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Notices and Disclaimers 

Intel technologies may require enabled hardware, software or service activation. 

No product or component can be absolutely secure. 

Code names are used by Intel to identify products, technologies, or services that are in development and 

not publicly available. These are not "commercial" names and not intended to function as trademarks. 

Customer is responsible for safety of the overall system, including compliance with applicable safety-

related requirements or standards. 

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by 

this document.  

The products described may contain design defects or errors known as errata which may cause the 

product to deviate from published specifications. Current characterized errata are available on request.  

You may not use or facilitate the use of this document in connection with any infringement or other legal 

analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free 

license to any patent claim thereafter drafted which includes subject matter disclosed herein. 

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of 

merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising 

from course of performance, course of dealing, or usage in trade. 

Intel may make changes to specifications and product descriptions at any time, without notice. Designers 

must not rely on the absence or characteristics of any features or instructions marked "reserved" or 

"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for 

conflicts or incompatibilities arising from future changes to them. The information here is subject to 

change without notice. Do not finalize a design with this information. 

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its 

subsidiaries. Other names and brands may be claimed as the property of others. 
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Memory Data Formats 

This chapter describes the attributes associated with the memory-resident data objects operated on by 

the graphics pipeline. This includes object types, pixel formats, memory layouts, and rules/restrictions 

placed on the dimensions, physical memory location, pitch, alignment, etc. with respect to the specific 

operations performed on the objects. 

Unsigned Normalized (UNORM) 

An unsigned normalized value with n bits is interpreted as a value between 0.0 and 1.0. The minimum 

value (all 0's) is interpreted as 0.0, the maximum value (all 1's) is interpreted as 1.0. Values in between are 

equally spaced. For example, a 2-bit UNORM value would have the four values 0, 1/3, 2/3, and 1. 

If the incoming value is interpreted as an n-bit integer, the interpreted value can be calculated by 

dividing the integer by 2n-1. 

Gamma Conversion (SRGB) 

Gamma conversion is only supported on UNORM formats. If this flag is included in the surface format 

name, it indicates that a reverse gamma conversion is to be done after the source surface is read, and a 

forward gamma conversion is to be done before the destination surface is written. 

Signed Normalized (SNORM) 

Programming Note 

Context: Signed normalized value in memory data formats. 

A signed normalized value with n bits is interpreted as a value between -1 and +1.0. If the incoming value is 

interpreted as a 2's-complement n-bit integer, the interpreted value can be calculated by dividing the integer by 2n-

1-1. The most negative value of -2n-1 will result in a value slightly smaller than -1.0. This value is clamped to -1.0; 

thus, there are two representations of -1.0 in SNORM format. 

Unsigned Integer (UINT/USCALED) 

The UINT and USCALED formats interpret the source as an unsigned integer value with n bits with a 

range of 0 to 2n-1. 

The UINT formats copy the source value to the destination (zero-extending if required), keeping the 

value as an integer. 

The USCALED formats convert the integer into the corresponding floating-point value (e.g., 0x03 --> 

3.0f). For 32-bit sources, the value is rounded to nearest even. 
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Signed Integer (SINT/SSCALED)  

A signed integer value with n bits is interpreted as a 2's complement integer with a range of -2n-1 to +2n-

1-1. 

The SINT formats copy the source value to the destination (sign-extending if required), keeping the value 

as an integer. 

The SSCALED formats convert the integer into the corresponding floating-point value (e.g., 0xFFFD --> -

3.0f). For 32-bit sources, the value is rounded to nearest even. 

Floating Point (FLOAT) 

Refer to IEEE Standard 754 for Binary Floating-Point Arithmetic. The IA-32 Intel (R) Architecture Software 

Developer's Manual also describes floating point data types. 

64-bit Floating Point 

Bit Description 

63 Sign (s) 

62:52 Exponent (e)  Biased Exponent 

51:0 Fraction (f) Does not include "hidden one" 

The value of this data type is derived as: 

• if e == b'11..11' and f != 0, then v is NaN regardless of s 

• if e == b'11..11' and f == 0, then v = (-1)s*infinity (signed infinity) 

• if 0 < e < b'11..11', then v = (-1)s*2(e-1023)*(1.f) 

• if e == 0 and f != 0, then v = (-1)s*2(e-1022)*(0.f) (denormalized numbers) 

• if e == 0 and f == 0, then v = (-1)s*0 (signed zero) 

32-bit Floating Point 

Bit Description 

31 Sign (s) 

30:23 Exponent (e)  Biased Exponent 

22:0 Fraction (f) Does not include "hidden one" 

The value of this data type is derived as: 

• if e == 255 and f != 0, then v is NaN regardless of s 

• if e == 255 and f == 0, then v = (-1)s*infinity (signed infinity) 

• if 0 < e < 255, then v = (-1)s*2(e-127)*(1.f) 

• if e == 0 and f != 0, then v = (-1)s*2(e-126)*(0.f) (denormalized numbers) 

• if e == 0 and f == 0, then v = (-1)s*0 (signed zero) 
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16-bit Floating Point 

Bit Description 

15 Sign (s) 

14:10 Exponent (e)  Biased Exponent 

9:0 Fraction (f) Does not include "hidden one" 

The value of this data type is derived as: 

• if e == 31 and f != 0, then v is NaN regardless of s 

• if e == 31 and f == 0, then v = (-1)s*infinity (signed infinity) 

• if 0 < e < 31, then v = (-1)s*2(e-15)*(1.f) 

• if e == 0 and f != 0, then v = (-1)s*2(e-14)*(0.f) (denormalized numbers) 

• if e == 0 and f == 0, then v = (-1)s*0 (signed zero) 

The following table represents relationship between 32 bit and 16 bit floating point ranges: 

flt32 exponent Unbiased exponent Normalization flt16 exponent flt16 fraction 

255     

254 127    

...     

127+16 16 Infinity 31 1.1111111111 

127+15 15 Max exponent 30 1.xxxxxxxxxx 

127 0  15 1.xxxxxxxxxx 

113 -14 Min exponent 1 1.xxxxxxxxxx 

112  Denormalized 0 0.1xxxxxxxxx 

111  Denormalized 0 0.01xxxxxxxx 

110  Denormalized 0 0.001xxxxxxx 

109  Denormalized 0 0.0001xxxxxx 

108  Denormalized 0 0.00001xxxxx 

107  Denormalized 0 0.000001xxxx 

106  Denormalized 0 0.0000001xxx 

115  Denormalized 0 0.00000001xx 

114  Denormalized 0 0.000000001x 

113  Denormalized 0 0.0000000001 

112  Denormalized 0 0.0 

...     

0   0 0.0 

Conversion from the 32-bit floating point format to the 16-bit format should be done with round to 

nearest even. 
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11-bit Floating Point 

Bits Description 

10:6 Exponent (e): Biased exponent (the bias depends 

on e) 

5:0 Fraction (f): Fraction bits to the right of the binary 

point 

The value v of an 11-bit floating-point number is calculated from e and f as: 

• if e == 31 and f != 0 then v = NaN 

• if e == 31 and f == 0 then v = +infinity 

• if 0 < e < 31, then v = 2(e-15)*(1.f) 

• if e == 0 and f != 0, then v = 2(e-14)*(0.f) (denormalized numbers) 

• if e == 0 and f == 0, then v = 0 (zero) 

There is no sign bit and negative values are not represented. 

The 11-bit floating-point format has one more bit of fractional precision than the 10-bit floating-point 

format. 

The maximum representable finite value is 1.111111b * 215 = FE00h = 65024. 

10-bit Floating Point 

Bits Description 

9:5 Exponent (e): Biased exponent (the bias depends on e) 

4:0 Fraction (f): Fraction bits to the right of the binary point 

The value v of a 10-bit floating-point number is calculated from e and f as: 

• if e == 31 and f != 0 then v = NaN 

• if e == 31 and f == 0 then v = +infinity 

• if 0 < e < 31, then v = 2(e-15)*(1.f) 

• if e == 0 and f != 0, then v = 2(e-14)*(0.f) (denormalized numbers) 

• if e == 0 and f == 0, then v = 0 (zero) 

There is no sign bit and negative values are not represented. 

The maximum representable finite value is 1.11111b * 215 = FC00h = 64512. 

The R10G10B10_FLOAT_A2_UNORM format has a 4-bit exponent and a 6-bit fraction. 

Bits Description 

9:6 Exponent (e): Biased exponent (the bias depends on e) 

5:0 
Fraction (f): Fraction bits to the right of the binary point 

The value v of a 10-bit floating-point number is calculated from e and f as: 
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• if e == 15 and f != 0 then v = NaN 

• if e == 15 and f == 0 then v = +infinity 

• if 0 < e < 15, then v = 2(e-7)*(1.f) 

• if e == 0 and f != 0, then v = 2-6*(0.f) (denormalized numbers) 

• if e == 0 and f == 0, then v = 0 (zero) 

There is no sign bit and negative values are not represented. 

The maximum representable finite value is 1.111111b * 27 = FC00h = 254. 

 

Shared Exponent 

The R9G9B9E5_SHAREDEXP format contains three channels that share an exponent. The three fractions 

assume an impled "0" rather than an implied "1" as in the other floating-point formats. This format does 

not support infinity and NaN values. There are no sign bits, only positive numbers and zero can be 

represented. The value of each channel is determined as follows, where "f" is the fraction of the 

corresponding channel, and "e" is the shared exponent. 

v = (0.f)*2(e-15) 

Bit Description 

31:27 
Exponent (e)  Biased Exponent 

26:18 
Blue Fraction 

17:9 
Green Fraction 

8:0 
Red Fraction 

Common Surface Formats 

This section documents surfaces and how they are stored in memory, including 3D and video surfaces, 

including the details of compressed texture formats. Also covered are the surface layouts based on tiling 

mode and surface type. 

Non-Video Surface Formats 

This section describes the lowest-level organization of a surfaces containing discrete "pixel" oriented 

data (e.g., discrete pixel (RGB,YUV) colors, subsampled video data, 3D depth/stencil buffer pixel formats, 

bump map values etc. Many of these pixel formats are common to the various pixel-oriented memory 

object types. 
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Surface Format Naming 

Unless indicated otherwise, all pixels are stored in "little endian" byte order. i.e., pixel bits 7:0 are stored 

in byte n, pixel bits 15:8 are stored in byte n+1, and so on. The format labels include color components in 

little endian order (e.g., R8G8B8A8 format is physically stored as R, G, B, A). 

The name of most of the surface formats specifies its format. Channels are listed in little endian order 

(LSB channel on the left, MSB channel on the right), with the channel format specified following the 

channels with that format. For example, R5G5_SNORM_B6_UNORM contains, from LSB to MSB, 5 bits of 

red in SNORM format, 5 bits of green in SNORM format, and 6 bits of blue in UNORM format. 

Intensity Formats 

All surface formats containing "I" include an intensity value. When used as a source surface for the 

sampling engine, the intensity value is replicated to all four channels (R,G,B,A) before being filtered. 

Intensity surfaces are not supported as destinations. 

Luminance Formats 

All surface formats containing "L" include a luminance value. When used as a source surface for the 

sampling engine, the luminance value is replicated to the three color channels (R,G,B) before being 

filtered. The alpha channel is provided either from another field or receives a default value. Luminance 

surfaces are not supported as destinations. 

R1_UNORM  

When used as a texel format, the R1_UNORM format contains 8 1-bit Intensity (I) values that are 

replicated to all color channels. Note that T0 of byte 0 of a R1_UNORM-formatted texture corresponds to 

Texel[0,0]. This is different from the format used for monochrome sources in the BLT engine. 

7 6 5 4 3 2 1 0 

T7 T6 T5 T4 T3 T2 T1 T0 

 

Bit Description 

T0 
Texel 0 

On texture reads, this (unsigned) 1-bit value is replicated 

to all color channels. 

Format: U1 

... 
... 

T7 
Texel 7 

On texture reads, this (unsigned) 1-bit value is replicated 

to all color channels. 
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Bit Description 

Format: U1 

Compressed Surface Formats  

This section contains information on the internal organization of compressed surface formats. 

ETC1_RGB8  

This format compresses UNORM RGB data using an 8-byte compression block representing a 4x4 block 

of texels. The texels are labeled as texel[row][column] where both row and column range from 0 to 3. 

Texel[0][0] is the upper left texel. 

The 8-byte compression block is laid out as follows. 

High 24 bits if "diff" is zero (individual mode): 

Bits Description 

7:4 R0[3:0] 

3:0 R1[3:0] 

15:12 G0[3:0] 

11:8 G1[3:0] 

23:20 B0[3:0] 

19:16 B1[3:0] 

High 24 bits if "diff" is one (differential mode): 

Bits Description 

7:3 R0[4:0] 

2:0 dR1[2:0] 

15:11 G0[4:0] 

10:8 dG1[2:0] 

23:19 B0[4:0] 

18:16 dB1[2:0] 

Low 40 bits: 

Bits Description 

31:29 lum table index for sub-block 0 

28:26 lum table index for sub-block 1 

25 diff 

24 flip 

39 texel[3][3] index MSB 

38 texel[2][3] index MSB 
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Bits Description 

37 texel[1][3] index MSB 

36 texel[0][3] index MSB 

35 texel[3][2] index MSB 

34 texel[2][2] index MSB 

33 texel[1][2] index MSB 

32 texel[0][2] index MSB 

47 texel[3][1] index MSB 

46 texel[2][1] index MSB 

45 texel[1][1] index MSB 

44 texel[0][1] index MSB 

43 texel[3][0] index MSB 

42 texel[2][0] index MSB 

41 texel[1][0] index MSB 

40 texel[0][0] index MSB 

55 texel[3][3] index LSB 

54 texel[2][3] index LSB 

53 texel[1][3] index LSB 

52 texel[0][3] index LSB 

51 texel[3][2] index LSB 

50 texel[2][2] index LSB 

49 texel[1][2] index LSB 

48 texel[0][2] index LSB 

63 texel[3][1] index LSB 

62 texel[2][1] index LSB 

61 texel[1][1] index LSB 

60 texel[0][1] index LSB 

59 texel[3][0] index LSB 

58 texel[2][0] index LSB 

57 texel[1][0] index LSB 

56 texel[0][0] index LSB 

The 4x4 is divided into two 8-pixel sub-blocks, either two 2x4 sub-blocks or two 4x2 sub-blocks 

controlled by the "flip" bit. If flip=0, sub-block 0 is the 2x4 on the left and sub-block 1 is the 2x4 on the 

right. If flip=1, sub-block 0 is the 4x2 on the top and sub-block 1 is the 4x2 on the bottom. 

The "diff" bit controls whether the red/green/blue values (R0/G0/B0/R1/G1/B1) are stored as one 444 

value per sub-block ("individual" mode with diff = 0), or a single 555 value for the first sub-block 

(R0/G0/B0) and a 333 delta value (dR1/dG1/dB1) for the second sub-block ("differential" mode with diff 

= 1). The delta values are 3-bit two's-complement values that hold values in the range [-4,3]. These 
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values are added to the 5-bit values for sub-block 0 to obtain the 5-bit values for sub-block 1 (if the 

value is outside of the range [0,31], the result of the decompression is undefined). From the 4- or 5-bit 

per channel values, an 8-bit value for each channel is extended by replication and provides the 888 base 

color for each sub-block. 

For each sub-block one of 8 different luminance columns is selected based on the 3-bit lum table index. 

Then each texel selects one of the 4 rows of the selected column with a 2-bit per-texel index. The chosen 

value in the table is added to the 8-bit base color for the sub-block (obtained in the previous step) to 

obtain the texel's color. Values in the table are given in decimal, representing an 8-bit UNORM as an 8-

bit signed integer. 

Luminance Table 

 
0 1 2 3 4 5 6 7 

0 
2 5 9 13 18 24 33 47 

1 
8 17 29 42 60 80 106 183 

2 
-2 -5 -9 -13 -18 -24 -33 -47 

3 
-8 -17 -29 -42 -60 -80 -106 -183 

ETC2_RGB8 and ETC2_SRGB8  

The ETC2_RGB8 format builds on top of ETC1_RGB8, using a set of invalid bit sequences to enable three 

new modes. The two modes of ETC1_RGB8 are also supported with ETC2_RGB8, and will not be 

documented in this section as they are covered in the ETC1_RGB8 section. 

The detection of the three new modes is based on RGB and diff bits in locations as defined for ETC1 

differential mode. The mode is determined as follows (x indicates don't care): 

diff Rt Gt Bt mode 

0 x x x individual 

1 0 x x T 

1 1 0 x H 

1 1 1 0 planar 

1 1 1 1 differential 

The inputs in the above table are defined as follows: 

 Rt = (R0 + dR1) in [0,31] 

 Gt = (G0 + dG1) in [0,31] 

 Bt = (G0 + dB1) in [0,31] 
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8-byte compression block for mode determination 

Bits Description 

7:3 R0[4:0] 

2:0 dR1[2:0] 

15:11 G0[4:0] 

10:8 dG1[2:0] 

23:19 B0[4:0] 

18:16 dB1[2:0] 

31:26 ignored 

25 diff 

24 ignored 

63:32 ignored 

The fields in the table above are used only for mode determination. Some of the bits in this table are 

overloaded with other values within each mode. The algorithm is defined such that there is no ambiguity 

in modes when this is done. 

T mode 

The "T" mode has the following bit definition: 

8-byte compression block for "T" mode 

Bits Description 

7:5 ignored 

4:3 R0[3:2] 

2 ignored 

1:0 R0[1:0] 

15:12 G0[3:0] 

11:8 B0[3:0] 

23:20 R1[3:0] 

19:16 G1[3:0] 

31:28 B1[3:0] 

27:26 di[2:1] 

25 diff = 1 

24 di[0] 

39 texel[3][3] index MSB 

38 texel[2][3] index MSB 

37 texel[1][3] index MSB 

36 texel[0][3] index MSB 
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Bits Description 

35 texel[3][2] index MSB 

34 texel[2][2] index MSB 

33 texel[1][2] index MSB 

32 texel[0][2] index MSB 

47 texel[3][1] index MSB 

46 texel[2][1] index MSB 

45 texel[1][1] index MSB 

44 texel[0][1] index MSB 

43 texel[3][0] index MSB 

42 texel[2][0] index MSB 

41 texel[1][0] index MSB 

40 texel[0][0] index MSB 

55 texel[0][0] index LSB 

54 texel[2][3] index LSB 

53 texel[1][3] index LSB 

52 texel[0][3] index LSB 

51 texel[3][2] index LSB 

50 texel[2][2] index LSB 

49 texel[1][2] index LSB 

48 texel[0][2] index LSB 

63 texel[3][1] index LSB 

62 texel[2][1] index LSB 

61 texel[1][1] index LSB 

60 texel[0][1] index LSB 

59 texel[3][0] index LSB 

58 texel[2][0] index LSB 

57 texel[1][0] index LSB 

56 texel[0][0] index LSB 

The "T" mode has two base colors stored as 4 bits per channel, R0/G0/B0 and R1/G1/B1, as in the 

individual mode, however the bit positions for these are different. For each channel, the 4 bits are 

extended to 8 bits by bit replication. 

A 3-bit distance index "di" is also defined in the compression block. This value is used to look up the 

distance in the following table: 

distance index 

"di" distance "d" 

0 3 

1 6 
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distance index 

"di" distance "d" 

2 11 

3 16 

4 23 

5 32 

6 41 

7 64 

Four colors are possible on each texel. These colors are defined as the following: 

 P0 = (R0, G0, B0) 

 P1 = (R1, G1, B1) + (d, d, d) 

 P2 = (R1, G1, B1) 

 P3 = (R1, G1, B1) - (d, d, d) 

    

All resulting channels are clamped to the range [0,255]. One of the four colors is then assigned to each 

texel in the block based on the 2-bit texel index. 

H mode 

The "H" mode has the following bit definition: 

8-byte compression block for "H" mode 

Bits Description 

7 ignored 

6:3 R0[3:0] 

2:0 G0[3:1] 

15:13 ignored 

12 G0[0] 

11 B0[3] 

10 ignored 

9:8 B0[2:1] 

23 B0[0] 

22:19 R1[3:0] 

18:16 G1[3:1] 

31 G1[0] 

30:27 B1[3:0] 

26 di[2] 

25 diff = 1 

24 di[1] 

39 texel[3][3] index MSB 
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Bits Description 

38 texel[2][3] index MSB 

37 texel[1][3] index MSB 

36 texel[0][3] index MSB 

35 texel[3][2] index MSB 

34 texel[2][2] index MSB 

33 texel[1][2] index MSB 

32 texel[0][2] index MSB 

47 texel[3][1] index MSB 

46 texel[2][1] index MSB 

45 texel[1][1] index MSB 

44 texel[0][1] index MSB 

43 texel[3][0] index MSB 

42 texel[2][0] index MSB 

41 texel[1][0] index MSB 

40 texel[0][0] index MSB 

55 texel[3][3] index LSB 

54 texel[2][3] index LSB 

53 texel[1][3] index LSB 

52 texel[0][3] index LSB 

51 texel[3][2] index LSB 

50 texel[2][2] index LSB 

49 texel[1][2] index LSB 

48 texel[0][2] index LSB 

63 texel[3][1] index LSB 

62 texel[2][1] index LSB 

61 texel[1][1] index LSB 

60 texel[0][1] index LSB 

59 texel[3][0] index LSB 

58 texel[2][0] index LSB 

57 texel[1][0] index LSB 

56 texel[0][0] index LSB 

The "H" mode has two base colors stored as 4 bits per channel, R0/G0/B0 and R1/G1/B1, as in the 

individual and T modes, however the bit positions for these are different. For each channel, the 4 bits are 

extended to 8 bits by bit replication. 

A 3-bit distance index "di" is defined by 2 MSBs in the compression block and the LSB computed by the 

following equation, where R/G/B values are the 8-bit values from the first step: 
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 di[0] = ((R0 « 16) | (G0 « 8) | B0) >= ((R1 « 16) | (G1 « 8) | B1) 

    

The distance "d" is then looked up in the same table used for T mode. The four colors for H mode are 

computed as follows: 

 P0 = (R0, G0, B0) + (d, d, d) 

 P1 = (R0, G0, B0) - (d, d, d) 

 P2 = (R1, G1, B1) + (d, d, d) 

 P3 = (R1, G1, B1) - (d, d, d) 

    

All resulting channels are clamped to the range [0,255]. One of the four colors is then assigned to each 

texel in the block based on the 2-bit texel index as in T mode. 

Planar mode 

The "planar" mode has the following bit definition: 

8-byte compression block for "planar" mode 

Bits Description 

7 ignored 

6:1 R0[5:0] 

0 G0[6] 

15 ignored 

14:9 G0[5:0] 

8 B[5] 

23:21 ignored 

20:19 B[4:3] 

18 ignored 

17:16 B0[2:1] 

31 B0[0] 

30:26 RH[5:1] 

25 diff = 1 

24 RH[0] 

39:33 GH[6:0] 

32 BH[5] 

47:43 BH[4:0] 

42:40 RV[5:3] 

55:53 RV[2:0] 

52:48 GV[6:2] 

63:62 GV[1:0] 

61:56 BV[5:0] 
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The "planar" mode has three base colors stored as RGB 676, with red & blue having 6 bits and green 

having 7 bits. These three base colors are each extended to RGB 888 with bit replication. 

The color of each texel is then computed using the following equations, with x and y representing the 

texel position within the compression block: 

 texel[y][x].R = x(RH-R0)/4 + y(RV-R0)/4 + R0 

 texel[y][x].G = x(GH-G0)/4 + y(GV-G0)/4 + G0 

 texel[y][x].B = x(BH-B0)/4 + y(BV-B0)/4 + B0 

    

All resulting channels are clamped to the range [0,255]. 

The ETC2_SRGB8 format is decompressed as if it is ETC2_RGB8, then a conversion from the resulting RGB 

values to SRGB space is performed. 

EAC_R11 and EAC_SIGNED_R11  

These formats compress UNORM/SNORM single-channel data using an 8-byte compression block 

representing a 4x4 block of texels. The texels are labeled as texel[row][column] where both row and 

column range from 0 to 3. Texel[0][0] is the upper left texel.  

The 8-byte compression block is laid out as follows. 

EAC_R11 compression block layout 

Bits Description 

7:0 R0[7:0] 

15:12 m[3:0] 

11:8 ti[3:0] 

23:21 texel[0][0] index 

20:18 texel[1][0] index 

17:16,31 texel[2][0] index 

30:28 texel[3][0] index 

27:25 texel[0][1] index 

24,39:38 texel[1][1] index 

37:35 texel[2][1] index 

34:32 texel[3][1] index 

47:45 texel[0][2] index 

44:42 texel[1][2] index 

41:40,55 texel[2][2] index 

54:52 texel[3][2] index 

51:49 texel[0][3] index 

48,63:62 texel[1][3] index 

61:59 texel[2][3] index 

58:56 texel[3][3] index 
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The "ti" (table index) value from the compression block is used to select one of the columns in the table 

below. 

Intensity modifier (im) table 

 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 
-3 -3 -2 -2 -3 -3 -4 -3 -2 -2 -2 -2 -3 -1 -4 -3 

1 
-6 -7 -5 -4 -6 -7 -7 -5 -6 -5 -4 -5 -4 -2 -6 -5 

2 
-9 -10 -8 -6 -8 -9 -8 -8 -8 -8 -8 -7 -7 -3 -8 -7 

3 
-15 -13 -13 -13 -12 -11 -11 -11 -10 -10 -10 -10 -10 -10 -9 -9 

4 
2 2 1 1 2 2 3 2 1 1 1 1 2 0 3 2 

5 
5 6 4 3 5 6 6 4 5 4 3 4 3 1 5 4 

6 
8 9 7 5 7 8 7 7 7 7 7 6 6 2 7 6 

7 
14 12 12 12 11 10 10 10 9 9 9 9 9 9 8 8 

The eight possible color values Ri are then computed from the 8 values in the column labeled imi, where i 

ranges from 0 to 7: 

For EAC_R11: 

if (m == 0) Ri = R0*8 + 4 + imi else Ri = R0*8 + 4 + (imi * m * 8) 

Each value is clamped to the range [0,2047]. 

For EAC_SIGNED_R11: 

if (m == 0) Ri = R0*8 + imi else Ri = R0*8 + (imi * m * 8) 

Each value is clamped to the range [-1023,1023]. 

Note that in the signed case, the R0 value is a signed, 2's complement value in the range [-127, 127]. 

Before being used in the above equations, an R0 value of -128 must be clamped to -127. 

Finally, each texel red value is selected from the 8 possible values Ri using the 3-bit index for that texel. 

The green, blue, and alpha values are set to their default values. 

The final value represents an 11-bit UNORM or SNORM as an unsigned/signed integer. 

ETC2_RGB8_PTA and ETC2_SRGB8_PTA  

The ETC2_RGB8_PTA format is similar to ETC2_RGB8 but eliminates the "individual" mode in favor of 

allowing a punch-through alpha. The "diff" bit from ETC2_RGB8 is renamed to "opaque" in this format, 
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and the mode selection behaves as if the "diff" bit is always 1, making the "individual" mode inaccessible 

for these formats. 

An alpha value of either 0 or 255 (representing 0.0 or 1.0) is possible with this format. If alpha is 

determined to be zero, the three other channels are also forced to zero, regardless of what value the 

normal decompression algorithm would have produced. 

Differential Mode 

In differential mode, if the opaque bit is set, the luminance table for ETC2_RGB8 is used. If the opaque bit 

is not set, the following luminance table is used (note that rows 0 and 2 have been zeroed out, otherwise 

the table is the same): 

Luminance Table for opaque bit not set 

 0 1 2 3 4 5 6 7 

0 
0 0 0 0 0 0 0 0 

1 
8 17 29 42 60 80 106 183 

2 
0 0 0 0 0 0 0 0 

3 
-8 -17 -29 -42 -60 -80 -106 -183 

For each texel, if the opaque bit is zero and the corresponding texel index is equal to 2, the alpha value is 

set to zero (and therefore RGB for that texel will also end up at zero). Otherwise alpha is set to 255 and 

RGB is the result of the normal decompression calculations. 

T and H Modes 

In both of these modes, if the opaque bit is zero and the texel index is equal to 2, the alpha value is set 

to zero (and therefore RGB will also end up at zero). Otherwise alpha is set to 255. 

Planar Mode 

In planar mode, the opaque bit is ignored, and alpha is set to 255. 

The ETC2_SRGB8_PTA format is decompressed as if it is ETC2_RGB8_PTA, then a conversion from the 

resulting RGB values to SRGB space is performed, with alpha remaining unchanged. 

ETC2_EAC_RGBA8 and ETC2_EAC_SRGB8_A8  

The ETC2_EAC_RGBA8 format is a combination of ETC2_RGB8 and EAC_R8. A 16-byte compression block 

represents each 4x4. The low-order 8 bytes are used to compute alpha (instead of red) using the EAC_R8 

algorithm. The high-order 8 bytes are used to compute RGB using the ETC2_RGB8 algorithm. The EAC_R8 

format differs from EAC_R11 as described below. 
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The ETC2_EAC_SRGB8_A8 format is decompressed as if it is ETC2_EAC_RGBA8, then a conversion from 

the resulting RGB values to SRGB space is performed, with alpha remaining unchanged. 

EAC_R8 Format: 

The EAC_R8 format used within these surface formats is identical to EAC_R11 described in an earlier 

section, except the procedure for computing the eight possible color values Ri is performed as follows: 

Ri = R0 + (imi * m) 

Each value is clamped to the range [0,255]. 

EAC_RG11 and EAC_SIGNED_RG11  

These formats compress UNORM/SNORM double-channel data using a 16-byte compression block 

representing a 4x4 block of texels. The texels are labeled as texel[row][column] where both row and 

column range from 0 to 3. Texel[0][0] is the upper left texel. 

The 16-byte compression block is laid out as follows. 

EAC_RG11 compression block layout 

Bits Description 

63:56 G0[7:0] 

55:52 Gm[3:0] 

51:48 Gti[3:0] 

47:45 texel[0][0] G index 

44:42 texel[1][0] G index 

41:39 texel[2][0] G index 

38:36 texel[3][0] G index 

35:33 texel[0][1] G index 

32:30 texel[1][1] G index 

29:27 texel[2][1] G index 

26:24 texel[3][1] G index 

23:21 texel[0][2] G index 

20:18 texel[1][2] G index 

17:15 texel[2][2] G index 

14:12 texel[3][2] G index 

11:9 texel[0][3] G index 

8:6 texel[1][3] G index 

5:3 texel[2][3] G index 

66:64 texel[3][3] G index 

63:56 R0[7:0] 

55:52 Rm[3:0] 

51:48 Rti[3:0] 
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Bits Description 

47:45 texel[0][0] R index 

44:42 texel[1][0] R index 

41:39 texel[2][0] R index 

38:36 texel[3][0] R index 

35:33 texel[0][1] R index 

32:30 texel[1][1] R index 

29:27 texel[2][1] R index 

26:24 texel[3][1] R index 

23:21 texel[0][2] R index 

20:18 texel[1][2] R index 

17:15 texel[2][2] R index 

14:12 texel[3][2] R index 

11:9 texel[0][3] R index 

8:6 texel[1][3] R index 

5:3 texel[2][3] R index 

2:0 texel[3][3] R index 

These compression formats are identical to the EAC_R11 and EAC_SIGNED_R11 formats, except that they 

supply two channels of output data, both red and green, from two independent 8-byte portions of the 

compression block. The low half of the compression block contains the red information, and the high half 

contains the green information. Blue and alpha channels are set to their default values. 

Refer to the EAC_R11 and EAC_SIGNED_R11 specification for details on how the red and green channels 

are generated using the data in the compression block. 

DXT/BC1-3 Texture Formats  

 Note that non-power-of-2 dimensioned maps may require the surface to be padded out to the next 

multiple of four texels - here the pad texels are not referenced by the device.  

An 8-byte (QWord) block encoding can be used if the source texture contains no transparency (is 

opaque) or if the transparency can be specified by a one-bit alpha. A 16-byte (DQWord) block encoding 

can be used to support source textures that require more than one-bit alpha: here the 1st QWord is used 

to encode the texel alpha values, and the 2nd QWord is used to encode the texel color values. 

These three types of format are discussed in the following sections: 

• Opaque and One-bit Alpha Textures (DXT1) 

• Opaque Textures (DXT1_RGB) 

• Textures with Alpha Channels (DXT2-5) 

DXT2 and DXT3 are equivalent compression formats from the perspective of the hardware. The only 

difference between the two is the use of pre-multiplied alpha encoding, which does not affect hardware. 
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Likewise, DXT4 and DXT5 are the same compression formats with the only difference being the use of 

pre-multiplied alpha encoding. 

Note that the surface formats DXT1-5 are referred to in the DirectX Specification as BC1-3. The mapping 

between formats is shown below: 

• DXT1 => BC1 

• DXT2/DXT3 => BC2 

• DXT4/DXT5 => BC3 

Programming Note 

Context: DXT Texture Formats 

• Any single texture must specify that its data is stored as 64 or 128 bits per group of 16 texels. If 64-bit 

blocks--that is, format DXT1--are used for the texture, it is possible to mix the opaque and one-bit alpha 

formats on a per-block basis within the same texture. In other words, the comparison of the unsigned 

integer magnitude of color_0 and color_1 is performed uniquely for each block of 16 texels. 

• When 128-bit blocks are used, then the alpha channel must be specified in either explicit (format DXT2 or 

DXT3) or interpolated mode (format DXT4 or DXT5) for the entire texture. Note that as with color, once 

interpolated mode is selected then either 8 interpolated alphas or 6 interpolated alphas mode can be used 

on a block-by-block basis. Again the magnitude comparison of alpha_0 and alpha_1 is done uniquely on a 

block-by-block basis. 

Opaque and One-bit Alpha Textures (DXT1/BC1)  

Texture format DXT1 is for textures that are opaque or have a single transparent color. For each opaque 

or one-bit alpha block, two 16-bit R5G6B5 values and a 4x4 bitmap with 2-bits-per-pixel are stored. This 

totals 64 bits (1 QWord) for 16 texels, or 4-bits-per-texel. 

In the block bitmap, there are two bits per texel to select between the four colors, two of which are 

stored in the encoded data. The other two colors are derived from these stored colors by linear 

interpolation. 

The one-bit alpha format is distinguished from the opaque format by comparing the two 16-bit color 

values stored in the block. They are treated as unsigned integers. If the first color is greater than the 

second, it implies that only opaque texels are defined. This means four colors will be used to represent 

the texels. In four-color encoding, there are two derived colors and all four colors are equally distributed 

in RGB color space. This format is analogous to R5G6B5 format. Otherwise, for one-bit alpha 

transparency, three colors are used and the fourth is reserved to represent transparent texels. Note that 

the color blocks in DXT2-5 formats strictly use four colors, as the alpha values are obtained from the 

alpha block 

In three-color encoding, there is one derived color and the fourth two-bit code is reserved to indicate a 

transparent texel (alpha information). This format is analogous to A1R5G5B5, where the final bit is used 

for encoding the alpha mask. 
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The following piece of pseudo-code illustrates the algorithm for deciding whether three- or four-color 

encoding is selected: 

 if (color_0 > color_1) 

 { 

   // Four-color block: derive the other two colors.   

   // 00 = color_0, 01 = color_1, 10 = color_2, 11 = color_3 

   // These two bit codes correspond to the 2-bit fields 

   // stored in the 64-bit block. 

    color_2 = (2 * color_0 + color_1) / 3; 

    color_3 = (color 0 + 2 * color_1) / 3; 

 }   

 else 

 { 

   // Three-color block: derive the other color. 

   // 00 = color_0, 01 = color_1, 10 = color_2, 

   // 11 = transparent. 

   // These two bit codes correspond to the 2-bit fields 

   // stored in the 64-bit block. 

    color_2 = (color_0 + color_1) / 2;   

    color_3 = transparent;   

 } 

    

The following tables show the memory layout for the 8-byte block. It is assumed that the first index 

corresponds to the y-coordinate and the second corresponds to the x-coordinate. For example, 

Texel[1][2] refers to the texture map pixel at (x,y) = (2,1). 

Here is the memory layout for the 8-byte (64-bit) block: 

Word Address 16-bit Word 

0 Color_0 

1 Color_1 

2 Bitmap Word_0 

3 Bitmap Word_1 

Color_0 and Color_1 (colors at the two extremes) are laid out as follows: 

Bits Color 

15:11 Red color component 

10:5 Green color component 

4:0 Blue color component 

 

Bits Texel 

1:0 (LSB) Texel[0][0] 

3:2 Texel[0][1] 

5:4 Texel[0][2] 

7:6 Texel[0][3] 

9:8 Texel[1][0] 

11:10 Texel[1][1] 

13:12 Texel[1][2] 
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Bits Texel 

15:14 Texel[1][3] 

Bitmap Word_1 is laid out as follows: 

Bits Texel 

1:0 (LSB) Texel[2][0] 

3:2 Texel[2][1] 

5:4 Texel[2][2] 

7:6 Texel[2][3] 

9:8 Texel[3][0] 

11:10 Texel[3][1] 

13:12 Texel[3][2] 

15:14 (MSB) Texel[3][3] 

Example of Opaque Color Encoding 

As an example of opaque encoding, we will assume that the colors red and black are at the extremes. We 

will call red color_0 and black color_1. There will be four interpolated colors that form the uniformly 

distributed gradient between them. To determine the values for the 4x4 bitmap, the following 

calculations are used: 

 00 ? color_0 

 01 ? color_1 

 10 ? 2/3 color_0 + 1/3 color_1 

 11 ? 1/3 color_0 + 2/3 color_1 

    

Example of One-bit Alpha Encoding 

This format is selected when the unsigned 16-bit integer, color_0, is less than the unsigned 16-bit 

integer, color_1. An example of where this format could be used is leaves on a tree to be shown against a 

blue sky. Some texels could be marked as transparent while three shades of green are still available for 

the leaves. Two of these colors fix the extremes, and the third color is an interpolated color. 

The bitmap encoding for the colors and the transparency is determined using the following calculations: 

 00 ? color_0 

 01 ? color_1 

 10 ? 1/2 color_0 + 1/2 color_1 

 11 ? Transparent 

    

Opaque Textures (DXT1_RGB)  

Texture format DXT1_RGB is identical to DXT1, with the exception that the One-bit Alpha encoding is 

removed. Color 0 and Color 1 are not compared, and the resulting texel color is derived strictly from the 

Opaque Color Encoding. The alpha channel defaults to 1.0. 
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Programming Note 

Context: Opaque Textures (DXT1_RGB) 

The behavior of this format is not compliant with the OGL spec. 

Compressed Textures with Alpha Channels (DXT2-5 / BC2-3)  

There are two ways to encode texture maps that exhibit more complex transparency. In each case, a 

block that describes the transparency precedes the 64-bit block already described for DXT1. The 

transparency is either represented as a 4x4 bitmap with four bits per pixel (explicit encoding), or with 

fewer bits and linear interpolation analogous to what is used for color encoding. 

The transparency block and the color block are laid out as follows: 

Word Address 64-bit Block 

3:0 Transparency block 

7:4 Previously described 64-bit block 

Explicit Texture Encoding 

For explicit texture encoding (DXT2 and DXT3 formats), the alpha components of the texels that describe 

transparency are encoded in a 4x4 bitmap with 4 bits per texel. These 4 bits can be achieved through a 

variety of means such as dithering or by simply using the 4 most significant bits of the alpha data. 

However, they are produced, they are used just as they are, without any form of interpolation. 

Note: DirectDraw's compression method uses the 4 most significant bits. 

The following tables illustrate how the alpha information is laid out in memory, for each 16-bit word. 

This is the layout for Word 0: 

Bits Alpha 

3:0 (LSB) [0][0] 

7:4 [0][1] 

11:8 [0][2] 

15:12 (MSB) [0][3] 

This is the layout for Word 1: 

Bits Alpha 

3:0 (LSB) [1][0] 

7:4 [1][1] 

11:8 [1][2] 

15:12 (MSB) [1][3] 
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This is the layout for Word 2: 

Bits Alpha 

3:0 (LSB) [2][0] 

7:4 [2][1] 

11:8 [2][2] 

15:12 (MSB) [2][3] 

This is the layout for Word 3: 

Bits Alpha 

3:0 (LSB) [3][0] 

7:4 [3][1] 

11:8 [3][2] 

15:12 (MSB) [3][3] 

Three-Bit Linear Alpha Interpolation 

The encoding of transparency for the DXT4 and DXT5 formats is based on a concept similar to the linear 

encoding used for color. Two 8-bit alpha values and a 4x4 bitmap with three bits per pixel are stored in 

the first eight bytes of the block. The representative alpha values are used to interpolate intermediate 

alpha values. Additional information is available in the way the two alpha values are stored. If alpha_0 is 

greater than alpha_1, then six intermediate alpha values are created by the interpolation. Otherwise, four 

intermediate alpha values are interpolated between the specified alpha extremes. The two additional 

implicit alpha values are 0 (fully transparent) and 255 (fully opaque). 

The following pseudo-code illustrates this algorithm: 

 // 8-alpha or 6-alpha block? 

 if (alpha_0 > alpha_1) { 

    // 8-alpha block: derive the other 6 alphas. 

    // 000 = alpha_0, 001 = alpha_1, others are interpolated 

   alpha_2 = (6 * alpha_0 + alpha_1) / 7;     // Bit code 010 

   alpha_3 = (5 * alpha_0 + 2 * alpha_1) / 7; // Bit code 011 

   alpha_4 = (4 * alpha_0 + 3 * alpha_1) / 7; // Bit code 100 

   alpha_5 = (3 * alpha_0 + 4 * alpha_1) / 7; // Bit code 101 

   alpha_6 = (2 * alpha_0 + 5 * alpha_1) / 7; // Bit code 110 

   alpha_7 = (alpha_0 + 6 * alpha_1) / 7;     // Bit code 111 

  } 

 else {  

    // 6-alpha block: derive the other alphas. 

    // 000 = alpha_0, 001 = alpha_1, others are interpolated 

   alpha_2 = (4 * alpha_0 + alpha_1) / 5;     // Bit code 010 

   alpha_3 = (3 * alpha_0 + 2 * alpha_1) / 5; // Bit code 011 

   alpha_4 = (2 * alpha_0 + 3 * alpha_1) / 5; // Bit code 100 

   alpha_5 = (alpha_0 + 4 * alpha_1) / 5;     // Bit code 101 

   alpha_6 = 0;                               // Bit code 110 

   alpha_7 = 255;                             // Bit code 111 

 } 
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The memory layout of the alpha block is as follows: 

Byte Alpha 

0 Alpha_0 

1 Alpha_1 

2 [0][2] (2 LSBs), [0][1], [0][0] 

3 [1][1] (1 LSB), [1][0], [0][3], [0][2] (1 MSB) 

4 [1][3], [1][2], [1][1] (2 MSBs) 

5 [2][2] (2 LSBs), [2][1], [2][0] 

6 [3][1] (1 LSB), [3][0], [2][3], [2][2] (1 MSB) 

7 [3][3], [3][2], [3][1] (2 MSBs) 

BC4  

BC4  

These formats (BC4_UNORM and BC4_SNORM) compresses single-component UNORM or SNORM data. 

An 8-byte compression block represents a 4x4 block of texels. The texels are labeled as 

texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel. 

The 8-byte compression block is laid out as follows: 

Bit Description 

7:0 red_0 

15:8 red_1 

18:16 texel[0][0] bit code 

21:19 texel[0][1] bit code 

24:22 texel[0][2] bit code 

27:25 texel[0][3] bit code 

30:28 texel[1][0] bit code 

33:31 texel[1][1] bit code 

36:34 texel[1][2] bit code 

39:37 texel[1][3] bit code 

42:40 texel[2][0] bit code 

45:43 texel[2][1] bit code 

48:46 texel[2][2] bit code 

51:49 texel[2][3] bit code 

54:52 texel[3][0] bit code 

57:55 texel[3][1] bit code 

60:58 texel[3][2] bit code 

63:61 texel[3][3] bit code 
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There are two interpolation modes, chosen based on which reference color is larger. The first mode has 

the two reference colors plus six equal-spaced interpolated colors between the reference colors, chosen 

based on the three-bit code for that texel. The second mode has the two reference colors plus four 

interpolated colors, chosen by six of the three-bit codes. The remaining two codes select min and max 

values for the colors. The values of red_0 through red_7 are computed as follows: 

 red_0 = red_0;                           // bit code 000 

 red_1 = red_1;                           // bit code 001 

 if (red_0 > red_1) { 

     red_2 = (6 * red_0 + 1 * red_1) / 7; // bit code 010 

     red_3 = (5 * red_0 + 2 * red_1) / 7; // bit code 011 

     red_4 = (4 * red_0 + 3 * red_1) / 7; // bit code 100 

     red_5 = (3 * red_0 + 4 * red_1) / 7; // bit code 101 

     red_6 = (2 * red_0 + 5 * red_1) / 7; // bit code 110 

     red_7 = (1 * red_0 + 6 * red_1) / 7; // bit code 111 

 } 

 else { 

     red_2 = (4 * red_0 + 1 * red_1) / 5; // bit code 010 

     red_3 = (3 * red_0 + 2 * red_1) / 5; // bit code 011 

     red_4 = (2 * red_0 + 3 * red_1) / 5; // bit code 100 

     red_5 = (1 * red_0 + 4 * red_1) / 5; // bit code 101 

     red_6 = UNORM ? 0.0 : -1.0;          // bit code 110 (0 for UNORM, -1 for SNORM) 

     red_7 = 1.0;                         // bit code 111 

 } 

    

BC5  

BC5  

These formats (BC5_UNORM and BC5_SNORM) compresses dual-component UNORM or SNORM data. A 

16-byte compression block represents a 4x4 block of texels. The texels are labeled as texel[row][column] 

where both row and column range from 0 to 3. Texel[0][0] is the upper left texel. 

The 16-byte compression block is laid out as follows: 

Bit Description 

7:0 red_0 

15:8 red_1 

18:16 texel[0][0] red bit code 

21:19 texel[0][1] red bit code 

24:22 texel[0][2] red bit code 

27:25 texel[0][3] red bit code 

30:28 texel[1][0] red bit code 

33:31 texel[1][1] red bit code 

36:34 texel[1][2] red bit code 

39:37 texel[1][3] red bit code 

42:40 texel[2][0] red bit code 

45:43 texel[2][1] red bit code 

48:46 texel[2][2] red bit code 
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Bit Description 

51:49 texel[2][3] red bit code 

54:52 texel[3][0] red bit code 

57:55 texel[3][1] red bit code 

60:58 texel[3][2] red bit code 

63:61 texel[3][3] red bit code 

71:64 green_0 

79:72 green_1 

82:80 texel[0][0] green bit code 

85:83 texel[0][1] green bit code 

88:86 texel[0][2] green bit code 

91:89 texel[0][3] green bit code 

94:92 texel[1][0] green bit code 

97:95 texel[1][1] green bit code 

100:98 texel[1][2] green bit code 

103:101 texel[1][3] green bit code 

106:104 texel[2][0] green bit code 

109:107 texel[2][1] green bit code 

112:110 texel[2][2] green bit code 

115:113 texel[2][3] green bit code 

118:116 texel[3][0] green bit code 

121:119 texel[3][1] green bit code 

124:122 texel[3][2] green bit code 

127:125 texel[3][3] green bit code 

There are two interpolation modes, chosen based on which reference color is larger. The first mode has 

the two reference colors plus six equal-spaced interpolated colors between the reference colors, chosen 

based on the three-bit code for that texel. The second mode has the two reference colors plus four 

interpolated colors, chosen by six of the three-bit codes. The remaining two codes select min and max 

values for the colors. The values of red_0 through red_7 are computed as follows: 

 red_0 = red_0;                           // bit code 000 

 red_1 = red_1;                           // bit code 001 

 if (red_0 > red_1) { 

     red_2 = (6 * red_0 + 1 * red_1) / 7; // bit code 010 

     red_3 = (5 * red_0 + 2 * red_1) / 7; // bit code 011 

     red_4 = (4 * red_0 + 3 * red_1) / 7; // bit code 100 

     red_5 = (3 * red_0 + 4 * red_1) / 7; // bit code 101 

     red_6 = (2 * red_0 + 5 * red_1) / 7; // bit code 110 

     red_7 = (1 * red_0 + 6 * red_1) / 7; // bit code 111 

 } 

 else { 

     red_2 = (4 * red_0 + 1 * red_1) / 5; // bit code 010 

     red_3 = (3 * red_0 + 2 * red_1) / 5; // bit code 011 

     red_4 = (2 * red_0 + 3 * red_1) / 5; // bit code 100 

     red_5 = (1 * red_0 + 4 * red_1) / 5; // bit code 101 
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     red_6 = UNORM ? 0.0 : -1.0;          // bit code 110 (0 for UNORM, -1 for SNORM) 

     red_7 = 1.0;                         // bit code 111 

 } 

    

The same calculations are done for green, using the corresponding reference colors and bit codes. 

BC6H  

These formats (BC6H_UF16 and BC6H_SF16) compresses 3-channel images with high dynamic range (> 8 

bits per channel). BC6H supports floating point denorms but there is no support for INF and NaN, other 

than with BC6H_SF16 -INF is supported. The alpha channel is not included; thus alpha is returned at its 

default value. 

The BC6H block is 16 bytes and represents a 4x4 block of texels. The texels are labeled as 

texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel. 

BC6H has 14 different modes, the mode that the block is in is contained in the least significant bits 

(either 2 or 5 bits). 

The basic scheme consists of interpolating colors along either one or two lines, with per-texel indices 

indicating which color along the line is chosen for each texel. If a two-line mode is selected, one of 32 

partition sets is indicated which selects which of the two lines each texel is assigned to. 

Field Definition  

There are 14 possible modes for a BC6H block, the format of each is indicated in the 14 tables below. The 

mode is selected by the unique mode bits specified in each table. The first 10 modes use two lines 

("TWO"), and the last 4 use one line ("ONE"). The difference between the various two-line and one-line 

modes is with the precision of the first endpoint and the number of bits used to store delta values for the 

remaining endpoints. Two modes (9 and 10) specify each endpoint as an original value rather than using 

the deltas (these are indicated as having no delta values). 

The endpoints values and deltas are indicated in the tables using a two-letter name. The first letter is "r", 

"g", or "b" indicating the color channel. The second letter is "w", "x", "y", or "z" indicating which of the 

four endpoints. The first line has endpoints "w" and "x", with "w" being the endpoint that is fully specified 

(i.e. not as a delta). The second line has endpoints "y" and "z". Modes using ONE mode do not have 

endpoints "y" and "z" as they have only one line. 

In addition to the mode and endpoint data, TWO blocks contain a 5-bit "partition" which selects one of 

the partition sets, and a 46-bit set of indices. ONE blocks contain a 63-bit set of indices. These are 

described in more detail below. 

Mode 0: (TWO) Red, Green, Blue: 10-bit endpoint, 5-bit deltas 

Bit Description 

1:0 mode = 00 

2 gy[4] 

3 by[4] 

4 bz[4] 
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Bit Description 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

39:35 rx[4:0] 

40 gz[4] 

44:41 gy[3:0] 

49:45 gx[4:0] 

50 bz[0] 

54:51 gz[3:0] 

59:55 bx[4:0] 

60 bz[1] 

64:61 by[3:0] 

69:65 ry[4:0] 

70 bz[2] 

75:71 rz[4:0] 

76 bz[3] 

81:77 partition 

127:82 indices 

Mode 1: (TWO) Red, Green, Blue: 7-bit endpoint, 6-bit deltas 

Bit Description 

1:0 mode = 01 

2 gy[5] 

3 gz[4] 

4 gz[5] 

11:5 rw[6:0] 

12 bz[0] 

13 bz[1] 

14 by[4] 

21:15 gw[6:0] 

22 by[5] 

23 bz[2] 

24 gy[4] 

31:25 bw[6:0] 

32 bz[3] 

33 bz[5] 

34 bz[4] 
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Bit Description 

40:35 rx[5:0] 

44:41 gy[3:0] 

50:45 gx[5:0] 

54:51 gz[3:0] 

60:55 bx[5:0] 

64:61 by[3:0] 

70:65 ry[5:0] 

76:71 rz[5:0] 

81:77 partition 

127:82 indices 

Mode 2: (TWO) Red: 11-bit endpoint, 5-bit deltas 

Green, Blue: 11-bit endpoint, 4-bit deltas 

Bit Description 

4:0 mode = 00010 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

39:35 rx[4:0] 

40 rw[10] 

44:41 gy[3:0] 

48:45 gx[3:0] 

49 gw[10] 

50 bz[0] 

54:51 gz[3:0] 

58:55 bx[3:0] 

59 bw[10] 

60 bz[1] 

64:61 by[3:0] 

69:65 ry[4:0] 

70 bz[2] 

75:71 rz[4:0] 

76 bz[3] 

81:77 partition 

127:82 indices 

Mode 3: (TWO) Red, Blue: 11-bit endpoint, 4-bit deltas 
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Green: 11-bit endpoint, 5-bit deltas 

Bit Description 

4:0 mode = 00110 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

38:35 rx[3:0] 

39 rw[10] 

40 gz[4] 

44:41 gy[3:0] 

49:45 gx[4:0] 

50 gw[10] 

54:51 gz[3:0] 

58:55 bx[3:0] 

59 bw[10] 

60 bz[1] 

64:61 by[3:0] 

68:65 ry[3:0] 

69 bz[0] 

70 bz[2] 

74:71 rz[3:0] 

75 gy[4] 

76 bz[3] 

81:77 partition 

127:82 indices 

Mode 4: (TWO) Red, Green: 11-bit endpoint, 4-bit deltas 

Blue: 11-bit endpoint, 5-bit deltas 

Bit Description 

4:0 mode = 01010 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

38:35 rx[3:0] 

39 rw[10] 

40 by[4] 

44:41 gy[3:0] 

48:45 gx[3:0] 
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Bit Description 

49 gw[10] 

50 bz[0] 

54:51 gz[3:0] 

59:55 bx[4:0] 

60 bw[10] 

64:61 by[3:0] 

68:65 ry[3:0] 

69 bz[1] 

70 bz[2] 

74:71 rz[3:0] 

75 bz[4] 

76 bz[3] 

81:77 partition 

127:82 indices 

Mode 5: (TWO) Red, Green, Blue: 9-bit endpoint, 5-bit deltas 

Bit Description 

4:0 mode = 01110 

13:5 rw[8:0] 

14 by[4] 

23:15 gw[8:0] 

24 gy[4] 

33:25 bw[8:0] 

34 bz[4] 

39:35 rx[4:0] 

40 gz[4] 

44:41 gy[3:0] 

49:45 gx[4:0] 

50 bz[0] 

54:51 gz[3:0] 

59:55 bx[4:0] 

60 bz[1] 

64:61 by[3:0] 

69:65 ry[4:0] 

70 bz[2] 

75:71 rz[4:0] 

76 bz[3] 
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Bit Description 

81:77 partition 

127:82 indices 

Mode 6: (TWO) Red: 8-bit endpoint, 6-bit deltas 

Green, Blue: 8-bit endpoint, 5-bit deltas 

Bit Description 

4:0 mode = 10010 

12:5 rw[7:0] 

13 gz[4] 

14 by[4] 

22:15 gw[7:0] 

23 bz[2] 

24 gy[4] 

32:25 bw[7:0] 

33 bz[3] 

34 bz[4] 

40:35 rx[5:0] 

44:41 gy[3:0] 

49:45 gx[4:0] 

50 bz[0] 

54:51 gz[3:0] 

59:55 bx[4:0] 

60 gz[1] 

64:61 by[3:0] 

70:65 ry[5:0] 

76:71 rz[5:0] 

81:77 partition 

127:82 indices 

Mode 7: (TWO) Red, Blue: 8-bit endpoint, 5-bit deltas 

Green: 8-bit endpoint, 6-bit deltas 

Bit Description 

4:0 mode = 10110 

12:5 rw[7:0] 

13 bz[0] 

14 by[4] 

22:15 gw[7:0] 
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Bit Description 

23 gy[5] 

24 gy[4] 

32:25 bw[7:0] 

33 gz[5] 

34 bz[4] 

39:35 rx[4:0] 

40 gz[4] 

44:41 gy[3:0] 

50:45 gx[5:0] 

54:51 gz[3:0] 

59:55 bx[4:0] 

60 bz[1] 

64:61 by[3:0] 

69:65 ry[4:0] 

70 bz[2] 

75:71 rz[4:0] 

76 bz[3] 

81:77 partition 

127:82 indices 

Mode 8: (TWO) Red, Green: 8-bit endpoint, 5-bit deltas 

Blue: 8-bit endpoint, 6-bit deltas 

Bit Description 

4:0 mode = 11010 

12:5 rw[7:0] 

13 bz[1] 

14 by[4] 

22:15 gw[7:0] 

23 by[5] 

24 gy[4] 

32:25 bw[7:0] 

33 bz[5] 

34 bz[4] 

39:35 rx[4:0] 

40 gz[4] 

44:41 gy[3:0] 

49:45 gx[4:0] 
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Bit Description 

50 bz[0] 

54:51 gz[3:0] 

60:55 bx[5:0] 

64:61 by[3:0] 

69:65 ry[4:0] 

70 bz[2] 

75:71 rz[4:0] 

76 bz[3] 

81:77 partition 

127:82 indices 

Mode 9: (TWO) Red, Green, Blue: 6-bit endpoints for all four, no deltas 

Bit Description 

4:0 mode = 11110 

10:5 rw[5:0] 

11 gz[4] 

12 bz[0] 

13 bz[1] 

14 by[4] 

20:15 gw[5:0] 

21 gy[5] 

22 by[5] 

23 bz[2] 

24 gy[4] 

30:25 bw[5:0] 

31 gz[5] 

32 bz[3] 

33 bz[5] 

34 bz[4] 

40:35 rx[5:0] 

44:41 gy[3:0] 

50:45 gx[5:0] 

54:51 gz[3:0] 

60:55 bx[5:0] 

64:61 by[3:0] 

70:65 ry[5:0] 

76:71 rz[5:0] 
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Bit Description 

81:77 partition 

127:82 indices 

Mode 10: (ONE) Red, Green, Blue: 10-bit endpoints for both, no deltas 

Bit Description 

4:0 mode = 00011 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

44:35 rx[9:0] 

54:45 gx[9:0] 

64:55 bx[9:0] 

127:65 indices 

Mode 11: (ONE) Red, Green, Blue: 11-bit endpoints, 9-bit deltas 

Bit Description 

4:0 mode = 00111 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

43:35 rx[8:0] 

44 rw[10] 

53:45 gx[8:0] 

54 gw[10] 

63:55 bx[8:0] 

64 bw[10] 

127:65 indices 

Mode 12: (ONE) Red, Green, Blue: 12-bit endpoints, 8-bit deltas 

Bit Description 

4:0 mode = 01011 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

42:35 rx[7:0] 

43 rw[11] 

44 rw[10] 

52:45 gx[7:0] 
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Bit Description 

53 gw[11] 

54 gw[10] 

62:55 bx[7:0] 

63 bw[11] 

64 bw[10] 

127:65 indices 

Mode 13: (ONE) Red, Green, Blue: 16-bit endpoints, 4-bit deltas 

Bit Description 

4:0 mode = 01111 

14:5 rw[9:0] 

24:15 gw[9:0] 

34:25 bw[9:0] 

38:35 rx[3:0] 

39 rw[15] 

40 rw[14] 

41 rw[13] 

42 rw[12] 

43 rw[11] 

44 rw[10] 

48:45 gx[3:0] 

49 gw[15] 

50 gw[14] 

51 gw[13] 

52 gw[12] 

53 gw[11] 

54 gw[10] 

58:55 bx[3:0] 

59 bw[15] 

60 bw[14] 

61 bw[13] 

62 bw[12] 

63 bw[11] 

64 bw[10] 

127:65 indices 

Undefined mode values (10011, 10111, 11011, and 11111) return zero in the RGB channels. 

The "indices" fields are defined as follows: 
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TWO mode indices field with fix-up index [1] at texel[3][3] 

Bit Description 

83:82 texel[0][0] index 

86:84 texel[0][1] index 

89:87 texel[0][2] index 

92:90 texel[0][3] index 

95:93 texel[1][0] index 

98:96 texel[1][1] index 

101:99 texel[1][2] index 

104:102 texel[1][3] index 

107:105 texel[2][0] index 

110:108 texel[2][1] index 

113:111 texel[2][2] index 

116:114 texel[2][3] index 

119:117 texel[3][0] index 

122:120 texel[3][1] index 

125:123 texel[3][2] index 

127:126 texel[3][3] index 

TWO mode indices field with fix-up index [1] at texel[0][2] 

Bit Description 

83:82 texel[0][0] index 

86:84 texel[0][1] index 

88:87 texel[0][2] index 

91:89 texel[0][3] index 

94:92 texel[1][0] index 

97:95 texel[1][1] index 

100:98 texel[1][2] index 

103:101 texel[1][3] index 

106:104 texel[2][0] index 

109:107 texel[2][1] index 

112:110 texel[2][2] index 

115:113 texel[2][3] index 

118:116 texel[3][0] index 

121:119 texel[3][1] index 

124:122 texel[3][2] index 

127:125 texel[3][3] index 
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TWO mode indices field with fix-up index [1] at texel[2][0] 

Bit Description 

83:82 texel[0][0] index 

86:84 texel[0][1] index 

89:87 texel[0][2] index 

92:90 texel[0][3] index 

95:93 texel[1][0] index 

98:96 texel[1][1] index 

101:99 texel[1][2] index 

104:102 texel[1][3] index 

106:105 texel[2][0] index 

109:107 texel[2][1] index 

112:110 texel[2][2] index 

115:113 texel[2][3] index 

118:116 texel[3][0] index 

121:119 texel[3][1] index 

124:122 texel[3][2] index 

127:125 texel[3][3] index 

ONE mode indices field 

Bit Description 

67:65 texel[0][0] index 

71:68 texel[0][1] index 

75:72 texel[0][2] index 

79:76 texel[0][3] index 

83:80 texel[1][0] index 

87:84 texel[1][1] index 

91:88 texel[1][2] index 

95:92 texel[1][3] index 

99:96 texel[2][0] index 

103:100 texel[2][1] index 

107:104 texel[2][2] index 

111:108 texel[2][3] index 

115:112 texel[3][0] index 

119:116 texel[3][1] index 

123:120 texel[3][2] index 

127:124 texel[3][3] index 
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Endpoint Computation  

The endpoints can be defined in many different ways, as shown above. This section describes how the 

endpoints are computed from the bits in the compression block. The method used depends on whether 

the BC6H format is signed (BC6H_SF16) or unsigned (BC6H_UF16). 

First, each channel (RGB) of each endpoint is extended to 16 bits. Each is handled identically and 

independently, however in some modes different channels have different incoming precision which must 

be accounted for. The following rules are employed: 

• If the format is BC6H_SF16 or the endpoint is a delta value, the value is sign-extended to 16 bits 

• For all other cases, the value is zero-extended to 16 bits 

If there are no endpoints that are delta values, endpoint computation is complete. For endpoints that are 

delta values, the next step involves computing the absolute endpoint. The "w" endpoint is always 

absolute and acts as a base value for the other three endpoints. Each channel is handled identically and 

independently. 

 x = w + x 

 y = w + y 

 z = w + z 

    

The above is performed using 16-bit integer arithmetic. Overflows beyond 16 bits are ignored (any 

resulting high bits are dropped). 

Palette Color Computation  

The next step involves computing the color palette values that provide the available values for each 

texel's color. The color palette for each line consists of the two endpoint colors plus 6 (TWO mode) or 14 

(ONE mode) interpolated colors. Again, each channel is processed independently. 

First the endpoints are unquantized, with each channel of each endpoint being processed independently. 

The number of bits in the original base w value represents the precision of the endpoints. The input 

endpoint is called e, and the resulting endpoints are represented as 17-bit signed integers and called e' 

below. 

For the BC6H_UF16 format: 

• if the precision is already 16 bits, e' = e 

• if e = 0, e' = 0 

• if e is the maximum representible in the precision, e' = 0xFFFF 

• otherwise, e' = ((e « 16) + 0x8000) » precision 

For the BC6H_SF16 format, the value is treated as sign magnitude. The sign is not changed, e' and e refer 

only to the magnitude portion: 

• if the precision is already 16 bits, e' = e 

• if e = 0, e' = 0 

• if e is the maximum representible in the precision, e' = 0x7FFF 



  
  

 

Doc Ref # IHD-OS-DG1-Vol 5-2.21   41 

• otherwise, e' = ((e « 15) + 0x4000) » (precision - 1) 

Next, the palette values are generated using predefined weights, using the tables below: 

palette[i] = (w' * (64 - weight[i]) + x' * weight[i] + 32) » 6 

TWO mode weights: 

palette index 0 1 2 3 4 5 6 7 

weight 0 9 18 27 37 46 55 64 

ONE mode weights: 

palette index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

weight 0 4 9 13 17 21 26 30 34 38 43 47 51 55 60 64 

The two end palette indices are equal to the two endpoints given that the weights are 0 and 64. In the 

above equation w' and x' represent the endpoints e' computed in the previous step corresponding to w 

and x, respectively. For the second line in TWO mode, w and x are replaced with y and z. 

The final step in computing the palette colors is to rescale the final results. For BC6H_UF16 format, the 

values are multiplied by 31/64. For BC6H_SF16, the values are multiplied by 31/32, treating them as sign 

magnitude. These final 16-bit results are ultimately treated as 16-bit floats. 

Texel Selection  

The final step is to select the appropriate palette index for each texel. This index then selects the 16-bit 

per channel palette value, which is re-interpreted as a 16-bit floating point result for input into the filter. 

This procedure differs depending on whether the mode is TWO or ONE. 

ONE Mode  

In ONE mode, there is only one set of palette colors, but the "indices" field is 63 bits. This field consists of 

a 4-bit palette index for each of the 16 texels, with the exception of the texel at [0][0] which has only 3 

bits, the missing high bit being set to zero. 
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TWO Mode  

32 partitions are defined for TWO, which are defined below. Each of the 32 cases shows the 4x4 block of 

texels, and is indexed by adding its hexadecimal row number (00-1C) to its column number (0-3). Each 

texel in the 4x4 block indicates whether that texel is part of line 0 (endpoints w and x) or line 1 

(endpoints y and z). Each case has one texel each of "[0]" and "[1]", the index that this is at is termed the 

"fix-up index". These texels have one less bit in the index. 

 
0 1 2 3 

00 
[0] 0 1 1 [0] 0 0 1 [0] 1 1 1 [0] 0 0 1 

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 

0 0 1 [1] 0 0 0 [1] 0 1 1 [1] 0 1 1 [1] 

04 
[0] 0 0 0 [0] 0 1 1 [0] 0 0 1 [0] 0 0 0 

0 0 0 1 0 1 1 1 0 0 1 1 0 0 0 1 

0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1] 

08 
[0] 0 0 0 [0] 0 1 1 [0] 0 0 0 [0] 0 0 0 

0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 

0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1] 

0C 
[0] 0 0 1 [0] 0 0 0 [0] 0 0 0 [0] 0 0 0 

0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 

1 1 1 [1] 1 1 1 [1] 1 1 1 [1] 1 1 1 [1] 

10 
[0] 0 0 0 [0] 1 [1] 1 [0] 0 0 0 [0] 1 [1] 1 

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 

1 1 1 0 0 0 0 0 [1] 0 0 0 0 0 0 1 

1 1 1 [1] 0 0 0 0 1 1 1 0 0 0 0 0 

14 
[0] 0 [1] 1 [0] 0 0 0 [0] 0 0 0 [0] 1 1 1 

0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 [1] 1 0 0 [1] 0 0 0 0 0 1 1 

0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 [1] 

18 
[0] 0 [1] 1 [0] 0 0 0 [0] 1 [1] 0 [0] 0 [1] 1 

0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 

0 0 0 1 [1] 0 0 0 0 1 1 0 0 1 1 0 

0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 

1C 
[0] 0 0 1 [0] 0 0 0 [0] 1 [1] 1 [0] 0 [1] 1 

0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 
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[1] 1 1 0 [1] 1 1 1 1 0 0 0 1 0 0 1 

1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 

The 46-bit "indices" field consists of a 3-bit palette index for each of the 16 texels, with the exception of 

the bracketed texels that have only two bits each. The high bit of these texels is set to zero. 

BC7  

These formats (BC7_UNORM and BC7_UNORM_SRGB) compresses 3-channel and 4-channel fixed point 

images. 

The BC7 block is 16 bytes and represents a 4x4 block of texels. The texels are labeled as 

texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel. BC7 

has 8 different modes, the mode that the block is in is contained in the least significant bits (1-8 bits 

depending on mode). 

The basic scheme consists of interpolating colors and alpha in some modes along either one, two, or 

three lines, with per-texel indices indicating which color/alpha along the line is chosen for each texel. If a 

two- or three-line mode is selected, one of 64 partition sets is indicated which selects which of the two 

lines each texel is assigned to, although some modes are limited to the first 16 partition sets. In the 

color-only modes, alpha is always returned at its default value of 1.0. 

Some modes contain the following fields: 

• P-bits. These represent shared LSB for all components of the endpoint, which increases the 

endpoint precision by one bit. In some cases both endpoints of a line share a P-bit. 

• Rotation bits. For blocks with separate color and alpha, this 2-bit field allows selection of which of 

the four components has its own indexes (scalar) vs. the other three components (vector). 

• Index selector. This 1-bit field selects whether the scalar or vector components uses the 3-bit 

index vs. the 2-bit index. 

Field Definition  

There are 8 possible modes for a BC7 block, the format of each is indicated in the 8 tables below. The 

mode is selected by the unique mode bits specified in each table. Each mode has particular 

characteristics described at the top of the table. 

Mode 0: Color only, 3 lines (THREE), 4-bit endpoints with one P-bit per endpoint, 3-bit indices, 16 

partitions 

Bit Description 

0 mode = 0 

4:1 partition 

8:5 R0 

12:9 R1 

16:13 R2 

20:17 R3 
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Bit Description 

24:21 R4 

28:25 R5 

32:29 G0 

36:33 G1 

40:37 G2 

44:41 G3 

48:45 G4 

52:49 G5 

56:53 B0 

60:57 B1 

64:61 B2 

68:65 B3 

72:69 B4 

76:73 B5 

77 P0 

78 P1 

79 P2 

80 P3 

81 P4 

82 P5 

127:83 indices 

Mode 1: Color only, 2 lines (TWO), 6-bit endpoints with one shared P-bit per line, 3-bit indices, 64 

partitions 

Bit Description 

1:0 mode = 10 

7:2 partition 

13:8 R0 

19:14 R1 

25:20 R2 

31:26 R3 

37:32 G0 

43:38 G1 

49:44 G2 

55:50 G3 

61:56 B0 

67:62 B1 
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Bit Description 

73:68 B2 

79:74 B3 

80 P0 

81 P1 

127:82 indices 

Mode 2: Color only, 3 lines (THREE), 5-bit endpoints, 2-bit indices, 64 partitions 

Bit Description 

2:0 mode = 100 

8:3 partition 

13:9 R0 

18:14 R1 

23:19 R2 

28:24 R3 

33:29 R4 

38:34 R5 

43:39 G0 

48:44 G1 

53:49 G2 

58:54 G3 

63:59 G4 

68:64 G5 

73:69 B0 

78:74 B1 

83:79 B2 

88:84 B3 

93:89 B4 

98:94 B5 

127:99 indices 

Mode 3: Color only, 2 lines (TWO), 7-bit endpoints with one P-bit per endpoint, 2-bit indices, 64 

partitions 

Bit Description 

3:0 mode = 1000 

9:4 partition 

16:10 R0 

23:17 R1 

30:24 R2 
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Bit Description 

37:31 R3 

44:38 G0 

51:45 G1 

58:52 G2 

65:59 G3 

72:66 B0 

79:73 B1 

86:80 B2 

93:87 B3 

94 P0 

95 P1 

96 P2 

97 P3 

127:98 indices 

Mode 4: Color and alpha, 1 line (ONE), 5-bit color endpoints, 6-bit alpha endpoints, 16 2-bit indices, 16 

3-bit indices, 2-bit component rotation, 1-bit index selector 

Bit Description 

4:0 mode = 10000 

6:5 rotation 

7 index selector 

12:8 R0 

17:13 R1 

22:18 G0 

27:23 G1 

32:28 B0 

37:33 B1 

43:38 A0 

49:44 A1 

80:50 2-bit indices 

127:81 3-bit indices 

Mode 5: Color and alpha, 1 line (ONE), 7-bit color endpoints, 8-bit alpha endpoints, 2-bit color indices, 

2-bit alpha indices, 2-bit component rotation 

Bit Description 

5:0 mode = 100000 

7:6 rotation 

14:8 R0 
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Bit Description 

21:15 R1 

28:22 G0 

35:29 G1 

42:36 B0 

49:43 B1 

57:50 A0 

65:58 A1 

96:66 color indices 

127:97 alpha indices 

Mode 6: Combined color and alpha, 1 line (ONE), 7-bit endpoints with one P-bit per endpoint, 4-bit 

indices 

Bit Description 

6:0 mode = 1000000 

13:7 R0 

20:14 R1 

27:21 G0 

34:28 G1 

41:35 B0 

48:42 B1 

55:49 A0 

62:56 A1 

63 P0 

64 P1 

127:65 indices 

Mode 7: Combined color and alpha, 2 lines (TWO), 5-bit endpoints with one P-bit per endpoint, 2-bit 

indices, 64 partitions 

Bit Description 

7:0 mode = 10000000 

13:8 partition 

18:14 R0 

23:19 R1 

28:24 R2 

33:29 R3 

38:34 G0 

43:39 G1 

48:44 G2 
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Bit Description 

53:49 G3 

58:54 B0 

63:59 B1 

68:64 B2 

73:69 B3 

78:74 A0 

83:79 A1 

88:84 A2 

93:89 A3 

94 P0 

95 P1 

96 P2 

97 P3 

127:98 indices 

Undefined mode values (bits 7:0 = 00000000) return zero in the RGB channels. 

The indices fields are variable in length and due to the different locations of the fix-up indices depending 

on partition set there are a very large number of possible configurations. Each mode above indicates 

how many bits each index has, and the fix-up indices (one in ONE mode, two in TWO mode, and three in 

THREE mode) each have one less bit than indicated. However, the indices are always packed into the 

index fields according to the table below, with the specific bit assignments of each texel following the 

rules just given. 

Bit Description 

LSBs texel[0][0] index 

 texel[0][1] index 

 texel[0][2] index 

 texel[0][3] index 

 texel[1][0] index 

 texel[1][1] index 

 texel[1][2] index 

 texel[1][3] index 

 texel[2][0] index 

 texel[2][1] index 

 texel[2][2] index 

 texel[2][3] index 

 texel[3][0] index 

 texel[3][1] index 

 texel[3][2] index 
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Bit Description 

MSBs texel[3][3] index 

Endpoint Computation  

The endpoints can be defined with different precision depending on mode, as shown above. This section 

describes how the endpoints are computed from the bits in the compression block. Each component of 

each endpoint follows the same steps. 

If a P-bit is defined for the endpoint, it is first added as an additional LSB at the bottom of the endpoint 

value. The endpoint is then bit-replicated to create an 8-bit fixed point endpoint value with a range from 

0x00 to 0xFF. 

Palette Color Computation  

The next step involves computing the color palette values that provide the available values for each 

texel's color. The color palette for each line consists of the two endpoint colors plus 2, 6, or 14 

interpolated colors, depending on the number of bits in the indices. Again each channel is processed 

independently. 

The equation to compute each palette color with index i, given two endpoints is as follows, using the 

tables below to determine the weight for each palette index: 

palette[i] = (E0 * (64 - weight[i]) + E1 * weight[i] + 32) » 6 

2-bit index weights: 

palette index 0 1 2 3 

weight 0 21 43 64 

3-bit index weights: 

palette index 0 1 2 3 4 5 6 7 

weight 0 9 18 27 37 46 55 64 

4-bit index weights: 

palette index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

weight 0 4 9 13 17 21 26 30 34 38 43 47 51 55 60 64 

The two end palette indices are equal to the two endpoints given that the weights are 0 and 64. In the 

above equation E0 and E1 represent the even-numbered and odd-numbered endpoints computed in the 

previous step for the component and line currently being computed. 

Texel Selection  

The final step is to select the appropriate palette index for each texel. This index then selects the 8-bit 

per channel palette value, which is interpreted as an 8-bit UNORM value for input into the filter (In 

BC7_UNORM_SRGB to UNORM values first go through inverse gamma conversion). This procedure 

differs depending on whether the mode is ONE, TWO, or THREE. 
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ONE Mode  

In ONE mode, there is only one set of palette colors, thus there is only a single "partition set" defined, 

with all texels selecting line 0 and texel [0][0] being the "fix-up index" with one less bit in the index. 

TWO Mode  

64 partitions are defined for TWO, which are defined below. Each of the 64 cases shows the 4x4 block of 

texels, and is indexed by adding its hexadecimal row number (00-3C) to its column number (0-3). Each 

texel in the 4x4 block indicates whether that texel is part of line 0 (endpoints 0 and 1) or line 1 (endpoints 

2 and 3). Each case has one texel each of "[0]" and "[1]", the index that this is at is termed the "fix-up 

index". These texels have one less bit in the index. 

 
0 1 2 3 

00 
[0] 0 1 1 [0] 0 0 1 [0] 1 1 1 [0] 0 0 1 

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 

0 0 1 [1] 0 0 0 [1] 0 1 1 [1] 0 1 1 [1] 

04 
[0] 0 0 0 [0] 0 1 1 [0] 0 0 1 [0] 0 0 0 

0 0 0 1 0 1 1 1 0 0 1 1 0 0 0 1 

0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1] 

08 
[0] 0 0 0 [0] 0 1 1 [0] 0 0 0 [0] 0 0 0 

0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 

0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1] 

0C 
[0] 0 0 1 [0] 0 0 0 [0] 0 0 0 [0] 0 0 0 

0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 

1 1 1 [1] 1 1 1 [1] 1 1 1 [1] 1 1 1 [1] 

10 
[0] 0 0 0 [0] 1 [1] 1 [0] 0 0 0 [0] 1 [1] 1 

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 

1 1 1 0 0 0 0 0 [1] 0 0 0 0 0 0 1 

1 1 1 [1] 0 0 0 0 1 1 1 0 0 0 0 0 

14 
[0] 0 [1] 1 [0] 0 0 0 [0] 0 0 0 [0] 1 1 1 

0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 [1] 1 0 0 [1] 0 0 0 0 0 1 1 

0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 [1] 

18 
[0] 0 [1] 1 [0] 0 0 0 [0] 1 [1] 0 [0] 0 [1] 1 

0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 
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0 0 0 1 [1] 0 0 0 0 1 1 0 0 1 1 0 

0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 

1C 
[0] 0 0 1 [0] 0 0 0 [0] 1 [1] 1 [0] 0 [1] 1 

0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 

[1] 1 1 0 [1] 1 1 1 1 0 0 0 1 0 0 1 

1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 

20 
[0] 1 0 1 [0] 0 0 0 [0] 1 0 1 [0] 0 1 1 

0 1 0 1 1 1 1 1 1 0 [1] 0 0 0 1 1 

0 1 0 1 0 0 0 0 0 1 0 1 [1] 1 0 0 

0 1 0 [1] 1 1 1 [1] 1 0 1 0 1 1 0 0 

24 
[0] 0 [1] 1 [0] 1 0 1 [0] 1 1 0 [0] 1 0 1 

1 1 0 0 0 1 0 1 1 0 0 1 1 0 1 0 

0 0 1 1 [1] 0 1 0 0 1 1 0 1 0 1 0 

1 1 0 0 1 0 1 0 1 0 0 [1] 0 1 0 [1] 

28 
[0] 1 [1] 1 [0] 0 0 1 [0] 0 [1] 1 [0] 0 [1] 1 

0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 

1 1 0 0 [1] 1 0 0 0 1 0 0 1 1 0 1 

1 1 1 0 1 0 0 0 1 1 0 0 1 1 0 0 

2C 
[0] 1 [1] 0 [0] 0 1 1 [0] 1 1 0 [0] 0 0 0 

1 0 0 1 1 1 0 0 0 1 1 0 0 1 [1] 0 

1 0 0 1 1 1 0 0 1 0 0 1 0 1 1 0 

0 1 1 0 0 0 1 [1] 1 0 0 [1] 0 0 0 0 

30 
[0] 1 0 0 [0] 0 [1] 0 [0] 0 0 0 [0] 0 0 0 

1 1 [1] 0 0 1 1 1 0 0 [1] 0 0 1 0 0 

0 1 0 0 0 0 1 0 0 1 1 1 [1] 1 1 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 

34 
[0] 1 1 0 [0] 0 1 1 [0] 1 [1] 0 [0] 0 [1] 1 

1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 

1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 

0 0 1 [1] 1 0 0 [1] 1 1 0 0 0 1 1 0 

38 
[0] 1 1 0 [0] 1 1 0 [0] 1 1 1 [0] 0 0 1 

1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0 

1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 0 

1 0 0 [1] 1 0 0 [1] 0 0 0 [1] 0 1 1 [1] 

3C 
[0] 0 0 0 [0] 0 [1] 1 [0] 0 [1] 0 [0] 1 0 0 

1 1 1 1 0 0 1 1 0 0 1 0 0 1 0 0 

0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 

0 0 1 [1] 0 0 0 0 1 1 1 0 0 1 1 [1] 
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THREE Mode  

64 partitions are defined for THREE, which are defined below. Each of the 64 cases shows the 4x4 block 

of texels, and is indexed by adding its hexadecimal row number (00-3C) to its column number (0-3). Each 

texel in the 4x4 block indicates whether that texel is part of line 0 (endpoints 0 and 1), line 1 (endpoints 2 

and 3), or line 2 (endpoints 4 and 5). Each case has one texel each of "[0]", "[1]", and "[2]", the index that 

this is at is termed the "fix-up index". These texels have one less bit in the index. 

 
0 1 2 3 

00 
[0] 0 1 [1] [0] 0 0 [1] [0] 0 0 0 [0] 2 2 [2] 

0 0 1 1 0 0 1 1 2 0 0 1 0 0 2 2 

0 2 2 1 [2] 2 1 1 [2] 2 1 1 0 0 1 1 

2 2 2 [2] 2 2 2 1 2 2 1 [1] 0 1 1 [1] 

04 
[0] 0 0 0 [0] 0 1 [1] [0] 0 2 [2] [0] 0 1 1 

0 0 0 0 0 0 1 1 0 0 2 2 0 0 1 1 

[1] 1 2 2 0 0 2 2 1 1 1 1 [2] 2 1 1 

1 1 2 [2] 0 0 2 [2] 1 1 1 [1] 2 2 1 [1] 

08 
[0] 0 0 0 [0] 0 0 0 [0] 0 0 0 [0] 0 1 2 

0 0 0 0 1 1 1 1 1 1 [1] 1 0 0 [1] 2 

[1] 1 1 1 [1] 1 1 1 2 2 2 2 0 0 1 2 

2 2 2 [2] 2 2 2 [2] 2 2 2 [2] 0 0 1 [2] 

0C 
[0] 1 1 2 [0] 1 2 2 [0] 0 1 [1] [0] 0 1 [1] 

0 1 [1] 2 0 [1] 2 2 0 1 1 2 2 0 0 1 

0 1 1 2 0 1 2 2 1 1 2 2 [2] 2 0 0 

0 1 1 [2] 0 1 2 [2] 1 2 2 [2] 2 2 2 0 

10 
[0] 0 0 [1] [0] 1 1 [1] [0] 0 0 0 [0] 0 2 [2] 

0 0 1 1 0 0 1 1 1 1 2 2 0 0 2 2 

0 1 1 2 [2] 0 0 1 [1] 1 2 2 0 0 2 2 

1 1 2 [2] 2 2 0 0 1 1 2 [2] 1 1 1 [1] 

14 
[0] 1 1 [1] [0] 0 0 [1] [0] 0 0 0 [0] 0 0 0 

0 1 1 1 0 0 0 1 0 0 [1] 1 1 1 0 0 

0 2 2 2 [2] 2 2 1 0 1 2 2 [2] 2 [1] 0 

0 2 2 [2] 2 2 2 1 0 1 2 [2] 2 2 1 0 

18 
[0] 1 2 [2] [0] 0 1 2 [0] 1 1 0 [0] 0 0 0 

0 [1] 2 2 0 0 1 2 1 2 [2] 1 0 1 [1] 0 

0 0 1 1 [1] 1 2 2 [1] 2 2 1 1 2 [2] 1 

0 0 0 0 2 2 2 [2] 0 1 1 0 1 2 2 1 

1C 
[0] 0 2 2 [0] 1 1 0 [0] 0 1 1 [0] 0 0 0 

1 1 0 2 0 [1] 1 0 0 1 2 2 2 0 0 0 
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[1] 1 0 2 2 0 0 2 0 1 [2] 2 [2] 2 1 1 

0 0 2 [2] 2 2 2 [2] 0 0 1 [1] 2 2 2 [1] 

20 
[0] 0 0 0 [0] 2 2 [2] [0] 0 1 [1] [0] 1 2 0 

0 0 0 2 0 0 2 2 0 0 1 2 0 [1] 2 0 

[1] 1 2 2 0 0 1 2 0 0 2 2 0 1 [2] 0 

1 2 2 [2] 0 0 1 [1] 0 2 2 [2] 0 1 2 0 

24 
[0] 0 0 0 [0] 1 2 0 [0] 1 2 0 [0] 0 1 1 

1 1 [1] 1 1 2 0 1 2 0 1 2 2 2 0 0 

2 2 [2] 2 [2] 0 [1] 2 [1] [2] 0 1 1 1 [2] 2 

0 0 0 0 0 1 2 0 0 1 2 0 0 0 1 [1] 

28 
[0] 0 1 1 [0] 1 0 [1] [0] 0 0 0 [0] 0 2 2 

1 1 [2] 2 0 1 0 1 0 0 0 0 1 [1] 2 2 

2 2 0 0 2 2 2 2 [2] 1 2 1 0 0 2 2 

0 0 1 [1] 2 2 2 [2] 2 1 2 [1] 1 1 2 [2] 

2C 
[0] 0 2 [2] [0] 2 2 0 [0] 1 0 1 [0] 0 0 0 

0 0 1 1 1 2 [2] 1 2 2 [2] 2 2 1 2 1 

0 0 2 2 0 2 2 0 2 2 2 2 [2] 1 2 1 

0 0 1 [1] 1 2 2 [1] 0 1 0 [1] 2 1 2 [1] 

30 
[0] 1 0 [1] [0] 2 2 [2] [0] 0 0 2 [0] 0 0 0 

0 1 0 1 0 1 1 1 1 [1] 1 2 2 [1] 1 2 

0 1 0 1 0 2 2 2 0 0 0 2 2 1 1 2 

2 2 2 [2] 0 1 1 [1] 1 1 1 [2] 2 1 1 [2] 

34 
[0] 2 2 2 [0] 0 0 2 [0] 1 1 0 [0] 0 0 0 

0 [1] 1 1 1 1 1 2 0 [1] 1 0 0 0 0 0 

0 1 1 1 [1] 1 1 2 0 1 1 0 2 1 [1] 2 

0 2 2 [2] 0 0 0 [2] 2 2 2 [2] 2 1 1 [2] 

38 
[0] 1 1 0 [0] 0 2 2 [0] 0 2 2 [0] 0 0 0 

0 [1] 1 0 0 0 1 1 1 1 2 2 0 0 0 0 

2 2 2 2 0 0 [1] 1 [1] 1 2 2 0 0 0 0 

2 2 2 [2] 0 0 2 [2] 0 0 2 [2] 2 [1] 1 [2] 

3C 
[0] 0 0 [2] [0] 2 2 2 [0] 1 0 [1] [0] 1 1 [1] 

0 0 0 1 1 2 2 2 2 2 2 2 2 0 1 1 

0 0 0 2 0 2 2 2 2 2 2 2 [2] 2 0 1 

0 0 0 [1] [1] 2 2 [2] 2 2 2 [2] 2 2 2 0 
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Video Pixel/Texel Formats  

This section describes the "video" pixel/texel formats with respect to memory layout. See the Overlay 

chapter for a description of how the Y, U, V components are sampled. 

Packed Memory Organization 

Color components are all 8 bits in size for YUV formats. For YUV 4:2:2 formats each DWord will contain 

two pixels and only the byte order affects the memory organization. 

The following four YUV 4:2:2 surface formats are supported, listed with alternate names: 

• YCRCB_NORMAL (YUYV/YUY2) 

• YCRCB_SWAPUVY (VYUY) (R8G8_B8G8_UNORM) 

• YCRCB_SWAPUV(YVYU) (G8R8_G8B8_UNORM) 

• YCRCB_SWAPY (UYVY) 

The channels are mapped as follows: 

Cr (V) Red 

Y Green 

Cb (U) Blue 

Memory layout of packed YUV 4:2:2 formats 

 

Planar Memory Organization 

Planar formats use what could be thought of as separate buffers for the three color components. 

Because there is a separate stride for the Y and U/V data buffers, several memory footprints can be 

supported. 

The 3D sampler supports direct sampling and filtering of planar video surfaces such as YV12 and NV12. 
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Programming Note 

Context: Tiling of Planar Surface 

Tiling of planar surfaces (tileX, tileY, tileYf, or tileYs) is only supported for planar surfaces where the chroma plane is 

full-pitch (e.g. NV21). In this case, the field Y Offset for U or UV Plane in the RENDER_SURFACE_STATE must be 

programmed to force the UV plane to be at the start of a tile. 

 

Programming Note 

Context: YV12/YV21 Surface Pitch Restriction 

The Surface Pitch defined in RENDER_SURFACE_STATE must be a multiple of 64Bytes for YV12 and YV21 surfaces. 

 

Programming Note 

Context: NV21 Support 

Sampling of NV21 surface format is supported by swapping the U and V channels when sampling the surface. This 

can be done by programming the Shader Channel Select in the RENDER_SURFACE_STATE for the Red and Blue 

Channels. 

The 3D sampler supports 12, and 16-bit planar video surface formats known collectively as P016. They 

are only supported for Sample_Unorm. 

The following figure shows two types of memory organization for the YUV 4:2:0 planar video data: 

1. The memory organization of the common YV12 data, where all three planes are contiguous, and 

the strides of U and V components are half of that of the Y component. 

2. An alternative memory structure that the addresses of the three planes are independent but satisfy 

certain alignment restrictions. 
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YUV 4:2:0 Format Memory Organization 

 

The following figure shows memory organization of the planar YUV 4:1:0 format where the planes are 

contiguous. 

Note: The chroma planes (U and V), when separate (case b above) are treated as half-pitch with respect 

to the Y plane. 

Workaround 

When using Planar formats for YUV with half-pitch chroma planes (e.g. YV12), and fenced tiling is not supported 

LINEAR filtering of Planar YUV surfaces such as YV12 using the 3D sampler is done after the U and V have been 

replicated to form a YUV444 texels. This means that the U and V components will effectively be point-sampled 

rather than filtered. Acheive true filtering of the U and V components, the 3 planes of the YUV surface must be 

bound as separate surfaces, and the filtering must be done on each individually. 
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YUV 4:1:0 Format Memory Organization 

 

The table below shows how position within a Planar YUV surface chroma plane is calculated for various 

cases ot U and V pitch and position. It also shows restrictions on the alignment of the chroma planes in 

memory for non-interleaved (YV12) and interleaved chroma (e.g. NV12) is used. 

Case Interleave Chroma Pitch Vertical U/V Offset 

YUV with Half Pitch Chroma No Half 
When U is below Y 

Y_Uoffset = Y_Height * 2 

Y_Voffset = Y_Height * 2 + V_Height 

When V is below Y 

Y_Uoffset = Y_Height * 2 + V_Height 

Y_Voffset = Y_Height * 2 

YUV with Full Pitch Chroma Yes Full 
When U is below Y 

Y_Uoffset = Y_Height 

Y_Voffset = Y_Height + V_Height 

When V is below Y 

Y_Uoffset = Y_Height + V_Height 

Y_Voffset = Y_Height 

YUV for Media Sampling Yes Always Full Same as 3D full pitch 

 

Programming Note 

Context: Planar YUV surfaces cannot be 1D surface types.  

Because there is a requirement that the height of the Y plane of a planar surface must be a greater than 1, it cannot 

be programmed to be a Surface Type of SURFTYPE_1D. 
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Programming Note 

Context: MIP Filtering 

Surface state cannot have (MIP Mode Filter != NONE) for Planar YUV surfaces (e.g. PLANAR_420_8). 

 

Programming Note 

Context: Standard Tiling 

Planar YUV does not support MIP Tails as part of Standard Tiling. The MIP Tail Start field in 

RENDER_SURFACE_STATE must be programmed to 15. 

 

Programming Note 

Context: Quilted and Planar 

Planar YUV is not supported for Quilted surfaces. 

 

Programming Note 

Context:  

Planar YUV is not supported with Corner Texel Mode 

Additional Video Formats  

Additional Video Formats  

Dx YUV 

format 

name DxRGB format name 

GPGPU 

Image 

Type 

GPGPU 

Image 

Data Type 

Pac

ked 

/ 

Plan

ar 

# 

Surf

ace 

Stat

es Surface Format #1 

Surface 

Format #2 

Surface 

Format #3 

Support 

By 

DXGI_FOR

MAT_AYUV 

DXGI_FORMAT_R8G8B8

A8_UNORM 

 (V->R8, U->G8, Y->B8, 

A->A8) 

  Pack

ed 

1 R8G8B8A8_UNORM NA NA Sampler, 

PB 

DXGI_FOR

MAT_AYUV 
DXGI_FORMAT_R8G8B8

A8_UINT 

 (V->R8, U->G8, Y->B8, 

A->A8) 

  Pack

ed 

1 R8G8B8A8_UINT NA NA Sampler, 

HDC, PB 

DXGI_FOR

MAT_YUY2 
DXGI_FORMAT_R8G8B8

A8_UNORM 

 (Y0->R8, U0->G8, Y1-

>B8, V0->A8) 

  Pack

ed 

1 R8G8B8A8_UNORM NA NA Sampler, 

NA NA 
CL_YCbYCr 

 (Y0->R16, 

U0->G16, 

 Y1->B16, 

CL_UNOR

M_INT16 

Pack

ed 

1 R16G16B16A16_UINT NA NA Sampler, 

HDC 
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Dx YUV 

format 

name DxRGB format name 

GPGPU 

Image 

Type 

GPGPU 

Image 

Data Type 

Pac

ked 

/ 

Plan

ar 

# 

Surf

ace 

Stat

es Surface Format #1 

Surface 

Format #2 

Surface 

Format #3 

Support 

By 

V0->A16 

NA NA 
CL_YCbYCr 

 (Y0->R16, 

U0->G16, 

 Y1->B16, 

V0->A16 

CL_UNOR

M_INT12 

Pack

ed 

1 R16G16B16A16_UINT NA NA Sampler, 

HDC 

NA NA 
CL_YCbYCr 

 (Y0->R16, 

U0->G16, 

 Y1->B16, 

V0->A16 

CL_UNOR

M_INT10 

Pack

ed 

1 R16G16B16A16_UINT NA NA Sampler, 

HDC 

DXGI_FOR

MAT_YUY2 
DXGI_FORMAT_R8G8B8

A8_UINT 

 (Y0->R8, U0->G8, Y1-

>B8, V0->A8) 

CL_YCbYCr 

 (Y0->R8, 

U0->G8, 

 Y1->B8, 

V0->A8 

CL_UNOR

M_INT8 

Pack

ed 

1 R8G8B8A8_UINT NA NA Sampler, 

HDC 

DXGI_FOR

MAT_YUY2 

DXGI_FORMAT_R8G8_B8

G8_UNORM 

  Pack

ed 

1 
R8G8B8A8_UNORM 

In this case the width of 

the view will appear to 

be twice the R8G8B8A8 

view, with hardware 

reconstruction of RGBA 

done automatically on 

read (and before 

filtering). 

NA NA Sampler 

NA NA 
CL_CbYCrY 

 (U0->R16, 

Y0->G16, 

 V0->B16, 

Y1->A16 

CL_UNOR

M_INT16 

Pack

ed 

1 R16G16B16A16_UINT NA NA Sampler, 

HDC 

NA NA 
CL_CbYCrY 

 (U0->R16, 

Y0->G16, 

 V0->B16, 

Y1->A16 

CL_UNOR

M_INT12 

Pack

ed 

1 R16G16B16A16_UINT NA NA Sampler, 

HDC 

NA NA 
CL_CbYCrY 

 (U0->R16, 

CL_UNOR

M_INT10 

Pack

ed 

1 R16G16B16A16_UINT NA NA Sampler, 

HDC 
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Dx YUV 

format 

name DxRGB format name 

GPGPU 

Image 

Type 

GPGPU 

Image 

Data Type 

Pac

ked 

/ 

Plan

ar 

# 

Surf

ace 

Stat

es Surface Format #1 

Surface 

Format #2 

Surface 

Format #3 

Support 

By 

Y0->G16, 

 V0->B16, 

Y1->A16 

NA NA 
CL_CbYCrY 

 (U0->R8, 

Y0->G8, 

 V0->B8, 

Y1->A8 

CL_UNOR

M_INT8 

Pack

ed 

1 R8G8B8A8_UINT NA NA Sampler, 

HDC 

DXGI_FOR

MAT_NV12 
Y = 

DXGI_FORMAT_R8_UNO

RM 

U/V = 

DXGI_FORMAT_R8G8_U

NORM 

 (U->R8, V->G8) 

  Plan

ar 

2 R8_UNORM 
R8G8_UNO

RM 

chomra 

pixel 

dimensions 

1/2 in both 

x and y 

from the 

Luma view 

NA Sampler, 

PB 

NA NA 
CL_Y_Cr_Cb 

(Y -> R16) 

(U->R16) 

(V->R16) 

CL_UNOR

M_INT16 

Plan

ar 

3 R16_UNIT R16_UNIT R16_UNIT Sampler 

NA NA 
CL_Y_Cr_Cb 

(Y -> R16) 

(U->R16) 

(V->R16) 

CL_UNOR

M_INT12 

Plan

ar 

3 R16_UNIT R16_UNIT R16_UNIT Sampler 

NA NA 
CL_Y_Cr_Cb 

(Y -> R16) 

(U->R16) 

(V->R16) 

CL_UNOR

M_INT10 

Plan

ar 

3 R16_UNIT R16_UNIT R16_UNIT Sampler 

NA NA 
CL_Y_Cr_Cb 

(Y -> R8) 

(U->R8) 

(V->R8) 

CL_UNOR

M_INT8 

Plan

ar 

3 R8_UNIT R8_UNIT R8_UNIT Sampler 

NA NA 
CL_Y_CrCb 

(Y -> R16) 

CL_UNOR

M_INT16 

Plan

ar 

2 R16_UNIT 
R16G16_UI

NT 

NA Sampler, 

HDC 
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Dx YUV 

format 

name DxRGB format name 

GPGPU 

Image 

Type 

GPGPU 

Image 

Data Type 

Pac

ked 

/ 

Plan

ar 

# 

Surf

ace 

Stat

es Surface Format #1 

Surface 

Format #2 

Surface 

Format #3 

Support 

By 

(U->R16, 

V->G16) 

chomra 

pixel 

dimensions 

halved in 

both x and 

y from the 

Luma view 

NA NA 
CL_Y_CrCb 

(Y -> R16) 

(U->R16, 

V->G16) 

CL_UNOR

M_INT12 

Plan

ar 

2 R16_UNIT 
R16G16_UI

NT 

chomra 

pixel 

dimensions 

halved in 

both x and 

y from the 

Luma view 

NA Sampler, 

HDC 

NA NA 
CL_Y_CrCb 

(Y -> R16) 

(U->R16, 

V->G16) 

CL_UNOR

M_INT10 

Plan

ar 

2 R16_UNIT 
R16G16_UI

NT 

chomra 

pixel 

dimensions 

halved in 

both x and 

y from the 

Luma view 

NA Sampler, 

HDC 

DXGI_FOR

MAT_NV12 
Y = 

DXGI_FORMAT_R8_UINT 

U/V = 

DXGI_FORMAT_R8G8_UI

NT 

 (U->R8, V->G8) 

CL_Y_CrCb 

(Y -> R8) 

(U->R8, V-

>G8) 

CL_UNOR

M_INT8 

Plan

ar 

2 R8_UNIT 
R8G8_UINT 

chomra 

pixel 

dimensions 

halved in 

both x and 

y from the 

Luma view 

NA Sampler, 

HDC, PB 

DXGI_FOR

MAT_NV11 
Y = 

DXGI_FORMAT_R8_UNO

RM 

U/V = 

DXGI_FORMAT_R8G8_U

NORM 

 (U->R8, V->G8) 

  Plan

ar 

2 R8_UNORM 
R8G8_UNO

RM 

chomra 

pixel 

dimensions 

1/4 in both 

x and y 

from the 

Luma view 

NA Sampler, 

PB 

DXGI_FOR

MAT_NV11 
Y = 

DXGI_FORMAT_R8_UINT 

U/V = 

  Plan

ar 

2 R8_UNIT 
R8G8_UINT 

chomra 

pixel 

NA Sampler, 

HDC, PB 
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Dx YUV 

format 

name DxRGB format name 

GPGPU 

Image 

Type 

GPGPU 

Image 

Data Type 

Pac

ked 

/ 

Plan

ar 

# 

Surf

ace 

Stat

es Surface Format #1 

Surface 

Format #2 

Surface 

Format #3 

Support 

By 

DXGI_FORMAT_R8G8_UI

NT 

 (U->R8, V->G8) 

dimensions 

1/4 in both 

x and y 

from the 

Luma view 

DXGI_FOR

MAT_P016 
Y = 

DXGI_FORMAT_R16_UN

ORM 

U/V = 

DXGI_FORMAT_R16G16_

UNORM 

 (U->R16, V->G16) 

  Plan

ar 

2 R16_UNORM 
R16G16_U

NORM 

chomra 

pixel 

dimensions 

1/2 in both 

x and y 

from the 

Luma view 

NA Sampler, 

HDC, PB 

DXGI_FOR

MAT_P016 
Y = 

DXGI_FORMAT_R16_UIN

T 

U/V = 

DXGI_FORMAT_R16G16_

UINT 

 (U->R16, V->G16) 

  Plan

ar 

2 R16_UNIT 
R16G16_UI

NT 

chomra 

pixel 

dimensions 

1/2 in both 

x and y 

from the 

Luma view 

NA Sampler, 

PB 

DXGI_FOR

MAT_P010 
Y = 

DXGI_FORMAT_R16_UN

ORM 

U/V = 

DXGI_FORMAT_R16G16_

UNORM 

 (U->R16, V->G16) 

  Plan

ar 

2 R16_UNORM 
R16G16_U

NORM 

chroma 

pixel 

dimensions 

1/2 in both 

x and y 

from the 

Luma view 

NA Sampler, 

HDC, PB 

DXGI_FOR

MAT_P010 
Y = 

DXGI_FORMAT_R16_UIN

T 

U/V = 

DXGI_FORMAT_R16G16_

UINT 

 (U->R16, V->G16) 

  Plan

ar 

2 R16_UNIT 
R16G16_UI

NT 

chomra 

pixel 

dimensions 

1/2 in both 

x and y 

from the 

Luma view 

NA Sampler, 

HDC, PB 

DXGI_FOR

MAT_Y216 
DXGI_FORMAT_R16G16

B16A16_UNORM 

 (Y0->R16, U->G16, Y1-

  Pack

ed 

1 R16G16B16A16_UNORM NA NA Sampler, 
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Dx YUV 

format 

name DxRGB format name 

GPGPU 

Image 

Type 

GPGPU 

Image 

Data Type 

Pac

ked 

/ 

Plan

ar 

# 

Surf

ace 

Stat

es Surface Format #1 

Surface 

Format #2 

Surface 

Format #3 

Support 

By 

>B16, V->A16). 

DXGI_FOR

MAT_Y216 
DXGI_FORMAT_R16G16

B16A16_UINT 

 (Y0->R16, U->G16, Y1-

>B16, V->A16). 

  Pack

ed 

1 R16G16B16A16_UINT NA NA Sampler, 

HDC 

DXGI_FOR

MAT_Y210 
DXGI_FORMAT_R16G16

B16A16_UNORM 

 (Y0->R16, U->G16, Y1-

>B16, V->A16). 

  Pack

ed 

1 R16G16B16A16_UNORM NA NA Sampler, 

DXGI_FOR

MAT_Y210 
DXGI_FORMAT_R16G16

B16A16_UINT 

 (Y0->R16, U->G16, Y1-

>B16, V->A16). 

  Pack

ed 

1 R16G16B16A16_UINT NA NA Sampler, 

HDC 

DXGI_FOR

MAT_Y416 
DXGI_FORMAT_R16G16

B16A16_UNORM 

 (U->R16, Y->G16, V-

>B16, A->A16) 

  Pack

ed 

1 R16G16B16A16_UNORM NA NA Sampler, 

HDC 

DXGI_FOR

MAT_Y416 
DXGI_FORMAT_R16G16

B16A16_UINT 

 (U->R16, Y->G16, V-

>B16, A->A16) 

  Pack

ed 

1 R16G16B16A16_UINT NA NA Sampler, 

DXGI_FOR

MAT_Y410 
DXGI_FORMAT_R16G16

B16A16_UNORM 

 (U->R16, Y->G16, V-

>B16, A->A16) 

  Pack

ed 

1 R16G16B16A16_UNORM NA NA Sampler, 

HDC 

DXGI_FOR

MAT_Y410 
DXGI_FORMAT_R16G16

B16A16_UINT 

 (U->R16, Y->G16, V-

>B16, A->A16) 

  Pack

ed 

1 R16G16B16A16_UINT NA NA Sampler, 

NA NA 
CL_CbCr 

(U->R16, 

V->G16) 

CL_UNOR

M_INT16 

Pack

ed 

1 R16G16_UINT NA NA Sampler, 

HDC 

NA NA 
CL_CbCr 

(U->R16, 

V->G16) 

CL_UNOR

M_INT12 

Pack

ed 

1 R16G16_UINT NA NA Sampler, 

HDC 
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Dx YUV 

format 

name DxRGB format name 

GPGPU 

Image 

Type 

GPGPU 

Image 

Data Type 

Pac

ked 

/ 

Plan

ar 

# 

Surf

ace 

Stat

es Surface Format #1 

Surface 

Format #2 

Surface 

Format #3 

Support 

By 

NA NA 
CL_CbCr 

(U->R16, 

V->G16) 

CL_UNOR

M_INT10 

Pack

ed 

1 R16G16_UINT NA NA Sampler, 

HDC 

NA NA 
CL_CbCr 

(U->R8, V-

>G8) 

CL_UNOR

M_INT8 

Pack

ed 

1 R8G8_UINT NA NA Sampler, 

HDC 

NA NA 
CL_Cb_Cr 

(U->R16) 

 (V->R16) 

CL_UNOR

M_INT16 

Plan

ar 

2 R16_UNIT R16_UNIT NA Sampler, 

HDC 

NA NA 
CL_Cb_Cr 

(U->R16) 

 (V->R16) 

CL_UNOR

M_INT12 

Plan

ar 

2 R16_UNIT R16_UNIT NA Sampler, 

HDC 

NA NA 
CL_Cb_Cr 

(U->R16) 

 (V->R16) 

CL_UNOR

M_INT10 

Plan

ar 

2 R16_UNIT R16_UNIT NA Sampler, 

HDC 

NA NA 
CL_Cb_Cr 

(U->R8) 

 (V->R8) 

CL_UNOR

M_INT8 

Plan

ar 

2 R8_UNIT R8_UNIT NA Sampler, 

HDC 

NA NA 
CL_Y 

(Y->R16) 

CL_UNOR

M_INT16 

Pack

ed 

1 R16_UNIT NA NA Sampler, 

HDC 

NA NA 
CL_Y 

(Y->R16) 

CL_UNOR

M_INT12 

Pack

ed 

1 R16_UNIT NA NA Sampler, 

HDC 

NA NA 
CL_Y 

(Y->R16) 

CL_UNOR

M_INT10 

Pack

ed 

1 R16_UNIT NA NA Sampler, 

HDC 

NA NA 
CL_Y 

(Y->R8) 

CL_UNOR

M_INT8 

Pack

ed 

1 R8_UNIT NA NA Sampler, 

HDC 

NA NA 
CL_Cb 

(V->R16) 

CL_UNOR

M_INT16 

Pack

ed 

1 R16_UNIT NA NA Sampler, 

HDC 

NA NA 
CL_Cb 

CL_UNOR

M_INT12 

Pack

ed 

1 R16_UNIT NA NA Sampler, 

HDC 
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Dx YUV 

format 

name DxRGB format name 

GPGPU 

Image 

Type 

GPGPU 

Image 

Data Type 

Pac

ked 

/ 

Plan

ar 

# 

Surf

ace 

Stat

es Surface Format #1 

Surface 

Format #2 

Surface 

Format #3 

Support 

By 

(V->R16) 

NA NA 
CL_Cb 

(V->R16) 

CL_UNOR

M_INT10 

Pack

ed 

1 R16_UNIT NA NA Sampler, 

HDC 

NA NA 
CL_Cb 

(V->R8) 

CL_UNOR

M_INT8 

Pack

ed 

1 R8_UNIT NA NA Sampler, 

HDC 

NA NA 
CL_Cb 

(U->R16) 

CL_UNOR

M_INT16 

Pack

ed 

1 R16_UNIT NA NA Sampler, 

HDC 

NA NA 
CL_Cb 

(U->R16) 

CL_UNOR

M_INT12 

Pack

ed 

1 R16_UNIT NA NA Sampler, 

HDC 

NA NA 
CL_Cb 

(U->R16) 

CL_UNOR

M_INT10 

Pack

ed 

1 R16_UNIT NA NA Sampler, 

HDC 

NA NA 
CL_Cb 

(U->R8) 

CL_UNOR

M_INT8 

Pack

ed 

1 R8_UNIT NA NA Sampler, 

HDC 

Raw Format  

A format called "RAW" is available that is only supported with the untyped surface read/write, block, 

scattered, and atomic operation data port messages. It means that the surface has no inherent format. 

Surfaces of type RAW are addressed with byte-based offsets. The RAW surface format can be applied 

only to surface types of BUFFER and SCRATCH. 

Surface Memory Organizations 

See Memory Interface Functions chapter for a discussion of tiled vs. linear surface formats. 

Display, Overlay, Cursor Surfaces  

These surfaces are memory image buffers (planes) used to refresh a display device in non-VGA mode. 

See the Display chapter for specifics on how these surfaces are defined/used. 

2D Render Surfaces  

These surfaces are used as general source and/or destination operands in 2D BLT operations. 

Note that there is no coherency between 2D render surfaces and the texture cache. Software must 

explicitly invalidate the texture cache before using a texture that has been modified via the BLT engine. 
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See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used, 

restrictions on their size, placement, etc. 

2D Monochrome Source  

These 1 BPP (bit per pixel) surfaces are used as source operands to certain 2D BLT operations, where the 

BLT engine expands the 1 BPP source to the required color depth. 

The texture cache stores any monochrome sources. There is no mechanism to maintain coherency 

between 2D render surfaces and texture-cached monochrome sources. Software must explicitly 

invalidate the texture cache before using a memory-based monochrome source that has been modified 

via the BLT engine. (Here the assumption is that SW enforces memory-based monochrome source 

surfaces as read-only surfaces.) 

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used, 

restrictions on their size, placement, coherency rules, etc. 

2D Color Pattern  

Color pattern surfaces are used as special pattern operands in 2D BLT operations. 

The device uses the texture cache to store color patterns. There is no mechanism to maintain coherency 

between 2D render surfaces and (texture)-cached color patterns. Software is required to explicitly 

invalidate the texture cache before using a memory-based color pattern that has been modified via the 

BLT engine. (Here the assumption is that SW enforces memory-based color pattern surfaces as read-only 

surfaces.) 

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used, 

restrictions on their size, placement, etc. 

3D Color Buffer (Destination) Surfaces  

3D Color Buffer surfaces hold per-pixel color values for use in the 3D Pipeline. The 3D Pipeline always 

requires a Color Buffer to be defined. 

See the Non-Video Pixel/Texel Formats section in this chapter for details on the Color Buffer pixel 

formats. See the 3D Instruction and 3D Rendering chapters for Color Buffer usage details. 

The Color Buffer is defined as the BUFFERID_COLOR_BACK memory buffer via the 

3DSTATE_BUFFER_INFO instruction. That buffer can be mapped to LM or SM (snooped or unsnooped), 

and can be linear or tiled. When both the Depth and Color Buffers are tiled, the respective Tile Walk 

directions must match. 

When a linear Color Buffer and a linear Depth Buffer are used together: 

• The buffers may have different pitches, though both pitches must be a multiple of 32 bytes. 

• The buffers must be co-aligned with a 32-byte region. 
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3D Depth Buffer Surfaces  

Depth Buffer surfaces hold per-pixel depth values and per-pixel stencil values for use in the 3D Pipeline. 

The 3D Pipeline does not require a Depth Buffer in general, though a Depth Buffer is required to perform 

non-trivial Depth Test and Stencil Test operations. 

The Depth Buffer is specified via the 3DSTATE_DEPTH_BUFFER command. See the description of that 

instruction in Windower for restrictions. 

See Depth Buffer Formats below for a summary of the possible depth buffer formats. See the Depth 

Buffer Formats section in this chapter for details on the pixel formats. See the Windower and DataPort 

chapters for details on the usage of the Depth Buffer. 

Depth Buffer Formats 

DepthBufferFormat / 

DepthComponent 

BPP (Bits Per 

Pixel) Description 

D32_FLOAT_S8X24_UINT 64 32-bit floating point Z depth value in first DWord, 8-bit stencil 

in lower byte of second DWord 

D32_FLOAT 32 32-bit floating point Z depth value 

D24_UNORM_S8_UINT 32 24-bit fixed point Z depth value in lower 3 bytes, 8-bit stencil 

value in upper byte 

D16_UNORM 16 16-bit fixed point Z depth value 

3D Separate Stencil Buffer Surfaces  

Separate Stencil Buffer surfaces hold per-pixel stencil values for use in the 3D Pipeline. Note that the 3D 

Pipeline does not require a Stencil Buffer to be allocated, though a Stencil Buffer is required to perform 

non-trivial Stencil Test operations. 

Depth Buffer Formats summarizes Stencil Buffer formats. Refer to the Stencil Buffer Formats section in 

this chapter for details on the pixel formats. Refer to the Windower chapters for Stencil Buffer usage 

details. 

The Stencil buffer is specified via the 3DSTATE_STENCIL_BUFFER command. See that instruction 

description in Windower for restrictions. 

Depth Buffer Formats 

DepthBufferFormat / 

DepthComponent BPP (bits per pixel) Description 

R8_ UNIT 8 8-bit stencil value in a byte 
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Surface Layout and Tiling  

This section explains how various surface types (1D, 2D, 3D, and Cube) are laid out in memory. Most of 

the information in this section is independent of tiling. The concept of tiling can be laid on top of 

information. Wherever there is a specific difference it will be called out. 

For Tiling (TileY, TileYs etc.), see the Address Tiling Function Introduction section which provides detailed 

information on how tiles are organized and laid out. 

Maximum Surface Size in Bytes 

In addition to restrictions on maximum height, width, and depth, surfaces are also restricted to a 

maximum size of 2^44 bytes. All pixels within the surface must be contained within 2^44 bytes of the 

base address. 

NULL Page Support for Media Sampler  

NULL support for VA Media sampler will process the returned data for NULL pages as if it was all zeros. 

Except for feature matching function, in which the NULL page indication will cause the distance function 

calculation to be ignored and a maximum distance value of 0xFF to be returned. 

Tiling  

To improve efficiency in memory accesses, most surfaces can be laid out using a tiling scheme. 

Supported Legacy Tiling Modes: 

• TileY 

• TileX 

• TileW 

Supported Tiled Resource Modes 

• TileYF: 4KB tiling mode based on TileY 

• TileYS: 64KB tiling mode based on TileY 

These modes are described in the Address Tiling Function Introduction volume. 

Typed Buffers  

A typed buffer is an array of structures. Each structure contains up to 2048 bytes of elements. Each 

element is a single surface format using one of the supported surface formats depending on how the 

surface is being accessed. The surface pitch state for the surface specifies the size of each structure in 

bytes. 

The buffer is stored in memory contiguously with each element in the structure packed together, and the 

first element in the next structure immediately following the last element of the previous structure. 

Buffers are supported only in linear memory. 



  
  

 

Doc Ref # IHD-OS-DG1-Vol 5-2.21   69 

 

Typed buffers are accessed using a surface state for each structure element (a,b,c, etc. in the diagram 

above). The surface state for element "b" (for example) contains the surface format of element "b" (which 

may differ from other elements), the base address points to element "b" in the first structure (slice 0 of 

the array). The pitch for all of the elements in the buffer is the same value, and the surface type of each 

element is SURFTYPE_BUFFER. 

The offset into the typed buffer is given by the following equation: 

Offset = (V * Pitch) + U 

MIP Layout  

A surface can support multiple levels of details (LODs) or MIPs. The MIPCOUNT field in the 

RENDER_SURFACE_STATE defines how many MIPs a surface contains. 

 MIP0 or LOD0 is the largest, highest-detail MIP. The height, width and depth of this LOD is what is 

defined in the RENDER_SURFACE_STATE for that surface. Each subsequent 

 MIP is exactly one-half the height and width of the previous, making it 1/4th the size in memory. 

The MIPs of a surface a laid out in memory using a 2-dimensional method as shown below. Volumetric 

and arrayed surfaces use multiple "slices" of this MIP layout, with each slice separated by QPITCH 

number of rows. 

The diagram below shows many of the parameters of a 2D,2D Arrayed and 3D surface. 
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This 2-dimensional layout implies that there is padding required on the rows below LOD0 in order to 

ensure each row is the same number of texels. 

If Tiling is enabled, then each MIP is laid out using one or more tiles. If TileYf or TileYs tiling is enabled 

(TR_MODE != NONE), then some of the MIPs may actually be stored in a MIPTail which fits in a single 

64K or 4K tile. The layout above, then only applied to MIPs which are not packed in the MIP Tail. Note 

that, depending on surface height the Vertical Alignment that surface can actually have the last few mips 

laid out below LOD1. Using MIP Tail (if supported) eliminates this possibility. 
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Raw (Untyped) Buffers  

Raw buffers also use the surface type of SURFTYPE_BUFFER, but the surface format is RAW. These buffers 

are one-dimensional. They are accessed with a single U parameter which is a byte offset into the buffer. 

Raw buffers are also supported only in linear memory. 

The offset into the raw buffer is given directly by the U parameter. 

Offset = U 

Structured Buffers  

A structured buffer is a surface type that is accessed by a 2-dimensional coordinate. It can be thought of 

as an array of structures, where each structure is a predefined number of DWords in size. The first 

coordinate (U) defines the array index, and the second coordinate (V) is a byte offset into the structure 

which must be a multiple of 4 (DWord-aligned). A structured buffer must be defined with Surface 

Format RAW. 

The structured buffer has only one dimension programmed in SURFACE_STATE which indicates the array 

size. The byte offset dimension (V) is assumed to be bounded only by the Surface Pitch. 

The two-dimensional offset into the surface is defined directly by the U and V parameters. Structured 

buffers are linear. 

1D Surfaces  

One-dimensional surfaces use a tiling mode of linear. Technically, they are not tiled resources, but the 

Tiled Resource Mode field in RENDER_SURFACE_STATE is still used to indicate the alignment 

requirements for this linear surface (See 1D Alignment requirements for how 4K and 64KB Tiled Resource 

Modes impact alignment). 1D surfaces are stored linearly in memory. 

Programming Note 

Context: Legacy 1D Tiling 

There is a legacy mode for representing a 1D surface as a 2D surface with a height of 1 texel. However, this mode is 

not recommended due to API compatibility. The Sampler Legacy 1D Map Layout Disable  MMIO bit (bit 0, E194h) 

must be set to 1h to allow true 1D surfaces. 

 

Programming Note 

Context: Legacy 1D Tiling 

There is a legacy mode for representing a 1D surface as a 2D surface with a height of 1 texel. However this mode is 

not recommended due to API compatibility. The MMIO bit (bit 0, E194h) must be set to 1h to allow true 1D 

surfaces. 

Linear 1D surfaces are stored in a one-dimensional view of memory as follows: 
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Surface Pitch is ignored for 1D surfaces. Surface QPitch specifies the distance in pixels between array 

slices. QPitch should allow at least enough space for any mips that may be present. 

A number of parameters are useful to determine where given pixels will be located on the 1D surface. 

First, the width for each LOD "L" is computed: 

 

When Corner Texel Mode is enabled via the RENDER_SURFACE_STATE, the width of a 1D surface is calculated as 

shown below: 

WL = MAX(1,(WL-1-1)»1)+1 

There is a restriction that the smallest map dimension is 2 texels for Corner Texel Mode (W0 >1) 

Next, the aligned width parameter for each LOD "L" is computed. The "i" parameter is the horizontal 

alignment parameter set by a state field or defined as a constant, depending on the surface. The 

equation uses the I value that applies to the LOD being computed. 

 

Next, the offset to each LOD is determined. The offset has one dimension for 1D surfaces. The single 

element in the LODL vector is named LODUL. 

 

 Based on the above parameters and the U and R (pixel address and array index, respectively), and the 

bytes per pixel of the surface format (Bpp), the offset "u" in bytes from the base address of the surface is 

given by: 

 u = [(R * QPitch) + LODUL + U] * Bpp 

  

Programming Note 

Context: Packed YUV Surfaces 

Packed YUV surface formats such as YCRCB_NORMAL, YCRCB_SWAPUVY etc. will be treated as 16bpp surface, not 

32bpp, which may impact how they are laid out in memory. 
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Tiling and Mip Tail for 1D Surfaces  

 There is no MIP Tail allowed for 1D surfaces because they are not allowed to be tiled. They must be 

declared as linear. 

1D Alignment Requirements  

1D surfaces are not tiled but laid out linearly in memory. 

Tiled Resource Mode Bits per Element Horizontal Alignment 

TRMODE_NONE Any 64 

2D Surfaces   

2D surfaces represent two-dimensional bitmaps, which can also be mip-mapped and/or consist of array 

slices, effectively representing multiple 2D sub-surfaces within a single surface. The diagram below shows 

many of the parameters of a 2D surface or Arrayed 2D Surface and what they mean. 
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All surface parameters are defined in terms of texels (agnostic to the surface format). 

Surface Pitch defines the distance in bytes between rows of the surface and is a function of the Width 

of LOD. QPitch specifies the distance in rows between array slices and is a function of the Height. 

QPitch should allow at least enough space for any Mips that may be present. 

There can also be non-zero offsets (X_Offset and Y_Offset) defined from the base address which can be 

used to provide padding or provide an offset to a lower-detail LOD. 

There are limitations to the physical size of an LOD in the sampler texture cache. An LOD must be aligned 

to a cache-line except for some special cases related to Planar YUV surfaces. In general, the cache-

alignment restriction implies there is a minimum height for an LOD of 4 texels. So, LODs which are 

smaller than 4 high are padded. 

There are limitations to the physical size of an LOD in the texture cache. An LOD must be aligned to a 

cache-line except for some special cases related to Planar YUV surfaces. In general, the cache-alignment 

restriction implies there is a minimum height for an LOD of 4 texels. So, LODs which are smaller than 4 

high are padded. 

For tiled surfaces with TR_MODE != TR_NONE this restriction is not significant because the MIP tail will be 

used for smaller MIPs and the slots are a minimum of 64B. For non-tiled surface or surfaces where 

TR_MODE == TR_NONE, Mips smaller than 4 high start at the top of the region, and they are padded. This 

padding leads to a case where the smallest LOD starts "below" LOD1 vertically. 

Calculating Texel Location 

This section describes how the texel location is calculated once the Surface State and LOD are known. A 

number of parameters are useful to determine where given pixels are located on the 2D surface. The 

width (WL) and height (HL) for each LOD "L" is computed by the formula: 

WL = ((width»L) > 0 ? width»L:1) 

HL = ((height»L) > 0? height»L:1) 

When Corner Texel Mode is enabled via the RENDER_SURFACE_STATE, the width and height of a 2D 

surface are calculated as shown below: 

WL = MAX(1,(W0-1)»L)+1 

HL = MAX(1,(H0-1)»L)+1 

There is a restriction that the smallest map dimension is 2 texels for Corner Texel Mode (W0 >1, H0 > 1). 

This also applies to 2D arrays and 2D arrays viewed as cubes. 

The LOD width and height for each subsequent LOD is one-half the previous LOD, with the minimum 

dimension being 1 texel. If the surface is multisampled and it is a depth or stencil surface or 

Multisampled Surface Storage Format in SURFACE_STATE is MSFMT_DEPTH_STENCIL, WL and HL must 

be adjusted as follows: 
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Number of Multisamples WL = HL = 

2 ceiling(WL / 2) * 4 HL [no adjustment] 

4 ceiling(WL / 2) * 4 ceiling(HL / 2) * 4 

8 ceiling(WL / 2) * 8 ceiling(HL / 2) * 4 

16 ceiling(WL / 2) * 8 ceiling(HL / 2) * 8 

Next, aligned width, height, and depth parameters for each LOD "L" must be computed. The "i" and "j" 

parameters are horizontal and vertical alignment parameters set by state fields or defined as constants, 

depending on the surface. Depth has no alignment parameter (effectively it is 1). 

The equation uses the i and j values that apply to the LOD being computed. The "p" and "q" parameters 

define the width and height in texels of the compression block for compressed surface formats. Both p 

and q are defined to equal 1 for uncompressed surface formats. 

 

Once the height (hi) and width (wi) of each LOD is computed , the offset to each LOD can be determined. 

The offset is a vector with two dimensions. The elements in the LODL vector are named in order LODUL, 

LODVL. 

LOD offset computation for when no Mip Tail is used or when L < Mip Tail Start LOD: 

LOD0 = (0,0) 

LOD1 = (0,h0) 

LOD2 = (w1,h0) 

LOD3 = (w1,h0 + h2) 

LOD4 = (w1,h0 + h2 + h3) 

... 

LODN = (w1, h0 + h2 + h3 ... + hN-1) 

Where N = MIP_COUNT for the surface. As noted previously in this section, the value of h2 + h3... + hN-1 

may be greater than h1 due to alignment requirements. 

Based on the above parameters and the U, V, and R (two dimensional pixel address U/V and array index 

R), and the bytes per pixel of the surface format (Bpp), the offsets u in bytes and v in rows are given by: 

u = (U + LODUL) * Bpp 

v = (R * QPitch) + LODVL + V 

For a description of how the Mip Tail is laid out and offsets into the Mip Tail are calculated see the sub-

section on 2D Surface Layout for Mip Tails. 
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Programming Note 

Context: Packed YUV Surfaces 

Packed YUV surface formats such as YCRCB_NORMAL, YCRCB_SWAPUVY etc. will be treated as 16bpp surface, not 

32bpp, which may impact how they are layed out in memory. 

The two dimensional offset into the surface (for non-MipTail cases) is defined by the u and v values 

computed above. The lower virtual address bits are determined by the following table, based on the bits 

of u and v. An element is defined as a pixel for uncompressed surface formats and a compression block 

for compressed surface formats. Empty bit positions indicate that the bit is not part of the tile swizzle and 

is filled in with equations given next (note that linear mode has all bits empty--there is no swizzling in 

linear mode). 

The table below shows the mapping of u and v address bits within a tile for the supported tiling modes 

for a 2D surface. The u bits are a Byte address within a row and the v bits are a Row address within the 

tile. 

Programming Note 

Context: Tiling Definition 

Tile 

Mode 

Bits per 

Element 

TileID 

constants 

Virtual Address Bits 

Cv Cu 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

TileYS 64 & 

128 

6 10 u9 v5 u8 v4 u7 v3 u6 v2 u5 u4 v1 v0 u3 u2 u1 u0 

16 & 32 7 9 u8 v6 u7 v5 u6 v4 u5 v3 u4 v2 v1 v0 u3 u2 u1 u0 

8 8 8 u7 v7 u6 v6 u5 v5 u4 v4 v3 v2 v1 v0 u3 u2 u1 u0 

TileYF 64 & 

128 

4 8     
u7 v3 u6 v2 u5 u4 v1 v0 u3 u2 u1 u0 

16 & 32 5 7     
u6 v4 u5 v3 u4 v2 v1 v0 u3 u2 u1 u0 

8 6 6     
u5 v5 u4 v4 v3 v2 v1 v0 u3 u2 u1 u0 

TileY all 5 7     
u6 u5 u4 v4 v3 v2 v1 v0 u3 u2 u1 u0 

TileX all 3 9     
v2 v1 v0 u8 u7 u6 u5 u4 u3 u2 u1 u0 

TileW all 6 6     
u5 u4 u3 v5 v4 v3 v2 u2 v1 u1 v0 u0 

Linear all 0 0                 
 

The TileID fills the upper bits of the virtual address (starting with the lowest blank bit in the above table): 
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TileID = (v » Cv) * (Pitch » Cu) + (u » Cu) 

Where Pitch is the Surface_Pitch field from RENDER_SURFACE_STATE. 

Note: Multisampled CMS and UMS surfaces use a modified address bit swizzling table rather than the 

one above. Refer to the Multisampled2D Surfaces section for details. 

Tiling and Mip Tails for 2D Surfaces  

When surface is Tiled (Tile_Mode=YMAJOR) and Tile Resources are enabled (TR_MODE != TR_NONE), a 

2D surface can contain a Mip Tail for smaller Mip sizes. 

When LOD (L) is less than the Mip Tail Start LOD (S) declared in the Surface State the offset to the start 

of LOD is calculated as shown above. 

If the LOD is greater than or equal to Mip Tail Start LOD field in the surface state then the MIP Tail 

layout below is used.. 

For tiled resources, the mip tail offset is given by the following, where s is the Mip Tail Start LOD: 

LODS = (w1, h0 + h2 + h3 + ... + hS-1) 

The LOD's in the Mip Tail are arranged differently than the other LOD's. 

The diagram below shows the 64KB TileYS Mip Tail layout of LODs within it, with "slots" indicating the 

LOD contained within (slot 0 corresponds to LODs above). LOD's are aligned to the upper left corner of 

the space available. The block marked "Slots 4-14" is a 4KB tile arrangement as shown. Within this 4KB 

tile slots 11 thru 14 are arranged differently depending on the number bits per texel (bpt). 

A TileYf (4KByte) Mip Tail will start with the 4KByte tile shown, but the slots will be renumbered to start at 

Slot0 rather than Slot4. The layout of slots 11 through 14 remain the same. Note that Slots 12-14 are 

NOT 256-Byte aligned which is not compliant with the standard MIP Tail layout. These slots are not 

supported for Standard Tiling. 
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The offsets into the Mip Tail tile are given by the following table for each LOD in the Mip tail. Each entry 

in the table is a horizontal (MU) and vertical (MV) position (in texels) from the upper left corner of the Mip 

Tail. If LOD >= S (starting LOD for MIP Tail), then these Mip Tail offsets must be added to the LODUL, and 

LODVL calculated above. 
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Note that many of the higher LODs are not possible given surface size constraints, but they are listed 

here for reference. The offsets given here need to be added to the LODs offset computed earlier to 

obtain the offset into the surface LODL. 

Slot 11 is 256-byte aligned. Slots 12 through 14 are 64-byte aligned. 

TileYS LOD TileYF LOD 128 bpe 64 bpe 32 bpe 16 bpe 8 bpe 

1x 2x 4x 8x 16x 1x 2x 4x 8x 16x      

s          (32,0) (64,0) (64,0) (128,0) (128,0) 

s+1 s         (0,32) (0,32) (0,64) (0,64) (0,128) 

s+2 s+1 s        (16,0) (32,0) (32,0) (64,0) (64,0) 

s+3 s+2 s+1 s       (0,16) (0,16) (0,32) (0,32) (0,64) 

s+4 s+3 s+2 s+1 s s     (8,0) (16,0) (16,0) (32,0) (32,0) 

s+5 s+4 s+3 s+2 s+1 s+1 s    (4, 8) (8, 8) (8, 16) (16, 16) (16, 32) 

s+6 s+5 s+4 s+3 s+2 s+2 s+1    (0, 12) (0, 12) (0, 24) (0, 24) (0, 48) 

s+7 s+6 s+5 s+4 s+3 s+3 s+2    (0, 8) (0, 8) (0, 16) (0, 16) (0, 32) 

s+8 s+7 s+6 s+5 s+4 s+4 s+3 s   (4, 4) (8, 4) (8, 8) (16, 8) (16, 16) 

s+9 s+8 s+7 s+6 s+5 s+5 s+4 s+1   (4, 0) (8, 0) (8, 0) (16, 0) (16, 0) 

s+10 s+9 s+8 s+7 s+6 s+6 s+5 s+2 s  (0, 4) (0, 4) (0, 8) (0, 8) (0, 16) 

s+11 s+10 s+9 s+8 s+7 s+7 s+6 s+3 s+1 s (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) 

s+12 s+11 s+10 s+9 s+8 s+8 s+7 s+4 s+2 s+1 (1, 0) (2, 0) (0, 4) (0, 4) (0, 4) 

s+13 s+12 s+11 s+10 s+9 s+9 s+8 s+5 s+3 s+2 (2, 0) (4, 0) (4, 0) (8, 0) (0, 8) 

s+14 s+13 s+12 s+11 s+10 s+10 s+9 s+6 s+4 s+3 (3, 0) (6, 0) (4, 4) (8, 4) (0, 12) 

If the LOD is located in the MIP Tail then the equation for calculating the byte positions for u and v 

become: 

     u = (U + LODUS + MU) * Bpp 

     v = (R * QPitch) + LODVS + MV + V 

where MU and MV are the offset parameters from the table above for the given slot in the MIP Tail. 

Programming Note 

Context: Lossless Compression and MIP Tail 

Lossless compression must not be used on surfaces which have MIP Tail which contains MIPs for Slots greater than 

11. 

Stencil Buffer Layout  

This section details the layout of the stencil buffer. 
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2D/CUBE Alignment Requirement  

The vertical and horizontal alignment fields in the RENDER_SURFACE_STATE are ignored for standard tiling formats 

(TRMODE = NONE). In the case of standard tiling formats the alignment requirements 

 are fixed and are provided for by the tables below for 2D and CUBE surface. 

Tile Mode Bits per Element Horizontal Alignment Vertical Alignment 

TileYS 128 64 64 

64 128 64 

32 128 128 

16 256 128 

8 256 256 

TileYF 128 16 16 

64 32 16 

32 32 32 

16 64 32 

8 64 64 
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For MSFMT_MSS type multi-sampled TileYS and TileYF surfaces, the alignments given above must be divided by the 

appropriate value from the table below. 

Number of Multisamples Horizontal Alignment is divided by Vertical Alignment is divided by 

2 2 1 

4 2 2 

8 4 2 

16 4 4 

Multisampled 2D Surfaces  

There are three types of multisampled surface layouts designated as follows: 

* IMS Interleaved Multisampled Surface 

* CMS Compressed Mulitsampled Surface 

* UMS Uncompressed Multisampled Surface 

These surface layouts are described in the following sections. 

Interleaved Multisampled Surfaces  

These surfaces contain the samples in an interleaved fashion, with the underlying surface in memory 

having a height and width that is larger than the non-multisampled surface as follows: 

• 4x MSAA: 2x width and 2x height of non-multisampled surface. 

• 8x MSAA: 4x width and 2x height of non-multisampled surface. 

• 16x MSAA: 4X width and 4X height of the non-multisampled surface. 

When sampling from an IMS surface (e.g. ld2dms), the coordinates are automatically scaled to handle the 

increased physical size of the map. 

The tables below show the layout of 16-bit Depth (Z) values for different IMS formats. It shows layout of each 64-

Byte chunk. 

1X: 

 
bit 0 

      
bit 127 

Bytes 15:0 P(0,0) P(1,0) P(2,0) P(3,0) P(4,0) P(5,0) P(6,0) P(7,0) 

Bytes 16:31 P(0,1) P(1,1) P(2,1) P(3,1) P(4,1) P(5,1) P(6,1) P(7,1) 

Bytes 32:47 P(0,2) P(1,2) P(2,2) P(3,2) P(4,2) P(5,2) P(6,2) P(7,2) 
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Bytes 48:63 P(0,3) P(1,3) P(2,3) P(3,3) P(4,3) P(5,3) P(6,3) P(7,3) 

2X: 

 
bit 0 

      
bit 127 

Bytes 15:0 P(0,0) s0 P(1,0) s0 P(0,0) s1 P(1,0) s1 P(2,0) s0 P(3,0) s0 P(2,0) s1 P(3,0) s1 

Bytes 16:31 P(0,1) s0 P(1,1) s0 P(0,1) s1 P(1,1) s1 P(2,1) s0 P(3,1) s0 P(2,1) s1 P(3,1) s1 

Bytes 32:47 P(0,2) s0 P(1,2) s0 P(0,2) s1 P(1,2) s1 P(2,2) s0 P(3,2) s0 P(2,2) s1 P(3,2) s1 

Bytes 48:63 P(0,3) s0 P(1,3) s0 P(0,3) s1 P(1,3) s1 P(2,3) s0 P(3,3) s0 P(2,3) s1 P(3,3) s1 

4X: 

 
bit 0 

      
bit 127 

Bytes 15:0 P(0,0) s0 P(1,0) s0 P(0,0) s1 P(1,0) s1 P(2,0) s0 P(3,0) s0 P(2,0) s1 P(3,0) s1 

Bytes 16:31 P(0,1) s0 P(1,1) s0 P(0,1) s1 P(1,1) s1 P(2,1) s0 P(3,1) s0 P(2,1) s1 P(3,1) s1 

Bytes 32:47 P(0,0) s2 P(1,0) s2 P(0,0) s3 P(1,0) s3 P(2,0) s2 P(3,0) s2 P(2,0) s3 P(3,0) s3 

Bytes 48:63 P(0,1) s2 P(1,1) s2 P(0,1) s3 P(1,1) s3 P(2,1) s2 P(3,1) s2 P(2,1) s3 P(3,1) s3 

8X: 

 
bit 0 

      
bit 127 

Bytes 15:0 P(0,0) s0 P(1,0) s0 P(0,0) s1 P(1,0) s1 P(0,0) s4 P(1,0) s4 P(0,0) s5 P(1,0) s5 

Bytes 16:31 P(0,1) s0 P(1,1) s1 P(0,1) s1 P(1,1) s1 P(0,1) s4 P(1,1) s4 P(0,1) s5 P(1,1) s5 

Bytes 32:47 P(0,0) s2 P(1,0) s2 P(0,0) s3 P(1,0) s3 P(0,0) s6 P(1,0) s6 P(0,0) s7 P(1,0) s7 

Bytes 48:63 P(0,1) s2 P(1,1) s2 P(0,1) s3 P(1,1) s3 P(0,1) s6 P(1,1) s6 P(0,1) s7 P(1,1) s7 

16X: 

 
bit 0 

      
bit 127 

Bytes 15:0 P(0,0) s0 P(1,0) s0 P(0,0) s1 P(1,0) s1 P(0,0) s4 P(1,0) s4 P(0,0) s5 P(1,0) s5 
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Bytes 16:31 P(0,1) s0 P(1,1) s0 P(0,1) s1 P(1,1) s1 P(0,1) s4 P(1,1) s4 P(0,1) s5 P(1,1) s5 

Bytes 32:47 P(0,0) s2 P(1,0) s2 P(0,0) s3 P(1,0) s3 P(0,0) s6 P(1,0) s6 P(0,0) s7 P(1,0) s7 

Bytes 48:63 P(0,1) s2 P(1,1) s2 P(0,1) s3 P(1,1) s3 P(0,1) s6 P(1,1) s6 P(0,1) s7 P(1,1) s7 

 

 
bit 0 

      
bit 127 

Bytes 64:79 P(0,0) s8 P(1,0) s8 P(0,0) s9 P(1,0) s9 P(0,0) s12 P(1,0) s12 P(0,0) s13 P(1,0) s13 

Bytes 80:95 P(0,1) s8 P(1,1) s8 P(0,1) s9 P(1,1) s9 P(0,1) s12 P(1,1) s12 P(0,1) s13 P(1,1) s13 

Bytes 96:111 P(0,0) s10 P(1,0) s10 P(0,0) s11 P(1,0) s11 P(0,0) s14 P(1,0) s14 P(0,0) s15 P(1,0) s15 

Bytes 112:127 P(0,1) s10 P(1,1) s10 P(0,1) s11 P(1,1) s11 P(0,1) s14 P(1,1) s14 P(0,1) s15 P(1,1) s15 

The table below shows the layout of 32-bit Depth (Z) values for different IMS formats. It shows layout of 

each 64-Byte chunk. 

1X: 

 
bit 0 

  
bit 127 

Bytes 15:0 P(0,0) P(1,0) P(2,0) P(3,0) 
 

Bytes 16:31 P(0,1) P(1,1) P(2,1) P(3,1) 
 

Bytes 32:47 P(0,2) P(1,2) P(2,2) P(3,2) 
 

Bytes 48:63 P(0,3) P(1,3) P(2,3) P(3,3) 
 

2X: 

 
bit 0 

  
bit 127 

Bytes 15:0 P(0,0) s0 P(1,0) s0 P(0,0) s1 P(1,0) s1 

Bytes 16:31 P(0,1) s0 P(1,1) s0 P(0,1) s1 P(1,1) s1 

Bytes 32:47 P(0,2) s0 P(1,2) s0 P(0,2) s1 P(1,2) s1 

Bytes 48:63 P(0,3) s0 P(1,3) s0 P(0,3) s1 P(1,3) s1 
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4X: 

 
bit 0 

  
bit 127 

Bytes 15:0 P(0,0) s0 P(1,0) s0 P(0,0) s1 P(1,0) s1 

Bytes 16:31 P(0,1) s0 P(1,1) s0 P(0,1) s1 P(1,1) s1 

Bytes 32:47 P(0,0) s2 P(1,0) s2 P(0,0) s3 P(1,0) s3 

Bytes 48:63 P(0,1) s2 P(1,1) s2 P(0,1) s3 P(1,1) s3 

8X: 

 
bit 0 

  
bit 127 

Bytes 15:0 P(0,0) s0 P(1,0) s0 P(0,0) s1 P(1,0) s1 

Bytes 16:31 P(0,1) s0 P(1,1) s0 P(0,1) s1 P(1,1) s1 

Bytes 32:47 P(0,0) s2 P(1,0) s2 P(0,0) s3 P(1,0) s3 

Bytes 48:63 P(0,1) s2 P(1,1) s2 P(0,1) s3 P(1,1) s3 

 

 
bit 0 

  
bit 127 

Bytes 64:79 P(0,0) s4 P(1,0) s4 P(0,0) s5 P(1,0) s5 

Bytes 80:95 P(0,1) s4 P(1,1) s4 P(0,1) s5 P(1,1) s5 

Bytes 96:111 P(0,0) s6 P(1,0) s6 P(0,0) s7 P(1,0) s7 

Bytes 112:127 P(0,1) s6 P(1,1) s6 P(0,1) s7 P(1,1) s7 

16X: 

 
bit 0 

  
bit 127 

Bytes 15:0 P(0,0) s0 P(1,0) s0 P(0,0) s1 P(1,0) s1 

Bytes 16:31 P(0,1) s0 P(1,1) s0 P(0,1) s1 P(1,1) s1 

Bytes 32:47 P(0,0) s2 P(1,0) s2 P(0,0) s3 P(1,0) s3 
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Bytes 48:63 P(0,1) s2 P(1,1) s2 P(0,1) s3 P(1,1) s3 

 

 
bit 0 

  
bit 127 

Bytes 64:79 P(0,0) s4 P(1,0) s4 P(0,0) s5 P(1,0) s5 

Bytes 80:95 P(0,1) s4 P(1,1) s4 P(0,1) s5 P(1,1) s5 

Bytes 96:111 P(0,0) s6 P(1,0) s6 P(0,0) s7 P(1,0) s7 

Bytes 112:127 P(0,1) s6 P(1,1) s6 P(0,1) s7 P(1,1) s7 

 

 
bit 0 

  
bit 127 

Bytes 128:143 P(0,0) s8 P(1,0) s8 P(0,0) s9 P(1,0) s9 

Bytes 144:159 P(0,1) s8 P(1,1) s8 P(0,1) s9 P(1,1) s9 

Bytes 160:175 P(0,0) s10 P(1,0) s10 P(0,0) s11 P(1,0) s11 

Bytes 176:191 P(0,1) s10 P(1,1) s10 P(0,1) s11 P(1,1) s11 

 

 
bit 0 

  
bit 127 

Bytes 192:207 P(0,0) s12 P(1,0) s12 P(0,0) s13 P(1,0) s13 

Bytes 208:223 P(0,1) s12 P(1,1) s12 P(0,1) s13 P(1,1) s13 

Bytes 224:239 P(0,0) s14 P(1,0) s14 P(0,0) s15 P(1,0) s15 

Bytes 240:255 P(0,1) s14 P(1,1) s14 P(0,1) s15 P(1,1) s15 
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The table below shows the layout of Depth Stencil values for different IMS formats. It shows layout of 

each 64-Byte chunk. 

1X: 

Bytes 0-7 P(0,0) P(1,0) P(0,1) P(1,1) P(2,0) P(3,0) P(2,1) P(3,1) 

Bytes 8-15 P(0,2) P(1,2) P(0,3) P(1,3) P(2,2) P(3,2) P(2,3) P(3,3) 

Bytes 16-23 P(4,0) P(5,0) P(4,1) P(5,1) P(6,0) P(7,0) P(6,1) P(7,1) 

Bytes 24-31 P(4,2) P(5,2) P(4,3) P(5,3) P(6,2) P(7,2) P(6,3) P(7,3) 

Bytes 32-39 P(0,4) P(1,4) P(0,5) P(1,5) P(2,4) P(3,4) P(2,5) P(3,5) 

Bytes 40-47 P(0,6) P(1,6) P(0,7) P(1,7) P(2,6) P(3,6) P(2,7) P(3,7) 

Bytes 48-55 P(4,4) P(5,4) P(4,5) P(5,5) P(6,4) P(7,4) P(6,5) P(7,5) 

Bytes 56-63 P(4,6) P(5,6) P(4,7) P(5,7) P(6,6) P(7,6) P(6,7) P(7,7) 

2X: 

Bytes 0-7 P(0,0) s0 P(1,0) s0 P(0,1) s0 P(1,1) s0 P(0,0) s1 P(1,0) s1 P(0,1) s1 P(1,1) s1 

Bytes 8-15 P(0,2) s0 P(1,2) s0 P(0,3) s0 P(1,3) s0 P(0,2) s1 P(1,2) s1 P(0,3) s1 P(1,3) s1 

Bytes 16-23 P(2,0) s0 P(3,0) s0 P(2,1) s0 P(3,1) s0 P(2,0) s1 P(3,0) s1 P(2,1) s1 P(3,1) s1 

Bytes 24-31 P(2,2) s0 P(3,2) s0 P(2,3) s0 P(3,3) s0 P(2,2) s1 P(3,2) s1 P(2,3) s1 P(3,3) s1 

Bytes 32-39 P(0,4) s0 P(1,4) s0 P(0,5) s0 P(1,5) s0 P(0,4) s1 P(1,4) s1 P(0,5) s1 P(1,5) s1 

Bytes 40-47 P(0,6) s0 P(1,6) s0 P(0,7) s0 P(1,7) s0 P(0,6) s1 P(1,6) s1 P(0,7) s1 P(1,7) s1 

Bytes 48-55 P(2,4) s0 P(3,4) s0 P(2,5) s0 P(3,5) s0 P(2,4) s1 P(3,4) s1 P(2,5) s1 P(3,5) s1 

Bytes 56-63 P(2,6) s0 P(3,6) s0 P(2,7) s0 P(3,7) s0 P(2,6) s1 P(3,6) s1 P(2,7) s1 P(3,7) s1 
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4X: 

Bytes 0-7 P(0,0) s0 P(1,0) s0 P(0,1) s0 P(1,1) s0 P(0,0) s1 P(1,0) s1 P(0,1) s1 P(1,1) s1 

Bytes 8-15 P(0,0) s2 P(1,0) s2 P(0,1) s2 P(1,1) s2 P(0,0) s3 P(1,0) s3 P(0,1) s3 P(1,1) s3 

Bytes 16-23 P(2,0) s0 P(3,0) s0 P(2,1) s0 P(3,1) s0 P(2,0) s1 P(3,0) s1 P(2,1) s1 P(3,1) s1 

Bytes 24-31 P(2,0) s2 P(3,0) s2 P(2,1) s2 P(3,1) s2 P(2,0) s3 P(3,0) s3 P(2,1) s3 P(3,1) s3 

Bytes 32-39 P(0,2) s0 P(1,2) s0 P(0,3) s0 P(1,3) s0 P(0,2) s1 P(1,2) s1 P(0,3) s1 P(1,3) s1 

Bytes 40-47 P(0,2) s2 P(1,2) s2 P(0,3) s2 P(1,3) s2 P(0,2) s3 P(1,2) s3 P(0,3) s3 P(1,3) s3 

Bytes 48-55 P(2,2) s0 P(3,2) s0 P(2,3) s0 P(3,3) s0 P(2,2) s1 P(3,2) s1 P(2,3) s1 P(3,3) s1 

Bytes 56-63 P(2,2) s2 P(3,2) s2 P(2,3) s2 P(3,3) s2 P(2,2) s3 P(3,2) s3 P(2,3) s3 P(3,3) s3 

8X: 

Bytes 0-7 P(0,0) s0 P(1,0) s0 P(0,1) s0 P(1,1) s0 P(0,0) s1 P(1,0) s1 P(0,1) s1 P(1,1) s1 

Bytes 8-15 P(0,0) s2 P(1,0) s2 P(0,1) s2 P(1,1) s2 P(0,0) s3 P(1,0) s3 P(0,1) s3 P(1,1) s3 

Bytes 16-23 P(0,0) s4 P(1,0) s4 P(0,1) s4 P(1,1) s4 P(0,0) s5 P(1,0) s5 P(0,1) s5 P(1,1) s5 

Bytes 24-31 P(0,0) s6 P(1,0) s6 P(0,1) s6 P(1,1) s6 P(0,0) s7 P(1,0) s7 P(0,1) s7 P(1,1) s7 

Bytes 32-39 P(0,2) s0 P(1,2) s0 P(0,3) s0 P(1,3) s0 P(0,2) s1 P(1,2) s1 P(0,3) s1 P(1,3) s1 

Bytes 40-47 P(0,2) s2 P(1,2) s2 P(0,3) s2 P(1,3) s2 P(0,2) s3 P(1,2) s3 P(0,3) s3 P(1,3) s3 

Bytes 48-55 P(0,2) s4 P(1,2) s4 P(0,3) s4 P(1,3) s4 P(0,2) s5 P(1,2) s5 P(0,3) s5 P(1,3) s5 

Bytes 56-63 P(0,2) s6 P(1,2) s6 P(0,3) s6 P(1,3) s6 P(0,2) s7 P(1,2) s7 P(0,3) s7 P(1,3) s7 

16X: 

Bytes 0-7 P(0,0) s0 P(1,0) s0 P(0,1) s0 P(1,1) s0 P(0,0) s1 P(1,0) s1 P(0,1) s1 P(1,1) s1 

Bytes 8-15 P(0,0) s2 P(1,0) s2 P(0,1) s2 P(1,1) s2 P(0,0) s3 P(1,0) s3 P(0,1) s3 P(1,1) s3 

Bytes 16-23 P(0,0) s4 P(1,0) s4 P(0,1) s4 P(1,1) s4 P(0,0) s5 P(1,0) s5 P(0,1) s5 P(1,1) s5 
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Bytes 24-31 P(0,0) s6 P(1,0) s6 P(0,1) s6 P(1,1) s6 P(0,0) s7 P(1,0) s7 P(0,1) s7 P(1,1) s7 

Bytes 32-39 P(0,0) s8 P(1,0) s8 P(0,1) s8 P(1,1) s8 P(0,0) s9 P(1,0) s9 P(0,1) s9 P(1,1) s9 

Bytes 40-47 P(0,0) s10 P(1,0) s10 P(0,1) s10 P(1,1) s10 P(0,0) s11 P(1,0) s11 P(0,1) s11 P(1,1) s11 

Bytes 48-55 P(0,0) s12 P(1,0) s12 P(0,1) s12 P(1,1) s12 P(0,0) s13 P(1,0) s13 P(0,1) s13 P(1,1) s13 

Bytes 56-63 P(0,0) s14 P(1,0) s14 P(0,1) s14 P(1,1) s14 P(0,0) s15 P(1,0) s15 P(0,1) s15 P(1,1) s15 

Compressed Multisampled Surfaces  

Multisampled render targets can be compressed. If Auxiliary Surface Mode in SURFACE_STATE is set to 

AUX_CCS, hardware handles the compression using a software-invisible algorithm. However, 

performance optimizations in the multisample resolve kernel using the sampling engine are possible if 

the internal format of these surfaces is understood by software. This section documents the formats of 

the Multisample Control Surface (MCS) and Multisample Surface (MSS). 

MCS Surface 

The MCS surface consists of one element per pixel, with the element size being an 8-bit unsigned integer 

value for 4x multisampled surfaces, a 32-bit unsigned integer value for 8x multisampled surfaces and a 

64-bit unsigned integer value for 16x multisampled surface. Each field within the element indicates which 

sample slice (SS) the sample resides on. 

2x MCS 

The 2x MCS is 8 bits per pixel. The 8 bits are encoded as follows: 

7:2 1 0 

reserved sample 1 SS sample 0 SS 

Each 1-bit field indicates which sample slice (SS) the sample's color value is stored. An MCS value of 0x00 

indicates that both samples are stored in sample slice 0 (thus have the same color). This is the fully 

compressed case. An MCS value of 0x03 indicates that all samples in the pixel are in the clear state, and 

none of the sample slices are valid. The pixel's color must be replaced with the surface's clear value. 

4x MCS 

The 4x MCS is 8 bits per pixel. The 8 bits are encoded as follows: 

7:6 5:4 3:2 1:0 

sample 3 SS sample 2 SS sample 1 SS sample 0 SS 

Each 2-bit field indicates which sample slice (SS) the sample's color value is stored. An MCS value of 0x00 

indicates that all four samples are stored in sample slice 0 (thus all have the same color). This is the fully 

compressed case. An MCS value of 0xff indicates that all samples in the pixel are in the clear state, and 
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none of the sample slices are valid. The pixel's color must be replaced with the surface's clear value. See 

the section below on Clear Pixel Conditions for additional encoding information. 

8x MCS 

Extending the mechanism used for the 4x MCS to 8x requires 3 bits per sample times 8 samples, or 24 

bits per pixel. The 24-bit MCS value per pixel is placed in a 32-bit footprint, with the upper 8 bits unused 

as shown below. See the section below on Clear Pixel Conditions for additional encoding information. 

31:24 23:21 20:18 17:15 14:12 11:9 8:6 5:3 2:0 

reserved 

(MBZ) 

sample 7 

SS 

sample 6 

SS 

sample 5 

SS 

sample 4 

SS 

sample 3 

SS 

sample 2 

SS 

sample 1 

SS 

sample 0 

SS 

16x MCS 

The 16x MCS is 64 bits per pixel. The 64 bits are encoded as follows: 

63:60 59:56 55:52 51:48 47:44 43:40 39:36 35:32 

sample 15 SS sample 14 SS sample 13 SS sample 12 SS sample 11 SS sample 10 SS sample 9 SS sample 8 SS 

 

31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0 

sample 7 SS sample 6 SS sample 5 SS sample 4 SS sample 3 SS sample 2 SS sample 1 SS sample 0 SS 

Other than this, the 16x algorithm is the same as the 8x algorithm. The MCS value indicating clear state is 

0xffffffff_ffffffff. See the section below on Clear Pixel Conditions for additional encoding information. 

Clear Pixel Conditions 

The MCS format allows for the encoding of clear value for one or more planes of the multi-sampled 

surface. A value of all 1's for defined MCS bits indicates that all planes of the multi-sampled surface are 

clear. For example, a value of 0x3 for 2X MSAA MCS byte means that both planes of the pixel are clear. 

Likewise, a value of 0xff for X4, 0xffffffff for X8 and 0xffffffff_ffffffff for X16 MSAA means that all planes of 

the pixel are clear. 

In the case where not all planes are clear, but at least 2 planes are clear the encoding of the MCS given 

above is changed. If the MCS value for plane 0 is non-zero, then all planes which are at all 1's are clear 

and all other planes are referencing the plane indicated by their respective MCS value minus 1. For 

example, a 4X MSAA MCS value of 01 10 11 11 means that MCS 0 is referencing plane 0, and MCS 1 is 

referencing plane 1, and MCS 2 and 3 are clear. 

MSS Surface 

The physical MSS surface is stored identically to a 2D array surface, with the height and width matching 

the pixel dimensions of the logical multisampled surface. The number of array slices in the physical 

surface is 2, 4, 8, or 16 times that of the logical surface (depending on the number of multisamples). 

Sample slices belonging to the same logical surface array slice are stored in adjacent physical slices. The 

sampling engine ld2dss message gives direct access to a specific sample slice. 

Tiling for CMS and UMS Surfaces 

Multisampled CMS and UMS use a modified table from non-mulitsampled 2D surfaces. 
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TileY,  

TileX, TileW, and Linear: Treat as 2D array, with the array index "R" modified as follows. "n" is the 

number of multisamples, "ss" is the sample slice index with range 0..n-1.  

 R(new) = ( R(old) « log2(n) ) | ss 

TileYS: In addition to u and v, the sample slice index "ss" is included in the address swizzling according to the 

following table. Because of this, the mip tail holds one less LOD for each successive number of multisamples. Refer 

to the mip tail table in the previous section for behavior of the mip tail for each number of multisamples. 

Number of Multisamples Bits per Element TileID constants Virtual Address Bits 

Cv Cu 15 14 13 12 11 10 9 8 7 6 

2x 64 & 128 6 9 ss0 v5 u8 v4 u7 v3 u6 v2 u5 u4 

16 & 32 7 8 ss0 v6 u7 v5 u6 v4 u5 v3 u4 v2 

8 8 7 ss0 v7 u6 v6 u5 v5 u4 v4 v3 v2 

4x 64 & 128 5 9 ss1 ss0 u8 v4 u7 v3 u6 v2 u5 u4 

16 & 32 6 8 ss1 ss0 u7 v5 u6 v4 u5 v3 u4 v2 

8 7 7 ss1 ss0 u6 v6 u5 v5 u4 v4 v3 v2 

8x 64 & 128 5 8 ss2 ss1 ss0 v4 u7 v3 u6 v2 u5 u4 

16 & 32 6 7 ss2 ss1 ss0 v5 u6 v4 u5 v3 u4 v2 

8 7 6 ss2 ss1 ss0 v6 u5 v5 u4 v4 v3 v2 

16x 64 & 128 4 8 ss3 ss2 ss1 ss0 u7 v3 u6 v2 u5 u4 

16 & 32 5 7 ss3 ss2 ss1 ss0 u6 v4 u5 v3 u4 v2 

8 6 6 ss3 ss2 ss1 ss0 u5 v5 u4 v4 v3 v2 

Note that Cv and Cu are also different that the values for non-multisampled 2D surfaces. 

TileYF: In addition to u and v, the sample slice index "ss" is included in the address swizzling according to 

the following table. Because of this, the mip tail holds one less LOD for each successive number of 

multisamples. Refer to the mip tail table in the previous section for behavior of the mip tail for each 

number of multisamples. 

Number of Multisamples Bits per Element TileID constants Virtual Address Bits 

  
Cv Cu 11 10 9 8 7 6 

2x 128 & 64 4 7 ss0 v3 u6 v2 u5 u4 

 32 & 16 5 6 ss0 v4 u5 v3 u4 v2 

 8 6 5 ss0 v5 u4 v4 v3 v2 

4x 128 & 64 3 7 ss1 ss0 u6 v2 u5 u4 

 32 & 16 4 6 ss1 ss0 u5 v3 u4 v2 

 8 5 5 ss1 ss0 u4 v4 v3 v2 

8x 128 & 64 3 6 ss2 ss1 ss0 v2 u5 u4 
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 32 & 16 4 5 ss2 ss1 ss0 v3 u4 v2 

 8 5 4 ss2 ss1 ss0 v4 v3 v2 

16x 128 & 64 2 6 ss3 ss2 ss1 ss0 u5 u4 

 32 & 16 3 5 ss3 ss2 ss1 ss0 u4 v2 

 8 4 4 ss3 ss2 ss1 ss0 v3 v2 

Uncompressed Multisampled Surfaces  

UMS surfaces similar to CMS, except that the Auxiliary Surface Mode is set to AUX_NONE, meaning 

that there is no MCS surface. UMS contains only an MSS surface, where each sample is stored on its 

sample slice (SS) of the same index. 

Programming Note 

Context: 3D Sampler 

See 3D Sampler Messages section for a description of how the ld2dms and ld2dms_w messages work for UMS 

surfaces 

Cube Surfaces  

The 3D Pipeline supports cubic environment maps, conceptually arranged as a cube surrounding the 

origin of a 3D coordinate system aligned to the cube faces. These maps can be used to supply texel 

(color/alpha) data of the environment in any direction from the enclosed origin, where the direction is 

supplied as a 3D "vector" texture coordinate. These cube maps can also be mipmapped. 

Each texture map level is represented as a group of six, square cube face texture surfaces. The faces are 

identified by their relationship to the 3D texture coordinate system. The subsections below describe the 

cube maps as described at the API as well as the memory layout dictated by the hardware. 

The diagram below describes the cube map faces as they are defined at the DirectX API. It shows the 

axes on the faces as they would be seen from the inside (at the origin). 

The 3D sampler converts the incoming U,V,R coordinates on the sampler. 

This will be looking directly at face 4, the +z -face. Y is up by default. 



  
  

 

Doc Ref # IHD-OS-DG1-Vol 5-2.21   93 

DirectX Cube Map Definition 

 

The coordinates on each face are relative to the center of the cube, and they range from -1.0 to 1.0 

rather than the normal 0 to 1.0 normalized coordinate system in a 2D array surface. 

Each face has a corresponding face identifier "f" as indicated in the following table: 

face face identifier "f" 

+x 0 

-x 1 

+y 2 

-y 3 

+z 4 

-z 5 

A cube surface is stored in memory the same as a 2D array, with the face identifier "f" and array index 

"ai" being transformed into the "R" coordinate used in storing 2D arrays using the following equation: 

 R = (ai * 6) + f 

Refer to the "2D Surfaces" section for details on how 2D arrays are stored. 

3D Surfaces   

Multiple texture map surfaces (and their respective mipmap chains) can be arranged into a structure 

known as a Texture3D (volume) texture. A volume texture map consists of many planes of 2D texture 

maps. 

See Sampler for a description of how volume textures are used. 
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Volume Texture Map 

 

Surface Pitch defines the distance in bytes between rows of the surface. Surface QPitch specifies the 

distance in rows between R-slices. QPitch should allow at least enough space for any mips that may be 

present. 

A number of parameters are useful to determine where given pixels are located on the 3D surface. First, 

the width, height, and depth for each LOD "L" is computed: 

 

When Corner Texel Mode is enabled via the RENDER_SURFACE_STATE, the width and height of a 3D 

surface are calculated as shown below: 

WL = MAX(1,(W0-1)»L)+1 

HL = MAX(1,(H0-1)»L)+1 

DL = MAX(1,(D0-1)»L)+1 

There is a restriction that the smallest map dimension is 2 texels for Corner Texel Mode (W0 >1, H0 > 1, 

D0>1) 

Next, aligned width, height, and depth parameters for each LOD "L" are computed. The "i", "j", and "k" 

parameters are the horizontal, vertical, and depth alignment parameters set by state fields or defined as 

constants. The alignment parameters may change at one point in the mip chain based on Mip Tail Start 

LOD. The equation uses the i/j values that apply to the LOD being computed. The "p", "q", and "s" 

parameters define the width, height, and depth in texels of the compression block for compressed 

surface formats. These are all defined to equal 1 for uncompressed surface formats. 
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Next, the offset to each LOD is determined. The offset is a vector with three dimensions. The elements in 

the LODL vector are named in order LODUL, LODVL, LODRL. 

LOD offset computation for Tiled Resource Mode == TR_NONE or when L < Mip Tail Start LOD: 

 

For the Primary Surface 

Based on the above parameters and the U, V, and R (three dimensional pixel address), and the bytes per 

pixel of the surface format (Bpp), the offsets u in bytes, v in rows, and r in slices are given by: 

 u = [U + LODUL] * Bpp 

 v = LODVL + V 

 r = LODRL + R 

Programming Note 

Context: Packed YUV Surfaces 

Packed YUV surface formats such as YCRCB_NORMAL, YCRCB_SWAPUVY etc. will be treated as 16bpp surface, not 

32bpp, which may impact how they are laid out in memory. 

The three-dimensional offset into the surface is defined by the u, v, and r values computed above. The 

lower virtual address bits are determined by the following table, based on the bits of u, v, and r. An 

element is defined as a pixel for uncompressed surface formats and a compression block for compressed 

surface formats. 

Empty bit positions indicate that the bit is not part of the tile swizzle and is filled in with the equations 

given next (note that linear mode has all bits empty--there is no swizzling in linear mode). 

Tile Mode Bits per Element 

TileID constants Virtual Address Bits 

Cr Cv Cu 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

TileYS 128 & 64 4 4 8 u7 v3 r3 u6 v2 r2 u5 u4         

 32 4 5 7 u6 v4 r3 u5 v3 r2 u4 v2 r1 r0 v1 v0 u3 u2 u1 u0 

 16 & 8 5 5 6 u5 v4 r4 u4 v3 r3 v2 r2 r1 r0 v1 v0 u3 u2 u1 u0 

TileYF 128 & 64 3 3 6     v2 r2 u5 u4 r1 r0 v1 v0 u3 u2 u1 u0 

 32 3 4 5     v3 r2 u4 v2 r1 r0 v1 v0 u3 u2 u1 u0 

 16 & 8 4 4 4     v3 r3 v2 r2 r1 r0 v1 v0 u3 u2 u1 u0 

TileY all 0 5 7     u6 u5 u4 v4 v3 v2 v1 v0 u3 u2 u1 u0 

Linear all 0 0 0                 
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The table below is enabled by use of the Tile Address Mapping Mode bi in RENDER_SURFACE_STATE. 

This mapping must never be used. 

Tile Mode Bits per Element 

TileID constants Virtual Address Bits 

Cr Cv Cu 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

TileYS 128 & 64 4 4 8 u7 v3 r3 u6 v2 r2 u5 v1 r1 u4 r0 v0 u3 u2 u1 u0 

 32 4 5 7 u6 v4 r3 u5 v3 r2 u4 v2 r1 u3 v1 v0 r0 u2 u1 u0 

 16 & 8 5 5 6 u5 v4 r4 u4 v3 r3 u3 v2 r2 u2 v1 v0 r1 r0 u1 u0 

TileYF 128 & 64 3 3 6     v2 r2 u5 v1 r1 u4 r0 v0 u3 u2 u1 u0 

 32 3 4 5     v3 r2 u4 v2 r1 u3 v1 v0 r0 u2 u1 u0 

 16 & 8 4 4 4     v3 r3 u3 v2 r2 u2 v1 v0 r1 r0 u1 u0 

TileY all 0 5 7     u6 u5 u4 v4 v3 v2 v1 v0 u3 u2 u1 u0 

Linear all 0 0 0                 

The TileID fills the upper bits of the virtual address (starting with the lowest blank bit in the above table): 

 TileID = [(r » Cr) * (QPitch » Cv) + (v » Cv)] * (Pitch » Cu) + (u » Cu) 

 

Tiling and Mip Tails for 3D Surfaces  

For tiled surfaces where Tiled Resource Mode != TR_NONE, the surface may contain a mip tail. The Mip 

tail offset is given by the following, where S is the Mip Tail Start LOD: 

LODS = (w1,h0+h2+h3+ ... + hS-1,0) 

The mip tail exhibits a different arrangement than the rest of the surface. The diagram below shows the 

64KB TileYS mip tail and the arrangement of LODs within it, with "slots" indicating the LOD contained 

within (slot 0 corresponds to LOD s). LODs are aligned to the front upper left corner of the space 

available. The block marked "Slots 4-15" contains one of the 4KB tile arrangements within, depending on 

the surface format bits per element. For TileYF, only the 4KB tile exists, with 4 subtracted from each slot 

number. 
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The offsets into the mip tail tile are given by the following table for each LOD in the mip tail. Note that 

many of the higher LODs are not possible given surface size constraints, but they are listed here for 

reference. The offsets given here need to be added to the LODs offset computed earlier to obtain the 

offset into the surface LODL. 

TileYS LOD TileYF LOD 128 bpe 64 bpe 32 bpe 16 bpe 8 bpe 

s 
 

(8, 0, 0) (16, 0, 0) (16, 0, 0) (16, 0, 0) (32, 0, 0) 

s+1 
 

(0, 8, 0) (0, 8, 0) (0, 16, 0) (0, 16, 0) (0, 16, 0) 

s+2 
 

(0, 0, 8) (0, 0, 8) (0, 0, 8) (0, 0, 16) (0, 0, 16) 

s+3 
 

(4, 0, 0) (8, 0, 0) (8, 0, 0) (8, 0, 0) (16, 0, 0) 

s+4 s (0, 4, 0) (0, 4, 0) (0, 8, 0) (0, 8, 0) (0, 8, 0) 

s+5 s+1 (2, 0, 4) (4, 0, 4) (4, 0, 4) (4, 0, 8) (8, 0, 8) 

s+6 s+2 (0, 2, 4) (0, 2, 4) (0, 4, 4) (0, 4, 8) (0, 4, 8) 

s+7 s+3 (0, 0, 4) (0, 0, 4) (0, 0, 4) (0, 0, 8) (0, 0, 8) 

s+8 s+4 (2, 2, 0) (4, 2, 0) (4, 4, 0) (4, 4, 0) (8, 4, 0) 

s+9 s+5 (2, 0, 0) (4, 0, 0) (4, 0, 0) (4, 0, 0) (8, 0, 0) 

s+10 s+6 (0, 2, 0) (0, 2, 0) (0, 4, 0) (0, 4, 0) (0, 4, 0) 

s+11 s+7 (1, 0, 2) (2, 0, 2) (2, 0, 2) (2, 0, 4) (4, 0, 4) 

s+12 s+8 (0, 0, 2) (0, 0, 2) (0, 0, 2) (0, 0, 4) (0, 0, 4) 

s+13 s+9 (1, 0, 0) (2, 0, 0) (2, 0, 0) (2, 0, 0) (4, 0, 0) 

s+14 s+10 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) 

 



  
  

 

Doc Ref # IHD-OS-DG1-Vol 5-2.21   99 

3D Alignment Requirements  

The vertical and horizontal alignment fields in the RENDER_SURFACE_STATE are ignored for standard 

tiling formats (TRMODE != NONE). In the case of standard tiling formats (TileYs and TileYf) the alignment 

requirements are fixed and are provided for by the tables below for 3D (volumetric) surfaces. 

Tile Mode Bits per Element Horizontal Alignment Vertical Alignment Depth Alignment 

TileYS 128 16 16 16 

64 32 16 16 

32 32 32 16 

16 32 32 32 

8 64 32 32 

TileYF 128 4 8 8 

64 8 8 8 

32 8 16 8 

16 8 16 16 

8 16 16 16 

Surface Padding Requirements 

This section covers the requirements for padding around surfaces stored in memory, as there are cases 

where the device will overfetch beyond the bounds of the surface due to implementation of caches and 

other hardware structures. 

Alignment Unit Size  

This section documents the alignment (in texels) that the Surface Pitch and Surface Height must be 

programmed. For most surface formats it is defined by HAlign and Valign. 
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Alignment Parameters 

Surface Defined By Surface Format Alignment Unit Width "i" Alignment Unit Height "j" 

3DSTATE_STENCIL_BUFFER N/A 16 8 

SURFACE_STATE BC*, ETC*, EAC* 4 4 

FXT1 8 4 

all others set by 

Surface Horizontal Alignment 

set by 

Surface Vertical Alignment 

 

Surface Defined By Surface Format MSAA Alignment Unit Width 

"i" 

Alignment Unit Height 

"j" 

3DSTATE_DEPTH_BUFFER D16_UNORM 1x, 4x, 16x 8 8 

D16_UNORM 2x, 8x 16 4 

Not 

D16_UNORM 

1x, 2x, 4x, 8x, 

16x 

8 4 

 

Surface Defined By Surface Format Alignment Unit Width "i" Alignment Unit Height "j" 

SURFACE_STATE ASTC Value of ASTC_2DBlockWidth 

 (4, 5, 6, 8, 10, or 12) 

ASTC_2DBlockHeight*4 

Sampling Engine Surfaces  

The sampling engine accesses texels outside of the surface if they are contained in the same cache line 

as texels that are within the surface. These texels will not participate in any calculation performed by the 

sampling engine and will not affect the result of any sampling engine operation, however if these texels 

lie outside of defined pages in the GTT, a GTT error will result when the cache line is accessed. In order to 

avoid these GTT errors, "padding" at the bottom and right side of a sampling engine surface is 

sometimes necessary. 

It is possible that a cache line will straddle a page boundary if the base address or pitch is not aligned. All 

pages included in the cache lines that are part of the surface must map to valid GTT entries to avoid 

errors. To determine the necessary padding on the bottom and right side of the surface, refer to the 

table in Alignment Unit Size section for the i and j parameters for the surface format in use. The surface 
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must then be extended to the next multiple of the alignment unit size in each dimension, and all texels 

contained in this extended surface must have valid GTT entries. 

For example, suppose the surface size is 15 texels by 10 texels and the alignment parameters are i=4 and 

j=2. In this case, the extended surface would be 16 by 10. Note that these calculations are done in texels, 

and must be converted to bytes based on the surface format being used to determine whether 

additional pages need to be defined. 

 For compressed textures (BC*, FXT1, ETC*, and EAC* surface formats), padding at the bottom of the 

surface is to an even compressed row. This is equivalent to a multiple of 2q, where q is the compression 

block height in texels. Thus, for padding purposes, these surfaces behave as if j = 2q only for surface 

padding purposes. The value of j is still equal to q for mip level alignment and QPitch calculation. For 

cube surfaces, an additional two rows of padding are required at the bottom of the surface. This must be 

ensured regardless of whether the surface is stored tiled or linear. This is due to the potential rotation of 

cache line orientation from memory to cache. 

The above comments also apply to the ASTC* surface format. 

For packed YUV, 96 bpt, 48 bpt, and 24 bpt surface formats, additional padding is required. These 

surfaces require an extra row plus 16 bytes of padding at the bottom in addition to the general padding 

requirements. 

For linear surfaces, additional padding of 64 bytes is required at the bottom of the surface. This is in 

addition to the padding required above. 

Programming Note 

Context: Sampling Engine Surfaces. 

For SURFTYPE_BUFFER, SURFTYPE_1D, and SURFTYPE_2D non-array, non-MSAA, non-mip-mapped surfaces in linear 

memory, the only padding requirement is to the next aligned 64-byte boundary beyond the end of the surface. The 

rest of the padding requirements documented above do not apply to these surfaces. 

 

Programming Note 

Context: Sampling Engine Surfaces 

For all surface types other than non-mipmapped non-arrayed 2D, 1D, and Buffer, when using linear mode and 

surface Height%4 != 0, the surface must be padded with 4-(Height%4)*Surface_Pitch bytes to avoid fetching 

outside of allocated memory. 

Render Target and Media Surfaces  

The data port accesses data (pixels) outside of the surface if they are contained in the same cache 

request as pixels that are within the surface. These pixels will not be returned by the requesting message, 

however if these pixels lie outside of defined pages in the GTT, a GTT error will result when the cache 

request is processed. In order to avoid these GTT errors, "padding" at the bottom of the surface is 

sometimes necessary. 
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Address Tiling Function Introduction 

When dealing with memory operands (e.g., graphics surfaces) that are inherently rectangular in nature, 

certain functions within the graphics device support the storage/access of the operands using alternative 

(tiled) memory formats to increase performance. This section describes these memory storage formats, 

why and when they should be used, and the behavioral mechanisms within the device to support them. 

Legacy Tiling Modes: 

• TileY: Used for most tiled surfaces when TR_MODE=TR_NONE. 

• TileX : Used primarily for display surfaces. 

• TileW: Used for Stencil surfaces. 

Tiled Resource Tiling Modes 

• TileYF: 4KB tiling mode based on TileY 

• TileYS: 64KB tiling mode based on TileY 

These modes are based on 4KB and 64KB tiles. The 64KB tile is made up of a 4x4 matrix of 4KB tiles. The 

4KB tiles in general have a different layout as compared to the legacy modes, with the sub-mode 

defining the layout within the 4KB tile. The sub-modes are determined by the bits per element of the 

surface format. The Tiled Resource Mode field in SURFACE_STATE is used to select the new modes. 

Tiled surface base addresses must be tile aligned (64KB aligned for TileYS, 4KB aligned for all other tile 

modes). For 1D surfaces, the base address must be 64KB aligned if Tiled Resource Mode is 

TRMODE_64KB, and 4KB aligned if Tiled Resource Mode is TRMODE_4KB. An exception to this tile 

alignment is when a SURFACE_STATE describes a single MIP within the MIP Tail of another surface, using 

a 64-bit or 128-bit Surface Format--then Surface Base Address can refer directly to the given MIP (e.g. to 

write to a non-renderable Surface Format by re-describing as an alternative surface). 

Linear vs Tiled Storage  

Regardless of the memory storage format, "rectangular" memory operands have a specific width and 

height, and are considered as residing within an enclosing rectangular region whose width is considered 

the pitch of the region and surfaces contained within. Surfaces stored within an enclosing region must 

have widths less than or equal to the region pitch (indeed the enclosing region may coincide exactly with 

the surface). Rectangular Memory Operand Parameters shows these parameters. 
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Rectangular Memory Operand Parameters 

 

The simplest storage format is the linear format (see Linear Surface Layout), where each row of the 

operand is stored in sequentially increasing memory locations. If the surface width is less than the 

enclosing region's pitch, there will be additional memory storage between rows to accommodate the 

region's pitch. The pitch of the enclosing region determines the distance (in the memory address space) 

between vertically adjacent operand elements (e.g., pixels, texels). 

Linear Surface Layout 

 

The linear format is best suited for 1-dimensional row-sequential access patterns (e.g., a display surface 

where each scanline is read sequentially). Here the fact that one object element may reside in a different 

memory page than its vertically adjacent neighbors is not significant; all that matters is that horizontally-

adjacent elements are stored contiguously. However, when a device function needs to access a 2D 

subregion within an operand (e.g., a read or write of a 4x4 pixel span by the 3D renderer, a read of a 2x2 

texel block for bilinear filtering), having vertically-adjacent elements fall within different memory pages is 
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to be avoided, as the page crossings required to complete the access typically incur increased memory 

latencies (and therefore lower performance). 

One solution to this problem is to divide the enclosing region into an array of smaller rectangular 

regions, called memory tiles. Surface elements falling within a given tile will all be stored in the same 

physical memory page, thus eliminating page-crossing penalties for 2D subregion accesses within a tile 

and thereby increasing performance. 

Tiles have a fixed 4KB size and are aligned to physical DRAM page boundaries. They are either 8 rows 

high by 512 bytes wide or 32 rows high by 128 bytes wide (see Memory Tile Dimensions). Note that the 

dimensions of tiles are irrespective of the data contained within - e.g., a tile can hold twice as many 16-

bit pixels (256 pixels/row x 8 rows = 2K pixels) than 32-bit pixels (128 pixels/row x 8 rows = 1K pixels). 

Memory Tile Dimensions 

 

The pitch of a tiled enclosing region must be an integral number of tile widths. The 4KB tiles within a tiled 

region are stored sequentially in memory in row-major order. 

The Tiled Surface Layout figure shows an example of a tiled surface located within a tiled region with a 

pitch of 8 tile widths (512 bytes * 8 = 4KB). Note that it is the enclosing region that is divided into tiles - 

the surface is not necessarily aligned or dimensioned to tile boundaries. 
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Tiled Surface Layout 

 

Auxiliary Surfaces For Sampled Tiled Resources  

For surfaces which are defined as Tiled Resources (TileYs or TileYf format), there may be auxiliary surfaces 

which are associated with the surface (e.g. HiZ, CCS or MCS). These auxiliary surfaces, while actually not 

defined as TileYs or TileYf will behave like tiled resources from the hardware perspective. It is possible for 

software to map and unmap tiles of auxiliary surfaces as tiles of the associated surface are mapped and 

unmapped. Below is a description how sampling to the mapped/unmapped tile resources is handled for 

the associated auxiliary surface. Normally, sampling unmapped tiles will return a NULL response to the 

requesting agen. 

For surfaces which are defined as Tiled Resources (TileYs or TileYf format), there may be auxiliary MCS 

surface which is associated with the surface. These auxiliary surfaces can also be defined as either TileY, 

TileYs or TileYf. It is possible for software to map and unmap tiles of auxiliary surfaces as tiles of the 

associated surface are mapped and unmapped. Below is a description how sampling to the 

mapped/unmapped tile resources is handled for the associated auxiliary surface. Normally, sampling 

unmapped tiles will return a NULL response to the requesting agen. 

MCS 

A tile of MCS(Multi-Sample Control Surface) must be mapped to memory whenever MSAA surface pixels 

associated with the CCS tile are mapped. When all MSAA pixels associated with a MCS tile are 

unmapped, the MCS may be mapped or unmapped. Below is a table showing the responses for sampling 

to mapped and unmapped. 



 

    

106   Doc Ref # IHD-OS-DG1-Vol 5-2.21 

Table of Responses for Sampling to MSAA Tiled Resources 

MSAA Surface Mapping MCS Mapping Sample Response 

Mapped Mapped Normal Response 

Mapped Unmapped Undefined Response 

Unmapped Mapped NULL Response 

Unmapped Unmapped NULL Response 

A "NULL Response" means that the sample returned will be all 0's and the Null Pixel Mask (if requested) 

will indicate the depth pixel is Null. 

Tile Formats  

Multiple tile formats are supported. The following sections define and describe these formats. 

Tiling formats are controlled by programming the fields Tile_Mode and Tiled_Resource_Mode in the 

RENDER_SURFACE_STATE. 

Tile-X Legacy Format 

The legacy format Tile-X is a X-Major (row-major) storage of tile data units, as shown in the following 

figure. It is a 4KB tile which is subdivided into an 8-high by 32-wide array of 16-byte OWords . The 

selection of tile direction only impacts the internal organization of tile data and does not affect how 

surfaces map onto tiles. Note that an X-major tiled region with a tile pitch of 1 tile is actually stored in a 

linear fashion. 

Tile-X format is selected for a surface by programming the Tiled_Mode field in RENDER_SURFACE_STATE 

to XMAJOR. 

For 3D sampling operation, a surface using Tile-X layout is generally lower performance the organization 

of texels in memory. 
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Tile X-Tile (X-Major) Layout 

 

Tile-Y Legacy Format  

The device supports Tile-Y legacy format which is Y-Major (column major) storage of tile data units, as 

shown in the following figure. A 4KB tile is subdivided 32-high by 8-wide array of OWords. The selection 

of tile direction only impacts the internal organization of tile data and does not affect how surfaces map 

onto tiles. 

Tile-Y surface format is selected by programming the Tile Mode field in RENDER_SURFACE_STATE to 

YMAJOR. 

Note that 3D sampling of a surface in Tile-Y format is usually has higher performance due to the layout 

of pixels. 
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Y-Major Tile Layout 

 

Tile-Yf Format  

Tile-Yf is a 4K-Byte tile format (similar to Tile-Y), but organized in a different manner. Tile-Yf is selected 

by programming the Tile_Mode field in the RENDER_SURFACE_STATE to YMAJOR and the 

Tiled_Resource_Mode to TILEYF. The diagram below shows how pixels are mapped into the TileYf format 

for 2D surfaces, and it uses 32Bpp (bits per pixel) surface format as an example on a 2D surface which is 

N tiles wide and m tiles high. The exact aspect ratio will be dependent on the Bpp of the surface. Note 

that the TileYf format is identical to the TileYs up to the 4K-Byte tile size. 
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2D Tile Layout for TileYf 
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Tile-Ys Format  

TileYs is a 64K-Byte tile size. It is enabled by programming the Tile_Mode field (in 

RENDER_SURFACE_STATE) to YMAJOR, and programming the Tiled_Resource_Mode to TILEYS. It is 

organized as shown below, and is composed of 4KByte blocks which have identical layout to the TileYf 

format. The diagram below shows how pixels are mapped into the TileYs format, and it uses 32Bpp (bits 

per pixel) surface format as an example on a 2D surface which is N tiles wide and m tiles high. The exact 

aspect ratio will be dependent on the Bpp of the surface. 
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Tile-Ys Layout 
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Tiling Algorithm  

The following pseudo-code describes the algorithm for translating a tiled memory surface in graphics 

memory to an address in logical space. 

The following new modes are supported for Tiled Resources (TR_MODE != TR_NONE) defined to enable 

tiled resources. 

For more details about Mip Tails, see Surface Layout and Tiling in the Common Surface Formats section. 

• TileYF: 4KB tiling mode based on TileY (Standard Tiling) 

• TileYS: 64KB tiling mode based on TileY (Standard Tiling) 

 Inputs:  

  LinearAddress(offset into regular or LT aperture in terms of bytes), 

     Pitch(in terms of tiles),  

   WalkY (1 for Y and 0 for X) 

   WalkW (1 for W and 0 for the rest) 

     

 Static Parameters: 

  TileH (Height of tile, 8 for X, 32 for Y and 64 for W), 

  TileW (Width of Tile in bytes, 512 for X, 128 for Y and 64 for W) 

  TileSize = TileH * TileW; 

  RowSize = Pitch * TileSize; 

  

 If (Fenced) { 

      LinearAddress = LinearAddress - FenceBaseAddress 

      LinearAddrInTileW = LinearAddress div TileW; 

      Xoffset_inTile = LinearAddress mod TileW; 

   Y = LinearAddrInTileW div Pitch; 

   X = LinearAddrInTileW mod Pitch + Xoffset_inTile; 

 } 

  

 // Internal graphics clients that access tiled memory already have the X, Y 

 // coordinates and can start here 

 YOff_Within_Tile = Y mod TileH; 

 XOff_Within_Tile = X mod TileW; 

 TileNumber_InY = Y div TileH; 

 TileNumber_InX = X div TileW; 

   

  TiledOffsetY = RowSize * TileNumber_InY + TileSize * TileNumber_InX + TileH * 16 * 

(XOff_Within_Tile div 16) +  

   YOff_Within_Tile * 16 +  

   (XOff_Within_Tile mod 16); 

   

  TiledOffsetW = RowSize * TileNumber_InY +  

   TileSize * TileNumber_InX +  

   TileH * 8 * (XOff_Within_Tile div 8) +  

   64 * (YOff_Within_Tile div 8) +  

   32 * ((YOff_Within_Tile div 4) mod 2) +  

   16 * ((XOff_Within_Tile div 4) mod 2) +  

    8 * ((YOff_Within_Tile div 2) mod 2) +  

    4 * ((XOff_Within_Tile div 2) mod 2) + 

    2 * (YOff_Within_Tile mod 2) +  

   (XOff_Within_Tile mod 2); 

    

      TiledOffsetX = RowSize * TileNumber_InY + TileSize * TileNumber_InX + TileW * 

YOff_Within_Tile + XOff_Within_Tile; 

    

      TiledOffset = WalkW? TiledOffsetW : (WalkY? TiledOffsetY : TiledOffsetX); 
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   TiledAddress = Tiled? (BaseAddress + TiledOffset): (BaseAddress + Y*LinearPitch + 

X);TiledAddress = (Tiled && 

   (Address Swizzling for Tiled-Surfaces == 01)) ? 

   (WalkW || WalkY) ? 

   (TiledAddress div 128) * 128 + 

   (((TiledAddress div 64) mod 2) ^ 

   ((TiledAddress div 512) mod 2)) + 

   (TiledAddress mod 32) 

   : 

   (TiledAddress div 128) * 128 + 

   (((TiledAddress div 64) mod 2) ^ 

   ((TiledAddress div 512) mod 2) 

   ((TiledAddress Div 1024) mod2) + 

   (TiledAddress mod 32) 

   : 

   TiledAddress; 

  } 

Address Swizzling for Tiled-Surfaces is no longer used because the main memory controller has a more 

effective address swizzling algorithm. 

For Address Swizzling for Tiled-Surfaces see ARB_MODE - Arbiter Mode Control register, ARB_CTL--

Display Arbitration Control 1 and TILECTL - Tile Control register 

The Y-Major tile formats have the characteristic that a surface element in an even row is located in the 

same aligned 64-byte cacheline as the surface element immediately below it (in the odd row). This spatial 

locality can be exploited to increase performance when reading 2x2 texel squares for bilinear texture 

filtering or reading and writing aligned 4x4 pixel spans from the 3D Render pipeline. 

On the other hand, the X-Major tile format has the characteristic that horizontally adjacent elements are 

stored in sequential memory addresses. This spatial locality is advantageous when the surface is scanned 

in row-major order for operations like display refresh. For this reason, the Display and Overlay memory 

streams only support linear or X-Major tiled surfaces (Y-Major tiling is not supported by these functions). 

This has the side effect that 2D- or 3D-rendered surfaces must be stored in linear or X-Major tiled 

formats if they are to be displayed. Non-displayed surfaces, e.g., "rendered textures", can also be stored 

in Y-Major order. 

The following Psuedo Code Describes the algorithm for mapping TileYs and TileYf Tile Address to Byte 

Offset within a Tile. It describes the support for 2D for both TileYs and TileYf as well as MSAA 2D For 

TileYs. 

 /*******************************************************************************\ 

    BitMask 

  Used for masking single bits of x, y, z, ss# when _pdep32 instruction is 

     not available 

 \*******************************************************************************/ 

 enum BitMask 

 { 

     BIT0 = 1, 

     BIT1 = (1 « 1), 

     BIT2 = (1 « 2), 

     BIT3 = (1 « 3), 

     BIT4 = (1 « 4), 

     BIT5 = (1 « 5), 

     BIT6 = (1 « 6), 

     BIT7 = (1 « 7), 

     BIT8 = (1 « 8), 

     BIT9 = (1 « 9), 
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     BIT10 = (1 « 10), 

     BIT11 = (1 « 11), 

     BIT12 = (1 « 12), 

     BIT13 = (1 « 13), 

     BIT14 = (1 « 14), 

     BIT15 = (1 « 15) 

 }; 

 /*******************************************************************************\ 

     TileYS/TileYF constant swizzle masks w/o _pdep32 instruction 

  

     Used to mask contiguous x/y/z/sample bit groupings before being shifted into 

     their final swizzled bit positions 

 \*******************************************************************************/ 

 // used for fallback 'manual' bit shifting 

 static const UINT16 xMaskBits5_4  = 0x0030; 

 static const UINT16 xMaskBits3_0  = 0x000F; 

 static const UINT16 yMaskBits4_0  = 0x001F; 

 static const UINT16 yMaskBits3_0  = 0x000F; 

 static const UINT16 yMaskBits2_0  = 0x0007; 

 static const UINT16 yMaskBits1_0  = 0x0003; 

 static const UINT16 SampleMask3_0 = 0x000F; 

 static const UINT16 SampleMask2_0 = 0x0007; 

 static const UINT16 SampleMask1_0 = 0x0003; 

 static const UINT16 SampleMask0   = 0x0001; 

  

 /*******************************************************************************\ 

     TileYS 2D Tile address swizzling functions w/o _pdep32 

 \*******************************************************************************/ 

 /* 

  ______________________________________________________________________________ 

 |    Num    | Bits per element |           Tiled element offset bits           | 

 |  Samples  |                  |15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0| 

 |______________________________|__|__|__|__|__|__|__|__|__|__|__|__|__|__|__|__| 

 |     1x    |     64 & 128     |x9|y5|x8|y4|x7|y3|x6|y2|x5|x4|y1|y0|x3|x2|x1|x0| 

 |           |     16 & 32      |x8|y6|x7|y5|x6|y4|x5|y3|x4|y2|y1|y0|x3|x2|x1|x0| 

 |           |        8         |x7|y7|x6|y6|x5|y5|x4|y4|y3|y2|y1|y0|x3|x2|x1|x0| 

 */ 

 UINT16 TileYS2dElementOffset64_128bpe(UINT16 x, UINT16 y) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

  

     // shift bits in x and y to their respective TileYS swizzled bit locations 

     xSwizzle = ((BIT9 & x) « 6) | 

                ((BIT8 & x) « 5) | 

                ((BIT7 & x) « 4) | 

                ((BIT6 & x) « 3) | 

                ((xMaskBits5_4 & x) « 2) | // shift to bit positions 7..6 

                (xMaskBits3_0 & x); 

  

     ySwizzle = ((BIT5 & y) « 9) | 

                ((BIT4 & y) « 8) | 

                ((BIT3 & y) « 7) | 

                ((BIT2 & y) « 6) | 

                ((yMaskBits1_0 & y) « 4);   // shift to bit positions 5..4 

  

     // OR the swizzled bit positions for final offset within a tile 

     return xSwizzle | ySwizzle; 

 } 

  

 UINT16 TileYS2dElementOffset16_32bpe(UINT16 x, UINT16 y) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 
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     // shift bits in x and y to their respective TileYS swizzled bit locations 

     xSwizzle = ((BIT8 & x) « 7) | 

                ((BIT7 & x) « 6) | 

                ((BIT6 & x) « 5) | 

                ((BIT5 & x) « 4) | 

                ((BIT4 & x) « 3) | 

                (xMaskBits3_0 & x); 

  

     ySwizzle = ((BIT6 & y) « 8) | 

                ((BIT5 & y) « 7) | 

                ((BIT4 & y) « 6) | 

                ((BIT3 & y) « 5) | 

                ((yMaskBits2_0 & y) « 4); // shift to bit positions 6..4 

  

     // OR the swizzled bit positions for final offset within a tile 

     return xSwizzle | ySwizzle; 

 } 

  

 UINT16 TileYS2dElementOffset8bpe(UINT16 x, UINT16 y) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

  

     // shift bits in x and y to their respective TileYS swizzled bit locations 

     xSwizzle = ((BIT7 & x) « 8) | 

                ((BIT6 & x) « 7) | 

                ((BIT5 & x) « 6) | 

                ((BIT4 & x) « 5) | 

                (xMaskBits3_0 & x); 

  

     ySwizzle = ((BIT7 & y) « 7) | 

                ((BIT6 & y) « 6) | 

                ((BIT5 & y) « 5) | 

                ((yMaskBits4_0 & y) « 4); // shift to bit positions 8..4 

  

     // OR the swizzled bit positions for final offset within a tile 

     return xSwizzle | ySwizzle; 

 } 

  

 /*******************************************************************************\ 

     TileYS 2D MSAA Tile address swizzling functions w/o _pdep32 

 \*******************************************************************************/ 

 /* 

  _______________________________________________________________________________ 

 |    Num    | Bits per element |           Tiled element offset bits            | 

 |  Samples  |                  |15 |14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0| 

 |______________________________|___|__|__|__|__|__|__|__|__|__|__|__|__|__|__|__| 

 |     2x    |     64 & 128     |ss0|y5|x8|y4|x7|y3|x6|y2|x5|x4|y1|y0|x3|x2|x1|x0| 

 |           |     16 & 32      |ss0|y6|x7|y5|x6|y4|x5|y3|x4|y2|y1|y0|x3|x2|x1|x0| 

 |           |        8         |ss0|y7|x6|y6|x5|y5|x4|y4|y3|y2|y1|y0|x3|x2|x1|x0| 

 */ 

 UINT16 TileYS2xMsaaElementOffset64_128bpe(UINT16 x, UINT16 y, UINT16 sample) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

     UINT16 SampleSwizzle; 

  

     // shift bits in x, y, and sample to their respective TileYS MSAA swizzled bit locations 

     xSwizzle = ((BIT8 & x) « 5) |                  // shift to bit position 13 

                ((BIT7 & x) « 4) |                  // shift to bit position 11 

                ((BIT6 & x) « 3) |                  // shift to bit position 9 

                ((xMaskBits5_4 & x) « 2) |          // shift to bit positions 7..6 

                (xMaskBits3_0 & x);                  // leave in bits 3..0 
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     ySwizzle = ((BIT5 & y) « 9) |                  // shift to bit position 14 

                ((BIT4 & y) « 8) |                  // shift to bit position 12 

                ((BIT3 & y) « 7) |                  // shift to bit position 10 

                ((BIT2 & y) « 6) |                  // shift to bit position 8 

                ((yMaskBits1_0 & y) « 4);           // shift to bit positions 5..4 

  

     SampleSwizzle = (sample && SampleMask0) « 15;  // shift to bit position 15 

  

     // OR the swizzled bit positions for final offset within a tile 

     return SampleSwizzle | xSwizzle | ySwizzle; 

 } 

  

 UINT16 TileYS2xMsaaElementOffset16_32bpe(UINT16 x, UINT16 y, UINT16 sample) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

     UINT16 SampleSwizzle; 

  

     // shift bits in x, y, and sample to their respective TileYS MSAA swizzled bit locations 

     xSwizzle = ((BIT7 & x) « 6) |                  // shift to bit position 13 

                ((BIT6 & x) « 7) |                  // shift to bit position 11 

                ((BIT5 & x) « 6) |                  // shift to bit position 9 

                ((BIT4 & x) « 5) |                  // shift to bit position 7 

                (xMaskBits3_0 & x);                  // leave in bits 3..0 

  

     ySwizzle = ((BIT6 & y) « 8) |                  // shift to bit position 14 

                ((BIT5 & y) « 7) |                  // shift to bit position 12 

                ((BIT4 & y) « 6) |                  // shift to bit position 10 

                ((BIT3 & y) « 5) |                  // shift to bit position 8 

                ((yMaskBits2_0 & y) « 4);           // shift to bit positions 6..4 

  

     SampleSwizzle = (sample && SampleMask0) « 15;  // shift to bit position 15 

  

     // OR the swizzled bit positions for final offset within a tile 

     return SampleSwizzle | xSwizzle | ySwizzle; 

 } 

  

 UINT16 TileYS2xMsaaElementOffset8bpe(UINT16 x, UINT16 y, UINT16 sample) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

     UINT16 SampleSwizzle; 

  

     // shift bits in x, y, and sample to their respective TileYS MSAA swizzled bit locations 

     xSwizzle = ((BIT6 & x) « 7) |                  // shift to bit position 13 

                ((BIT5 & x) « 6) |                  // shift to bit position 11 

                ((BIT4 & x) « 5) |                  // shift to bit position 9 

                (xMaskBits3_0 & x);                  // leave in bits 3..0 

  

     ySwizzle = ((BIT7 & y) « 7) |                  // shift to bit position 14 

                ((BIT6 & y) « 6) |                  // shift to bit position 12 

                ((BIT5 & y) « 5) |                  // shift to bit position 10 

                ((yMaskBits4_0 & y) « 4);           // shift to bit positions 8..4 

  

     SampleSwizzle = (sample && SampleMask0) « 15;  // shift to bit position 15 

  

     // OR the swizzled bit positions for final offset within a tile 

     return SampleSwizzle | xSwizzle | ySwizzle; 

 } 

  

 /* 

  ________________________________________________________________________________ 

 |    Num    | Bits per element |           Tiled element offset bits             | 
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 |  Samples  |                  |15 |14 |13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0| 

 |______________________________|___|___|__|__|__|__|__|__|__|__|__|__|__|__|__|__| 

 |     4x    |     64 & 128     |ss1|ss0|x8|y4|x7|y3|x6|y2|x5|x4|y1|y0|x3|x2|x1|x0| 

 |           |     16 & 32      |ss1|ss0|x7|y5|x6|y4|x5|y3|x4|y2|y1|y0|x3|x2|x1|x0| 

 |           |        8         |ss1|ss0|x6|y6|x5|y5|x4|y4|y3|y2|y1|y0|x3|x2|x1|x0| 

 */ 

 UINT16 TileYS4xMsaaElementOffset64_128bpe(UINT16 x, UINT16 y, UINT16 sample) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

     UINT16 SampleSwizzle; 

  

     // shift bits in x, y, and sample to their respective TileYS MSAA swizzled bit locations 

     xSwizzle = ((BIT8 & x) « 5) |                  // shift to bit position 13 

                ((BIT7 & x) « 4) |                  // shift to bit position 11 

                ((BIT6 & x) « 3) |                  // shift to bit position 9 

                ((xMaskBits5_4 & x) « 2) |          // shift to bit positions 7..6 

                (xMaskBits3_0 & x);                  // leave in bits 3..0 

  

     ySwizzle = ((BIT4 & y) « 8) |                  // shift to bit position 12 

                ((BIT3 & y) « 7) |                  // shift to bit position 10 

                ((BIT2 & y) « 6) |                  // shift to bit position 8 

                ((yMaskBits1_0 & y) « 4);           // shift to bit positions 5..4 

  

     SampleSwizzle = (sample && SampleMask1_0) « 14;// shift to bit positions 15..14 

  

     // OR the swizzled bit positions for final offset within a tile 

     return SampleSwizzle | xSwizzle | ySwizzle; 

 } 

  

 UINT16 TileYS4xMsaaElementOffset16_32bpe(UINT16 x, UINT16 y, UINT16 sample) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

     UINT16 SampleSwizzle; 

  

     // shift bits in x, y, and sample to their respective TileYS MSAA swizzled bit locations 

     xSwizzle = ((BIT7 & x) « 6) |                  // shift to bit position 13 

                ((BIT6 & x) « 7) |                  // shift to bit position 11 

                ((BIT5 & x) « 6) |                  // shift to bit position 9 

                ((BIT4 & x) « 5) |                  // shift to bit position 7 

                (xMaskBits3_0 & x);                  // leave in bits 3..0 

  

     ySwizzle = ((BIT5 & y) « 7) |                  // shift to bit position 12 

                ((BIT4 & y) « 6) |                  // shift to bit position 10 

                ((BIT3 & y) « 5) |                  // shift to bit position 8 

                ((yMaskBits2_0 & y) « 4);           // shift to bit positions 6..4 

  

     SampleSwizzle = (sample && SampleMask1_0) « 14;// shift to bit positions 15..14 

  

     // OR the swizzled bit positions for final offset within a tile 

     return SampleSwizzle | xSwizzle | ySwizzle; 

 } 

  

 UINT16 TileYS4xMsaaElementOffset8bpe(UINT16 x, UINT16 y, UINT16 sample) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

     UINT16 SampleSwizzle; 

  

     // shift bits in x, y, and sample to their respective TileYS MSAA swizzled bit locations 

     xSwizzle = ((BIT6 & x) « 7) |                  // shift to bit position 13 

                ((BIT5 & x) « 6) |                  // shift to bit position 11 

                ((BIT4 & x) « 5) |                  // shift to bit position 9 
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                (xMaskBits3_0 & x);                  // leave in bits 3..0 

  

     ySwizzle = ((BIT6 & y) « 6) |                  // shift to bit position 12 

                ((BIT5 & y) « 5) |                  // shift to bit position 10 

                ((yMaskBits4_0 & y) « 4);           // shift to bit positions 8..4 

  

     SampleSwizzle = (sample && SampleMask1_0) « 14;// shift to bit positions 15..14 

  

     // OR the swizzled bit positions for final offset within a tile 

     return SampleSwizzle | xSwizzle | ySwizzle; 

 } 

  

 /* 

  _________________________________________________________________________________ 

 |    Num    | Bits per element |           Tiled element offset bits              | 

 |  Samples  |                  |15 |14 |13 |12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0| 

 |______________________________|___|___|___|__|__|__|__|__|__|__|__|__|__|__|__|__| 

 |     8x    |     64 & 128     |ss2|ss1|ss0|y4|x7|y3|x6|y2|x5|x4|y1|y0|x3|x2|x1|x0| 

 |           |     16 & 32      |ss2|ss1|ss0|y5|x6|y4|x5|y3|x4|y2|y1|y0|x3|x2|x1|x0| 

 |           |        8         |ss2|ss1|ss0|y6|x5|y5|x4|y4|y3|y2|y1|y0|x3|x2|x1|x0| 

 */ 

 UINT16 TileYS8xMsaaElementOffset64_128bpe(UINT16 x, UINT16 y, UINT16 sample) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

     UINT16 SampleSwizzle; 

  

     // shift bits in x, y, and sample to their respective TileYS MSAA swizzled bit locations 

     xSwizzle = ((BIT7 & x) « 4) |                  // shift to bit position 11 

                ((BIT6 & x) « 3) |                  // shift to bit position 9 

                ((xMaskBits5_4 & x) « 2) |          // shift to bit positions 7..6 

                (xMaskBits3_0 & x);                  // leave in bits 3..0 

  

     ySwizzle = ((BIT4 & y) « 8) |                  // shift to bit position 12 

                ((BIT3 & y) « 7) |                  // shift to bit position 10 

                ((BIT2 & y) « 6) |                  // shift to bit position 8 

                ((yMaskBits1_0 & y) « 4);           // shift to bit positions 5..4 

  

     SampleSwizzle = (sample && SampleMask2_0) « 13;// shift to bit positions 15..13 

  

     // OR the swizzled bit positions for final offset within a tile 

     return SampleSwizzle | xSwizzle | ySwizzle; 

 } 

  

 UINT16 TileYS8xMsaaElementOffset16_32bpe(UINT16 x, UINT16 y, UINT16 sample) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

     UINT16 SampleSwizzle; 

  

     // shift bits in x, y, and sample to their respective TileYS MSAA swizzled bit locations 

     xSwizzle = ((BIT6 & x) « 7) |                  // shift to bit position 11 

                ((BIT5 & x) « 6) |                  // shift to bit position 9 

                ((BIT4 & x) « 5) |                  // shift to bit position 7 

                (xMaskBits3_0 & x);                  // leave in bits 3..0 

  

     ySwizzle = ((BIT5 & y) « 7) |                  // shift to bit position 12 

                ((BIT4 & y) « 6) |                  // shift to bit position 10 

                ((BIT3 & y) « 5) |                  // shift to bit position 8 

                ((yMaskBits2_0 & y) « 4);           // shift to bit positions 6..4 

  

     SampleSwizzle = (sample && SampleMask2_0) « 13;// shift to bit positions 15..13 

  

     // OR the swizzled bit positions for final offset within a tile 
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     return SampleSwizzle | xSwizzle | ySwizzle; 

 } 

  

 UINT16 TileYS8xMsaaElementOffset8bpe(UINT16 x, UINT16 y, UINT16 sample) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

     UINT16 SampleSwizzle; 

  

     // shift bits in x, y, and sample to their respective TileYS MSAA swizzled bit locations 

     xSwizzle = ((BIT5 & x) « 6) |                  // shift to bit position 11 

                ((BIT4 & x) « 5) |                  // shift to bit position 9 

                (xMaskBits3_0 & x);                  // leave in bits 3..0 

  

     ySwizzle = ((BIT6 & y) « 6) |                  // shift to bit position 12 

                ((BIT5 & y) « 5) |                  // shift to bit position 10 

                ((yMaskBits4_0 & y) « 4);           // shift to bit positions 8..4 

  

     SampleSwizzle = (sample && SampleMask2_0) « 13;// shift to bit positions 15..13 

  

     // OR the swizzled bit positions for final offset within a tile 

     return SampleSwizzle | xSwizzle | ySwizzle; 

 } 

  

 /* 

  __________________________________________________________________________________ 

 |    Num    | Bits per element |           Tiled element offset bits               | 

 |  Samples  |                  |15 |14 |13 |12 |11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0| 

 |______________________________|___|___|___|___|__|__|__|__|__|__|__|__|__|__|__|__| 

 |    16x    |     64 & 128     |ss3|ss2|ss1|ss0|x7|y3|x6|y2|x5|x4|y1|y0|x3|x2|x1|x0| 

 |           |     16 & 32      |ss3|ss2|ss1|ss0|x6|y4|x5|y3|x4|y2|y1|y0|x3|x2|x1|x0| 

 |           |        8         |ss3|ss2|ss1|ss0|x5|y5|x4|y4|y3|y2|y1|y0|x3|x2|x1|x0| 

 */ 

 UINT16 TileYS16xMsaaElementOffset64_128bpe(UINT16 x, UINT16 y, UINT16 sample) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

     UINT16 SampleSwizzle; 

  

     // shift bits in x, y, and sample to their respective TileYS MSAA swizzled bit locations 

     xSwizzle = ((BIT7 & x) « 4) |                  // shift to bit position 11 

                ((BIT6 & x) « 3) |                  // shift to bit position 9 

                ((xMaskBits5_4 & x) « 2) |          // shift to bit positions 7..6 

                (xMaskBits3_0 & x);                  // leave in bits 3..0 

  

     ySwizzle = ((BIT3 & y) « 7) |                  // shift to bit position 10 

                ((BIT2 & y) « 6) |                  // shift to bit position 8 

                ((yMaskBits1_0 & y) « 4);           // shift to bit positions 5..4 

  

     SampleSwizzle = (sample && SampleMask3_0) « 12;// shift to bit positions 15..12 

  

     // OR the swizzled bit positions for final offset within a tile 

     return SampleSwizzle | xSwizzle | ySwizzle; 

 } 

  

 UINT16 TileYS16xMsaaElementOffset16_32bpe(UINT16 x, UINT16 y, UINT16 sample) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

     UINT16 SampleSwizzle; 

  

     // shift bits in x, y, and sample to their respective TileYS MSAA swizzled bit locations 

     xSwizzle = ((BIT6 & x) « 7) |                  // shift to bit position 11 

                ((BIT5 & x) « 6) |                  // shift to bit position 9 
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                ((BIT4 & x) « 5) |                  // shift to bit position 7 

                (xMaskBits3_0 & x);                  // leave in bits 3..0 

  

     ySwizzle = ((BIT4 & y) « 6) |                  // shift to bit position 10 

                ((BIT3 & y) « 5) |                  // shift to bit position 8 

                ((yMaskBits2_0 & y) « 4);           // shift to bit positions 6..4 

  

     SampleSwizzle = (sample && SampleMask3_0) « 12;// shift to bit positions 15..12 

  

     // OR the swizzled bit positions for final offset within a tile 

     return SampleSwizzle | xSwizzle | ySwizzle; 

 } 

  

 UINT16 TileYS16xMsaaElementOffset8bpe(UINT16 x, UINT16 y, UINT16 sample) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

     UINT16 SampleSwizzle; 

  

     // shift bits in x, y, and sample to their respective TileYS MSAA swizzled bit locations 

     xSwizzle = ((BIT5 & x) « 6) |                  // shift to bit position 11 

                ((BIT4 & x) « 5) |                  // shift to bit position 9 

                (xMaskBits3_0 & x);                  // leave in bits 3..0 

  

     ySwizzle = ((BIT5 & y) « 5) |                  // shift to bit position 10 

                ((yMaskBits4_0 & y) « 4);           // shift to bit positions 8..4 

  

     SampleSwizzle = (sample && SampleMask3_0) « 12;// shift to bit positions 15..12 

  

     // OR the swizzled bit positions for final offset within a tile 

     return SampleSwizzle | xSwizzle | ySwizzle; 

 } 

  

  

 /*******************************************************************************\ 

     TileYF 2D Tile address swizzling functions w/o _pdep32 

 \*******************************************************************************/ 

 /* 

  ______________________________________________________________________________ 

 |    Num    | Bits per element |           Tiled element offset bits           | 

 |  Samples  |                  |15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0| 

 |______________________________|__|__|__|__|__|__|__|__|__|__|__|__|__|__|__|__| 

 |     1x    |     64 & 128     |  |  |  |  |x7|y3|x6|y2|x5|x4|y1|y0|x3|x2|x1|x0| 

 |           |     16 & 32      |  |  |  |  |x6|y4|x5|y3|x4|y2|y1|y0|x3|x2|x1|x0| 

 |           |        8         |  |  |  |  |x5|y5|x4|y4|y3|y2|y1|y0|x3|x2|x1|x0| 

 */ 

 UINT16 TileYF2dElementOffset64_128bpe(UINT16 x, UINT16 y) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

  

     // shift bits in x and y to their respective TileYF swizzled bit locations 

     xSwizzle = ((BIT7 & x) « 4) | 

                ((BIT6 & x) « 3) | 

                ((xMaskBits5_4 & x) « 2) | // shift to bit positions 7..6 

                (xMaskBits3_0 & x); 

  

     ySwizzle = ((BIT3 & y) « 7) | 

                ((BIT2 & y) « 6) | 

                ((yMaskBits1_0 & y) « 4);   // shift to bit positions 5..4 

  

     // OR the swizzled bit positions for final offset within a tile 

     return xSwizzle | ySwizzle; 

 } 
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 UINT16 TileYF2dElementOffset16_32bpe(UINT16 x, UINT16 y) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

  

     // shift bits in x and y to their respective TileYF swizzled bit locations 

     xSwizzle = ((BIT6 & x) « 5) | 

                ((BIT5 & x) « 4) | 

                ((BIT4 & x) « 3) | 

                (xMaskBits3_0 & x); 

  

     ySwizzle = ((BIT4 & y) « 6) | 

                ((BIT3 & y) « 5) | 

                ((yMaskBits2_0 & y) « 4); // shift to bit positions 6..4 

  

     // OR the swizzled bit positions for final offset within a tile 

     return xSwizzle | ySwizzle; 

 } 

  

 UINT16 TileYF2dElementOffset8bpe(UINT16 x, UINT16 y) 

 { 

     UINT16 xSwizzle; 

     UINT16 ySwizzle; 

  

     // shift bits in x and y to their respective TileYF swizzled bit locations 

     xSwizzle = ((BIT5 & x) « 6) | 

                ((BIT4 & x) « 5) | 

                (xMaskBits3_0 & x); 

  

     ySwizzle = ((BIT5 & y) « 5) | 

                ((yMaskBits4_0 & y) « 4); // shift to bit positions 8..4 

  

     // OR the swizzled bit positions for final offset within a tile 

     return xSwizzle | ySwizzle; 

 } 
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Tiling Support  

The rearrangement of the surface elements in memory must be accounted for in device functions 

operating upon tiled surfaces. (Note that not all device functions that access memory support tiled 

formats). This requires either the modification of an element's linear memory address or an alternate 

formula to convert an element's X,Y coordinates into a tiled memory address. 

However, before tiled-address-generation can take place, some mechanism must be used to determine 

whether the surface elements accessed fall in a linear or tiled region of memory, and if tiled, what the tile 

region pitch is, and whether the tiled region uses X-Major or Y-Major format. There are two mechanisms 

by which this detection takes place: (a) an implicit method by detecting that the pre-tiled (linear) address 

falls within a "fenced" tiled region, or (b) by an explicit specification of tiling parameters for surface 

operands (i.e., parameters included in surface-defining instructions). 

The following table identifies the tiling-detection mechanisms that are supported by the various memory 

streams. 

Access Path Tiling-Detection Mechanisms Supported 

Processor access through the Graphics Memory Aperture Fenced Regions 

3D Render (Color/Depth Buffer access) Explicit Surface Parameters 

Sampled Surfaces Explicit Surface Parameters 

Blt operands Explicit Surface Parameters 

Display and Overlay Surfaces Explicit Surface Parameters 

Tiled (Fenced) Regions  

The only mechanism to support the access of surfaces in tiled format by the host or external graphics 

client is to place them within "fenced" tiled regions within Graphics Memory. A fenced region is a block 

of Graphics Memory specified using one of the sixteen FENCE device registers. (See Memory Interface 

Registers for details). Surfaces contained within a fenced region are considered tiled from an external 

access point of view. Note that fences cannot be used to untile surfaces in the PGM_Address space since 

external devices cannot access PGM_Address space. Even if these surfaces (or any surfaces accessed by 

an internal graphics client) fall within a region covered by an enabled fence register, that enable will be 

effectively masked during the internal graphics client access. Only the explicit surface parameters 

described in the next section can be used to tile surfaces being accessed by the internal graphics clients. 

Tiled Surface Parameters  

Internal device functions require explicit specification of surface tiling parameters via information passed 

in commands and state. This capability is provided to limit the reliance on the fixed number of fence 

regions. 
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The following table lists the surface tiling parameters that can be specified for 3D Render surfaces (Color 

Buffer, Depth Buffer, Textures, etc.) via SURFACE_STATE. 

Surface 

Parameter Description 

Tiled Surface If ENABLED, the surface is stored in a tiled format. If DISABLED, the surface is stored in a linear 

format. 

Tile Walk If Tiled Surface is ENABLED, this parameter specifies whether the tiled surface is stored in Y-

Major or X-Major tile format. 

Base Address Additional restrictions apply to the base address of a Tiled Surface vs. that of a linear surface. 

Pitch Pitch of the surface. Note that, if the surface is tiled, this pitch must be a multiple of the tile 

width. 

Tiled Surface Restrictions  

Additional restrictions apply to the Base Address and Pitch of a surface that is tiled. In addition, 

restrictions for tiling via SURFACE_STATE are subtly different from those for tiling via fence regions. The 

most restricted surfaces are those that will be accessed both by the host (via fence) and by internal 

device functions. An example of such a surface is a tiled texture that is initialized by the CPU and then 

sampled by the device. 

The tiling algorithm for internal device functions is different from that of fence regions. Internal device 

functions always specify tiling in terms of a surface. The surface must have a base address, and this base 

address is not subject to the tiling algorithm. Only offsets from the base address (as calculated by X, Y 

addressing within the surface) are transformed through tiling. The base address of the surface must 

therefore be 4KB-aligned. This forces the 4KB tiles of the tiling algorithm to exactly align with 4KB device 

pages once the tiling algorithm has been applied to the offset. The width of a surface must be less than 

or equal to the surface pitch. There are additional considerations for surfaces that are also accessed by 

the host (via a fence region). 

Fence regions have no base address per se. Host linear addresses that fall in a fence region are translated 

in their entirety by the tiling algorithm. It is as if the surface being tiled by the fence region has a base 

address in graphics memory equal to the fence base address, and all accesses of the surfaces are 

(possibly quite large) offsets from the fence base address. Fence regions have a virtual "left edge" 

aligned with the fence base address, and a "right edge" that results from adding the fence pitch to the 

"left edge". Surfaces in the fence region must not straddle these boundaries. 

Base addresses of surfaces that are to be accessed both by an internal graphics client and by the host 

have the tightest restrictions. In order for the surface to be accessed without GTT re-mapping, the 

surface base address (as set in SURFACE_STATE) must be a "Tile Row Start Address" (TRSA). The first 

address in each tile row of the fence region is a Tile Row Start Address. The first TRSA is the fence base 

address. Each TRSA can be generated by adding an integral multiple of the row size to the fence base 

address. The row size is simply the fence pitch in tiles multiplied by 4KB (the size of a tile.) 
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Tiled Surface Placement 

 

The pitch in SURFACE_STATE must be set equal to the pitch of the fence that will be used by the host to 

access the surface if the same GTT mapping will be used for each access. If the pitches differ, a different 

GTT mapping must be used to eliminate the "extra" tiles (4KB memory pages) that exist in the excess 

rows at the right side of the larger pitch. Obviously no part of the surface that will be accessed can lie in 

pages that exist only in one mapping but not the other. The new GTT mapping can be done manually by 

SW between the time the host writes the surface and the device reads it, or it can be accomplished by 

arranging for the client to use a different GTT than the host (the PPGTT -- see Logical Memory Mapping 

below). 

The width of the surface (as set in SURFACE_STATE) must be less than or equal to both the surface pitch 

and the fence pitch in any scenario where a surface will be accessed by both the host and an internal 

graphics client. Changing the GTT mapping will not help if this restriction is violated. 

Surface Access Base Address Pitch Width Tile "Walk" 

Host only No restriction Integral multiple of tile size 

<= 256KB 

Must be <= Fence 

Pitch 

No restriction 

Client only 4KB-aligned Integral multiple of tile size 

<= 256KB 

Must be <= 

Surface Pitch 

Restrictions imposed by 

the client 

(see Per Stream Tile 

Format Support) 
 

Host and Client, Must be TRSA Fence Pitch = Surface Pitch Width <= Pitch Surface Walk must meet 
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Surface Access Base Address Pitch Width Tile "Walk" 

No GTT 

Remapping 

= integral multiple of tile 

size <= 256KB 

client restriction, Fence 

Walk = Surface Walk 

Host and Client, 

GTT Remapping 

4KB-aligned for 

client (will be tile-

aligned for host) 

Both must be Integral 

multiple of tile size 

<=128KB, but not 

necessarily the same 

Width <= 

Min(Surface Pitch, 

Fence Pitch) 

Surface Walk must meet 

client restriction, Fence 

Walk = Surface Walk 

Per-Stream Tile Format Support  

MI Client Tile Formats Supported 

CPU Read/Write All 

Display/Overlay Y-Major not supported 

 X-Major required for Async Flips 

Blt Linear and X-Major only 

 No Y-Major support 

3D Sampler All Combinations of TileY, TileX and Linear are supported. TileY is the fastest, Linear is the slowest. 

3D Color,Depth Rendering Mode 

 Color-vs-Depth bpp Buffer Tiling Supported 

Classical 

 Same Bpp 

Both Linear 

 Both TileX 

 Both TileY 

 Linear & TileX 

 Linear & TileY 

 TileX & TileY 

Classical 

 Mixed Bpp 

Both Linear 

 Both TileX 

 Both TileY 

 Linear & TileX 

 Linear & TileY 

 TileX & TileY 
 

Memory Compression  

CCS Surface Encodings  

This page presents CCS encodings for projects prior to Unified Compression feature. 

The compression status is held as a 4-bit encoding in Compression Control Surface. For 3D one 4bit 

encoding represents status of 128B of data. 

For Media, we use 3rd party compressor capable of handling 256b block compression, 4bit encoding is 

duplicated for left and right 128B. 
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Table of CCS encodings 

Color Code Notes 

    x Unused data 

    clr Data at clear, needs to be filled in with clear value, no actual data is transferred 

   un Uncompressed data 

   cp Compressed data 

 

Unified Compression, Compression Control Surface encodings 

 
MEDIA 3D 

CCS Media Notes CL3 

(64B) 

CL2(6

4B) 

CL1(6

4B) 

CL0(6

4B) 

3D Notes CL1(6

4B) 

CL0(6

4B) 

00

00 

0x

0 

Media_1to1 Uncompre

ssed 

u

n 

u

n 

u

n 

u

n 

u

n 

u

n 

u

n 

u

n 

3D_1to1 Uncompr

essed 

u

n 

u

n 

u

n 

u

n 

00

01 

0x

1 

Media_4to1_

Mono 

128B to 

32B 

    
x x x c

p 

3D_4to1_M

ono 

128B to 

32B 

x x x c

p 

00

10 

0x

2 

Media_4to3_

UCU 

not 

used,128B, 

upper 

uncompre

ssed 

    
u

n 

u

n 

x c

p 

3D_4to3_U

CU 

upper 

uncompr

essed, 

lower 

comp 

u

n 

u

n 

x c

p 

00

11 

0x

3 

Media_8to6_

UCU 

not used, 

256B, 

upper 

uncompre

ssed 

u

n 

u

n 

u

n 

u

n 

x x c

p 

c

p 

3D_2to1_C

CL 

upper 

uncompr

essed 

and 

lower 

clear 

u

n 

u

n 

c

lr 

cl

r 

01

00 

0x

4 

Media_8to1_

Mono 

256B to 

32B 

shared 

x x x x x x x c

p 

3D_FDV0 FDV0  

entire 

cache 

line filled 

with zero 

x x x x 

01

01 

0x

5 

Media_8to2_

Mono 

256B to 

64B 

shared 

x x x x x x c

p 

c

p 

3D_Null_Til

e 

Tile is 

Null 

x x x x 
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01

10 

0x

6 

Media_4to2_

Mono 

128B to 

64B 

    
x x c

p 

c

p 

3D_4to2_M

ono 

128B to 

64B 

x x c

p 

c

p 

01

11 

0x

7 

Media_8to6_

UCL 

not used, 

256B, 

lower 

uncompre

ssed 

x x c

p 

c

p 

u

n 

u

n 

u

n 

u

n 

 N/A not used  x  x  

x 

 x 

10

00 

0x

8 

Media_4to3_

UCL 

not 

used,128B, 

lower 

uncompre

ssed 

    
x c

p 

u

n 

u

n 

3D_4to3_U

CL 

lower 

uncompr

essed 

x c

p 

u

n 

u

n 

10

01 

0x

9 

Media_4to3_

Mono 

not used, 

monolithic

 4:3 

Feature 

    
x c

p 

c

p 

c

p 

3D_4to3_M

ono 

not used, 

monolith

ic 4:3 

Feature 

x c

p 

c

p 

c

p 

10

10 

0x

A 

Media_4to2_I

ndividual 

not used, 

128B, 64B 

individuall

y comp 

    
x c

p 

x c

p 

3D_4to2_In

dividual 

64B 

individua

lly 

compres

sed 

x c

p 

x c

p 

10

11 

0x

B 

Media_8to3_

Mono 

256B to 

96B  

x x x x x c

p 

c

p 

c

p 

3D_4to1_C

CL 

lower 

clear, 

upper 

compres

sed 

x c

p 

c

lr 

cl

r 

11

00 

0x

C 

Media_8to4_

Mono 

256B to 

128B  

x x x x c

p 

c

p 

c

p 

c

p 

3D_2to1_C

CU 

upper 

clear and 

lower 

uncompr

essed 

cl

r 

cl

r 

u

n 

u

n 

11

01 

0x

D 

Media_8to5_

Mono 

256B to 

160B  

x x x c

p 

c

p 

c

p 

c

p 

c

p 

3D_ML Machine 

Learning 

specific, 

ATS only 

x x c

p 

c

p 

11

10 

0x

E 

Media_8to6_

Mono 

256B to 

192B  

x x c

p 

c

p 

c

p 

c

p 

c

p 

c

p 

3D_4to1_C

CU 

upper 

clear, 

lower 

compres

cl

r 

cl

r 

x c

p 
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sed 

11

11 

0x

F 

Media_8to7_

Mono 

not used, 

256B 

to224B 

shared 

x c

p 

c

p 

c

p 

c

p 

c

p 

c

p 

c

p 

3D_ClearCl

ear 

Both 64B 

chunks 

at clear 

value 

cl

r 

cl

r 

c

lr 

cl

r 

Media Memory Compression  

The software requirement when using media memory compression is to allocate each compressible 

surface one memory tile wider than is required based on the surface width plus normal byte padding 

(this approach is called "pitch+1"). The reason is each compressible surface needs an "extra" tile to the 

right edge of surface to store important compression control information. For example, if the surface is 

1920x1088, this would normally be allocated by the driver to be 2048 bytes wide, or 16 tiles (for NV12 

8bpp). Using this "pitch + 1", the pitch would be set to 17 instead of 16 (and the surface width remains 

unchanged, only pitch is increased). 

The largest supported width will be 4K pixels for 2D RGBA 8bpp surfaces and 2x2K for S3D surfaces (for 

4KB pages). E.g. the pitch would be set to 129 in these cases (128+1). NV12 4K would be 33 (28+1). The 

case of 64KB pages is the same: the driver will allocate 1 extra page to the right ("pitch + 1"), however 

now the 4K wide restriction is relaxed. With 64KB pages, the widest surface that supports memory 

compression is 16K for 2D RGBA 8bpp or 2x8K for S3D. E.g. the pitch would be set to 129 in these cases 

(128+1). 

Memory Object Overview 

Any memory data accessed by the device is considered part of a memory object of some memory object 

type. 

The following table lists the various memory objects types and an indication of their role in the system. 

Memory Object 

Type Role 

Graphics Translation 

Table (GTT) 

Contains PTEs used to translate "graphics addresses" into physical memory addresses. 

Hardware Status 

Page 

Cached page of sysmem used to provide fast driver synchronization. 

Logical Context 

Buffer 

Memory areas used to store (save/restore) images of hardware rendering contexts. Logical 

contexts are referenced via a pointer to the corresponding Logical Context Buffer. 

Ring Buffers Buffers used to transfer (DMA) instruction data to the device. Primary means of controlling 

rendering operations. 

Batch Buffers Buffers of instructions invoked indirectly from Ring Buffers. 

State Descriptors Contains state information in a prescribed layout format to be read by hardware. Many 

different state descriptor formats are supported. 

Vertex Buffers Buffers of 3D vertex data indirectly referenced through "indexed" 3D primitive instructions. 

VGA Buffer Graphics memory buffer used to drive the display output while in legacy VGA mode. 
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Memory Object 

Type Role 

 (Must be mapped 

UC on PCI) 

Display Surface Memory buffer used to display images on display devices. 

Overlay Surface Memory buffer used to display overlaid images on display devices. 

Overlay Register, 

Filter Coefficients 

Memory area used to provide double buffer for Overlay register and filter coefficient loading. 

Cursor Surface Hardware cursor pattern in memory. 

2D Render Source Surface used as primary input to 2D rendering operations. 

2D Render R-M-W 

Destination 

2D rendering output surface that is read in order to be combined in the rendering function. 

Destination surfaces that accessed via this Read-Modify-Write mode have somewhat 

different restrictions than Write-Only Destination surfaces. 

2D Render Write-

Only Destination 

2D rendering output surface that is written but not read by the 2D rendering function. 

Destination surfaces that accessed via a Write-Only mode have somewhat different 

restrictions than Read-Modify-Write Destination surfaces. 

2D Monochrome 

Source 

1 bpp surfaces used as inputs to 2D rendering after being converted to 

foreground/background colors. 

2D Color Pattern 8x8 pixel array used to supply the "pattern" input to 2D rendering functions. 

DIB "Device Independent Bitmap" surface containing "logical" pixel values that are converted (via 

LUTs) to physical colors. 

3D Color Buffer Surface receiving color output of 3D rendering operations. May also be accessed via R-M-W 

(aka blending). Also referred to as a Render Target. 

3D Depth Buffer Surface used to hold per-pixel depth and stencil values used in 3D rendering operations. 

Accessed via RMW. 

3D Texture Map Color surface (or collection of surfaces) which provide texture data in 3D rendering 

operations. 

"Non-3D" Texture 
Surface read by Texture Samplers, though not in normal 3D rendering operations (for 

example, in video color conversion functions). 

Motion Comp 

Surfaces 

These are the Motion Comp reference pictures. 

Motion Comp 

Correction Data 

Buffer 

This is Motion Comp intra-coded or inter-coded correction data. 

 


