

G45: Volume 1a Graphics Core

Intel® 965G Express Chipset Family
and Intel® G35 Express Chipset
Graphics Controller

Programmer’s Reference Manual (PRM)

January 2009

Revision 2.0a
Reference Number: 321391-001

mlfoster
Text Box
Technical queries: ilg@linux.intel.com

www.intellinuxgraphics.org

mailto:ilg@linux.intel.com
http://www.intellinuxgraphics.org

You are free:

to Share — to copy, distribute,display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any
way that suggests that they endorse you or your use of the work).

No Derivative Works. You may not alter, transform, or build upon this work.

You are not obligated to provide Intel with comments or suggestions regarding this document.
However, should you provide Intel with comments or suggestions for the modification, correction,
improvement, or enhancement of: 9a) this document; or (b) Intel products, which may embody
this document, you grant to Intel a non-exclusive, irrevocable, worldwide, royalty-free license,
with the right to sublicense Intel’s licensees and customers, under Recipient intellectual property
rights, to use and disclose such comments and suggestions in any manner Intel chooses and to
display, perform, copy, make, have made, use, sell, and otherwise dispose of Intel’s and its
sublicensee’s products embodying such comments and suggestions in any manner and via any
media Intel chooses, without reference to the source.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these
for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® 965 Express Chipset Family and Intel® G35 Express Chipset may contain design defects or errors known as errata which may cause
the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed by Intel.
Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips
Corporation.

Intel and the Intel are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2008, Intel Corporation. All rights reserved.

Contents
1 Introduction... 11

1.1 Notations and Conventions .. 13
1.1.1 Reserved Bits and Software Compatibility 13

1.2 Terminology .. 13
2 Graphics Device Overview.. 24

2.1 Graphics Memory Controller Hub (GMCH) .. 24
2.2 Graphics Processing Unit (GPU).. 25

3 Graphics Processing Engine (GPE) ... 26
3.1 Introduction .. 26
3.2 Overview .. 26

3.2.1 Block Diagram.. 26
3.2.2 Command Stream (CS) Unit ... 27
3.2.3 3D Pipeline... 27
3.2.4 Media Pipeline .. 28
3.2.5 GENX Subsystem .. 28
3.2.6 GPE Function IDs .. 28

3.3 Pipeline Selection ... 30
3.4 URB Allocation ... 30

3.4.1 URB_FENCE ... 31
3.5 Constant URB Entries (CURBEs) ... 37

3.5.1 Overview ... 37
3.5.2 Multiple CURBE Allocation... 37
3.5.3 CS_URB_STATE .. 38
3.5.4 CONSTANT_BUFFER .. 40

3.6 Memory Access Indirection .. 41
3.6.1 STATE_BASE_ADDRESS... 43

3.7 State Invalidation ([DevCTG+]) ... 48
3.7.1 STATE_POINTER_INVALIDATE ([DevCTG+]) 48

3.8 Instruction and State Prefetch.. 49
3.8.1 STATE_PREFETCH ... 49

3.9 System Thread Configuration... 51
3.9.1 STATE_SIP... 51

3.10 Command Ordering Rules.. 52
3.10.1 PIPELINE_SELECT ... 52
3.10.2 PIPE_CONTROL... 52
3.10.3 URB-Related State-Setting Commands 53
3.10.4 Common Pipeline State-Setting Commands................................. 53
3.10.5 3D Pipeline-Specific State-Setting Commands 53
3.10.6 Media Pipeline-Specific State-Setting Commands 54
3.10.7 URB_FENCE (URB Fencing & Entry Allocation) 54
3.10.8 CONSTANT_BUFFER (CURBE Load) .. 55
3.10.9 3DPRIMITIVE.. 55
3.10.10 MEDIA_OBJECT .. 55

 G45: Volume 1a Graphics Core

 4

4 Graphics Command Formats... 56
4.1 Command Formats ... 56

4.1.1 Memory Interface Commands ... 57
4.1.2 2D Commands.. 57
4.1.3 3D/Media Commands... 57
4.1.4 Video Codec Commands... 58

4.2 Command Map .. 60
4.2.1 Memory Interface Command Map .. 60
4.2.2 2D Command Map... 63
4.2.3 3D/Media Command Map ... 64

5 Register Address Maps .. 67
5.1 Graphics Register Address Map .. 67

5.1.1 Memory and I/O Space Registers... 67
5.1.2 PCI Configuration Space... 69
5.1.3 Graphics Register Memory Address Map 69

5.2 VGA and Extended VGA Register Map.. 93
5.2.1 VGA and Extended VGA I/O and Memory Register Map 93

5.3 Indirect VGA and Extended VGA Register Indices 94
6 Memory Data Formats ... 97

6.1 Memory Object Overview .. 97
6.1.1 Memory Object Types .. 97

6.2 Channel Formats.. 99
6.2.1 Unsigned Normalized (UNORM) ... 99
6.2.2 Gamma Conversion (SRGB).. 99
6.2.3 Signed Normalized (SNORM) .. 99
6.2.4 Unsigned Integer (UINT/USCALED).. 99
6.2.5 Signed Integer (SINT/SSCALED) ... 99
6.2.6 Floating Point (FLOAT) ... 100

6.3 Non-Video Surface Formats ... 100
6.3.1 Surface Format Naming ... 100
6.3.2 Intensity Formats.. 101
6.3.3 Luminance Formats ... 101
6.3.4 P4A4_UNORM... 102
6.3.5 A4P4_UNORM... 102
6.3.6 P8A8_UNORM... 103
6.3.7 A8P8_UNORM... 103
6.3.8 P8_UNORM .. 104
6.3.9 P2_UNORM .. 104

6.4 Compressed Surface Formats... 104
6.4.1 FXT Texture Formats ... 104
6.4.2 BC Texture Formats... 117
6.4.3 BC4 .. 123
6.4.4 BC5 .. 124

6.5 Video Pixel/Texel Formats ... 126
6.5.1 Packed Memory Organization .. 126
6.5.2 Planar Memory Organization ... 127

6.6 Surface Memory Organizations... 128
6.7 Graphics Translation Tables ... 128
6.8 Hardware Status Page .. 129
6.9 Instruction Ring Buffers .. 129

 G45: Volume 1a Graphics Core

 5

6.10 Instruction Batch Buffers... 129
6.11 Display, Overlay, Cursor Surfaces... 129
6.12 2D Render Surfaces.. 129
6.13 2D Monochrome Source .. 130
6.14 2D Color Pattern .. 130
6.15 3D Color Buffer (Destination) Surfaces .. 130
6.16 3D Depth Buffer Surfaces.. 131
6.17 Surface Layout .. 131

6.17.1 Buffers .. 131
6.17.2 1D Surfaces ... 132
6.17.3 2D Surfaces ... 132
6.17.4 Cube Surfaces .. 136
6.17.5 3D Surfaces ... 137

6.18 Surface Padding Requirements... 139
6.18.1 Sampling Engine Surfaces .. 139
6.18.2 Render Target and Media Surfaces... 140

6.19 Logical Context Data .. 140
6.19.1 Overall Context Layout .. 140
6.19.2 Register/State Context... 141
6.19.3 The Probe List .. 159
6.19.4 Pipelined State Page.. 159
6.19.5 Ring Buffer... 159
6.19.6 The Per-Process Hardware Status Page 160

7 Device 2 Configuration Registers... 161
7.1 Introduction .. 161
7.2 Device 2, Function 0... 161

7.2.1 VID2 — Vendor Identification.. 163
7.2.2 DID2 — Device Identification .. 163
7.2.3 PCICMD2 — PCI Command ... 164
7.2.4 PCISTS2 — PCI Status ... 165
7.2.5 RID2 — Revision Identification .. 166
7.2.6 CC — Class Code .. 167
7.2.7 CLS — Cache Line Size .. 167
7.2.8 MLT2 — Master Latency Timer .. 168
7.2.9 HDR2 — Header Type .. 168
7.2.10 BIST — Built In Self Test.. 168
7.2.11 GTTMMADR — Graphics Translation Table Range Address............ 169
7.2.12 GMADR — Graphics Memory Range Address.............................. 170
7.2.13 IOBAR — I/O Base Address .. 171
7.2.14 SVID2 — Subsystem Vendor Identification................................ 171
7.2.15 SID2 — Subsystem Identification .. 172
7.2.16 ROMADR — Video BIOS ROM Base Address............................... 172
7.2.17 CAPPOINT — Capabilities Pointer ... 172
7.2.18 INTRLINE — Interrupt Line ... 173
7.2.19 INTRPIN — Interrupt Pin .. 173
7.2.20 MINGNT — Minimum Grant... 173
7.2.21 MAXLAT — Maximum Latency ... 174
7.2.22 MCAPPTR — Capabilities Pointer (to Mirror of Dev0 CAPID) 174
7.2.23 MCAPID — Mirror of Dev 0 Capability Identification. 174
7.2.24 MGGC — Mirror of Dev0 GMCH Graphics Control 175
7.2.25 MDEVENdev0F0 — Mirror of Dev0 DEVEN 176
7.2.26 SSRW — Software Scratch Read Write 176

 G45: Volume 1a Graphics Core

 6

7.2.27 BSM — Base of Stolen Memory ... 176
7.2.28 HSRW — Hardware Scratch Read Write 177
7.2.29 MSAC — Multi Size Aperture Control .. 177
7.2.30 SCWBFC — Secondary CWB Flush Control ([DevBW] Only) 178
7.2.31 CAPL — Capabilities List Control .. 178
7.2.32 MSI_CAPID — Message Signaled Interrupts Capability ID............ 179
7.2.33 MC — Message Control .. 179
7.2.34 MA — Message Address.. 180
7.2.35 MD — Message Data.. 180
7.2.36 GDRST — Graphics Device Reset ... 181
7.2.37 GMBUSFREQ — GMBUS frequency binary encoding 182
7.2.38 PMCAPID — Power Management Capabilities ID......................... 182
7.2.39 PMCAP — Power Management Capabilities 183
7.2.40 PMCS — Power Management Control/Status.............................. 184
7.2.41 SWSMI — Software SMI... 185
7.2.42 ASLE — System Display Event Register 185
7.2.43 SWSCI — Software SCI.. 186
7.2.44 LBB — Legacy Backlight Brightness ([DevCL] Only).................... 187
7.2.45 MID2 — Manufacturing ID .. 188
7.2.46 ASLS — ASL Storage ... 188

7.3 Device 2, Function 1... 189
7.3.1 VID2 — Vendor Identification.. 190
7.3.2 DID2 — Device Identification .. 190
7.3.3 PCICMD2 — PCI Command ... 191
7.3.4 PCISTS2 — PCI Status ... 192
7.3.5 RID2 — Revision Identification .. 193
7.3.6 CC — Class Code .. 194
7.3.7 CLS — Cache Line Size .. 194
7.3.8 MLT2 — Master Latency Timer .. 195
7.3.9 HDR2 — Header Type .. 195
7.3.10 BIST — Built In Self Test.. 195
7.3.11 MMADR — Memory Mapped Range Address............................... 196
7.3.12 SVID2 — Subsystem Vendor Identification................................ 196
7.3.13 SID2 — Subsystem Identification .. 197
7.3.14 ROMADR — Video BIOS ROM Base Address............................... 197
7.3.15 CAPPOINT — Capabilities Pointer ... 197
7.3.16 MINGNT — Minimum Grant... 198
7.3.17 MAXLAT — Maximum Latency ... 198
7.3.18 MCAPPTR — Capabilities Pointer (to Mirror of Dev0 CAPID) 198
7.3.19 MCAPID — Mirror of Dev 0 Capability Identification. 199
7.3.20 MGGC — Mirror of Dev0 GMCH Graphics Control 199
7.3.21 MDEVENdev0F0 — Mirror of Dev0 DEVEN 201
7.3.22 SSRW — Software Scratch Read Write 201

8 Memory Interface Registers.. 203
8.1 Introduction .. 203
8.2 Virtual Memory Control ... 203

8.2.1 Global Virtual Memory ... 203
8.2.2 PGTBL_ER—Page Table Error Register (Debug) [Per-Process GTT enabled on CTG]

.. 212
8.2.3 Single-Level (Flat) Per-Process Virtual Memory.......................... 215
8.2.4 Two-Level Per-Process Virtual Memory ([DevCTG] Only) 220
8.2.5 PPGTT Page Fault Interface ([DevCTG] Only) 226
8.2.6 TLB Read Interface.. 229

8.3 GFX_MODE – Graphics Mode Register .. 235

 G45: Volume 1a Graphics Core

 7

8.4 EXCC—Execute Condition Code Register .. 236
8.5 RINGBUF—Ring Buffer Registers... 238

8.5.1 UHPTR — Pending Head Pointer Register 244
8.6 Debug Registers Control.. 245

8.6.1 HW_MEMRD—Memory Read Sync Register (Debug).................... 245
8.6.2 IPEIR—Instruction Parser Error Identification Register (Debug).... 246
8.6.3 HW_MEMCWR—Memory Snoop Sync Register ([DevCTG])........... 247
8.6.4 IPEHR—Instruction Parser Error Header Register (Debug) 248
8.6.5 INSTDONE—Instruction Stream Interface Done Register (Debug). 249
8.6.6 INSTPS—Instruction Parser State Register (Debug).................... 251
8.6.7 ACTHD — Active Head Pointer Register (Debug) 252
8.6.8 DMA_FADD_P — Primary DMA Engine Fetch Address (Debug)...... 253
8.6.9 INSTDONE_1 — Additional Instruction Stream Interface Done (Debug) 254
8.6.10 INSTDONE_1 — Additional Instruction Stream Interface Done

(Debug)[DevCTG+]... 256
8.6.11 GFX_FLSH_CNTL — Graphics Flush Control 258
8.6.12 CTXT_PREMP_DBG – Pre-emption Debug Register ([DevCTG] Only)259

8.7 NOPID — NOP Identification Register .. 260
8.8 Watchdog Timer Registers [DevCTG] .. 261

8.8.1 PR_CTR_CTL—Render Watchdog Counter Control....................... 261
8.8.2 PR_CTR_THRSH—Render Watchdog Counter Threshold............... 262
8.8.3 PR_CTR—Render Watchdog Counter .. 262

8.9 Interrupt Control Registers .. 263
8.9.1 HWS_PGA — Hardware Status Page Address Register................. 268
8.9.2 PWRCTXA — Power Context Register Address ([DevCL] Only)...... 271
8.9.3 HWSTAM — Hardware Status Mask Register.............................. 273
8.9.4 IER — Interrupt Enable Register.. 276
8.9.5 IIR — Interrupt Identity Register... 277
8.9.6 IMR—Interrupt Mask Register ... 278
8.9.7 ISR — Interrupt Status Register .. 279

8.10 Hardware-Detected Error Bit Definitions (for EIR, EMR, ESR) 280
8.10.1 EIR — Error Identity Register.. 282
8.10.2 EMR—Error Mask Register .. 283
8.10.3 ESR—Error Status Register ... 284

8.11 Probe List Registers ([DevCTG] Only).. 285
8.11.1 PRBL_SF – Probe List Slot Fault Register 285

8.12 Register Definitions for Context Save .. 286
8.12.1 INSTPM—Instruction Parser Mode Register................................ 286
8.12.2 Cache_Mode_0— Cache Mode Register 0 288
8.12.3 Cache_Mode_1— Cache Mode Register 1 293
8.12.4 FBC RT BASE ADDRESS REGISTER .. 297
8.12.5 BB_ADDR—Batch Buffer Head Pointer Register 301
8.12.6 BB_STATE – Batch Buffer State Register................................... 302
8.12.7 CTXT_SR_CTL – Context Save/Restore Control Register.............. 303

8.13 Logical Context Support .. 304
8.13.1 CCID—Current Context ID Register.. 304
8.13.2 CXT_SIZE—Context Size with Extended State 306
8.13.3 CXT_SIZE_NOEXT—Context Size without the Extended State 306

8.14 Arbitration Control, and Scratch Bits ... 307
8.14.1 MI_DISPLAY_POWER_DOWN—Display Power Down ([DevCL+])... 307
8.14.2 MI_ARB_STATE—Memory Interface Arbitration State Register...... 308
8.14.3 MI_RDRET_STATE—Memory Interface Read Return State Register 312
8.14.4 MI_MODE — Mode Register for Software Interface 316

 G45: Volume 1a Graphics Core

 8

8.14.5 ECOSKPD—ECO Scratch Pad (DEBUG)...................................... 321
8.15 Debug Registers .. 325

8.15.1 CSFLFSM — Flush FSM (Debug)... 325
8.15.2 CSFLFLAG — Flush FLAG (Debug).. 327
8.15.3 CSFLTRK — Flush Track (Debug) ... 328
8.15.4 CSCMDOP — Instruction DWORD (Debug) 328
8.15.5 CSCMDVLD — Instruction DWORD Valid (Debug) 329
8.15.6 PREEMPTDLY — Power Context Register Address ([DevCTG] Only) (Debug) 329
8.15.7 CLKCMP — Compare count clock stop (Debug) 330
8.15.8 VFDC—Set Value of Draw Count (DEBUG)................................. 331
8.15.9 VFSKPD—VF Scratch Pad (DEBUG) .. 331

8.16 Pipelines Statistics Counter Registers .. 333
8.16.1 IA_VERTICES_COUNT — Reported Vertices Counter 333
8.16.2 IA_PRIMITIVES_COUNT — Reported Vertex Fetch Output Primitives Counter 333
8.16.3 VS_INVOCATION_COUNT— Reported Vertex Shader Invocation Counter 334
8.16.4 GS_INVOCATION_COUNT — Reported Geometry Shader Thread Invocation

Counter ... 334
8.16.5 GS_PRIMITIVES_COUNT — Reported Geometry Shader Output Primitives Counter

.. 335
8.16.6 CL_INVOCATION_COUNT— Reported Clipper Thread Invocation Counter 335
8.16.7 CL_PRIMITIVES_COUNT— Reported Clipper Output Primitives Counter 336
8.16.8 PS_INVOCATION_COUNT— Reported Pixels Shaded counter........ 337
8.16.9 PS_DEPTH_COUNT — Reported Pixels Passing Depth Test Counter337
8.16.10 TIMESTAMP — Reported Timestamp Count 338
8.16.11 TIMESTAMP — Reported Timestamp Count ([DevCTG] Only) 339
8.16.12 VT_CL_WRITTEN— Number of Cachelines for the GTT used for VT-d purposes

(Debug/Validation Only)([DevCTG] only).................................. 340
8.16.13 SO_NUM_PRIMS_WRITTEN— Reported Stream Output Num Primitives Written

Counter ([DevCTG] Only) ... 341
8.16.14 SO_PRIM_STORAGE_NEEDED — Reported Stream Output Primitive Storage

Needed Counter ([DevCTG] Only).. 341
8.17 MTCH_CID_RST – Matched Context ID Reset Register 342
8.18 Display Related Registers for Flip Queue.. 343

8.18.1 MAXQ_FLIP_A – Maximum Flips Allowed for Display A Register ([DevCTG] Only)
.. 343

8.18.2 MAXQ_FLIP_B – Maximum Flips Allowed for Display B Register ([DevCTG] Only)
.. 343

8.18.3 NUM_FLIP_A – Number of flips pending on Display A Register ([DevCTG] Only)
.. 344

8.18.4 NUM_FLIP_B – Number of flips pending on Display B Register ([DevCTG] Only)
.. 344

8.19 Video Codec Engine Command Streamer ... 345
8.19.1 Registers in the VCE Command Streamer [DevCTG+]................. 346
8.19.2 Unique BCS Registers ([DevCTG] Only) 359
8.19.3 Registers in the VCE Cryptal Engine [DevCTG+] 360

8.20 Interrupt Control Registers .. 363
8.21 Frame Buffer Compression Control ([DevCL] Only).................................. 371

8.21.1 FBC_CFB_BASE — Compressed Frame Buffer Base Address......... 371
8.21.2 FBC_LL_BASE — Compressed Frame Line Length Buffer Address.. 372
8.21.3 FBC_CONTROL — Frame Buffer Compression Control Register 373
8.21.4 FBC_COMMAND — Frame Buffer Compression Command Register 375
8.21.5 FBC_STATUS — Frame Buffer Compression Status Register......... 375
8.21.6 FBC_CONTROL2— Frame Buffer Compression 2nd Control Register 377
8.21.7 FBC_DISPYOFF — FBC Fence Display Buffer Y Offset 379

 G45: Volume 1a Graphics Core

 9

8.21.8 FBC_MOD_NUM— FBC Number of Modifications for Recompression379
8.21.9 FBC_TAG — Frame Buffer Compression TAG Interface (DEBUG)... 381

8.22 Fence Registers ... 384
8.22.1 FENCE — Graphics Memory Fence Table Registers...................... 384

8.23 GFX MMIO – MCHBAR Aperture .. 386

Figures

Figure 2-1. GMCH Block Diagram .. 24
Figure 2-2. Block Diagram of the GPU.. 25
Figure 3-1. The Graphics Processing Engine.. 26
Figure 3-2. GPE Diagram Showing Fixed/Shared Functions 27
Figure 3-3. URB Allocation – 3D Pipeline .. 31
Figure 3-4 URB Allocation – Media Pipeline .. 32
Figure 6-1. FXT1 Encoded Blocks ... 104
Figure 6-2. Memory Layout of Packed YUV 4:2:2 Formats................................... 126
Figure 6-3. YUV 4:2:0 Format Memory Organization .. 127
Figure 6-4. YUV 4:1:0 Format Memory Organization .. 128
Figure 6-5. Volume Texture Map ... 137

Tables

Table 1-1. Supported Chipsets.. 11
Table 3-1. GenX Function IDs ... 29
Table 3-2. Base Address Utilization.. 42
Table 4-1. RCP Command Header Format.. 58
Table 4-2. VCCP Command Header Format .. 59
Table 4-3. Memory Interface Commands for RCP.. 60
Table 4-4. Memory Interface Commands for VCCP.. 62
Table 5-1. Graphics Controller Register Memory and I/O Map................................ 67
Table 5-2 Memory Mapped Registers ... 69
Table 5-3. I/O and Memory Register Map ... 93
Table 5-4. 2D Sequence Registers (3C4h / 3C5h) .. 94
Table 5-5. 2D Graphics Controller Registers (3CEh / 3CFh) 95
Table 5-6. 2D Attribute Controller Registers (3C0h / 3C1h)................................... 95
Table 5-7. 2D CRT Controller Registers (3B4h / 3D4h / 3B5h / 3D5h)..................... 96
Table 6-1. Memory Object Types... 97

 G45: Volume 1a Graphics Core

 10

Table 6-2. FXT1 Format Summary... 105
Table 6-3. FXT CC_HI Block Encoding .. 105
Table 6-4. FXT CC_HI Decoded Colors ... 106
Table 6-5. FXT CC_HI Interpolated Color Table ... 107
Table 6-6. FXT CC_CHROMA Block Encoding ... 107
Table 6-7. FXT CC_CHROMA Decoded Colors .. 108
Table 6-8. FXT CC_CHROMA Interpolated Color Table .. 109
Table 6-9. FXT CC_MIXED Block Encoding .. 109
Table 6-10. FXT CC_MIXED (Alpha[0]=0) Decoded Colors 110
Table 6-11. FXT CC_MIXED Decoded Colors (Alpha[0] = 0)................................. 110
Table 6-12. FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 0-15) 112
Table 6-13. FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 16-31)... 112
Table 6-14. FXT CC_MIXED (Alpha[0]=0) Decoded Colors 112
Table 6-15. FXT CC_MIXED Decoded Colors (Alpha[0] = 1)................................. 112
Table 6-16. FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 0-15) 113
Table 6-17. FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 16-31)... 113
Table 6-18. FXT CC_ALPHA Block Encoding.. 114
Table 6-19. FXT CC_ALPHA Decoded Colors .. 115
Table 6-20. FXT CC_ALPHA Interpolated Color Table (LERP=0)............................ 116
Table 6-21. FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 0-15)......... 116
Table 6-22. FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 16-31) 116
Table 6-23. Depth Buffer Formats ... 131
Table 6-24. Alignment Units for Texture Maps... 135
Table 6-25 Device-dependemt Layout of a Logical Context.................................. 141
Table 6-26. Context Setup that Cannot Use Defaults... 151
Table 6-27. Initialization of Command State .. 152
Table 8-1. Bit Definition for Interrupt Control Registers 263
Table 8-2. Hardware-Detected Error Bits ... 280
Table 8-3. Bit Definition for Interrupt Control Registers 363

Revision History

Document
Number

Revision
Number

Description Revision Date

24513 1.0a Initial release. January 2008

321391-001 2.0a Cantiga Release January 2009

§§

1 Introduction

This Programmer’s Reference Manual (PRM) describes the architectural behavior and programming
environment of the Intel® 965 Express Chipset family and Intel® G35 Express Chipset GMCH
graphics devices (see Table 1-1). The GMCH’s Graphics Controller (GC) contains an extensive set
of registers and instructions for configuration, 2D, 3D, and Video systems. The PRM describes the
register, instruction, and memory interfaces and the device behaviors as controlled and observed
through those interfaces. The PRM also describes the registers and instructions and provides
detailed bit/field descriptions.

The term “GenX” is used throughout the PRM to refer to the Generation family of graphics devices.
The devices listed in Table 1-1 are GenX devices.

Table 1-1. Supported Chipsets

Chipset Family Name Device Name Device Tag

Intel® Q965 Chipset
Intel® Q963 Chipset
Intel® G965 Chipset

82Q965 GMCH
82Q963 GMCH
82G965 GMCH

[DevBW]

Intel® G35 Chipset 82G35 GMCH [DevBW-E]

Intel® GM965 Chipset
Intel® GME965 Chipset

GM965 GMCH
GME965 GMCH

[DevCL]

Intel® GM45 Chipset GM45 GMCH
GS45 GMCH
GL40 GMCH

[DevCTG]

Intel® G41 Chipset
Intel® G45 Chipset
Intel® G43 Chipset
Intel® G54 Chipset
Intel® Q43 Chipset
Intel® Q45 Chipset

GM41 GMCH

GM43 GMCH
GM54 GMCH
Q43 GMCH
Q45 GMCH

[DevEL]

Unless otherwise specified, the information in this document applies to all of the devices
mentioned in Table 1-1. For Information that does not apply to all devices, the Device Tag is used.

Throughout the PRM, references to “All” in a project field refters to all devices in
Table 1-1.

Throughout the PRM, references to [DevBW] apply to both [DevBW] and [DevBW-E]. [DevBW-E]
is referenced specifically for information that is [DevBW-E] only.

Stepping info is sometimes appended to the device tag (e.g., [DevBW-C]). Information without
any device tagging is applicable to all devices/steppings.

 G45: Volume 1a Graphics Core

 12

The PRM is intended for hardware, software, and firmware designers who seek to implement or
use the graphic functions of the 965 Express Chipset family, G35 Express Chipset, and the 4
Series Chipset Family. Familiarity with 2D and 3D graphics programming is assumed.

The Programmer’s Reference Manual is organized into four volumes:

PRM, Volumes 1a and 1b: Graphics Core
Volume 1 covers the overall Graphics Processing Unit (GPU), without much detail on 3D,
Media, or the core subsystem. Topics include the command streamer, context switching, and
memory access (including tiling). The Memory Data Formats can also be found in this volume.

The volume also contains a chapter on the Graphics Processing Engine (GPE). The GPE is a
collective term for 3D, Media, the subsystem, and the parts of the memory interface that are
used by these units. Display, blitter and their memory interfaces are not included in the GPE.

PRM, Volume 2; 3D/Media
Volume 2 covers the 3D and Media pipelines in detail. This volume is where details for all of
the “fixed functions” are covered, including commands processed by the pipelines, fixed-
function state structures, and a definition of the inputs (payloads) and outputs of the threads
spawned by these units.

This volume also covers the single Media Fixed Function, VLD. It describes how to initiate
generic threads using the thread spawner (TS). It is generic threads which will be used for
doing the majority of media functions. Programmable kernels will handle the algorithms for
media functions such IDCT, Motion Compensation, and even Motion Estimation (used for
encoding MPEG streams).

PRM, Volume 3: Display Registers
Volume 3 describes the control registers for the display. The overlay registers and VGA
registers are also cover in this volume.

PRM, Volume 4: Subsystem and Cores
Volume 4 describes the GMCH programmable cores, or EUs, and the “shared functions”, which
are shared by more than one EU and perform functions such as I/O and complex math
functions.

The shared functions consist of the sampler, extended math unit, data port (the interface to
memory for 3D and media), Unified Return Buffer (URB), and the Message Gateway which is
used by EU threads to signal each other. The EUs use messages to send data to and receive
data from the subsystem; the messages are described along with the shared functions,
although the generic message send EU instruction is described with the rest of the instructions
in the Instruction Set Architecture (ISA) chapters.

This latter part of this volume describes the GMCH core, or EU, and the associated instructions
that are used to program it. The instruction descriptions make up what is referred to as an
Instruction Set Architecture, or ISA. The ISA describes all of the instructions that the GMCH
core can execute, along with the registers that are used to store local data.

 G45: Volume 1a Graphics Core

 13

1.1 Notations and Conventions

1.1.1 Reserved Bits and Software Compatibility

In many register, instruction and memory layout descriptions, certain bits are marked as
“Reserved”. When bits are marked as reserved, it is essential for compatibility with future devices
that software treats these bits as having a future, though unknown, effect. The behavior of
reserved bits should be regarded as not only undefined, but unpredictable. Software should follow
these guidelines in dealing with reserved bits:

• Do not depend on the states of any reserved bits when testing values of registers that
contain such bits. Mask out the reserved bits before testing. Do not depend on the states
of any reserved bits when storing to instruction or to a register.

• When loading a register or formatting an instruction, always load the reserved bits with
the values indicated in the documentation, if any, or reload them with the values
previously read from the register.

1.2 Terminology

Term Abbr. Definition

3D Pipeline — One of the two pipelines supported in the GPE. The 3D
pipeline is a set of fixed-function units arranged in a
pipelined fashion, which process 3D-related commands by
spawning EU threads. Typically this processing includes
rendering primitives. See 3D Pipeline.

Adjacency — One can consider a single line object as existing in a strip
of connected lines. The neighboring line objects are
called “adjacent objects”, with the non-shared endpoints
called the “adjacent vertices.” The same concept can be
applied to a single triangle object, considering it as
existing in a mesh of connected triangles. Each triangle
shares edges with three other adjacent triangles, each
defined by an non-shared adjacent vertex. Knowledge of
these adjacent objects/vertices is required by some object
processing algorithms (e.g., silhouette edge detection).
See 3D Pipeline.

Application IP AIP Application Instruction Pointer. This is part of the control
registers for exception handling for a thread. Upon an
exception, hardware moves the current IP into this
register and then jumps to SIP.

Architectural
Register File

ARF A collection of architecturally visible registers for a thread
such as address registers, accumulator, flags, notification
registers, IP, null, etc. ARF should not be mistaken as just
the address registers.

Array of Cores — Refers to a group of GenX EUs, which are physically
organized in two or more rows. The fact that the EUs are
arranged in an array is (to a great extent) transparent to
CPU software or EU kernels.

 G45: Volume 1a Graphics Core

 14

Term Abbr. Definition

Binding Table — Memory-resident list of pointers to surface state blocks
(also in memory).

Binding Table
Pointer

BTP Pointer to a binding table, specified as an offset from the
Surface State Base Address register.

Bypass Mode — Mode where a given fixed function unit is disabled and
forwards data down the pipeline unchanged. Not
supported by all FF units.

Byte B A numerical data type of 8 bits, B represents a signed
byte integer.

Child Thread — A branch-node or a leaf-node thread that is created by
another thread. It is a kind of thread associated with the
media fixed function pipeline. A child thread is originated
from a thread (the parent) executing on an EU and
forwarded to the Thread Dispatcher by the TS unit. A child
thread may or may not have child threads depending on
whether it is a branch-node or a leaf-node thread. All pre-
allocated resources such as URB and scratch memory for
a child thread are managed by its parent thread.

Clip Space — A 4-dimensional coordinate system within which a clipping
frustum is defined. Object positions are projected from
Clip Space to NDC space via “perspecitive divide” by the
W coordinate, and then viewport mapped into Screen
Space

Clipper — 3D fixed function unit that removes invisible portions of
the drawing sequence by discarding (culling) primitives or
by “replacing” primitives with one or more primitives that
replicate only the visible portion of the original primitive.

Color Calculator CC Part of the Data Port shared function, the color calculator
performs fixed-function pixel operations (e.g., blending)
prior to writing a result pixel into the render cache.

Command — Directive fetched from a ring buffer in memory by the
Command Streamer and routed down a pipeline. Should
not be confused with instructions which are fetched by the
instruction cache subsystem and executed on an EU.

Command
Streamer

CS or CSI Functional unit of the Graphics Processing Engine that
fetches commands, parses them and routes them to the
appropriate pipeline.

Constant URB
Entry

CURBE A UE that contains “constant” data for use by various
stages of the pipeline.

Control Register CR The read-write registers are used for thread mode control
and exception handling for a thread.

Data Port DP Shared function unit that performs a majority of the
memory access types on behalf of GenX programs. The
Data Port contains the render cache and the constant
cache and performs all memory accesses requested by
GenX programs except those performed by the Sampler.
See DataPort.

 G45: Volume 1a Graphics Core

 15

Term Abbr. Definition

Degenerate Object — Object that is invisible due to coincident vertices or
because does not intersect any sample points (usually due
to being tiny or a very thin sliver).

Destination — Describes an output or write operand.

Destination Size — The number of data elements in the destination of a GenX
SIMD instruction.

Destination Width — The size of each of (possibly) many elements of the
destination of a GenX SIMD instruction.

Double Quad word
(DQword)

DQ A fundamental data type, DQ represents 16 bytes.

Double word
(DWord)

D or DW A fundamental data type, D or DW represents 4 bytes.

Drawing Rectangle — A screen-space rectangle within which 3D primitives are
rendered. An objects screen-space positions are relative
to the Drawing Rectangle origin. See Strips and Fans.

End of Block EOB A 1-bit flag in the non-zero DCT coefficient data structure
indicating the end of an 8x8 block in a DCT coefficient
data buffer.

End Of Thread EOT a message sideband signal on the Output message bus
signifying that the message requester thread is
terminated. A thread must have at least one SEND
instruction with the EOT bit in the message descriptor
field set in order to properly terminate.

Exception — Type of (normally rare) interruption to EU execution of a
thread’s instructions. An exception occurrence causes the
EU thread to begin executing the System Routine which is
designed to handle exceptions.

Execution Channel — The width of each of several data elements that may be
processed by a single GenX SIMD instruction.

Execution Size ExecSize Execution Size indicates the number of data elements
processed by a GENX SIMD instruction. It is one of the
GENX instruction fields and can be changed per
instruction.

Execution Unit EU Execution Unit. An EU is a multi-threaded processor within
the GENX multi-processor system. Each EU is a fully-
capable processor containing instruction fetch and decode,
register files, source operand swizzle and SIMD ALU, etc.
An EU is also referred to as a GENX Core.

Execution Unit
Identifier

EUID The 4-bit field within a thread state register (SR0) that
identifies the row and column location of the EU a thread
is located. A thread can be uniquely identified by the EUID
and TID.

Execution Width ExecWidth The width of each of several data elements that may be
processed by a single GenX SIMD instruction.

Extended Math
Unit

EM A Shared Function that performs more complex math
operations on behalf of several EUs.

 G45: Volume 1a Graphics Core

 16

Term Abbr. Definition

FF Unit — A Fixed-Function Unit is the hardware component of a 3D
Pipeline Stage. A FF Unit typically has a unique FF ID
associated with it.

Fixed Function FF Function of the pipeline that is performed by dedicated
(vs. programmable) hardware.

Fixed Function ID FFID Unique identifier for a fixed function unit.

FLT_MAX fmax The magnitude of the maximum representable single
precision floating number according to IEEE-754 standard.
FLT_MAX has an exponent of 0xFE and a mantissa of all
one’s.

Gateway GW See Message Gateway.

GENX Core — Alternative name for an EU in the GENX multi-processor
system.

General Register
File

GRF Large read/write register file shared by all the EUs for
operand sources and destinations. This is the most
commonly used read-write register space organized as an
array of 256-bit registers for a thread.

General State Base
Address

— The Graphics Address of a block of memory-resident
“state data”, which includes state blocks, scratch space,
constant buffers and kernel programs. The contents of
this memory block are referenced via offsets from the
contents of the General State Base Address register. See
Graphics Processing Engine.

Geometry Shader GS Fixed-function unit between the vertex shader and the
clipper that (if enabled) dispatches “geometry shader”
threads on its input primitives. Application-supplied
geometry shaders normally expand each input primitive
into several output primitives in order to perform 3D
modeling algorithms such as fur/fins. See Geometry
Shader.

Graphics Address — The GPE virtual address of some memory-resident object.
This virtual address gets mapped by a GTT or PGTT to a
physical memory address. Note that many memory-
resident objects are referenced not with Graphics
Addresses, but instead with offsets from a “base address
register”.

Graphics
Processing Engine

GPE Collective name for the Subsystem, the 3D and Media
pipelines, and the Command Streamer.

Guardband GB Region that may be clipped against to make sure objects
do not exceed the limitations of the renderer’s coordinate
space.

Horizontal Stride HorzStride The distance in element-sized units between adjacent
elements of a GenX region-based GRF access.

 G45: Volume 1a Graphics Core

 17

Term Abbr. Definition

Immediate floating
point vector

VF A numerical data type of 32 bits, an immediate floating
point vector of type VF contains 4 floating point elements
with 8-bit each. The 8-bit floating point element contains
a sign field, a 3-bit exponent field and a 4-bit mantissa
field. It may be used to specify the type of an immediate
operand in an instruction.

Immediate integer
vector

V A numerical data type of 32 bits, an immediate integer
vector of type V contains 8 signed integer elements with
4-bit each. The 4-bit integer element is in 2’s compliment
form. It may be used to specify the type of an immediate
operand in an instruction.

Index Buffer IB Buffer in memory containing vertex indices.

In-loop Deblocking
Filter

ILDB The deblocking filter operation in the decoding loop. It is a
stage after MC in the video decoding pipe.

Instruction — Data in memory directing an EU operation. Instructions
are fetched from memory, stored in a cache and executed
on one or more GenX cores. Not to be confused with
commands which are fetched and parsed by the command
streamer and dispatched down the 3D or Media pipeline.

Instruction Pointer IP The address (really an offset) of the instruction currently
being fetched by an EU. Each EU has its own IP.

Instruction Set
Architecture

ISA The GENX ISA describes the instructions supported by a
GENX EU.

Instruction State
Cache

ISC On-chip memory that holds recently-used instructions and
state variable values.

Interface
Descriptor

— Media analog of a State Descriptor.

Intermediate Z IZ Completion of the Z (depth) test at the front end of the
Windower/Masker unit when certain conditions are met
(no alpha, no pixel-shader computed Z values, etc.)

Inverse Discrete
Cosine Transform

IDCT the stage in the video decoding pipe between IQ and MC

Inverse
Quantization

IQ A stage in the video decoding pipe between IS and IDCT.

Inverse Scan IS A stage in the video decoding pipe between VLD and IQ.
In this stage, a sequence of none-zero DCT coefficients
are converted into a block (e.g. an 8x8 block) of
coefficients. VFE unit has fixed functions to support IS for
MPEG-2.

Jitter — Just-in-time compiler.

Kernel — A sequence of GenX instructions that is logically part of
the driver or generated by the jitter. Differentiated from
a Shader which is an application supplied program that is
translated by the jitter to GenX instructions.

Least Significant
Bit

LSB Least Significant Bit

 G45: Volume 1a Graphics Core

 18

Term Abbr. Definition

MathBox — See Extended Math Unit

Media — Term for operations such as video decode and encode
that are normally performed by the Media pipeline.

Media Pipeline — Fixed function stages dedicated to media and “generic”
processing, sometimes referred to as the generic pipeline.

Message — Messages are data packages transmitted from a thread to
another thread, another shared function or another fixed
function. Message passing is the primary communication
mechanism of GENX architecture.

Message Gateway — Shared function that enables thread-to-thread message
communication/synchronization used solely by the Media
pipeline.

Message Register
File

MRF Write-only registers used by EUs to assemble messages
prior to sending and as the operand of a send instruction.

Most Significant Bit MSB Most Significant Bit

Motion
Compensation

MC Part of the video decoding pipe.

Motion Picture
Expert Group

MPEG MPEG is the international standard body
JTC1/SC29/WG11 under ISO/IEC that has defined audio
and video compression standards such as MPEG-1, MPEG-
2, and MPEG-4, etc.

Motion Vector Field
Selection

MVFS A four-bit field selecting reference fields for the motion
vectors of the current macroblock.

Multi Render
Targets

MRT Multiple independent surfaces that may be the target of a
sequence of 3D or Media commands that use the same
surface state.

Normalized Device
Coordinates

NDC Clip Space Coordinates that have been divided by the Clip
Space “W” component.

Object — A single triangle, line or point.

Open GL OGL A Graphics API specification associated with Linux.

Parent Thread — A thread corresponding to a root-node or a branch-node
in thread generation hierarchy. A parent thread may be a
root thread or a child thread depending on its position in
the thread generation hierarchy.

Pipeline Stage — A abstracted element of the 3D pipeline, providing
functions performed by a combination of the
corresponding hardware FF unit and the threads spawned
by that FF unit.

Pipelined State
Pointers

PSP Pointers to state blocks in memory that are passed down
the pipeline.

Pixel Shader PS Shader that is supplied by the application, translated by
the jitter and is dispatched to the EU by the Windower
(conceptually) once per pixel.

Point — A drawing object characterized only by position
coordinates and width.

 G45: Volume 1a Graphics Core

 19

Term Abbr. Definition

Primitive — Synonym for object: triangle, rectangle, line or point.

Primitive Topology — A composite primitive such as a triangle strip, or line list.
Also includes the objects triangle, line and point as
degenerate cases.

Provoking Vertex — The vertex of a primitive topology from which vertex
attributes that are constant across the primitive are
taken.

Quad Quad word
(QQword)

QQ A fundamental data type, QQ represents 32 bytes.

Quad Word
(QWord)

QW A fundamental data type, QW represents 8 bytes.

Rasterization — Conversion of an object represented by vertices into the
set of pixels that make up the object.

Region-based
addressing

— Collective term for the register addressing modes
available in the EU instruction set that permit
discontiguous register data to be fetched and used as a
single operand.

Render Cache RC Cache in which pixel color and depth information is
written prior to being written to memory, and where prior
pixel destination attributes are read in preparation for
blending and Z test.

Render Target RT A destination surface in memory where render results are
written.

Render Target
Array Index

— Selector of which of several render targets the current
operation is targeting.

Root Thread — A root-node thread. A thread corresponds to a root-node
in a thread generation hierarchy. It is a kind of thread
associated with the media fixed function pipeline. A root
thread is originated from the VFE unit and forwarded to
the Thread Dispatcher by the TS unit. A root thread may
or may not have child threads. A root thread may have
scratch memory managed by TS. A root thread with
children has its URB resource managed by the VFE.

Sampler — Shared function that samples textures and reads data
from buffers on behalf of EU programs.

Scratch Space — Memory allocated to the subsystem that is used by EU
threads for data storage that exceeds their register
allocation, persistent storage, storage of mask stack
entries beyond the first 16, etc.

Shader — A GenX program that is supplied by the application in an
high level shader language, and translated to GenX
instructions by the jitter.

Shared Function SF Function unit that is shared by EUs. EUs send messages
to shared functions; they consume the data and may
return a result. The Sampler, Data Port and Extended
Math unit are all shared functions.

 G45: Volume 1a Graphics Core

 20

Term Abbr. Definition

Shared Function ID SFID Unique identifier used by kernels and shaders to target
shared functions and to identify their returned messages.

Single Instruction
Multiple Data

SIMD The term SIMD can be used to describe the kind of
parallel processing architecture that exploits data
parallelism at instruction level. It can also be used to
describe the instructions in such architecture.

Source — Describes an input or read operand

Spawn — To initiate a thread for execution on an EU. Done by the
thread spawner as well as most FF units in the 3D
pipeline.

Sprite Point — Point object using full range texture coordinates. Points
that are not sprite points use the texture coordinates of
the point’s center across the entire point object.

State Descriptor — Blocks in memory that describe the state associated with
a particular FF, including its associated kernel pointer,
kernel resource allowances, and a pointer to its surface
state.

State Register SR The read-only registers containing the state information of
the current thread, including the EUID/TID, Dispatcher
Mask, and System IP.

State Variable SV An individual state element that can be varied to change
the way given primitives are rendered or media objects
processed. On GenX state variables persist only in
memory and are cached as needed by
rendering/processing operations except for a small
amount of non-pipelined state.

Stream Output — A term for writing the output of a FF unit directly to a
memory buffer instead of, or in addition to, the output
passing to the next FF unit in the pipeline. Currently only
supported for the Geometry Shader (GS) FF unit.

Strips and Fans SF Fixed function unit whose main function is to decompose
primitive topologies such as strips and fans into primitives
or objects.

Sub-Register — Subfield of a SIMD register. A SIMD register is an aligned
fixed size register for a register file or a register type. For
example, a GRF register, r2, is 256-bit wide, 256-bit
aligned register. A sub-register, r2.3:d, is the fourth
dword of GRF register r2.

Subsystem — The GenX name given to the resources shared by the FF
units, including shared functions and EUs.

Surface — A rendering operand or destination, including textures,
buffers, and render targets.

Surface State — State associated with a render surface including

Surface State Base
Pointer

— Base address used when referencing binding table and
surface state data.

Synchronized Root
Thread

— A root thread that is dispatched by TS upon a ‘dispatch
root thread’ message.

 G45: Volume 1a Graphics Core

 21

Term Abbr. Definition

System IP SIP There is one global System IP register for all the threads.
From a thread’s point of view, this is a virtual read only
register. Upon an exception, hardware performs some
bookkeeping and then jumps to SIP.

System Routine — Sequence of GenX instructions that handles exceptions.
SIP is programmed to point to this routine, and all threads
encountering an exception will call it.

Thread — An instance of a kernel program executed on an EU. The
life cycle for a thread starts from the executing the first
instruction after being dispatched from Thread Dispatcher
to an EU to the execution of the last instruction – a send
instruction with EOT that signals the thread termination.
Threads in GENX system may be independent from each
other or communicate with each other through Message
Gateway share function.

Thread Dispatcher TD Functional unit that arbitrates thread initiation requests
from Fixed Functions units and instantiates the threads on
EUs.

Thread Identifier TID The field within a thread state register (SR0) that
identifies which thread slots on an EU a thread occupies. A
thread can be uniquely identified by the EUID and TID.

Thread Payload — Prior to a thread starting execution, some amount of data
will be pre-loaded in to the thread’s GRF (starting at r0).
This data is typically a combination of control information
provided by the spawning entity (FF Unit) and data read
from the URB.

Thread Spawner TS The second and the last fixed function stage of the media
pipeline that initiates new threads on behalf of
generic/media processing.

Topology — See Primitive Topology.

Unified Return
Buffer

URB The on-chip memory managed/shared by GENX Fixed
Functions in order for a thread to return data that will be
consumed either by a Fixed Function or other threads.

Unsigned Byte
integer

UB A numerical data type of 8 bits.

Unsigned Double
Word integer

UD A numerical data type of 32 bits. It may be used to
specify the type of an operand in an instruction.

Unsigned Word
integer

UW A numerical data type of 16 bits. It may be used to
specify the type of an operand in an instruction.

Unsynchronized
Root Thread

— A root thread that is automatically dispatched by TS.

URB Dereference — See URB Reference

URB Entry UE URB Entry: A logical entity stored in the URB (such as a
vertex), referenced via a URB Handle.

URB Entry
Allocation Size

— Number of URB entries allocated to a Fixed Function unit.

 G45: Volume 1a Graphics Core

 22

Term Abbr. Definition

URB Fence Fence Virtual, movable boundaries between the URB regions
owned by each FF unit.

URB Handle — A unique identifier for a URB entry that is passed down a
pipeline.

URB Reference — For the most part, data is passed down the fixed function
pipeline in an indirect fashion. The data is typically stored
in the URB and accessed via a URB handle. When a
pipeline stage passes the handle of a URB data entry to a
downstream stage, it is said to make a URB reference.
Note that there may be several references to the same
URB data entry in the pipeline at any given time. When a
downstream stage accesses the URB data entry via a URB
handle, it is said to “dereference” the URB data entry.
When there are no longer any references to a URB data
entry within the pipeline, the URB storage can be
reclaimed.

Variable Length
Decode

VLD The first stage of the video decoding pipe that consists
mainly of bit-wide operations. GENX supports hardware
VLD acceleration in the VFE fixed function stage.

Vertex Buffer VB Buffer in memory containing vertex attributes.

Vertex Cache VC Cache of Vertex URB Entry (VUE) handles tagged with
vertex indices. See the VS chapter for details on this
cache.

Vertex Fetcher VF The first FF unit in the 3D pipeline responsible for fetching
vertex data from memory. Sometimes referred to as the
Vertex Formatter.

Vertex Header — Vertex data required for every vertex appearing at the
beginning of a Vertex URB Entry.

Vertex ID — Unique ID for each vertex that can optionally be included
in vertex attribute data sent down the pipeline and used
by kernel/shader threads.

Vertex Index — Offset (in vertex-sized units) of a given vertex in a vertex
buffer. Available in the VF and VS units for debugging
purposes. Not unique per vertex instance.

Vertex Sequence
Number

— Unique ID for each vertex sent down the south bus that
may be used to identify vertices for debugging purposes.

Vertex Shader VS An API-supplied program that calculates vertex attributes.
Also refers to the FF unit that dispatches threads to
“shade” (calculate attributes for) vertices.

Vertex URB Entry VUE A URB entry that contains data for a specific vertex.

Vertical Stride VertStride The distance in element-sized units between 2 vertically-
adjacent elements of a GenX region-based GRF access.

Video Front End VFE The first fixed function in the GENX generic pipeline;
performs fixed-function media operations.

 G45: Volume 1a Graphics Core

 23

Term Abbr. Definition

Viewport VP Post-clipped geometry is mapped to a rectangular region
of the bound rendertarget(s). This rectangular region is
called a viewport. Typically, the viewport is set to the full
extent of the rendertarget(s), but any subregion can be
used as well.

Windower IZ WIZ Term for Windower/Masker that encapsulates its early
(“intermediate”) depth test function.

Windower/Masker WM Fixed function triangle/line rasterizer.

Word W A numerical data type of 16 bits, W represents a signed
word integer.

§§

2 Graphics Device Overview

2.1 Graphics Memory Controller Hub (GMCH)

The GMCH is a system memory controller with an integrated graphics device. The integrated
graphics device is sometimes referred to in this document as a Graphics Processing Unit (GPU).
The GMCH connects to the CPU via a host bus and to system memory via a memory bus. The
GMCH also contains some IO functionality to interface to an external graphics device and also to
an IO controller. This document will not contain any further references to external graphics
devices or IO controllers.

The graphics core, or GPU, resides within the GMCH, which also contains the memory interface,
configuration registers, and other chipset functions. The GPU itself can be viewed as comprising
the command streamer (CS) or command parser, the Memory Interface or MI, the display
interface, and (by far the largest element of the GenX family GMCH) the 3D/Media engine. This
latter piece is made up of the 3D and media “fixed function” (FF) pipelines, and the GenX
subsystem, which these pipelines make use of to run “shaders” and kernels.

Figure 2-1. GMCH Block Diagram

Memory

Graphics
Processing
Unit (GPU)

Display
Device

GMCH

CPU

Memory
Controller

IO
Interface

IO Controller

(Optional)
External
Graphics
Device

 G45: Volume 1a Graphics Core

 25

2.2 Graphics Processing Unit (GPU)

The Graphics Processing Unit is controlled by the CPU through a direct interface of memory-
mapped IO registers, and indirectly by parsing commands that the CPU has placed in memory.
The display interface and blitter (block image transferrer) are controlled primarily by direct CPU
register addresses, while the 3D and Media pipelines and the parallel Video Codec Engine (VCE)
are controlled primarily through instruction lists in memory.

The GenX subsystem contains an array of cores, or execution units, along with a number of
“shared functions”, which receive and process messages at the behest of programs running on the
cores. The shared functions perform critical tasks such as sampling textures and updating the
render target (usually the frame buffer). The cores themselves are described by an instruction set
architecture, or ISA.

Figure 2-2. Block Diagram of the GPU

Display/
Overlay Blitter

Display
Device

Memory Interface

3D Media
3D/

Media
Sub-

system

Memory
Interface

CPU Register
Interface

GPU GPE

VCE

3 Graphics Processing Engine (GPE)

3.1 Introduction

This chapter serves two purposes: It provides a high-level description of the Graphics Processing
Engine (GPE) of the GENX Graphics Processing Unit (GPU). It also specifies the programming and
behaviors of the functions common to both pipelines (3D, Media) within the GPE. However, details
specific to either pipeline are not addressed here.

3.2 Overview

The Graphics Processing Engine (GPE) performs the bulk of the graphics processing provided by
the GENX GPU. It consists of the 3D and Media fixed-function pipelines, the Command Streamer
(CS) unit that feeds them, and the GENX Subsystem that provides the bulk of the computations
required by the pipelines.

3.2.1 Block Diagram

Figure 3-1. The Graphics Processing Engine

3D

Media

Command
Streamer

Array of
Cores

URB

Sampler

Math

CC
Render
Cache

Subsystem

ITC*

*Inter-Thread Communication

Vertex
Buffers

Memory
Objects

Source
Surfaces

Destination
Surfaces

 G45: Volume 1a Graphics Core

 27

Figure 3-2. GPE Diagram Showing Fixed/Shared Functions

CS

URB

Commands

Command Stream
from MI Function

Memory

GPE

3D
Pipeline

VF
VS
GS

CLIP
SF
WM

Media
Pipeline

VFE
TS

Sampler

DataPort

MathBox

Gateway

GEN4
Subsystem

3.2.2 Command Stream (CS) Unit

The Command Stream (CS) unit manages the use of the 3D and Media pipelines, in that it
performs switching between pipelines and forwarding command streams to the currently active
pipeline. It manages allocation of the URB and helps support the Constant URB Entry (CURBE)
function.

3.2.3 3D Pipeline

The 3D pipeline provides specialized 3D primitive processing functions. These functions are
provided by a pipeline of “fixed function” stages (units) and GENX threads spawned by these
units. See 3D Pipeline Overview.

 G45: Volume 1a Graphics Core

 28

3.2.4 Media Pipeline

The Media pipeline provides both specialized media-related processing functions and the ability to
perform more general (“generic”) functionality. These Media-specific functions are provided by a
Video Front End (VFE) unit. A Thread Spawner (TS) unit is utilized to spawn GENX threads
requested by the VFE unit or as required when the pipeline is used for general processing. See
Media Pipeline Overview.

3.2.5 GENX Subsystem

The GENX Subsystem is the collective name for the GENX programmable cores, the Shared
Functions accessed by them (including the Sampler, Extended Math Unit (“MathBox”), the
DataPort, and the Inter-Thread Communication (ITC) Gateway), and the Dispatcher which
manages threads running on the cores.

3.2.5.1 Execution Units (EUs)

While the number of EU cores in the GENX subsystem is almost entirely transparent to the
programming model, there are a few areas where this parameter comes into play:

The amount of scratch space required is a function of (#EUs * #Threads/EU)

Debug registers (e.g., EU-enable bitmasks)

Device # of EUs #Threads/EU

[DevCTG] and DevEL] 10 5

All Others 8 4

3.2.6 GPE Function IDs

The following table lists the assigments (encodings) of the Shared Function and Fixed Function IDs
used within the GPE. A Shared Function is a valid target of a message initiated via a ‘send’
instruction. A Fixed Function is an identifiable unit of the 3D or Media pipeline. Note that the
Thread Spawner is both a Shared Function and Fixed Function.

The initial intention was to combine these two ID namespaces, so that (theoretically) an agent
(such as the Thread Spawner) that served both as a Shared Function and Fixed Function would
have a single, unique 4-bit ID encoding. However, this is not a requirement of the architecture.

 G45: Volume 1a Graphics Core

 29

Table 3-1. GenX Function IDs

ID[3:0] SFID Shared Function FFID Fixed Function

0x0 SFID_NULL Null FFID_NULL Null

0x1 SFID_MATH Extended Math Reserved ---

0x2 SFID_SAMPLER Sampler Reserved ---

0x3 SFID_GATEWAY Message Gateway Reserved ---

0x4 Reserved Reserved Reserved ---

0x5 Reserved Reserved Reserved ---

0x6 SFID_URB URB Reserved ---

0x7 SFID_SPAWNER Thread Spawner FFID_SPAWNER Thread Spawner

0x8 Reserved --- FFID_VFE Video Front End

0x9 Reserved --- FFID_VS Vertex Shader

0xA Reserved --- FFID_CS Command Stream

0xB Reserved --- FFID_VF Vertex Fetch

0xC Reserved --- FFID_GS Geometry Shader

0xD Reserved --- FFID_CLIP Clipper Unit

0xE Reserved --- FFID_SF Strip/Fan Unit

0xF Reserved --- FFID_WM Windower/Masker Unit

 G45: Volume 1a Graphics Core

 30

3.3 Pipeline Selection

The PIPELINE_SELECT command is used to specify which GPE pipeline (3D or Media) is to be
considered the “current” active pipeline. Issuing 3D-pipeline-specific commands when the Media
pipeline is selected, or vice versa, is UNDEFINED.

This command causes the URB deallocation of the previously selected pipe. For example,
switching from the 3D pipe to the Media pipe (either within or between contexts) will cause the CS
to send a “Deallocating Flush” down the 3D pipe. This will cause each 3D FF to start a URB
deallocation sequence after the current tasks are done. When the WM sees this, it will de-
reference the current Constant URB Entry. Once this happens, all 3D URB entries will be
deallocated (after some north bus delay). This allows the CS to set the URB fences for the media
pipe. And vice versa for switching from media to 3D pipes.

Programming Restriction:

Software must ensure the current pipeline is flushed via an MI_FLUSH prior to the execution of
PIPELINE_SELECT.

DWord Bit Description

31:29 Instruction Type = GFXPIPE = 3h

28:16 3D Instruction Opcode = PIPELINE_SELECT

GFXPIPE[28:27 = 0h, 26:24 = 1h, 23:16 = 04h] (Non-pipelined)

15:1 Reserved: MBZ

0

0 Pipeline Select

0: 3D pipeline is selected

1: Media pipeline is selected

This one bit of Pipeline Select state is contained within the logical context.

Implementation Note: Currently, this bit is only required for switching pipelines. The CS unit
needs to know which pipeline (if any) has an outstanding CURBE reference pending. A switch
away from that pipeline requires the CS unit to force any CURBE entries to be deallocated.

3.4 URB Allocation

Storage in the URB is divided among the various fixed functions in a programmable fashion using
the URB_FENCE command (see following).

 G45: Volume 1a Graphics Core

 31

3.4.1 URB_FENCE

The URB_FENCE command is used to define the current URB allocation for those FF units that can
own (write) URB entries. The FF units’ allocations are specified via a set of 512-bit granular fence
pointers, in a predefined order in the URB as shown in the diagram below. (In the discussion
below, “previous” refers to the relative position in the list presented in Figure 3-3, not necessarily
with respect to the order of fence pointers in the command or the order of FF units in the physical
pipelines).

The URB_FENCE command is required in certain programming sequences (see programming notes
below, as well as the Command Ordering Rules subsection below).

Each FF unit that can own URB entries is provided with a fence pointer that specifies the URB
address immediately following that FF unit’s allocated region (i.e., it identifies the end of the
allocated region). The range allocated to a particular FF unit therefore starts at the previous FF
unit’s fence pointer and ends at its associated fence pointer. The starting fence pointer for the
first (VS) fixed function is implied to be 0. URB locations starting at the fence pointer of the last
FF unit in the list (CS) are effectively unusable. If a FF unit’s fence pointer is identical to the
previous FF unit’s fence pointer, the FF unit has no URB storage allocated to it (and therefore the
FF unit must either be disabled or otherwise programmed to not require its own URB entries).

The fencing and allocation of the URB is performed in a pipeline-dependent manner. The following
diagrams show the layout of the URB fence regions for the 3D and Media pipelines (depending on
which one is selected via PIPELINE_SELECT). In the URB_FENCE command, Fence values not
associated with the currently selected pipeline will be ignored.

Figure 3-3. URB Allocation – 3D Pipeline

VFVS Allocation

unused

VS Fence

512 bits

GS Allocation

CLIP Allocation

SF Allocation

CS Allocation

0

GS Fence

CLP Fence

SF Fence

CS Fence

URB_SIZE

 G45: Volume 1a Graphics Core

 32

Figure 3-4 URB Allocation – Media Pipeline

unused

512 bits

VFE Allocation

CS Allocation

0

VFE Fence

CS Fence

URB_SIZE

Programming Notes:

1. URB Size

a. [DevBW], [DevCL] URB_SIZE is 16KB = 256 512-bit units

b. [DevCTG], [DevEL] URB_SIZE is 24KB = 384 512-bit units

2. On a per-fixed-function basis, software must modify (via pipeline state pointer commands)
any (active) fixed-function state which relies on the size of the fixed-function’s fenced URB
region. If a fixed-function’s URB region is repositioned within the URB, but retains the
same size, the previous state is still valid. Note that changing fence pointers via
URB_FENCE only affects the location of the allocated region, not the contents – i.e., no
data copy is performed.

3. A URB_FENCE command must be issued subsequent to any change to the value
in the GS or CLIP unit’s Maximum Number of Threads state (via
PIPELINE_STATE_POINTERS) and before any subsequent pipeline processing
(e.g., via 3DPRIMITIVE or CONSTANT_BUFFER).

4. A URB_FENCE command must be issued subsequent to any change to the value
in any FF unit’s Number of URB Entries or URB_Entry Allocation Size state
(via PIPELINE_STATE_POINTERS) and before any subsequent pipeline processing
(e.g., via 3DPRIMITIVE or CONSTANT_BUFFER). Also see the Command
Ordering Rules subsection below.

5. To workaround a silicon issue it is required that this instruction be programmed
within a 64 byte cacheline aligned memory chunk (i.e., it must not cross a 64-
byte cacheline boundary.)

 G45: Volume 1a Graphics Core

 33

URB_FENCE
Project: All Length Bias: 2

This command is used to set the fences between URB regions owned by the fixed functions.

DWord Bit Description

0 31:29 Command Type

Default
Value:

3h GFXPIPE Format
:

OpCode

28:27 Command SubType

Default
Value:

0h GFXPIPE_COMMON Format: OpCode

26:24 3D Command Opcode

Default
Value:

0h GFXPIPE_PIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default
Value:

00h URB_FENCE Format: OpCode

15:14 Reserve
d

Project
:

All Format: MBZ

13 CS Unit URB Reallocation Request

Project: All

Format: Enable FormatDesc

If set, the CS unit will perform a URB entry deallocation/reallocation action.

Note: Modifying the CS URB allocation via URB_FENCE invalidates any previous
CURBE entries. Therefore software must subsequently [re]issue a
CONSTANT_BUFFER command before CURBE data can be used in the pipeline.

(The following description applies to all URB Reallocation Request bits):

A reallocation action is required if either (a) the region of the URB allocated to this
unit changes location or size as defined by the bracketing Fence values, or (b)
the Number of URB Entries or URB Entry Allocation Size state variables
associated with this unit have been modified since the last reallocation action.
Software is required to set this bit accordingly.

Within the context’s command stream, this is the only cause of a reallocation
action --- a reallocation action is not performed as a side effect of a change to the
formentioned state variables. Hardware will, however, take care of
deallocation/reallocation resulting from context swtiches.

Note that all Fence values provided in this command (and relevant to the
selected pipeline) are considered valid and provided to the active pipeline,
regardless of any reallocation requests. For example, if the 3D pipeline is
selected and only the CS Fence is being changed, the CLIP, GS, VS and SF
Fence values must be programmed to their correct (previous) values.

 G45: Volume 1a Graphics Core

 34

URB_FENCE
12 VFE Unit URB Reallocation Request

Project: All

Format: Enable FormatDesc

If set, the VFE unit will perform a URB entry deallocation/reallocation action. (See
CS Unit URB Reallocation Request description)

11 SF Unit URB Reallocation Request

Project: All

Format: Enable FormatDesc

If set, the SF unit will perform a URB entry deallocation/reallocation action. (See
CS Unit URB Reallocation Request description)

10 CLIP Unit URB Reallocation Request

Project: All

Format: Enable FormatDesc

If set, the CLIP unit will perform a URB entry deallocation/reallocation action.
(See CS Unit URB Reallocation Request description)

9 GS Unit URB Reallocation Request

Project: All

Format: Enable FormatDesc

If set, the GS unit will perform a URB entry deallocation/reallocation action. (See
CS Unit URB Reallocation Request description)

8 VS Unit URB Reallocation Request

Project: All

Format: Enable FormatDesc

If set, the VS unit will perform a URB entry deallocation/reallocation action. (See
CS Unit URB Reallocation Request description)

7:0 DWord Length

Default Value: 1h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:30 Reserved Project: All Format
:

MBZ

 G45: Volume 1a Graphics Core

 35

URB_FENCE
29:20 CLIP Fence

Project: All

Format: U10 representing the first 512-bit
URB address beyond this unit’s URB
space

FormatDesc

Range [DevBW], [DevCL] [GS Fence,256]

[DevCTG], [DevEL] [GS Fence, 384]

Indicates the URB fence value for the CLIP unit.

This field is considered valid whenever the 3D pipeline is selected via
PIPELINE_SELECT. Otherwise it is ignored.

19:10 GS Fence

Project: All

Format: U10 representing the first 512-bit
URB address beyond this unit’s URB
space

FormatDesc

Range [DevBW], [DevCL] [VS Fence,256]

[DevCTG], [DevEL] [VS Fence, 384]

Indicates the URB fence value for the GS unit.

This field is considered valid whenever the 3D pipeline is selected via
PIPELINE_SELECT. Otherwise it is ignored.

9:0 VS Fence

Project: All

Format: U10 representing the first 512-bit
URB address beyond this unit’s URB
space

FormatDesc

Range [DevBW], [DevCL] [0,256]

[DevCTG], [DevEL] [0,384]

Indicates the URB fence value for the VS unit.

Note: When the 3D pipeline is used, the VS FF unit must be allocated URB space
even if the VS function (i.e., “vertex shading”) is disabled. The VF unit utilizes Vertex
URB Entries (VUEs) allocated to the VS in order to input vertex data to the 3D pipeline
even if vertex shading is not enabled.

This field is considered valid whenever the 3D pipeline is selected via
PIPELINE_SELECT. Otherwise it is ignored.

2 31 Reserve
d

Project
:

All Forma
t:

MBZ

 G45: Volume 1a Graphics Core

 36

URB_FENCE
30:20 CS Fence

Project: All

Format: U11 representing the first 512-bit
URB address beyond this unit’s
URB space

FormatDesc

Range [VFE Fence,256] (Media) or [SF Fence,256] (3D Pipe)

[DevBW], [DevCL]

[VFE Fence,384] (Media) or [SF Fence,384] (3D Pipe)

[DevCTG], [DevEL]

Indicates the URB fence value for the CS unit.

This field is always considered valid, as it is relevant regardless of the currently
selected pipeline.

19:10 VFE Fence

Project: All

Format: U10 representing the first 512-bit
URB address beyond this unit’s
URB space

FormatDesc

Range [DevBW], [DevCL] [0,256]

[DevCTG], [DevEL] [0,384]

Indicates the URB fence value for the VFE unit. This field is considered valid
whenever the Media pipeline is selected via PIPELINE_SELECT. Otherwise it is
ignored.

9:0 SF Fence

Project: All

Format: U10 representing the first 512-bit
URB address beyond this unit’s
URB space

FormatDesc

Range [DevBW], [DevCL] [CLIP Fence,256]

[DevCTG], [DevEL] [CLIP Fence,384]

Indicates the URB fence value for the SF unit.

This field is considered valid whenever the 3D pipeline is selected via
PIPELINE_SELECT. Otherwise it is ignored.

 G45: Volume 1a Graphics Core

 37

3.5 Constant URB Entries (CURBEs)

3.5.1 Overview

It is anticipated that threads will need to access some amount of non-immediate constant data,
e.g., a matrix from a VS kernel. While the DataPort can be used to read (“pull”) this data from a
memory buffer, doing so may incur a performance penalty due to the latency of the access. In
order to provide a higher-performance path, both pipelines are provided with the ability to preload
(“push”) data from a memory buffer into the URB and have portions of that data automatically
included in subsequent thread payloads. These pushed constants will then be immediately
available for use by the thread (at the expense of increased GRF allocation, dispatch latency,
etc.).

The mechanism to push constants into thread payloads is the Constant URB Entry (CURBE). The
CURBE is a special URB entry (owned by the CS unit) used to store the constant data. Software
can issue the CONSTANT_BUFFER command to specify the source Constant Buffer in memory.
Upon receipt of that command, the CS unit will read the Constant Buffer data from memory and
write the data into the CURBE. Fixed functions of the pipeline can be programmed to include their
subset of the CURBE data in thread payloads.

3.5.2 Multiple CURBE Allocation

There is only one “current” CURBE state provided by the architecture. Portions of the current
CURBE is available to the various fixed-function stages of the pipelines. However, in order to avoid
having to flush the pipeline prior to modifying the contents of the current CURBE, the GPE is
supplied with the ability to pipeline changes to the current CURBE. This support comes in the
form of a set of CURBEs that can be maintained in the URB. A region of the URB can be allocated
to the CS unit (see URB_FENCE command) to hold this set of CURBEs. Within that region,
software can define a set of up to 4 Constant URB Entries (CURBEs) – (see CS_URB_STATE
command).

When a CONSTANT_BUFFER command is received, an attempt is made to find an unused CURBE
within the set. If one is found, it is used as the destination of the memory read, and the handle of
that CURBE is passed down the pipeline without incurring a pipeline flush performance penalty.
Fixed functions will switch to using the new CURBE as the handle travels down the pipeline. When
the handle reaches the end of the pipeline, the previous CURBE is marked as unused.

If a CONSTANT_BUFFER command is encountered and there is only one CURBE allocated and it is
in use, the CS unit will implicitly wait for the pipeline to drain and the CURBE to become available
to be overwritten. Due to the performance impact of modifying the CURBE when only a single
CURBE is allocated, it is recommended that software operate with a single CURBE allocation only if
(a) the CURBE is large enough to make multiple allocations undesirable, and/or (b) it is
anticipated that the constant data will remain static for long processing periods (thus amortizing
the impact of modifying it).

 G45: Volume 1a Graphics Core

 38

3.5.3 CS_URB_STATE

CS_URB_STATE
Project: All Length Bias: 2
The CS_URB_STATE packet is used to define the number and size of CURBEs contained within the CS unit’s
allocated URB region.
DWord Bit Description

0 31:29 Command Type

Default
Value:

3h GFXPIPE Format: OpCode

28:27 Command SubType

Default
Value:

0h GFXPIPE_COMMON Format
:

OpCode

26:24 3D Command Opcode

Default
Value:

0h GFXPIPE_PIPELINED Format
:

OpCode

23:16 3D Command Sub Opcode

Default
Value:

01
h

CS_URB_STATE Format
:

OpCode

15:8 Reserve
d

Project: All Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:9 Reserved Project: All Format: MBZ

8:4 URB Entry Allocation Size

Project: All

Format: U5 count (of 512-bit units) – 1 FormatDesc

Range [0,31] = [1,32] 512-bit units = [2,64] 256-bit URB rows

Specifies the length of each URB entry owned by the CS unit.

3 Reserve
d

Project
:

All Forma
t:

MBZ

 G45: Volume 1a Graphics Core

 39

CS_URB_STATE
2:0 Number of URB Entries

Project: All

Format: U3 count of entries FormatDesc

Range [0,4]

Specifies the number of URB entries that are used by the CS unit.

 G45: Volume 1a Graphics Core

 40

3.5.4 CONSTANT_BUFFER

CONSTANT_BUFFER
Project: All Length Bias: 2
The CONSTANT_BUFFER packet is used to define the memory address of data that will be read by the CS unit and
stored into the current CURBE entry.

Programming Notes:
• Issuing a CONSTANT_BUFFER packet with Valid set when the CS unit does not have any CURBE entries

allocated in the URB results in UNDEFINED behavior.

• Modifying the CS URB allocation via URB_FENCE invalidates any previous CURBE entries. Therefore software
must subsequently [re]issue a CONSTANT_BUFFER command before CURBE data can be used in the pipeline.

DWord Bit Description

0 31:29 Command Type

Default
Value:

3h GFXPIPE Format
:

OpCode

28:27 Command SubType

Default
Value:

0h GFXPIPE_COMMON Format
:

OpCode

26:24 3D Command Opcode

Default Value: 0h GFXPIPE_PIPELINED Format
:

OpCode

23:16 3D Command Sub Opcode

Default
Value:

02h CONSTANT_BUFFER Format
:

OpCode

15:9 Reserved Project
:

All Format
:

MBZ

8 Valid

Project: All

Format: Enable FormatDesc

If TRUE, a Constant Buffer will be defined and possibly used in the pipeline
(depending on FF unit state programming). The Buffer Starting Address and
Buffer Length fields are valid.

If FALSE, the Constant Buffer becomes undefined and unused. The Buffer
Starting Address and Buffer Length fields are ignored. The FF unit state
descriptors must not specify the use of CURBE data, or behavior is UNDEFINED.

 G45: Volume 1a Graphics Core

 41

CONSTANT_BUFFER
7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:6 Buffer Starting Address

Project: All

Format: GeneralStateOffset[31:6] or
GraphicsAddress[31:6] (see below)

FormatDesc

If Valid is set and INSTPM<CONSTANT_BUFFER Address Offset Disable> is clear
(enabled), this field defines the location of the memory-resident constant data via a
64Byte-granular offset from the General State Base Address.

If Valid is set and INSTPM<CONSTANT_BUFFER Address Offset Disable> is set
(disabled), this field defines the location of the memory-resident constant data via a
64Byte-granular Graphics Address (not offset).

Programming Notes

Constant Buffers can only be allocated in linear (not tiled) graphics memory

Constant Buffers can only be mapped to Main Memory (UC)

5:0 Buffer Length

Project: All

Format: U6 Count-1 in 512-bit units FormatDesc

If Valid is set, this field specifies the length of the constant data to be loaded from
memory into the CURBE in 512-bit units (minus one). The length must be less
than or equal to the URB Entry Allocation Size specified via the CS_URB_STATE
command.

3.6 Memory Access Indirection

The GPE supports the indirection of certain graphics (GTT-mapped) memory accesses. This
support comes in the form of two base address state variables used in certain memory address
computations with the GPE.

The intent of this functionality is to support the dynamic relocation of certain driver-generated
memory structures after command buffers have been generated but prior to their submittal for
execution. For example, as the driver builds the command stream it could append pipeline state
descriptors, kernel binaries, etc. to a general state buffer. References to the individual items
would be inserting in the command buffers as offsets from the base address of the state buffer.
The state buffer could then be freely relocated prior to command buffer execution, with the driver
only needing to specify the final base address of the state buffer. Two base addresses are
provided to permit surface-related state (binding tables, surface state tables) to be maintained in
a state buffer separate from the general state buffer.

 G45: Volume 1a Graphics Core

 42

While the use of these base addresses is unconditional, the indirection can be effectively disabled
by setting the base addresses to zero. The following table lists the various GPE memory access
paths and which base address (if any) is relevant.

Table 3-2. Base Address Utilization

Base Address Used Memory Accesses

CS unit reads from CURBE Constant Buffers via
CONSTANT_BUFFER when INSTPM< CONSTANT_BUFFER
Address Offset Disable> is clear (enabled).

3D Pipeline FF state read by the 3D FF units, as referenced by
state pointers passed via 3DSTATE_PIPELINE_POINTERS.

Media pipeline FF state, as referenced by state pointers passed
via MEDIA_PIPELINE_POINTERS.

General State Base
Address

DataPort memory accesses resulting from ‘stateless’ DataPort
Read/Write requests. See DataPort for a definition of the
‘stateless’ form of requests.

Sampler reads of Sampler State data and associated Default
Color State data

Viewport states used by CLIP, SF, and WM/CC

General State Base
Address

COLOR_CALC_STATE

Normal EU instruction stream (non-system routine) General State Base
Address

System routine EU instruction stream (starting address = SIP)

Sampler and DataPort reads of Binding Table data, as referenced
by BT pointers passed via 3DSTATE_BINDING_TABLE_POINTERS

Surface State Base
Address

Sampler and DataPort reads of Surface State data

Indirect Object Base
Address

MEDIA_OBJECT Indirect Data accessed by the CS unit .

CS unit reads from Ring Buffers, Batch Buffers

CS unit reads from CURBE Constant Buffers via
CONSTANT_BUFFER when INSTPM< CONSTANT_BUFFER
Address Offset Disable> is set (disabled).

CS writes resulting from 3D_CONTROL

All VF unit memory accesses (Index Buffers, Vertex Buffers)

All Sampler Surface Memory Data accesses (texture fetch, etc.)

All DataPort memory accesses except ‘stateless’ DataPort
Read/Write requests (e.g., RT accesses.) See DataPort for a
definition of the ‘stateless’ form of requests.

Memory reads resulting from STATE_PREFETCH commands

Any physical memory access by the device

None

GTT-mapped accesses not included above (i.e., default)

 G45: Volume 1a Graphics Core

 43

The following notation is used in the PRM to distinguish between addresses and offsets:

Notation Definition

PhysicalAddress[n:m] Corresponding bits of a physical graphics memory byte address
(not mapped by a GTT)

GraphicsAddress[n:m] Corresponding bits of an absolute, virtual graphics memory byte
address (mapped by a GTT)

GeneralStateOffset[n:m] Corresponding bits of a relative byte offset added to the General
State Base Address value, the result of which is interpreted as a
virtual graphics memory byte address (mapped by a GTT)

SurfaceStateOffset[n:m] Corresponding bits of a relative byte offset added to the Surface
State Base Address value, the result of which is interpreted as a
virtual graphics memory byte address (mapped by a GTT)

3.6.1 STATE_BASE_ADDRESS

The STATE_BASE_ADDRESS command sets the base pointers for subsequent state, instruction,
and media indirect object accesses by the GPE. (Table 3-2 for details)

Programming Notes:

The following commands must be reissued following any change to the base addresses:
• 3DSTATE_PIPELINE_POINTERS
• 3DSTATE_BINDING_TABLE_POINTERS
• MEDIA_STATE_POINTERS.

Execution of this command causes a full pipeline flush, thus its use should be minimized for higher
performance.

 G45: Volume 1a Graphics Core

 44

STATE_BASE_ADDRESS
Project: All Length Bias: 2

The STATE_BASE_ADDRESS command sets the base pointers for subsequent state, instruction, and
media indirect object accesses by the GPE. (See Table 3-2. Base Address Utilization for details)

Programming Notes:
• The following commands must be reissued following any change to the base addresses:
3DSTATE_PIPELINE_POINTERS
3DSTATE_BINDING_TABLE_POINTERS
MEDIA_STATE_POINTERS.

• Execution of this command causes a full pipeline flush, thus its use should be minimized for higher
performance.

• MI_FLUSH command with ISC invalidate bit set should always be programmed prior to
STATE_BASE_ADDRESS command.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format
:

OpCode

28:27 Command SubType

Default Value: 0h GFXPIPE_COMMON Format
:

OpCode

26:24 3D Command Opcode

Default Value: 1h GFXPIPE_NONPIPELINED Format
:

OpCode

23:16 3D Command Sub Opcode

Default Value: 01h STATE_BASE_ADDRESS Format
:

OpCode

15:8 Reserved Project
:

All Format
:

MBZ

7:0 DWord Length

Default Value: 4h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

 G45: Volume 1a Graphics Core

 45

STATE_BASE_ADDRESS
1 31:12 General State Base Address

Project: All

Format: GraphicsAddress[31:12] FormatDesc

Specifies the 4K-byte aligned base address for general state accesses. See Table
3-2 for details on where this base address is used.

11:1 Reserved Project
:

All Format
:

MBZ

0 Modify Enable

Project: All

Format: Enable FormatDesc

The address in this dword is updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated address All

1h Enable Modify the address All

2 31:12 Surface State Base Address

Project: All

Format: GraphicsAddress[31:12] FormatDesc

Specifies the 4K-byte aligned base address for binding table and surface state
accesses. See Table 3-2 for details on where this base address is used.

11:1 Reserved Project: All Format: MBZ

0 Modify Enable

Project: All

Format: Enable FormatDesc

The address in this dword is updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated address All

1h Enable Modify the address All

 G45: Volume 1a Graphics Core

 46

STATE_BASE_ADDRESS
3 31:12 Indirect Object Base Address

Project: All

Format: GraphicsAddress[31:12] FormatDesc

Specifies the 4K-byte aligned base address for indirect object load in
MEDIA_OBJECT command. See Table 3-2 for details on where this base
address is used.

11:1 Reserve
d

Project
:

All Format
:

MBZ

0 Modify Enable

Project: All

Format: Enable FormatDesc

The address in this dword is updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated address All

1h Enable Modify the address All

4 31:12 General State Access Upper Bound

Project: All

Format: GraphicsAddress[31:12] FormatDesc

Specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address for
general state accesses. This includes all accesses that are offset from General State
Base Address (see Table 3-2). Read accesses from this address and beyond will
return UNDEFINED values. Data port writes to this address and beyond will be
“dropped on the floor” (all data channels will be disabled so no writes occur). Setting
this field to 0 will cause this range check to be ignored.

If non-zero, this address must be greater than the General State Base Address.

11:1 Reserved Project: All Format: MBZ

0 Modify Enable

Project: All

Format: Enable FormatDesc

The bound in this dword is updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated bound All

1h Enable Modify the bound All

 G45: Volume 1a Graphics Core

 47

STATE_BASE_ADDRESS
5 31:12 Indirect Object Access Upper Bound

Project: All

Format: GraphicsAddress[31:12] FormatDesc

This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address
access by an indirect object load in a MEDIA_OBJECT command. Indirect data accessed
at this address and beyond will appear to be 0. Setting this field to 0 will cause this
range check to be ignored.

If non-zero, this address must be greater than the Indirect Object Base Address.

Hardware ignores this field if indirect data is not present.

Setting this field to FFFFFh will cause this range check to be ignored.

11:1 Reserved Project: All Format: MBZ

0 Modify Enable

Project: All

Format: Enable FormatDesc

The bound in this dword is updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated bound All

1h Enable Modify the bound All

 G45: Volume 1a Graphics Core

 48

3.7 State Invalidation ([DevCTG+])

The STATE_POINTER_INVALIDATE command is provided as an optional mechanism to invalidate
3D/Media state pointers and pointers to constant data. This is sometimes desirable to prevent
prefetching of state between the time the pointed-to state is no longer needed, and the time the
commands above are re-issued to point to new state.

3.7.1 STATE_POINTER_INVALIDATE ([DevCTG+])

STATE_POINTER_INVALIDATE
Project: [DevCTG] Length Bias: 1

The STATE_POINTER_INVALIDATE command marks the state pointers of the selected type(s) as invalid. The
corresponding state pointer command must be issued again prior to attempting any rendering operations that depend on
the state whose pointers have been marked as invalid.

The pointers initialized by the following commands are (potentially) invalidated by this command:
• 3DSTATE_PIPELINE_POINTERS
• 3DSTATE_CC_POINTERS
• CONSTANT_BUFFER
• MEDIA_STATE_POINTERS

DWord Bit Description

0 31:29 Command Type

Default Value: GFXPIPE Format: OpCode

28:27 Command SubType

Default Value: GFXPIPE_SINGLE_DW Format: OpCode

26:24 3D Command Opcode

Default Value: GFXPIPE_PIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: STATE_POINTER_INVALIDATE Format: OpCode

15:3 Reserved Project: All Format: MBZ

2 Pipelined State Pointers Invalidate

Project: All

Format: Invalidate Enable

The pointers initialized with the last 3DSTATE_PIPELINED_POINTERS are marked as
invalid if this bit is set. Said pointers are unaffected if this bit is clear.

 G45: Volume 1a Graphics Core

 49

STATE_POINTER_INVALIDATE
1 Constant Buffer Invalidate

Project: All

Format: Invalidate Enable

The pointer initialized with the last CONSTANT_BUFFER is marked as invalid. Said pointer
is unaffected if this bit is clear.

0 Media State Pointers Invalidate

Project: All

Format: Invalidate Enable

The pointers initialized with the last MEDIA_STATE_POINTERS are marked as invalid. Said
pointers are unaffected if this bit is clear.

3.8 Instruction and State Prefetch

The STATE_PREFETCH command is provided strictly as an optional mechanism to possibly enhance
pipeline performance by prefetching data into the GPE’s Instruction and State Cache (ISC).

3.8.1 STATE_PREFETCH

STATE_PREFETCH
Project: All Length Bias: 2

(This command is provided strictly for performance optimization opportunities, and likely requires some
experimentation to evaluate the overall impact of additional prefetching.)

The STATE_PREFETCH command causes the GPE to attempt to prefetch a sequence of 64-byte cache lines into
the GPE-internal cache (“L2 ISC”) used to access EU kernel instructions and fixed/shared function indirect state
data. While state descriptors, surface state, and sampler state are automatically prefetched by the GPE, this
command may be used to prefetch data not automatically prefetched, such as: 3D viewport state; Media
pipeline Interface Descriptors; EU kernel instructions.

DWord Bit Description

0 31:29 Command Type

Default
Value:

3h GFXPIPE Forma
t:

OpCode

28:27 Command SubType

Default
Value:

0h GFXPIPE_COMMON Forma
t:

OpCode

26:24 3D Command Opcode

Default
Value:

0h GFXPIPE_PIPELINED Forma
t:

OpCode

 G45: Volume 1a Graphics Core

 50

STATE_PREFETCH
23:16 3D Command Sub Opcode

Default
Value:

03
h

STATE_PREFETCH Forma
t:

OpCode

15:8 Reserve
d

Project
:

All Forma
t:

MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:6 Prefetch Pointer

Project: All

Format: GraphicsAddress[31:6] FormatDesc

Specifies the 64-byte aligned address to start the prefetch from. This pointer is
an absolute virtual address, it is not relative to any base pointer.

5:3 Reserve
d

Project
:

All Format
:

MBZ

2:0 Prefetch Count

Project: All

Format: U3 count of cache lines (minus
one)

FormatDesc

Range [0,7] indicating a count of [1,8]

Indicates the number of contiguous 64-byte cache lines that will be prefetched.

 G45: Volume 1a Graphics Core

 51

3.9 System Thread Configuration

3.9.1 STATE_SIP

STATE_SIP
Project: All Length Bias: 2
The STATE_SIP command specifies the starting instruction location of the System Routine that is shared by all
threads in execution.

DWord Bit Description

0 31:29 Command Type

Default
Value:

3h GFXPIPE Format: OpCode

28:27 Command SubType

Default
Value:

0h GFXPIPE_COMMON Format: OpCode

26:24 3D Command Opcode

Default
Value:

1h GFXPIPE_NONPIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default
Value:

02h STATE_SIP Format: OpCode

15:8 Reserve
d

Project
:

All Format
:

MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:4 System Instruction Pointer (SIP)

Project: All

Format: GeneralStateOffset[31:4] FormatDesc

Specifies the instruction address of the system routine associated with the
current context as a 128-bit granular offset from the General State Base
Address. SIP is shared by all threads in execution. The address specifies the
double quadword aligned instruction location.

Errata Description Project

BWT007 Instructions pointed at by offsets from General
State Base must be contained within 32-bit physical
address space (that is, must map to memory pages
under 4G.)

[DevBW-
A]

 G45: Volume 1a Graphics Core

 52

STATE_SIP
3:0 Reserve

d
Project
:

All Format: MBZ

3.10 Command Ordering Rules

There are several restrictions regarding the ordering of commands issued to the GPE. This
subsection describes these restrictions along with some explanation of why they exist. Refer to
the various command descriptions for additional information.

The following flowchart illustrates an example ordering of commands which can be used to
perform activity within the GPE.

MI_FLUSH

PIPELINE_SELECT

Pipeline?

CS_URB_STATE

3DSTATE_PIPELINE_POINTERS

URB_FENCE

CONSTANT_BUFFER

3DPRIMITIVE / 3DCONTROL

MEDIA_STATE_POINTERS

URB_FENCE

CONSTANT_BUFFER

MEDIA_OBJECT

3D Media

Common or Pipeline-specific state-
setting commands can be issued
along any paths from here down

3.10.1 PIPELINE_SELECT

The previously-active pipeline needs to be flushed via the MI_FLUSH command immediately before
switching to a different pipeline via use of the PIPELINE_SELECT command. Refer to Section 3.3
for details on the PIPELINE_SELECT command.

3.10.2 PIPE_CONTROL

The PIPE_CONTROL command does not require URB fencing/allocation to have been performed,
nor does it rely on any other pipeline state. It is intended to be used on both the 3D pipe and the

 G45: Volume 1a Graphics Core

 53

Media pipe. It has special optimizations to support the pipelining capability in the 3D pipe which do
not apply to the Media pipe.

3.10.3 URB-Related State-Setting Commands

Several commands are used (among other things) to set state variables used in URB entry
allocation --- specifically, the Number of URB Entries and the URB Entry Allocation Size state
variables associated with various pipeline units. These state variables must be set-up prior to the
issuing of a URB_FENCE command. (See the sub-section on URB_FENCE below).

CS_URB_STATE (only) specifies these state variables for the common CS FF unit.
3DSTATE_PIPELINED_POINTERs sets the state variables for FF units in the 3D pipeline, and
MEDIA_STATE_POINTERS sets them for the Media pipeline. Depending on which pipeline is
currently active, only one of these commands needs to be used. Note that these commands can
also be reissued at a later time to change other state variables, though if a change is made to (a)
any Number of URB Entries and the URB Entry Allocation Size state variables or (b) the
Maximum Number of Threads state for the GS or CLIP FF units, a URB_FENCE command must
follow.

3.10.4 Common Pipeline State-Setting Commands

The following commands are used to set state common to both the 3D and Media pipelines. This
state is comprised of CS FF unit state, non-pipelined global state (EU, etc.), and Sampler shared-
function state.

STATE_BASE_ADDRESS

STATE_SIP

3DSTATE_SAMPLER_PALETTE_LOAD

3DSTATE_CHROMA_KEY

The state variables associated with these commands must be set appropriately prior to initiating
activity within a pipeline (i.e., 3DPRIMITIVE or MEDIA_OBJECT).

3.10.5 3D Pipeline-Specific State-Setting Commands

The following commands are used to set state specific to the 3D pipeline.

3DSTATE_PIPELINED_POINTERS

3DSTATE_BINDING_TABLE_POINTERS

3DSTATE_VERTEX_BUFFERS

3DSTATE_VERTEX_ELEMENTS

3DSTATE_INDEX_BUFFERS

3DSTATE_VF_STATISTICS

3DSTATE_DRAWING_RECTANGLE

3DSTATE_CONSTANT_COLOR

3DSTATE_DEPTH_BUFFER

3DSTATE_POLY_STIPPLE_OFFSET

3DSTATE_POLY_STIPPLE_PATTERN

3DSTATE_LINE_STIPPLE

3DSTATE_GLOBAL_DEPTH_OFFSET

 G45: Volume 1a Graphics Core

 54

The state variables associated with these commands must be set appropriately prior to issuing
3DPRIMITIVE.

3.10.6 Media Pipeline-Specific State-Setting Commands

The following commands are used to set state specific to the Media pipeline.

MEDIA_STATE_POINTERS

The state variables associated with this command must be set appropriately prior to issuing
MEDIA_OBJECT.

3.10.7 URB_FENCE (URB Fencing & Entry Allocation)

URB_FENCE command is used to initiate URB entry deallocation/allocation processes within
pipeline FF units. The URB_FENCE command is first processed by the CS FF unit, and is then
directed down the currently selected pipeline to the FF units comprising that pipeline.

As the FF units receive the URB_FENCE command, a URB entry deallocation/allocation process
with be initiated if (a) the FF unit is currently enabled (note that some cannot be disabled) and (b)
the ModifyEnable bit associated with that FF unit’s Fence value is set. If these conditions are
met, the deallocation of the FF unit’s currently-allocated URB entries (if any) commences.
(Implementation Note: For better performance, this deallocation proceeds in parallel with
allocation of new handles).

Modifying the CS URB allocation via URB_FENCE invalidates any previous CURBE entries.
Therefore software must subsequently [re]issue a CONSTANT_BUFFER command before CURBE
data can be used in the pipeline.

The allocation of new handles (if any) for the FF unit then commences. The parameters used to
perform this allocation come from (a) the URB_FENCE Fence values, and (b) the relevant URB
entry state associated with the FF unit: specifically, the Number of URB Entries and the URB
Entry Allocation Size. For the CS unit, this state is programmed via CS_URB_STATE, while the
other FF units receive this state indirectly via PIPELINED_STATE_POINTERS or
MEDIA_STATE_POINTERS commands.

Although a FF unit’s allocation process relies on it’s URB Fence as well as the relevant FF unit
pipelined state, only the URB_FENCE command initiates URB entry deallocation/allocation. This
imposes the following restriction: If a change is made to (a) the Number of URB Entries or
URB Entry Allocation Size state for a given FF unit or (b) the Maximum Number of Threads
state for the GS or CLIP FF units, a URB_FENCE command specifying a valid URB Fence state for
that FF unit must be subsequently issued – at some point prior to the next CONSTANT_BUFFER,
3DPRIMITIVE (if using the 3D pipeline) or MEDIA_OBJECT (if using the Media pipeline). It is
invalid to change Number of URB Entries or URB Entry Allocation Size state for enabled FF
units without also issuing a subsequent URB_FENCE command specifying a valid Fence valid for
that FF unit.

It is valid to change a FF unit’s Fence value without specifying a change to its Number of URB
Entries or URB Entry Allocation Size state, though the values must be self-consistent.

 G45: Volume 1a Graphics Core

 55

3.10.8 CONSTANT_BUFFER (CURBE Load)

The CONSTANT_BUFFER command is used to load constant data into the CURBE URB entries
owned by the CS unit. In order to write into the URB, CS URB fencing and allocation must have
been established. Therefore, CONSTANT_BUFFER can only be issued after CS_URB_STATE and
URB_FENCE commands have been issued, and prior to any other pipeline processing (i.e.,
3DPRIMITIVE or MEDIA_OBJECT). See the definition of CONSTANT_BUFFER for more details.

Modifying the CS URB allocation via URB_FENCE invalidates any previous CURBE entries.
Therefore software must subsequently [re]issue a CONSTANT_BUFFER command before CURBE
data can be used in the pipeline.

3.10.9 3DPRIMITIVE

Before issuing a 3DPRIMITIVE command, all state (with the exception of
MEDIA_STATE_POINTERS) needs to be valid. Therefore the commands used to set this state need
to have been issued at some point prior to the issue of 3DPRIMITIVE.

3.10.10 MEDIA_OBJECT

Before issuing a MEDIA_OBJECT command, all state (with the exception of 3D-pipeline-specific
state) needs to be valid. Therefore the commands used to set this state need to have been issued
at some point prior to the issue of MEDIA_OBJECT.

4 Graphics Command Formats

4.1 Command Formats

This section describes the general format of the graphics device commands.

Graphics commands are defined with various formats. The first DWord of all commands is called
the header DWord. The header contains the only field common to all commands -- the client field
that determines the device unit that will process the command data. The Command Parser
examines the client field of each command to condition the further processing of the command
and route the command data accordingly.

Some GenX Devices include two Command Parsers, each controlling an independent processing
engine. These will be referred to in this document as the Render Command Parser (RCP) and the
Video Codec Command Parser (VCCP).

Valid client values for the Render Command Parser are:

Client # Client

0 Memory Interface (MI_xxx)

1 Miscellaneous (includes Trusted Ops)

2 2D Rendering (xxx_BLT_xxx)

3 Graphics Pipeline (3D and Media)

4-7 Reserved

Graphics commands vary in length, though are always multiples of DWords. The length of a
command is either:

• Implied by the client/opcode

• Fixed by the client/opcode yet included in a header field (so the Command Parser
explicitly knows how much data to copy/process)

• Variable, with a field in the header indicating the total length of the command

Note that command sequences require QWord alignment and padding to QWord length to be
placed in Ring and Batch Buffers.

The following subsections provide a brief overview of the graphics commands by client type
provides a diagram of the formats of the header DWords for all commands. Following that is a list
of command mnemonics by client type.

 G45: Volume 1a Graphics Core

 57

4.1.1 Memory Interface Commands

Memory Interface (MI) commands are basically those commands which do not require processing
by the 2D or 3D Rendering/Mapping engines. The functions performed by these commands
include:

• Control of the command stream (e.g., Batch Buffer commands, breakpoints, ARB
On/Off, etc.)

• Hardware synchronization (e.g., flush, wait-for-event)

• Software synchronization (e.g., Store DWORD, report head)

• Graphics buffer definition (e.g., Display buffer, Overlay buffer)

• Miscellaneous functions

Refer to the Memory Interface Commands chapter for a description of these commands.

4.1.2 2D Commands

The 2D commands include various flavors of Blt operations, along with commands to set up Blt
engine state without actually performing a Blt. Most commands are of fixed length, though there
are a few commands that include a variable amount of "inline" data at the end of the command.

Refer to the 2D Commands chapter for a description of these commands.

4.1.3 3D/Media Commands

The 3D/Media commands are used to program the graphics pipelines for 3D or media operations.

Refer to the 3D chapter for a description of the 3D state and primitive commands and the Media
chapter for a description of the media-related state and object commands.

 G45: Volume 1a Graphics Core

 58

4.1.4 Video Codec Commands

4.1.4.1 Command Header

The Command Headers are shown in the following tables.

Table 4-1. RCP Command Header Format

Bits

TYPE 31:29 28:24 23 22 21:0

Memory

Interface

(MI)

000 Opcode

00h – NOP

0Xh – Single DWord Commands

1Xh – Two+ DWord Commands

2Xh – Store Data Commands

3Xh – Ring/Batch Buffer Cmds

 Identification No./DWord Count

Command Dependent Data

5:0 – DWord Count

5:0 – DWord Count

5:0 – DWord Count

Reserved 001 Opcode – 11111 23:19

Sub Opcode
00h – 01h

18:16

Re-
served

15:0

DWord Count

2D 010 Opcode Command Dependent Data

4:0 – DWord Count

TYPE 31:29 28:27 26:24 23:16 15:8 7:0

Common 011 00 Opcode – 000 Sub Opcode Data
DWord
Count

Common (NP) 011 00 Opcode – 001 Sub Opcode Data
DWord
Count

Reserved 011 00 Opcode – 010 – 111

Single Dword
Command

011 01 Opcode – 000 – 001 Sub Opcode
 N/A

Reserved 011 01 Opcode – 010 – 111

Media State 011 10 Opcode – 000 Sub Opcode

Dword
Count

Media Object 011 10 Opcode – 001 – 010 Sub Opcode Dword Count

Reserved 011 10 Opcode – 011 – 111

3DState 011 11 Opcode – 000 Sub Opcode Data
DWord
Count

3DState (NP) 011 11 Opcode – 001 Sub Opcode Data
DWord
Count

PIPE_Control 011 11 Opcode – 010 Data
DWord
Count

3DPrimitive 011 11 Opcode – 011 Data
DWord
Count

 G45: Volume 1a Graphics Core

 59

Bits

TYPE 31:29 28:24 23 22 21:0

Reserved 011 11 Opcode – 100 – 111

Reserved 1XX XX

NOTES:

1. The qualifier “NP” indicates that the state variable is non-pipelined and the render pipe is
flushed before such a state variable is updated. The other state variables are pipelined
(default).

Table 4-2. VCCP Command Header Format

Bits

TYPE 31:29 28:24 23 22 21:0

Memory

Interface

(MI)

000 Opcode

00h – NOP

0Xh – Single DWord Commands

1Xh – Reserved

2Xh – Store Data Commands

3Xh – Ring/Batch Buffer Cmds

 Identification No./DWord Count

Command Dependent Data

5:0 – DWord Count

5:0 – DWord Count

5:0 – DWord Count

TYPE 31:29 28:27 26:24 23:16 15:0

Reserved 011 0X XXX XX

Reserved 011 10 0XX

AVC State 011 10 100 Opcode: 0h – 4h DWord Count

AVC Object 011 10 100 Opcode: 8h DWord Count

VC1 State 011 10 101 Opcode: 0h – 4h DWord Count

VC1 Object 011 10 101 Opcode: 8h DWord Count

Reserved 011 10 11X

Reserved 011 11 XXX

TYPE 31:29 28:27 26:24 23:21 20:16 15:0

MFX Common 011 10 000 000 subopcode DWord Count

Reserved 011 10 000 001-111 subopcode DWord Count

AVC Common 011 10 001 000 subopcode DWord Count

AVC Dec 011 10 001 001 subopcode DWord Count

AVC Enc 011 10 001 010 subopcode DWord Count

Reserved 011 10 001 011-111 subopcode DWord Count

Reserved (for
VC1 Common)

011 10 010
000 subopcode DWord Count

VC1 Dec 011 10 010 001 subopcode DWord Count

Reserved (for
VC1 Enc)

011 10 010
010 subopcode DWord Count

Reserved 011 10 010 011-111 subopcode DWord Count

 G45: Volume 1a Graphics Core

 60

Bits

TYPE 31:29 28:24 23 22 21:0

Reserved
(MPEG2
Common)

011 10 011
000 subopcode DWord Count

MPEG2 Dec 011 10 011 001 subopcode DWord Count

Reserved (for
MPEG2 Enc)

011 10 011
010 subopcode DWord Count

Reserved 011 10 011 011-111 subopcode DWord Count

Reserved 011 10 100-111 XXX

4.2 Command Map

This section provides a map of the graphics command opcodes.

4.2.1 Memory Interface Command Map

All the following commands are defined in Memory Interface Commands.

Table 4-3. Memory Interface Commands for RCP

Opcode
(28:23)

Command Comments

1-DWord

00h MI_NOOP

01h Reserved

02h MI_USER_INTERRUPT

03h MI_WAIT_FOR_EVENT

04h MI_FLUSH

05h MI_ARB_CHECK

06h Reserved

07h MI_REPORT_HEAD

08h MI_ARB_ON_OFF [DevCTG], [DevEL]

09h Reserved

0Ah MI_BATCH_BUFFER_END

0Bh–0Fh Reserved

2+ DWord

10h Reserved

11h MI_OVERLAY_FLIP [pre-DevCTG]

12h MI_LOAD_SCAN_LINES_INCL

13h MI_LOAD_SCAN_LINES_EXCL

 G45: Volume 1a Graphics Core

 61

Opcode
(28:23)

Command Comments

14h MI_DISPLAY_BUFFER_INFO [DevBW], [DevCL]

MI_DISPLAY_FLIP [DevCTG], [DevEL]

15h Reserved

16h MI_SEMAPHORE_MBOX [DevCTG], [DevEL]

17h Reserved

18h MI_SET_CONTEXT

19h–1Fh Reserved

Store Data

20h MI_STORE_DATA_IMM

21h MI_STORE_DATA_INDEX

22h MI_LOAD_REGISTER_IMM

23h MI_UPDATE_GTT [DevCTG], [DevEL]

24h MI_STORE_REGISTER_MEM

25h MI_PROBE

26h Reserved

27h–2Fh Reserved

Ring/Batch Buffer

30h Reserved

31h MI_BATCH_BUFFER_START

32h–3Fh Reserved

 G45: Volume 1a Graphics Core

 62

Table 4-4. Memory Interface Commands for VCCP

Opcode
(28:23)

Command Comments

1-DWord

00h MI_NOOP

01h Reserved

02h MI_USER_INTERRUPT

03h Reserved

04h MI_FLUSH

05h MI_ARB_CHECK

06-09h Reserved

0Ah MI_BATCH_BUFFER_END

0Bh–0Fh Reserved

2- DWord

10h–1Fh Reserved

Store Data

20h MI_STORE_DATA_IMM

21h MI_STORE_DATA_INDEX

22h–2Fh Reserved

Ring/Batch Buffer

30h Reserved

31h MI_BATCH_BUFFER_START

32h–3Fh Reserved

 G45: Volume 1a Graphics Core

 63

4.2.2 2D Command Map
All the following commands are defined in Blitter Instructions.

Opcode
(28:22)

Command Comments

00h Reserved

01h XY_SETUP_BLT

02h Reserved

03h XY_SETUP_CLIP_BLT

04h–10h Reserved

11h XY_SETUP_MONO_PATTERN_SL_BLT

12h–23h Reserved

24h XY_PIXEL_BLT

25h XY_SCANLINES_BLT

26h XY_TEXT_BLT

23h–30h Reserved

31h XY_TEXT_IMMEDIATE_BLT

32h–3Fh Reserved

40h COLOR_BLT

41h–42h Reserved

43h SRC_COPY_BLT

44h–4Fh Reserved

50h XY_COLOR_BLT

51h XY_PAT_BLT

52h XY_MONO_PAT_BLT

53h XY_SRC_COPY_BLT

54h XY_MONO_SRC_COPY_BLT

55h XY_FULL_BLT

56h XY_FULL_MONO_SRC_BLT

57h XY_FULL_MONO_PATTERN_BLT

58h XY_FULL_MONO_PATTERN_MONO_SRC_BLT

59h XY_MONO_PAT_FIXED_BLT

5Ah–70h Reserved

71h XY_MONO_SRC_COPY_IMMEDIATE_BLT

72h XY_PAT_BLT_IMMEDIATE

73h XY_SRC_COPY_CHROMA_BLT

74h XY_FULL_IMMEDIATE_PATTERN_BLT

75h XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT

76h XY_PAT_CHROMA_BLT

77h XY_PAT_CHROMA_BLT_IMMEDIATE

78h–7Fh Reserved

 G45: Volume 1a Graphics Core

 64

4.2.3 3D/Media Command Map

Pipeline
Type

(28:27)

Opcode Sub Opcode Command Definition Chapter

Common
(pipelined)

Bits
26:24

Bits 23:16

0h 0h 00h URB_FENCE Graphics Processing Engine

0h 0h 01h CS_URB_STATE Graphics Processing Engine

0h 0h 02h CONSTANT_BUFFER Graphics Processing Engine

0h 0h 03h STATE_PREFETCH Graphics Processing Engine

0h 0h 04h-FFh Reserved

Common
(non-

pipelined)

Bits
26:24

Bits 23:16

0h 1h 00h Reserved n/a

0h 1h 01h STATE_BASE_ADDRESS Graphics Processing Engine

0h 1h 02h STATE_SIP Graphics Processing Engine

0h 1h 03h–FFh Reserved n/a

Reserved Bits
26:24

Bits 23:16

0h 2h–7h XX Reserved n/a

Pipeline
Type

(28:27)

Opcode Sub Opcode Command Definition Chapter

Single DW Opcode
(26:24)

Bits 23:16

1h 0h 00h-01h Reserved n/a

1h 0h 02h STATE_POINTER_INVALIDATE
[DevCTG], [DevEL]

Graphics Processing Engine

1h 0h 03h-0Ah Reserved n/a

1h 0h 0Bh 3DSTATE_VF_STATISTICS Vertex Fetch

1h 0h 0Ch-FFh Reserved n/a

1h 1h 00h-03h Reserved n/a

1h 1h 04h PIPELINE_SELECT Graphics Processing Engine

1h 1h 05h-FFh Reserved n/a

1h 2h-7h XX Reserved n/a

 G45: Volume 1a Graphics Core

 65

Media Opcode (26:24) Bits
23:16

2h 0h 00h MEDIA_STATE_POINTERS Media

2h 1h 00h MEDIA_OBJECT Media

2h 1h 01h MEDIA_OBJECT_EX Media

2h 1h 02h MEDIA_OBJECT_PRT Media

2h 2h–7h XX Reserved n/a

Pipeline
Type

(28:27)

Opcode Sub
Opcode

Command Definition
Chapter

3D State
(Pipelined

)

Bits 26:24 Bits
23:16

3h 0h 00h 3DSTATE_PIPELINED_POINTERS 3D Pipeline

3h 0h 01h 3DSTATE_BINDING_TABLE_POINTERS 3D Pipeline

3h 0h 02h Reserved

3h 0h 03h–04h Reserved n/a

3h 0h 05h 3DSTATE_URB 3D Pipeline

3h 0h 06h-07h Reserved n/a

3h 0h 08h 3DSTATE_VERTEX_BUFFERS Vertex Fetch

3h 0h 09h 3DSTATE_VERTEX_ELEMENTS Vertex Fetch

3h 0h 0Ah 3DSTATE_INDEX_BUFFER Vertex Fetch

3h 0h 0Bh Reserved n/a

3h 0h 0Ch Reserved n/a

3h 0h 0Dh 3DSTATE_VIEWPORT_STATE_POINTERS 3D Pipeline

3h 0h 0Eh–FFh Reserved n/a

3D State
(Non-

Pipelined)

Bits 26:24 Bits
23:16

3h 1h 00h 3DSTATE_DRAWING_RECTANGLE Strips & Fans

3h 1h 01h 3DSTATE_CONSTANT_COLOR Color Calculator

3h 1h 02h 3DSTATE_SAMPLER_PALETTE_LOAD0 Sampling Engine

3h 1h 03h Reserved

3h 1h 04h 3DSTATE_CHROMA_KEY Sampling Engine

3h 1h 05h 3DSTATE_DEPTH_BUFFER Windower

3h 1h 06h 3DSTATE_POLY_STIPPLE_OFFSET Windower

3h 1h 07h 3DSTATE_POLY_STIPPLE_PATTERN Windower

 G45: Volume 1a Graphics Core

 66

3h 1h 08h 3DSTATE_LINE_STIPPLE Windower

3h 1h 09h 3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP Windower

3h 1h 0Ah 3DSTATE_AA_LINE_PARAMS [DevCTG],
[DevEL]

Windower

3h 1h 0Bh 3DSTATE_GS_SVB_INDEX [DevCTG], [DevEL] Geometry Shader

3h 1h 0Ch 3DSTATE_SAMPLER_PALETTE_LOAD1 Sampling Engine

3h 1h 0Ah–FFh Reserved Windower

3D
(Control)

Bits 26:24 Bits
23:16

3h 2h 00h PIPE_CONTROL 3D Pipeline

3h 2h 01h–FFh Reserved n/a

3D
(Primitive

)

Bits 26:24 Bits
23:16

3h 3h 00h 3DPRIMITIVE Vertex Fetch

3h 3h 01h–FFh Reserved n/a

3h 4h–7h 00h–FFh Reserved n/a

5 Register Address Maps

5.1 Graphics Register Address Map

This chapter provides address maps of the graphics controllers I/O and memory-mapped registers.
Individual register bit field descriptions are provided in the following chapters. PCI configuration
address maps and register bit descriptions are provided in the following chapter.

5.1.1 Memory and I/O Space Registers

This section provides a high-level register map (register groupings per function). The memory and
I/O maps for the graphics device registers are shown in the following table, except PCI
Configuration registers that are described in the following chapter.

The VGA and Extended VGA registers can be accessed via standard VGA I/O locations as well as
via memory-mapped locations.

All graphics MMIO registers can also be accessed via CPU I/O.

The memory space address listed for each register is an offset from the base memory address
programmed into the MMADR register (PCI configuration offset 14h).

Table 5-1. Graphics Controller Register Memory and I/O Map

Start
Offset

End
Offset

Description

00000h 00FFFh VGA and Extended VGA Control Registers. These registers are located in both
I/O space and memory space. The VGA and Extended VGA registers contain the
following register sets: General Control/Status, Sequencer (SRxx), Graphics
Controller (GRxx), Attribute Controller (Arxx), VGA Color Palette, and CRT Controller
(CRxx) registers. Detailed bit descriptions are provided in the VGA and Extended VGA
Register Chapter. The registers within a set are accessed using an indirect addressing
mechanism as described at the beginning of each section. Note that some of the
register description sections have additional operational information at the beginning
of the section

01000h 01FFFh Reserved

 G45: Volume 1a Graphics Core

 68

Start
Offset

End
Offset

Description

02000h 02FFFh Instruction, Memory, and Interrupt Control Registers:

Instruction Control Registers Ring Buffer registers and page table control
registers are located in this address range. Various instruction status, error, and
operating registers are located in this group of registers.

Graphics Memory Fence Registers. The Graphics Memory Fence registers are
used for memory tiling capabilities.

Interrupt Control/Status Registers. This register set provides interrupt
control/status for various GC functions.

Display Interface Control Register. This register controls the FIFO watermark and
provides burst length control.

Logical Context Registers

Pipeline Statistic Counters

03000h 031FFh FENCE & Per Process GTT Control registers

03200h 03FFFh Frame Buffer Compression Registers

04000h 043FFh Reserved.

04400h 04FFFh Reserved.

05000h 05FFFh I/O Control Registers

06000h 06FFFh Clock Control Registers. This memory address space is the location of the GC clock
control and power management registers

07000h 073FFh 3D Internal Debug Registers

07400h 088FFh GPE Debug Registers (3D/Media Fixed Functions)

08900h 08FFFh Reserved for Subsystem Debug Registers

09000h 09FFFh Reserved

0A000h 0AFFFh Display Palette Registers

0B000h 0FFFFh Reserved

10000h 13FFFh MMIO MCHBAR. Alias through which the graphics driver can access registers in the
MCHBAR accessed through device 0.

14000h 2FFFFh Reserved

30000h 3FFFFh Overlay Registers. These registers provide control of the overlay engine. The
overlay registers are double-buffered with one register buffer located in graphics
memory and the other on the device. On-chip registers are not directly writeable. To
update the on-chip registers software writes to the register buffer area in graphics
memory and instructs the device to update the on-chip registers.

40000h 5FFFFh Reserved

60000h 6FFFFh Display Engine Pipeline Registers

70000h 72FFFh Display and Cursor Registers

73000h 73FFFh Performance Counters

74000h 7FFFFh Reserved

 G45: Volume 1a Graphics Core

 69

5.1.2 PCI Configuration Space

See the releveant EDS for details on accessing PCI configuration space, PCI address map tables,
and register descriptions.

5.1.3 Graphics Register Memory Address Map

All graphics device registers are directly accessible via memory-mapped I/O and indirectly
accessible via the MMIO_INDEX and MMIO_DATA I/O registers. In addition, the VGA and
Extended VGA registers are I/O mapped.

Table 5-2 Memory Mapped Registers

Address Offset Symbol Register Name Access

00000h−00FFFh ⎯ VGA and VGA Extended Registers

These registers are both memory and I/O
mapped and are listed in the following table.
Note that the I/O address and memory
offset address are the same value for each
register.

⎯

Reserved (1000h−1FFFh)

01000h−01FFFh ⎯ Reserved ⎯

Primary CS Instruction and Interrupt Control Registers (02000h−02FFFh)

02000h−0201Fh ⎯ Reserved ⎯

02020h−02023h PGTBL_CTL Page Table Control Register R/W

02024h−02027h PGTBL_ER Page Table Error Register (DEBUG) RO

02028h–0202Bh EXCC Execute Condition Code Register R/W,RO

0202Ch–0202Fh ⎯ Reserved ⎯

02030h–02033h PRB0_TAIL Primary Ring Buffer 0 Tail Register R/W

02034h–02037h PRB0_HEAD Primary Ring Buffer 0 Head Register R/W

02038h–0203Bh PRB0_STARTsted Primary Ring Buffer 0 Start Register R/W

0203Ch–0203Fh PRB0_CTL Primary Ring Buffer 0 Control Register R/W

02040h–0205Fh ⎯ Reserved ⎯

02060h–02063h HW_MEMRD Memory Read Sync Register (DEBUG) RO

02064h–02067h IPEIR Instruction Parser Error Identification
Register (DEBUG)

RO

02068h–0206Bh IPEHR Instruction Parser Error Header Register
(DEBUG)

RO

0206Ch–0206Fh INSTDONE Instruction Stream Interface Done Register
(DEBUG)

RO

02070h–02073h INSTPS Instruction Parser State Register (DEBUG) RO

 G45: Volume 1a Graphics Core

 70

Table 5-2 Memory Mapped Registers

02074h–02077h ACTHD Active Head Pointer Register (DEBUG) RO

02078h–0207Bh DMA_FADD_P Primary DMA Engine Fetch Address Register
(DEBUG)

RO

0207Ch–0207Fh INSTDONE_1 Instruction Stream Interface Done 1
(Debug)

RO

02080h–02083h HWS_PGA Hardware Status Page Address Register R/W

02084h–02087h ⎯ Reserved ⎯

02088h–0208Ch PWRCTXA Power Context Register Address ([DevCL]) R/W

0208Dh–02093h ⎯ Reserved ⎯

02094h–02097h NOPID NOP Identification Register RO

02098h−0209Bh HWSTAM Hardware Status Mask Register R/W

0209Ch–0209Fh MI_MODE Mode Register for Software Interface R/W

020A0h−020A3h IER Interrupt Enable Register R/W

020A4h−020A7h IIR Interrupt Identity Register R/WC

020A8h−020ABh IMR Interrupt Mask Register R/W

020ACh−020AFh ISR Interrupt Status Register RO

020B0h−020B3h EIR Error Identity Register R/WC

020B4h−020B7h EMR Error Mask Register R/W

020B8h−020BBh ESR Error Status Register RO

020BCh−020BFh ⎯ Reserved ⎯

020C0h–020C3h INSTPM Instruction Parser Mode Register
(SAVED/RESTORED)

R/W

020C4h–020C7h PGTBL_CTL2 Per-process Page Table Control 0 [DevBW],
[DevCL] only

R/W

020C8h–020CBh PGTBL_STR2 Page Table Steer Register (Per Process)
[DevBW], [DevCL] only

R/W

020CCh–020DFh ⎯ Reserved ⎯

MI_DISPLAY_POWER_D
OWN

Display Power Down Enable ([DevCL] Only) R/W 020E0h−020E3h

MI_RDRET_STATE Memory Interface Read Return State
Register ([DevBW] Only)

R/W

020E4h−020E7h MI_ARB_STATE Memory Interface Arbitration State Register

(SAVED/RESTORED)

R/W

020E8h−020FBh ⎯ Reserved ⎯

020FCh–020FFh MI_RDRET_STATE Memory Interface Read Return State
Register ([DevCL] Only)

R/W

02100h–0210Fh ⎯ Reserved ⎯

 G45: Volume 1a Graphics Core

 71

Table 5-2 Memory Mapped Registers

02110h–02113h BB_STATE Batch Buffer State Register R/W

02114h–0211Fh ⎯ Reserved ⎯

02120h–02123h CACHE_MODE_0 Cache Mode Register 0 (DEBUG)

(SAVED/RESTORED)

R/W

02124h−02127h CACHE_MODE_1 Cache Mode Register 1 (DEBUG)

(SAVED/RESTORED)

R/W

02128h–02133h ⎯ Reserved ⎯

02134h–02137h UHPTR Pending Head Pointer Register R/W

02138h–0213Fh ⎯ Reserved ⎯

02140h–02147h BB_ADDR Batch Buffer Current Address RO

0214Ch–0216Fh ⎯ Reserved ⎯

02170h–02177h GFX_FLSH_CNTL Graphics Flush Control R/W

02178h–0217Bh PR_CTR_CTL Render Watchdog Counter Control
[DevCTG], [DevEL]

R/W

0217Ch–0217Fh PR_CTR_THRSH Render Watchdog Counter Threshold
[DevCTG], [DevEL]

R/W

02180h−02183h CCID0 Current Context ID 0 (assoc w/ PRB0) R/W

02184h−0218Fh ⎯ Reserved ⎯

02190h−02193h PR_CTR Render Watchdog Counter [DevCTG],
[DevEL]

RO

02194h−0219Fh ⎯ Reserved ⎯

021A0h−021A3h CXT_SIZE Context Size (DEBUG) R/W

021A4h−021A7h CXT_SIZE_NOEXT Context Size without Ext. State (DEBUG) R/W

021A8h-021CFh ⎯ Reserved ⎯

021D0h-021D3h ECOSKPD ECO Scratch Pad (DEBUG) R/W

021D4h-021FFh ⎯ Reserved ⎯

02200h−02303h CSFLFSM Flush FSM (Debug) R/W

02204h–02207h CSFLFLAG Flush FLAG (Debug) R/W

02208h–0220Bh CSFLTRK Flush Track (Debug) R/W

0220Ch–0220Fh CSCMDOP Instruction DWORD (Debug) R/W

02210h–02213h CSCMDVLD Instruction DWORD Valid (Debug) R/W

02214h−0230Fh ⎯ Reserved ⎯

02310h-02347h ⎯ Reported Vertices Counter R/W

02350h-02357h PS_DEPTH_COUNT Reported Pixels Passing Depth Test Counter R/W

 G45: Volume 1a Graphics Core

 72

Table 5-2 Memory Mapped Registers

02358–0235Fh TIMESTAMP Reported Timestamp Count R/W

02360–02367h CLKCMP Compare Count Clock Stop (Debug)

02368h−0236Fh ⎯ Reserved ⎯

02370h−02377h ⎯ Reserved ⎯

02378h−0237Fh ⎯ Reserved ⎯

02380h−02387h ⎯ Reserved ⎯

02388h−0244Fh ⎯ Reserved ⎯

02450h−02453h VFDC Set Value of Draw Count (DEBUG) R/W

02454h−0246Fh ⎯ Reserved ⎯

02470h−02473h VFSKPD VF Scratch Pad (DEBUG) R/W

02474h−024FFh ⎯ Reserved ⎯

Per-Process GTT Control (02500h−025FFh)

02500h−02503h PP_DCIR PPGTT Directory Cache Index Register
(DEBUG)

R/W

02504h−02507h PP_DCDR PPGTT Directory Cache Data Register
(DEBUG)

WO

02508h−0250Fh PP_DCLV PPGTT Directory Cacheline Valid Register
(DEBUG)

R/W

02510h−02513h PP_PFIR PPGTT Page Fault Indication Register R/WC

02514h−02517h PP_PFIC PPGTT Page Fault Interface Control Register R/WC

02518h−0251Bh PP_DIR_BASE PPGTT Page Directory Base Register
(DEBUG)

R/W

0251Ch−0251Fh TLB_RD_EXT TLB Read Extent RO

02520h−02523h GFX_MODE Graphics Mode Register R/W

02524h−0257Fh ⎯ Reserved ⎯

02580h−025FFh PP_PFD[31:0] PPGTT Page Fault Data (32, 1 DW each) RO

Probe List Control (02600h−026FFh) : Reserved

02600h−0267Fh PRBL_SV Probe List Slot Valid Registers (32, 1 DW
each)

RO

02680h−02683h PRBL_SFL Probe List Slot Fault Low RO

02684h−02687h PRBL_SFH Probe List Slot Fault High RO

02688h−026FFh ⎯ Reserved ⎯

Run List Control (02700h−027FFh) : Reserved

02700h−02703h RLSP Run List Submit Port WO

02704h−02707h RLS Run List Status Register RO

 G45: Volume 1a Graphics Core

 73

Table 5-2 Memory Mapped Registers

02708h−0270Bh ⎯ Reserved ⎯

0270Ch−0270Fh CTXT_ST_PTR Context Status Buffer Pointer Register
(Debug)

R/W

02710h−02713h ⎯ Reserved ⎯

02714h−02717h CTXT_SR_CTL Context Save/Restore Control R/W

02718h−0271Bh CTXT_PREMP_DBG Pre-emption Debug Register (Debug) R/W

0271Ch−0271Fh CTXT_WAIT_STS Wait Status Register RO

02720h−02723h CTXT_COUNT Context Invocation Count R/W

02724h−02727h GLBL_PREMP_CNT Global Pre-emption Count R/W

02728h−0272Fh CTXT_EXEC_CUM Context Cumulative Execution Time R/W

02730h−02737h CTXT_OVHD_CUM Context Cumulative Overhead Time R/W

02738h−0273Fh GLBL_SWITCH_CUM Global Context Switch Cumulative Time R/W

02740h−027BFh ⎯ Reserved ⎯

027C0h−027DFh RLC0[7:0] Run List 0 Contents Registers (Debug, 8
DWs)

RO

027E0h−027FFh RLC1[7:0] Run List 1 Contents Registers (Debug, 8
DWs)

RO

02800h−02FFFh ⎯ Reserved ⎯

FENCE & Per-Process GTT Control (03000h−031FFh)

03000h-03007h FENCE[0] Graphics Memory Fence Table Register [0] R/W

… … …

0307Ch-0307Fh FENCE[15] Graphics Memory Fence Table Register [15] R/W

Frame Buffer Compression Control (03200h−03FFFh) ([DevCL] Only)

03200h−03203h FBC_CFB_BASE Compressed Frame Buffer Base Address R/W

03204h−03207h FBC_LL_BASE Compressed Frame Line Length Buffer
Address

R/W

03208h−0320Bh FBC_CONTROL Frame Buffer Compression Control Register R/W

0320Ch−0320Fh FBC_COMMAND Frame Buffer Compression Command
Register

R/W

03210h−03213h FBC_STATUS Frame Buffer Compression Status Register R/W

03214h−03217h FBC_CONTROL2 Frame Buffer Compression 2nd Control
Register

R/W

0321Bh−0321Eh FBC_DISPYOFF Frame Buffer Compression Display Y Offset R/W

03220h−03223h FBC_MOD_NUM Frame Buffer Compression Num of
Modifications

R/W

03214h−032FFh ⎯ Reserved ⎯

 G45: Volume 1a Graphics Core

 74

Table 5-2 Memory Mapped Registers

03300h−033C3h FBC_TAG Frame Buffer Compression Tag Interface
(Debug)

R/W

03400h−03FFFh ⎯ Reserved ⎯

Frame Buffer Compression Control (03200h−03FFFh) : [DevCTG]

03200h−03203h DPFC_CB_BASE DPFC Compressed Buffer Base Address R/W

03204h−03207h ⎯ Reserved ⎯

03208h−0320Bh DPFC_CONTROL DPFC Control R/W

0320Ch−0320Fh DPFC_RECOMP_CTL DPFC ReComp Control R/W

03210h−03213h DPFC_STATUS DPFC Status RO

03214h−03217h ⎯ Reserved ⎯

03218h−0321Bh DPFC_CPU_FENCE_OFF
SET

DPFC CPU Fence Offset R/W

0321Ch−0321Fh DPFC_SLB_DATA DPFC SLB Data R/W

03220h−03223h DPFC_DEBUG_STATUS DPFC Debug Status R/W

03224h−03227h DPFC_CHICKEN DPFC Chicken Bits R/W

03228h−03FFFh ⎯ Reserved ⎯

03200h−03203h DPFC_CB_BASE DPFC Compressed Buffer Base Address R/W

BCS Instruction and Interrupt Control Registers (04000h−043FFh)

04000h−043FFh ⎯ Reserved ⎯

04064h–04067h BCS_IPEIR Instruction Parser Error Identification
Register (Debug)

RO

04068h–0406Bh BCS_IPEHR Instruction Parser Error Header Register
(Debug)

RO

04074h–04077h BCS_ACTHD Active Head Pointer Register (Debug) RO

04078h – 0407Bh BCS_DMA_FADD DMA Engine Fetch Address (Debug) RO

04080h–04083h BCS_HWS_PGA Hardware Status Page Address Register R/W

04084h–04093h ⎯ Reserved ⎯

04094h–04097h BCS_NOPID NOP Identification Register RO

04097h–0409B ⎯ Reserved ⎯

0409Ch–0409Fh BCS_MI_MODE Mode Register for Software Interface R/W

040A0h–040BFh ⎯ Reserved ⎯

040C0h–040C3h BCS_INSTPM Instruction Parser Mode Register R/W

040C4h–04133h ⎯ Reserved ⎯

04134h–04137h BCS_UHPTR Pending Head Pointer R/W

04138h–04177h ⎯ Reserved ⎯

 G45: Volume 1a Graphics Core

 75

Table 5-2 Memory Mapped Registers

04178h–0417Bh BCS_CNTR Counter for the Bit Stream Decode Engine R/W

0417Ch–0417Fh BCS_THRSH Threshold for the Counter of Bit Stream
Decode Engine

R/W

04180h–0413Fh ⎯ Reserved ⎯

04140h–04147h BCS_BB_ADDR Batch Buffer Head Pointer Register RO

04148h–0418Fh ⎯ Reserved ⎯

04190h–04193h BCS_RCCID Ring Buffer Current Context ID R/W

04194h–04197h BCS_RNCID Ring Buffer Next Context ID R/W

04198h–043FFh ⎯ Reserved ⎯

I/O Control Registers (05000h−05FFFh)

05000h−0500Fh ⎯ Reserved ⎯

05010h−05013h GPIO_CTL0 General Purpose I/O Control Register [0] R/W

05014h−05017h GPIO_CTL1 General Purpose I/O Control Register [1] R/W

05018h−0501Bh GPIO_CTL2 General Purpose I/O Control Register [2] R/W

0501Ch−0501Fh GPIO_CTL3 General Purpose I/O Control Register [3] R/W

05020h−05023h GPIO_CTL4 General Purpose I/O Control Register [4] R/W

05024h−05027h GPIO_CTL5 General Purpose I/O Control Register [5] R/W

05028h−0502Bh GPIO_CTL6 General Purpose I/O Control Register [6] R/W

0502Ch−0502Fh GPIO_CTL7 General Purpose I/O Control Register [7] R/W

05030h−050FFh ⎯ Reserved ⎯

05100h−05103h GMBUS0 GMBUS Clock Select/Device Select R/W

05104h−05107h GMBUS1 GMBUS Command/Status R/W

05108h−0510Bh GMBUS2 GMBUS Status R/W

0510Ch−0510Fh GMBUS3 GMBUS Data Buffer R/W

05110h−05F13h GMBUS4 GMBUS Interrupt Mask R/W

05114h−0511Fh ⎯ Reserved ⎯

05120h−05123h GMBUS5 GMBUS 2-Byte Index Register R/W

05124h−05FFFh ⎯ Reserved ⎯

Clock Control and Power Management Registers (06000h−06FFFh)

06000h−06003h VGA0 VGA 0 Divisor R/W

06004h−06007h VGA1 VGA 1 Divisor R/W

06008h−0600Fh Reserved

06010h−06013h VGA_PD VGA Post Divisor Select R/W

06014h−06017h DPLLA_CTRL Display PLL A Control R/W

 G45: Volume 1a Graphics Core

 76

Table 5-2 Memory Mapped Registers

06018h−0601Bh DPLLB_CTRL Display PLL B Control R/W

0601Ch−0601Fh DPLLAMD Display PLL A UDI Multiplier/Divsor R/W

06020h−06023h DPLLBMD Display PLL B UDI Multiplier/Divsor R/W

06024h−0603Fh ⎯ Reserved ⎯

06040h−06043h FPA0 DPLL A Divisor 0 R/W

06044h−06047h FPA1 DPLL A Divisor 1 R/W

06048h−0604Bh FPB0 DPLL B Divisor 0 R/W

0604Ch−0604Fh FPB1 DPLL B Divisor 1 R/W

06050h−0606Bh ⎯ Reserved ⎯

0606Ch–0606Fh DPLL_TEST DPLLA and DPLLB Test Register R/W

06070h−06103h ⎯ Reserved ⎯

06104h−06107h D_STATE D State Function Control R/W

06108h−061FFh ⎯ Reserved ⎯

06200h−06203h DSPCLK_GATE_D Clock Gating Disable for Display Register R/W

06204h−06207h RENCLK_GATE_D1 Clock Gating Disable for Render Register I R/W

06208h−0620Bh RENDCLK_GATE_D2 Clock Gating Disable for Render Register II R/W

0620Ch−0620Fh VDECCLK_GATE_D Clock Gating Disable for Video Decode
Register ([DevCTG], [DevEL] Only)

R/W

06210h–06213h RAMCLK_GATE_D GFX RAM Clock Gating Disable Register
([DevCL] Only)

R/W

06214h–06125h DEUC Dynamic EU Control R/W/L

06216h−06FFFh ⎯ Reserved ⎯

3D-Internal Debug Registers (07000h−073FFh) Reserved

07000h−073FFh ⎯ Reserved ⎯

GPE Debug Registers (07400h−088FFh, DEBUG ONLY, Subject to Change)

07400h−07403h SVG_CTL Debug Control R/W

07404h−07407h SVG_RDATA Debug Return Data RO

07408h−0740Bh SVG_WORK_CTL Debug Workaround Control R/W

0740Ch−074FFh ⎯ Reserved ⎯

07500h−07503h VF_CTL Debug Control R/W

07504h−07507h VF_STRG_VAL Debug Snapshot Trigger Value R/W

07508h−0750Bh VF_STR_VL_OVR Debug Start Vertex Location Override R/W

0750Ch−0750Fh VF_VC_OVR Debug Vertex Count Override R/W

07510h−07513h VF_STR_PSKIP Debug Starting Primitives Skipped RO

 G45: Volume 1a Graphics Core

 77

Table 5-2 Memory Mapped Registers

07514h−07517h VF_MAX_PRIM Debug Max Primitives R/W

07518h−0751Bh VF_RDATA Debug Return Data RO

0751Ch−075FFh ⎯ Reserved ⎯

07600h−07603h VS_CTL Debug Control R/W

07604h−07607h VS_STRG_VAL Debug Snapshot Trigger Value R/W

07608h−0760Bh VS_RDATA Debug Return Data RO

0760Ch−078FFh ⎯ Reserved ⎯

07900h−07903h GS_CTL Debug Control R/W

07904h−07907h GS_STRG_VAL Debug Snapshot Trigger Value R/W

07908h−0790Bh GS_RDATA Debug Return Data RO

0790Ch−079FFh ⎯ Reserved ⎯

07A00h−07A03h CL_CTL Debug Control R/W

07A04h−07A07h CL_STRG_VAL Debug Snapshot Trigger Value R/W

07A08h−07A0Bh CL_RDATA Debug Return Data RO

07A0Ch−07AFFh ⎯ Reserved ⎯

07B00h−07B03h SF_CTL Debug Control R/W

07B04h−07B07h SF_STRG_VAL Debug Snapshot Trigger Value R/W

07B08h−07B0Bh SF_MIN_PR_IND Debug Minimum Primitive Index R/W

07B0Ch−07B0Fh SF_MAX_PR_IND Debug Maximum Primitive Index R/W

07B10h−07B13h SF_CLIP_RMIN Debug Clip Rectangle Minimum Coordinates R/W

07B14h−07B17h SF_CLIP_RMAX Debug Clip Rectangle Maximum Coordinates R/W

07B18h−07B1Bh SF_RDATA Debug Return Data RO

07B1Ch−07BFFh ⎯ Reserved ⎯

07C00h−07C03h WIZ_CTL Debug Control R/W

07C04h−07C07h WIZ_STRG_VAL Debug Snapshot Trigger Value R/W

07C08h−07C0Bh WIZ_RDATA Debug Return Data RO

07C0Ch−07CFFh ⎯ Reserved ⎯

07D00h−07D03h VFE_CTL Debug Control R/W

07D04h–07D07h VFE_STRG_VAL Debug Snapshot Trigger Value R/W

07D08h–07D0Bh VFE_RDATA Debug Return Data RO

07D0Ch−07DFFh ⎯ Reserved ⎯

07E00h−07E03h TS_CTL Debug Control R/W

07E04h−07E07h TS_STRG_0-6VAL Debug Snapshot Trigger R0.6 Value R/W

07E08h−07E0Bh TS_STRG_0-7VAL Debug Snapshot Trigger R0.7 Value R/W

 G45: Volume 1a Graphics Core

 78

Table 5-2 Memory Mapped Registers

07E0Ch−07E0Fh TS_RDATA Debug Return Data RO

07E10h−07FFFh ⎯ Reserved ⎯

08000h−08003h TD_CTL Debug Control R/W

08004h−08007h TD_CTL2 Debug Control 2 R/W

08008h−0800Bh TD_VF_VS_EMSK Debug VF/VS Execution Mask R/W

0800Ch−0800Fh TD_GS_EMSK Debug GS Execution Mask R/W

08010h−08013h TD_CLIP_EMSK Debug Clipper Execution Mask R/W

08014h−08017h TD_SF_EMSK Debug SF Execution Mask R/W

08018h−0801Bh TD_WIZ_EMSK Debug WIZ Execution Mask R/W

0801Ch−0801Fh TD_0-6_EHTRG_VAL Debug R0.6 External Halt Trigger Value R/W

08020h−08023h TD_0-7_EHTRG_VAL Debug R0.7 External Halt Trigger Value R/W

08024h−08027h TD_0-6_EHTRG_MSK Debug R0.6 External Halt Trigger Mask R/W

08028h−0802Bh TD_0-7_EHTRG_MSK Debug R0.7 External Halt Trigger Mask R/W

0802Ch−0802Fh TD_RDATA Debug Return Data RO

08030h−08033h TD_TS_EMSK Debug TS Execution Mask ⎯

08034h−080FFh ⎯ Reserved ⎯

08100h−08103h MATH_CTL Math Debug Control R/W

08104h−08107h MATH_RDATA Math Debug Return Data RO

08108h−081FFh ⎯ Reserved ⎯

08200h−08203h ISC_CTL Instruction / State Debug Control R/W

08204h−0827FFh ⎯ Reserved ⎯

08280h−08283h ISC_L1CA_CTR Instruction L1 Cache Debug Control RO

08284h−08287h ISC_L1CA_RDATA Instruction L1 Cache Debug Return Data

08288h−0828Bh ISC_L1CA_BP_ADR1 Instruction L1 Cache Breakpoint Address 1
Control

0828Ch−0828Fh ⎯ Reserved ⎯

08290h−08293h ISC_L1CA_BP_ADR2 Instruction L1 Cache Breakpoint Address 2
Control

08294h−08297h ISC_L1CA_BP_OPC1 Instruction L1 Cache Breakpoint Opcode 1
Control

08298h−0829Bh ISC_L1CA_BP_OPC2 Instruction L1 Cache Breakpoint Opcode 2
Control

0829Ch−082FFh ⎯ Reserved ⎯

08300h−08303h MA_DEBUG_1 Message Arbiter Debug Control R/W

08304h−083FFh ⎯ Reserved ⎯

 G45: Volume 1a Graphics Core

 79

Table 5-2 Memory Mapped Registers

08400h−08403h SAMPLER_CTL Sampler Debug Control R/W

08404h−08407h SAMPLER_RDATA Sampler Debug Return Data RO

08408h−084FFh ⎯ Reserved ⎯

08500h−08503h DP_CTL Data Port Debug Control R/W

08504h−08507h DP_RDATA Data Port Debug Return Data RO

08508h−085FFh ⎯ Reserved ⎯

08600h−08603h RC_CTL Debug Control R/W

08604h−08607h RC_DEF_CLR Debug Force Default Color R/W

08608h−0860Bh RC_RDATA Debug Return Data RO

0860Ch−086FFh ⎯ Reserved ⎯

08700h−08703h URB_CTL Debug Control R/W

08704h−08707h ⎯ Reserved ⎯

08708h−0870Bh URB_RDATA Debug Return Data RO

0870Ch−087FFh ⎯ Reserved ⎯

08800h−08803h EU_CTL Debug Control R/W

08804h−0880Fh ⎯ Reserved ⎯

08810h−08817h EU_ATT Debug Attention RO

08818h−0881Fh ⎯ Reserved ⎯

08820h−08827h EU_ATT_DATA EU Debug Attention Data RO

08828h−0882Fh ⎯ Reserved ⎯

08830h−08837h EU_ATT_CLR Debug Attention Clear WO

08838h−0883Fh ⎯ Reserved ⎯

08840h−08843h EU_RDATA Debug Return Data RO

08844h−088FFh ⎯ Reserved ⎯

Reserved for Debug (08900h−09FFFh)

08900h−08FFFh ⎯ Reserved for Subsystem Debug ⎯

09000h−09FFFh ⎯ Reserved ⎯

Display Palette (0A000h−0AFFFh)

0A000h−0A3FFh DPALETTE_A Display Pipe A Palette R/W

0A400h−0A7FFh ⎯ Reserved ⎯

0A800h−0ABFFh DPALETTE_B Display Pipe B Palette R/W

0AC00h−0AFFFh ⎯ Reserved ⎯

 G45: Volume 1a Graphics Core

 80

Table 5-2 Memory Mapped Registers

TLB Read Range (0B000h−0BFFFh) : Reserved

0B000h−0BFFFh ⎯ Reserved ⎯

AVC Video Decode (0C000h−0CFFFh) : Reserved

0C000h-0CFFFh -- Reserved --

0D000h−0FFFFh ⎯ Reserved ⎯

GFX MMIO – MCHBAR Aperture (10000h-13FFFh)

10000h-13FFFh ⎯ MCHBAR Aperture R/W

Reserved (14000h−2FFFFh)

14000h-2FFFFh ⎯ Reserved ⎯

Overlay Registers (30000h−03FFFFh)
(For additional address offsets in the double-buffering scheme, see Overlay Chapter)

30000h−30003h OVADD Overlay Register Update Address R/W

30004h−30007h OTEST Overlay Test Register R/W

30008h−3000Bh DOVSTA Display/Overlay Status RO

3000Ch−3000Fh DOVSTAEX Display/Overlay Extended Status RO

30010h−30013h OVR_GAMMA5 Overlay Gamma Correction [5] R/W

30014h−30017h OVR_GAMMA4 Overlay Gamma Correction [4] R/W

30018h−3001Bh OVR_GAMMA3 Overlay Gamma Correction [3] R/W

3001Ch−3001Fh OVR_GAMMA2 Overlay Gamma Correction [2] R/W

30020h−30023h OVR_GAMMA1 Overlay Gamma Correction [1] R/W

30024h−30027h OVR_GAMMA0 Overlay Gamma Correction [0] R/W

30028h−30057h — Reserved —

30058h−3005Bh SYNCPH0 Overlay Flip Sync Lock Phase 0 RO

3005Ch−3005Fh SYNCPH1 Overlay Flip Sync Lock Phase 1 RO

30060h−30063h SYNCPH2 Overlay Flip Sync Lock Phase 2 RO

30064h−30067h SYNCPH3 Overlay Flip Sync Lock Phase 3 RO

30068h−300FFh — Reserved —

30100h–30103 OBUF_0Y Overlay Buffer 0 Y Pointer RO

30104h−30107h OBUF_1Y Overlay Buffer 1 Y Pointer RO

30108h−3010Bh OBUF_0U Overlay Buffer 0 U Pointer RO

3010Ch−3010Fh OBUF_0V Overlay Buffer 0 V Pointer RO

30110h−30113h OBUF_1U Overlay Buffer 1 U Pointer RO

30114h−30117h OBUF_1V Overlay Buffer 1 V Pointer RO

 G45: Volume 1a Graphics Core

 81

Table 5-2 Memory Mapped Registers

30118h−3011Bh OSTRIDE Overlay Stride RO

3011Ch−3011Fh YRGB_VPH Y/RGB Vertical Phase RO

30120h−30123h UV_VPH UV Vertical Phase RO

30124h−30127h HORZ_PH Horizontal Phase RO

30128h−3012Bh INIT_PHS Initial Phase RO

3012Ch−3012Fh DWINPOS Destination Window Position RO

30130h−30133h DWINSZ Destination Window Size RO

30134h−30137h SWIDTH Source Width RO

30138h−3013Bh SWIDTHSW Source Width in Swords RO

3013Ch−3013Fh SHEIGHT Source Height RO

30140h−30143h YRGBSCALE Y/RGB Scale Factor RO

30144h−30147h UVSCALE U V Scale Factor RO

30148h−3014Bh OVCLRC0 Overlay Color Correction 0 RO

3014Ch−3014Fh OVCLRC1 Overlay Color Correction 1 RO

30150h−30153h DCLRKV Destination Color Key Value RO

30154h−30157h DCLRKM Destination Color Key Mask RO

30158h−3015Bh SCHRKVH Source Chroma Key Value High RO

3015Ch−3015Fh SCHRKVL Source Chroma Key Value Low RO

30160h−30163h SCHRKEN Source Chroma Key Enable RO

30164h−30167h OCONFIG Overlay Configuration RO

30168h−3016Bh OCMD Overlay Command RO

3016Ch−3016Fh ⎯ Reserved ⎯

30170h−30173h OSTART_0Y Overlay Surface Y 0 Base Address Register RO

30174h−30177h OSTART _1Y Overlay Surface Y 1 Base Address Register RO

30178h−3017Bh OSTART _0U Overlay Surface U 0 Base Address Register RO

3017Ch−3017Fh OSTART _0V Overlay Surface V 0 Base Address Register RO

30180h−30183h OSTART _1U Overlay Surface U 1 Base Address Register RO

30184h−30187h OSTART _1V Overlay Surface V 1 Base Address Register RO

30188h−3018Bh OTILEOFF_0Y Overlay Surface Y 0 Base Address Register RO

3018Ch−3018Fh OTILEOFF _1Y Overlay Surface Y 1 Base Address Register RO

30190h−30193h OTILEOFF _0U Overlay Surface U 0 Bae Address Register RO

30194h−30197h OTILEOFF _0V Overlay Surface V 0 Base Address Register RO

30198h−3019Bh OTILEOFF _1U Overlay Surface U 1 Base Address Register RO

3019Ch−3019Fh OTILEOFF _1V Overlay Surface V 1 Base Address Register RO

 G45: Volume 1a Graphics Core

 82

Table 5-2 Memory Mapped Registers

301A0h−301A3h ⎯ Reserved ⎯

301A4h−301A7h UVSCALEV UV Vertical Downscale Integer Register RO

301A8h−302FFh ⎯ Reserved ⎯

30300h−303FFh Y_VCOEFS Overlay Y Vertical Filter Coefficients RO

30368h−303FFh ⎯ Reserved ⎯

30400h−305FFh Y_HCOEFS Overlay Y Horizontal Filter Coefficient RO

304ACh−305FFh ⎯ Reserved ⎯

30600h−306FFh UV_VCOEFS Overlay UV Vertical Filter Coefficients RO

30668h−306FFh ⎯ Reserved ⎯

30700h−307FFh UV_HCOEFS Overlay UV Horizontal Filter Coefficients RO

30768h−3FFFFh ⎯ Reserved ⎯

Reserved (40000h−5FFFFh)

40000h–5FFFFh ⎯ Reserved ⎯

Display Engine Pipeline Registers (60000h–6FFFFh)

Display Pipeline A

60000h–60003h HTOTAL_A Pipe A Horizontal Total R/W

60004h–60007h HBLANK_A Pipe A Horizontal Blank R/W

60008h–6000Bh HSYNC_A Pipe A Horizontal Sync R/W

6000Ch–6000Fh VTOTAL_A Pipe A Vertical Total R/W

60010h–60013h VBLANK_A Pipe A Vertical Blank R/W

60014h–60017h VSYNC_A Pipe A Vertical Sync R/W

60018h–6001Bh ⎯ Reserved R/W

6001Ch–6001Fh PIPEASRC Pipe A Source Image Size R/W

60020h–60023h BCLRPAT_A Pipe A Border Color Pattern R/W

60024h–60027h ⎯ Reserved ⎯

60028h–6002Bh VSYNCSHIFT_A Vertical Sync Shift Register A ⎯

6002Ch–6004Fh ⎯ Reserved ⎯

60050h–60053h CRCCTRLREDA Pipe A CRC Red Control R/W

60054h–60057h CRCCTRLGREENA Pipe A CRC Green Control R/W

60058h–6005Bh CRCCTRLBLUEA Pipe A CRC Blue Control R/W

6005Ch–6005Fh CRCCTRLRESA Pipe A CRC Residual Control Register R/W

60060h–60063h CRCRESREDA Pipe A CRC Red Result RO

60064h–60067h CRCRESGREENA Pipe A CRC Green Result RO

 G45: Volume 1a Graphics Core

 83

Table 5-2 Memory Mapped Registers

60068h–6006Bh CRCRESBLUEA Pipe A CRC Blue Result RO

6006Ch-6006Fh CRCRESRESA Pipe A CRC Residual Result RO

60070h–60FFFh ⎯ Reserved ⎯

Display Pipeline B

61000h–61003h HTOTAL_B Pipe B Horizontal Total R/W

61004h–61007h HBLANK_B Pipe B Horizontal Blank R/W

61008h–6100Bh HSYNC_B Pipe B Horizontal Sync R/W

6100Ch–6100Fh VTOTAL_B Pipe B Vertical Total R/W

61010h–61013h VBLANK_B Pipe B Vertical Blank R/W

61014h–61017h VSYNC_B Pipe B Vertical Sync R/W

61018h–6101Bh ⎯ Reserved ⎯

6101Ch–6101Fh PIPEBSRC Pipe B Source Image Size R/W

61020h–61023h BCLRPAT_B Pipe B Border Color Pattern R/W

61024h–61027h ⎯ Reserved ⎯

61028h–6102Bh VSYNCSHIFT_B Vertical Sync Shift Register B ⎯

6102Ch–6104Fh ⎯ Reserved ⎯

61050h–61053h CRCCTRLREDB Pipe B CRC Red Control R/W

61054h–61057h CRCCTRLGREENB Pipe B CRC Green Control R/W

61058h–6105Bh CRCCTRLBLUEB Pipe B CRC Blue Control R/W

6105Ch–6105Fh CRCCTRLRESB Pipe B CRC Residual Control Register R/W

61060h–61063h CRCRESREDB Pipe B CRC Red Result RO

61064h–61067h CRCRESGREENB Pipe B CRC Green Result RO

61068h–6106Bh CRCRESBLUEB Pipe B CRC Blue Result RO

6106Ch–6106Fh CRCRESRESB Pipe B CRC Residual Result RO

61070h–610FFh ⎯ Reserved ⎯

61100h–61103h
Reserved Reserved

R/W

61104h–6110Fh ⎯ Reserved ⎯

61110h–61113h PORT_HOTPLU_EN Port HotPlug Enable R/W

61114h–61117h PORT_HOTPLU_STAT Port HotPlug Status R/W

61118h–61127h ⎯ Reserved ⎯

61128h–6112Bh
Reserved Reserved

R/W

6112Ch–6112Fh ⎯ Reserved ⎯

 G45: Volume 1a Graphics Core

 84

Table 5-2 Memory Mapped Registers

61130h–61133h
Reserved Reserved

R/W

61134h–61137h
Reserved Reserved

R/W

61138h–6113Bh UDID Reserved R/W

6113Ch–6113Fh ⎯ Reserved ⎯

61140h-61143h
Reserved Reserved

R/W

61144h–61147h
Reserved Reserved

R/W

61148h–6114Bh
Reserved Reserved

R/W

6114Ch–6114Fh
Reserved Reserved

R/W

61150h-61153h
Reserved Reserved

R/W

61154h–61157h
Reserved Reserved

R/W

61158h–6115Bh
Reserved Reserved

R/W

6115Ch–6115Fh
Reserved Reserved

61160h-61163h
Reserved Reserved

R/W

61164h–61167h
Reserved Reserved

R/W

61168h–6116Bh
Reserved Reserved

R/W

6116Ch–6116Fh ⎯ Reserved ⎯

61170h–61173h UDI_IF_CTL UDI InfoFrame Control R/W

61174h–61177h ⎯ Reserved ⎯

61178h–6117Bh UDI_VIDPAC_DATA UDI Video-related Data Island Packet Data R/W

6117Ch–61177h ⎯ Reserved ⎯

LVDS ([DevCL] Only)

61180h–61183h LVDS Reserved R/W

61184h–611FFh ⎯ Reserved ⎯

Panel Power Sequencing ([DevCL] Only)

61200h–61203h PP_STATUS Panel Power Status RO

61204h–61207h PP_CONTROL Panel Power Control R/W

61208h–6120Bh PP_ON_DELAYS Panel Power On Sequencing Delays R/W

6120Ch–6120Fh PP_OFF_DELAYS Panel Power Off Sequencing Delays R/W

61210h–61213h PP_DIVISOR Panel Power Cycle Delay and Reference
Divisor

R/W

 G45: Volume 1a Graphics Core

 85

Table 5-2 Memory Mapped Registers

61214h–6122Fh ⎯ Reserved ⎯

Panel Fitting ([DevCL] Only)

61230h–61233h PFIT_CONTROL Panel Fitting Control R/W

61234h–61237h PFIT_PGM_RATIOS Programmed Panel Fitting Ratios R/W

61238h–6124Fh ⎯ Reserved ⎯

Backlight Control and Modulation ([DevCL] Only)

61250h–61253h BLC_PWM_CTL2 Backlight PWM Control Register 2 R/W

61254h–61257h BLC_PWM_CTL Backlight PWM Control R/W

61258h–6125Fh ⎯ Reserved ⎯

61260h–61263h BLM_HIST_CTL Image BLM Histogram Control Register R/W

61264h–61267h Image Enhancement Bin Data Register RO, R/W

61268h–6126Bh Histogram Threshold Guardband Register R/W

6126Ch–61FFFh ⎯ Reserved ⎯

High Definition Registers (62000h–62FFFh)

62000h–62003h
Reserved Reserved

R/W

62004h–6200Fh
Reserved Reserved

⎯

62010h–62013h
Reserved Reserved

RO

62014h–6201Fh
Reserved Reserved

⎯

62020h–62023h
Reserved Reserved

RO

62024h–62027h
Reserved Reserved

RO

62028h–6202Bh
Reserved Reserved

RO

6202Ch–6203Fh
Reserved Reserved

⎯

62040h–62043h
Reserved Reserved

RO

62044h–62047h
Reserved Reserved

RO

62048h–6204Bh
Reserved Reserved

RO

6204Ch–6204Fh
Reserved Reserved

RO

62050h–62053h
Reserved Reserved

RO

62054h–62057h
Reserved Reserved

RO

62058h–6206Fh
Reserved Reserved

⎯

 G45: Volume 1a Graphics Core

 86

Table 5-2 Memory Mapped Registers

62070h–62073h
Reserved Reserved

RO

62074h–62077h
Reserved Reserved

R/W

62078h–6207Bh
Reserved Reserved

R/W

6207Ch–6207Fh
Reserved Reserved

R/W

62080h–62083h
Reserved Reserved

RO

62084h–62087h
Reserved Reserved

RO

62088h–6209Fh
Reserved Reserved

⎯

620A0h–620A3h
Reserved Reserved

RO

620A4h–620A7h
Reserved Reserved

RO

620A8h–620ABh
Reserved Reserved

RO

620ACh–620AFh
Reserved Reserved

RO

620B0h–620B3h
Reserved Reserved

RO

620B4h–620B7h
Reserved Reserved

RO

620B8h–620BBh
Reserved Reserved

RO

620BCh–620BFh
Reserved Reserved

RO

620C0h–620D3h
Reserved Reserved

⎯

620D4h–620D7h
Reserved Reserved

R/W

620D8h–6210Bh
Reserved Reserved

⎯

6210Ch–62117h
Reserved Reserved

R/W

62118h–62127h
Reserved Reserved

R/W

62128h–67FFFh ⎯ Reserved ⎯

TV Out Control Registers (68000h–6FFFFh) [CLN] only

68000h–68003h TV_CTL TV Out Control R/W

68004h-68007h TV_DAC TV DAC Control/Status R/W, RO

68008h–6800Fh ⎯ Reserved ⎯

68010h–68013h TV_CSC_Y Color Space Convert Y R/W

68014h–68017h TV_CSC_Y2 Color Space Convert Y2 R/W

68018h–6801Bh TV_CSC_U Color Space Convert U R/W

 G45: Volume 1a Graphics Core

 87

Table 5-2 Memory Mapped Registers

6801Ch–6801Fh TV_CSC_U2 Color Space Convert U2 R/W

68020h–68023h TV_CSC_V Color Space Convert V R/W

68024h–68027h TV_CSC_V2 Color Space Convert V2 R/W

68028h–6802Bh TV_CLR_KNOBS Color Knobs R/W

6802Ch–6802Fh TV_CLR_LEVEL Color Level Control R/W

68030h–68033h TV_H_CTL_1 H Control 1 R/W

68034h–68037h TV_H_CTL_2 H Control 2 R/W

68038h–6803Bh TV_H_CTL_3 H Control 3 R/W

6803Ch–6803Fh TV_V_CTL_1 V Control 1 R/W

68040h–68043h TV_V_CTL_2 V Control 2 R/W

68044h–68047h TV_V_CTL_3 V Control 3 R/W

68048h–6804Bh TV_V_CTL_4 V Control 4 R/W

6804Ch–6804Fh TV_V_CTL_5 V Control 5 R/W

68050h–68053h TV_V_CTL_6 V Control 6 R/W

68054h–68057h TV_V_CTL_7 V Control 7 R/W

68058h–6805Fh ⎯ Reserved ⎯

68060h–68063h TV_SC_CTL_1 SubCarrier Control 1 R/W

68064h–68067h TV_SC_CTL_2 SubCarrier Control 2 R/W

68068h–6806Bh TV_SC_CTL_3 SubCarrier Control 3 R/W

6806Ch–6806Fh ⎯ Reserved ⎯

68070h–68073h TV_WIN_POS Window Position R/W

68074h–68077h TV_WIN_SIZE Window Size R/W

68078h–6807Fh ⎯ Reserved ⎯

68080h–68083h TV_FILTER_CTL_1 Filter Control 1 R/W

68084h–68087h TV_FILTER_CTL_2 Filter Control 2 R/W

68088h–6808Bh TV_FILTER_CTL_3 Filter Control 3 R/W

6808Ch-6808Fh SIN_ROM Sine ROM ⎯

68090h-68093h TV_CC_ CTL Closed Caption Control R/W

68094h-68097h TV_CC_DATA1 Closed Caption Data Field 1 R/W

68098h-6809Bh TV_CC_DATA2 Closed Caption Data Field 2 R/W

6809Ch–680AFh ⎯ Reserved ⎯

680B0h-680B3h TV_WSS_ CTL WSS Control R/W

680B4h-680B7h TV_WSS_DATA WSS Data R/W

68100h–681EFh TV_H_LUMA H Filter Luma Coefficients R/W

681F0h–681FFh ⎯ Reserved ⎯

68200h–682EFh TV_H_CHROMA H Filter Chroma Coefficients R/W

682F0h–682FFh ⎯ Reserved ⎯

68300h–683ABh TV_V_LUMA V Filter Luma Coefficients R/W

 G45: Volume 1a Graphics Core

 88

Table 5-2 Memory Mapped Registers

683ACh–683FFh ⎯ Reserved ⎯

68400h–684ABh TV_V_CHROMA V Filter Chroma Coefficients R/W

684ACh–6FFFFh ⎯ Reserved ⎯

Display and Cursor Control Registers (70000h–77FFFh)

Display Pipeline A Control

70000h–70003h PIPEA_DSL Pipe A Display Scan Line Count RO

70004h–70007h PIPEA_SLC Pipe A Display Scan Line Count Range
Compare

RO

70008h–7000Bh PIPEACONF Pipe A Configuration R/W

7000Ch–7000Fh ⎯ Reserved ⎯

70010h–70013h PIPEAGCMAXRED Pipe A Gamma Correction Max Red R/W

70014h–70017h PIPEAGCMAXGRN Pipe A Gamma Correction Max Green R/W

70018h–7001Bh PIPEAGCMAXBLU Pipe A Gamma Correction Max Blue R/W

7001Ch–70023h ⎯ Reserved ⎯

70024h–70027h PIPEASTAT Pipe A Display Status Select R/W

70028h–7002Fh ⎯ Reserved ⎯

70030h–70033h DSPARB Display Arbitration Control R/W

70034h–70037h FW1 Display FIFO Watermark Control 1 R/W

70038h–7003Bh FW2 Display FIFO Watermark Control 2

7003Ch–7003Fh FW3 Display FIFO Watermark Control 3 R/W

70040h-70043h PIPEAFRAMEH Pipe A Frame Count High RO

70044h-70047h PIPEAFRAMEPIX Pipe A Frame Count Low and Pixel Count RO

70048h-7007Fh ⎯ Reserved ⎯

Cursor A and B Registers

70080h–70083h CURACNTR Cursor A Control R/W

70084h–70087h CURABASE Cursor A Base Address R/W

70088h–7008Bh CURAPOS Cursor A Position R/W

7008Ch–7008Fh ⎯ Reserved ⎯

70090h–7009Fh CURAPALET[0:3] Cursor A Palette 0:3 R/W

700A0h–700BFh ⎯ Reserved ⎯

700C0h–700C3h CURBCNTR Cursor B Control R/W

700C4h–700C7h CURBBASE Cursor B Base Address R/W

700C8h–700CBh CURBPOS Cursor B Position R/W

700CCh–700CFh ⎯ Reserved ⎯

700D0h–700DFh CURBPALET[0:3] Cursor B Palette 0:3 R/W

700E0h–7017Fh ⎯ Reserved ⎯

Display A Control

70180h–70183h DSPACNTR Display A Plane Control R/W

 G45: Volume 1a Graphics Core

 89

Table 5-2 Memory Mapped Registers

70184h–70187h DSPALINOFF Display A Linear Offset Register R/W

70188h–7018Bh DSPASTRIDE Display A Stride R/W

7018Ch-7018Fh ⎯ Reserved ⎯

70190h-70193h DSPARESV (RSVD) Display A Reserved R/W

70194h–70197h DSPAKEYVAL Sprite Color Key Value R/W

70198h–7019Bh DSPAKEYMSK Sprite Color Key Mask Value R/W

7019Ch–7019Fh DSPASURF Display A Surface Base Address Register R/W

701A0h-701A3h ⎯ Reserved ⎯

701A4h–701A7h DSPATILEOFF Display A Tiled Offset Register R/W

701A8h-701FFh ⎯ Reserved ⎯

70200h-70203h DSPAFLPQSTAT Flip Queue Status Register R/W

70204h–703FFh ⎯ Reserved ⎯

VBIOS Software Flags 0-6

70400h-70403h ⎯ Reserved ⎯

70404h–7040Fh ⎯ Reserved ⎯

70410h–7044Fh SWFxx Software Flag 00:0F R/W

70450h–70FFFh ⎯ Reserved ⎯

Display Pipeline B Control

71000h–71003h PIPEB_DSL Pipe B Display Scan Line Count RO

71004h–71007h PIPEB_SLC Pipe B Display Scan Line Range Compare RO

71008h–7100Bh PIPEBCONF Pipe B Configuration R/W

7100Ch–7100Fh ⎯ Reserved ⎯

71010h–71013h PIPEBGCMAXRED Pipe B Gamma Correction Max Red R/W

71014h–71017h PIPEBGCMAXGRN Pipe B Gamma Correction Max Green R/W

71018h–7101Bh PIPEBGCMAXBLU Pipe B Gamma Correction Max Blue R/W

71024h–71027h PIPEBSTAT Pipe B Status R/W

71028h–7103Fh ⎯ Reserved ⎯

71040h-71043h PIPEBFRAMEH Pipe B Frame Count High RO

71044h-71047h PIPEBFRAMEPIX Pipe B Frame Count Low and Pixel Count RO

71048h-7117Fh ⎯ Reserved ⎯

Display B / Sprite Control

71180h–71183h DSPBCNTR Display B / Sprite Control R/W

71184h–71187h DSPBLINOFFSET Display B / Sprite Linear Offset R/W

71188h–7118Bh DSPBSTRIDE Display B / Sprite Stride R/W

 G45: Volume 1a Graphics Core

 90

Table 5-2 Memory Mapped Registers

7118Ch–71193h ⎯ Reserved ⎯

71194h–71197h DSPBKEYVAL Display B / Sprite Color Key Value R/W

71198h–7119Bh DSPBKEYMSK Display B / Sprite Color Key Mask R/W

7119Ch–7119Fh DSPBSURF Display B Surface Base Address Register R/W

711A0h-711A3h ⎯ Reserved ⎯

711A4h–711A7h DSPBTILEOFF Display B Tiled Offset Register R/W

711A8h-711FFh ⎯ Reserved ⎯

 71200h-71203h DSPBFLPQSTAT Flip Queue Status Register R/W

71204h–713FFh ⎯ Reserved ⎯

Video BIOS Registers

71400h–71403h VGACNTRL VGA Display Plane Control R/W

71404h–7140Fh ⎯ Reserved ⎯

VBIOS Software Flags 10-1F

71410h–7144Fh SWF[10-1F] Software Flag 10 – 1F R/W

71450h–71FFFh ⎯ Reserved ⎯

Display C / Sprite Control ([DevBW] and [DevCL])

72000h–7217Fh ⎯ Reserved ⎯

72180h–72183h DSPCCNTR Display C / Sprite Control R/W

72184h–72187h DSPCLINOFF Display C / Sprite Linear Offset Register R/W

72188h–7218Bh DSPCSTRIDE Display C / Sprite Stride R/W

7218Ch–7218Fh DSPCPOS Display C / Sprite Position R/W

72190h–72193h DSPCSIZE Display C / Sprite Height and Width R/W

72194h–72197h DSPCKEYMINVAL Display C / Sprite Color Key Min Value R/W

72198h–7219Bh DSPCKEYMSK Display C / Sprite Color Key Mask R/W

7219Ch–7219Fh DSPCSURF Display C Surface Address Register R/W

721A0h–721A3h DSPCKEYMAXVAL Display C / Sprite Color Key Max Value R/W

721A4h–721A7h DSPCTILEOFF Display C Tiled Offset Register R/W

721A4h-721FFh ⎯ Reserved ⎯

72200h-72203h DSPCFLPQSTAT Flip Queue Status Register R/W

72204h–721CFh ⎯ Reserved ⎯

721D0h–721D3h DCLRC0 Display C Color Correction 0 R/W

721D4h–721D7h DCLRC1 Display C Color Correction 1 R/W

721D8h–721DFh ⎯ Reserved ⎯

 G45: Volume 1a Graphics Core

 91

Table 5-2 Memory Mapped Registers

721E0h–721E3h GAMC5 Display C Gamma Correction Register 5 R/W

721E4h–721E7h GAMC4 Display C Gamma Correction Register 4 R/W

721E8h–721EBh GAMC3 Display C Gamma Correction Register 3 R/W

721ECh–721EFh GAMC2 Display C Gamma Correction Register 2 R/W

721F0h–721F3h GAMC1 Display C Gamma Correction Register 1 R/W

721F4h–721F7h GAMC0 Display C Gamma Correction Register 0 R/W

721F8h–723FFh ⎯ Reserved ⎯

Video Sprite A Control : (DevCTG)

72000h–7217Fh ⎯ Reserved ⎯

72180h–72183h DVSACNTR Video Sprite A Control R/W

72184h–72187h DVSALINOFF Video Sprite A Linear Offset R/W

72188h–7218Bh DVSASTRIDE Video Sprite A Stride R/W

7218Ch–7218Fh DVSAPOS Video Sprite A Position R/W

72190h–72193h DVSASIZE Video Sprite A Height and Width R/W

72194h–72197h DVSAKEYVAL Video Sprite A Color Key Value R/W

72198h–7219Bh DVSAKEYMSK Video Sprite A Color Key Mask R/W

7219Ch–7219Fh DVSASURF Video Sprite A Surface Address R/W

721A0h–721A3h DVSAKEYMAXVAL Video Sprite A Color Key Max Value R/W

721A4h–721A7h DVSATILEOFF Video Sprite A Tiled Offset R/W

721A8h-721DFh ⎯ Reserved ⎯

721E0h–721E3h DVSA_GAMC5 Video Sprite A Gamma Correction Register 5 R/W

721E4h–721E7h DVSA_GAMC4 Video Sprite A Gamma Correction Register 4 R/W

721E8h–721EBh DVSA_GAMC3 Video Sprite A Gamma Correction Register 3 R/W

721ECh–721EFh DVSA_GAMC2 Video Sprite A Gamma Correction Register 2 R/W

721F0h–721F3h DVSA_GAMC1 Video Sprite A Gamma Correction Register 1 R/W

721F4h–721F7h DVSA_GAMC0 Video Sprite A Gamma Correction Register 0 R/W

721F8h–723FFh ⎯ Reserved ⎯

VBIOS Software Flags 30-32

72400h–72413h ⎯ Reserved ⎯

72414h–72417h SWF[30] Software Flag 30 R/W

72418h–7241Bh SWF[31] Software Flag 31 R/W

7241Ch–7241Fh SWF[32] Software Flag 32 R/W

72420h–72FFFh ⎯ Reserved ⎯

 G45: Volume 1a Graphics Core

 92

Table 5-2 Memory Mapped Registers

Performance Counters (73000h-73FFFh)

73000h–73003h PCSRC Performance Counter Source Register R/W

73004h–73007h PCSTAT Performance Counter Status Register RO

73008h–7317Fh — Reserved —

Video Sprite B Control : Reserved

73180h–73183h DVSBCNTR Video Sprite B Control R/W

73184h–73187h DVSBLINOFF Video Sprite B Linear Offset R/W

73188h–7318Bh DVSBSTRIDE Video Sprite B Stride R/W

7318Ch–7318Fh DVSBPOS Video Sprite B Position R/W

73190h–73193h DVSBSIZE Video Sprite B Height and Width R/W

73194h–73197h DVSBKEYVAL Video Sprite B Color Key Value R/W

73198h–7319Bh DVSBKEYMSK Video Sprite B Color Key Mask R/W

7319Ch–7319Fh DVSBSURF Video Sprite B Surface Address R/W

731A0h–731A3h DVSBKEYMAXVAL Video Sprite B Color Key Max Value R/W

731A4h–731A7h DVSBTILEOFF Video Sprite B Tiled Offset R/W

731A8h-731DFh ⎯ Reserved ⎯

731E0h–731E3h DVSB_GAMC5 Video Sprite B Gamma Correction Register 5 R/W

731E4h–731E7h DVSB_GAMC4 Video Sprite B Gamma Correction Register 4 R/W

731E8h–731EBh DVSB_GAMC3 Video Sprite B Gamma Correction Register 3 R/W

731ECh–731EFh DVSB_GAMC2 Video Sprite B Gamma Correction Register 2 R/W

731F0h–731F3h DVSB_GAMC1 Video Sprite B Gamma Correction Register 1 R/W

731F4h–731F7h DVSB_GAMC0 Video Sprite B Gamma Correction Register 0 R/W

731F8h–733FFh ⎯ Reserved ⎯

Reserved (74000h-7FFFFh)

74000h–7FFFFh — Reserved —

 G45: Volume 1a Graphics Core

 93

5.2 VGA and Extended VGA Register Map

For I/O locations, the value in the address column represents the register I/O address. For
memory mapped locations, this address is an offset from the base address programmed in the
MMADR register.

5.2.1 VGA and Extended VGA I/O and Memory Register Map
Table 5-3. I/O and Memory Register Map

Address Register Name (Read) Register Name (Write)

2D Registers

3B0h–3B3h Reserved Reserved

3B4h VGA CRTC Index (CRX)
(monochrome)

VGA CRTC Index (CRX)
(monochrome)

3B5h VGA CRTC Data (monochrome) VGA CRTC Data (monochrome)

3B6h–3B9h Reserved Reserved

3Bah VGA Status Register (ST01) VGA Feature Control Register (FCR)

3BBh–3BFh Reserved Reserved

3C0h VGA Attribute Controller Index (ARX) VGA Attribute Controller Index
(ARX)/
VGA Attribute Controller Data
(alternating writes select ARX or
write ARxx Data)

3C1h VGA Attribute Controller Data
(read ARxx data)

Reserved

3C2h VGA Feature Read Register (ST00) VGA Miscellaneous Output Register
(MSR)

3C3h Reserved Reserved

3C4h VGA Sequencer Index (SRX) VGA Sequencer Index (SRX)

3C5h VGA Sequencer Data (SRxx) VGA Sequencer Data (SRxx)

3C6h VGA Color Palette Mask (DACMASK) VGA Color Palette Mask (DACMASK)

3C7h VGA Color Palette State (DACSTATE) VGA Color Palette Read Mode Index
(DACRX)

3C8h VGA Color Palette Write Mode Index
(DACWX)

VGA Color Palette Write Mode Index
(DACWX)

3C9h VGA Color Palette Data (DACDATA) VGA Color Palette Data (DACDATA)

3CAh VGA Feature Control Register (FCR) Reserved

3CBh Reserved Reserved

3CCh VGA Miscellaneous Output Register
(MSR)

Reserved

 G45: Volume 1a Graphics Core

 94

Address Register Name (Read) Register Name (Write)

3CDh Reserved Reserved

3CEh VGA Graphics Controller Index (GRX) VGA Graphics Controller Index
(GRX)

3CFh VGA Graphics Controller Data (GRxx) VGA Graphics Controller Data
(GRxx)

3D0h–3D1h Reserved Reserved

2D Registers

3D4h VGA CRTC Index (CRX) VGA CRTC Index (CRX)

3D5h VGA CRTC Data (CRxx) VGA CRTC Data (CRxx)

System Configuration Registers

3D6h GFX/2D Configurations Extensions
Index (XRX)

GFX/2D Configurations Extensions
Index (XRX)

3D7h GFX/2D Configurations Extensions
Data (XRxx)

GFX/2D Configurations Extensions
Data (XRxx)

2D Registers

3D8h–3D9h Reserved Reserved

3DAh VGA Status Register (ST01) VGA Feature Control Register (FCR)

3DBh–3DFh Reserved Reserved

5.3 Indirect VGA and Extended VGA Register
Indices

The registers listed in this section are indirectly accessed by programming an index value into the
appropriate SRX, GRX, ARX, or CRX register. The index and data register address locations are
listed in the previous section. Additional details concerning the indirect access mechanism are
provided in the VGA and Extended VGA Register Description Chapter (see SRxx, GRxx, ARxx or
CRxx sections).

Table 5-4. 2D Sequence Registers (3C4h / 3C5h)

Index Sym Description

00h SR00 Sequencer Reset

01h SR01 Clocking Mode

02h SR02 Plane / Map Mask

03h SR03 Character Font

04h SR04 Memory Mode

07h SR07 Horizontal Character Counter Reset

 G45: Volume 1a Graphics Core

 95

Table 5-5. 2D Graphics Controller Registers (3CEh / 3CFh)

Index Sym Register Name

00h GR00 Set / Reset

01h GR01 Enable Set / Reset

02h GR02 Color Compare

03h GR03 Data Rotate

04h GR04 Read Plane Select

05h GR05 Graphics Mode

06h GR06 Miscellaneous

07h GR07 Color Don’t Care

08h GR08 Bit Mask

10h GR10 Address Mapping

11h GR11 Page Selector

18h GR18 Software Flags

Table 5-6. 2D Attribute Controller Registers (3C0h / 3C1h)

Index Sym Register Name

00h AR00 Palette Register 0

01h AR01 Palette Register 1

02h AR02 Palette Register 2

03h AR03 Palette Register 3

04h AR04 Palette Register 4

05h AR05 Palette Register 5

06h AR06 Palette Register 6

07h AR07 Palette Register 7

08h AR08 Palette Register 8

09h AR09 Palette Register 9

0Ah AR0A Palette Register A

0Bh AR0B Palette Register B

0Ch AR0C Palette Register C

0Dh AR0D Palette Register D

0Eh AR0E Palette Register E

0Fh AR0F Palette Register F

10h AR10 Mode Control

11h AR11 Reserved

12h AR12 Memory Plane Enable

13h AR13 Horizontal Pixel Panning

14h AR14 Color Select

 G45: Volume 1a Graphics Core

 96

Table 5-7. 2D CRT Controller Registers (3B4h / 3D4h / 3B5h / 3D5h)

Index Sym Register Name

00h CR00 Horizontal Total

01h CR01 Horizontal Display Enable End

02h CR02 Horizontal Blanking Start

03h CR03 Horizontal Blanking End

04h CR04 Horizontal Sync Start

05h CR05 Horizontal Sync End

06h CR06 Vertical Total

07h CR07 Overflow

08h CR08 Preset Row Scan

09h CR09 Maximum Scan Line

0Ah CR0A Text Cursor Start

0Bh CR0B Text Cursor End

0Ch CR0C Start Address High

0Dh CR0D Start Address Low

0Eh CR0E Text Cursor Location High

0Fh CR0F Text Cursor Location Low

10h CR10 Vertical Sync Start

11h CR11 Vertical Sync End

12h CR12 Vertical Display Enable End

13h CR13 Offset

14h CR14 Underline Location

15h CR15 Vertical Blanking Start

16h CR16 Vertical Blanking End

17h CR17 CRT Mode

18h CR18 Line Compare

22h CR22 Memory Read Latch Data

24h CR24 Test Register for Toggle State of Attribute Control Register

§§

6 Memory Data Formats

This chapter describes the attributes associated with the memory-resident data objects operated
on by the graphics pipeline. This includes object types, pixel formats, memory layouts, and
rules/restrictions placed on the dimensions, physical memory location, pitch, alignment, etc. with
respect to the specific operations performed on the objects.

6.1 Memory Object Overview

Any memory data accessed by the device is considered part of a memory object of some memory
object type.

6.1.1 Memory Object Types

The following table lists the various memory objects types and an indication of their role in the
system.

Table 6-1. Memory Object Types

Memory Object
Type

Role

Graphics Translation
Table (GTT)

Contains PTEs used to translate “graphics addresses” into physical
memory addresses.

Hardware Status
Page

Cached page of sysmem used to provide fast driver synchronization.

Logical Context
Buffer

Memory areas used to store (save/restore) images of hardware
rendering contexts. Logical contexts are referenced via a pointer to the
corresponding Logical Context Buffer.

Ring Buffers Buffers used to transfer (DMA) instruction data to the device. Primary
means of controlling rendering operations.

Batch Buffers Buffers of instructions invoked indirectly from Ring Buffers.

State Descriptors Contains state information in a prescribed layout format to be read by
hardware. Many different state descriptor formats are supported.

Vertex Buffers Buffers of 3D vertex data indirectly referenced through “indexed” 3D
primitive instructions.

VGA Buffer

(Must be mapped
UC on PCI)

Graphics memory buffer used to drive the display output while in legacy
VGA mode.

Display Surface Memory buffer used to display images on display devices.

Overlay Surface Memory buffer used to display overlaid images on display devices.

 G45: Volume 1a Graphics Core

 98

Memory Object
Type

Role

Overlay Register,
Filter Coefficients

Buffer

Memory area used to provide double-buffer for Overlay register and
filter coefficient loading.

Cursor Surface Hardware cursor pattern in memory.

2D Render Source Surface used as primary input to 2D rendering operations.

2D Render R-M-W
Destination

2D rendering output surface that is read in order to be combined in the
rendering function. Destination surfaces that accessed via this Read-
Modify-Write mode have somewhat different restrictions than Write-
Only Destination surfaces.

2D Render Write-
Only Destination

2D rendering output surface that is written but not read by the 2D
rendering function. Destination surfaces that accessed via a Write-Only
mode have somewhat different restrictions than Read-Modify-Write
Destination surfaces.

2D Monochrome
Source

1 bpp surfaces used as inputs to 2D rendering after being converted to
foreground/background colors.

2D Color Pattern 8x8 pixel array used to supply the “pattern” input to 2D rendering
functions.

DIB “Device Independent Bitmap” surface containing “logical” pixel values
that are converted (via LUTs) to physical colors.

3D Color Buffer Surface receiving color output of 3D rendering operations. May also be
accessed via R-M-W (aka blending). Also referred to as a Render
Target.

3D Depth Buffer Surface used to hold per-pixel depth and stencil values used in 3D
rendering operations. Accessed via RMW.

3D Texture Map Color surface (or collection of surfaces) which provide texture data in
3D rendering operations.

“Non-3D” Texture

Surface read by Texture Samplers, though not in normal 3D rendering
operations (e.g., in video color conversion functions).

Motion Comp
Surfaces

These are the Motion Comp reference pictures.

Motion Comp
Correction Data
Buffer

This is Motion Comp intra-coded or inter-coded correction data.

 G45: Volume 1a Graphics Core

 99

6.2 Channel Formats

6.2.1 Unsigned Normalized (UNORM)

An unsigned normalized value with n bits is interpreted as a value between 0.0 and 1.0. The
minimum value (all 0’s) is interpreted as 0.0, the maximum value (all 1’s) is interpreted as 1.0.
Values inbetween are equally spaced. For example, a 2-bit UNORM value would have the four
values 0, 1/3, 2/3, and 1.

If the incoming value is interpreted as an n-bit integer, the interpreted value can be calculated by
dividing the integer by 2n-1.

6.2.2 Gamma Conversion (SRGB)

Gamma conversion is only supported on UNORM formats. If this flag is included in the surface
format name, it indicates that a reverse gamma conversion is to be done after the source surface
is read, and a forward gamma conversion is to be done before the destination surface is written.

6.2.3 Signed Normalized (SNORM)

A signed normalized value with n bits is interpreted as a value between -1.0 and +1.0. If the
incoming value is interpreted as a 2’s-complement n-bit signed integer, the interpreted value can
be calculated by dividing the integer by 2n-1-1. Note that the most negative value of -2n-1 will
result in a value slightly smaller than -1.0. This value is clamped to -1.0, thus there are two
representations of -1.0 in SNORM format.

6.2.4 Unsigned Integer (UINT/USCALED)

The UINT and USCALED formats interpret the source as an unsigned integer value with n bits with
a range
of 0 to 2n-1.

The UINT formats copy the source value to the destination (zero-extending if required), keeping
the value as an integer.

The USCALED formats convert the integer into the corresponding floating point value (e.g., 0x03 -
-> 3.0f). For 32-bit sources, the value is rounded to nearest even.

6.2.5 Signed Integer (SINT/SSCALED)

A signed integer value with n bits is interpreted as a 2’s complement integer with a range of -2n-1
to +2n-1-1.

The SINT formats copy the source value to the destination (sign-extending if required), keeping
the value as an integer.

The SSCALED formats convert the integer into the corresponding floating point value (e.g.,
0xFFFD --> -3.0f). For 32-bit sources, the value is rounded to nearest even.

 G45: Volume 1a Graphics Core

 100

6.2.6 Floating Point (FLOAT)

Refer to IEEE Standard 754 for Binary Floating-Point Arithmetic. The IA-32 Intel® Architecture
Software Developer’s Manual also describes floating point data types (though GENX deviates
slightly from those behaviors).

6.2.6.1 32-bit Floating Point

Bit Description

31 Sign (s)

30:23 Exponent (e) Biased Exponent

22:0 Fraction (f) Does not include “hidden one”

The value of this data type is derived as:
• if e == 255 and f != 0, then v is NaN regardless of s
• if e == 255 and f == 0, then v = (-1)s*infinity (signed infinity)
• if 0 < e < 255, then v = (-1)s*2(e-127)*(1.f)
• if e == 0 and f != 0, then v = (-1)s*2(e-126)*(0.f) (denormalized numbers)
• if e == 0 and f == 0, then v = (-1)s*0 (signed zero)

6.2.6.2 64-bit Floating Point

Bit Description

63 Sign (s)

62:52 Exponent (e) Biased Exponent

51:0 Fraction (f) Does not include “hidden one”

The value of this data type is derived as:
• if e == b’11..11’ and f != 0, then v is NaN regardless of s
• if e == b’11..11’ and f == 0, then v = (-1)s*infinity (signed infinity)
• if 0 < e < b’11..11’, then v = (-1)s*2(e-1023)*(1.f)
• if e == 0 and f != 0, then v = (-1)s*2(e-1022)*(0.f) (denormalized numbers)
• if e == 0 and f == 0, then v = (-1)s*0 (signed zero)

6.3 Non-Video Surface Formats

This section describes the lowest-level organization of a surfaces containing discrete “pixel”
oriented data (e.g., discrete pixel (RGB,YUV) colors, subsampled video data, 3D depth/stencil
buffer pixel formats, bump map values etc. Many of these pixel formats are common to the
various pixel-oriented memory object types.

6.3.1 Surface Format Naming

Unless indicated otherwise, all pixels are stored in “little endian” byte order. I.e., pixel bits 7:0
are stored in byte n, pixel bits 15:8 are stored in byte n+1, and so on. The format labels include
color components in little endian order (e.g., R8G8B8A8 format is physically stored as R, G, B, A).

 G45: Volume 1a Graphics Core

 101

The name of most of the surface formats specifies its format. Channels are listed in little endian
order (LSB channel on the left, MSB channel on the right), with the channel format specified
following the channels with that format. For example, R5G5_SNORM_B6_UNORM contains, from
LSB to MSB, 5 bits of red in SNORM format, 5 bits of green in SNORM format, and 6 bits of blue in
UNORM format.

6.3.2 Intensity Formats

All surface formats containing “I” include an intensity value. When used as a source surface for
the sampling engine, the intensity value is replicated to all four channels (R,G,B,A) before being
filtered. Intensity surfaces are not supported as destinations.

6.3.3 Luminance Formats

All surface formats contaning “L” include a luminance value. When used as a source surface for
the sampling engine, the luminance value is replicated to the three color channels (R,G,B) before
being filtered. The alpha channel is provided either from another field or receives a default value.
Luminance surfaces are not supported as destinations.

 G45: Volume 1a Graphics Core

 102

6.3.4 P4A4_UNORM

This texel format contains a 4-bit Alpha value (in the high nibble) and a 4-bit Palette Index value
(in the low nibble).

7 4 3 0

Alpha Palette Index

Bit Description

7:4 Alpha

Alpha value which will be replicated to both the high and low nibble of an 8-
bit value, and then divided by 255 to yield a [0.0,1.0] Alpha value.

Format: U4

3:0 Palette Index

A 4-bit index which is used to lookup a 24-bit (RGB) value in the texture
palette (loaded via 3DSTATE_SAMPLER_PALETTE_LOAD)

Format: U4

6.3.5 A4P4_UNORM

This texel format contains a 4-bit Alpha value (in the low nibble) and a 4-bit Color Index value (in
the high nibble).

7 4 3 0

Palette Index Alpha

Bit Description

7:4 Palette Index

A 4-bit color index which is used to lookup a 24-bit RGB value in the
texture palette.

Format: U4

3:0 Alpha

Alpha value which will be replicated to both the high and low nibble of an
8-bit value, and then divided by 255 to yield a [0.0,1.0] alpha value.

Format: U4

 G45: Volume 1a Graphics Core

 103

6.3.6 P8A8_UNORM

This surface format contains an 8-bit Alpha value (in the high byte) and an 8-bit Palette Index
value (in the low byte).

15 8 7 0

Alpha Palette Index

Bit Description

7:4 Alpha

Alpha value which will be divided by 255 to yield a [0.0,1.0] Alpha value.

Format: U8

3:0 Palette Index

An 8-bit index which is used to lookup a 24-bit (RGB) value in the texture palette (loaded via
3DSTATE_SAMPLER_PALETTE_LOADx)

Format: U8

6.3.7 A8P8_UNORM

This surface format contains an 8-bit Alpha value (in the low byte) and an 8-bit Color Index value
(in the high byte).

15 8 7 0

Palette Index Alpha

Bit Description

15:8 Palette Index

An 8-bit color index which is used to lookup a 24-bit RGB value in the texture palette.

Format: U8

7:0 Alpha

Alpha value which will be divided by 255 to yield a [0.0,1.0] alpha value.

Format: U8

 G45: Volume 1a Graphics Core

 104

6.3.8 P8_UNORM

This surface format contains only an 8-bit Color Index value.

Bit Description

7:0 Palette Index

An 8-bit color index which is used to lookup a 32-bit ARGB value in the texture palette.

Format: U8

6.3.9 P2_UNORM

This surface format contains only a 2-bit Color Index value.

Bit Description

1:0 Palette Index

A 2-bit color index which is used to lookup a 32-bit ARGB value in the texture palette.

Format: U2

6.4 Compressed Surface Formats

This section contains information on the internal organization of compressed surface formats.

6.4.1 FXT Texture Formats

There are four different FXT1 compressed texture formats. Each of the formats compress two 4x4
texel blocks into 128 bits. In each compression format, the 32 texels in the two 4x4 blocks are
arranged according to the following diagram:

Figure 6-1. FXT1 Encoded Blocks

t0 t1 t2 t3

t4 t5 t6 t7

t8 t9 t10 t11

t12 t13 t14 t15

t16 t17 t18 t19

t20 t21 t22 t23

t24 t25 t26 t27

t28 t29 t30 t31

 G45: Volume 1a Graphics Core

 105

6.4.1.1 Overview of FXT1 Formats

During the compression phase, the encoder selects one of the four formats for each block based
on which encoding scheme results in best overall visual quality. The following table lists the four
different modes and their encodings:

Table 6-2. FXT1 Format Summary

Bit
12
7

Bit
126

Bit 125 Block
Compression

Mode

Summary Description

0 0 X CC_HI 2 R5G5B5 colors supplied. Single LUT with 7
interpolated color values and transparent black

0 1 0 CC_CHROMA 4 R5G5B5 colors used directly as 4-entry LUT.

0 1 1 CC_ALPHA 3 A5R5G5B5 colors supplied. LERP bit selects between
1 LUT with 3 discrete colors + transparent black and 2
LUTs using interpolated values of Color 0,1 (t0-15) and
Color 1,2 (t16-31).

1 x x CC_MIXED 4 R5G5B5 colors supplied, where Color0,1 LUT is used
for t0-t15, and Color2,3 LUT used for t16-31. Alpha bit
selects between LUTs with 4 interpolated colors or 3
interpolated colors + transparent black.

6.4.1.2 FXT1 CC_HI Format

In the CC_HI encoding format, two base 15-bit R5G5B5 colors (Color 0, Color 1) are included in
the encoded block. These base colors are then expanded (using high-order bit replication) to 24-
bit RGB colors, and used to define an 8-entry lookup table of interpolated color values (the 8th
entry is transparent black). The encoded block contains a 3-bit index value per texel that is used
to lookup a color from the table.

6.4.1.2.1 CC_HI Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_HI block format:

Table 6-3. FXT CC_HI Block Encoding

Bit Description

127:126 Mode = ‘00’b (CC_HI)

125:121 Color 1 Red

120:116 Color 1 Green

115:111 Color 1 Blue

110:106 Color 0 Red

105:101 Color 0 Green

100:96 Color 0 Blue

95:93 Texel 31 Select

... ...

 G45: Volume 1a Graphics Core

 106

Bit Description

50:48 Texel 16 Select

47:45 Texel 15 Select

... ...

2:0 Texel 0 Select

6.4.1.2.2 CC_HI Block Decoding

The two base colors, Color 0 and Color 1 are converted from R5G5B5 to R8G8B8 by replicating the
3 MSBs into the 3 LSBs, as shown in the following table:

Table 6-4. FXT CC_HI Decoded Colors

Expanded Color Bit Expanded Channel
Bit

Encoded Block
Source Bit

Color 1 [23:19] Color 1 Red [7:3] [125:121]

Color 1 [18:16] Color 1 Red [2:0] [125:123]

Color 1 [15:11] Color 1 Green [7:3] [120:116]

Color 1 [10:08] Color 1 Green [2:0] [120:118]

Color 1 [07:03] Color 1 Blue [7:3] [115:111]

Color 1 [02:00] Color 1 Blue [2:0] [115:113]

Color 0 [23:19] Color 0 Red [7:3] [110:106]

Color 0 [18:16] Color 0 Red [2:0] [110:108]

Color 0 [15:11] Color 0 Green [7:3] [105:101]

Color 0 [10:08] Color 0 Green [2:0] [105:103]

Color 0 [07:03] Color 0 Blue [7:3] [100:96]

Color 0 [02:00] Color 0 Blue [2:0] [100:98]

These two 24-bit colors (Color 0, Color 1) are then used to create a table of seven interpolated
colors (with Alpha = 0FFh), along with an eight entry equal to RGBA = 0,0,0,0, as shown in the
following table:

 G45: Volume 1a Graphics Core

 107

Table 6-5. FXT CC_HI Interpolated Color Table

Interpolated Color Color RGB Alpha

0 Color0.RGB 0FFh

1 (5 * Color0.RGB + 1 * Color1.RGB + 3) / 6 0FFh

2 (4 * Color0.RGB + 2 * Color1.RGB + 3) / 6 0FFh

3 (3 * Color0.RGB + 3 * Color1.RGB + 3) / 6 0FFh

4 (2 * Color0.RGB + 4 * Color1.RGB + 3) / 6 0FFh

5 (1 * Color0.RGB + 5 * Color1.RGB + 3) / 6 0FFh

6 Color1.RGB 0FFh

7 RGB = 0,0,0 0

This table is then used as an 8-entry Lookup Table, where each 3-bit Texel n Select field of the
encoded CC_HI block is used to index into a 32-bit A8R8G8B8 color from the table completing the
decode of the CC_HI block.

6.4.1.3 FXT1 CC_CHROMA Format

In the CC_CHROMA encoding format, four 15-bit R5B5G5 colors are included in the encoded block.
These colors are then expanded (using high-order bit replication) to form a 4-entry table of 24-bit
RGB colors. The encoded block contains a 2-bit index value per texel that is used to lookup a 24-
bit RGB color from the table. The Alpha component defaults to fully opaque (0FFh).

6.4.1.3.1 CC_CHROMA Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_CHROMA block format:

Table 6-6. FXT CC_CHROMA Block Encoding

Bit Description

127:125 Mode = ‘010’b (CC_CHROMA)

124 Unused

123:119 Color 3 Red

118:114 Color 3 Green

113:109 Color 3 Blue

108:104 Color 2 Red

103:99 Color 2 Green

98:94 Color 2 Blue

93:89 Color 1 Red

88:84 Color 1 Green

83:79 Color 1 Blue

 G45: Volume 1a Graphics Core

 108

Bit Description

78:74 Color 0 Red

73:69 Color 0 Green

68:64 Color 0 Blue

63:62 Texel 31 Select

...

33:32 Texel 16 Select

31:30 Texel 15 Select

...

1:0 Texel 0 Select

6.4.1.3.2 CC_CHROMA Block Decoding

The four colors (Color 0-3) are converted from R5G5B5 to R8G8B8 by replicating the 3 MSBs into
the 3 LSBs, as shown in the following tables:

Table 6-7. FXT CC_CHROMA Decoded Colors

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 3 [23:17] Color 3 Red [7:3] [123:119]

Color 3 [18:16] Color 3 Red [2:0] [123:121]

Color 3 [15:11] Color 3 Green [7:3] [118:114]

Color 3 [10:08] Color 3 Green [2:0] [118:116]

Color 3 [07:03] Color 3 Blue [7:3] [113:109]

Color 3 [02:00] Color 3 Blue [2:0] [113:111]

Color 2 [23:17] Color 2 Red [7:3] [108:104]

Color 2 [18:16] Color 2 Red [2:0] [108:106]

Color 2 [15:11] Color 2 Green [7:3] [103:99]

Color 2 [10:08] Color 2 Green [2:0] [103:101]

Color 2 [07:03] Color 2 Blue [7:3] [98:94]

Color 2 [02:00] Color 2 Blue [2:0] [98:96]

Color 1 [23:17] Color 1 Red [7:3] [93:89]

Color 1 [18:16] Color 1 Red [2:0] [93:91]

Color 1 [15:11] Color 1 Green [7:3] [88:84]

Color 1 [10:08] Color 1 Green [2:0] [88:86]

Color 1 [07:03] Color 1 Blue [7:3] [83:79]

Color 1 [02:00] Color 1 Blue [2:0] [83:81]

Color 0 [23:17] Color 0 Red [7:3] [78:74]

Color 0 [18:16] Color 0 Red [2:0] [78:76]

Color 0 [15:11] Color 0 Green [7:3] [73:69]

 G45: Volume 1a Graphics Core

 109

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 0 [10:08] Color 0 Green [2:0] [73:71]

Color 0 [07:03] Color 0 Blue [7:3] [68:64]

Color 0 [02:00] Color 0 Blue [2:0] [68:66]

This table is then used as a 4-entry Lookup Table, where each 2-bit Texel n Select field of the
encoded CC_CHROMA block is used to index into a 32-bit A8R8G8B8 color from the table (Alpha
defaults to 0FFh) completing the decode of the CC_CHROMA block.

Table 6-8. FXT CC_CHROMA Interpolated Color Table

Texel Select Color ARGB

0 Color0.ARGB

1 Color1.ARGB

2 Color2.ARGB

3 Color3.ARGB

6.4.1.4 FXT1 CC_MIXED Format

In the CC_MIXED encoding format, four 15-bit R5G5B5 colors are included in the encoded block:
Color 0 and Color 1 are used for Texels 0-15, and Color 2 and Color 3 are used for Texels 16-31.

Each pair of colors are then expanded (using high-order bit replication) to form 4-entry tables of
24-bit RGB colors. The encoded block contains a 2-bit index value per texel that is used to lookup
a 24-bit RGB color from the table. The Alpha component defaults to fully opaque (0FFh).

6.4.1.4.1 CC_MIXED Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_MIXED block format:

Table 6-9. FXT CC_MIXED Block Encoding

Bit Description

127 Mode = ‘1’b (CC_MIXED)

126 Color 3 Green [0]

125 Color 1 Green [0]

124 Alpha [0]

123:119 Color 3 Red

118:114 Color 3 Green

113:109 Color 3 Blue

108:104 Color 2 Red

103:99 Color 2 Green

98:94 Color 2 Blue

 G45: Volume 1a Graphics Core

 110

Bit Description

93:89 Color 1 Red

88:84 Color 1 Green

83:79 Color 1 Blue

78:74 Color 0 Red

73:69 Color 0 Green

68:64 Color 0 Blue

63:62 Texel 31 Select

... ...

33:32 Texel 16 Select

31:30 Texel 15 Select

... ...

1:0 Texel 0 Select

6.4.1.4.2 CC_MIXED Block Decoding

The decode of the CC_MIXED block is modified by Bit 124 (Alpha [0]) of the encoded block.

Alpha[0] = 0 Decoding

When Alpha[0] = 0 the four colors are encoded as 16-bit R5G6B5 values, with the Green LSB
defined as per the following table:

Table 6-10. FXT CC_MIXED (Alpha[0]=0) Decoded Colors

Encoded Color Bit Definition

Color 3 Green [0] Encoded Bit [126]

Color 2 Green [0] Encoded Bit [33] XOR Encoded Bit [126]

Color 1 Green [0] Encoded Bit [125]

Color 0 Green [0] Encoded Bit [1] XOR Encoded Bit [125]

The four colors (Color 0-3) are then converted from R5G5B6 to R8G8B8 by replicating the 3 MSBs
into the 3 LSBs, as shown in the following table:

Table 6-11. FXT CC_MIXED Decoded Colors (Alpha[0] = 0)

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 3 [23:17] Color 3 Red [7:3] [123:119]

Color 3 [18:16] Color 3 Red [2:0] [123:121]

Color 3 [15:11] Color 3 Green [7:3] [118:114]

 G45: Volume 1a Graphics Core

 111

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 3 [10] Color 3 Green [2] [126]

Color 3 [09:08] Color 3 Green [1:0] [118:117]

Color 3 [07:03] Color 3 Blue [7:3] [113:109]

Color 3 [02:00] Color 3 Blue [2:0] [113:111]

Color 2 [23:17] Color 2 Red [7:3] [108:104]

Color 2 [18:16] Color 2 Red [2:0] [108:106]

Color 2 [15:11] Color 2 Green [7:3] [103:99]

Color 2 [10] Color 2 Green [2] [33] XOR [126]]

Color 2 [09:08] Color 2 Green [1:0] [103:100]

Color 2 [07:03] Color 2 Blue [7:3] [98:94]

Color 2 [02:00] Color 2 Blue [2:0] [98:96]

Color 1 [23:17] Color 1 Red [7:3] [93:89]

Color 1 [18:16] Color 1 Red [2:0] [93:91]

Color 1 [15:11] Color 1 Green [7:3] [88:84]

Color 1 [10] Color 1 Green [2] [125]

Color 1 [09:08] Color 1 Green [1:0] [88:86]

Color 1 [07:03] Color 1 Blue [7:3] [83:79]

Color 1 [02:00] Color 1 Blue [2:0] [83:81]

Color 0 [23:17] Color 0 Red [7:3] [78:74]

Color 0 [18:16] Color 0 Red [2:0] [78:76]

Color 0 [15:11] Color 0 Green [7:3] [73:69]

Color 0 [10] Color 0 Green [2] [1] XOR [125]

Color 0 [09:08] Color 0 Green [1:0] [73:71]

Color 0 [07:03] Color 0 Blue [7:3] [68:64]

Color 0 [02:00] Color 0 Blue [2:0] [68:66]

The two sets of 24-bit colors (Color 0,1 and Color 2,3) are then used to create two tables of four
interpolated colors (with Alpha = 0FFh). The Color0,1 table is used as a lookup table for texel 0-
15 indices, and the Color2,3 table used for texels 16-31 indices, as shown in the following tables:

 G45: Volume 1a Graphics Core

 112

Table 6-12. FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 0-15)

Texel 0-15 Select Color RGB Alpha

0 Color0.RGB 0FFh

1 (2*Color0.RGB + Color1.RGB + 1) /3 0FFh

2 (Color0.RGB + 2*Color1.RGB + 1) /3 0FFh

3 Color1.RGB 0FFh

Table 6-13. FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 16-31)

Texel 16-31 Select Color RGB Alpha

0 Color2.RGB 0FFh

1 (2/3) * Color2.RGB + (1/3) * Color3.RGB 0FFh

2 (1/3) * Color2.RGB + (2/3) * Color3.RGB 0FFh

3 Color3.RGB 0FFh

Alpha[0] = 1 Decoding

When Alpha[0] = 1, Color0 and Color2 are encoded as 15-bit R5G5B5 values. Color1 and Color3
are encoded as RGB565 colors, with the Green LSB obtained as shown in the following table:

Table 6-14. FXT CC_MIXED (Alpha[0]=0) Decoded Colors

Encoded Color Bit Definition

Color 3 Green [0] Encoded Bit [126]

Color 1 Green [0] Encoded Bit [125]

All four colors are then expanded to 24-bit R8G8B8 colors by bit replication, as show in the
following diagram.

Table 6-15. FXT CC_MIXED Decoded Colors (Alpha[0] = 1)

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 3 [23:17] Color 3 Red [7:3] [123:119]

Color 3 [18:16] Color 3 Red [2:0] [123:121]

Color 3 [15:11] Color 3 Green [7:3] [118:114]

Color 3 [10] Color 3 Green [2] [126]

Color 3 [09:08] Color 3 Green [1:0] [118:117]

Color 3 [07:03] Color 3 Blue [7:3] [113:109]

Color 3 [02:00] Color 3 Blue [2:0] [113:111]

Color 2 [23:19] Color 2 Red [7:3] [108:104]

Color 2 [18:16] Color 2 Red [2:0] [108:106]

Color 2 [15:11] Color 2 Green [7:3] [103:99]

 G45: Volume 1a Graphics Core

 113

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 2 [10:08] Color 2 Green [2:0] [103:101]

Color 2 [07:03] Color 2 Blue [7:3] [98:94]

Color 2 [02:00] Color 2 Blue [2:0] [98:96]

Color 1 [23:17] Color 1 Red [7:3] [93:89]

Color 1 [18:16] Color 1 Red [2:0] [93:91]

Color 1 [15:11] Color 1 Green [7:3] [88:84]

Color 1 [10] Color 1 Green [2] [125]

Color 1 [09:08] Color 1 Green [1:0] [88:87]

Color 1 [07:03] Color 1 Blue [7:3] [83:79]

Color 1 [02:00] Color 1 Blue [2:0] [83:81]

Color 0 [23:19] Color 0 Red [7:3] [78:74]

Color 0 [18:16] Color 0 Red [2:0] [78:76]

Color 0 [15:11] Color 0 Green [7:3] [73:69]

Color 0 [10:08] Color 0 Green [2:0] [73:71]

Color 0 [07:03] Color 0 Blue [7:3] [68:64]

Color 0 [02:00] Color 0 Blue [2:0] [68:66]

The two sets of 24-bit colors (Color 0,1 and Color 2,3) are then used to create two tables of four
colors. The Color0,1 table is used as a lookup table for texel 0-15 indices, and the Color2,3 table
used for texels 16-31 indices. The color at index 1 is the linear interpolation of the base colors,
while the color at index 3 is defined as Black (0,0,0) with Alpha = 0, as shown in the following
figures:

Table 6-16. FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 0-15)

Texel 0-15 Select Color RGB Alpha

0 Color0.RGB 0FFh

1 (Color0.RGB + Color1.RGB) /2 0FFh

2 Color1.RGB 0FFh

3 Black (0,0,0) 0

Table 6-17. FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 16-31)

Texel 16-31 Select Color RGB Alpha

0 Color2.RGB 0FFh

1 (Color2.RGB + Color3.RGB) /2 0FFh

2 Color3.RGB 0FFh

3 Black (0,0,0) 0

These tables are then used as a 4-entry Lookup Table, where each 2-bit Texel n Select field of the
encoded CC_MIXED block is used to index into the appropriate 32-bit A8R8G8B8 color from the
table, completing the decode of the CC_CMIXED block.

 G45: Volume 1a Graphics Core

 114

6.4.1.5 FXT1 CC_ALPHA Format

In the CC_ALPHA encoding format, three A5R5G5B5 colors are provided in the encoded block. A
control bit (LERP) is used to define the lookup table (or tables) used to dereference the 2-bit Texel
Selects.

6.4.1.5.1 CC_ALPHA Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_ALPHA block format:

Table 6-18. FXT CC_ALPHA Block Encoding

Bit Description

127:125 Mode = ‘011’b (CC_ALPHA)

124 LERP

123:119 Color 2 Alpha

118:114 Color 1 Alpha

113:109 Color 0 Alpha

108:104 Color 2 Red

103:99 Color 2 Green

98:94 Color 2 Blue

93:89 Color 1 Red

88:84 Color 1 Green

83:79 Color 1 Blue

78:74 Color 0 Red

73:69 Color 0 Green

68:64 Color 0 Blue

63:62 Texel 31 Select

... ...

33:32 Texel 16 Select

31:30 Texel 15 Select

... ...

1:0 Texel 0 Select

 G45: Volume 1a Graphics Core

 115

6.4.1.5.2 CC_ALPHA Block Decoding

Each of the three colors (Color 0-2) are converted from A5R5G5B5 to A8R8G8B8 by replicating the
3 MSBs into the 3 LSBs, as shown in the following tables:

Table 6-19. FXT CC_ALPHA Decoded Colors

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 2 [31:27] Color 2 Alpha [7:3] [123:119]

Color 2 [26:24] Color 2 Alpha [2:0] [123:121]

Color 2 [23:17] Color 2 Red [7:3] [108:104]

Color 2 [18:16] Color 2 Red [2:0] [108:106]

Color 2 [15:11] Color 2 Green [7:3] [103:99]

Color 2 [10:08] Color 2 Green [2:0] [103:101]

Color 2 [07:03] Color 2 Blue [7:3] [98:94]

Color 2 [02:00] Color 2 Blue [2:0] [98:96]

Color 1 [31:27] Color 1 Alpha [7:3] [118:114]

Color 1 [26:24] Color 1 Alpha [2:0] [118:116]

Color 1 [23:17] Color 1 Red [7:3] [93:89]

Color 1 [18:16] Color 1 Red [2:0] [93:91]

Color 1 [15:11] Color 1 Green [7:3] [88:84]

Color 1 [10:08] Color 1 Green [2:0] [88:86]

Color 1 [07:03] Color 1 Blue [7:3] [83:79]

Color 1 [02:00] Color 1 Blue [2:0] [83:81]

Color 0 [31:27] Color 0 Alpha [7:3] [113:109]

Color 0 [26:24] Color 0 Alpha [2:0] [113:111]

Color 0 [23:17] Color 0 Red [7:3] [78:74]

Color 0 [18:16] Color 0 Red [2:0] [78:76]

Color 0 [15:11] Color 0 Green [7:3] [73:69]

Color 0 [10:08] Color 0 Green [2:0] [73:71]

Color 0 [07:03] Color 0 Blue [7:3] [68:64]

Color 0 [02:00] Color 0 Blue [2:0] [68:66]

 G45: Volume 1a Graphics Core

 116

LERP = 0 Decoding

When LERP = 0, a single 4-entry lookup table is formed using the three expanded colors, with the
4th entry defined as transparent black (ARGB=0,0,0,0). Each 2-bit Texel n Select field of the
encoded CC_ALPHA block is used to index into a 32-bit A8R8G8B8 color from the table completing
the decode of the CC_ALPHA block.

Table 6-20. FXT CC_ALPHA Interpolated Color Table (LERP=0)

Texel Select Color Alpha

0 Color0.RGB Color0.Alpha

1 Color1.RGB Color1.Alpha

2 Color2.RGB Color2.Alpha

3 Black (RGB=0,0,0) 0

LERP = 1 Decoding

When LERP = 1, the three expanded colors are used to create two tables of four interpolated
colors. The Color0,1 table is used as a lookup table for texel 0-15 indices, and the Color1,2 table
used for texels 16-31 indices, as shown in the following figures:

Table 6-21. FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 0-15)

Texel 0-15 Select Color ARGB

0 Color0.ARGB

1 (2*Color0.ARGB + Color1.ARGB + 1) /3

2 (Color0.ARGB + 2*Color1.ARGB + 1) /3

3 Color1.ARGB

Table 6-22. FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 16-31)

Texel 16-31 Select Color ARGB

0 Color2.ARGB

1 (2*Color2.ARGB + Color1.ARGB + 1) /3

2 (Color2.ARGB + 2*Color1.ARGB + 1) /3

3 Color1.ARGB

 G45: Volume 1a Graphics Core

 117

6.4.2 BC Texture Formats

The hardware supports five “BCn” surface formats that divide surfaces (texture maps) into
independent 4x4 texel blocks and stores compressed versions of these blocks in 1 or 2 QWord
units. Note that non-power-of-2 dimensioned maps may require the surface to be padded out to
the next multiple of four texels – here the pad texels are not referenced by the device.

An 8-byte (QWord) block encoding can be used if the source texture contains no transparency (is
opaque) or if the transparency can be specified by a one-bit alpha. A 16-byte (DQWord) block
encoding can be used to support source textures that require more than one-bit alpha: here the
1st QWord is used to encode the texel alpha values, and the 2nd QWord is used to encode the texel
color values.

These three types of format are discussed in the following sections:

Opaque and One-bit Alpha Textures (BC1)

Opaque Textures (BC1_RGB)

Textures with Alpha Channels (BC2-3)

Notes:

Any single texture must specify that its data is stored as 64 or 128 bits per group of 16 texels. If
64-bit blocks—that is, format BC1—are used for the texture, it is possible to mix the opaque
and one-bit alpha formats on a per-block basis within the same texture. In other words, the
comparison of the unsigned integer magnitude of color_0 and color_1 is performed uniquely
for each block of 16 texels.

When 128-bit blocks are used, then the alpha channel must be specified in either explicit
(format BC2) or interpolated mode (format BC3) for the entire texture. Note that as with
color, once interpolated mode is selected then either 8 interpolated alphas or 6 interpolated
alphas mode can be used on a block-by-block basis. Again the magnitude comparison of
alpha_0 and alpha_1 is done uniquely on a block-by-block basis.

6.4.2.1 Opaque and One-bit Alpha Textures (BC1)

Texture format BC1 is for textures that are opaque or have a single transparent color. For each
opaque or one-bit alpha block, two 16-bit R5G6B5 values and a 4x4 bitmap with 2-bits-per-pixel
are stored. This totals 64 bits (1 QWord) for 16 texels, or 4-bits-per-texel.

In the block bitmap, there are two bits per texel to select between the four colors, two of which
are stored in the encoded data. The other two colors are derived from these stored colors by linear
interpolation.

The one-bit alpha format is distinguished from the opaque format by comparing the two 16-bit
color values stored in the block. They are treated as unsigned integers. If the first color is greater
than the second, it implies that only opaque texels are defined. This means four colors will be
used to represent the texels. In four-color encoding, there are two derived colors and all four
colors are equally distributed in RGB color space. This format is analogous to R5G6B5 format.
Otherwise, for one-bit alpha transparency, three colors are used and the fourth is reserved to
represent transparent texels. Note that the color blocks in BC2-3 strictly use four colors, as the
alpha values are obtained from the alpha block.

 G45: Volume 1a Graphics Core

 118

In three-color encoding, there is one derived color and the fourth two-bit code is reserved to
indicate a transparent texel (alpha information). This format is analogous to A1R5G5B5, where the
final bit is used for encoding the alpha mask.

The following piece of pseudo-code illustrates the algorithm for deciding whether three- or four-
color encoding is selected:

if (color_0 > color_1)
{
 // Four-color block: derive the other two colors.
 // 00 = color_0, 01 = color_1, 10 = color_2, 11 = color_3
 // These two bit codes correspond to the 2-bit fields
 // stored in the 64-bit block.
 color_2 = (2 * color_0 + color_1) / 3;
 color_3 = (color 0 + 2 * color_1) / 3;
}
else
{
 // Three-color block: derive the other color.
 // 00 = color_0, 01 = color_1, 10 = color_2,
 // 11 = transparent.
 // These two bit codes correspond to the 2-bit fields
 // stored in the 64-bit block.
 color_2 = (color_0 + color_1) / 2;
 color_3 = transparent;
}

The following tables show the memory layout for the 8-byte block. It is assumed that the first
index corresponds to the y-coordinate and the second corresponds to the x-coordinate. For
example, Texel[1][2] refers to the texture map pixel at (x,y) = (2,1).

Here is the memory layout for the 8-byte (64-bit) block:

Word Address 16-bit Word

0 Color_0

1 Color_1

2 Bitmap Word_0

3 Bitmap Word_1

Color_0 and Color_1 (colors at the two extremes) are laid out as follows:

Bits Color

15:11 Red color component

10:5 Green color component

4:0 Blue color component

 G45: Volume 1a Graphics Core

 119

Bitmap Word_0 is laid out as follows:

Bits Texel

1:0 (LSB) Texel[0][0]

3:2 Texel[0][1]

5:4 Texel[0][2]

7:6 Texel[0][3]

9:8 Texel[1][0]

11:10 Texel[1][1]

13:12 Texel[1][2]

15:14 Texel[1][3]

Bitmap Word_1 is laid out as follows:

Bits Texel

1:0 (LSB) Texel[2][0]

3:2 Texel[2][1]

5:4 Texel[2][2]

7:6 Texel[2][3]

9:8 Texel[3][0]

11:10 Texel[3][1]

13:12 Texel[3][2]

15:14 (MSB) Texel[3][3]

Example of Opaque Color Encoding

As an example of opaque encoding, we will assume that the colors red and black are at the
extremes. We will call red color_0 and black color_1. There will be four interpolated colors that
form the uniformly distributed gradient between them. To determine the values for the 4x4
bitmap, the following calculations are used:

00 ? color_0
01 ? color_1
10 ? 2/3 color_0 + 1/3 color_1
11 ? 1/3 color_0 + 2/3 color_1

Example of One-bit Alpha Encoding

This format is selected when the unsigned 16-bit integer, color_0, is less than the unsigned 16-bit
integer, color_1. An example of where this format could be used is leaves on a tree to be shown
against a blue sky. Some texels could be marked as transparent while three shades of green are
still available for the leaves. Two of these colors fix the extremes, and the third color is an
interpolated color.

 G45: Volume 1a Graphics Core

 120

The bitmap encoding for the colors and the transparency is determined using the following
calculations:

00 ? color_0
01 ? color_1
10 ? 1/2 color_0 + 1/2 color_1
11 ? Transparent

6.4.2.2 Opaque Textures (BC1_RGB)

Texture format BC1_RGB is identical to BC1, with the exception that the One-bit Alpha encoding is
removed. Color 0 and Color 1 are not compared, and the resulting texel color is derived strictly
from the Opaque Color Encoding. The alpha channel defaults to 1.0.

6.4.2.3 Compressed Textures with Alpha Channels (BC2-3)

There are two ways to encode texture maps that exhibit more complex transparency. In each
case, a block that describes the transparency precedes the 64-bit block already described. The
transparency is either represented as a 4x4 bitmap with four bits per pixel (explicit encoding), or
with fewer bits and linear interpolation analogous to what is used for color encoding.

The transparency block and the color block are laid out as follows:

Word Address 64-bit Block

3:0 Transparency block

7:4 Previously described 64-bit block

Explicit Texture Encoding

For explicit texture encoding (BC2 formats), the alpha components of the texels that describe
transparency are encoded in a 4x4 bitmap with 4 bits per texel. These 4 bits can be achieved
through a variety of means such as dithering or by simply using the 4 most significant bits of the
alpha data. However they are produced, they are used just as they are, without any form of
interpolation.

Note:

DirectDraw’s compression method uses the 4 most significant bits.

The following tables illustrate how the alpha information is laid out in memory, for each 16-bit
word.

 G45: Volume 1a Graphics Core

 121

This is the layout for Word 0:

Bits Alpha

3:0 (LSB) [0][0]

7:4 [0][1]

11:8 [0][2]

15:12 (MSB) [0][3]

This is the layout for Word 1:

Bits Alpha

3:0 (LSB) [1][0]

7:4 [1][1]

11:8 [1][2]

15:12 (MSB) [1][3]

This is the layout for Word 2:

Bits Alpha

3:0 (LSB) [2][0]

7:4 [2][1]

11:8 [2][2]

15:12 (MSB) [2][3]

This is the layout for Word 3:

Bits Alpha

3:0 (LSB) [3][0]

7:4 [3][1]

11:8 [3][2]

15:12 (MSB) [3][3]

Three-Bit Linear Alpha Interpolation

The encoding of transparency for the BC3 formats is based on a concept similar to the linear
encoding used for color. Two 8-bit alpha values and a 4x4 bitmap with three bits per pixel are
stored in the first eight bytes of the block. The representative alpha values are used to interpolate
intermediate alpha values. Additional information is available in the way the two alpha values are
stored. If alpha_0 is greater than alpha_1, then six intermediate alpha values are created by the
interpolation. Otherwise, four intermediate alpha values are interpolated between the specified
alpha extremes. The two additional implicit alpha values are 0 (fully transparent) and 255 (fully
opaque).

 G45: Volume 1a Graphics Core

 122

The following pseudo-code illustrates this algorithm:

// 8-alpha or 6-alpha block?
if (alpha_0 > alpha_1) {
 // 8-alpha block: derive the other 6 alphas.
 // 000 = alpha_0, 001 = alpha_1, others are interpolated
 alpha_2 = (6 * alpha_0 + alpha_1) / 7; // bit code 010
 alpha_3 = (5 * alpha_0 + 2 * alpha_1) / 7; // Bit code 011
 alpha_4 = (4 * alpha_0 + 3 * alpha_1) / 7; // Bit code 100
 alpha_5 = (3 * alpha_0 + 4 * alpha_1) / 7; // Bit code 101
 alpha_6 = (2 * alpha_0 + 5 * alpha_1) / 7; // Bit code 110
 alpha_7 = (alpha_0 + 6 * alpha_1) / 7; // Bit code 111
 }
else { // 6-alpha block: derive the other alphas.
 // 000 = alpha_0, 001 = alpha_1, others are interpolated
 alpha_2 = (4 * alpha_0 + alpha_1) / 5; // Bit code 010
 alpha_3 = (3 * alpha_0 + 2 * alpha_1) / 5; // Bit code 011
 alpha_4 = (2 * alpha_0 + 3 * alpha_1) / 5; // Bit code 100
 alpha_5 = (alpha_0 + 4 * alpha_1) / 5; // Bit code 101
 alpha_6 = 0; // Bit code 110
 alpha_7 = 255; // Bit code 111
}

The memory layout of the alpha block is as follows:

Byte Alpha

0 Alpha_0

1 Alpha_1

2 [0][2] (2 LSBs), [0][1], [0][0]

3 [1][1] (1 LSB), [1][0], [0][3], [0][2] (1 MSB)

4 [1][3], [1][2], [1][1] (2 MSBs)

5 [2][2] (2 LSBs), [2][1], [2][0]

6 [3][1] (1 LSB), [3][0], [2][3], [2][2] (1 MSB)

7 [3][3], [3][2], [3][1] (2 MSBs)

 G45: Volume 1a Graphics Core

 123

6.4.3 BC4

These formats (BC4_UNORM and BC4_SNORM) compresses single-component UNORM or SNORM
data. An 8-byte compression block represents a 4x4 block of texels. The texels are labeled as
texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left
texel.

The 8-byte compression block is laid out as follows:

Bit Description

7:0 red_0

15:8 red_1

18:16 texel[0][0] bit code

21:19 texel[0][1] bit code

24:22 texel[0][2] bit code

27:25 texel[0][3] bit code

30:28 texel[1][0] bit code

33:31 texel[1][1] bit code

36:34 texel[1][2] bit code

39:37 texel[1][3] bit code

42:40 texel[2][0] bit code

45:43 texel[2][1] bit code

48:46 texel[2][2] bit code

51:49 texel[2][3] bit code

54:52 texel[3][0] bit code

57:55 texel[3][1] bit code

60:58 texel[3][2] bit code

63:61 texel[3][3] bit code

 G45: Volume 1a Graphics Core

 124

There are two interpolation modes, chosen based on which reference color is larger. The first
mode has the two reference colors plus six equal-spaced interpolated colors between the reference
colors, chosen based on the three-bit code for that texel. The second mode has the two reference
colors plus four interpolated colors, chosen by six of the three-bit codes. The remaining two codes
select min and max values for the colors. The values of red_0 through red_7 are computed as
follows:

red_0 = red_0; // bit code 000
red_1 = red_1; // bit code 001
if (red_0 > red_1)
{

red_2 = (6 * red_0 + 1 * red_1) / 7; // bit code 010
red_3 = (5 * red_0 + 2 * red_1) / 7; // bit code 011
red_4 = (4 * red_0 + 3 * red_1) / 7; // bit code 100
red_5 = (3 * red_0 + 4 * red_1) / 7; // bit code 101
red_6 = (2 * red_0 + 5 * red_1) / 7; // bit code 110
red_7 = (1 * red_0 + 6 * red_1) / 7; // bit code 111

}
else
{
 red_2 = (4 * red_0 + 1 * red_1) / 5; // bit code 010
 red_3 = (3 * red_0 + 2 * red_1) / 5; // bit code 011
 red_4 = (2 * red_0 + 3 * red_1) / 5; // bit code 100
 red_5 = (1 * red_0 + 4 * red_1) / 5; // bit code 101
 red_6 = UNORM ? 0.0 : -1.0; // bit code 110 (0 for UNORM, -1 for SNORM)
 red_7 = 1.0; // bit code 111
}

6.4.4 BC5

These formats (BC5_UNORM and BC5_SNORM) compresses dual-component UNORM or SNORM
data. A 16-byte compression block represents a 4x4 block of texels. The texels are labeled as
texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left
texel.

The 16-byte compression block is laid out as follows:

Bit Description

7:0 red_0

15:8 red_1

18:16 texel[0][0] red bit code

21:19 texel[0][1] red bit code

24:22 texel[0][2] red bit code

27:25 texel[0][3] red bit code

30:28 texel[1][0] red bit code

33:31 texel[1][1] red bit code

36:34 texel[1][2] red bit code

39:37 texel[1][3] red bit code

42:40 texel[2][0] red bit code

45:43 texel[2][1] red bit code

48:46 texel[2][2] red bit code

51:49 texel[2][3] red bit code

54:52 texel[3][0] red bit code

 G45: Volume 1a Graphics Core

 125

Bit Description

57:55 texel[3][1] red bit code

60:58 texel[3][2] red bit code

63:61 texel[3][3] red bit code

71:64 green_0

79:72 green_1

82:80 texel[0][0] green bit code

85:83 texel[0][1] green bit code

88:86 texel[0][2] green bit code

91:89 texel[0][3] green bit code

94:92 texel[1][0] green bit code

97:95 texel[1][1] green bit code

100:98 texel[1][2] green bit code

103:101 texel[1][3] green bit code

106:104 texel[2][0] green bit code

109:107 texel[2][1] green bit code

112:110 texel[2][2] green bit code

115:113 texel[2][3] green bit code

118:116 texel[3][0] green bit code

121:119 texel[3][1] green bit code

124:122 texel[3][2] green bit code

127:125 texel[3][3] green bit code

There are two interpolation modes, chosen based on which reference color is larger. The first
mode has the two reference colors plus six equal-spaced interpolated colors between the reference
colors, chosen based on the three-bit code for that texel. The second mode has the two reference
colors plus four interpolated colors, chosen by six of the three-bit codes. The remaining two codes
select min and max values for the colors. The values of red_0 through red_7 are computed as
follows:

red_0 = red_0; // bit code 000
red_1 = red_1; // bit code 001
if (red_0 > red_1)
{

red_2 = (6 * red_0 + 1 * red_1) / 7; // bit code 010
red_3 = (5 * red_0 + 2 * red_1) / 7; // bit code 011
red_4 = (4 * red_0 + 3 * red_1) / 7; // bit code 100
red_5 = (3 * red_0 + 4 * red_1) / 7; // bit code 101
red_6 = (2 * red_0 + 5 * red_1) / 7; // bit code 110
red_7 = (1 * red_0 + 6 * red_1) / 7; // bit code 111

}
else
{
 red_2 = (4 * red_0 + 1 * red_1) / 5; // bit code 010
 red_3 = (3 * red_0 + 2 * red_1) / 5; // bit code 011
 red_4 = (2 * red_0 + 3 * red_1) / 5; // bit code 100
 red_5 = (1 * red_0 + 4 * red_1) / 5; // bit code 101
 red_6 = UNORM ? 0.0 : -1.0; // bit code 110 (0 for UNORM, -1 for SNORM)
 red_7 = 1.0; // bit code 111
}
The same calculations are done for green, using the corresponding reference colors and bit codes.

 G45: Volume 1a Graphics Core

 126

6.5 Video Pixel/Texel Formats

This section describes the “video” pixel/texel formats with respect to memory layout. See the
Overlay chapter for a description of how the Y, U, V components are sampled.

6.5.1 Packed Memory Organization

Color components are all 8 bits in size for YUV formats. For YUV 4:2:2 formats each DWord will
contain two pixels and only the byte order affects the memory organization.

The following four YUV 4:2:2 surface formats are supported, listed with alternate names:

• YCRCB_NORMAL (UYVY) (R8G8_B8G8_UNORM)
• YCRCB_SWAPUVY (YUY2) (G8R8_G8B8_UNORM)
• YCRCB_SWAPUV
• YCRCB_SWAPY

The channels are mapped as follows:
Cr (V) Red
Y Green
Cb (U) Blue

Figure 6-2. Memory Layout of Packed YUV 4:2:2 Formats

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

YUV 4:2:2 (UV/Y Swap)

Pixel N Pixel NPixel N+1

Y U
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Y V
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

YUV 4:2:2 (Y Swap)

Pixel N Pixel NPixel N+1

Mem_Layout_YUV 422

U Y
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

V Y
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

YUV 4:2:2 (Normal)

Pixel N+1 Pixel NPixel N

V Y
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

U Y
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

YUV 4:2:2 (UV Swap)

Pixel N+1 Pixel NPixel N

Y V
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Y U
31

 G45: Volume 1a Graphics Core

 127

6.5.2 Planar Memory Organization

Planar formats use what could be thought of as separate buffers for the three color components.
Because there is a separate stride for the Y and U/V data buffers, several memory footprints can
be supported.

There is no direct support for use of planar video surfaces as textures. The sampling engine can
be used to operate on each of the 8bpp buffers separately (via a single-channel 8-bit format such
as I8_UNORM). The U and V buffers can be written concurrently by using multiple render targets
from the pixel shader. The Y buffer must be written in a separate pass due to its different size.

The following figure shows two types of memory organization for the YUV 4:2:0 planar video data:

1. The memory organization of the common YV12 data, where all three planes are contiguous
and the strides of U and V components are half of that of the Y component.

2. An alternative memory structure that the addresses of the three planes are independent
but satisfy certain alignment restrictions.

Figure 6-3. YUV 4:2:0 Format Memory Organization

Y

V

U

Width

Height

Height/2

Width/2

Height/2

Y Pointer

V Pointer

U Pointer

Y

U

V

Width

Height

Height/2

Width/2

Height/2

Y Pointer

U Pointer

V Pointer

(a) (b)
YUV 420 Mem Org

 G45: Volume 1a Graphics Core

 128

The following figure shows memory organization of the planar YUV 4:1:0 format where the planes
are contiguous. The stride of the U and V planes is a quarter of that of the Y plane.

Figure 6-4. YUV 4:1:0 Format Memory Organization

Y

U

V

Width

Height

Height/4

Width/4

Height/4

Y Pointer

U Pointer

V Pointer

YUV 410 Mem Org

6.6 Surface Memory Organizations

See Memory Interface Functions chapter for a discussion of tiled vs. linear surface formats.

6.7 Graphics Translation Tables

The Graphics Translation Tables GTT (Graphics Translation Table, sometimes known as the global
GTT) and PPGTT (Per-Process Graphics Translation Table) are memory-resident page tables
containing an array of DWord Page Translation Entries (PTEs) used in mapping logical Graphics
Memory addresses to physical memory addresses, and sometimes snooped system memory “PCI”
addresses.

The graphics translation tables must reside in (unsnooped) system memory.

The base address (MM offset) of the GTT and the PPGTT are programmed via the PGTBL_CTL and
PGTBL_CTL2 MI registers, respectively. The translation table base addresses must be 4KB
aligned. The GTT size can be either 128KB, 256KB or 512KB (mapping to 128MB, 256MB, and
512MB aperture sizes respectively) and is physically contiguous. The global GTT should only be
programmed via the range defined by GTTADR. The PPGTT is programmed directly in memory.
The per-process GTT (PPGTT) size is controlled by the PGTBL_CTL2 register. The PPGTT can, in
addition to the above sizes, also be 64KB in size (corresponding to a 64MB aperture). Refer to the
GTT Range chapter for a bit definition of the PTE entries.

 G45: Volume 1a Graphics Core

 129

6.8 Hardware Status Page

The hardware status page is a naturally-aligned 4KB page residing in snooped system memory.
This page exists primarily to allow the device to report status via PCI master writes – thereby
allowing the driver to read/poll WB memory instead of UC reads of device registers or UC memory.

The address of this page is programmed via the HWS_PGA MI register. The definition of that
register (in Memory Interface Registers) includes a description of the layout of the Hardware
Status Page.

6.9 Instruction Ring Buffers

Instruction ring buffers are the memory areas used to pass instructions to the device. Refer to
the Programming Interface chapter for a description of how these buffers are used to transport
instructions.

The RINGBUF register sets (defined in Memory Interface Registers) are used to specify the ring
buffer memory areas. The ring buffer must start on a 4KB boundary and be allocated in linear
memory. The length of any one ring buffer is limited to 2MB.

Note that “indirect” 3D primitive instructions (those that access vertex buffers) must reside in the
same memory space as the vertex buffers.

6.10 Instruction Batch Buffers

Instruction batch buffers are contiguous streams of instructions referenced via an
MI_BATCH_BUFFER_START and related instructions (see Memory Interface Instructions,
Programming Interface). They are used to transport instructions external to ring buffers.

Note that batch buffers should not be mapped to snooped SM (PCI) addresses. The device will
treat these as MainMemory (MM) address, and therefore not snoop the CPU cache.

The batch buffer must be QWord aligned and a multiple of QWords in length. The ending address
is the address of the last valid QWord in the buffer. The length of any single batch buffer is
“virtually unlimited” (i.e., could theoretically be 4GB in length).

6.11 Display, Overlay, Cursor Surfaces

These surfaces are memory image buffers (planes) used to refresh a display device in non-VGA
mode. See the Display chapter for specifics on how these surfaces are defined/used.

6.12 2D Render Surfaces

These surfaces are used as general source and/or destination operands in 2D Blt operations.

Note that the device provides no coherency between 2D render surfaces and the texture cache –
i.e., the texture cache must be explicitly invalidated prior to the use of a texture that has been
modified via the Blt engine.

 G45: Volume 1a Graphics Core

 130

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used,
restrictions on their size, placement, etc.

6.13 2D Monochrome Source

These 1bpp surfaces are used as source operands to certain 2D Blt operations, where the Blt
engine expands the 1bpp source into the required color depth.

The device uses the texture cache to store monochrome sources. There is no mechanism to
maintain coherency between 2D render surfaces and (texture)-cached monochrome sources,
software is required to explicitly invalidate the texture cache before using a memory-based
monochrome source that has been modified via the Blt engine. (Here the assumption is that SW
enforces memory-based monochrome source surfaces as read-only surfaces).

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used,
restrictions on their size, placement, coherency rules, etc.

6.14 2D Color Pattern

Color pattern surfaces are used as special pattern operands in 2D Blt operations.

The device uses the texture cache to store color patterns. There is no mechanism to maintain
coherency between 2D render surfaces and (texture)-cached color patterns, software is required
to explicitly invalidate the texture cache before using a memory-based color pattern that has been
modified via the Blt engine. (Here the assumption is that SW enforces memory-based color
pattern surfaces as read-only surfaces).

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used,
restrictions on their size, placement, etc.

6.15 3D Color Buffer (Destination) Surfaces

3D Color buffer surfaces are used to hold per-pixel color values for use in the 3D pipeline. Note
that the 3D pipeline always requires a Color buffer to be defined.

Refer to Non-Video Pixel/Texel Formats section in this chapter for details on the Color buffer pixel
formats. Refer to the 3D Instruction and 3D Rendering chapters for details on the usage of the
Color Buffer.

The Color buffer is defined as the BUFFERID_COLOR_BACK memory buffer via the
3DSTATE_BUFFER_INFO instruction. That buffer can be mapped to LM, SM (snooped or
unsnooped) and can be linear or tiled. When both the Depth and Color buffers are tiled, the
respective Tile Walk directions must match.

When a linear Color and a linear Depth buffers are used together:

1. They may have different pitches, though both pitches must be a multiple of 32 bytes.

2. They must be co-aligned with a 32-byte region.

 G45: Volume 1a Graphics Core

 131

6.16 3D Depth Buffer Surfaces

Depth buffer surfaces are used to hold per-pixel depth values and per-pixel stencil values for use
in the 3D pipeline. Note that the 3D pipeline does not require a Depth buffer to be allocated,
though a Depth buffer is required to perform (non-trivial) Depth Test and Stencil Test operations.

The following table summarizes the possible formats of the Depth buffer. Refer to Depth Buffer
Formats section in this chapter for details on the pixel formats. Refer to the Windower and
DataPort chapters for details on the usage of the Depth Buffer.

Table 6-23. Depth Buffer Formats

DepthBufferFormat /
DepthComponent

bpp Description

D32_FLOAT_S8X24_UINT 64 32-bit floating point Z depth value in first DWord, 8-
bit stencil in upper byte of second DWord

D32_FLOAT 32 32-bit floating point Z depth value

D24_UNORM_S8_UINT 32 24-bit fixed point Z depth value in lower 3 bytes, 8-
bit stencil value in upper byte

D16_UNORM 16 16-bit fixed point Z depth value

The Depth buffer is specified via the 3DSTATE_DEPTH_BUFFER command. See the description of
that instruction in Windower for restrictions.

6.17 Surface Layout

This section describes the formats of surfaces and data within the surfaces.

6.17.1 Buffers

A buffer is an array of structures. Each structure contains up to 2048 bytes of elements. Each
element is a single surface format using one of the supported surface formats depending on how
the surface is being accessed. The surface pitch state for the surface specifies the size of each
structure in bytes.

The buffer is stored in memory contiguously with each element in the structure packed together,
and the first element in the next structure immediately following the last element of the previous
structure. Buffers are supported only in linear memory.

 G45: Volume 1a Graphics Core

 132

a b c d e f0
1
2
3

15

B
uf

fe
r S

iz
e

Surface Pitch

6.17.2 1D Surfaces

One-dimensional surfaces are identical to 2D surfaces with height of one. Arrays of 1D surfaces
are also supported. Please refer to the 2D Surfaces section for details on how these surfaces are
stored.

6.17.3 2D Surfaces

Surfaces that comprise texture mip-maps are stored in a fixed “monolithic” format and referenced
by a single base address. The base map and associated mipmaps are located within a single
rectangular area of memory identified by the base address of the upper left corner and a pitch.
The base address references the upper left corner of the base map. The pitch must be specified at
least as large as the widest mip-map. In some cases it must be wider; see the section on
Minimum Pitch below.

These surfaces may be overlapped in memory and must adhere to the following memory
organization rules:

• For non-compressed texture formats, each mipmap must start on an even row within
the monolithic rectangular area. For 1-texel-high mipmaps, this may require a row of
padding below the previous mipmap. This restriction does not apply to any compressed
texture formats: i.e., each subsequent (lower-res) compressed mipmap is positioned
directly below the previous mipmap.

• Vertical alignment restrictions vary with memory tiling type: 1 DWord for linear, 16-byte
(DQWord) for tiled. (Note that tiled mipmaps are not required to start at the left edge of
a tile row).

 G45: Volume 1a Graphics Core

 133

6.17.3.1 Computing MIP level sizes

Map width and height specify the size of the largest MIP level (LOD 0). Less detailed LOD level
(i+1) sizes are determined by dividing the width and height of the current (i) LOD level by 2 and
truncating to an integer (floor). This is equivalent to shifting the width/height by 1 bit to the right
and discarding the bit shifted off. The map height and width are clamped on the low side at 1.

In equations, the width and height of an LOD “L” can be expressed as:

()()
()()1:?0

1:?0
LheightLheightH

LwidthLwidthW

L

L

>>>>>=
>>>>>=

6.17.3.2 Base Address for LOD Calculation

It is conceptually easier to think of the space that the map uses in Cartesian space (x, y), where x
and y are in units of texels, with the upper left corner of the base map at (0, 0). The final step is
to convert from Cartesian coordinates to linear addresses as documented at the bottom of this
section.

It is useful to think of the concept of “stepping” when considering where the next MIP level will be
stored in rectangular memory space. We either step down or step right when moving to the next
higher LOD.

• for MIPLAYOUT_RIGHT maps:
o step right when moving from LOD 0 to LOD 1
o step down for all of the other MIPs

• for MIPLAYOUT_BELOW maps:
o step down when moving from LOD 0 to LOD 1
o step right when moving from LOD 1 to LOD 2
o step down for all of the other MIPs

To account for the cache line alignment required, we define i and j as the width and height,
respectively, of an alignment unit. This alignment unit is defined below. We then define lower-
case wL and hL as the padded width and height of LOD “L” as follows:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎠
⎞

⎜
⎝
⎛=

j
Hceiljh

i
Wceiliw

L
L

L
L

*

*

Equations to compute the upper left corner of each MIP level are then as follows:

 G45: Volume 1a Graphics Core

 134

for MIPLAYOUT_RIGHT maps:

...
),(

),(
),(

)0,(
)0,0(

32104

2103

102

01

0

hhhwLOD
hhwLOD

hwLOD
wLOD

LOD

++=
+=

=
=
=

for MIPLAYOUT_BELOW maps:

...
),(

),(
),(

),0(
)0,0(

32014

2013

012

01

0

hhhwLOD
hhwLOD

hwLOD
hLOD

LOD

++=
+=

=
=
=

6.17.3.3 Minimum Pitch

For MIPLAYOUT_RIGHT maps, the minimum pitch must be calculated before choosing a fence to
place the map within. This is approximately equal to 1.5x the pitch required by the base map,
with possible adjustments made for cache line alignment. For MIPLAYOUT_BELOW and
MIPLAYOUT_LEGACY maps, the minimum pitch required is equal to that required by the base (LOD
0) map.

A safe but simple calculation of minimum pitch is equal to 2x the pitch required by the base map
for MIPLAYOUT_RIGHT maps. This ensures that enough pitch is available, and since it is restricted
to MIPLAYOUT_RIGHT maps, not much memory is wasted. It is up to the driver (hardware
independent) whether to use this simple determination of pitch or a more complex one.

 G45: Volume 1a Graphics Core

 135

6.17.3.4 Alignment Unit Size

The following table indicates the i and j values that should be used for each map format. Note
that the compressed formats are padded to a full compression cell.

Table 6-24. Alignment Units for Texture Maps

map format alignment unit width “i” alignment unit height “j”

YUV 4:2:2 formats 4 2

BC1-5 4 4

FXT1 8 4

all other formats 4 2

6.17.3.5 Cartesian to Linear Address Conversion

A set of variables are defined in addition to the i and j defined above.
• b = bytes per texel of the native map format (0.5 for BC1, FXT1, and 4-bit surface format, 2.0

for YUV 4:2:2, others aligned to surface format)
• t = texel rows / memory row (4 for BC2-3 and FXT1, 1 for all other formats)
• p = pitch in bytes (equal to pitch in dwords * 4)
• B = base address in bytes (address of texel 0,0 of the base map)
• x, y = cartestian coordinates from the above calculations in units of texels (assumed that x is

always a multiple of i and y is a multiple of j)
• A = linear address in bytes

xbt
t
ypBA ++=

This calculation gives the linear address in bytes for a given MIP level (taking into account L1
cache line alignment requirements).

6.17.3.6 Compressed Mipmap Layout

Mipmaps of textures using compressed (BCn, FXT) texel formats are also stored in a monolithic
format. The compressed mipmaps are stored in a similar fashion to uncompressed mipmaps, with
each block of source (uncompressed) texels represented by a 1 or 2 QWord compressed block.
The compressed blocks occupy the same logical positions as the texels they represent, where each
row of compressed blocks represent a 4-high row of uncompressed texels. The format of the
blocks is preserved, i.e., there is no “intermediate” format as required on some other devices.

The following exceptions apply to the layout of compressed (vs. uncompressed) mipmaps:

• Mipmaps are not required to start on even rows, therefore each successive mip level is located
on the texel row immediately below the last row of the previous mip level. Pad rows are
neither required nor allowed.

• The dimensions of the mip maps are first determined by applying the sizing algorithm
presented in Non-Power-of-Two Mipmaps above. Then, if necessary, they are padded out to
compression block boundaries.

 G45: Volume 1a Graphics Core

 136

6.17.3.7 Surface Arrays

Both 1D and 2D surfaces can be specified as an array. The only difference in the surface state is
the presence of a depth value greater than one, indicating multiple array “slices”.

A value QPitch is defined which indicates the worst-case size for one slice in the texture array.
This QPitch is multiplied by the array index to and added to the surface base address to determine
the base address for that slice. Within the slice, the map is stored identically to a
MIPLAYOUT_BELOW 2D surface. MIPLAYOUT_BELOW is the only format supported by 1D non-
arrays and both 2D and 1D arrays, the programming of the MIP Map Layout Mode state variable is
ignored when using a TextureArray.

The following equation is used for surface formats other than compressed textures:

() PitchjhhQPitch *1110 ++=

The input variables in this equation are defined in sections above.

The equation for compressed textures (BC* and FXT1 surface formats) follows:

()
Pitch

jhh
QPitch *

4
1110 ++

=

6.17.4 Cube Surfaces

The 3D pipeline supports cubic environment maps, conceptually arranged as a cube surrounding
the origin of a 3D coordinate system aligned to the cube faces. These maps can be used to supply
texel (color/alpha) data of the environment in any direction from the enclosed origin, where the
direction is supplied as a 3D “vector” texture coordinate. These cube maps can also be
mipmapped.

Each texture map level is represented as a group of six, square cube face texture surfaces. The
faces are identified by their relationship to the 3D texture coordinate system. The subsections
below describe the cube maps as described at the API as well as the memory layout dictated by
the hardware.

6.17.4.1 Hardware Cube Map Layout

The cube face textures are stored in the same way as 3D surfaces are stored (see section 6.17.5
for details). For cube surfaces, however, the depth is equal to the number of faces (always 6) and
is not reduced for each MIP. The equation for DL is replaced with the following for cube surfaces:

6=LD

The “q” coordinate is replaced with the face identifier as follows:

“q” coordinate face

0 +x

1 -x

 G45: Volume 1a Graphics Core

 137

2 +y

3 -y

4 +z

5 -z

6.17.4.2 Restrictions

The cube map memory layout is the same whether or not the cube map is mip-mapped, and
whether or not all six faces are “enabled”, though the memory backing disabled faces or non-
supplied levels can be used by software for other purposes.

The cube map faces all share the same Surface Format

6.17.5 3D Surfaces

Multiple texture map surfaces (and their respective mipmap chains) can be arranged into a
structure known as a Texture3D (volume) texture. A volume texture map consists of many planes
of 2D texture maps. See Sampler for a description of how volume textures are used.

Figure 6-5. Volume Texture Map

Mip 0 Mip 1 Mip 2

P la ne= 0
M ip =0P la ne= 0

M ip= 0P la ne= 0
M ip= 0P la ne= 0

M ip= 0P lan e= 0
M ip= 0P lan e= 0

M ip= 0P lan e= 0
M ip= 0P lan e= 0

P =0

P la ne= 0
M ip= 1P lan e=0

Mip =1
P la ne= 0

M ip= 1P lane =0

u

v

q

Note that the number of planes defined at each successive mip level is halved. Volumetric
texture maps are stored as follows. All of the LOD=0 q-planes are stacked vertically, then below
that, the LOD=1 q-planes are stacked two-wide, then the LOD=2 q-planes are stacked four-wide
below that, and so on.

The width, height, and depth of LOD “L” are as follows:

()()
()()1:?0

1:?0
LheightLheightH

LwidthLwidthW

L

L

>>>>>=
>>>>>=

 G45: Volume 1a Graphics Core

 138

This is the same as for a regular texture. For volume
textures we add:

DL = ((depth >> L) > 0?depth >>L:1)

Cache-line aligned width and height are as follows,
with I and j being a function of the map format.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎠
⎞

⎜
⎝
⎛=

j
H

ceiljh

i
W

ceiliw

L
L

L
L

*

*

Note that it is not necessary to cache-line align in the
“depth” dimension (i.e. lower case “d”).

The following equations for LODL,q give the base
address Cartesian coordinates for the map at LOD L
and depth q.

q=0

q=1

q=3

q=2

q=4

q=5

q=6

q=7

LOD 0 (Mip 0)

LOD 1 (Mip 1)

q=0 q=1
q=0

LOD 2 (Mip 2)

q=0

q=2

q=1

q=3

LOD 3 (Mip 3)

 G45: Volume 1a Graphics Core

 139

...

)*)3(*
4

*
2

,)8%((

)*)2(*
2

,)4%((

)*)1(*,*)2%((

)*,0(

32
2

1
1

003,3

21
1

002,2

1001,1

0,0

hqhDceilhDceilhDwqLOD

hqhDceilhDwqLOD

hqhDwqLOD
hqLOD

q

q

q

q

>>+⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+=

>>+⎟
⎠
⎞

⎜
⎝
⎛+=

>>+=

=

These values are then used as “base addresses” and the 2D MIP Map equations are used to
compute the location within each LOD/q map.

6.17.5.1 Minimum Pitch

The minimum pitch required to store the 3D map may in some cases be greater than the minimum
pitch required by the LOD=0 map. This is due to cache line alignment requirements that may
impact some of the MIP levels requiring additional spacing in the horizontal direction.

6.18 Surface Padding Requirements

6.18.1 Sampling Engine Surfaces

The sampling engine accesses texels outside of the surface if they are contained in the same
cache line as texels that are within the surface. These texels will not participate in any calculation
performed by the sampling engine and will not affect the result of any sampling engine operation,
however if these texels lie outside of defined pages in the GTT, a GTT error will result when the
cache line is accessed. In order to avoid these GTT errors, “padding” at the bottom and right side
of a sampling engine surface is sometimes necessary.

It is possible that a cache line will straddle a page boundary if the base address or pitch is not
aligned. All pages included in the cache lines that are part of the surface must map to valid GTT
entries to avoid errors. To determine the necessary padding on the bottom and right side of the
surface, refer to the table in Section 6.17.3.4 for the i and j parameters for the surface format in
use. The surface must then be extended to the next multiple of the alignment unit size in each
dimension, and all texels contained in this extended surface must have valid GTT entries.

For example, suppose the surface size is 15 texels by 10 texels and the alignment parameters are
i=4 and j=2. In this case, the extended surface would be 16 by 10. Note that these calculations
are done in texels, and must be converted to bytes based on the surface format being used to
determine whether additional pages need to be defined.

For buffers, which have no inherent “height,” padding requirements are different. A buffer must
be padded to the next multiple of 256 array elements, with an additional 16 bytes added beyond
that to account for the L1 cache line.

For cube surfaces, an additional two rows of padding are required at the bottom of the surface.
This must be ensured regardless of whether the surface is stored tiled or linear. This is due to the
potential rotation of cache line orientation from memory to cache.

For compressed textures (BC* and FXT1 surface formats), padding at the bottom of the surface is
to an even compressed row, which is equal to a multiple of 8 uncompressed texel rows. Thus, for

 G45: Volume 1a Graphics Core

 140

padding purposes, these surfaces behave as if j = 8 only for surface padding purposes. The value
of 4 for j still applies for mip level alignment and QPitch calculation.

6.18.2 Render Target and Media Surfaces

The data port accesses data (pixels) outside of the surface if they are contained in the same cache
request as pixels that are within the surface. These pixels will not be returned by the requesting
message, however if these pixels lie outside of defined pages in the GTT, a GTT error will result
when the cache request is processed. In order to avoid these GTT errors, “padding” at the bottom
of the surface is sometimes necessary.

If the surface contains an odd number of rows of data, a final row below the surface must be
allocated. If the surface will be accessed in field mode (Vertical Stride = 1), enough additional
rows below the surface must be allocated to make the extended surface height (including the
padding) a multiple of 4.

6.19 Logical Context Data

Logical Contexts are memory images used to store copies of the device’s rendering and ring
context.

Logical Contexts are aligned to 256-byte boundaries.

Logical contexts are referenced by their memory address. The format and contents of rendering
contexts are considered device-dependent and software must not access the memory contents
directly. The definition of the logical rendering and power context memory formats is included
here primarily for internal documentation purposes.

6.19.1 Overall Context Layout

6.19.1.1 Per-Process GTT and Run Lists Disabled

For this case (which is the only case for [DevBW] and [DevCL]), the entire context image consists
of the Register/State Context, including the pipelined state section.

6.19.1.2 Per-Process GTT and Run Lists Enabled [DevCTG,
DevEL]

When a context switch occurs, the head pointer for the current context is first saved back to the
head pointer slot of its context descriptor. Then the head and tail pointer offsets and PD
information are loaded from the new context descriptor. The Starting Address and Buffer
Length fields of RINGBUF are effectively initialized to LRCA + 4KB and 4 pages, respectively.
Command fetch and execution then begins from the head pointer offset into the ring buffer space
which begins at LRCA + 4KB. Besides the head pointer, no other context saved and none is
restored on BSD context switches.

 G45: Volume 1a Graphics Core

 141

6.19.2 Register/State Context

DWord Bit Description

The following table describes the device-dependent layout of a logical context in memory.

Table 6-25 Device-dependemt Layout of a Logical Context

DWord Bits State Field

MEMORY INTERFACE STATE
00h 31:0 MI_Noop
01h 31:29 Instruction Type = MI_INSTRUCTION = 0h

28:23 MI Instruction Opcode = MI_LOAD_REGISTER_IMM = 22h
22:12 Reserved: MBZ
11:8 Byte Write Disables:

This field specifies which bytes of the Data DWord are not to be written to the DWord
offset specified in Register Offset.
Format = Enable[4] (bit 8 corresponds to Data DWord [7:0]).
Range = Must specify a valid register write operation
This field will always be written as Fh on context saves.

7:6 Reserved: MBZ

5:0 DWord Length (Excludes DWord 0,1) = 2bh (dec_44)
02h 31:0 CACHE_MODE_0 Address
03h 31:0 CACHE_MODE_0 Data
04h 31:0 CACHE_MODE_1 Address
05h 31:0 CACHE_MODE_1 Data
06h 31:0 MI_ARB_STATE Address
07h 31:0 MI_ARB_STATE Data
08h 31:0 INSTPM Address
09h 31:0 INSTPM Data
0Ah 31:0 IA_VERTICES_COUNT Lower Address
0Bh 31:0 IA_VERTICES_COUNT Lower Data
0Ch 31:0 IA_VERTICES_COUNT Upper Address
0Dh 31:0 IA_VERTICES_COUNT Upper Data
0Eh 31:0 IA_PRIMITIVES_COUNT Lower Address
0Fh 31:0 IA_PRIMITIVES_COUNT Lower Data
10h 31:0 IA_PRIMITIVES_COUNT Upper Address
11h 31:0 IA_PRIMITIVES_COUNT Upper Data
12h 31:0 VS_INVOCATION_COUNT Lower Address
13h 31:0 VS_INVOCATION_COUNT Lower Data
14h 31:0 VS_INVOCATION_COUNT Upper Address
15h 31:0 VS_INVOCATION_COUNT Upper Data
16h 31:0 GS_INVOCATION_COUNT Lower Address

Register/State Context

Ring Buffer (4 Pages, 16KB)

DWord Bit Description

Per-Process HW Status Page

 G45: Volume 1a Graphics Core

 142

DWord Bits State Field

17h 31:0 GS_INVOCATION_COUNT Lower Data
18h 31:0 GS_INVOCATION_COUNT Upper Address
19h 31:0 GS_INVOCATION_COUNT Upper Data
1ah 31:0 GS_PRIMITIVES_COUNT Lower Address
1bh 31:0 GS_PRIMITIVES_COUNT Lower Data
1ch 31:0 GS_PRIMITIVES_COUNT Upper Address
1dh 31:0 GS_PRIMITIVES_COUNT Upper Data
1eh 31:0 CL_INVOCATION_COUNT Lower Address
1fh 31:0 CL_INVOCATION_COUNT Lower Data
20h 31:0 CL_INVOCATION_COUNT Upper Address
21h 31:0 CL_INVOCATION_COUNT Upper Data
22h 31:0 CL_PRIMITIVES_COUNT Lower Address
23h 31:0 CL_PRIMITIVES_COUNT Lower Data
24h 31:0 CL_PRIMITIVES_COUNT Upper Address
25h 31:0 CL_PRIMITIVES_COUNT Upper Data
26h 31:0 PS_INVOCATION_COUNT Lower Address
27h 31:0 PS_INVOCATION_COUNT Lower Data
28h 31:0 PS_INVOCATION_COUNT Upper Address
29h 31:0 PS_INVOCATION_COUNT Upper Data
2Ah 31:0 PS_DEPTH_COUNT Lower Address
2Bh 31:0 PS_DEPTH_COUNT Lower Data
2Ch 31:0 PS_DEPTH_COUNT Upper Address
2Dh 31:0 PS_DEPTH_COUNT Upper Data
2Eh 31:0 MI_Noop
2Fh 31:0 MI_Noop

PIPELINE_SELECT
30h 31:29 Instruction Type = GFXPIPE = 3h
 28:23 3D Instruction Opcode = PIPELINE_SELECT

GFXPIPE[28:27 = 0h, 26:24 = 1h, 23:16 = 04h] (Non-pipelined)
 22:1 Reserved: MBZ
 0 0: 3D pipeline is selected

1: Media pipeline is selected

CS_URB_STATE

31h 31:29 Command Type = GFXPIPE = 3h

28:16 3D Command Opcode = CS_URB_STATE

GFXPIPE[28:27 = 0h, 26:24 = 0h, 23:16 = 01h] (Pipelined)

 15:8 Reserved : MBZ

 7:0 DWord Length (excludes DWords 0,1) = 0

32h 31:9 Reserved : MBZ

 8:4 URB Entry Allocation Size

 3 Reserved: MBZ

 2:0 Number of URB Entries

URB_FENCE
33h 31:29 Instruction Type = GFXPIPE = 3h

 28:16 3D Instruction Opcode = URB_FENCE
GFXPIPE[28:27 = 0h, 26:24 = 0h, 23:16 = 00h] (Pipelined)

 15:14 Reserved : MBZ
13 ModifyEnable(CS Fence)

 G45: Volume 1a Graphics Core

 143

DWord Bits State Field

12 ModifyEnable(VFE Fence)
11 ModifyEnable(SF Fence)
10 ModifyEnable(CLIP Fence)
9 ModifyEnable(GS Fence)
8 ModifyEnable(VS Fence)

 7:0 DWord Length (Excludes DWords 0,1) = 1

34h 31:30 Reserved : MBZ
 29:20 CLP Fence
 19:10 GS Fence
 9:0 VS Fence

35h 31:30 Reserved : MBZ
 29:20 CS Fence
 19:10 VFE Fence
 9:0 SF Fence

CONSTANT_BUFFER

36h 31:29 Command Type = GFXPIPE = 3h

28:16 3D Command Opcode = CONSTANT_BUFFER

GFXPIPE[28:27 = 0h, 26:24 = 0h, 23:16 = 02h] (Pipelined)

15:9 Reserved : MBZ

8 Valid (Saved as clear since CONSTANT_BUFFER is saved later)

 7:0 DWord Length (excludes DWords 0,1) = 0

37h 31:6 Buffer Starting Address

 5:0 Buffer Length

STATE_BASE_ADDRESS

38h 31:29 Command Type = GFXPIPE = 3h

28:16 3D Command Opcode = STATE_BASE_ADDRESS

GFXPIPE[28:27 = 0h, 26:24 = 1h, 23:16 = 01h] (Nonpipelined)

 15:8 Reserved : MBZ

 7:0 DWord Length (Excludes DWords 0,1) = 4

39h 31:12 General State Base Address

 11:1 Reserved : MBZ

 0 Modify Enable

3Ah 31:12 Surface State Base Address

 11:1 Reserved : MBZ

 0 Modify Enable

3Bh 31:12 Indirect Object Base Address

 11:1 Reserved : MBZ

 0 Modify Enable

3Ch 31:12 General State Access Upper Bound

 G45: Volume 1a Graphics Core

 144

DWord Bits State Field

 11:1 Reserved : MBZ

 0 Modify Enable

3Dh 31:12 Indirect Object Access Upper Bound

 11:1 Reserved: MBZ

 0 Modify Enable

STATE_SIP
3Eh 31:29 Command Type = GFXPIPE = 3h

 28:16 Command Opcode = STATE_SIP
GFXPIPE[28:27 = 0h, 26:24 = 1h, 23:16 = 02h] (Non-Pipelined)

 15:8 Reserved : MBZ
 7:0 Word Length (Excludes DWords 0,1) = 0

3Fh 31:4 System Instruction Pointer (SIP)
 3:0 Reserved : MBZ

3DSTATE_DRAWING_RECTANGLE
40h 31:29 Instruction Type = GFXPIPE = 3h

 28:16 3D Instruction Opcode = 3DSTATE_DRAWING_RECTANGLE
GFXPIPE[28:27 = 3h, 26:24 = 1h, 23:16 = 00h] (Non-Pipelined)

 15:0 ength (Excludes DWord 0,1) = 2
41h 31:16 Clipped Drawing Rectangle Y Min

 15:0 Clipped Drawing Rectangle X Min
42h 31:16 Clipped Drawing Rectangle Y Max

 15:0 Clipped Drawing Rectangle X Max
43h 31:16 Drawing Rectangle Origin Y

 15:0 Drawing Rectangle Origin X

3DSTATE_DEPTH_BUFFER
44h 31:29 Instruction Type = GFXPIPE = 3h

28:16 3D Instruction Opcode = 3DSTATE_DEPTH_BUFFER

GFXPIPE[28:27 = 3h, 26:24 = 1h, 23:16 = 05h] (Non-Pipelined)
 15:0 DWord Length (excl. DWord 0,1) = 3

45h 31:29 Surface Type
 28 Reserved: MBZ
 27 Tiled Surface
 26 Tile Walk
 25 Depth Buffer Coordinate Offset Disable
 24:21 Reserved : MBZ
 20:18 Surface Format
 17:0 Surface Pitch

46h 31:0 Surface Base Address
47h 31:19 Height

 18:6 Width
 5:2 LOD
 1 MIP Map Layout Mode
 0 Reserved : MBZ

48h 31:21 Depth
 20:12 Minimum Array Element
 11:0 Reserved : MBZ

3DSTATE_CHROMA_KEY (INDEX_0)
49h 31:29 Instruction Type = 3D_INSTRUCTION = 3h

28:16 3D Instruction Opcode = 3DSTATE_CHROMA_KEY

GFXPIPE[28:27 = 3h, 26:24 = 1h; 23:16 = 04h] (Non-Pipelined)

 G45: Volume 1a Graphics Core

 145

DWord Bits State Field

 15:0 DWord Length (Excludes DWords 0,1) = 2
4Ah 31:30 ChromaKey Table Index = 0

 29:0 Reserved: MBZ
4Bh 31:0 ChromaKey Low Value
4Ch 31:0 ChromaKey High Value

3DSTATE_CHROMA_KEY (INDEX_1)
4Dh 31:29 Instruction Type = 3D_INSTRUCTION = 3h

28:16 3D Instruction Opcode = 3DSTATE_CHROMA_KEY

GFXPIPE[28:27 = 3h, 26:24 = 1h; 23:16 = 04h] (Non-Pipelined)
 15:0 DWord Length (Excludes DWords 0,1) = 2

4Eh 31:30 ChromaKey Table Index = 1
 29:0 Reserved: MBZ

4Fh 31:0 ChromaKey Low Value
50h 31:0 ChromaKey High Value

3DSTATE_CHROMA_KEY (INDEX_2)
51h 31:29 Instruction Type = 3D_INSTRUCTION = 3h

28:16 3D Instruction Opcode = 3DSTATE_CHROMA_KEY

GFXPIPE[28:27 = 3h, 26:24 = 1h; 23:16 = 04h] (Non-Pipelined)
 15:0 DWord Length (Excludes DWords 0,1) = 2

52h 31:30 ChromaKey Table Index = 2
 29:0 Reserved: MBZ

53h 31:0 ChromaKey Low Value
54h 31:0 ChromaKey High Value

3DSTATE_CHROMA_KEY (INDEX_3)
55h 31:29 Instruction Type = 3D_INSTRUCTION = 3h

28:16 3D Instruction Opcode = 3DSTATE_CHROMA_KEY

GFXPIPE[28:27 = 3h, 26:24 = 1h; 23:16 = 04h] (Non-Pipelined)
 15:0 DWord Length (Excludes DWords 0,1) = 2

56h 31:30 ChromaKey Table Index = 3
 29:0 Reserved: MBZ

57h 31:0 ChromaKey Low Value
58h 31:0 ChromaKey High Value

3D State Constant Color
59h 31:29 Instruction Type = GFXPIPE = 3h

 28:16 3D Instruction Opcode = 3DSTATE_CONSTANT_COLOR
GFXPIPE[28:27 = 3h, 26:24 = 1h, 23:16 = 01h] (Non-Pipelined)

 15:0 DWord Length (excl. DWord 0,1) = 3

5Ah 31:0 Blend Constant Color Red

5Bh 31:0 Blend Constant Color Blue

5Ch 31:0 Blend Constant Color Green
5Dh 31:0 Blend Constant Color Alpha

3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP
5Eh 31:29 Instruction Type = 3D_INSTRUCTION = 3h

 28:16 3D Instruction Opcode = 3DSTATE_GLOABL_DEPTH_OFFSET_CLAMP
GFXPIPE[28:27 = 3h, 26:24 = 1h, 23:16 = 09h] (Non-Pipelined)

 15:0 DWord Length (excl. DWord 0,1) = 0
5Fh 31:0 Global Depth Offset Clamp

3DSTATE_POLY_STIPPLE_OFFSET
60h 31:29 Instruction Type = 3D_INSTRUCTION = 3h

 G45: Volume 1a Graphics Core

 146

DWord Bits State Field

28:16 3D Instruction Opcode = 3DSTATE_POLY_STIPPLE_OFFSET

GFXPIPE[28:27 = 3h, 26:24 = 1h, 23:16 = 06h] (Non-Pipelined)
 15:0 DWord Length (excl. DWord 0,1) = 0

61h 31:13 Reserved: MBZ
 12:8 Polygon Stipple X Offset
 7:5 Reserved: MBZ
 4:0 Polygon Stipple Y Offset

3DSTATE_LINE_STIPPLE
62h 31:29 Instruction Type = 3D_INSTRUCTION = 3h

28:16 3D Instruction Opcode = 3DSTATE_LINE_STIPPLE

GFXPIPE[28:27 = 3h, 26:24 = 1h, 23:16 = 08h] (Non-Pipelined)
 15:0 DWord Length (excl. DWord 0,1) = 1

63h 31 Modify Enable (Current Repeat Counter, Current Stipple Index)
 30 Reserved: MBZ

29:21 Current Repeat Counter

This field sets the HW-internal repeat counter state.
Format = U9

 20 Reserved: MBZ

19:16 Current Stipple Index

This field sets the HW-internal stipple pattern index.
Format = U4

15:0 Line Stipple Pattern

Specifies a pattern used to mask out bit specific pixels while rendering lines.
Format = 16 bit mask. Bit 15 = most significant bit, Bit 0 = least significant bit

64h 31:16 Line Stipple Inverse Repeat Count
 15:9 Reserved: MBZ
 8:0 Line Stipple Repeat Count

SVGunit Context Data (Media)
MEDIA_STATE_POINTERS

Note: Dwords 65h – 67h will be saved as MI_NOOP (opcode 00h) unless MEDIA_STATE_POINTERS
has been initialized (issued at least once).

65h 31:29 Command Type = GFXPIPE = 3h

28:16 Media Command Opcode = MEDIA_STATE_POINTERS

Pipeline[28:27] = Media = 2h; Opcode[26:24] = 0h; Subopcode[23:16] = 0h
 15:0 DWord Length (Excludes DWords 0,1) = 01h

66h 31:5 Pointer to VLD_STATE
 4:1 Reserved : MBZ
 0 VLD Enable

67h 31:5 Pointer to VFE_STATE
 4:0 Reserved : MBZ

SVGunit Context Data (3D)
3DSTATE_PIPELINE_POINTERS

Note: Dwords 68h – 6Eh will be saved as MI_NOOP (opcode 00h) unless
3DSTATE_PIPELINE_POINTERS has been initialized (issued at least once).

68h 31:29 Command Type = GFXPIPE = 3h

28:16 3D Command Opcode = 3DSTATE_PIPELINED_POINTERS

GFXPIPE[28:27 = 3h, 26:24 = 0h, 23:16 = 00h] (Pipelined)
 15:8 Reserved : MBZ
 7:0 DWord Length (Excludes DWords 0,1) = 5

69h 31:5 Pointer to VS_STATE
 4:0 Reserved : MBZ

6Ah 31:5 Pointer to GS_STATE
 4:1 Reserved : MBZ
 0 GS Enable

 G45: Volume 1a Graphics Core

 147

DWord Bits State Field

6Bh 31:5 Pointer to CLP_STATE
 4:1 Reserved : MBZ
 0 CLP Enable

6Ch 31:5 Pointer to SF_STATE
 4:0 Reserved : MBZ

6Dh 31:5 Pointer to WINDOWER_STATE
 4:0 Reserved : MBZ

6Eh 31:6 Pointer to COLOR_CALC_STATE
 5:0 Reserved : MBZ

3DSTATE_BINDING_TABLE_POINTERS
Note: Dwords 6Fh – 74h will be saved as MI_NOOP (opcode 00h) unless

3DSTATE_BINDING_TABLE_POINTERS has been initialized (issued at least once).
6Fh 31:29 Command Type = GFXPIPE = 3h

28:16 3D Command Opcode = 3DSTATE_BINDING_TABLE_POINTERS

GFXPIPE[28:27 = 3h, 26:24 = 0h, 23:16 = 01h] (Pipelined)
 15:8 Reserved : MBZ
 7:0 DWord Length (Excludes DWords 0,1) = 4

70h 31:5 Pointer to VS Binding Table
 4:0 Reserved : MBZ

71h 31:5 Pointer to GS Binding Table
 4:0 Reserved : MBZ

72h 31:5 Pointer to CLP Binding Table
 4:0 Reserved : MBZ

73h 31:5 Pointer to SF Binding Table
 4:0 Reserved : MBZ

74h 31:5 Pointer to PS Binding Table
 4:0 Reserved : MBZ

CONSTANT_BUFFER
Note: Dwords 75h – 76h will be saved as MI_NOOP (opcode 00h) unless CONSTANT_BUFFER has

been initialized (issued at least once).
75h 31:29 Command Type = GFXPIPE = 3h

28:16 3D Command Opcode = CONSTANT_BUFFER

GFXPIPE[28:27 = 0h, 26:24 = 0h, 23:16 = 02h] (Pipelined)
 15:9 Reserved : MBZ
 8 Valid (Will be set if CONSTANT_BUFFER was issued in the context to be saved)
 7:0 DWord Length (excludes DWords 0,1) = 0

76h 31:6 Buffer Starting Address
 5:0 Buffer Length

77h 31:0 MI_Noop
(This region was formerly Blitter Related Context Data)

78 – 87h
31:0 Reserved

Should be treated as garbage data when inspecting a saved context.
VFunit Related Context Data

3DSTATE_INDEX_BUFFER
88h 31:29 Command Type = GFXPIPE = 3h

 28:16 GFXPIPE Opcode = 3DSTATE_INDEX_BUFFER
GFXPIPE[28:27 = 3h, 26:24 = 0h, 23:16 = 0Ah] (Pipelined)

 15:11 Reserved : MBZ
 10 Cut Index Enable
 9:8 Index Format
 7:0 DWord Length (excludes DWords 0,1) = 1

89h 31:0 Buffer Starting Address
8Ah 31:0 Buffer Ending Address

 G45: Volume 1a Graphics Core

 148

DWord Bits State Field

3DSTATE_VERTEX_BUFFER
8Bh 31:29 Command Type = GFXPIPE = 3h

 28:16 GFXPIPE Opcode = 3DSTATE_VERTEX_BUFFERS
GFXPIPE[28:27 = 3h, 26:24 = 0h, 23:16 = 08h] (Pipelined)

 15:8 Reserved : MBZ
 7:0 DWord Length (excludes DWords 0,1)

8C-8Fh Vertex Buffer 0 State
90-93 Vertex Buffer 1 State

 …
CC-CFh Vertex Buffer 16 State

3DSTATE_VERTEX_ELEMENT (71 - 93h)
D0h 31:29 Command Type = GFXPIPE = 3h

 28:16 GFXPIPE Opcode = 3DSTATE_VERTEX_ELEMENTS
GFXPIPE[28:27 = 3h, 26:24 = 0h, 23:16 = 09h] (Pipelined)

 15:8 Reserved : MBZ
 7:0 DWord Length (excludes DWords 0,1)

D1 –
D2h

[1-2]
dw

Element[0]

D3 –
D4h

[3-4]
dw

Element[1]

… … …

F3 – F4h
[37-

38]dw
Element[17]

3DSTATE_VERTEX_STATISTIC_Counter_ENABLE
F5h 31:29 Command Type = GFXPIPE = 3h

 28:16 GFXPIPE Opcode = 3DSTATE_VF_STATISTICS
GFXPIPE[28:27 = 3h, 26:24 = 0h, 23:16 = 0Bh] (Pipelined)

 15:1 Reserved : MBZ
 0 Statistics Enable
F6-FFh MI_NOOP
DMunit Related Context Data

3DSTATE_SAMPLER_PALETTE_LOAD (ONLY on Extended SAVE Mode)
100h 31:29 Instruction Type = GFXPIPE = 3h

28:16 3D Instruction Opcode = 3DSTATE_SAMPLER_PALETTE_LOAD

GFXPIPE[28:27 = 3h, 26:24 = 1h; 23:16 = 02h] (Non-Pipelined)
 15:4 Reserved: MBZ
 3:0 DWord Length (excludes DWords 0,1)

101-
110h

31:24 Reserved

 23:0 Palette Color[0:N-1]
111-
117h

31:0 MI_NOOP

WIZunit Related Context Data
3DSTATE_POLY_STIPPLE_PATTERN (ONLY on Extended SAVE Mode)

118h 31:29 Instruction Type = 3D_INSTRUCTION = 3h

28:16 3D Instruction Opcode = 3DSTATE_POLY_STIPPLE_PATTERN

GFXPIPE[28:27 = 3h, 26:24 = 1h, 23:16 = 07h] (Non-Pipelined)
 15:0 DWord Length (excl. DWord 0,1) = 31

119h 31:0 Polygon Stipple Pattern Row 1 (top most)
11Ah 31:0 Polygon Stipple Pattern Row 2

11Bh –
138h

31:0 Polygon Stipple Pattern Rows 3 through 32 (bottom-most)

 G45: Volume 1a Graphics Core

 149

DWord Bits State Field

139-
13Fh

31:0 MI_Noop

6.19.2.1.1 Power Context Memory Layout ([DevCL] Only)

Additional context data is required if a reset occurs (if power is lost, for example) between the
save and restore of a context. A mobile-only feature provides for saving and restoring the
following context state/registers in this event. Note that the context below includes a pointer (in
an MI_SET_CONTEXTcommand) to the usual logical rendering context which is considered a
subset of the power context when power context is saved/restored. See the device EDS for
further details.

DWord Bits State Field

MEMORY INTERFACE STATE

00h 31:0 MI_NOOP

01h 31:29 Instruction Type = MI_INSTRUCTION = 0h

 28:23 MI Instruction Opcode = MI_LOAD_REGISTER_IMM = 22h

 22:12 Reserved: MBZ

 11:8 Byte Write Disables = Fh (all enabled)

 7:6 Reserved: MBZ

 5:0 DWord Length (Excludes DWord 0,1) = Ah

02h 31:0 Scratch Pad Register Address Offset

03h 31:0 Scratch Pad Register Data

04h 31:0 EXCC Register Address Offset

05h 31:21 Reserved. MBZ.

 20:16 Bit Write Masks for Bits 4:0: Written as 1Fh (all enabled)

 15:5 Reserved: MBZ

 4:0 User Defined Condition Codes

06h 31:0 Ring Buffer Tail Pointer Register Offset

07h 31:21 Reserved: MBZ

 20:3 Tail Offset (Never Saved on Context Switch)

 2:1 Reserved: MBZ

 0 In Use (Always saved as 0)

08h 31:0 Ring Buffer Starting Address Register Offset

09h 31:12 Starting Address

 11:0 Reserved: MBZ

0Ah
31:0 Ring Buffer Head Pointer Register Offset

Note: The Head reg is restored after the Address reg, as restoring the
Address reg resets the Head.

0Bh 31:21 Wrap Count

 G45: Volume 1a Graphics Core

 150

DWord Bits State Field

 20:2 Head Offset

 1:0 Reserved: MBZ

0Ch 31:0 Ring Buffer Length Register Offset

0Dh 31:21 Reserved: MBZ

 20:12 Buffer Length

 11 RB Wait

 10 RB Arb off

 9 RB in time slice

 8 Disable Register Accesses

 7:3 Reserved: MBZ

 2:1 Automatic Report Head Pointer

 0 Ring Buffer Enable

0Eh 31:29 Instruction Type = MI_INSTRUCTION = 0h

 28:23 MI Instruction Opcode = MI_SET_CONTEXT = 18h

 22:6 Reserved: MBZ

 5:0 DWord Length (Excludes Dword 0,1) = 0

0Fh 31:11 Logical Context Address

 10:4 Reserved: MBZ

 8 Memory Space Select

 7:4 Physical Start Address Extension

 3 Extended State Save Enable

 2 Extended State Restore Enable

 1 Force Restore

 0 Restore Inhibit

 G45: Volume 1a Graphics Core

 151

6.19.2.1.2 Logical Context Initialization

Each logical context should initialize all device state before beginning operations so that any
context switches that occur subsequently will save and restore coherent device state. See
Memory Interface Functions for more information. The following table provides values that should
be used to initialize any state that the context does not require for its operations. Note that these
state variables will need to be set to something more intelligent for a context that intends to
perform operations that depend on them. The values of these state variables are saved (and
subsequently restored) on any context switch, with the exception of the
3DSTATE_SAMPLER_PALETTE_LOAD and 3DSTATE_POLY_STIPPLE_PATTERN which are only saved
from and restored to contexts that have the Extended State Save Enable and Extended State
Restore Enable, respectively, set in the MI_SET_CONTEXT command that triggers the context
switch. See Memory Interface Commands for details of this command.

Note that 3D/Media pipelined state cannot be initialized; it is not stored internally to the device
but is accessed from state blocks in memory as required by rendering operations. Any context
that will issue 3DPRIMITIVE or MEDIA_OBJECT_LOAD commands must first place valid state
structures in memory and send down the corresponding command
(3DSTATE_PIPELINED_POINTERS or MEDIA_STATE_POINTERS) to point to it. There are no
defaults for this state. The following table (Table 6-26) summarizes state that MUST BE properly
set up for a given context. Please refer to the Graphics Processing Engine (GPE), 3D Pipeline and
Media chapters for details on these commands.

Table 6-26. Context Setup that Cannot Use Defaults

Context Required Setup Notes

3D PIPELINE_SELECT 3D Pipeline must be selected

 CS_URB_STATE Must allocate sufficient URB space
for constants that will be used.

 3DSTATE_PIPELINED_POINTERS Pointers for all enabled FF units
(when offset from base address)
must point to valid state in
memory.

 3DSTATE_BINDING_TABLE_POINTERS Pointers for all enabled FF units
(when offset from base address)
must point to valid binding tables
in memory.

 STATE_BASE_ADDRESS Must be properly initialized so that
pointers above point to valid state
blocks.

 URB_FENCE Enabled FF units must be allocated
sufficient URB space to avoid
deadlock. Note that most FF units
cannot be disabled. Only VS and
CLIP can be disabled.

 CONSTANT_BUFFER Must point to a valid constant
buffer if constants will be used.

 STATE_SIP Must point to a valid exception
handler if any threads will be
dispatched with any exceptions
enabled.

 G45: Volume 1a Graphics Core

 152

Context Required Setup Notes

Media PIPELINE_SELECT Media Pipeline must be selected

 CS_URB_STATE Same as above

 MEDIA_STATE_POINTERS Pointers for one, or both if enabled,
Media FF units (when offset from
base address) must point to valid
state in memory.

 STATE_BASE_ADDRESS Must be properly initialized so that
pointers above point to valid state
blocks.

 URB_FENCE Enabled FF units must be allocated
sufficient URB space to avoid
deadlock. Note that the VFE FF unit
cannot be disabled.

 CONSTANT_BUFFER Must point to a valid constant
buffer if constants will be used.

 STATE_SIP Must point to a valid exception
handler if any threads will be
dispatched with any exceptions
enabled.

Table 6-27. Initialization of Command State

Instruction/Field Value

PIPELINE_SELECT

Pipeline Select 0 = 3D pipeline is selected

CS_URB_STATE

URB Entry Allocation Size 0
Number of URB Entries 0

URB_FENCE

CS Unit URB Reallocation Request 0
VFE Fence Unit URB Reallocation Request 0
SF Unit URB Reallocation Request 0
CLIP Unit URB Reallocation Request 0
GS Unit URB Reallocation Request 0
VS Unit URB Reallocation Request 0
CLP Fence 192
GS Fence 128
VS Fence 64
CS Fence 256
VFE Fence 0
SF Fence 252

CONSTANT_BUFFER

Valid 0
Buffer Starting Address 0
Buffer Length 0

 G45: Volume 1a Graphics Core

 153

Instruction/Field Value

STATE_BASE_ADDRESS

General State Base Address 0
Surface State Base Address 0
Indirect Object Base Address 0
General State Access Upper Bound 0
Indirect Object Access Upper Bound 0

STATE_SIP

System Instruction Pointer 0

3DSTATE_DRAWING_RECTANGLE

Clipped Drawing Rectangle Y Min 0
Clipped Drawing Rectangle X Min 0
Clipped Drawing Rectangle Y Max 8191
Clipped Drawing Rectangle X Max 8191
Drawing Rectangle Origin Y 0
Drawing Rectangle Origin X 0

3DSTATE_DEPTH_BUFFER

Surface Type 7 (SURFTYPE_NULL)
Tiled Surface 0
Tile Walk 1 = Y
Depth Buffer Coordinate Offset Disable 0
Surface Format 0
Surface Pitch 0
Surface Base Address 0
Height 0
Width 0
LOD 0
MIP Map Layout Mode 0 = MIPLAYOUT_BELOW
Depth 0
Minimum Array Element 0

3DSTATE_CHROMA_KEY (INDEX_0)

ChromaKey Table Index 0
ChromaKey Low Value 0
ChromaKey High Value 0

3DSTATE_CHROMA_KEY (INDEX_1)

ChromaKey Table Index 1
ChromaKey Low Value 0
ChromaKey High Value 0

3DSTATE_CHROMA_KEY (INDEX_2)

ChromaKey Table Index 2
ChromaKey Low Value 0
ChromaKey High Value 0

3DSTATE_CHROMA_KEY (INDEX_3)

ChromaKey Table Index 3
ChromaKey Low Value 0
ChromaKey High Value 0

 G45: Volume 1a Graphics Core

 154

Instruction/Field Value

3DSTATE_CONSTANT_COLOR

Blend Constant Color Red 1.0
Blend Constant Color Blue 1.0
Blend Constant Color Green 1.0
Blend Constant Color Alpha 1.0

3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP

Global Depth Offset Clamp 0.0

3DSTATE_POLY_STIPPLE_OFFSET

Polygon Stipple X Offset 0
Polygon Stipple Y Offset 0

3DSTATE_LINE_STIPPLE

Modify Enable 0
Current Repeat Counter 0
Current Stipple Index 0
Line Stipple Pattern 0
Line Stipple Inverse Repeat Count 0
Line Stipple Repeat Count 0

MEDIA_STATE_POINTERS

Pointer to VLD_STATE 0
VLD Enable 0
Pointer to VFE_STATE 0

3DSTATE_PIPELINE_POINTERS

Pointer to VS_STATE 0
Pointer to GS_STATE 0
GS Enable 0
Pointer to CLP_STATE 0
CLP Enable 0
Pointer to SF_STATE 0
Pointer to WINDOWER_STATE 0
Pointer to COLOR_CALC_STATE 0

3DSTATE_BINDING_TABLE_POINTERS

Pointer to VS Binding Table 0
Pointer to GS Binding Table 0
Pointer to CLP Binding Table 0
Pointer to SF Binding Table 0
Pointer to PS Binding Table 0

3DSTATE_INDEX_BUFFER

Cut Index Enable 0
Index Format 0
Buffer Starting Address 0
Buffer Ending Address 0

3DSTATE_VERTEX_BUFFER (0 – 16)

DWord Length (excludes DWords 0,1) 50 (32h)
Vertex Buffer Index 0
Buffer Access Type 0 = VERTEXDATA

 G45: Volume 1a Graphics Core

 155

Instruction/Field Value

Buffer Pitch 0
Buffer Starting Address 0
Max Index 0
… values repeated for all 17 Vertex Buffers …

3DSTATE_VERTEX_ELEMENT (0 – 17)

DWord Length (excludes DWords 0,1) 35 (23h)

Vertex Buffer Index 0

Valid 0

Source Element Format 0

Source Element Offset 0

Component 0 Control 2 = VFCOMP_STORE_0

Component 1 Control 0 = VFCOMP_NOSTORE

Component 2 Control 0 = VFCOMP_NOSTORE

Component 3 Control 0 = VFCOMP_NOSTORE

Destination Element Offset 0

… values repeated for all 18 Vertex Elements ...

3DSTATE_VF_STATISTICS

Statistics Enable 0
3DSTATE_SAMPLER_PALETTE_LOAD (Required
to be initialized only if context uses extended
save)

DWord Length (excludes DWords 0,1) 15
Palette Color 0 0
Palette Color 1 0
… 0
Palette Color 15 0
3DSTATE_POLY_STIPPLE_PATTERN (Required to
be initialized only if context uses extended save)

DWord Length (excl. DWord 0,1) 31
Polygon Stipple Pattern Row 1 (top most) 0
Polygon Stipple Pattern Row 2 0
… 0
Polygon Stipple Pattern Row 32 (bottom-most) 0

 G45: Volume 1a Graphics Core

 156

6.19.2.2 [DevCTG-B], [DevEL]
The Register/State Context breaks down into cachelines as follows:

CL # Description

0h
Ring Registers and AS-Specific Pipe Context Data (AS Only)

Contains the only DWs required to be initialized in the image by SW

1h-2h Probe Valid Registers (AS Only)

3h-8h Non-Pipelined 3D State Context Data

9h-19h Sampler Palette Load (Extended Only)

1Ah-1Ch Poly Stipple Pattern (Extended Only)

1Dh-1Eh Reserved

1Fh Media PRT

20h-27h Pipelined 3D and Media State (Stored Here Only When PPGTT/Runlists Disabled)

27h-3Fh Reserved

Ring Registers and Non-Pipelined Context Details:

 Valid Only When Run Lists and PPGTT Enabled
DW Range

D
W

 C
ou

nt

State Field
R

en
de

r R
es

to
re

 In
hi

bi
te

d

PP
G

TT
 a

nd
 R

un
 L

is
ts

 E
na

bl
ed

PP
G

TT
 a

nd
 R

un
 L

is
ts

D

is
ab

le
d

Po
w

er
 C

on
te

xt

Se
t B

ef
or

e
Su

bm
itt

in
g

C
on

te
xt

?

00h 1 Context Control R S/R X X Yes
01h 1 Ring Head Pointer Register R S/R X S/R Yes
02h 1 Ring Tail Pointer Register R R X S/R Yes
03h 1 Batch Buffer Current Head Register NR S/R X X No
04h 1 Batch Buffer State Register NR S/R X X No
05h 1 PPGTT Directory Cache Valid Register R R X X Yes
06h 1 Reserved (for PPGTT Directory Cache Valid

High)
NR X X X X

07h 1 PD Base Virtual Address Register R R X X Yes
08h 1 Read Offset in Piipelined State Page (8 CL

aligned)
NR S/R X X No

09h 1 Committed Vertex Number NR S/R X X No
0Ah 1 Committed Instance ID NR S/R X X No

 G45: Volume 1a Graphics Core

 157

 Valid Only When Run Lists and PPGTT Enabled
DW Range

D
W

 C
ou

nt

State Field

R
en

de
r R

es
to

re
 In

hi
bi

te
d

PP
G

TT
 a

nd
 R

un
 L

is
ts

 E
na

bl
ed

PP
G

TT
 a

nd
 R

un
 L

is
ts

D

is
ab

le
d

Po
w

er
 C

on
te

xt

Se
t B

ef
or

e
Su

bm
itt

in
g

C
on

te
xt

?

0Bh 1 Committed Primitive ID NR S/R X X No
0Ch 1 Super Span Count NR S/R X X No
0Dh 1 VFE Debug Counter NR S/R X X No
0Eh 1 Reserved(For power context: register 2180) NR X X X X
0Fh 1 Reserved NR X X X X

10h – 1Fh 16 Probe Valid Registers R S/R X X Yes
20h – 2Fh 16 Probe Valid Registers R S/R X X Yes
30h – 31h 2 IA_VERTICES_COUNT Register NR S/R S/R S/R No
32h – 33h 2 IA_PRIMITIVES_COUNT Register | | | | |
34h – 35h 2 VS_INVOCATION_COUNT Register V V V V V
36h – 37h 2 GS_INVOCATION_COUNT Register
38h – 39h 2 Num Primitives Written Register
3Ah – 3Bh 2 Primitive Storage Needed Register

3Ch 1 Streaming Vertex Buffer Index 0
3Dh 1 Streaming Vertex Buffer Index 1
3Eh 1 Streaming Vertex Buffer Index 2
3Fh 1 Streaming Vertex Buffer Index 3

40h – 41h 2 GS_PRIMITIVES_COUNT Register
42h – 43h 2 CL_INVOCATION_COUNT Register
44h – 45h 2 CL_PRIMITIVES_COUNT Register
46h – 47h 2 PS_INVOCATION_COUNT Register
48h – 49h 2 PS_DEPTH_COUNT Register

4Ah 1 CACHE_MODE_0 Register
4Bh 1 CACHE_MODE_1 Register
4Ch 1 MI_ARB_STATE Register
4Dh 1 INSTPM Register
4Eh 1 EXCC Register
4Fh 1 MI_MODE Register
50h 1 PIPELINE_SELECT

51h – 56h 6 STATE_BASE_ADDRESS
57h – 58h 2 STATE_SIP
59h – 5Ch 4 3DSTATE_DRAWING_RECTANGLE
5Dh – 5Fh 3 3DSTATE_AA_LINE_PARAMS

 G45: Volume 1a Graphics Core

 158

 Valid Only When Run Lists and PPGTT Enabled
DW Range

D
W

 C
ou

nt

State Field

R
en

de
r R

es
to

re
 In

hi
bi

te
d

PP
G

TT
 a

nd
 R

un
 L

is
ts

 E
na

bl
ed

PP
G

TT
 a

nd
 R

un
 L

is
ts

D

is
ab

le
d

Po
w

er
 C

on
te

xt

Se
t B

ef
or

e
Su

bm
itt

in
g

C
on

te
xt

?

60h – 65h 6 3DSTATE_DEPTH_BUFFER
66h – 6Ah 5 3DSTATE_CONSTANT_COLOR
6Bh – 6Ch 2 3DSTATE_POLY_STIPPLE_OFFSET
6Dh – 6Fh 3 3DSTATE_LINE_STIPPLE
70h – 71h 2 3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP
72h – 7Fh 14 Reserved
80h – 83h 4 3DSTATE_CHROMA_KEY (0)
84h – 87h 4 3DSTATE_CHROMA_KEY (1)
88h – 8Bh 4 3DSTATE_CHROMA_KEY (2)
8Ch – 8Fh 4 3DSTATE_CHROMA_KEY (3)
90h – 190h 257 3DSTATE_SAMPLER_PALETTE_LOAD_0
191h – 196h 6 Reserved
197h – 297h 257 3DSTATE_SAMPLER_PALETTE_LOAD_1
298h – 29Fh 8 Reserved
2A0h – 2C0h 33 3DSTATE_POLY_STIPPLE_PATTERN
2C1h – 2CFh 15 Reserved
2D0h – 2EFh 32 Reserved
2F0h – 2FFh 16 Media PRT Data

 The following state is saved here only when Run Lists are not being used. If Run
Lists are enabled, this state will be saved in the Pipelined State page. Note that
these commands are saved without headers (unlike the commands above).

300h – 304h 5 3DSTATE_PIPELINED_POINTERS
305h – 309h 5 3DSTATE_BINDING_TABLE_POINTERS
30Ah – 30Bh 2 MEDIA_STATE_POINTERS
30Ch – 30Eh 3 URB_FENCE

30Fh 1 CS_URB_STATE
310h – 311h 2 CONSTANT_BUFFER
312h – 314h 3 3DSTATE_INDEX_BUFFER
315h – 358h 68 3DSTATE_VERTEX_BUFFERS
359h – 37Ch 36 3DSTATE_VERTEX_ELEMENTS

37Dh 1 3DSTATE_VF_STATISTICS
37Eh – 3FFh 130 Reserved

 G45: Volume 1a Graphics Core

 159

6.19.3 The Probe List

The Probe List consists of 1024 slots. Each slot can hold a probe list entry. Each entry is one
Dword and has the following format:

Bit Description

31:12 Surface Page Base Address.

Format = PerProcessGraphicsVirtualAddress[31:12]

11:1 Reserved. MBZ

0 Fault. This bit is set by HW if this probe faults (either on context restore or when executing
MI_PROBE.) This bit is ignored when this probe entry is read in order to be re-checked as part of a
context restore operation.

SW must clear the Fault bit in a probe list entry for which it has successfully serviced a surface
fault. When restoring a context, Fault bits are only set for new faults. They are not cleared for
reprobes which do not fault.

6.19.4 Pipelined State Page

This page is used a scratch area for the pipeline to store pipelined state that is not referenced
indirectly. Under no circumstances should SW read from or write to this page.

6.19.5 Ring Buffer

This page is used a scratch area for the pipeline to store ring buffer commands that need to be
reissued. Under no circumstances should SW read from or write to this page.

 G45: Volume 1a Graphics Core

 160

6.19.6 The Per-Process Hardware Status Page

The following table defines the layout of the Per-process Hardware Status Page:

DWord
Offset

Description

(3FFh –
020h)

These locations can be used for general purpose via the MI_STORE_DATA_INDEX or
MI_STORE_DATA_IMM instructions.

1F:1A Reserved.

19 Context Save Finished Timestamp

18 Context Restore Complete Timestamp

17 Pre-empt Request Received Timestamp

16 Last Switch Timestamp

15:12 Reserved.

11:10 Probe List Slot Fault Register (2 DWs)

F:5 Reserved.

4 Ring Head Pointer Storage: The contents of the Ring Buffer Head Pointer register (register DWord
1) are written to this location either as result of an MI_REPORT_HEAD instruction or as the result of
an “automatic report” (see RINGBUF registers).

3:0 Reserved.

This page is designed to be read by SW in order to glean additional details about a context beyond
what it can get from the context status.

Accesses to this page will automatically be treated as cacheable and snooped. It is therefore
illegal to locate this page in any region where snooping is illegal (such as in stolen memory).

§§

7 Device 2 Configuration Registers

7.1 Introduction

PCI Configuration Device 2 is the Internal Graphics Device (IGD). The common subset of these
registers is thus documented in this specification. For all other configuration register devices,
please see the EDS for the particular device concerned.

Note that only a subset of the Device 2 Configuration registers is documented here. Registers that
are not documented here are available for use (and many are already used) for product-specific
control registers that relate to Device 2. Please see the EDS for the complete set of Device 2
registers for a given product.

All registers documented herein are common between all products in the GenX family except for
the minor exceptions noted. Any changes to the registers documented here must be presented to
the common graphics core change control board.

7.2 Device 2, Function 0
Register Name Register

Symbol
Register

Start
Register

End
Default Value Access

Vendor Identification VID2 0 1 8086h RO;

Device Identification DID2 2 3 [Device
Specific]

RO;

PCI Command PCICMD2 4 5 0000h RO; R/W;

PCI Status PCISTS2 6 7 0090h RO;

Revision Identification RID2 8 8 00h RO;

Class Code CC 9 B 030000h RO;

Cache Line Size CLS C C 00h RO;

Master Latency Timer MLT2 D D 00h RO;

Header Type HDR2 E E 80h RO;

Built In Self Test BIST F F 00h RO;

Graphics Translation Table Range
Address

GTTMMADR 10 17 000000000000
0004h

RO; R/W;

Graphics Memory Range Address GMADR 18 1F 000000000000
000Ch

RO; R/W;
R/W/L;

I/O Base Address IOBAR 20 23 00000001h RO; R/W;

Subsystem Vendor Identification SVID2 2C 2D 0000h R/WO;

Subsystem Identification SID2 2E 2F 0000h R/WO;

 G45: Volume 1a Graphics Core

 162

Register Name Register
Symbol

Register
Start

Register
End

Default Value Access

Video BIOS ROM Base Address ROMADR 30 33 00000000h RO;

Capabilities Pointer CAPPOINT 34 34 90h RO;

Interrupt Line INTRLINE 3C 3C 00h R/W;

Interrupt Pin INTRPIN 3D 3D 01h RO;

Minimum Grant MINGNT 3E 3E 00h RO;

Maximum Latency MAXLAT 3F 3F 00h RO;

Capabilities Pointer (to Mirror of
Dev0 CAPID)

MCAPPTR 44 44 48h RO;

Mirror of Dev 0 Capability
Identification

MCAPID 48 51 [Device
Specific]

RO;

Mirror of Dev0 GMCH Graphics
Control

MGGC 52 53 0030h RO;

Mirror of Dev0 DEVEN MDEVENdev0F
0

54 57 [Device
Specific]

RO;

Software Scratch Read Write SSRW 58 5B 00000000h R/W;

Base of Stolen Memory BSM 5C 5F [Device
Specific]

RO;

Hardware Scratch Read Write HSRW 60 61 0000h R/W;

Multi Size Aperture Control MSAC 62 62 02h RO; R/W;
R/W/L;

VTD Status VTDS 63 63 02h or 00h RO;

Secondary CWB Flush Control
[DevBW Only]

SCWBFC 68 6F 000000000000
0000h

RO

Capabilities List Control CAPL 7F 7F 00h RO; R/W;

Message Signaled Interrupts
Capability ID

MSI_CAPID 90 91 D005h RO;

Message Control MC 92 93 0000h RO; R/W;

Message Address MA 94 97 00000000h R/W; RO;

Message Data MD 98 99 0000h R/W;

FLR Capability ID FLRCAPID A4 A5 0009h RO;

FLR Length and Version FLRLENVER A6 A7 2006h RO;

FLR Control FLRCNTL A8 A9 0000h RO; R/W;

FLR Status FLRSTAT AA AA 00h RO

Graphics Device Reset GDRST C0 C0 00h RO; R/W;

GMBUS frequency binary
encoding

GMBUSFREQ CC CD 0000h R/W; RO;

Power Management Capabilities
ID

PMCAPID D0 D1 0001h RO;

 G45: Volume 1a Graphics Core

 163

Register Name Register
Symbol

Register
Start

Register
End

Default Value Access

Power Management Capabilities PMCAP D2 D3 0022h or 0023h RO;

Power Management
Control/Status

PMCS D4 D5 0000h RO; R/W;

Software SMI SWSMI E0 E1 0000h R/W;

System Display Event Register ASLE E4 E7 00000000h R/W;

Software SCI SWSCI E8 E9 0000h RO; R/W;

Legacy Backlight Brightness LBB F4 F7 00000000h R/W;

Manufacturing ID MID2 F8 FB [Device
Specific]

RO;

ASL Storage ASLS FC FF 00000000h R/W;

7.2.1 VID2 — Vendor Identification
B/D/F/Type: 0/2/0/PCI
Address Offset: 0-1h
Default Value: 8086h
Access: RO;
Size: 16 bits

This register combined with the Device Identification register uniquely identifies any PCI device.

Bit Access Default
Value

Description

15:0 RO 8086h Vendor Identification Number (VID): PCI standard identification for
Intel.

7.2.2 DID2 — Device Identification
B/D/F/Type: 0/2/0/PCI
Address Offset: 2-3h
Default Value: [Device Specific]
Access: RO;
Size: 16 bits

This register combined with the Vendor Identification register uniquely identifies any PCI device.

Bit Access Default
Value

Description

15:0 RO -- Device Identification Number (DID): Identifier assigned to the GMCH
core/primary PCI device. Intel Reserved Text: Some bits of this field are
actually determined by fuses, which allows unique Device IDs to be used for
different product SKUs.

 G45: Volume 1a Graphics Core

 164

7.2.3 PCICMD2 — PCI Command
B/D/F/Type: 0/2/0/PCI
Address Offset: 4-5h
Default Value: 0000h
Access: RO; R/W;
Size: 16 bits

This 16-bit register provides basic control over the IGDs ability to respond to PCI cycles. The
PCICMD Register in the IGD disables the IGD PCI compliant master accesses to main memory.

Bit Access Default
Value

Description

15:11 RO 00h Reserved

10 R/W 0b Interrupt Disable: This bit disables the device from asserting INTx#.

0: Enable the assertion of this device's INTx# signal.

1: Disable the assertion of this device's INTx# signal. DO_INTx messages
will not be sent to DMI.

9 RO 0b Fast Back-to-Back (FB2B): Not Implemented. Hardwired to 0.

8 RO 0b SERR Enable (SERRE): Not Implemented. Hardwired to 0.

7 RO 0b Address/Data Stepping Enable (ADSTEP): Not Implemented.
Hardwired to 0.

6 RO 0b Parity Error Enable (PERRE): Not Implemented. Hardwired to 0. Since
the IGD belongs to the category of devices that does not corrupt programs or
data in system memory or hard drives, the IGD ignores any parity error that
it detects and continues with normal operation.

5 RO 0b Video Palette Snooping (VPS): This bit is hardwired to 0 to disable
snooping.

4 RO 0b Memory Write and Invalidate Enable (MWIE): Hardwired to 0. The
IGD does not support memory write and invalidate commands.

3 RO 0b Special Cycle Enable (SCE): This bit is hardwired to 0. The IGD ignores
Special cycles.

2 R/W 0b Bus Master Enable (BME):

0: Disable IGD bus mastering.

1: Enable the IGD to function as a PCI compliant master.

1 R/W 0b Memory Access Enable (MAE): This bit controls the IGDs response to
memory space accesses.

0: Disable.

1: Enable.

0 R/W 0b I/O Access Enable (IOAE): This bit controls the IGDs response to I/O
space accesses.

0: Disable.

1: Enable.

 G45: Volume 1a Graphics Core

 165

7.2.4 PCISTS2 — PCI Status
B/D/F/Type: 0/2/0/PCI
Address Offset: 6-7h
Default Value: 0090h
Access: RO;
Size: 16 bits

PCISTS is a 16-bit status register that reports the occurrence of a PCI compliant master abort and
PCI compliant target abort. PCISTS also indicates the DEVSEL# timing that has been set by the
IGD.

Bit Access Default
Value

Description

15 RO 0b Detected Parity Error (DPE): Since the IGD does not detect parity, this
bit is always hardwired to 0.g

14 RO 0b Signaled System Error (SSE): The IGD never asserts SERR#, therefore
this bit is hardwired to 0.

13 RO 0b Received Master Abort Status (RMAS): The IGD never gets a Master
Abort, therefore this bit is hardwired to 0.

12 RO 0b Received Target Abort Status (RTAS): The IGD never gets a Target
Abort, therefore this bit is hardwired to 0.

11 RO 0b Signaled Target Abort Status (STAS): Hardwired to 0. The IGD does
not use target abort semantics.

10:9 RO 00b DEVSEL Timing (DEVT): N/A. These bits are hardwired to "00".

8 RO 0b Master Data Parity Error Detected (DPD): Since Parity Error Response
is hardwired to disabled (and the IGD does not do any parity detection), this
bit is hardwired to 0.

7 RO 1b Fast Back-to-Back (FB2B): Hardwired to 1. The IGD accepts fast back-
to-back when the transactions are not to the same agent.

6 RO 0b User Defined Format (UDF): Hardwired to 0.

5 RO 0b 66 MHz PCI Capable (66C): N/A - Hardwired to 0.

4 RO 1b Capability List (CLIST): This bit is set to 1 to indicate that the register at
34h provides an offset into the function痴 PCI Configuration Space containing
a pointer to the location of the first item in the list.

3 RO 0b Interrupt Status: This bit reflects the state of the interrupt in the device.
Only when the Interrupt Disable bit in the command register is a 0 and this
Interrupt Status bit is a 1, will the devices INTx# signal be asserted. Setting
the Interrupt Disable bit to a 1 has no effect on the state of this bit.

2:0 RO 000b Reserved.:

 G45: Volume 1a Graphics Core

 166

7.2.5 RID2 — Revision Identification
B/D/F/Type: 0/2/0/PCI
Address Offset: 8h
Default Value: 00h
Access: RO;
Size: 8 bits

Compatible Revision ID (CRID):

An 8 bit hardwired value assigned by the ID Council. Normally, the value assigned as the CRID will
be identical to the SRID value of a previous stepping of the product with which the new product is
deemed "compatible". Note that CRID is not an addressable PCI register. The CRID value is
simply reflected through the RID register when appropriately selected. Lower 4 bits of the CRID
are driven by Fuses. The CRID fuses are programmed based on the SKU.

Stepping Revision ID (SRID):

An 8 bit hardwired value assigned by the ID Council. The values assigned as the SRID of a
product's steppings will be selectively incremented based on the degree of change to that
stepping. It is suggested that the first stepping of any given product have an SRID value = 01h
simply to avoid the "reserved register" value of 00h. Note that SRID is not an addressable PCI
register. The SRID value is simply reflected through the RID register when appropriately selected.

 RID Select Key Value:

This is hardwired value (69h). If the latched value written to the RID register address matches this
RID Select Key Value, the CRID value be presented for reading from the RID register.

RID Definition:

This register contains the revision number of the GMCH Device #0. Following PCI Reset the SRID
value is selected to be read. When a write occurs to this register the write data is compared to the
hardwired RID Select Key Value which is 69h. If the data matches this key a flag is set that
enables the CRID value to be read through this register.

Note that the flag is a "write once'. Therefore once the CRID is selected to be read, the only way
to again select the SRID is to PCI Reset the component. Also if any value other than the key
(69h) is written to the RID register, the flag is locked such that the SRID is selected until the
component is PCI Reset. Note that the RID register itself is not directly write-able.

This register contains the revision number for Device #2 Functions 0 and 1.

Bit Access Default
Value

Description

7:0 RO 00h Revision Identification Number (RID): This is an 8-bit value that
indicates the revision identification number for the GMCH.

 G45: Volume 1a Graphics Core

 167

7.2.6 CC — Class Code
B/D/F/Type: 0/2/0/PCI
Address Offset: 9-Bh
Default Value: 030000h
Access: RO;
Size: 24 bits

This register contains the device programming interface information related to the Sub-Class Code
and Base Class Code definition for the IGD. This register also contains the Base Class Code and
the function sub-class in relation to the Base Class Code.

Bit Access Default
Value

Description

23:16 RO 03h Base Class Code (BCC): This is an 8-bit value that indicates the base
class code for the GMCH. This code has the value 03h, indicating a Display
Controller.

15:8 RO 00h Sub-Class Code (SUBCC): Based on Device #0 GGC-GMS bits and GGC-
IVD bits.

00h: VGA compatible

80h: Non VGA (GMS = "000" or IVD = "1")

7:0 RO 00h Programming Interface (PI):

00h: Hardwired as a Display controller.

7.2.7 CLS — Cache Line Size
B/D/F/Type: 0/2/0/PCI
Address Offset: Ch
Default Value: 00h
Access: RO;
Size: 8 bits

The IGD does not support this register as a PCI slave.

Bit Access Default
Value

Description

7:0 RO 00h Cache Line Size (CLS): This field is hardwired to 0s. The IGD as a PCI
compliant master does not use the Memory Write and Invalidate command
and, in general, does not perform operations based on cache line size.

 G45: Volume 1a Graphics Core

 168

7.2.8 MLT2 — Master Latency Timer
B/D/F/Type: 0/2/0/PCI
Address Offset: Dh
Default Value: 00h
Access: RO;
Size: 8 bits

The IGD does not support the programmability of the master latency timer because it does not
perform bursts.

Bit Access Default
Value

Description

7:0 RO 00h Master Latency Timer Count Value: Hardwired to 0s.

7.2.9 HDR2 — Header Type
B/D/F/Type: 0/2/0/PCI
Address Offset: Eh
Default Value: 80h
Access: RO;
Size: 8 bits

This register contains the Header Type of the IGD.

Bit Access Default
Value

Description

7 RO 1b Multi Function Status (MFunc): Indicates if the device is a Multi-
Function Device. The Value of this register is determined by Device #0, offset
54h, DEVEN[4]. If Device #0 DEVEN[4] is set, the Mfunc bit is also set.

6:0 RO 00h Header Code (H): This is a 7-bit value that indicates the Header Code for
the IGD. This code has the value 00h, indicating a type 0 configuration space
format.

7.2.10 BIST — Built In Self Test
B/D/F/Type: 0/2/0/PCI
Address Offset: Fh
Default Value: 00h
Access: RO;
Size: 8 bits

This register is used for control and status of Built In Self Test (BIST).

Bit Access Default
Value

Description

7 RO 0b BIST Supported: BIST is not supported. This bit is hardwired to 0.

6:0 RO 00h Reserved

 G45: Volume 1a Graphics Core

 169

7.2.11 GTTMMADR — Graphics Translation Table Range Address
B/D/F/Type: 0/2/0/PCI
Address Offset: 10-17h
Default Value: 0000000000000004h
Access: RO; R/W;
Size: 64 bits

This register requests allocation for combined Graphics Translation Table and Memory Mapped
Range. The allocation is split evenly between GTTADDR and MMIO, with MMIO coming first
(lowest address) in the space.

For the Global GTT, GTTADDR is defined as part of a memory BAR in graphics device config space
as an alias with which software writes values (PTEs) into the global Graphics Translation Table
(GTT). Writing PTEs directly into the global GTT memory area is allowed.

Device Total
Allocation

GTTADDR
Size

GTT
Entries

Total
Aperture Size

Base
Address

Bits

All 1 MB 512K 128K 512M 35:20

The device snoops writes to GTTADDR space in order to invalidate any cached translations within
the various TLB's implemented on-chip. There are some exceptions to this – see GTT-TLB in the
Programming Interface chapter.

The Global GTT base address is programmed in the PGTB_CNTL register. The Global GTT resides
in Main Memory

The Global GTT is required to be 4KB aligned, with each entry being DWord aligned.

Bit Access Default
Value

Description

63:36 R/W 0000000h Must be set to 0 since addressing above 64GB is not supported.

35:21 R/W 0000h Memory Base Address: Set by the OS, these bits correspond to address
signals [35:21].

20 R/W R/W, Memory Base Address[20].

0 indicates at least 2MB address range.

19:4 RO 0000h Reserved: Hardwired to 0's to indicate at least 1MB address range.

3 RO 0b Prefetchable Memory: Hardwired to 0 to prevent prefetching.

2:1 RO 10b Memory Type ()

00 : To indicate 32 bit base address

01: Reserved

10 : To indicate 64 bit base address

11: Reserved

0 RO 0b Memory/IO Space: Hardwired to 0 to indicate memory space.

 G45: Volume 1a Graphics Core

 170

7.2.12 GMADR — Graphics Memory Range Address
B/D/F/Type: 0/2/0/PCI
Address Offset: 18-1Fh
Default Value: 000000000000000Ch
Access: RO; R/W; R/W/L;
Size: 64 bits

IGD graphics memory base address is specified in this register.

Bit Access Default
Value

Description

63:36 RO 0000000h Reserved

35:29 R/W 00h Memory Base Address: Set by the OS, these bits correspond to address
signals [35:29].

28 R/W/L 0b 512 MB Address Mask: This bit is either part of the Memory Base Address
(R/W) or part of the Address Mask (RO), depending on the value of
MSAC[1:0].

See MSAC (Dev 2, Func 0, offset 62h) for details.

27 R/W/L 0b 256 MB Address Mask: This bit is either part of the Memory Base Address
(R/W) or part of the Address Mask (RO), depending on the value of
MSAC[1:0].

See MSAC (Dev 2, Func 0, offset 62h) for details.

26:4 RO 000000h Address Mask: Hardwired to 0s to indicate at least 128MB address range.

3 RO 1b Prefetchable Memory: Hardwired to 1 to enable prefetching.

2:1 RO 10b Memory Type ()

00 : To indicate 32 bit base address

01: Reserved

10 : To indicate 64 bit base address

11: Reserved

0 RO 0b Memory/IO Space: Hardwired to 0 to indicate memory space.

 G45: Volume 1a Graphics Core

 171

7.2.13 IOBAR — I/O Base Address
B/D/F/Type: 0/2/0/PCI
Address Offset: 20-23h
Default Value: 00000001h
Access: RO; R/W;
Size: 32 bits

This register provides the Base offset of the I/O registers within Device #2. Bits 15:3 are
programmable allowing the I/O Base to be located anywhere in 16bit I/O Address Space. Bits 2:1
are fixed and return zero, bit 0 is hardwired to a one indicating that 8 bytes of I/O space are
decoded.

Access to the 8Bs of IO space is allowed in PM state D0 when IO Enable (PCICMD bit 0) set.
Access is disallowed in PM states D1-D3 or if IO Enable is clear or if Device #2 is turned off or if
internal graphics is disabled thru the fuse or fuse override mechanisms. Note that access to this
IO BAR is independent of VGA functionality within Device #2. Also note that this mechanism in
available only through function 0 of Device#2 and is not duplicated in function #1.

If accesses to this IO bar are allowed then the GMCH claims all 8, 16 or 32 bit IO cycles from the
CPU that falls within the 8B claimed.

Bit Access Default
Value

Description

31:16 RO 0000h Reserved Read as 0's, these bits correspond to address signals [31:16].

15:3 R/W 0000h IO Base Address: Set by the OS, these bits correspond to address signals
[15:3].

2:1 RO 00b Memory Type: Hardwired to 0s to indicate 32-bit address.

0 RO 1b Memory / IO Space: Hardwired to 1 to indicate IO space.

7.2.14 SVID2 — Subsystem Vendor Identification
B/D/F/Type: 0/2/0/PCI
Address Offset: 2C-2Dh
Default Value: 0000h
Access: R/WO;
Size: 16 bits

Bit Access Default
Value

Description

15:0 R/WO 0000h Subsystem Vendor ID: This value is used to identify the vendor of the
subsystem. This register should be programmed by BIOS during boot-up.
Once written, this register becomes Read-Only. This register can only be
cleared by a Reset.

 G45: Volume 1a Graphics Core

 172

7.2.15 SID2 — Subsystem Identification
B/D/F/Type: 0/2/0/PCI
Address Offset: 2E-2Fh
Default Value: 0000h
Access: R/WO;
Size: 16 bits

 Bit Access Default
Value

Description

15:0 R/WO 0000h Subsystem Identification: This value is used to identify a particular
subsystem. This field should be programmed by BIOS during boot-up. Once
written, this register becomes Read-Only. This register can only be cleared by
a Reset.

7.2.16 ROMADR — Video BIOS ROM Base Address
B/D/F/Type: 0/2/0/PCI
Address Offset: 30-33h
Default Value: 00000000h
Access: RO;
Size: 32 bits

The IGD does not use a separate BIOS ROM, therefore this register is hardwired to 0s.

Bit Access Default
Value

Description

31:18 RO 0000h ROM Base Address: Hardwired to 0s.

17:11 RO 00h Address Mask: Hardwired to 0s to indicate 256 KB address range.

10:1 RO 000h Reserved: Hardwired to 0s.

0 RO 0b ROM BIOS Enable: 0 = ROM not accessible.

7.2.17 CAPPOINT — Capabilities Pointer
B/D/F/Type: 0/2/0/PCI
Address Offset: 34h
Default Value: 90h
Access: RO;
Size: 8 bits

Bit Access Default
Value

Description

7:0 RO 90h Capabilities Pointer Value: This field contains an offset into the function's
PCI Configuration Space for the first item in the New Capabilities Linked List
which is the MSI Capabilities ID register at address 90h or the Power
Management Capabilities ID registers at address D0h. The value is
determined by CAPL[0].

 G45: Volume 1a Graphics Core

 173

7.2.18 INTRLINE — Interrupt Line
B/D/F/Type: 0/2/0/PCI
Address Offset: 3Ch
Default Value: 00h
Access: R/W;
Size: 8 bits

Bit Access Default
Value

Description

7:0 R/W 00h Interrupt Connection: Used to communicate interrupt line routing
information. POST software writes the routing information into this register
as it initializes and configures the system. The value in this register indicates
which input of the system interrupt controller that the device’s interrupt pin
is connected to.

7.2.19 INTRPIN — Interrupt Pin
B/D/F/Type: 0/2/0/PCI
Address Offset: 3Dh
Default Value: 01h
Access: RO;
Size: 8 bits

Bit Access Default
Value

Description

7:0 RO 01h Interrupt Pin: As a single function device, the IGD specifies INTA# as its
interrupt pin.

 01h: INTA#.

7.2.20 MINGNT — Minimum Grant
B/D/F/Type: 0/2/0/PCI
Address Offset: 3Eh
Default Value: 00h
Access: RO;
Size: 8 bits

Bit Access Default
Value

Description

7:0 RO 00h Minimum Grant Value: The IGD does not burst as a PCI compliant master.

 G45: Volume 1a Graphics Core

 174

7.2.21 MAXLAT — Maximum Latency
B/D/F/Type: 0/2/0/PCI
Address Offset: 3Fh
Default Value: 00h
Access: RO;
Size: 8 bits

Bit Access Default
Value

Description

7:0 RO 00h Maximum Latency Value: The IGD has no specific requirements for how
often it needs to access the PCI bus.

7.2.22 MCAPPTR — Capabilities Pointer (to Mirror of Dev0
CAPID)

B/D/F/Type: 0/2/0/PCI
Address Offset: 44h
Default Value: 48h
Access: RO;
Size: 8 bits

Bit Access Default
Value

Description

7:0 RO 48h Capabilities Pointer Value: In this case the first capability is the product-
specific Capability Identifier (CAPID0).

7.2.23 MCAPID — Mirror of Dev 0 Capability Identification.
B/D/F/Type: 0/2/0/PCI
Address Offset: 48-51h
Default Value: [Device Specific]
Access: RO;
Size: 80 bits

This is an INTEL RESERVED register and should NOT be disclosed to customers. It is for test and
debug purposes only and will not be included in external documentation. Control of bits in this
register are only required for customer visible SKU differentiation.

Bit Access Default
Value

Description

79:0 RO -- Device Specific Bit Definitions

 G45: Volume 1a Graphics Core

 175

7.2.24 MGGC — Mirror of Dev0 GMCH Graphics Control
B/D/F/Type: 0/2/0/PCI
Address Offset: 52-53h
Default Value: 0030h
Access: RO;
Size: 16 bits

All the Bits in this register are LT locked.

Bit Access Default
Value

Description

15:7 RO 000000000b Reserved

6:4 RO 011b Graphics Mode Select (GMS): This field is used to select the amount
of Main Memory that is pre-allocated to support the Internal Graphics
device in VGA (non-linear) and Native (linear) modes. The BIOS ensures
that memory is pre-allocated only when Internal graphics is enabled.
Stolen Memory Base is located between (TOLUD - SMSize) to TOUD.

000 = No memory pre-allocated. Device 2 (IGD) does not claim VGA
cycles (Mem and IO), and the Sub-Class Code field within Device 2
function 0. Class Code register is 80.

001 = DVMT (UMA) mode, 1 MB memory pre-allocated for frame buffer.

010 = DVMT (UMA) mode, 4 MB memory pre-allocated for frame buffer.

011 = DVMT (UMA) mode, 8 MB memory pre-allocated for frame buffer.

100 = DVMT (UMA) mode, 16 MB memory pre-allocated for frame
buffer.

101 = DVMT (UMA) mode, 32 MB memory pre-allocated for frame
buffer.

110 = DVMT (UMA) mode, 48 MB memory pre-allocated for frame
buffer.

111 = DVMT (UMA) mode, 64 MB memory pre-allocated for frame
buffer.

Note: This register is locked and becomes Read Only when the D_LCK bit
in the SMRAM register is set. Hardware does not clear or set any of
these bits automatically based on IGD being disabled/enabled.

3:2 RO 00b Reserved

1 RO 0b IGD VGA Disable (IVD): 1:Disable. Device 2 (IGD) does not claim
VGA cycles (Mem and IO), and the Sub-Class Code field within Device 2
function 0 Class Code register is 80.

0: Enable (Default). Device 2 (IGD) claims VGA memory and IO cycles,
the Sub-Class Code within Device 2 Class Code register is 00.

0 RO 0b Reserved

 G45: Volume 1a Graphics Core

 176

7.2.25 MDEVENdev0F0 — Mirror of Dev0 DEVEN
B/D/F/Type: 0/2/0/PCI
Address Offset: 54-57h
Default Value: [Device Specific]
Access: RO;
Size: 32 bits

Allows for enabling/disabling of PCI devices and functions that are within the MCH. All the Bits in
this register are LT locked.

Bit Access Default
Value

Description

31:0 RO -- Device Specific Bit Definitions. See Device 0 documentation in the EDS.

7.2.26 SSRW — Software Scratch Read Write
B/D/F/Type: 0/2/0/PCI
Address Offset: 58-5Bh
Default Value: 00000000h
Access: R/W;
Size: 32 bits

Bit Access Default
Value

Description

31:0 R/W 00000000h Reserved

7.2.27 BSM — Base of Stolen Memory
B/D/F/Type: 0/2/0/PCI
Address Offset: 5C-5Fh
Default Value: [Device Specific]
Access: RO;
Size: 32 bits

Graphics Stolen Memory and TSEG are within DRAM space defined under TOLUD. From the top of
low used DRAM, GMCH claims 1 to 64MBs of DRAM for internal graphics if enabled.

Bit Access Default
Value

Description

31:20 RO -- Base of Stolen Memory (BSM): This register contains bits 31 to 20 of the
base address of stolen DRAM memory. The host interface determines the
base of graphics stolen memory by subtracting the graphics stolen memory
size from TOLUD. See Device 0 TOLUD in the EDS for more explanation.

19:0 RO 00000h Reserved

 G45: Volume 1a Graphics Core

 177

7.2.28 HSRW — Hardware Scratch Read Write
B/D/F/Type: 0/2/0/PCI
Address Offset: 60-61h
Default Value: 0000h
Access: R/W;
Size: 16 bits

Bit Access Default
Value

Description

15:0 R/W 0000h Reserved R/W

7.2.29 MSAC — Multi Size Aperture Control
B/D/F/Type: 0/2/0/PCI
Address Offset: 62h
Default Value: 02h
Access: RO; R/W; R/W/L;
Size: 8 bits

This register determines the size of the graphics memory aperture in function 0. By default the
aperture size is 256 MB. Only the system BIOS will write this register based on pre-boot address
allocation efforts, but the graphics may read this register to determine the correct aperture size.
System BIOS needs to save this value on boot so that it can reset it correctly during S3 resume.

Bit Access Default
Value

Description

7:4 R/W 0h Scratch Bits Only: Have no physical effect on hardware.

3 RO 0b Reserved

2:1 R/W/L 01b Aperture Size (LHSAS):

11: bits [28:27] of GMADR register are made Read only and forced to zero,
allowing only 512MB of GMADR

01: bit [28] of GMADR is made R/W and bit [27] of GMADR is forced to zero
allowing 256MB of GMADR

00: bits [28:27] of GMADR register are made R/W allowing 128MB of GMADR

10: Illegal programming.

This bit is LT locked, becomes read-only when trusted environment is
launched.

0 RO 0b Reserved

 G45: Volume 1a Graphics Core

 178

7.2.30 SCWBFC — Secondary CWB Flush Control ([DevBW]
Only)

B/D/F/Type: 0/2/0/PCI
Address Offset: 68-6Fh
Default Value: 0000000000000000h
Access: W
Size: 64 bits

This register is for hardware debug purposes only. This is not relevant for software. All the data
stored in the secondary CWB is flushed to memory before a write to this page is completed on the
Front side bus. The write data is discarded. All transactions from the CPU that follow are not
processed by the chipset till the "flush write" completes creating a fence beyond which coherency
is guaranteed.

A read to this page does not flush the primary CWB/DWB and returns Zeros.

Bit Access Default
Value

Description

63:0 W 000000000
0000000h

Secondary CWB Flush Control (SCWBFC): A CPU Dword/Qword write
to this space flushes the Secondary CWB/DWB of all writes. The data is
discarded..

7.2.31 CAPL — Capabilities List Control
B/D/F/Type: 0/2/0/PCI
Address Offset: 7Fh
Default Value: 00h
Access: RO; R/W;
Size: 8 bits

Allows BIOS to hide capabilities that are part of the Device 2 PCI Capabilities Linked List. By
setting the appropriate bits, certain capabilities will be "skipped" during a later phase of system
initialization. This is an INTEL RESERVED register and should NOT be disclosed to customers. It is
for test and debug purposes only and will not be included in external documentation.

Bit Access Default
Value

Description

7:1 RO 00h Reserved.:

0 R/W 0b MSI Capability Hidden (MSICH):

0: MSI Capability at 90h is included in list.

1: MSI Capability is NOT included in list. Power Management Capability ID's
(D0h) pointer is the next capability.

 G45: Volume 1a Graphics Core

 179

7.2.32 MSI_CAPID — Message Signaled Interrupts Capability ID
B/D/F/Type: 0/2/0/PCI
Address Offset: 90-91h
Default Value: D005h
Access: RO;
Size: 16 bits

When a device supports MSI it can generate an interrupt request to the processor by writing a
predefined data item (a message) to a predefined memory address. The reporting of the existence
of this capability can be disabled by setting MSICH (CAPL[0] @ 7Fh). In that case walking this
linked list will skip this capability and instead go directly to the PCI PM capability.

Bit Access Default
Value

Description

15:8 RO D0h Pointer to Next Capability: This contains a pointer to the next item in the
capabilities list which is the Power Management Capability.

7:0 RO 05h Capability ID: Value of 05h identifies this linked list item (capability
structure) as being for MSI registers.

7.2.33 MC — Message Control
B/D/F/Type: 0/2/0/PCI
Address Offset: 92-93h
Default Value: 0000h
Access: RO; R/W;
Size: 16 bits

System software can modify bits in this register, but the device is prohibited from doing so.
If the device writes the same message multiple times, only one of those messages is guaranteed
to be serviced. If all of them must be serviced, the device must not generate the same message
again until the driver services the earlier one.

Bit Access Default
Value

Description

15:8 RO 00h Reserved

7 RO 0b 64-bit Address Capable: Hardwired to 0 to indicate that the function does
not implement the upper 32 bits of the Message Address register and is
incapable of generating a 64-bit memory address. This may need to change
in future implementations when addressable system memory exceeds the
32bit/4GB limit.

6:4 R/W 000b Multiple Message Enable (MME): System software programs this field to
indicate the actual number of messages allocated to this device. This number
will be equal to or less than the number actually requested. The encoding is
the same as for the MMC field below.

3:1 RO 000b Multiple Message Capable (MMC): System software reads this field to
determine the number of messages being requested by this device. Value :
Number of Messages Requested

 G45: Volume 1a Graphics Core

 180

Bit Access Default
Value

Description

000: 1 All of the following are reserved in this implementation:

001: 2

010: 4

011: 8

100: 16

101: 32

110: Reserved.

111: Reserved.

0 R/W 0b MSI Enable (MSIEN): Controls the ability of this device to generate MSIs.

7.2.34 MA — Message Address
B/D/F/Type: 0/2/0/PCI
Address Offset: 94-97h
Default Value: 00000000h
Access: R/W; RO;
Size: 32 bits

A read from this register produces undefined results.

Bit Access Default
Value

Description

31:2 R/W 00000000h Message Address: Used by system software to assign an MSI address to
the device. The device handles an MSI by writing the padded contents of
the MD register to this address.

1:0 RO 00b Force Dword Align: Hardwired to 0 so that addresses assigned by
system software are always aligned on a dword address boundary.

7.2.35 MD — Message Data
B/D/F/Type: 0/2/0/PCI
Address Offset: 98-99h
Default Value: 0000h
Access: R/W;
Size: 16 bits

Bit Access Default
Value

Description

15:0 R/W 0000h Message Data: Base message data pattern assigned by system software
and used to handle an MSI from the device. When the device must generate
an interrupt request, it writes a 32-bit value to the memory address specified
in the MA register. The upper 16 bits are always set to 0. The lower 16 bits
are supplied by this register.

 G45: Volume 1a Graphics Core

 181

7.2.36 GDRST — Graphics Device Reset
B/D/F/Type: 0/2/0/PCI
Address Offset: C0h
Default Value: 00h
Access: RO; RW/L;
Size: 8 bits

Bit Access Defau
lt

Value

Description

7:5 RO 0h Reserved ():

4:2 RW/L 00b Graphics Reset Domain (GRDOM): Graphics Reset Domain (GRDOM):

000 – Full Graphics Reset will be performed (Render and Media engines and Display clock
domain resets asserted)

001 – Render Engine only will be reset

011 – Media Engine only will be reset

010 – Reserved (Illegal Programming)

1XX – Reserved (Illegal Programming)

1 RO 0h Reserved ():

0 RW/L 0b Graphics Reset Enable (GR):

Setting this bit asserts graphics-only reset. The clock domains to be reset are determined
by GRDOM. Hardware resets this bit when the reset is complete. Setting this bit without
waiting for it to clear, is undefined behavior.

Once this bit is set to a "1" all MMIO registers associated with the selected engine(s) are
returned to power on default state. Ring buffer pointers are reset, command stream
fetches are dropped and ongoing render pipeline processing is halted, state machines and
State Variables returned to power on default state. If the Display is reset, all display
engines are halted (garbage on screen). VGA memory is not available, Store DWORDs
and interrupts associated with the reset engine(s) are not guaranteed to be completed.
Device #2 IO registers are not available.

Device #2 Config registers continue to be available while Graphics reset is asserted.

 G45: Volume 1a Graphics Core

 182

7.2.37 GMBUSFREQ — GMBUS frequency binary encoding
B/D/F/Type: 0/2/0/PCI
Address Offset: CC-CDh
Default Value: 0000h
Access: R/W; RO;
Size: 16 bits

Bit Access Default
Value

Description

15:10 RO 000000b Reserved (RSVD)

9:0 R/W 0000000
000b

CMBUS CDCLK frequency (cdfreq)

7.2.38 PMCAPID — Power Management Capabilities ID
B/D/F/Type: 0/2/0/PCI
Address Offset: D0-D1h
Default Value: 0001h
Access: RO;
Size: 16 bits

Bit Access Default
Value

Description

15:8 RO 00h NEXT_PTR: This contains a pointer to the next item in the capabilities list.

7:0 RO 01h CAP_ID: SIG defines this ID is 01h for power management.

 G45: Volume 1a Graphics Core

 183

7.2.39 PMCAP — Power Management Capabilities
B/D/F/Type: 0/2/0/PCI
Address Offset: D2-D3h
Default Value: 0022h
Access: RO;
Size: 16 bits

Bit Access Default
Value

Description

15:11 RO 00h PME Support: This field indicates the power states in which the IGD may
assert PME#. Hardwired to 0 to indicate that the IGD does not assert the
PME# signal.

10 RO 0b D2: The D2 power management state is not supported. This bit is
hardwired to 0.

9 RO 0b D1: Hardwired to 0 to indicate that the D1 power management state is not
supported.

8:6 RO 000b Reserved.

5 RO 1b Device Specific Initialization (DSI): Hardwired to 1 to indicate that
special initialization of the IGD is required before generic class device driver
is to use it.

4 RO 0b Auxiliary Power Source: Hardwired to 0.

3 RO 0b PME Clock: Hardwired to 0 to indicate IGD does not support PME#
generation.

2:0 RO 01-b Version: [DevBW] Hardwired to 010b to indicate that there are 4 bytes of
power management registers implemented and that this device complies with
revision 1.1 of the PCI Power Management Interface Specification.

[DevCL] 010b indicates compliant with revision 1.1 of the PCI Power
Management Speficiation. 011b indicates compliance with revision 1.2 of the
PCI Power Management Specification. The value in this register is
determined by the value of MCHBAR offset C08[15].

 G45: Volume 1a Graphics Core

 184

7.2.40 PMCS — Power Management Control/Status
B/D/F/Type: 0/2/0/PCI
Address Offset: D4-D5h
Default Value: 0000h
Access: RO; R/W;
Size: 16 bits

Bit Access Default
Value

Description

15 RO 0b PME_Status: This bit is 0 to indicate that IGD does not support PME#
generation from D3 (cold).

14:13 RO 00b Data Scale (Reserved): The IGD does not support data register. This bit
always returns 0 when read, write operations have no effect.

12:9 RO 0h Data_Select (Reserved): The IGD does not support data register. This
bit always returns 0 when read, write operations have no effect.

8 RO 0b PME_En: This bit is 0 to indicate that PME# assertion from D3 (cold) is
disabled.

7:4 RO 00h Reserved Always returns 0 when read, write operations have no effect.

3 RO - [DevBW] Only: Reserved, hardwired to 0.

No_Soft_Reset. Will be set according to the state of MCHBAR C08[14].
When transitioning from D3hot to D0, a 0 indicates the device performs an
internal reset, a 1 indicates that the device does not perform an internal
reset, and Configuration Context is preserved. Note that the state of this bit
has no hardware effect – it is programmable since there is some ambiguity as
to which definition of the bit our hardware behavior better matches.

2 RO 0b Reserved Always returns 0 when read, write operations have no effect.

1:0 R/W 00b PowerState: This field indicates the current power state of the IGD and can
be used to set the IGD into a new power state. If software attempts to write
an unsupported state to this field, write operation must complete normally on
the bus, but the data is discarded and no state change occurs.

 On a transition from D3 to D0 the graphics controller is optionally reset to
initial values. Behavior of the graphics controller in supported states is
detailed in the power management section of the PRM.

 Bits[1:0] Power state

 00 D0 Default

 01 D1 Not Supported

 10 D2 Not Supported

 11 D3

 G45: Volume 1a Graphics Core

 185

7.2.41 SWSMI — Software SMI
B/D/F/Type: 0/2/0/PCI
Address Offset: E0-E1h
Default Value: 0000h
Access: R/W; R/WC;
Size: 16 bits

Bit Access Default
Value

Description

15:8 R/W 00h SW scratch bits:

7:1 R/W 00h Software Flag: Used to indicate caller and SMI function desired, as well as
return result.

0 R/W 0b GMCH Software SMI Event: When set this bit will trigger an SMI.
Software must clear this bit to remove the SMI condition.

7.2.42 ASLE — System Display Event Register
B/D/F/Type: 0/2/0/PCI
Address Offset: E4-E7h
Default Value: 00000000h
Access: R/W;
Size: 32 bits

The exact use of these bytes including whether they are addressed as bytes,words, or as a dword,
is not pre-determined but subject to change by driver and System BIOS teams (acting in unison).

Bit Access Default
Value

Description

31:24 R/W 00h ASLE Scratch Trigger3: When written, this scratch byte triggers an
interrupt when IEF bit 0 is enabled and IMR bit 0 is unmasked. If written as
part of a 16-bit or 32-bit write, only one interrupt is generated in common.

23:16 R/W 00h ASLE Scratch Trigger2: When written, this scratch byte triggers an
interrupt when IEF bit 0 is enabled and IMR bit 0 is unmasked. If written as
part of a 16-bit or 32-bit write, only one interrupt is generated in common.

15:8 R/W 00h ASLE Scratch Trigger 1: When written, this scratch byte triggers an
interrupt when IEF bit 0 is enabled and IMR bit 0 is unmasked. If written as
part of a 16-bit or 32-bit write, only one interrupt is generated in common.

7:0 R/W 00h ASLE Scratch Trigger 0: When written, this scratch byte triggers an
interrupt when IEF bit 0 is enabled and IMR bit 0 is unmasked. If written as
part of a 16-bit or 32-bit write, only one interrupt is generated in common.

 G45: Volume 1a Graphics Core

 186

7.2.43 SWSCI — Software SCI
B/D/F/Type: 0/2/0/PCI
Address Offset: E8-E9h
Default Value: 0000h
Access: RWO; RW;
Size: 16 bits

This register serves 2 purposes:

1) Support selection of SMI or SCI event source (SMISCISEL - bit15)

2) SCI Event trigger (GSSCIE – bit 0).

To generate a SW SCI event, software (System BIOS/Graphics driver) should program bit 15
(SMISCISEL) to 1. This is typically programmed once (assuming SMIs are never triggered). On a
"0" to "1" subsequent transition in bit 0 of this register (caused by a software write operation),
GMCH sends a single SCI message (as currently defined in Grantsdale GMCH EDS) down the DMI
link to ICH. ICH will set the DMISCI bit in its TCO1_STS register and TCOSCI_STS bit in its GPE0
register upon receiving this message from DMI. The corresponding SCI event handler in BIOS is to
be defined as a _Lxx method, indicating level trigger to the operating system.

Once written as 1, software must write a "0" to this bit to clear it, and all other write transitions
(1->0, 0->0, 1->1) or if bit 15 is "0" will not cause GMCH to send SCI message to DMI link.

To generate a SW SMI event, software should program bit 15 to 0 and trigger SMI via writes to
SWSMI register (See SWSMI register for programming details).

Bit Access Default
Value

Description

15 RWO 0b SMI or SCI event select (SMISCISEL): SMI or SCI event select
(SMISCISEL)-

0 = SMI (default)

1 = SCI

If selected event source is SMI, SMI trigger and associated
scratch bits accesses are performed via SWSMI register at
offset E0h. If SCI event source is selected, the rest of the bits
in this register provide SCI trigger capability and associated
SW scratch pad area.

14:1 RW 00000000
000000b

Software scratch bits (SCISB): SW scratch bits (read/write bits not used
by hardware) (SCISB)

0 RW 0b GMCH Software SCI Event (GSSCIE): If SCI event is selected (SMISCISEL
= 1), on a “0” to “1” transition of GSSCIE bit, GMCH will send a SCI message
via DMI link to ICH to cause the TCOSCI_STS bit in its GPE0 register to be
set to 1.

Software must write a “0” to clear this bit.

 G45: Volume 1a Graphics Core

 187

7.2.44 LBB — Legacy Backlight Brightness ([DevCL] Only)
B/D/F/Type: 0/2/0/PCI
Address Offset: F4-F7h
Default Value: 00000000h
Access: R/W;
Size: 32 bits

This register can be accessed by either Byte, Word, or Dword PCI config cycles. A write to this
register will cause the Backlight Event (Display B Interrupt) if enabled.

Bit Access Default
Value

Description

31:24 R/W 00h LBPC Scratch Trigger3: When written, this scratch byte triggers an
interrupt when LBEE is enabled in the Pipe B Status register and the Display
B Event is enabled in IER and unmasked in IMR etc. If written as part of a
16-bit or 32-bit write, only one interrupt is generated in common.

23:16 R/W 00h LBPC Scratch Trigger2: When written, this scratch byte triggers an
interrupt when LBEE is enabled in the Pipe B Status register and the Display
B Event is enabled in IER and unmasked in IMR etc. If written as part of a
16-bit or 32-bit write, only one interrupt is generated in common.

15:8 R/W 00h LBPC Scratch Trigger1: When written, this scratch byte triggers an
interrupt when LBEE is enabled in the Pipe B Status register and the Display
B Event is enabled in IER and unmasked in IMR etc. If written as part of a
16-bit or 32-bit write, only one interrupt is generated in common.

7:0 R/W 00h Legacy Backlight Brightness (LBES): The value of zero is the lowest
brightness setting and 255 is the brightest. A write to this register will cause
a flag to be set (LBES) in the PIPEBSTATUS register and cause an interrupt if
Backlight event in the PIPEBSTATUS register and cause an Interrupt if
Backlight Event (LBEE) and Display B Event is enabled by software.

 G45: Volume 1a Graphics Core

 188

7.2.45 MID2 — Manufacturing ID
B/D/F/Type: 0/2/0/PCI
Address Offset: F8-FBh
Default Value: [Device Specific]
Access: RO;
Size: 32 bits

This is an INTEL RESERVED register and should NOT be disclosed to customers. It is for test and
debug purposes only and will not be included in external documentation.

Bit Access Default
Value

Description

31:24 RO 00h Reserved

23:16 RO -- Manufacturing Stepping ID (MSTEP)

15:8 RO 0Fh Foundry Code (FOUND):

0Fh: Foundry code for Intel

others: Reserved

These bits identify the Foundry; code of 0000 1111b = foundry code for
Intel.

7:3 RO -- Process ID (PROC)

2:0 RO -- Dot Process (DOT)

7.2.46 ASLS — ASL Storage
B/D/F/Type: 0/2/0/PCI
Address Offset: FC-FFh
Default Value: 00000000h
Access: R/W;
Size: 32 bits

This SW scratch register only needs to be read/write accessible. The exact bit register usage must
be worked out in common between System BIOS and driver software, but storage for
switching/indicating up to 6 devices is possible with this amount. For each device, the ASL control
method will require two bits for _DOD (BIOS detectable yes or no, VGA/NonVGA), one bit for
_DGS (enable/disable requested), and two bits for _DCS (enabled now/disabled now, connected or
not).

Bit Access Default
Value

Description

31:0 R/W 00000000h RW according to a software controlled usage to support device switching.

 G45: Volume 1a Graphics Core

 189

7.3 Device 2, Function 1
Register Name Register

Symbol
Register

Start
Register

End
Default
Value

Access

Vendor Identification VID2 0 1 8086h RO;

Device Identification DID2 2 3 [Device
Specific]

RO;

PCI Command PCICMD2 4 5 0000h RO; R/W;

PCI Status PCISTS2 6 7 0090h RO;

Revision Identification RID2 8 8 00h RO;

Class Code CC 9 B 038000h RO;

Cache Line Size CLS C C 00h RO;

Master Latency Timer MLT2 D D 00h RO;

Header Type HDR2 E E 80h RO;

Built In Self Test BIST F F 00h RO;

Memory Mapped Range Address MMADR 10 17 000000000
0000004h

RO; R/W;

Subsystem Vendor Identification SVID2 2C 2D 0000h RO;

Subsystem Identification SID2 2E 2F 0000h RO;

Video BIOS ROM Base Address ROMADR 30 33 00000000h RO;

Capabilities Pointer CAPPOINT 34 34 D0h RO;

Minimum Grant MINGNT 3E 3E 00h RO;

Maximum Latency MAXLAT 3F 3F 00h RO;

Capabilities Pointer (to Mirror of Dev0
CAPID)

MCAPPTR 44 44 48h RO;

Mirror of Dev 0 Capability Identification MCAPID 48 51 [Device
Specific]

RO;

Mirror of Dev0 GMCH Graphics Control MGGC 52 53 0030h RO;

Mirror of Dev0 DEVEN MDEVENdev0
F0

54 57 [Device
Specific]

RO;

Software Scratch Read Write SSRW 58 5B 00000000h RO;

Base of Stolen Memory BSM 5C 5F [Device
Specific]

RO;

Hardware Scratch Read Write HSRW 60 61 0000h RO;

Multi Size Aperture Control MSAC 62 62 02h RO;

 G45: Volume 1a Graphics Core

 190

7.3.1 VID2 — Vendor Identification
B/D/F/Type: 0/2/0/PCI
Address Offset: 0-1h
Default Value: 8086h
Access: RO;
Size: 16 bits

This register combined with the Device Identification register uniquely identifies any PCI device.

Bit Access Default
Value

Description

15:0 RO 8086h Vendor Identification Number (VID): PCI standard identification for
Intel.

7.3.2 DID2 — Device Identification
B/D/F/Type: 0/2/0/PCI
Address Offset: 2-3h
Default Value: [Device Specific]
Access: RO;
Size: 16 bits

This register combined with the Vendor Identification register uniquely identifies any PCI device.

Bit Access Default
Value

Description

15:0 RO -- Device Identification Number (DID): Identifier assigned to the GMCH
core/primary PCI device. Intel Reserved Text: Some bits of this field are
actually determined by fuses, which allows unique Device IDs to be used for
different product SKUs. See the device EDS for details.

 G45: Volume 1a Graphics Core

 191

7.3.3 PCICMD2 — PCI Command
B/D/F/Type: 0/2/0/PCI
Address Offset: 4-5h
Default Value: 0000h
Access: RO; R/W;
Size: 16 bits

This 16-bit register provides basic control over the IGDs ability to respond to PCI cycles. The
PCICMD Register in the IGD disables the IGD PCI compliant master accesses to main memory.

Bit Access Default
Value

Description

15:11 RO 00h Reserved

10 R/W 0b Interrupt Disable: This bit disables the device from asserting INTx#.

0: Enable the assertion of this device's INTx# signal.

1: Disable the assertion of this device's INTx# signal. DO_INTx messages
will not be sent to DMI.

9 RO 0b Fast Back-to-Back (FB2B): Not Implemented. Hardwired to 0.

8 RO 0b SERR Enable (SERRE): Not Implemented. Hardwired to 0.

7 RO 0b Address/Data Stepping Enable (ADSTEP): Not Implemented.
Hardwired to 0.

6 RO 0b Parity Error Enable (PERRE): Not Implemented. Hardwired to 0. Since
the IGD belongs to the category of devices that does not corrupt programs or
data in system memory or hard drives, the IGD ignores any parity error that
it detects and continues with normal operation.

5 RO 0b Video Palette Snooping (VPS): This bit is hardwired to 0 to disable
snooping.

4 RO 0b Memory Write and Invalidate Enable (MWIE): Hardwired to 0. The
IGD does not support memory write and invalidate commands.

3 RO 0b Special Cycle Enable (SCE): This bit is hardwired to 0. The IGD ignores
Special cycles.

2 R/W 0b Bus Master Enable (BME):

0: Disable IGD bus mastering.

1: Enable the IGD to function as a PCI compliant master.

1 R/W 0b Memory Access Enable (MAE): This bit controls the IGDs response to
memory space accesses.

0: Disable.

1: Enable.

0 R/W 0b I/O Access Enable (IOAE): This bit controls the IGDs response to I/O
space accesses.

0: Disable.

1: Enable.

 G45: Volume 1a Graphics Core

 192

7.3.4 PCISTS2 — PCI Status
B/D/F/Type: 0/2/0/PCI
Address Offset: 6-7h
Default Value: 0090h
Access: RO;
Size: 16 bits

PCISTS is a 16-bit status register that reports the occurrence of a PCI compliant master abort and
PCI compliant target abort. PCISTS also indicates the DEVSEL# timing that has been set by the
IGD.

Bit Access Default
Value

Description

15 RO 0b Detected Parity Error (DPE): Since the IGD does not detect parity, this
bit is always hardwired to 0.

14 RO 0b Signaled System Error (SSE): The IGD never asserts SERR#, therefore
this bit is hardwired to 0.

13 RO 0b Received Master Abort Status (RMAS): The IGD never gets a Master
Abort, therefore this bit is hardwired to 0.

12 RO 0b Received Target Abort Status (RTAS): The IGD never gets a Target
Abort, therefore this bit is hardwired to 0.

11 RO 0b Signaled Target Abort Status (STAS): Hardwired to 0. The IGD does not
use target abort semantics.

10:9 RO 00b DEVSEL Timing (DEVT): N/A. These bits are hardwired to "00".

8 RO 0b Master Data Parity Error Detected (DPD): Since Parity Error Response
is hardwired to disabled (and the IGD does not do any parity detection), this
bit is hardwired to 0.

7 RO 1b Fast Back-to-Back (FB2B): Hardwired to 1. The IGD accepts fast back-
to-back when the transactions are not to the same agent.

6 RO 0b User Defined Format (UDF): Hardwired to 0.

5 RO 0b 66 MHz PCI Capable (66C): N/A - Hardwired to 0.

4 RO 1b Capability List (CLIST): This bit is set to 1 to indicate that the register at
34h provides an offset into the function痴 PCI Configuration Space containing
a pointer to the location of the first item in the list.

3 RO 0b Interrupt Status: This bit reflects the state of the interrupt in the device.
Only when the Interrupt Disable bit in the command register is a 0 and this
Interrupt Status bit is a 1, will the devices INTx# signal be asserted. Setting
the Interrupt Disable bit to a 1 has no effect on the state of this bit.

2:0 RO 000b Reserved.

 G45: Volume 1a Graphics Core

 193

7.3.5 RID2 — Revision Identification
B/D/F/Type: 0/2/0/PCI
Address Offset: 8h
Default Value: 00h
Access: RO;
Size: 8 bits

Compatible Revision ID (CRID):

An 8 bit hardwired value assigned by the ID Council. Normally, the value assigned as the CRID will
be identical to the SRID value of a previous stepping of the product with which the new product is
deemed "compatible". Note that CRID is not an addressable PCI register. The CRID value is
simply reflected through the RID register when appropriately selected. Lower 4 bits of the CRID
are driven by Fuses. The CRID fuses are programmed based on the SKU.

Stepping Revision ID (SRID):

 An 8 bit hardwired value assigned by the ID Council. The values assigned as the SRID of a
product's steppings will be selectively incremented based on the degree of change to that
stepping. It is suggested that the first stepping of any given product have an SRID value = 01h
simply to avoid the "reserved register" value of 00h. Note that SRID is not an addressable PCI
register. The SRID value is simply reflected through the RID register when appropriately selected.

 RID Select Key Value:

 This is hardwired value (69h). If the latched value written to the RID register address matches
this RID Select Key Value, the CRID value be presented for reading from the RID register.

 RID Definition:

This register contains the revision number of the GMCH Device #0. Following PCI Reset the SRID
value is selected to be read. When a write occurs to this register the write data is compared to the
hardwired RID Select Key Value which is 69h. If the data matches this key a flag is set that
enables the CRID value to be read through this register.

Note that the flag is a "write once'. Therefore once the CRID is selected to be read, the only way
to again select the SRID is to PCI Reset the component. Also if any value other than the key
(69h) is written to the RID register, the flag is locked such that the SRID is selected until the
component is PCI Reset. Note that the RID register itself is not directly write-able.

This register contains the revision number for Device #2 Functions 0 and 1.

Bit Access Default
Value

Description

7:0 RO 00h Revision Identification Number (RID): This is an 8-bit value that
indicates the revision identification number for the GMCH.

 G45: Volume 1a Graphics Core

 194

7.3.6 CC — Class Code
B/D/F/Type: 0/2/0/PCI
Address Offset: 9-Bh
Default Value: 038000h
Access: RO;
Size: 24 bits

This register contains the device programming interface information related to the Sub-Class Code
and Base Class Code definition for the IGD. This register also contains the Base Class Code and
the function sub-class in relation to the Base Class Code.

Bit Access Default
Value

Description

23:16 RO 03h Base Class Code (BCC): This is an 8-bit value that indicates the base
class code for the GMCH. This code has the value 03h, indicating a Display
Controller.

15:8 RO 80h Sub-Class Code (SUBCC): 80h: Non VGA

7:0 RO 00h Programming Interface (PI):

00h: Hardwired as a Display controller.

7.3.7 CLS — Cache Line Size
B/D/F/Type: 0/2/0/PCI
Address Offset: Ch
Default Value: 00h
Access: RO;
Size: 8 bits

The IGD does not support this register as a PCI slave.

Bit Access Default
Value

Description

7:0 RO 00h Cache Line Size (CLS): This field is hardwired to 0s. The IGD as a PCI
compliant master does not use the Memory Write and Invalidate command
and, in general, does not perform operations based on cache line size.

 G45: Volume 1a Graphics Core

 195

7.3.8 MLT2 — Master Latency Timer
B/D/F/Type: 0/2/0/PCI
Address Offset: Dh
Default Value: 00h
Access: RO;
Size: 8 bits

The IGD does not support the programmability of the master latency timer because it does not
perform bursts.

Bit Access Default
Value

Description

7:0 RO 00h Master Latency Timer Count Value: Hardwired to 0s.

7.3.9 HDR2 — Header Type
B/D/F/Type: 0/2/0/PCI
Address Offset: Eh
Default Value: 80h
Access: RO;
Size: 8 bits

This register contains the Header Type of the IGD.

Bit Access Default
Value

Description

7 RO 1b Multi Function Status (MFunc): Indicates if the device is a Multi-
Function Device. The Value of this register is determined by Device #0, offset
54h, DEVEN[4]. If Device #0 DEVEN[4] is set, the Mfunc bit is also set.

6:0 RO 00h Header Code (H): This is a 7-bit value that indicates the Header Code for
the IGD. This code has the value 00h, indicating a type 0 configuration space
format.

7.3.10 BIST — Built In Self Test
B/D/F/Type: 0/2/0/PCI
Address Offset: Fh
Default Value: 00h
Access: RO;
Size: 8 bits

This register is used for control and status of Built In Self Test (BIST).

Bit Access Default
Value

Description

7 RO 0b BIST Supported: BIST is not supported. This bit is hardwired to 0.

6:0 RO 00h Reserved

 G45: Volume 1a Graphics Core

 196

7.3.11 MMADR — Memory Mapped Range Address
B/D/F/Type: 0/2/1/PCI
Address Offset: 10-17h
Default Value: 0000000000000004h
Access: RO; R/W;
Size: 64 bits

This register requests allocation for the IGD registers and instruction ports. The allocation is for
512 KB and the base address is defined by bits [35:20].

Bit Access Default
Value

Description

63:36 RO 0000000h Reserved ():

35:20 R/W 0000h Memory Base Address (): Set by the OS, these bits correspond to address
signals [35:20].

19:4 RO 0000h Address Mask (): Hardwired to 0's to indicate 512 KB address range (
aligned to 1M boundary).

3 RO 0b Prefetchable Memory (): Hardwired to 0 to prevent prefetching.

2 RO 1b Memory Type (): 0 : To indicate 32 bit base address

1 : To indicate 64 bit base address

1 RO 0b Reserved ():

0 RO 0b Memory / IO Space (): Hardwired to 0 to indicate memory space.

7.3.12 SVID2 — Subsystem Vendor Identification
B/D/F/Type: 0/2/0/PCI
Address Offset: 2C-2Dh
Default Value: 0000h
Access: RO;
Size: 16 bits

Bit Access Default
Value

Description

15:0 RO 0000h Subsystem Vendor ID: This value is used to identify the vendor of the
subsystem. This register should be programmed by BIOS during boot-up.
Once written, this register becomes Read-Only. This register can only be
cleared by a Reset.

NOTE: This is a RO copy of the Dev2Fxn0 value.

 G45: Volume 1a Graphics Core

 197

7.3.13 SID2 — Subsystem Identification
B/D/F/Type: 0/2/0/PCI
Address Offset: 2E-2Fh
Default Value: 0000h
Access: RO;
Size: 16 bits

Bit Access Default
Value

Description

15:0 RO 0000h Subsystem Identification: This value is used to identify a particular
subsystem. This field should be programmed by BIOS during boot-up. Once
written, this register becomes Read-Only. This register can only be cleared by
a Reset.

NOTE: This is a RO copy of the Dev2Fxn0 value.

7.3.14 ROMADR — Video BIOS ROM Base Address
B/D/F/Type: 0/2/0/PCI
Address Offset: 30-33h
Default Value: 00000000h
Access: RO;
Size: 32 bits

The IGD does not use a separate BIOS ROM, therefore this register is hardwired to 0s.

Bit Access Default
Value

Description

31:18 RO 0000h ROM Base Address: Hardwired to 0s.

17:11 RO 00h Address Mask: Hardwired to 0s to indicate 256 KB address range.

10:1 RO 000h Reserved: Hardwired to 0s.

0 RO 0b ROM BIOS Enable: 0 = ROM not accessible.

7.3.15 CAPPOINT — Capabilities Pointer
B/D/F/Type: 0/2/0/PCI
Address Offset: 34h
Default Value: D0h
Access: RO;
Size: 8 bits

Bit Access Default
Value

Description

7:0 RO D0h Capabilities Pointer Value: This field contains an offset into the function's
PCI Configuration Space for the first item in the New Capabilities Linked List
which the Power Management Capabilities ID registers at address D0h.

 G45: Volume 1a Graphics Core

 198

7.3.16 MINGNT — Minimum Grant
B/D/F/Type: 0/2/0/PCI
Address Offset: 3Eh
Default Value: 00h
Access: RO;
Size: 8 bits

Bit Access Default
Value

Description

7:0 RO 00h Minimum Grant Value: The IGD does not burst as a PCI compliant
master.

7.3.17 MAXLAT — Maximum Latency
B/D/F/Type: 0/2/0/PCI
Address Offset: 3Fh
Default Value: 00h
Access: RO;
Size: 8 bits

Bit Access Default
Value

Description

7:0 RO 00h Maximum Latency Value: The IGD has no specific requirements for how
often it needs to access the PCI bus.

7.3.18 MCAPPTR — Capabilities Pointer (to Mirror of Dev0
CAPID)

B/D/F/Type: 0/2/0/PCI
Address Offset: 44h
Default Value: 48h
Access: RO;
Size: 8 bits

Bit Access Default
Value

Description

7:0 RO 48h Capabilities Pointer Value: In this case the first capability is the product-
specific Capability Identifier (CAPID0).

 G45: Volume 1a Graphics Core

 199

7.3.19 MCAPID — Mirror of Dev 0 Capability Identification.
B/D/F/Type: 0/2/0/PCI
Address Offset: 48-51h
Default Value: [Device Specific]
Access: RO;
Size: 80 bits

This is an INTEL RESERVED register and should NOT be disclosed to customers. It is for test and
debug purposes only and will not be included in external documentation. Control of bits in this
register are only required for customer visible SKU differentiation.

Bit Access Default
Value

Description

79:0 RO -- Device Specific Bit Definitions – see the device EDS for details.

7.3.20 MGGC — Mirror of Dev0 GMCH Graphics Control
B/D/F/Type: 0/2/0/PCI
Address Offset: 52-53h
Default Value: 0030h
Access: RO;
Size: 16 bits

All the Bits in this register are LT locked.

Bit Access Default
Value

Description

15:7 RO 000000000b Reserved

 G45: Volume 1a Graphics Core

 200

Bit Access Default
Value

Description

6:4 RO 011b Graphics Mode Select (GMS): This field is used to select the amount
of Main Memory that is pre-allocated to support the Internal Graphics
device in VGA (non-linear) and Native (linear) modes. The BIOS ensures
that memory is pre-allocated only when Internal graphics is enabled.
Stolen Memory Base is located between (TOLUD - SMSize) to TOUD.

000 = No memory pre-allocated. Device 2 (IGD) does not claim VGA
cycles (Mem and IO), and the Sub-Class Code field within
Device 2 function 0. Class Code register is 80.

001 = DVMT (UMA) mode, 1 MB memory pre-allocated for frame buffer.

010 = DVMT (UMA) mode, 4 MB memory pre-allocated for frame buffer.

011 = DVMT (UMA) mode, 8 MB memory pre-allocated for frame buffer.

100 = DVMT (UMA) mode, 16 MB memory pre-allocated for frame
buffer.

101 = DVMT (UMA) mode, 32 MB memory pre-allocated for frame
buffer.

110 = DVMT (UMA) mode, 48 MB memory pre-allocated for frame
buffer.

111 = DVMT (UMA) mode, 64 MB memory pre-allocated for frame
buffer.

Note: This register is locked and becomes Read Only when the D_LCK bit
in the SMRAM register is set. Hardware does not clear or set any of
these bits automatically based on IGD being disabled/enabled.

3:2 RO 00b Reserved

1 RO 0b IGD VGA Disable (IVD):

1 = Disable. Device 2 (IGD) does not claim VGA cycles (Mem and IO),
and the Sub-Class Code field within Device 2 function 0 Class Code
register is 80.

0 = Enable (Default). Device 2 (IGD) claims VGA memory and IO
cycles, the Sub-Class Code within Device 2 Class Code register is 00.

0 RO 0b Reserved

 G45: Volume 1a Graphics Core

 201

7.3.21 MDEVENdev0F0 — Mirror of Dev0 DEVEN
B/D/F/Type: 0/2/0/PCI
Address Offset: 54-57h
Default Value: [Device Specific]
Access: RO;
Size: 32 bits

Allows for enabling/disabling of PCI devices and functions that are within the MCH. All the Bits in
this register are LT locked.

Bit Access Default
Value

Description

31:0 RO -- Device Specific Bit Definitions. See Device 0 documentation in the EDS.

7.3.22 SSRW — Software Scratch Read Write
B/D/F/Type: 0/2/0/PCI
Address Offset: 58-5Bh
Default Value: 00000000h
Access: RO;
Size: 32 bits

Bit Access Default
Value

Description

31:0 RO 00000000h Reserved

7.3.22.1 BSM — Base of Stolen Memory
B/D/F/Type: 0/2/0/PCI
Address Offset: 5C-5Fh
Default Value: [Device Specific]
Access: RO;
Size: 32 bits

Graphics Stolen Memory and TSEG are within DRAM space defined under TOLUD. From the top of
low used DRAM, GMCH claims 1 to 64MBs of DRAM for internal graphics if enabled.

Bit Access Default
Value

Description

31:20 RO -- Base of Stolen Memory (BSM): This register contains bits 31 to 20 of the
base address of stolen DRAM memory. The host interface determines the
base of graphics stolen memory by subtracting the graphics stolen memory
size from TOLUD. See Device 0 TOLUD in the EDS for more explanation.

19:0 RO 00000h Reserved

 G45: Volume 1a Graphics Core

 202

7.3.22.2 HSRW — Hardware Scratch Read Write
B/D/F/Type: 0/2/0/PCI
Address Offset: 60-61h
Default Value: 0000h
Access: RO;
Size: 16 bits

Bit Access Default
Value

Description

15:0 RO 0000h Reserved

7.3.22.3 MSAC — Multi Size Aperture Control
B/D/F/Type: 0/2/0/PCI
Address Offset: 62h
Default Value: 02h
Access: RO;
Size: 8 bits

This register determines the size of the graphics memory aperture in function 0 and only in the
untrusted space. By default the aperture size is 256 MB. Only the system BIOS will write this
register based on pre-boot address allocation efforts, but the graphics may read this register to
determine the correct aperture size. System BIOS needs to save this value on boot so that it can
reset it correctly during S3 resume.

Bit Access Default
Value

Description

7:4 RO 0h Scratch Bits Only: Have no physical effect on hardware.

3 RO 0b Reserved

2:1 RO 01b Untrusted Aperture Size (LHSAS):

11: bits [28:27] of GMADR register are made Read only and forced to zero,
allowing only 512MB of GMADR

01: bit [28] of GMADR is made R/W and bit [27] of GMADR is forced to zero
allowing 256MB of GMADR

00: bits [28:27] of GMADR register are made R/W allowing 128MB of GMADR

10: Illegal programming.

This bit is LT locked, becomes read-only when trusted environment is
launched.

0 RO 0b Reserved

8 Memory Interface Registers

8.1 Introduction

This chapter describes the memory-mapped registers associated with the Memory Interface,
including brief descriptions of their use. The functions performed by these registers are discussed
fully in the Memory Interface Functions, Memory Interface Instructions, and Programming
Environment chapters.

The registers detailed in this chapter are used across the GenX family of products. However,
slight changes may be present in some registers (i.e., for features added or removed), or some
registers may be removed entirely. These changes are clearly marked within this chapter.

8.2 Virtual Memory Control

GenX products differ somewhat in the types of virtual memory they support and how they support
it. The following table describes the structures to support Global virtual memory (shared between
all GFX processes) and per-process virtual memory.

Virtual Memory Structure All

Global (GGTT) Anywhere

Per-Process (PPGTT) Single-level, anywhere

8.2.1 Global Virtual Memory

Global Virtual Memory is the default target memory if a PPGTT is not enabled (or for products that
don’t support PPGTT). If a PPGTT is also present, the method to choose which is targeted by
memory and rendering operations varies by product. See the sections on Per-Process Virtual
Memory for more information. High priority graphics clients such as Display and Cursor always
access global virtual memory.

 G45: Volume 1a Graphics Core

 204

8.2.1.1 PGTBL_CTL—Page Table Control Register

PGTBL_CTL—Page Table Control Register
Register Type: MMIO

Address Offset: 2020h

Project: All

Default Value: 0000 0000h

Access: R/W

Size (in bits): 32

The PGTBL_CTL register is used to enable or disable the mapping of graphics memory using the Global Graphics
Translation Table (GGTT), set the size, and to set the base (physical) address of the GGTT.

 Software must use the following steps to modify the Global GTT directly or update the Global GTT base:

Flush the Gfx Pipeline

Flush the Chipset write buffers using the flush (GFX_FLSH_CTL) register

Update Global GTT using physical address/Update the Global GTT base register

Flush Chipset write buffers using the flush (GFX_FLSH_CTL) register
The GGTT must be 4KByte aligned. The GGTT must reside in un-snooped Main Memory and must be contiguous.
The GGTT must be completely contained within physical memory. A memory access that requires fetching a
GGTT entry that is not in physical memory will have UNDEFINED results.

[All Devices]: Software can use the GTTADR space to update entries in the GGTT. This allows the device to
“snoop” writes to GTTADR and invalidate internal Translation Look-aside Buffers (TLBs) as required.

This register is not reset by a graphics reset. It will maintain its value unless a full chipset reset is performed.

Bit Description

31:12 Page Table Base Address

Project: All

Default Value: 0h

Address: GraphicsAddress[31:12]

Surface Type: PageTableEntry

This field specifies Bits 31:12 of the starting address of the global GTT.

This address is a physical offset into system memory. This address must be in physical memory,
i.e., it must be below the top of memory. Furthermore, the GGTT must be entirely contained
within physical memory, i.e., the GTT Size added to the Page Table Base Address must be below
top of memory.

This field is only valid when the Page Table Enable field is specified as ENABLED.

Programming Notes Project

The base address for the GTT is expected to be size aligned in memory. Eg for
512KB size of the GTT bits 18:12 of the address need to be zero

DevCL

 G45: Volume 1a Graphics Core

 205

PGTBL_CTL—Page Table Control Register
11:8 Reserved Project: All Format: MBZ

7:4 Physical Start Address Extension

Project: All

Default Value: 0h

Address: GraphicsAddress[35:32]

This field specifies Bits 35:32 of the starting address of the GGTT.

3:1 Size of the Global GTT

Project: All

Default Value: 0h

Format: U3

Value Name Description Project

000 512KB 512KB All

001 256KB 256KB All

010 128KB 128KB All

011 1MB 1MB Reserved

100 2MB 2MB Reserved

101 1.5MB 1.5MB Reserved

11X Reserved Reserved All

 G45: Volume 1a Graphics Core

 206

PGTBL_CTL—Page Table Control Register
0 Page Table Enable

Project: All

Security: None

Default Value: 0h

Format: Enable

This field determines whether GM mappings are enabled. If disabled, GM mapping does not occur
except for requests from the CPU and VGA streams. Any accesses to GM (other than CPU read,
and VGA streams) while this bit is clear generates a Page Table HW Error (see Page Table Error
in Programming Interface).

Note: The source of the Page Table HW Error is available only via the Debug PGTBL_ER register.

Value Name Description Project

0h Disable GM mapping does not occur except
for requests from the CPU and VGA
streams.

All

1h Enable ENABLED All

 G45: Volume 1a Graphics Core

 207

8.2.1.2 PGTBL_ER—Page Table Error Register (Debug)

PGTBL_ER—Page Table Error Register
Register Type: MMIO

Address Offset: 2024h

Project: All

Default Value: 0000 0000h

Access: RO

Size (in bits): 32

This register applies when the Per-Process Virtual Address Space and Run List Enable is clear else see below

The PGTBL_ER Debug register stores information indicating the source of an error associated with GM mapping via the
GTT. Note that this is a READ-ONLY register and cannot be modified by software.

Error Types:

 XX _INVALID_GTT_PTE: Translated Page Table Entry (PTE) is marked as not valid. Implemented by all
streams. Detected at translation time for either Global or Per-Process GTT.

 XX _INVALID_PTE_DATA: The PTE was marked valid, though the memory space or page mapped is not
considered legal (i.e., Address points to PAM, SMM, over TOM and other restricted spaces in Main Memory).
Implemented by Host Only.

 CS_INVALID_GTT: Set if a ring buffer is active and the Page table is not enabled.

This register identifies the TLB that detected the error. After an error, Normal priority data streams
Commands, Render Cache and Mapping Cache stop execution. GTT errors on Host reads are not recorded. If
there is an error on a read access a read request is forwarded to a memory address and data obtained from
memory is returned to the CPU. Errors on Host writes are recorded and the write is completed with byte
enables off.

Each Source records the first error and ignores subsequent errors.

Bit Description

31:27 Reserved Project: All Format: MBZ

26 MT_INVALID_GTT_PTE Project: All Format: Flag

Invalid Sampler Cache GTT entry

25 Reserved Project: All Format: MBZ

 G45: Volume 1a Graphics Core

 208

PGTBL_ER—Page Table Error Register
24 LC_INVALID_GTT_PTE

Project: All

Default Value: 0h

Format: Flag

Invalid Render Cache GTT entry

Errata Description Project

GENX016 This bit will never be set. All

23 ISC_INVALID_GTT_PTE Project: All Format: Flag

Invalid Instruction/State Cache GTT entry

22 ROC_INVALID_GTT_PTE Project: All Format: Flag

Reserved since there is no ROC

21 CS_VertexData_INVALID_GTT_PT
E

Project: All Format: Flag

Invalid GTT Entry during Vertex Fetch

20 CS_Command_INVALID_GTT_PTE Project: All Format: Flag

Invalid GTT Entry during Command Fetch

19 CS_INVALID_GTT Project: All Format: Flag

18 CRSR _INVALID_GTT_PTE Project: All Format: Flag

Invalid GTT Entry during Cursor Fetch

17 Reserved Project: All Format
:

MBZ

16 OVRL_INVALID_GTT_PTE

Project: All

Default Value: 0h

Format: Flag

Invalid GTT Entry during Overlay Fetch

Errata Description Project

BWT010 Invalid GTT Entry during Overlay Fetch is
ignored.

DevBW-A, DevBW-B

 G45: Volume 1a Graphics Core

 209

PGTBL_ER—Page Table Error Register
15:13 Reserved Project: All Format

:
MBZ

12 DISPC_INVALID_GTT_PTE Project: All Format: Flag

Invalid GTT Entry during Display C Fetch

11:9 Reserved Project: All Format
:

MBZ

8 DISPB_INVALID_GTT_PTE Project: All Format: Flag

Invalid GTT Entry during Display B Fetch

7:5 Reserved Project: All Format
:

MBZ

4 DISPA_INVALID_GTT_PTE Project: All Format: Flag

Invalid GTT Entry during Display A Fetch

3:2 Reserved Project: All Format
:

MBZ

1 HOST_ INVALID_PTE_DATA Project: All Format: Flag

Valid PTE references illegal memory, such as PAM, SMM or TOM

0 HOST_INVALID_GTT_PTE

Project: All

Default Value: 0h

Format: Flag

Invalid GTT Entry during Fetch on behalf of the Host

Errata Description Project

BWT015 This bit will never be set. DevBW

 G45: Volume 1a Graphics Core

 210

8.2.1.3 PGTBL_ER—Page Table Error Register (Debug) [Per-Process GTT enabled
on CTG]

PGTBL_ER—Page Table Error Register
Register Type: MMIO

Address Offset: 2024h

Project: DevCTG

Default Value: 00000000h

Access: RO

Size (in bits): 32

The PGTBL_ER Debug register stores information indicating the source of an error associated with GM mapping
via a the PPGTT Page Directory (see

Two-Level Per-Process Virtual Memory ([DevCTG] Only)). Note that this is a READ-ONLY register and cannot be
modified by software.

This register identifies the TLB that detected the error. After an error, Normal priority data streams stop execution.

Only the first error is recorded; subsequent errors are ignored.

Bit Description

31:27 Invalid GTT Client Identifier

Project: pre-HVN/ABD

Default Value: 0h

Format: U5

For Bit Stream

Value Name Description Project

When
Bit 3 =
0

Normal Priority Clients Normal Priority Clients DevCTG

11101 Command Stream TLB Command Stream TLB DevCTG

11110 Data TLB Data TLB DevCTG

11111 Scratch TLB Scratch TLB DevCTG

26 Invalid GTT or PD Error Project: DevCTG Format: Flag

Error code can be read in Invalid GTT Error field. In the Bit Stream pipeline

 G45: Volume 1a Graphics Core

 211

PGTBL_ER—Page Table Error Register
25:21 Invalid GTT Client Identifier

Project: DevCTG

Default Value: 0h

Format: U5

This field is only valid if Invalid GTT or PD Error is set.

Value Name Description Project

When
Bit 3 =
0

Normal Priority Clients Normal Priority Clients DevCTG

00001 Command Stream Command Stream DevCTG

00011 Vertex Fetch Vertex Fetch DevCTG

00101 Texture Cache (MT) Texture Cache (MT) DevCTG

01001 Render Cache Color (RCC) Render Cache Color
(RCC)

DevCTG

01011 Instruction/State Cache (ISC) Instruction/State Cache
(ISC)

DevCTG

11001 Render Cache Depth (RCZ) Render Cache Depth
(RCZ)

DevCTG

10110 CS PD Read CS PD Read DevCTG

20 Invalid GTT or PD Error Project: DevCTG Format: Flag

Error code can be read in Invalid GTT Error field

19 CS_INVALID_GTT Project: DevCTG Format: Flag

18 CRSR _INVALID_GTT_PTE Project: DevCTG Format: Flag

Invalid GTT Entry during Cursor Fetch

17:9 Reserved Project: DevCTG Format: MBZ

8 DISPB_INVALID_GTT_PTE Project: DevCTG Format: Flag

Invalid GTT Entry during Display B Fetch

7:5 Reserved Project: DevCTG Format: MBZ

4 DISPA_INVALID_GTT_PTE Project: DevCTG Format: Flag

Invalid GTT Entry during Display A Fetch

3:2 Reserved Project: DevCTG Format: MBZ

 G45: Volume 1a Graphics Core

 212

PGTBL_ER—Page Table Error Register
1 HOST_ INVALID_PTE_DATA Project: DevCTG Format: Flag

Valid PTE references illegal memory, such as PAM, SMM or TOM

0 HOST_INVALID_GTT_PTE Project: DevCTG Format: Flag

Invalid GTT Entry during Fetch on behalf of the Host

8.2.2 PGTBL_ER—Page Table Error Register (Debug) [Per-
Process GTT enabled on CTG]

PGTBL_ER—Page Table Error Register
Register Type: MMIO

Address Offset: 4024h

Project: DevGT+

Default Value: 00000000h

Access: RO

Size (in bits): 32

The PGTBL_ER Debug register stores information indicating the source of an error associated with GM mapping via a
the PPGTT Page Directory (see

Two-Level Per-Process Virtual Memory ([DevCTG] Only)). Note that this is a READ-ONLY register and cannot be
modified by software.

This register identifies the TLB that detected the error. After an error, Normal priority data streams stop execution.

Only the first error is recorded; subsequent errors are ignored.
Bit Description

31:27 Invalid GTT Client Identifier

Project: DevCTG

Default Value: 0h

Format: U5

For Bit Stream

Value Name Description Project

When
Bit 3 = 0

Normal Priority Clients Normal Priority Clients DevCTG

11101 Command Stream TLB Command Stream TLB DevCTG

11110 Data TLB Data TLB DevCTG

11111 Scratch TLB Scratch TLB DevCTG

26 Invalid GTT or PD Error Project: DevCTG Format: Flag

Error code can be read in Invalid GTT Error field. In the Bit Stream pipeline

 G45: Volume 1a Graphics Core

 213

PGTBL_ER—Page Table Error Register
25:21 Invalid GTT Client Identifier

Project: DevCTG

Default Value: 0h

Format: U5

This field is only valid if Invalid GTT or PD Error is set.

Value Name Description Project

When
Bit 3 = 0

Normal Priority Clients Normal Priority Clients DevCTG

00001 Command Stream Command Stream DevCTG

00011 Vertex Fetch Vertex Fetch DevCTG

00101 Texture Cache (MT) Texture Cache (MT) DevCTG

01001 Render Cache Color (RCC) Render Cache Color (RCC) DevCTG

01011 Instruction/State Cache (ISC) Instruction/State Cache (ISC) DevCTG

11001 Render Cache Depth (RCZ) Render Cache Depth (RCZ) DevCTG

10110 CS PD Read CS PD Read DevCTG

20 Invalid GTT or PD Error Project: DevCTG Format: Flag

Error code can be read in Invalid GTT Error field

19 CS_INVALID_GTT Project: DevCTG Format: Flag

18 CRSR _INVALID_GTT_PTE Project: DevCTG Format: Flag

Invalid GTT Entry during Cursor Fetch

17:9 Reserved Project: DevCTG Format: MBZ

8 DISPB_INVALID_GTT_PTE Project: DevCTG Format: Flag

Invalid GTT Entry during Display B Fetch

7:5 Reserved Project: DevCTG Format: MBZ

4 DISPA_INVALID_GTT_PTE Project: DevCTG Format: Flag

Invalid GTT Entry during Display A Fetch

3:2 Reserved Project: DevCTG Format: MBZ

1 HOST_ INVALID_PTE_DATA Project: DevCTG Format: Flag

Valid PTE references illegal memory, such as PAM, SMM or TOM

0 HOST_INVALID_GTT_PTE Project: DevCTG Format: Flag

Invalid GTT Entry during Fetch on behalf of the Host

 G45: Volume 1a Graphics Core

 214

8.2.2.1 Graphics Translation Table (GTT) Range (GTTADR)

Address Offset: GTTADR in CPU Physical Space
Access: Aligned DWord Read/Write

The GTTADR memory BAR defined in graphics device config space is an alias for the Global GTT.

Programming Notes: It is recommended that the driver map all graphics memory pages in the
GGTT to some physical page, if only a dummy page.

8.2.2.2 GTT Page Table Entries (PTEs)

Page Table Entry: 1 DWord per 4KB Graphics Memory page.

31 12 11:8 7:4 3 2 1 0

Physical Page
Address 31:12

Reserved:MBZ Physical
Page

Address
35:32

Reserved Mapping Type Valid

Bits Description

31: 12 Physical Page Address 31:12: If the Valid bit is set, This field provides the page number of the
physical memory page backing the corresponding Graphics Memory page.

11:8 Reserved: MBZ

7:4 Physical Start Address Extension: This field specified Bits 35:32 of the page table entry. This field
must be zero for 32 bit addresses.

3 Reserved: MBZ

2:1 Mapping Type: If the Valid bit is set, this field specifies the type of physical memory backing this
Graphics Memory page, as defined below:

0: Physical address targets Main Memory (not snooped). Physical address is a main memory page
number (including pages in stolen memory).

1-2: Reserved

3: Physical address targets cacheable Main Memory (aka System Memory) (causes snoop on
processor bus). Must not be targeted by the processor through graphics memory range. Accesses
via the Instruction stream are permitted (no error generated), yet treated as unsnooped Main
Memory. This removes restrictions regarding Instruction stream overfetches into dissimilar graphics
memory regions.

0 Valid PTE: This field indicates whether the mapping of the corresponding Graphics Memory page is
valid.

1: Valid

0: Invalid. An access (other than a CPU Read) through an invalid PTE will result in Page Table
Error (Invalid PTE).

 G45: Volume 1a Graphics Core

 215

8.2.3 Single-Level (Flat) Per-Process Virtual Memory

8.2.3.1 PGTBL_CTL2— Per Process Page Table Control
Register

PGTBL_CTL2— Per Process Page Table Control Register
Register Type: MMIO

Address Offset: 20C4h

Project: DevBW, DevCL

Default Value: 0000 0000h

Access: R/W

Size (in bits): 32

The PGTBL_CTL2 register is used to enable the secondary mapping of graphics memory addresses by defining
the starting point of the per-process Graphics Translation Table (PPGTT).

Software must assure that a pipeline flush occurs subsequent to updating any PPGTT entries or changing the
value of the Page Table Base Address and prior to any new access in the PPGTT aperture.

Once a PPGTT is established, software can update entries of the PPGTT using physical writes. The PPGTT does
not have an access window corresponding to GTTADR that will trigger snoops and/or flushes when possibly pre-
fetched entries are modified.

The PPGTT can be up to 1MB in size as programmed below. Each 4B entry in the PPGTT corresponds to a 4KB
page of memory mapped through the PPGTT aperture.

The PPGTT must be 4KByte-aligned. The PPGTT must reside in unsnooped Main Memory and must be
contiguously size aligned. This register is saved and restored per context. If the valid bit for this register is not
set, the hardware uses the Global GTT.

Bit Description

31:12 Page Table Base Address

Project: All

Default Value: 0h

Address: GraphicsAddress[31:12]

Surface Type: PageTableEntry

This field specifies Bits 31:12 of the starting address of the GTT. Bit 1 of the address is
MBZ.

This address is a physical offset into system memory.

This field is only valid when the Page Table Enable field is specified as ENABLED.

Format = “Effective Local Memory Address” Bits 31:2

11:8 Reserved Project: All Format: MBZ

 G45: Volume 1a Graphics Core

 216

PGTBL_CTL2— Per Process Page Table Control Register
7:4 Physical Start Address Extension

Project: All

Default Value: 0h

Address: GraphicsAddress[35:2]

This field specified Bits 35:32 of the page table entry. This field must be zero for 32 bit
addresses.

3:1 Size of the PPGTT

Project: All

Default Value: 0h

Format: U3

Value Name Description Project

000 64KB 64KB All

001 128KB 128KB All

010 256KB 256KB All

011 512KB 512KB All

100 1MB 1MB All

101-111 Reserved Reserved All

0 Page Table Enable

Project: All

Default Value: 0h

Format: Enable

This field determines whether GM mappings are enabled. If enabled, the Page Table Base
Address specifies the starting address of the PGTT. If disabled, GM mapping will proceed
using the global GTT.

Value Name Description Project

0h Disable GM mapping will proceed using the global GTT. All

1h Enable The Page Table Base Address specifies the
starting address of the PGTT

All

 G45: Volume 1a Graphics Core

 217

8.2.3.2 PGTBL_STR2—Page Table Steer Register (Per
Process)

PGTBL_STR2—Page Table Steer Register (Per Process)
Register Type: MMIO

Address Offset: 20C8h

Project: DevBW, DevCL

Default Value: 0000 0000h

Access: R/W

Size (in bits): 32

The PGTBL_STR2 register is used to map the graphics functions to either the per-process GTT or the global GTT.

This register is saved and restored with context. If the valid bit for the per-process GTT is not set, the hardware
uses the Global GTT for all functions and ignores the contents of this register.

Bit Description

31:22 Reserved Project: All Format: MBZ

21:16 Write enable bits Project: All Format: Mask[5:0]

This bit needs to be set in order to change the value for the corresponding location of
register bits 5:0

15:6 Reserved Project: All Format: MBZ

5 Location of the render batch buffer

Project: All

Default Value: 0h

Format: U1

Location of the render batch buffer

Value Name Description Project

0h Batch buffer accesses are translated through
the global GTT

All

1h Batch buffer accesses are translated through
the per-process GTT (PGTT).

All

 G45: Volume 1a Graphics Core

 218

PGTBL_STR2—Page Table Steer Register (Per Process)
4 Location of indirect state buffers includes states and instructions

Project: All

Default Value: 0h

Format: U1

Location of indirect state buffers includes states and instructions

Value Name Description Project

0h Indirect state buffer accesses are translated
through the global GTT

All

1h Indirect state buffer accesses are translated
through the per-process GTT (PGTT).

All

3 Location of Vertex buffer

Project: All

Default Value: 0h

Format: U1

Location of Vertex buffer

Value Name Description Project

0h Vertex buffer accesses are translated through the
global GTT

All

1h Vertex buffer accesses are translated through the
per-process GTT (PGTT).

All

2 Reserved Project: All Format: MBZ

1 Location of functions using the Sampler cache

Project: All

Default Value: 0h

Format: U1

Location of functions using the Sampler cache

Value Name Description Project

0h Sampler surface accesses are translated through
the global GTT

All

1h Sampler surface accesses are translated through
the per-process GTT (PGTT).

All

 G45: Volume 1a Graphics Core

 219

PGTBL_STR2—Page Table Steer Register (Per Process)
0 Location of functions using the render cache

Project: All

Default Value: 0h

Format: U1

Includes Render targets, constants, Scratch Space access and direct reads/writes from
EUs to memory.

Value Name Description Project

0h Render surface accesses are translated through
the global GTT

All

1h Render surface accesses are translated through
the per-process GTT (PGTT).

All

 G45: Volume 1a Graphics Core

 220

8.2.4 Two-Level Per-Process Virtual Memory ([DevCTG] Only)

[DevCTG] Supports a 2-level mapping scheme for PPGTT, consisting of a first-level page directory
containing page table base addresses, and the page tables themselves on the 2nd level, consisting
of page addresses. The motivation for the 2-level scheme is simple – it allows for the lookup table
(the collection of page tables) to exist in discontiguous memory, making allocation of memory for
these structures less problematic for the OS. The directory and each page table fit within a single
4K page of memory that can be located anywhere in physical memory space.

If a PPGTT is enabled, all rendering operations (including blit commands) target Per-process
virtual memory. This means all commands except the Memory Interface Commands (MI_*).
Certain Memory Interface Commands have a specifier to choose global virtual memory (mapped
via the GGTT) instead of per-process memory. Global Virtual Memory can be thought of as
“privileged” memory in this case. Commands that elect to access privileged memory must have
sufficient access rights to do so. Commands executing directly from a ring buffer or from a
“secure” batch buffer (see the MI_BATCH_BUFFER_START command in Memory Interface
Commands) have these access rights; other commands do not and will not be permitted to access
global virtual memory. See the Memory Interface Commands chapters for details on command
access of privileged memory.

The PPGTT is disabled by resetting the Per-Process Virtual Address Space and Run List
Enable bit in the GFX_MODE – Graphics Mode Register. Run Lists are described later in this
chapter.

D ire c to ry In d e x P a g e T a b le In d e x O ffs e t In to P a g e

3 1 2 2 2 1 1 2 01 1

 P a g e B a se [3 5 :1 2]

4 K P a g e T a b le (1 K 4 -B y te
E n tr ie s)

V

T a b le B a se [3 5 :1 2]

4 K P a g e D ire c to ry (1 K 4 -
B y te E n tr ie s) in M e m o ry

a n d C a ch e d O n -C h ip

V

D e s ire d A d d re ss

4 K M e m o ry P a g e

1 0 -B it P a g e
D ire c to ry In d e x

1 0 -B it P a g e
T a b le In d e x

P P G T T Lo o k u p

M T

 G45: Volume 1a Graphics Core

 221

8.2.4.1 PPGTT Table Entries (PTEs)

Page Table Entry: 1 DWord per 4KB Graphics Memory page. Page Tables must be located in
main memory (not snooped). They can be updated directly in memory if proper precautions are
taken, or from the command stream by using the MI_UPDATE_GTT command (see Memory
Interface Commands for Rendering Engine).

31 12 11:8 7:4 3 2 1 0

Physical Page Address 31:12 Reserved:MBZ Physical
Page

Address
35:32

Reserved Mapping Type Valid

Bits Description

31:12 Physical Page Address 31:12: If the Valid bit is set, This field provides the page number of the
physical memory page backing the corresponding Graphics Memory page.

11:8 Reserved: MBZ

7:4 Physical Page Address Extension: This field specifies bits 35:32 of the directory entry.

3:1 Reserved: MBZ

2:1 Mapping Type: If the Valid bit is set, this field specifies the type of physical memory backing this
Graphics Memory page, as defined below:

0: Physical address targets Main Memory (not snooped). Physical address is a main memory page
number (including pages in stolen memory).

1-2: Reserved

3: Physical address targets cacheable Main Memory (aka System Memory) (causes snoop on
processor bus). Must not be targeted by the processor through graphics memory range, such
accesses will not be snooped after translation. Accesses via the Instruction stream are permitted (no
error generated), yet treated as unsnooped Main Memory. This removes restrictions regarding
Instruction stream overfetches into dissimilar graphics memory regions.

0 Valid PTE: This field indicates whether the mapping of the corresponding Graphics Memory page is
valid.

1: Valid

0: Invalid. An access (other than a CPU Read) through an invalid PTE will result in Page Table Error
(Invalid PTE).

 G45: Volume 1a Graphics Core

 222

8.2.4.2 PP_DIR_BASE – Page Directory Base Register

PP_DIR_BASE – Page Directory Base Register
Register Type: MMIO

Address Offset: 2518h

Project: DevCTG

Default Value: 0000 0000h

Access: R/W (Debug Only)

Size (in bits): 32
This register contains the offset into the GGTT where the (current context’s) PPGTT page directory begins. This
register is restored with context. SW should not normally modify this register. The Page Directory Base Address is
set by SW only by modifying the value of this register in the context image such that the new value is restored the
next time the context runs.

Bit Description

30:16 Page Directory Base Offset

Project: DevCTG

Default Value: 0h

Format: U15

Range [0,GGTT Size in cachelines - 1]

Contains the cacheline (64-byte) offset into the GGTT where the page directory begins.

15:0 Reserved Project: DevCTG Format: MBZ

 G45: Volume 1a Graphics Core

 223

8.2.4.3 PP_DCIR – PPGTT Directory Cache Index Register

PP_DCIR – PPGTT Directory Cache Index Register
Register Type: MMIO

Address Offset: 2500h

Project: DevCTG

Default Value: 0000 0000h

Access: R/W (Debug Only)

Size (in bits): 32

The Directory Cache Index and Data Registers are used to read the contents of the on-chip directory cache. This on-
chip cache is updated only when the context is restored (all entries that are enabled in the PPGTT Directory Cache
Valid Registers).

This register contains the DW offset into the on-chip PPGTT directory cache. A read to the PPGTT Directory Cache
data register will return the entry at the DW indicated by this index.

Bit Description

31:12 Reserved Project: DevCTG Format: MBZ

11:2 PPGTT Directory Cache Index

Project: DevCTG

Default Value: 0h

Format: U10

Range [0,1023]

Contains the DW offset into the on-chip directory cache that will be read through the PPGTT Directory
Cache Data Register.

1:0 Reserved Project: DevCTG Format: MBZ

 G45: Volume 1a Graphics Core

 224

8.2.4.4 PP_DCDR – PPGTT Directory Cache Data Register

PP_DCDR – PPGTT Directory Cache Data Register
Register Type: MMIO

Address Offset: 2504h

Project: DevCTG

Default Value: 0000 0000h

Access: RO (Debug Only)

Size (in bits): 32
This register returns the on-chip PPGTT Directory Cache entry indicated by the PPGTT Directory Cache Index. The
PPGTT Directory Cache can contain HPAs if VT-d is enabled; bit 3 indicates if this entry is an HPA. The format of this
register matches PPGTT Directory Entries (PDEs) except for bit 3.

Bit Description

31:12 Physical Page Address 31:12

Project: DevCTG

Default Value: 0h

Address: PhysicalAddress[31:12]

If the Valid bit is set, This field provides the page number of the physical memory page backing the
corresponding Graphics Memory page

11:8 Reserved Project: All Format: MBZ

7:4 Physical Page Address Extension

Project: DevCTG

Default Value: 0h

Address: GraphicsAddress[35:32]

This field specifies bits 35:32 of the directory entry

3 Physical Address is
Host Physical Address

Project
:

All Format
:

??
?

This bit indicates that this entry is an HPA. This bit can only be set when VT-d is enabled. If
clear, this entry is a GPA. This bit will always be clear when VT-d is not enabled. This bit
should be written as 0.

2:1 Reserved Project: All Format: MBZ

 G45: Volume 1a Graphics Core

 225

PP_DCDR – PPGTT Directory Cache Data Register
0 Valid PDE

Project: DevCTG

Default Value: 0h

Format: Flag

This field indicates whether this directory entry is valid.

Value Name Description Project

0h Invalid An access through an invalid PDE will result in a fatal
error (hang).

All

1h Valid All

 G45: Volume 1a Graphics Core

 226

8.2.4.5 PP_DCLV – PPGTT Directory Cacheline Valid Register

PP_DCLV – PPGTT Directory Cacheline Valid Register
Register Type: MMIO

Address Offset: 2508h

Project: DevCTG

Default Value: FFFF FFFFh; FFFF FFFFh

Access: RO

Size (in bits): 64

This register controls update of the on-chip PPGTT Directory Cache during a context restore. Bits that are set will trigger
the load of the corresponding 16 directory entry group. This register is restored with context (prior to restoring the on-
chip directory cache itself). This register is also restored when switching to a context whose LRCA matches the current
CCID if the Force PD Restore bit is set in the context descriptor.

The context image of this register must be updated and maintained by SW; SW should not normally need to read this
register.

This register can also effectively be used to limit the size of a processes’ virtual address space. Any access by a
process that requires a PD entry in a set that is not enabled in this register will cause a fatal error, and no fetch of the PD
entry will be attempted

Bit Description

63:32 Reserved Project: DevCTG Format: MBZ

31:0 PPGTT Directory Cache Restore
[1..32] 16 entries

Project: DevCTG Format: Array:Enable

If set, the [1st..32nd] 16 entries of the directory cache are considered valid and will be brought in on
context restore. If clear, these entries are considered invalid and fetch of these entries will not be
attempted.

8.2.5 PPGTT Page Fault Interface ([DevCTG] Only)

This interface is used to signal page faults that occur during access of per-process virtual graphics
memory. A fault of this nature will stall the 3D/Media pipeline behind the fault, and all new TLB
requests from anywhere in the pipeline will be stalled. Faults are recorded in a fault log consisting
of 32 fault slots.

When a TLB request (the first access to a page that is not present in a client’s TLB cache) results
in a fault, any further TLB requests (from any client) will be stalled. Currently pending TLB
requests will be completed (it is possible that some of these will fault as well). Once no more TLB
requests are outstanding, a page fault interrupt will be sent. When reading the Page Fault
Indication Register after receiving the Page Fault interrupt, SW is assured that no more faults will
be logged while it is in the process of reading the page fault registers. When all faults have been
serviced, SW should clear the Fault Indication Register and then clear the Fault In Service bit of
the PPGTT Page Fault Interface Control Register.

 G45: Volume 1a Graphics Core

 227

8.2.5.1 PP_PFIR – PPGTT Page Fault Indication Register

PP_PFIR – PPGTT Page Fault Indication Register
Register Type: MMIO

Address Offset: 2510h

Project: DevCTG

Default Value: 0000 0000h

Access: R/WC

Size (in bits): 32
This register contains the flags for page faults. All bits should be cleared at once by writing FFFFFFFFh to this register
once all faults have been serviced. No additional bits of this register will become set (signaling additional faults)
between the time the page fault interrupt has been sent to the host and the time the host clears the Fault In
Service bit indicating it is done servicing faults

Bit Description

31:0 Page Fault [31:0] Project: DevCTG Format: Array:Flag

Fault indicator for page fault log index [31:0]. When set, this flag indicates that a page fault is
outstanding. The invalid page address that was accessed can be read from fault entry [31:0]. SW
should clear this bit by writing a ‘1’ to it to indicate to HW that the fault has been serviced (the page
has been mapped and should now be valid).

8.2.5.2 PP_PFIC – PPGTT Page Fault Interface Control

PP_PFIC – PPGTT Page Fault Interface Control
Register Type: MMIO

Address Offset: 2514h

Project: DevCTG

Default Value: 00000000h

Access: R/WC

Size (in bits): 32
This register contains a bit to allow SW to synchronize with HW in order to read faults out of the fault log.

Bit Description

31 Fault In Service Project: DevCTG Format: Flag

This R/WC bit is set by HW to indicate that a fault has been signaled via interrupt to SW. SW should
clear this bit by writing a ‘1’ to it once it is done servicing faults so that HW can resume normal
operation. Any bits still set in the Page Fault Indication Register when this bit is cleared will trigger a
new interrupt. Writing a ‘0’ to this bit has no effect.

30:0 Reserved Project: DevCTG Format: MBZ

Write as 0’s.

 G45: Volume 1a Graphics Core

 228

8.2.5.3 PP_PFD[0:31] – PPGTT Page Fault Data Registers

PP_PFD[0:31] – PPGTT Page Fault Data Registers
Register Type: MMIO

Address Offset: 2580h

Project: DevCTG

Default Value: 0000 0000h

Access: RO

Size (in bits): 32
The GTT Page Fault Log entries can be read from these registers.

2580h-2583h: Fault Entry 0
…

25FCh-25FFh: Fault Entry 31
DWord Bit Description

0..31 31:12 Fault Entry Page Address

Project: All

Address: GraphicsAddress[31:12]

This RO field contains the faulting page address for this Fault Log entry. This field will
contain a valid fault address only if the bit in the GTT Page Fault Indication Register
corresponding with the address offset of this entry is set.

11:0 Reserved Project: All Format: MBZ

 G45: Volume 1a Graphics Core

 229

8.2.6 TLB Read Interface

It may be necessary for one or more pages belonging to a context to be unmapped from its PPGTT
in order to map other pages when resolving a page fault. Pages that get unmapped cannot be one
of the set that the HW is currently using. SW should read all of the TLB entry virtual addresses in
order to report these virtual page addresses to the OS/Scheduler such that it can avoid swapping
these pages out in order to bring in a page to resolve a fault.

8.2.6.1 TLB_RD_EXT — TLB Read Extent

TLB_RD_EXT -- TLB Read Extent
Register Type: MMIO

Address Offset: 251Ch

Project: All

Default Value: 0000 0780h

Access: RO

Size (in bits): 32

This RO register can be read by software to determine how many TLB Read entries follow. SW must read the
entire set to make sure all in-use pages are reported during the servicing of a page fault.

Bit Description

31:2 TLB Read Extent

Project: All

Default Value: 01E0h ???

Format: U30

This RO register is hardwired to a count of the total number of TLB read registers SW can
read this register to determine the total range of potentially valid DWs in the TLB read range.

1:0 Reserved Project: All Format: MBZ

Unused registers in the range below, from B000h to B000h + TLB Read Extent, should be treated
as reserved and read as 0. This allows SW to read the entire range contiguously and maintain
proper behavior when reading unused, reserved registers.

 G45: Volume 1a Graphics Core

 230

8.2.6.2 Instruction/State Cache (ISC)

Instruction/State Cache (ISC)
Register Type: MMIO

Address Offset: B000h

Project: All

Default Value: TBD

Access: RO

Size (in bits): 16x32

DWord Bit Description

0..15 31:12 TLB Page Address

Project: All

Address: GraphicsVirtualAddress[31:12]

If the Valid bit is set, this field contains the page address of the TLB entry.

11:2 Reserve
d

Project
:

All Format: MBZ

1 Global GTT
Address

Project: All Format: MBZ

Hardwired to 0.

0 Valid Project: All Format: Enable

If this bit is set, this entry contains a valid TLB entry. If clear, this TLB entry is
effectively “empty” and may be disregarded.

 G45: Volume 1a Graphics Core

 231

8.2.6.3 Vertex Fetch (VF)

Vertex Fetch (VF)
Register Type: MMIO

Address Offset: B100h

Project: All

Default Value: TBD

Access: RO

Size (in bits): 19x32

DWord Bit Description

0..18 31:12 TLB Page Address

Project: All

Address: GraphicsVirtualAddress[31:12]

If the Valid bit is set, this field contains the page address of the TLB entry.

11:2 Reserved Project
:

All Format: MBZ

1 Global GTT
Address

Project: All Format: MBZ

Hardwired to 0.

0 Valid Project: All Format: Enable

If this bit is set, this entry contains a valid TLB entry. If clear, this TLB entry is
effectively “empty” and may be disregarded.

 G45: Volume 1a Graphics Core

 232

8.2.6.4 Command Streamer (CS)

Command Streamer (CS)
Register Type: MMIO

Address Offset: B200h

Project: All

Default Value: TBD

Access: RO

Size (in bits): 6x32

DWord Bit Description

0..5 31:12 TLB Page Address

Project: All

Address: GraphicsVirtualAddress[31:12]

If the Valid bit is set, this field contains the page address of the TLB entry.

11:2 Reserved Project
:

All Format
:

MBZ

1 Global GTT
Address

Project: All Format: Flag

If set, this virtual address is a global GTT address, and is guaranteed to remain
mapped. Only TLB entries with this bit clear need to be communicated as being
part of a minimum set that must remain mapped during the servicing of a page
fault. Only the Command Streamer (CS) may contain global GTT entries in its TLB;
all the other clients will hardwire this bit to 0 in all of their TLB read registers.

0 Valid Project: All Format: Enable

If this bit is set, this entry contains a valid TLB entry. If clear, this TLB entry is
effectively “empty” and may be disregarded.

 G45: Volume 1a Graphics Core

 233

8.2.6.5 Texture Cache (MT)

Texture Cache (MT)
Register Type: MMIO

Address Offset: B300h

Project: All

Default Value: ???

Access: RO

Size (in bits): 32x32

DWord Bit Description

0..31 31:12 TLB Page Address

Project: All

Address: GraphicsVirtualAddress[31:12]

If the Valid bit is set, this field contains the page address of the TLB entry.

11:2 Reserve
d

Project
:

All Forma
t:

MBZ

1 Global GTT
Address

Project: All Format: MBZ

Hardwired to 0.

0 Valid Project: All Format: Enable

If this bit is set, this entry contains a valid TLB entry. If clear, this TLB entry is
effectively “empty” and may be disregarded.

 G45: Volume 1a Graphics Core

 234

8.2.6.6 Render Cache (RC)

Render Cache (RC)
Register Type: MMIO
Address Offset: B400h
Project: All
Default Value: ???
Access: RO
Size (in bits): 224x32
224 DWords

DWord Bit Description

0.223 31:12 TLB Page Address

Project: All

Address: GraphicsVirtualAddress[31:12]

If the Valid bit is set, this field contains the page address of the TLB entry.

11:2 Reserved Project
:

All Format: MBZ

1 Global GTT
Address

Project: All Format: MBZ

Hardwired to 0.

0 Valid Project: All Format: Enable

If this bit is set, this entry contains a valid TLB entry. If clear, this TLB entry is
effectively “empty” and may be disregarded.

 G45: Volume 1a Graphics Core

 235

8.3 GFX_MODE – Graphics Mode Register

GFX_MODE – Graphics Mode Register
Register Type: MMIO

Address Offset: 2520h

Project: All

Default Value: 00000000h

Access: R/W

Size (in bits): 32

Trusted Type: 1

This register contains a control bit for the new run list and 2-level PPGTT functions. This register is not
saved/restored with context. This register is not reset with single-engine GFX reset; it is only reset by a global
graphics reset (all engines including display).

Bit Description

31:16 Mask Bits

Format: Mask[15:0]

Must be set to modify corresponding bit in Bits 15:0. (All implemented bits)

15 Reserved Project: All Format: MBZ

14 Reserved Project: All Format: MBZ

13 Reserved Project: All Format: MBZ

12:0 Reserved Project: All Format: MBZ

 G45: Volume 1a Graphics Core

 236

8.4 EXCC—Execute Condition Code Register

EXCC—Execute Condition Code Register
Register Type: MMIO

Address Offset: 2028h

Project: All

Default Value: 00000000h

Access: R/W,RO

Size (in bits): 32

Trusted Type: 1

This register contains user defined and hardware generated conditions that are used by MI_WAIT_FOR_EVENT
commands. An MI_WAIT_FOR_EVENT instruction excludes the executing ring from arbitration if the selected
event evaluates to a “1”, while instruction is discarded if the condition evaluates to a “0”. Once excluded a ring is
enabled into arbitration when the selected condition evaluates to a “0”.

Bit Description

31:22 Reserved Project: All Format: MBZ

21 Mask Bits

Format: Mask[5]

This bit serves as a write enable for bit 5. If this register is written with this bit clear the
corresponding bit in the field 5 will not be modified.

Reading these bits always returns 0s.

20:16 Mask Bits

Format: Mask[4:0]

These bits serves as a write enable for bits 4:0. If this register is written with any of these bits
clear the corresponding bit in the field 4:0 will not be modified.

Reading these bits always returns 0s.

15:12 Reserved Project: All Format: MBZ

11 Pending Indirect State Dirty Bit Project: All Format: U32

This field keeps track of whether or not an indirect state pointer command has been parsed in
the current context. Clears either on a context save or explicitly through a flush command

10:8 Pending Indirect State Counter

This field keeps track of the maximum number of indirect state pointers pending in the system.
When the register is saved/restored, it saves either a value of 1 or 0.

This field is Read-Only

7:6 Reserved Project: All Format: MBZ

 G45: Volume 1a Graphics Core

 237

EXCC—Execute Condition Code Register
5 Indirect State Pointer Force Restore

Determines whether to use pending indirect state counter to restore data to memory, or restore
indirect data

Value Name Description Project

0h Use Pending Use the pending indirect state counter to restore data
to memory

All

1h Don’t Use
Pending

Don’t use pending indirect state counter to restore
data to memory. Always restore indirect data

All

4:0 User Defined Condition Codes

The software may signal a Stream Semaphore by setting the Mask bit and Signal Bit together to
match the bit field specified in a WAIT_FOR_EVENT (Semaphore).

 G45: Volume 1a Graphics Core

 238

8.5 RINGBUF—Ring Buffer Registers

RING_BUFFER_TAIL
Register Type: MMIO

Address Offset: 2030h

Project: All

Default Value: 00000000h

Access: R/W

Size (in bits): 32

These registers are used to define and operate the “ring buffer” mechanism which can be used to pass
instructions to the command interface. The buffer itself is located in a physical memory region. The ring buffer
is defined by a 4 Dword register set that includes starting address, length, head offset, tail offset, and control
information. Refer to the Programming Interface chapter for a detailed description of the parameters specified
in this ring buffer register set, restrictions on the placement of ring buffer memory, arbitration rules, and in how
the ring buffer can be used to pass instructions.

Ring Buffer Tail Offsets must be properly programmed before ring is enabled. A Ring Buffer can be
enabled when empty.

Bit Description

31:21 Reserved Project: All Format: MBZ

20:3 Tail Offset

Project: All

Format: U18 QWord Offset

This field is written by software to specify where the valid instructions placed in the ring
buffer end. The value written points to the QWord past the last valid QWord of
instructions. In other words, it can be defined as the next QWord that software will write
instructions into. Software must write subsequent instructions to QWords following the
Tail Offset, possibly wrapping around to the top of the buffer (i.e., software can’t skip
around within the buffer). Note that all DWords prior to the location indicated by the Tail
Offset must contain valid instruction data – which may require instruction padding by
software. See Head Offset for more information.

2:0 Reserved Project: All Format: MBZ

 G45: Volume 1a Graphics Core

 239

RING_BUFFER_HEAD
Register
Type:

MMIO

Address
Offset:

2034h

Project: All

Default
Value:

00000000h

Access: R/W

Size (in
bits):

32

These registers are used to define and operate the “ring buffer” mechanism which can be used to pass
instructions to the command interface. The buffer itself is located in a physical memory region. The ring
buffer is defined by a 4 Dword register set that includes starting address, length, head offset, tail offset, and
control information. Refer to the Programming Interface chapter for a detailed description of the parameters
specified in this ring buffer register set, restrictions on the placement of ring buffer memory, arbitration
rules, and in how the ring buffer can be used to pass instructions.

Ring Buffer Head Offsets must be properly programmed before ring is enabled. A Ring Buffer can
be enabled when empty.

Bit Description

31:21 Wrap Count

Project: All

Default Value: 0h

Format: U11 count of ring buffer
wraps

This field is incremented by 1 whenever the Head Offset wraps from the end of the
buffer back to the start (i.e., whenever it wraps back to 0). Appending this field to the
Head Offset field effectively creates a virtual 4GB Head “Pointer” which can be used as
a tag associated with instructions placed in a ring buffer. The Wrap Count itself will
wrap to 0 upon overflow.

 The Wrap Count will get cleared as a result of writes of the Starting Address field.

 G45: Volume 1a Graphics Core

 240

RING_BUFFER_HEAD
20:2 Head Offset

Project: All

Format: U19 DWord Offset

This field is written by software to specify where the valid instructions placed in the ring
buffer end. The value written points to the QWord past the last valid QWord of
instructions. In other words, it can be defined as the next QWord that software will
write instructions into. Software must write subsequent instructions to QWords
following the Tail Offset, possibly wrapping around to the top of the buffer (i.e.,
software can’t skip around within the buffer). Note that all DWords prior to the location
indicated by the Tail Offset must contain valid instruction data – which may require
instruction padding by software. See Head Offset for more information.

Programming Notes Project

A RB can be enabled empty or containing some number of valid
instructions.

All

Head Offset is cleared as a result of writes of the Starting Address field. All

1 Reserved Project: All Format: MBZ

0 Wait for Condition Indicator Project: All Format: Enabled

This is a read only value used to indicate whether or not the command streamer is
currently waiting for a conditional code to be cleared from 0x2028

RING_BUFFER_START
Register Type: MMIO

Address Offset: 2038h

Project: All

Default Value: 00000000h

Access: R/W

Size (in bits): 32

These registers are used to define and operate the “ring buffer” mechanism which can be used to pass
instructions to the command interface. The buffer itself is located in a physical memory region. The ring buffer
is defined by a 4 Dword register set that includes starting address, length, head offset, tail offset, and control
information. Refer to the Programming Interface chapter for a detailed description of the parameters specified
in this ring buffer register set, restrictions on the placement of ring buffer memory, arbitration rules, and in
how the ring buffer can be used to pass instructions.

 G45: Volume 1a Graphics Core

 241

Bit Description

31:12 Starting Address

Project: All

Address: GraphicsAddress[31:12]

Surface Type: RingBuffer

This field specifies Bits 31:12 of the 4KB-aligned starting Graphics Address of the ring
buffer. Address bits 31 down to 29 must be zero.

Writing this register also causes the Head Offset to be reset to zero, and the Wrap Count
to be reset to zero.

All ring buffer pages must map to Main Memory (uncached) pages.

Ring Buffer addresses are always translated through the global GTT. Per-
process address space can only be used via a batch buffer with the appropriate
Memory Space Select.

11:0 Reserved Project: All Format: MBZ

 G45: Volume 1a Graphics Core

 242

RING_BUFFER_CONTROL
Register Type: MMIO

Address Offset: 203Ch

Project: All

Default Value: 00000000h

Access: R/W

Size (in bits): 32

These registers are used to define and operate the “ring buffer” mechanism which can be used to pass
instructions to the command interface. The buffer itself is located in a physical memory region. The ring buffer
is defined by a 4 Dword register set that includes starting address, length, head offset, tail offset, and control
information. Refer to the Programming Interface chapter for a detailed description of the parameters specified
in this ring buffer register set, restrictions on the placement of ring buffer memory, arbitration rules, and in how
the ring buffer can be used to pass instructions.

Bit Description

31:0 Buffer Length

Project: All

Format: U9-1 Count of 4 KB pages

Range 0..1FFh

This field is written by SW to specify the length of the ring buffer in 4 KB Pages.

Range = [0 = 1 page = 4 KB, 1FFh = 512 pages = 2 MB]

11 RB Wait Project: All Format: Boolean

Indicates that this ring has executed a WAIT_FOR_EVENT instruction and is currently
waiting. Software can write a “1” to clear this bit, write of “0” has no effect. When the RB
is waiting for an event and this bit is cleared, the wait will be terminated and the RB will
be returned to arbitration.

10:3 Reserved Project: All Format: MBZ

 G45: Volume 1a Graphics Core

 243

RING_BUFFER_CONTROL
2:1 Automatic Report Head Pointer

Project: All

This field is written by software to control the automatic “reporting” (write) of this ring
buffer’s “Head Pointer” register (register DWord 1) to the corresponding location within the
Hardware Status Page. Automatic reporting can either be disabled or enabled at 4KB,
64KB or 128KB boundaries within the ring buffer.

Value Name Description Project

0h MI_AUTOREPORT_OFF Automatic reporting disabled All

1h MI_AUTOREPORT_64KB

MI_AUTOREPORT_4KB

Report every 16 pages (64KB)

When the Per-Process Virtual
Address Space and Context Queue
Enable bit is set, the ring buffer
reports every 4KB

All

2h Reserved Reserved All

3h MI_AUTOREPORT_128KB
Report every 32 pages (128KB)

All

0 Ring Buffer Enable Project: All Format: Enable

This field is used to enable or disable this ring buffer. It can be enabled or disabled
regardless of whether there are valid instructions pending.

 G45: Volume 1a Graphics Core

 244

8.5.1 UHPTR — Pending Head Pointer Register

UHPTR — Pending Head Pointer Register
Register Type: MMIO

Address Offset: 2134h

Project: All

Default Value: 0000 0000h

Access: R/W

Size (in bits): 32

Bit Description

31:3 Head Pointer Address

Project: All

Default Value: 0h

Address: GraphicsAddress[31:3]

This register represents the GFX address offset where execution should continue in the ring
buffer following execution of an MI_ARB_CHECK command.

2:1 Reserved Project: All Format: MBZ

0 Head Pointer Valid

Project: All

Default Value: 0h

Format: U1

This bit is set by the software to request a pre-emption. It is reset by hardware after the
head pointer in this register is read. The hardware uses the head pointer programmed in
this register at the time the reset is generated.

Value Name Description Project

0h No valid updated head pointer register, resume
execution at the current location in the ring
buffer

All

1h Indicates that there is an updated head pointer
programmed in this register

All

 G45: Volume 1a Graphics Core

 245

8.6 Debug Registers Control

8.6.1 HW_MEMRD—Memory Read Sync Register (Debug)

HW_MEMRD—Memory Read Sync Register (Debug)
Register Type: MMIO

Address Offset: 2060h

Project: All

Default Value: 0000 0000h

Access: RO

Size (in bits): 32

This register is used to flush the data from the Graphics dedicated chipset buffers into memory. A read to the
register is generated post-flush completion of the graphics pipeline by the software. Read to this register is
expected to be used in debug mode. The hardware will always return 0 for this register.

Bit Description

31:0 Reserved Project: All Format: MBZ

 G45: Volume 1a Graphics Core

 246

8.6.2 IPEIR—Instruction Parser Error Identification Register
(Debug)

IPEIR—Instruction Parser Error Identification Register (Debug)
Register Type: MMIO

Address Offset: 2064h

Project: All

Default Value: 0000 0000h

Access: RO

Size (in bits): 32

The IPEIR register identifies the general location of instructions that generate a Invalid Instruction Errors for the
Renderer IP. (Note: The header (DWord 0) of the offending instruction will be stored in the IPEHR register).

Bit Description

31:4 Reserved Project: All Format: MBZ

3 Batch Buffer Error Project: All Format: Flag

If this bit is set the faulting instruction was executed from a batch buffer. If this bit is
clear the faulting instruction was executed directly from a ring buffer.

2:0 Ring ID

Project: All

Default Value: 0h

Format: U3

This field indicates which ring buffer is associated with the faulting

Value Name Description Project

0 Ring Buffer 0 Ring Buffer 0 All

1-7 Reserved Reserved All

 G45: Volume 1a Graphics Core

 247

8.6.3 HW_MEMCWR—Memory Snoop Sync Register ([DevCTG])

HW_MEMCWR—Memory Snoop Sync Register
Register Type: MMIO

Address Offset: 2064h

Project: DevCTG+

Default Value: 0000 0000h

Access: RO

Size (in bits): 32
This register is used to flush the data from the Graphics dedicated chipset buffers targeted for the cacheable space
into memory. A write of any non-zero value to this register is generated in the Interrupt service routine to complete
any pending cacheable writes to memory. The flush operation is considered completed when this register reads back
a 0.

Bit Description

31:0 Sync Data Project: DevCTG Format: U32

In order to flush any pending cacheable writes from the graphics an non-zero value needs to
be written to this register. When a register read back returns a Zero, the flush operation is
complete

 G45: Volume 1a Graphics Core

 248

8.6.4 IPEHR—Instruction Parser Error Header Register
(Debug)

IPEHR—Instruction Parser Error Header Register (Debug)
Register Type: MMIO

Address Offset: 2068h

Project: All

Default Value: 0000 0000h

Access: RO

Size (in bits): 32

The IPEHR register is used to identify the instructions that generate Invalid Instruction Errors. This register is
loaded with the header (DWord 0) of each instruction that is executed. It will therefore hold the header of an
instruction that generates an Invalid Instruction Error.

Bit Description

31:0 Header Project: All Format: U32

This field will contain the header (DWord 0) of a Renderer IP instruction that generates an
Invalid Instruction Error.

 G45: Volume 1a Graphics Core

 249

8.6.5 INSTDONE—Instruction Stream Interface Done Register
(Debug)

INSTDONE—Instruction Stream Interface Done Register (Debug)
Register Type: MMIO

Address Offset: 206Ch

Project: All

Default Value: FFE7 FFFEh

Access: RO

Size (in bits): 32
This read-only register reports “Done” signals associated with the various internal engines and instruction
transport mechanisms. In general, when the rendering engines of the device are idle, all bits will be set. If, for
some reason, the device hangs, this register can be used to determine which functions are stalled with pending
operations.

Bit Description

31 Row 0, EU 0 Done

30 Row 0, EU 1 Done

29 Row 0, EU 2 Done

28 Row 0, EU 3 Done

27 Row 1, EU 0 Done

26 Row 1, EU 1 Done

25 Row 1, EU 2 Done

24 Row 1, EU 3 Done

23 Strips and Fans (SF) Done

22 Setup (SE) Done

21 Windower (WM) Done

20 Reserved. Read as “0”

19 Reserved. Read as “0”

18 Dispatcher (DIP) Done

17 Projection and LOD (PL) Done

 G45: Volume 1a Graphics Core

 250

INSTDONE—Instruction Stream Interface Done Register (Debug)
16 Dependent Address Generator (DG) Done

15 Quad Cache Controller (QC) Done

14 Texture Fetch (FT) Done

13 Texture Decompressor (DM) Done

12 Sampler Cache (SC) Done

11 Filter (FL) Done

10 Bypass FIFO (BY) Done

9 Pixel Shader (PS) Done

8 Color Calculator (CC) Done

7 Map Filter Done: FL_done

6 Map L2 Cache Idle.

5 Message Arbiter Row 0 (EU output and EU input for Row 0) Done

4 Message Arbiter Row 1 (EU output and EU input for Row 1) Done

3 Instruction Cache Row 0 Done

2 Instruction Cache Row 1 Done

1 Command Parser (CP) Done

0 Ring 0 Enable

 G45: Volume 1a Graphics Core

 251

8.6.6 INSTPS—Instruction Parser State Register (Debug)

INSTPS—Instruction Parser State Register (Debug)
Register Type: MMIO

Address Offset: 2070h

Project: All

Default Value: UUUU UUUUh

Access: RO

Size (in bits): 32

This register contains the state code of the Instruction Parser in the CSI. Decoding the contents of this register
will indicate what the Instruction Parser is currently doing.

Bit Description

31:0 Instruction
Parser State

Project
:

All Format
:

Implementation Specific

Fields in this register identify the active Ring Buffer or Batch Buffer, and Batch buffer type.

 G45: Volume 1a Graphics Core

 252

8.6.7 ACTHD — Active Head Pointer Register (Debug)

ACTHD — Active Head Pointer Register (Debug)
Register Type: MMIO

Address Offset: 2074h

Project: All

Default Value: 0000 0000h

Access: RO

Size (in bits): 32

This register contains the Head “Pointer” (DWord Graphics Memory Address) of the currently-active ring buffer.

Bit Description

31:2 Head Pointer

Project: All

Default Value: 0h

Address: GraphicsAddress[31:2]

DWord Graphics Address corresponding to the Head Pointer of the currently-active ring or
batch buffer.

1:0 Reserved Project: All Format: MBZ

 G45: Volume 1a Graphics Core

 253

8.6.8 DMA_FADD_P — Primary DMA Engine Fetch Address
(Debug)

DMA_FADD_P — Primary DMA Engine Fetch Address (Debug)
Register Type: MMIO

Address Offset: 2078h

Project: All

Default Value: 0000 0000h

Access: RO

Size (in bits): 32

This register contains the QWord offset from the start address of the instruction being fetched by the Primary
DMA engine.

Bit Description

31:3 Current DMA QWord
Offset

Project: All Format: U30

This field contains the offset of the QWord (from the start of the ring buffer or
batch buffer) that the “Primary” instruction parser DMA engine is currently
accessing (fetching). Note that this offset will typically lead the Head offset (as
instructions must be fetched before execution).

2:0 Reserved Project: All Format: MBZ

 G45: Volume 1a Graphics Core

 254

8.6.9 INSTDONE_1 — Additional Instruction Stream Interface
Done (Debug)

INSTDONE_1 — Additional Instruction Stream Interface Done (Debug)
Register Type: MMIO

Address Offset: 207Ch

Project: All

Default Value: 0000 0000h

Access: RO

Size (in bits): 32

Bit Description

31:20 Reserved

19 gw_cs_done_cr

18 svsm_cs_done_cr

17 svdw_cs_done_cr

16 svdr_cs_done_cr

15 svrw_cs_done_cr

14 svrr_cs_done_cr

13 svts_cs_done_cr

12 masm_cs_done_cr

11 masf_cs_done_cr

10 mawb_cs_done_cr

9 em1_cs_done_cr

8 em0_cs_done_cr

7 uc1_cs_done

6 uc0_cs_done

5 urb_cs_done

4 isc_cs_done

 G45: Volume 1a Graphics Core

 255

INSTDONE_1 — Additional Instruction Stream Interface Done (Debug)
3 cl_cs_done

2 gs_cs_done

1 vs0_cs_done

0 vf_cs_done

 G45: Volume 1a Graphics Core

 256

8.6.10 INSTDONE_1 — Additional Instruction Stream Interface
Done (Debug)[DevCTG+]

INSTDONE_1 — Additional Instruction Stream Interface Done (Debug)
Register Type: MMIO

Address Offset: 207Ch

Project: DevCTG+

Default Value: 0000 0000h

Access: RO

Size (in bits): 32

Bit Description

31 BCS Done

30 CS Done

29 MASF Done

28 SVDW Done

27 SVDR Done

26 SVRW Done

25 SVRR Done

24 ISC Done

23 MT Done

22 RC Done

21 DAP Done

20 MAWB Done

19 MT Idle

18 GBLTbusy

17 SVSM Done

16 MASM Done

15 QC Done

14 FL Done

13 SC Done

12 DM Done

11 FT Done

10 DG Done

9 SI Done

 G45: Volume 1a Graphics Core

 257

INSTDONE_1 — Additional Instruction Stream Interface Done (Debug)
8 SO Done

7 PL Done

6 WIZ Done

5 URB Done

4 SF Done

3 CL Done

2 GS Done

1 VS0 Done

0 VF Done

 G45: Volume 1a Graphics Core

 258

8.6.11 GFX_FLSH_CNTL — Graphics Flush Control

GFX_FLSH_CNTL — Graphics Flush Control
Register Type: MMIO

Address Offset: 2170h

Project: All

Default Value: 0000 0000 0000 0000h

Access: Write Only

Size (in bits): 64

The flush initiated by this register is required whenever the GTT base address is changed or GTT entries are
updated directly in memory by the host. See the description of the PGTBL_CTL_0 register for the sequence of
operations required to update the GTT base or directly update GTT entries without using GTTADR.

Bit Description

63:0 Project: All Format: U64

A CPU Dword/Qword write to this space flushes the GWB of all writes. The data associated with
the write to this register is discarded.

A command stream write to this space has no effect and the write data is discarded; the cycle is
completed.

It is UNDEFINED to read from this register.

 G45: Volume 1a Graphics Core

 259

8.6.12 CTXT_PREMP_DBG – Pre-emption Debug Register
([DevCTG] Only)

CTXT_PREMP_DBG – Pre-emption Debug Register
Register Type: MMIO

Address Offset: 2718h

Project: DevCTG

Default Value: 0000 0000h

Access: R/W (Debug Only)

Size (in bits): 32
This register is not saved or restored with context.

Bit Description

31:5 Reserved Project: DevCTG Format: MBZ

4 Disable Marker Flow Project: DevCTG Format: Disable

If this bit is set, the flow of markers in the 3d pipeline is disabled. VF will not generate any VF Object
End markers. WIZ will disable its super span counter. If clear, VF Object End markers are generated,
propagated and processed as usual.

If a new Run List is submitted when the Disable Marker Flow bit is set, the HW behavior should be
functionally similar to the case when Mid-Primitive Pre-Emption Disable bit is set.

Graphics reset value is zero. Unaffected by render pipeline reset.

If this bit is modified, core behavior is undefined until the next render pipeline reset sequence.

3 Debug Counter Replay
Increment Disable

Project: DevCTG Format: Disable

If this bit is set, the debug counters will not increment during replay of previously parsed commands
due to a pre-emption. If clear, debug counters are always incremented whether or not the pipeline is
in replay mode or not.

2 Mid-Object Pre-emption
Disable Chicken Bit

Project: DevCTG Format: Disable

Setting this bit will prevent the submission of a new run list from pre-empting the current context in
the middle of an object. If this bit is set, the Windower will complete all superspans for the current
object (not just those that were past the commit point) prior to terminating execution of the current
context and saving it. Note that replay will still be required for any remaining objects in the current
primitive. This bit should normally be clear; setting it has the potential to increase pre-emption
latency, especially for large triangles.

1 Reserved Project: All Format: MBZ

0 Media Object Pre-emption
Disable Chicken Bit

Project: DevCTG Format: Disable

Setting this bit will prevent submission of a new run list from pre-empting the current context in the
middle of a MEDIA_OBJECT command. Any such command that has started will complete before
switching to the new run list. No replay will need to be done the next time the pre-empted context is
re-submitted and switched to. This bit should normally be clear; setting it has the potential to greatly
increase pre-emption latency.

 G45: Volume 1a Graphics Core

 260

8.7 NOPID — NOP Identification Register

NOPID — NOP Identification Register
Register Type: MMIO

Address Offset: 2094h

Project: All

Default Value: 00000000h

Access: RO

Size (in bits): 32

Trusted Type: 1

The NOPID register contains the Noop Identification value specified by the last MI_NOOP instruction that
enabled this register to be updated.

Bit Description

31:22 Reserved Project: All Format: MBZ

21:0 Identification Number

Project: All

Security: None

Default Value: 0h DefaultVaueDesc

This field contains the 22-bit Noop Identification value specified by the last MI_NOOP
instruction that enabled this field to be updated

Programming Notes Project

This register is expected to be used for debug purposes to keep track of the
execution of the command buffer

All

 G45: Volume 1a Graphics Core

 261

8.8 Watchdog Timer Registers [DevCTG]

These 2 registers together implement a watchdog timer. Writing ones to the control register
enables the counter, and writing zeroes disables the counter. The 2nd register is programmed with
a threshold value which, when reached, signals an interrupt then resets the counter to 0.
Program the threshold value before enabling the counter or extremely frequent interrupts may
result.

Note that the counter itself is not observable. It increments with the main render clock.

8.8.1 PR_CTR_CTL—Render Watchdog Counter Control

PR_CTR_CTL—Render Watchdog Counter Control
Register Type: MMIO

Address Offset: 2178h

Project: DevCTG

Default Value: 0000 0000h

Access: R/W

Size (in bits): 32

Bit Description

31:0 Counter logic op Project: DevCTG Format: U32

This field specifies the action to be taken by the clock counter to generate interrupts. Writing 0 into
this register causes a core render clock counter to be kicked off.

Writing 1 into this register causes a core render clock counter to be stopped and reset to 0.

 G45: Volume 1a Graphics Core

 262

8.8.2 PR_CTR_THRSH—Render Watchdog Counter Threshold

PR_CTR_THRSH—Render Watchdog Counter Threshold
Register Type: MMIO

Address Offset: 217Ch

Project: DevCTG

Default Value: 0014 5855h

Access: R/W

Size (in bits): 32

Bit Description

31:0 Counter logic Threshold Project: DevCTG Format: U32

This field specifies the threshold that the hardware checks against for the value of the render clock
counter before generating an interrupt. The counter in hardware generates an interrupt when the
threshold is reached, rolls over and starts counting again. The interrupt generated is the “Media
Hang Notify” interrupt since this watchdog timer is intended primarily to remedy VLD hangs on the
main pipeline.

8.8.3 PR_CTR—Render Watchdog Counter

PR_CTR—Render Watchdog Counter
Register Type: MMIO

Address Offset: 2190h

Project: DevCTG

Default Value: 0000 0000h

Access: RO

Size (in bits): 32

Bit Description

31:0 Counter Value Project: DevCTG Format: U32

This register reflects the render watchdog counter value itself. It cannot be written to but can be
read for debug purposes.

 G45: Volume 1a Graphics Core

 263

8.9 Interrupt Control Registers

The Interrupt Control Registers described below all share the same bit definition. The bit definition
is as follows:

Table 8-1. Bit Definition for Interrupt Control Registers

Bit Description

31:26 Reserved. These bits may be assigned to interrupts on future products/steppings.

25 Video Decode Command Parser User Interrupt: This status bit is set when an MI_USER_INTERRUPT
instruction is executed on the Media Decode Command Parser. Note that instruction execution is not
halted and proceeds normally. A mechanism such as an MI_STORE_DATA instruction is required to
associate a particular meaning to a user interrupt.

[DevBW] and [DevCL]: This bit is reserved.

24 Context Switch Interrupt: Set when a context switch has just occurred. Per-Process Virtual
Address Space and Run List Enable bit needs to be set for this interrupt to occur.

[DevBW], [DevCL]: This bit is reserved.

23 Page Fault: This bit is set whenever there is a pending PPGTT (page or directory) fault.

[DevBW], [DevCL]: This bit is reserved.

22 Display A VLine Interrupt: Set when programmed scan line is reached during Display fetch.

[DevBW], [DevCL]: This bit is reserved.

21 Display B VLine Interrupt: Set when programmed scan line is reached during Display fetch.

[DevBW], [DevCL]: This bit is reserved.

20 Media Decode Pipeline Counter Exceeded Notify Interrupt: The counter threshold for the
execution of the media pipeline is exceeded. Driver needs to attempt hang recovery.

[DevBW] and [DevCL]: This bit is reserved.

19 Bit Stream Pipeline Counter Exceeded Notify Interrupt: The counter threshold for the execution of
the Bit Stream Pipeline is exceeded. Driver needs to attempt hang recovery.

[DevBW] and [DevCL]: This bit is reserved.

18 PIPE_CONTROL Notify Interrupt: The Pipe Control packet (Fences) specified in 3D pipeline document
may optionally generate an Interrupt. The Store QW associated with a fence is completed ahead of the
MSI. This ordering is not guaranteed if PCI Line Intr# mechanism is used.

17 Reserved

16 Reserved. MBZ

 G45: Volume 1a Graphics Core

 264

15 Render Command Parser Master Error: When this status bit is set, it indicates that the hardware has
detected an error. It is set by the device upon an error condition and cleared by a CPU write of a one to
the appropriate bit contained in the Error ID register followed by a write of a one to this bit in the IIR.
Further information on the source of the error comes from the “Error Status Register” which along with
the “Error Mask Register” determine which error conditions will cause the error status bit to be set and
the interrupt to occur.

Page Table Error: Indicates a page table error.

Instruction Parser Error: The Renderer Instruction Parser encounters an error while parsing an
instruction.

14 GMCH Thermal Sensor Event: This bit is set on “thermal events” detected by the Thermal Sensor
logic.

13 Reserved. MBZ

12 Sync Status: This bit is toggled when the Instruction Parser completes a flush with the sync enable bit
active in the INSTPM register. The toggle event will happen after all the graphics engines are flushed.
The HW Status DWord write resulting from this toggle will cause the CPU’s view of graphics memory to
be coherent as well (flush and invalidate the render cache).

11 Display Plane A Flip Pending: This status bit is set on a Display Plane A pending flip (i.e., resulting
from the execution of an MI_DISPLAY_BUFFER_INFO instruction). This is only used when the
MI_DISPLAY_BUFFER _INFO instruction is being used. See that instruction for additional information.

10 Display Plane B Flip Pending: Flip Pending status for Display B. See Display Plane A Flip Pending

9 Overlay Plane Flip Pending: This status bit is set to reflect a pending overlay plane flip (i.e., resulting
from the execution of an MI_OVERLAY_FLIP instruction). This is only affected by the use of
MI_OVERLAY_FLIP instructions and not through the manual method.

8 Display Plane C Flip Pending:

Flip Pending status for Display Plane C. See Display Plane A Flip Pending

7 Display Pipe A VBLANK: This status bit is set at leading edge of Display Pipe A VBLANK, though
delayed to allow all internal hardware VBLANK events to occur before the interrupt is generated (to avoid
race conditions). These events include the update of the display and overlay status bits and loading of
the overlay registers.

[DevCL] If trunk clock gating is enabled, this interrupt should never be used.

6 Display Pipe A Event: This status bit is set by the device on the active-going edge of the OR of
unmasked Display Pipe A event bits. The specific cause of the event can be determined by reading the
display status register.

Note that the display line compare status can also be observed through the instruction interface.

5 Display Pipe B VBLANK: This status bit is set at leading edge of Display B VBLANK. This is actually
delayed to allow all VBLANK events to occur before the interrupt is generated. These events include the
update of the overlay registers.

[DevCL] If trunk clock gating is enabled, this interrupt should never be used.

 G45: Volume 1a Graphics Core

 265

4 Display Pipe B Event: This status bit is set by the device on the active-going edge of the OR of
unmasked Display Pipe A event bits. The specific cause of the event can be determined by reading the
display status register.

Note that the display line compare status can also be observed through the instruction interface.

3 Reserved. MBZ

2 Debug Interrupt: When this bit is set, the EU is indicating that it has encountered an interrupt in the
kernel program.

Refer to the GenX Debug PRM for more details

1 Render Command Parser User Interrupt: This status bit is set when an MI_USER_INTERRUPT
instruction is executed on the Render Command Parser. Note that instruction execution is not halted and
proceeds normally. A mechanism such as an MI_STORE_DATA instruction is required to associate a
particular meaning to a user interrupt.

0 ASLE Interrupt: This status bit is set when ASLE (PCI Configuration register Device 2, Function 0, E4)
is written by the System BIOS (any byte or all). The meaning of the interrupt is determined by the
contents written.

 G45: Volume 1a Graphics Core

 266

The following table specifies the settings of interrupt bits stored upon a “Hardware Status Write” due to ISR
changes.

Bit Interrupt Bit ISR bit Reporting via Hardware Status Write (when
unmasked via HWSTAM)

25 Video Decode Command Parser User
Interrupt: This status bit is set when an
MI_USER_INTERRUPT instruction is
executed on the Media Decode Command
Parser. Note that instruction execution is
not halted and proceeds normally. A
mechanism such as an MI_STORE_DATA
instruction is required to associate a
particular meaning to a user interrupt.

[DevBW] and [DevCL]: This bit is
reserved.

Not supported to be unmasked

24 Context Switch Interrupt: Set when a
context switch has just occurred.

[DevBW], [DevCL]: This bit is
reserved.

Not supported to be unmasked

23 Page Fault: This bit is set whenever
there is a pending PPGTT (page or
directory) fault.

[DevBW], [DevCL]: This bit is
reserved.

Set when event occurs, cleared when event cleared

22 Display A VLine Interrupt: Set when
programmed scan line is reached during
Display fetch.

[DevBW], [DevCL]: This bit is
reserved.

Not supported to be unmasked

21 Display B VLine Interrupt: Set when
programmed scan line is reached during
Display fetch.

[DevBW], [DevCL]: This bit is
reserved.

Set when event occurs, cleared when event cleared

20 Media Decode Pipeline Counter
Exceeded Notify Interrupt: The
counter threshold for the execution of the
media pipeline is exceeded. Driver needs
to attempt hang recovery.

[DevBW] and [DevCL]: This bit is
reserved.

Not supported to be unmasked

 G45: Volume 1a Graphics Core

 267

19 Bit Stream Pipeline Counter
Exceeded Notify Interrupt: The
counter threshold for the execution of the
Bit Stream Pipeline is exceeded. Driver
needs to attempt hang recovery.

[DevBW] and [DevCL]: This bit is
reserved.

Not supported to be unmasked

18 PIPE_CONTROL packet - Notify Enable 0

17 Reserved. MBZ Set when event occurs, cleared when event cleared

16 Reserved. MBZ 0

15 Master Error Set when error occurs, cleared when error cleared

14 GMCH Thermal Sensor Event Should always be disabled for Hardware Status Write
reporting.

13 Reserved. MBZ 0

12 Sync Status Toggled every SyncFlush Event

11 Display Plane A Flip Pending Set when flip is pending

10 Display Plane B Flip Pending Set when flip is pending

9 [DevBW] and [DevCL] Only: Overlay Flip
Pending

[DevCTG] Only: Display Sprite B Flip
Pending

Set when flip is pending

8 [DevBW] and [DevCL] Only: Display
Plane C Flip Pending

[DevCTG] Only: Display Sprite A Flip
Pending

Set when Flip requested, cleared when flip occurs.

7 Display Pipe A VBlank 0

6 Display Pipe A Event Set when event occurs, cleared when event cleared

5 Display Pipe B VBlank 0

4 Display Pipe B Event Set when event occurs, cleared when event cleared

3 Reserved. MBZ 0

2 Debug Interrupt Set when debug interrupt occurs.

1 User Interrupt 0

0 ASLE Interrupt 0

 G45: Volume 1a Graphics Core

 268

8.9.1 HWS_PGA — Hardware Status Page Address Register

HWS_PGA — Hardware Status Page Address Register
Register Type: MMIO

Address Offset: 2080h

Project: All

Default Value: 1FFFF000h

Access: R/W

Size (in bits): 32

Trusted Type: 1

This register is used to program the 4 KB-aligned System Memory address of the Hardware Status Page used to
report hardware status into (typically cacheable) System Memory.

Bit Description

31:12 Address

Project: All

Security: None

Address: PhysicalAddress[31:12]

Surface Type: U32

Range 0..2^32-1

This field is used by SW to specify Bits 31:12 of the 4 KB-aligned System Memory address
of the 4 KB page known as the “Hardware Status Page”. The system address space is
expected to be cacheable in memory.

Programming Notes

Notes:

If the Per-Process Virtual Address Space and Run List Enable is set, HW requires
that the status page is programmed to allow for the context switch status to be reported

12:8 Reserved Project: All Format: MBZ

7:4 Physical Start Address Extension

Project: All

Security: None

Address: PhysicalAddress[35:32]

This field specifies Bits 35:32 of the starting physical address.

3:0 Reserved Project: All Format: MBZ

3:1 Reserved Project: DevCTG, HVN/ABD Format: MBZ

 G45: Volume 1a Graphics Core

 269

HWS_PGA — Hardware Status Page Address Register
0 Translation In Progress

Project: DevCTG, HVN/ABD

Format: U1 FormatDesc

This field indicates that the translation for the hardware status page from the graphics
virtual address to the physical address is pending. Software can use this indicator to
prevent updating the status page when there is a pending cycle for translation.

 G45: Volume 1a Graphics Core

 270

The following table defines the layout of the Hardware Status Page:

DWord
Offset

Description

0 Interrupt Status Register Storage: The content of the ISR register is written to this location
whenever an “unmasked” bit of the ISR (as determined by the HWSTAM register) changes state.

3:1 Reserved. Must not be used.

4 Ring Head Pointer Storage: The contents of the Ring Buffer Head Pointer register (register
DWord 1) are written to this location either as result of an MI_REPORT_HEAD instruction or as the
result of an “automatic report” (see RINGBUF registers).

Fh:5h Reserved. Must not be used.

10h-1Bh Context Status DWords [DevCTG] Only.

1Ch-1Eh Reserved. Must not be used.

1Fh Reserved. Must not be used.

20h-3FFh These locations can be used for general purpose via the MI_STORE_DATA_INDEX or
MI_STORE_DATA_IMM instructions.

 G45: Volume 1a Graphics Core

 271

8.9.2 PWRCTXA — Power Context Register Address ([DevCL]
Only)

PWRCTXA — Power Context Register Address
Register Type: MMIO

Address Offset: 2088h

Project: DevCL

Default Value: 0000 0000h

Access: R/W

Size (in bits): 32

The PWRCTXA register has the address of the Global GTT translated memory location which stores the hardware
context if the voltage is removed from the render clock well. The format of the hardware “power” context is
specified in the Memory Data Formats.

Bit Description

31:12 Power Context Address

Project: DevCL

Default Value: 0h

Address: GraphicsAddress[31:12]

This field is used by SW to specify Bits 31:12 of the 4 KB-aligned Graphics Memory
address. The graphics memory address is translated using the Global GTT.

11:5 Reserved Project: DevCL Format: MBZ

4:1 Power Context Size

Project: DevCL

Default Value: 0h

Format: U4

Field specifies the size of the power context allocated by the software. The size is
in terms of 4K pages

This field is ReadOnly

Value Name Description Project

001-111 Reserved Reserved All

000 4KB DevCL

 G45: Volume 1a Graphics Core

 272

PWRCTXA — Power Context Register Address
0 Power Context Enable

Project: DevCL

Default Value: 0h

Format: Enable

This field determines whether the power context is enabled. If enabled, the Power
Context Address specifies the starting address of the hardware context in memory. If the
power context is not enabled, the hardware will disable reducing the render voltage.

Value Name Description Project

0h Disable DISABLED DevCL

1h Enable ENABLED DevCL

 G45: Volume 1a Graphics Core

 273

8.9.3 HWSTAM — Hardware Status Mask Register

Hardware Status Mask Register
Register Type: MMIO

Address Offset: 2098h

Project: All

Default Value: FFFE DFFFh

Access: R/W

Size (in bits): 32

Trusted Type: 1

The HWSTAM register has the same format as the Interrupt Control Registers. The bits in this register are
“mask” bits that prevent the corresponding bits in the Interrupt Status Register from generating a “Hardware
Status Write” (PCI write cycle). Any unmasked interrupt bit (HWSTAM bit set to 0) will allow the Interrupt
Status Register to be written to the ISR location (within the memory page specified by the Hardware Status
Page Address Register) when that Interrupt Status Register bit changes state.

Bit Description

31:13 Reserved Project: All Format: MB1

12 Sync Status

Project: All

Security: None

Default Value: 1h Masked by default

When this mask bit is clear, a change in the corresponding ISR bit will trigger a DWord write
of the ISR contents to the “ISR location” in the Hardware Status Page. When a bit in this
mask is set, a write will not be triggered by a change in the corresponding ISR bit.

Programming Notes Project

This bit is toggled when the Instruction Parser completes a flush with the sync
enable bit active in the INSTPM register. The toggle event will happen after all the
graphics engines are flushed. The HW Status DWord write resulting from this
toggle will cause the CPU’s view of graphics memory to be coherent as well (flush
and invalidate the render cache).

All

 G45: Volume 1a Graphics Core

 274

Hardware Status Mask Register
11 Display Plane A Flip Pending

Project: All

Security: None

Default Value: 1h Masked by default

When this mask bit is clear, a change in the corresponding ISR bit will trigger a DWord
write of the ISR contents to the “ISR location” in the Hardware Status Page. When a bit in
this mask is set, a write will not be triggered by a change in the corresponding ISR bit.

Programming Notes Project

This status bit is set on a Display Plane A pending flip (i.e., resulting from the
execution of an MI_DISPLAY_BUFFER_INFO instruction). This is only used when
the MI_DISPLAY_BUFFER _INFO instruction is being used. See that instruction
for additional information.

All

10 Display Plane B Flip Pending

Project: All

Security: None

Default Value: 1h Masked by default

When this mask bit is clear, a change in the corresponding ISR bit will trigger a DWord
write of the ISR contents to the “ISR location” in the Hardware Status Page. When a bit
in this mask is set, a write will not be triggered by a change in the corresponding ISR bit.

Programming Notes Project

This status bit is set on a Display Plane B pending flip (i.e., resulting from the
execution of an MI_DISPLAY_BUFFER_INFO instruction). This is only used
when the MI_DISPLAY_BUFFER _INFO instruction is being used. See that
instruction for additional information.

All

9 Overlay Plane Flip Pending

Project: All

Security: None

Default Value: 1h Masked by default

When this mask bit is clear, a change in the corresponding ISR bit will trigger a DWord
write of the ISR contents to the “ISR location” in the Hardware Status Page. When a bit in
this mask is set, a write will not be triggered by a change in the corresponding ISR bit.

Programming Notes Project

This status bit is set to reflect a pending overlay plane flip (i.e., resulting
from the execution of an MI_OVERLAY_FLIP instruction). This is only affected
by the use of MI_OVERLAY_FLIP instructions and not through the manual
method.

All

 G45: Volume 1a Graphics Core

 275

Hardware Status Mask Register
8 Display Plane C Flip Pending

Project: All

Security: None

Default Value: 1h Masked by default

When this mask bit is clear, a change in the corresponding ISR bit will trigger a DWord
write of the ISR contents to the “ISR location” in the Hardware Status Page. When a bit in
this mask is set, a write will not be triggered by a change in the corresponding ISR bit.

Programming Notes Project

Flip Pending status for Display Plane C. See Display Plane A Flip
Pending

All

8 Display Sprite A Flip Pending

Project: DevCTG only

Security: None

Default Value: 1h Masked by default

When this mask bit is clear, a change in the corresponding ISR bit will trigger a DWord
write of the ISR contents to the “ISR location” in the Hardware Status Page. When a bit in
this mask is set, a write will not be triggered by a change in the corresponding ISR bit.

Programming Notes Project

Flip Pending status for Display Sprite A. See Display Plane A Flip Pending. DevCTG
+

7:0 Reserved Project: All Format: MB1

 G45: Volume 1a Graphics Core

 276

8.9.4 IER — Interrupt Enable Register

IER — Interrupt Enable Register
Register Type: MMIO

Address Offset: 20A0h

Project: All

Default Value: 0000 0000h

Access: R/W

Size (in bits): 32

The IER register contains an interrupt enable bit for each interrupt bit in the IIR register. A disabled interrupt
will still appear in the Interrupt Identity Register to allow polling of interrupt sources.

Bit Description

31:0 Interrupt Enable Bits

Project: All

Default Value: 0h

Format: Array of Enables Refer to the Interrupt Control Register section
for bit definitions

The bits in this register enable a CPU interrupt to be generated whenever the
corresponding bit in the Interrupt Identity Register becomes set.

Value Name Description Project

0h Disable DISABLED All

1h Enable ENABLED All

 G45: Volume 1a Graphics Core

 277

8.9.5 IIR — Interrupt Identity Register

IIR — Interrupt Identity Register
Register Type: MMIO

Address Offset: 20A4h

Project: All

Default Value: 0000 0000h

Access: R/WC

Size (in bits): 32

The IIR register contains the interrupt bits that are “unmasked” by the IMR and thus can generate CPU bits (if
enabled via the IER). When a CPU interrupt is generated, this should be the first register to be interrogated to
determine the source of the interrupt. Writing a ‘1’ into the appropriate bit position within this register
clears interrupts.

Programming Note: Prior to clearing a Display Pipe-sourced interrupt (e.g., Display Pipe A VBLANK) in the IIR,
the corresponding interrupt (source) status in the PIPEASTAT register (e.g., Pipe A VBLANK Interrupt Status bit
of PIPEASTAT) must first be cleared. Note that clearing these status bits requires writing a ‘1’ to the
appropriate bit position.

Bit Description

31:0 Interrupt Identity Bits

Project: All

Default Value: 0h

Format: Array of
unmasked

Persistent interrupt bits

This field holds the persistent values of the interrupt bits from the ISR which are
“unmasked” by the IMR. If enabled by the IER, bits set in this register will generate a CPU
interrupt. Bits set in this register will remain set (persist) until the interrupt condition is
“cleared” via software by writing a ‘1’ to the appropriate bit(s).

Value Name Description Project

1h Interrupt
Condition
Detected

Interrupt Condition Detected (may or may not
have actually generated a CPU interrupt)

All

Programming Notes

Bit 12 of the Interrupt Identity register is used for the sync status flush. The hardware
toggles the bit at the completion of the flush. It is not expected that this bit will be used to
generate interrupt. In case an interrupt is desired, software needs to toggle the bit back to
0 (by programming another sync flush) before clearing the IIR.

 G45: Volume 1a Graphics Core

 278

8.9.6 IMR—Interrupt Mask Register

IMR—Interrupt Mask Register
Register Type: MMIO

Address Offset: 20A8h

Project: All

Default Value: FFFE DFFFh

Access: R/W

Size (in bits): 32

The IMR register is used by software to control which Interrupt Status Register bits are “masked” or
“unmasked”. “Unmasked” bits will be reported in the IIR, possibly triggering a CPU interrupt, and will persist in
the IIR until cleared by software. “Masked” bits will not be reported in the IIR and therefore cannot generate
CPU interrupts.

Bit Description

The live
bspec is
posted

on
MOSS3

1:0

Interrupt Mask Bits

Project: All

Default Value: FFFE DFFFh

Format: Array of interrupt
mask bits

Refer to Table 8-1 in Interrupt Control
Register section for bit definitions

This field contains a bit mask which selects which interrupt bits (from the ISR) are
reported in the IIR.

Value Name Description Project

0h Not Masked Will be reported in the IIR All

1h Masked Will not be reported in the IIR All

 G45: Volume 1a Graphics Core

 279

8.9.7 ISR — Interrupt Status Register

ISR — Interrupt Status Register
Register Type: MMIO

Address Offset: 20ACh

Project: All

Default Value: 0000 0000h

Access: RO

Size (in bits): 32

The ISR register contains the non-persistent value of all interrupt status bits. The IMR register selects which of
these interrupt conditions are reported in the persistent IIR (i.e., set bits must be cleared by software). Bits in
the IER are used to selectively enable IIR bits to cause CPU interrupts.

Programming Note: The User Interrupt bit in this register is a short pulse therefore software should not
expect to use this register to sample these conditions.

Bit Description

31:0 Interrupt Status Bits

Project: All

Default Value: 0h

Format: Array of interrupt
status bits

Refer to Table 8-1 in Interrupt Control Register
section for bit definitions

This field contains the non-persistent values of all interrupt status bits.

Value Name Description Project

1h Interrupt
Condition Exists

Interrupt Condition currently exists All

 G45: Volume 1a Graphics Core

 280

8.10 Hardware-Detected Error Bit Definitions (for
EIR, EMR, ESR)

This section defines the Hardware-Detected Error bit definitions and ordering that is common to
the EIR, EMR and ESR registers. The EMR selects which error conditions (bits) in the ESR are
reported in the EIR. Any bit set in the EIR will cause the Master Error bit in the ISR to be set. EIR
bits will remain set until the appropriate bit(s) in the EIR is cleared by writing the appropriate EIR
bits with ‘1’.

The following table describes the Hardware-Detected Error bits:

Table 8-2. Hardware-Detected Error Bits

Bit Description

15:10 [DevCTG] BCS Page Table Error: This bit is set when a Graphics Memory Mapping Error is detected
on the Video Decode Command Parser. The cause of the error is indicated (to some extent) in the
PGTBL_ER register.

Note: This error indication can not be cleared except by reset (i.e., it is a fatal error).

1 = Page table error

[DevBW], [DevCL]: Reserved.

9 [DevCTG] BCS Instruction Error: This bit is set when the Media Decode Command Parser detects
an error while parsing a command.

Instruction errors include:

1) Client ID value (Bits 31:29 of the Header) is not supported.

2) Undefined Command Opcodes:

The (debug) INSTPS register may provide more information as to the cause of the error. The (debug)
IPEHR register contains the header (DWord 0) of the faulting instruction. The (debug) BCS_IPEIR,
and BCS_DMA_FADD registers provide an indication of where the faulting instruction is located and
which instruction stream mechanism caused the instruction to be executed.

1: Instruction Error detected

[DevBW], [DevCL]: Reserved.

8 Reserved: MBZ

7:6 AVC Error Detected: When this bit is set, it indicates the AVC Video Decode Fixed Function has
detected an error. Further information on the source of this error comes from the “AVC Error Status
Register” which determines which error condition caused the AVC error status bit to be set and the
interrupt to occur.

[DevBW] and [DevCL]: This bit is reserved.

5 Page Table Error: This bit is set when a Graphics Memory Mapping Error is detected. The cause of
the error is indicated (to some extent) in the PGTBL_ER register.

Note: This error indications can not be cleared except by reset (i.e., it is a fatal error).

1 = Page table error

 G45: Volume 1a Graphics Core

 281

Bit Description

4 Memory Privilege Violation Error [DevCTG] Only. This bit is set if a command in a non-secure
batch buffer attempts an operation to the GGTT (this can only happen in commands that contain a
PPGTT vs. GGTT selector). The command will be executed as if the selector bit indicated PPGTT and
parsing will continue.

[DevBW], [DevCL]: Reserved.

3 Command Privilege Violation Error [DevCTG] Only. This bit is set if a command classified as
privileged is parsed in a non-secure batch buffer. The command will be converted to a NOOP and
parsing will continue.

[DevBW], [DevCL]: Reserved.

2 [DevCTG] BCS Page Table Error: This bit is set when a Graphics Memory Mapping Error is detected
on the Video Decode Command Parser. The cause of the error is indicated (to some extent) in the
PGTBL_ER register.

Note: This error indication can not be cleared except by reset (i.e., it is a fatal error).

1 = Page table error

[DevBW], [DevCL]: Reserved.

1 Main Memory Refresh Timer Error: This bit is set when the device detects a timeout related to
refreshing Main Memory.

[DevBW]: Reserved.

0 Instruction Error: This bit is set when the Renderer Instruction Parser detects an error while parsing
an instruction.

Instruction errors include:

1) Client ID value (Bits 31:29 of the Header) is not supported (only MI, 2D and 3D are supported).

2) Defeatured MI Instruction Opcodes:

The (debug) INSTPS register may provide more information as to the cause of the error. The (debug)
IPEHR register contains the header (DWord 0) of the faulting instruction. The (debug) IPEIR,
BBP_PTR, ABB_PTR, ABB_END and DMA_FADD registers provide an indication of where the faulting
instruction is located and which instruction stream mechanism caused the instruction to be executed.

1: Instruction Error detected

Programming Note:

The bit for the error mask of this register is reserved. The mask should be set to a value of 1.

 G45: Volume 1a Graphics Core

 282

8.10.1 EIR — Error Identity Register

EIR — Error Identity Register
Register Type: MMIO

Address Offset: 20B0h

Project: All

Default Value: 0000 0000h

Access: R/WC

Size (in bits): 32

The EIR register contains the persistent values of Hardware-Detected Error Condition bits. Any bit set in this
register will cause the Master Error bit in the ISR to be set. The EIR register is also used by software to clear
detected errors (by writing a ‘1’ to the appropriate bit(s)).

Bit Description

31:16 Reserved Project: All Format: MBZ

15:0 Error Identity Bits

Project: All

Default Value: 0h

Format: Array of Error
condition bits

See Table 8-2 Hardware-Detected Error Bits

This register contains the persistent values of ESR error status bits that are unmasked via
the EMR register. The logical OR of all (defined) bits in this register is reported in the Master
Error bit of the Interrupt Status Register. In order to clear an error condition, software must
first clear the error by writing a ‘1’ to the appropriate bit(s) in this field. If required, software
should then proceed to clear the Master Error bit of the IIR.

Value Name Description Project

1h Error occurred Error occurred All

Programming Notes Project

Writing a ‘1’ to a set bit will cause that error condition to be cleared. However,
the Page Table Error bit (Bit 4) cannot be cleared except by reset (i.e., it is a
fatal error).

All

 G45: Volume 1a Graphics Core

 283

8.10.2 EMR—Error Mask Register

EMR—Error Mask Register
Register Type: MMIO

Address Offset: 20B4h

Project: All

Default Value: FFFF FFDFh

Access: R/W

Size (in bits): 32

The EMR register is used by software to control which Error Status Register bits are “masked” or “unmasked”.
“Unmasked” bits will be reported in the EIR, thus setting the Master Error ISR bit and possibly triggering a CPU
interrupt, and will persist in the EIR until cleared by software. “Masked” bits will not be reported in the EIR and
therefore cannot generate Master Error conditions or CPU interrupts.

Bit Description

31:16 Reserved Project: All Format: MBZ

15:0 Error Mask Bits

Project: All

Default Value: FFFF FFDFh

Format: Array of error
condition mask
bits

See Table 8-2. Hardware-Detected Error Bits

This register contains a bit mask that selects which error condition bits (from the ESR) are
reported in the EIR.

Value Name Description Project

0h Not Masked Will be reported in the EIR All

1h Masked Will not be reported in the EIR All

 G45: Volume 1a Graphics Core

 284

8.10.3 ESR—Error Status Register

ESR—Error Status Register
Register Type: MMIO

Address Offset: 20B8h

Project: All

Default Value: 0000 0000h

Access: RO

Size (in bits): 32

The ESR register contains the current values of all Hardware-Detected Error condition bits (these are all by
definition “persistent”). The EMR register selects which of these error conditions are reported in the persistent
EIR (i.e., set bits must be cleared by software) and thereby causing a Master Error interrupt condition to be
reported in the ISR.

Bit Description

31:16 Reserved Project: All Format: MBZ

15:0 Error Status Bits

Project: All

Default Value: 0h

Format: Array of error
condition bits

See Table 8-2. Hardware-Detected Error Bits

This register contains the non-persistent values of all hardware-detected error condition
bits.

Value Name Description Project

1h Error Condition
Detected

Error Condition detected All

 G45: Volume 1a Graphics Core

 285

8.11 Probe List Registers ([DevCTG] Only)

Surface probing is a procedure performed at the beginning of a rendering sequence (command
buffer) to verify that all required surfaces in a process’ virtual address space are actually present
in physical memory prior to beginning the sequence. A different process can then be switched to
and run while the required surfaces are being brought into memory (by SW). The registers here
work in concert with the probe commands (see Memory Interface Commands for Rendering) to
provide this interface. “Slots” are the designated places in a processes’ context image where
probes (surface base addresses) are stored. The stored probes are used by SW to determine
which surfaces a context requires, and are also used by HW to re-validate that surfaces are
resident upon a context restore.

See MI_PROBE in Memory Interface Commands for Rendering for more details.

8.11.1 PRBL_SF – Probe List Slot Fault Register

PRBL_SF – Probe List Slot Fault Register
Register Type: MMIO

Address Offset: 2680h

Project: DevCTG

Default Value: 0000 0000h

Access: RO

Size (in bits): 64
This register contains the fault bits for the probe slots, one bit for each cacheline of the 1024 probe slot memory
area. It cannot be directly written by SW. The image of this register in the per-process HW status page can be read
after a context switch (due to surface fault) to determine which cachelines of the probe list contain faulting probes.
This register is saved with context. It is not restored but recomputed while re-validating the probe list on a context
restore.

Bit Description

63:0 Slot Fault Line 63:0 Project: DevCTG Format: Array:Enable

If set, indicates that the corresponding probe list cacheline (in memory) contains a probe that has
faulted.

 G45: Volume 1a Graphics Core

 286

8.12 Register Definitions for Context Save

8.12.1 INSTPM—Instruction Parser Mode Register

INSTPM—Instruction Parser Mode Register
Register Type: MMIO

Address Offset: 20C0h

Project: All

Default Value: 00000000h

Access: R/W

Size (in bits): 32

Trusted Type: 1

The INSTPM register is used to control the operation of the Instruction Parser. Certain classes of instructions
can be disabled (ignored) – often useful for detecting performance bottlenecks. Also, “Synchronizing Flush”
operations can be initiated – useful for ensuring the completion (vs. only parsing) of rendering instructions.

Programming Notes:

• If an instruction type is disabled, the parser will read those instructions but not process them.

• Error checking will be performed even if the instruction is ignored.

• All Reserved bits are implemented.

• This Register is saved and restored as part of Context.

Bit Description

31:16 Mask Bits

Format: Mask[15:0]

Masks: These bits serve as write enables for bits 15:0. If this register is written with any of
these bits clear the corresponding bit in the field 15:0 will not be modified. Reading these bits
always returns 0s.

15:11 Reserved Project: All Format: MBZ

10 Forward Progress Disable

Project: DevCTG+

Security: None

Default Value: 0h DefaultVaueDesc

Mask: MMIO(0x20C0)#26

When this bit is set, the hardware will allow a pre-empt interrupt to happen even when there is
no forward progress on the current context. Only valid when per-process virtual address space is
enable

9:8 Reserved Project: All Format: MBZ

 G45: Volume 1a Graphics Core

 287

INSTPM—Instruction Parser Mode Register
8 Memory Sync

Enable
Project: DevGT

+
Format: U1

If set, this bit allows the command stream engine to write out the data from the local caches
to memory. This bit is valid only with the Sync flush enable

7 CONSTANT_BUFFER Surface
Address Offset Enable

Project: All Format
:

U1

When this bit is set, the CONSTANT_BUFFER Buffer Starting Address is used as a
SurfaceStateOffset. I.e., it serves as an offset from the Surface State Base Address.
Accesses will be subject to Surface State bounds checking.

When this bit is not set, the CONSTANT_BUFFER Buffer Starting Address is based on bit 6
of the address. No bounds checking will be performed during access.

Format = Enable

6 CONSTANT_BUFFER Address
Offset Disable

Project: All Format
:

U1

When this bit is clear, the CONSTANT_BUFFER Buffer Starting Address is used as a
GeneralStateOffset. I.e., it serves as an offset from the General State Base Address.
Accesses will be subject to General State bounds checking.

When this bit is set, the CONSTANT_BUFFER Buffer Starting Address is used as a true
GraphicsAddress (not an offset). No bounds checking will be performed during access.

Format = Disable

5 Sync Flush Enable Project: All Format
:

U1

This field is used to request a Sync Flush operation. The device will automatically clear this
bit before completing the operation. See Sync Flush (Programming Environment).

Programming Note:

• The command parser must be stopped prior to issuing this command by setting the
Stop Rings bit in register MI_MODE. Only after observing Rings Idle set in
MI_MODE can a Sync Flush be issued by setting this bit. Once this bit becomes clear
again, indicating flush complete, the command parser is re-enabled by clearing Stop
Rings.

• Errata: Sync Flush cannot be used while a media scoreboard kernel is running.

Format = Enable (cleared by HW)

4 Global Debug Enable Project: All Format
:

U1

This field is used to enable the debug capability. Setting this bit allows the hardware to
start incrementing the registers corresponding to the debug feature.

Format = Enable

3 Blt Instruction Disable Project: All Format
:

U1

This bit instructs the Renderer instruction parser to parse and error-check BLT instructions,
but not execute them.

Format = Disable

 G45: Volume 1a Graphics Core

 288

INSTPM—Instruction Parser Mode Register
2 3D Rendering Instruction Disable Project: All Format: U1

This bit instructs the Renderer instruction parser to parse and error-check 3D Rendering
instructions, but not execute them. This bit must always be set by software if 3D State
Instruction Disable is set. Setting this bit without setting 3D State Instruction
Disable is allowed.

Format = Disable

1 3D State Instruction Disable Project: All Format
:

U1

This bit instructs the Renderer instruction parser to parse and error-check 3D State
instructions, but not execute them. This bit should not be set unless 3D Rendering
Instruction Disable (bit 2) is also set.

Format = Disable

0 Texture Palette Load
Instruction Disable

Project: All Format
:

U1

This bit instructs the Renderer instruction parser to parse and error-check Texture Palette
Load instructions, but not execute them.

Format = Disable

8.12.2 Cache_Mode_0— Cache Mode Register 0

Cache_Mode_0— Cache Mode Register 0
Register Type: MMIO

Address Offset: 2120h

Project: All

Default Value: 0000 6820h

Access: R/W

Size (in bits): 32

This register is used to control the operation of the Render and Sampler L2 Caches. All reserved bits are
implemented as read/write.

This Register is saved and restored as part of Context.

Bit Description

31:16 Masks

Format: Mask[15:0]

A “1” in a bit in this field allows the modification of the corresponding bit in Bits 15:0.

 G45: Volume 1a Graphics Core

 289

Cache_Mode_0— Cache Mode Register 0
15 Sampler L2 Disable

Project: All

Default Value: 0h

Format: Disable

Value Name Description Project

0h Sampler L2 Cache Enabled. All

1h Sampler L2 Cache Disabled all accesses are
treated as misses.

All

Errata Description Project

BWT012 Setting this bit is UNDEFINED. DevBW-A,B

14:13 Sampler L2 Page Gathering Fifo Modes

Project: All

Default Value: 3h

Format: U3

Value Name Description Project

00 No Page Gathering, No Interleaving. All

01 On Page Gathering based on Page Size
described in Low Priority Grace Period Page
Size. No Interleaving.

All

10 Interleaved based on Tile Type and address
bits A6, A9 and A10.

All

11 Interleaved on page gathering as combination
of modes 1 and 2.

All

 G45: Volume 1a Graphics Core

 290

Cache_Mode_0— Cache Mode Register 0
12:10 Page Gather Limit

Project: All

Default Value: 2h

Format: U3

Used when bits 14:13 are set to 1 or 3. Determines the maximum number of on page
requests gathered.

Value Name Description Project

000 4 Requests. All

001 6 Requests. All

010 8 Requests. All

011 10 Requests. All

100 12 Requests. All

101 14 Requests. All

110 16 Requests. All

111 As much as the FIFO allows. All

9 Sampler L2 TLB Prefetch Enable

Project: All

Default Value: 0h

Format: Enable

Value Name Description Project

0h TLB Prefetch Disabled All

1h TLB Prefetch Enabled All

8 Reserved Project: All Format: MBZ

 G45: Volume 1a Graphics Core

 291

Cache_Mode_0— Cache Mode Register 0
7:6 Sampler L2 Request Arbitration

Project: All

Default Value: 0h

Format: U2

Value Name Description Project

00 Round Robin All

01 Fetch are Highest Priority All

10 Constants are Highest Priority All

11 Reserved All

5 MT Constant Read
Bug Fix Disable
Chicken Bit

Project: DevBW, DevCL Format: Disable

If this bit is set, the MT Constant Read bug fix is disabled. This means constant reads must be
routed to the render cache in order to function correctly. Clearing this bit enables the bug fix
and allows constant reads to be done via the texture cache. Note that this bit is set by default.

4:3 Reserved Project: All Format: MBZ

2 Reserved Project: All Format: MBZ

1 Disable clock gating
in the pixel backend

Project: DevCTG Format: Disable

MCL related clock gating is disabled in the pixel backend.

1 Reserved Project: All Format: MBZ

 G45: Volume 1a Graphics Core

 292

Cache_Mode_0— Cache Mode Register 0
0 Render Cache Operational Flush Enable

Project: All

Default Value: 0h

Format: Enable

Value Name Description Project

0h Disable Operational Flush Disabled (recommended for
performance when not rendering to the front
buffer)

All

1h Enable Operational Flush Enabled (required when
rendering to the front buffer)

All

Errata Description Project

BWT006 This bit must be clear; Operational Flush cannot be
enabled.

DevBW-A,B

 G45: Volume 1a Graphics Core

 293

8.12.3 Cache_Mode_1— Cache Mode Register 1

Cache_Mode_1— Cache Mode Register 1
Register Type: MMIO

Address Offset: 2124h

Project: All

Default Value: 0000 0180h

Access: Read/32 bit Write

Size (in bits): 32

This Register is saved and restored as part of Context.

Bit Description

31:16 Mask Bits for 15:0

Format: Mask[15:0]

Must be set to modify corresponding data bit. Reads to this field returns zero.

15 Reserved Project: All Format: MBZ

14 [DevCTG-B3] VFM

1: 3d MarkerFlow fix disabled.

0: 3d MarkerFlow fix enabled

14 Enable Pixel Backend Low Precision Float Denorm Handling

Project: HVN/ABD-B0

Default Value: 0h

Format: U1

Value Name Description Project

0h Disables preserving denormals through
Pixel Backend Blend HW for 16b, 11b and
10b floats.

HVN/ABD-B0

1 Enables preserving denormals through
Pixel Backend Blend HW for 16b, 11b and
10b floats.

HVN/ABD-B0

 G45: Volume 1a Graphics Core

 294

Cache_Mode_1— Cache Mode Register 1
12 Enable the indirect load of Data through the Vertex Fetch

Project: All

Default Value: 0h

Format: U1

Value Name Description Project

0h Media Object Data transferred through
the command streamer

All

1 Media Object Data transferred through
the Vertex Fetch

All

11 Instruction and State Cache Invalidate

Project: All

Default Value: 0h

Format: U1

When this field is set, all instruction and state caches (level 1 and level 2) are
invalidated.

It is intended for debug use. For example, it may be used in conjunction with EU
breakpoint control to provide single stepping kernel debugging capability and dynamic
breakpoint capability.

Before setting this field, host (debug) software must make sure that the graphics render
engine has reached idle state – there is no activity to/from the instruction and state
caches. For example, during kernel debug, upon a breakpoint exception, host debug
software may delay for a sufficiently long period and then check the EU done signals to
make sure that all EUs other than the one(s) causing the breakpoint exception are set.
It can then set this field to invalidate the instruction and state caches. This field
generates a level control signal. Host software must clear this field, before letting
execution to continue (e.g. by clearing the host notification MMIO registers to let the
kernel under debug to proceed).

Value Name Description Project

0h Normal Cache operation. All

1 Invalidate will be sent to Level 1 and Level 2
caches. (DEBUG ONLY)

All

 G45: Volume 1a Graphics Core

 295

Cache_Mode_1— Cache Mode Register 1
10 Instruction Level 1 Cache and In-Flight Queue Disable

Project: All

Default Value: 0h

Format: Disable

Value Name Description Project

0h Cache is enabled. All

1h Cache is disabled and all accesses to this cache
are treated as misses and sent to L2 cache.
Setting this bit overrides the setting of bit 0.
(DEBUG ONLY)

All

9 Instruction and State Level 2 Cache Fill Buffers Disable

Project: All

Default Value: 0h

Format: Disable

Value Name Description Project

0h Fill Buffers are enabled. All

1h Fill Buffers are disabled. (DEBUG ONLY) All

 G45: Volume 1a Graphics Core

 296

Cache_Mode_1— Cache Mode Register 1
8:7 Sampler Cache Set XOR selection

Project: All

Default Value: 3h

Format: U2

These bits have an impact only when the Sampler cache is configured in 16 way set associative
mode. If the cache is being used for immediate data or for blitter data these bits have no
effect.

Value Name Description Project

00 Default value Default behavior to calculate set address, no XOR. All

01 Scheme 1 New_set_mask[3:0] = Tiled_address[16:13]

New_set[3:0] <= New_set_mask[3:0] ^
Old_set[3:0]

Rationale: These bits can distinguish among 16
different equivalent classes of virtual pages. These
bits also represent the lsb for tile rows ranging
from a pitch of 1 tile to 16 tiles.

All

10 Scheme 2 New_set_mask[3] = Tiled_address[17] ^
Tiled_address[16]

New_set_mask[2] = Tiled_address[16] ^
Tiled_address[15]

New_set_mask[1] = Tiled_address[15] ^
Tiled_address[14

New_set_mask[0] = Tiled_address[14] ^
Tiled_address[13]

New_set[3:0] <= New_set_mask[3:0] ^
Old_set[3:0]

Rationale: More bits on each XOR can give better
statistical uniformity on sets and since two lsbs are
taken for each tile row size, it reduces the chance
of aliasing on sets.

All

11 Scheme 3 New_set_mask[3] = Tiled_address[22] ^
Tiled_address[21] ^ Tiled_address[20] ^
Tiled_address[19]

New_set_mask[2] = Tiled_address[18] ^
Tiled_address[17] ^ Tiled_address[16]

New_set_mask[1] = Tiled_address[15] ^
Tiled_address[14]
New_set_mask[0] = Tiled_address[13]

New_set[3:0] <= New_set_mask[3:0] ^
Old_set[3:0]

Rationale: More bits on each XOR can give better
statistical uniformity on sets and since each XOR
has different bits, it reduces the chance of aliasing
on sets even more.

All

 G45: Volume 1a Graphics Core

 297

6:5 Data Cache Set XOR Selection
Project: DevCTG+

Default Value: 0h

Format: U2

These bits have an impact only when the data cache is configured in 16 way set associative
mode. If the cache is being used for immediate data or for blitter data these bits have no
effect.

Value Name Description Project

00 Default
value

Default behavior to calculate set address, no XOR. DevCTG
+

01 Scheme
1

New_set_mask[1:0] = Tiled_address[14:13]

New_set[1:0] <= New_set_mask[1:0] ^ Old_set[1:0]

Rationale: These bits can distinguish among 16
different equivalent classes of virtual
pages. These bits also represent the lsb
for tile rows ranging from a pitch of 1 tile
to 16 tiles.

DevCTG
+

10 Scheme
2

New_set_mask[1] = Tiled_address[15] ^
Tiled_address[14]

New_set_mask[0] = Tiled_address[14] ^
Tiled_address[13]

New_set[1:0] <= New_set_mask[1:0] ^ Old_set[1:0]

Rationale: More bits on each XOR can give better
statistical uniformity on sets and since
two lsbs are taken for each tile row size,
it reduces the chance of aliasing on sets.

DevCTG
+

11 Scheme
3

New_set_mask[1] = Tiled_address[15] ^
Tiled_address[14]

New_set_mask[0] = Tiled_address[13]

New_set[1:0] <= New_set_mask[1:0] ^ Old_set[1:0]

Rationale: More bits on each XOR can give better
statistical uniformity on sets and since
each XOR has different bits, it reduces
the chance of aliasing on sets even
more.

DevCTG
+

4 Reserved Project: All Format: MBZ

 G45: Volume 1a Graphics Core

 298

3:2 Burst-length and water-mark Control

This bits apply to RCZ and RCC.

Project: HVN/ABD-B0

Default Value: 0h

Format: U2

Value Name Description Project

0h Water-mark trips at FIFO is half full and
burst-length is such that FIFO
completely drains OR remains half full
after initiating writes. Hence, this setting
guarantees a burst equal to half the
FIFO size.

HVN/ABD-B0

1h Water-mark trips at FIFO is full and
burst-length is such that FIFO
completely drains OR remains full after
initiating writes. Hence, this setting
guarantees a burst equal to the FIFO
size.

HVN/ABD-B0

2h Not used HVN/ABD-B0

3h No water-mark. Hence as long as write-
back FIFO is valid, present a write-
request.

HVN/ABD-B0

3 A-step bug fix bit for rcc allocation

Project: DevBW-A, DevBW-B

Default Value: 0h

Format: U1

This bit should always be set for proper operation on BW-A,B

Value Name Description Project

0h This bug fix is disabled. DevBW-A,
DevBW-B

1h Bug fix is active and will solve random pixel
corruption issues due to this bug. It slows
down allocation to one allocation every 4
clock. In the A and B-steps, 3d performance
will not be bottlenecked by this bug fix. Media
performance impact will be minor.

DevBW-A,
DevBW-B

2 Reserved Project: All Format: MBZ

 G45: Volume 1a Graphics Core

 299

1 Instruction and State Level 2 Cache Disable
Project: All

Default Value: 0h

Format: Disable

Value Name Description Project

0h Cache is enabled. All

1h Cache is disabled and all accesses to this cache
are treated as misses. (DEBUG ONLY)

All

0 Instruction Level 1 Cache Disable

Project: All

Default Value: 0h

Format: Disable

Value Name Description Project

0h Cache is enabled. All

1h Cache is disabled and all accesses to this cache
are treated as misses, but only requests with
unique addresses are sent to the L2. (DEBUG
ONLY)

All

 G45: Volume 1a Graphics Core

 300

8.12.4 FBC RT BASE ADDRESS REGISTER

FBC_RT_BASE_ADDR_REGISTER
Register Type: MMIO

Address Offset: 2128h

Project: HVN/ABD

Default Value: --

Access: Read/32 bit Write

Size (in bits): 32
This Register is saved and restored as part of Context.

Bit Description

31:12 4KB aligned Base Address as mapped in the PPGTT (in the AS mode) OR in the GGTT (in the
single-context scheduling mode) For the render target. This register must be programmed
in either multi-context scheduling or single-context scheduling mode. This base address
must be the one that is either front buffer or the back-buffer (a flip target). It can be only
programmed once per context. It must be programmed before any draw call binding that
render target base address.

Format: Base Address[31:12]

Must be set to modify corresponding data bit. Reads to this field returns zero.
11:1 Reserved Project: All Format: MBZ

 G45: Volume 1a Graphics Core

 301

8.12.5 BB_ADDR—Batch Buffer Head Pointer Register

BB_ADDR—Batch Buffer Head Pointer Register
Register Type: MMIO

Address Offset: 2140h

Project: All

Default Value: 0000 0000 0000 0000h

Access: RO

Size (in bits): 64

This register contains the current DWord Graphics Memory Address of the last-initiated batch buffer.

Bit Description

63:32 Reserved Project: All Format: MBZ

31:2 Batch Buffer Head
Pointer

Project: All Format: GraphicsAddress[31:2]

This field specifies the DWord-aligned Graphics Memory Address where the last initiated Batch
Buffer is currently fetching commands. If no batch buffer is currently active, the Valid bit will
be 0 and this field will be meaningless.

1 Reserved Project: All Format: MBZ

0 Valid

Project: All

Default Value: 0h

Format: U1

Value Name Description Project

0h Invalid Batch buffer Invalid All

1h Valid Batch buffer Valid All

 G45: Volume 1a Graphics Core

 302

8.12.6 BB_STATE – Batch Buffer State Register

BB_STATE – Batch Buffer State Register
Register Type: MMIO

Address Offset: 2110h

Project: All

Default Value: 0000 0000h

Access: R/W

Size (in bits): 32

This register contains the attributes of the last batch buffer initiated from the Ring Buffer. These include the
memory space select and security indicator.

This register should not be written by software. These fields should only get written by a context restore.
Software should always set these fields via the MI_BATCH_BUFFER_START command when initiating a batch
buffer.

This register is saved and restored with context.

Bit Description

31:6 Reserved Project: All Format: MBZ

5 Buffer Security Indicator

Project: All

Default Value: 0h

Format: MI_BufferSecurityType

If set, this batch buffer is non-secure and cannot execute privileged commands nor access
privileged (GGTT) memory. It will be accessed via the PPGTT. If clear, this batch buffer is
secure and will be accessed via the GGTT.

Note: This field reflects the effective security level and may not be the same as the Buffer
Security Indicator written using MI_BATCH_BUFFER_START.

Value Name Description Project

0h MIBUFFER_SECURE Located in GGTT memory All

1h MIBUFFER_NONSECURE Located in PPGTT memory All

4:0 Reserved Project: All Format: MBZ

 G45: Volume 1a Graphics Core

 303

8.12.7 CTXT_SR_CTL – Context Save/Restore Control Register

CTXT_SR_CTL – Context Save/Restore Control Register
Register Type: MMIO

Address Offset: 2714h

Project: All

Default Value: 0000 0000h

Access: R/W (Debug Only)

Size (in bits): 32

This register is saved and restored with context.

Bit Description

31:2 Reserved Project: All Format: MBZ

1 Extended Context Enable

Project: All

Default Value: 0h

Format: Enable

If this bit is set, the extended portion of the render context will be saved and restored with the current
context. If clear, extended context will not be a part of this context. Note that since this register is
part of ring context, each context can have its own setting for this bit. Extended context can thus be
selected on a per-context basis. Note that extended context is part of render context, so that if Render
Context Restore Inhibit is set in the context image, extended context will not be restored (the first
time) even if this bit is set.

Value Name Description Project

0h Disable The current context does not include extended
context

All

1h Enable The current context does include extended context. All

0 Render Context Restore Inhibit Project: All Format: U1

This is not a true register bit. This bit should be set in the context image of a ring context that is
being submitted for the first time. Setting this bit will inhibit the restoring of render context
(including extended context if applicable) so that restoring of an uninitialized render context can be
prevented. This bit will always be set on a context save (since the render context cannot be
uninitialized on context save – it will always contain at least default values.)

 G45: Volume 1a Graphics Core

 304

8.13 Logical Context Support

8.13.1 CCID—Current Context ID Register

CCID—Current Context ID Register
Register
Type:

MMIO

Address
Offset:

2180h

Project: All

Default Value: 0000 0000h

Access: R/W

Size (in bits): 32

This register contains the current “logical rendering context address” associated with the ring buffer.

Programming Note: The CCID register must not be written directly (via MMIO) unless the Command Streamer
is completely idle (i.e., the Ring Buffer is empty and the pipeline is idle). Note that, under normal conditions, the
CCID register should only be updated from the command stream using the MI_SET_CONTEXT command.

Bit Description

31:11 Logical Render Context Address (LRCA)

Project: All

Default Value: 0h

Address: GraphicsAddress[31:11]

This field contains the 4 KB-aligned Graphics Memory Address of the current Logical
Rendering Context. Bit 11 MBZ.

It will point to a Logical Pipeline Context (a subset of a Logical Rendering Context) if loaded using
MI_SET_CONTEXT.

If this register was set using MI_SET_CONTEXT with the Memory Space Select set to
Physical Main Memory, this field contains the 2 KB-aligned “Effective Local Memory” physical
Main Memory address of the current Logical Pipeline Context.

10:8 Reserved Project
:

All Forma
t:

MBZ

7:4 Physical Start Address Extension

Project: All

Default Value: 0h

Address: GraphicsAddress[35:32]

This field specifies Bits 35:32 of the starting physical address if Memory Space Select of the
last MI_SET_CONTEXT command was set to Physical Main Memory.

3 Extended State Save Project: All Format: Enable

 G45: Volume 1a Graphics Core

 305

CCID—Current Context ID Register
Enable

If set, the extended state identified in the Logical Context Data section of the Memory Data
Formats chapter, is saved as part of switching away from this logical context.

2 Extended State Restore

Enable
Project: All Format: Enable

If set, the extended state identified in the Logical Context Data section of the Memory Data
Formats chapter, was loaded (or restored) as part of switching to this logical context.

1 Reserved Project: All Format: MBZ

0 Valid

Project: All

Default Value: 0h

Format: U1

Value Name Description Project

0h Invalid The other fields of this register are invalid. A
switch away from the context will not invoke a
context save operation.

All

1h Valid The other fields of this register are valid, and a
switch from the context will invoke the normal
context save/restore operations.

All

 G45: Volume 1a Graphics Core

 306

8.13.2 CXT_SIZE—Context Size with Extended State

CXT_SIZE—Context Size with Extended State
Register Type: MMIO

Address Offset: 21A0h

Project: All

Default Value: 0000 0013h

Access: Read/32 bit Write

Size (in bits): 32

Bit Description

31:5 Reserved Project: All Format: MBZ

4:0 Size

Project: All

Default Value: 13h

Format: U5-1

Size of pipeline logical rendering context including the extended state in 64B quantities minus
one.

8.13.3 CXT_SIZE_NOEXT—Context Size without the Extended
State

CXT_SIZE_NOEXT—Context Size without the Extended State
Register Type: MMIO

Address Offset: 21A4h

Project: All

Default Value: 0000 000Fh

Access: Read/32 bit Write

Size (in bits): 32

Bit Description

31:5 Reserved Project: All Format: MBZ

 G45: Volume 1a Graphics Core

 307

CXT_SIZE_NOEXT—Context Size without the Extended State
4:0 Size

Project: All

Default Value: Fh

Format: U5-1

Size of pipeline logical rendering context excluding the extended state in 64B quantities
minus one.

8.14 Arbitration Control, and Scratch Bits

8.14.1 MI_DISPLAY_POWER_DOWN—Display Power Down
([DevCL+])

MI_DISPLAY_POWER_DOWN—Display Power Down
Register Type: MMIO

Address Offset: 20E0h

Project: DevCL+

Default Value: 0000 0000h

Access: R/W

Size (in bits): 32
The MI_DISPLAY_POWER_DOWN register contains the Display Power Down Enable bit which is used to enable display
power down prior to entering C3SR state.

This Register is NOT saved and restored as part of Context.
Bit Description

31:16 Reserved Project: DevCL Format: MBZ

15 Display Power Down Enable Project: DevCL Format: Enable

The bit enables the chipset to put the DIMMs in self refresh when the display conditions are right (No
VGA or Overlay, only 1 display pipe enabled) and the CPU is in the C3+ state. Note that setting this
bit is not required for DIMMs to enter self-refresh for any device state higher than D0.

14:0 Reserved Project: DevCL Format: MBZ

 G45: Volume 1a Graphics Core

 308

8.14.2 MI_ARB_STATE—Memory Interface Arbitration State
Register

MI_ARB_STATE—Memory Interface Arbitration State Register
Register Type: MMIO

Address Offset: 20E4h

Project: All

Default Value: 0000 0040h

Access: R/W

Size (in bits): 32

The MI_ARB_STATE register contains state information that controls arbitration aspects of the Memory
Interface function.

Bit Description

31:16 Mask Bits

Format: Mask[15:0]

Must be set to modify corresponding bit in Bits 15:0. (All bits implemented)

15 Render/Sampler TLB Request Priority

Project: All

Default Value: 0h

Format: U1

Value Name Description Project

0h TLBs are above the corresponding data requests
in priority. That is Render TLB fetch is above
Render reads and writes, Sampler TLB fetches
are above Sampler Fetches. This is the default
setting and used for normal operation.

All

1h TLBs are at the lowest priority (above FBC) with
Sampler TLB fetches higher than render.

All

14:9 Reserved Project: All Format: MBZ

Read/Write (SW must maintain setting)

 G45: Volume 1a Graphics Core

 309

MI_ARB_STATE—Memory Interface Arbitration State Register
8 Suppress Cacheable indicator from Render Command Stream write requests

Project: All

Default Value: 0h

Format: U1

Value Name Description Project

0h Snooped Cacheable write cycles from Render Command
Stream are snooped on the FSB.

All

1h Non-Snooped Cacheable write cycles from Render Command
Stream are not snooped on the FSB. These
writes are processed as non-snoop.

All

Errata Description Project

BWT010 Setting this bit may cause UNDEFINED behavior (extra
cycles issued to different addresses in addition to the
specified address.)

DevBW-A

 G45: Volume 1a Graphics Core

 310

MI_ARB_STATE—Memory Interface Arbitration State Register
7:5 Time Slice

Project: All

Default Value: 2h

Format: U3

Applicable to Render Cache, Sampler Cache, Pixel Shader, Frame Buffer, Command
stream and Host Requests. Time Slice is fixed at 1 for TLB and snoop requests, and not
applicable to Isochronous Streams.

The (value programmed –1) determines the number of Page Hits before arbitration switch
for a low priority stream interrupted by a higher priority stream as long as the lower
priority stream is active.

If set to ‘000’ the arbiter does apply a page hit grace period.

In 64B Requests

Value Name Description Project

000 1 Request 1 Requests (This setting implies that the grace
period is disabled)

All

001 2 Requests 2 Requests All

010 4 Requests 4 Requests All

011 6 Requests 6 Requests All

100 8 Requests 8 Requests All

101 10 Requests 10 Requests All

110 14 Requests 14 Requests All

111 16 Requests 16 Requests All

4 Low Priority Grace Period Page Size

Project: All

Default Value: 0h

Format: U1

Value Name Description Project

0h Grace period on-page indicator uses 4KB
pages in the command streams and caches.
(Default)

All

1h Grace period on-page indicator uses 8KB
pages in the command streams and caches.

All

3 Reserved Project: All Format: MBZ

Read/Write (SW must maintain setting)

 G45: Volume 1a Graphics Core

 311

MI_ARB_STATE—Memory Interface Arbitration State Register
2 Display A/B Trickle Feed Disable

Project: All

Default Value: 0h

Format: Disable

Value Name Description Project

0h Enable All

1h Disable (Turn off trickle feed Display
request)

All

Programming Notes Project

For mobile devices ([DevCL]), this bit should always be set to disable trickle
feed.

DevCL

[DevBW] must always set to disable trickle feed DevBW

1 Reserved Project: All Format: MBZ

Read/Write (SW must maintain setting)

0 Display A/B Priority Select

Project: All

Default Value: 0h

Format: U1

This bit determines the arbitration priority of accesses among the high priority streams.

Value Name Description Project

0h DA/DB/Others Set this when Display Plane A is the Primary All

1h DB/DA/Others Set this when Display Plane B is the Primary All

 G45: Volume 1a Graphics Core

 312

8.14.3 MI_RDRET_STATE—Memory Interface Read Return State
Register

MI_RDRET_STATE—Memory Interface Read Return State Register
Register Type: MMIO

Address Offset: 20FCh [DevCL] 20E0h [DevBW]

Project: All

Default Value: 0000 0000h

Access: R/W

Size (in bits): 32

The MI_RDRET_STATE register contains state information that controls data return aspects of the Memory
Interface function. This register is used strictly for HVM testing. Any functional usage of this register is
undefined. None of the TLB read returns from memory are impacted by this register.

This Register is NOT saved and restored as part of Context.

Bit Description

31:16 Mask Bits

Format: Mask[15:0]

Must be set to a 1 to allow modification of corresponding bit in Bits 15:0. (All implemented
bits)

15 HVM Enable Bit Project: All Format: Enable

This bit must be set to ‘1’ to enable HVM loopback mode and enable random internal data
returns from CI. This bit must be programmed after the other client specific bits are
programmed to desired values.

14:9 Reserved Project: All Format: MBZ

8 Vertex Fetch Cache select

Project: All

Default Value: 0h

Format: U1

This bit determines the read return for Vertex Fetch Reads

Value Name Description Project

0h Return Data from memory All

1h Return data from a random data generator on-
chip

All

7 Reserved Project: All Format: MBZ

Was Read Only Cache select

 G45: Volume 1a Graphics Core

 313

MI_RDRET_STATE—Memory Interface Read Return State Register
6 Display Sprite B Read Return Select

Project: DevCTG

Default Value: 0h

Format: U1

This bit determines the read return for Display Sprite B Reads

Value Name Description Project

0h Return Data from memory DevCTG

1h Return data from a random data generator on-chip DevCTG

6 Overlay return Select

Project: DevCL

Default Value: 0h

Format: U1

This bit determines the read return for Overlay streamer Reads

Value Name Description Project

0h Return Data from memory DevCL

1h Return data from a random data generator on-
chip

DevCL

6 Reserved Project: DevBW Format: MBZ

5 Color/Z return Select

Project: All

Default Value: 0h

Format: U1

This bit determines the read return for Low Priority Reads

Value Name Description Project

0h Return Data from memory All

1h Return data from a random data generator on-
chip

All

 G45: Volume 1a Graphics Core

 314

MI_RDRET_STATE—Memory Interface Read Return State Register
4 Sampler Read return Select

Project: All

Default Value: 0h

Format: U1

This bit determines the read return for Low Priority Reads

Value Name Description Project

0h Return Data from memory All

1h Return data from a random data generator on-
chip

All

3 Cursor (A and B) Read return Select

Project: All

Default Value: 0h

Format: U1

This bit determines the read return for Display Reads

Value Name Description Project

0h Return Data from memory All

1h Return data from a random data generator on-
chip

All

2 Display Sprite A Read Return Select

Project: DevCTG

Default Value: 0h

Format: U1

This bit determines the read return for Display Sprite A Reads

Value Name Description Project

0h Return Data from memory DevCTG

1h Return data from a random data generator on-chip DevCTG

 G45: Volume 1a Graphics Core

 315

MI_RDRET_STATE—Memory Interface Read Return State Register
2 Display C Read return Select

Project: All

Default Value: 0h

Format: U1

This bit determines the read return for Display C Reads

Value Name Description Project

0h Return Data from memory All

1h Return data from a random data generator on-
chip

All

1 Display B Read return Select

Project: All

Default Value: 0h

Format: U1

This bit determines the read return for Display Reads

Value Name Description Project

0h Return Data from memory All

1h Return data from a random data generator on-
chip

All

0 Display A Read return Select

Project: All

Default Value: 0h

Format: U1

This bit determines the read return for Display Reads

Value Name Description Project

0h Return Data from memory All

1h Return data from a random data generator on-
chip

All

 G45: Volume 1a Graphics Core

 316

8.14.4 MI_MODE — Mode Register for Software Interface

MI_MODE — Mode Register for Software Interface
Register Type: MMIO

Address Offset: 209Ch

Project: All

Default Value: 00000000h

Access: R/W

Size (in bits): 32

The MI_MODE register contains information that controls software interface aspects of the Memory Interface
function.

Bit Description

31:16 Masks

Format: Mask[15:0]

A “1” in a bit in this field allows the modification of the corresponding bit in Bits 15:0

15 Suspend Flush

Project: DevCTG+

Default Value: 0h

Format: U1

Value Name Description Project

0h Delay Flush HW will delay the flush because of sync flush or
VTD regimes until reset

DevCTG

1h No Delay HW will not delay flush DevCTG

0h Delay Flush HW will delay the flush because of sync flush or
VTD regimes until reset, this bit will get set by
MI_SUSPEND_FLUSH as well

HVN/ABD

1h No Delay HW will not delay flush, this bit will get set by
MI_SUSPEND_FLUSH as well

HVN/ABD

 G45: Volume 1a Graphics Core

 317

MI_MODE — Mode Register for Software Interface
14 Async Flip Performance mode

Project: DevCTG+

Default Value: 0h

Format: U1

Value Name Description Project

0h Performance
mode enabled

The stall of the flip event is in the windower DevCTG

1h Performance
mode disabled

The stall of the flip event is in the command stream DevCTG

13 Flush Performance mode

Project: DevCL, DevCTG+

Default Value: 0h

Format: U1

Value Name Description Project

0h run fast restore No NonPipelined SV flush. DevCL,
DevCTG

1h run slow legacy
restore

With NonPipelined SV flush. DevCL,
DevCTG

13 Reserved Project: DevBW Format: MBZ

Read/Write

12 Reserved Project: All Format: MBZ

11 Invalidate UHPTR enable Project: All Format: Enable

If bit set H/W clears the valid bit of UHPTR (2134h, bit 0) when current active head pointer is
equal to UHPTR.

10 Power of 2 Fences Enable Project: All Format: Enable

This field is used to indicate to the hardware that the fences in use currently are for Power of
2 tile pitch. This bit is used by the chipset for performance enhancement.

 G45: Volume 1a Graphics Core

 318

MI_MODE — Mode Register for Software Interface
9 Rings Idle

Project: All

Default Value: 0h

Format: U1

Read Only Status bit

Value Name Description Project

0h Not Idle Parser not Idle or Ring Arbiter not Idle. All

1h Idle Parser Idle and Ring Arbiter Idle. All

Programming Notes Project

Writes to this bit are not allowed. All

8 Stop Rings

Project: All

Default Value: 0h

Format: U1

Value Name Description Project

0h Normal Operation. All

1h Parser is turned off and Ring arbitration is turned
off.

All

Programming Notes Project

Software must set this bit to force the Rings and Command Parser to Idle.
Software must read a “1” in Ring Idle bit after setting this bit to ensure that the
hardware is idle.

All

Software must clear this bit for Rings to resume normal operation. All

 G45: Volume 1a Graphics Core

 319

MI_MODE — Mode Register for Software Interface
7 Vertex Shader Cache Mode

Project: All

Default Value: 0h

Format: U1

Value Name Description Project

0h Non-LRA Non-LRA mode of allocation. Vertex shader cache
is allocated on the basis of the reference count of
individual vertices

All

1h LRA LRA mode of allocation. Used for validation
purposes.

All

6 Vertex Shader Timer Dispatch Enable

Project: All

Default Value: 0h

Format: Enable

Value Name Description Project

0h Disable Disable the timer for dispatch of single vertices
from the vertex shader. Vertex shader will try to
collect 2 vertices before a dispatch

All

1h Enable Enable the timer for dispatch of single vertices.
Dispatch a single vertex shader thread after the
timer expires.

All

Programming Notes Project

To avoid deadlock conditions in hardware this bit needs to be set for normal
operation.

All

5 FBC2 Modification Enable

Project: All

Default Value: 0h

Format: Enable

Value Name Description Project

0h Disable FBC logic does not look at the modifications to
the frame buffer.

All

1h Enable FBC logic looks at the modifications into the
frame buffer.

All

 G45: Volume 1a Graphics Core

 320

MI_MODE — Mode Register for Software Interface
4 Reserved.

3 Physical Batch Buffer 4K size limit disable (test mode)

Project: All

Default Value: 0h

Format: Disable

Value Name Description Project

0h Disable Physical batch buffers more than 4K in size are
not permitted.

All

1h Enable Physical batch buffers more than 4K in size are
permitted.

All

2 Pipe control depth in the command streamer

Project: DevCTG-B

Default Value: 0h

Format: U1

Value Name Description Project

0h 8 Pipe Controls 8 pipe controls are supported in the command
streamer

DevCTG-B

1h 4 Pipe Controls 4 pipe controls are supported in the command
streamer

DevCTG-B

1 Dummy Read
Disable

Project: All Format: Disable

Nominally a command stream flush is completed with a dummy read to memory to push all
pending writes. Setting this bit to a “1” disables the dummy read.

0 Mask IIR disable Project: All Format: Disable

Mask IIR disable. Nominally the Interrupt controller masks interrupts in the IIR register if an
interrupt acknowledge from the 3gio interface is pending. Setting this bit to a “1” allows
interrupts to be visible to the interrupt controller while an interrupt acknowledge is pending.

 G45: Volume 1a Graphics Core

 321

8.14.5 ECOSKPD—ECO Scratch Pad (DEBUG)

ECOSKPD—ECO Scratch Pad (DEBUG)
Register
Type:

MMIO

Address
Offset:

21D0h

Project: All

Default
Value:

00000307h

Access: R/W

Size (in
bits):

32

Trusted
Type:

1

Bit Description

31:16 Mask Bits

Format: Mask[15:0]

Must be set to modify corresponding bit in Bits 15:0. (All implemented bits)

15 Reserved Project
:

All Format
:

MBZ

14 Vertex Shader Dual dispatch disable

Project: DevBW-E

Security: None

Default Value: 0h Enable the dual dispatch

Mask: MMIO(0x21D0)#30

Value Name Description Project

0h Enable HW implements the fix for the enhanced dual
dispatch. Dual dispatch is triggered only
when the top entry in the tracking FIFO is a

DevBW-E

1h Disable Disable the HW fix for the enhanced dual
dispatch. Vertex shader will be dispatched as
a single vertex everytime the tracking FIF
becomes full.

DevBW-E

 G45: Volume 1a Graphics Core

 322

ECOSKPD—ECO Scratch Pad (DEBUG)
13 Clipper Performance Fix Disable

Project: DevBW-E

Security: None

Default Value: 0h DefaultVaueDesc

Mask: MMIO(0x21D0)#29

Value Name Description Project

0h Disable Desc All

1h Enable Desc All

12 Clipper software workaround for DX10 Enable

Project: DevBW-E

Security: None

Default Value: 0h DefaultVaueDesc

Mask: MMIO(0x21D0)#28

Value Name Description Project

0h Disable Desc DevBW-E

1h Enable Desc DevBW-E

Programming Notes Project

Notes

This bit is expected to be used with bit 9 in this register:

bit9 bit12

0 0 PerformanceEC0. No software workaround in vs0.

1 0 Not valid.

0 1 Software workaround for Dx10

1 1 No ECO. Will need Software workaround for Dx9.

DevBW-E

11 PL Unit bug fix Project
:

All Format
:

U1

Unspecified ECO disable in the PL unit

10 RCC Unit Bug fix Project
:

All Format
:

U1

Unspecified ECO disable in the RCC unit

 G45: Volume 1a Graphics Core

 323

ECOSKPD—ECO Scratch Pad (DEBUG)
9 Clipper fix for definition of Bad vertex

Project: DevCL, DevBW-E

Security: None

Default Value: 0h DefaultVaueDesc

Mask: MMIO(0x21D0)#25

Value Name Description Project

0h Disable BAD vertex is dealt as a trivial reject DevCL,
DevBW-E

1h Enable BAD vertex is dealt as a must clip instead
of trivial reject

DevCL,
DevBW-E

8 Clock gating for the RCC (Disable one clock gate cell)

Project: DevCL

Default Value: 0h DefaultVaueDesc

Format: U1 FormatDesc

0 = Disable Clock gating

1 = Enable clock gating

7 Clock gating for the MAWB

Project: DevCL

Default Value: 0h DefaultVaueDesc

Format: U1 FormatDesc

0 = Disable Clock gating

1 = Enable clock gating

6 Reserved Project
:

All Format
:

MBZ

5 ECO for the VFEunit. Fixes flush between commands

Project: DevCTG

Default Value: 0h DefaultVaueDesc

Format: U1 FormatDesc

4 Constant Buffer Save/Restore Disable

Project: DevBW-C1+

Default Value: 0h DefaultVaueDesc

Format: U1 FormatDesc

“0” : constant buffer should part of context save/restore

“1”: constant buffer should not be part of context save/restore

 G45: Volume 1a Graphics Core

 324

ECOSKPD—ECO Scratch Pad (DEBUG)
3 WIZunit Scratch Space ECO

Project: DevBW-C+

Default Value: 0h DefaultVaueDesc

Format: U1 FormatDesc

Enable ECO: Max scratch space (indicated by Per Thread Scratch Space set to 11)
is 256KB. 256KB scratch base must be 8M aligned.

Disable ECO: Max scratch space is 12KB.

2:0 Reserved Project: All Format
:

MBZ

 G45: Volume 1a Graphics Core

 325

8.15 Debug Registers

These registers are used to reflect internal hardware state. The intention is to be used for silicon
debug

8.15.1 CSFLFSM — Flush FSM (Debug)

CSFLFSM — Flush FSM (Debug)
Register Type: MMIO

Address Offset: 2200h

Project: All

Default Value: 0000 0000h

Access: R/W

Size (in bits): 32

Bit Description

31:16 Reserved: 0x0 Project: All Format: MBZ

15:13 Project: All Format: U3

“000” * (CSFLSHFIFOIDLE_s == ‘1’) +

“001” * (CSFLSHFIFOVIRXPHY_s == ‘1’) +

“010” * (CSFLSHFIFOWT4ACK_s == ‘1’) +

“011” * (CSFLSHFIFOLDSTDW_s == ‘1’) +

“100” * (CSFLSHFIFOISCFLUSH_s == ‘1’) +

“101” * (CSFLSHFIFOMSI_s == ‘1’) +

“110” * (CSFLSHFIFODMYRD_s == ‘1’) +

“111”

12:10 Project: All Format: U3

“000” * (CS3DCNTRLIDLE_s == ‘1’) +

“001” * (CS3DCNTRLDW1_s == ‘1’) +

“010” * (CS3DCNTRLDW2_s == ‘1’) +

“011” * (CS3DCNTRLDFIFO_s == ‘1’) +

“100” * (CS3DCNTRLWT4DONE_s == ‘1’) +

“101” * (CS3DCNTRLNULL_s == ‘1’) +

“111”

9:8 Project: All Format: U2

“00” * (URBIDLE_s == ‘1’) +

“01” * (URBPIPESEL_s == ‘1’) +

“10” * (URBCURBECLEAR_s == ‘1’) +

“11” * (URBDEALLOC_s == ‘1’)

 G45: Volume 1a Graphics Core

 326

CSFLFSM — Flush FSM (Debug)
7:4 Project: All Format: U4

“0000” * (URBNIDLE_s == ‘1’) +

“0001” * (URBNCLR_s == ‘1’) +

“0010” * (URBNCLRS_s == ‘1’) +

“0011” * (URBNSET_s == ‘1’) +

“0100” * (URBNRPLC_s == ‘1’) +

“0101” * (URBNRPLC_W_s == ‘1’) +

“0110” * (URBCLRWT_s == ‘1’) +

“0111” * (URBNPRIM_s == ‘1’) +

“1000” * (URBNRPLC_WVS0_s == ‘1’) +

“1111”

3:0 Project: All Format: U4

“0000” * (IDLE_S == ‘1’)+

“0001” * (NF3DADDR_S == ‘1’)+

“0010” * (NF3DADDR_URB_S == ‘1’)+

“0011” * (NFNPRIM_URBCLR_S == ‘1’)+

“0100” * (NFMDADDR_S == ‘1’)+

“0101” * (NF3DNPRIM_S == ‘1’)+

“0110” * (NFMDNPRIM_S == ‘1’)+

“0111” * (NFURBNPRIM_S == ‘1’)+

“1000” * (NFURBWALLOC_S == ‘1’)+

“1111”

 G45: Volume 1a Graphics Core

 327

8.15.2 CSFLFLAG — Flush FLAG (Debug)

CSFLFLAG — Flush FLAG (Debug)
Register Type: MMIO

Address Offset: 2204h

Project: All

Default Value: 0000 0000h

Access: R/W

Size (in bits): 32

Bit Description

31:17 Reserved: 0x0 Project: All Format: MBZ

16:9 Project: All Format: U8

csprsrallflsh& csctxlcflsh& csynclcflush &fi_write & fi_depth & fi_timestamp &
fi_iscflush & fi_globalcnt_rst

8 cs_media_select Project: All Format: U1

7:0 Project: All Format: U8

fi_MURB_chng & fi_MSP_flag &
fi_URB_chng & fi_PSP_flag & fi_BTP_flag &
fi_curbe_opcodes & fi_only_one_curbe_avail &
cs_curbe_set

 G45: Volume 1a Graphics Core

 328

8.15.3 CSFLTRK — Flush Track (Debug)

CSFLTRK — Flush Track (Debug)
Register Type: MMIO

Address Offset: 2208h

Project: All

Default Value: 0000 0000h

Access: R/W

Size (in bits): 32

Bit Description

31:13 Reserved: 0x0 Project: All Format: MBZ

12:8 Project: All Format: U5

fi_3dcntrl_ldfifo &

fi_3dcntrlfifo_full &

fi_3dcntrl_ram_wren &

fi_3dcntrl_ram_wraddr[1:0]

7:0 Project: All Format: U8

fi_3dcntrl_rdptr[1:0] & fi_fiford & fi_3dcntrl_ramwrptr[1:0] &

fi_3dcntrl_completeptr_crb2clk[2:0]

8.15.4 CSCMDOP — Instruction DWORD (Debug)

CSCMDOP — Instruction DWORD (Debug)
Register Type: MMIO

Address Offset: 220Ch

Project: All

Default Value: 0000 0000h

Access: R/W

Size (in bits): 32

Bit Description

31:0 Command Buffer
Data

Project: All Format: U32

This field represents the data being parsed by the command streamer currently

 G45: Volume 1a Graphics Core

 329

8.15.5 CSCMDVLD — Instruction DWORD Valid (Debug)

CSCMDVLD — Instruction DWORD Valid (Debug)
Register Type: MMIO

Address Offset: 2210h

Project: All

Default Value: 0000 0000h

Access: R/W

Size (in bits): 32

Bit Description

31:1 Reserved Project: All Format: MBZ

0 Command Buffer
Valid

Project: All Format: U1

Command buffer currently has valid data

8.15.6 PREEMPTDLY — Power Context Register Address
([DevCTG] Only) (Debug)

PREEMPTDLY — Power Context Register Address (Debug)
Register Type: MMIO

Address Offset: 2214h

Project: DevCTG

Default Value: 0000 0000h

Access: R/W

Size (in bits): 32

The PREEMPTDLY register contains a delay field which specifies the minimum number of microseconds
allowed between honoring preemptions.

A new Run List submission will not be honored (will be internally delayed) until the time from the last
one is greater than the delay specified at bits [9:0].

A default value of 0, means that by default, there is no restriction to the time between preemptions.

Bit Description

31:10 Reserved Project: DevCTG Format: MBZ

9:0 Delay Project: DevCTG Format: U10

Minimum number of micro-seconds allowed between preemptions.

 G45: Volume 1a Graphics Core

 330

8.15.7 CLKCMP — Compare count clock stop (Debug)

CLKCMP — Compare count clock stop (Debug)
Register Type: MMIO

Address Offset: 2360h

Project: All

Default Value: 0000 0000 0000 0000h

Access: R/W This register is not set by the context restore.

Size (in bits): 64

This register stores the value of the count of clock ticks that should cause the clock to stop. An internal hardware
counter keeps track of the clock ticks. The internal hardware counter is reset when this register is written.

The reference clock used by this counter is the core render clock (crclk). Crclk is chosen here specifically
because it is the operating frequency for a majority of the logic in the 3D pipeline. See the EDS for details for the
frequency of the crclk. See section 1.21.

Bit Description

63:0 Clock Stop Value Project: All Format: U64

This register reflects the total number of crclk ticks that need to pass before the crclk is
stopped. A write to this register causes the internal clock counter to reset.

 G45: Volume 1a Graphics Core

 331

8.15.8 VFDC—Set Value of Draw Count (DEBUG)

VFDC—Set Value of Draw Count (DEBUG)
Register Type: MMIO

Address Offset: 2450h

Project: All

Default Value: UUUU UUUUh

Access: R/W

Size (in bits): 32

The VFDC register is to set the initial DRAW count starting point. This is needed to be able to reset and start at
different draw counts.

Bit Description

31:24 Reserved Project: All Format: MBZ

23:0 Set Value of Draw
Count

Project: All Format: U24

This value must be set before enabling the Skip Initial Primitive or Max Primitives
Limit Enable. If not then the start of the Draw Count is undefined.

8.15.9 VFSKPD—VF Scratch Pad (DEBUG)

VFSKPD—VF Scratch Pad (DEBUG)
Register Type: MMIO

Address Offset: 2470h

Project: All

Default Value: 0000 0000h

Access: R/W

Size (in bits): 32

Bit Description

31:16 Mask Bits

Format: Mask[15:0]

Must be set to modify corresponding bit in Bits 15:0. (All bits implemented)

15 SnapShot Continue Project: All Format: U1

Write a ‘1’ to this field with the mask will allow VF to continue once a SnapShot occurs. Writing
a ‘0’ has no effect.

14:3 Reserved Project: All Format: MBZ

 G45: Volume 1a Graphics Core

 332

VFSKPD—VF Scratch Pad (DEBUG)
2 Vertex Cache Implicit Disable Inhibit

Project: All

Default Value: 0h

Format: U1

Value Name Description Project

0h Allow VF to disable VS0 when Sequential index or
Prim ID is a valid Element.

All

1h VF never implicitly disables the vertex cache.
Software must disable the VS0 Cache when
required.

All

1 Disable Over Fetch Cache

Project: All

Default Value: 0h

Format: Disable

Value Name Description Project

0h Cache will check for data in cache before making a
request to memory

All

1h Always re-fetch new data from memory. All

0 Disable Pending FIFO

Project: All

Default Value: 0h

Format: Disable

Value Name Description Project

0h Allow VFunit to request TLB data without waiting
for pending TLB data to return.

All

1h Only allow one pending TLB request at a time All

 G45: Volume 1a Graphics Core

 333

8.16 Pipelines Statistics Counter Registers

These registers keep continuous count of statistics regarding the 3D pipeline. They are saved and
restored with context but should not be changed by software except to reset them to 0 at context
creation time. These registers may be read at any time; however, to obtain a meaningful result, a
pipeline flush just prior to reading the registers is necessary in order to synchronize the counts
with the primitive stream.

8.16.1 IA_VERTICES_COUNT — Reported Vertices Counter

IA_PRIMITIVES_COUNT
Register Type: MMIO

Address Offset: 2310h

Project: All

Default Value: 00000000h; 00000000h;

Access: R/W

Size (in bits): 64

Trusted Type: 1
This register stores the count of vertices processed by VF. This register is part of the context save and restore.

Bit Description

63:0 IA Vertices Count Report

Total number of vertices fetched by the VF stage. This count is updated for every input vertex as
long as Statistics Enable is set in VF_STATE (see the Vertex Fetch Chapter in the 3D Volume.)

8.16.2 IA_PRIMITIVES_COUNT — Reported Vertex Fetch Output
Primitives Counter

IA_PRIMITIVES_COUNT
Register Type: MMIO

Address Offset: 2318h

Project: All

Default Value: 00000000h; 00000000h;

Access: R/W

Size (in bits): 64

Trusted Type: 1
This register stores the count of primitives generated by VF. This register is part of the context save and restore.

Bit Description

63:0 IA Primitives Count Report

Total number of primitives output by the Vertex Fetch (IA) stage. This count is updated for every
primitive output by the VF stage, as long as Statistics Enable is set in VF_STATE (see the Vertex
Fetch Chapter in the 3D Volume.)

 G45: Volume 1a Graphics Core

 334

8.16.3 VS_INVOCATION_COUNT— Reported Vertex Shader
Invocation Counter

VS_INVOCATION_COUNT
Register Type: MMIO

Address Offset: 2320h

Project: All

Default Value: 00000000h; 00000000h;

Access: R/W

Size (in bits): 64

Trusted Type: 1
This register stores the value of the vertex count shaded by VS. This register is part of the context save and restore

Bit Description

63:0 VS Invocation Count Report

Number of vertex shader threads invoked by the VS stage. Updated only when Statistics Enable is
set in VS_STATE (see the Vertex Shader Chapter in the 3D Volume.)

8.16.4 GS_INVOCATION_COUNT — Reported Geometry Shader
Thread Invocation Counter

GS_INVOCATION_COUNT
Register Type: MMIO

Address Offset: 2328h

Project: All

Default Value: 00000000h; 00000000h;

Access: R/W

Size (in bits): 64

Trusted Type: 1
This register stores the number of invoked geometry shader threads. This register is part of the context save and
restore.

Bit Description

63:0 GS Invocation Count

Number of geometry shader threads invoked by the GS stage. Updated only when Statistics Enable
is set in GS_STATE (see the Geometry Shader Chapter in the 3D Volume.)

 G45: Volume 1a Graphics Core

 335

8.16.5 GS_PRIMITIVES_COUNT — Reported Geometry Shader
Output Primitives Counter

GS_PRIMITIVES_COUNT
Register Type: MMIO

Address Offset: 2330h

Project: All

Default Value: 00000000h; 00000000h;

Access: R/W

Size (in bits): 64

Trusted Type: 1
This register reflects the total number of primitives that have been output by the Geometry Shader stage. This
register is part of the context save and restore.

Bit Description

63:0 GS Primitives Count

Total number of primitives output by the geometry stage. This count is updated for every primitive
output by the geometry stage, as long as GS Output Object Statistic Enable is set in CLIP_STATE
(see the Clipper and Geometry Shader Chapters in the 3D Volume.)

8.16.6 CL_INVOCATION_COUNT— Reported Clipper Thread
Invocation Counter

CL_INVOCATION_COUNT
Register Type: MMIO

Address Offset: 2338h

Project: Pre-DevIL

Default Value: 00000000h; 00000000h;

Access: R/W

Size (in bits): 64

Trusted Type: 1
This register stores the count of invoked clipper threads. This register is part of the context save and restore.

Bit Description

63:0 CL Invocation Count Report

Number of clipper threads invoked by the clipper stage. Updated only when Statistics Enable is set
in CLIP_STATE (see the Clipper Chapter in the 3D Volume.)

 G45: Volume 1a Graphics Core

 336

CL_INVOCATION_COUNT
Register Type: MMIO

Address Offset: 2338h

Project: DevIL+

Default Value: 00000000h; 00000000h;

Access: R/W

Size (in bits): 64

Trusted Type: 1
This register stores the count of objects entering the Clipper stage. This register is part of the context save and
restore.

Bit Description

63:0 CL Invocation Count Report

Number of objects entering the clipper stage. Updated only when Statistics Enable is set in
CLIP_STATE (see the Clipper Chapter in the 3D Volume.)

8.16.7 CL_PRIMITIVES_COUNT— Reported Clipper Output
Primitives Counter

CL_PRIMITIVES_COUNT
Register Type: MMIO

Address Offset: 2340h

Project: All

Default Value: 00000000h; 00000000h;

Access: R/W

Size (in bits): 64

Trusted Type: 1
This register reflects the total number of primitives that have been output by the clipper. This register is part of the
context save and restore.

Bit Description

63:0 Clipped Primitives Output Count

Total number of primitives output by the clipper stage. This count is updated for every primitive
output by the clipper stage, as long as Statistics Enable is set in SF_STATE (see the Clipper and SF
Chapters in the 3D Volume.)

 G45: Volume 1a Graphics Core

 337

8.16.8 PS_INVOCATION_COUNT— Reported Pixels Shaded counter

PS_INVOCATION_COUNT
Register Type: MMIO

Address Offset: 2348h

Project: All

Default Value: 00000000h; 00000000h;

Access: R/W

Size (in bits): 64

Trusted Type: 1
This register stores the value of the count of pixels that get shaded. This register is part of the context save and
restore.

Bit Description

63:0 PS Invocation Count

Reflects a count of the total number of pixels that are dispatched to pixel shader invocations while
Statistics Enable is set in the Windower. See the Windower chapter of the 3D volume for details.
This count will generally be much greater than the actual count of PS threads since a single thread
may process up to 32 pixels.

8.16.9 PS_DEPTH_COUNT — Reported Pixels Passing Depth
Test Counter

PS_DEPTH_COUNT
Register Type: MMIO

Address Offset: 2350h

Project: All

Default Value: 00000000h; 00000000h;

Access: R/W

Size (in bits): 64

Trusted Type: 1

This register stores the value of the count of pixels that have passed the depth test. This register is part of the
context save and restore. Note that the value of this register can be obtained in a pipeline-synchronous fashion
without a pipeline flush by using the 3DCONTROL command. See 3D Overview in the 3D volume.

Bit Description

63:0 Depth Count

This register reflects the total number of pixels that have passed the depth test (i.e., will be
visible). All pixels are counted when Statistics Enable is set in the Windower State. See the
Windower chapter of the 3D volume for details. Pixels that pass the depth test but fail the stencil
test will not be counted.

 G45: Volume 1a Graphics Core

 338

8.16.10 TIMESTAMP — Reported Timestamp Count

TIMESTAMP — Reported Timestamp Count
Register Type: MMIO

Address Offset: 2358h

Project: All

Default Value: 0000 0000 0000 0000h

Access: R/W. This register is not set by the context restore.

Size (in bits): 64

This register stores the value of the count of clock ticks that have passed since it was last reset. Note that the
value of this register can be obtained in a 3D pipeline-synchronous fashion without a pipeline flush by using the
3DCONTROL command. See 3D Pipeline in the 3D and Media volume.

The reference clock used by this counter is the GMCH core and Processor-Side Bus (PSB) clock referred to as
“hclk”. Hclk is not used elsewhere in the graphics device and is chosen here specifically because it is not subject
to throttling as the graphics device clock is. The hclk used is not gated, throttled or selectively powered down so
that the TIMESTAMP can remain accurate even during power management activity (as long as the GMCH does not
have all of its clocks stopped, as when it is fully powered down.)

The frequency of hclk is determined externally to the GMCH and can be discovered through the “Clocking
Configuration” (“CLKCFG”) MCHBAR register. See the EDS for details. Note that the MCHBAR registers can be
accessed through the MCHBAR aperture in MMIO space. See section 8.23.

TIMESTAMP is not reset by a graphics reset. It will maintain its value unless a full chipset reset is performed.

Bit Description

63:0 TIMESTAMP Project: All Format: U64

This register reflects the total number of ticks that have passed since reset or the last time 0000
0000 0000 0000h was written to this register. SW should not write a non-zero value to this
register. The value in this register increments once every 16 hclks. A full GMCH reset is required
to reset this register; since this register is in the hclk domain it is not reset by a graphics reset
alone.

 G45: Volume 1a Graphics Core

 339

8.16.11 TIMESTAMP — Reported Timestamp Count ([DevCTG]
Only)

TIMESTAMP — Reported Timestamp Count
Register Type: MMIO

Address Offset: 2358h

Project: DevCTG

Default Value: 0000 0000 0000 0000h

Access: R/W. This register is not set by the context restore.

Size (in bits): 64

This register provides an elapsed real-time value that can be used as a timestamp for GPU events over short periods of
time. Note that the value of this register can be obtained in a 3D pipeline-synchronous fashion without a pipeline flush by
using the PIPE_CONTROL command. See 3D Geometry Pipeline in the “3D and Media” volume.

This register (effectively) counts at a constant frequency by adjusting the increment amount according to the actual
reference clock frequency. SW therefore does not need to know the reference clock frequency.

This register is not reset by a graphics reset. It will maintain its value unless a full chipset reset is performed. This
register will be reset to 0 if either DW is written to (any value).

Bit Description

63:32 TIMESTAMP Project: All Format: U32

This register represents 1.024 uS of time.

31:20 TIMESTAMP Project: All Format: U12

This register represents ¼ nS increment of the time stamp.

19:0 Reserved Project: All Format: MBZ

 G45: Volume 1a Graphics Core

 340

8.16.12 VT_CL_WRITTEN— Number of Cachelines for the GTT used
for VT-d purposes (Debug/Validation Only)([DevCTG]
only)

CL_WRITTEN— Number of Cachelines for the GTT used for VT-d purposes
(Debug/Validation Only)
Register Type: MMIO

Address Offset: 2370h

Project: DevCTG

Default Value: 0000 0000h

Access: R/W

Size (in bits): 32
This register is used in conjunction with a chipset debug register bit (MCHBAR offset 44 bit10) to limit the number of
cachelines the graphics uses for the size of the GTT.

Bit Description

31:2 Cacheline Count Project: DevCTG Format: U30

Total number of cachelines to use for the size of the GTT

1 Enable

Project: DevCTG

Default Value: 0h

Format: Enable

Value Name Description Project

0h Disable Do not use the cacheline value in this register for the
GTT size

DevCTG

1h Enable Use current register to indicate the number of
cachelines for GTT size

DevCTG

0 Reserved Project: DevCTG Format: MBZ

 G45: Volume 1a Graphics Core

 341

8.16.13 SO_NUM_PRIMS_WRITTEN— Reported Stream Output
Num Primitives Written Counter ([DevCTG] Only)

SO_NUM_PRIMS_WRITTEN— Reported Stream Output Num Primitives Written
Counter
Register Type: MMIO

Address Offset: 2288h

Project: DevCTG+

Default Value: 0000 0000 0000 0000h

Access: R only. This register is set by the context restore.

Size (in bits): 64
This register is used to (indirectly) count the number of primitives which GS threads have successfully written to
Streamed Vertex Output buffers. This register is part of the context save and restore.
[Errata] This regiser gets reset when write happens to register 2380h

Bit Description

63:0 Num Prims Written Count Project: DevCTG Format: U64

This count is incremented (by one) every time a GS thread outputs a DataPort Streamed Vertex
Buffer Write message with the Increment Num Prims Written bit set in the message header (see
the Geometry Shader and Data Port chapters in the 3D Volume.)

8.16.14 SO_PRIM_STORAGE_NEEDED — Reported Stream Output
Primitive Storage Needed Counter ([DevCTG] Only)

SO_PRIM_STORAGE_NEEDED — Reported Stream Output Primitive Storage
Needed Counter
Register Type: MMIO

Address Offset: 2280h

Project: DevCTG+

Default Value: 0000 0000 0000 0000h

Access: R only. This register is set by the context restore.

Size (in bits): 64
This register is used to (indirectly) count the number of primitives which GS threads would have written to Streamed
Vertex Output buffers if all buffers had been large enough to accommodate the writes . This register is part of the
context save and restore.
[Errata] This register gets reset when write happens to register 2388h

Bit Description

63:0 Prim Storage Needed Count Project: DevCTG Format: U64

This count is incremented (by one) every time a GS thread outputs a DataPort Streamed Vertex
Buffer Write message with the Increment Prim Storage Needed bit set in the message header
(see the Geometry Shader and Data Port chapters in the 3D Volume.)

 G45: Volume 1a Graphics Core

 342

8.17 MTCH_CID_RST – Matched Context ID Reset
Register

MTCH_CID_RST – Matched Context ID Reset Register
Register Type: MMIO

Address Offset: 2524h

Project: All

Default Value: 0000 0000h

Access: R/W

Size (in bits): 32

This register is used to generate a Context ID specific reset (Render Only). To initiate a reset, the register is
written with the pending bit set. Hardware compares the current context ID with the register and on match
generates a Render Only reset. After reset is complete, HW clears the pending bit and can be programmed to
generate an interrupt. The match bit is set. If the current context ID does not match this register, the pending bit
is reset and an interrupt is generated. The match bit is reset.

The match indicates the result of the last comparison, and its valid only when pending bit is zero.

Please see MCIDRST interrupt bit assignment in the Interrupt Control Registers.

Bit Description

31:12 Reserved Project: All Format: MBZ

11:2 Reserved Project: All Format: MBZ

1 Reserved Project: All Format: MBZ

0 Reserved Project: All Format: MBZ

 G45: Volume 1a Graphics Core

 343

8.18 Display Related Registers for Flip Queue

8.18.1 MAXQ_FLIP_A – Maximum Flips Allowed for Display A
Register ([DevCTG] Only)

MAXQ_FLIP_A – Maximum Flips Allowed for Display A Register
Register Type: MMIO

Address Offset: 2530h

Project: DevCTG

Default Value: 0000 0004h

Access: R/W

Size (in bits): 32
This register is not saved or restored with context. The render-only reset will not affect this register.

Bit Description

31:5 Reserved Project: DevCTG Format: MBZ

4:0 Maximum Flips allowed Project: DevCTG Format: U5

The number of flip buffers allocated by the software to support queued flips for Display plane A. For a
double buffered case, the value programmed into this register should be 1. [DevCTG]: Maximum
value in this register is 8

8.18.2 MAXQ_FLIP_B – Maximum Flips Allowed for Display B
Register ([DevCTG] Only)

MAXQ_FLIP_B – Maximum Flips Allowed for Display B Register
Register Type: MMIO

Address Offset: 2534h

Project: DevCTG

Default Value: 0000 0004h

Access: R/W

Size (in bits): 32
This register is not saved or restored with context. The render-only reset will not affect this register.

Bit Description

31:5 Reserved Project: DevCTG Format: MBZ

4:0 Maximum Flips allowed Project: DevCTG Format: U5

The number of flip buffers allocated by the software to support queued flips for Display plane B. For
a double buffered case, the value programmed into this register should be 1. [DevCTG]: Maximum
value in this register is 8

 G45: Volume 1a Graphics Core

 344

8.18.3 NUM_FLIP_A – Number of flips pending on Display A
Register ([DevCTG] Only)

NUM_FLIP_A – Number of flips pending on Display A Register
Register Type: MMIO

Address Offset: 2538h

Project: DevCTG

Default Value: 0000 0000h

Access: R/W [Debug only]

Size (in bits): 32
This register is not saved or restored with context. The render-only reset will not affect this register.

Bit Description

31:5 Reserved Project: DevCTG Format: MBZ

4:0 Number of Flips pending Project: DevCTG Format: U5

The number of flips pending in the hardware for Display plane A.

8.18.4 NUM_FLIP_B – Number of flips pending on Display B
Register ([DevCTG] Only)

NUM_FLIP_B – Number of flips pending on Display B Register
Register Type: MMIO

Address Offset: 253Ch

Project: DevCTG

Default Value: 0000 0000h

Access: R/W [Debug only]

Size (in bits): 32
This register is not saved or restored with context. The render-only reset will not affect this register.

Bit Description

31:5 Reserved Project: DevCTG Format: MBZ

4:0 Number of Flips pending Project: DevCTG Format: U5

The number of flips pending in the hardware for Display plane B.

 G45: Volume 1a Graphics Core

 345

8.19 Video Codec Engine Command Streamer

[DevBW] and [DevCL] do not support the Video Codec Engine (VCE).

For [DevCTG, VCE is also referred to as the Bit-Serial Decoder (BSD) Engine, as only the front
portion of the multi-format decoder is implemented.

VCE has its own command streamer and operates completely independently of the render
(3D/Media) pipeline command streamer.

This command streamer supports a completely independent set of registers. Only a subset of the
MI Registers is supported for this 2nd command streamer. The effort is to keep the registers at the
same offset as the render command streamer registers. The base of the registers for the video
decode engine will be defined per project, the offsets will be maintained.

Project Base Adress Value for the memory interface
register offset for the Bit Stream Command
Stream

DevCTG 0x2000

Eg: The Ring buffer tail pointer will be 0x2000
+ 0x2030

 G45: Volume 1a Graphics Core

 346

8.19.1 Registers in the VCE Command Streamer [DevCTG+]

Each register is at the same offset from 04000h as its primary counterpart is offset from 02000h.

8.19.1.1 BCS_EXCC—Execute Condition Code Register

EXCC—Execute Condition Code Register
Register Type: MMIO

Address Offset: 2028h

Project: All

Default Value: 00000000h

Access: R/W,RO

Size (in bits): 32

Trusted Type: 1

This register contains user defined and hardware generated conditions that are used by MI_WAIT_FOR_EVENT
commands. An MI_WAIT_FOR_EVENT instruction excludes the executing ring from arbitration if the selected event
evaluates to a “1”, while instruction is discarded if the condition evaluates to a “0”. Once excluded a ring is enabled
into arbitration when the selected condition evaluates to a “0”.

Bit Description

31:18 Reserved Project: All Format: MBZ

17 Mask Bits

Format: Mask[1]

This bit serves as a write enable for bit 1. If this register is written with this bit clear the
corresponding bit in the field 1 will not be modified.
Reading these bits always returns 0s.

16 Mask Bits

Format: Mask[0]

These bits serves as a write enable for bit 0. If this register is written with any of these
bits clear the corresponding bit in the field 0 will not be modified.
Reading these bits always returns 0s.

15:7 Reserved Project: All Format: MBZ

6 Reserved

5:2 Reserved Project: All Format: MBZ

1 Blitter Command Streamer Condition Codes

The software may signal a Stream Semaphore by setting the Mask bit and Signal Bit together to
match the bit field specified in a WAIT_FOR_EVENT (Semaphore).

0 Render Command Streamer Condition Codes

The software may signal a Stream Semaphore by setting the Mask bit and Signal Bit together to
match the bit field specified in a WAIT_FOR_EVENT (Semaphore).

 G45: Volume 1a Graphics Core

 347

8.19.1.2 BCS_RINGBUF—Ring Buffer Registers

Address Offset: 04030h – 0403Fh: Ring Buffer:
 offset 0h = _TAIL
 offset 4h = _HEAD
 offset 8h = _START
 offset Ch = _CTL
Default Value: 0000 0000h
Access: Read/32 bit Write Only
Size: 4 DWords / Ring Buffer

These registers are used to define and operate the “ring buffer” mechanism which can be used to
pass instructions to the command interface. The buffer itself is located in a linear memory region.
The ring buffer is defined by a 4 Dword register set that includes starting address, length, head
offset, tail offset, and control information. Refer to the Programming Interface chapter for a
detailed description of the parameters specified in this ring buffer register set, restrictions on the
placement of ring buffer memory, arbitration rules, and in how the ring buffer can be used to pass
instructions.

Ring Buffer Head and Tail Offsets must be properly programmed before it is enabled. A
Ring Buffer can be enabled when empty.

The format of the Ring Buffer register set follows:

DWord
Offset

Bit Description

0 31:21 Reserved: MBZ

 20:3
Tail Offset: This field is written by software to specify where the valid instructions
placed in the ring buffer end. The value written points to the QWord past the last valid
QWord of instructions. In other words, it can be defined as the next QWord that
software will write instructions into. Software must write subsequent instructions to
QWords following the Tail Offset, possibly wrapping around to the top of the buffer (i.e.,
software can’t skip around within the buffer). Note that all DWords prior to the location
indicated by the Tail Offset must contain valid instruction data – which may require
instruction padding by software. See Head Offset for more information.

Format = U18 QWord Offset

 2:0 Reserved: MBZ

1 31:21
Wrap Count: This field is incremented by 1 whenever the Head Offset wraps from the
end of the buffer back to the start (i.e., whenever it wraps back to 0). Appending this
field to the Head Offset field effectively creates a virtual 4GB Head “Pointer” which can
be used as a tag associated with instructions placed in a ring buffer. The Wrap Count
itself will wrap to 0 upon overflow.

 The Wrap Count will get cleared as a result of writes of the Starting Address
field.

Format = U11 count of ring buffer wraps

 G45: Volume 1a Graphics Core

 348

DWord
Offset

Bit Description

 20:2
Head Offset: This field indicates the offset of the next instruction DWord to be parsed.
Software will initialize this field to select the first DWord to be parsed once the RB is
enabled. (Writing the Head Offset while the RB is enabled is UNDEFINED).
Subsequently, the device will increment this offset as it executes instructions – until it
reaches the QWord specified by the Tail Offset. At this point the ring buffer is
considered “empty”.

Programming Notes:
• A RB can be enabled empty or containing some number of valid

instructions.

• Head Offset is cleared as a result of writes of the Starting Address
field.

Format = U19 DWord Offset

 1:0 Reserved: MBZ

2 31:12
Starting Address: This field specifies Bits 31:12 of the 4KB-aligned starting Graphics
Address of the ring buffer.

Writing this register also causes the Head Offset to be reset to zero, and the Wrap
Count to be reset to zero.

All ring buffer pages must map to Main Memory (uncached) pages.

Ring Buffer addresses are always translated through the global GTT. Per-process
address space can only be used via a batch buffer with the appropriate Memory Space
Select.

If the run list mechanism (register RNCID) is used to submit a context to run, this field
will be set to a page (4K) offset from LRCA.

Format: Graphics Address Bits 31:12

 11:0 Reserved: MBZ

3 31:21 Reserved: MBZ

 20:12
Buffer Length: This field is written by SW to specify the length of the ring buffer in
4 KB Pages.

If the run list mechanism (register RNCID) is used to submit a context to run, this field
will be set to 4 pages (16K).

Format = U9 in 4 KB pages – 1

Range = [0 = 1 page = 4 KB, 1FFh = 512 pages = 2 MB]

 11:9 Reserved: MBZ

 8 Disable Register Accesses:
0 = Ring is allowed to access (read or write) MMIO space.

1 = Ring is not allowed to write MMIO space. Ring is allowed to read
registers.

 G45: Volume 1a Graphics Core

 349

DWord
Offset

Bit Description

 7:3 Reserved: MBZ

 2:1 Automatic Report Head Pointer: This field is written by software to control
the automatic “reporting” (write) of this ring buffer’s “Head Pointer” register
(register DWord 1) to the corresponding location within the Hardware Status
Page. Automatic reporting can either be disabled or enabled at 4KB, 64KB or
128KB boundaries within the ring buffer.

Format =

0: MI_AUTOREPORT_OFF – Automatic reporting disabled

1: MI_AUTOREPORT_64KB – Report every 16 pages (64KB)

2: MI_AUTOREPORT_4KB – Report every page (4KB) [DevCTG] Only

3: MI_AUTOREPORT_128KB – Report every 32 pages (128KB)
[DevCTG] When the Per-Process Virtual Address Space and Run List Enable bit is
set and automatic head reporting is desired, this field must be set to option 2 since the
ring buffer will be only 16KB in size. The head pointer will be reported to the head
pointer location in the PP HW Status Page when it passes each 4KB page boundary.
When the above-mentioned bit is set, reporting will behave just as on the prior devices
(as documented above), and option 2 is not legal.

 0
Ring Buffer Enable: This field is used to enable or disable this ring buffer. It can be
enabled or disabled regardless of whether there are valid instructions pending.

Format = Enable

 G45: Volume 1a Graphics Core

 350

8.19.1.3 BCS_HWS_PGA — Hardware Status Page Address Register

Address Offset: 04080h–04083h
Default Value: 1FFF F000h
Access: Read/Write
Size: 32 bits

This register is used to program the 4 KB-aligned System Memory address of the Hardware Status
Page used to report hardware status into (typically cacheable) System Memory.

Bit Description

31:12
Address: This field is used by SW to specify Bits 31:12 of the 4 KB-aligned System Memory address
of the 4 KB page known as the “Hardware Status Page”.

Bits 11:0 of the address MBZ.

Format = Bits 31:12 of Graphics Memory Address

11:0
Reserved: MBZ

The following table defines the layout of the Hardware Status Page:

DWord
Offset

Description

3:0 Reserved. Must not be used.

4 Head Pointer Storage: The contents of the Ring Buffer Head Pointer register (register DWord 1)
are written to this location either as result of an MI_REPORT_HEAD instruction or as the result of
an “automatic report” (see RINGBUF registers).

0Fh:05h Reserved. Must not be used.

(3FFh –
010h)

These locations can be used for general purpose via the MI_STORE_DATA_INDEX or
MI_STORE_DATA_IMM instructions.

 G45: Volume 1a Graphics Core

 351

8.19.1.4 BCS_NOPID — NOP Identification Register

Address Offset: 04094h–04097h
Default Value: 0000 0000h
Access: Read Only
Size: 32 bits

The BCS_NOPID register contains the Noop Identification value specified by the last MI_NOOP
instruction that enabled this register to be updated.

Bit Description

31:22
Reserved: MBZ

21:0
Identification Number: This field contains the 22-bit Noop Identification value specified by the last
MI_NOOP instruction that enabled this field to be updated.

8.19.1.5 BCS_MI_MODE — Mode Register for Software Interface

Address Offset: 0409Ch–0409Fh
Default Value: 0000 0000h
Access: Read/Write
Size: 32 bits

The MI_MODE register contains information that controls software interface aspects of the
command parser.

Bit Description

31:16 Masks: A “1” in a bit in this field allows the modification of the corresponding bit in Bits
15:0

15:12 Reserved Read/Write

11 Invalidate UHPTR enable: If bit set H/W clears the valid bit of BCS_UHPTR (4134h, bit
0) when current active head pointer is equal to UHPTR.

10 Reserved Read/Write

9 Ring Idle (Read Only Status bit)

0 = Parser not Idle

1 = Parser Idle

Writes to this bit are not allowed.

 G45: Volume 1a Graphics Core

 352

Bit Description

8 Stop Ring

0 = Normal Operation.

1 = Parser is turned off.

Software must set this bit to force the Ring and Command Parser to Idle. Software must
read a “1” in Ring Idle bit after setting this bit to ensure that the hardware is idle.

Software must clear this bit for Ring to resume normal operation.

7:2 Reserved Read/Write

1 Dummy Read Disable. Nominally a command stream flush is completed with a dummy
read to memory to push all pending writes. Setting this bit to a “1” disables the dummy
read.

0 Reserved Read/Write

 G45: Volume 1a Graphics Core

 353

8.19.1.6 BCS_INSTPM—Instruction Parser Mode Register

Address Offset: 040C0h–040C3h
Default Value: 0000 0000h
Access: Read/Write
Size: 32 bits

The BCS_INSTPM register is used to control the operation of the BCS Instruction Parser. Certain
classes of instructions can be disabled (ignored) – often useful for detecting performance
bottlenecks. Also, “Synchronizing Flush” operations can be initiated – useful for ensuring the
completion (vs. only parsing) of rendering instructions.

Programming Notes:

• All Reserved bits are implemented.

Bit Description

31:16
Masks: These bits serve as write enables for bits 15:0. If this register is written with any of these bits
clear the corresponding bit in the field 15:0 will not be modified. Reading these bits always returns 0s.

15:6
Reserved: MBZ

5
Sync Flush Enable: This field is used to request a Sync Flush operation. The device will automatically
clear this bit before completing the operation. See Sync Flush (Programming Environment).

Programming Note:
• The command parser must be stopped prior to issuing this command by setting the

Stop Ring bit in register BCS_MI_MODE. Only after observing Ring Idle set in
BCS_MI_MODE can a Sync Flush be issued by setting this bit. Once this bit becomes
clear again, indicating flush complete, the command parser is re-enabled by clearing
Stop Ring.

Format = Enable (cleared by HW)

4:0
Reserved: MBZ

 G45: Volume 1a Graphics Core

 354

8.19.1.7 BCS_UHPTR — Pending Head Pointer Register

Address Offset: 04134h–04137h
Default Value: 0000 0000h
Access: Read/Write
Size: 32 bits

Bit Description

31:3 Head Pointer Address: This register represents the GFX address offset where execution
should continue in the ring buffer following execution of an MI_ARB_CHECK command.

Format = MI_Graphics_Offset

2:1 Reserved: MBZ

0 Head Pointer Valid:

1 = Indicates that there is an updated head pointer programmed in this register

0 = No valid updated head pointer register, resume execution at the current location in
the ring buffer

This bit is set by the software to request a pre-emption. It is reset by hardware after the
head pointer in this register is read. The hardware uses the head pointer programmed in
this register at the time the reset is generated.

8.19.1.8 BCS_CNTR—Counter for the bit stream decode engine

Address Offset: 04178h–0417Bh
Default Value: FFFF FFFFh
Access: Read/Write
Size: 32 bits

Bit Description

31:0
Count Value:

Writing a Zero value to this register starts the counting.

Writing a Value of FFFF FFFF to this counter stops the counter

 G45: Volume 1a Graphics Core

 355

8.19.1.9 BCS_THRSH—Threshold for the counter of bit stream decode
engine

Address Offset: 0417Ch–0417Fh
Default Value: 00014500h
Access: Read/Write
Size: 32 bits

Bit Description

31:0
Threshold Value:

The value in this register reflects the number of clocks the bit stream decode engine is expected to
run. If the value is exceeded the counter is reset and an interrupt may be enabled in the device.

8.19.1.10 BCS_BB_ADDR—Batch Buffer Head Pointer Register

Address Offset: 02140h–02147h
Default Value: 0000 0000 0000 0000h
Access: Read-Only
Size: 64 bits

This register contains the current QWord Graphics Memory Address of the last-initiated batch
buffer.

Bit Description

63:32 Reserved: MBZ

31:3
Batch Buffer Head Pointer: This field specifies the QWord-aligned Graphics Memory Address where
the last initiated Batch Buffer is currently fetching commands. If no batch buffer is currently active, the
Valid bit will be 0 and this field will be meaningless. .

2:1
Reserved: MBZ

0
Valid:

1 = Batch buffer Valid

0 = Batch buffer Invalid

 G45: Volume 1a Graphics Core

 356

8.19.1.11 BCS_ECOSKPD—ECO Scratch Pad (DEBUG)

Address Offset: 041D0h–041D3h
Default Value: 0000 0000h
Access: Read/Write
Size: 32 bits

Bit Description

31:16
Mask Bits: Must be set to modify corresponding bit in Bits 15:0. (All bits implemented)

15:12
Reserved: MBZ

11
Must be set to 1

10:0
Reserved: MBZ

8.19.1.12 Two-Level Per-Process Virtual Memory ([DevCTG]
Only)

[DevCTG] Supports a 2-level mapping scheme for PPGTT, consisting of a first-level page directory
containing page table base addresses, and the page tables themselves on the 2nd level, consisting
of page addresses.

 G45: Volume 1a Graphics Core

 357

Two-Level Per-Process Virtual Memory ([DevCTG] Only).

8.19.1.12.1 BCS_PP_DIR_BASE – Page Directory Base Register

BCS_PP_DIR_BASE – Page Directory Base Register
Register Type: MMIO

Address Offset: 4390h

Project: All

Default Value: 00000000h

Access: R/W

Size (in bits): 32

Trusted Type: 1

This register contains the offset into the GGTT where the (current context’s) PPGTT page directory begins. This
register is restored with context

Bit Description

31:16 Page Directory Base Offset

Project: DevCTG+

Security: None

Default Value: 0h DefaultVaueDesc

Format: U15

Address: GraphicsAddress[31:16]

Range [0,PPGTT Size - 1 in cachelines]

Contains the cacheline (64-byte) address into the GGTT where the page directory begins.

15:0 Reserved Project: All Format: MBZ

 G45: Volume 1a Graphics Core

 358

8.19.1.12.2 BCS_PP_DCLV – PPGTT Directory Cacheline Valid Register

BCS_PP_DCLV – PPGTT Directory Cacheline Valid Register
Register Type: MMIO

Address Offset: 4398h

Project: All

Default Value: 00000000h; 00000000h; 00000000h; 00000000h

Access: RO

Size (in bits): 2x32

Trusted Type: 1

This register can be used to designate entire cachelines of the PPGTT Directory as invalid. Bits that are
set indicate the corresponding 16 directory entry group is valid. Note that some or all of the entries
could have their valid bits clear, indicating they are invalid. This register is restored with context (prior
to restoring the on-chip directory cache itself). This register is also restored when switching to a context
whose LRCA matches the current CCID if the Force PD Restore bit is set in the context descriptor.

The context image of this register must be updated and maintained by SW.

This register can effectively be used to limit the size of a processes’ virtual address space. Any access by
a process that requires a PD entry in a set that is not enabled in this register will cause a fatal error, and
no attempt to fetch the PD entry will be made.

DWord Bit Description

0 31:0 PPGTT Directory Cacheline Valid.

Project: All

Security: None

Default Value: 0h DefaultVaueDesc

Format: U32 FormatDesc

If set, each bit in this register corresponds to 16 valid entries of the page directory. If
clear, these entries are considered invalid and fetch of these entries will not be attempted.

1 31:0 Reserved Project: All Format: MBZ

 G45: Volume 1a Graphics Core

 359

8.19.2 Unique BCS Registers ([DevCTG] Only)

The Video Decode Command Streamer supports a simplified run list mechanism for the purpose of
submitting command buffers to it for execution. Two run lists are supported, each with a single
context element. One context can be running and one pending.

8.19.2.1 BCS_RCCID—Ring Buffer Current Context ID Register

Address Offset: 04190h–04193h
Default Value: 00 00 00 00h
Access: Read/Write
Size: 32 bits

This register contains the current “ring context ID” associated with the ring buffer.

Programming Notes:

• The current context registers must not be written directly (via MMIO). The RCCID register
should only be updated indirectly from RNCID.

Bit Description

31:12 Logical Ring Context Address (LRCA):

This field contains the 4 KB-aligned Memory address of the current Ring Context Descriptor associated
with this ring buffer. See the RNCID register for the Descriptor format.

Format = GlobalGraphicsVirtualAddress[31:12]

11:1 Reserved: MBZ

0 Valid:

1 = The other field of this register is valid. A ring context is executing and the LRCA field contains the
address of its context descriptor.

0 = The other field of this register is invalid. No ring context is executing. This streamer is idle or it is
being used in Basic Scheduler mode where the ring buffer registers are manipulated directly and no
ring context is used.

8.19.2.2 BCS_RNCID—Ring Buffer Next Context ID Register

Address Offset: 04194h–04197h
Default Value: 00 00 00 00h
Access: Read/Write
Size: 32 bits

This register contains the next “ring context ID” associated with the ring buffer.

Programming Notes:

• The current context (RCCID) register can be updated indirectly from this register on a
context switch event. Note that this can only be triggered by executing an
MI_ARB_CHECK command in the current context or if the current context runs dry (head
pointer becomes equal to tail pointer).

 G45: Volume 1a Graphics Core

 360

Bit Description

31:12 Logical Ring Context Address (LRCA):

This field contains the 4 KB-aligned Memory address of the next Ring Context Descriptor associated
with this ring buffer.

Format = GlobalGraphicsVirtualAddress[31:12]

11:1 Reserved: MBZ

0 Valid:

1 = The other field of this register is valid. A valid ring context is pointed at by the LRCA field of this
register.

0 = The other field of this register is invalid. No next context is available to run should the current one
execute MI_ARB_CHECK or run out of instructions.

This bit is reset by HW when the current context ends and the “next” context becomes the current one.
Once that happens, SW may submit a new “next” context.

8.19.3 Registers in the VCE Cryptal Engine [DevCTG+]

8.19.3.1 CRYP_VIDEO_KEY_FRESHNESS – Crypto Key Exchange Read
Register

This Read Only command communicates the 128bit freshness value which qualifies the session
key used in the content encryption/decryption. Note that the actual modification and
incorporation of this new freshness value into the current session key takes effect only on
receiving the MFX_CRYPTO_KEY_EXCHANGE command with the ‘Key Use Indication’ field directing
the use of new Freshness value.

The Key Freshness information is requested by the driver, to pass it on to the app. The driver will
generate the first DWord read command and will follow it up with three more reads with the
address indexed, to get a Dword for each read, starting from LSDword to MSDword.

A new set of four read commands will return a new 128bit freshness value.

Address offset: 04410-04413h
 04414-04417h
 04418-0441Bh
 0441C-0441Fh

After Reset: 00000000h
Normal Access: Read only

 G45: Volume 1a Graphics Core

 361

Bit Description

31:0 32bits each of the Key Freshness value of 128bits.

The specific DWord selected for read, out of the 4 DWords, is based on the index value (the MS 2bits of
the highlighted nibble) in the address.

It is expected that the driver will read these DWord in order, starting with DWord_0 and ending with
Dword_3.

8.19.3.2 CRYP_PACKET – Crypto Encrypted packet Read Register

This Read Only command is executable only in test mode. It allows the test mode setup to read
out 16bytes of encrypted internally stored information, using the MMIO Read interface.

This register is only accessible when Text mode bit is not set.

Address offset: 04420-04423h
 04424-04427h
 04428-0442Bh
 0442C-0442Fh

After Reset: 00000000h
Normal Access: Read only

 Bit Description

31:0 32bits each of the Encrypted result value of 128bits.

The specific DWord selected for read, out of the 4 DWords, is based on the index value (the MS 2bits of
the highlighted nibble) in the address.

8.19.3.3 CRYP_DISPLAY_PIPE_TO_PORT_STATUS – Crypto Display Pipe
to Port Status Read Register

This Read Only command communicates to the driver, the 128bit encrypted status of which are
enabled and connected to the two internal Display pipes. This information is requested by the
App. through the driver, to determine if any spurious enabling of a port to a pipe has happened.
The driver will generate the first DWord read command and will follow it up with three more reads
with the address indexed, to get a Dword for each read, starting from LSDword to MSDword.

This encrypted read status block will be computed new registers are updated (programmed) and
also when a new MFX_CRYPTO_KEY_EXCHANGE command is received. The key used for
encryption will be the current session key (when these status bits get programmed) and the
updated and new key (after a new MFX_CRYPTO_KEY_EXCHANGE command is executed). The
encryption mode used is AES-128 ECB.

 G45: Volume 1a Graphics Core

 362

The 16byte status to be encrypted[127:0] := “DISPLAY_PIPE_TO_PORT_STATUS[15:0]” & “All
0s”[111:0].

Address offset: 04430-04433h
 04434-04437h
 04438-0443Bh
 0443C-0443Fh

After Reset: 00000000h
Normal Access: Read only

Bit Description

31:0 32bits each of the Encrypted DISPLAY_PIPE_TO_PORT_STATUS value of 128bits.

The specific DWord selected for read, out of the 4 DWords, is based on the index value (the MS 2bits of
the highlighted nibble) in the address.

Note: Before the encryption, the status bit definition in the most significant Dword (Dword_3):

The 12bits of pipe status mapping: Display_PipeA_P2P[7:0] & Display_PipeB_P2P[7:0],

where the individual port mapping for each pipe is:

Bit_7: ‘1’ D enabled, ‘0’ – Disabled

Bit_6: ‘1’ –C enabled, ‘0’ – Disabled,

Bit_5: ‘1’ –B enabled, ‘0’ – Disabled,

Bit_4: ‘1’ - TV Out port enabled, ‘0’ – Disabled, [CLN] only

Bit_3: ‘1’ C port enabled, ‘0’ – Disabled,

Bit_2: ‘1’ - B port enabled, ‘0’ – Disabled

Bit_1: ‘1’ – LVDS port enabled, ‘0’ – Disabled

Bit_0: ‘1’ - Analog (CRT) A enabled, ‘0’ – Disabled

After the decryption on the driver end, the status bits are in the MSB positions. The rest of all the four
Dword bits after decryption should be ‘0’s, and the hw should decode for this.

 G45: Volume 1a Graphics Core

 363

8.20 Interrupt Control Registers

The Interrupt Control Registers described below all share the same bit definition. The bit definition
is as follows:

Table 8-3. Bit Definition for Interrupt Control Registers

Bit Description

31:4 Reserved. MBZ: These bits may be assigned to interrupts on future products/steppings.

7 Timeout Counter Expired: Set when the VCS timeout counter has reached the timeout thresh-hold
value.

6:4 Reserved: MBZ

3 Reserved: MBZ

2 Render Command Parser Master Error: When this status bit is set, it indicates that the hardware
has detected an error. It is set by the device upon an error condition and cleared by a CPU write of a
one to the appropriate bit contained in the Error ID register followed by a write of a one to this bit in
the IIR. Further information on the source of the error comes from the “Error Status Register” which
along with the “Error Mask Register” determines which error conditions will cause the error status bit
to be set and the interrupt to occur.

Page Table Error: Indicates a page table error.

Instruction Parser Error: The Renderer Instruction Parser encounters an error while parsing an
instruction.

1 Sync Status: This bit is toggled when the Instruction Parser completes a flush with the sync enable
bit active in the INSTPM register. The toggle event will happen after all the graphics engines are
flushed. The HW Status DWord write resulting from this toggle will cause the CPU’s view of graphics
memory to be coherent as well (flush and invalidate the render cache).

0 Render Command Parser User Interrupt: This status bit is set when an MI_USER_INTERRUPT
instruction is executed on the Render Command Parser. Note that instruction execution is not halted
and proceeds normally. A mechanism such as an MI_STORE_DATA instruction is required to associate
a particular meaning to a user interrupt.

 G45: Volume 1a Graphics Core

 364

8.20.1.1 BCS_IPEIR—Instruction Parser Error Identification
Register (Debug)

Address Offset: 04064h–04067h
Default Value: 0000 0000h
Access: Read Only
Size: 32 bits

The IPEIR register identifies the general location of instructions that generated an Invalid
Instruction Errors for the Renderer IP. (Note: The header (DWord 0) of the offending instruction
will be stored in the IPEHR register).

Bit Description

31:4 Reserved. Read as zero

3 Batch Buffer Error: If this bit is set the faulting instruction was executed from a batch buffer. If this
bit is clear the faulting instruction was executed directly from a ring buffer.

2:0 Reserved. Read as zero

8.20.1.2 BCS_IPEHR—Instruction Parser Error Header
Register (Debug)

Address Offset: 04068h–0406Bh
Default Value: 0000 0000h
Access: Read Only
Size: 32 bits

The IPEHR register is used to identify the instructions that generate Invalid Instruction Errors.
This register is loaded with the header (DWord 0) of each instruction that is executed. It will
therefore hold the header of an instruction that generates an Invalid Instruction Error.

Bit Description

31:0 Header: This field will contain the header (DWord 0) of a Media Decode IP instruction that generates
an Invalid Instruction Error.

8.20.1.3 BCS_ACTHD — Active Head Pointer Register (Debug)
Address Offset: 04074h–04077h
Default Value: 0000 0000h
Access: Read Only
Size: 32 bits

This register contains the Head “Pointer” (DWord Graphics Memory Address) of the ring buffer.

Bit Description

31:2 Head Pointer: DWord Graphics Address corresponding to the Head Pointer of the ring or batch
buffer.

1:0
Reserved: MBZ

 G45: Volume 1a Graphics Core

 365

8.20.1.4 BCS_DMA_FADD —DMA Engine Fetch Address
(Debug)

Address Offset: 04078h – 0407Bh
Default Value: 0000 0000h
Access: Read Only
Size: 32 bits

This register contains the QWord offset from the start address of the instruction being fetched by
the DMA engine.

Bit Description

31:3 Current DMA QWord Offset: This field contains the offset of the QWord (from the start of the ring
buffer or batch buffer) that the “Video Decode” instruction parser DMA engine is currently accessing
(fetching). Note that this offset will typically lead the Head offset (as instructions must be fetched
before execution).

2:0 Reserved: MBZ

8.20.1.5 BCS_HWS_PGA — Hardware Status Page Address
Register

Address Offset: 04080h–04083h
Default Value: 1FFF F000h
Access: Read/Write
Size: 32 bits

This register is used to program the 4 KB-aligned System Memory address of the Hardware Status
Page used to report hardware status into (typically cacheable) System Memory.

Bit Description

31:12 Address: This field is used by SW to specify Bits 31:12 of the 4 KB-aligned System Memory address
of the 4 KB page known as the “Hardware Status Page”.

Bits 11:0 of the address MBZ.

Format = Bits 31:12 of Graphics Memory Address

11:0 Reserved: MBZ

The following table defines the layout of the Hardware Status Page:

DWord
Offset

Description

3:0 Reserved. Must not be used.

4 Head Pointer Storage: The contents of the Ring Buffer Head Pointer register (register DWord 1)
are written to this location either as result of an MI_REPORT_HEAD instruction or as the result of
an “automatic report” (see RINGBUF registers).

0Fh:05h Reserved. Must not be used.

(3FFh – These locations can be used for general purpose via the MI_STORE_DATA_INDEX or

 G45: Volume 1a Graphics Core

 366

DWord
Offset

Description

010h) MI_STORE_DATA_IMM instructions.

8.20.1.6 BCS_NOPID — NOP Identification Register
Address Offset: 04094h–04097h
Default Value: 0000 0000h
Access: Read Only
Size: 32 bits

The BCS_NOPID register contains the Noop Identification value specified by the last MI_NOOP
instruction that enabled this register to be updated.

Bit Description

31:22 Reserved: MBZ

21:0 Identification Number: This field contains the 22-bit Noop Identification value specified by the last
MI_NOOP instruction that enabled this field to be updated.

8.20.1.7 BCS_MI_MODE — Mode Register for Software
Interface

Address Offset: 0409Ch–0409Fh
Default Value: 0000 0000h
Access: Read/Write
Size: 32 bits

The MI_MODE register contains information that controls software interface aspects of the
command parser.

Bit Description

31:16 Masks: A “1” in a bit in this field allows the modification of the corresponding bit in Bits 15:0

15:12 Reserved Read/Write

11 Invalidate UHPTR enable: If bit set H/W clears the valid bit of BCS_UHPTR (4134h, bit 0) when
current active head pointer is equal to UHPTR.

10 Reserved Read/Write

9 Ring Idle (Read Only Status bit)

0 = Parser not Idle

1 = Parser Idle

Writes to this bit are not allowed.

8 Stop Ring

0 = Normal Operation.

1 = Parser is turned off.

 G45: Volume 1a Graphics Core

 367

Bit Description

Software must set this bit to force the Ring and Command Parser to Idle. Software must read a “1”
in Ring Idle bit after setting this bit to ensure that the hardware is idle.

Software must clear this bit for Ring to resume normal operation.

7:2 Reserved Read/Write

1 Dummy Read Disable. Nominally a command stream flush is completed with a dummy read to
memory to push all pending writes. Setting this bit to a “1” disables the dummy read.

0 Reserved Read/Write

8.20.1.8 BCS_INSTPM—Instruction Parser Mode Register
Address Offset: 040C0h–040C3h
Default Value: 0000 0000h
Access: Read/Write
Size: 32 bits

The BCS_INSTPM register is used to control the operation of the BCS Instruction Parser. Certain
classes of instructions can be disabled (ignored) – often useful for detecting performance
bottlenecks. Also, “Synchronizing Flush” operations can be initiated – useful for ensuring the
completion (vs. only parsing) of rendering instructions.
Programming Notes:

All Reserved bits are implemented.

Bit Description

31:16 Masks: These bits serve as write enables for bits 15:0. If this register is written with any of these
bits clear the corresponding bit in the field 15:0 will not be modified. Reading these bits always
returns 0s.

15:6 Reserved: MBZ

5 Sync Flush Enable: This field is used to request a Sync Flush operation. The device will
automatically clear this bit before completing the operation. See Sync Flush (Programming
Environment).

Programming Note:

• The command parser must be stopped prior to issuing this command by setting the Stop Ring bit
in register BCS_MI_MODE. Only after observing Ring Idle set in BCS_MI_MODE can a Sync
Flush be issued by setting this bit. Once this bit becomes clear again, indicating flush complete,
the command parser is re-enabled by clearing Stop Ring.

Format = Enable (cleared by HW)

4:0 Reserved: MBZ

 G45: Volume 1a Graphics Core

 368

8.20.1.9 BCS_UHPTR — Pending Head Pointer Register
Address Offset: 04134h–04137h
Default Value: 0000 0000h
Access: Read/Write
Size: 32 bits

Bit Description

31:3 Head Pointer Address: This register represents the GFX address offset where execution should
continue in the ring buffer following execution of an MI_ARB_CHECK command.

Format = MI_Graphics_Offset

2:1 Reserved: MBZ

0 Head Pointer Valid:

1 = Indicates that there is an updated head pointer programmed in this register

0 = No valid updated head pointer register, resume execution at the current location in the ring
buffer

This bit is set by the software to request a pre-emption. It is reset by hardware after the head
pointer in this register is read. The hardware uses the head pointer programmed in this register at
the time the reset is generated.

8.20.1.10 BCS_CNTR—Counter for the Bit Stream Decode
Engine

Address Offset: 04178h–0417Bh
Default Value: FFFF FFFFh
Access: Read/Write
Size: 32 bits

Bit Description

31:0 Count Value:

Writing a Zero value to this register starts the counting.

Writing a Value of FFFF FFFF to this counter stops the counter

8.20.1.11 BCS_THRSH—Threshold for the Counter of Bit
Stream Decode Engine

Address Offset: 0417Ch–0417Fh
Default Value: 00014500h
Access: Read/Write
Size: 32 bits

Bit Description

31:0 Threshold Value: The value in this register reflects the number of clocks the bit stream decode
engine is expected to run. If the value is exceeded the counter is reset and an interrupt may be
enabled in the device.

 G45: Volume 1a Graphics Core

 369

8.20.1.12 BCS_BB_ADDR—Batch Buffer Head Pointer Register
Address Offset: 04140h–04147h
Default Value: 0000 0000 0000 0000h
Access: Read-Only
Size: 64 bits

This register contains the current QWord Graphics Memory Address of the last-initiated batch
buffer.

Bit Description

63:32 Reserved: MBZ

31:3 Batch Buffer Head Pointer: This field specifies the QWord-aligned Graphics Memory Address where
the last initiated Batch Buffer is currently fetching commands. If no batch buffer is currently active,
the Valid bit will be 0 and this field will be meaningless. .

2:1 Reserved: MBZ

0 Valid:

1 = Batch buffer Valid

0 = Batch buffer Invalid

8.20.1.13 BCS_RCCID—Ring Buffer Current Context ID
Register

Address Offset: 04190h–04193h
Default Value: 00 00 00 00h
Access: Read/Write
Size: 32 bits

This register contains the current “ring context ID” associated with the ring buffer.

Programming Notes:

• The current context registers must not be written directly (via MMIO). The RCCID register
should only be updated indirectly from RNCID.

Bit Description

31:12 Logical Ring Context Address (LRCA): This field contains the 4 KB-aligned Memory address of the
current Ring Context Descriptor associated with this ring buffer. See the RNCID register for the
Descriptor format.

Format = GlobalGraphicsVirtualAddress[31:12]

11:1 Reserved: MBZ

0 Valid:

1 = The other field of this register is valid. A ring context is executing and the LRCA field contains the
address of its context descriptor.

0 = The other field of this register is invalid. No ring context is executing. This streamer is idle or it is
being used in Basic Scheduler mode where the ring buffer registers are manipulated directly and
no ring context is used.

 G45: Volume 1a Graphics Core

 370

8.20.1.14 BCS_RNCID—Ring Buffer Next Context ID Register
Address Offset: 04194h–04197h
Default Value: 00 00 00 00h
Access: Read/Write
Size: 32 bits

This register contains the next “ring context ID” associated with the ring buffer.
Programming Notes:

The current context (RCCID) register can be updated indirectly from this register on a context
switch event. Note that this can only be triggered by executing an MI_ARB_CHECK command
in the current context or if the current context runs dry (head pointer becomes equal to tail
pointer).

Bit Description

31:12 Logical Ring Context Address (LRCA):

This field contains the 4 KB-aligned Memory address of the next Ring Context Descriptor associated
with this ring buffer.

Format = GlobalGraphicsVirtualAddress[31:12]

11:1 Reserved: MBZ

0 Valid:

1 = The other field of this register is valid. A valid ring context is pointed at by the LRCA field of this
register.

0 = The other field of this register is invalid. No next context is available to run should the current one
execute MI_ARB_CHECK or run out of instructions.

This bit is reset by HW when the current context ends and the “next” context becomes the current
one. Once that happens, SW may submit a new “next” context.

 G45: Volume 1a Graphics Core

 371

8.21 Frame Buffer Compression Control ([DevCL]
Only)

This section describes the registers associated with the Frame Buffer Compression function. The
primary motivation of FBC is power savings and thus it is only applicable to the Mobile Product.

Programming Notes:

Frame buffer compression has to be disabled (via FBC_CONTROL[31] = 0), and software has to
wait until compression not in progress (FBC_STATUS[31] == 0) before changing any of the
following fields:
FBC_CFB_BASE
FBC_LL_BASE
FBC_CONTROL[Mode Select]
FBC_CONTROL[Compressed Frame Buffer Stride]
FBC_CONTROL[Fence Number]

8.21.1 FBC_CFB_BASE — Compressed Frame Buffer Base
Address

FBC_CFB_BASE — Compressed Frame Buffer Base Address
Register Type: MMIO
Address Offset: 3200h
Project: DevCL
Default Value: 0000 0000h
Access: R/W
Size (in bits): 32

This register specifies the physical memory address at which the Compressed Frame Buffer is
located. Note that the Compressed Frame Buffers must be in Non Cacheable memory and not relocated while
FBC is active.

Bit Description

31:12 Compressed Frame Buffer Address

Project: DevCL

Default Value: 0h

Address: PhysicalAddress[31:12]

This register specifies Bits 31:12 of the physical address of the Compressed Frame Buffer.

Programming Notes

Software must guarantee that the Compressed Frame Buffer is stored in contiguous physical
memory. The buffer must be 4K byte aligned. This field should not be changed unless FBC is
inactive (the first VBlank start after Enable Frame Buffer Compression has been cleared.)

11:0 Reserved Project: DevCL Format: MBZ

 G45: Volume 1a Graphics Core

 372

8.21.2 FBC_LL_BASE — Compressed Frame Line Length Buffer
Address

FBC_LL_BASE — Compressed Frame Line Length Buffer Address
Register Type: MMIO

Address Offset: 3204h

Project: DevCL

Default Value: 0000 0000h

Access: R/W

Size (in bits): 32

This register specifies the physical memory address at which the Compressed Frame Line Length Buffer is
located. Note that the Compressed Frame Buffers must be in Non Cacheable memory and not
relocated while FBC is active.

Bit Description

31:12 Compressed Frame Line Length Buffer Address

Project: DevCL

Default Value: 0h

Address: PhysicalAddress[31:12]

This register specifies Bits 31:12 of the physical address of the Compressed Frame Line Length
Buffer.

Programming Notes

Software must guarantee that the Compressed Frame Line Length Buffer is stored in
contiguous physical memory. The buffer must be 4K byte aligned. This field should not be
changed unless FBC is inactive (the first VBlank start after Enable Frame Buffer
Compression has been cleared.)

11:0 Reserved Project: DevCL Format: MBZ

 G45: Volume 1a Graphics Core

 373

8.21.3 FBC_CONTROL — Frame Buffer Compression Control
Register

FBC_CONTROL — Frame Buffer Compression Control Register
Register Type: MMIO

Address Offset: 3208h

Project: DevCL

Default Value: 0000 0000h

Access: R/W

Size (in bits): 32

This register is used to control the operation of RLE-FBC.

Bit Description

31 Enable Frame Buffer Compression

Project: DevCL

Default Value: 0h

Format: Enable

This bit is used to globally enable or disable the RLE-FBC function (compression and
decompression) at the next VBlank start.

Value Name Description Project

0h Disable Disable frame buffer compression. DevCL

1h Enable Enable frame buffer compression. DevCL

30 Mode Select

Project: DevCL

Default Value: 0h

Format: U1

Value Name Description Project

0h Single Pass Single Pass mode DevCL

1h Periodic Pass Periodic mode DevCL

 G45: Volume 1a Graphics Core

 374

FBC_CONTROL — Frame Buffer Compression Control Register
29:16 Interval

Project: DevCL

Default Value: 0h

Format: U14

Range [1,16383]

This is interval for which the compressor waits between passes. In Periodic Mode this field
determines the interval length, in terms of frames (VBlanks).

Zero is an illegal value.

15 Stop Compressing on
Modification (DEBUG ONLY)

Project: DevCL Format: Enable

If set to ‘1’ the compressor will abort a subsequent compressing pass when any modification to
the source frame buffer is detected.

14 Uncompressible Enable Project: DevCL Format: Enable

If set to a ‘1’ the compressor marks as "Uncompressible 10" (see the FBC_TAG register) if any
scanline in a pair cannot be compressed. In Default mode Uncompressible mode is turned off.

13 Reserved Project: DevCL Format: MBZ

12:5 Compressed Frame
Buffer Stride

Project: DevCL Format: (Stride in 64Byte units) – 1

This is the stride for the compressed frame buffer. This value is used to determine the line-to-
line increment for the compressed frame buffer. Lines that cannot be compressed to a stride
size or less are not compressed at all.

This field must be set to a value less than or equal to the stride of the source (uncompressed)
frame buffer.

00h = 64B stride

4 Reserved Project: DevCL Format: MBZ

3:0 Fence Number Project: DevCL Format: U3

This field specifies the FENCE number corresponding to the placement of the uncompressed
frame buffer. (Note that only tiled frame buffers can be compressed). This field is double
buffered in hardware. Only the host accesses the uncompressed frame buffer using a fence.

 G45: Volume 1a Graphics Core

 375

8.21.4 FBC_COMMAND — Frame Buffer Compression Command
Register

FBC_COMMAND — Frame Buffer Compression Command Register
Register Type: MMIO

Address Offset: 320Ch

Project: DevCL

Default Value: 0000 0000h

Access: R/W

Size (in bits): 32

This register is used to request a frame buffer compression pass while in Single Pass mode.

Bit Description

31:1 Reserved Project: DevCL Format: MBZ

0 Compress Enable Project: DevCL Format: Enable

Software can set this bit to trigger compression in Single Pass mode. The compressor clears
this bit after the compression pass is completed. This bit is ignored in Periodic Mode (i.e., it
will not cause a compression pass and will always read as ‘0’).

8.21.5 FBC_STATUS — Frame Buffer Compression Status
Register

FBC_STATUS — Frame Buffer Compression Status Register
Register Type: MMIO

Address Offset: 3210h

Project: DevCL

Default Value: 2000 0000h

Access: RO / R/W

Size (in bits): 32

This register contains status information associated with the RLE-FBC function. The information is read-only in
normal operation, though some fields can be programmed as a TEST MODE.

Bit Description

31 Compressing

Project: DevCL

Security: RO

Default Value: 0h

Format: Flag

This status bit indicates that the device is currently within a compression pass.

 G45: Volume 1a Graphics Core

 376

FBC_STATUS — Frame Buffer Compression Status Register
30 Compressed

Project: DevCL

Security: RO normally, R/W TEST MODE

Default Value: 0h

Format: Flag

This bit indicates that a compressed frame buffer is available at the address contained in
the FB_CFB_BASE register.

In normal operation the compressor sets this bit when it has completed the compression
pass. During compression this bit is not set.

As a test mode this bit can be set if there is a software-created compressed buffer
available at the address in the FB_CFB_BASE register. Test-Mode software must check
that compression is not in progress before setting this bit. If RLE-FBC is enabled, the
compressor will clear this bit when it starts the next recompression pass.

29 Any Modified

Project: DevCL

Security: RO normally, R/W TEST MODE

Default Value: 1h

Format: Flag

1 = (default) Indicates that the frame buffer has been modified since the last compression
pass. The compressor sets this bit on the first write to the frame buffer from the
application/driver or upon an allocation within the render cache (e.g., as a result of Blt,
3D or MPEG activity). The fence number and frame buffer base address are used to
determine if a write modified the frame buffer. The bit is cleared by the compressor at
the start of the next compression pass.

In normal operation this bit is read only (software must not write this bit) and defaults to a
“1”.

As a test mode this bit can be set if there is a software-created compressed buffer with
modified lines available at the address contained the FB_CFB_BASE register. SW must check
that compression is not in progress before setting this bit. If enabled, the compressor will
clear this bit when it initiates the next compression pass. This test mode is used for
continuous-mode compression testing.

28:11 Reserved Project: DevCL Format: MBZ

10:0 Current Line Compressing

Project: DevCL

Security: RO

Default Value: 0h

Format: U11

This read only field indicates the line number that the compressor is currently processing.

If this field is 0 and the Compressing bit (Bit 31) is set, the compressor is currently on
display frame line 1.

 G45: Volume 1a Graphics Core

 377

8.21.6 FBC_CONTROL2— Frame Buffer Compression 2nd Control
Register

FBC_CONTROL2— Frame Buffer Compression 2nd Control Register
Register Type: MMIO

Address Offset: 3214h

Project: DevCL

Default Value: 0000 0000h

Access: R/W

Size (in bits): 32

This register is used to control the operation of RLE-FBC.

Bit Description

31:3 Reserved Project: DevCL Format: MBZ

4 Double Buffer FBC Fence and Fence_DisplayY Offset Register Fields

Project: DevCL

Default Value: 0h

Format: Disable

Value Name Description Project

0h Double buffer DevCL

1h Don’t double buffer DevCL

3:2 FBC C3 Mode

Project: DevCL

Default Value: 0h

Format: U2

Value Name Description Project

00 FBC IDLENESS is not looked at in order to enter
Self Refresh

DevCL

01
FBC IDLENESS is looked at in order to enter
Self Refresh

DevCL

10 FBC IDLENESS is looked at in order to enter Self
Refresh. But FBC enters IDLE as it finishes
compressing the current scanline pair and enters
IDLE as soon as csunit asserts the inc3 signal.

DevCL

11 Reserved Reserved DevCL

 G45: Volume 1a Graphics Core

 378

FBC_CONTROL2— Frame Buffer Compression 2nd Control Register
1 CPU Fence enable

Project: DevCL

Default Value: 0h

Format: Enable

Value Name Description Project

0h Display Buffer is not in a CPU fence. No
modifications are expected from CPU to the Display
Buffer.

DevCL

1h Display Buffer exists in a CPU fence. DevCL

0 Frame Buffer Compression Display Plane Select A/B

Project: DevCL

Default Value: 0h

Format: Flag

Value Name Description Project

0h Enable frame buffer compression on Plane A. All

1h Enable frame buffer compression on Plane B. All

Programming Notes Project

Before changing this bit s/w needs to make sure that FBC is disabled and the
“COMPRESSING” bit in the FBC_CONTROL register comes to a “0”.

DevCL

 G45: Volume 1a Graphics Core

 379

8.21.7 FBC_DISPYOFF — FBC Fence Display Buffer Y Offset

FBC_DISPYOFF — FBC Fence Display Buffer Y Offset
Register Type: MMIO

Address Offset: 321Bh

Project: DevCL

Default Value: 0000 0000h

Access: R/W

Size (in bits): 32

Bit Description

31:12 Reserved Project: DevCL Format: MBZ

11:0 Fence_YDisp Project: DevCL Format: U12

Y offset from the fence to the Display Buffer base

8.21.8 FBC_MOD_NUM— FBC Number of Modifications for
Recompression

FBC_MOD_NUM— FBC Number of Modifications for Recompression
Register Type: MMIO

Address Offset: 3220h

Project: DevCL

Default Value: 0000 0000h

Access: R/W

Size (in bits): 32

Trusted Type: 1

The purpose of this register is to avoid SR exit unless the programmed number of modifications have been
made to the Display buffer.

Bit Description

31:1 FBC_Mod_Num Project: DevCL Format: U12

Number of modifications to the display buffer required before recompression is attempted.

If the number of modifications to the Frame Buffer is not equal to the programmed count
value at the end of the interval, re-compression is not attempted.

0 FBC_Mod_Num_Valid Project: DevCL Format: Flag

Only if this bit is set will the above count value be looked at.

 G45: Volume 1a Graphics Core

 380

 G45: Volume 1a Graphics Core

 381

8.21.9 FBC_TAG — Frame Buffer Compression TAG Interface
(DEBUG)

FBC_TAG — Frame Buffer Compression TAG Interface (DEBUG)
Register Type: MMIO

Address Offset: 3300h

Project: All

Default Value: 00000000h;

Access: R/W

Size (in bits): 49x32

Trusted Type: 1

The device implements 49 DWords of Tag data for RLE-FBC compression. Each DWord contains storage for a
2-bit Tag value associated with a frame buffer line pair.

49 DWords are required to support the required 1536 display lines (= 48 x 32), as an extra DWord may be
required due to the alignment of the source (uncompressed) frame buffer. I.e., if the source frame buffer
starts on an odd tile line, line 0 corresponds to bit 1 of 3300 (bit 0 is unused) and the 49th DWord may be
required. If the source frame buffer starts on an even tile line, line 0 corresponds to bit 0 of 3300.

DWord Bit Description

0..48 31:30 Tag for lines
30&31

Project
:

All Format
:

FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

29:28 Tag for lines
29&28

Project
:

All Forma
t:

FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

27:26 Tag for lines
27&26

Project
:

All Forma
t:

FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

25:24 Tag for lines
25&24

Project
:

All Forma
t:

FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

23:22 Tag for lines
23&22

Project
:

All Forma
t:

FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

21:20 Tag for lines
21&20

Project
:

All Forma
t:

FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

 G45: Volume 1a Graphics Core

 382

FBC_TAG — Frame Buffer Compression TAG Interface (DEBUG)
19:18 Tag for lines

19&18
Project
:

All Forma
t:

FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

17:16 Tag for lines
17&16

Project
:

All Format
:

FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

15:14 Tag for lines
15&14

Project
:

All Forma
t:

FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

13:12 Tag for lines
13&12

Project
:

All Forma
t:

FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

11:10 Tag for lines
11&10

Project
:

All Forma
t:

FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

9:8 Tag for lines
9&8

Project
:

All Format
:

FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

7:6 Tag for lines
7&6

Project
:

All Format
:

FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

5:4 Tag for lines
5&4

Project
:

All Forma
t:

FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

3:2 Tag for lines
3&2

Project
:

All Format
:

FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

1:0 Tag for lines
1&0

Projec
t:

All Forma
t:

FBC Tag

For lines: (DWord) + 30 and (DWord) + 31

 G45: Volume 1a Graphics Core

 383

FBC_TAG — Frame Buffer Compression TAG Interface (DEBUG)
31:0 Tag for lines DW# + 1&0

Project: All

Format: FBC Tag See below

For lines: (DWord) + 30 and (DWord) + 31

Value Name Description Project

00 1Modified At least one of the associated lines was
modified since the last compression
pass started.

All

01 Uncompresse
d

The associated lines are uncompressed
and are candidate for compression in
the next pass

All

10 Uncompressib
le

The associated lines are
uncompressible and are not candidate
for compression in the next pass.

All

11 Compressed The associated lines are compressed All

 G45: Volume 1a Graphics Core

 384

8.22 Fence Registers

8.22.1 FENCE — Graphics Memory Fence Table Registers

FENCE — Graphics Memory Fence Table Registers
Register Type: MMIO
Address Offset: 3000h
Project: All
Default Value: 00000000h;
Access: R/W
Size (in bits): 16x64
Trusted Type: 1

Address Offset: 03000h – 03007h: FENCE_0

 :
 :
 0307Ch – 0307Fh: FENCE_15
The graphics device performs address translation from linear space to tiled space for a CPU access to graphics
memory (See Memory Interface Functions chapter for information on these memory layouts) using the fence
registers. Note that the fence registers are used only for CPU accesses to gfx memory. Graphics
rendering/display pipelines use Per Surface Tiling (PST) parameters (found in SURFACE_STATE – see the
Sampling Engine chapter) to access tiled gfx memory.

The intent of tiling is to locate graphics data that are close (in X and Y surface axes) in one physical memory
page while still locating some amount of line oriented data sequentially in memory for display efficiency. All 3D
rendering is done such that the QWords of any one span are all located in the same memory page, improving
rendering performance. Applications view surfaces as linear, hence when the cpu access a surface that is tiled,
the gfx hardware must perform linear to tiled address conversion and access the correct physical memory
location(s) to get the data.

Tiled memory is supported for rendering and display surfaces located in graphics memory. A tiled memory
surface is a surface that has a width and height that are subsets of the tiled region’s pitch and height. The
device maintains the constants required by the memory interface to perform the address translations. Each tiled
region can have a different pitch and size. The CPU-memory interface needs the surface pitch and tile height to
perform the address translation. It uses the GMAddr (PCI-BAR) offset address to compare with the fence start
and end address, to determine if the rendering surface is tiled. The tiled address is generated based on the tile
orientation determined from the matching fence register. Fence ranges are at least 4 KB aligned. Note that the
fence registers are used only for CPU accesses to graphics memory.

A Tile represents 4 KB of memory. Tile height is 8 rows for X major tiles and 32 rows for Y major tiles. Tile
Pitch is 512Bs for X major tiles and 128Bs for Y major tiles. The surface pitch is programmed in 128B units
such that the pitch is an integer multiple of “tile pitch”.

Engine restrictions on tile surface usage are detailed in Surface Placement Restrictions (Memory Interface
Functions). Note that X major tiles can be used for Sampler, Color, Depth, motion compensation references and
motion compensation destination, Display, Overlay, GDI Blt source and destination surfaces. Y major tiles can
be used for Sampler, depth, color and motion compensation assuming they do not need to be displayed. GDI
Blit operations, overlay and display cannot used Tiled Y orientations.

A “PST” graphics surface that will also be accessed via fence needs its base address to be tile row aligned.

Hardware handles the flushing of any pending cycles when software changes the fence upper/lower bounds.

Fence Table Registers occupy the address range specified above. Each Fence Table Register has the following
format.

FENCE registers are not reset by a graphics reset. They will maintain their values unless a full chipset reset is
performed.

 G45: Volume 1a Graphics Core

 385

FENCE — Graphics Memory Fence Table Registers
DWord Bit Description

0..15 63:44 Fence Upper Bound

Project: All

Address: GraphicsAddress[31:12]

Bits 31:12 of the ending Graphics Address of the fence region. Fence regions
must be aligned to a 4KB page. This address represents the last 4KB page of
the fence region (Upper Bound is included in the fence region).

Graphics Address is the offset within GMADR space.

45:32 Reserve
d

Project
:

All Format
:

MBZ

31:12 Fence Lower Bound

Project: All

Address: GraphicsAddress[31:12]

Bits 31:12 of the starting Graphics Address of the fence region. Fence regions
must be aligned to 4KB. This address represents the first 4KB page of the
fence region (Lowe Bound is included in the fence region).

Graphics Address is the offset within GMADR space.

11:2 Fence Pitch

Project: All

Default Value: 0h DefaultVaueDesc

Format: U10-1 Width in 128 bytes

This field specifies the width (pitch) of the fence region in multiple of “tile
width”. For Tile X this field must be programmed to a multiple of 512B (“003” is
the minimum value) and for Tile Y this field must be programmed to a multiple
of 128B (“000” is the minimum value).

000h = 128B
001h = 256B
...
3FFh = 128KB

1 Tile Walk

Project: All

Format: MI_TileWalk

This field specifies the spatial ordering of QWords within tiles.

Value Name Description Project

0h MI_TILE_XMAJO
R

Consecutive SWords (32 Bytes)
sequenced in the X direction

All

1h MI_TILE_YMAJO
R

Consecutive OWords (16 Bytes)
sequenced in the Y direction

All

 G45: Volume 1a Graphics Core

 386

FENCE — Graphics Memory Fence Table Registers
0 Fence Valid

Project: All

Format: MI_ FenceValid

This field specifies whether or not this fence register defines a fence region.

Value Name Description Project

0h MI_FENCE_INVALID All

1h MI_FENCE_VALID All

8.23 GFX MMIO – MCHBAR Aperture
Address Offset: 10000h – 13FFFh
Default Value: Same as MCHBAR
Access: Aligned Word, Dword or Qword Read/Write

This range defined in the graphics MMIO range is an alias with which graphics driver can read and
write registers defined in the MCHBAR MMIO space claimed thru Device #0. Attributes for
registers defined within the MCHBAR space are preserved when the same registers are accessed
via this space. Registers that the graphics driver requires access to are Rank Throttling, GMCH
Throttling, Thermal Sensor etc. Product specific EDS has the details of MCHBAR register set.

The Alias functions works for MMIO access from the CPU only. A command stream load register
immediate will drop the data and store register immediate will return all Zeros.

Graphics MMIO registers can be accessed thru MMIO BARs in function #0 and function #1 in
Device #2. The aliasing mechanism is turned off if memory access to the corresponding function is
turned off via software or in certain power states.

§§

	*:

