

Doc Ref # IHD-OS-VLV-Vol8-04.14 1

Intel® Open Source HD Graphics
Programmers' Reference Manual (PRM)

Volume 8: Media VDBOX

For the 2014 Intel Atom™ Processors, Celeron™ Processors, and Pentium™ Processors
based on the "BayTrail" Platform (ValleyView graphics)

© April 2014, Intel Corporation

 Media VDBOX

2 Doc Ref # IHD-OS-VLV-Vol8-04.14

Creative Commons License
You are free to Share — to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any

way that suggests that they endorse you or your use of the work).

No Derivative Works. You may not alter, transform, or build upon this work

Notices and Disclaimers
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,
directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS
FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS
SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES
OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE
ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,
PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,
WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,
OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them. The information here
is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips
Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2014, Intel Corporation. All rights reserved.

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 3

Table of Contents
MFX Architecture .. 5

MFX Introduction .. 5
MFC Overview .. 6

Example Usage Model ... 7

Sample Algorithmic Flow .. 8

Synchronization Mechanism .. 10
Restrictions .. 11

MFD Overview ... 12

MFD Memory Interface .. 15

MFD Codec-Specific Commands ... 16
MFX Interruptability Model ... 16

Decoder Input Bitstream Formats ... 17

AVC Bitstream Formats – DXVA Short ... 17

AVC Bitstream Formats – DXVA Long .. 17
VC1 Bitstream Formats – Intel Long ... 17

MPEG2 Bitstream Formats – DXVA1 ... 17

JPEG Bitstream Formats – Intel ... 17

Concurrent, Multiple Video Stream Decoding Support .. 18
VDBOX Registers ... 18

MFX Codec Commands Summary .. 19

MFX Decoder Commands Sequence .. 24

MFX Pipe Common Commands .. 27
Video Codecs ... 29

Video Codec for AVC/MVC (H.264) .. 29

AVC Common Commands ... 29

AVC Decoder Commands ... 30
Session Decoder StreamOut Data Structure .. 30

AVC Encoder PAK Commands .. 41

AVC Encoder MBAFF Support Algorithm ... 51

MPEG-2 ... 52

MPEG2 Common Commands ... 52
MPEG2 Decoder Commands ... 52

VC-1... 53

VC1 Decoder Commands ... 54

JPEG and MJPEG ... 55
JPEG Decoder Commands .. 55

 Media VDBOX

4 Doc Ref # IHD-OS-VLV-Vol8-04.14

More Decoder and Encoder ... 57

MFD IT Mode Decode Commands ... 57

Encoder StreamOut Mode Data Structure Definition .. 76
PAK Multi-Pass .. 78

Driver Usage ... 78

Programming Reference .. 79

Monochrome Picture Processing .. 79
Context Switch .. 79

Pipeline Flush ... 80

MMIO Interface ... 80

Decoder Registers .. 81
Encoder Registers ... 82

Row Store Sizes and Allocations.. 83

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 5

MFX Architecture
This section of Media VDBOX describes the Multi-Format Codecs, or MFX.

MFX Introduction

Multi-Format Codec (MFX) Engine is the hardware fixed function pipeline for decode and encoding. It
includes multi-format decoding (MFD) and multi-format encoding (MFC).

 Media VDBOX

6 Doc Ref # IHD-OS-VLV-Vol8-04.14

MFC Overview

Multi-Format Codec (MFX) Engine is the hardware fixed function pipeline for decode and encoding. It
includes multi-format decoding (MFD) and multi-format encoding (MFC). Many decoding function
blocks in MFD such as VIP, VMC, IQT, etc, are also used in encoding mode. Two blocks, FTQ and BSE,
are encoding only.

The encoding process is partitioned across host software, the GPE engine, and the MFX engine. The
generation of transport layer, sequence layer, picture layer, and slice header layer must be done in the
host software. GP hardware is responsible for compressing from Slice Data Layer down to all macro-
block and block layers. Specifically, GPE w/ VME acceleration is for motion vector estimation, motion
estimation, and code decision. The VME(Video Motion Estimation) is located next to all image
processing units, such as DN (denoise) and DI (deinterlace) in sampler in GPE. MFX is for final bit packing
and reconstructed picture generation.

MFC is operated concurrently with and independently from the GPE (3D/Media) pipeline with a separate
command streamer. The two parallel engines have similar command protocol. They can be executed in
parallel with different context. For encoding, motion search, MB mode decision, and rate control are
performed using GPE pipeline resources.

MFC is implemented to achieve the following objectives:

• Compliant with next generation high definition optical video disc requirements, with sufficient
performance headroom:

• Support AVC 4:2:0 Main Profile and High Profile only (8-bit only), up to Level 4.1 resolution
and up to 40 mbps bitstream. With sufficient duty cycles, higher bit rate contents can also
be encoded. There is no support for Baseline, Extended, or High-10 Profiles.

• Performance requirements with MFX core frequency above 667MHz:
• Real-time performance with 20% duty cycle or less.
• Support concurrent decoding of two active HD bitstreams of different formats (for example,

one AVC and one VC1 HD bitstream) and one active HD encoding.

As the result of this hardware partitioning, VPP and ENC are always running in GPE, and PAK is what
runs exactly in MFC.

PAK – residue packing and entropy coding, including block transformation, quantization, data
prediction, bitrate tuning and reference decoding. It delivers final packed bitstream and decoded key-
frame reference:

• As the same as ENC, PAK is invoked on a Slice boundary; a single call of VPP can lead to multiple
calls for PAK.

• Rate control is inside ENC and PAK only, not in VPP.
• PAK must always perform with reconstructed reference picture.

There is a general dependency of the three operation pipelines. Semaphores are inserted either
according to frames or slices. The main CS will also be notified when the decoded reference is ready for
the next frame set to be encoded. The detailed discussion will be found in a later section.

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 7

Host software is responsible for encoding the transport stream and all the sequence, picture, and slice
layer/header in the bit-stream; the MFC system is responsible for compressing from Slice Data Layer
down to all macro-block and block layers.

Example Usage Model

Encoding flow described here assumes that input stream is a series of uncompressed video frames that
will be converted into YUV (4:2:0) for encoding. Depending upon how this stream is derived, application
usage may be listed as below:

• Single video stream encoder, video capture+encode, home movie making (SD/HD)
• PVR usage: Decode the incoming stream to generate YUV (uncompressed) frames and then

encode to have a compressed file size storage (also transcoding)
• The HW asset needs to support single stream decode (SD+HD) and independent stream encode

(HD). This usage can be enabled by scheduling HW decoder at command stream level instead of
HW managed time-slicing.

For illustration purpose only, here are two possible usage modes: user-friendly mode and professional
mode.

• Professional mode (PFM):
Application does the picture order sequencing and submits the picture frame-by-frame to VPP as
IN coded order with specified frame coding type, and it has the full custom control of the GOP
structure
o no restriction on numbers of I, P and B
o no restriction on individual interlace and progressive picture

• User-friendly mode (UFM):
Application presents video in display order. In this case, the application can only specify two pre-
defined parameters: NumP and NumB, for the underlining pre-defined GOP structure.
o Where NumP is the number of P (or P/P) -frames in a GOP, and NumB is the number of B

(or B/B) frames between two consecutive key (I, P, I/I, I/P, or P/P) frames.

In this case, the driver will need to composite the final GOP structure based on the application
parameters, and need to perform the proper sequencing of picture to the VPP in the coding order (i.e. it
will hold the pictures in the memory and submit the correct picture buffer address only in coding
order), then pass the data in as the same as in PFM.

A GOP (group of pictures) is a complete encoding unit consisting of a number of video frames. In
general a GOP structure has the following form:

I0, B-B1, K1, B-B2, K2, B-B3, K3, … , B-BN, KN

in display order, or equivalently

I¬0, K1, B-B1, K2, B-B2, K3, B-B3, … , KN, B-BN

in coded storage/transmission order. Where K is a key (i.e. I or P) frame, and B-Bi is a set of Mi
consecutive B frames. Thus, there are 1+N+(M1+…+MN) frames in a GOP.

In the UFM, we have N = NumP, and Mk = NumB for all k. Where NumB must be an number from 0, 1,
2, or 3. For examples:

 Media VDBOX

8 Doc Ref # IHD-OS-VLV-Vol8-04.14

• NumP = 5, NumB = 2: GOP = I0 P3 B1 B2 P6 B4 B5 P9 B7 B8 P12 B10 B11 P15 B13 B14 I16 …
• NumP = 7, NumB = 0: GOP = I0 P1 P2 P3 P4 P5 P6 P7 I8 P9 …
• NumP = 0, NumB = 0: GOP = I0 I1 I2 I3 I4 I5 I6 I7 I8 I9 …

As a result, a unified hardware interface is given.

All frame/slice type determination/specifications are performed prior to the hardware interface in coded
order.

Sample Algorithmic Flow

Assuming all the hardware components are given, there are infinite usage possibilities left with
intention for software to decide according to its own application needs depending upon the balanced
requirement of coding speed, frame latency, power-consumption, and video quality, and depending
upon the usage modes and user preferences (such as low-frame-rate-high-frame-quality vs. high-
frame-rate-low-frame-quality).

The last part of this chapter, we illustrate a generic sample to show how a compression algorithm can
be implemented to use our hardware.

Step 1.
Application or driver initializes the encoder with desired configuration, including speed, quality,
targeted bit-rate, input video info, and output format and restrictions.

Step 2. VPP
Application or driver feeds VPP one frame at a time in coded order with specified frame or field
type, as well as transcoding informations: motion vectors, coded complexity (i.e. bit size).
It will perform denoising and deblocking based on original and targeted bit-rate, and output
additional
4 spatial variances and 2 temporal variances for each macroblock as well as the whole frame.

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 9

Step 3. ENC
Application or driver feeds ENC one coding slice buffer at a time including all VPP output. The
frame level data is accessible to all slices.

a. Encoding setup unit (ESE) will set picture level quality parameters (including LUTs, and
other costing functions) and set target bit-budget (TBB) and maximal bit-budget (MBB) to
each macroblock based on rate-control (RC) scheme implemented. For B-frames, it wll also
make ME searching mode decision (either Fast, Slow or Uni-directional).

b. Loop over all macroblocks: calculate searching center (MVP) perform individual ME and IE
(MEE). Multi-thread may be designed for HW according to a zigzag order for minimal
dependency issue.

c. ENC make microblock level code decision (CD) outputs macroblock type, intra-mode,
motion-vectors, distortions, as well as TBBs and MBBs.

Step 4. PAK
Application or driver feeds PAK one array of coded macroblocks covering a slice at a time,
including all ENC output. Original frame buffer and reconstructed reference frame buffers are also
available for PAK to access.

a. PAK may create bitstreams for all sequence, gop, picture, and slice level headers prior the
first macroblock.

b. Loop over all macroblocks, accurate prediction block is constructed for either inter- or
intra- predictions (VMC & VIP). If MB distortion is less than some predetermined threshold,
for a B slice this step can be skiped as well as the Steps (c)-(e) and jump directly to Step (f);
for a key slice the prediction calculated here will be directly used as the reference thus it
jumps to Step (e) after this step.

c. Differencing the predicted block from the original block derives the residue block. Forward
transformation and quantization (FTQ) is performed. For B slice, it will jump to Step (f) right
after. For other types of slice, Steps (d) and (e) can be performed in a thread in parallel with
Step (f) and beyond.

d. This is for accurate construction of reference pictures. Inverse quantization and inverse
transformation (IQT) are performed and added to the predictions to have the decoded
blocks.

e. ILDB is applied accordingly to the reconstructed blocks.
f. Meanwhile macroblock codes: including its configuration info (types and modes), motion

info (motion vectors and reference ids), and residual info (quantized coefficients), are
collected for packing (BSE) in the following sub-steps:

i. Code clean-up (in MPR). Check and verify Mbtype and Cbps, use Skip or Zero
respectively if one can. In principal, when there are equivalent codes, use the simple
one.

ii. Drop dependency (in MPR). Calculate relative codes from the absolute codes by
associate thm with neighborhood information. All neighborhood correlations are
solved in this step.

iii. Unify symbols (in SEC). Translate relative codes into symbols, and table or context
indices that are independent of the concept of syntax type.

 Media VDBOX

10 Doc Ref # IHD-OS-VLV-Vol8-04.14

iv. Entropy coding (VLE) on symbols.
g. Parsing bitstream data in RBSP form (in VLE), and output to application or driver.
h. By the end of each picture, write out the accurate actual data size to designate buffer for

ENC to access.

Synchronization Mechanism

Encoding of a video stream can be broken down to three major steps (as explained in the previous
section):

1. VPP: video-stream pre-processing
2. ENC: encoding, that is, code decisions of inter-MVs and intra-modes
3. PAK: bit-stream packing

a. residual calculation, transformation, and quantization
b. code bit-stream packing
c. reference generation of keyframes

This section describes an architectural solution to map the first two steps in the GFX engine and the last
step in the MFX engine. Since this mapping involves two OS-visible engines, managing them in parallel
under one application is similar to the solution in earlier generations. Each engine has its own command
streamers and has mechanisms to synchronize at required levels as described in the next sub-section.

The three steps of encoding have dependencies in processing based on

I. functional pipeline order, i.e. on a given frame, VPP needs to be performed first, then ENC, then
PAK and finally MFD (Multi-Format Decoding) for key reference frame generation.

II. I-frames are key frames for P and B, they have to be first in every pipe-stage.
III. P-frames are key frames for B frames and therefore P frames are processed first before the

dependent B frames
IV. GFX Engine is time slice to work on either VPP or ENC frame as we discussed in the previous

chapter.
V. PAK + MFD are executed on the same frame in the MFX engine by macro-block level pipelining

within a slice. It should be noted that for the sake of simplicity, an entire frame (potentially
multiple slices) are processed in the corresponding engine and no smaller granularity of switching
is allowed between the functional pipeline stages.

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 11

Three steps of the encoding can be interleaved on two engines in the following way on a frame by
frame basis.

Command Stream Synchronization

Restrictions

MFC implementation is subject to the following limitations.

• Context switching within MFC and with Graphics Engine occurs only at frame boundary to
minimize the amount of information that needs to be tracked and maintained.

 Media VDBOX

12 Doc Ref # IHD-OS-VLV-Vol8-04.14

MFD Overview

When used for decoding, we refer to the MFX Engine also as the MFD Engine.

The Multi-Format Decoder (MFD) is a hardware fixed function pipeline for decoding the three video
codec formats and one image compression codec format: AVC (H.264), VC-1, MPEG2 and JPEG.

• Compliant with next generation high definition optical video disc requirements, with sufficient
performance headroom:
o Support AVC 4:2:0 Main and High (8-bit only) Profile only (no support for Baseline,

Extended and High-10 Profiles), up to Level 5.1 (max 983,040 MB/s, max 36,864 MB/frame,
and at most one dimension can reach 4K pixel) resolution and up to 40 mbps bitstream.
With sufficient duty cycles, higher bit rate contents can also be decoded.
 Allow a B-picture (frame or field) as a reference picture

o Support VC1 4:2:0 Simple, Main and Advanced Profiles, up to Level 4 (max 491,520 MB/s
and max 16,384 MB/frame; max only one dimension will be at 4K pixel) resolution and up
to 40 mbps bitstream. With sufficient duty cycles, higher bit rate contents can also be
decoded.

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 13

 Allow a B-field as a reference picture only in interlaced field decoding, no other
modes.

o Support MPEG2 HD Main Profile (4:2:0), up to High Level (1920x1152 pixels) and up to 80
mbps bitstream. With sufficient duty cycles, higher bit rate contents can also be decoded.
No support for SNR and spatial-scalability.
 Does not support B-picture as a reference picture.

o Support Baseline JPEG with five choma types (4:0:0, 4:1:1, 4:2:2, 4:2:0, and 4:4:4. No support
for Extended DCT-based mode, Progressive mode, Loseless mode, nor Hierarchical mode.
 H/W support 64Kx64K, but Surface State can support only up to 16kx16k

Features Supported Unsupported

Coding
processes

Baseline sequential mode:

• 8-bit pixel precision of source images

• loadable 2 AC and 2 DC Huffman
tables

• 3 loadable quantization matrix for Y,
U, V

• Interleaved and non-interleaved Scans

• Single and multiple Scans

Extended DCT-based mode,
Lossless, Hierarchical modes:
More than 8 bit pixel resolution,
progressive mode, arithmetic
coding, 4 AC and 4 DC Huffman
tables (extended mode),
predictive process (lossless),
multiple frames (hierarchical)

Number of
image
channels

1 for grey image
3 for Y, Cb, Cr color image

4-th channel (usually alpha
blending image)

Image
resolution

Arbitrary image size up to 16K * 16K Larger than 16K * 16K (64K * 64K
is max. in the JPEG standard)

Chroma
subsampling
ratio

Chroma 4:0:0 (grey image)

Chroma 4:1:1

Chroma 4:2:0

Chroma horizontal 4:2:2

Chroma vertical 4:2:2

Chroma 4:4:4

Any other arbitrary ratio, e.g., 3:1
subsampled chroma

Additional
feature (post-
processing)

Image rotation: 90/180/270 degrees

o H/W does not impose restriction on picture frame aspect ratio, but is bounded by a max
256 MBs (4096 pixels) per dimension programmable at the H/W interface specifications.
 For example, supporting HD video resolution 1920x1080/60i, 1920x1080/24p,

1280x720/60p
• Performance requirements with MFX core frequency above 1GHz

o Real-time performance around 10% duty cycle
o Support concurrently decoding of at least two active HD bitstreams of different formats

(For example, one AVC and one VC1 HD bitstream)

 Media VDBOX

14 Doc Ref # IHD-OS-VLV-Vol8-04.14

• The parsing of transport layer and sequence layer is not performed in this hardware, and is
required to be done in the host software. In Gen7, we have added the parsing of Slice Header for
AVC and the Picture+Slice Header for VC1.

• The MFD hardware pipeline is operated concurrently with and independently from the Graphics
(3D/Media) pipeline with separate command streamer. The two parallel engines are designed
with the similar command protocol. They can be executed in parallel with different context.

• Local storages and buffers along the hardware pipeline are kept at minimum. For example, there
is no on-die row-store memory. They are resided on the system memory. MFD is designed to
hide the memory access latency (in both the row stores and in the motion compensation units) in
maximizing its decoding throughput.

• Support the following operating modes
o VLD mode – operation starts from entropy decoding of the compressed bit stream (parsing

Slice Header and Slice Data Layer in AVC, Picture layer, Slice layer and MB Layer in VC-1,
and MB-layer in MPEG2), all the way, to the reconstruction of display picture, including in-
loop and out-loop deblocking, if any.
 Streamout mode – a new feature of the VLD mode in assisting transcoding during

decoding. Selected uncompressed data (e.g. per MB MV information) will be sent out
to the EU and the ME engine (resided on the Sampler of the 3D Gx Pipeline) for
encoding into a different format or for the purpose of transcaling and transrating. In
addition, the uncompressed result may continue to be processed by the rest of
pipeline as in VLD mode to generate the display picture for transcoding. That is,
while intermediate data are streaming out to the memory, the MFD Engine continues
its decoding as ususal.

 For JPEG, only VLD mode is supported (No IT mode). Host software decodes Frame
and Scan layers (down to Scan header in the JPEG bit stream syntax) and sends all
the corresponding information and Scan payload to the MFD hardware pipeline.

o IT mode – when host software has already performed all the bit stream parsing of the
compressed data and packaging the uncompressed result into a specific format (as a
sequence of per-MB record) stored in memory. The hardware pipeline will fetch one MB
record at a time and perform the rest of the decoding process as in VLD mode

o Host software (Application) is responsible for parsing and decoding all the transport and
program layers, and all sequence layers. These parameters are passed to Driver and
forwarded to H/W as needed through different STATE commands. Host software is also
responsible for separating non-video data (audio, meta and user data) from sending to
H/W.
 MFD Engine is only responsible for macro-block and block layers decoding, plus

certain level of header decoding. For AVC MFD starts decoding from Slice Header;
for VC1, MFD starts decoding from Picture Header, and for MPEG2 decoding starts
from MB Layer only.

 For JPEG, MFD is responsible for ECS and block layers decoding.
• Support bitstream formats (compressed video data) for each codec

o AVC – 2 formats
 DXVA2 AVC Short Slice Format Specification (new in DevIVB)

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 15

o MVC – 2 formats
 DXVA2 AVC Long Slice Format Specification (exactly the same as AVC)

o VC1 – 2 formats
 DXVA2 VC1 Specification (new in DevIVB)

1. Fully compliant to Picture Parameter and Slice Control Parameter interface definition

o MPEG2
 MB Layer only, according to DXVA 1 Specification

o JPEG
 Intel proprietary format (new in DevIVB)
 ECS Layer

1. The MFX codec is designed to be a stateless engine, that is, it does not retain any
history of settings (states) for the encoding/decoding process of a picture. Hence, the
driver must issue the complete MFX picture state command sequence prior to
processing each new picture. In addition, the driver must issue the complete Slice
state command sequence prior to processing a slice.

o In particularly, RC6 always happens between frame boundaries. So at the beginning of
every frame, all state information needs to be programmed. There is no state information
as part of media context definition.

• To activate the AVC deblocker logic for incoming uncompressed 4:2:0-only video stream, one can
pack the uncompressed video stream to compliant with the IPCM MB data format (including ILDB
control information) and feed them into the MFD engine in IT mode. Since the MFD Engine is in
IPCM mode, transformation, inter and intra processing are all inactive.

Start Code Detection and removal are done in the CPU, but the Start Code Emulation Prevention Byte is
detected and removed by the front end logic in the MFD. The bitstream format for each codec and for
each mode is specified in this document.

Codec specific information are based on the following released documents from third parties:

• Draft of Version 4 of H.264/AVC (ITU-T Recommendation H.264 and ISO/IEC 14496-10 (MPEG-4
part 10) Advanced Video Coding); JVT-O205d1.doc; dated 2005-05-30

• Final Draft SMPTE Standard: VC1 Compressed Video Bitstream Format and Decoding Process,
SMPTE 421M, dated 2006-1-6; PDF file.

• MPEG2 Recommendation ITU T H.262 (1995 E), ISO/IEC 13818-2: 1995 (E); doc file.
• Digital Compression and Coding of Continuous-tone Still Images, ITU-T Rec. T.81 and ISO/IEC

10918-1: Requirements and guidelines September 18 1992; itu-t81[1].pdf

MFD Memory Interface

The Memory Arbitrator follows the pre-defined arbitration policy (as indicated in the following listing P0
to P11, in which P0 is the highest priority) to select the next memory request to service, then it will
perform the TLB translation (translation to physical address in memory), and make the actual request to
memory.

 Media VDBOX

16 Doc Ref # IHD-OS-VLV-Vol8-04.14

The Memory Arbitration unit is also responsible for capturing the return data from memory (read
request) and forward it to the appropriate unit along the MFD Engine.

• Read streams: (all 64B requests)
o Commands for BSD: linear (including indirect data) (P0)

 Indirect DMA (P1)
o Row store for BSD: linear (P5)
o Row store for MPR: linear (P6)
o MC ref cache fetch: tiled (P2)
o Intra row store: linear (P9)
o ILDB row store: linear (P10)

• Write streams: (all 64B requests)
o Row store write for BSD: linear and can avoid partial writes (P3)
o Row store write for MPR: linear and can avoid partial writes (P4)
o Intra row store write: linear and can avoid partial writes (P7)
o ILDB row store write: linear and can avoid partial writes (P8)
o Final dest writes: tiled and can potentially be partial, two ways to avoid these partials: 1)

either write garbage and buffers are aligned or 2) read-modify writes for dribble end of line
cases (P11)

MFD Codec-Specific Commands

MFD hardware pipeline supports four different codec standards: AVC, VC1 MPEG2, and JPEG. To make
the interface flexible, each codec is designed with its own set of commands.

There are two categories of commands for each codec format: one set for VLD mode and one set for IT
mode.

MFX Interruptability Model

MFX encoding and the encoding pipeline do not support interruption. All operations are frame based.
Interrupts can only occur between frames; the driver will submit all the states at the beginning of each
frame. Any state kept across frames is in MMIO registers that should be read between frames.

Software submits without any knowledge of where the parser head pointer is located. Also there is a
non-deterministic amount of time for the new context to reach the command streamer. However, the
state model for the MFX engine requires software to know exactly what state the pipeline is in at all
times. This introduces cases where a preemption could occur during or after a state change without
software ever knowing the state saved out to memory on the context switch.

Also, preemption is only allowed during the last macroblock in a row. Hardware cannot always perform
a context switch when the new context is seen by the hardware. To avoid a switch during an invalid
macroblock and to keep the state synchronized with software, there are two commands available that
are used. MI_ARB_ON_OFF disables and enables preemption while MFX_WAIT ensures the context
switch, if needed, preempts during macroblock execution. Below illustrates an example assuming VC1
VLD mode.

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 17

Command Ring/Batch Notes

MI_ARB_ON_OFF = OFF Disable preemption

S1 Inline or indirect state cmd 1

S2 Inline or indirect state cmd 2

S3 Inline or indirect state cmd 3

XXXX_OBJECT Slice

MI_ARB_ON_OFF = ON Enable preemption

MFX_WAIT Allow preemption to occur while XXXX_OBJECT executes

MI_ARB_ON_OFF = OFF Since arbitration is off again, state commands are allowed below

S4 Inline or indirect state cmd 4

S5 Inline or indirect state cmd 5

S6 Inline or indirect state cmd 6

XXXX_OBJECT Slice

MI_ARB_ON_OFF = ON Enable preemption

MFX_WAIT Allow preemption to occur while XXXX_OBJECT executes

MI_ARB_ON_OFF = OFF Since arbitration is off again, state commands are allowed below

Note that store DW commands may execute inside the preemption enabling window if needed.

Decoder Input Bitstream Formats

AVC Bitstream Formats – DXVA Short

Bitstream Buffer Address starts after the 3-byte start code, i.e. starts (and includes) at the NAL Header
Byte. This byte must not be included in the Emulation Byte Detection Process.

AVC Bitstream Formats – DXVA Long

Bitstream Buffer Address starts after the 3-byte start code, i.e. starts (and includes) at the NAL Header
Byte. This byte must not be included in the Emulation Byte Detection Process. Application will provide
the Slice Header Skip Byte count (not including any possible Emulation Prevention Byte).

VC1 Bitstream Formats – Intel Long

Bitstream starts right at the MB layer, with any emulation byte crossing the header and MB layer being
removed by application and the data length is adjusted.

MPEG2 Bitstream Formats – DXVA1

Bitstream buffer starts right at the very first MB data.

JPEG Bitstream Formats – Intel

Bitstream buffer starts right at the very first MCU data of each Scan.

 Media VDBOX

18 Doc Ref # IHD-OS-VLV-Vol8-04.14

The indirect data start address in MFD_JPEG_BSD_OBJECT specifies the starting Graphics Memory
address of the bitstream data that follows the Scan header. It provides the byte address for the first
MCU of the Scan. Different from MFD_MPEG2_BSD_OBJECT command, First MCU Bit Offset does not
need to be specified because it is always set to zero.

Indirect data buffer for a Scan

The indirect data length in MFD_JPEG_BSD_OBJECT provides the length in bytes of the bitstream data
for the Scan excluding Scan header. It includes the first byte of the first macroblock and the last byte of
the last macroblock in the Scan. The Figure illustrates these parameters for a slice data.

Concurrent, Multiple Video Stream Decoding Support

The natural place for switching across multiple streams is at the Slice boundary. Each Slice is a self-
sustained unit of compressed video data and has no dependency with its neighbors (except for the
Deblocking process). In addition, there is no interruptability within a Slice. However, when ILDB is
invoked, the processing of some MBs will require neighbour MB information that crosses the Slice
boundary. Hence, to limit the buffering requirement, in this version of hardware design, stream
switching can only be performed at the picture boundary instead.

VDBOX Registers

This section describes the VDBOX Command Memory Interface registers.

Scratch Bits

GAC_MODE - Mode Register for GAC

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 19

MFX Codec Commands Summary

DWord Bit Description

0 31:29 Instruction Type = GFXPIPE = 3h

28:16 3D Instruction Opcode = PIPELINE_SELECT

GFXPIPE[28:27 = 1h, 26:24 = 1h, 23:16 = 04h] (Single DW, Non-pipelined)

15:1 Reserved: MBZ

0 Pipeline Select

0: 3D pipeline is selected

1: Media pipeline is selected

Pipeline Type
(28:27)

Opcode
(26:24)

Sub Opcode
(23:16) Command

Definition
Chapter

VC1 State

2h 5h 0h VC1_BSD_PIC_STATE VC1 BSD

2h 5h 1h Reserved n/a

2h 5h 2h Reserved n/a

2h 5h 3h VC1_BSD_BUF_BASE_
STATE

VC1 BSD

2h 5h 4h Reserved n/a

2h 5h 5h-7h Reserved n/a

VC1 Object

2h 5h 8h VC1_BSD_OBJECT VC1 BSD

2h 5h 9h-FFh Reserved n/a

 Media VDBOX

20 Doc Ref # IHD-OS-VLV-Vol8-04.14

Pipeline Type

(28:27)
Opcode
(26:24)

Sub Opcode
(23:16) Command

Definition
Chapter

State

2h 6h 2h-7h Reserved n/a

Object

2h 6h 9h-FFh Reserved n/a

 Note that it is possible for a command to appear in both IMAGE and SLICE state buffer, e.g. QM_STATE
for JPEG can be issued at frame level or scan/slice level.

Pipelin
e Type
(28:27)

Opcode
(26:24)

SubopA
(23:21)

Subop
B

(20:16) Command
Chapte

r

Recommende
d Indirect

State Pointer
Map

Interruptable
?

MFX
Commo

n Common

2h 0h 0h 0h MFX_PIPE_MODE_SELECT MFX IMAGE No

2h 0h 0h 1h MFX_SURFACE_STATE MFX IMAGE No

2h 0h 0h 2h MFX_PIPE_BUF_ADDR_STATE MFX IMAGE No

2h 0h 0h 3h MFX_IND_OBJ_BASE_ADDR_STA
TE

MFX IMAGE No

2h 0h 0h 4h MFX_BSP_BUF_BASE_ADDR_STA
TE

MFX IMAGE No

2h 0h 0h 6h MFX_ STATE_POINTER MFX IMAGE No

2h 0h 0h 7h MFX_QM_STATE MFX IMAGE/SLICE No

2h 0h 0h 8h MFX_FQM_STATE MFX IMAGE No

2h 0h 0h 9h MFX_DBK_OBJECT MFX IMAGE No

2h 0h 0h A-1Eh Reserved n/a n/a No

MFX
Commo

n Dec

2h 0h 1h 0-8h Reserved n/a n/a n/a

2h 0h 1h 9h MFD_ IT_OBJECT MFX n/a No

2h 0h 1h A-1Fh Reserved n/a n/a n/a

MFX
Commo

n Enc

2h 0h 2h 0-7Fh Reserved n/a n/a n/a

2h 0h 2h 8h MFX_PAK_INSERT_OBJECT MFX n/a No

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 21

Pipelin
e Type
(28:27)

Opcode
(26:24)

SubopA
(23:21)

Subop
B

(20:16) Command
Chapte

r

Recommende
d Indirect

State Pointer
Map

Interruptable
?

MFX
Commo

n Common

2h 0h 2h 9h Reserved n/a n/a n/a

2h 0h 2h Ah MFX_STITCH_OBJECT MFX n/a No

2h 0h 2h B-1Fh Reserved n/a n/a n/a

AVC/
MVC

Common
(State)

2h 1h 0h 0h MFX_AVC_IMG_STATE MFX IMAGE n/a

2h 1h 0h 1h Reserved n/a n/a n/a

2h 1h 0h 2h MFX_AVC_DIRECTMODE_STATE MFX SLICE n/a

2h 1h 0h 3h MFX_AVC_SLICE_STATE MFX SLICE n/a

2h 1h 0h 4h MFX_AVC_REF_IDX_STATE MFX SLICE n/a

2h 1h 0h 5h MFX_AVC_WEIGHTOFFSET_STA
TE

MFX SLICE n/a

2h 1h 0h 9 Reserved n/a n/a n/a

2h 1h 0h D-1Fh Reserved n/a n/a n/a

AVC/
MVC Dec

2h 1h 1h 0-5h Reserved MFX n/a n/a

2h 1h 1h 6h MFD_AVC_DPB_STATE MFX IMAGE n/a

2h 1h 1h 7h MFD_AVC_SLICEADDR_OBJECT MFX n/a n/a

2h 1h 1h 8h MFD_AVC_BSD_OBJECT MFX n/a No

2h 1h 1h 9-1Fh Reserved n/a n/a n/a

AVC/
MVC Enc

2h 1h 2h 0-8h Reserved n/a n/a n/a

2h 1h 2h 9h MFC_AVC_PAK_OBJECT MFX n/a No

2h 1h 2h A-1Fh Reserved n/a n/a n/a

 VC1

Commo
n

(State)

2h 2h 0h 0h Reserved n/a n/a n/a

2h 2h 0h 1h MFX_VC1_PRED_PIPE_STATE MFX IMAGE n/a

2h 2h 0h 2h MFX_VC1_DIRECTMODE_STATE MFX SLICE n/a

2h 2h 0h 3-1Fh Reserved n/a n/a n/a

 VC1 Dec

 Media VDBOX

22 Doc Ref # IHD-OS-VLV-Vol8-04.14

Pipelin
e Type
(28:27)

Opcode
(26:24)

SubopA
(23:21)

Subop
B

(20:16) Command
Chapte

r

Recommende
d Indirect

State Pointer
Map

Interruptable
?

MFX
Commo

n Common

2h 2h 1h 0h MFD_VC1_SHORT_PIC_STATE MFX IMAGE n/a

2h 2h 1h 1h MFD_VC1_LONG_PIC_STATE MFX IMAGE n/a

2h 2h 1h 2-7h Reserved n/a n/a n/a

2h 2h 1h 8h MFD_VC1_BSD_OBJECT MFX n/a No

2h 2h 1h 9-1Fh Reserved n/a n/a n/a

 VC1 Enc

2h 2h 2h 0-1Fh Reserved n/a n/a n/a

 MPEG2

Commo
n

(State)

2h 3h 0h 0h MFX_MPEG2_PIC_STATE MFX IMAGE n/a

2h 3h 0h 1-1Fh Reserved n/a n/a n/a

 MPEG2 Dec

2h 3h 1h 1-7h Reserved n/a n/a n/a

2h 3h 1h 8h MFD_MPEG2_BSD_OBJECT MFX n/a No

2h 3h 1h 9-1Fh Reserved n/a n/a n/a

 MPEG2 Enc

2h 3h 2h 0-2h Reserved n/a n/a n/a

2h 3h 2h 3-8h Reserved

2h 3h 2h 9h MFC_MPEG2_SLICEGROUP_STA
TE

2h 3h 2h A-1Fh Reserved

 JPEG Common

2h 7h 0h 0h MFX_JPEG_PIC_STATE MFX IMAGE No

2h 7h 0h 1h Reserved n/a n/a n/a

2h 7h 0h 2h MFX_JPEG_HUFF_TABLE_STATE MFX IMAGE No

2h 7h 0h 3-1Fh Reserved n/a n/a n/a

 JPEG Dec

2h 7h 1h 1-7h Reserved MFX n/a n/a

2h 7h 1h 8h MFD_JPEG_BSD_OBJECT MFX MCU No

2h 7h 1h 9-1Fh Reserved MFX n/a n/a

 JPEG Enc

2h 7h 2h 0-1Fh Reserved MFX n/a n/a

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 23

MMIO Space Registers

Range Start Range End Unit owner

00002000 00002FFF Render/Generic Media Engine

00004000 00004FFF Render/Generic Media Graphics Memory Arbiter

00006000 00007FFF

00012000 000123FF MFX Control Engine (Video Command Streamer)

00012400 00012FFF Media Units (VIN unit)

00014000 00014FFF MFX Memory Arbiter

00022000 00022FFF Blitter Engine

00024000 00024FFF Blitter Memory Arbiter

00100000 00107FFF Fence Registers

00140000 0017FFFF MCHBAR (SA)

Memory Interface Command Map

04h Opcode (28:23) MI_FLUSH

 Media VDBOX

24 Doc Ref # IHD-OS-VLV-Vol8-04.14

MFX Decoder Commands Sequence

The MFX codec is designed to be a stateless engine, that it does not retain any history of settings
(states) for the encoding/decoding process of a picture. Hence, driver must issue the full set of MFX
picture state command sequence prior to process each new picture. In addition, driver must issue the
full set of Slice state command sequence prior to process a slice.

In particular, RC6 always happens between frame boundaries. So at the beginning of every frame, all
state information needs to be programmed. There is no state information as part of media context
definition

Examples for AVC

The following gives a sample command sequence programmed by a driver

a) For Intel or DXVA2 AVC Long Slice Bitstream Format

MFX_PIPE_MODE_SELECT

MFX_SURFACE_STATE

MFX_PIPE_BUF_ADDR_STATE

MFX_IND_OBJ_BASE_ADDR_STATE

MFX_BSP_BUF_BASE_ADDR_STATE

MFX_QM_STATE

VLD mode: MFX_AVC_PICID_STATE

MFX_AVC_IMG_STATE

MFX_AVC_DIRECTMODE_STATE

MFX_AVC_REF_IDX_STATE

MFX_AVC_WEIGHTOFFSET_STATE

MFX_AVC_SLICE_STATE

VLD mode: MFD_AVC_BSD_OBJECT

IT mode: MFD_IT_OBJECT

MI_FLUSH

b) For DXVA2 AVC Short Slice Bitstream Format (for VLD mode only)

MFX_PIPE_MODE_SELECT

MFX_SURFACE_STATE

MFX_PIPE_BUF_ADDR_STATE

MFX_IND_OBJ_BASE_ADDR_STATE

MFX_BSP_BUF_BASE_ADDR_STATE

MFD_AVC_DPB_STATE

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 25

VLD mode: MFX_AVC_PICID_STATE

MFX_AVC_IMG_STATE

MFX_QM_STATE

MFX_AVC_DIRECTMODE_STATE

VLD mode: MFD_AVC_SLICEADDR_OBJECT

VLD mode: MFD_AVC_BSD_OBJECT

VLD mode: MFD_AVC_BSD_SLICEADDR_OBJECT

VLD mode: MFD_AVC_BSD_OBJECT

… repeat these four commands N-1 times for a N-slice picture

VLD mode: MFD_AVC_BSD_OBJECT (for the last slice of the picture)

MI_FLUSH

Examples for VC1

The following gives a sample command sequence programmed by a driver

a) For Intel Proprietary Long Bitstream Format

MFX_VC1_DIRECTMODE_STATE

MFX_VC1_PRED_PIPE_STATE

MFX_VC1_LONG_PIC_STATE

VLD mode: MFD_VC1_BSD_OBJECT

IT mode: MFD_IT_OBJECT

MI_FLUSH

b) For DXVA2 VC1 Compliant Bitstream Format (for VLD mode only)

MFX_VC1_DIRECTMODE_STATE

MFX_VC1_PRED_PIPE_STATE

MFX_VC1_SHORT_PIC_STATE

VLD mode: MFD_VC1_BSD_OBJECT

MI_FLUSH

c) For DXVA2 VC1 Compliant Bitstream Format (for VLD mode only), and field pair picture

Batch buffer for top-field

states....

Slice_objs...

MI_flush

store register immediate (if VC1 short format with interlaced field pic)

 Media VDBOX

26 Doc Ref # IHD-OS-VLV-Vol8-04.14

MI_flush

Batch buffer for bottom field

load register immediate (if VC1 short format with interlaced field pic)

MI_flush

states....

Slice_objs...

MI_flush

Examples for JPEG

The following gives a sample command sequence programmed by a driver

Programmed once at the start of decoding

MFX_PIPE_MODE_SELECT

MFX_PIPE_SURFACE_STATE

MFX_IND_OBJ_BASE_ADDR_STATE

MFX_PIPE_BUF_ADDR_STATE

MFX_JPEG_PIC_STATE

Programmed at the start of Frame or Scan (These commands can be sent multiple times either before
MFX_JPEG_PIC_STATE or before MFD_JPEG_BSD_OBJECT)

MFX_JPEG_HUFF_TABLE

MFX_QM_STATE

Programmed per Scan (These commands can be sent multiple times depending on each bit stream)

MFD_JPEG_ BSD_OBJECT

MI_FLUSH

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 27

MFX Pipe Common Commands

MFX Commands are organized into groups based on their scope of functioning. There are Pipeline
Common state commands that are common to all codecs (encoder and decoder) and is applicable to
the processing of one full frame/field. There are also individual codec Common state commands that
are common to both encoder and decoder of that particular codec. These latter common state
commands, some are applicable at the processing of one full frame/field, and some are applicable at
the processing of an individual slice level.

MFX_STATE_POINTER

MFX_PIPE_MODE_SELECT

The Encoder Pipeline Modes of Operation (Per Frame):

1. PAK Mode: VCS-command driven, setup by driver. Like the IT mode of decoder, it is executed on
a per-MB basis. Hence, each PAK Object command corresponds to coding of only one MB.

a. Normal Mode (including transcoding): receive per-MB control and data (MV, mb_type,
cbp, etc.). It generates the output compressed bitstream as well as the reconstructed
reference pictures, one MB at a time, for later use.

b. Encoder StreamOut Mode: to provide per-MB, per-Slice and per-Frame coding result and
information (statistics) to the Host, Video Preprocessing Unit and ENC Unit to enhance
their operations.

The Decoder Pipeline Modes of Operation (Per Frame):

1. VLD Mode: The output from the BSD (weight&offset/coeff/motion vectors record) can be sent in
part (as specified) and to the remaining fixed function hardware pipeline to complete the
decoding processing. The driver specifies through MFD commands of what to send out from the
BSD unit and where to send the BSD output.

a. For transcoding (including transrating and transcaling), part of the BSD output (a series
of per-MB record) can be sent to memory for further processing to encode into a
difference output format. This function is named as StreamOut. When StreamOut is
active, not all MB information needs to be sent, only MVs and selective MB coding
information.

2. IT Mode: In this mode, the BSD is not invoked. Instead host performs all the bitstream decoding
and parsing; and the result are saved into memory in a specific per-MB record format. The MFD
Engine VCS reads in these records one at time and finish the rest of the decoding (IT, MC,
IntraPred and ILDB).

a. MB information is organized into two indirect data buffers, one for MVs and one for
residue coefficients. As such, two indirect base address pointers are defined.

Programming Restriction:

• Software must ensure the current pipeline is flushed via an MI_FLUSH prior to the execution of
MFX_PIPE_MODE_SELECT in switching the MFX Engine to encode/decode a different codec
format (AVC, VC1 or MPEG2).

 Media VDBOX

28 Doc Ref # IHD-OS-VLV-Vol8-04.14

• MFX_PIPE_MODE_SELECT is issued per picture (frame or field).

MFX_SURFACE_STATE

MFX_PIPE_BUF_ADDR_STATE

MFX_IND_OBJ_BASE_ADDR_STATE

MFX_BSP_BUF_BASE_ADDR_STATE

MFX_PAK_INSERT_OBJECT

MFX_STITCH_OBJECT

MFX_QM_STATE

Bits 31:24 23:16 15:8 7:0

Dword 1 QuantMatrix[0][3] QuantMatrix[0][2] QuantMatrix[0][1] QuantMatrix[0][0]

Dword 2 QuantMatrix[0][7] QuantMatrix[0][6] QuantMatrix[0][5] QuantMatrix[0][4]

Dword 3 QuantMatrix[1][3] QuantMatrix[1][2] QuantMatrix[1][1] QuantMatrix[1][0]

… … … … …

Dword 16 QuantMatrix[7][7] QuantMatrix[7][6] QuantMatrix[7][5] QuantMatrix[7][4]

MFX_QM_STATE

This is a frame-level state. Reciprocal Scaling Lists are always sent from the driver regardless whether
they are specified by an application or the default/flat lists are being used. This is done to save the ROM
(to store the default matrices) inside the PAK Subsystem. Hence, the driver is responsible for
determining the final set of scaling lists to be used for encoding the current slice, based on the AVC
Spec (Fall-Back Rules A and B). For encoding, there is no need to send the qm_list_flags[i], i=0 to7 and
qm_present_flag to the PAK, since Scaling Lists syntax elements are encoded above Slice Data Layer.

FQM Reciprocal Scaling Lists elements are 16-bit each, conceptually equal to 1/ScaleValue. QM matrix
elements are 8-bit each, equal to ScaleValue. However, in AVC spec., the Reciprocal Scaling Lists
elements are not exactly equal to one-over of the corresponding Scaling Lists elements. The numbers
are adjusted to simplify hardware implementation.

For all the description below, a scaling list set contains 6 4x4 scaling lists (or forward scaling lists) and 2
8x8 scaling lists (or forward scaling lists).

In MFX PAK mode, PAK needs both forward Q scaling lists and IQ scaling lists. The IQ scaling lists are
sent as in MFD in raster scan order as shown in MFX_AVC_QM_STATE. But the Forward Q scaling lists
are sent in transport form, i.e. column-wise raster order (column-by-column) to simplify the H/W. Driver
will perform all the scan order conversion for both ForwardQ and IQ.

Precisely, if the reciprocal forward scaling matrix is F[4][4], then the 16 word of the matrix will be set as
the following:

 bits 0-15 bits 16-31

DW0 F[0][0] F[1][0]

DW1 F[2][0] F[3][0]

DW2 F[0][1] F[1][1]

DW3 F[2][1] F[3][1]

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 29

 bits 0-15 bits 16-31

DW4 F[0][2] F[1][2]

DW5 F[2][2] F[3][2]

DW6 F[0][3] F[1][3]

DW7 F[2][3] F[3][3]

Video Codecs
The following sections contain the various registers for video codec support. Specifically, the codec
types supported are:

• Advanced Video Coding (AVC)/ H.264/MPEG-4 Part 10 (MVC)
• MPEG-2 (H.222/H.262) — Used in Digital Video Broadcast and DVDs
• VC1 — SMPTE 421M, known informally as VC-1 is a video format used by Windows Media,

Silverlight, Slingbox and Blu-ray
• JPEG and MJPEG — A video format in which video gram or interlaced field of a digital video

sequence is compressed separately as a JPEG image
• Other Codec Functions

Video Codec for AVC/MVC (H.264)
This section describes support for the Advanced Video Coding (AVC) and Multiview Video Coding
(MVC) standards.

AVC Common Commands

MFX Commands are organized into groups based on their scope of functioning. There are Pipeline
Common state commands that are common to all codecs (encoder and decoder) and is applicable to
the processing of one full frame/field. There are also individual codec Common state commands that
are common to both encoder and decoder of that particular codec. These latter common state
commands, some are applicable at the processing of one full frame/field, and some are applicable at
the processing of an individual slice level.

MFX_AVC_IMG_STATE

MAX_QP_DELTA: Maximum QP delta is the Magnitude of QP delta between passes.

MAX_QP_DELTA is selected such that cumulative QP over all possible passes shouldn’t exceed 51.

Example Configurations:

MAX Number of Passes MAX_QP_DELTA

4 0xc

5 0xa

6 0x8

7 0x7

 Media VDBOX

30 Doc Ref # IHD-OS-VLV-Vol8-04.14

MFX_AVC_DIRECTMODE_STATE

MFX_AVC_SLICE_STATE

MFX_AVC_REF_IDX_STATE

MFX_AVC_WEIGHTOFFSET_STATE

AVC Decoder Commands

These are decoder-only commands. They provide the pointer to the compressed input bitstream to be
decoded.

MFD_AVC_DPB_STATE

NOTE modified from DXVA2 – The values in RefFrameList and UsedForReference_Flag are the primary
means by which the H/W can determine whether the corresponding entries in RefFrameList, POCList,
LTSTFrameNumList, and Non-ExistingFrame_Flag should be considered valid for use in the decoding
process of the current picture or not. When RefFrameList[i] is marked to be invalid, the values of
POCList[i][0], POCList[i][1], LTSTFrameNumList[i], UsedForReference_Flag[i], and Non-
ExistingFrame_Flag[i] must all be equal to 0. When UsedForReference_Flag[i] = 0, the value of
RefFrameList[i] must be marked invalid.

MFD_AVC_SLICEADDR

MFD_AVC_BSD_OBJECT

Inline Data Description for MFD_AVC_BSD_Object

Session Decoder StreamOut Data Structure

When StreamOut is enabled, per MB intermediated decoded data (MVs, mb_type, MB qp, etc.) are sent
to the memory in a fixed record format (and of fixed size). The per-MB records must be written in a
strict raster order and with no gap (i.e. every MB regardless of its mb_type and slice type, must have an
entry in the StreamOut buffer). Therefore, the consumer of the StreamOut data can offset into the
StreamOut Buffer (StreamOut Data Destination Base Address) using individual MB addresses.

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 31

A StreamOut Data record format is detailed as follows:

DWord Bit Description

 23 Reserved MBZ

 22-20 EdgeFilterFlag (AVC) / OverlapSmoothFilter (VC1)

 19:17 CodedPatternDC (for AVC only, 111b for others)

The field indicates whether DC coefficients are sent..

1 bit each for Y, U and V.

 16 Reserved MBZ

 15 Transform8x8Flag

When it is set to 0, the current MB uses 4x4 transform. When it is set to 1, the current
MB uses 8x8 transform. The transform_szie_8x8_flag syntax element, if present in the
output bitstream, is the same as this field. However, whether transform_szie_8x8_flag is
present or not in the output bitstream depends on several conditions:

This field is only allowed to be set to 1 for two conditions:

It must be 1 if IntraMbFlag = INTRA and IntraMbMode = INTRA_8x8

It may be 1 if IntraMbFlag = INTER and there is no sub partition size less than
8x8

Otherwise, this field must be set to 0.

0: 4x4 integer transform

1: 8x8 integer transform

14 MbFieldFlag

This field specifies whether current macroblock is coded as a field or frame macroblock
in MBAFF mode.

This field is exactly the same as FIELD_PIC_FLAG syntax element in non-MBAFF mode.

Same as the mb_field_decoding_flag syntax element in AVC spec.

0 = Frame macroblock
1 = Field macroblock

 13 IntraMbFlag

This field specifies whether the current macroblock is an Intra (I) macroblock.

I_PCM is considered as Intra MB.

For I-picture MB (IntraPicFlag =1), this field must be set to 1.

This flag must be set in consistent with the interpretation of MbType (inter or intra
modes).

 Media VDBOX

32 Doc Ref # IHD-OS-VLV-Vol8-04.14

DWord Bit Description

0: INTER (inter macroblock)

1: INTRA (intra macroblock)

 12:8 MbType5Bits
This field is encoded to match with the best macroblock mode determined as described in the
next section. It follows AVC encoding for inter and intra macroblocks.

 7 MbPolarity FieldMB Polarity - vctrl_vld_top_field AVC

 6 Reserved MBZ

 5:4 IntraMbMode

This field is provided to carry information partially overlapped with MbType.

This field is only valid if IntraMbFlag = INTRA, otherwise, it is ignored by hardware..

 3 Reserved MBZ

 2 MbSkipFlag

It sets to 1 if any of the sub-blocks is inter, uses predicted MVs, and skips sending MVs
explicitly in the code stream. Currently H/W can provide this flag and is defaulted to 0
always.

 1:0 InterMbMode

This field is provided to carry redundant information as that in MbType. It also carries
additional information such as skip.

This field is only valid if IntraMbFlag =INTER, otherwise, it is ignored by hardware.

1 31:16 MbYCnt (Vertical Origin). This field specifies the vertical origin of current macroblock
in the destination picture in units of macroblocks.

Format = U8 in unit of macroblock.

15:0 MbXCnt (Horizontal Origin). This field specifies the horizontal origin of current
macroblock in the destination picture in units of macroblocks.

Format = U8 in unit of macroblock.

2 31 Conceal MB Flag. This field specifies if the current MB is a conceal MB, use in
AVC/VC1/MPEG2 mode

30 Last MB of the Slice Flag. This field indicate the current MB is a last MB of the slice.
Use in AVC/VC1/MPEG2 mode.

29:24 Reserved

23:20 CbpAcV

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 33

DWord Bit Description

0 in a bit – indicates the corresponding 8x8 block or 4x4 sub-block is not present
(because all coefficient values are zero)

1 in a bit – indicates the corresponding 8x8 block or 4x4 sub-block is present (although
it is still possible to have all its coefficients be zero – bad coding).

19:16 CbpAcU

0 in a bit – indicates the corresponding 8x8 block or 4x4 sub-block is not present
(because all coefficient values are zero)

1 in a bit – indicates the corresponding 8x8 block or 4x4 sub-block is present (although
it is still possible to have all its coefficients be zero – bad coding).

15:0 CbpAcY

0 in a bit – indicates the corresponding 8x8 block or 4x4 sub-block is not present
(because all coefficient values are zero)

1 in a bit – indicates the corresponding 8x8 block or 4x4 sub-block is present (although
it is still possible to have all its coefficients be zero – bad coding).

Bit15=Y0Sub0, Bit0=Y3Sub3

3 31:28

AVC

Skip8x8Pattern (AVC)

This field indicates whether each of the four 8x8 sub macroblocks is using the predicted
MVs and will not be explicitly coded in the bitstream (the sub macroblock will be coded
as direct mode). It contains four 1-bit subfields, corresponding to the 4 sub
macroblocks in sequential order. The whole macroblock may be actually coded as
B_Direct_16x16 or B_Skip, according to the macroblock type conversion rules described
in a later sub section.

This field is only valid for a B slice. It is ignored by hardware for a P slice. Hardware also
ignores this field for an intra macroblock.

0 in a bit – Corresponding MVs are sent in the bitstream

1 in a bit – Corresponding MVs are not sent in the bitstream

27:25 Reserved

24:16 NzCoefCountMB

– all coded coefficients input including AC/DC blocks in current MB.

Range 0 to 384 (9 bits)

15:8 MbClock16 – MB compute clocks in 16-clock unit.

7 mbz (AVC) / QScaleType (MPEG2)

 Media VDBOX

34 Doc Ref # IHD-OS-VLV-Vol8-04.14

DWord Bit Description

6:0 QpPrimeY (AVC) / QScaleCode (MPEG2)

The luma quantization index. This is the per-MB QP value specified for the current MB.

4 to 6 31:0
Each

For intra macroblocks, definition of these fields are specified in 1
For inter macroblocks, definition of these fields are specified in 2

7 31:24 Reserved

23:20 MvFieldSelect (Ref polarity top or bottom bits) for VC1 and MPEG2

vcp_vds_mvdataR[162:159] VC1

vmd_vds_mt_vert_fld_selR[3:0] MPEG2

19:12 Reserved

11:10 SubBlockCodeType V (If 8x8, 8x4, 4x8, 4x4 type)

9:8 SubBlockCodeType U (specifies 8x8, 8x4, 4x8, 4x4 type) VC1

7:6 SubBlockCodeType Y3 (specifies 8x8, 8x4, 4x8, 4x4 type) VC1

5:4 SubBlockCodeType Y2 (specifies 8x8, 8x4, 4x8, 4x4 type) VC1

3:2 SubBlockCodeType Y1 (specifies 8x8, 8x4, 4x8, 4x4 type) VC1

1:0 SubBlockCodeType Y0 (specifies 8x8, 8x4, 4x8, 4x4 type) VC1

Inter
cases

8 31:16 MvFwd[0].y – y-component of the forward motion vector of the 1st 8x8 or 1st 4x4
subblock

15:0 MvFwd[0].x – x-component of the forward motion vector of the 1st 8x8 or 1st 4x4
subblock

9 31:0 MvBck[0] – the backward motion vector of the 1st 8x8 or 1st 4x4 subblock

10 31:0 MvFwd[1] – the forward motion vector of the 2nd 8x8 or 4th 4x4 subblock

11 31:0 MvBck[1] – the backward motion vector of the 2nd 8x8 or 4th 4x4 subblock

12 31:0 MvFwd[2] – the forward motion vector of the 3rd 8x8 or 8th 4x4 subblock

13 31:0 MvBck[2] – the backward motion vector of the 3rd 8x8 or 8th 4x4 subblock

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 35

DWord Bit Description

14 31:0 MvFwd[3] – the forward motion vector of the 4th 8x8 or 12th 4x4 subblock

15 31:0 MvBck[3] – the backward motion vector of the 4th 8x8 or 12th 4x4 subblock

Intra
Cases :

8 to 15 31:0 Reserved MBZ

The inline data content of Dwords 4 to 6 is defined either for intra prediction or for inter prediction, but
not both.

Table: Inline data subfields for an Intra Macroblock

DWord Bit Description

4 31:16 LumaIndraPredModes[1]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block of a MB, 4-bit each.

AVC: See the bit assignment table later in this section.

VC1: MBZ.

MPEG2: MBZ.

15:0 LumaIndraPredModes[0]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block, four 8x8 block or one
intra16x16 of a MB.

4-bit per 4x4 sub-block (Transform8x8Flag=0, Mbtype=0 and intraMbFlag=1) or 8x8
block (Transform8x8Flag=1, Mbtype=0, MbFlag=1), since there are 9 intra modes.

4-bit for intra16x16 MB (Transform8x8Flag=0, Mbtype=1 to 24 and intraMbFlag=1), but
only the LSBit[1:0] is valid, since there are only 4 intra modes.

AVC: See the bit assignment table later in this section.

VC1: MBZ.

MPEG2: MBZ.

5

AVC
INTRA

31:16 LumaIndraPredModes[3]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block of a MB, 4-bit each.

AVC: See the bit assignment table later in this section.

VC1: MBZ.

MPEG2: MBZ.

15:0 LumaIndraPredModes[2]

 Media VDBOX

36 Doc Ref # IHD-OS-VLV-Vol8-04.14

DWord Bit Description

Specifies the Luma Intra Prediction mode for four 4x4 sub-block of a MB, 4-bit each.

AVC: See the bit assignment later in this section.

VC1: MBZ.

MPEG2: MBZ.

6 31:8 Reserved (Reserved for encocder turbo mode IntraResidueDataSize, when this is not 0,
optional residue data are provided to the PAK; Reserved for decoder)

7:0 MbIntraStruct

The IntraPredAvailFlags[4:0] have already included the effect of the
constrained_intra_pred_flag. See the diagram later for the definition of neighbors position
around the current MB or MB pair (in MBAFF mode).

1 – IntraPredAvailFlagX, indicates the values of samples of neighbor X can be used in
intra prediction for the current MB.

0 – IntraPredAvailFlagX, indicates the values of samples of neighbor X is not available for
intra prediction of the current MB.

IntraPredAvailFlag-A and -E can only be different from each other when
constrained_intra_pred_flag is equal to 1 and mb_field_decoding_flag is equal to 1 and
the value of the mb_field_decoding_flag for the macroblock pair to the left of the current
macroblock is equal to 0 (which can only occur when MbaffFrameFlag is equal to 1).

IntraPredAvailFlag-F is used only if

o it is in MBAFF mode, i.e. MbaffFrameFlag = 1,

o the current macroblock is of frame type, i.e. MbFieldFag = 0, and

o the current macroblock type is Intra8x8, i.e.
IntraMbFlag = INTRA, IntraMbMode = INTRA_8x8, and Transform8x8Flag = 1.

In any other cases IntraPredAvailFlag-A shall be used instead.

Bits IntraPredAvailFlags[4:0] Definition

7 IntraPredAvailFlagF – F (Left 8th row (-1,7) neighbor)

6 IntraPredAvailFlagA – A (Left neighbor top half)

5 IntraPredAvailFlagE – E (Left neighbor bottom half)

4 IntraPredAvailFlagB – B (Top neighbor)

3 IntraPredAvailFlagC – C (Top right neighbor)

2 IntraPredAvailFlagD – D (Top left corner neighbor)

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 37

DWord Bit Description

1:0 ChromaIntraPredMode – 2 bits to specify 1 of 4 chroma intra prediction mode,
see the table in later section.

Table: Inline data subfields for an Inter Macroblock

DWord Bit Description

4 31:24 Reserved: MBZ

23:16 Reserved: MBZ

15:8 SubMbPredModes[bit 7:0] (Sub Macroblock Prediction Mode)

This field describes the prediction mode of the sub macroblocks (four 8x8 blocks). It
contains four subfields each with 2-bits, corresponding to the 4 fixed size 8x8 sub
macroblocks in sequential order.

This field is derived from MbType for a non-BP_8x8 inter macroblock, and carries
redundant information as MbType

Bits [1:0]: SubMbPredMode[0] – for 8x8 Block 0

Bits [3:2]: SubMbPredMode[1] – for 8x8 Block 1

Bits [5:4]: SubMbPredMode[2] – for 8x8 Block 2

Bits [7:6]: SubMbPredMode[3] – for 8x8 Block 3

Blocks of the MB is numbered as follows :

0 1

2 3

Each 2-bit value [1:0] is defined as :

00 – Pred_L0

01 – Pred_L1

10 – BiPred

For VC1:

Bits [1:0]: "00"= Y0 Forward only, "01"= Y0 Backward only, "10"= Y0 Bi direction

Bits [3:2]: SubMbPredMode[1] – for 8x8 Block 1

Bits [5:4]: SubMbPredMode[2] – for 8x8 Block 2

Bits [7:6]: SubMbPredMode[3] – for 8x8 Block 3

7:0 SubMbShape[bit 7:0] (Sub Macroblock Shape)

This field describes the sub-block partitioning of each sub macroblocks (four 8x8 blocks).
It contains four subfields each with 2-bits, corresponding to the 4 fixed size 8x8 sub

 Media VDBOX

38 Doc Ref # IHD-OS-VLV-Vol8-04.14

DWord Bit Description

macroblocks in sequential order.

This field is forced to 0 for a non-BP_8x8 inter macroblock, and effectively carries
redundant information as MbType

Bits [1:0]: SubMbShape[0] – for 8x8 Block 0

Bits [3:2]: SubMbShape[1] – for 8x8 Block 1

Bits [5:4]: SubMbShape[2] – for 8x8 Block 2

Bits [7:6]: SubMbShape[3] – for 8x8 Block 3

Blocks of the MB is numbered as follows :

0 1

2 3

Each 2-bit value [1:0] is defined as :

00 – SubMbPartWidth=8, SubMbPartHeight=8

01 – SubMbPartWidth=8, SubMbPartHeight=4

10 – SubMbPartWidth=4, SubMbPartHeight=8

11 – SubMbPartWidth=4, SubMbPartHeight=4

For VC-1, This field indicates the transformation types used for luma components, 2 bits
for each 8x8.

5 31:24 Frame Store ID L0[3]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See
details in later section. This field specifies the frame Store ID into the Reference Picture
List0 Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when
reference index are generated instead of frame store ID)

 1: indicate it is in Frame store ID format.

 0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0: Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table
index in intel implementation)

23:16 Frame Store ID L0[2]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See
details in later section. This field specifies the frame Store ID into the Reference Picture
List0 Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 39

DWord Bit Description

reference index are generated instead of frame store ID)

 1: indicate it is in Frame store ID format.

 0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0: Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table
index in intel implementation)

15:8 Frame Store ID L0[1]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See
details in later section. This field specifies the frame Store ID into the Reference Picture
List0 Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when
reference index are generated instead of frame store ID)

 1: indicate it is in Frame store ID format.

 0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0: Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table
index in intel implementation).

7:0 Frame Store ID L0[0]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See
details in later section. This field specifies the frame Store ID into the Reference Picture
List0 Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when
reference index are generated instead of frame store ID)

 1: indicate it is in Frame store ID format.

 0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0: Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table
index in intel implementation)

6 31:24 Frame Store ID L1[3]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See
details in later section. This field specifies the frame Store ID into the Reference Picture
List0 Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when
reference index are generated instead of frame store ID)

 Media VDBOX

40 Doc Ref # IHD-OS-VLV-Vol8-04.14

DWord Bit Description

 1: indicate it is in Frame store ID format.

 0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0: Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table
index in intel implementation)

23:16 Frame Store ID L1[2]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See
details in later section. This field specifies the frame Store ID into the Reference Picture
List0 Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when
reference index are generated instead of frame store ID)

 1: indicate it is in Frame store ID format.

 0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0: Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table
index in intel implementation)

15:8 Frame Store ID L1[1]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See
details in later section. This field specifies the frame Store ID into the Reference Picture
List0 Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when
reference index are generated instead of frame store ID)

 1: indicate it is in Frame store ID format.

 0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0: Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table
index in intel implementation)

7:0 Frame Store ID L1[0]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See
details in later section. This field specifies the frame Store ID into the Reference Picture
List0 Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when
reference index are generated instead of frame store ID)

 1: indicate it is in Frame store ID format.

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 41

DWord Bit Description

 0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0: Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table
index in intel implementation)

AVC Encoder PAK Commands

Each PAK Commands is composed of a command op-code DW and one or more command data DWs
(inline data). The size of each command is specified as part of the op-code DW. Most of the commands
have fixed size, except some are allowed to be of variable length.

There is an inherent order of executing MFC PAK commands that driver must follow.

MFC_AVC_PAK_OBJECT

Indirect Data Description

For each macroblock, an ENC-PAK data set consists of two types of data blocks: indirect MV data block
and inline MB information.

The indirect MV data block may be in two modes: unpackedmode and packed-size mode.

Unpacked Motion Vector Data Block

In the unpacked mode, motion vectors are expanded (or duplicated) to either bidirectional 8x8 8MV
major partition format, or bidirectional 4x4 32MV format. Thus either 32 bytes or 128 bytes is assigned
to each MB.

Motion Vector block contains motion vectors in an intermediate format that is partially expanded
according to the sub- macroblock size. During the expansion, a place that does not contain a motion
vector is filled by replicating the relevant motion vector according to the following motion vector
replication rules. If the relevant motion vector doesn’t exist (for the given L0 or L1), it is zero filled.

Motion Vector Replication Rules:

• Rule #1

o #1.1: For L0 MV, for any sub-macroblock or sub-partition where there is at least one
motion vector

 If L0 inter prediction exists, the corresponding L0 MV is used
 Else it must be zero

o #1.2: For L1 MV, for any sub-macroblock or sub-partition where there is at least one
motion vector

 If L1 inter prediction exists, the corresponding L1 MV is used
 Else it must be zero

 Media VDBOX

42 Doc Ref # IHD-OS-VLV-Vol8-04.14

• For a macroblock with a 16x16, 16x8 or 8x16 sub-macroblock, MvSize = 8. The eight MV fields
follow Rule #1.

o The 16x16 is broken down into 4 8x8 sub-macroblocks. The 16x16 MVs (after rule #1) are
replicated into all 8x8 blocks.

o For an 8x16 partition, each 8x16 is broken down into 2 8x8 stacking vertically. The 8x16
MVs (after rule #1) are replicated into both 8x8 blocks.

o For a 16x8 partition, each 16x8 is broken down into 2 8x8 stacking horizontally. The 16x8
MVs (after rule #1) are replicated into both 8x8 blocks.

• For macroblock with sub-macroblock of 8x8 without minor partition (SubMbShape[0…3] = 0),
MvSize = 8, (e.g. mb_type equal to P_8x8, P_8x8ref0, or B_8x8)

o There is no motion vector replication

• For macroblock with sub-macroblock of 8x8 with at least one minor partition (if any
SubMbShape[i] != 0), MvSize = 32, (e.g. mb_type equal to P_8x8, P_8x8ref0, or B_8x8)

o For an 8x8 sub-partition, the 8x8 MVs (after rule #1) is replicated into all the four 4x4
blocks.

o For an 4x8 sub-partition within an 8x8 partition, each 4x8 is broken down into 2 4x4
stacking vertically. The 4x8 MVs (after rule #1) are replicated into both 4x4 blocks.

o For an 8x4 sub-partition within an 8x8 partition, each 8x4 is broken down into 2 4x4
stacking horizontally. The 8x4 MVs (after rule #1) are replicated into both 4x4 blocks.

o For a 4x4 sub-partition within an 8x8 partition, each 4x4 has its own MVs (after rule #1).

Motion Vector block and MvSize

DWord Bit

MvSize

 8 32

W1.0 31:16 MV_Y0_L0.y MV_Y0_0_L0.y

 15:0 MV_Y0_L0.x MV_Y0_0_L0.x

W1.1 31:16 MV_Y0_L1.y MV_Y0_0_L1.y

 15:0 MV_Y0_L1.x MV_Y0_0_L1.x

W1.2 31:0 MV_Y1_L0 MV_Y0_1_L0

W1.3 31:0 MV_Y1_L1 MV_Y0_1_L1

W1.4 31:0 MV_Y2_L0 MV_Y0_2_L1

W1.5 31:0 MV_Y2_L1 MV_Y0_2_L0

W1.6 31:0 MV_Y3_L0 MV_Y0_3_L0

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 43

DWord Bit

MvSize

 8 32

W1.7 31:0 MV_Y3_L1 MV_Y0_3_L1

W2.0 31:0 n/a MV_Y1_0_L1

W2.1 31:0 n/a MV_Y1_0_L0

W2.2 31:0 n/a MV_Y1_1_L1

W2.3 31:0 n/a MV_Y1_1_L0

W2.4 31:0 n/a MV_Y1_2_L1

W2.5 31:0 n/a MV_Y1_2_L0

W2.6 31:0 n/a MV_Y1_3_L0

W2.7 31:0 n/a MV_Y1_3_L1

W3.0 31:0 n/a MV_Y2_0_L1

W3.1 31:0 n/a MV_Y2_0_L0

W3.2 31:0 n/a MV_Y2_1_L1

W3.3 31:0 n/a MV_Y2_1_L0

W3.4 31:0 n/a MV_Y2_2_L1

W3.5 31:0 n/a MV_Y2_2_L0

W3.6 31:0 n/a MV_Y2_3_L0

W3.7 31:0 n/a MV_Y2_3_L1

W4.0 31:0 n/a MV_Y3_0_L1

W4.1 31:0 n/a MV_Y3_0_L0

W4.2 31:0 n/a MV_Y3_1_L1

W4.3 31:0 n/a MV_Y3_1_L0

 Media VDBOX

44 Doc Ref # IHD-OS-VLV-Vol8-04.14

DWord Bit

MvSize

 8 32

W4.4 31:0 n/a MV_Y3_2_L1

W4.5 31:0 n/a MV_Y3_2_L0

W4.6 31:0 n/a MV_Y3_3_L0

W4.7 31:0 n/a MV_Y3_3_L1

The motion vector(s) for a given sub-macroblock or a sub-partition are uniquely placed in the output
message as shown by the non-duplicate fields in Unpacked Motion Vector Data Block and Unpacked
Motion Vector Data Block.

MV_Yx_L0 and MV_Yx_L1 may be present individually or both. If one is not present, the corresponding
field must be zero. Subsequently, the duplicated fields will be zero as well.

Motion Vector duplication by sub-macroblocks for a 16x16 macroblock, whereas the 8x8 column
is for 4x(8x8) partition without minor shape

DWord Bit

16x16 16x8 8x16 8x8

W1.0 31:16 MV_Y0_L1 (A) MV_Y0_L1 (A) MV_Y0_L1 MV_Y0_L1

 15:0 MV_Y0_L0 (A) MV_Y0_L0 (A) MV_Y0_L0 MV_Y0_L0

W1.1 31:16 Duplicate (A) Duplicate (A) MV_Y1_L1 MV_Y1_L1

 15:0 Duplicate (A) Duplicate (A) MV_Y1_L0 MV_Y1_L0

W1.2 31:16 Duplicate (A) MV_Y2_L1 (B) Duplicate (A) MV_Y2_L1

 15:0 Duplicate (A) MV_Y2_L0 (B) Duplicate (A) MV_Y2_L0

W1.3 31:16 Duplicate (A) Duplicate (B) Duplicate (B) MV_Y3_L1

 15:0 Duplicate (A) Duplicate (B) Duplicate (B) MV_Y3_L0

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 45

Motion Vector duplication by sub-partitions for the first 8x8 sub-macroblock Y0 if any Y0-Y3
contains minor shape (Y1_ to Y3_ have the same format in W2 to W4)

DWord Bit

8x8 8x4 4x8 4x4

W1.0 31:16 MV_Y0_L1 MV_Y0_0_L1 (A) MV_Y0_0_L1 (A) MV_Y0_0_L1

 15:0 MV_Y0_L0 MV_Y0_0_L0 (A) MV_Y0_0_L0 (A) MV_Y0_0_L0

W1.1 31:16 Duplicate (A) Duplicate (A) MV_Y0_1_L1 (B) MV_Y0_1_L1

 15:0 Duplicate (A) Duplicate (A) MV_Y0_1_L0 (B) MV_Y0_1_L0

W1.2 31:16 Duplicate (A) MV_Y0_2_L1 (B) Duplicate (A) MV_Y0_2_L1

 15:0 Duplicate (A) MV_Y0_2_L0 (B) Duplicate (A) MV_Y0_2_L0

W1.3 31:16 Duplicate (A) Duplicate (B) Duplicate (B) MV_Y0_3_L0

 15:0 Duplicate (A) Duplicate (B) Duplicate (B) MV_Y0_3_L1

Packed-Size Motion Vector Data Block

In the packed case, no redundant motion vectors are sent. So the number of motion vectors sent, as
specified by MvQuantity is the same as the motion vectors that will be packed (MvPacked).

 Media VDBOX

46 Doc Ref # IHD-OS-VLV-Vol8-04.14

The following tables are for information only. Fields like MvQuantity and MvPacked are not required
interface fields.

MbSkipFlag MbType Description
Mv

Quantity MvSize (Minimal MvSize)

1 1 P_Skip_16x16 0 8 1

0 1 BP_L0_16x16 1 8 1

0 2 B_L1_16x16 1 8 1

0 3 B_Bi_16x16 2 8 2

0 4 BP_L0_L0_16x8 2 8 4

0 5 BP_L0_L0_8x16 2 8 4

0 6 B_L1_L1_16x8 2 8 8

0 7 B_L1_L1_8x16 2 8 8

0 8 B_L0_L1_16x8 2 8 8

0 9 B_L0_L1_8x16 2 8 8

0 0Ah B_L1_L0_16x8 2 8 8

0 0Bh B_L1_L0_8x16 2 8 8

0 0Ch B_L0_Bi_16x8 3 8 8

0 0Dh B_L0_Bi_8x16 3 8 8

0 0Eh B_L1_Bi_16x8 3 8 8

0 0Fh B_L1_Bi_8x16 3 8 8

0 10h B_Bi_L0_16x8 3 8 8

0 11h B_Bi_L0_8x16 3 8 8

0 12h B_Bi_L1_16x8 3 8 8

0 13h B_Bi_L1_8x16 3 8 8

0 14h B_Bi_Bi_16x8 4 8 8

0 15h B_Bi_Bi_8x16 4 8 8

0 16h BP_8x8 34 8 or 32 8 or 32

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 47

When MbType = 22, BP_8x8, take the sum of four individual 8x8 subblocks

Direct8x8Pattern
SubMb
Shape

SubMb
PredMode Description

Mv
Quantity

Mv
Size (Min MvSize)

OR OR OR ADD ADD ADD

1 0 0 P_Skip_8x8
B_Direct_L0_8x8
(B-Skip_ L0_8x8)

0 2 1

1 0 1 B_Direct_L1_8x8
(B-Skip_ L1_8x8)

0 2 1

1 0 2 B_Direct_Bi_8x8
(B-Skip_ Bi_8x8)

0 2 2

1 3 0 P_Skip_4x4
B_Direct_L0_4x4
(B-Skip_ L0_4x4)

0 8 4

1 3 1 B_Direct_L1_4x4
(B-Skip_ L1_4x4)

0 8 4

1 3 2 B_Direct_Bi_4x4
(B-Skip_ Bi_4x4)

0 8 8

0 0 0 BP_L0_8x8 1 2 1

0 0 1 B_L1_8x8 1 2 1

0 0 2 B_BI_8x8 2 2 2

0 1 0 BP_L0_8x4 2 8 4

0 1 1 B_L1_8x4 2 8 4

0 1 2 B_BI_8x4 4 8 8

0 2 0 BP_L0_4x8 2 8 4

0 2 1 B_L1_4x8 2 8 4

0 2 2 B_BI_4x8 4 8 8

0 3 0 BP_L0_4x4 4 8 4

0 3 1 B_L1_4x4 4 8 4

0 3 2 B_BI_4x4 8 8 8

 Media VDBOX

48 Doc Ref # IHD-OS-VLV-Vol8-04.14

Macroblock Level Rate Control

The QRC (Quautization Rate Control) unit receives data from BSP (Bit Serial Packer) and VIN (Video In)
and generates adjustments to QP values across macroblocks.

QRC can be logically partitioned into two units as shown below.

Macroblock level rate control is handled by the RC logic and the quantization logic.

The signals QPmod and panic are generated by the RC logic based on data feedback from BSP. A
flowchart of the RC logic is given below.

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 49

Theory of Operation Overview

BSP will generate a byte estimate for each macroblock packed. Additionally, the user will specify a
target and max size per macroblock. The running sum of these signals (actual, target, max) creates
"curves" which are used to identify when QP adjustments are necessary (see figure below). Three more
curves are symmetrically generated by QRC (upper_midpt, lower_midpt, sum_min) from target and max.
The values of target and max are specified by the user will dictate the shape of these curves.

The difference between sum_actual and sum_target (called ‘bytediff’) identifies the margin of error
between the target and actual sizes. The difference between the current bytediff and the previously
calculated bytediff represents the rate of change in this margin over time. The sign of this rate is used
to identify if the correction is trending in the appropriate direction (towards bytediff = 0).

 Media VDBOX

50 Doc Ref # IHD-OS-VLV-Vol8-04.14

QPmod

Each macroblock will have a requested QP (which could vary across macroblocks or remain constant).
QPmod is to be added to the QP requested. QPmod will be positive when the target was under-
predicted and negative when the target is over-predicted.

QPmod is incremented or decremented when internal counters (called ‘over’ and ‘under’) reach tripping
points (called ‘grow’ and ‘shrink’). For each MB processed and based on which region (1-6) sum_actual
falls in, various amounts of points are added to either counters. If over exceeds grow, QPmod is
incremented whereas if under exceeds shrink, QPmod is decremented.

To dampen the effect of repeated changes in the same direction, an increase in resistance for that
direction and decrease in resistance for the complementary direction occurs (called ‘grow_resistance’
and ‘shrink_resistance’). This resistance is added to grow or shrink, which then requires more points to
trip the next correction in that direction.

The user can specify guard-bands that limit the amount QPmod can be modified. QPmod cannot
exceed QPmax_pos_mod or become less than -QPmax_neg_mod_abs.

Triggering

The RC unit begins to modify QPmod occurs only when it is triggered.

Three levels of triggering exist: always, gentle, loose. Always means that RC will be active once
sum_actual reaches regions 3 or 4. Gentle will trigger RC once sum_actual reaches regions 2 or 5. Loose
waits to trigger RC when sum_actual reaches regions 1 or 6.

RC will deactivate (triggered = false) once sum_actual begins to track sum_target over a series of
macroblocks. Specifically, the sign of the rate of change for bytediff is monitored over a window of
macroblocks. When the sum of these signs over the window falls within a tolerance value (called
‘stable’), triggered will reset to false.

Panic

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 51

When enabled, panic mode will occur whenever sum_actual reaches region 1 and will remain so until
sum_actual reaches region 4. When panicking, all macroblocks will be quantized with QP = MB(n).QP +
QPmax_pos_mod, clamped to 51.

User Controls

This unit achieves a large flexibility by allowing the user to define various key parameters. At the per-
macroblock level, the values of target and max are specifed and will create various shapes of curves that
sum_actual will be compared against.

Per-slice, the user can specify the triggering sensitivity and the tolerance required to disable the trigger.
Additionally, the user can enable panic detection.

The point values assigned to each of the 6 regions are exposed to the user which allow for asymmetrical
control for over and under predictions amongst other things. Additionally, the user can specify the
initial values of grow and shrink along with the resistance values applied when correction is invoked.

Lastly, the maximum and minimum values for QPmod are also exposed to the user.

AVC Encoder MBAFF Support Algorithm

Prediction of current macroblock motion vector is possible from neighboring macroblocks
mbAddrA/mbAddrD/mbAddrB/mbAddrC/mbAddrA+1/mbAddrD+1/mbAddrB+1/mbAddrC+1. The
selection of these macroblocks depends on coding type(field/frame) of current macroblock pair and the
coding of neighbouring macroblock pair. Following is a generic diagram depicting naming conventions
used for neighbouring macroblocks. Selection of these mb pairs described in detail in following
sections.

1. Selection of Top Left MB pair: The selection of Top Left MB pair depends on coding type of
current and also top left macroblock pair. Following diagram shows the mapping to be used in
MPC unit for the selection of the Top Left MB (D or D+1 macroblock).

2. Selection of Left MB pair: The selection of Left MB pair depends on coding type of current and
also left macroblock pair. Following diagram shows the mapping to be used in MPC unit for the
selection of the Left MB (A or A+1 macroblock).

3. Selection of Top MB pair: The selection of Top MB pair depends on coding type of current and
also top macroblock pair. Following diagram shows the mapping to be used in MPC unit for the
selection of the Top MB (B or B+1 macroblock).

4. Selection of Top Right MB pair: The selection of Top Right MB pair depends on coding type of
current and also top right macroblock pair. Following diagram shows the mapping to be used in
MPC unit for the selection of the Top Right MB (C or C+1 macroblock).

5. Motion Vectors, refIdx Scaling Motion vectors and the reference index of neighbouring
macroblocks (mbAddrA/mbAddrB/mbAddrC/mbAddrD) should be scaled before using them in
prediction equations. Again the scaling depends on coding type of the current and neighbouring
macroblock pairs, which is described as follows:
 If the current macroblock is a field macroblock and the macroblock mbAddrN is a frame

macroblock.
mvLXN[1] = mvLXN[1] / 2 (8-214)

refIdxLXN = refIdxLXN * 2 (8-215)

 Media VDBOX

52 Doc Ref # IHD-OS-VLV-Vol8-04.14

 Otherwise, if the current macroblock is a frame macroblock and the macroblock mbAddrN
is a field macroblock,
mvLXN[1] = mvLXN[1] * 2 (8-216)

refIdxLXN = refIdxLXN / 2 (8-217)

 Otherwise, the vertical motion vector component mvLXN[1] and the reference index
refIdxLXN remain unchanged.

MPEG-2

MPEG2 Common Commands

MFX Commands are organized into groups based on their scope of functioning. There are Pipeline
Common state commands that are common to all codecs (encoder and decoder) and is applicable to
the processing of one full frame/field. There are also individual codec Common state commands that
are common to both encoder and decoder of that particular codec. These latter common state
commands, some are applicable at the processing of one full frame/field, and some are applicable at
the processing of an individual slice level.

MFX_MPEG2_PIC_STATE

MPEG2 Decoder Commands

These are decoder-only commands. They provide the pointer to the compressed input bitstream to be
decoded.

MFD_MPEG2_BSD_OBJECT

MFD_MPEG2_BSD_OBJECT Inline Data Description

Indirect Data Description

The indirect data start address in MFD_MPEG2_BSD_OBJECT specifies the starting Graphics Memory
address of the bitstream data that follows the slice header. It provides the byte address for the first
macroblock of the slice. Together with the First Macroblock Bit Offset field in the inline data, it provides
the bit location of the macroblock within the compressed bitstream.

The indirect data length in MFD_MPEG2_BSD_OBJECT provides the length in bytes of the bitstream data
for this slice. It includes the first byte of the first macroblock and the last non-zero byte of the last
macroblock in the slice. Specifically, the zero-padding bytes (if present) and the next start-code are
excluded. Hardware ignores the contents after the last non-zero byte. Indirect Data Description
illustrates these parameters for a slice data.

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 53

Indirect data buffer for a slice

VC-1
MFX Commands are organized into groups based on their scope of functioning. There are Pipeline
Common state commands that are common to all codecs (encoder and decoder) and is applicable to
the processing of one full frame/field. There are also individual codec Common state commands that
are common to both encoder and decoder of that particular codec. These latter common state
commands, some are applicable at the processing of one full frame/field, and some are applicable at
the processing of an individual slice level.

MFX_VC1_PRED_PIPE_STATE

MFX_VC1_DIRECTMODE_STATE DevIVB, DevHSW:GT3:A, DevHSW:GT3:B, DevHSW:GT2:B

 Media VDBOX

54 Doc Ref # IHD-OS-VLV-Vol8-04.14

VC1 Decoder Commands

These are decoder-only commands. They provide the pointer to the compressed input bitstream to be
decoded.

MFD_VC1_LONG_PIC_STATE

AltPQuantConfig and AltPQuantEdgeMask are derived based on the following variables DQUANT,
DQUANTFRM, DQPROFILE, DQSBEDGE, DQDBEDGE, and DQBILEVEL defined in the VC1 standard, as
shown in the following table.

Definition of AltPQuantConfig and AltPQuantEdgeMask

Inputs Outputs Description

DQUANT
DQUANT

FRM
DQ

PROFILE
DQDB
EDGE

DQSB
EDGE

DQBI
LEVEL

AltPQuant
Config

AltPQuant
EdgeMask

0 - - - - - 00b 0000b No AltPQuant

1 0 - - - - 00b 0000b No AltPQuant

1 1 11b - - 0 10b 0000b All MBs are different with
MQDIFF and ABSMQ

1 1 11b - - 1 11b 0000b All MBs may switch with 1-
bit MQDIFF

2 - - - - - 01b 1111b All edge MBs

1 1 00b - - - 01b 1111b All edge MBs

1 1 01b 00b - - 01b 0011b Left and top MBs

1 1 01b 01b - - 01b 0110b Top and right MBs

1 1 01b 10b - - 01b 1100b Right and bottom MBs

1 1 01b 11b - - 01b 1001b Bottom and left MBs

1 1 10b - 00b - 01b 0001b Left MBs

1 1 10b - 01b - 01b 0010b Top MBs

1 1 10b - 10b - 01b 0100b Right MBs

1 1 10b - 11b - 01b 1000b Bottom MBs

MFD_VC1_SHORT_PIC_STATE

Intel HW does not use the MVMODE and MVMODE2 provided at the revised DXVA2 VC1 VLD interface,
instead, HW will decode them directly from the bitstream picture header.

MFD_VC1_BSD_OBJECT

For VC1, a slice/picture is always started with MB x positon equal to 0. Hence, no need to include in the
Object Command.

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 55

Handling Emulation Bytes

In general, VC1 BSD unit is capable of handling emulation prevention bytes. However, there is a corner
case that requires host software’s intervention. Host software needs to overwrite the emulation byte if it
overlaps the macroblock layer decode and there is not enough information for the hardware to detect
the emulation byte.

The emulation bytes might have an overlap between the picture states and the first macroblock data. If
the emulation bytes are 0x00 0x000x03 0x00 and the macroblock data starts in the middle of byte1
(0x00), then the host software needs to overwrite the 0x03 byte location with the previous byte (0x00)
and change the byte offset accordingly. The hardware wouldn’t know what the 1st byte was and will miss
this 0x03 removal.

JPEG and MJPEG

JPEG Decoder Commands

Following are JPEG Decoder Commands:

MFD_JPEG_BSD_OBJECT

MFX_JPEG_PIC_STATE

For JPEG decoding, the following program note is informative.

For Rotation, it is important to note that rotation of 90 or 270 degrees also requires exchanging
FrameWidthlnBlksMinus1 with FrameHeightlnBlksMinus1 in the command. In addition, the rotation
of 90 or 270 degrees also requires transportation of the quantization matrix will be transposed into the
position (y, x).

Chroma type is determined by the values of horizontal and vertical sampling factors of the
components (Hi and Vi where i is a component id) in the Frame header as shown in the following table.

 H1 H2 H3 V1 V2 V3

0: YUV400 r Not available Not available r Not available Not available

1: YUV420 2 1 1 2 1 1

2: YUV422H_2Y 2 1 1 1 1 1

3: YUV444 1 1 1 1 1 1

4: YUV411 4 1 1 1 1 1

5: YUV422V_2Y 1 1 1 2 1 1

6: YUV422H_4Y 2 1 1 2 2 2

7: YUV422V_4Y 2 2 2 2 1 1

For YUV400, the value of V1 can be 1, 2, or 3 and will be same as the value of H1, and the Minimum
coded unit (MCU) is one 8x8 block. For the other chroma formats, if non-interleaved data, the MCU is
one 8x8 block. For interleaved data, the MCU is the sequence of block units defined by the sampling
factors of the components.

 Media VDBOX

56 Doc Ref # IHD-OS-VLV-Vol8-04.14

For example, the following figures show the MCU structures of interleaved data and the decoding order
of blocks in the MCU:

422H_2Y

422H_4Y

422V_2Y

422V_4Y

If picture width X in the Frame header is not a multiple of 8, the decoding process needs to extend the
number of columns to complete the right-most sample blocks. If the component is to be interleaved,
the decoding process needs to extend the number of samples by one or more additional blocks so that
the number of blocks is an integer multiple of Hi. In other words, "The number of blocks in width" in the
table should be an integer multiple of (8xH1). Similarly, if picture height Y in the Frame header is not a
multiple of 8, the decoding process needs to extend the number of lines to complete bottom-most
block-row. If the component is to be interleaved, the decoding process also needs to extend the

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 57

number of lines by one or more additional block-rows so that the number of block-row is an integer
multiple of (8xV1). For example, if non-interleaved YUV411 with X=270, then "The number of blocks in
width" shall be (270 + 7) / 8 = 34, where "/" is integer division. Therefore, FrameWidthlnBlksMinus1 is
set to 33. However, for interleaved data, "The number of blocks in width" shall be ((270 + 31) / 32) x 4 =
36. Therefore, FrameWidthlnBlksMinus1 is set to 35.

Revision history for Bspec commands is described in the following:

• If the InputFormat is YUV400 or YUV444 or YUV411, then output cannot be NV12, YUY2 or UYVY,
it has to be planar (like legacy IVB). But for 420 and 422 InputFormat, there’s a choice of having
Planar, NV12, YUY2 or UYVY OutputFormat. And the surface state should be programmed
accordingly.

• Refer "Output Format YUV" field for more details.

MFX_JPEG_HUFF_TABLE_STATE

More Decoder and Encoder

MFD IT Mode Decode Commands

These are decoder-only commands to support the IT-mode specified in DXVA interface.

MFD_IT_OBJECT

Common Indirect IT-COEFF Data Structure

Transform-domain residual data block in AVC-IT, VC1-IT and MPEG2-IT mode follows the same data
structure.

The indirect IT-COEFF data start address in MFD_IT_OBJECT command specifies the doubleword aligned
address of the first non-zero DCT coefficient of the first block of the macroblock. Only the non-zero
coefficients are present in the data buffer and they are packed in the 8x8 block sequence of Y0, Y1, Y2,
Y3, Cb4 and Cr5, as shown in Common Indirect IT-COEFF Data Structure. When an 8x8 block is further
subdivided into 4x4 subblocks, the coefficients, if present, are organized in the subblock order. The
smallest subblock division is referred to as a transform block. The indirect IT-COEFF data length in the
command includes all the non-zero coefficients for the macroblock. It must be doubleword aligned.

 Media VDBOX

58 Doc Ref # IHD-OS-VLV-Vol8-04.14

Structure of the IDCT Compressed Data Buffer

Each non-zero coefficient in the indirect data buffer is contained in a doubleword-size data structure
consisting of the coefficient index, end of block (EOB) flag and the fixed-point coefficient value in 2’s
compliment form. As shown in Common Indirect IT-COEFF Data Structure, index is the row major 'raster'
index of the coefficient within a transform block (please note that it is not converted to 8x8 block basis).
A coefficient is a 16-bit value in 2's complement.

Structure of a transform-domain residue unit

DWord Bit Description

0 31:16 Transform-Domain Residual (coefficient) Value. This field contains the value of the
non-zero transform-domain residual data in 2’s compliment.

 15:7 Reserved: MBZ

 6:1 Index. This field specifies the raster-scan address (raw address) of the coefficient within
the transform block. For a coefficient at Cartesian location (row, column) = (y, x) in a
transform block of width W, Index is equal to (y * W + x). For example, coefficient at
location (row, column) = (0, 0) in a 4x4 transform block has an index of 0; that at (2, 3) has
an index of 2*4 + 3 = 11.

The valid range of this field depends on the size of the transform block.

Format = U6

Range = [0, 63]

 0 EOB (End of Block). This field indicates whether the transform-domain residue is the last
one of the current transform block.

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 59

Allowed transform block dimensions per coding standard

Transform Block Dimension AVC VC1 MPEG2

8x8 Yes Yes Yes

8x4 No Yes No

4x8 No Yes No

4x4 Yes Yes No

For AVC, there is intra16x16 mode, in which the DC Luma coefficients of all 4x4 sub-blocks within the
current MB are sent separately in its own 4x4 Luma block. As such, only 15 coefficients remains in each
of the 16 4x4 Luma blocks.

Inline Data Description in AVC-IT Mode

The Inline Data includes all the required MB decoding states, extracted primarily from the Slice Data,
MB Header and their derivatives. It provides information for the following operations:

1. Inverse Quantization
2. Inverse Transform
3. Intra and inter-Prediction decoding operations
4. Internal error handling

These state/parameter values may subject to change on a per-MB basis, and must be provided in each
MFD_IT_OBJECT command. The values set for these variables are retained internally, until they are reset
by hardware Asynchronous Reset or changed by the next MFC_AVC_PAK_OBJECT command.

The Deblocker Filter Control flags (FilterInternalEdgesFlag, FilterTopMbEdgeFlag and
FilterLeftMbEdgesFlag) are generated by H/W, which are depending on MbaffFrameFlag, CurrMbAddr,
PicWidthInMbs and disable_deblocking_filter_idc states.

Current MB [x,y] address is not sent, it is assumed that the H/W will keep track of the MB count and
current MB position internally.

DWord Bit Description

0 31:24 MvQuantity

Specify the number of MVs (in unit of motion vector, 4 bytes each) to be fetched for
motion compensation operation.

For a P-Skip MB, there is still 1 MV being sent (Skip MV is sent explicitly); for a B-
Direct/Skip MB, there are 2 MVs being sent.

For an Intra-MB, MvQuantity is set to 0.

MvQuantity = 0, signifies there is no MV indirect data for the current MB.

This field must be set in consistent with Indirect MV Data Length, so as not to exceed its
bound

Unsigned.

 Media VDBOX

60 Doc Ref # IHD-OS-VLV-Vol8-04.14

DWord Bit Description

23:20 Reserved MBZ

19 DcBlockCodedYFlag

1 – the 4x4 DC-only Luma sub-block of the Intra16x16 coded MB is present; it is still
possible that all DC coefficients are zero.

0 – no 4x4 DC-only Luma sub-block is present; either not in Intra16x16 MB mode or all
DC coefficients are zero.

18 DcBlockCodedCbFlag

For 4:2:0 case :

1 – the 2x2 DC-only Chroma Cb sub-block of all coded MB (any type) is present; it is still
possible that all DC coefficients are zero.

0 – no 2x2 DC-only Chroma Cb sub-block is present; all DC coefficients are zero.

17 DcBlockCodedCrFlag

For 4:2:0 case :

1 – the 2x2 DC-only Chroma Cr sub-block of all coded MB (any type) is present; it is still
possible that all DC coefficients are zero.

0 – no 2x2 DC-only Chroma Cr sub-block is present; all DC coefficients are zero.

16 Reserved MBZ

15 Transform8x8Flag

0: indicates the current MB is coded with 4x4 transform and therefore the luma residuals
are presented in 4x4 blocks.

1: indicates the current MB is coded with 8x8 transform and therefore the luma residuals
are presented in 8x8 blocks.

Same as the transform_szie_8x8_flag syntax element in AVC spec.

14 MbFieldFlag

This field specifies whether current macroblock is coded as a field or frame macroblock in
MBAFF mode.

1 = Field macroblock

0 = Frame macroblock

This field is exactly the same as FIELD_PIC_FLAG syntax element in non-MBAFF mode.

Same as the mb_field_decoding_flag syntax element in AVC spec.

13 IntraMbFlag

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 61

DWord Bit Description

This field specifies whether the current macroblock is an Intra (I) macroblock.

0 – not an intra MB

1 – is an intra MB

I_PCM is considered as Intra MB.

For I-picture MB (IntraPicFlag =1), this field must set to 1.

This flag must be set in consistent with the interpretation of MbType (inter or intra
modes).

12:8 MbType

This field carries the Macroblock Type. The meaning depends on IntraMbFlag.

If IntraMbFlag is 1, this field is the intra macroblock type as defined in MbType definition
for Intra Macroblock .

If IntraMbFlag is 0, this field is the inter macroblock type as defined in the first two
columns of MbType definition for Inter Macroblock (and MbSkipflag = 0). All macroblock
types in a P Slice are mapped into the corresponding types in a B Slice. Skip and Direct
modes are converted into its corresponding processing modes.

7 FieldMbPolarityFlag

This field indicates the field polarity of the current macroblock.

Within a MbAff frame picture, this field may be different per macroblock and is set to 1
only for the second macroblock in a MbAff pair if FieldMbFlag is set. Otherwise, it is set to
0.

Within a field picture, this field is set to 1 if the current picture is the bottom field picture.
Otherwise, it is set to 0. It is a constant for the whole field picture.

This field is only valid for MBAFF frame picture. It is reserved and set to 0 for a
progressive frame picture or a field picture.

0 = Current macroblock is a field macroblock from the top field (first in a MBAFF pair)

1 = Current macroblock is a field macroblock from the bottom field (second in a MBAFF
pair)

6 IsLastMB

1 – the current MB is the last MB in the current Slice

0 – the current MB is not the last MB in the current Slice

5-4 Reserved MBZ

3:0 Reserved MBZ

1 31:16 CbpY[bit 15:0] (Coded Block Pattern Y)

 Media VDBOX

62 Doc Ref # IHD-OS-VLV-Vol8-04.14

DWord Bit Description

For 4x4 sub-block (when Transform8x8flag = 0 or in intra16x16) :

16-bit cbp, one bit for each 4x4 Luma sub-block (not including the DC 4x4 Luma block in
intra16x16) in a MB. The 4x4 Luma sub-blocks are numbered as

blk0 1 4 5 bit15 14 11 10

blk2 3 6 7 bit13 12 9 8

blk8 9 12 13 bit7 6 3 2

blk10 11 14 15 bit 5 4 1 0

The cbpY bit assignment is cbpY bit [15 – X] for sub-block_num X.

For 8x8 block (when Transform8x8flag = 1)

Only the lower 4 bits [3:0] are valid; the remaining upper bits [15:4] are ignored. The 8x8
Luma blocks are numbered as

blk0 1 bit3 2

blk2 3 bit1 0

The cbpY bit assignment is cbpY bit [3 – X] for block_num X.

0 in a bit – indicates the corresponding 8x8 block or 4x4 sub-block is not present
(because all coefficient values are zero)

1 in a bit – indicates the corresponding 8x8 block or 4x4 sub-block is present (although it
is still possible to have all its coefficients be zero – bad coding).

15:8 VertOrigin (Vertical Origin). This field specifies the vertical origin of current macroblock
in the destination picture in units of macroblocks.

For field macroblock pair in MBAFF frame, the vertical origins for both macroblocks
should be set as if they were located in corresponding field pictures. For example, for
field macroblock pair originated at (16, 64) pixel location in an MBAFF frame picture, the
Vertical Origin for both macroblocks should be set as 2 (macroblocks). Whether the
current macroblock is the first/second (top/bottom) in a MBAFF pair is specified by
FieldMbPolarityFlag.

The macroblocks with (VertOrigin, HorzOrigin) must be delivered in the strict order as
coded in the bitstream (raster order for progressive frame or field pictures and MBAFF
pair order for MBAFF pictures). No gap is allowed. Otherwise, hardware behavior is
undefined.

Format = U8 in unit of macroblock.

7:0 HorzOrigin (Horizontal Origin). This field specifies the horizontal origin of current
macroblock in the destination picture in units of macroblocks.

Format = U8 in unit of macroblock.

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 63

DWord Bit Description

2 31:16 CbpCr (Coded Block Pattern Cr 4:2:0-only)

Only the lower 4 bits [3:0] are valid; the remaining upper bits [15:4] are ignored (only
valid for 4:2:2 and 4:4:4). The 4x4 Chroma Cr sub-blocks are numbered as

blk0 1 bit3 2

blk2 3 bit1 0

The cbpCr bit assignment is cbpCr bit [3 – X] for sub-block_num X.

0 in a bit – indicates the corresponding 4x4 sub-block is not present (because all
coefficient values are zero)

1 in a bit – indicates the corresponding 4x4 sub-block is present (although it is still
possible to have all its coefficients be zero – bad coding).

For monochrome, this field is ignored.

15-0 CbpCb (Coded Block Pattern Cb 4:2:0-only)

Only the lower 4 bits [3:0] are valid; the remaining upper bits [15:4] are ignored (only
valid for 4:2:2 and 4:4:4). The 4x4 Chroma Cb sub-blocks are numbered as

blk0 1 bit3 2

blk2 3 bit1 0

The cbpCb bit assignment is cbpCb bit [3 – X] for sub-block_num X.

0 in a bit – indicates the corresponding 4x4 sub-block is not present (because all
coefficient values are zero)

1 in a bit – indicates the corresponding 4x4 sub-block is present (although it is still
possible to have all its coefficients be zero – bad coding).

For monochrome, this field is ignored.

3 31:24 Reserved MBz

23:16 QpPrimeCr

Driver is responsible for deriving the QpPrimeCr from QpPrimeY.

For 8-bit pixel data, QpCr is the same as QpPrimeCr, and it takes on a value in the range
of 0 to 51, positive integer.

15:8 QpPrimeCb

Driver is responsible for deriving the QpPrimeCb from QpPrimeY.

For 8-bit pixel data, QpCb is the same as QpPrimeCb, and it takes on a value in the range
of 0 to 51, positive integer.

 Media VDBOX

64 Doc Ref # IHD-OS-VLV-Vol8-04.14

DWord Bit Description

7:0 QpPrimeY

This is the per-MB QP value specified for the current MB.

For 8-bit pixel data, QpY is the same as QpPrimeY, and it takes on a value in the range of
0 to 51, positive integer.

4 to 6 31:0

Each

For intra macroblocks, definition of these fields are specified in Inline data subfields for an Intra
Macroblock
For inter macroblocks, definition of these fields are specified in Inline data subfields for an Inter
Macroblock

Indirect Data Format in AVC-IT Mode

Indirect data in AVC-IT mode consist of Motion Vectors, Transform-domain Residue (Coefficient) and
ILDB control data. All three data records have variable size. Size of each Motion Vector record is
determined by the MvQuantity value as shown in Indirect Data Format in AVC-IT Mode. ILDB control
record is fixed at the same size for all MBs in a picture. Coefficient data record is variable size per MB,
since it may only consist of non-zero coefficients.

Each MV is represented in 4 bytes, in the form of

• Lower 2 bytes: horizontal MVx component in q-pel units
• Upper 2 bytes: vertical MVy component in q-pel units
• Integer distance is measured in unit of samples in the frame or field grid position.
• Chroma MVs are not sent and are derived in the H/W.

Indirect MV record size in AVC-IT mode

Macroblock Type MVQuant

BP_L0_16x16 1

B_L1_16x16 1

B_Bi_16x16 2

BP_L0_L0_16x8 2

BP_L0_L0_8x16 2

B_L1_L1_16x8 2

B_L1_L1_8x16 2

B_L0_L1_16x8 2

B_L0_L1_8x16 2

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 65

Macroblock Type MVQuant

B_L1_L0_16x8 2

B_L1_L0_8x16 2

B_L0_Bi_16x8 3

B_L0_Bi_8x16 3

B_L1_Bi_16x8 3

B_L1_Bi_8x16 3

B_Bi_L0_16x8 3

B_Bi_L0_8x16 3

B_Bi_L1_16x8 3

B_Bi_L1_8x16 3

B_Bi_Bi_16x8 4

B_Bi_Bi_8x16 4

BP_8x8 Sum

For macroblock type of BP_8x8, MvQuant takes the sum of value MvQ[i] of the four individual 8x8 sub
macroblocks.

SubMbShape[i] SubMbPredMode[i] Description MvQ[i]

0 0 BP_L0_8x8 1

0 1 B_L1_8x8 1

0 2 B_BI_8x8 2

1 0 BP_L0_8x4 2

1 1 B_L1_8x4 2

1 2 B_BI_8x4 4

2 0 BP_L0_4x8 2

2 1 B_L1_4x8 2

2 2 B_BI_4x8 4

3 0 BP_L0_4x4 4

3 1 B_L1_4x4 4

3 2 B_BI_4x4 8

 Media VDBOX

66 Doc Ref # IHD-OS-VLV-Vol8-04.14

Indirect data Deblocking Filter Control block in AVC-IT mode:

AVC Deblocker Control Data record has a fixed size for each MB in a picture and is 48 bytes or 12
Dwords in size.

DWord Bit Description

0 31:24 Reserved: MBZ (DXVA Decoder)

23 FilterTopMbEdgeFlag

22 FilterLeftMbEdgeFlag

21 FilterInternal4x4EdgesFlag

20 FilterInternal8x8EdgesFlag

19 FieldModeAboveMbFlag

18 FieldModeLeftMbFlag

17 FieldModeCurrentMbFlag

16 MbaffFrameFlag (DXVA Decoder reserved bit)

15:8 VertOrigin Current MB y position (address)

7:0 HorzOrigin Current MB x position (address)

1 31:30 bS_h13 2-bit boundary strength for internal top horiz 4-pixel edge 3

29:28 bS_h12 2-bit boundary strength for internal top horiz 4-pixel edge 2

27:26 bS_h11 2-bit boundary strength for internal top horiz 4-pixel edge 1

25:24 bS_h10 2-bit boundary strength for internal top horiz 4-pixel edge 0

23:22 bS_v33 2-bit boundary strength for internal right vert 4-pixel edge 3

21:20 bS_v23 2-bit boundary strength for internal right vert 4-pixel edge 2

19:18 bS_v13 2-bit boundary strength for internal right vert 4-pixel edge 1

17:16 bS_v03 2-bit boundary strength for internal right vert 4-pixel edge 0

15:14 bS_v32 2-bit boundary strength for internal mid vert 4-pixel edge 3

13:12 bS_v22 2-bit boundary strength for internal mid vert 4-pixel edge 2

11:10 bS_v12 2-bit boundary strength for internal mid vert 4-pixel edge 1

9:8 bS_v02 2-bit boundary strength for internal mid vert 4-pixel edge 0

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 67

DWord Bit Description

7:6 bS_v31 2-bit boundary strength for internal left vert 4-pixel edge 3

5:4 bS_v21 2-bit boundary strength for internal left vert 4-pixel edge 2

3:2 bS_v11 2-bit boundary strength for internal left vert 4-pixel edge 1

1:0 bS_v01 2-bit boundary strength for internal left vert 4-pixel edge 0

2 31:28 bS_v30_0 4-bit boundary strength for Left0 4-pixel edge 3 (MSbit is wasted)

17:24 bS_v20_0 4-bit boundary strength for Left0 4-pixel edge 2 (MSbit is wasted)

23:20 bS_v10_0 4-bit boundary strength for Left0 4-pixel edge 1 (MSbit is wasted)

19:16 bS_v00_0 4-bit boundary strength for Left0 4-pixel edge 0 (MSbit is wasted)

15:14 bS_h33 2-bit boundary strength for internal bot horiz 4-pixel edge 3

13:12 bS_h32 2-bit boundary strength for internal bot horiz 4-pixel edge 2

11:10 bS_h31 2-bit boundary strength for internal bot horiz 4-pixel edge 1

9:8 bS_h30 2-bit boundary strength for internal bot horiz 4-pixel edge 0

7:6 bS_h23 2-bit boundary strength for internal mid horiz 4-pixel edge 3

5:4 bS_h22 2-bit boundary strength for internal mid horiz 4-pixel edge 2

3:2 bS_h21 2-bit boundary strength for internal mid horiz 4-pixel edge 1

1:0 bS_h20 2-bit boundary strength for internal mid horiz 4-pixel edge 0

3 31:28 bS_h03_0 4-bit boundary strength for Top0 4-pixel edge 3 (MSbit is wasted)

27:24 bS_h02_0 4-bit boundary strength for Top0 4-pixel edge 2 (MSbit is wasted)

23:20 bS_h01_0 4-bit boundary strength for Top0 4-pixel edge 1 (MSbit is wasted)

19:16 bS_h00_0 4-bit boundary strength for Top0 4-pixel edge 0 (MSbit is wasted)

15:12 bS_v03 4-bit boundary strength for Left1 4-pixel edge 3 (MSbit is wasted)

 Media VDBOX

68 Doc Ref # IHD-OS-VLV-Vol8-04.14

DWord Bit Description

11:8 bS_v02 4-bit boundary strength for Left1 4-pixel edge 2 (MSbit is wasted)

7:4 bS_v01 4-bit boundary strength for Left1 4-pixel edge 1 (MSbit is wasted)

3:0 bS_v00 4-bit boundary strength for Left1 4-pixel edge 0 (MSbit is wasted)

4 31:24 bIndexBinternal_Y Internal index B for Y

23:16 bIndexAinternal_Y Internal index A for Y

15:12 bS_h03_1 4-bit boundary strength for Top1 4-pixel edge 3 (MSbit is wasted)

11:8 bS_h02_1 4-bit boundary strength for Top1 4-pixel edge 2 (MSbit is wasted)

7:4 bS_h01_1 4-bit boundary strength for Top1 4-pixel edge 1 (MSbit is wasted)

3:0 bS_h00_1 4-bit boundary strength for Top1 4-pixel edge 0 (MSbit is wasted)

5 31:24 bIndexBleft1_Y

23:16 bIndexAleft1_Y

15:8 bIndexBleft0_Y

7:0 bIndexAleft0_Y

6 31:24 bIndexBtop1_Y

23:16 bIndexAtop1_Y

15:8 bIndexBtop0_Y

7:0 bIndexAtop0_Y

7 31:24 bIndexBleft0_Cb

23:16 bIndexAleft0_Cb

15:8 bIndexBinternal_Cb

7:0 bIndexAinternal_Cb

8 31:24 bIndexBtop0_Cb

23:16 bIndexAtop0_Cb

15:8 bIndexBleft1_Cb

7:0 bIndexAleft1_Cb

9 31:24 bIndexBinternal_Cr

23:16 bIndexAinternal_Cr

15:8 bIndexBtop1_Cb

7:0 bIndexAtop1_Cb

10 31:24 bIndexBleft1_Cr

23:16 bIndexAleft1_Cr

15:8 bIndexBleft0_Cr

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 69

DWord Bit Description

7:0 bIndexAleft0_Cr

11 31:24 bIndexBtop1_Cr

23:16 bIndexAtop1_Cr

15:8 bIndexBtop0_Cr

7:0 bIndexAtop0_Cr

Inline Data Description in VC1-IT Mode

DWord Bit Description

+0 31:28 MvFieldSelect. A bit-wise representation indicating which field in the reference frame is
used as the reference field for current field. It’s only used in decoding interlaced pictures.

This field is valid for non-intra macroblock only.

Bit Description

28 Forward predict of current frame/field or TOP field of interlace frame, or block 0 in 4MV
mode.

29 Backward predict of current frame/field or TOP field of interlace frame, or forward predict for
block 1 in 4MV mode.

30 Forward predict of BOTTOM field of interlace frame, or block 2 in 4MV mode.

31 Backward predict of BOTTOM field of interlace frame, or forward predict for block 3 in 4MV
mode.

 Each corresponding bit has the following indication.

0 = The prediction is taken from the top reference field.

1 = The prediction is taken from the bottom reference field.

27 Reserved. MBZ

26 MvFieldSelectChroma . This field specifies the polarity of reference field for chroma
blocks when their motion vector is derived in Motion4MV mode for interlaced (field)
picture.

Non-intra macroblock only. This field is derived from MvFieldSelect.

0 = The prediction is taken from the top reference field.

1 = The prediction is taken from the bottom reference field.

25:24 MotionType – Motion Type

For frame picture, a macroblock may only be either 00 or 10.

For interlace picture, a macroblock may be of any motion types. It can be 01 if and only if
DctType is 1.

This field is 00 if and only if IntraMacroblock is 1.

 Media VDBOX

70 Doc Ref # IHD-OS-VLV-Vol8-04.14

DWord Bit Description

00 = Intra

01 = Field Motion.

10 = Frame Motion or no motion.

Others = Reserved.

23 Reserved. MBZ

22 MvSwitch. This field specifies whether the prediction needs to be switched from forward
to backward or vice versa for single directional prediction for top and bottom fields of
interlace frame B macroblocks.

0 = No directional prediction switch from top field to bottom field

1 = Switch directional prediction from top field to bottom field

21 DctType. This field specifies whether the residual data is coded as field residual or frame
residual for interlaced picture. This field can be 1 only if MotionType is 00 (intra) or 01
(field motion).

For progressive picture, this field must be set to ‘0’, i.e. all macroblocks are frame
macroblock.

0 = Frame residual type.

1 = Field residual type.

20 OverlapTransform. This field indicates whether overlap smoothing filter should be
performed on I-block boundaries.

0 = No overlap smoothing filter.

1 = Overlap smoothing filter performed.

19 Motion4MV. This field indicates whether current macroblock a progressive P picture
uses 4 motion vectors, one for each luminance block.

It’s only valid for progressive P-picture decoding. Otherwise, it is reserved and MBZ. For
example, with MotionForward is 0, this field must also be set to 0.

0 = 1MV-mode.

1 = 4MV-mode.

18 MotionBackward. This field specifies whether the backward motion vector is active for
B-picture. This field must be 0 if Motion4MV is 1 (no backward motion vector in 4MV-
mode).

0 = No backward motion vector.

1 = Use backward motion vector(s).

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 71

DWord Bit Description

17 MotionForward. This field specifies whether the forward motion vector is active for P
and B pictures.

0 = No forward motion vector.

1 = Use forward motion vector(s).

16 IntraMacroblock. This field specifies if the current macroblock is intra-coded. When set,
Coded Block Pattern is ignored and no prediction is performed (i.e., no motion vectors
are used).

For field motion, this field indicates whether the top field of the macroblock is coded as
intra.

0 = Non-intra macroblock.

1 = Intra macroblock.

15:12 LumaIntra8x8Flag – Luma Intra 8x8 Flag

This field specifies whether each of the four 8x8 luminance blocks are intra or inter coded
when Motion4MV is set to 4MV-Mode.

Each bit corresponds to one block. "0" indicates the block is inter coded and ‘1’ indicates
the block is intra coded.

When Motion4MV is not 4MV-Mode, this field is reserved and MBZ.

Bit 15: Y0

Bit 14: Y1

Bit 13: Y2

Bit 12: Y3

11:6 CBP - Coded Block Pattern

This field specifies whether the 8x8 residue blocks in the macroblock are present or not.

Each bit corresponds to one block. "0" indicates residue block isn’t present, "1" indicates
residue block is present.

Note: For each block in an intra-coded macroblock or an intra-coded block in a P
macroblock in 4MV-Mode, the corresponding CBP must be 1. Subsequently, there must
be at least one coefficient (this coefficient might be zero) in the indirect data buffer
associated with the bock (i.e. residue block must be present).

Bit 11: Y0

Bit 10: Y1

Bit 9: Y2

Bit 8: Y3

 Media VDBOX

72 Doc Ref # IHD-OS-VLV-Vol8-04.14

DWord Bit Description

Bit 7: Cb4

Bit 6: Cr5

5 ChromaIntraFlag - Derived Chroma Intra Flag

This field specifies whether the chroma blocks should be treated as intra blocks based on
motion vector derivation process in 4MV mode.

0 = Chroma blocks are not coded as intra.

1 = Chroma blocks are coded as intra

4 LastRowFlag – Last Row Flag

This field indicates that the current macroblock belongs to the last row of the picture.

This field may be used by the kernel to manage pixel output when overlap transform is
on.

0 = Not in the last row

1 = In the last row

3 LastMBInRow – This field indicates the last MB in row flag.

2:0 Reserved. MBZ

+1 32:26 Reserved. MBZ

25:24 Reserved

23:16 Reserved

15:8 VertOrigin - Vertical Origin
In unit of macroblocks relative to the current picture (frame or field).

7:0 HorzOrigin - Horizontal Origin
In unit of macroblocks.

+2 31:16 MotionVector[0].Vert

15:0 MotionVector[0].Horz

+3 31:0 MotionVector[1]

+4 31:0 MotionVector[2]

+5 31:0 MotionVector[3]

+6 31:0 MotionVectorChroma

This field is not valid for a field motion in an interlaced frame picture where 4 MVs for
chroma blocks.

Notes: This field is derived from MotionVector[3:0] as described in the following section.

+7 31:24 Subblock Code for Y3

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 73

DWord Bit Description

The following subblock coding definition applies to all 6 subblock coding bytes. Bits 7:6
are reserved.

Subblock Partitioning
(Bits [1:0])

Specify Transform uses for an 8x8
block

Subblock Present
(0 means not present, 1 means present)

Bits
[1:0] Meaning Bit 2 Bit 3 Bit 4 Bit 5

00 Single 8x8 block (sb0) Sb0 Don’t care Don’t care Don’t care

01 Two 8x4 subblocks (sb0-1) Sb1 (bot) Sb0 (top) Don’t care Don’t care

10 Two 4x8 subblocks (sb0-1) Sb1 (right) Sb0 (left) Don’t care Don’t care

11 Four 4x4 subblocks (sb0-3) Sb3 (lower
right)

Sb2 (lower
left)

Sb1 (upper
right)

Sb0 (upper
left)

23:16 Subblock Code for Y2

15:8 Subblock Code for Y1

7:0 Subblock Code for Y0

+8 31:16 Reserved. MBZ

15:8 Subblock Code for Cr

7:0 Subblock Code for Cb

+9 31:24 ILDB control data for block Y3

23:16 ILDB control data for block Y2

15:8 ILDB control data for block Y1

7:0 ILDB control data for block Y0

+10 31:16 Reserved

15:8 ILDB control data for Cr block

7:0 ILDB control data for Cb block

Indirect Data Format in VC1-IT Mode

VC1-IT mode only contains IT-COEFF indirect data which is described in Common Indirect IT-COEFF
Data Structure.

Inline Data Description in MPEG2-IT Mode

The content in this command is similar to that in the MEDIA_OBJECT command in IS mode described in
the Media Chapter.

Each MFD_IT_OBJECT command corresponds to the processing of one macroblock. Macroblock
parameters are passed in as inline data and the non-zero DCT coefficient data for the macroblock is
passed in as indirect data.

 Media VDBOX

74 Doc Ref # IHD-OS-VLV-Vol8-04.14

The following table depicts the inline data format. Inline data starts at dword 7 of MFD_IT_OBJECT
command. There are 7 dwords total.

Table: Inline data in MPEG2-IT Mode

DWor
d Bit Description

+0 31:28 Motion Vertical Field Select. A bit-wise representation of a long
[2][2] array as defined in §6.3.17.2 of the ISO/IEC 13818-2 (see also
§7.6.4).

Bit MVector[r] MVector[s]
MotionVerticalFi
eldSelect Index

28 0 0 0

29 0 1 1

30 1 0 2

31 1 1 3

 Format = MC_MotionVerticalFieldSelect.

0 = The prediction is taken from the top reference field.

1 = The prediction is taken from the bottom reference field.

27 Reserved (was Second Field)

26 Reserved. (HWMC mode)

25:24 Motion Type. When combined with the destination picture type (field
or frame) this Motion Type field indicates the type of motion to be
applied to the macroblock. See ISO/IEC 13818-2 §6.3.17.1, Tables 6-17,
6-18. In particular, the device supports dual-prime motion prediction
(11) in both frame and field picture type.

Format = MC_MotionType

Value

Destination
= Frame

Picture_Stru
cture = 11

Destination
= Field

Picture_Stru
cture != 11

‘00’ Reserved Reserved

‘01’ Field Field

‘10’ Frame 16x8

‘11’ Dual-Prime Dual-Prime

23:22 Reserved. (Scan method)

21 DCT Type. This field specifies the DCT type of the current macroblock.
The kernel should ignore this field when processing Cb/Cr data. See

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 75

DWor
d Bit Description

ISO/IEC 13818-2 §6.3.17.1. This field is zero if Coded Block Pattern is
also zero (no coded blocks present).

0 = MC_FRAME_DCT (Macroblock is frame DCT coded).

1 = MC_FIELD_DCT (Macroblock is field DCT coded).

20 Reserved (was Overlap Transform - H261 Loop Filter).

19 Reserved (was 4MV Mode - H263)

18 Macroblock Motion Backward. This field specifies if the backward
motion vector is active. See ISO/IEC 13818-2 Tables B-2 through B-4.

0 = No backward motion vector.

1 = Use backward motion vector(s).

17 Macroblock Motion Forward. This field specifies if the forward
motion vector is active. See ISO/IEC 13818-2 Tables B-2 through B-4.

0 = No forward motion vector.

1 = Use forward motion vector(s).

16 Macroblock Intra Type. This field specifies if the current macroblock
is intra-coded. When set, Coded Block Pattern is ignored and no
prediction is performed (i.e., no motion vectors are used). See ISO/IEC
13818-2 Tables B-2 through B-4.

0 = Non-intra macroblock.

1 = Intra macroblock.

15:12 Reserved: MBZ

11:6 Coded Block Pattern. This field specifies whether blocks are present
or not.

Format = 6-bit mask.

Bit 11: Y0

Bit 10: Y1

Bit 9: Y2

Bit 8: Y3

Bit 7: Cb4

Bit 6: Cr5

5:4 Reserved. (Quantization Scale Code)

3 LastMBInRow – This field indicates the last MB in each row.

 Media VDBOX

76 Doc Ref # IHD-OS-VLV-Vol8-04.14

DWor
d Bit Description

2:0 Reserved: MBZ

+1 31:16 Reserved: MBZ

15:8 VertOrigin - Vertical Origin
In unit of macroblocks relative to the current picture (frame or field).

7:0 HorzOrigin - Horizontal Origin
In unit of macroblocks.

+2 31:16 Motion Vectors – Field 0, Forward, Vertical Component. Each vector
component is a 16-bit two’s-complement value. The vector is relative to the
current macroblock location. According to ISO/IEC 13818-2 Table 8, the valid
range of each vector component is [-2048, +2047.5], implying a format of
s11.1. However, it should be noted that motion vector values are sign
extended to 16 bits.

15:0 Motion Vectors – Field 0, Forward, Horizontal Component

+3 31:16 Motion Vectors – Field 0, Backward, Vertical Component

15:0 Motion Vectors – Field 0, Backward, Horizontal Component

+4 31:16 Motion Vectors – Field 1, Forward, Vertical Component

15:0 Motion Vectors – Field 1, Forward, Horizontal Component

+5 31:16 Motion Vectors – Field 1, Backward, Vertical Component

15:0 Motion Vectors – Field 1, Backward, Horizontal Component

Indirect Data Format in MPEG2-IT Mode

MPEG2-IT mode only contains IT-COEFF indirect data which is described in Section Common Indirect IT-
COEFF Data Structure.

Encoder StreamOut Mode Data Structure Definition
When StreamOut is enabled, per MB (and/or per Slice, per Picture) intermediated coding data (e.g. bit
allocated for each MB, etc.) are sent to the memory in a fixed record format (and of fixed size) from the
PAK. The per-MB records must be written in a strict raster order and with no gap (i.e. every MB
regardless of its mb_type and slice type, must have an entry in the StreamOut buffer). Therefore, the
consumer of the StreamOut data can offset into the StreamOut Buffer (StreamOut Data Destination
Base Address) using individual MB addresses.

Adding per macroblock stream out for PAK is for the following purposes:

• Immediate multi-pass PAK (without host or EU intervention)
o 3200-bit conformance
o Re-quantization

• Providing information for host for offline processing
• Providing information for updated QP’s

The description for the fixed format PAK streamout record :

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 77

Streamout Pointer: Use the existing streamout pointer and enabler

Table: Per Macroblock Information (a fixed size structure)

DWord Bit Description

0 31:24 MbQpY - Actual QPY used by the macroblock.

23:16
MbClock16 – MB compute clocks in 16-clock unit.

15:8 Reserved : MBZ

7:4 Reserved : MBZ (future conformance flags)

3 Reserved

2 MbRcFlag: MB level Rate control flag(pass through)The same value as
RateControlCounterEnable of MFX_AVC_SLICE_STATE Command

1 MbInterConfFlag: MB level InterMB conformance flag to trigger mutli-pass
1- if total Bit Count of an inter macroblock is more than Inter Conformance Max size limit
in the MFX_AVC_IMG_STATE Command

0 MbIntraConfFlag: MB level IntraMB conformance flag to trigger mutli-pass
1- if total Bit Count of an intra macroblock is more than Intra Conformance Max size limit
in the MFX_AVC_IMG_STATE Command

1 31:29 Reserved

28:16 MbBits : Total Bit Count for the macroblock

15:12 Reserved

12:0 MbHdrBits : Header Bit count (bit count due to Pre-coefficient data) for the macroblock

2 31:27 Reserved

26:0 Cbp: Coded Block Pattern of sub-blocks

3 31:30 Reserved

29 IntraMBFlag

28:24 MBType5Bits

23:17 Reserved

16 ClampFlag: Coefficient clamping flag for RC (Status)
1 - Indicates if clamping of any coefficient is done on the macroblock for Rate Control

15:0 Reserved (future QRC stat output)

 Media VDBOX

78 Doc Ref # IHD-OS-VLV-Vol8-04.14

PAK Multi-Pass

Multi-Pass PAK Usages:

• Intra MB 3200-bit conformance
• Inter MB Re-quantization
• Frame level Re-quantization

How to Enable Multi-Pass PAK

• Using the existing conditional batch buffer execution capability to skip/execute the second pass
o How to dynamically change the condition?

 Defined one error condition register with a mask. Do HW status page update at the
end of the first pass. 0 means all OK, non-zero means there is an error condition,
requiring second pass. Mask is used by the host to control what kind of multi-pass is
intended.

 For example, one error bit is 3200-bit conformance violation. Another error bit is the
total bit count exceeds (too much or too little) the target range (need to define the
target range in the state).

 The logic pefectly fits in the conditional batch buffer control logic that VCS has today
in GT. There is no additional logic need to be added in VCS to support media
functionality. (Batch Buffer Skip: This field only takes effect if Compare Semaphore
is set and the value at Semaphore Address is NOT greater than the Semaphore Data
Dword).

• Adding a picture level state command to enable and control the behavior of the second pass PAK
o How to control the re-PAK? Added 3 conformance flags (error registers) in the per-MB

streamout. Then the error control is based on the error register and the mask defined in
picture level states. There are 8 register flags defined out of which only the 3200-bit case
has usage model defined for today. The rest are left for future usage.

Following two MI packets are used inside VCS without any change to support Multipass-PAK behaviour.

• MI_Conditional_Batch_Buffer_End
• Memory Interface Registers

Driver Usage

Driver places Image states in one batch buffer and all slice level and macroblock level states into
another batch buffer and link 2 batch buffers. Also replicate Image states with multipass changes in
another batch buffer link them to slice/macroblock batch buffer. In this way, only Image states are
replicated but not the slice/macroblock states. The image states includes all buffers defined at
image(indirectMV, original pixel buffer, etc). Following changes are needed in the Multipass Image
State,

• Reset- Stream-Out Enable(disable stream out in the second pass)
• Set- MacroblockStatEnable (enable reading of macroblock status buffer)

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 79

• Reset- 3200-bit conformance (do not report 3200-bit conformance)

Define Conditional Batch Buffer End for CS/VCSVINunit

Programming Reference

Monochrome Picture Processing

Monochrome picture is specified using the Surface State with Surface Format of 12. Therefore, MFX
hardware, in either decode or encode mode, does not generate any read or write traffic for U/V
components. The motivation for this bandwidth optimization is that monochrome video coding might
be used for wireless display.

For Encoder:

1. No read in UV original components
2. Processing UV component - no
3. Reconstructed UV component reference picture - no
4. Filter UV component - no

For Decoder:

1. VLD mode: There is no color component in Monochrome mode and so no processing and not
writing output.

2. IT mode: There is no color component in the coefficient buffer, and so no processing and not
writing output.

Context Switch

There is no pre-emption for the BCS pipeline; hence every command buffer is required to contain all the
states setup (preamble). Specifically, CPU can not interrupt the BCS-BSD pipe, to stop the operation in
the middle of decoding a bitstream data.

Switch of contexts can only be performed at picture boundary.

No state needs to be saved.

 Media VDBOX

80 Doc Ref # IHD-OS-VLV-Vol8-04.14

Pipeline Flush

Implicit flush for AVC and VC1 is performed at the end of Slice: for MPEG2 is done when a new
image/picture command is issued. Because MPEG2 a slice can be one MB, no point to flush. MPEG2 will
snoop the next command if it is an img_state command.

Explicit flush MI (1 bit to do media pipeline vs Gx pipeline) flush and cache flush (switch reference
frame) – MI flush has bit to do cache flush. MI flush is for driver synchronization.

MMIO Interface

A set of registers are defined and accessible through MMIO interface to serve multiple purposes:

• Use for system configuration
• For accessing Performance counters

Register Name Description
Register

Type
Address
Offset Dec/Enc

MFD ERROR Status MFD ERROR STATUS_VLD ERROR
flags and counter

RO 12400 Dec

Reserved MBZ 12404~1241C

MFD picture-level parameter VC1 picture level parameters R/W 12420 Dec

Reserved MBZ 12434

MFX PIPELINE_STATUS_FLAGS MFX PIPELINE STATUS Flags_MFX
pipeline mode flags

RO 12438 Dec

MFX_Error_Injection_Parameter Control HW error injector WO 12454 Dec

Reserved 12458~1245C

MFX Frame Performance count Number of clocks spent
decoding/encoding a frame

RO 12460 Dec/Enc

MFX Slice Performance count Number of clocks spent
decoding/encoding a slice

RO 12464 Dec/Enc

MFX Frame Macroblock count Number of MBs decoded/encoded
per frame

RO 12468 Dec/Enc

MFD Frame BITSTREAM SE/BIN count Number of bin/SE decoded per
frame

RO 1246C Dec

MFX Memory Latency count1 Reference picture read latency -
min and max

RO 12470 Dec/Enc

MFX Memory Latency count2 Reference picture read latency -
Accumulative (used for compute
AVE latency)

RO 12474 Dec/ENc

MFX Memory Latency count3 row-store/bit-stream memory read
latency -min and max

RO 12478 Dec/Enc

MFX Memory Latency count4 row-store/bit-stream memory read
latency - accumulative (used to

RO 1247C Dec/End

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 81

Register Name Description
Register

Type
Address
Offset Dec/Enc

compute AVE latency)

MFX Frame row-stored/bit-stream read
Count

of row-store memory requests
sent

RO 12480 Dec/End

MFX Motion Comp read Count total number of CL memory
accesses per frame

RO 12484 Dec/ENd

MFX Motion Comp MISS Count total number of CL HITs per frame RO 12488 Dec/ENd

Reserved 1248C~1249C

MFC_BITSTREAM_BYTECOUNT_FRAME Total Bitstream Output Byte Count
register per Frame

RO 124A0 Enc

MFC_BITSTREAM_SE_BITCOUNT_FRAME Bitstream Output total Byte Count
for syntax eements (total byes of
MB data from SEC per frame)

RO 124A4 Enc

MFC_AVC_CABAC_BIN_COUNT_FRAME Bitstream Output total bin count
per frame

RO 124A8 Enc

MFC_AVC_CABAC_INSERTION_COUNT Bitstream Output CABAC Insertion
Count Register

RO 124AC Enc

MFC_AVC_MINSIZE_PADDING_COUNT Bitstream Output Minimal Size
Padding Count Register

RO 124B0 Enc

MFC_IMAGE_STATUS_MASK image status(flags). R/W 124B4 Enc

MFC_IMAGE_STATUS_CONTROL suggested data for next frame in
multi-pass.

RO 124B8 Enc

MFC_QP_STATUS_COUNT Overall adjusted delta QP via
multi-pass, Sum of QPY for all
macroblocks of the frame

RO 124BC Enc

 124C0~124CC Enc

MFC_BITSTREAM_BYTECOUNT_SLICE Bitstream Output Byte Count
Register per Slice

RO 124D0 Enc

MFC_BITSTREAM_SE_BITCOUNT_SLICE Bitstream Output Bit Count for the
last Syntax Element Register

RO 124D4 Enc

PAK_ REPORT_WARNING MPC Warning Register RO 124E4 Enc

PAK_REPORT_ERROR MPC Error Register RO 124E8 Enc

PAK_REPORT_RUNNING PAK_REPORT_RUNNING status
register

RO 124EC Enc

Reserved 124F0~124FC Enc

Decoder Registers

Following are Decoder Registers:

MFD_ERROR_STATUS - MFD Error Status

AVC CAVLC

AVC CABAC

 Media VDBOX

82 Doc Ref # IHD-OS-VLV-Vol8-04.14

VC1

MPEG2

JPEG

MFD_PICTURE_PARAM - MFD Picture Parameter

MFX_STATUS_FLAGS - MFX Pipeline Status Flags

MFX_FRAME_PERFORMANCE_CT - MFX Frame Performance Count

MFX_SLICE_PERFORM_CT - MFX Slice Performance Count

MFX_MB_COUNT - MFX Frame Macroblock Count

MFX_SE-BIN_CT - MFX Frame BitStream SE/BIN Count

MFX_LAT_CT1 - MFX_Memory_Latency_Count1

MFX_LAT_CT2 - MFX Memory Latency Count2

MFX_LAT_CT3 - MFX Memory Latency Count3

MFX_LAT_CT4 - MFX Memory Latency Count4

MFX_SE-BIN_CT - MFX Frame BitStream SE/BIN Count

MFX_READ_CT - MFX Frame Motion Comp Read Count

MFX_MISS_CT - MFX Frame Motion Comp Miss Count

Encoder Registers

Following are the Encoder Registers:

MFC_VIN_AVD_ERROR_CNTR - MFC_AVC Bitstream Decoding Front-End Parsing Logic Error Counter

MFC_BITSTREAM_BYTECOUNT_FRAME - Reported Bitstream Output Byte Count per Frame Register

MFC_BITSTREAM_SE_BITCOUNT_FRAME - Reported Bitstream Output Bit Count for Syntax Elements Only
Register

MFC_AVC_CABAC_BIN_COUNT_FRAME - Reported Bitstream Output CABAC Bin Count Register

AVC_CABAC_INSERTION_COUNT - MFC_AVC_CABAC_INSERTION_COUNT

MFC_AVC_MINSIZE_PADDING_COUNT - Bitstream Output Minimal Size Padding Count Report Register

MFC_IMAGE_STATUS_MASK - MFC Image Status Mask

MFC_IMAGE_STATUS_CONTROL - MFC Image Status Control

MFC_QUP_CT - MFC QP Status Count

MFC_BITSTREAM_BYTECOUNT_SLICE - Bitstream Output Byte Count Per Slice Report Register

MFC_BITSTREAM_SE_BITCOUNT_SLICE - Bitstream Output Bit Count for the last Syntax Element Report
Register

Media VDBOX

Doc Ref # IHD-OS-VLV-Vol8-04.14 83

Row Store Sizes and Allocations

 AVC VC1 MPEG2 JPEG IT ENC SEC ENC

vin_vmx_pixcoefind_
addr[31:6]

Bitstream Bitstream Bitstream Bitstream VDS COEF Orig Pix BSP data

vin_vmx_mvbsdrs_
addr[31:6]

VAD BSD VMD RS VDS MV MPC MV

vin_vmx_mpcildbmpr_
addr[31:6]

VAM MPR VDS ILDB MPC RS

vin_vmx_dmv*_
addr[31:6]

VAM DMV VCP DMV

vin_vmx_bp_addr
[31:0]

 VCP BP

 Write Surf size

 VBP BP vin_bp_addr Frame width/pitch * Height

 VMD RS vin_vmx_mvbsdrs_addr Frame width

 VCP RS vin_vmx_mvbsdrs_addr Frame width

 VCP DMV vin_vmx_dmv1_addr Frame size

 VAD BSD vin_vmx_mvbsdrs_addr Frame width * (1+mbaff)

 VAM MPR vin_vmx_mpcildbmpr_addr Frame width * (1+mbaff)

 VAM DMV 34x1 mux, from IDC Frame size

 Streamout vin_streamout_addr Frame size

 VOP RS vin_ipred_os_addr Frame width

 MPC RS vin_vmx_mpcildbmpr_addr Frame width * (1+mbaff)

 BSP BS Direct from BSP

 BSP MB Direct from BSP

 Read

row store VMD vin_vmx_mvbsdrs_addr Frame width

row store VCP vin_vmx_mvbsdrs_addr Frame width

DMV VCP vin_vmx_dmv*_addr Frame size

Bitplane VCD vin_vmx_bp_addr Frame width/pitch * Height

Bsd VAD vin_vmx_mvbsdrs_addr Frame width * (1+mbaff)

 Media VDBOX

84 Doc Ref # IHD-OS-VLV-Vol8-04.14

 Write Surf size

Mpr VAM vin_vmx_mpcildbmpr_addr Frame width * (1+mbaff)

Dmv VAM vin_vmx_dmv*_addr Frame size

Coef VDS vin_vmx_pixcoefind_addr Obj

Mv VDS vin_vmx_mvbsdrs_addr Obj

Ildb VDS vin_vmx_mpcildbmpr_addr Obj

Rs VIP vin_ipred_os_addr Frame width

RS MPC vin_vmx_mpcildbmpr_addr Frame width * (1+mbaff)

MV MPC vin_vmx_mvbsdrs_addr Obj

sec enc BSP vin_vmx_mvbsdrs_addr Obj

multipass VIN vin_vmx_bp_addr Frame size

orig pix USB vin_vmx_pixcoefind_addr Frame size

MPEG2 VLD Decoding Mode :

use BSD Row Store only, and

MPEG2 IT Decoding Mode :

MPEG2 IT mode does not need row-store

JPEG VLD Decoding Mode: no row store is needed

	MFX Architecture
	MFX Introduction
	MFC Overview
	Example Usage Model
	Sample Algorithmic Flow
	Synchronization Mechanism
	Restrictions

	MFD Overview
	MFD Memory Interface
	MFD Codec-Specific Commands

	MFX Interruptability Model
	Decoder Input Bitstream Formats
	AVC Bitstream Formats – DXVA Short
	AVC Bitstream Formats – DXVA Long
	VC1 Bitstream Formats – Intel Long
	MPEG2 Bitstream Formats – DXVA1
	JPEG Bitstream Formats – Intel

	Concurrent, Multiple Video Stream Decoding Support
	VDBOX Registers
	Scratch Bits

	MFX Codec Commands Summary
	MFX Decoder Commands Sequence
	Examples for AVC
	Examples for VC1
	Examples for JPEG

	MFX Pipe Common Commands

	Video Codecs
	Video Codec for AVC/MVC (H.264)
	AVC Common Commands
	AVC Decoder Commands
	Session Decoder StreamOut Data Structure
	AVC Encoder PAK Commands
	Indirect Data Description
	Unpacked Motion Vector Data Block
	Packed-Size Motion Vector Data Block

	Macroblock Level Rate Control
	Theory of Operation Overview

	AVC Encoder MBAFF Support Algorithm

	MPEG-2
	MPEG2 Common Commands
	MPEG2 Decoder Commands
	Indirect Data Description

	VC-1
	VC1 Decoder Commands
	Handling Emulation Bytes

	JPEG and MJPEG
	JPEG Decoder Commands

	More Decoder and Encoder
	MFD IT Mode Decode Commands
	Common Indirect IT-COEFF Data Structure
	Inline Data Description in AVC-IT Mode
	Indirect Data Format in AVC-IT Mode
	Inline Data Description in VC1-IT Mode
	Indirect Data Format in VC1-IT Mode
	Inline Data Description in MPEG2-IT Mode
	Indirect Data Format in MPEG2-IT Mode

	Encoder StreamOut Mode Data Structure Definition
	PAK Multi-Pass
	Driver Usage

	Programming Reference
	Monochrome Picture Processing
	Context Switch
	Pipeline Flush
	MMIO Interface
	Decoder Registers
	Encoder Registers

	Row Store Sizes and Allocations

