

Signed Byte (B) [-128, 127]

Word (UW) [0, 65535]

Signed Word (W) [-32768, 32767]

Double Word (UD) [0, 232-1]

Signed Double (D) [-231, 231-1]

29 Reserved: MBZ

28 AccWrCtrl. This field allows per instruction accumulator write control.

0 = don't write result into accumulator

1 = AccWrCtrl. write result into accumulator, and destination

27:24 CondModifier or CurrDst.RegNum[3:0]

Definition of this bit field depends on whether the instruction is a send/math or not.

Opcode != send Opcode = send

CondModifier:

This field sets the flag register based on the internal
conditional signals output from the execution pipe.

CurrDst.RegNum[3:0]

(See Instruction Reference chapter
for CurrDst.)

23:21 ExecSize – Execution Size. This field determines the number of channels operating in parallel for
this instruction. The size cannot exceed the maximum number of channels allowed for the given
data type.

000b = 1 channel (scalar operation)

001b = 2 channels

010b = 4 channels

011b = 8 channels

100b = 16 channels

101 = 32 channels

110-111 = Reserved

20 PredInv – Predicate Inverse. This field, together with PredCtrl, enables and controls the
generation of the predication mask for the instruction. When it is set, the predication uses the
inverse of the predication bits generated according to setting of Predicate Control. In other
words, effect of PredInv happens after PredCtrl.

This field is ignored by hardware if Predicate Control is set to 0000 – there is no predication.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 687

Bits Description

0 = +. Positive polarity of predication.

1 = –. Negative polarity of predication.

19:16 PredCtrl – Predicate Control. This field, together with PredInv, enables and controls the
generation of the predication mask for the instruction. It allows per-channel conditional execution
of the instruction based on the content of the selected flag register. Encoding depends on the
access mode.

In Align16 access mode, there are eight encodings (including no predication). All encodings are
based on group-of-4 predicate bits, including channel sequential, replication swizzles and
horizontal any|all operations. The same configuration is repeated for each group-of-4 execution
channels.

See the Predication section for more informatio about predication.

In Align1 access mode, there are twelve encodings (including no predication). The encodings
applies to all execution channels with explicit channel grouping from single channel up to group
of 16 channels.

Predicate Control in Align16 access mode

0000 = No predication (normal)

0001 = Predication with sequential flag channel mapping

0010 = Predication with replication swizzle .x

0011 = Predication with replication swizzle .y

0100 = Predication with replication swizzle .z

0101 = Predication with replication swizzle .w

0110 = Predication with .any4h

0111 = Predication with .all4h

1000 -1111 = Reserved

Predicate Control in Align1 access mode

0000 = No predication (normal)

0001 = Predication with sequential flag channel mapping

0010 = Predication with .anyv (any from f0.0-f0.1 on the same channel)

0011 = Predication with .allv (all of f0.0-f0.1 on the same channel)

0100 = Predication with .any2h (any in group of 2 channels)

0101 = Predication with .all2h (all in group of 2 channels)

0110 = Predication with .any4h (any in group of 4 channels)

0111 = Predication with .all4h (all in group of 4 channels)

 3D – Media – GPGPU

688 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bits Description

1000 = Predication with .any8h (any in group of 8 channels)

1001 = Predication with .all8h (all in group of 8 channels)

1010 = Predication with .any16h (any in group of 16 channels)

1011 = Predication with .all16h (all in group of 16 channels)

1100 = Predication with .any32h (any in group of 32 channels)

1101 = Predication with .all32h (all in group of 32 channels)

1110 -1111 = Reserved

15:14 ThreadCtrl – Thread Control. This field provides explicit control for thread switching.

If this field is set to 00b, it is up to the GEN execution units to manage thread switching. This is
the normal (and unnamed) mode. In this mode, for example, if the current instruction cannot
proceed due to operand dependencies, the EU switches to the next available thread to fill the
compute pipe. In another example, if the current instruction is ready to go, however, there is
another thread with higher priority that also has an instruction ready, the EU switches to that
thread.

If this field is set to Switch, a forced thread switch occurs after the current instruction is executed
and before the next instruction. In addition, a long delay (longer than the execution pipe latency)
is introduced for the current thread. Particularly, the instruction queue of the current thread is
flushed after the current instruction is dispatched for execution. Switch is designed primarily as a
safety feature in case there are race conditions for certain instructions.

If this field is set to Atomic, the next instruction gets highest priority in thread arbitration for the
execution pipeline.

00b = Normal thread control

10b = Switch

01b = Atomic

11b = Reserved

13:12 QtrCtrl – Quarter Control. This field provides explicit control for ARF selection.

This filed combines with ExecSize determines which channels are used for the ARF registers.

Along with NibCtrl in DW1, 1/8 DMask/VMask and ARF can be selected.

QtrCtrl NibCtrl ExecSize Description BNF

00 x 8 use first quarter for DMask/VMask

use first half for everything else

1Q

01 x 8 use second quarter for DMask/VMask 2Q

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 689

Bits Description

use second half for everything else

10 x 8 use third quarter for DMask/VMask

use first half for everything else

3Q

11 x 8 use forth quarter for DMask/VMask

use second half for everything else

4Q

0x x 16 use first half for DMask/VMask

use all channels for everything else

1H

1x x 16 use second half for DMask/VMask

use all channels for everything else

2H

00 0 4 use first 1/8 for DMask/VMask and ARF 1N

00 1 4 use second 1/8 for DMask/VMask and ARF 2N

01 0 4 use third 1/8 for DMask/VMask and ARF 3N

01 1 4 use fourth 1/8 for DMask/VMask and ARF 4N

10 0 4 use fifth 1/8 for DMask/VMask and ARF 5N

10 1 4 use sixth 1/8 for DMask/VMask and ARF 6N

11 0 4 use seventh 1/8 for DMask/VMask and ARF 7N

11 1 4 use eighth 1/8 for DMask/VMask and ARF 8N

2H is only allowed for SIMD16 instruction in Single Program Flow mode (SPF=1).

NibCtrl is only allowed for SIMD4 instructions with (DF) double precision source and/or
destination.

11:10 DepCtrl – Destination Dependency Control. This field selectively disables destination
dependency check and clear for this instruction.

When it is set to 00, normal destination dependency control is performed for the instruction –
hardware checks for destination hazards to ensure data integrity. Specifically, destination register
dependency check is conducted before the instruction is made ready for execution. After the
instruction is executed, the destination register scoreboard will be cleared when the destination

 3D – Media – GPGPU

690 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bits Description

operands retire.

When bit 10 is set (NoDDClr), the destination register scoreboard will NOT be cleared when the
destination operands retire. When bit 11 is set (NoDDChk), hardware does not check for
destination register dependency before the instruction is made ready for execution. NoDDClr
and NoDDChk are not mutual exclusive.

When this field is not all-zero, hardware does not protect against destination hazards for the
instruction. This is typically used to assemble data in a fine grained fashion (e.g. matrix-vector
compute with dot-product instructions), where the data integrity is guaranteed by software based
on the intended usage of instruction sequences.

00 = Destination dependency checked and cleared (normal)

01 = NoDDClr. Destination dependency checked but not cleared

10 = NoDDChk. Destination dependency not checked but cleared

11 = NoDDClr, NoDDChk. Destination dependency not checked and not cleared

9 MaskCtrl – Mask Control (formerly Write Enable Control). This field determines if the per
channel write enables are used to generate the final write enable. This field should be normally 0.

0 = use normal write enables (normal)

1 = write all channels, except channels killed with predication control. ChanEn is ignored in this
case.

MaskCtrl = NoMask skips the check for PcIP[n] == ExIP before enabling a channel, as described in
the Evaluate Write Enable section.

8 AccessMode – Access Mode. This field determines the operand access for the instruction. It
applies to all source and destination operands.

When it is cleared (Align1), the instruction uses byte-aligned addressing for source and
destination operands. Source swizzle control and destination mask control are not supported.

When it is set (Align16), the instruction uses 16-byte-aligned addressing for all source and
destination operands. Source swizzle control and destination mask control are supported in this
mode.

0 = Align1

1 = Align16

7 Reserved: MBZ (for future opcode extension)

6:0 Opcode – Instruction Operation Code. This field contains the instruction operation code. Each
opcode is given a unique mnemonic. For example, opcode 0x01 is for a move operation.
Mnemonic for this opcode is mov.

See section 5.3 for details of opcode encoding.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 691

Instruction Destination Doubleword (DW1)

DW1 1-src and 2-src Instructions

Destination Doubleword (DW1) contains the register file and numeric type of all operands, as well as
the register region parameters of the destination operand. See the Region Parameters section and the
sections following it for more information about those parameters.

Table: Instruction Destination Doubleword

Bits Description

31:16 Destination Register Region. This word contains the parameters describing the register region
of the destination operand. Subfield definition depends on the AccessMode.

See the Region Parameters section and the sections following it for more information about these
parameters.

Programming Notes:

Although Dst.HorzStride is a don't care for Align16, HW needs this to be programmed as 01.

15 Reserved: MBZ

14:12 Src1.SrcType – Source 1 Data Type. This field specifies the numeric data type of the source
operand src1. The bits of a source operand are interpreted as the identified numeric data type,
rather than coerced into a type implied by the operator. Depending on RegFile field of the source
operand, there are two different encoding for this field. If a source is a register operand, this field
follows the Source Register Type Encoding. If a source is an immediate operand, this field follows
the Source Immediate Type Encoding.

Source Register Type Encoding is identical to that for Destination Type.

Source Immediate Type Encoding differs in two areas. First, it does not support byte and
unsigned numeric data types. Second, it has three packed vector types, the V, UV, and VF types.

Implementation Note 1: Both source operands, src0 and src1, support immediate types, but only one
immediate is allowed for a given instruction and it must be the last operand.

Implementation Note 2: Halfbyte integer vector (v) type can only be used in instructions in packed-
word execution mode. Therefore, in a two-source instruction where src1 is of type :v, src0 must be of
type :b, :ub, :w, or :uw.

Source Register Type Encoding

000 = UD. Unsigned Doubleword integer

001 = D. Signed Doubleword integer

010 = UW. Unsigned Word integer

011 = W. Signed Word integer

 3D – Media – GPGPU

692 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bits Description

100 = UB. Unsigned Byte integer

101 = B. Signed Byte integer

110 = DF. Double precision Float (64-bit)

111 = F. Single precision Float (32-bit)

Source Immediate Type Encoding:

000 = UD

001 = D

010 = UW

011 = W

100 = UV. 32-bit halfbyte Unsigned Integer Vector

101 = VF. 32-bit restricted Vector Float

 110 = V. 32-bit halfbyte integer Vector

111 = F

11:10 Src1.RegFile – Source 1 Register File. This field identifies the register file of source operand
src1.

00 = ARF. Architecture Register File (a#, acc#, f#, n#, null, ip, etc.)

01 =GRF. General Register File (r#)

10 = Reserved. Reserved. Do not use this encoding.

11 = IMM. Immediate

9:7 Src0.SrcType – Source 0 Data Type. This field is the SrcType for src0 operand. It has the same
definitions as Src1.SrcType.

6:5 Src0.RegFile – Source 0 Register File. This field is the RegFile for src0 operand. It has the same
definitions as Src1.RegFile.

4:2 Dst.DstType – Destination Data Type. This field specifies the numeric data type of the
destination operand dst. The bits of the destination operand are interpreted as the identified
numeric data type, rather than coerced into a type implied by the operator. For a send instruction,
this field applies to the CurrDst – the current destination operand.

Encoding:

000 = UD. Unsigned Doubleword integer

001 = D. Signed Doubleword integer

010 = UW. Unsigned Word integer

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 693

Bits Description

011 = W. Signed Word integer

100 = UB. Unsigned Byte integer

101 = B. Signed Byte integer

110 = ["DF"] Double Precision Float (64-bit) [IVB]

111 = F. Single precision Float (32-bit)

1:0 Dst.RegFile – Destination Register File. This field identifies the register file of the destination
operand dst. Note that it is obvious that immediate cannot be a destination operand.

For a send instruction, this field applies to the PostDst – the post destination operand.

Encoding:

00 = ARF. Architecture Register File (a#, acc#, f#, n#, null, ip, etc.)

01 =GRF. General Register File (r#)

10 = Reserved. Reserved. Do not use this encoding.

11 = reserved

The following tables describe the Destination Register Region based on the access mode and
addressing mode.

Table: Destination Register Region in Direct + Align16 mode

Bits Description

15 Dst.AddrMode – Destination Address Mode. This field is the AddrMode for the destination
operand.

For a send instruction, this field applies to PostDst – the post destination operand. Addressing
mode for CurrDst (current destination operand) is fixed as Direct. (See Instruction Reference
chapter for CurrDst and PostDst.)

14:13 Reserved: MBZ

12:5 Dst.RegNum – Destination Register Number. This field is the RegNum field for the destination
operand.

For a send instruction, this field applies to PostDst.

4 Dst.SubRegNum[4]. This is the 16-byte aligned sub-register address.

For a send instruction, this field applies to CurrDst.

3:0 Dst.ChanEn – Destination Channel Enable. The channel enable field for the destination
operand.

 3D – Media – GPGPU

694 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bits Description

For a send instruction, this field applies to the CurrDst.

Table: Destination Register Region in Direct+Align1 mode

Bits Description

15 Dst.AddrMode – Destination Address Mode. This field is the AddrMode for the destination
operand.

For a send instruction, it applies to PostDst. Addressing mode for CurrDst is fixed as Direct.

14:13 Dst.HorzStride – Destination Horizontal Stride. This field is the HorzStride for the destination
operand.

For a send instruction, this field applies to CurrDst. PostDst only uses the register number.

12:5 Dst.RegNum – Destination Register Number. This field is the RegNum field for the destination
operand.

For a send instruction, this field applies to PostDst.

4:0 Dst.SubRegNum – Destination Sub-Register Number. This field is the SubRegNum for the
destination operand.)

Note: The recommended instruction syntax uses GRF subregister numbers in units of element
size, which the assembler translates to the appropriate value for this field.

For a send instruction, this field applies to CurrDst.

Table: Destination Register Region in Indirect+Align16 mode

Bits Description

15 Dst.AddrMode – Destination Address Mode. This field is the AddrMode for the destination
operand.

For a send instruction, this field applies to PostDst. Addressing mode for CurrDst is fixed as
Direct.

14:13 Reserved: MBZ

12:10 Dst.AddrSubRegNum – Destination Address Sub-Register Number. This field is the
AddrSubRegNum for the destination operand.

For a send instruction, this field applies to PostDst.

9:4 Dst.AddrImm[9:4]

This is the half-register aligned AddrImm field for the destination operand.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 695

Bits Description

For a send instruction, this field applies to PostDst.

3:0 Dst.ChanEn – Destination Channel Enable. The channel enable field for the destination
operand.

For a send instruction, this field applies to the CurrDst.

Table: Destination Register Region in Indirect+Align1 mode

Bits Description

15 Dst.AddrMode – Destination Address Mode. This field is the AddrMode for the destination
operand.

For a send instruction, this field applies to PostDst. Addressing mode for CurrDst is fixed as
Direct.

14:13 Dst.HorzStride – Destination Horizontal Stride

This field is the HorzStride for the destination operand.

For a send instruction, this field applies to CurrDst. PostDst only uses the register number.

12:10 Dst.AddrSubRegNum – Destination Address Sub-Register Number. This field is the
AddrSubRegNum for the destination operand.

For a send instruction, this field applies to PostDst.

9:0 Dst.AddrImm – Destination Address Immediate. This field is the byte-aligned AddrImm for the
destination operand.

For a send instruction, this field applies to PostDst.

DW1 3-src Instructions

This section describes the field in DW1 for the 3-src instruction format.

Table: Instruction DW1

Bits Description

31:24 Destination Register Number. This field contains the destination register number.

23:21 Destination Subregister Number. This field contains the destination subregister number.

Note: The recommended instruction syntax uses GRF subregister numbers in units of element
size, which the assembler translates to the appropriate value for this field.

20:17 Destination Channel Enable. Four channel enables are defined for controlling which channels
are written into the destination region. These channel mask bits are applied in a modulo-four

 3D – Media – GPGPU

696 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bits Description

manner to all ExecSize channels. There is 1-bit Channel Enable for each channel within the group
of 4. If the bit is cleared, the write for the corresponding channel is disabled. If the bit is set, the
write is enabled. Mnemonics for the bit being set for the group of 4 are x, y, z, and w, respectively,
where x corresponds to Channel 0 in the group and w corresponds to channel 3 in the group.

0: Write Disabled

1: Write Enabled (normal)

16:15 Dst Type. This field contains the data type for the destination.

00b = Single Precision Float

01b = DWord

10b = Unsigned DWord

11b = Double Precision Float

14:13 Src Type. This field contains the data type for all three sources.

00b = Single Precision Float

01b = DWord

10b = Unsigned DWord

11b = Double Precision Float

12:10 Reserved: MBZ

9:8 Source2 Modifier. This field contains the modifier for source2.

Refer to Table 5-5 for the encoding.

7:6 Source1 Modifier. This field contains the modifier for source1.

Refer to Table 5-5 for the encoding.

5:4 Source0 Modifier. This field contains the modifier for source0.

Refer to Table 5-5 for the encoding.

3 Reserved: MBZ

2 Flag Register Number. This field contains the flag register number for instructions with a non-
zero Conditional Modifier.

1 Flag Subregister Number. This field contains the flag subregister number for instructions with a non-zero
Conditional Modifier.

0 Reserved

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 697

Instruction Source 0 Doubleword 2 (DW2)

DW2 1-src and 2-src Instructions

Instruction Source 0 Doubleword 2 (DW2) contains the first source operand and also flag register
number.

• Instruction Source 0 Doubleword 2 (DW2) shows the field definition for Direct Addressing with
Align16.

• Instruction Source 0 Doubleword 2 (DW2) shows the field definition for Direct Addressing with
Align1.

• Instruction Source 0 Doubleword 2 (DW2) shows the field definition for Indirect Addressing with
Align16.

• Instruction Source 0 Doubleword 2 (DW2) shows the field definition for Indirect Addressing with
Align1.

Table: Instruction Source 0 Doubleword in Direct+Align16 mode

Bits Description

31:26 Reserved: MBZ

25 FlagSubRegNum – Flag Sub-Register Number. This field specifies the sub-register number for
a flag register operand. There are two sub-registers in the flag register. Each sub-register
contains 16 flag bits.

The selected flag sub-register is the source for predication if predication is enabled for the
instruction. It is the destination to store conditional flag bits if conditional modifier is enabled for
the instruction. The same flag sub-register can be both the predication source and conditional
destination, if both predication and conditional modifier are enabled.

24:21 Src0.VertStride – Source 0 Vertical Stride. This field is the VertStride for src0 operand.

It is ignored if src0 is an immediate operand.

20 Reserved: MBZ

19:16 Src0.ChanSel[7:4]

This is bits [7:4] of the ChanSel field for src0 operand.

15 Src0.AddrMode – Source 0 Address Mode. This field is the AddrMode for src0 operand.

It is ignored if src0 is an immediate operand.

14:13 Src0.SrcMod – Source 0 Source Modifier. This field is the SrcMod for source operand src0.

12:5 Src0.RegNum – Source 0 Register Number

 3D – Media – GPGPU

698 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bits Description

This is the RegNum field for source operand src0.

It is ignored if src0 is an immediate operand.

4 Src0.SubRegNum[4]

This is the 16-byte aligned sub-register address for source operand src0.

It is ignored if src0 is an immediate operand.

Note: The recommended instruction syntax uses GRF subregister numbers in units of element
size, which the assembler translates to the appropriate value for this field. For example, using the
F (Float) type the possible subregister numbers in Align16 mode are 0 or 4, corresponding to 0 or
1 for this field.

3:0 Src0.ChanEn – Source 0 Channel Enable

This is the ChanEn field for source operand src0.

It is ignored if src0 is an immediate operand.

Table: Instruction Source 0 Doubleword in Direct+Align1 mode

Bits Description

31:26 Reserved: MBZ

25 FlagSubRegNum – Flag Sub-Register Number. This field specifies the sub-register number for
a flag register operand.

24:21 Src0.VertStride – Source 0 Vertical Stride

This is the VertStride field for src0 operand.

It is ignored if src0 is an immediate operand.

20:18 Src0.Width. This is the Width field for source operand src0.

It is ignored if src0 is an immediate operand.

17:16 Src0.HorzStride. This is the HorzStride field for source operand src0.

It is ignored if src0 is an immediate operand.

15 Src0.AddrMode – Source 0 Address Mode. This is the AddrMode for source operand src0.

It is ignored if src0 is an immediate operand.

14:13 Src0.SrcMod – Source 0 Source Modifier. This is the SrcMod field for source operand src0.

It is ignored if src0 is an immediate operand.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 699

Bits Description

12:5 Src0.RegNum – Source 0 Register Number. This is the RegNum field for source operand src0.

It is ignored if src0 is an immediate operand.

4:0 Src0.SubRegNum – Source 0 Sub-Register Number. This is the SubRegNum field for source
operand src0.

It is ignored if src0 is an immediate operand.

Note: The recommended instruction syntax uses GRF subregister numbers in units of element
size, which the assembler translates to the appropriate value for this field.

Table: Instruction Source 0 Doubleword in Indirect+Align16 mode

Bits Description

31:26 Reserved: MBZ

25 FlagSubRegNum – Flag Sub-Register Number. This field specifies the sub-register number for
a flag register operand.

24:21 Src0.VertStride – Source 0 Vertical Stride. This is the VertStride field for src0 operand.

It is ignored if src0 is an immediate operand.

20 Reserved: MBZ

19:16 Src0.ChanSel[7:4] – Source 0 Channel Select. This is bits [7:4] of the ChanSel field for src0
operand.

It is ignored if src0 is an immediate operand.

15 Src0.AddrMode – Source 0 Address Mode. This is the AddrMode for source operand src0.

It is ignored if src0 is an immediate operand.

14:13 Src0.SrcMod – Source 0 Source Modifier. This is the SrcMod field for source operand src0.

It is ignored if src0 is an immediate operand.

12:10 Src0.AddrSubRegNum – Source 0 Address Sub-Register Number. This is the AddrSubRegNum
field for source operand src0.

It is ignored if src0 is an immediate operand.

9:4 Src0.AddrImm[9:4] – Source 0 Address Immediate. This contains the half-register aligned
AddrImm field ((bits [9:4]) for src0.

It is ignored if src0 is an immediate operand.

 3D – Media – GPGPU

700 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bits Description

3:0 Src0.ChanEn – Source 0 Channel Enable . This is the ChanEnfield for source operand src0.

It is ignored if src0 is an immediate operand.

Table: Instruction Source 0 Doubleword in Indirect+Align1 mode

Bits Description

31:26 Reserved: MBZ

25 FlagSubRegNum – Flag Sub-Register Number. This field specifies the sub-register number for
a flag register operand.

24:21 Src0.VertStride – Source 0 Vertical Stride. This is the VertStride field for src0 operand.

It is ignored if src0 is an immediate operand.

20:18 Src0.Width. This is the Width field for source operand src0.

It is ignored if src0 is an immediate operand.

17:16 Src0.HorzStride. This is the HorzStride field for source operand src0.

It is ignored if src0 is an immediate operand.

15 Src0.AddrMode – Source 0 Address Mode. This is the AddrMode for source operand src0.

It is ignored if src0 is an immediate operand.

14:13 Src0.SrcMod – Source 0 Source Modifier. This is the SrcMod field for source operand src0.

It is ignored if src0 is an immediate operand.

12:10 Src0.AddrSubRegNum – Source 0 Address Sub-Register Number. This is the AddrSubRegNum
field for source operand src0.

It is ignored if src0 is an immediate operand.

9:0 Src0.AddrImm – Source 0 Address Immediate. This is the byte aligned AddrImm field for src0.

It is ignored if src0 is an immediate operand.

This section describes the field in DW2 and DW3 of the 3-src instruction format.

Table: Instruction DW2 and DW3 3-Source

DW Bits Description

DW3 31:30 Reserved: MBZ

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 701

DW Bits Description

29:22 Source2 Register Number. This field contains the register number for source2.

21:19 Source2 Subregister Number. This field contains the subregister number for source2.

Note: The recommended instruction syntax uses GRF subregister numbers in units of
element size, which the assembler translates to the appropriate value for this field.

18:11 Source2 Channel Select. This field contains the swizzle control for source2.

See ChanSel in the Common Instruction Fields section for a description of the Source
Swizzle encodings.

10:10 Source2 Replication Control. This field controls replication for source2.

See RepCtrl in the Common Instruction Fields section for a description of the Source
Replication Control encodings.

9:9 Reserved: MBZ

8:1 Source1 Register Number. This field contains the register number for source1.

0 Source1 Subregister Number. This field contains the subregister number for source1.

Note: The recommended instruction syntax uses GRF subregister numbers in units of
element size, which the assembler translates to the appropriate value for this field.

DW2 31:30 Source1 Subregister Number. This field contains the subregister number for source1.

Note: The recommended instruction syntax uses GRF subregister numbers in units of
element size, which the assembler translates to the appropriate value for this field.

29:22 Source1 Channel Select. This field contains the swizzle control for source1.

See ChanSel in the Common Instruction Fields section for a description of the Source
Swizzle encodings.

21:21 Source1 Replication Control. This field controls replication for source1.

See RepCtrl in the Common Instruction Fields section for a description of the Source
Replication Control encodings.

20:20 Reserved: MBZ

19:12 Source0 Register Number. This field contains the register number for source0.

11:9 Source0 Subregister Number. This field contains the subregister number for source0.

Note: The recommended instruction syntax uses GRF subregister numbers in units of

 3D – Media – GPGPU

702 Doc Ref # IHD-OS-VLV-Vol7-04.14

DW Bits Description

element size, which the assembler translates to the appropriate value for this field.

8:1 Source0 Channel Select. This field contains the swizzle control for source0.

See ChanSel in the Common Instruction Fields section for a description of the Source
Swizzle encodings.

0:0 Source0 Replication Control. This field controls replication for source0.

See RepCtrl in the Common Instruction Fields section for a description of the Source
Replication Control encodings.

Instruction Source 1 Doubleword 3 (DW3)

Instruction Source 1 Doubleword 3 (DW3) contains the second source operand (src1) and is used to
hold the 32-bit immediate source (imm32 as src0 or src1). Instruction Source 1 Doubleword 3 (DW3) and
Instruction Source 1 Doubleword 3 (DW3) define the fields in this doubleword with the following
exceptions:

• If src0 is an immediate operand, this doubleword contains imm32 for src0.
• If src1 is an immediate operand, this doubleword contains imm32 for src1.
• If the instruction is a send, bit 31 of this doubleword contains EOT field.

o If src1 is immediate, the remaining 31 bits in this doubleword is MsgDescpt31.
o If src1 is a register, src1 must be a0.0. The rest of this doubleword will be configured

accordingly.

• If indirect address is supported for src1, Instruction Source 1 Doubleword 3 (DW3) and Instruction
Source 1 Doubleword 3 (DW3) define the fields in DW3 for indirectly addressed src1 in Align16
and Align1 modes.

Table: Instruction Source 1 Doubleword in Direct + Align16 mode

Bits Description

31:25 Reserved: MBZ

24:21 Src1.VertStride – Source 1 Vertical Stride. This field is the VertStride for src1 operand.

It is ignored if src1 is an immediate operand.

20 Reserved: MBZ

19:16 Src1.ChanSel[7:4]

This contains bits [7:6] of the ChanSel field for src1 operand.

It is ignored if src1 is an immediate operand.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 703

Bits Description

15 Reserved: MBZ

14:13 Src1.SrcMod – Source 1 Source Modifier. This field is the SrcMod for src1 operand.

It is ignored if src1 is an immediate operand.

12:5 Src1.RegNum. This field is the RegNum field for src1 operand.

It is ignored if src1 is an immediate operand.

4 Src1.SubRegNum[4]. This field is bit [4] of the SubRegNum field for src1.

It is ignored if src1 is an immediate operand.

Note: The recommended instruction syntax uses GRF subregister numbers in units of element
size, which the assembler translates to the appropriate value for this field. For example, using the
F (Float) type the possible subregister numbers in Align16 mode are 0 or 4, corresponding to 0 or
1 for this field.

3:0 Src1.ChanEn – Source 1 Channel Enable. It is the channel enable field for src1. It is ignored if
src1 is an immediate operand.

Table: Instruction Source 1 Doubleword in Direct + Align1 mode

Bits Description

31:25 Reserved: MBZ

24:21 Src1.VertStride – Source 1 Vertical Stride. This field is the VertStride for src1 operand.

It is ignored if src1 is an immediate operand.

20:18 Src1.Width. This is the Width field for source operand src1.

It is ignored if src1 is an immediate operand.

17:16 Src1.HorzStride. This is the HorzStride field for source operand src1.

It is ignored if src1 is an immediate operand.

15 Reserved: MBZ

14:13 Src1.SrcMod – Source 1 Source Modifier. This field is the SrcMod for src1 operand.

It is ignored if src1 is an immediate operand.

12:5 Src1.RegNum – Source 1 Register Number. This is the RegNum field for source operand src1.

It is ignored if src1 is an immediate operand.

 3D – Media – GPGPU

704 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bits Description

4:0 Src1.SubRegNum – Source 1 Sub-Register Number. This is the SubRegNum field for source
operand src1.

It is ignored if src1 is an immediate operand.

Note: The recommended instruction syntax uses GRF subregister numbers in units of element
size, which the assembler translates to the appropriate value for this field.

Table: Instruction Source 1 Doubleword in Indirect+Align16 mode

Bits Description

31:25 Reserved: MBZ

24:21 Src1.VertStride – Source 1 Vertical Stride

This is the VertStride field for src1 operand.

It is ignored if src1 is an immediate operand.

20 Reserved: MBZ

19:16 Src1.ChanSel[7:4] – Source 1 Channel Select

This is bits [7:4] of the ChanSel field for src1 operand.

It is ignored if src1 is an immediate operand.

15 Src1.AddrMode – Source 1 Address Mode

This is the AddrMode for source operand src1.

It is ignored if src1 is an immediate operand.

14:13 Src1.SrcMod – Source 1 Source Modifier

This is the SrcMod field for source operand src1.

It is ignored if src1 is an immediate operand.

12:10 Src1.AddrSubRegNum – Source 1 Address Sub-Register Number

This is the AddrSubRegNum field for source operand src1.

It is ignored if src1 is an immediate operand.

9:4 Src1.AddrImm[9:4] – Source 1 Address Immediate

This contains the half-register aligned AddrImm field ((bits [9:4]) for src1.

It is ignored if src1 is an immediate operand.

3:0 Src1.ChanEn – Source 1 Channel Enable

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 705

Bits Description

This is the ChanEnfield for source operand src1.

It is ignored if src1 is an immediate operand.

 3D – Media – GPGPU

706 Doc Ref # IHD-OS-VLV-Vol7-04.14

Table: Instruction Source 1 Doubleword in Indirect+Align1 mode

Bits Description

31:25 Reserved: MBZ

24:21 Src1.VertStride – Source 1 Vertical Stride

This is the VertStride field for src1 operand.

It is ignored if src1 is an immediate operand.

20:18 Src1.Width

This is the Width field for source operand src1.

It is ignored if src1 is an immediate operand.

17:16 Src1.HorzStride

This is the HorzStride field for source operand src1.

It is ignored if src1 is an immediate operand.

15 Src1.AddrMode – Source 1 Address Mode

This is the AddrMode for source operand src1.

It is ignored if src1 is an immediate operand.

14:13 Src1.SrcMod – Source 1 Source Modifier

This is the SrcMod field for source operand src1.

It is ignored if src1 is an immediate operand.

12:10 Src1.AddrSubRegNum – Source 1 Address Sub-Register Number

This is the AddrSubRegNum field for source operand src1.

It is ignored if src1 is an immediate operand.

9:0 Src1.AddrImm – Source 1 Address Immediate

This is the byte aligned AddrImm field for src1.

It is ignored if src1 is an immediate operand.

EU Compact Instructions

On receiving an instruction with bit 29 (CmptCtrl) set, HW recognizes it as a 64-bit compact instruction.
Hardware then uses the index fields inside the compact instruction to lookup values in the associated

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 707

compaction tables, then uses the table outputs along with other fields in the compact instruction to
reconstruct the 128-bit native-sized instruction.

In flow control instructions, IP offsets, such as the JIP and UIP instruction fields, are measured in 64-bit
QWords. Thus a compact 64-bit instruction is 1 unit for IP offset calculations and a native 128-bit
instruction is 2 units for IP offset calculations.

The native 128-bit instruction format provides access to all instruction options. Only some instruction
options and combinations of instruction options can be represented in the compact instruction formats.

Which native instructions can be represented as compact instructions and the details of the compact
instruction formats and the compaction tables used may change with each processor generation.

In the following instruction format tables the Mapping Bits and Mapping Description columns describe
the mappings into native instruction fields.

EU Compact Instruction Format

The following table describes the EU compact instruction format. For these processors, instructions with
three source operands cannot be compacted.

Table: GEN Compact Instruction Format

Bits Size
Mapping

Bits
Compact

Name Mapping Description

63:56 8 108:101
(Not Imm.)
or 103:96

(Imm.)

Src1.RegNum Src1.RegNum in 108:101 if not immediate. Imm32[7:0] in 103:96 if
immediate.

55:48 8 76:69 Src0.RegNum Src0.RegNum.

47:40 8 60:53 Dst.RegNum Dst.RegNum.

39:35 5 120:109
(Not Imm.)
or 127:104

(Imm.)

Src1Index Lookup one of 32 12-bit values. If not an immediate operand, maps to
bits 120:109, covering the Src1.AddrMode, Src1.ChanSel[7:4],
Src1.HorzStride, Src1.SrcMod, Src1.VertStride, and Src1.Width bit fields.
If an immediate operand, does not do any lookup. The 5-bit value
directly maps to bits 108:104 (Imm32[12:8]) and the upper bit (bit 39 in
the compact format, bit 108 in the native format) is replicated to
provide bits 127:109 (Imm32[31:13]) in the native format.

34:30 5 88:77 Src0Index Lookup one of 32 12-bit values. That value is used (from MSB to LSB)
for the Src0.AddrMode, Src0.ChanSel[7:4], Src0.HorzStride,
Src0.SrcMod, Src0.VertStride, and Src0.Width bit fields. Note that this
field spans a DWord boundary within the QWord compacted
instruction.

29 1 29 CmptCtrl Compaction Control. The same in both the compact and native
formats:

0: Regular instruction, not compacted.

1: Compacted instruction.

 3D – Media – GPGPU

708 Doc Ref # IHD-OS-VLV-Vol7-04.14

Bits Size
Mapping

Bits
Compact

Name Mapping Description

28 1 Not
mapped.

Reserved Not mapped. MBZ.

27:24 4 27:24 CondModifier CondModifier. The same in both the compact and native formats.

23 1 28 AccWrCtrl AccWrCtrl.

22:18 5 100:96,
68:64,
52:48

SubRegIndex Lookup one of 32 15-bit values. That value is used (from MSB to LSB)
for various fields for Src1, Src0, and Dst, including ChanEn/ChanSel,
SubRegNum, and AddrImm[4] or AddrImm[4:0], depending on
AddrMode and AccessMode.

17:13 5 63:61,
46:32

DataTypeIndex Lookup one of 32 18-bit values. That value is used (from MSB to LSB)
for the Dst.AddrMode, Dst.HorzStride, Dst.DstType, Dst.RegFile,
Src0.SrcType, Src0.RegFile, Src1.SrcType, and Src1.RegType bit fields.

12:8 5 90:89, 31,
23:8

ControlIndex Lookup one of 32 19-bit values. That value is used (from MSB to
LSB) for the FlagRegNum, FlagSubRegNum, Saturate, ExecSize,
PredInv, PredCtrl, ThreadCtrl, QtrCtrl, DepCtrl, MaskCtrl, and
AccessMode bit fields.

6:0 7 6:0 Opcode Opcode. The same in both the compact and native formats.

The following diagram is an alternate presentation of the compact instruction format.

GEN Compact Instruction Format

EU Instruction Compaction Tables

The following four tables describe the mappings for the ControlIndex, DataTypeIndex, SubRegIndex,
Src0Index, and Src1Index fields in the compact instruction forma.

Table: ControlIndex Compact Instruction Field Mappings

ControlIndex 19-Bit Mapping Mapped Meaning

0 0000000000000000010 Align1 | We | (1) | f0.0

1 0000100000000000000 Align1 | (4) | f0.0

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 709

ControlIndex 19-Bit Mapping Mapped Meaning

2 0000100000000000001 Align16 | (4) | f0.0

3 0000100000000000010 Align1 | We | (4) | f0.0

4 0000100000000000011 Align16 | We | (4) | f0.0

5 0000100000000000100 Align1 | NoDDClr | (4) | f0.0

6 0000100000000000101 Align16 | NoDDClr | (4) | f0.0

7 0000100000000000111 Align16 | We | NoDDClr | (4) | f0.0

8 0000100000000001000 Align1 | NoDDChk | (4) | f0.0

9 0000100000000001001 Align16 | NoDDChk | (4) | f0.0

10 0000100000000001101 Align16 | NoDDClr, NoDDChk | (4) | f0.0

11 0000110000000000000 Align1 | Q1 | (8) | f0.0

12 0000110000000000001 Align16 | Q1 | (8) | f0.0

13 0000110000000000010 Align1 | We | Q1 | (8) | f0.0

14 0000110000000000011 Align16 | We | Q1 | (8) | f0.0

15 0000110000000000100 Align1 | NoDDClr | Q1 | (8) | f0.0

16 0000110000000000101 Align16 | NoDDClr | Q1 | (8) | f0.0

17 0000110000000000111 Align16 | We | NoDDClr | Q1 | (8) | f0.0

18 0000110000000001001 Align16 | NoDDChk | Q1 | (8) | f0.0

19 0000110000000001101 Align16 | NoDDClr, NoDDChk | Q1 | (8) | f0.0

20 0000110000000010000 Align1 | Q2 | (8) | f0.0

21 0000110000100000000 Align1 | Q1 | +f.xyzw | (8) | f0.0

22 0001000000000000000 Align1 | H1 | (16) | f0.0

23 0001000000000000010 Align1 | We | H1 | (16) | f0.0

24 0001000000000000100 Align1 | NoDDClr | H1 | (16) | f0.0

25 0001000000100000000 Align1 | H1 | +f.xyzw | (16) | f0.0

26 0010110000000000000 Align1 | Q1 | (8) | .sat | f0.0

27 0010110000000010000 Align1 | Q2 | (8) | .sat | f0.0

28 0011000000000000000 Align1 | H1 | (16) | .sat | f0.0

29 0011000000100000000 Align1 | H1 | +f.xyzw | (16) | .sat | f0.0

30 0101000000000000000 Align1 | H1 | (16) | f0.1

31 0101000000100000000 Align1 | H1 | +f.xyzw | (16) | f0.1

Table: DataTypeIndex Compact Instruction Field Mappings

DataTypeIndex 18-Bit Mapping Mapped Meaning

0 001000000000000001 r:ud | a:ud | a:ud | <1> | dir |

1 001000000000100000 a:ud | r:ud | a:ud | <1> | dir |

2 001000000000100001 r:ud | r:ud | a:ud | <1> | dir |

3 001000000001100001 r:ud | i:ud | a:ud | <1> | dir |

4 001000000010111101 r:f | r:d | a:ud | <1> | dir |

 3D – Media – GPGPU

710 Doc Ref # IHD-OS-VLV-Vol7-04.14

DataTypeIndex 18-Bit Mapping Mapped Meaning

5 001000001011111101 r:f | i:vf | a:ud | <1> | dir |

6 001000001110100001 r:ud | r:f | a:ud | <1> | dir |

7 001000001110100101 r:d | r:f | a:ud | <1> | dir |

8 001000001110111101 r:f | r:f | a:ud | <1> | dir |

9 001000010000100001 r:ud | r:ud | r:ud | <1> | dir |

10 001000110000100000 a:ud | r:ud | i:ud | <1> | dir |

11 001000110000100001 r:ud | r:ud | i:ud | <1> | dir |

12 001001010010100101 r:d | r:d | r:d | <1> | dir |

13 001001110010100100 a:d | r:d | i:d | <1> | dir |

14 001001110010100101 r:d | r:d | i:d | <1> | dir |

15 001111001110111101 r:f | r:f | a:f | <1> | dir |

16 001111011110011101 r:f | a:f | r:f | <1> | dir |

17 001111011110111100 a:f | r:f | r:f | <1> | dir |

18 001111011110111101 r:f | r:f | r:f | <1> | dir |

19 001111111110111100 a:f | r:f | i:f | <1> | dir |

20 000000001000001100 a:w | a:ub | a:ud | <0> | dir |

21 001000000000111101 r:f | r:ud | a:ud | <1> | dir |

22 001000000010100101 r:d | r:d | a:ud | <1> | dir |

23 001000010000100000 a:ud | r:ud | r:ud | <1> | dir |

24 001001010010100100 a:d | r:d | r:d | <1> | dir |

25 001001110010000100 a:d | a:d | i:d | <1> | dir |

26 001010010100001001 r:uw | a:uw | r:uw | <1> | dir |

27 001101111110111101 r:f | r:f | i:vf | <1> | dir |

28 001111111110111101 r:f | r:f | i:f | <1> | dir |

29 001011110110101100 a:w | r:w | i:w | <1> | dir |

30 001010010100101000 a:uw | r:uw | r:uw | <1> | dir |

31 001010110100101000 a:uw | r:uw | i:uw | <1> | dir |

Table: SubRegIndex Compact Instruction Field Mappings

SubRegIndex 15-Bit Mapping Mapped Meaning

0 000000000000000 0 | 0 | 0 |

1 000000000000001 0.x | 0.xx | 0.xx

2 000000000001000 8 | 0 | 0 |

3 000000000001111 0.xyzw | 0.xx | 0.xx

4 000000000010000 16 | 0 | 0 |

5 000000010000000 0 | 4 | 0 |

6 000000100000000 0 | 8 | 0 |

7 000000110000000 0 | 12 | 0 |

8 000001000000000 0 | 16 | 0 |

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 711

SubRegIndex 15-Bit Mapping Mapped Meaning

9 000001000010000 16 | 16 | 0 |

10 000001010000000 0 | 20 | 0 |

11 001000000000000 0 | 0 | 4 |

12 001000000000001 0.x | 0.xx | 0.xy

13 001000010000001 0.x | 0.xy | 0.xy

14 001000010000010 0.y | 0.xy | 0.xy

15 001000010000011 0.xy | 0.xy | 0.xy

16 001000010000100 0.z | 0.xy | 0.xy

17 001000010000111 0.xyz | 0.xy | 0.xy

18 001000010001000 0.w | 0.xy | 0.xy

19 001000010001110 0.yzw | 0.xy | 0.xy

20 001000010001111 0.xyzw | 0.xy | 0.xy

21 001000110000000 0 | 12 | 4 |

22 001000111101000 0.w | 0.ww | 0.xy

23 010000000000000 0 | 0 | 8 |

24 010000110000000 0 | 12 | 8 |

25 011000000000000 0 | 0 | 12 |

26 011110010000111 0.xyz | 0.xy | 0.ww

27 100000000000000 0 | 0 | 16 |

28 101000000000000 0 | 0 | 20 |

29 110000000000000 0 | 0 | 24 |

30 111000000000000 0 | 0 | 28 |

31 111000000011100 28 | 0 | 28 |

Table: Src0Index or Src1Index Compact Instruction Field Mappings

Src0Index or
Src1Index 12-Bit Mapping Mapped Meaning

0 000000000000 dir | <0;1,0>

1 000000000010 (-) | dir | <0;1,0>

2 000000010000 dir | <0;>.zx

3 000000010010 (-) | dir | <0;>.zx

4 000000011000 dir | <0;>.wx

5 000000100000 dir | <0;>.xy

6 000000101000 dir | <0;>.yy

7 000001001000 dir | <0;4,1>

8 000001010000 dir | <0;>.zz

9 000001110000 dir | <0;>.zw

10 000001111000 dir | <0;8,4> / dir | <0;>.ww

11 001100000000 dir | <4;>.xx

 3D – Media – GPGPU

712 Doc Ref # IHD-OS-VLV-Vol7-04.14

Src0Index or
Src1Index 12-Bit Mapping Mapped Meaning

12 001100000010 (-) | dir | <4;>.xx

13 001100001000 dir | <4;>.yx

14 001100010000 dir | <4;>.zx

15 001100010010 (-) | dir | <4;>.zx

16 001100100000 dir | <4;>.xy

17 001100101000 dir | <4;>.yy

18 001100111000 dir | <4;>.wy

19 001101000000 dir | <4;4,0>

20 001101000010 (-) | dir | <4;4,0>

21 001101001000 dir | <4;>.yz

22 001101010000 dir | <4;>.zz

23 001101100000 dir | <4;>.xw

24 001101101000 dir | <4;>.yw

25 001101110000 dir | <4;>.zw

26 001101110001 (abs) | dir | <4;>.zw

27 001101111000 dir | <4;>.ww

28 010001101000 dir | <8;8,1>

29 010001101001 (abs) | dir | <8;8,1>

30 010001101010 (-) | dir | <8;8,1>

31 010110001000 dir | <16;16,1>

Opcode Encoding

Byte 0 of the 128-bit instruction word contains the opcode. The opcode uses 7 bits. Bit location 7 in
byte 0 is reserved for future opcode extension.

The opcodes are encoded and organized into five groups based on the type of operations: Special
instructions, move/logic instructions (opcode=00xxxxxb), flow control instructions (opcode=010xxxxb),
miscellaneous instructions (opcode=011xxxxb), parallel arithmetic instructions (opcode=100xxxxb), and
vector arithmetic instructions (opcode=101xxxxb). Opcodes 110xxxb are reserved.

Note: Opcodes appear in the overall Instruction Set Summary Table as well. The following subsections
still serve the purpose of describing various instruction groups.

Move and Logic Instructions

This instruction group has an opcode format of 00xxxxxb.

• The opcodes for move instructions (mov, sel and movi) share the common 5 MSBs in the form of
00000xxb.

• The opcodes for logic instructions (not, and, or, and xor) share the common 5 MSBs in the form of
00001xxb.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 713

• The opcodes for shift instructions (shr, shl, and asr) share the common 4 MSBs in the form of
0001xxxb. Bit 2 indicates arithmetic or logic shift (0 = logic, 1 = arithmic). Bit 1 is always 0 (which
is reserved for future extension to support rotation shift as 0 = shift, 1 = rotate). Bit 0 indicates
the shift direction (0 = right, 1 = left).

• The opcodes for compare instructions (cmp and cmpn) share the common 6 MSBs in the form of
001000xb. Bit 0 indicates whether it is a normal compare, cmp, or a special compare-NaN, cmpn.

Table: Move and Logic Instructions

Opcode Instructio
n Description #src #dst dec hex

1 0x01 mov Component-wise move 1 1

2 0x02 sel Component-wise selective move based on
predication

2 1

3 0x03 movi Fast component-wise indexed move 1 1

4 0x04 not Component-wise one's complement (bitwise not) 1 1

5 0x05 and Component-wise logical AND (bitwise and) 2 1

6 0x06 or Component-wise logical OR (bitwise or) 2 1

7 0x07 xor Component-wise logical XOR (bitwise xor) 2 1

8 0x08 shr Component-wise logical shift right 2 1

9 0x09 shl Component-wise logical shift left 2 1

11 0x0A Reserved

12 0x0B Reserved

12 0x0C asr Component-wise arithmetic shift right 2 1

13 0x0D Reserved

14 0x0E Reserved

15 0x0F Reserved

16 0x10 cmp Component-wise compare, store condition code
in destination

2 1

17 0x11 cmpn Component-wise compare-NaN, store condition
code in destination

2 1

 3D – Media – GPGPU

714 Doc Ref # IHD-OS-VLV-Vol7-04.14

Opcode Instructio
n Description #src #dst dec hex

18 0x12 Reserved

18 0x12 csel Component-wise selective move based on result
of compare

3 1

19 0x13 Reserved 1 1

19 0x13 f32tof16 Single precision float to half precision float
conversion

20 0x14 f16to32 Half precision float to single precision float
conversion

21 0x15 Reserved

22 0x16 Reserved

23 0x17 bfrev Reverse bits 1 1

24 0x18 bfe Bitfield exact 3 1

25 0x19 bfi1 Bitfield insert macro instruction 1, generate mask 2 1

26 0x1A bfi2

27-
31

0x1B-
0x1F

Reserved

Flow Control Instructions

This instruction group has an opcode format of 010xxxxb.

Table: Flow Control Instructions

Opcode

Instruction Description #src #dst dec hex

32 0x20 jmpi Jump indexed 1 0

33 0x21 brd Branch - Diverging 1 0

34 0x22 if If 0/2 0

35 0x23 brc Branch - Converging 1 -

36 0x24 else Else 1 0

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 715

Opcode

Instruction Description #src #dst dec hex

37 0x25 endif End if 0 0

38 0x26 case Case – Inside Switch block 0/2 0

39 0x27 while While 1 0

40 0x28 break Break 1 0

41 0x29 cont Continue 1 0

42 0x2A halt Halt 1 0

43 0x2B Reserved

44 0x2C call Subroutine call 1 1

45 0x2D return Subroutine return 1 1

46 0x2E Reserved

47 0x2F Reserved

Miscellaneous Instructions

This instruction group has an opcode format of 011xxxxb.

Table: Miscellaneous Instructions

Opcode

Instruction Description #src #dst dec hex

48 0x30 wait Wait for (external) notification 1 0

49 0x31 send Send 1 1

50 0x32 sendc Conditional Send (based on TDR) 1 1

53-55 0x35-0x37 Reserved

56 0x38 math Math functions for extended math pipeline 1/2 1/2

57-63 0x39-0x3F Reserved

 3D – Media – GPGPU

716 Doc Ref # IHD-OS-VLV-Vol7-04.14

Parallel Arithmetic Instructions

This instruction group has an opcode format of 100xxxxb.

Table: Parallel Arithmetic Instructions

Opcode

Instruction Description #src #dst dec hex

64 0x40 add Component-wise addition 2 1

65 0x41 mul Component-wise multiply 2 1

66 0x42 avg Component-wise average of the two source
operands

2 1

67 0x43 frc Component-wise floating point truncate-to-minus-
infinity fraction

1 1

68 0x44 rndu Component-wise floating point rounding up (ceiling) 1 1

69 0x45 rndd Component-wise floating point rounding down
(floor)

1 1

70 0x46 rnde Component-wise floating point rounding toward
nearest even

1 1

71 0x47 rndz Component-wise floating point rounding toward
zero

1 1

72 0x48 mac Component-wise multiply accumulate 2 1

73 0x49 mach multiply accumulate high 2 1

74 0x4A lzd leading zero detection 1 1

75 0x4B fbh Find first 1 for UD from msb side, or first 1/0 for D. 1 1

76 0x4C fbl First first 1 for UD from lsb side 1 1

77 0x4D cbit Count bits set 1 1

78 0x4E addc Integer add with carry 2 1 +
acc.

79 0x4F subb integer subtract with borrow 2 1 +
acc.

75-
79

0x4B-
0x4F

Reserved

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 717

Vector Arithmetic Instructions

• This instruction group has an opcode format of 101xxxxb.

Table: Vector Arithmetic Instructions

Opcode

Instruction Description #src #dst dec hex

80 0x50 sad2 2-wide sum of absolute difference 2 1

81 0x51 sada2 2-wide sad accumulate 2 1

82-
83

0x52-
0x53 reserved

84 0x54 dp4 4-wide dot product for 4-vector 2 1

85 0x55 dph 4-wide homogenous dot product for 4-vector 2 1

86 0x56 dp3 3-wide dot product for 4-vector 2 1

87 0x57 dp2 2-wide dot product for 4-vector 2 1

88 0x58 reserved

89 0x59 line Component-wise line equation computation (a multiply-add) 2 1

90 0x5A pln Component-wise floating point plane equation computation (a
multiply-multiply-add)

2 1

91 0x5B fma(mad) Component-wise floating point mad computation (a multiple-add) 3 1

92 0x5C lrp Component-wise floating point lrp computation (blend) 3 1

93 0x5D reserved

94-
95

0x5E-
0x5F reserved

Special Instructions

There are two special instructions, namely, nop (opcode = 0x7E) and illegal (opcode = 0x00).

• Nop instruction may be used for instruction padding in memory between two normal instructions
to force alignment or to introduce instruction execution delay. Currently, there is no need for
between-instruction padding.

• Illegal instruction may be used for instruction padding in memory outside the normal instruction
sequence such as before or after the kernel program as well as between subroutines.

 3D – Media – GPGPU

718 Doc Ref # IHD-OS-VLV-Vol7-04.14

• Nop and illegal instructions do not have source operands or destination operand. Therefore, they
do not implicitly update the accumulator register. They cannot be compressed.

Table: Special Instructions

Opcode

Instruction Description #src #dst dec hex

0 0x00 illegal Illegal instruction 0 0

96-124 0x60-0x7D Reserved

126 0x7E nop No-op 0 0

127 0x7F Reserved (may be used as an extension code)

Native Instruction BNF

The Backus-Naur Form (BNF) grammar identifies the assembly language syntax, which is native to the
hardware. It does not include intelligent defaults, assembler pragmas, etc.

Instruction Groups

<Instruction>::=<UnaryInstruction>

|<BinaryAccInstruction>
|<BinaryInstruction>
|<TriInstruction>
|<JumpInstruction>
|<BranchLoopInstruction>
|<ElseInstruction>
|<BreakInstruction>
|<MaskControlInstruction
|<TriInstruction2>
|<CallInstruction>
|<BranchConvIntruction>
|<BranchDivInstruction>
|<MathInstruction>

|<SyncInstruction>
|<SpecialInstruction>

<UnaryInstruction> ::= <Predicate> <UnaryInst> <ExecSize> dst <SrcAccImm> <InstOptions>

<UnaryInst> ::= <UnaryOp> <ConditionalModifier> <Saturate>

<UnaryOp> ::= mov | frc | rndu | rndd | rnde | rndz | not | lzd

<BinaryInstruction> ::= <Predicate> <BinaryInst> <ExecSize> dst <Src> <SrcImm> <InstOptions>

<BinaryInst> ::= <BinaryOp> <ConditionalModifier> <Saturate>

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 719

<BinaryOp> ::= mul | mac | mach | line | pln | sad2 | sada2 | dp4 | dph | dp3 | dp2 | Irp | bfi1 | addc | subb

<BinaryAccInstruction> ::= <Predicate> <BinaryAccInst> <ExecSize> dst <SrcAcc> <SrcImm> <InstrOptions>

<BinaryAccInst> ::= <BinaryAccOp> <ConditionalModifier> <Saturate>

<BinaryAccOp> ::= avg | add | sel | and | or | xor | shr | shl | asr | cmp | cmpn

<TriInstruction> ::= <Predicate> <TriInst> <ExecSize> <PostDst> <CurrDst> <TriSrc> <MsgDesc> <InstOptions>

<TriInst> ::= <TriOp> <ConditionalModifier> <Saturate>

<TriOp> ::= send

<TriInstruction2> ::= <Predicate> <TriInst2> <ExecSize> dst <Src> <Src> <Src><InstOptions>

<TriInst2> ::= <TriOp> <ConditionalModifier><Saturate>

<TriOp> ::= bfe| bfi2| mad

<BranchConvInstruction> ::= <Predicate> <BranchConvOp> <ExecSize>< RelativeLocation2>

<BranchConvOp> ::= brc

<BrancConvInstruction> ::= <Predicate> <BranchDivOp> <ExecSize>< RelativeLocation3>

<BranchDivOp> ::= brd

<CallInstruction> ::= <Predicate> <CallOp> <ExecSize>dst< RelativeLocation2>

<CallOp> ::= call |CALLA

<MathInstruction> ::= <Predicate> <MathInst> <ExecSize>< Dst>< Src>< Src><FC>

<MathInst> ::= <MathOp><Saturate>

<MathOp> ::= math

<FC> ::= INV | LOG | EXP | SQRT |RSQ | POW | SIN | COS | INT DIV

<JumpInstruction> ::= <JumpOp> <RelativeLocation2>

<JumpOp> ::= jmpi

<BranchLoopInstruction> ::= <Predicate> <BranchLoopOp> < RelativeLocation>

<BranchLoopOp> ::= if | iff | while

<ElseInstruction> ::= <ElseOp> < RelativeLocation>

<ElseOp> ::= else

<BreakInstruction> ::= <Predicate> <BreakOp> <LocationStackCtrl>

<BreakOp> ::= break | cont | halt

<SyncInstruction> ::= <Predicate> <SyncOp> <NotifyReg>

<SyncOp> ::= wait

<SpecialInstruction> ::= do | endif |nop | illegal

Destination Register

dst ::=<DstOperand>

|<DstOperandEx>

<DstOperand> ::=<DstReg> <DstRegion> <WriteMask> <DstType>

<DstOperandEx> ::= <AccReg> <DstRegion> <DstType>

|<FlagReg> <DstRegion> <DstType>

|<AddrReg> <DstRegion> <DstType>

 3D – Media – GPGPU

720 Doc Ref # IHD-OS-VLV-Vol7-04.14

|<MaskReg> <DstRegion> <DstType>

|<MaskStackReg>

|<ControlReg>

|<IPReg>

|<NullReg>

| <ChannelEnableReg>

|<ThreadControlReg>

|<PerformanceReg>

<DstReg>::=<DirectGenReg> | <IndirectGenReg>

|<DirectMsgReg> | <IndirectMsgReg>

<PostDst>::=<PostDstReg> <DstRegion> <WriteMask> <DstType>

|<NullReg>

<PostDstReg>::= <DirectGenReg> | <IndirectGenReg>

<CurrDst>::=<DirectAlignedMsgReg>

Source Register

Source with Accumulator Access and with Immediate

<SrcAccImm>::=<SrcAcc>

|<Imm32> <SrcImmType>

<SrcAcc>::=<DirectSrcAccOperand>

|<IndirectSrcOperand>

<DirectSrcAccOperand>::=<DirectSrcOperand>

|<SrcArcOperandEx>

|<AccReg> <SrcType>

<SrcArcOperandEx>::=<FlagReg> <Region> <SrcType>

|<AddrReg> <Region> <SrcType>

|<ControlReg>

|<StateReg>

|<NotifyReg>

|<IPReg>

|<NullReg>

| <ChannelEnableReg>

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 721

|<ThreadControlReg>

|<PerformanceReg>

<IndirectSrcOperand>::=<SrcModifier> <IndirectGenReg> <IndirectRegion> <Swizzle > <SrcType>

Source without Accumulator Access

<Src>::=<DirectSrcOperand>

|<IndirectSrcOperand>

< DirectSrcOperand>::=<SrcModifier> <DirectGenReg> <Region> <Swizzle> <SrcType>

|<SrcArcOperandEx>

<TriSrc>::=<SrcModifier> <DirectGenReg> <Region> <Swizzle> <SrcType>

|<NullReg>

<MsgDesc>::=<ImmDesc>

|<Reg32>

<Reg32>::=<DirectGenReg> <Region> <SrcType>

Source without Accumulator Access or IP Access

<SrcImm>::=<DirectSrcOperand>

|<Imm32> <SrcImmType>

Address Registers

<AddrParam>::=<AddrReg> <ImmAddrOffset>

<ImmAddrOffset>::=

| , <ImmAddrNum>

Register Files and Register Numbers

Note: The recommended instruction syntax uses subregister numbers within the GRF in units of actual
data element size, corresponding to the data type used. For example for the F (Float) type, the
assembler syntax uses subregister numbers 0 to 7, corresponding to subregister byte addresses of 0 to
28 in steps of 4, the element size.

<DirectGenReg>::=<GenRegFile> <GenRegNum> <GenSubRegNum>

<IndirectGenReg>::=<GenRegFile> [<AddrParam>]

<GenRegFile>::=r

<GenRegNum>:: =0…127

 3D – Media – GPGPU

722 Doc Ref # IHD-OS-VLV-Vol7-04.14

<GenSubRegNum>:: =

| .0….3 //incase of DF

| .0....7

| .0....15

| .0....31

<DirectMsgReg>::=<DirectAlignedMsgReg> <MsgSubRegNum>

<DirectAlignedMsgReg>::=<MsgRegFile> <MsgRegNum>

<IndirectMsgReg>::=<MsgRegFile> [<AddrParam>]

<MsgRegFile>::=m

<MsgRegNum>:: =0…15

<MsgSubRegNum>:: = <GenSubRegNum>

<AddrReg>::=<AddrRegFile> <AddrSubRegNum>

<AddrRegFile>::=a0

<AddrSubRegNum>:: =

| .0 … .7

<AccReg>::=acc <AccRegNum><AccSubRegNum>

<AccRegNum>:: =0 | 1

<AccSubRegNum>:: = <GenSubRegNum>

<FlagReg> ::= f <FlagRegNum> <FlagSubRegNum>

<FlagRegNum> :: = 0 | 1

<FlagReg>::=f0 <FlagSubRegNum>

<FlagSubRegNum>:: =

| .0....1

<NotifyReg>::=n <NotifyRegNum>

<NotifyRegNum>:: =0...2

<StateReg>::=sr0 <StateSubRegNum>

<StateSubRegNum>:: =.0... .1

<ControlReg>::=cr0 <ControlSubRegNum>

<ControlSubRegNum>:: =.02

<IPReg>::=ip

<NullReg>::=null

<ThreadControlReg> ::= tdr0<ThreadCntrlSubRegNum>

<ThreadCntrlSubRegNum> ::= .0….7

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 723

<PerformanceReg> ::= tm0

<ChannelEnableReg> ::= ce0.0

Relative Location and Stack Control

<RelativeLocation>::= <imm16>

<RelativeLocation2>::= <imm32> | <reg32>

<RelativeLocation3> ::= <imm16> | <reg32>

<LocationStackCtrl>::=<imm32>

Regions

<DstRegion>::=<<HorzStride> >

<IndirectRegion>::=<Region> | <RegionWH> | <RegionV>

<Region>::=<<VertStride> ; <Width> , <HorzStride> >

<RegionWH>::=< <Width> , <HorzStride> >

<RegionV>::=<<VertStride> >

<VertStride>::= 0 | 1 | 2 | 4 | 8 | 16 | 32

<Width>::=1 | 2 | 4 | 8 | 16

<HorzStride>::=0 | 1 | 2 | 4

Types

<SrcType> ::= :df | :f | :ud | :d | :uw | :w | :ub | :b

<SrcImmType> ::= <SrcType> | :v | :vf | :uv

<DstType> ::= <SrcType>

Write Mask

<WriteMask>::=

| . x | . y | . z | . w

| . xy | . xz | . xw | . yz | . yw | . zw

| . xyz | . xyw | . xzw | . yzw

| . xyzw

Swizzle Control

<Swizzle>::=

| . <ChanSel>

 3D – Media – GPGPU

724 Doc Ref # IHD-OS-VLV-Vol7-04.14

| . <ChanSel> <ChanSel> <ChanSel> <ChanSel>

<ChanSel>::= x | y | z | w

Immediate Values

<ImmAddrNum>::=-512… 511

<Imm64> ::= 0.0… ±1.0*2-1024…1023 | 0… 264-1 | -263… 263-1

<Imm32> ::=0.0… ±1.0*2-128…127 | 0… 232-1 | -231… 231-1

<Imm16> ::=0… 216-1 | -215… 215-1

<ImmDesc> ::=0… 232-1

Predication and Modifiers

Instruction Predication

<Predicate>::=

|(<PredState> <FlagReg> <PredCntrl>)

<PredState>::=

|+

|-

<PredCntrl>::=

|.x | .y | .z | .w

|.any2h | .all2h

|.any4h | .all4h

|.any8h | .all8h

|.any16h | .all16h

|.anyv | .allv

| .any32h| .all32h

Source Modification

<SrcModifier>::=

|-

|(abs)

|- (abs)

Instruction Modification

<ConditionalModifier>::=

|<CondMod> . <FlagReg>

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 725

<CondMod>::=.z | .e|.nz | .ne|.g|.ge|.l|.le|.o |.r |.u

<Saturate>::=

|.sat

Execution Size

<ExecSize>::=(<NumChannels>)

<NumChannels>::=1 | 2 | 4 | 8 | 16 | 32

Instruction Options

<InstOptions> ::=

| { <InstOption> }

| { <InstOption> <InstOptionEx> }

<InstOptionEx> ::=

| , <InstOption> <InstOptionEx>

<InstOption> ::= <AccessMode>

| <AccWrCtrl>

| <ComprCtrl>

| <DependencyCtrl>

| <MaskCtrl>

| <SendCtrl>

| <ThreadCtrl>

<AccessMode> ::= Align1 | Align16

<AccWrCtrl> ::= AccWrEn

<ComprCtrl> ::= SecHalf | Compr

<DependencyCtrl> ::= NoDDChk | NoDDClr

<MaskCtrl> ::= NoMask

<SendCtrl> ::= EOT

<ThreadCtrl> ::= Switch

| Atomic

Note for Assembler: Compression control Compr has a direct map to the binary instruction word. It
may be omitted if the Assembler can determine whether an instruction is compressable.

Instruction Set Summary Tables

The columns in the following tables specify instruction mnemonics, hex opcodes, full names, instruction
groups, processor generation (where blank means available for DevSNB+), the number of source

 3D – Media – GPGPU

726 Doc Ref # IHD-OS-VLV-Vol7-04.14

operands, whether the instruction supports predication, any support for source modifiers, an indication
of supported data types, whether the instruction supports saturation, and any support for conditional
modifiers.

See the separate Accumulator Restrictions table for information about how instructions are allowed to
use accumulators.

N and Y indicate No (no support for a feature) and Yes (full support for a feature) respectively.

A SrcMod (source modifier) value of Y indicates that a numeric source modifier is allowed, optionally
specifying abolute value, negation, or a forced negative value. The value N indicates no source modifier
support.

A SrcMod value of ** indicates a numeric source modifier.

In the Src Types and Dst Type columns, Int means any integer type and * means such an extensive list of
types that you must refer to the detailed instruction description.

Table: Instruction Set Summary Table A to B (Listed by Instruction Mnemonic)

Mnem.
Hex

Opcode Name Group Gen Srcs Pred? SrcMod Src Types Dst Type Sat? CondMod?

add 40 Addition Parallel Arithmetic 2 Y Y * * Y Y

addc 4E Integer Addition with Carry Parallel Arithmetic 2 Y N UD UD N Y

and 05 Logic And Move and Logic 2 Y ** Int Int N Equality only

asr 12 Arithmetic Shift Right Move and Logic 2 Y Y Int Int Y Y

avg 42 Average Parallel Arithmetic 2 Y Y B, UB
W, UW
D, UD

B, UB
W, UW
D, UD

Y Y

bfe 18 Bit Field Extract Move and Logic 3 Y N UD, D UD, D N N

bfi1 19 Bit Field Insert 1 Move and Logic 2 Y N UD, D UD, D N N

bfi2 1A Bit Field Insert 2 Move and Logic 3 Y N UD, D UD, D N N

bfrev 17 Bit Field Reverse Move and Logic 1 Y N UD UD N N

brc 23 Branch Converging Flow Control 0 or 1 Y N D N N

brd 21 Branch Diverging Flow Control 0 or 1 Y N D N N

break 28 Break Flow Control 0 Y N N N

Table: Instruction Set Summary Table C to E (Listed by Instruction Mnemonic)

Mnem.
Hex

Opcode Name Group Gen Srcs Pred? SrcMod Src Types Dst Type Sat? CondMod?

call 2C Call Flow Control 0 Y N D, UD N N

cbit 4D Count Bits Set Move and Logic 1 Y N UB, UW, UD UD N N

cmp 10 Compare Move and Logic 2 Y Y * * N Y

cmpn 11 Compare NaN Move and Logic 2 Y Y * * N Y

cont 29 Continue Flow Control 0 Y N N N

dp2 57 Dot Product 2 Vector Arithmetic 2 Y Y F F Y Y

dp3 56 Dot Product 3 Vector Arithmetic 2 Y Y F F Y Y

dp4 54 Dot Product 4 Vector Arithmetic 2 Y Y F F Y Y

dph 55 Dot Product Homogeneous Vector Arithmetic 2 Y Y F F Y Y

else 24 Else Flow Control 0 N N N N

endif 25 End If Flow Control 0 N N N N

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 727

Table: Instruction Set Summary Table F to L (Listed by Instruction Mnemonic)

Mnem.
Hex

Opcode Name Group Gen Srcs Pred? SrcMod Src Types Dst Type Sat? CondMod?

f16to32 14 Half Precision Float to
Single Precision Float

Move and Logic 1 Y Y W F Y Y

f32to16 13 Single Precision Float to
Half Precision Float

Move and Logic 1 Y Y F W Y Y

fbh 4B Find First Bit from MSB Side Move and Logic 1 Y N D, UD UD N N

fbl 4C Find First Bit from LSB Side Move and Logic 1 Y N UD UD N N

frc 43 Fraction Parallel Arithmetic 1 Y Y F F N Y

halt 2A Halt Flow Control 0 Y N N N

if 22 If Flow Control 0 Y N N N

illegal 00 Illegal Special 0 N N N N

jmpi 20 Jump Indexed Flow Control 1 Y N D N N

line 59 Line Vector Arithmetic 2 Y Y F F Y Y

lrp 5C Linear Interpolation Vector Arithmetic 3 Y Y F F N Y

lzd 4A Leading Zero Detection Move and Logic 1 Y Y D, UD UD Y Y

Table: Instruction Set Summary Table M to P (Listed by Instruction Mnemonic)

Mnem.
Hex

Opcode Name Group Gen Srcs Pred? SrcMod Src Types Dst Type Sat? CondMod?

mac 48 Multiply Accumulate Parallel Arithmetic 2 Y Y * * Y Y

mach 49 Multiply Accumulate High Parallel Arithmetic 2 Y Y * * Y Y

mad 5B Multiply Add Parallel Arithmetic 3 Y Y * * Y Y

math 38 Extended Math Function Parallel Arithmetic 2 Y N * * Y N

mov 01 Move Move and Logic 1 Y Y * * Y Y

movi 03 Move Indexed Move and Logic 1 Y Y * * Y N

mul 41 Multiply Parallel Arithmetic 2 Y Y * * Y Y

nop 7E No Operation Special 0 N N N N

not 04 Logic Not Move and Logic 1 Y ** Int Int N Equality only

or 06 Logic Or Move and Logic 2 Y ** Int Int N Equality only

pln 5A Plane Vector Arithmetic 2 Y Y F F Y Y

Table: Instruction Set Summary Table R to X (Listed by Instruction Mnemonic)

Mnem.
Hex

Opcode Name Group Gen Srcs Pred? SrcMod Src Types Dst Type Sat? CondMod?

ret 2D Return Flow Control 1 Y N D, UD N N

rndd 45 Round Down Parallel Arithmetic 1 Y Y F F Y Y

rnde 46 Round to Nearest or Even Parallel Arithmetic 1 Y Y F F Y Y

rndu 44 Round Up Parallel Arithmetic 1 Y Y F F Y Y

rndz 47 Round to Zero Parallel Arithmetic 1 Y Y F F Y Y

sad2 50 Sum of Absolute Difference 2 Vector Arithmetic 2 Y Y B, UB W, UW Y Y

sada2 51 Sum of Absolute Difference Accumulate 2 Vector Arithmetic 2 Y Y B, UB W, UW Y Y

sel 02 Select Move and Logic 2 Y Y * * Y Y

send 31 Send Message Miscellaneous 1 Y N * * N N

sendc 32 Conditional Send Message Miscellaneous 1 Y N * * N N

shl 09 Shift Left Move and Logic 2 Y Y Int Int Y Y

shr 08 Shift Right Move and Logic 2 Y Y Int Int Y Y

subb 4F Integer Subtraction with Borrow Parallel Arithmetic 2 Y N UD UD N Y

wait 30 Wait Miscellaneous 1 N N UD UD N N

while 27 While Flow Control 0 Y N N N

 3D – Media – GPGPU

728 Doc Ref # IHD-OS-VLV-Vol7-04.14

Mnem.
Hex

Opcode Name Group Gen Srcs Pred? SrcMod Src Types Dst Type Sat? CondMod?

xor 07 Logic Xor Move and Logic 2 Y ** Int Int N Equality only

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 729

Accumulator Restrictions

This section describes restrictions on accumulator Access: general restrictions, restrictions for specific
instructions, and how those specific restrictions vary for processor generations. See Accumulator
Registersfor a description of the accumulator registers.

Accumulator registers can be accessed as explicit source or destination operands, as an implicit source
value when specified for a particular instruction (sada2 for example), and as an implicit destination
when the AccWrEn instruction option is used.

These general rules apply to accumulator Access:

1. Flow control, send, sendc, and wait instructions cannot use accumulators.
2. Instructions with three source operands cannot use explicit accumulator operands. AccWrEn may

be allowed for implicitly updating the accumulator.
3. Instructions that use the accumulator as an implicit source value cannot specify an explicit

accumulator source operand.
4. Instructions that specify an implicit accumulator destination (with AccWrEn) cannot specify an

explicit accumulator destination operand.
5. An instruction with both an explicit accumulator source operand and an explicit accumulator

destination operand must specify the same accumulator register as the source and the
destination.

In the table a cell is gray if it is not applicable because the instruction is not supported for that
generation.

These descriptions are frequently used in this table:

• No restrictions.
• No accumulator access, implicit or explicit.
• Source operands cannot be accumulators.
• Source modifier is not allowed if source is an accumulator.
• Accumulator is an implicit source and thus cannot be an explicit source operand.
• Accumulator cannot be destination, implicit or explicit.
• AccWrEn is required. The accumulator is an implicit destination and thus cannot be an explicit

destination operand.

These minor cases occur occasionally in the table:

• Integer source operands cannot be accumulators.
• No explicit accumulator access because this is a three-source instruction. AccWrEn is allowed for

implicitly updating the accumulator.
• An accumulator can be a source or destination operand but not both.

A few instructions use more than one of the listed restrictions.

 3D – Media – GPGPU

730 Doc Ref # IHD-OS-VLV-Vol7-04.14

Table: Accumulator Restrictions

Instruction This Device

add No restrictions.

addc AccWrEn is required. The accumulator is an implicit destination and thus cannot be an explicit
destination operand.

and Source modifier is not allowed if source is an accumulator.

asr No restrictions.

avg No restrictions.

bfe No accumulator access, implicit or explicit.

bfi1 No accumulator access, implicit or explicit.

bfi2 No accumulator access, implicit or explicit.

bfrev No accumulator access, implicit or explicit.

cbit No accumulator access, implicit or explicit.

cmp Accumulator cannot be destination, implicit or explicit.

cmpn Accumulator cannot be destination, implicit or explicit.

dp2 Source operands cannot be accumulators.

dp3 Source operands cannot be accumulators.

dp4 Source operands cannot be accumulators.

dph Source operands cannot be accumulators.

f16to32 No accumulator access, implicit or explicit.

f32to16 No accumulator access, implicit or explicit.

fbh No accumulator access, implicit or explicit.

fbl No accumulator access, implicit or explicit.

frc No restrictions.

line Source operands cannot be accumulators.

lrp No explicit accumulator access because this is a three-source instruction. AccWrEn is allowed for
implicitly updating the accumulator.

lzd Accumulator cannot be destination, implicit or explicit.

mac Accumulator is an implicit source and thus cannot be an explicit source operand.

mach Accumulator is an implicit source and thus cannot be an explicit source operand.

AccWrEn is required. The accumulator is an implicit destination and thus cannot be an
explicit destination operand.

mad No explicit accumulator access because this is a three-source instruction. AccWrEn is allowed for
implicitly updating the accumulator.

math No accumulator access, implicit or explicit.

mov An accumulator can be a source or destination operand but not both.

movi Source operands cannot be accumulators.

mul Source operands cannot be accumulators.

not Source modifier is not allowed if source is an accumulator.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 731

Instruction This Device

or Source modifier is not allowed if source is an accumulator.

pln Source operands cannot be accumulators.

rndd No accumulator access, implicit or explicit.

rnde No accumulator access, implicit or explicit.

rndu No accumulator access, implicit or explicit.

rndz No accumulator access, implicit or explicit.

sad2 Source operands cannot be accumulators.

sada2 Source operands cannot be accumulators.

sel No restrictions.

shl Accumulator cannot be destination, implicit or explicit.

shr No restrictions.

subb AccWrEn is required. The accumulator is an implicit destination and thus cannot be an explicit
destination operand.

xor Source modifier is not allowed if source is an accumulator.

Instruction Set Reference

This chapter describes the functions of 3D Media GPGPU Execution Units, listed in alphabetical order
according to assembly language mnemonic.

Conventions

This section describes conventions used in instruction reference pages.

For each instruction that has source or destination types, a table lists the allowed type combinations
and may also indicate the processor generations that support certain combinations. A notation like *W
indicates that UW and W are both allowed. Multiple types listed together mean that any combination
(Cartesian product) of the listed types is allowed.

If a source operand is floating-point, all source operands must have the same floating-point data type.

Accumulator restrictions are described in the Accumulator Restrictions section and also appear in
instruction descriptions.

 3D – Media – GPGPU

732 Doc Ref # IHD-OS-VLV-Vol7-04.14

Pseudo Code Format

Instructions are explained in the following pseudo-code format that resembles the GEN assembly
instruction format.
 [(pred)] opcode (exec_size) dst src0 [src1]

Square brackets [] indicate that a field is optional. Saturation modifiers and instruction options are
omitted for simplicity.

General Macros and Definitions

INST_MIN_SIZE is defined as a constant of 8 bytes.
 #define INST_MIN_SIZE 8 // Instruction minimum size in bytes (for the compact instruction
format)

The floor function converts a floating point value to an integral floating point value. For a given floating
point value, from its closest two integral float values, floor returns the one that is closer to negative
infinity. For example, floor(1.3f) = 1.0f and floor(-1.3f) = -2.0f.
 float floor(float g)
 {
 return maximum(any integral float f: f <= g)
 }

The Condition function takes the conditional signals {SN, ZR, OF, IN, NC} of result, generates a Boolean
value according to a conditional evaluation controlled by the conditional modifier cmod, and returns
the Boolean.
 Bool Condition(result, cmod)

The ConditionNaN function takes the conditional signals {SN, ZR, OF, IN, NC, NS} of result, generates a
Boolean value according to a conditional evaluation controlled by the conditional modifier cmod, and
returns the Boolean. The only difference between Condition and ConditionNaN is that ConditionNaN
uses the NS (NaN of the second source) signal.
 Bool ConditionNaN(result, cmod)

The Jump function jumps the instruction sequence from the current instruction location by InstCount 8-
byte units, where each 16-byte native instruction is two units and each 8-byte compact instruction is
one unit. If InstCount is positive and greater than zero, is an unconditional jump forward. If InstCount is
negative, is an unconditional jump backward. If InstCount is zero, IP stays on the current instruction in
an infinite loop.
 void Jump(int InstCount)
 {
 IP = IP + (InstCount * INST_MIN_SIZE)
 }

Evaluate Write Enable

The WrEn should be evaluated as below.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 733

Note: MaskCtrl = NoMask (1) skips the check for PcIP[n] == ExIP before enabling a channel.
 if (MaskCtrl == 1) {
 for (n = 0; n < exec_size; n++) {
 WrEn[n] = 1;
 }
 }
 else {
 for (n = 0; n < exec_size; n++) {
 if (PcIP[n] == ExIP) {
 WrEn[n] = 1;
 }
 else {
 WrEn[n] = 0;
 }
 }
 }

 if (PredCtrl != 0000b) {
 for (n = 0; n < exec_size; n++) {
 WrEn[n] = WrEn[n] & PMask[n];
 }
 }

 for (n = exec_size; n < 32; n++) {
 WrEn[n] = 0;
 }

EUISA Instructions

Name Source

Addition with Carry EuIsa

Arithmetic Shift Right EuIsa

Average EuIsa

Bit Field Extract EuIsa

Bit Field Insert 1 EuIsa

Bit Field Insert 2 EuIsa

Bit Field Reverse EuIsa

Branch Converging EuIsa

Branch Diverging EuIsa

Break EuIsa

Call EuIsa

Compare EuIsa

Compare NaN EuIsa

Conditional Send Message EuIsa

Continue EuIsa

Count Bits Set EuIsa

Dot Product 2 EuIsa

Dot Product 3 EuIsa

Dot Product 4 EuIsa

Dot Product Homogeneous EuIsa

 3D – Media – GPGPU

734 Doc Ref # IHD-OS-VLV-Vol7-04.14

Name Source

Else EuIsa

End If EuIsa

Extended Math Function EuIsa

Find First Bit from LSB Side EuIsa

Find First Bit from MSB Side EuIsa

Half Precision Float to Single Precision Float EuIsa

Halt EuIsa

If EuIsa

Illegal EuIsa

Integer Subtraction with Borrow EuIsa

Jump Indexed EuIsa

Leading Zero Detection EuIsa

Line EuIsa

Linear Interpolation EuIsa

Logic And EuIsa

Logic Not EuIsa

Logic Or EuIsa

Logic Xor EuIsa

Move EuIsa

Move Indexed EuIsa

Multiply EuIsa

Multiply Accumulate EuIsa

Multiply Accumulate High EuIsa

Multiply Add EuIsa

No Operation EuIsa

Plane EuIsa

Return EuIsa

Round Instructions:

 Round Down

 Round to Nearest or Even

 Round to Zero

 Round Up

EuIsa

Select
EuIsa

Send Message EuIsa

Shift Left EuIsa

Shift Right EuIsa

Sum of Absolute Difference 2 EuIsa

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 735

Name Source

Sum of Absolute Difference Accumulate 2 EuIsa

Wait Notification EuIsa

While EuIsa

EUISA Structures

Name Source

AddrSubRegNum EuIsa

DstRegNum EuIsa

DstSubRegNum EuIsa

EU_INSTRUCTION_BASIC_ONE_SRC EuIsa

EU_INSTRUCTION_BASIC_THREE_SRC EuIsa

EU_INSTRUCTION_BASIC_TWO_SRC EuIsa

EU_INSTRUCTION_BRANCH_CONDITIONAL EuIsa

EU_INSTRUCTION_BRANCH_ONE_SRC EuIsa

EU_INSTRUCTION_BRANCH_TWO_SRC EuIsa

EU_INSTRUCTION_COMPACT_TWO_SRC EuIsa

EU_INSTRUCTION_CONTROLS EuIsa

EU_INSTRUCTION_CONTROLS_A EuIsa

EU_INSTRUCTION_CONTROLS_B EuIsa

EU_INSTRUCTION_FLAGS EuIsa

EU_INSTRUCTION_HEADER EuIsa

EU_INSTRUCTION_ILLEGAL EuIsa

EU_INSTRUCTION_MATH EuIsa

EU_INSTRUCTION_NOP EuIsa

EU_INSTRUCTION_OPERAND_CONTROLS EuIsa

EU_INSTRUCTION_OPERAND_DST_ALIGN1 EuIsa

EU_INSTRUCTION_OPERAND_DST_ALIGN16 EuIsa

EU_INSTRUCTION_OPERAND_SEND_MSG EuIsa

EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1 EuIsa

EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16 EuIsa

EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC EuIsa

EU_INSTRUCTION_SEND EuIsa

EU_INSTRUCTION_SOURCES_IMM32 EuIsa

EU_INSTRUCTION_SOURCES_REG EuIsa

EU_INSTRUCTION_SOURCES_REG_IMM EuIsa

EU_INSTRUCTION_SOURCES_REG_REG EuIsa

ExtMsgDescpt EuIsa

FunctionControl EuIsa

 3D – Media – GPGPU

736 Doc Ref # IHD-OS-VLV-Vol7-04.14

Name Source

MsgDescpt31 EuIsa

SrcRegNum EuIsa

SrcSubRegNum EuIsa

EUISA Enumerations

Name Source

AddrMode EuIsa

ChanEn EuIsa

ChanSel EuIsa

CondModifier EuIsa

DataType EuIsa

DepCtrl EuIsa

EU_OPCODE EuIsa

ExecSize EuIsa

FC EuIsa

HorzStride EuIsa

PredCtrl EuIsa

QtrCtrl EuIsa

RegFile EuIsa

RepCtrl EuIsa

SFID EuIsa

SrcIndex EuIsa

SrcMod EuIsa

ThreadCtrl EuIsa

VertStride EuIsa

Width EuIsa

EU Programming Guide

Assembler Pragmas

Declarations

A register or a register region can be declared as a symbol using the following form

.declare <symbol>Base=RegFile RegBase {.SubRegBase} ElementSize=ElementSize
{SrcRegion=DefaultSrcRegion} {DstRegion=DefaultDstRegion} {Type=DefaultType}

The register file, the base of the register origin and the element size (in unit of bytes) are the mandatory
parameters for a declared register region. Optionally, the base of the sub-register address, the default

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 737

source region, the default destination region and the default type can be provided in the declaration for
the symbol.

For immediate register addressing mode, the declared symbol can be used in the following Cartesian
form

<symbol>(RegOff, SubRegOff)<=RegNum = RegBase+ RegOff; SubRegNum = SubRegBase+
SubRegOff

or in the following simplified row-aligned form

<symbol>(RegOff)<=RegNum = RegBase+ RegOff; SubRegNum = SubRegBase

For register-indirect-register-addressing mode, the declared symbol can be used to provide immediate
address term in the following Cartesian form

<symbol>[IdxReg, RegOff, SubRegOff]<= RegNum (byte-aligned) = [IdxReg]+(RegBase+
RegOff)*32 + (SubRegBase + SubRegOff)*ElementSize

or in the following simplified row-aligned form

<symbol>[IdxReg, RegOff]<= RegNum (byte-aligned) = [IdxReg]+(RegBase+ RegOff)*32

or in the form without the immediate address term

<symbol>[IdxReg]<= RegNum (byte-aligned) = [IdxReg]+ RegBase

Defaults and Defines

The default execution size is set according to the destination register type as the following

Destination Register Type Default Execution Size

UB | B (16)

UW | W (16)

F | UD | D (8)

The default execution size can be overwritten globally for all instructions using

.default_execution_size(Execution_Size)

or be set according the destination register type using

.default_execution_size_Type(Execution_Size)

The default register type can be set for all register files using

.default_register_typeType

or be set per register file using

.default_register_type_RegFileType

The default source register region for all symbols can be set using

.default_source_register_region<VirtStride; Width, HorzStride>

or be set per register type using

.default_source_register_region_type<VirtStride; Width, HorzStride>

 3D – Media – GPGPU

738 Doc Ref # IHD-OS-VLV-Vol7-04.14

The default destination register region for all symbols can be set using

.default_destination_register_region< HorzStride>

or be set per register type using

.default_destination_register_region_type< HorzStride>

Finally, the precompiler supports the string replacement statement of .define in the following form

.define<symbol>Expression

Notes:

• .declare does not support nesting. In other words, each symbol in .declare must be self defined.
This would allow the pre-processor to expand all symbols in one pass.

• .define does support nesting. Only string substitution is supported (currently).
• White space within square, angle and round brackets are allowed for easy source code alignment.

Example Pragma Usages

Example: Declaration for 8x4=32-Byte Regions:

The following symbol Block can be used to address any 8x4 byte region within the Cartisian system of a
16x8 byte GRF register area starting from r0.

Declaration
// 32x4 Byte Array.declare BlockBase=r0 ElementSize=1 Region=<32;8,1>Type=b

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 739

Fully-Expressed Instr
mov(32)?:br0.16<32;8,1>:b// r0 xxxxxxxxxxxxxxxxooooooooxxxxxxxx// r1
xxxxxxxxxxxxxxxxooooooooxxxxxxxx// r2 xxxxxxxxxxxxxxxxooooooooxxxxxxxx// r3
xxxxxxxxxxxxxxxxooooooooxxxxxxxx

Short-handed Instr

Mov?:bBlock(0,16)// (0,16): RegNum=0, SubRegNum=16

Example: Declaration for 8x1 Float Regions:
The following symbol Trans can be used to address any 8x1 float region within the Cartisian
system of a 8x4 float GRF register area starting from r5.

Declaration
// 8x4 float Array starting at r5.declare Trans Base=r5 ElementSize=4 Region=<0;8,1> Type=f

Fully-Expressed Instr
mov(8)?:fr6.0<0;8,1>:f// 2nd 16x1 Row of Trans. Matrix // r5 FFFFFFFF// r6 OOOOOOOO// r7
FFFFFFFF// r8 FFFFFFFF

Short-handed Instr

mov?:fTrans(1) // RegNum = 5+1 = 6

Example: Declaration for 8x1 Float Regions with 1x1 Indirect Addressing:
Trans region defined (same as in the previous example) is used in conjunction with the
address register.

Declaration
//8x4 float data array and 16x1 word address array.declare TransBase=r5 ElementSize=4
Region=<0;8,1> Type=f

Fully-Expressed Instr

mov(8)?:fr[a0.0,224]<0;8,1>:f

Short-handed Instr

mov?:fTrans[a0.0,2] // [a0.0 + 5*32 + 2*32]

Example: Declaration with VxH Indirect Addressing:
The VxH register-indirect-register-addressing for Trans can be provided in the following
short-hand form

Declaration
//8x4 float data array and word indices.declare TransBase=r5 ElementSize=4 Region=<0;8,1>
Type=f

Fully-Expressed Instr

mov(8)?:fr[a0.0,224]<1,0>:f

Short-handed Instr

mov?:fTrans[a0.0,2]<1,0> // [a0.0+224] [a0.1+224] … [a0.7+224]

Example: Declaration with Vx1 Indirect Addressing:
As width (4) is smaller than the execution region size (8), multiple indexed registers are
used.

 3D – Media – GPGPU

740 Doc Ref # IHD-OS-VLV-Vol7-04.14

Declaration
//8x4 float data array and word address array.declare TransBase=r5 ElementSize=4
Region=<0;8,1> Type=f

Fully-Expressed Instr

mov(8)?:fr[a0.0,244]<4,1>:f

Short-handed Instr
mov?:fTrans[a0.0,2]<4,1>// [a0.0+224] [a0.1+224]

Assembly Programming Guideline

The following program skeleton illustrates the basic structure of a typical assembly program.
 // single line comment

 /* block comment
 */

 <preproc_directive> // macros, include, etc. Are global – handled by the pre-
processor
 <preproc_directive> // applies to all code that follows in sequence

 // ------------ some kernel
 .kernel <kernel_name_string> // [REQUIRED]

 // ------- Register requirements --------
 .reg_count_total <uint> // [REQUIRED] a more direct way to specify the parameters
required
 .reg_count_payload <uint> // [REQUIRED] rather than indirectly adding the
 // the payload and temps together to get the total (as is the case
now)
 // Note: no more reg-count-temp

 // -------------- Defaults ---------------
 <default…> // these should be specified per-kernel and have only kernel-scope
 <default…> // Same defaults as those already defined in the ISA doc, but just
 <default…> // moved within the kernel to make each kernel completely self-
sufficient
 // and not impacted defaults of earlier kernels

 // --------- Memory Requirements ---------
 // [optional] memory block info (just a placeholder for now...)

 <MBDa> // memory block descriptor a (TBD)
 <MBDb> // memory block descriptor b (TBD)
 <MBDc> // memory block descriptor c (TBD)
 <MBDd> // memory block descriptor d (TBD)

 // ---------------- Code ----------------
 .code // [REQUIRED]
 <instruction>
 <instruction>
 <instruction>
 <LabelLine> // labels are code-block scope
 <instruction>
 <instruction>
 .end_code // [REQUIRED]

 .end_kernel // [REQUIRED]

 // --------- next kernel -------------

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 741

 // --------- next kernel -------------

 // ...

Usage Examples

Vector Immediate

The immediate form of vector allows a constant vector to be in-lined in the instruction stream. An
immediate vector is denoted by type v as imm32:v, where the 32-bit immediate field is partitioned into
8 4-bit subfields. Each 4-bit subfield contains a signed integer value. Therefore each 4-bit subfield has a
range of [-8, +7]. This is depicted in the following figure.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

V7 V6 V5 V4 V3 V2 V1 V0

Supporting DirectX 10 Pixel Shader Indexing

When a DirectX 10 Pixel Shader program is converted to run on GEN in channel-serial mode at 16 pixels
in parallel, the per-pixel index must be translated into 16 indices with per channel offset. The creation of
the per-channel offset can be achieved using the vector immediate.

Consider a generic DirectX 10 Pixel Shader instruction in the form of

opr4r[ind]r2

and assume that r0-r1 contain the 16 indices packed every other words, and r2-r3 contains source 1 and
r4-r5 contain the destination. This instruction can be converted into the following GEN instructions. The
corresponding operations are illustrated in Supporting DirectX 10 Pixel Shader Indexing.

mov (16) r11.0<1>:w 0x01234567:v// assigning a ramp vector, repeated once

mul (16)acc0:wr11.0<0;16,1>:w4:w// expand ramp range to 4 bytes per step

mac (16)r10.0<1>:wr0.0<16;8,2>:w32:w// r10 = index*32 + 0|4|…|28|0|4…|28

mov (8)a0.0<1>:wr10.0<0;8,1>:w

op (8)r4.0<1>:fr[a0.0]<1,0>:fr2.0<0;8,1>:w// Operate on the first half

mov (8)a0.0<1>:wr10.8<0;8,1>:w// Index values are off by a reg (32b)

op (8)r5.0<1>:fr[a0.0+32]<1,0>:fr3.0<0;8,1>:w// Operate on the second half.

Pixel Shader example using vector immediate.

 3D – Media – GPGPU

742 Doc Ref # IHD-OS-VLV-Vol7-04.14

Without vector immediate support, such translation has to either use a long sequence of scalar
instructions which is very inefficient or use a constant load which requires additional constant to be
managed in memory.

Supporting OpenGL Vertex Shader Instruction SWZ

When an OpenGL Vertex Shader program is converted to run on GEN in Vertex Pair, i.e. two 4-wide
vectors in parallel, the special OpenGL Shader instruction SWZ (Swizzle) needs to be emulated. OpenGL
SWZ instruction uses an extended swizzle control field that, in addition to the 4-wide full swizzle
control, also includes constant 0 and 1 replacement as well as per channel sign reversal. The later two
are not supported by the GEN native instruction. The vector immediate can significantly reduce the
overhead of emulating such OpenGL instruction.

Consider an OpenGL Shader instruction in the form of

SWZr1r0.0-zx-1// Expected results: r1.x = 0; r1.y = -r0.z; r1.z = r0.x; r1.w = -1

It can be emulated by the following three GEN instructions.

mul(8)r1.0<1>:fr0.xzxz0x1F111F11:v// Constant vector of (1 -1 1 1 1 -1 1 1)

mov (1)f0.0 8b'10011001// Set flag & masked out channels y and z

(f0.0)mov(8) r1.0<1>:f 0x000F000F:v// Constant vector of (0 0 0 -1 0 0 0 -1)

In case that only 0, 1, -1 channel replacement is used and there is no signed swizzle, it may be emulated
in two GEN instructions. This is illustrated by the following example:

OpenGL:

SWZr1r0.0zx-1// Expected results: r1.x = 0; r1.y = r0.z; r1.z = r0.x; r1.w = -1

GEN:

mov (1)f0.0 8b'01100110// Set flag and masked out channels x and w

(f0.0)sel (8) r1.0<1>:f r0.yzxy 0x000F000F:v// Constant vector of (0 0 0 -1 0 0 0 -1)

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 743

Destination Mask for DP4 and Destination Dependency Control

The following example demonstrates the use of destination mask mode of floating point dot-product
instruction as well as the use of destination dependency control to improve performance (i.e., avoiding
unnecessary thread switch due to possible false dependencies).

Consider a generic DirectX 10 Vertex Shader macro of matrix-vector product that is implemented on
GEN in the pair of 4-component vector mode. The DirectX 10 equivalent Shader instructions are as the
following.

dp4 r5.x r0 r4

dp4 r5.y r1 r4

dp4 r5.z r2 r4

dp4 r5.w r3 r4

With destination dependency control, the GEN instructions are as the following. The first instruction in
the sequence checks for the destination dependency, but does not clear the dependency bit. The
subsequent two instructions would do neither of them. The last instruction avoids checking the
destination dependency, but at completion, it clears the destination scoreboard. It ensures that the
content of the destination register is coherent, if any of the following instructions uses the same register
as source.

dp4 (8) r5.0<1>.x:f r0.0<4;4,1>:f r4.0<4;4,1>:f {NoDDClr}

dp4 (8) r5.0<1>.y:f r1.0<4;4,1>:f r4.0<4;4,1>:f {NoDDClr, NoDDCChk}

dp4 (8) r5.0<1>.z:f r2.0<4;4,1>:f r4.0<4;4,1>:f {NoDDClr, NoDDCChk}

dp4 (8) r5.0<1>.w:f r3.0<4;4,1>:f r4.0<4;4,1>:f {NoDDChk}

Just as a comparison, IF GEN DP4 implies reduction at the destination; additional shifted moves are
required to achieve the same results. The corresponding codes are as the following. The lower
performance due to the additional three move instruction as well as added back-to-back dependencies
shows that why we choose to implement the destination channel replication for floating point DP4.

dp4 (8) r5.0<1>.y:f r1.0<4;4,1>:f r4.0<4;4,1>:f

mov (1) r5.1<1>:f r8.0<1;1,1>:f

dp4 (8) r5.0<1>.z:f r2.0<4;4,1>:f r4.0<4;4,1>:f

mov (1) r5.2<1>:f r8.0<1;1,1>:f

dp4 (8) r5.0<1>.w:f r3.0<4;4,1>:f r4.0<4;4,1>:f

mov (1) r5.3<1>:f r8.0<1;1,1>:f

dp4 (8) r5.0<1>.x:f r0.0<4;4,1>:f r4.0<4;4,1>:f

Null Register as the Destination

Null register can be used as the destination for most of the instructions. Here are some example usages.

 3D – Media – GPGPU

744 Doc Ref # IHD-OS-VLV-Vol7-04.14

• Null as destination for regular ALU instructions: As all ALU instructions can be configured to
update the flag registers using the conditional modifiers, it is not necessary to have a destination
register if the programmer only cares about the conditionals of the operation. In that case, a null
in the destination operand field saves register space as well as one less dependency checking.

• Null as the destination for SEND/STOR instructions: for the send instruction that only send
messages out to an external unit and does not require any return data or feedback, a null in the
destination register field signifies the case.

Use of LINE Instruction

LINE instruction is specifically designed to speed up floating point vector/matrix computation when a
program operates in channel serial.

The following example demonstrates how to use LINE instruction to compute Line Equations for DirectX
10 Pixel Shader. In this example, 2 sets of (Cx#, Cy#, don't Care, C0#) 4-tuple coefficient vectors are
stored in registers R1.

R1: Cx0 Cy0 DC Co0 Cx1 Cy1 DC Co1

8 sets of coordinate 2-D vectors (X, Y) are stored in R2 and R3 in the channel serial mode as

R2: X0 X1 … X7

R3: Y0 Y1 … Y7

The objective is to compute the following two line equations for each set of 2D coordinate and store
the results in R4 and R5 as

R4: (X0*Cx0 + Y0*Cy0+Co0) ... (X7*Cx0 + Y7*Cy0+Co0)

R5: (X0*Cx1 + Y0*Cy1+Co1) ... (X7*Cx1 + Y7*Cy1+Co1)

Example LINE Equations

//-------------

// Example compute LINE equation in channel serial scenario

//-------------

line (8) acc:f r1<0;1,0>:f r2<0;8,1>:f// does acc = X# * Cx0 + Co0

mac (8) r4<1>:f r1.1<0;1,0>:f r3<0;8,1>:f// does r4.# = Y# * Cy0 + acc.#

line (8) acc:f r1<0;1,0>:f r2<0;8,1>:f// does acc = X# * Cx0 + Co0

mac (8) r4<1>:f r1.1<0;1,0>:f r3<0;8,1>:f// does r4.# = Y# * Cy0 + acc.#

The next example is to compute homogeneous dot product for OpenGL pixel shader running in
Channel Serial. In this example, an original OpenGL PS instruction is like

dph R2.x R0 R1

With register remapping, we can store the input coefficient vector R0 in original format in r0, but 8 sets
of input coordinate vectors in channel serial format in r2, r3, r4 and r5, and the destination R2.x
component in r6.

r0: Cx0 Cy0 Cz0 Co0 DC DC DC DC

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 745

r2: X0 X1 … X7

r3: Y0 Y1 … Y7

r4: Z0 Z1 … Z7

r5: W0 W1 … W7

The objective is to compute the following DPH equations and store the results in r6 as

R6: (X0*Cx0+Y0*Cy0+Z0*Cz0+Co0) ... (X7*Cx0+Y7*Cy0+Z7*Cz0+Co0)

Example Homogeneous Dot Product in Channel Serial

//-------------

// Example compute homogeneous dot product in channel serial scenario

//-------------

line (8) acc:f r0<0;1,0>:f r2<0;8,1>:f// does acc = X# * Cx0 + Co0

mac (8) acc:f r0.1<0;1,0>:f r3<0;8,1>:f// does acc.# = Y# * Cy0 + acc.#

mac (8) r6<1>:f r0.2<0;1,0>:f r4<0;8,1>:f// does r6.# = Z# * Cz0 + acc.#

Mask for SEND Instruction

Execution mask (upto 16 bits) for the SEND instruction is transferred to the Shared Function. This
provides optimized implementation of DirectX Shader instructions.

Channel Enables for Extended Math Unit

The following example demonstrates how to use the SEND instruction to get service from the Extended
Math unit.

Let's consider COS instruction in DirectX 10 in the following form

[([!]p0.{select|any|all})] cos[_sat] dest[.mask], [-]src0[_abs][.swizzle]

For a SIMD4x2 VS implementation with the following register mappings

p0 =>f0.0

src0 =>r0

dest =>r1

The equivalent GEN instruction is as the following

[([!]f0.0.{select|any4h|all4h})] SEND (8) r1[.mask]:f m0 [-][(abs)]r0[.swizzle]:f MATHBOX|COS[|SAT]

If the source swizzle is replication, the message description field can be modified to
MATHBOX|COS|SCALAR to take advantage of the fast mode (scalar mode) supported by the Extended
Math. The implied move of the SEND instruction is equivalent to the following instruction:

MOV (8) m0[.mask]:f [-][(abs)]r0.0[.swizzle]:f {NoMask}

For a SIMD16 PS implementation, the register mappings are as the followings

 3D – Media – GPGPU

746 Doc Ref # IHD-OS-VLV-Vol7-04.14

p0 =>f0…f3 // in order of R, G, B, A

src0 =>r0,r1; r2,r3; r4,r5; r6,r7

dest =>r8,r9; r10,r11; r12,r13; r14,r15

There are several ways to translate the DirectX instruction, depending on the operand/instruction
modifiers present in the DirectX instruction. If predicate is not present and the source swizzle is
replication, say, src0.y, which is r2-r3, the translation could be as the following instructions

send (8) r8:f m0 -(abs)r2:f MATHBOX|COS

send (8) r9:f m1 -(abs)r3:f MATHBOX|COS {SecHalf}// use the second half of 8 flag bits

mov (16) r10:f r8:f // All destination color channels are same

mov (16) r12:f r8:f // MOV is faster than most MathBox functions

mov (16) r14:f r8:f // These MOVs are compressed instructions

Notice that instead of issuing Extended Math messages with the same input data, destination color
channel replication is performed by the MOV instructions. This is faster for the thread for most cases as
many Extended Math functions consume multiple cycles. This also conserves message bus bandwidth as
well as the usage of the shared resource – Extended Math. The destination mask in the DirectX 10
instruction indicates which of the r8 to r15 registers are updated. If the source swizzle is not replication,
there will be 8 SEND instructions.

With predication on, if the predication modifier is p0.select, translation is to take the selected flag
register f#. The other predication modifiers .any and .all are translated into .any4v and .all4v,
respectively. Notice that with predication on, it is not required to run all 4 pixels in a subspan in the
same way, so no need to enforce .any4h/.any4v. The following example shows the instruction with
predication (but without .select modifier).

(f0[.any4v|.all4v]) send (8) r8:f m0 -(abs)r2:f MATHBOX|COS

(f0[.any4v|.all4v]) send (8) r9:f m1 -(abs)r3:f MATHBOX|COS {SecHalf}

(f1[.any4v|.all4v]) mov (16) r10:fr8:f // All destination color channels are same

(f2[.any4v|.all4v]) mov (16) r12:fr8:f // MOV is faster than most MathBox functions

(f3[.any4v|.all4v]) mov (16) r14:fr8:f // These MOVs are compressed instructions

The same instructions works also for predication with select component modifier. We simply replase f0
to f3 above by the selected flag register, say, f1. The modifier of any4h/all4v would also work.

Channel Enables for Scratch Memory

The following example demonstrates how to use the SEND instruction to get service from the Data Port
for scratch memory access.

Let's consider general instruction in DirectX 10 that uses scratch memory as a source operand

[([!]p0.{select|any|all})] add dest[.mask], [-]src0[_abs][.swizzle], [-]src1[_abs][.swizzle]

For a SIMD4x2 VS implementation with the following register mappings

p0 =>f0

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 747

src0 =>r0

src1 =>s2 / r10

dest =>r1

In this example, the scratch memory offset is provided by an immediate and a GRF register r10 is used
as the intermediate GRF location for spill/fill of scratch buffer accesses. This arithmetic instruction is
converted into a Data Port read followed by an arithmetic instruction.

mov (8) r3:d r0:d {NoMask}// move scratch base address to be assembled with offset values

mov (1) r3.0:d 2*32 {NoMask}// s2 for vertex 0

mov (1) r3.1:d 2*32+16 {NoMask}// s2 for vertex 1

send (8) r10 m0 r3 DATAPORT|RC|READ_SIMD2

[([!]f0.{sel|any4h|all4h})] add (8) r1[.mask]:f [-][(abs)]r0[.swizzle]:f [-][(abs)]r10[.swizzle]:f

So if scratch register is the source, there is no need to use the channel enable side band. This is also
true for channel-serial PS cases.

Now, let's consider the case when a scratch register is the destination of an instruction.

p0 =>f0

src0 =>r0

src1 =>r1

dest =>s2 / r10

We have

add (8) m1:f [-][(abs)]r0[.swizzle]:f [-][(abs)]r1[.swizzle]:f

mov (8) r3:d r0:d {NoMask}// move scratch base address to be assembled with offset values

mov (1) r3.0:d 2*32 {NoMask}// s2 for vertex 0

mov (1) r3.1:d 2*32+16 {NoMask}// s2 for vertex 1
[([!]f0.{sel|any4h|all4h})] send (8) null[.mask] m0 r3 DATAPORT|RC|WRITE_SIMD2

Notice that with a null as the posted destination register, we are able to transfer the [.mask] over the
message channel enables. In many cases for scratch memory assess, a write-with-commit is required,
therefore, the posted destination register could be r10.

Now, let's consider the PS case when a scratch register is the destination of an instruction.

p0 =>f0-f4

src0 =>r0-r7

src1 =>r8-r15

dest =>s16-s23 / r16-r23

When predication is not on (or predication with swizzle control on), we have

add (16) m4:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)] r8/10/12/14_BasedOnSwizzle:f

 3D – Media – GPGPU

748 Doc Ref # IHD-OS-VLV-Vol7-04.14

add (16) m6:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)] r8/10/12/14_BasedOnSwizzle:f

add (16) m8:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)] r8/10/12/14_BasedOnSwizzle:f

add (16) m10:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)] r8/10/12/14_BasedOnSwizzle:f

mov (8) r3:d 0x76543210:v {NoMask}// ramp function

mul (16) acc0:d r3:d 16 {NoMask}// ramp function

add (8) acc0:d acc0:d 64 {NoMask,SecHalf}// ramp function

add (16) m2:d acc0:d 2*256 {NoMask}// ramp function
send (16) null m1 r3 DATAPORT|RC|WRITE_SIMD16

As there is no bit left from the unit specified descriptor field, the 4 bit mask must be put into the header
field in m1, which requires at least two more instructions.

Alternatively, or for the case that predication without modifier is on, we can do a read-modify-write.

mov (8) r3:d 0x76543210:v {NoMask}// ramp function

mul (16) acc0:d r3:d 16 {NoMask}// ramp function

add (8) acc0:d acc0:d 64 {NoMask,SecHalf}// ramp function

add (16) m2:d acc0:d 2*256 {NoMask}// ramp function
send (16) r16 m1 r3 DATAPORT|RC|READ_SIMD16 // read from scratch

// some of the following four instructions may be omitted based on [.mask] field

[([!]f0.{sel|any4v|all4v})] add (16) r16:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)]
r8/10/12/14_BasedOnSwizzle:f

[([!]f0.{sel|any4v|all4v})] add (16) r18:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)]
r8/10/12/14_BasedOnSwizzle:f

[([!]f0.{sel|any4v|all4v})] add (16) r20:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)]
r8/10/12/14_BasedOnSwizzle:f

[([!]f0.{sel|any4v|all4v})] add (16) r22:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)]
r8/10/12/14_BasedOnSwizzle:f

mov (16) m4:f r16:f {NoMask}

mov (16) m6:f r18:f {NoMask}

mov (16) m8:f r20:f {NoMask}

mov (16) m10:f r22:f {NoMask}
send (16) null m1 null DATAPORT|RC|WRITE_SIMD16 {NoMask}// write back to scratch

Flow Control Instructions

Unconditional branches are performed through direct manipulation of the 32-bit IP architectural
register. For example:
mov (1) IP <memory_address>// jump absoluteadd (1) IP IP <byte_count>// jump relative

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 749

Note that jump distances are specified in terms of bytes, as opposed to instruction counts in the case of
break, halt, etc. To minimize confusion, an assembler-only instruction jmp <inst_count>, where
<inst_count> is an immediate term, may be defined which takes an instruction count for a distance. The
jmp pseudo-opcode can be mapped to an add (1) ip ip <inst_count> * 16 instruction.

IP is aligned to an 8-byte boundary, thus the 3 LSBs are not maintained in the IP architectural register
and should not be relied upon by software.

IP, when used as a source operand, reflects the memory address of the instruction in which it is used.
The following are examples illustrating the use of IP:
add (1) IP4*16// jumps to HERE_1

add (1) IP0x35// jumps to HERE_1 (4 lsbs don't-care) <instruction>
 <instruction>

HERE_1:<instruction>HERE_2:<instruction>

 <instruction>
 add (1) IP -2*16// jumps to HERE_2 ...
 add (1) IP 0// infinite loopadd (1) IP 0xF// infinite loop ...

Note for Assembler: The if/iff/else/while/break instructions identify relative addresses as the targets of
an implicit jump associated with the instruction. These are optional in the assembly syntax as the jitter
can determine the location of the matching instruction (e.g. matching endif instruction for a given if
instruction).

Execution Masking

Branching

Example. If / Else / EndIf

//-------------

// Example if/else/endif scenario

// if (r5==r4) ...else ... end-if

//-------------

...

cmp.e.f0 (8) null r5 r4// does r5 == r4?

(f0) if (8) HERE_1// if part - save then update IMASK;

// or goto the else if all false

...

...

HERE_1:// now do the else part

else (8) HERE_2// else part - invert IMASK

// or goto the endif if all false

...

 3D – Media – GPGPU

750 Doc Ref # IHD-OS-VLV-Vol7-04.14

...

HERE_2:

endif// end-if part – restore IMASK

....// and continue...

If it is known that the code has no nested conditionals, a predicate can be used for a lower overhead,
more efficient if/else/endif. (One must consider the probability of all channels taking the same branch,
and the number of instructions under the if/else blocks as to which conditional method, predicate or
mask, is most efficient).

Fast-If

Below is an example of a fast-if instruction. For the iff instruction, only and iff-endif construct is allowed,
as opposed to a if-else-endif. Note that the target address for branching if all enabled channels fail is
one instruction beyond the endif, as the iff does not push and update the IMask unless the branch is
taken for at least one execution channel.

Example Fast If

//-------------

// Example – Fast If

//One instruction overhead conditional

//-------------

...

cmp.e.f0 (8) null r5 r4// any flag update

...

(f0)iff (8) HERE_1// fast-if – only pushes IMask;

// if execution falls through,

// else go to HERE_1

...

...

endif// end-if part – restores IMask

HERE_1:
...// and continue...

Cascade Branching

As there is no elseif instruction, a C-like cascade branching such as if / elseif / else / endif, can be
realized using the basic building blocks of if / else / endif as shown in the following example. Notice
that two endifs are required to pop the IStack correctly.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 751

Example. If / Elseif / Else / EndIf

//-------------

// Example if/elseif/else/endif scenario

// if (r5==r4) ...elseif (r6>r7) else ... end-if

//-------------

...

cmp.e.f0 (8) null r5 r4// does r5 == r4?

(f0)if (8) HERE_1// if part - save then update IMask;

// or go to the else part if all false

...

...

HERE_1:// now do the else part

else (8) HERE_2// else if part - invert IMask

// or go to the else part if all false

cmp.g.f0 (8) null r6 r7// is r6 > r7?

(f0)if (8) HERE_3// if part - save then update IMask;

// or go to the else part if all false

...

...

HERE_3:// now do the else part

else (8) HERE_4// else part - invert IMask

// or go to the end-if part if all false

...

...

HERE_4:

endif// end-if part – restore IMask for elseif

HERE_2:

endif// end-if part – restore IMask for if

....

Compound Branches

Compound branches are supported through the ability logically combine flag registers for each
intermediate result.

 3D – Media – GPGPU

752 Doc Ref # IHD-OS-VLV-Vol7-04.14

Example Compound Branch

//-------------

// Example: if (r0 > r1) OR (r2 <= r3)

//-------------

...

cmp.g.f0 (8) null r0:d r1:d// r0 > r1?

cmp.le.f1 (8) null r2:d r3:d// r2 <= r3?

or (1) f0:w f0:w f1:w// combine f0 and f1

(f0) if (8) HERE_1// Can now do normal if/else

...

...

HERE_1:endif

...

Example Compound Branch Using 'Any' or 'All'

//-------------

// Example: assuming we are doing a channel-serial vector in r0-r3

// We want to know if all components of the vector are > 0x80

//-------------

...

cmp.g.f0 (16) null r0 0x80// r0 > 0x80?

cmp.g.f1 (16) null r1 0x80// r1 > 0x80?

cmp.g.f2 (16) null r2 0x80// r0 > 0x80?

cmp.g.f3 (16) null r3 0x80// r1 > 0x80?

(f0.all4v) if (16) HERE_1

...

...// code executed only for those channels

...// where per-channel r0,r1,r2,r3 all > 0x80

...

HERE_1:endif

...// and continue...

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 753

Looping

Due to GEN's SIMD-16 architecture, it must support the case of up to 16 loops running in parallel.
These must be handled as independent loops, each with its own loop-exit condition which could occur
after a different number of loop iterations. To account for each channel's progress, a 16b loop-mask
LMask is defined with 1b associated to each execution channel. This mask keeps track of which channels
remain active inside a loop block.

Basic Do-While Loop

Looping illustrates the most basic loop. Two operations must be accomplished before loop entry. (1)
Prior to loop entry, there is some subset of enabled channels as dictated by the code sequence prior. In
general, the active status of each channel is indicated in the virtual EMask any point in time. These
active channels will become the channels over which the loop is run, and LMask must be initialized with
the EMask value. (2) Since a given loop may be nested within another loop, the previous LMask &
CMask must be saved to the LStack for later restoration upon loop completion. The msave instruction
performs both the save and update in a single instruction, and thus all loop-blocks should be fronted
with a msave LStack LMask and msave LStack CMask operation.

Note that the LMask and CMask share the same mask-stack. Thus, CMask must always be a 1's-subset
of the LMask for proper stack operation. This is the case if CMask is updated to LMask each pass
through the loop (see Looping) and through the break instruction updating both masks.

Each pass through the loop, a loop terminating operation must be evaluated and stored in a flag
register. This condition must be evaluated on a channel-by-channel basis as exemplified:

cmp.z.f0(8) null r2 d3// any operation that updates a flag

The result of this operation sets a bit per channel in the specified flag register, which is then used in the
while instruction. As loops are performed, channels may become disabled as their termination condition
is met.

While termination is determined on a channel-by-channel basis by the logical AND of corresponding bit
positions of AMask, CMask and the specified flag. If the result is 1 the channel remains enabled for the
next pass of the loop; if 0 the channel is disabled until loop fall-through. The while instruction causes
the LMask to be updated with the latest result of enabled channels. If any channel remains enabled
(LMask != ...000b), an additional pass through the loop is made. Once a channel is terminated for the
loop operation, it remains terminated until the loop is complete for all channels.

Upon fall through, the while instruction causes the previously saved LMask & CMask to be popped from
the LStack, enabling execution on the same subset of channels enabled prior to loop entry (unless a
channel had been otherwise terminate inside the loop via halt).

Example Basic Loop Construct

//-----------------------
//Example: Basic do-while loop structure
//-----------------------
...
do// save L/CMask & update
BEGIN_LOOP:

 3D – Media – GPGPU

754 Doc Ref # IHD-OS-VLV-Vol7-04.14

mov (1) CMask LMask{NoMask}// update CMask for this pass
...
...
<some flag update>
(<p>)while (8) BEGIN_LOOP// cond. branch
// + restores LMask on fall-through
...

Do-While Loop with Break

A loop may also be terminated for any channel via the break instruction. The break instruction causes
the corresponding bit positions of enabled channels to be cleared in the LMask. If the updated LMask =
...000b, a branch is made to the specified instruction location. An example is shown below in which the
break is at the same conditional-nesting level as the terminating while. Its primary value may simply be
to support a do...break.. while (true) –type structure for a more direct 1:1 translation from higher-level
source code.

Example Loop Construct With Non-Nested Break

//-------

//Example: While-true loop

//-------

#define BrkCode(i,d)(i << 16) + d

do// save L/CMask & update

BEGIN_LOOP:

mov (1) CMask LMask{NoMask} // update CMask for this pass

...

<some flag update>

(<p>)break (8) BrkCode(0,HERE_1)// Restores LMask when all

// channels complete loop.

...

...

while (8) BEGIN_LOOP// while true

HERE_1:

...

A break condition may occur from various levels of nested-ifs. This gives rise to the possibility that a the
loop may terminate from within nested ifs, and due to the jump inherent in the break instruction, the
associated endifs are not encountered to clean-up the IStack as nesting levels are exited.

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 755

Example Loop Construct With Break From Within Nested Ifs

//-------

//Example: General Loop Structure w/ break inside Ifs

//-------

#define BrkCode(i,d)(i << 16) + d

do// save L/CMask & update

BEGIN_LOOP:

mov (1) CMask LMask{NoMask} // update CMask for this pass

...

if ...

if ...

if ...

...

(<p>)break (8) BrkCode(3,HERE_1)// we are 3 levels deep, so

...

endif

endif

endif

...

(<p>)break (8) BrkCode(0,HERE_1)

...

while (8) <flag_spec> BEGIN_LOOP// cond. branch

// + restores C/LMask on fall-through

HERE_1:

Do-While Loop with Continue

A continue instruction cont is provided skip to the next iteration of the loop. Because not all channels
participating in the loop may be enabled at the time this instruction is executed, some channels may
require continuation of the loop. A special mask CMask is defined which accounts for channels
temporarily disabled for the current loop pass.

Since loops may nested, the CMask must be saved and restored around a loop similar to LMask. Since
the CMask value within a properly constructed loop is always a subset of the LMask, it can share the
LStack for storage, so long as it is pushed after LMask as shown in Looping. This save/restore operations
are not required if the loop being entered does not have any occurrence of a continue instruction.

 3D – Media – GPGPU

756 Doc Ref # IHD-OS-VLV-Vol7-04.14

Example Do-While with Continue

//-------

//Example: General Loop Structure w/ basic break and cont.

//-------

#define ContCode(i,d)(i << 16) + d

do// save L/CMask & update

BEGIN_LOOP:

mov (1) CMask EMask// re-initialize CMask for this pass

...

...

(<p>) cont (8) ContCode(0,HERE_1)

...

HERE_1:

(<p>)while (8) BEGIN_LOOP// cond. branch

// + restores C/LMask on fall-through

...

 3D – Media – GPGPU

Doc Ref # IHD-OS-VLV-Vol7-04.14 757

Indexed Jump

Example Indexed Jump

//-------------

// Code example shows the use of jmpi to perform a case statement

// of any number of options in 3 jumps

//-------------

.default_execution_size 8

...

jmpi r0<0,1,0>// jump relative, based on r0.a.x

// ----- Jump Table ------

jmp HERE_0// redirect for case 0

jmp HERE_1// redirect for case 1

jmp HERE_2// redirect for case 2

jmp HERE_3// redirect for case 3

...

HERE_0:// ... case 0 ...

...

jmp DONE

HERE_1:// ... case 1 ...

...

jmp DONE

HERE_2:// ... case 2 ...

...

jmp DONE

HERE_3:// ... case 3 ...

...

DONE:

...// and continue...

<<< END OF DOCUMENT >>>

	Render Engine Command Memory Interface
	Registers in Render Engine
	Mode and Misc Ctrl Registers
	GT4 Mode Control Register

	Pipelines Statistics Counter Registers
	Predicate Render Registers
	AUTO_DRAW Registers
	MMIO Registers for GPGPU Indirect Dispatch

	Memory Interface Registers
	Memory Interface Commands for Rendering Engine
	Predicated Rendering Support in HW

	State Commands
	Synchronization of the 3D Pipeline
	Top-of-Pipe Synchronization
	End-of-Pipe Synchronization
	Synchronization Actions
	Writing a Value to Memory
	PS_DEPTH_COUNT

	Generating an Interrupt
	Invalidating Caches

	PIPE_CONTROL Command
	PIPE_CONTROL
	Programming Restrictions for PIPE_CONTROL
	Post-Sync Operation
	Flush Types
	Stall

	Render Logical Context Data
	Context Layout
	Register/State Context
	Register/State Context

	Shared Functions
	3D Sampler
	Texture Coordinate Processing
	Texture Coordinate Normalization
	Texture Coordinate Computation

	Texel Address Generation
	Level of Detail Computation (Mipmapping)
	Base Level Of Detail (LOD)
	LOD Bias
	LOD Pre-Clamping
	Min/Mag Determination
	LOD Computation Pseudocode
	Inter-Level Filtering Setup

	Intra-Level Filtering Setup
	MAPFILTER_NEAREST
	MAPFILTER_LINEAR
	MAPFILTER_ANISOTROPIC
	MAPFILTER_MONO

	Texture Address Control
	TEXCOORDMODE_MIRROR Mode
	TEXCOORDMODE_WRAP Mode
	TEXCOORDMODE_MIRROR_ONCE Mode
	TEXCOORDMODE_CLAMP Mode
	TEXCOORDMODE_CLAMPBORDER Mode
	TEXCOORDMODE_CUBE Mode

	Texel Fetch
	Texel Chroma Keying
	Chroma Key Testing
	Chroma Key Effects

	Shadow Prefilter Compare
	Texel Filtering
	Texel Color Gamma Linearization
	Multisampled Surface Behavior
	Multisample Control Surface

	State
	SURFACE_STATE
	Surface Formats
	Sampler Output Channel Mapping
	SURFACE_STATE for Deinterlace, sample_8x8, and VME

	SAMPLER_STATE
	Restrictions
	Dispatch of Media Object Commands for VDIWalker Enabled
	Psuedo Code for Media Object Dispatch
	Calculate Residual Blocks
	Dispatch Media Object
	Border Color Programming for Interger Surface Formats
	Messages
	Initiating Message
	Message Descriptor
	Message Header
	Payload Parameter Definition

	Message Types
	Parameter Types

	Writeback Message
	SIMD16
	SIMD8/SIMD8D

	Shared Functions – Data Port
	Data Cache
	Sampler Cache
	Surfaces
	Surface State Model
	Stateless Model
	Shared Local Memory (SLM)

	Write Commit
	Read/Write Ordering
	Accessing Buffers
	Accessing Media Surfaces
	Boundary Behavior

	State
	BINDING_TABLE_STATE
	SURFACE_STATE
	COLOR_PROCESSING_STATE

	Messages
	Global Definitions
	Data Port Messages
	Message Descriptor
	Message Descriptor

	Message Header
	Write Commit Writeback Message

	OWord Block Read/Write
	Message Descriptor
	Message Payload (Write)
	Writeback Message (Read)

	Unaligned OWord Block Read
	Message Descriptor
	Writeback Message (Read)

	OWord Dual Block Read/Write
	Message Descriptor
	Message Payload
	Additional Message Payload (Write)
	Writeback Message (Read)

	Media Block Read/Write
	Message Descriptor
	Message Header
	Message Payload (Write)
	Writeback Message (Read)

	DWord Scattered Read/Write
	Message Descriptor
	Message Payload
	Additional Message Payload (Write)
	Writeback Message (Read)

	Byte Scattered Read/Write
	Message Descriptor
	Message Payload
	Additional Message Payload (Write)
	Writeback Message (Read)

	Typed/Untyped Surface Read/Write and Typed/Untyped Atomic Operation
	Typed Surface Read/Write Message Descriptor
	Untyped Surface Read/Write Message Descriptor
	Typed Atomic Operation Message Descriptor
	Typed Atomic Operation SIMD4x2 Message Descriptor
	Untyped Atomic Operation Message Descriptor
	Untyped Atomic Operation SIMD4x2 Message Descriptor
	Atomic Counter Operation Message Descriptor
	Atomic Counter Operation SIMD4x2 Message Descriptor
	Message Header
	Message Payload
	SIMD16 Address Payload
	SIMD16 Source Payload (Atomic Operation Message Only)
	SIMD16 Source Payload (AOP_CMPWR8B Only)
	SIMD16 Write Data Payload (Write Message Only)
	SIMD8 Address Payload
	SIMD8 Source Payload (Atomic Operation Message Only)
	SIMD8 Write Data Payload (Write Message Only)
	SIMD8 Write Data Payload (Tile W Write Message Only)
	SIMD4x2 Address Payload
	SIMD4x2 Source Payload (Atomic Operation Message Only)
	SIMD4x2 Source Payload (AOP_CMPWR8B Only)
	SIMD4x2 Write Data Payload (Write Message Only)

	Writeback Message
	SIMD8 DWORD Read
	SIMD8 QWORD Read
	SIMD16 Read
	SIMD8 Read
	SIMD8 Read (Tile W)
	SIMD4x2 Read
	SIMD16 Atomic Operation
	SIMD16 Atomic Operation (AOP_CMPWR8B Only)
	SIMD8 Atomic Operation
	SIMD8 Atomic Operation (AOP_CMPWR8B Only)
	SIMD4x2 Atomic Operation
	SIMD4x2 Atomic Operation (AOP_CMPWR8B Only)

	Message Descriptor
	Message Header
	Message Payload (OWord Write)
	Writeback Message (OWord Read)
	Writeback Message (Unaligned OWord Read)
	Message Payload (Dual OWord Write)
	Writeback Message (Dual Oword Read)
	Message Payload (HWord Write)
	Writeback Message (HWord Read)
	Untyped Atomic Float Add Operation Message Descriptor
	Message Header
	Message Payload
	SIMD16 Address Payload
	SIMD8 Address Payload
	SIMD16/SIMD8 DWORD Source Payload (Write message only)
	SIMD16/SIMD8 QWORD Source Payload (Write message only)

	Message Descriptor
	Message Header
	Message Payload (Write)
	Message Payload (Read)
	Writeback Message (Read)

	Memory Fence
	Message Header
	Writeback Message

	Pixel Data Port
	DataPort Render Cache Agents
	Accessing Render Targets
	Message Sequencing Summary
	Single Source
	Dual Source
	Replicate Data
	Multiple Render Targets (MRT)
	Subspan/Pixel to Slot Mapping
	Message Descriptor
	Message Descriptor - Render Target Read

	Message Header
	Message Header
	Writeback Message (Read)
	Header for SIMD8_IMAGE_WRITE
	Source 0 Alpha Payload
	oMask Payload
	Color Payload: SIMD16 Single Source
	Color Payload

	Color Payload: SIMD8 Single Source
	Color Payload: SIMD16 Replicated Data
	Color Payload: SIMD8 Dual Source

	Total Color Control (TCC)
	ProcAmp
	Color Space Conversion
	Color Gamut Compression
	Background of Color Gamut Compression
	Usage Models
	Gamut Compression Module Overview

	Shared Functions Pixel Interpolater
	Messages
	Initiating Message
	Message Descriptor
	Per Message Offset Message Descriptor
	Sample Position Offset Message Descriptor
	Centroid Position and Per Slot Offset Message Descriptor

	Message Payload for Most Messages
	SIMD8 Per Slot Offset Message Payload
	SIMD16 Per Slot Offset Message Payload

	Writeback Message
	SIMD8
	SIMD16

	Shared Functions - Unified Return Buffer (URB)
	URB Size
	URB Access
	URB State
	URB Messages
	Execution Mask
	Message Descriptor
	URB_WRITE and URB_READ
	Message Header
	URB_WRITE_HWORD Write Data Payload
	URB_NOSWIZZLE
	URB_INTERLEAVED

	URB_READ_HWORD Writeback Message
	URB_NOSWIZZLE
	URB_INTERLEAVED

	URB_WRITE_OWORD Write Data Payload
	URB_NOSWIZZLE
	URB_INTERLEAVED

	URB_READ_OWORD Writeback Message
	URB_NOSWIZZLE
	URB_INTERLEAVED

	URB_ATOMIC
	Message Header
	Writeback Message

	Shared Functions - Message Gateway
	Messages
	Message Descriptor
	OpenGateway Message
	Message Payload
	Writeback Message to Requester Thread

	CloseGateway Message
	Message Payload
	Writeback Message to Requester Thread

	ForwardMsg Message
	Message Payload
	Writeback Message to Requester Thread
	Writeback Message to Recipient Thread

	GetTimeStamp Message
	Message Payload
	Writeback Message to Requester Thread

	BarrierMsg Message
	Message Payload
	Writeback Message to Requester Thread
	Broadcast Writeback Message

	MMIOReadWrite Message
	Message Payload
	Writeback Message to Requester Thread (MMIO Read Only)

	Shared Functions - Media Sampler
	Video Motion Estimation
	Theory of Operation
	Shape Decision
	Minor Shape Decision Prior to FME
	Major Shape Decision Prior to FME
	Shape Update after FME
	Final Code Decision after BME

	Early Decisions
	Changes

	Surfaces
	State
	BINDING_TABLE_STATE
	SURFACE_STATE
	VME_STATE
	VME_SEARCH_PATH_LUT_STATE

	Change Details
	Record Stream-Out and Stream-In
	Overview
	Implementation Details

	MV Definitions and Precision
	Overview
	Implementation Details

	Expanded MV Costs
	Overview

	Remove Skip MV Restriction
	Overview
	Implementation Details

	Sample_8x8 State
	SIMD32/64 Messages
	Initiating Message
	SIMD32_64 Message Descriptor
	SIMD32_64 Message Header
	SIMD32_64 Payload Parameter Definition
	SIMD32_64 Message Types
	Writeback Message
	SIMD32 Surface State
	SIMD32 Sampler State
	Statistics
	3D Pipeline Geometry
	3D Pipeline – Vertex Fetch (VF) Stage
	Vertex Shader (VS) Stage
	3D Pipeline – Hull Shader (HS) Stage
	HW Tessellation
	Domain Shader (DS) Stage
	3D Pipeline – Geometry Shader (GS) Stage
	3D Pipeline - Stream Output Logic (SOL) Stage
	3D Pipeline Rasterization
	Common Rasterization State
	3D Pipeline - Strips and Fans (SF) Stage
	Windower (WM) Stage
	Pixel
	Pixel Backend
	Color Calculator (Output Merger)
	L3 Cache and URB
	Atomics
	L3 Coherency
	L3 Allocation and Programming
	L3 Interfaces
	Shared Local Memory (SLM)
	L3 Register Space (Bspec)
	Media and General Purpose Pipeline
	ISA Introduction
	EU Data Types
	Native Instruction BNF
	Instruction Set Summary Tables

	EU Programming Guide

