

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12

Intel
®
 OpenSource HD Graphics

Programmer’s Reference Manual (PRM)
Volume 2 Part 1: 3D/Media – 3D Pipeline
(Ivy Bridge)

For the 2012 Intel
®
 Core™ Processor Family

May 2012

Revision 1.0

NOTICE:
This document contains information on products in the design phase of development, and Intel
reserves the right to add or remove product features at any time, with or without changes to this
open source documentation.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 5/29/2012 2

Creative Commons License

You are free to Share — to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any
way that suggests that they endorse you or your use of the work).

No Derivative Works. You may not alter, transform, or build upon this work.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL

®
 PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly
or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR
ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS
SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND
EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES
AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM
OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH
MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS
NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY
OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to
change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips
Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2012, Intel Corporation. All rights reserved.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 5/29/2012 3

Contents

1. 3D Pipeline ... 9

1.1 Introduction .. 9
1.2 3D Pipeline Overview ... 9

1.2.1 3D Pipeline Stages ... 9
1.3 3D Primitives Overview .. 10
1.4 3D Pipeline State Overview ... 16

1.4.1 3D State Model ... 16
1.4.2 3DSTATE_CC_STATE_POINTERS .. 18
1.4.3 3DSTATE_BLEND_STATE_POINTERS ... 19
1.4.4 3DSTATE_DEPTH_STENCIL_STATE_POINTERS .. 20
1.4.5 3DSTATE_BINDING_TABLE_POINTERS .. 21

1.5 3DSTATE_SAMPLER_STATE_POINTERS.. 26
1.5.1 1.5.1 3DSTATE_SAMPLER_STATE_POINTERS_VS ... 26
1.5.2 3DSTATE_SAMPLER_STATE_POINTERS_HS ... 27
1.5.3 3DSTATE_SAMPLER_STATE_POINTERS_DS ... 28
1.5.4 3DSTATE_SAMPLER_STATE_POINTERS_GS ... 29
1.5.5 3DSTATE_SAMPLER_STATE_POINTERS_PS ... 30

1.6 3DSTATE_VIEWPORT_STATE_POINTERS.. 31
1.6.1 3DSTATE_VIEWPORT_STATE_POINTERS_CC ... 31
1.6.2 3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP ... 32
1.6.3 3DSTATE_SCISSOR_STATE_POINTERS ... 33

1.7 3DSTATE_URB Commands .. 34
1.7.1 3DSTATE_URB_VS ... 34
1.7.2 3DSTATE_URB_HS ... 36
1.7.3 3DSTATE_URB_DS ... 37
1.7.4 3DSTATE_URB_GS ... 39
1.7.5 Gather Constants ... 40
1.7.6 Dx9 Constant Buffer Generation .. 40

1.8 Vertex Data Overview .. 41
1.8.1 Vertex URB Entry (VUE) Formats .. 41
1.8.2 Vertex Positions .. 43

1.9 3D Pipeline Stage Overview .. 45
1.9.1 Generic 3D FF Unit Block Diagram .. 46
1.9.2 1Common 3D FF Unit Functions .. 46
1.9.3 Thread Initiation Management .. 48
1.9.4 Thread Request Generation ... 48
1.9.5 Thread Output Handling ... 54
1.9.6 VUE Readback ... 54
1.9.7 Statistics Gathering .. 54

1.10 Synchronization of the 3D Pipeline ... 56
1.10.1 Top-of-Pipe Synchronization .. 56
1.10.2 End-of-Pipe Synchronization .. 56
1.10.3 Synchronization Actions ... 57
1.10.4 PIPE_CONTROL Command .. 58

1.11 Push Constant URB Allocation ... 67
2. 3D Pipeline – Vertex Fetch (VF) Stage .. 71

2.1 Vertex Fetch (VF) Stage Overview .. 71
2.1.1 Input Assembly ... 71
2.1.2 Vertex Cache .. 72
2.1.3 Input Data: Push Model vs. Pull Model .. 72
2.1.4 Generated IDs .. 72

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 5/29/2012 4

2.2 Index Buffer (IB) ... 73
2.2.1 3DSTATE_INDEX_BUFFER .. 73
2.2.2 Index Buffer Access .. 76

2.3 Vertex Buffers (VBs) .. 76
2.3.1 3DSTATE_VERTEX_BUFFERS .. 77
2.3.2 VERTEX_BUFFER_STATE Structure ... 78
2.3.3 VERTEXDATA Buffers – SEQUENTIAL Access .. 81
2.3.4 VERTEXDATA Buffers – RANDOM Access .. 82
2.3.5 INSTANCEDATA Buffers ... 83

2.4 Input Vertex Definition .. 83
2.4.1 3DSTATE_VERTEX_ELEMENTS ... 84
2.4.2 VERTEX_ELEMENT_STATE Structure ... 85
2.4.3 Vertex Element Data Path .. 89

2.5 3D Primitive Processing ... 90
2.5.1 3D PRIMITIVE Command .. 90
2.5.2 Functional Overview ... 94
2.5.3 CommandInit .. 94
2.5.4 InstanceLoop .. 94
2.5.5 VertexLoop ... 95
2.5.6 VertexIndexGeneration ... 95
2.5.7 TerminatePrimitive .. 96
2.5.8 VertexCacheLookup ... 96
2.5.9 VertexElementLoop .. 96
2.5.10 SourceElementFetch .. 97
2.5.11 Format Conversion ... 97
2.5.12 DestinationFormatSelection ... 99
2.5.13 PrimitiveInfoGeneration .. 100
2.5.14 URBWrite .. 101
2.5.15 OutputBufferedVertex ... 101

2.6 Dangling Vertex Removal .. 101
2.7 Other Vertex Fetch Functionality ... 102

2.7.1 Statistics Gathering .. 102
3. 3D Pipeline – Vertex Shader (VS) Stage .. 104

3.1 VS Stage Overview .. 104
3.1.1 Vertex Caching ... 104

3.2 VS Stage Input ... 106
3.2.1 State ... 106
3.2.2 Input Vertices .. 116

3.3 SIMD4x2 VS Thread Request Generation ... 116
3.3.1 Thread Payload .. 117

3.4 SIMD4x2 VS Thread Execution ... 119
3.4.1 Vertex Output.. 119
3.4.2 Thread Termination .. 119

3.5 Primitive Output .. 119
3.6 Other VS Functions .. 119

3.6.1 Statistics Gathering .. 119
4. 3D Pipeline – Hull Shader (HS) Stage .. 121

4.1 HS Stage Overview .. 121
4.2 HS Stage Input ... 121

4.2.1 State ... 121
4.3 3DSTATE_CONSTANT_HS .. 124
4.4 3DSTATE_HS .. 127
4.5 Patch Object Staging ... 133
4.6 HS Thread Payload .. 133

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 5/29/2012 5

4.6.1 SINGLE_PATCH Layout (SINGLE-PATCH Mode) .. 133
4.7 HS Thread Execution ... 136

4.7.1 Dispatch Mask .. 137
4.8 ICP Dereferencing .. 137
4.9 Patch URB Entry (Patch Record) Output ... 137

4.9.1 Patch Header .. 137
4.9.2 DOMAIN_POINT Structure ... 139

4.10 Statistics Gathering ... 140
4.10.1 HS Invocations ... 140

5. 3D Pipeline – Tessellation Engine (TE) ... 141

5.1 3DSTATE_TE .. 141
5.2 Domain Types and Output Topologies .. 144
5.3 QUAD Domain Tessellation ... 144

5.3.1 TRI Domain Tessellation .. 146
5.4 ISOLINE Domain Tessellation ... 147
5.5 Patch Culling .. 147
5.6 Tessellation Factor Limits .. 147
5.7 Partitioning ... 148

6. 3D Pipeline – Domain Shader (DS) Stage ... 149

6.1 3DSTATE_DS .. 149
6.1.1 3DSTATE_PUSH_CONSTANT_ALLOC_DS ... 154
6.1.2 3DSTATE_CONSTANT_DS ... 156

6.2 Thread Payload .. 159
6.3 DS Thread Execution ... 163
6.4 Statistics Gathering .. 164

7. 3D Pipeline – Geometry Shader (GS) Stage ... 165

7.1 GS Stage Overview .. 165
7.2 GS Stage Input ... 165

7.2.1 State ... 165
7.3 Object Staging .. 178
7.4 GS Thread Request Generation .. 178

7.4.1 Object Vertex Ordering ... 178
7.4.2 GS Thread Payload High-Level Layout .. 182
7.4.3 GS Thread Payload SIMD 4x2 ... 183

7.5 GS Thread Execution ... 188
7.5.1 GS Thread Output .. 189
7.5.2 Stream Output .. 190
7.5.3 Thread Termination .. 191

7.6 Primitive Output .. 191
7.7 Other Functionality ... 191

7.7.1 Statistics Gathering .. 191
8. 3D Pipeline - Stream Output Logic (SOL) Stage .. 193

8.1 Input Buffering .. 193
8.2 Stream Output Buffers ... 195
8.3 Stream Output Function ... 196
8.4 3DSTATE_STREAMOUT .. 196
8.5 3DSTATE_SO_DECL_LIST Command ... 201

8.5.1 SO_DECL Structure Definition ... 205
8.6 3DSTATE_SO_BUFFER ... 207
8.7 Rendering Disable .. 208
8.8 Statistics ... 208

9. 3D Pipeline – Clip Stage ... 209

9.1 3D Pipeline – CLIP Stage Overview .. 209

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 5/29/2012 6

9.1.1 Clip Stage – General-Purpose Processing ... 209
9.1.2 Clip Stage – 3D Clipping .. 209
9.1.3 Fixed Function Clipper .. 210

9.2 Concepts .. 210
9.2.1 The Clip Volume ... 210
9.2.2 User-Specified Clipping .. 212
9.2.3 Guard Band .. 212
9.2.4 Vertex-Based Clip Testing & Considerations ... 215
9.2.5 3D Clipping ... 217

9.3 CLIP Stage Input .. 217
9.3.1 State ... 218

9.4 Object Staging .. 223
9.4.1 Partial Object Removal ... 223
9.4.2 ClipDetermination Function .. 223
9.4.3 ClipMode ... 226

9.5 Object Pass-Through ... 227
9.6 Primitive Output .. 228
9.7 Other Functionality ... 229

9.7.1 Statistics Gathering .. 229
10. 3D Pipeline - Strips and Fans (SF) Stage .. 230

10.1 Overview ... 230
10.1.1 Inputs from CLIP ... 230
10.1.2 Attribute Setup/Interpolation Process ... 231
10.1.3 Outputs to WM .. 231

10.2 Primitive Assembly ... 231
10.2.1 Point List Decomposition .. 234
10.2.2 Line List Decomposition ... 235
10.2.3 Line Strip Decomposition .. 236
10.2.4 Triangle List Decomposition ... 237
10.2.5 Triangle Strip Decomposition ... 238
10.2.6 Triangle Fan Decomposition ... 239
10.2.7 Polygon Decomposition .. 240
10.2.8 Rectangle List Decomposition .. 240

10.3 Object Setup ... 241
10.3.1 Invalid Position Culling (Pre/Post-Transform) .. 241
10.3.2 Viewport Transformation .. 241
10.3.3 Destination Origin Bias ... 241
10.3.4 Point Rasterization Rule Adjustment .. 242
10.3.5 Drawing Rectangle Offset Application .. 243
10.3.6 Point Width Application ... 246
10.3.7 Rectangle Completion .. 247
10.3.8 Vertex X,Y Clamping and Quantization .. 247
10.3.9 Degenerate Object Culling ... 248
10.3.10 Triangle Orientation (Face) Culling .. 248
10.3.11 Scissor Rectangle Clipping... 249
10.3.12 Line Rasterization ... 250
10.3.13 3DSTATE_SF ... 257
10.3.14 3DSTATE_SBE .. 263
10.3.15 SF_CLIP_VIEWPORT .. 270
10.3.16 SCISSOR_RECT .. 271

10.4 Attribute Interpolation Setup ... 272
10.4.1 Attribute Swizzling .. 272
10.4.2 1Interpolation Modes .. 273
10.4.3 Point Sprites ... 273

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 5/29/2012 7

10.5 Depth Offset .. 274
10.6 Other SF Functions ... 274

10.6.1 Statistics Gathering .. 274
11. 3D Pipeline – Windower (WM) Stage ... 275

11.1 Overview ... 275
11.1.1 Inputs from SF to WM ... 275

11.2 Windower Pipelined State... 276
11.2.1 3DSTATE_WM ... 276
11.2.2 3DSTATE_PS ... 283
11.2.3 3DSTATE_CONSTANT_PS ... 291
11.2.4 3DSTATE_PUSH_CONSTANT_ALLOC_PS ... 292
11.2.5 3DSTATE_SAMPLE_MASK... 293

11.3 Rasterization ... 294
11.3.1 Drawing Rectangle Clipping ... 295
11.3.2 Line Rasterization ... 295
11.3.3 Polygon (Triangle and Rectangle) Rasterization .. 300

11.4 Multisampling .. 303
11.4.1 Multisample Modes/State ... 303
11.4.2 3DSTATE_MULTISAMPLE .. 304

11.5 Early Depth/Stencil Processing .. 309
11.5.1 Depth Offset.. 309
11.5.2 Early Depth Test/Stencil Test/Write.. 310
11.5.3 Hierarchical Depth Buffer ... 311
11.5.4 Separate Stencil Buffer ... 314
11.5.5 Depth/Stencil Buffer State .. 315

11.6 Barycentric Attribute Interpolation .. 325
11.7 MCS Buffer for Render Target(s) ... 325
11.8 Render Target Fast Clear ... 328
11.9 Render Target Resolve... 328
11.10 Pixel Shader Thread Generation .. 329

11.10.1 Pixel Grouping (Dispatch Size) Control .. 329
11.10.2 Multisampling Effects on Pixel Shader Dispatch .. 332
11.10.3 PS Thread Payload for Normal Dispatch ... 336

11.11 Other WM Functions ... 349
11.11.1 Statistics Gathering .. 349

12. 3D Pipeline – Color Calculator (Output Merger)... 351

12.1 Overview ... 351
12.1.1 Alpha Coverage .. 352
12.1.2 Alpha Test ... 352
12.1.3 Depth Coordinate Offset ... 353
12.1.4 Stencil Test ... 353
12.1.5 Depth Test .. 354
12.1.6 Pre-Blend Color Clamping .. 354
12.1.7 Color Buffer Blending ... 355
12.1.8 Post-Blend Color Clamping .. 357
12.1.9 Dithering ... 358
12.1.10 Logic Ops.. 358
12.1.11 Buffer Update ... 359

12.2 Pixel Pipeline State Summary .. 361
12.2.1 COLOR_CALC_STATE .. 361
12.2.2 DEPTH_STENCIL_STATE ... 362
12.2.3 BLEND_STATE .. 366
12.2.4 CC_VIEWPORT ... 373

12.3 Other Pixel Pipeline Functions ... 374

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 5/29/2012 8

12.3.1 Statistics Gathering .. 374

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 9

1. 3D Pipeline

1.1 Introduction

This section covers the programming details for the 3D fixed functions.

1.2 3D Pipeline Overview

1.2.1 3D Pipeline Stages

The following table lists the various stages of the 3D pipeline and describes their major functions.

Pipeline Stage Functions Performed

Command Stream (CS)
The Command Stream stage is responsible for managing the 3D pipeline

and passing commands down the pipeline. In addition, the CS unit reads

“constant data” from memory buffers and places it in the URB.

Note that the CS stage is shared between the 3D and Media pipelines.

Vertex Fetch (VF) The Vertex Fetch stage, in response to 3D Primitive Processing

commands, is responsible for reading vertex data from memory,

reformatting it, and writing the results into Vertex URB Entries. It then

outputs primitives by passing references to the VUEs down the pipeline.

Vertex Shader (VS) The Vertex Shader stage is responsible for processing (shading) incoming

vertices by passing them to VS threads.

Hull Shader (HS)
The Hull Shader is responsible for processing (shading) incoming patch

primitives as part of the tessellation process.

Tesselation Engine (TE)
The Tessellation Engine is responsible for using tessellation factors

(computed in the HS stage) to tessellate U,V parametric domains into

domain point topologies.

Domain Shader (DS)
The Domain Shader stage is responsible for processing (shading) the

domain points (generated by the TE stage) into corresponding vertices.

Geometry Shader (GS) The Geometry Shader stage is responsible for processing incoming

objects by passing each object’s vertices to a GS thread.

Stream Output Logic (SOL)
The Stream Output Logic is responsible for outputting incoming object

vertices into Stream Out Buffers in memory.

Clipper (CLIP)
The Clipper stage performs Clip Tests on incoming objects and clips

objects if required.

Objects are clipped using fixed-function hardware.

Strip/Fan (SF)
The Strip/Fan stage performs object setup.

Object setup uses fixed-function hardware.

Windower/Masker (WM) The Windower/Masker performs object rasterization and spawns WM

thread (aka PS thread) to process (shade) the object pixels.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 10

1.3 3D Primitives Overview

The 3DPRIMITIVE command (defined in the VF Stage chapter) is used to submit 3D primitives to be

processed by the 3D pipeline. Typically the processing results in the rendering of pixel data into the

render targets, but this is not required.

Terminology Note: There is considerable confusion surrounding the term ‘primitive’, e.g., is a triangle strip

a ‘primitive’, or is a triangle within a triangle strip a ‘primitive’? In this spec, we will try to avoid ambiguity

by using the term ‘object’ to represent the basic shapes (point, line, triangle), and ‘topology’ to represent

input geometry (strips, lists, etc.). Unfortunately, terms like ‘3DPRIMITIVE’ must remain for legacy

reasons.

The following table describes the basic primitive topology types supported in the 3D pipeline.

Notes:

 There are several variants of the basic topologies. These have been introduced to allow slight
variations in behavior without requiring a state change.

 Number of vertices:

o Dangling Vertices: Topologies have an “expected” number of vertices in order to
form complete objects within the topologies (e.g., LINELIST is expected to have an
even number of vertices). The actual number of vertices specified in the
3DPRIMITIVE command, and as output from the GS unit, is allowed to deviate from
this expected number --- in which case any “dangling” vertices are discarded. The
removal of dangling vertices is initially performed in the VF unit. In order to filter out
dangling vertices emitted by GS threads, the CLIP unit also performs dangling-vertex
removal at its input.

3D Primitive Topology Types

3D Primitive Topology Type
(ordered alphabetically) Description

LINELIST
A list of independent line objects (2 vertices per line).

Programming Restrictions:

Normal usage expects a multiple of 2 vertices, though incomplete

objects are silently ignored.

LINELIST_ADJ
A list of independent line objects with adjacency information (4

vertices per line).

Programming Restrictions:

Normal usage expects a multiple of 4 vertices, though incomplete

objects are silently ignored.

Not valid as output from GS thread.

LINELOOP
Similar to a 3DPRIM_LINESTRIP, though the last vertex is

connected back to the initial vertex via a line object. The

LINELOOP topology is converted to LINESTRIP topology at the

beginning of the 3D pipeline.

Programming Restrictions:

Normal usage expects at least 2 vertices, though incomplete objects

are silently ignored. (The 2-vertex case is required by OGL).

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 11

3D Primitive Topology Type
(ordered alphabetically) Description

Not valid after the GS stage (i.e., must be converted by a GS thread

to some other primitive type).

LINESTRIP
A list of vertices connected such that, after the first vertex, each

additional vertex is associated with the previous vertex to define a

connected line object.

Programming Restrictions:

Normal usage expects at least 2 vertices, though incomplete objects

are silently ignored.

LINESTRIP_ADJ
A list of vertices connected such that, after the first vertex, each

additional vertex is associated with the previous vertex to define

connected line object. The first and last segments are adjacent–only

vertices.

Programming Restrictions:

Normal usage expects at least 4 vertices, though incomplete objects

are silently ignored.

Not valid as output from GS thread.

LINESTRIP_BF
 Similar to LINESTRIP, except treated as “backfacing’ during

rasterization (stencil test).

This can be used to support “line” polygon fill mode when two-sided

stencil is enabled.

LINESTRIP_CONT
 Similar to LINESTRIP, except LineStipple (if enabled) is continued

(vs. reset) at the start of the primitive topology.

This can be used to support line stipple when the API-provided

primitive is split across multiple tolopologies.

LINESTRIP_CONT_BF Combination of LINESTRIP_BF and LINESTRIP_CONT variations.

POINTLIST A list of point objects (1 vertex per point).

POINTLIST_BF
 Similar to POINTLIST, except treated as “backfacing’ during

rasterization (stencil test).

This can be used to support “point” polygon fill mode when two-

sided stencil is enabled.

POLYGON
Similar to TRIFAN, though the first vertex always provides the “flat-

shaded” values (vs. this being programmable through state).

Programming Restrictions:

Normal usage expects at least 3 vertices, though incomplete objects

are silently ignored.

QUADLIST
A list of independent quad objects (4 vertices per quad). The

QUADLIST topology is converted to POLYGON topology at the

beginning of the 3D pipeline.

Programming Restrictions:

Normal usage expects a multiple of 4 vertices, though incomplete

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 12

3D Primitive Topology Type
(ordered alphabetically) Description

objects are silently ignored.

QUADSTRIP
A list of vertices connected such that, after the first two vertices,

each additional pair of vertices are associated with the previous two

vertices to define a connected quad object.

Programming Restrictions:

Normal usage expects an even number (4 or greater) of vertices,

though incomplete objects are silently ignored.

: To work around IVB bug #3665983 the driver must detect the use

of a QUADSTRIP input topology along with the use of primitive ID in

the pixel shader, and correspondingly shift right by 1the primitive ID

in the pixel shader.

RECTLIST
A list of independent rectangles, where only 3 vertices are provided

per rectangle object, with the fourth vertex implied by the definition

of a rectangle. V0=LowerRight, V1=LowerLeft, V2=UpperLeft.

Implied V3 = V0-V1+V2.

Programming Restrictions:

Normal usage expects a multiple of 3 vertices, though incomplete

objects are silently ignored.

The RECTLIST primitive is supported specifically for 2D operations

(e.g., BLTs and “stretch” BLTs) and not as a general 3D primitive.

Due to this, a number of restrictions apply to the use of RECTLIST:

Must utilize “screen space” coordinates (VPOS_SCREENSPACE)

when the primitive reaches the CLIP stage. The W component of

position must be 1.0 for all vertices. The 3 vertices of each object

should specify a screen-aligned rectangle (after the implied vertex is

computed).

Clipping: Must not require clipping or rely on the CLIP unit’s

ClipTest logic to determine if clipping is required. Either the CLIP

unit should be DISABLED, or the CLIP unit’s Clip Mode should be

set to a value other than CLIPMODE_NORMAL.

Viewport Mapping must be DISABLED (as is typical with the use of

screen-space coordinates).

TRIFAN
Triangle objects arranged in a fan (or polygon). The initial vertex is

maintained as a common vertex. After the second vertex, each

additional vertex is associated with the previous vertex and the

common vertex to define a connected triangle object .

Programming Restrictions:

Normal usage expects at least 3 vertices, though incomplete objects

are silently ignored.

TRIFAN_NOSTIPPLE
Similar to TRIFAN, but poylgon stipple is not applied (even if

enabled).

This can be used to support “point” polygon fill mode, under the

combination of the following conditions:

(a) when the frontfacing and backfacing polygon fill modes are

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 13

3D Primitive Topology Type
(ordered alphabetically) Description

different (so the final fill mode is not known to the driver),

(b) one of the fill modes is “point” and the other is “solid”,

(c) point mode is being emulated by converting the point into a

trifan,

(d) polygon stipple is enabled. In this case, polygon stipple should

not be applied to the points-emulated-as-trifans.

TRILIST
A list of independent triangle objects (3 vertices per triangle).

Programming Restrictions:

Normal usage expects a multiple of 3 vertices, though incomplete

objects are silently ignored.

TRILIST_ADJ
A list of independent triangle objects with adjacency information (6

vertices per triangle).

Programming Restrictions:

Normal usage expects a multiple of 6 vertices, though incomplete

objects are silently ignored.

Not valid as output from GS thread.

TRISTRIP
A list of vertices connected such that, after the first two vertices,

each additional vertex is associated with the last two vertices to

define a connected triangle object.

Programming Restrictions:

Normal usage expects at least 3 vertices, though incomplete objects

are silently ignored.

TRISTRIP_ADJ
A list of vertices where the even-numbered (including 0th) vertices

are connected such that, after the first two vertex pairs, each

additional even-numbered vertex is associated with the last two

even-numbered vertices to define a connected triangle object. The

odd-numbered vertices are adjacent-only vertices.

Programming Restrictions:

Normal usage expects at least 6 vertices, though incomplete objects

are silently ignored.

Not valid as output from GS thread.

TRISTRIP_REVERSE Similar to TRISTRIP, though the sense of orientation (winding order)

is reversed – this allows SW to break long tristrips into smaller pieces

and still maintain correct face orientations.

PATCHLIST_n List of n-vertex “patch” objects. These topologies cannot be

rendered directly – the tessellation units must be utilized to convert

them into points, lines or triangles in order to produce rasterization

results. (VS, GS and StreamOutput operations can also be

performed).

The following diagrams illustrate the basic 3D primitive topologies. (Variants are not shown if they have

the same definition with respect to the information provided in the diagrams).

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 14

A note on the arrows you see below: These arrows are intended to show the vertex ordering of triangles

that are to be considered having “clockwise” winding order in screen space. Effectively, the arrows show

the order in which vertices are used in the cross-product (area, determinant) computation. Note that for

TRISTRIP, this requires that either the order of odd-numbered triangles be reversed in the cross-product

or the sign of the result of the normally-ordered cross-product be flipped (these are identical operations).

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 15

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 16

1.4 3D Pipeline State Overview

1.4.1 3D State Model

The locations of the sampler state and viewport state pointers have been moved from the state

descriptors to the ring buffer as compared to In addition, the state for the fixed function pipeline has

been moved from indirect state descriptors to inline commands. The color calculator state has been

repartitioned.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 17

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 18

1.4.2 3DSTATE_CC_STATE_POINTERS

3DSTATE_CC_STATE_POINTERS

Length Bias: 2

The 3DSTATE_CC_STATE_POINTERS command is used to set up the pointers to the color calculator state.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 0Eh 3DSTATE_CC_STATE_POINTERS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Project: All

Format: =n

1 31:6 Pointer to COLOR_CALC_STATE

Project: All

Format: DynamicStateOffset[31:6]COLOR_CALC_STATE

Specifies the 64-byte aligned offset of the COLOR_CALC_STATE. This offset is relative to the

Dynamic State Base Address.

5:1 Reserved

Project: All

Format: MBZ

0 Reserved

Format: MB0

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 19

1.4.3 3DSTATE_BLEND_STATE_POINTERS

3DSTATE_BLEND_STATE_POINTERS

Length Bias: 2

The 3DSTATE_BLEND_STATE_POINTERS command is used to set up the pointers to the color calculator state.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 24h 3DSTATE_BLEND_STATE_POINTERS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Project: All

Format: =n

1 31:6 Pointer to BLEND_STATE

Project: All

Format: DynamicStateOffset[31:6]BLEND_STATE*8

Specifies the 64-byte aligned offset of the BLEND_STATE. This offset is relative to the Dynamic State

Base Address.

5:1 Reserved

Project: All

Format: MBZ

0 Reserved

Format: MB0

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 20

1.4.4 3DSTATE_DEPTH_STENCIL_STATE_POINTERS

3DSTATE_DEPTH_STENCIL_STATE_POINTERS

Length Bias: 2

Set up the pointer to the Depth Stencil state.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 25h 3DSTATE_DEPTH_STENCIL_STATE_POINTERS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Project: All

Format: =n

1 31:6 Pointer to DEPTH_STENCIL_STATE

Project: All

Format: DynamicStateOffset[31:6]DEPTH_STENCIL_STATE

Specifies the 64-byte aligned offset of the DEPTH_STENCIL_STATE. This offset is relative to the

Dynamic State Base Address.

5:1 Reserved

Project: All

Format: MBZ

0 Reserved

Format: MB0

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 21

1.4.5 3DSTATE_BINDING_TABLE_POINTERS

1.4.5.1 3DSTATE_BINDING_TABLE_POINTERS_VS

3DSTATE_BINDING_TABLE_POINTERS_VS

Length Bias: 2

The 3DSTATE_BINDING_TABLE_POINTERS_VS command is used to define the location of fixed functions’

BINDING_TABLE_STATE. Only some of the fixed functions utilize binding tables.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 26h 3DSTATE_BINDING_TABLE_POINTERS_VS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Project: All

Format: =n

1 31:16 Reserved

Project: All

Format: MBZ

15:5 Pointer to VS Binding Table

Format: SurfaceStateOffset[15:5]BINDING_TABLE_STATE*256

Specifies the 32-byte aligned address offset of the VS function’s BINDING_TABLE_STATE. This

offset is relative to the Surface State Base Address.

4:0 Reserved

Project: All

Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 22

1.4.5.2 3DSTATE_BINDING_TABLE_POINTERS_HS

3DSTATE_BINDING_TABLE_POINTERS_HS

Length Bias: 2

The 3DSTATE_BINDING_TABLE_POINTERS_HS command is used to define the location of fixed functions’

BINDING_TABLE_STATE. Only some of the fixed functions utilize binding tables.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 27h 3DSTATE_BINDING_TABLE_POINTERS_HS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Project: All

Format: =n

1 31:16 Reserved

Project: All

Format: MBZ

15:5 Pointer to HS Binding Table

Format: SurfaceStateOffset[15:5]BINDING_TABLE_STATE*256

Specifies the 32-byte aligned address offset of the HS function’s BINDING_TABLE_STATE. This

offset is relative to the Surface State Base Address.

4:0 Reserved

Project: All

Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 23

1.4.5.3 3DSTATE_BINDING_TABLE_POINTERS_DS

3DSTATE_BINDING_TABLE_POINTERS_DS

Length Bias: 2

The 3DSTATE_BINDING_TABLE_POINTERS_DS command is used to define the location of fixed functions’

BINDING_TABLE_STATE. Only some of the fixed functions utilize binding tables.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 28h 3DSTATE_BINDING_TABLE_POINTERS_DS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Project: All

Format: =n

1 31:16 Reserved

Project: All

Format: MBZ

15:5 Pointer to DS Binding Table

Format: SurfaceStateOffset[15:5]BINDING_TABLE_STATE*256

Specifies the 32-byte aligned address offset of the DS function’s BINDING_TABLE_STATE. This

offset is relative to the Surface State Base Address.

4:0 Reserved

Project: All

Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 24

1.4.5.4 3DSTATE_BINDING_TABLE_POINTERS_GS

3DSTATE_BINDING_TABLE_POINTERS_GS

Length Bias: 2

The 3DSTATE_BINDING_TABLE_POINTERS_GS command is used to define the location of fixed functions’

BINDING_TABLE_STATE. Only some of the fixed functions utilize binding tables.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 29h 3DSTATE_BINDING_TABLE_POINTERS_GS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Project: All

Format: =n

1 31:16 Reserved

Project: All

Format: MBZ

15:5 Pointer to GS Binding Table

Format: SurfaceStateOffset[15:5]BINDING_TABLE_STATE*256

Specifies the 32-byte aligned address offset of the GS function’s BINDING_TABLE_STATE. This

offset is relative to the Surface State Base Address.

4:0 Reserved

Project: All

Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 25

1.4.5.5 3DSTATE_BINDING_TABLE_POINTERS_PS

3DSTATE_BINDING_TABLE_POINTERS_PS

Length Bias: 2

The 3DSTATE_BINDING_TABLE_POINTERS_PS command is used to define the location of fixed functions’

BINDING_TABLE_STATE. Only some of the fixed functions utilize binding tables.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 2Ah 3DSTATE_BINDING_TABLE_POINTERS_PS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Project: All

Format: =n

1 31:16 Reserved

Project: All

Format: MBZ

15:5 Pointer to PS Binding Table

Format: SurfaceStateOffset[15:5]BINDING_TABLE_STATE*256

Specifies the 32-byte aligned address offset of the PS function’s BINDING_TABLE_STATE. This

offset is relative to the Surface State Base Address.

4:0 Reserved

Project: All

Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 26

1.5 3DSTATE_SAMPLER_STATE_POINTERS

1.5.1 1.5.1 3DSTATE_SAMPLER_STATE_POINTERS_VS

3DSTATE_SAMPLER_STATE_POINTERS_VS

Length Bias: 2

The 3DSTATE_SAMPLER_STATE_POINTERS_VS command is used to define the location of VS

SAMPLER_STATE table. Only some of the fixed functions utilize sampler state tables.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 2Bh 3DSTATE_SAMPLER_STATE_POINTERS_VS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Format: =n

1 31:5 Pointer to VS Sampler State

Project: All

Format: DynamicStateOffset[31:5]SAMPLER_STATE*16

Specifies the 32-byte aligned address offset of the VS function’s SAMPLER_STATE table. This offset

is relative to the Dynamic State Base Address.

4:0 Reserved

Project: All

Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 27

1.5.2 3DSTATE_SAMPLER_STATE_POINTERS_HS

3DSTATE_SAMPLER_STATE_POINTERS_HS

Length Bias: 2

The 3DSTATE_SAMPLER_STATE_POINTERS_HS command is used to define the location of HS

SAMPLER_STATE table. Only some of the fixed functions utilize sampler state tables.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 2Ch 3DSTATE_SAMPLER_STATE_POINTERS_HS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Format: =n

1 31:5 Pointer to HS Sampler State

Project: All

Format: DynamicStateOffset[31:5]SAMPLER_STATE*16

Specifies the 32-byte aligned address offset of the HS function’s SAMPLER_STATE table. This offset

is relative to the Dynamic State Base Address.

4:0 Reserved

Project: All

Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 28

1.5.3 3DSTATE_SAMPLER_STATE_POINTERS_DS

3DSTATE_SAMPLER_STATE_POINTERS_DS

Length Bias: 2

The 3DSTATE_SAMPLER_STATE_POINTERS_DS command is used to define the location of DS

SAMPLER_STATE table. Only some of the fixed functions utilize sampler state tables.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 2Dh 3DSTATE_SAMPLER_STATE_POINTERS_DS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Format: =n

1 31:5 Pointer to DS Sampler State

Project: All

Format: DynamicStateOffset[31:5]SAMPLER_STATE*16

Specifies the 32-byte aligned address offset of the DS function’s SAMPLER_STATE table. This offset

is relative to the Dynamic State Base Address.

4:0 Reserved

Project: All

Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 29

1.5.4 3DSTATE_SAMPLER_STATE_POINTERS_GS

3DSTATE_SAMPLER_STATE_POINTERS_GS

Length Bias: 2

The 3DSTATE_SAMPLER_STATE_POINTERS_GS command is used to define the location of GS

SAMPLER_STATE table. Only some of the fixed functions utilize sampler state tables.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 2Eh 3DSTATE_SAMPLER_STATE_POINTERS_GS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Format: =n

1 31:5 Pointer to GS Sampler State

Project: All

Format: DynamicStateOffset[31:5]SAMPLER_STATE*16

Specifies the 32-byte aligned address offset of the GS function’s SAMPLER_STATE table. This offset

is relative to the Dynamic State Base Address.

4:0 Reserved

Project: All

Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 30

1.5.5 3DSTATE_SAMPLER_STATE_POINTERS_PS

3DSTATE_SAMPLER_STATE_POINTERS_PS

Length Bias: 2

The 3DSTATE_SAMPLER_STATE_POINTERS_PS command is used to define the location of PS

SAMPLER_STATE table. Only some of the fixed functions utilize sampler state tables.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 2Fh 3DSTATE_SAMPLER_STATE_POINTERS_PS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Format: =n

1 31:5 Pointer to PS Sampler State

Project: All

Format: DynamicStateOffset[31:5]SAMPLER_STATE*16

Specifies the 32-byte aligned address offset of the PS function’s SAMPLER_STATE table. This offset

is relative to the Dynamic State Base Address.

4:0 Reserved

Project: All

Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 31

1.6 3DSTATE_VIEWPORT_STATE_POINTERS

1.6.1 3DSTATE_VIEWPORT_STATE_POINTERS_CC

3DSTATE_VIEWPORT_STATE_POINTERS_CC

Length Bias: 2

The 3DSTATE_VIEWPORT_STATE_POINTERS_CC command is used to define the location of fixed functions’

viewport state table.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 23h 3DSTATE_VIEWPORT_STATE_POINTERS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Format: =n

1 31:5 Pointer to CC_VIEWPORT

Project: All

Format: DynamicStateOffset[31:5]CC_VIEWPORT*16

Specifies the 32-byte aligned address offset of the CC_VIEWPORT state. This offset is relative to the

Dynamic State Base Address.

4:0 Reserved

Project: All

Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 32

1.6.2 3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP

3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP

Length Bias: 2

The 3DSTATE_VIEWPORT_STATE_POINTERS_CLIP command is used to define the location of fixed functions’

viewport state table.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 21h 3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Format: =n

1 31:6 Pointer to SF_CLIP_VIEWPORT

Project: All

Format: DynamicStateOffset[31:6]SF_CLIP_VIEWPORT*16

Specifies the 64-byte aligned address offset of the SF_CLIP_VIEWPORT state. This offset is relative to

the Dynamic State Base Address.

5:0 Reserved

Project: All

Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 33

1.6.3 3DSTATE_SCISSOR_STATE_POINTERS

3DSTATE_SCISSOR_STATE_POINTERS

Length Bias: 2

The 3DSTATE_SCISSOR_STATE_POINTERS command is used to define the location of the indirect

SCISSOR_RECT state.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 0Fh 3DSTATE_SCISSOR_STATE_POINTERS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Format: =n

1 31:5 Pointer to SCISSOR_RECT

Project: All

Format: DynamicStateOffset[31:5]SCISSOR_RECT*16

Specifies the 32-byte aligned address offset of the SCISSOR_RECT state. This offset is relative to the

Dynamic State Base Address.

4:0 Reserved

Project: All

Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 34

1.7 3DSTATE_URB Commands

1.7.1 3DSTATE_URB_VS

3DSTATE_URB_VS

Length Bias: 2

Description Project

VS URB Entry Allocation Size equal to 4(5 512-bit URB rows) may cause performance to decrease due to

banking in the URB. Element sizes of 16 to 20 should be programmed with six 512-bit URB rows.

This command may not overlap with the push constants in the URB defined by the

3DSTATE_PUSH_CONSTANT_ALLOC_VS, 3DSTATE_PUSH_CONSTANT_ALLOC_DS,

3DSTATE_PUSH_CONSTANT_ALLOC_HS, and 3DSTATE_PUSH_CONSTANT_ALLOC_GS commands.

Programming Notes

3DSTATE_URB_HS, 3DSTATE_URB_DS, and 3DSTATE_URB_GS must also be programmed in order for the

programming of this state to be valid.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 30h 3DSTATE_URB_VS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Project: All

Format: =n

1 31 Reserved

Format: MBZ

30 Reserved

Format: MBZ

29:25 VS URB Starting Address

Format: U5

Offset from the start of the URB memory where VS starts its allocation, specified in multiples of 8 KB.

Value Name Project

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 35

3DSTATE_URB_VS

[0,31]

[0,15]

24:16 VS URB Entry Allocation Size

Project: All

Format: U9-1 count of 512-bit units

Specifies the length of each URB entry owned by VS. This field is always used (even if VS Function

Enable is DISABLED).

Programming Notes

Programming Restriction: As the VS URB entry serves as both the per-vertex input and output of the

VS shader, the VS URB Allocation Size must be sized to the maximum of the vertex input and output

structures.

15:0 VS Number of URB Entries

Project: All

Format: U16

Specifies the number of URB entries that are used by VS. This field is always used (even if VS

Function Enable is DISABLED).

Value Name Project

[32,704]

[32,512]

Programming Notes

Programming Restriction: VS Number of URB Entries must be divisible by 8 if the VS URB Entry

Allocation Size is less than 9 512-bit URB entries.“2:0” = reserved “000b”

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 36

1.7.2 3DSTATE_URB_HS

3DSTATE_URB_HS

Length Bias: 2

This command may not overlap with the push constants in the URB defined by the

3DSTATE_PUSH_CONSTANT_ALLOC_VS, 3DSTATE_PUSH_CONSTANT_ALLOC_DS,

3DSTATE_PUSH_CONSTANT_ALLOC_HS, and 3DSTATE_PUSH_CONSTANT_ALLOC_GS commands.

Programming Notes

3DSTATE_URB_VS, 3DSTATE_URB_DS, and 3DSTATE_URB_GS must also be programmed in order for the

programming of this state to be valid.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 31h 3DSTATE_URB_HS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Project: All

Format: =n

1 31 Reserved

Format: MBZ

30 Reserved

Format: MBZ

29:25 HS URB Starting Address

Format: U5

Offset from the start of the URB memory where HS starts its allocation, specified in multiples of 8 KB.

Value Name Project

[0,31]

[0,15]

24:16 HS URB Entry Allocation Size

Project: All

Format: U9-1 Count of 512-bit units

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 37

3DSTATE_URB_HS

Specifies the length of each URB entry owned by HS. This field is always used (even if HS Function

Enable is DISABLED).

15:0 HS Number of URB Entries

Project: All

Specifies the number of URB entries that are used by HS. This field is always used (even if HS

Function Enable is DISABLED).

Programming Restriction:HS Number of URB Entries must be divisible by 8 if the HS URB Entry

Allocation Size is less than 9 512-bit URB entries.“2:0” = reserved “000”

Value Name Project

[0,64]

[0,32]

1.7.3 3DSTATE_URB_DS

3DSTATE_URB_DS

Length Bias: 2

This command may not overlap with the push constants in the URB defined by the

3DSTATE_PUSH_CONSTANT_ALLOC_VS, 3DSTATE_PUSH_CONSTANT_ALLOC_DS,

3DSTATE_PUSH_CONSTANT_ALLOC_HS, and 3DSTATE_PUSH_CONSTANT_ALLOC_GS commands.

Programming Notes

3DSTATE_URB_VS, 3DSTATE_URB_HS, and 3DSTATE_URB_GS must also be programmed in order for the

programming of this state to be valid.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 32h 3DSTATE_URB_DS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Project: All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 38

3DSTATE_URB_DS

Format: =n

1 31 Reserved

Format: MBZ

30 Reserved

Format: MBZ

29:25 DS URB Starting Address

Format: U5

Offset from the start of the URB memory where DS starts its allocation, specified in multiples of 8 KB.

Value Name Project

[0,31]

[0,15]

24:16 DS URB Entry Allocation Size

Project: All

Format: U9-1 Count of 512-bit units

Specifies the length of each URB entry owned by DS. This field is always used (even if DS Function

Enable is DISABLED).

Value Name

[0,9]

15:0 DS Number of URB Entries

Project: All

Description Project

Specifies the number of URB entries that are used by DS. This field is always used (even if DS

Function Enable is DISABLED).

If Domain Shader Thread Dispatch is Enabled then the minimum number handles that must be

allocated is 138 URB entries.

"2:0" = reserved "000"

Value Name Project

[0,448]

[0,288]

Programming Notes

DS Number of URB Entries must be divisible by 8 if the DS URB Entry Allocation Size is less than 9

512-bit URB entries.If Domain Shader Thread Dispatch is Enabled then the minimum number of

handles that must be allocated is 10 URB entries.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 39

1.7.4 3DSTATE_URB_GS

3DSTATE_URB_GS

Length Bias: 2

This command may not overlap with the push constants in the URB defined by the

3DSTATE_PUSH_CONSTANT_ALLOC_VS, 3DSTATE_PUSH_CONSTANT_ALLOC_DS,

3DSTATE_PUSH_CONSTANT_ALLOC_HS, and 3DSTATE_PUSH_CONSTANT_ALLOC_GS commands.

Programming Notes

3DSTATE_URB_VS, 3DSTATE_URB_HS, and 3DSTATE_URB_DS must also be programmed in order for the

programming of this state to be valid.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 33h 3DSTATE_URB_GS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h DWORD_COUNT_n

Project: All

Format: =n

1 31 Reserved

Format: MBZ

30 Reserved

Format: MBZ

29:25 GS URB Starting Address

Format: U5

Offset from the start of the URB memory where GS starts its allocation, specified in multiples of 8

KB.

Value Name Project

[0,31]

[0,15]

24:16 GS URB Entry Allocation Size

Project: All

Format: U9-1 512-bit units

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 40

3DSTATE_URB_GS

Specifies the length of each URB entry owned by GS. This field is always used (even if GS

Function Enable is DISABLED).

15:0 GS Number of URB Entries

Project: All

Specifies the number of URB entries that are used by GS. This field is always used (even if GS

Function Enable is DISABLED).

Programming Restriction:

GS Number of URB Entries must be divisible by 8 if the GS URB Entry Allocation Size is less than

9 512-bit URB entries.

“2:0” = reserved “000”

Value Name Project

[0,320]

[0,192]

1.7.5 Gather Constants

In Dx10 the app can provide up to 16 constant buffers. The compiler does some optimizations of constant

usage and determines which elements of which constants should be packed in which push constant

register for optimum shader performance. While this gathering and packing of constant elements into

push constant registers optimizes the shader, it cause the driver additional work at draw call time, since

the driver must do the gather and packing at draw time. A new cmd 3D_STATE_GATHER_CONSTANT_*

is added to offload the gather and packing functions from the driver. There are 5 FF which support push

constants (VS, GS, DS, HS, PS) and they all have corresponding gather cmds. The compiler generates a

gather table which instructs what elements of what buffers should be pack into the gather buffer. The

gather table indexes the BT to get the surface state which points to the constant buffer. The resource

streamer fills gather buffer when it executes a 3D_STATE_GATHER_CONSTANT_* cmd. Once the

gather buffer has been filled, the Cmd streamer will execute the 3D_STATE_CONSTANT_* to load the

push constant into the URB.

Note: The gather push constants can only be used if the HW generated binding tables are also used.

1.7.6 Dx9 Constant Buffer Generation

The Dx9 constant model is a set of register that the App can incrementally update. The HW requires a

constant buffer which lives until the last shader using that buffer retires. To offload the driver the

3DSTATE_DX9_CONSTANT*_* cmds are added. These commands allow the on-die constant register to

be maintained. When all the edits to the constant register have been completed, the

3DSTATE_DX9_GENERATE_ACTIVE_* cmd is used to write out a constant buffer to the Dx9 Constant

buffer pool. The Dx9 constant buffers are fixed 8KB in size, w/ a large portion of the 2nd 4KB unused.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 41

1.8 Vertex Data Overview

The 3D pipeline FF stages (past VF) receive input 3D primitives as a stream of vertex information

packets. (These packets are not directly visible to software). Much of the data associated with a vertex is

passed indirectly via a VUE handle. The information provided in vertex packets includes:

 The URB Handle of the VUE: This is used by the FF unit to refer to the VUE and perform any
required operations on it (e.g., cause it to be read into the thread payload, dereference it, etc.).

 Primitive Topology Information: This information is used to identify/delineate primitive topologies
in the 3D pipeline. Initially, the VF unit supplies this information, which then passes through the VS
stage unchanged. GS and CLIP threads must supply this information with each vertex they produce
(via the URB_WRITE message). If a FF unit directly outputs vertices (that were not generated by a
thread they spawned), that FF unit is responsible for providing this information.

o PrimType: The type of topology, as defined by the corresponding field of the
3DPRIMITIVE command.

o StartPrim: TRUE only for the first vertex of a topology.

o EndPrim: TRUE only for the last vertex of a topology.

o The FF unit which owns the VUE

o Sequence numbers which uniquely identify (with some limits) the VUE output by the
owning FF unit. (This data can be used to trap on a specific vertex)

 (Possibly, depending on FF unit) Data read back from the Vertex Header of the VUE.

1.8.1 Vertex URB Entry (VUE) Formats

In general, vertex data is stored in Vertex URB Entries (VUEs) in the URB, processed by CLIP threads,

and only referenced by the pipeline stages indirectly via VUE handles. Therefore (for the most part) the

contents/format of the vertex data is not exposed to 3D pipeline hardware – the FF units are typically only

aware of the handles and sizes of VUEs.

VUEs are written in two ways:

 At the top of the 3D Geometry pipeline, the VF’s InputAssembly function creates VUEs and initializes
them from data extracted from Vertex Buffers as well as internally-generated data.

 VS, GS, and CLIP threads can compute, format and write new VUEs as thread output.

There are only two points in the 3D FF pipeline where the FF units are exposed to the VUE data.

Otherwise the VUE remains opaque to the 3D pipeline hardware.

 Just prior to the CLIP stage, all VUEs are read-back:

o : Optional readback of ClipDistance values (up to 8 floats in an aligned 256-bit URB
row)

 Just after the CLIP stage, on clip-generated VUEs are read-back:

o Readback of the Vertex Header (first 256 bits of the VUE)

Software must ensure that any VUEs subject to readback by the 3D pipeline start with a valid Vertex

Header. This extends to all VUEs with the following exceptions listed below:

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 42

 If the VS function is enabled, the VF-written VUEs are not required to have Vertex Headers, as the
VS-incoming vertices are guaranteed to be consumed by the VS (i.e., the VS thread is responsible
for overwriting the input vertex data).

 If the GS FF is enabled, neither VF-written VUEs nor VS thread-generated VUEs are required to
have Vertex Headers, as the GS will consume all incoming vertices.

 (There is a pathological case where the CLIP state can be programmed to guarantee that all CLIP-
incoming vertices are consumed – regardless of the data read back prior to the CLIP stage – and
therefore only the CLIP thread-generated vertices would require Vertex Headers).

The following table defines the Vertex Header. The Position fields are described in further detail below.

VUE Vertex Header ()

DWord Bit Description

D0 31:0 Reserved: MBZ

D1 31:0
Render Target Array Index (RTAIndex). This value is (eventually) used to index into a specific element

of an “array” Render Target. It is read back by the GS unit (for all exiting vertices) and the Clip unit (for

all clip-generated vertices), subsequently routed into the PS thread payload, and eventually included in

the RTWrite DataPort message header for use by the DataPort shared function.

Software is responsible for ensuring this field is zero whenever a programmable index value is not

required. When a programmable index value is required (e.g.) software must ensure that the correct

11-bit value is written to this field. Specifically, the kernels must perform a reange check of computed

index values against [0,2047], and output zero if that range is exceeded. Note that the unmodified

“renderTargetArrayIndex” must be maintained in the VUE outside of the Vertex Header.

Software can force an RTAIndex of 0 to be used (effectively ignoring the setting of this DWord) by use of

the ForceZeroRTAIndex bit (3DSTATE_CLIP). Otherwise the read-back value will be used to select an

RTArray element, after being clamped to the RTArray surface’s [MinimumArrayElement, Depth] range

(SURFACE_STATE).

Format: 0-based U32 index value

D2 31:0
Viewport Index. This value is used to select one of a possible 16 sets of viewport (VP) state

parameters in the Clip unit’s VertexClipTest function and in the SF unit’s ViewportMapping and Scissor

functions.

The GS unit (even if disabled) will read back this value for all vertices exiting the GS stage and entering

the Clip stage. When enabled, the GS unit will range-check the value against [0,Maximum VPIndex]

(see GS_STATE, CLIP_STATE). After this range-check the values are sent down the pipeline and used

in the Clip unit’s VertexClipTest function. For vertices passing through the Clip stage, these values will

also be sent to the SF unit for use in ViewportMapping and Scissor functions.

The Clip unit (if enabled) will read back this value only for vertices generated by CLIP threads. The Clip

unit will perform a range clamp similar to the GS unit.

Software can force a value of 0 to be used by programming Maximum VPIndex to 0.

Format: 0-based U32 index value

D3 31:0
Point Width. This field specifies the width of POINT objects in screen-space pixels. It is used only for

vertices within POINTLIST and POINTLIST_BF primitive topologies, and is ignored for vertices

associated with other primitive topologies.

This field is read back by both the GS and Clip units.

Format: FLOAT32

D4 31:0
Vertex Position X Coordinate. This field contains the X component of the vertex’s 4D space position.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 43

DWord Bit Description

Format: FLOAT32

D5 31:0
Vertex Position Y Coordinate. This field contains the Y component of the vertex’s 4D space position

Format: FLOAT32

D6 31:0
Vertex Position Z Coordinate. This field contains the Z component of the vertex’s NDC space position

Format: FLOAT32

D7 31:0
Vertex Position W Coordinate. This field contains the Z component of the vertex’s 4D space position

Format: FLOAT32

D8 31:0
ClipDistance 0 Value (optional). If the UserClipDistance Clip Test Enable Bitmask bit

(3DSTATE_CLIP) is set, this value will be read from the URB in the Clip stage. If the value is found to

be less than 0 or a NaN, the vertex’s UCF<0> bit will set in the Clip unit’s VertexClipTest function.

If the UserClipDistance Clip Test Enable Bitmask bit is clear, this value will not be read back, and the

vertex’s UCF<0> bit will be zero by definition.

Format: FLOAT32

D9 31:0
ClipDistance 1 Value (optional). See above

D10 31:0
ClipDistance 2 Value (optional). See above

D11 31:0
ClipDistance 3 Value (optional). See above

D12 31:0
ClipDistance 4 Value (optional). See above

D13 31:0
ClipDistance 5 Value (optional). See above

D14 31:0
ClipDistance 6 Value (optional). See above

D15 31:0
ClipDistance 7 Value (optional). See above

 31:0
(Remainder of Vertex Elements).

The absolute maximum size limit on this data is specified via a maximum limit on the amount of data

that can be read from a VUE (including the Vertex Header) (Vertex Entry URB Read Length has a

maximum value of 63 256-bit units). Therefore the Remainder of Vertex Elements has an absolute

maximum size of 62 256-bit units. Of course the actual allocated size of the VUE can and will limit the

amount of data in a VUE.

1.8.2 Vertex Positions

 (For the sake of brevity, the following discussion will use the term map as a shorthand for “compute

screen space coordinate via perspective divide followed by viewport transform”.)

The “Position” fields of the Vertex Header are the only vertex position coordinates exposed to the 3D

Pipeline. The CLIP and SF units are the only FF units which perform operations using these positions.

The VUE will likely contain other position attributes for the vertex outside of the Vertex Header, though

this information is not directly exposed to the FF units. For example, the Clip Space position will likely be

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 44

required in the VUE (outside of the Vertex Header) in order to perform correct and robust 3D Clipping in

the CLIP thread.

In the CLIP unit, the read-back Position fields are interpreted as being in one of two coordinate systems,

depending on the CLIP_STATE.VertexPositionSpace bit. The CLIP unit will modify its VertexClipTest

function depending on the coordinate space of the incoming vertices.

 VPOS_CLIPSPACE (Homogeneous 4D Clip-space coordinates, pre-perspective division): The
Clip Space position is defined in a homogeneous 4D coordinate space (pre-perspective divide),
where the visible “view volume” is defined by the APIs. The API’s VS or GS shader program will
include geometric transforms in the computation of this clip space position such that the resulting
coordinate is positioned properly in relation to the view volume (i.e., it will include a “view transform”
in this computation path). When this coordinate system is selected, the 3D FF pipeline will perform a
perspective projection (division of x,y,z by w), perform clip-test on the resulting NDC (Normalized
Device Coordinates), and eventually perform viewport mapping (in the SF unit) to yield screen-space
(pixel) coordinates.

 VPOS_SCREENSPACE (Screen Space position): Under certain circumstances, the position in the
Vertex Header will contain the screen-space (pixel) coordinates (post viewport mapping).

The SF unit does not have a state bit defining the coordinate space of the incoming vertex positions.

Software must use the Viewport Mapping function of the SF unit in order to ensure that screen-space

coordinates are available after that function. If screen space coordinates are passed into SF, then

software will likely turn off the Viewport Mapping function.

The following subsections briefly describe the three relevant coordinate spaces.

1.8.2.1 Clip Space Position

The clip-space position of a vertex is defined in a homogeneous 4D coordinate space where, after

perspective projection (division by W), the visible “view volume” is some canonical (3D) cuboid. Typically

the X/Y extents of this cuboid are [-1,+1], while the Z extents are either [-1,+1] or [0,+1]. The API’s VS or

GS shader program will include geometric transforms in the computation of this clip space position such

that the resulting coordinate is positioned properly in relation to the view volume (i.e., it will include a

“view transform” in this computation path).

Note that, under typical perspective projections, the clip-space W coordinate is equal to the view-space Z

coordinate.

A vertex’s clip-space coordinates must be maintained in the VUE up to 3D clipping, as this clipping is

performed in clip space.

 In , vertex clip-space positions must be included in the Vertex Header, so that they can be read-back
(prior to Clipping) and then subjected to perspective projection (in hardware) and subsequent use by
the FF pipeline.

1.8.2.2 NDC Space Position

A perspective divide operation performed on a clip-space position yields a [X,Y,Z,RHW] NDC (Normalized

Device Coordinates) space position. Here “normalized” means that visible geometry is located within the

[-1,+1] or [0,+1] extent view volume cuboid (see clip-space above).

 The NDC X,Y,Z coordinates are the clip-space X,Y,Z coordinates (respectively) divided by the clip-
space W coordinate (or, more correctly, the clip-space X,Y,Z coordinates are multiplied by the
reciprocal of the clip space W coordinate).

o Note that the X,Y,Z coordinates may contain INFINITY or NaN values (see below).

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 45

 The NDC RHW coordinate is the reciprocal of the clip-space W coordinate and therefore, under
normal perspective projections, it is the reciprocal of the view-space Z coordinate. Note that NDC
space is really a 3D coordinate space, where this RHW coordinate is retained in order to perform
perspective-correct interpolation, etal. Note that, under typical perspective projections.

o Note that the RHW coordinate make contain an INFINITY or NaN value (see below).

1.8.2.3 Screen-Space Position

Screen-space coordinates are defined as:

 X,Y coordinates are in absolute screen space (pixel coordinates, upper left origin). See Vertex X,Y
Clamping and Quantization in the SF section for a discussion of the limitations/restrictions placed on
screenspace X,Y coordinates.

 Z coordinate has been mapped into the range used for DepthTest.

 RHW coordinate is actually the reciprocal of clip-space W coordinate (typically the reciprocal of the
view-space Z coordinate).

1.9 3D Pipeline Stage Overview

The fixed-function (FF) stages of the 3D pipeline share some common functionality, specifically related to

the creation and management of threads. This chapter is intended to describe the behavior and

programming model of these common functions, in an effort to not replicate this information for each

pipeline stage. Stage-specific exceptions to the information provided here will be included in the stage-

specific chapters to follow.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 46

1.9.1 Generic 3D FF Unit Block Diagram

The following block diagram, in general, applies to the VS, GS and CLIP stages.

1.9.2 1Common 3D FF Unit Functions

A major role of the FF stages is in managing the threads that perform the majority of the processing on

the vertex/pixel data. (In general, the amount of non-thread processing performed by the 3DPIPE stages

increases towards the end of the pipeline.) In a generic sense, the key functions included are:

 Bypass Mode

 URB Entry Management

 Thread Initiation Management

 Thread Request Data Generation

o Thread Control Information Generation

o Thread Payload Header Generation

o Thread Payload Data Generation

 Thread Output Handling

 URB Entry Readback

 Statistics Gathering

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 47

The following table lists the various state variables used to control the common FF functions:

State Variable Programmed Via Generic Functions Affected

<stage> Enable
 Bypass Mode

Kernel Start Pointer
 Thread Request Data Gen.

GRF Register Block Count
Thread Request Data Gen.

Single Program Flow
Thread Request Data Gen.

Thread Priority
Thread Request Data Gen.

Floating Point Mode
Thread Request Data Gen.

Exceptions Enable
Thread Request Data Gen.

Scratch Space Base

Pointer

Thread Request Data Gen.

Per Thread Scratch Space
Thread Request Data Gen.

Constant URB Entry Read

Length

Payload Data Gen.

Constant URB Entry Read

Offset

Payload Data Gen.

Vertex URB Entry Read

Length

Payload Data Gen.

Vertex URB Entry Read

Offset

Payload Data Gen.

Dispatch GRF Start

Register for URB Data

Payload Data Gen.

Maximum Number of

Threads

Thread Resource Alloc.

Scratch Space Mgt.

<stage> Fence
URB_FENCE_POINTER URB Entry Mgt.

URB Entry Allocation Size
 URB Entry Mgt.

Number of URB Entries
URB Entry Mgt.

Sampler State Pointer :

3DSTATE_SAMPLER_STATE_POINTERS

Payload Header Gen.

<stage> Binding Table

Pointer

3DSTATE_BINDING_TABLE_POINTERS This gets routed directly to shared

functions (transparent to software).

Sampler Count
 Thread Request Data Gen.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 48

State Variable Programmed Via Generic Functions Affected

Binding Table Entry Count
Thread Request Data Gen.

Statistics Enable
Statistics Gathering

1.9.3 Thread Initiation Management

Those FF stages that can spawn threads must have buffered the input (URB entries) available to supply a

thread, and then ensure that there are sufficient resources (within the domain of the 3D pipeline) to make

the thread request.

Once a FF stage determines a thread request can be submitted, (a) all input data required to initiate the

thread is generated, (b) this information is submitted to the common thread dispatcher, (c) the thread

dispatcher will spawn the thread as soon as an EU with sufficient GRF resources becomes available, and

finally (d) the thread will start execution. With respect to concurrent threads, steps (c) and (d) can proceed

out of order (i.e., a threads are not necessarily dispatched in the order that the thread requests are

submitted to the thread dispatcher).

1.9.3.1 Thread Input Buffering

Each FF stage varies with regard to thread input requirements, and so this will not be discussed in this

chapter other than the overview information provided in the following table:

 FF Stage
Thread Input Requirements

CS
N/A (does not spawn threads)

VF
N/A (does not spawn threads)

VS
Normally, two vertices are buffered before a VS thread is spawned to shade the pair in parallel.

Under some circumstances (e.g., a flush, state change, etc.) a single vertex will be shaded.

GS
All the vertices associated with an object must be buffered before a GS thread can be initiated to

process the object.

WM
Threads spawned as required by the rasterization algorithm.

1.9.3.2 Thread Resource Allocation

In general, the considerations listed in the preceding section are relevant, with the following exceptions:

 CLIP, SF: Threads are not spawned.

1.9.4 Thread Request Generation

Once a FF unit determines that a thread can be requested, it must gather all the information required to

submit the thread request to the Thread Dispatcher. This information is divided into several categories,

as listed below and subsequently described in detail.

 Thread Payload Header: This is the first portion of the thread payload passed in the GRF, starting
at GRF R0. This is information passed directly from the FF unit. It precedes the Thread Payload
Input URB Data.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 49

 Thread Payload Input URB Data: This is the second portion of the thread payload. It is read from
the URB using entry handles supplied by the FF unit.

1.9.4.1 Thread Control Information

The following table describes the various state variables that a FF unit uses to provide information to the

Thread Dispatcher and which affect the thread execution environment. Note that this information is not

directly passed to the thread in the thread payload (though some fields may be subsequently accessed by

the thread via architectural registers).

State Variables Included in Thread Control Information

State Variable Usage FFs

Kernel Start

Pointer

This field, together with the General State Pointer, specifies the starting location

(1st core instruction) of the kernel program run by threads spawned by this FF unit.

It is specified as a 64-byte-granular offset from the General State Pointer.

All FFs

spawning

threads

GRF Register

Block Count

Specifies, in 16-register blocks, how many GRF registers are required to run the

kernel. The Thread Dispatcher will only seek candidate EUs that have a sufficient

number of GRF register blocks available. Upon selecting a target EU, the Thread

DIspatcher will generate a logical-to-physical GRF mapping and provide this to the

target EU.

All FFs

spawning

threads

Single

Program Flow

(SPF)

Specifies whether the kernel program has a single program flow (SIMDnxm with m

= 1) or multiple program flows (SIMDnxm with m > 1). See CR0 description in ISA

Execution Environment.

All FFs

spawning

threads

Thread

Priority

The Thread Dispatcher will give priority to those thread requests with Thread

Priority of HIGH_PRIORITY over those marked as LOW_PRIORITY. Within these

two classes of thread requests, the Thread Dispatcher applies a priority order (e.g.,

round-robin --- though this algorithm is considered a device implementation-

dependent detail).

All FFs

spawning

threads

Floating Point

Mode

This determines the initial value of the Floating Point Mode bit of the EU’s CR0

architectural register that controls floating point behavior in the EU core. (See ISA.)

All FFs

spawning

threads

Exceptions

Enable

This bitmask controls the exception handing logic in the EU. (See ISA.) All FFs

spawning

threads

Sampler

Count

This is a hint which specifies how many indirect SAMPLER_STATE structures

should be prefetched concurrent with thread initiation. It is recommended that

software program this field to equal the number of samplers, though there may be

some minor performance impact if this number gets large.

This value should not exceed the number of samplers accessed by the thread as

there would be no performance advantage. Note that the data prefetch is treated

as any other memory fetch (with respect to page faults, etc.).

All stages

supporting

sampling (VS,

GS, WM)

Binding Table

Entry Count

This is a hint which specifies how many indirect BINDING_TABLE_STATE

structures should be prefetched concurrent with thread initiation. (The notes

included in Sampler Count (above) also apply to this field).

All FFs

spawning

threads

1.9.4.2 Thread Payload Generation

FF units are responsible for generating a thread payload – the data pre-loaded into the target EU’s GRF

registers (starting at R0) that serves as the primary direct input to a thread’s kernel. The general format of

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 50

these payloads follow a similar structure, though the exact payload size/content/layout is unique to each

stage. This subsection describes the common aspects – refer to the specific stage’s chapters for details

on any differences.

The payload data is divided into two main sections: the payload header followed by the payload URB

data. The payload header contains information passed directly from the FF unit, while the payload URB

data is obtained from URB locations specified by the FF unit.

NOTE: The first 256 bits of the thread payload (the initial contents of R0, aka “the R0 header”) is specially

formatted to closely match (and in some cases exactly match) the first 256 bits of thread-generated

messages (i.e., the message header) accepted by shared functions. In fact, the send instruction supports

having a copy of a GR’s contents (such as R0) used as the message header. Software must take this

intention into account (i.e., “don’t muck with R0 unless you know what you’re doing”). This is especially

important given the fact that several fields in the R0 header are considered opaque to SW, where use or

modification of their contents might lead to UNDEFINED results.

The payload header is further (loosely) divided into a leading fixed payload header section and a trailing,

variable-sized extended payload header section. In general the size, content and layout of both payload

header sections are FF-specific, though many of the fixed payload header fields are common amongst

the FF stages. The extended header is used by the FF unit to pass additional information specific to that

FF unit. The extended header is defined to start after the fixed payload header and end at the offset

defined by Dispatch GRF Start Register for URB Data. Software can cause use the Dispatch GRF

Start Register for URB Data field to insert padding into the extended header in order to maintain a fixed

offset for the start of the URB data.

1.9.4.2.1 Fixed Payload Header

The payload header is used to pass FF pipeline information required as thread input data. This

information is a mixture of SW-provided state information (state table pointers, etc.), primitive information

received by the FF unit from the FF pipeline, and parameters generated/computed by the FF unit. most of

the fields of the fixed header are common between the FF stages. These non-FF-specific fields are

described in Fixed Payload Header. Note that a particular stage’s header may not contain all these fields,

so they are not “common” in the strictest sense.

Fixed Payload Header Fields (non-FF-specific)

Fixed Payload Header Field

(non-FF-specific)
Description FFs

FF Unit ID
Function ID of the FF unit. This value identifies the FF unit within

the subsystem. The FF unit will use this field (when transmitted

in a Message Header to the URB Function) to detect messages

emanating from its spawned threads.

All FFs

spawning

threads

Snapshot Flag
 All FFs

spawning

threads

Thread ID
All FFs

spawning

threads

Scratch Space Pointer This is the starting location of the thread’s allocated scratch

space, specified as an offset from the General State Base

Address. Note that scratch space is allocated by the FF unit on

a per-thread basis, based on the Scratch Space Base Pointer

and Per-Thread Scratch Space Size state variables. FF units

will assign a thread an arbitrarily-positioned region within this

All FFs

spawning

threads

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 51

Fixed Payload Header Field

(non-FF-specific)
Description FFs

space. The scratch space for multiple (API-visible) entities

(vertices, pixels) will be interleaved within the thread’s scratch

space.

Dispatch ID This field identifies this thread within the outstanding threads

spawned by the FF unit. This field does not uniquely identify the

thread over any significant period of time.

Implementation Note: This field is effectively an “active thread

index”. It is used on a thread’s URB allocation request to

identify which thread’s handle pool is to source the allocation. It

is used upon thread termination to free up the thread’s scratch

space allocation.

All FFs

spawning

threads

Binding Table Pointer This field, together with the Surface State Base Pointer,

specifies the starting location of the Binding Table used by

threads spawned by the FF unit. It is specified as a 64-byte-

granular offset from the Surface State Base Pointer.

See Shared Functions for a description of a Binding Table.

All FFs

spawning

threads

Sampler State Pointer This field, together with the General State Base Pointer,

specifies the starting location of the Sampler State Table used

by threads spawned by the FF unit. It is specified as a 64-byte-

granular offset from the General State Base Pointer.

See Shared Functions for a description of a Sampler State

Table.

All FFs

spawning

threads which

sample (VS,

GS, WM)

Per Thread Scratch Space This field specifies the amount of scratch space allocated to

each thread spawned by the FF unit.

The driver must allocate enough contiguous scratch space,

starting at the Scratch Space Base Pointer, to ensure that the

Maximum Number of Threads can each get Per-Thread

Scratch Space size without exceeding the driver-allocated

scratch space.

All FFs

spawning

threads

Handle ID <n> This ID is assigned by the FF unit and links the thread to a

specific entry within the FF unit. The FF unit will use this

information upon detecting a URB_WRITE message issued by

the thread.

Threads spawned by the GS, CLIP, and SF units are provided

with a single Handle ID / URB Return Handle pair. Threads

spawned by the VS are provided with one or two pairs

(depending on how many vertices are to be processed).

Threads spawned by the WM do not write to URB entries, and

therefore this info is not supplied.

VS,GS,CLIP,SF

URB Return Handle <n> This is an initial destination URB handle passed to the thread. If

the thread does output URB entries, this identifies the

destination URB entry.

Threads spawned by the GS, CLIP, and SF units are provided

with a single Handle ID / URB Return Handle pair. Threads

VS,GS,CLIP,SF

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 52

Fixed Payload Header Field

(non-FF-specific)
Description FFs

spawned by the VS are provided with one or two pairs

(depending on how many vertices are to be processed).

Threads spawned by the WM do not write to URB entries, and

therefore this info is not supplied.

Primitive Topology Type As part of processing an incoming primitive, a FF unit is often

required to spawn a number of threads (e.g., for each individual

triangle in a TRIANGLE_STRIP). This field identifies the type of

primitive which is being processed by the FF unit, and which

has lead to the spawning of the thread.

Kernels written to process different types of objects can use this

value to direct that processing. E.g., when a CLIP kernel is to

provide clipping for all the various primitive types, the kernel

would need to examine the Primitive Topology Type to

distinguish between point, lines, and triangle clipping requests.

NOTE: In general, this field is identical to the Primitive Topology

Type assoociated with the primitive vertices as received by the

FF unit. Refer to the individual FF unit chapters for cases where

the FF unit modifies the value before passing it to the thread.

(E.g., certain units perform toggling of TRIANGLESTRIP and

TRIANGLESTRIP_REV).

GS, CLIP, SF,

WM

1.9.4.2.2 Extended Payload Header

The extended header is of variable-size, where inclusion of a field is determined by FF unit state

programming.

In order to permit the use of common kernels (thus reducing the number of kernels required), the

Dispatch GRF Start Register for URB Data state variable is supported in all FF stages. This SV is used

to place the payload URB data at a specific starting GRF register, irrespective of the size of the extended

header. A kernel can therefore reference the payload URB data at fixed GRF locations, while

conditionally referencing extended payload header information.

1.9.4.2.3 Payload URB Data

In each thread payload, following the payload header, is some amount of URB-sourced data required as

input to the thread. This data is divided into an optional Constant URB Entry (CURBE), following either by

a Primitive URB Entry (WM) or a number of Vertex URB Entries (VS, GS, CLIP, SF). A FF unit only

knows the location of this data in the URB, and is never exposed to the contents. For each URB entry, the

FF unit will supply a sequence of handles, read offsets and read lengths to the subsystem. The

subsystem will read the appropriate 256-bit locations of the URB, optionally perform swizzling (VS only),

and write the results into sequential GRF registers (starting at Dispatch GRF Start Register for URB

Data).

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 53

State Variables Controlling Payload URB Data

State Variable Usage FFs

Dispatch GRF

Start Register for

URB Data

This SV identifies the starting GRF register receiving payload URB data.

Software is responsible for ensuring that URB data does not overwrite the Fixed or

Extended Header portions of the payload.

FFs

spawning

threads

Vertex URB

Entry Read

Offset

This SV specifies the starting offset within VUEs from which vertex data is to be

read and supplied in this stage’s payloads. It is specified as a 256-bit offset into any

and all VUEs passed in the payload.

This SV can be used to skip over leading data in VUEs that is not required by the

stage’s threads (e.g., skipping over the Vertex Header data at the SF stage, as that

information is not required for setup calculations). Skipping over irrelevant data can

only help to improve performance.

Specifying a vertex data source extending beyond the end of a vertex entry is

UNDEFINED.

VS, GS,

t

Vertex URB

Entry Read

Length

This SV determines the amount of vertex data (starting at Vertex URB Entry Read

Offset) to be read from each VUEs and passed into the payload URB data. It is

specified in 256-bit units.

A zero value is INVALID (at very least one 256-bit unit must be read).

Specifying a vertex data source extending beyond the end of a VUE is

UNDEFINED.

Programming Restrictions: (others may already been mentioned)

 The maximum size payload for any thread is limited by the number of GRF registers available to the
thread, as determined by min(128, 16 * GRF Register Block Count). Software is responsible for
ensuring this maximum size is not exceeded, taking into account:

o The size of the Fixed and Extended Payload Header associated with the FF unit.

o The Dispatch GRF Start Register for URB Data SV.

o The amount of CURBE data included (via Constant URB Entry Read Length)

o The number of VUEs included (as a function of FF unit, it’s state programming, and
incoming primitive types)

o The amount of VUE data included for each vertex (via Vertex URB Entry Read
Length)

o (For WM-spawned PS threads) The amount of Primitive URB Entry data.

 For any type of URB Entry reads:

o Specifying a source region (via Read Offset, Read Length) that goes past the end of
the URB Entry allocation is illegal.

 The allocated size of Vertex/Primitive URB Entries is determined by the URB
Entry Allocation Size value provided in the pipeline state descriptor of the FF
unit owning the VUE/PUE.

 The allocated size of CURBE entries is determined by the URB Entry
Allocation Size value provided in the CS_URB_STATE command.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 54

1.9.5 Thread Output Handling

Those FF units spawning threads are responsible for monitoring and responding to certain events

generated by their spawned threads. Such events are indirectly detected by these FF units monitoring

messages sent from threads to the URB Shared Function. By snooping the Message Bus Sideband and

Header information, a FF can detect when a particular spawned thread sends a message to the URB

function. A subset of this information is then captured and acted upon. Refer to the URB chapter for more

details (including a table of valid/invalid combinations of the Complete, Used, Allocate, and EOT bits)

The following subsections describe functions that FF units perform as part of Thread Output Handling.

1.9.5.1 VUE Allocation (GS)

The following description is applicable only to the GS stage.

The threads are not passed an initial handle. Instead, they request a first handle (if any) via the URB

shared function’s FF_SYNC message (see Shared Functions). If additional handles are required, the

URB_WRITE allocate mechanism (mentioned above) is used.

1.9.5.2 Thread Termination

All threads must explicitly terminate by executing a SEND instruction with the EOT bit set. (See EU

chapters). When a thread spawned by a 3D FF unit terminates, the spawning FF unit detects this

termination as a part of Thread Management. This allows the FF units to manage the number of

concurrent threads it has spawned and also manage the resources (e.g., scratch space) allocated to

those threads.

1.9.6 VUE Readback

Starting with the CLIP stage, the 3D pipeline requires vertex information in addition to the VUE handle.

For example, the CLIP unit’s VertexClipTest function needs the vertex position, as does the SF unit’s

functions. This information is obtained by the 3D pipeline reading a portion of each vertex’s VUE data

directly from the URB. This readback (effectively) occurs immediately before the CLIP VertexClipTest

function, and immediately after a CLIP thread completes the output of a destination VUE.

The Vertex Header (first 256 bits) of the VUE data is read back. (See the previous VUE Formats

subsection (above) for details on the content and format of the Vertex Header.) : Additional Clip/Cull data

(located immediately past the Vertex Header) may be read prior to clipping.

This readback occurs automatically and is not under software control. The only software implication is that

the Vertex Header must be valid at the readback points, and therefore must have been previously loaded

or written by a thread.

1.9.7 Statistics Gathering

The table below describes how supports the required API statistics counters.

DX Statistic HW Support

IAVertices = # of vertices IA generated. May or may not

include (a) vertices in partial primitives, (b) unused adjacent-

only vertices. Not affected by vertex caching.

VF maintains IA_VERTICES_COUNT.

Will include unused adjacent-only vertices. Will not

include vertices in partial primitives.

IAPrimitives = # of primitives (objects) IA generated. May or VF maintains IA_PRIMITIVES_COUNT.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 55

DX Statistic HW Support

may not include partial primitives. Will not include partial primitives. Will not count

patch topologies that do not match what the HS or

GS expects as input , if enabled (i.e., mismatching

patch topologies are discarded by VF).

VSInvocations = # of times VS is executed. May be affected

by vertex caching. May or may not include (a) shared vertices

in non-indexed strips, (b) vertices in partial primitives, (c)

unused adjacent-only vertices.

VS maintains VS_INVOCATION_COUNT.

Impacted by vertex caching. Will not include vertices

in partial primitives. Will include unused adjacent-

only vertices. Will not include shared vertices in non-

indexed strips, unless pre-empted. Increments even

if VS Function Enable is DISABLED.

HSInvocations = # of patches executed by HS. HS maintains HS_INVOCATION_COUNT. This gets

incremented by 1 for each patch whenever HS is

enabled.

DSInvocations = # of times DS is executed to shade a

domain point. Allows HW to shade identical domain points

multiple times, with the exception of point outputs where only

unique domain points can be generated.

DS maintains DS_INVOCATION_COUNT. This is

incremented for each domain point passed to a DS

thread.

GSInvocations = # of times GS is executed. Obviously does

not include partial primitives. May be incremented when

StreamOut enabled, even if NULL_GS.

GS maintains GS_INVOCATION_COUNT,

incrementing it by GSInvocations Increment Value

for each dispatched instance.

Will not be incremented if NULL_GS.

GSPrimitives = # of primitives GS generated. Does not

include primitives passing through a disabled GS stage. May

or may not include partial primitives output by GS.

GS maintains GS_PRIMITIVE_COUNT. GS unit will

increment this as it parses the GS thread output.

Will not include partial primitives output by GS

threads.

NumPrimitivesWritten[<stream#>] = # of complete

primitives written to the stream’s SO buffer, subject to buffer

overflow.

SOL maintains SO_NUM_PRIMS_WRITTEN[0-3].

PrimitiveStorageNeeded[<stream#>] = # of complete

primitives which would have been written to the stream’s SO

buffer ignoring any overflow.

SOL maintains SO_PRIM_STORAGE_NEEDED[0-

3].

CInvocations = # of primitives entering rasterization (which

starts with the clipper) and isn’t affected by any actual clipping.

Does not increment when rasterization is disabled (e.g., when

StreamOut is the last enabled stage). May or may not include

partial primitives.

CL OSB maintains CL_INVOCATION_COUNT.

Will not include partial primitives. Note that the SOL

(regardless of SO enabled) will discard primitives if

rendering is disabled, so these primitives will not

reach the CL unit.

CPrimitives = # of primitives output from clipper. I.e., doesn’t

increment if TrivReject or dropped due to NaNs, increments by

1 if TrivAccept, or increments by number of primitives

generated if MustClip. Does not increment when rasterization

is disabled. May or may not include partial primitives.

Accomodates infinite or no guardband.

SF OSB maintains CL_PRIMITIVES_COUNT.

Will not include partial primitives.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 56

DX Statistic HW Support

PSInvocations = # of times PS is executed, including unlit

“helper pixels” within a subspan that need to go through the

PS shader to provide 2x2 gradients. Accomodates early

depth/stencil. Does not increment if NULL PS. Multisampling:

counts pixels shaded If PERPIXEL or samples shaded if

PERSAMPLE.

WIZ maintains PS_INVOCATION_COUNT.

Occlusion = # of “visible” multisamples which passed both

depth and stencil testing. Doesn’t include PS-discarded pixels

or oMask/AlphaToCoverage-killed samples. Both (a) a

disabled test (depth or stencil) and (b) no bound RT or

Depth/Stencil buffer conditions count as always passing.

WIZ & PBE maintain PS_DEPTH_COUNT.

1.10 Synchronization of the 3D Pipeline

Two types of synchronizations are supported for the 3D pipe: top of the pipe and end of the pipe. Top of

the pipe synchronization really enforces the read-only cache invalidation. This synchronization

guarantees that primitives rendered after such synchronization event fetches the latest read-only data

from memory. End of the pipe synchronization enforces that the read and/or read-write buffers do not

have outstanding hardware accesses. These are used to implement read and write fences as well as to

write out certain statistics deterministically with respect to progress of primitives through the pipeline (and

without requiring the pipeline to be flushed.) The PIPE_CONTROL command (see details below) is used

to perform all of above synchronizations.

1.10.1 Top-of-Pipe Synchronization

Top-of-pipe synchronization refers to SW actions to prepare HW for new state-binding at the beginning of

the rendering sequence in a given context. HW may have residual states cached in the state-caches and

read-only surfaces in various caches. With new rendering sequence, read-only surfaces may go through

change in the binding. Hence read-only invalidation is required before such new rendering sequence.

Read-only cache invalidation is top-of-pipe synchronization. Upon parsing this specific pipe-control

command, HW invalidates all caches in GT domain that have read-only surfaces but does not guarantee

invalidation beyond GT caches (i.e. LLC). Further, HW does not guarantee that all prior accesses to those

read-only surfaces have completed. Therefore SW must guarantee that there are no pending accesses to

those read-only surfaces before initializing the top-of-pipe synchronization. PIPE-CONTROL command

described below allows for invalidating individual read-only stream type. It is recommended that driver

invalidates only the required caches on the need basis so that cache warm-up overhead can be reduced.

1.10.2 End-of-Pipe Synchronization

The driver can use end-of-pipe synchronization to know that rendering is complete (although not

necessarily in memory) so that it can de-allocate in-memory rendering state, read-only surfaces,

instructions, and constant buffers. An end-of-pipe synchronization point is also sufficient to guarantee that

all pending depth tests have completed so that the visible pixel count is complete prior to storing it to

memory. End-of-pipe completion is sufficient (although not necessary) to guarantee that read events are

complete (a “read fence” completion). Read events are still pending if work in the pipeline requires any

type of read except a render target read (blend) to complete.

Write synchronization is a special case of end-of-pipe synchronization that requires that the render cache

and/or depth related caches are flushed to memory, where the data will become globally visible. This type

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 57

of synchronization is required prior to SW (CPU) actually reading the result data from memory, or initiating

an operation that will use as a read surface (such as a texture surface) a previous render target and/or

depth/stencil buffer.

1.10.3 Synchronization Actions

In order for the driver to act based on a synchronization point (usually the whole point), the reaching of

the synchronization point must be communicated to the driver. This section describes the actions that

may be taken upon completion of a synchronization point which can achieve this communication.

1.10.3.1 Writing a Value to Memory

The most common action to perform upon reaching a synchronization point is to write a value out to

memory. An immediate value (included with the synchronization command) may be written. In lieu of an

immediate value, the 64-bit value of the PS_DEPTH_COUNT (visible pixel count) or TIMESTAMP register

may be written out to memory. The captured value will be the value at the moment all primitives parsed

prior to the synchronization commands have been completely rendered, and optionally after all said

primitives have been pushed to memory. It is not required that a value be written to memory by the

synchronization command.

Visible pixel or TIMESTAMP information is only useful as a delta between 2 values, because these

counters are free-running and are not to be reset except at initialization. To obtain the delta, two

PIPE_CONTROL commands should be initiated with the command sequence to be measured between

them. The resulting pair of values in memory can then be subtracted to obtain a meaningful statistic about

the command sequence.

1.10.3.2 PS_DEPTH_COUNT

If the selected operation is to write the visible pixel count (PS_DEPTH_COUNT register), the

synchronization command should include the Depth Stall Enable parameter. There is more than one

point at which the global visible pixel count can be affected by the pipeline; once the synchronization

command reaches the first point at which the count can be affected, any primitives following it are stalled

at that point in the pipeline. This prevents the subsequent primitives from affecting the visible pixel count

until all primitives preceding the synchronization point reach the end of the pipeline, the visible pixel count

is accurate and the synchronization is completed. This stall has a minor effect on performance and should

only be used in order to obtain accurate “visible pixel” counts for a sequence of primitives.

The PS_DEPTH_COUNT count can be used to implement an (API/DDI) “Occlusion Query” function.

1.10.3.3 Generating an Interrupt

The synchronization command may indicate that a “Sync Completion” interrupt is to be generated (if

enabled by the MI Interrupt Control Registers – see Memory Interface Registers) once the rendering of all

prior primitives is complete. Again, the completion of rendering can be considered to be when the internal

render cache has been updated, or when the cache contents are visible in memory, as selected by the

command options.

1.10.3.4 Invalidating of Caches

If software wishes to use the notification that a synchronization point has been reached in order to reuse

referenced structures (surfaces, state, or instructions), it is not sufficient just to make sure rendering is

complete. If additional primitives are initiated after new data is laid over the top of old in memory following

a synchronization point, it is possible that stale cached data will be referenced for the subsequent

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 58

rendering operation. In order to avoid this, the PIPE_CONTROL command must be used. (See

PIPE_CONTROL Commanddescription below).

1.10.4 PIPE_CONTROL Command

The PIPE_CONTROL command is used to effect the synchronization described above. Parsing of a

PIPE_CONTROL command stalls 3D pipe only if the stall enable bit is set. Commands after

PIPE_CONTROL will continue to be parsed and processed in the 3D pipeline. This may include additional

PIPE_CONTROL commands. The implementation does enforce a practical upper limit (8) on the

number of PIPE_CONTROL commands that may be outstanding at once. Parsing of a PIPE_CONTROL

command that causes this limit to be reached will stall the parsing of new commands until the first of the

outstanding PIPE_CONTROL commands reaches the end of the pipe and retires.

Note that although PIPE_CONTROL is intended for use with the 3D pipe, it is legal to issue

PIPE_CONTROL when the Media pipe is selected. In this case PIPE_CONTROL will stall at the top of the

pipe until the Media FFs finish processing commands parsed before PIPE_CONTROL. Post-

synchronization operations, flushing of caches and interrupts will then occur if enabled via

PIPE_CONTROL parameters. Due to this stalling behavior, only one PIPE_CONTROL command can be

outstanding at a time on the Media pipe.

For the invalidate operation of the pipe control, the following pointers are affected. The invalidate

operation affects the restore of these packets. If the pipe control invalidate operation is completed before

the context save, the indirect pointers will not be restored from memory.

1. Pipeline State Pointer

2. Media State Pointer

3. Constant Buffer Packet

 It is up to software to program the appropriate read-only cache invalidation such as the sampler and

constant read caches or the instruction and state caches. Once notification is observed, new data may

then be loaded (potentially “on top of” the old data) without fear of stale cache data being referenced for

subsequent rendering.

If software wishes to access the rendered data in memory (for analysis by the application or to copy it to a

new location to use as a texture, for examples), it must also ensure that the write cache (render cache) is

flushed after the synchronization point is reached so that memory will be updated. This can be

accomplished by setting the Write Cache Flush Enable bit. Note that the Depth Stall Enable bit must be

clear in order for the flush of the render cache to occur. Depth Stall Enable is intended only for accurate

reporting of the PS_DEPTH counter; the render cache cannot be flushed nor can the read caches be

invalidated (except for the instruction/state cache) in conjunction with this operation.

1.10.4.1 PIPE_CONTROL

 Hardware can support up to 8 pending PIPE_CONTROL flushes

2 Store Data Commands (such as MI_STORE_DATA_IMM or MI_STORE_DATA_INDEX)

PIPE_CONTROL w/ stall (20) and TLB inv bit (18) set

Ring/Batch Contents - ILLEGAL

3DPRIMITIVE

np-state

pipelined (bit 20 = ‘0’) PIPE_CONTROL

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 59

Ring/Batch Contents - ILLEGAL

np-state

3DPRIMITIVE

Ring/Batch Contents - LEGAL

3DPRIMITIVE

np-state

3DPRIMITIVE

pipelined (bit 20 = ‘0’) PIPE_CONTROL

np-state

3DPRIMITIVE

 Pipe_control with CS-stall bit set must be issued before a pipe-control command that has the State
Cache Invalidate bit set.

Caches Invalidated/Flushed by PIPE_CONTROL Bit Settings

The table below explains all the different flush/invalidation scenerios.

Write
cache
flush

Notification
Enabled

non-VF RO
Cache

Invalidate
VF RO Cache

Invalidate
Marker

Sent

pipeline
marker
enable

Completion
Requested

Top of pipe
invalidate pulse

from CS

0 0 0 0 N/A N/A N/A N/A

0 0 0 1 Yes No N/A No

0 0 1 0 No N/A N/A Yes

0 0 1 1 Yes No No Yes

X 1 0 X Yes Yes Yes No

X 1 1 X Yes Yes Yes Yes

1 X 0 X Yes Yes Yes No

1 X 1 X Yes Yes Yes Yes

PIPE_CONTROL

Length Bias: 2

The PIPE_CONTROL command is used to effect the synchronization described above.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 2h PIPE_CONTROL

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 0h PIPE_CONTROL

Format: OpCode

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 60

PIPE_CONTROL

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 3h DWORD_COUNT_n

Format: =n

1 31:28 Reserved

Project: All

Format: MBZ

27 Reserved

Format: MBZ

26 Reserved

Project: All

Format: MBZ

25 Reserved

Format: MBZ

24 Destination Address Type

Defines address space of Destination Address

Value Name Description Project

0h PPGTT Use PPGTT address space for DW write All

1h GGTT Use GGTT address space for DW write All

Programming Notes

Ignored if “”No Write” is selected in Operation.

23 LRI Post-Sync Operation

Value Name Description Project

0h No LRI Operation No LRI operation occurs as a result of this instruction. The Post-Sync

Operation field is valid and may be used to specify an operation.

All

1h MMIO Write

Immediate Data

Write the DWord contained in Immediate Data Low (DW3) to the

MMIO offset specifed in the Address field.

All

Programming Notes

This bit caues a post sync operation with an LRI (Load Register Immediate) operation. If this bit is set

then the Post-Sync Operation field must be cleared.

21 Store Data Index

Project: All

Format: U1

Ring Buffer Mode Scheduling: This field is valid only if the post-sync operation is not 0. If this bit is set,

the store data address is actually an index into the global hardware status page. This bit only applies to

the Global HW status page. If this field is 1, the Destination Address Type in this command must be set

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 61

PIPE_CONTROL

to 1 (GGTT).

 Execlist Mode Scheduling: This field is valid only if the post-sync operation is not 0. If this bit is set, the

store data address is index into the global hardware status page when destination address type in the

command is set to 1 (GGTT). The store data address is index into the per-process hardware status

page when destination address type in the command is set to 0 (PPGTT).

20 CS Stall

Project: All

Format: U1

If ENABLED, the sync operation will not occur until all previous flush operations pending a completion

of those previous flushes will complete, including the flush produced from this command. This enables

the command to act similar to the legacy MI_FLUSH command.

Programming Notes Project

One of the following must also be set:

Render Target Cache Flush Enable ([12] of DW1)

Depth Cache Flush Enable ([0] of DW1)

Stall at Pixel Scoreboard ([1] of DW1)

Depth Stall ([13] of DW1)

Post-Sync Operation ([13] of DW1)

19 Global Snapshot Count Reset

Project: All

Format: U1

Value Name Description Project

0h Don’t

Reset

Do not reset the snapshot counts or Statistics Counters. All

1h Reset Reset the snapshot count for all the units and reset the Statistics Counters

except as noted above.

All

Programming Notes Project

TIMESTAMP is not reset by PIPE_CONTROL with this bit set.

 When Post Sync Operation is set to “Write PS Depth Count” along with Global Snapshot

Count Reset, PS Depth Count is Reported first before resetting the value.

18 TLB Invalidate

Project: All

Format: U1

If ENABLED, all TLBs will be invalidated once the flush operation is complete. Note that if the flush

TLB invalidation mode is clear, a TLB invalidate will occur irrespective of this bit setting

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 62

PIPE_CONTROL

If ENABLED, PIPE_CONTROL command will flush the in flight data written out by render engine to

Global Observation point on flush done. Also Requires stall bit ([20] of DW1) set.

Programming Notes Project

If ENABLED, all TLBs will be invalidated once the flush operation is complete. Note that if the

flush TLB invalidation mode is clear, a TLB invalidate will occur irrespective of this bit setting.

17 Reserved

Format: MBZ

16 Generic Media State Clear

Format: Disable

If set, all generic media state context information will not be included with the next context save,

assuming no new state is initiated after the flush. If clear, the generic media state context save state

will not be affected. An MI_FLUSH with this bit set should be issued once all the Media Objects that will

be processed by a given persistent root thread have been issued or when an MI_SET_CONTEXT

switching from a generic media context to a 3D context completes. When using MI_SET_CONTEXT,

once state is programmed, it will be saved and restarted as part of any context each time that context is

saved/restored until an MI_FLUSH with this bit set is issued in that context.

15:14 Post-Sync Operation

Project: All

Description Project

This field specifies an optional action to be taken upon completion of the synchronization

operation.

This field must be cleared if the LRI Post-Sync Operation bit is set.

Value Name Description Project

0h No Write No write occurs as a result of this instruction. This can be used to

implement a “trap” operation, etc.

All

1h Write Immediate

Data

Write the QWord containing Immediate Data Low, High DWs to the

Destination Address

All

2h Write PS Depth

Count

Write the 64-bit PS_DEPTH_COUNT register to the Destination

Address

All

3h Write Timestamp Write the 64-bit TIMESTAMP register to the Destination Address All

Programming Notes

If executed in non-secure batch buffer, the address given will be in a PPGTT address space. If in a

secure ring or batch, address given will be in GGTT space

13 Depth Stall Enable

Project: All

Format: Enable

This bit should be set when obtaining a “visible pixel” count to preclude the possible inclusion in the

PS_DEPTH_COUNT value written to memory of some fraction of pixels from objects initiated after the

PIPE_CONTROL command.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 63

PIPE_CONTROL

Value Name Description Project

0h Disable 3D pipeline will not stall subsequent primitives at the Depth Test stage. All

1h Enable 3D pipeline will stall any subsequent primitives at the Depth Test stage until the

Sync and Post-Sync operations complete.

All

Programming Notes

This bit should be DISABLED for operations other than writing PS_DEPTH_COUNT.

This bit will have no effect (besides preventing write cache flush) if set in a PIPE_CONTROL command

issued to the Media pipe.

12 Render Target Cache Flush Enable

Project: All

Format: Enable

Setting this bit will force Render Cache to be flushed to memory prior to this synchronization point

completing. This bit should be set for all write fence sync operations to assure that results from

operations initiated prior to this command are visible in memory once software observes this

synchronization.

Value Name Description Project

0h Disable Flush Render Target Cache is NOT flushed. All

1h Enable Flush Render Target Cache is flushed. All

Programming Notes

This bit should be DISABLED for End-of-pipe (Read) fences, PS_DEPTH_COUNT or TIMESTAMP

queries.

This bit must not be set when Depth Stall Enable bit is set in this packet.

11 Instruction Cache Invalidate Enable

Project: All

Format: Enable

Setting this bit is independent of any other bit in this packet. This bit controls the invalidation of the L1

and L2 at the top of the pipe i.e. at the parsing time.

10 Texture Cache Invalidation Enable

Project: All

Format: Enable

Setting this bit is independent of any other bit in this packet. This bit controls the invalidation of the

texture caches at the top of the pipe i.e. at the parsing time.

9 Indirect State Pointers Disable

Project: All

Format: Enable

Description Project

At the completion of the post-sync operation associated with this pipe control packet, the

indirect state pointers in the hardware are considered invalid; the indirect pointers are not

saved in the context. If any new indirect state commands are executed in the command stream

while the pipe control is pending, the new indirect state commands are preserved.

 Using Invalidate State Pointer (ISP) only inhibits context restoring of Push Constant

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 64

PIPE_CONTROL

(3DSTATE_CONSTANT_*) commands. Push Constant commands are only considered as

Indirect State Pointers. Once ISP is issued in a context, SW must initialize by programming

push constant commands for all the shaders (at least to zero length) before attempting any

rendering operation for the same context.

8 Notify Enable

Project: All

Format: Enable

If ENABLED, a Sync Completion Interrupt will be generated (if enabled by the MI Interrupt Control

registers) once the sync operation is complete. See Interrupt Control Registers in Memory Interface

Registers for details.

7 PIPE_CONTROL Flush Enable

Format: Enable

If ENABLED, the PIPE_CONTROL command will wait until all previous writes of immediate data from

post sync circles are complete before executing the next command.

5 DC Flush Enable

Format: Enable

Setting this bit enables flushing of the L3$ portions that caches DC writes.

4 VF(address based) Cache Invalidation Enable

Project: All

Format: Enable

Setting this bit is independent of any other bit in this packet. This bit controls the invalidation of VF

address based cache at the top of the pipe i.e. at the parsing time.

3 Constant Cache Invalidation Enable

Project: All

Format: Enable

Setting this bit is independent of any other bit in this packet. This bit controls the invalidation of the

constant cache at the top of the pipe i.e. at the parsing time.

2 State Cache Invalidation Enable

Project: All

Format: Enable

Setting this bit is independent of any other bit in this packet. This bit controls the invalidation of the L1

and L2 state caches at the top of the pipe i.e. at the parsing time.

1 Stall At Pixel Scoreboard

Project: All

Format: Enable

Defines the behavior of PIPE_CONTROL command at the pixel scoreboard.

Value Name Description Project

0h Disable Stall at the pixel scoreboard is disabled. All

1h Enable Stall at the pixel scoreboard is enabled. All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 65

PIPE_CONTROL

Programming Notes

This bit should be DISABLED for End-of-pipe (Read) fences, PS_DEPTH_COUNT or TIMESTAMP

queries. This bit is ignored if Depth Stall Enable is set. Further the render cache is not flushed even if

Write Cache Flush Enable bit is set.

0 Depth Cache Flush Enable

Project: All

Format: Enable

Setting this bit enables flushing (i.e. writing back the dirty lines to memory and invalidating the tags) of

depth related caches. This bit applies to HiZ cache, Stencil cache and depth cache.

Value Name Description Project

0h Flush Disabled Depth relates caches (HiZ, Stencil and Depth) are NOT flushed. All

1h Flush Enabled Depth relates caches (HiZ, Stencil and Depth) are flushed. All

Programming Notes

Ideally depth caches need to be flushed only when depth is required to be coherent in memory for later

use as a texture, source or honoring CPU lock. This bit should be DISABLED for End-of-pipe (Read)

fences, PS_DEPTH_COUNT or TIMESTAMP queries.

This bit must not be set when Depth Stall Enable bit is set in this packet.

2 31:2 Address

Format: GraphicsAddress[31:2]U32

If Post Sync Operation is set to 1h (LRI Post-Sync Operation must be clear): Bits 31:3 secify the QW

address of where the Immediate Data following this DW in the packet to be stored. Bit 2 MBZ Ignored if

"No Write" is the selected in Post-Sync Operation If LRI Post-Sync Operation is set: Bits 31:2 specify

the MMIO offset destination for the data in the Immediate Data Low (DW3) field. Only DW writes are

valid.

1:0 Reserved

Project: All

Format: MBZ

3

31:0 Immediate Data

Project: All

Format: U32

This field specifies the Lower DWord value to be written to the targeted location. Only valid when Post-

Sync Operation is 1h (Write Immediate Data) or LRI Post-Sync Operation is set.

 Ignored if Post-Sync Operation is “No write”, “Write PS_DEPTH_COUNT” or “Write TIMESTAMP”.

4

31:0 Immediate Data

Project: All

Format: U32

This field specifies the Upper DWord value to be written to the targeted location. Only valid when Post-

Sync Operation is 1h (Write Immediate Data) Ignored if Post-Sync Operation is “No write”, “Write

PS_DEPTH_COUNT”, “Write TIMESTAMP” or “LRI Post Sync Opeation”.

1.10.4.2 Programming Restrictions for PIPE_CONTROL

PIPE_CONTROL arguments can be split up into three categories:

 Post-sync operations

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 66

 Flush Types

 Stall

Post-sync operation is only indirectly affected by the flush type category via the stall bit. The stall category

depends on the both flush type and post-sync operation arguments. A PIPE_CONTROL with no

arguments set is Invalid.

1.10.4.2.1 Post-Sync Operation

These arguments relate to events that occur after the marker initiated by the PIPE_CONTROL command

is completed. The table below shows the restrictions:

Arguments Bits Restrictions

LRI Post Sync Operation 23 Post Sync Operation ([15:14] of DW1) must be set to 0x0.

Global Snapshot Count

Reset

19 Requires stall bit ([20] of DW1) set.

Generic Media State

Clear

16 Requires stall bit ([20] of DW1) set.

Indirect State Pointers

Disable

9 Requires stall bit ([20] of DW1) set.

Store Data Index 21 Post-Sync Operation ([15:14] of DW1) must be set to something other than ‘0’.

Sync GFDT 17 Post-Sync Operation ([15:14] of DW1) must be set to something other than ‘0’ or

0x2520[13] must be set.

TLB inv 18
Also Requires stall bit ([20] of DW1) set.

Post Sync Op 15:14
No Restriction.

LRI Post Sync Operation ([23] of DW1) must be set to ‘0’.

Notify En 8 No Restriction.

1.10.4.2.2 Flush Types

These are arguments related to the type of read only invalidation or write cache flushing is being

requested. Note that there is only intra-dependency. That is, it is not affected by the post-sync operation

or the stall bit. The table below shows the restrictions.

Arguments Bit Restrictions

Depth Stall 13
The following bits must be clear

 Render Target Cache Flush Enable ([12] of
DW1)

 Depth Cache Flush Enable ([0] of DW1)

Render Target Cache Flush
12

Depth Stall must be clear ([13] of DW1)

Depth Cache Flush 0
Depth Stall must be clear ([13] of DW1)

Stall Pixel Scoreboard 1 No Restriction

Inst invalidate. 11 No Restriction

Tex invalidate. 10 No Restriction

VF invalidate 4 No Restriction

Constant invalidate 3 No Restriction

State Invalidate 2 No Restriction

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 67

1.10.4.2.3 \ Stall

If the stall bit is set, the command streamer waits until the pipe is completely flushed.

Arguments Bit Restrictions

Stall Bit
20

 [All Stepping][All SKUs]:

One of the following must also be set

 Render Target Cache Flush Enable ([12] of DW1)

 Depth Cache Flush Enable ([0] of DW1)

 Stall at Pixel Scoreboard ([1] of DW1)

 Depth Stall ([13] of DW1)

 Post-Sync Operation ([13] of DW1)

 Notify Enable ([8] of DW1)

1.11 Push Constant URB Allocation

The push constants are stored into the URB which is part of the L3$. Software is required to program the

hardware to allocate space in the URB for each shader push constant. The software is limited to the

bottom address of the URB and must ensure that none of the shaders have overlapping handles. Below

is a diagram that represents a possible programming of the URB with Push Constants:

The sizes of the regions in the diagram will change to 16KB and 80KB, respectively

URB Allocation

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 68

In the above scheme we are allocating 16KB of push constants and 240KB of URB space. The handle

allocation is shown in the order of the FF pipeline but with the current hardware and state, the software

can program these to be any order and may size them to zero. Software may also use some if not all of

the 16KB above as handle allocations as long as none of the push constants or handle allocations

overlap. The only limitations are the sizes based off the table below and the restrictions in granularity

which are specified in the command descriptions of the URB state and the push constant allocation state

for each fixed function.

Below is a table that specifies the maximum size of each buffer:

Max Constant Buffer URB size

16KB 256KB

16KB 128KB

Below is a diagram that represents how the hardware may move and store one CONSTANT_BUFFER

command for a fixed function shader:

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 69

The bubbles in the URB are caused by the constant buffer in memory starting on a half cacheline and

being an even number in length. If the constant buffer starts on an odd cacheline and has an odd number

length then there will only be a bubble at the beginning of the buffer in the URB. If the constant buffer in

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 70

memory starts on a cache line boundary and has an odd number length then the bubble will only be at the

end of the constant buffer in the URB. Once the constant buffer is written to the GRF space then all the

bubbles will be removed.

Software must guarantee that there is enough space in the push constant buffer in the URB to hold one

constant buffer from memory. This includes any buffering to write the 512b aligned requests from memory

into the URB. Because the L3$ only supports writes from memory in 512b chunks, the URB may have

some bubbles between each constant buffer fetch.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 71

2. 3D Pipeline – Vertex Fetch (VF) Stage

2.1 Vertex Fetch (VF) Stage Overview

The VF stage performs one major function: executing 3DPRIMITIVE commands. This is handled by the

VF’s InputAssembly function. The InputAssembly process is closely matched to the Input Assembly

function. Minor enhancements have been included to better support OpenGL.

The following subsections describe some high-level concepts associated with the VF stage.

2.1.1 Input Assembly

The VF’s InputAssembly function includes (for each vertex generated):

 Generation of VertexIndex and InstanceIndex for each vertex, possibly via use of an Index Buffer.

 Lookup of the VertexIndex in the Vertex Cache (if enabled)

 If a cache miss is detected:

o Use of computed indices to fetch data from memory-resident vertex buffers

o Format conversion of the fetched vertex data

o Assembly of the format conversion results (and possibly some internally generated
data) to form the complete “input” (raw) vertex

o Storing the input vertex data in a Vertex URB Entry (VUE) in the URB

o Output of the VUE handle of the input vertex to the VS stage

 If a cache hit is detected, the VUE handle from the Vertex Cache is passed to the VS stage (marked
as a cache hit to prevent any VS processing).

2.1.1.1 Vertex Assembly

The VF utilizes a number of VERTEX_ELEMENT state structures to define the contents and format of the

vertex data to be stored in Vertex URB Entries (VUEs) in the URB. See below for a detailed description of

the command used to define these structures (3DSTATE_VERTEX_ELEMENTS).

Each active VERTEX_ELEMENT structure defines up to 4 contiguous DWords of VUE data, where each

DWord is considered a “component” of the vertex element. The starting destination DWord offset of the

vertex element in the VUE is specified, and the VERTEX_ELEMENT structures must be defined with

monotonically increasing VUE offsets. For each component, the source of the component is specified.

The source may be a constant (0, 0x1, or 1.0f), a generated ID (VertexID, InstanceID or PrimitiveID), or a

component of a structure in memory (e.g,. the Y component of an XYZW position in memory). In the case

of a memory source, the Vertex Buffer sourcing the data, and the location and format of the source data

with that VB are specified.

The VF’s Vertex Assembly process can be envisioned as the VF unit stepping through the

VERTEX_ELEMENT structures in order, fetching and format-converting the source information (if

memory resident), and storing the results in the destination VUE.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 72

2.1.2 Vertex Cache

The VF stage communicates with the VS stage in order to implement a Vertex Cache function in the 3D

pipeline. The Vertex Cache is strictly a performance-enhancing feature and has no impact on 3D pipeline

results (other than a few statistics counters).

The Vertex Cache contains the VUE handles of VS-output (shaded) vertices if the VS function is enabled,

and the VUE handles of VF-output (raw) vertices if the VS function is disabled. (Note that the actual

vertex data is held in the URB, and only the handles of the vertices are stored in the cache). In either

case, the contents of the cache (VUE handles) are tagged with the VertexIndex value used to fetch the

input vertex data. The rationale for using the VertexIndex as the tag is that (assuming no other state or

parameters change) a vertex with the same VertexIndex as a previous vertex will have the same input

data, and therefore the same result from the VF+VS function.

Note that any change to the state controlling the InputAssembly function (e.g., vertex buffer definition), or

any change to the state controlling the VS function (if enabled) (e.g., VS kernel), will result in the Vertex

Cache being invalidated. In addition, any non-trivial use of instancing (i.e., more than one instance per

3DPRIMITIVE command and the inclusion of instance data in the input vertex) will effectively invalidate

the cache between instances, as the InstanceIndex is not included in the cache tag. See Vertex Caching

in Vertex Shader for more information on the Vertex Cache (e.g., when it is implicitly disabled, etc.)

2.1.3 Input Data: Push Model vs. Pull Model

Given the programmability of the pipeline, and the ability of shaders to input (load/sample) data from

memory buffers in an arbitrary fashion, the decision arises in whether to push instance/vertex data into

the front of the pipeline or defer the data access (pull) to the shaders that require it.

There are tradeoffs involved in deciding between these models. For vertex data, it is probably always

better to push the data into the pipeline, as the VF hardware attempts to cover the latency of the data

fetch. The decision is less clear for instance data, as pushing instance data leads to larger Vertex URB

entries which will be holding redundant data (as the instance data for vertices of an object are by

definition the same). Regardless, the GEN 3D pipeline supports both models.

2.1.4 Generated IDs

[Note that the generated IDs are considered separate from any offset computations performed by the VF

unit, and are therefore described separately here.]

The VF generates InstanceID, VertexID, and PrimitiveID values as part of the InputAssembly process.

VertexID and InstanceID are only allowed to be inserted into the input vertex data as it is gathered and

written into the URB as a VUE.

The definition/use of PrimitiveID is more complicated than the other auto-generated IDs. PrimitiveID is

associated with an “object” , not a particular vertex. It is only available to the GS (: and HS) as a special

non-vertex input, and the PS as a constant-interpolated attribute. It is not seen by the VS (or DS) at all.

The PrimitiveID therefore is kept separate from the vertex data. Take for example a TRILIST primitive

topology: It should be possible to share vertices between triangles in the list (i.e., reuse the VS output of a

vertex), even though each triangle has a different PrimitiveID associated with it.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 73

2.1.4.1 Generated IDs

The InstanceID, VertexID, and PrimitiveID values associated with each vertex can be stored in the

vertex's VUE, via use of the Component n Control fields in the VERTEX_ELEMENT structure. This

makes the values available to the VS thread.

While the PrimitiveID can still be stored in the VUE (see above), there should be no API-specific reason

to do so. The 32-bit PrimitiveIDs associated with objects are passed down the FF pipeline and made

available to GS and Setup threads as payload header data. A side effect of this feature is that the vertex

cache can operate even when PrimitiveIDs are being used.

2.2 Index Buffer (IB)

The 3DSTATE_INDEX_BUFFER command is used to define an Index Buffer (IB) used in subsequent

3DPRIMITIVE commands.

The RANDOM access mode of the 3DPRIMITIVE command involves the use of a memory-resident IB.

The IB, defined via the 3DSTATE_INDEX_BUFFER command described below, contains a 1D array of 8,

16 or 32-bit index values. These index values will be fetched by the InputAssembly function, and

subsequently used to compute locations in VERTEXDATA buffers from which the actual vertex data is to

be fetched. (This is opposed to the SEQUENTIAL access mode were the vertex data is simply fetched

sequentially from the buffers).

Software is responsible for ensuring that accesses outside the IB do not occur. This is possible as

software can compute the range of IB values referenced by a 3DPRIMITIVE command (knowing the

StartVertexLocation, InstanceCount, and VerticesPerInstance values) and can then compare this

range to the IB extent.

2.2.1 3DSTATE_INDEX_BUFFER

3DSTATE_INDEX_BUFFER

Source: RenderCS

Length Bias: 2

This command is used to specify the current IB state used by the VF function. At most one IB is defined and active

at any given time.

NOTES: The IB must be specified before any RANDOM 3D_PRIMITIVE commands are issued It is possible to have

vertex elements source completely from generated ID values and therefore not require any Index Buffer accesses.

In this case, VF function will simply ignore the Index Buffer state.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 74

3DSTATE_INDEX_BUFFER

23:16 3D Command Sub Opcode

Default Value: 0Ah 3DSTATE_INDEX_BUFFER

Format: OpCode

15:12 Index Buffer Object Control State

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this index buffer.

11 Reserved

Project: All

Format: MBZ

10 Cut Index Enable

Format: Enable

If ENABLED, the largest index value (0xFF,0xFFFF,0xFFFFFFFF, depending on Index Format) is

interpreted as the “cut” index. (See description of this elsewhere in this section). (Expected OpenGL

driver usage)This field can only be enabled for certain primitive topology types. Refer to the table later

in this section for details.

9:8 Index Format

Project: All

Format: U2 enumerated type

This field specifies the data format of the index buffer. All index values are UNSIGNED.

Value Name Project
0h INDEX_BYTE All

1h INDEX_WORD All

2h INDEX_DWORD All

7:0 DWord Length

Default Value: 1h Excludes DWord (0,1)

Project: All

Format: =n Total Length – 2

1 31:0 Buffer Starting Address

Project: All

Format: GraphicsAddress[31:0]Index_Buffer_Entry

This field contains the size-aligned (as specified by Index Format) Graphics Address of the first element

of interest within the index buffer.Software must program this value with the combination (sum) of the

base address of the memory resource and the byte offset from the base address to the starting

structure within the buffer.

Programming Notes

Index Buffers can only be allocated in linear (not tiled) graphics memory

2 31:0 Buffer Ending Address

Project: All

Format: GraphicsAddress[31:0]

If non-zero, this field contains the address of the last valid byte in the index buffer. Any index buffer

reads past this address returns an index value of 0 (as if the index buffer was zero-extended).

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 75

3DSTATE_INDEX_BUFFER

Software must guarantee that the buffer ends on an index boundary (e.g., for an INDEX_DWORD

buffer, Bits [1:0] == 11b).

Errata Description Project

 Software needs to disable the index buffer by setting Index Buffer Start address AFTER

Index Buffer End address for draws where the starting index location is greater than the

index buffer size.

The following table lists which primitive topology types support the presence of Cut Indices.

When 3DSTATE_INDEX_BUFFER has Cut Index Enable set,it is UNDEFINED to issue a 3DPRIMITIVE

with a primitive topology type not supporting a Cut Index (even if no cut indices are actually present in the

index buffer.

Definition Cut Index?
3DPRIM_POINTLIST Y

3DPRIM_LINELIST Y

3DPRIM_LINESTRIP Y

3DPRIM_TRILIST Y

3DPRIM_TRISTRIP Y

3DPRIM_TRIFAN
N

3DPRIM_QUADLIST
N

3DPRIM_QUADSTRIP
N

3DPRIM_LINELIST_ADJ Y

3DPRIM_LINESTRIP_ADJ Y

3DPRIM_TRILIST_ADJ Y

3DPRIM_TRISTRIP_ADJ Y

3DPRIM_TRISTRIP_REVERSE Y

3DPRIM_POLYGON
N

3DPRIM_RECTLIST N

3DPRIM_LINELOOP
N

3DPRIM_POINTLIST_BF Y

3DPRIM_LINESTRIP_CONT Y

3DPRIM_LINESTRIP_BF Y

3DPRIM_LINESTRIP_CONT_BF Y

3DPRIM_TRIFAN_NOSTIPPLE N

3DPRIM_PATCHLIST_n
Y

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 76

2.2.2 Index Buffer Access

The following figure illustrates how the Index Buffer is accessed.

2.3 Vertex Buffers (VBs)

The 3DSTATE_VERTEX_BUFFERs and 3DSTATE_INSTANCE_STEP_RATE commands are used to

define Vertex Buffers (VBs) used in subsequent 3DPRIMITIVE commands.

Most input vertex data is sourced from memory-resident VBs. A VB is a 1D array of structures, where the

size of the structure as defined by the VB’s BufferPitch. VBs are accessed either as VERTEXDATA

buffers or INSTANCEDATA buffers, as defined by the VB’s BufferAccessType. The VB’s access type

will determine whether the VF-computed VertexIndex or InstanceIndex is used to access data in the VB.

Given that the RANDOM access mode of the 3DPRIMITIVE command utilizes an IB (possibly provided by

an application) to compute VB index values, VB definitions contain a MaxIndex value used to detect

accesses beyond the end of the VBs. Any access outside the extent of a VB returns 0.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 77

2.3.1 3DSTATE_VERTEX_BUFFERS

3DSTATE_VERTEX_BUFFERS

Source: RenderCS

Length Bias: 2

This command is used to specify VB state used by the VF function.

This command can specify from 1 to 33 VBs.

The VertexBufferID field within a VERTEX_BUFFER_STATE structure indicates the specific VB. If a VB definition is

not included in this command, its associated state is left unchanged and is available for use if previously defined.

Programming Notes

It is possible to have individual vertex elements sourced completely from generated ID values and therefore not

require any vertex buffer accesses for that vertex element. In this case, VF function will simply ignore the VB state

associated with that vertex element. If all enabled vertex elements have this characteristic, no VBs are required to

process 3DPRIMITIVE commands. For example, this might arise when the user wants to perform all data lookups in

the first shader, so only generated index values need to be passed down to it. In this extreme case, SW would not

need to program any VB state, and therefore not need to issue any 3DSTATE_VERTEX_BUFFERS commands.

For any 3DSTATE_VERTEX_BUFFERS command, at least one VERTEX_BUFFER_STATE structure must be

included.

VERTEX_BUFFER_STATE structures are 4 DWords for both VERTEXDATA buffers and INSTANCEDATA buffers.

Inclusion of partial VERTEX_BUFFER_STATE structures is UNDEFINED.

The order in which VBs are defined within this command can be arbitrary, though a vertex buffer must be defined

only once in any given command (otherwise operation is UNDEFINED).

DWord Bit Description

0 31:29 Instruction Type

Default Value: 03h GFXPIPE

Format: Opcode

28:27 Instruction Sub-Type

Default Value: 3h 3D

Format: Opcode

26:24 Instruction Opcode

Default Value: 0h 3DSTATE_VERTEX_BUFFERS

Format: Opcode

23:16 Instruction Sub-Opcode

Default Value: 08h 3DSTATE_VERTEX_BUFFERS

Format: Opcode

15:8 Reserved

7:0 DWord Count

Default Value: 3 DWORD_COUNT_n

Format: =n

n = 4b-1 (where b = # of buffer states included)

1..n 127:0 Vertex Buffer State [n]

Format: VERTEX_BUFFER_STATE

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 78

2.3.2 VERTEX_BUFFER_STATE Structure

VERTEX_BUFFER_STATE

Source: RenderCS

Default Value: 0x00000000, 0x00000000, 0x00000000, 0x00000000

This structure is used in 3DSTATE_VERTEX_BUFFERS to set the state associated with a VB. The VF function will

use this state to determine how/where to extract vertex element data for all vertex elements associated with the VB.

The VERTEX_BUFFER_STATE structure is 4 DWords for both INSTANCEDATA and VERTEXDATA buffers.A VB

is defined as a 1D array of vertex data structures, accessed via a computed index value. The VF function therefore

needs to know the starting address of the first structure (index 0) and size of the vertex data structure.

Programming Notes Project

Vertex element accesses which straddle or go past the VB’s End Address will return 0’s for all elements.

DWord Bit Description

0 31:26 Vertex Buffer Index

Format: U6 Index

This field contains an index value which selects the VB state being defined.

Value Name
[0,32]

25:21 Reserved

Project: All

Format: MBZ

20 Buffer Access Type

This field determines how vertex element data is extracted from this VB. This control applies to all

vertex elements associated with this VB.

Value Name Description Project
00b VERTEXDATA For SEQUENTIAL vertex access, each vertex of an instance is

sourced from sequential structures within the VB. For RANDOM

vertex access, each vertex of an instance is looked up

(separately) via a computed index value

All

01b INSTANCEDATA Each vertex of an instance is sourced with the same (instance)

data. Subsequent instances may be sourced with the same or

different data, depending on Instance Data Step Rate.

All

19:16 Vertex Buffer Memory Object Control State

Project: All

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for this vertex buffer.

15 Reserved

Project: All

Format: MBZ

14 Address Modify Enable

If set, the Buffer Starting Address and End Address fields are used to update the state of this buffer. If

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 79

VERTEX_BUFFER_STATE

clear, those fields are ignored and the previously-programmed values are maintained.

13 Null Vertex Buffer

Format: Enable

This field enabled causes any fetch for vertex data to return 0.

12 Vertex Fetch Invalidate

Default Value: 0h

Invalidate the Vertex overfetch cache when this bit is set. For multiple vertex buffer state structures in

one packet, this bit may be set only once in the entire packet.

11:0 Buffer Pitch

Format: U12 Count of bytes

This field specifies the pitch in bytes of the structures accessed within the VB. This information is

required in order to access elements in the VB via a structure index.

Value Name Description Project
[0,2048] Bytes

Programming Notes

Different VERTEX_BUFFER_STATE structures can refer to the same memory region using different
Buffer Pitch values.

See note on 64-bit float alignment in Buffer Starting Address.

1
31:0 Buffer Starting Address

Format: GraphicsAddress[31:0]

Description Project

This field contains the byte-aligned Graphics Address of the first element of interest within the

VB. Software must program this value with the combination (sum) of the base address of the

memory resource and the byte offset from the base address to the starting structure within the

buffer.

If the Address ModifyEnable bit is clear, this field is ignored and the previous value of Buffer

Starting Address for this buffer is maintained.

Programming Notes

64-bit floating point values must be 64-bit aligned in memory, or UNPREDICTABLE data will be

fetched. When accessing an element containing 64-bit floating point values, the Buffer Starting

Address and Source Element Offset values must add to a 64-bit aligned address, and BufferPitch must

be a multiple of 64-bits.

 VBs can only be allocated in linear (not tiled) graphics memory.

 As computed index values are, by definition, interpreted as unsigned values, there is no issue with

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 80

VERTEX_BUFFER_STATE

accesses to locations before (lower address value) the start of the buffer. However, these wrapped

indices are subject to Max Index checking (see below).

2 31:0 End Address

Format: GraphicsAddress[31:0]U32

Description Project

This field defines the address of the last valid byte in this particular VB. Access of a vertex

element which either straddles or is beyond this address will return 0’s for any data read.

If the Address ModifyEnable bit is clear, this field is ignored and the previous value of End

Address for this buffer is maintained.

Value Name
[0,FFFFFFFFh]

0h [Default]

3 31:0 Instance Data Step Rate

Format: U32

This field only applies to INSTANCEDATA buffers – it is ignored (but still present) for VERTEXDATA

buffers).

 This field determines the rate at which instance data for this particular INSTANCEDATA vertex buffer is

changed in sequential instances. Only after the number of instances specified by this field is generated

is new (sequential) instance data provided. This process continues for each group of instances defined

in the draw command. For example, a value of 1 in this field causes new instance data to be supplied

with each sequential (instance) group of vertices. A value of 2 causes every other instance group of

vertices to be provided with new instance data. The special value of 0 causes all vertices of all

instances generated by the draw command to be provided with the same instance data. (The same

effect can be achieved by setting this field to its maximum value.)

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 81

2.3.3 VERTEXDATA Buffers – SEQUENTIAL Access

Instead of “VBState.StartingBufferAddress + VBState.MaxIndex x VBState.BufferPitch”, the address of

the byte immediately beyond the last valid byte of the buffer is determined by “VBState.EndAddress+1”.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 82

2.3.4 VERTEXDATA Buffers – RANDOM Access

Instead of “VBState.StartingBufferAddress + VBState.MaxIndex x VBState.BufferPitch”, the address of

the byte immediately beyond the last valid byte of the buffer is determined by “VBState.EndAddress+1”.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 83

2.3.5 INSTANCEDATA Buffers

Instead of “VBState.StartingBufferAddress + VBState.MaxIndex x VBState.BufferPitch”, the address of

the byte immediately beyond the last valid byte of the buffer is determined by “VBState.EndAddress+1”.

2.4 Input Vertex Definition

The 3DSTATE_VERTEX_ELEMENTS command is used to define the source and format of input vertex

data and the format of how it is stored in the destination VUE as part of 3DPRIMITIVE processing in the

VF unit.

Refer to 3DPRIMITIVE Processing below for the general flow of how input vertices are input and stored

during processing of the 3DPRIMITIVE command.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 84

2.4.1 3DSTATE_VERTEX_ELEMENTS

3DSTATE_VERTEX_ELEMENTS

Source: RenderCS

Length Bias: 2

This is a variable-length command used to specify the active vertex elements (up to 34) Each

VERTEX_ELEMENT_STATE structure contains a Valid bit which determines which elements are used.

Programming Notes Project

At least one VERTEX_ELEMENT_STATE structure must be included.

Inclusion of partial VERTEX_ELEMENT_STATE structures is UNDEFINED.

SW must ensure that at least one vertex element is defined prior to issuing a 3DPRIMTIVE command, or

operation is UNDEFINED.

There are no ‘holes’ allowed in the destination vertex: NOSTORE components must be overwritten by

subsequent components unless they are the trailing DWords of the vertex. Software must explicitly chose

some value (probably 0) to be written into DWords that would otherwise be ‘holes’.

Within a VERTEX_ELEMENT_STATE structure, if a Component Control field is set to something other than

VFCOMP_STORE_SRC, no higher-numbered Component Control fields may be set to

VFCOMP_STORE_SRC. In other words, only trailing components can be set to something other than

VFCOMP_STORE_SRC.

(See additional restrictions listed in the command fields and VERTEX_ELEMENT_STATE description).

Element[0] must be valid.

All elements must be valid from Element[0] to the last valid element. (i.e. if Element[2] is valid then

Element[1] and Element[0] must also be valid)

The pitch between elements packed in the URB will always be 128 bits.

DWord Bit Description

0 31:29 Instruction Type

Default Value: 03h GFXPIPE

Format: Opcode

28:27 Instruction Sub-Type

Default Value: 3h 3D

Format: Opcode

26:24 Instruction Opcode

Default Value: 0h 3DSTATE_VERTEX_ELEMENTS

Format: Opcode

23:16 Instruction Sub-Opcode

Default Value: 09h 3DSTATE_VERTEX_ELEMENTS

Format: Opcode

15:8 Reserved

7:0 DWord Count

Format: =n

Vertex Element Count = (DWord Count + 1) / 2

Value Name Description Project
1 DWORD_COUNT_n [Default] excludes DWords 0,1

[0,66] Range 1-34 Elements

1..n 63:0 Element [n]

Format: VERTEX_ELEMENT_STATE

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 85

2.4.2 VERTEX_ELEMENT_STATE Structure

VERTEX_ELEMENT_STATE

Project: All

Source: RenderCS

Default Value: 0x00000000, 0x00000000

This structure is used in 3DSTATE_VERTEX_ELEMENTS to set the state associated with a vertex element. A vertex

element is defined as an entity supplying from 1 to 4 DWord vertex components to be stored in the vertex URB entry.

The number of supported vertex elements is: 34

The VF function will use this state, and possibly the state of the associated vertex buffer, to fetch/generate the

source vertex element data, perform any required format conversions, padding with zeros, and store the resulting

destination vertex element data into the vertex URB entry.

DWord Bit Description

0 31:26 Vertex Buffer Index

Format: U6

This field specifies which vertex buffer the element is sourced from.

Value Name
[0,32] Up to 33 VBs are supported

Programming Notes

It is possible for a vertex element to include only internally-generated data (VertexID, etc.), in which

case the associated vertex buffer state is ignored.

25 Valid

Format: Boolean

Value Name Description Project
1h TRUE this vertex element is used in vertex assembly All

0h FALSE this vertex element is not used. All

24:16 Source Element Format

Project: All

Format: SURFACE_FORMAT

Range: Valid encodings are those marked as “Y” in the “Vertex Buffer” column of the table of Surface

Format encodings in the Sampler chapter.

Format: The encoding of this field is identical the Surface Format field of the SURFACE_STATE

structure, as described in the Sampler chapter.

This field specifies the format in which the memory-resident source data for this particular vertex

element is stored in the memory buffer. This only applies to elements stored with

VFCOMP_STORE_SRC component control. (All other component types have an explicit format).

15 Edge Flag Enable

Format: Enable
Description Project

When ENABLED, the source element is interpreted as an EdgeFlag for the vertex. If the

source element is zero, the EdgeFlag will be set to FALSE. If the source element is non-zero,

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 86

VERTEX_ELEMENT_STATE

the EdgeFlag will be set to TRUE. The EdgeFlag bit will travel down the fixed function pipeline

along with the vertex handle, etc. and not be stored in the vertex data like the other vertex

elements. Refer to the fixed function descriptions for how this EdgeFlag affects rendering.

Edge flags are supported for the following primitive topology types only, otherwise

EdgeFlagEnable must not be ENABLED.

 3DPRIM_TRILIST*

 3DPRIM_TRISTRIP*

 3DPRIM_TRIFAN*

 3DPRIM_POLYGON

If this bit is DISABLED for all valid VERTEX_ELEMENTs, the vertex will be assigned a default

EdgeFlag of TRUE.

EdgeFlagEnable must not be ENABLED for 3DPRIM_TRISTRIP* and 3DPRIM_TRIFAN*

Edge flags are supported for all primitive topology types.

Programming Notes Project

 This bit must only be ENABLED on the last valid VERTEX_ELEMENT structure.

 When set, Component 0 Control must be set to VFCOMP_STORE_SRC, and
Component 1-3 Control must be set to VFCOMP_NOSTORE.

Edge Flags are not supported for QUADLIST primitives. Software may elect to convert

QUADLIST primitives to some set of corresponding edge-flag-supported primitive types (e.g.,

POLYGONs) prior to submission to the 3D pipeline.

14:11 Reserved

Project: All

Format: MBZ

10:0 Source Element Offset (in bytes)

Project: All

Format: U11 byte offset

Byte offset of the source vertex element data in the structures comprising the vertex buffer.

Value Name
[0,2047]

Programming Notes

See note on 64-bit float alignment in Buffer Starting Address.

1 31 Reserved

Project: All

Format: MBZ

30:28 Component 0 Control

Project: All

Format: 3D_VertexComponentControl

Refer to the 3D_VertexComponentControl table below

27 Reserved

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 87

VERTEX_ELEMENT_STATE

Project: All

Format: MBZ

26:24 Component 1 Control

Format: 3D_VertexComponentControl

Refer to the 3D_VertexComponentControl table below

23 Reserved

Project: All

Format: MBZ

22:20 Component 2 Control

Format: 3D_VertexComponentControl

Refer to the 3D_VertexComponentControl table below

19 Reserved

Project: All

Format: MBZ

18:16 Component 3 Control

Format: 3D_VertexComponentControl

Refer to the 3D_VertexComponentControl table below

15:8 Reserved

Project: All

Format: MBZ

7:0 Reserved

Format: MBZ

3D_VertexComponentControl

Project: All

Source: RenderCS

Size (in bits): 3

Value Name Description Project
0 VFCOMP_NOSTORE Don’t store this component. (Not valid for Component 0, but can be

used for Component 1-3). Once this setting is used for a component,

all higher-numbered components (if any) MUST also use this

setting. (I.e., no holes within any particular vertex element). Also,

there are no ‘holes’ allowed in the destination vertex: NOSTORE

components must be overwritten by subsequent components unless

they are the trailing DWords of the vertex. Software must explicitly

chose some value (probably 0) to be written into DWords that would

otherwise be ‘holes’.

All

1 VFCOMP_STORE_SRC Store corresponding component from format-converted source

element. Storing a component that is not included in the Source

All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 88

3D_VertexComponentControl

Element Format results in an UNPREDICTABLE value being stored.

Software should used the STORE_0 or STORE_1 encoding to

supply default components.Within a VERTEX_ELEMENT_STATE

structure, if a Component Control field is set to something other than

VFCOMP_STORE_SRC, no higher-numbered Component Control

fields may be set to VFCOMP_STORE_SRC. In other words, only

trailing components can be set to something other than

VFCOMP_STORE_SRC.

2 VFCOMP_STORE_0 Store 0 (interpreted as 0.0f if accessed as a float value) All

3 VFCOMP_STORE_1_FP Store 1.0f All

4 VFCOMP_STORE_1_INT Store 0x1 All

5 VFCOMP_STORE_VID Store Vertex ID (as U32)

6 VFCOMP_STORE_IID Store Instance ID (as U32)

7 VFCOMP_STORE_PID Store Primitive ID (as U32)Software should no longer need to use

this encoding as PrimitiveID is passed down the FF pipeline – see

explanation above.

All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 89

2.4.3 Vertex Element Data Path

The following diagram shows the path by which a vertex element within the destination VUE is generated

and how the fields of the VERTEX_ELEMENT_STATE structure is used to control the generation.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 90

2.5 3D Primitive Processing

2.5.1 3D PRIMITIVE Command

3DPRIMITIVE

Source: RenderCS

Length Bias: 2

The 3DPRIMITIVE command is used to submit 3D primitives to be processed by the 3D pipeline. Typically the

processing results in rendering pixel data into the render targets, but this is not required.

The parameters passed in this command are forwarded to the Vertex Fetch function. The Vertex Fetch function will

use this information to generate vertex data structures and store them in the URB. These vertices are then passed

down the 3D pipeline.

Programming Notes Project

If the threads spawned by this command are required to observe memory writes performed by threads

spawned from a previous command, software must precede this command with a command that performs a

(preferably pipelined) memory flush (e.g., 3D_PIPECONTROL).

Workloads enabling topology filter using MI_TOPOLOGY_FILTER must always program PIPECONTROL

command with only Post-Sync Operation (Write Immediate data) prior to every 3DPRIMTIVE command

programmed.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 3h 3DPRIMITIVE

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 0h 3DPRIMITIVE

Format: OpCode

15:11 Reserved

Project: All

Format: MBZ

10 Indirect Parameter Enable

Project: All

Format: U1

If set, the values in DW 2-5 are ignored and replaced by the current values of the corresponding

3DPRIM_xxx MMIO registers:

 3DPRIM_VERTEX_COUNT (instead of DW2: VertexCountPerInstance)

 3DPRIM_START_VERTEX (instead of DW3: StartVertexLocation)

 3DPRIM_INSTANCE_COUNT (instead of DW4: InstanceCount)

 3DPRIM_START_INSTANCE (instead of DW5: StartInstanceLocation)

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 91

3DPRIMITIVE

 3DPRIM_BASE_VERTEX (instead of DW6: BaseVertexLocation)

Indirect Parameter Enable and End Offset Enable must not be ENABLED at the same time, or

behavior is UNDEFINED.

9 Reserved

Format: MBZ

8 Predicate Enable

Project: All

Format: Enable

If set, this command is executed (or not) depending on the current value of the MI Predicate internal

state bit. This command is ignored only if PredicateEnable is set and the Predicate state bit is 0.

7:0 DWord Length

Default Value: 5h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

1 31:10 Reserved

Project: All

Format: MBZ

9 End Offset Enable

Project: All

Format: Enable

If set, the Vertex Count Per Instance field is IGNORED, and the VB0ENDOFFSET register is used to

indirectly specify the vertex count by defining the amount of valid data in VB0. The following

restrictions apply:

 VB0 must be enabled for use

 VertexAccessType = SEQUENTIAL

 Instance Count = 1

 Start Vertex Location = 0

 Start Instance Location = 0

 Base Vertex Location = 0

Vertices are output until EndOffset is reached or exceeded in VB0. If EndOffset is reached or

exceeded within the data associated with a vertex, that vertex is considered incomplete and will not be

output. Partial objects will be discarded (as is normally done).

If clear, End Offset is ignored.

Indirect Parameter Enable and End Offset Enable must not be ENABLED at the same time, or

behavior is UNDEFINED.

8 Vertex Access Type

Project: All

Format: VertexAccessType

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 92

3DPRIMITIVE

This field specifies how data held in vertex buffers marked as VERTEXDATA is accessed by Vertex

Fetch.

Value Name Description Project
0h SEQUENTIAL VERTEXDATA buffers are accessed sequentiallyRequiref if End

Offset Enable is ENABLED.

All

1h RANDOM VERTEXDATA buffers are accessed randomly via an index

obtained from the Index Buffer.

All

7:6 Reserved

Project: All

Format: MBZ

5:0 Primitive Topology Type

Project: All

Format: 3D_PrimTopoType See table below for encoding, see 3D Overview for diagrams and general

comments

This field specifies the topology type of 3D primitive generated by this command. Note that a single

primitive topology (list/strip/fan/etc.) can contain a number of basic objects (lines, triangles, etc.).

2 31:0 Vertex Count Per Instance

Project: All

Format: U32 Count of vertices

Format: GraphicsAddress[31:0]U32*1

This field specifies how many vertices are to be generated for each instance of the primitive topology. If

End Offset Enable is clear:

 Format = U32 count of vertices

 Range = [0, 2^32-1] (upper limit probably constrained by VB size)

 Ignored if End Offset Enable or Indirect Parameter Enable is ENABLED.

Programming Notes

 This per-instance value should specify a valid number of vertices for the primitive topology type.
E.g., for 3DPRIM_TRILIST_ADJ, this field should specify a multiple of 6 vertices. However, in
cases where too few or too many vertices are provided, the unused vertices will be silently
discarded by the pipeline.

 A 0 value is this field effectively makes the command a ‘no-operation’.

3 31:0 Start Vertex Location

Project: All

Format: U32 structure index

This field specifies the “starting vertex” for each instance. This allows skipping over part of the vertices

in a buffer if, for example, a previous 3DPRIMITIVE command had already drawn the primitives

associated with the earlier entries.

 For SEQUENTIAL access, this field specifies, for each instance, a starting structure index into the

vertex buffers

 For RANDOM access, this field specifies, for each instance, a starting index into the Index Buffer.

Programming Notes

 Access of any data outside of the valid extent of a vertex or index buffer will return the value 0
(i.e., appears as if the data stored at the invalid location was 0).

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 93

3DPRIMITIVE

 Must be set to 0 if End Offset Enable is ENABLED.

 Ignored if Indirect Parameter Enable is ENABLED

4 31:0 Instance Count

Project: All

Format: U32 Count of instances

Description Project

This field specifies the number of instances by which the primitive topology is to be

regenerated. A value of 0 indicates “no instances” (no-op operation). A value of 1 effectively

specifies “non-instanced” operation, though vertex buffers will still be used to provide instance

data, if so programmed.

 Ignored if Indirect Parameter Enable is ENABLED.

Must be set to 1 if End Offset Enable is ENABLED.

Value Name
[0,FFFFFFFFh]

5 31:0 Start Instance Location

Project: All

Format: U32 structure index

Description Project

This field specifies the “starting instance” for the command as an initial structure index into

INSTANCEDATA buffers.

Subsequent instances will access sequential instance data structures, as controlled by the

Instance Data Step Rate.

Programming Notes

 Access of any data outside of the valid extent of a vertex or index buffer will return the value 0
(i.e., appears as if the data stored at the invalid location was 0).

 Must be set to 0 if End Offset Enable is ENABLED.

 Ignored if Indirect Parameter Enable is ENABLED.

6 31:0 Base Vertex Location

Project: All

Format: S31 index structure bias

This field specifies a signed bias to be added to values read from the index buffer. This allows the

same index buffer values to access different vertex data for different commands.This field applies only

to RANDOM access mode. This field is ignored for SEQUENTIAL access mode, where there Start

Vertex Location can be used to specify different regions in the vertex buffers.

Programming Notes

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 94

3DPRIMITIVE

 Access of any data outside of the valid extent of a vertex or index buffer will return the value 0
(i.e., appears as if the data stored at the invalid location was 0).

 Must be set to 0 if End Offset Enable is ENABLED.

 Ignored if Indirect Parameter Enable is ENABLED.

2.5.2 Functional Overview

The following pseudocode summarizes the general flow of 3D Primitive Processing.

CommandInit

InstanceLoop{

VertexLoop{

VertexIndexGeneration

if (CutFlag)

TerminatePrimitive

else

OutputBufferedVertex

VertexCacheLookup

if (miss) {

VertexElementLoop {

SourceElementFetch

FormatConversion

DestinationComponentSelection

PrimitiveInfoGeneration

URBWrite

}

}

}

TerminatePrimitive

}

2.5.3 CommandInit

The InstanceID value is initialized to 0.

2.5.4 InstanceLoop

The InstanceLoop is the outmost loop, iterating through each instance of primitives. There is no special

“non-instanced” mode – at a minimum there is one instance of primitives.

For SEQUENTIAL accessing, the VertexID value is initialized to 0 at the start of each instance. (For

RANDOM accessing, there is no initial value for VertexID, as it is derived from the fetched IB value).

The PrimitiveID is also initialized to 0 at the start of each instance. StartPrim is initialized to TRUE.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 95

The VertexLoop (see below) is then executed to iterate through the instance vertices and output vertices

to the pipeline as required.

The end of each iteration of InstanceLoop includes an implied “cut” operation.

The InstanceID value is incremented at the end of each InstanceLoop. Note that each instance will

produce the same vertex outputs with the exception of any data dependent on InstanceID (i.e., “instance

data”).

2.5.5 VertexLoop

The VertexLoop iterates VertexNumber through the VertexCountPerInstance vertices for the instance.

For each iteration, a number of processing steps are performed (see below) to generate the information

that comprises a vertex. Note that, due to CutProcessing, each iteration does not necessarily output a

vertex to the pipeline. When a vertex is to be output, the following information is generated for that vertex:

 PrimitiveType associated with the vertex. This is simply a copy of the PrimitiveTopologyType field of
the 3DPRIMITIVE

 VUE handle at which the vertex data is stored

o For a Vertex Cache hit, the VUE handle is marked with a VCHit boolean, so that the
VS unit will not attempt to process (shade) that vertex.

o Otherwise, the VertexLoop will generate and store the input vertex data into the VUE
referenced by this handle.

 The PrimitiveID associated with the vertex. See PrimitiveInfoGeneration.

 PrimStart and PrimEnd booleans associated with the vertex. See PrimitiveInfoGeneration.

(Note that a single vertex of buffering is required in order to associate PrimEnd with a vertex, as this

information may not be known until the next iteration through the VertexLoop (see

OutputPrimitiveDelimiter).

VertexNumber value is incremented by 1 at the end of the loop.

2.5.6 VertexIndexGeneration

A VertexIndex value needs to be derived for each vertex. With the exception of the “cut” index, this index

value is used as the vertex cache tag and will be used as a structure index into all VERTEXDATA VBs.

For SEQUENTIAL accessing, the VertexID and VertexIndex value is derived as shown below:

VertexIndex = StartVertexLocation + VertexNumber

VertexID = VertexNumber

For RANDOM access, the VertexID and VertexIndex is derived from an IBValue read from the IB, as

shown below:

IBIndex = StartVertexLocation + VertexNumber

VertexID = IB[IBIndex]

if (CutIndexEnable && VertexID == CutIndex)

CutFlag = 1

else

VertexIndex = VertexID + BaseVertexLocation

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 96

CutFlag = 0

endif

2.5.7 TerminatePrimitive

For RANDOM accessing, and when enabled via Cut Index Enable, a fetched IBValue of ‘all ones’ (0xFF,

0xFFFF, or 0xFFFFFFFF depending on Index Format) is interpreted as a ‘cut value’ and signals the

termination of the current primitive and the possible start of the next primitive. This allows the application

to specify an instance as a sequence of variable-sized strip primitives (though the cut value applies to any

primitive type).

Also, there is an implied primitive termination at the end of each InstanceLoop (and so strip primitives

cannot span multiple instances).

In either case, the currently-buffered vertex (if any) is marked with EndPrim and then flushed out to the

pipeline.

The next-output vertex (if any) will be marked with StartPrim.

Whenever a primitive delimiter is encountered, the PIDCounterS and PIDCounterR counters are reset to

0. These counters control the incrementing (in PrimitiveInfoGeneration, below) of PrimitiveID within each

primitive topology of an instance.

if (PIDCounterS != 0) // There is a buffered vertex

if (primType == TRISTRIP_ADJ)

if (PIDCounterS==6 || PIDCounterR==1)

PrimitiveID++

endif

endif

PrimEnd = TRUE

OutputBufferedVertex

endif

PrimEnd = FALSE

PrimStart = TRUE

2.5.8 VertexCacheLookup

The VertexIndex value is used as the tag value for the VertexCache (see Vertex Cacheabove). If the

Vertex Cache is enabled and the VertexIndex value hits in the cache, the VUE handle is read from the

cache and inserted into the vertex stream. It is marked with a VCHit boolean to surpress processing

(shading) in the VS unit.

Otherwise, for Vertex Cache misses, a VUE handle is obtained to provide storage for the generated

vertex data. VertexLoop processing then proceeds to iterate through the VEs to generate the destination

VUE data.

2.5.9 VertexElementLoop

The VertexElementLoop generates and stores vertex data in the destination VUE one VE at a time.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 97

2.5.10 SourceElementFetch

The following assumes the VE requires data from a VB, which is the typical case. In the case that the VE

is completely comprised of constant and/or auto-generated IDs, the SourceElementFetch and

FormatConversion steps are skipped.

The structure index within the VE’s selected VB is computed as follows:

if (VB is a VERTEXDATA VB)

VBIndex = VertexIndex

else // INSTANCEDATA VB

VBIndex = StartInstanceLocation

if (VB.InstanceDataStepRate > 0)

VBIndex += InstanceID/VB.InstanceDataStepRate

endif

If VBIndex is invalid (i.e., negative or past Max Index), the data returned from the VB fetch is defined to

be zero. Otherwise, the address of the source data required for the VE is then computed and the data is

read from the VB. The amount of data read from the VB is determined by the Source Element Format.

if ((VBIndex<0) || (VBIndex>VB.MaxIndex))

srcData = 0

else

pSrcData = VB.BufferStartingAddress + (VBIndex * VB.BufferPitch) +

VE.SourceElementOffset

srcData = MemoryRead(pSrcData, VE.SourceElementFormat)

endif

2.5.11 Format Conversion

Once the VE source data has been fetched, it is subjected to format conversion. The output of format

conversion is up to 4 32-bit components, each either integer or floating-point (as specified by the Source

Element Format). See Sampler for conversion algorithms.

The following table lists the valid Source Element Format selections, along with the format and

availability of the converted components (if a component is listed as “-“, it cannot be used as source of a

VUE component). Note: This table is a subset of the list of supported surface formats defined in the

Sampler chapter. Please refer to that table as the “master list”. This table is here only to identify the

components available (per format) and their format.

Source Element Formats supported in VF Unit

Source Element Converted Component

Surface Format Name Format 0 1 2 3
R32G32B32A32_FLOAT FLOAT R G B A

R32G32B32A32_SINT SINT R G B A

R32G32B32A32_UINT UINT R G B A

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 98

Source Element Converted Component

Surface Format Name Format 0 1 2 3
R32G32B32A32_UNORM FLOAT R G B A

R32G32B32A32_SNORM FLOAT R G B A

R64G64_FLOAT FLOAT R G - -

R32G32B32A32_SSCALED FLOAT R G B A

R32G32B32A32_USCALED FLOAT R G B A

R32G32B32_FLOAT FLOAT R G B -

R32G32B32_SINT SINT R G B -

R32G32B32_UINT UINT R G B -

R32G32B32_UNORM FLOAT R G B -

R32G32B32_SNORM FLOAT R G B -

R32G32B32_SSCALED FLOAT R G B -

R32G32B32_USCALED FLOAT R G B -

R16G16B16A16_UNORM FLOAT R G B A

R16G16B16A16_SNORM FLOAT R G B A

R16G16B16A16_SINT SINT R G B A

R16G16B16A16_UINT UINT R G B A

R16G16B16A16_FLOAT FLOAT R G B A

R32G32_FLOAT FLOAT R G - -

R32G32_SINT SINT R G - -

R32G32_UINT UINT R G - -

R32G32_UNORM FLOAT R G - -

R32G32_SNORM FLOAT R G - -

R64_FLOAT FLOAT R - - -

R16G16B16A16_SSCALED FLOAT R G B A

R16G16B16A16_USCALED FLOAT R G B A

R32G32_SSCALED FLOAT R G - -

R32G32_USCALED FLOAT R G - -

B8G8R8A8_UNORM FLOAT B G R A

R10G10B10A2_UNORM FLOAT R G B A

R10G10B10A2_UINT UINT R G B A

R10G10B10_SNORM_A2_UNORM FLOAT R G B A

R8G8B8A8_UNORM FLOAT R G B A

R8G8B8A8_SNORM FLOAT R G B A

R8G8B8A8_SINT SINT R G B A

R8G8B8A8_UINT UINT R G B A

R16G16_UNORM FLOAT R G - -

R16G16_SNORM FLOAT R G - -

R16G16_SINT SINT R G - -

R16G16_UINT UINT R G - -

R16G16_FLOAT FLOAT R G - -

R11G11B10_FLOAT FLOAT R G B -

R32_SINT SINT R - - -

R32_UINT UINT R - - -

R32_FLOAT FLOAT R - - -

R32_UNORM FLOAT R - - -

R32_SNORM FLOAT R - - -

R10G10B10X2_USCALED FLOAT R G B -

R8G8B8A8_SSCALED FLOAT R G B A

R8G8B8A8_USCALED FLOAT R G B A

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 99

Source Element Converted Component

Surface Format Name Format 0 1 2 3
R16G16_SSCALED FLOAT R G - -

R16G16_USCALED FLOAT R G - -

R32_SSCALED FLOAT R - - -

R32_USCALED FLOAT R - - -

R8G8_UNORM FLOAT R G - -

R8G8_SNORM FLOAT R G - -

R8G8_SINT SINT R G - -

R8G8_UINT UINT R G - -

R16_UNORM FLOAT R - - -

R16_SNORM FLOAT R - - -

R16_SINT SINT R - - -

R16_UINT UINT R - - -

R16_FLOAT FLOAT R - - -

R8G8_SSCALED FLOAT R G - -

R8G8_USCALED FLOAT R G - -

R16_SSCALED FLOAT R - - -

R16_USCALED FLOAT R - - -

R8_UNORM FLOAT R - - -

R8_SNORM FLOAT R - - -

R8_SINT SINT R - - -

R8_UINT UINT R - - -

R8_SSCALED FLOAT R - - -

R8_USCALED FLOAT R - - -

R8G8B8_UNORM FLOAT R G B -

R8G8B8_SNORM FLOAT R G B -

R8G8B8_SSCALED FLOAT R G B -

R8G8B8_USCALED FLOAT R G B -

R64G64B64A64_FLOAT FLOAT R G B A

R64G64B64_FLOAT FLOAT R G B A

R16G16B16_FLOAT FLOAT R G B -

R16G16B16_UNORM FLOAT R G B -

R16G16B16_SNORM FLOAT R G B -

R16G16B16_SSCALED FLOAT R G B -

R16G16B16_USCALED FLOAT R G B -

2.5.12 DestinationFormatSelection

The Component Select 0..3 bits are then used to select, on a per-component basis, which destination

components will be written and with which value. The supported selections are the converted source

component, VertexID, InstanceID, PrimitiveID, the constants 0 or 1.0f, or nothing

(VFCOMP_NO_STORE). If a converted component is listed as ‘-‘ (not available) in FormatConversion, it

must not be selected (via VFCOMP_STORE_SRC), or an UNPREDICTABLE value will be stored in the

destination component.

The selection process sequences from component 0 to 3. Once a Component Select of

VFCOMP_NO_STORE is encountered, all higher-numbered Component Select settings must also be

programmed as VFCOMP_NO_STORE. It is therefore not permitted to have ‘holes’ in the destination VE.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 100

2.5.13 PrimitiveInfoGeneration

A PrimitiveID value and PrimStart boolean need to be associated with the vertex.

If the vertex is either the first vertex of an instance or the first vertex following a ‘cut index’, the vertex is

marked with PrimStart.

PrimitiveID gets incremented such that subsequent per-object processing (i.e., in the GS or SF/WM) will

see an incrementing value associated with each sequential object within an instance. The PrimitiveID

associated with the provoking, non-adjacent vertex of an object is applied to the object.

 The following pseudocode describe the logic used in the VertexLoop to compute the PrimitiveID value

associated with the vertex. Recall that PrimitiveID is reset to 0 at the start of each InstanceLoop.

if (PIDCounterS < S[primType])

PIDCounterS++

else

if (PIDCounterR < R[primType])

PIDCounterR++

else

PrimitiveID++

PIDCounterR = 0

endif

endif

Two counters are employed to control the incrementing of PrimitiveID. The counters are compared

against two corresponding parameters associated with the primitive topology type.

The PIDCounterS is used to ‘skip over’ some number (possibly zero) initial vertices of the primitive

topology. This counter gets reset to 0 after each primitive is terminated.

Then the PIDCounterR is used to periodically increment the PrimitiveID, where the incrementing interval

(vertex count) is topology-specific.

The following table lists the S[] and R[] values associated with each primitive topology type.

PrimTopologyType S, R PrimitiveID Outputs

POINTLIST

POINTLIST_BF

1, 0 0,1,2,3, ..

LINELIST 1, 1 0,0,1,1,2,2,3,3, ..

LINELIST_ADJ 1, 3 0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3 ..

LINESTRIP

LINESTRIP_BF

LINESTRIP_CONT

2, 0 0,0,1,2,3, ..

LINESTRIP_ADJ 3, 0
0,0,1,2,3,..

Note: this breaks the usage model (as the initial vertex is the

provoking vertex for the closing line, but it has an invalid

PrimitiveID of 0), but is effectively a don’t care as PrimitiveID is

only required for LINELOOP is an OpenGL-only primitive.)

The LINELOOP topology is converted to LINESTRIP topology

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 101

PrimTopologyType S, R PrimitiveID Outputs
at the beginning of the 3D pipeline.

TRILIST

RECTLIST

1, 2 0,0,0,1,1,1,2,2,2,3,3,3,..

TRILIST_ADJ 1, 5 0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,..

TRISTRIP TRISTRIP_REV 3, 0 0,0,0,1,2,3, ..

TRISTRIP_ADJ 5, 1 0,0,0,0,0,0,1,1,2,2,3,3, ..

TRIFAN

TRIFAN_NOSTIPPLE

POLYGON

3, 0 0,0,0,1,2,3, ..

QUADLIST 1, 3
0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3, ..

 Note: The QUADLIST topology is converted to POLYGON

topology at the beginning of the 3D pipeline.

QUADSTRIP 3, 1
0,0,0,0,1,1,2,2,3,3, ..

Note: The QUADSTRIP topology is converted to POLYGON

topology at the beginning of the 3D pipeline.

PATCHLIST_n 1,n-1
PATCHLIST_1: 0,1,2,3, ..

PATCHLIST_2: 0,0,1,1,2,2,3,3 .. and so on.

2.5.14 URBWrite

The selected destination components are written into the destination VUE starting at Destination Offset

Select. See the description of 3DPRIMITIVE for restrictions on this field.

2.5.15 OutputBufferedVertex

In order to accommodate ‘cut’ processing, the VF unit buffers one output vertex. The generation of a new

vertex or the termination of a primitive causes the buffered vertex to be output to the pipeline.

2.6 Dangling Vertex Removal

The last functional stage of processing of the 3DPRIMITIVE command is the removal of “dangling”

vertices. This includes the discarding of primitive topologies without enough vertices for a single object

(e.g., a TRISTRIP with only two vertices), as well as the discarding of trailing vertices that do not form a

complete primitive (e.g., the last two vertices of a 5-vertex TRILIST).

This function is best described as a filter operating on the vertex stream emitted from the processing of

the 3DPRIMITIVE. The filter inputs the PrimType, PrimStart and PrimEnd values associated with the

generated vertices. The filter only outputs primitive topologies without dangling vertices. This requires the

filter to (a) be able to buffer some number of vertices, and (b) be able to remove dangling vertices from

the pipeline and dereference the associated VUE handles.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 102

2.7 Other Vertex Fetch Functionality

2.7.1 Statistics Gathering

3DSTATE_VF_STATISTICS

Source: RenderCS

Length Bias: 1

The VF stage tracks two pipeline statistics, the number of vertices fetched and the number of objects generated. VF

will increment the appropriate counter for each when statistics gathering is enabled by issuing the

3DSTATE_VF_STATISTICS command with the [Statistics Enable] bit set.

DWord Bit Description

0 31:29 Instruction Type

Default Value: 03h GFXPIPE

Format: Opcode

28:27 Instruction Sub-Type

Format: Opcode

Value Name Project
1h Pipelined, Single DWord [Default]

26:24 Instruction Opcode

Default Value: 0h 3DSTATE_VF_STATISTICS

Format: Opcode

GFXPIPE[28:27 = 1h, 26:24 = 0h, 23:16 = 0Bh] (Pipelined, Single DWord)

23:16 Instruction Sub-Opcode

Default Value: 0Bh 3DSTATE_VF_STATISTICS

Format: Opcode

GFXPIPE[28:27 = 1h, 26:24 = 0h, 23:16 = 0Bh] (Pipelined, Single DWord)

15:1 Reserved

Format: MBZ

0 Statistics Enable

Format: Enable

If ENABLED, VF will increment the pipeline statistics counters IA_VERTICES_COUNT and

IA_PRIMITIVES_COUNT for each vertex fetched and each object output, respectively, for

3DPRIMITIVE commands issued subsequently.

 If DISABLED, these counters will not be incremented for subsequent 3DPRIMITIVE commands.

2.7.1.1 Vertices Generated

VF will increment the IA_VERTICES_COUNT Register (see Memory Interface Registers in Volume Ia,

GPU) for each vertex it fetches, even if that vertex comes from a cache rather than directly from a vertex

buffer in memory. Any “dangling” vertices (fetched vertices that are part of an incomplete object) will not

be included.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 103

2.7.1.2 Objects Generated

VF will increment the IA_PRIMITIVES_COUNT Register (see Memory Interface Registers in vol1a

System Overview) for each object (point, line, triangle, or quadrilateral) that it forwards down the pipeline.

Note: For LINELOOP, the last (closing) line object is not counted.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 104

3. 3D Pipeline – Vertex Shader (VS)
Stage

3.1 VS Stage Overview

The VS stage of the 3D Pipeline is used to perform processing (“shading”) of vertices after being

assembled and written to the URB by the VF function. The primary function of the VS stage is to pass

vertices that miss in the Vertex Cache to VS threads, and then pass the VS thread-generated vertices

down the pipeline. Vertices that hit in the Vertex Cache are passed down the pipeline unmodified.

When the VS stage is disabled, vertices flow through the unit unmodified (i.e., as written by the VF unit).

Refer to the Common 3D FF Unit Functions subsection in the 3D Overview chapter for a general

description of a 3D pipeline stage, as much of the VS stage operation and control falls under these

“common” functions; i.e., most stage state variables and VS thread payload parameters are described in

3D Overview, and although they are listed here for completeness, that chapter provides the detailed

description of the associated functions.

Refer to this chapter for an overall description of the VS stage, and any exceptions the VS stage exhibits

with respect to common FF unit functions.

3.1.1 Vertex Caching

The 3D Pipeline employs a Vertex Cache that is shared between the VF and VS units. (See Vertex Fetch

chapter for additional information). The Vertex Cache may be explicitly DISABLED via the Vertex Cache

Disable bit in VS_STATE. Even when explicitly ENABLED, the VS unit can (by default) implicitly

disable and invalidate the Vertex Cache when it detects one of the following conditions:

1. Either VertexID or PrimitiveID is selected as part of the vertex data stored in the URB.

2. Sequential indices are used in the 3DPRIMITIVE command (though this is effectively a don’t
care as there wouldn’t be any hits anyway).

The implicit disable will persist as long as one of these conditions persist.

The Vertex Cache is implicitly invalidated between 3DPRIMITIVE commands and between instances

within a 3DPRIMITIVE command – therefore use of InstanceID in a Vertex Element is not a condition

underwhich the cache is implicitly disabled.

The following table summarizes the modes of operation of the Vertex Cache:

Vertex Cache VS Function Enable Mode of Operation

DISABLED (implicitly or explicitly) DISABLED Vertex Cache is not used. VF unit will

assemble all vertices and write them into

the URB entry supplied by the VS unit. VS

unit will pass references to these VUEs

down the pipeline unmodified.

Usage Model: This is an exceptional

condition, only required when the VF-

generated vertices contain InstanceID or

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 105

Vertex Cache VS Function Enable Mode of Operation

PrimitiveID and more than one instance is

produced. Otherwise the Vertex Cache

should be enabled.

DISABLED

(implicitly or explicitly)

ENABLED Vertex Cache is not used. VF unit will

assemble all vertices and write them into

the URB entry supplied by the VS unit. VS

unit will spawn VS threads to process all

vertices, overwriting the input data with

the results. The VS unit pass references

to these VUEs down the pipeline.

Usage Model: This mode is only used

when the VS function is required, but

either (a) the input vertex contains

InstanceID or PrimitiveID and more than

one instance is generated or (b) the VS

kernel produces a side effect (e.g., writes

to a memory buffer) which requires every

vertex to be processed by a VS thread.

ENABLED DISABLED Vertex Cache is used to provide reuse of

VF-generated vertices. The VF unit will

check the cache and only process

(assemble/write) vertices that miss in the

cache. In either case, the VS unit will pass

references to vertices (that hit or miss)

down the pipeline without spawning any

VS threads.

Usage Model: Normal operation when
the VS function is not required. Note that
there may be situations which require the
VS function to be used even when not
explicitly required by the API. E.g.,
perspective divide may be required for
clip testing.

ENABLED ENABLED Vertex Cache is used to provide reuse of

VS-processed vertices. The VF unit will

check the cache and only process

(assemble/write) vertices that miss in the

cache. The VS unit will only process

(shade) the vertices that missed in the

cache. The VS unit sends references to hit

or missed vertices down the pipeline in

the correct order.

Usage Model: Normal operation when
the VS function is required and use of the
Vertex Cache is permissible.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 106

3.2 VS Stage Input

As a stage of the 3D pipeline, the VS stage receives inputs from the previous (VF) stage. Refer to 3D

Overview for an overview of the various types of input to a 3D Pipeline stage. The remainder of this

subsection describes the inputs specific to the VS stage.

3.2.1 State

A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth stall needs to be sent just prior to any

3DSTATE_VS, 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,

3DSTATE_BINDING_TABLE_POINTER_VS, 3DSTATE_SAMPLER_STATE_POINTER_VS command.

Only one PIPE_CONTROL needs to be sent before any combination of VS associated 3DSTATE.

3.2.1.1 URB_FENCE

Refer to 3D Overview for a description of how the VS stage processes this command.

3.2.1.2 3DSTATE_VS

3DSTATE_VS

Source: RenderCS

Length Bias: 2

Description Project

The state used by VS is defined with this inline state packet.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 10h 3DSTATE_VS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 4h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

1 31:6 Kernel Start Pointer

Project: All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 107

3DSTATE_VS

Format: InstructionBaseOffset[31:6]Kernel

This field specifies the starting location (1st core instruction) of the kernel program run by threads

spawned by this FF unit. It is specified as a 64-byte-granular offset from the Instruction Base Address.

This field is ignored if VS Function Enable is DISABLED.

5:0 Reserved

Project: All

Format: MBZ

2 31 Single Vertex Dispatch

Project: All

Format: U1 Enumerated type

This field can be used to force single vertex SIMD4x2 VS threads.

Value Name Description Project
0h Multiple Dual vertex SIMD4x2 thread dispatches are allowed. All

1h Single Single vertex SIMD4x2 thread dispatches are forced. All

30 Vector Mask Enable (VME)

Project: All

When SPF=0, VME specifies which mask to use to initialize the initial channel enables. When SPF=1,

VME specifies which mask to use to generate execution channel enables.

Value Name Description Project
0h Dmask Channels are enabled based on the dispatch mask All

1h Vmask Channels are enabled based on the vector mask All

29:27 Sampler Count

Project: All

Specifies how many samplers (in multiples of 4) the vertex shader 0 kernel uses. Used only for

prefetching the associated sampler state entries. This field is ignored if VS Function Enable is

DISABLED.

Value Name Description Project
0h No Samplers no samplers used All

1h 1-4 Samplers between 1 and 4 samplers used All

2h 5-8 Samplers between 5 and 8 samplers used All

3h 9-12 Samplers between 9 and 12 samplers used All

4h 13-16 Samplers between 13 and 16 samplers used All

26 Reserved

Project: All

Format: MBZ

25:18 Binding Table Entry Count

Project: All

Format: U8

Specifies how many binding table entries the kernel uses. Used only for prefetching of the binding table

entries and associated surface state.

 Note: For kernels using a large number of binding table entries, it may be wise to set this field to zero

to avoid prefetching too many entries and thrashing the state cache.

 This field is ignored if VS Function Enable is DISABLED.

Value Name
[0,255]

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 108

3DSTATE_VS

17 Reserved

Project:

Format: MBZ

16 Floating Point Mode

Project: All

Format: U1 enumerated type

Specifies the initial floating point mode used by the dispatched thread.This field is ignored if VS

Function Enable is DISABLED.

Value Name Description Project
0h IEEE-754 Use IEEE-754 Rules All

1h Alternate Use alternate rules All

15:14 Reserved

Project: All

Format: MBZ

13 Illegal Opcode Exception Enable

Project: All

Format: Enable

This bit gets loaded into EU CR0.1[12] (note the bit # difference). See Exceptions and ISA Execution

Environment.This field is ignored if VS Function Enable is DISABLED.

12 Reserved

Format: MBZ

11:8 Reserved

Format: MBZ

7 Software Exception Enable

Format: Enable

This bit gets loaded into EU CR0.1[13] (note the bit # difference). See Exceptions and ISA Execution

Environment.This field is ignored if VS Function Enable is DISABLED.

6:0 Reserved

Format: MBZ

3 31:10 Scratch Space Base Offset

Project: All

Format: GeneralStateOffset[31:10]ScratchSpace

Specifies the starting location of the scratch space area allocated to this FF unit as a 1K-byte aligned

offset from the General State Base Address. If required, each thread spawned by this FF unit will be

allocated some portion of this space, as specified by Per-Thread Scratch Space. The computed offset

of the thread-specific portion will be passed in the thread payload as Scratch Space Offset. The thread

is expected to utilize “stateless” DataPort read/write requests to access scratch space, where the

DataPort will cause the General State Base Address to be added to the offset passed in the request

header.

 This field is ignored if VS Function Enable is DISABLED.

9:4 Reserved

Project: All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 109

3DSTATE_VS

Format: MBZ

3:0 Per-Thread Scratch Space

Project: All

Format: U4 power of 2 Bytes over 1K Bytes

Specifies the amount of scratch space to be allocated to each thread spawned by this FF unit.

 The driver must allocate enough contiguous scratch space, starting at the Scratch Space Base

Pointer, to ensure that the Maximum Number of Threads can each get Per-Thread Scratch Space size

without exceeding the driver-allocated scratch space. This field is ignored if VS Function Enable is

DISABLED.

Value Name Description
[0,11] indicating [1K Bytes, 2M Bytes]

Programming Notes

This amount is available to the kernel for information only. It will be passed verbatim (if not altered by

the kernel) to the Data Port in any scratch space access messages, but the Data Port will ignore it.

4 31:25 Reserved

Project: All

Format: MBZ

24:20 Dispatch GRF Start Register for URB Data

Format: U5

Specifies the starting GRF register number for the URB portion (Constant + Vertices) of the thread

payload. This field is ignored if VS Function Enable is DISABLED.

Value Name Description
[0,31] indicating GRF [R0,R31]

19:17 Reserved

Project: All

Format: MBZ

16:11 Vertex URB Entry Read Length

Project: All

Format: U6

Specifies the number of pairs of 128-bit vertex elements to be passed into the payload for each vertex.

This field is ignored if VS Function Enable is DISABLED.

For SIMD4x2 dispatch, each vertex element requires one GRF of payload data, therefore the number

of GRFs with vertex data will be double the value programmed in this field.

Value Name
[1,63]

Programming Notes

It is UNDEFINED to set this field to 0 indicating no Vertex URB data to be read and passed to the

thread.

10 Reserved

Project: All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 110

3DSTATE_VS

Format: MBZ

9:4 Vertex URB Entry Read Offset

Project: All

Format: U6

Specifies the offset (in 256-bit units) at which Vertex URB data is to be read from the URB before being

included in the thread payload. This offset applies to all Vertex URB entries passed to the thread. This

field is ignored if VS Function Enable is DISABLED.

Value Name
[0,63]

3:0 Reserved

Project: All

Format: MBZ

5 31:25 Maximum Number of Threads

Format: U7-1 representing thread count

Specifies the maximum number of simultaneous threads allowed to be active. Used to avoid using up

the scratch space. Programming the value of the max threads over the number of threads based off

number of threads supported in the execution units may improve performance since the architecture

allows threads to be buffered between the check for max threads and the actual dispatch into the EU.

Programming the max values to a number less than the number of threads supported in the execution

units may reduce performance. This field is ignored if VS Function Enable is DISABLED.

Value Name Project
[0,127] indicating thread count of [1,128]

[0,35] indicating thread count of [1,36]

24:23 Reserved

Format: MBZ

22:11 Reserved

Project: All

Format: MBZ

10 Statistics Enable

Project: All

Format: Enable

Description Project

If ENABLED, this FF unit will engage in statistics gathering. See the Statistics Gathering

section later in this chapter. If DISABLED, statistics information associated with this FF stage

will be left unchanged.

This field is used even if VS Function Enable is DISABLED.

9:3 Reserved

Project: All

Format: MBZ

2 Reserved

Format: MBZ

1 Vertex Cache Disable

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 111

3DSTATE_VS

Project: All

Format: Disable

This bit controls the operation of the Vertex Cache. This field is always used.If the Vertex Cache is

DISABLED and the VS Function is ENABLED, the Vertex Cache is not used and all incoming vertices

will be passed to VS threads.

 If the Vertex Cache is ENABLED and the VS Function is ENABLED, incoming vertices that do not hit

in the Vertex Cache will be passed to VS threads.

 If the Vertex Cache is ENABLED and the VS Function is DISABLED, input vertices that miss in the

Vertex Cache will be assembled and written to the URB, though pass thru the VS stage unmodified

(not shaded).

 The Vertex Cache is invalidated whenever the Vertex Cache becomes DISABLED , whenever the VS

Function Enable toggles, between 3DPRIMITIVE commands and between instances within a

3DPRIMITIVE command.

0 VS Function Enable

Project: All

Format: Enable

Description Project

If ENABLED, VS threads may be spawned to process VF-generated vertices before the

resulting vertices are passed down the pipeline.

 If DISABLED, VF-generated vertices will pass thru the VS function and sent down the pipeline

unmodified. The Vertex Cache is still available in this mode, if enabled.

If Statistics Enable is ENABLED, VS_INVOCATION_COUNT will increment by 1 for every

vertex that passes through the VS stage, even if VS Function Enable is DISABLED.

This field is always used.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 112

3.2.1.3 3DSTATE_CONSTANT_VS

3DSTATE_CONSTANT_VS

Source: RenderCS

Length Bias: 2

This command sets pointers to the push constants for VS unit. The constant data pointed to by this command is

loaded into the VS unit’s push constant buffer (PCB).

Programming Notes Project

It is invalid to execute this command more than once between 3D_PRIMITIVE commands.

Constant buffers must be enabled in order from Constant Buffer 0 to Constant Buffer 3 within this command.

For example, it is not allowed to enable Constant Buffer 1 by programming a non-zero value in the VS

Constant Buffer 1 Read Length without a non-zero value in VS Constant Buffer 0 Read Length.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 15h 3DSTATE_CONSTANT_VS

Format: OpCode

15:8 Reserved

Format: MBZ

7:0 DWord Length

Project: All

Format: =n Total Length - 2

Value Name Project
5h Excludes DWord (0,1) [Default]

1..6

191:0 Constant Body

Project:

Format: 3DSTATE_CONSTANT(Body)

Following table is the shared portion of the 3DSTATE_CONSTANT command for VS, HS, DS,

and GS

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 113

3DSTATE_CONSTANT(Body)

Project: All

Source: RenderCS

Default Value: 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000

DWord Bit Description

0 31:16 Constant Buffer 1 Read Length

Project: All

Format: U16 read length

This field specifies the length of the constant data to be loaded from memory in 256-bit units.

Programming Notes

The sum of all four read length fields must be less than or equal to the size of 64

Setting the value of the register to zero will disable buffer 1.

If disabled, the Pointer to Constant Buffer 1 must be programmed to zero.

15:0 Constant Buffer 0 Read Length

Project: All

Format: U16 read length

This field specifies the length of the constant data to be loaded from memory in 256-bit units.

Programming Notes

The sum of all four read length fields must be less than or equal to the size of 64

Setting the value of the register to zero will disable buffer 0.

If disabled, the Pointer to Constant Buffer 0 must be programmed to zero.

1 31:16 Constant Buffer 3 Read Length

Project: All

Format: U16 read length

This field specifies the length of the constant data to be loaded from memory in 256-bit units.

Programming Notes

The sum of all four read length fields must be less than or equal to the size of 64

Setting the value of the register to zero will disable buffer 3.

If disabled, the Pointer to Constant Buffer 3 must be programmed to zero.

15:0 Constant Buffer 2 Read Length

Project: All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 114

3DSTATE_CONSTANT(Body)

Format: U16 read length

This field specifies the length of the constant data to be loaded from memory in 256-bit units.

Programming Notes

The sum of all four read length fields must be less than or equal to the size of 64

Setting the value of the register to zero will disable buffer 2.

If disabled, the Pointer to Constant Buffer 2 must be programmed to zero.

2 31:5 Pointer to Constant Buffer 0

Project: All

Format: GraphicsAddress[31:5]ConstantBuffer

This field points to the location of Constant Buffer 0. The state of INSTPM<CONSTANT_BUFFER

Address Offset Disable> determines whether the Dynamic State Base Address is added to this

pointer.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

4:0 Constant Buffer Object Control State

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for all constant buffers defined in this command.

3

31:5 Pointer to Constant Buffer 1

Format: GraphicsAddress[31:5]ConstantBuffer

This field points to the location of Constant Buffer 1.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

4:0 Reserved

Project: All

Format: MBZ

4

31:5 Pointer to Constant Buffer 2

Format: GraphicsAddress[31:5]ConstantBuffer

This field points to the location of Constant Buffer 2.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

4:0 Reserved

Project: All

Format: MBZ

5

31:5 Pointer to Constant Buffer 3

Format: GraphicsAddress[31:5]ConstantBuffer

This field points to the location of Constant Buffer 3.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 115

3DSTATE_CONSTANT(Body)

4:0 Reserved

Format: MBZ

3.2.1.4 3DSTATE_PUSH_CONSTANT_ALLOC_VS

3DSTATE_PUSH_CONSTANT_ALLOC_VS

Source: RenderCS

Length Bias: 2

This command sets up the URB configuration for VS Push Constant Buffer.

Programming Notes

Programming Restriction:

The sum of the Constant Buffer Offset and the Constant Buffer Size may not exceed the maximum value of the
Constant Buffer Size.

The sum of the constant length programmed in 3DSTATE_CONSTANT_VS must be equal or smaller then the
size of the allocated space in the URB including the buffering for half cachelines. See Push Constant URB
Allocation section for more details.

The 3DSTATE_CONSTANT_VS must be reprogrammed prior to the next 3DPRIMITIVE command after
programming the 3DSTATE_PUSH_CONSTANT_ALLOC_VS.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h GFXPIPE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 12h 3DSTATE_PUSH_CONSTANT_ALLOC_VS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 116

3DSTATE_PUSH_CONSTANT_ALLOC_VS

1 31:20 Reserved

Format: MBZ

19:16 Constant Buffer Offset

Format: U4

Specifies the offset of the VS constant buffer into the URB.

Value Name
[0,15] (0KB - 15KB)

0h 0KB [Default]

15:5 Reserved

Format: MBZ

4:0 Constant Buffer Size

Format: U5

Specifies the size of the VS constant buffer. This value will determine the amount of data the command

stream can pre-fetch before the buffer is full. Value of zero is only valid when constants are not

enabled for VS.

Value Name
[0,15] (0KB – 15KB) Increments of 1KB

0h 0KB [Default]

3.2.2 Input Vertices

Refer to 3D Overview for a description of the vertex information input to the VS stage.

3.3 SIMD4x2 VS Thread Request Generation

This section describes SIMD4x2 thread request generation, which is the only mode available.

The following discussion assumes the VS Function is ENABLED.

When the Vertex Cache is disabled, the VS unit will pass each pair of incoming vertices to a VS thread.

Under certain circumstances (e.g., prior to a state change or pipeline flush) the VS unit will spawn a VS

thread to process a single vertex. Note that, in this case, the “unused” vertex slot will be “disabled” via the

Execution Mask provided by the VS unit to the subsystem as part of the thread dispatch (See ISA doc).

The VS thread will in itself be unaware of the single-vertex case, and therefore a single VS kernel can be

used to process one or two vertices. (The performance of single-vertex processing will roughly equal the

two-vertex case).

When the Vertex Cache is enabled, the VF unit will detect vertices that hit in the cache and mark these

vertices so that they will bypass VS thread processing and be output via a reference to the cached VUE.

The VS unit will keep track of these cache-hit vertices as it proceeds to process cache-miss vertices. The

VS unit guarantees that vertices will exit the unit in the order they are received. This may require the VS

unit to issue single-vertex VS threads to process a cache-miss vertex that has yet to be paired up with

another cache-miss vertex (if this condition is preventing the VS unit from producing any output).

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 117

3.3.1 Thread Payload

The following table describes the payload delivered to VS threads.

VS Thread Payload (SIMD4x2)

DWord Bit Description
R0.7 31

 30:0 Reserved

R0.6 31:24 Reserved

 23:0
Thread ID: This field uniquely identifies this thread within the threads spawned by

this FF unit, over some period of time.

Format: Reserved for HW Implementation Use.

R0.5 31:10
Scratch Space Offset: Specifies the of the scratch space allocated to the thread,

specified as a 1KB-granular offset from the General State Base Address. See

Scratch Space Base Offset description in VS_STATE.

(See 3D Pipeline for further description on scratch space allocation).

Format = GeneralStateOffset[31:10]

 9.0 Reserved

 8:0
FFTID: This ID is assigned by the FF unit and used to identify the thread within the

set of outstanding threads spawned by the FF unit.

Format: Reserved for HW Implementation Use.

Format:

U7

Range:

0-127

R0.4 31:5
Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table.

It is specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

 4:0 Reserved

R0.3 31:5
Sampler State Pointer. Specifies the location of the Sampler State Table to be

used by this thread, specified as a 32-byte granular offset from the General State

Base Address or Dynamic State Base Address.

Format = DynamicStateOffset[31:5]

 4 Reserved

 3:0
Per Thread Scratch Space: Specifies the amount of scratch space allowed to be

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 118

DWord Bit Description
used by this thread. The value specifies the power that two will be raised to (over

determine the amount of scratch space).

(See 3D Pipeline for further description).

Format = U4 power of two (in excess of 10)

Range = [0,11] indicating [1K Bytes, 2M Bytes]

R0.2 31:0 Reserved : delivered as zeros (reserved for message header fields)

R0.1 31:16 Reserved

 15:0
URB Return Handle 1: This is the 64B-aligned URB offset where the EU’s upper

channels (DWords 7:4) results are to be stored.

If only one vertex is to be processed (shaded) by the thread, this field will

effectively be ignored (no results are stored for these channels, as controlled by

the thread’s Channel Mask).

(See Generic FF Unit for further description).

Format: U12 64B-aligned offset

R0.0 31:16 Reserved

 15:0
URB Return Handle 0: This is the 64B-aligned URB offset where the EU’s lower

channels (DWords 3:0) results are to be stored.

(See Generic FF Unit for further description).

Format: U12 64B-aligned offset

[Varies]

optional

255:0
Constant Data (optional) :

Some amount of constant data (possible none) can be extracted from the push

constant buffer (PCB) and passed to the thread following the R0 Header. The

amount of data provided is defined by the sum of the read lengths in the last

3DSTATE_CONSTANT_VS command (taking the buffer enables into account).

The Constant Data arrives in a non-interleaved format.

Varies 255:0
Vertex Data : Data from (possibly) one or (more typically) two Vertex URB Entries

is passed to the thread in the thread payload. The Vertex URB Entry Read Offset

and Vertex URB Entry Read Length state variables define the regions of the URB

entries that are read from the URB and passed in the thread payload. These SVs

can be used to provide a subset of the URB data as required by SW.

The vertex data is laid out in the thread header in an interleaved format. The lower

DWords (0-3) of these GRF registers always contain data from a Vertex URB

Entry. The upper DWords (4-7) may contain data from another Vertex URB Entry.

This allows two vertices to be processed (shaded) in parallel SIMD8 fashion. The

VS kernel is not aware of the validity of the upper vertex.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 119

3.4 SIMD4x2 VS Thread Execution

This section describes SIMD4x2 thread execution.

A VS kernel (with one exception mentioned below) assumes it is to operate on two vertices in parallel.

Input data is either passed directly in the thread payload (including the input vertex data) or indirectly via

pointers passed in the payload.

Refer to ISA chapters for specifics on writing kernels that operate in SIMD4x2 fashion.

Refer to 3D Pipeline Stage Overview (3D Overview) for information on FF-unit/Thread interactions.

In the (unlikely) event that the VS kernel needs to determine whether it is processing one or two vertices,

the kernel can compare the URB Return Handle 0 and URB Return Handle 1 fields of the thread

payload. These fields will be different if two vertices are being processed, and identical if one vertex is

being processed. An example of when this test may be required is if the kernel outputs some vertex-

dependent results into a memory buffer – without the test the single vertex case might incorrectly output

two sets of results. Note that this is not the case for writing the URB destinations, as the Execution Mask

will prevent the write of an undefined output.

Note: Prior to sending an End Of Thread, the kernel must dispatch a write commit cycle, if there were any

previous writes to memory that had caused no dependency checks.

3.4.1 Vertex Output

VS threads must always write the destination URB handles passed in the payload. VS threads are not

permitted to request additional destination handles. Refer to 3D Pipeline Stage Overview (3D Overview)

for details on how destination vertices are written and any required contents/formats.

3.4.2 Thread Termination

VS threads must signal thread termination, in all likelihood on the last message output to the URB shared

function. Refer to the ISA doc for details on End-Of-Thread indication.

3.5 Primitive Output

The VS unit will produce an output vertex reference for every input vertex reference received from the VF

unit, in the order received. The VS unit simply copies the PrimitiveType, StartPrim, and EndPrim

information associated with input vertices to the output vertices, and does not use this information in any

way. Neither does the VS unit perform any readback of URB data.

3.6 Other VS Functions

3.6.1 Statistics Gathering

The VS stage tracks a single pipeline statistic, the number of times a vertex shader is executed. A vertex

shader is executed for each vertex that is fetched on behalf of a 3DPRIMITIVE command, unless the

shaded results for that vertex are already available in the vertex cache. If the Statistics Enable bit in

VS_STATE is set, the VS_INVOCATION_COUNT Register (see Memory Interface Registers in Volume

Ia, GPU) will be incremented for each vertex that is dispatched to a VS thread. This counter will often

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 120

need to be incremented by 2 for each thread invoked since 2 vertices are dispatched to one VS thread in

the general case.

When VS Function Enable is DISABLED and Statistics Enable is ENABLED,

VS_INVOCATION_COUNT will increment by one for every vertex that passes through the VS stage, even

though no VS threads are spawned.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 121

4. 3D Pipeline – Hull Shader (HS) Stage

4.1 HS Stage Overview

The Hull Shader (HS) stage of the pipeline is used to process patchlist (PATCHLIST_n) topologies in

support of higher-order surface (HOS) tessellaton. If the HS stage is enabled, each incoming patch object

is processed by a possible series of HS threads. The combined output of these threads is a Patch URB

Entry (“patch record”) written to the URB. This patch record is used by subsequent stages (TE, DS) to

complete the HOS tessellation operations.

For SW Tessellation mode, the HS thread can also write tessellated domain point topologies to memory.

The domain point count and starting memory address of the domain points is passed via the Patch

Header in the patch record.

The vertices associated with patchlist primitives are also referred to as “Input Control Points” (ICPs) to

contrast them with any “Output Control Points” the HS threads may write to the patch record. (The

definition and use of OCPs are outside the scope of this document).

The HS stage also performs statistics counting. Incomplete topologies will not reach the HS stage.

The HS, TE and DS stages must be enabled and disabled together. When these stages are disabled, all

topologies (including patchlist topologies) will be simply pass through to the GS stage. When these

stages are enabled, only patchlist topologies should be issued to the pipeline, otherwise behavior is

UNDEFINED.

4.2 HS Stage Input

4.2.1 State

4.2.1.1 3DSTATE_CONSTANT_HS

3DSTATE_CONSTANT_HS

Source: RenderCS

Length Bias: 2

This command sets pointers to the push constants for the HS unit. The constant data pointed to by this command is

loaded into the HS unit’s push constant buffer (PCB).

Programming Notes Project

It is invalid to execute this command more than once between 3D_PRIMITIVE commands.

Constant buffers must be enabled in order from Constant Buffer 0 to Constant Buffer 3 within this command.

For example, It is not allowed to enable Constant Buffer 1 by programming a non-zero value in the HS

Constant Buffer 1 Read Length without a non-zero value in HS Constant Buffer 0 Read Length.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 122

3DSTATE_CONSTANT_HS

Default Value: 3h

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 19h 3DSTATE_CONSTANT_HS

Format: OpCode

15:8 Reserved

Format: MBZ

7:0 DWord Length

Project: All

Format: =n Total Length - 2

Value Name Project
5h Excludes DWord (0,1) [Default]

1..6

191:0 Constant Body

Format: 3DSTATE_CONSTANT(Body)

Following table is the shared portion of the 3DSTATE_CONSTANT command for VS, HS, DS,

and GS

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 123

4.2.1.2 3DSTATE_PUSH_CONSTANT_ALLOC_HS

3DSTATE_PUSH_CONSTANT_ALLOC_HS

Project: All

Source: RenderCS

Length Bias: 2

This command sets up the URB configuration for HS Push Constant Buffer.

Programming Notes

Programming Restriction:

The sum of the Constant Buffer Offset and the Constant Buffer Size may not exceed the maximum value of the
Constant Buffer Size.

The sum of the constant length programmed in 3DSTATE_CONSTANT_HS must be equal or smaller then the

size of the allocated space in the URB including the buffering for half cachelines. See Push Constant URB
Allocation section for more details.

The 3DSTATE_CONSTANT_HS must be reprogrammed prior to the next 3DPRIMITIVE command after
programming the 3DSTATE_PUSH_CONSTANT_ALLOC_HS.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h GFXPIPE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 13h 3DSTATE_PUSH_CONSTANT_ALLOC_HS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

1 31:20 Reserved

Format: MBZ

19:16 Constant Buffer Offset

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 124

3DSTATE_PUSH_CONSTANT_ALLOC_HS

Format: U5

Specifies the offset of the HS constant buffer into the URB.

Value Name
[0,15] (0KB - 15KB)

0h 0KB [Default]

15:5 Reserved

Format: MBZ

4:0 Constant Buffer Size

Format: U5

Specifies the size of the HS constant buffer. This value will determine the amount of data the

command stream can pre-fetch before the buffer is full. Value of zero is only valid when constants are

not enabled for HS.

Value Name
[0,15] (0KB – 15KB) Increments of 1KB

0h 0KB [Default]

4.3 3DSTATE_CONSTANT_HS

3DSTATE_CONSTANT_HS

Source: RenderCS

Length Bias: 2

This command sets pointers to the push constants for the HS unit. The constant data pointed to by this command is

loaded into the HS unit’s push constant buffer (PCB).

Programming Notes Project

It is invalid to execute this command more than once between 3D_PRIMITIVE commands.

Constant buffers must be enabled in order from Constant Buffer 0 to Constant Buffer 3 within this command.

For example, It is not allowed to enable Constant Buffer 1 by programming a non-zero value in the HS

Constant Buffer 1 Read Length without a non-zero value in HS Constant Buffer 0 Read Length.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 19h 3DSTATE_CONSTANT_HS

Format: OpCode

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 125

3DSTATE_CONSTANT_HS

15:8 Reserved

Format: MBZ

7:0 DWord Length

Project: All

Format: =n Total Length - 2

Value Name Project
5h Excludes DWord (0,1) [Default]

1..6

191:0 Constant Body

Format: 3DSTATE_CONSTANT(Body)

Following table is the shared portion of the 3DSTATE_CONSTANT command for VS, HS, DS,

and GS

3DSTATE_CONSTANT(Body)

Project: All

Source: RenderCS

Default Value: 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000

DWord Bit Description

0 31:16 Constant Buffer 1 Read Length

Project: All

Format: U16 read length

This field specifies the length of the constant data to be loaded from memory in 256-bit units.

Programming Notes

The sum of all four read length fields must be less than or equal to the size of 64

Setting the value of the register to zero will disable buffer 1.

If disabled, the Pointer to Constant Buffer 1 must be programmed to zero.

15:0 Constant Buffer 0 Read Length

Project: All

Format: U16 read length

This field specifies the length of the constant data to be loaded from memory in 256-bit units.

Programming Notes

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 126

3DSTATE_CONSTANT(Body)

The sum of all four read length fields must be less than or equal to the size of 64

Setting the value of the register to zero will disable buffer 0.

If disabled, the Pointer to Constant Buffer 0 must be programmed to zero.

1 31:16 Constant Buffer 3 Read Length

Project: All

Format: U16 read length

This field specifies the length of the constant data to be loaded from memory in 256-bit units.

Programming Notes

The sum of all four read length fields must be less than or equal to the size of 64

Setting the value of the register to zero will disable buffer 3.

If disabled, the Pointer to Constant Buffer 3 must be programmed to zero.

15:0 Constant Buffer 2 Read Length

Project: All

Format: U16 read length

This field specifies the length of the constant data to be loaded from memory in 256-bit units.

Programming Notes

The sum of all four read length fields must be less than or equal to the size of 64

Setting the value of the register to zero will disable buffer 2.

If disabled, the Pointer to Constant Buffer 2 must be programmed to zero.

2 31:5 Pointer to Constant Buffer 0

Project: All

Format: GraphicsAddress[31:5]ConstantBuffer

This field points to the location of Constant Buffer 0. The state of INSTPM<CONSTANT_BUFFER
Address Offset Disable> determines whether the Dynamic State Base Address is added to this

pointer.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

4:0 Constant Buffer Object Control State

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for all constant buffers defined in this command.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 127

3DSTATE_CONSTANT(Body)

3

31:5 Pointer to Constant Buffer 1

Format: GraphicsAddress[31:5]ConstantBuffer

This field points to the location of Constant Buffer 1.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

4:0 Reserved

Project: All

Format: MBZ

4

31:5 Pointer to Constant Buffer 2

Format: GraphicsAddress[31:5]ConstantBuffer

This field points to the location of Constant Buffer 2.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

4:0 Reserved

Project: All

Format: MBZ

5

31:5 Pointer to Constant Buffer 3

Format: GraphicsAddress[31:5]ConstantBuffer

This field points to the location of Constant Buffer 3.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

4:0 Reserved

Format: MBZ

4.4 3DSTATE_HS

The state used by HS is defined with the following 3DSTATE_HS inline state packet.

3DSTATE_HS

Source: RenderCS

Length Bias: 2

Controls the HS stage hardware.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 128

3DSTATE_HS

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 1Bh 3DSTATE_HS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Format: =n

Value Name Project
5 Excludes DWord (0,1) [Default]

1 31:30 Reserved

Project: All

Format: MBZ

29:27 Sampler Count

Project: All

Format: U3

Specifies how many samplers (in multiples of 4) the HS kernels use. Used only for prefetching the

associated sampler state entries.

Value Name Description Project
0h No Samplers no samplers used All

1h 1-4 Samplers between 1 and 4 samplers used All

2h 5-8 Samplers between 5 and 8 samplers used All

3h 9-12 Samplers between 9 and 12 samplers used All

4h 13-16 Samplers between 13 and 16 samplers used All

5h-7h Reserved Reserved All

26 Reserved

Project: All

Format: MBZ

25:18 Binding Table Entry Count

Project: All

Format: U8

When HW Generated Binding Table is disabled:

 Specifies how many binding table entries the kernel uses. Used only for prefetching of the binding

table entries and associated surface state.

 Note: For kernels using a large number of binding table entries, it may be wise to set this field to zero

to avoid prefetching too many entries and thrashing the state cache.

17 Reserved

Format: MBZ

16 Floating Point Mode

Project: All

Specifies the initial floating point mode used by the dispatched thread.

Value Name Description Project

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 129

3DSTATE_HS

0h IEEE-754 Use IEEE-754 Rules All

1h alternate Use alternate rules All

15:14 Reserved

Project: All

Format: MBZ

13 Illegal Opcode Exception Enable

Project: All

Format: Enable

This bit gets loaded into EU CR0.1[12] (note the bit # difference). See Exceptions and ISA Execution

Environment.

12 Reserved

Format: MBZ

11:8 Reserved

Project: All

Format: MBZ

7 Software Exception Enable

Format: Enable

This bit gets loaded into EU CR0.1[13] (note the bit # difference). See Exceptions and ISA Execution

Environment.

6:0 Maximum Number of Threads

Format: U7-1 thread count

Specifies the maximum number of simultaneous threads allowed to be active. Used to avoid using up

the scratch space. Programming the value of the max threads over the number of threads based off

number of threads supported in the execution units may improve performance since the architecture

allows threads to be buffered between the check for max threads and the actual dispatch into the EU.

Programming the max values to a number less than the number of threads supported in the execution

units may reduce performance. Limit is based on max number of HS URB handles.

Value Name Project
[0,127] indicating a thread count of [1,128]

[0,35] indicating a thread count of [1,36]

Programming Notes

A URB_FENCE command must be issued subsequent to any change to the value in this field and

before any subsequent pipeline processing (e.g., via 3DPRIMITIVE or CONSTANT_BUFFER). See

Graphics Processing Engine (Command Ordering Rules)

2 31 HS Enable

Project: All

Format: Enable

Specifies whether the HS function is enabled or disabled (pass-through). If ENABLED

MI_TOPOLOGY_FILTER must be used to silently discard any topologies that the HS kernel is not

expecting. E.g., if the HS kernel is expecting PATCHLIST_32 topologies, MI_TOPOLOGY_FILTER

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 130

3DSTATE_HS

must be set to PATCHLIST_32 so only those topologies can reach the enabled HS.

Programming Notes

The tessellation stages (HS, TE and DS) must be enabled/disabled as a group. I.e., draw commands

can only be issued if all three stages are enabled or all three stages are disabled, otherwise the

behavior is UNDEFINED.

30 Reserved

Project: All

Format: MBZ

29 HS Statistics Enable

Project: All

Format: Enable

This bit controls whether HS-unit-specific statistics register(s) will increment (for each patch).

Value Name Description Project
0h Disable HS_INVOCATIONS_COUNT will not increment

1h Enable HS_INVOCATIONS_COUNT will increment

28:18 Reserved

Project: All

Format: MBZ

16:8 Reserved

Format: MBZ

7:4 Reserved

Project: All

Format: MBZ

3:0 Instance Count

Project: All

Format: U4-1

This field determines the number of threads (minus one) spawned per input patch.

 If the HS kernel uses a barrier function, software must restrict the Instance Count to the number of

threads that can be simultaneously active within a half-slice. Factors which must be considered

includes scratch memory availability.

Value Name Description
[0,15] representing [1,16] instances

3 31:6 Kernel Start Pointer

Project: All

Format: InstructionBaseOffset[31:6]Kernel

This field specifies the starting location (1st GEN core instruction) of the kernel program run by threads

spawned by this FF unit. It is specified as a 64-byte-granular offset from the Instruction Base Address.

5:0 Reserved

Project: All

Format: MBZ

4 31:10 Scratch Space Base Pointer

Format: GeneralStateOffset[31:10]

Format: GraphicsAddress[31:0]

Specifies the location of the scratch space area allocated to this FF unit, specified as a 1KB-granular

offset from the General State Base Address. If required, each thread spawned by this FF unit will be

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 131

3DSTATE_HS

allocated some portion of this space, as specified by Per-Thread Scratch Space.

9:4 Reserved

Format: MBZ

3:0 Per-Thread Scratch Space

Format: U4 power of 2 Bytes over 1K Bytes

Specifies the amount of scratch space to be allocated to each thread spawned by this FF unit.The

driver must allocate enough contiguous scratch space, starting at the Scratch Space Base Pointer, to

ensure that the Maximum Number of Threads can each get Per-Thread Scratch Space size without

exceeding the driver-allocated scratch space.

Value Name
[0,11] indicating [1K Bytes, 2M Bytes]

5 31:28 Reserved

Format: MBZ

27 Single Program Flow (SPF)

Specifies the initial condition of the kernel program as either a single program flow (SIMDnxm with m =

1) or as multiple program flows (SIMDnxm with m > 1). See CR0 description in ISA Execution

Environment.

Value Name Description Project
0h Reserved All

1h Enable Single Program Flow enabled All

26 Vector Mask Enable

Format: U1 FormatDesc: Enumerated Type

When SPF=0, VME specifies which mask to use to initialize the initial channel enables. When SPF=1,

VME specifies which mask to use to generate execution channel enables.

Value Name Description Project
0h Dmask Channels are enabled based on the dispatch mask All

1h Vmask Channels are enabled based on the vector mask All

25 Reserved

Format: MBZ

24 Include Vertex Handles

Format: Boolean

If set, all the input Vertex URB handles are included in payloads. This field is ignored if HS Function

Enable is DISABLED.Programming Restriction:This field must be set if value if Vertex URB Entry Read

Length is cleared to zero.

23:19 Dispatch GRF Start Register for URB Data

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 132

3DSTATE_HS

Format: U5

Specifies the starting GRF register number for the URB portion (Constant + Vertices) of the thread

payload. This field is ignored if HS Function Enable is DISABLED.

Value Name
[0,31] indicating GRF [R0,R31]

18:17 Reserved

Format: MBZ

16:11 Vertex URB Entry Read Length

Format: U6

Specifies the amount of URB data read and passed in the thread payload for each Vertex URB entry, in

256-bit register increments.This field is ignored if HS Function Enable is DISABLED.Programming

Restriction:This field must be a non-zero value if Include Vertex Handles is cleared to zero.

Value Name
[0,63]

10 Reserved

Format: MBZ

9:4 Vertex URB Entry Read Offset

Format: U6

Specifies the offset (in 256-bit units) at which Vertex URB data is to be read from the URB before being

included in the thread payload. This offset applies to all Vertex URB entries passed to the thread.This

field is ignored if HS Function Enable is DISABLED.

Value Name
[0,63]

3:0 Reserved

Format: MBZ

6 31:13 Reserved

Project: All

Format: MBZ

12 Reserved

Format: MBZ

11:0 Semaphore Handle

Format: URBOffset[17:6]

This is the URB offset pointing to the first of the GS semaphore DWords in the URB. The size of the

region is 32 DWs(16 – 512b URB entries). Software is responsible for allocating combined GS and/or

HS semaphore Dwords in a single contiguous region of the URB. Software must also make sure the 3D

pipeline is IDLE prior to allocating or deallocating the region. The semaphores can be located in an

unused area within a FF unit’s URB fenced region or an unused area within the Push Constant region.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 133

4.5 Patch Object Staging

The HS unit accepts patchlist topologies as a stream of incoming vertices. Depending on the number of

vertices per patch object (as specified by the PATCHLIST_n topology), the HS thread will assemble each

complete patch object and pass it (its vertices, PrimitiveID, etc.) to HS thread(s) as described below.

4.6 HS Thread Payload

4.6.1 SINGLE_PATCH Layout (SINGLE-PATCH Mode)

The following tables show the layout of the payload delivered to HS threads. Refer to 3D Pipeline Stage

Overview (3D Pipeline) for details on those fields that are common amongst the various pipeline stages.

Patch object vertex (ICP) data can be passed by value (data pushed in the payload) and/or by reference

(URB handle pushed in the payload).

SINGLE_PATCH HS Thread Payload

GRF
DWord Bit Description

R0:7 31:0 Reserved

R0.6

31
Dereference Thread

This bit is defined to send back the Handle ID back to HS to dereference the input handles for

this thread.

30:24 Reserved

23:0
Thread ID. This field uniquely identifies this thread within the threads spawned by this FF unit,

over some period of time.

Format: Reserved for HW Implementation Use.

R0.5

31:10
Scratch Space Pointer. Specifies the location of the scratch space allocated to this thread,

specified as a 1KB-aligned offset from the General State Base Address.

Format = GeneralStateOffset[31:10]

9.0 Reserved

8:0
FFTID. This ID is assigned by the fixed function unit and is relative identifier for the thread. It is

used to free up resources used by the thread upon thread completion.

Format: Reserved for Implementation Use

Format:

U7

Range:

0-127

R0.4

31:5
Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding Table. It is

specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 134

GRF
DWord Bit Description

4:0 Reserved

R0.3

31:5
Sampler State Pointer. Specifies the location of the Sampler State Table to be used by this

thread, specified as a 32-byte granular offset from the General State Base Address or

Dynamic State Base Address.

Format = DynamicStateOffset[31:5]

4 Reserved

3:0
Per Thread Scratch Space. Specifies the amount of scratch space allowed to be used by

this thread. The value specifies the power that two will be raised to (over determine the amount

of scratch space).

Programming Notes:

This amount is available to the kernel for information only. It will be passed verbatim (if not

altered by the kernel) to the Data Port in any scratch space access messages, but the Data Port

will ignore it.

Format = U4 power of two (in excess of 10)

Range = [0,11] indicating [1K Bytes, 2M Bytes]

R0.2
31:24

Semaphore Index. This is a Dword index to be used in URB_ATOMIC commands if the

thread is using data pulled from input handles. This information is only required for pull-model

vertex inputs and InstanceCount>1.

Format = U8

23 Reserved

22:16
Instance Number. A patch-relative instance number between 0 and InstanceCount-1.

Format = U7

15:12
Barrier Index. This index is to be used in any BarrierMsgs sent by this thread to the Gateway.

Format = U4

11:0
Semaphore Handle: This is the URB handle pointing to the first HS semaphore DWord in the

URB. Software is responsible for statically allocating the semaphore Dwords in the URB. Refer

to Semaphore Handle field in 3DSTATE_HS for size of semaphore allocation.

Format: U12 64B-aligned URB Offset

R0.1 31:0
Primitive ID. This field contains the Primitive ID associated with the patch.

Format: U32

R0.0
31:16 Reserved

15:0
Patch Data Record URB Return Handle.

Format:

U12 64B-aligned URB Offset

R1 is only included for dispatches that have Include Vertex Handles enabled.

R1.7
31:16 ICP 7 Handle ID

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 135

GRF
DWord Bit Description

15:0
ICP 7 Handle

Format:

R1.6
31:16 ICP 6 Handle ID

15:0 ICP 6 Handle

R1.5
31:16 ICP 5 Handle ID

15:0 ICP 5 Handle

R1.4 31:16 ICP 4 Handle ID

 15:0 ICP 4 Handle

R1.3 31:16 ICP 3 Handle ID

 15:0 ICP 3 Handle

R1.2 31:16 ICP 2 Handle ID

 15:0 ICP 2 Handle

R1.1 31:16 ICP 1 Handle ID

 15:0 ICP 1 Handle

R1.0 31:16 ICP 0 Handle ID

 15:0 ICP 0 Handle

R2 is only included for dispatches that have Include Vertex Handles enabled and when ICP Count >7

R2.7 31:16 ICP 15 Handle ID

 15:0 ICP 15 Handle

R2.6 31:16 ICP 14 Handle ID

 15:0 ICP 14 Handle

R2.5 31:16 ICP 13 Handle ID

 15:0 ICP 13 Handle

R2.4 31:16 ICP 12 Handle ID

 15:0 ICP 12 Handle

R2.3 31:16 ICP 11 Handle ID

 15:0 ICP 11 Handle

R2.2 31:16 ICP 10 Handle ID

 15:0 ICP 10 Handle

R2.1 31:16 ICP 9 Handle ID

 15:0 ICP 9 Handle

R2.0 31:16 ICP 8 Handle ID

 15:0 ICP 8 Handle

R3 is only included for dispatches that have Include Vertex Handles enabled and when ICP Count >15

R3.7 31:16 ICP 23 Handle ID

 15:0 ICP 23 Handle

R3.6 31:16 ICP 22 Handle ID

 15:0 ICP 22 Handle

R3.5 31:16 ICP 21 Handle ID

 15:0 ICP 21 Handle

R3.4 31:16 ICP 20 Handle ID

 15:0 ICP 20 Handle

R3.3 31:16 ICP 19 Handle ID

 15:0 ICP 19 Handle

R3.2 31:16 ICP 18 Handle ID

 15:0 ICP 18 Handle

R3.1 31:16 ICP 17 Handle ID

 15:0 ICP 17 Handle

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 136

GRF
DWord Bit Description

R3.0 31:16 ICP 16 Handle ID

 15:0 ICP 16 Handle

R4 is only included for dispatches that have Include Vertex Handles enabled and when ICP Count >23

R4.7 31:16 ICP 31 Handle ID

 15:0 ICP 31 Handle

R4.6 31:16 ICP 30 Handle ID

 15:0 ICP 30 Handle

R4.5 31:16 ICP 29 Handle ID

 15:0 ICP 29 Handle

R4.4 31:16 ICP 28 Handle ID

 15:0 ICP 28 Handle

R4.3 31:16 ICP 27 Handle ID

 15:0 ICP 27 Handle

R4.2 31:16 ICP 26 Handle ID

 15:0 ICP 26 Handle

R4.1 31:16 ICP 25 Handle ID

 15:0 ICP 25 Handle

R4.0 31:16 ICP 24 Handle ID

 15:0 ICP 24 Handle

[Varies]

optional

255:0
Constant Data (optional):

Some amount of constant data (possible none) can be extracted from the push constant buffer

(PCB) and passed to the thread following the R0 Header. The amount of data provided is

defined by the sum of the read lengths in the last 3DSTATE_CONSTANT_HS command (taking

the buffer enables into account).

[Varies]

optional

255:0
ICP Vertex Data (optional): There can be up to 32 vertices supplied, each with a size defined

by the Vertex URB Entry Read Length state.

Vertex 0 DWord 0 is located at Rn.0, Vertex 0 DWord 1 is located at Rn.1, etc. Vertex 1 DWord

0 immediately follows the last DWord of Vertex 0, and so on.

4.7 HS Thread Execution

Input to HS threads is comprised of:

 Input Control Points (incoming patch vertices), pushed into the payload and/or passed
indirectly via URB handles.

 Push Constants (common to all threads)

 Patch Data handle

 Resources available via binding table entries (accessed through shared functions)

 Miscellaneous payload fields (Instance Number, etc.)

Typically the only output of the HS threads is the Patch URB Entry (patch record). All thread instances for

an input patch are passed the same patch record handle. As the (possibly concurrent) threads can both

read and write the patch record, it is up to the kernels to ensure deterministic results. One approach

would be to use the thread’s Instance Number as an index for URB write destinations.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 137

4.7.1 Dispatch Mask

HS threads will be dispatched with the dispatch mask set to 0xFFFF. It is the responsibility of the kernel to

modify the execution mask as required (e.g., if operating in SIMD4x2 mode but only the lower half is

active, as would happen in one thread is the threads were computing an odd number of OCPs via

SIMD4x2 operation).

4.8 ICP Dereferencing

If ICPs are only pushed in HS payloads (i.e., the Include Vertex Handles state bit is clear), the ICP

handles will automatically be released after the last instance for the patch is dispatched.

If Include Vertex Handles is set (the HS thread(s) will be reading ICP data in from the URB, it is the

responsibility of the HS thread instances to explicitly dereference all the ICP handles via use of the

Complete bit in URB_READ_xxx commands.

 If only one instance is used, that instance can dereference the ICP handles as soon as they are no
longer needed, by setting Complete in the last URB_READ from that handle. Otherwise all (or the
remaining) ICP handles need to be explicitly dereferenced via (possibly null-response-length)
URB_READ commands prior to thread EOT.

 If more than one instance is spawned, the last-terminating instance is responsible for dereferencing
all the ICP handles before it terminates. Instances can detect that they are the last-terminating
thread via use of the semaphore allocated to the patch (via the Semaphore Handle and
Semaphore Index payload fields). A URB_ATOMIC_INC operation (URB_ATOMIC command) can
be performed on this semaphore by each instance prior to terminating. Only the last-terminating
thread will observe the value (InstanceCount – 1) as a return value. After dereferencing all the ICPs,
the last-terminating thread must also reset the semaphore to 0 via the URB_ATOMIC_MOV
operation.

4.9 Patch URB Entry (Patch Record) Output

For each patch, the HS thread(s) generate a single patch record, starting with a fixed 32B Patch Header .

When the final thread instance terminates, the patch record handle is passed down the pipeline to the

Tessellation Engine (TE).

4.9.1 Patch Header

The first 8 DWords of the patch record is defined as a “Patch Header”. The Patch Header is written by an

HS thread and read by the TE stage. It normally contains up to six Tessellation Factors (TFs) that

determine how finely the TE stage needs to tessellate a domain (if at all). In SW Tessellation mode, the

header contains Domain Point Count and Domain Point Buffer Starting Address fields which identify

the domain points generated by an HS thread. The following diagram shows the fixed layouts of the Patch

Header, depending on DomainType and SW Tessellation Mode.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 138

Patch Header (QUAD Domain)

DW
ord Bits Description

7 31:0
UEQ0 Tessellation Factor

Format: FLOAT32

6 31:0
VEQ0 Tessellation Factor

Format: FLOAT32

5 31:0
UEQ1 Tessellation Factor

Format: FLOAT32

4 31:0
VEQ1 Tessellation Factor

Format: FLOAT32

3 31:0
Inside U Tessellation Factor

Format: FLOAT32

2 31:0
Inside V Tessellation Factor

Format: FLOAT32

1-0 31:0 Reserved : MBZ

Patch Header (TRI Domain)

DW
ord

Bit
s Description

7 31:0
UEQ0 Tessellation Factor

Format: FLOAT32

6 31:0
VEQ0 Tessellation Factor

Format: FLOAT32

5 31:0
WEQ0 Tessellation Factor

Format: FLOAT32

4 31:0
Inside Tessellation Factor

Format: FLOAT32

3-0 31:0 Reserved : MBZ

Patch Header (ISOLINE Domain)

DW
ord

Bit
s Description

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 139

DW
ord

Bit
s Description

7 31:0
Line Detail Tessellation Factor

Format: FLOAT32

6 31:0
Line Density Tessellation Factor

Format: FLOAT32

5-0 31:0 Reserved : MBZ

Patch Header (SW Tessellation Mode)

DW
ord

Bit
s Description

7 31:0
Domain Point Count

Specifies the number of DOMAIN_POINT structures in the domain point list in memory. If 0, there

are no domain points defined, the patch will considered “culled”, and the TE stage will discard the

patch. Otherwise the TS stage will send this number of domain points down the pipeline.

Format: U32

6 31:6
Domain Point Buffer Starting Address (DPBSA)

This field specifies the starting memory offset from SW Tessellation Base Address (set by the

SWTESS_BASE_ADDRESS command) at which the HS thread has written a list of

DOMAIN_POINT structures. This field is ignored if Domain Point Count is 0.

Format: 64B-aligned offset from SW Tessellation Base Address

 5:0 Reserved : MBZ

5-0 31:0 Reserved: MBZ

4.9.2 DOMAIN_POINT Structure

In SW Tessellation Mode (i.e., when the TE State is SW_TESS), the TE stage will read a sequence of

DOMAIN_POINT structures from memory, starting at the Domain Point Buffer Starting Address field of

the patch header. (The DPBSA is treated as an offset from the SW Tessellation Base Address as set by

the SWTESS_BASE_ADDRESS command).

DOMAIN_POINT Memory Structure (SW Tessellation)

DW
ord Bit Description

0 31
PrimStart

Set on the first domain point of the topology (e.g., first vertex in a TRISTRIP).

 30
PrimEnd

Set on the last domain point of the topology (e.g., last vertex in a TRISTRIP).

Programming note: Software must ensure that incomplete primitives are not output, or

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 140

DW
ord Bit Description

behavior is UNDEFINED.

 29
PatchEnd

Set on the last domain point for the patch. By definition, PrimEnd must also be set.

Programming Note: Software must ensure that the Domain Point Count coincides with the

domain point marked with PatchEnd.

 28:24
PrimType

This is the primitive topology type.

Format: See 3DPRIMITIVE for encodings

Valid values:POINTLIST, LINESTRIP, LINELIST, TRISTRIP, TRISTRIP_REV, TRILIST,

TRIFAN.

 23:19
Reserved

 18:17
DS Tag [16:15]

This field provides bits [16:15] of the DS Tag value for this domain point. See DS Tag [14:0].

Format: U2

 16:0
U Coordinate

Format: U1.16

1 31:17
DS Tag [14:0]

This field provides bits [14:0] of the DS Tag value for this domain point.

In order to utilize the DS cache, the 17-bit DS Tag must be unique for the associated U,V

coordinate. If software cannot guarantee this, the DS cache must be disabled when in SW

Tessellation mode.

Format: U15

 16:0
V Coordinate

Format: U1.16

4.10 Statistics Gathering

4.10.1 HS Invocations

The HS unit controls the HS_INVOCATIONS counter, which counts the number of patches processed by

the HS stage.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 141

5. 3D Pipeline – Tessellation Engine (TE)
When enabled, the Tessellation Engine (TE) stage performs fixed-function domain tessellation

(decomposition into smaller objects) of incoming patches, as referenced by an HS-generated input PDR

handle and as controlled by TE state and Tessellation Factors (TFs) read from the Patch URB Entry

(patch record). The TE stage is entirely fixed-function and does not spawn threads.

The TE stage can also operate in SW Tessellation mode, where it simply reads “pre-tessellated” domain

point topologies from memory and passes them down the pipeline.

The fixed-function tessellation algorithm is considered an implementation detail and is therefore beyond

the scope of this document. That detail includes both the order of output topologies as well as the order of

vertices (domain points) within the output topologies. Only a high-level overview is provided to describe

how the (few) state variables can be used to control aspects of tessellation behavior. The implementation

will generate deterministic results (given the same exact inputs it will produce exactly the same outputs).

Several domain types (QUAD, TRI, and ISOLINE) are supported. Depending on the domain type, the TE

stage outputs the required point/line/triangle topologies including a domain point per vertex. These

topologies will be output to the DS stage, where the domain points will be converted to 3D object vertices,

resulting in 3D objects as typically input to the 3D pipeline when HOS tessellation is not used.

The HS, TE, and DS stages must be enabled and disabled together. When these stages are disabled, all

topologies (including patchlist topologies) simply pass through to the GS stage. When these stages are

enabled, only patchlist topologies should be issued to the pipeline, else behavior is UNDEFINED. The

MI_TOPOLOGY_FILTER command can be used to ensure this happens, i.e., it can be used to have the

Command Stream ignore 3DPRIMITIVE commands that do not match a specific topology type.

5.1 3DSTATE_TE

3DSTATE_TE

Source: RenderCS

Length Bias: 2

The state used by TE is defined with this inline state packet.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 1Ch 3DSTATE_TE

Format: OpCode

15:8 Reserved

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 142

3DSTATE_TE

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 2h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

1 31:14 Reserved

Project: All

Format: MBZ

13:12 Partitioning

Project: All

Format: U2

This field specifies how edges are partitioned based on tessellation factor.

Value Name Description Project
0h INTEGER Outside/inside edges are divided into an integer number of

equal-sized segments.

All

1h ODD_FRACTIONAL Outside/inside edges are divided into an odd number of

possibly-unequal-sized segments.

All

2h EVEN_FRACTIONAL Outside/inside edges are divided into an even number of

possibly-unequal-sized segments.

All

11:10 Reserved

Project: All

Format: MBZ

9:8 Output Topology

Project: All

Format: U2

This field specifies which primitive types are to be output.

Value Name Description Project
0h POINT Points are output (as POINTLIST topologies) All

1h LINE Lines are output (as LINESTRIP topologies). Only valid if ISOLINE

domain is selected.

All

2h TRI_CW Clockwise-ordered triangles are output (either as TRISTRIP,

TRISTRIP_REV or TRILIST topologies). Not valid if ISOLINE domain

is selected.

All

3h TRI_CCW Count-clockwise-ordered triangles are output (either as TRISTRIP,

TRISTRIP_REV or TRILIST topologies). Not valid if ISOLINE domain

is selected.

All

7:6 Reserved

Project: All

Format: MBZ

5:4 Domain

Project: All

Format: U2

This field specifies which type of domain is to be tessellated.

Value Name Description Project

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 143

3DSTATE_TE

0h QUAD 2D (U,V) domain is tessellated All

1h TRI Triangular (U,V,W) domain is tessellated All

2h ISOLINE 2D (U,V) domain is tessellated. All

3 Reserved

Project: All

Format: MBZ

2:1 TE Mode

Project: All

Format: U2

When TE Enable is ENABLED, this field specifies the overall operation of the TE stage.This field is

ignored if TE Enable is DISABLED.

Value Name Description Project
0h HW_TESS Normal HW Tessellation Mode. The TessFactors are read from the

patch URB entry, and are used to perform fixed-function hardware

tessellation of the specified domain.

All

1h SW_TESS Software Tessellation Mode. The TE unit will pass down HS-thread-

generated tessellated domain points instead of generating them itself

from TessFactors. The TE unit will read the Domain Point Count and

Domain Point Buffer Starting Address fields from the patch header,

and if the count is 0 it will consider the patch culled and discard it.

Otherwise the address is used to start fetching DOMAIN_POINT

structures from memory and passing them down the pipeline to DS.

All

0 TE Enable

Project: All

Format: Enable

If ENABLED, the TE stage will perform tessellation processing on incoming patch primitives. The TE

Mode field determines how this tessellation operation proceeds.If DISABLED, the TE goes into pass-

through mode. All other state fields are ignored.

Programming Notes

The tessellation stages (HS, TE and DS) must be enabled/disabled as a group. I.e., draw commands

can only be issued if all three stages are enabled or all three stages are disabled, otherwise the

behavior is UNDEFINED.

2 31:0 Max TessFactor Odd

Project: All

Format: FLOAT32

This field specifies the maximum TessFactor for ODD_FRACTIONAL partitioning when in HW_TESS

mode.

Note that ISOLINE’s LineDensity TF is always subjected to INTEGER partitioning regardless
of the Partitioning state.For normal operation (as per API spec) software should set this
value to 63.0.

3 31:0 Max TessFactor Not Odd

Project: All

Format: FLOAT32

This field specifies the maximum TessFactor for EVEN_FRACTIONAL or INTEGER partitioning when

in HW_TESS mode.

Note that ISOLINE’s LineDensity TF is always subjected to INTEGER partitioning regardless
of the Partitioning state.For normal operation (as per API spec) software should set this value to

64.0.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 144

5.2 Domain Types and Output Topologies

The major (if only) task of the TE stage is to tessellate a 2D (u,v) domain region—as selected by the

Domain state—into some number of 2D object topologies. (If the patch is culled, that number may be

zero). The options for Domain state are as follows:

 QUAD: A square 2D region within a u,v Cartesian (rectanguar) space. The region extends from the
origin to u=1 and v=1. Within the region, tessellation domain locations are determined. The possible
output topologies include points, clockwise triangles, and counter-clockwise triangles.

 TRI: A triangular 2D region with u,v,w barycentric (areal) coordinates. The three edges correspond
to u=0, v=0, and w=0 boundaries. In barycentric coordinates, w = 1 – u – v, therefore points within
the region are fully defined as 2D (u,v) coordinates. Within the region, tessellation domain locations
are determined. The possible output topologies include points, clockwise triangles, and counter-
clockwise triangles.

 ISOLINE: A series of points within a QUAD domain, where the points lie on lines parallel to the u
axis and extending from [0,1) in the v direction. Either the segmented lines (linestrips) or individual
point topologies can be output.

5.3 QUAD Domain Tessellation

The four “outside” TFs (TF.UEQ0, TF.VEQ0, TF.UEQ1, TF.VEQ1) are used to specify the level of

tessellation along the four corresponding edges of the 2D quad domain. The two “inside” TFs

(TF.InsideU, TF.InsideV) are used to determine the level of tessellation within a 2D “interior” region.

Typically the interior region appears as a “regularly-tessellated 2D grid”, however under certain conditions

the interior region may collapse in which case only the outside TFs are relevant.

In general, a transition region exists between each edge of the interior region and the corresponding

outside edge. The topologies generated for these regions effectively “stitch together” locations along the

outside and inside edges, as each of these edges can contain a different number of tessellated

segments. In the case where all TFs in a given direction (e.g., TF.VEQ0, TF.InsideU, and TF.VEQ1) are

the same value, it appears as if the regularly-tessellated interior region extends all the way to the outside

edges. If this condition simultaneously exists for both u and v directions, the entire domain will appear to

be tessellated into a regular grid, with no noticeable transition regions.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 145

QUAD Domain

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 146

5.3.1 TRI Domain Tessellation

Tessellation of the TRI domain is similar to the QUAD domain, except only three outside edges/TFs are

used, and the tessellation of the interior region is controlled by a single TF.

TRI Domain

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 147

5.4 ISOLINE Domain Tessellation

Tessellation of the ISOLINE domain is different but much simpler than QUAD and TRI domains. The

TF.LineDetail TF controls how finely the U direction is tessellated, while the TF.LineDensity TF controls

how finely the V direction is tessellated. When LINE output topology is selected, a series of segmented

lines parallel to the U axis (constant V) are output. When POINT output topology is selected, only the line

segment endpoints are output (as point objects). In either case there is no topology output for the V=1

edge, which avoids overlapping lines for adjacent patches.

ISOLINE Domain

5.5 Patch Culling

Normally, if any “outside” TF is <= 0.0 or NaN, the entire patch is culled at the TE stage.

Inside TFs are not used to cull patches.

In SW Tessellation mode, a Domain Point Count of 0 indicates that a patch is to be culled.

5.6 Tessellation Factor Limits

MinTessFactor and MaxTessFactor state variables are used to perform a floating-point range clamp on

the TessFactors.

 See TE_STATE for programming details.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 148

5.7 Partitioning

The Partitioning state controls how the TFs are used to divide their corresponding edges.

 INTEGER: The edge will be divided into an integral number of equal segments (given some fixed-
point tolerance).

After clamping, the TF is rounded up to an integer value. The edge will be divided into that many equal segments.

 EVEN_FRACTIONAL: The edge will be divided into an even number of possibly-unequal segments.
The total number of segments is determined by rounding up the post-clamped TF to an even
number.

More specifically, the edge is divided exactly in half. Like the endpoints of the edge, the midpoint of the edge is by

definition a tessellation point. Each half will contain some number of equal segments and possibly one smaller

segment. The size of the smaller segment is determined by the position of the TF value within the range defined by

the TF rounded down and up to even numbers. The closer the TF is to the smaller value, the smaller the segment

size is. When the TF reaches the smaller even value, the smaller segment disappears. The closer the TF gets to the

larger even value, the closer the smaller segment size approaches the size of the other segments. When the TF

reaches the larger even value, all segments will be equal. The position of the smaller segment along the half edge

varies as a function of the TF value.

 ODD_FRACTIONAL: The edge will be divided into an odd number of possibly-unequal segments.
The tessellation scheme is very similar to EVEN_FRACTIONAL partitioning, except the edge
midpoint is not included as a tessellation point. This, and the fact that the tessellation points are
mirrored about the edge midpoint, causes an “odd” segment (which may or may not be the “smaller”
segment) to straddle the edge midpoint, therefore resulting in the number of segments for the edge
always being odd.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 149

6. 3D Pipeline – Domain Shader (DS)
Stage

The DS stage is very similar to the VS stage in that it is responsible for dispatching EU threads to shade

vertices and maintaining a cache (with reference counts) of the shaded vertex outputs of these threads.

Major differences are as follows:

 The DS receives topologies with “domain points” instead of vertices. The only data specific to a
domain point are its U,V coordinates. These coordinates (plus a default or computed W coordinate)
are passed directly in the DS thread payload. There is no other vertex-specific “input vertex data”

 The concatenation of the domain point U,V coordinates (vs. a vertex index) is used as the cache tag.

 The cache is invalidated between patches.

The DS stage accepts state information via the inline 3DSTATE_DS command.

6.1 3DSTATE_DS

3DSTATE_DS

Source: RenderCS

Length Bias: 2

The state used by DS is defined with this inline state packet

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 1Dh 3DSTATE_DS

Format: OpCode

15:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 4h Excludes DWord (0,1)

Format: =n Total Length - 2

1 31:6 Kernel Start Pointer

Project: All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 150

3DSTATE_DS

Format: InstructionBaseOffset[31:6]Kernel

This field specifies the starting location of the kernel program run by threads spawned by this FF unit.

 It is specified as a 64-byte-granular offset from the Instruction Base Address.

 This field is ignored if DS Function Enable is DISABLED.

5:0 Reserved

Project: All

Format: MBZ

2 31 Single Domain Point Dispatch

Format: U1 Enumerated Type

This field can be used to force single domain point SIMD4x2 DS threads.

Value Name Description
0h Multiple Dual domain point SIMD4x2 thread dispatches are allowed.

1h Single Single domain point SIMD4x2 thread dispatches are forced.

30 Vector Mask Enable (VME)

Format: U1 Enumerated Type

When SPF=0, VME specifies which mask to use to initialize the initial channel enables. When SPF=1,

VME specifies which mask to use to generate execution channel enables.

Value Name Description Project
0h Dmask Channels are enabled based on the dispatch mask

1h Vmask Channels are enabled based on the vector mask

29:27 Sampler Count

Format: U3

Specifies how many samplers (in multiples of 4) the kernel uses. Used only for prefetching the

associated sampler state entries.

 This field is ignored if DS Function Enable is DISABLED.

Value Name Description Project
0h No Samplers no samplers used All

1h 1-4 Samplers between 1 and 4 samplers used All

2h 5-8 Samplers between 5 and 8 samplers used All

3h 9-12 Samplers between 9 and 12 samplers used All

4h 13-16 Samplers between 13 and 16 samplers used All

26 Reserved

Format: MBZ

25:18 Binding Table Entry Count

Format: U8

When HW Generated Binding Table is disabled:

 Specifies how many binding table entries the kernel uses. Used only for prefetching of the binding

table entries and associated surface state.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 151

3DSTATE_DS

Note:For kernels using a large number of binding table entries, it may be wise to set this field to zero

to avoid prefetching too many entries and thrashing the state cache.

 This field is ignored if DS Function Enable is DISABLED.

Value Name
[0,255]

17 Reserved

Format: MBZ

16 Floating Point Mode

Format: U1 Enumerated Type

Specifies the initial floating point mode used by the dispatched thread.This field is ignored if DS

Function Enable is DISABLED.

Value Name Description
0h IEEE-754 Use IEEE-754 Rules

1h Alternate Use alternate rules

15 Reserved

Format: MBZ

14 Reserved

Format: MBZ

13 Illegal Opcode Exception Enable

Format: Enable

This bit gets loaded into EU CR0.1[12] (note the bit # difference). See Exceptions and ISA Execution

Environment.This field is ignored if DS Function Enable is DISABLED.

12:8 Reserved

Format: MBZ

7 Software Exception Enable

Format: Enable

This bit gets loaded into EU CR0.1[13] (note the bit # difference). See Exceptions and ISA Execution

Environment.

 This field is ignored if DS Function Enable is DISABLED.

6:0 Reserved

Format: MBZ

3 31:10 Scratch Space Base Offset

Format: GeneralStateOffset[31:10]ScratchSpace

Specifies the starting location of the scratch space area allocated to this FF unit as a 1K-byte aligned

offset from the General State Base Address. If required, each thread spawned by this FF unit will be

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 152

3DSTATE_DS

allocated some portion of this space, as specified by Per-Thread Scratch Space. The computed offset

of the thread-specific portion will be passed in the thread payload as Scratch Space Offset. The thread

is expected to utilize “stateless” DataPort read/write requests to access scratch space, where the

DataPort will cause the General State Base Address to be added to the offset passed in the request

header.This field is ignored if DS Function Enable is DISABLED.

9:4 Reserved

Format: MBZ

3:0 Per-Thread Scratch Space

Format: U4 power of 2 Bytes over 1K Bytes

Specifies the amount of scratch space to be allocated to each thread spawned by this FF unit.The

driver must allocate enough contiguous scratch space, starting at the Scratch Space Base Pointer, to

ensure that the Maximum Number of Threads can each get Per-Thread Scratch Space size without

exceeding the driver-allocated scratch space.

 This field is ignored if DS Function Enable is DISABLED.

Value Name
[0,11] indicating [1K Bytes, 2M Bytes]

Programming Notes

This amount is available to the kernel for information only. It will be passed verbatim (if not altered by

the kernel) to the Data Port in any scratch space access messages, but the Data Port will ignore it.

4 31:25 Reserved

Format: MBZ

24:20 Dispatch GRF Start Register for URB Data

Format: U5

Specifies the starting GRF register number for the URB portion (Constant + Vertices) of the thread

payload. This field is ignored if DS Function Enable is DISABLED.

Value Name
[0,31] indicating GRF [R0,R31]

19:18 Reserved

Format: MBZ

17:11 Patch URB Entry Read Length

Format: U7

Specifies how much data (in 256-bit units) is to be read from the Patch URB entry and passed in the

DS thread payload. This field is ignored if DS Function Enable is DISABLED.

Value Name
[0, 64]

10 Reserved

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 153

3DSTATE_DS

Format: MBZ

9:4 Patch URB Entry Read Offset

Specifies the offset (in 256-bit units) at which Patch URB data is to be read from the URB before being

included in the thread payload.

 This field is ignored if DS Function Enable is DISABLED.

Value Name
[0, 63]

3:0 Reserved

Format: MBZ

5 31:25 Maximum Number of Threads

Format: U7-1 Thread Count

s Specifies the maximum number of simultaneous DS threads allowed to be active. Used to avoid

using up the scratch space. Programming the value of the max threads over the number of threads

based off number of threads supported in the execution units may improve performance since the

architecture allows threads to be buffered between the check for max threads and the actual dispatch

into the EU. Programming the max values to a number less than the number of threads supported in

the execution units may reduce performance.

 This field is ignored if DS Function Enable is DISABLED.

Value Name Description Project
[0,127] indicating thread count of [1,128]

[0,35] indicating thread count of [1,36]

24:21 Reserved

Format: MBZ

20:11 Reserved

10 Statistics Enable

Format: Enable

If ENABLED, this FF unit will engage in statistics gathering. If DISABLED, statistics information

associated with this FF stage will be left unchanged. This field is ignored if DS Function Enable is

DISABLED.

9:3 Reserved

2 Compute W Coordinate Enable

Format: Enable

If ENABLED, the DS unit will (for each domain point) compute W = 1 – (U + V) and pass the result as a

floating point value in the DS thread payload. If DISABLED, 0.0 will be passed. This field must only be

ENABLED for the tessellation of TRI domains, where UVW coordinates are required. This field must be

DISABLED for other domains (as they only require UV coordinates) otherwise the computed W

coordinate is UNDEFINED. This field is ignored if DS Function Enable is DISABLED.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 154

3DSTATE_DS

1 DS Cache Disable

Project:

Format: Disable

This bit controls the operation of the DS Cache. This field is ignored if DS Function Enable is

DISABLED.

 If the DS Cache is DISABLED and the DS Function is ENABLED, the DS Cache is not used and all

incoming domain points will be passed to DS threads.

 If the DS Cache is ENABLED and the DS Function is ENABLED, incoming domain points that do not

hit in the DS Cache will be passed to DS threads. The DS Cache is invalidated whenever the DS

Cache becomes DISABLED , whenever the DS Function Enable toggles, and between patches.

0 DS Function Enable

Format: Enable

If ENABLED, DS threads will be spawned to process incoming domain points which miss in the DS

cache.

 If DISABLED, the DS stage goes into pass-through mode and performs no specific processing.

 This field is always used.

Programming Notes

The tessellation stages (HS, TE and DS) must be enabled/disabled as a group. I.e., draw commands

can only be issued if all three stages are enabled or all three stages are disabled, otherwise the

behavior is UNDEFINED.

6.1.1 3DSTATE_PUSH_CONSTANT_ALLOC_DS

3DSTATE_PUSH_CONSTANT_ALLOC_DS

Source: RenderCS

Length Bias: 2

This command sets up the URB configuration for DS Push Constant Buffer.

Programming Notes

Programming Restriction:

The sum of the Constant Buffer Offset and the Constant Buffer Size may not exceed the maximum value of the
Constant Buffer Size.

The sum of the constant length programmed in 3DSTATE_CONSTANT_DS must be equal or smaller then the

size of the allocated space in the URB including the buffering for half cachelines. See Push Constant URB
Allocation section for more details.

The 3DSTATE_CONSTANT_DS must be reprogrammed prior to the next 3DPRIMITIVE command after
programming the 3DSTATE_PUSH_CONSTANT_ALLOC_DS.

DWord Bit Description

0 31:29 Command Type

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 155

3DSTATE_PUSH_CONSTANT_ALLOC_DS

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h GFXPIPE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 14h 3DSTATE_PUSH_CONSTANT_ALLOC_DS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

1 31:20 Reserved

Format: MBZ

19:16 Constant Buffer Offset

Format: U4

Specifies the offset of the DS constant buffer into the URB.

Value Name
[0,15] (0KB - 15KB)

0h 0KB [Default]

15:5 Reserved

Format: MBZ

4:0 Constant Buffer Size

Format: U5

Specifies the size of the DS constant buffer. This value will determine the amount of data the

command stream can pre-fetch before the buffer is full. Value of zero is only valid when constants are

not enabled for DS.

Value Name
[0,15] (0KB – 15KB) Increments of 1KB

0h 0KB [Default]

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 156

6.1.2 3DSTATE_CONSTANT_DS

3DSTATE_CONSTANT_DS

Source: RenderCS

Length Bias: 2

This command sets pointers to the push constants for the DS unit. The constant data pointed to by this command is

loaded into the DS unit’s push constant buffer (PCB).

Programming Notes Project

It is invalid to execute this command more than once between 3D_PRIMITIVE commands.

Constant buffers must be enabled in order from Constant Buffer 0 to Constant Buffer 3 within this command.

For example, It is not allowed to enable Constant Buffer 1 by programming a non-zero value in the DS

Constant Buffer 1 Read Length without a non-zero value in DS Constant Buffer 0 Read Length.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 1Ah 3DSTATE_CONSTANT_DS

Format: OpCode

15:8 Reserved

Format: MBZ

7:0 DWord Length

Project: All

Format: =n Total Length - 2

Value Name Project
5h Excludes DWord (0,1) [Default]

1..6

191:0 Constant Body

Format: 3DSTATE_CONSTANT(Body)

Following table is the shared portion of the 3DSTATE_CONSTANT command for VS, HS, DS,

and GS

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 157

3DSTATE_CONSTANT(Body)

Project: All

Source: RenderCS

Default Value: 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000

DWord Bit Description

0 31:16 Constant Buffer 1 Read Length

Project: All

Format: U16 read length

This field specifies the length of the constant data to be loaded from memory in 256-bit units.

Programming Notes

The sum of all four read length fields must be less than or equal to the size of 64

Setting the value of the register to zero will disable buffer 1.

If disabled, the Pointer to Constant Buffer 1 must be programmed to zero.

15:0 Constant Buffer 0 Read Length

Project: All

Format: U16 read length

This field specifies the length of the constant data to be loaded from memory in 256-bit units.

Programming Notes

The sum of all four read length fields must be less than or equal to the size of 64

Setting the value of the register to zero will disable buffer 0.

If disabled, the Pointer to Constant Buffer 0 must be programmed to zero.

1 31:16 Constant Buffer 3 Read Length

Project: All

Format: U16 read length

This field specifies the length of the constant data to be loaded from memory in 256-bit units.

Programming Notes

The sum of all four read length fields must be less than or equal to the size of 64

Setting the value of the register to zero will disable buffer 3.

If disabled, the Pointer to Constant Buffer 3 must be programmed to zero.

15:0 Constant Buffer 2 Read Length

Project: All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 158

3DSTATE_CONSTANT(Body)

Format: U16 read length

This field specifies the length of the constant data to be loaded from memory in 256-bit units.

Programming Notes

The sum of all four read length fields must be less than or equal to the size of 64

Setting the value of the register to zero will disable buffer 2.

If disabled, the Pointer to Constant Buffer 2 must be programmed to zero.

2 31:5 Pointer to Constant Buffer 0

Project: All

Format: GraphicsAddress[31:5]ConstantBuffer

This field points to the location of Constant Buffer 0. The state of INSTPM<CONSTANT_BUFFER
Address Offset Disable> determines whether the Dynamic State Base Address is added to this

pointer.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

4:0 Constant Buffer Object Control State

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for all constant buffers defined in this command.

3

31:5 Pointer to Constant Buffer 1

Format: GraphicsAddress[31:5]ConstantBuffer

This field points to the location of Constant Buffer 1.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

4:0 Reserved

Project: All

Format: MBZ

4

31:5 Pointer to Constant Buffer 2

Format: GraphicsAddress[31:5]ConstantBuffer

This field points to the location of Constant Buffer 2.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

4:0 Reserved

Project: All

Format: MBZ

5

31:5 Pointer to Constant Buffer 3

Format: GraphicsAddress[31:5]ConstantBuffer

This field points to the location of Constant Buffer 3.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 159

3DSTATE_CONSTANT(Body)

4:0 Reserved

Format: MBZ

6.2 Thread Payload

The following tables describe the payload delivered to DS threads.

DS Thread Payload (SIMD4x2)

DWord Bit Description
R0.7 31

Snapshot Flag

 30:0 Reserved

R0.6 31:24 Reserved

 23:0
Thread ID: This field uniquely identifies this thread within the threads spawned by this FF unit,

over some period of time.

Format: Reserved for HW Implementation Use.

R0.5 31:10
Scratch Space Offset: Specifies the of the scratch space allocated to the thread, specified as

a 1KB-granular offset from the General State Base Address. See Scratch Space Base
Offset description in VS_STATE.

(See 3D Pipeline for further description on scratch space allocation).

Format = GeneralStateOffset[31:10]

 9.0 Reserved

 8:0
FFTID: This ID is assigned by the FF unit and used to identify the thread within the set of

outstanding threads spawned by the FF unit.

Format: Reserved for HW Implementation Use.

Format:

U9

R0.4 31:5
Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It is

specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

 4:0 Reserved

R0.3 31:5
Sampler State Pointer. Specifies the location of the Sampler State Table to be used by this

thread, specified as a 32-byte granular offset from the General State Base Address or

Dynamic State Base Address.

Format = DynamicStateOffset[31:5]

 4 Reserved

 3:0
Per Thread Scratch Space: Specifies the amount of scratch space allowed to be used by this

thread. The value specifies the power that two will be raised to (over determine the amount of

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 160

DWord Bit Description
scratch space).

Format = U4 power of two (in excess of 10)

Range = [0,11] indicating [1K Bytes, 2M Bytes]

R0.2 31:0 Reserved : delivered as zeros (reserved for message header fields)

R0.1 31:26 Reserved

 25:16
Handle ID 1: This ID is assigned by the FF unit and used to identify the URB Return Handle 1

to the FF unit (as FF-specific index value, not a URB address).

If only one vertex is to be processed (shaded) by the thread, this field will effectively be ignored

(no results are stored for these channels, as controlled by the thread’s Channel Mask).

Format = Reserved for HW Implementation Use.

 15:14 Reserved

 13:0
URB Return Handle 1: This is the URB handle where Vertex 1 data (the EU’s upper channels

(DWords 7:4)) results are to be stored.

If only one vertex is to be processed (shaded) by the thread, this field will effectively be ignored

(no results are stored for these channels, as controlled by the thread’s Channel Mask).

Format:

U12 handle (512-bit granular); Bit 13:12 Reserved

R0.0 31:26 Reserved

 25:16
Handle ID 0: This ID is assigned by the FF unit and used to identify the URB Return Handle 0

to the FF unit (as FF-specific index value, not a URB address).

Format = Reserved for HW Implementation Use.

 15:14 Reserved

 13:0
URB Return Handle 0: This is the URB handle where Vertex 0 data (the EU’s lower channels

(DWords 3:0)) results are to be stored.

Format:

U12 handle (512-bit granular); Bit 13:12 Reserved

R1.7 31:0
PrimitiveID: This is the 32-bit PrimitiveID value associated with the patch. It is common to all

output vertices resulting from the tessellation of the patch.

Format: U32

R1.6 31:0
Domain Point 1 W Coordinate: (See Domain Point 0 W Coordinate)

Format: FLOAT32

R1.5 31:0
Domain Point 1 V Coordinate: (See Domain Point 0 V Coordinate)

Format: FLOAT32

R1.4 31:0
Domain Point 1 U Coordinate: (See Domain Point 0 U Coordinate)

Format: FLOAT32

R1.3 31:14 Reserved

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 161

DWord Bit Description
 13:0

Patch URB Handle: This is the URB handle of the Patch Record (common to both vertices).

Format:

U12 handle; Bit 13:12 Reserved

R1.2 31:0
Domain Point 0 W Coordinate: If Compute W Coordinate Enable is set, this field will

receive the computed value (1 – U – V) for Domain Point 0. Otherwise it is passed as 0.0.

Format: FLOAT32

R1.1 31:0
Domain Point 0 V Coordinate: V coordinate associated with Domain Point 0.

Format: FLOAT32

R1.0 31:0
Domain Point 0 U Coordinate: U coordinate associated with Domain Point 0.

Format: FLOAT32

Varies

[Optional]

255:0
Constant Data (optional) :

Some amount of constant data (possible none) can be extracted from the push constant buffer

(PCB) and passed to the thread following the R0 Header. The amount of data provided is defined

by the sum of the read lengths in the last 3DSTATE_CONSTANT_DS command (taking the

buffer enables into account).

The Constant Data arrives in a non-interleaved format.

Varies

[Optional]

255:0
Patch URB Data (optional): Some amount of Patch Data (possible none) can be extracted

from the URB and passed to the thread in this location in the payload. The amount of data

provided is defined by the Patch URB Entry Read Length state (3DSTATE_DS)

The Patch Data arrives in a non-interleaved format.

DS Thread Payload (SIMD8)

DWord Bit Description
R0.7 31

Snapshot Flag

 30:0 Reserved

R0.6 31:24 Reserved

 23:0
Thread ID: This field uniquely identifies this thread within the threads spawned by this FF unit,

over some period of time.

Format: Reserved for HW Implementation Use.

R0.5 31:10
Scratch Space Offset: Specifies the of the scratch space allocated to the thread, specified as a

1KB-granular offset from the General State Base Address. See Scratch Space Base Offset

description in VS_STATE.

(See 3D Pipeline for further description on scratch space allocation).

Format = GeneralStateOffset[31:10]

 9.0 Reserved

 8:0
FFTID: This ID is assigned by the FF unit and used to identify the thread within the set of

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 162

DWord Bit Description
outstanding threads spawned by the FF unit.

Format: Reserved for HW Implementation Use.

Format:

U9

R0.4 31:5
Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It is specified as

an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

 4:0 Reserved

R0.3 31:5
Sampler State Pointer. Specifies the location of the Sampler State Table to be used by this

thread, specified as a 32-byte granular offset from the General State Base Address or Dynamic

State Base Address.

Format = DynamicStateOffset[31:5]

 4 Reserved

 3:0
Per Thread Scratch Space: Specifies the amount of scratch space allowed to be used by this

thread. The value specifies the power that two will be raised to (over determine the amount of

scratch space).

Format = U4 power of two (in excess of 10)

Range = [0,11] indicating [1K Bytes, 2M Bytes]

R0.2 31:0 Reserved : delivered as zeros (reserved for message header fields)

R0.1 31:0
PrimitiveID: This is the 32-bit PrimitiveID value associated with the patch. It is common to all

output domain points resulting from the tessellation of the patch.

Format: U32

R0.0 31:27 Reserved

 26:16
Patch Handle ID: This ID is assigned by the FF unit and used to identify the patch URB entry to

the FF unit (as FF-specific index value, not a URB address).

Format = Reserved for HW Implementation Use.

 15:0
Patch URB Offset: This is the offset within the URB where the patch data is stored.

Format: U14 64B-granular offset into the URB

R1.7 31:0 Domain Point 7 U Coordinate. (See Domain Point 0 U Coordinate)

R1.6 31:0 Domain Point 6 U Coordinate. (See Domain Point 0 U Coordinate)

R1.5 31:0 Domain Point 5 U Coordinate. (See Domain Point 0 U Coordinate)

R1.4 31:0 Domain Point 4 U Coordinate. (See Domain Point 0 U Coordinate)

R1.3 31:0 Domain Point 3 U Coordinate. (See Domain Point 0 U Coordinate)

R1.2 31:0 Domain Point 2 U Coordinate. (See Domain Point 0 U Coordinate)

R1.1 31:0 Domain Point 1 U Coordinate. (See Domain Point 0 U Coordinate)

R1.0 31:0
Domain Point 0 U Coordinate: U coordinate associated with Domain Point 0.

Format: FLOAT32

R2.7 31:0 Domain Point 7 V Coordinate. (See Domain Point 0 V Coordinate)

R2.6 31:0 Domain Point 6 V Coordinate. (See Domain Point 0 V Coordinate)

R2.5 31:0 Domain Point 5 V Coordinate. (See Domain Point 0 V Coordinate)

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 163

DWord Bit Description
R2.4 31:0 Domain Point 4 V Coordinate. (See Domain Point 0 V Coordinate)

R2.3 31:0 Domain Point 3 V Coordinate. (See Domain Point 0 V Coordinate)

R2.2 31:0 Domain Point 2 V Coordinate. (See Domain Point 0 V Coordinate)

R2.1 31:0 Domain Point 1 V Coordinate. (See Domain Point 0 V Coordinate)

R2.0 31:0
Domain Point 0 V Coordinate: V coordinate associated with Domain Point 0.

Format: FLOAT32

R3.7 31:0 Domain Point 7 W Coordinate. (See Domain Point 0 W Coordinate)

R3.6 31:0 Domain Point 6 W Coordinate. (See Domain Point 0 W Coordinate)

R3.5 31:0 Domain Point 5 W Coordinate. (See Domain Point 0 W Coordinate)

R3.4 31:0 Domain Point 4 W Coordinate. (See Domain Point 0 W Coordinate)

R3.3 31:0 Domain Point 3 W Coordinate. (See Domain Point 0 W Coordinate)

R3.2 31:0 Domain Point 2 W Coordinate. (See Domain Point 0 W Coordinate)

R3.1 31:0 Domain Point 1 W Coordinate. (See Domain Point 0 W Coordinate)

R3.0 31:0
Domain Point 0 W Coordinate: If Compute W Coordinate Enable is set, this field will receive the

computed value (1 – U – V) for Domain Point 0. Otherwise it is passed as 0.0.

Format: FLOAT32

R4.7 31:0 Domain Point 7 URB Return Handle (see R4.0)

R4.6 31:0 Domain Point 6 URB Return Handle (see R4.0)

R4.5 31:0 Domain Point 5 URB Return Handle (see R4.0)

R4.4 31:0 Domain Point 4 URB Return Handle (see R4.0)

R4.3 31:0 Domain Point 3 URB Return Handle (see R4.0)

R4.2 31:0 Domain Point 2 URB Return Handle (see R4.0)

R4.1 31:0 Domain Point 1 URB Return Handle (see R4.0)

R4.0 31:16 Reserved

 15:0
Domain Point 0 URB Return Handle: This is the offset within the URB where domain point 0 is to

be stored.

Format: U14 64B-granular offset into the URB

Varies

[Optional]

255:0
Constant Data (optional) :

Some amount of constant data (possible none) can be extracted from the push constant buffer

(PCB) and passed to the thread following the R0 Header. The amount of data provided is defined

by the sum of the read lengths in the last 3DSTATE_CONSTANT_DS command (taking the

buffer enables into account).

Varies

[Optional]

255:0
Patch URB Data (optional):

Some amount of Patch Data (possible none) can be extracted from the URB and passed to the

thread in this location in the payload. The amount of data provided is defined by the Patch URB

Entry Read Length state (3DSTATE_DS)

6.3 DS Thread Execution

A DS kernel assumes it is to operate on two domain points in parallel using the EU’s SIMD4x2 execution

model . Refer to ISA chapters for specifics on writing kernels that operate in SIMD4x2 fashion.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 164

DS threads must always write the destination URB handles passed in the payload. DS threads are not

permitted to request additional destination handles. Refer to 3D Pipeline Stage Overview (3D Overview) for

details on how destination vertices are written and any required contents/formats.

DS threads must signal thread termination on the last message output to the URB shared function.

6.4 Statistics Gathering

The DS stage maintains the DS_INVOCATIONS statistics counter, which counts the number of incoming

domain points, irrespective of cache hit/miss. Note that this is different than VS_INVOCATIONS, which

counts shader invocations and therefore doesn’t count cache hits.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 165

7. 3D Pipeline – Geometry Shader (GS)
Stage

7.1 GS Stage Overview

The GS stage of the 3D Pipeline is used to convert objects within incoming primitives into new primitives

through use of a spawned thread. When enabled, the GS unit buffers incoming vertices, assembles the

vertices of each individual object within the primitives, and passes these object vertices (along with other

data) to the subsystem for processing by a GS thread.

When the GS stage is disabled, vertices flow through the unit unmodified.

Refer to the Common 3D FF Unit Functions subsection in the 3D Pipeline chapter for a general

description of a 3D Pipeline stage, as much of the GS stage operation and control falls under these

“common” functions; i.e., most stage state variables and GS thread payload parameters are described in

3D Pipeline, and although they are listed here for completeness, that chapter provides the detailed

description of the associated functions.

Refer to this chapter for an overall description of the GS stage, and any exceptions the GS stage exhibits

with respect to common FF unit functions.

7.2 GS Stage Input

As a stage of the 3D pipeline, the GS stage receives inputs from the previous (DS) stage. Refer to 3D

Pipeline for an overview of the various types of input to a 3D Pipeline stage. The remainder of this

subsection describes the inputs specific to the GS stage.

7.2.1 State

7.2.1.1 3DSTATE_GS

The state used by GS is defined with this inline state packet.

3DSTATE_GS

Source: RenderCS

Length Bias: 2

Controls the GS stage hardware.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 166

3DSTATE_GS

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 11h 3DSTATE_GS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 5h Excludes DWord (0,1)

Format: =n

1 31:6 Kernel Start Pointer

Project: All

Format: InstructionBaseOffset[31:6]Kernel

This field specifies the starting location (1st core instruction) of the kernel program run by threads

spawned by this FF unit. It is specified as a 64-byte-granular offset from the Instruction Base Address.

5:0 Reserved

Project: All

Format: MBZ

2 31 Single Program Flow (SPF)

Project: All

Specifies the initial condition of the kernel program as either a single program flow (SIMDnxm with m =

1) or as multiple program flows (SIMDnxm with m > 1). See CR0 description in ISA Execution

Environment.

Value Name Description
0h Disable Single Program Flow disabled

1h Enable Single Program Flow enabled

30 Vector Mask Enable (VME)

Project: All

Format: U1 enumerated type

When SPF=0, VME specifies which mask to use to initialize the initial channel enables. When SPF=1,

VME specifies which mask to use to generate execution channel enables.

Value Name Description
0h Dmask Channels are enabled based on the dispatch mask

1h Vmask Channels are enabled based on the vector mask

29:27 Sampler Count

Project: All

Format: U3

Specifies how many samplers (in multiples of 4) the geometry shader kernel uses. Used only for

prefetching the associated sampler state entries.

Value Name Description
0h No Samplers no samplers used

1h 1-4 Samplers between 1 and 4 samplers used

2h 5-8 Samplers between 5 and 8 samplers used

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 167

3DSTATE_GS

3h 9-12 Samplers between 9 and 12 samplers used

4h 13-16 Samplers between 13 and 16 samplers used

5h-7h Reserved Reserved

26 Reserved

Project: All

Format: MBZ

25:18 Binding Table Entry Count

Project: All

Format: U8

When HW Generated Binding Table is disabled: Specifies how many binding table entries the kernel

uses. Used only for prefetching of the binding table entries and associated surface state.

 Note: For kernels using a large number of binding table entries, it may be wise to set this field to zero

to avoid prefetching too many entries and thrashing the state cache.

17 Thread Priority

Project: All

Specifies the priority of the thread for dispatch

Value Name Description
0h Normal Priority Normal Priority

1h High Priority High Priority

16 Floating Point Mode

Project: All

Specifies the initial floating point mode used by the dispatched thread.

Value Name Description
0h IEEE-754 Use IEEE-754 Rules

1h alternate Use alternate rules

15:14 Reserved

Project: All

Format: MBZ

13 Illegal Opcode Exception Enable

Project: All

Format: Enable

Double Buffer

Armed By:

This bit gets loaded into EU CR0.1[12] (note the bit # difference). See Exceptions

and ISA Execution Environment.

12 Reserved

Format: MBZ

11 Mask Stack Exception Enable

Project: All

Format: Enable

Double Buffer Armed

By:

This bit gets loaded into EU CR0.1[11]. See Exceptions and ISA Execution

Environment.

10:8 Reserved

Project: All

Format: MBZ

7 Software Exception Enable

Project: All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 168

3DSTATE_GS

Format: Enable

This bit gets loaded into EU CR0.1[13] (note the bit # difference). See Exceptions and ISA Execution

Environment.

6 Reserved

Project: All

Format: MBZ

5:0 Reserved

Format: MBZ

3 31:10 Scratch Space Base Pointer

Project: All

Format: GeneralStateOffset[31:10]

Specifies the location of the scratch space area allocated to this FF unit, specified as a 1KB-granular

offset from the General State Base Address. If required, each thread spawned by this FF unit will be

allocated some portion of this space, as specified by Per-Thread Scratch Space.

9:4 Reserved

Project: All

Format: MBZ

3:0 Per-Thread Scratch Space

Project: All

Format: U4 Power of 2 Bytes over 1K Bytes

Specifies the amount of scratch space to be allocated to each thread spawned by this FF unit.The

driver must allocate enough contiguous scratch space, starting at the Scratch Space Base Pointer, to

ensure that the Maximum Number of Threads can each get Per-Thread Scratch Space size without

exceeding the driver-allocated scratch space.

Value Name
[0,11] indicating [1K Bytes, 2M Bytes]

4 31:29 Reserved

Project: All

Format: MBZ

28:23 Output Vertex Size

Project: All

Format: U6

[0,62] indicating [1,63] 16B units

Specifies the size of each vertex stored in the GS output entry (following any Control Header data) as

a number of 128-bit units (minus one).

Programming Notes

Programming Restrictions: The vertex size must be programmed as a multiple of 32B units with the

following exception: Rendering is disabled (as per SOL stage state) and the vertex size output by the

GS thread is 16B.

 If rendering is enabled (as per SOL state) the vertex size must be programmed as a multiple of 32B

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 169

3DSTATE_GS

units. In other words, the only time software can program a vertex size with an odd number of 16B

units is when rendering is disabled.

22:17 Output Topology

Project: All

Format: 3DPrimType

This field specifies the topology type (3DPrimType) to be associated with GS-thread output vertices (if

any).

16:11 Vertex URB Entry Read Length

Project: All

Format: U6

Specifies the amount of URB data read and passed in the thread payload for each Vertex URB entry, in

256-bit register increments.

Value Name
[0,63]

Programming Notes

Programming Restriction:This field must be a non-zero value if Include Vertex Handles is cleared to

zero.

10 Include Vertex Handles

Project: All

Format: Boolean

If set, all the input Vertex URB handles are included in the payload. These are referred to as “pull

model” URB handles, as the thread will use them to read from the URB.

Programming Notes

This field must be set if Vertex URB Entry Read Length is cleared to zero.

When this field is set and GS is enabled, only PATCHLIST topologies may be submitted. I.e., pull-

model vertices are only supported for PATCH objects, other object types must completely push all

vertex data into the payload.

9:4 Vertex URB Entry Read Offset

Project: All

Format: U6

Double Buffer

Armed By:

Specifies the offset (in 256-bit units) at which Vertex URB data is to be read from the

URB before being included in the thread payload. This offset applies to all Vertex URB

entries passed to the thread.

Value Name
[0,63]

3:0 Dispatch GRF Start Register for URB Data

Project: All

Format: U4

Specifies the starting GRF register number for the URB portion (Constant + Vertices) of the thread

payload.

Value Name
[0,15] indicating GRF [R0,R15]

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 170

3DSTATE_GS

Programming Notes

If Include Vertex Handles is enabled (pull or hybrid handles case), then

For DUAL_OBJECT dispatch mode this field should be:

(((2*numVerticesPerObject) + 8 – 1)/8) + 1

For SINGLE and DUAL_INSTANCE dispatch modes this field should be:

((numVerticesPerObject +8 – 1)/8) + 1

If Include Primitive ID is set, then add 1 to the value obtained by using the above

5 31:25 Maximum Number of Threads

Format: U7-1 thread count

Specifies the maximum number of simultaneous threads allowed to be active. Used to avoid using up

the scratch space, or to avoid potential deadlock.

Value Name Project
[0,127] indicating thread count of [1,128]

[0,35] indicating thread count of [1,36]

24 Control Data Format

Format: U1

This field specifies the format of the control data header (if any).

Value Name Description
0h GSCTL_CUT The control data header contains cut bits.

1h GSCTL_SID The control data header contains StreamID bits. . Output Topology must be set

to POINTLIST, or behavior is UNDEFINED.

23:20 Control Data Header Size

Project: All

Format: U4

Specifies the number of 32B units of control data header located at the start of the GS URB entry. The

value 0 indicates there is no control data header, and Control Data Format is ignored.Software must

ensure that the Control Data Header Size is sufficient to accommodate the maixumum number of

vertices output by the GS thread. It is UNDEFINED for a GS thread to report more output vertices than

can be accomodated in a non-zero-sized header. (If the header size is zero, by definition neither cut

nor StreamID bits are defined.

Value Name
[0,8] 32B units

19:15 Instance Control

Project: All

Format: U5-1 in #instances

[0,31] indicating [1,32] instances

Specifies the number of instances (minus one) for each input object. To avoid confusion, this

document uses the term “InstanceCount” to refer to InstanceControl+1, with a range of [1,32]If

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 171

3DSTATE_GS

InstanceCount>1, DUAL_OBJECT mode is invalid. Software will likely want to use DUAL_INSTANCE

mode for higher performance, but SINGLE mode is also supported.When InstanceCount=1 (one

instance per object) software can decide which dispatch mode to use. DUAL_OBJECT mode would

likely be the best choice for performance, followed by SINGLE mode. DUAL_INSTANCE mode is not

recommended but is supported.

14:13 Default StreamID

Project: All

Format: U2

When the GS is enabled, unless the GS output entry contains StreamID bits in the control header, this

field specifies the default StreamID associated with any GS-thread output vertices. When the GS is

disabled, StreamID will be output as 0.

12:11 Dispatch Mode

Project: All

Format: U2

This field specifies how the GS unit dispatches multiple instances and/or multiple objects.

Value Name Description
0h SINGLE Each thread shades a single instance of one object.

1h DUAL_INSTANCE Each thread shades possibly two instances of one object. If the

InstanceCount is odd, a trailing dispatch of only one instance will be made

for each object received.Not recommended if InstanceCount = 1,

assuming a kernel optimized for SINGLE or DUAL_OBJECT dispatch

would outperform a kernel compiled for DUAL_INSTANCE but only

passed one instance.The GS must be allocated at least two URB handles

or behavior is UNDEFINED.

2h DUAL_OBJECT Each thread shades one instance of possibly two objects. The GS unit

attempt to pair objects together into one dispatch, but under some

circumstances only one object may be dispatched (as controlled by the

DispatchMask generated by the GS unit).Not valid for objects with more

than 16 vertices per object. Not valid if InstanceCount > 1 (more than one

instance per object).The GS must be allocated at least two URB handles

or behavior is UNDEFINED.

3h Reserved

10 GS Statistics Enable

Project: All

This bit controls whether GS-unit-specific statistics register(s) can be incremented.

Value Name Description
0h Disable GS_INVOCATIONS_COUNT and GS_PRIMITIVES_COUNT cannot increment

1h Enable GS_INVOCATIONS_COUNT and GS_PRIMITIVES_COUNT can increment

9:5 GSInvocations Increment Value

Project: All

Format: U5

Specifies how much to increment the GS_INVOCATIONS_COUNT for each instance of each object.

This control is provided to allow software to process multiple instances (from an API POV) in a single

kernel invocation.In SINGLE dispatch mode, the counter will increment by this value for each dispatch

(as it’s only one instance of one object). In DUAL_INSTANCE mode, the counter will be incremented

by the value if only one instance is included in the dispatch (i.e., the last odd instance), otherwise the

counter will be incremented by twice this value.In DUAL_OBJECT dispatch mode, the counter will be

incremented by the value if only one object is included in the dispatch (i.e., a forced dispatch of one

object), otherwise the counter will be incremented by twice this value.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 172

3DSTATE_GS

Value Name
[0,31] indicating an increment of [1,32]

4 Include Primitive ID

Project: All

Format: Boolean

If set, R1 of the payload is written with Primitive ID value(s).If clear, these Primitive ID values are not

included in the payload R1.

3 Hint

Project: All

Format: U1

This state bit is simply passed in GS thread payloads for use by the GS kernel – it has no other impact

on hardware operation.

2 Reorder Enable

Format: Enable

This bit controls whether the GS unit reorders TRISTRIP/TRISTRIP_REV vertices passed in the GS

thread payload.If ENABLED, the GS unit will reorder the vertices for “odd-numbered” triangles

originating from TRISTRIP topologies and “even-numbered” triangles originating from TRISTRIP_REV

topologies. (Note that the first triangle is considered “triangle 0”, which is even-numbered).With respect

to the PrimType passed in the GS thread payload, the GS unit passes TRISTRIP when the vertices are

not reordered, and TRISTRIP_REV when the vertices are reordered (regardless of whether a

TRISTRIP or TRISTRIP_REV topology was being processed)If DISABLED, TRISTRIP/TRISTRIP_REV

vertices are not reordered, and always passed in the order they are received from the pipeline. The GS

unit will still toggle PrimType on alternating (as described above) so that the GS thread can perform the

reordering internally (or do whatever is necessary to account for the non-reordering of its input).

1 Discard Adjaceny

Project: All

Format: Enable

When set, adjacent vertices will not be passed in the GS payload when objects with adjacency are

processed. Instead, only the non-adjacent vertices will be passed in the same fashion as the without-

adjacency form of the primitive. Software should set this bit whenever a GS kernel is used that does

not expect adjacent vertices. This allows both with-adjacency/without-adjacency variants of the

primitive to be submitted to the pipeline (via 3DPRIMITIVE) – the GS unit will silently discard any

adjacent vertices and present the GS thread with only the internal object. When clear, adjacent vertices

will be passed to the GS thread, as dictated by the incoming primitive type. Software should only clear

this bit when a GS kernel is used that does expect adjacent vertices. E.g., if the GS kernel is compiled

to expect a TRIANGLE_ADJ object, software must clear this bit.Software should also clear this bit if the

GS kernel expects a POINT or PATCHLIST_n object (which don’t have with-adjacency variants).This

bit is used to provide limited compatibility between submitted primitive types and the object type

expected by the GS kernel. The only hardware assistance is to allow the submission of a with-

adjacency variant of a primitive when operating with a GS kernel that expects the without-adjacency

variant of the object. (E.g., when the GS kernel is compiled to expect a TRIANGLE object, software

should set this bit just in case a TRILIST_ADJ is submitted to the pipeline.) Note that the GS unit is

otherwise not aware of the object type that is expected by the GS kernel. It is up to software to ensure

that the submitted primitive type (in 3DPRIMITIVE) is otherwise compatible with the object type

expected by the GS kernel. (E.g., if the GS kernel expects a LINE_ADJ object, only LINELIST_ADJ or

LINESTRIP_ADJ should be submitted, otherwise the GS kernel will produce unpredictable results.)Also

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 173

3DSTATE_GS

note that it is possible to craft a GS kernel which can accept any object type that’s thrown at it by first

examining the PrimType passed in the payload and then using this info to correctly interpret the

number of vertices passed in the payload.

0 GS Enable

Project: All

Format: Enable

Specifies whether the GS stage is enabled or disabled (pass-through).

6 31 Reserved

Format: MBZ

30:13 Reserved

Project: All

Format: MBZ

12 Reserved

Format: MBZ

11:0 Semaphore Handle

Project:

Format: URBOffset[17:6]

This is the URB offset pointing to the first of the GS semaphore DWords in the URB. The size of the

region is 128 DWs(8 – 512b URB entries). Software is responsible for allocating combined GS and/or

HS semaphore Dwords in a single contiguous region of the URB. Software must also make sure the 3D

pipeline is IDLE prior to allocating or deallocating the region. The semaphores can be located in an

unused area within a FF unit’s URB fenced region or an unused area within the Push Constant region.

7.2.1.2 3DSTATE_CONSTANT_GS

3DSTATE_CONSTANT_GS

Source: RenderCS

Length Bias: 2

This command sets pointers to the push constants for the GS unit. The constant data pointed to by this command will

be loaded into the GS unit’s push constant buffer (PCB).

Programming Notes Project

It is invalid to execute this command more than once between 3D_PRIMITIVE commands.

Constant buffers must be enabled in order from Constant Buffer 0 to Constant Buffer 3 within this command.

For example, it is not allowed to enable Constant Buffer 1 by programming a non-zero value in the GS

Constant Buffer 1 Read Length without a non-zero value in GS Constant Buffer 0 Read Length.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 174

3DSTATE_CONSTANT_GS

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 16h 3DSTATE_CONSTANT_GS

Format: OpCode

15 Reserved

Project: All

Format: MBZ

14:8 Reserved

Format: MBZ

7:0 DWord Length

Project: All

Format: =n Total Length - 2

Value Name Project
5h Excludes DWord (0,1) [Default]

1..6

191:0 Constant Body

Format: 3DSTATE_CONSTANT(Body)

Following table is the shared portion of the 3DSTATE_CONSTANT command for VS, HS, DS,

and GS

3DSTATE_CONSTANT(Body)

Project: All

Source: RenderCS

Default Value: 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000

DWord Bit Description

0 31:16 Constant Buffer 1 Read Length

Project: All

Format: U16 read length

This field specifies the length of the constant data to be loaded from memory in 256-bit units.

Programming Notes

The sum of all four read length fields must be less than or equal to the size of 64

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 175

3DSTATE_CONSTANT(Body)

Setting the value of the register to zero will disable buffer 1.

If disabled, the Pointer to Constant Buffer 1 must be programmed to zero.

15:0 Constant Buffer 0 Read Length

Project: All

Format: U16 read length

This field specifies the length of the constant data to be loaded from memory in 256-bit units.

Programming Notes

The sum of all four read length fields must be less than or equal to the size of 64

Setting the value of the register to zero will disable buffer 0.

If disabled, the Pointer to Constant Buffer 0 must be programmed to zero.

1 31:16 Constant Buffer 3 Read Length

Project: All

Format: U16 read length

This field specifies the length of the constant data to be loaded from memory in 256-bit units.

Programming Notes

The sum of all four read length fields must be less than or equal to the size of 64

Setting the value of the register to zero will disable buffer 3.

If disabled, the Pointer to Constant Buffer 3 must be programmed to zero.

15:0 Constant Buffer 2 Read Length

Project: All

Format: U16 read length

This field specifies the length of the constant data to be loaded from memory in 256-bit units.

Programming Notes

The sum of all four read length fields must be less than or equal to the size of 64

Setting the value of the register to zero will disable buffer 2.

If disabled, the Pointer to Constant Buffer 2 must be programmed to zero.

2 31:5 Pointer to Constant Buffer 0

Project: All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 176

3DSTATE_CONSTANT(Body)

Format: GraphicsAddress[31:5]ConstantBuffer

This field points to the location of Constant Buffer 0. The state of INSTPM<CONSTANT_BUFFER
Address Offset Disable> determines whether the Dynamic State Base Address is added to this

pointer.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

4:0 Constant Buffer Object Control State

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for all constant buffers defined in this command.

3

31:5 Pointer to Constant Buffer 1

Format: GraphicsAddress[31:5]ConstantBuffer

This field points to the location of Constant Buffer 1.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

4:0 Reserved

Project: All

Format: MBZ

4

31:5 Pointer to Constant Buffer 2

Format: GraphicsAddress[31:5]ConstantBuffer

This field points to the location of Constant Buffer 2.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

4:0 Reserved

Project: All

Format: MBZ

5

31:5 Pointer to Constant Buffer 3

Format: GraphicsAddress[31:5]ConstantBuffer

This field points to the location of Constant Buffer 3.

Programming Notes

Constant buffers must be allocated in linear (not tiled) graphics memory.

4:0 Reserved

Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 177

7.2.1.3 3DSTATE_PUSH_CONSTANT_ALLOC_GS

3DSTATE_PUSH_CONSTANT_ALLOC_GS

Source: RenderCS

Length Bias: 2

This command sets up the URB configuration for GS Push Constant Buffer.

Programming Notes

 The sum of the Constant Buffer Offset and the Constant Buffer Size may not exceed the maximum value of the
Constant Buffer Size.

 The sum of the constant length programmed in 3DSTATE_CONSTANT_GS must be equal or smaller then the
size of the allocated space in the URB including the buffering for half cachelines.

 The 3DSTATE_CONSTANT_GS must be reprogrammed prior to the next 3DPRIMITIVE command after
programming the 3DSTATE_PUSH_CONSTANT_ALLOC_GS.

See Push Constant URB Allocation section for more details.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h GFXPIPE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 15h 3DSTATE_PUSH_CONSTANT_ALLOC_GS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Format: =n

Total Length - 2

Value Name Description
0h 3DSTATE_PUSH_CONSTANT_ALLOC_GS [Default] Excludes DWord (0,1)

1 31:20 Reserved

Format: MBZ

19:16 Constant Buffer Offset

Format: U5

Specifies the offset of the GS constant buffer into the URB.

Value Name
[0,15] (0KB - 15KB)

0h 0KB [Default]

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 178

3DSTATE_PUSH_CONSTANT_ALLOC_GS

15:5 Reserved

Format: MBZ

4:0 Constant Buffer Size

Format: U5

Specifies the size of the GS constant buffer. This value will determine the amount of data the command

stream can pre-fetch before the buffer is full. Value of zero is only valid when constants are not enabled

for GS.

Value Name
[0,15] (0KB – 15KB) Increments of 1KB

0h 0KB [Default]

7.3 Object Staging

The GS unit’s Object Staging Buffer (OSB) accepts primitive topologies as a stream of incoming vertices,

and spawns a thread for each individual object within the topology.

7.4 GS Thread Request Generation

7.4.1 Object Vertex Ordering

The following table defines the number and order of object vertices passed in the Vertex Data portion of

the GS thread payload, assuming an input topology with N vertices. The ObjectType passed to the thread

is, by default, the incoming PrimTopologyType. Exceptions to this rule (for the TRISTRIP variants) are

called out.

The following table also shows which vertex is selected to provide PrimitiveID (bold, underlined vertex

number). In general, the vertex selected is the last vertex for non-adjacent prims, and the next-to-last

vertex for adjacent prims. Note, however, that there are exceptions:

 reorder-enabled TRISTRIP[_REV]

 “odd-numbered” objects in TRISTRIP_ADJ

PrimTopologyType Order of Vertices in Payload GS Notes

<PRIMITIVE_TOPOLOGY>

(N = # of vertices)

[<object#>] = (<vert#>,…); [
{modified PrimType passed to

thread}]

POINTLIST
[0] = (0);

[1] = (1); …;

[N-2] = (N-2);

POINTLIST_BF N/A

LINELIST [0] = (0,1);

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 179

PrimTopologyType Order of Vertices in Payload GS Notes

<PRIMITIVE_TOPOLOGY>

(N = # of vertices)

[<object#>] = (<vert#>,…); [
{modified PrimType passed to

thread}]

(N is multiple of 2) [1] = (2,3); …;

[(N/2)-1] = (N-2,N-1)

LINELIST_ADJ

(N is multiple of 4)

[0] = (0,1,2,3);

[1] = (4,5,6,7); …;

[(N/4)-1)] = (N-4,N-3,N-2,N-1)

LINESTRIP

(N >= 2)

[0] = (0,1);

[1] = (1,2); …;

[N-2] = (N-2,N-1)

LINESTRIP_ADJ

(N >= 4)

[0] = (0,1,2,3);

[1] = (1,2,3,4); …;

[N-4] = (N-4,N-3,N-2,N-1)

LINESTRIP_BF N/A

LINESTRIP_CONT Same as LINESTRIP Handled same as LINESTRIP

LINESTRIP_CONT_BF Same as LINESTRIP Handled same as LINESTRIP

LINELOOP

(N >= 2)

[0] = (0,1);

[1] = (1,2);

[N] = (N-1,0);

Not supported after GS.

TRILIST

(N is multiple of 3)

[0] = (0,1,2);

[1] = (3,4,5); …;

[(N/3)-1] = (N-3,N-2,N-1)

RECTLIST Same as TRILIST Handled same as TRILIST

TRILIST_ADJ

(N is multiple of 6)

[0] = (0,1,2,3,4,5);

[1] = (6,7,8,9,10,11); …;

[(N/6)-1] = (N-6,N-5,N-4,N-3,N-2,N-

1)

TRISTRIP (Reorder

ENABLED)

(N >= 3)

[0] = (0,1,2); {TRISTRIP}

[1] = (1,3,2); {TRISTRIP_REV}

[k even] = (k,k+1,k+2) {TRISTRIP}

[k odd] = (k,k+2,k+1)

{TRISTRIP_REV}

“Odd” triangles have vertices reordered ,

though identified as TRISTRIP_REV so the

thread knows this

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 180

PrimTopologyType Order of Vertices in Payload GS Notes

<PRIMITIVE_TOPOLOGY>

(N = # of vertices)

[<object#>] = (<vert#>,…); [
{modified PrimType passed to

thread}]

[N-3] = (see above)

TRISTRIP (Reorder

DISABLED)

(N >= 3)

[0] = (0,1,2) {TRISTRIP}

[1] = (1,2,3) {TRISTRIP_REV}; …

[N-3] = (N-3,N-2,N-1) {TRISTRIP or

TRISTRIP_REV}

“Odd” triangles do not have vertices reordered,

though identified as TRISTRIP_REV so the

thread knows this

TRISTRIP_REV (Reorder

ENABLED)

(N >= 3)

[0] = (0,2,1) {TRISTRIP_REV};

[1] = (1,2,3) {TRISTRIP}; …;

[k even] = (k,k+2,k+1)

{TRISTRIP_REV}

[k odd] = (k,k+1,k+2) {TRISTRIP}

[N-3] = (see above)

“Odd” triangles have vertices reordered ,

though identified as TRISTRIP so the thread

knows this

TRISTRIP_REV (Reorder

DISABLED)

(N >= 3)

[0] = (0,1,2) {TRISTRIP_REV}

[1] = (1,2,3) {TRISTRIP}; …;

[N-3] = (N-3,N-2,N-1) {TRISTRIP or

TRISTRIP_REV}

“Odd” triangles do not have vertices reordered,

though identified as TRISTRIP so the thread

knows this

TRISTRIP_ADJ

(N even, N >= 6)

N = 6 or 7:

[0] = (0,1,2,5,4,3)

N = 8 or 9:

[0] = (0,1,2,6,4,3);

[1] = (2,5,6,7,4,0); …;

N > 10:

[0] = (0,1,2,6,4,3);

[1] = (2,5,6,8,4,0); …;

 [k>1, even] = (2k,2k-2, 2k+2,

2k+6,2k+4, 2k+3);

[k>2, odd] = (2k, 2k+3, 2k+4, 2k+6,

2k+2, 2k-2);…;

Trailing object:

[(N/2)-3, even] = (N-6,N-8,N-4,N-

1,N-2,N-3);

“Odd” objects have vertices reordered .

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 181

PrimTopologyType Order of Vertices in Payload GS Notes

<PRIMITIVE_TOPOLOGY>

(N = # of vertices)

[<object#>] = (<vert#>,…); [
{modified PrimType passed to

thread}]

[(N/2)-3, odd] = (N-6,N-3,N-2,N-

1,N-4,N-8);

TRIFAN

(N > 2)

[0] = (0,1,2);

[1] = (0,2,3); …;

[N-3] = (0, N-2, N-1);

Only used by OGL

TRIFAN_NOSTIPPLE Same as TRIFAN

POLYGON Same as TRIFAN

QUADLIST

(N is multiple of 4)

[0] = (0,1,2,3);

[1] = (4,5,6,7); …;

[(N/4)-1] = (N-4,N-3,N-2,N-1);

Not supported after GS.

QUADSTRIP

(N is multiple of 2, N >=4)

[0] = (0,1,3,2);

[1] = (2,3,5,4); … ;

[(N/2)-2] = (N-4,N-3,N-1,N-2);

Not supported after GS.

PATCHLIST_1

PATCHLIST_2

PATCHLIST_3..32

[0] = (0);

[1] = (1); …;

[N-2] = (N-2);

[0] = (0,1);

[1] = (2,3); …;

[(N/2)-1] = (N-2,N-1)

similar to above

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 182

7.4.2 GS Thread Payload High-Level Layout

GS Thread Payload High-Level Layoutshows the high-level layout of the payload delivered to GS threads.

 GS Dispatch Layouts

Subsequent sections provide detailed layouts for different processor generations.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 183

7.4.3 GS Thread Payload SIMD 4x2

The table below shows the layout of the payload delivered to GS threads.

Refer to the 3D Pipeline Stage Overview section in vol2a 3D Pipelinefor details on those fields that are

common among the various pipeline stages.

GS Thread Payload SIMD 4x2

GRF
DWord Bits Description

R0.7 31

31:0 Reserved.

R0.6 31 Dereference Thread. This bit is defined to send back the Handle ID back to HS to dereference

the input handles for this thread.

30:24 Reserved.

23:0
Thread ID. This field uniquely identifies this thread within the threads spawned by this FF unit,

over some period of time.

Format: Reserved for HW Implementation Use.

R0.5 31:10
Scratch Space Pointer.Specifies the location of the scratch space allocated to this thread,

specified as a 1KB-aligned offset from the General State Base Address.

Format = GeneralStateOffset[31:10]

9.0 Reserved

8:0
FFTID. This ID is assigned by the fixed function unit and is relative identifier for the thread. It is

used to free up resources used by the thread upon thread completion.

Format:

 U7

Range:

 0-127

R0.4 31:5
Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding Table. It is

specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

4:0 Reserved.

R0.3 31:5
Sampler State Pointer. Specifies the location of the Sampler State Table used by this thread,

specified as a 32-byte granular offset from the Dynamic State Base Address.

Format = DynamicStateOffset[31:5]

4 Reserved.

3:0
Per Thread Scratch Space.Specifies the amount of scratch space allowed for this thread.

The value specifies the power that two is raised to (over determine the amount of scratch space).

Programming Notes:

../../../../Content/vol2a%203D%20Pipeline/3D%20Pipeline%20Stage%20Overview.htm#_Toc284334153

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 184

GRF
DWord Bits Description

This amount is available to the kernel for information only. It is passed verbatim (if not altered by

the kernel) to the Data Port in any scratch space access messages, but the Data Port ignores it.

Format = U4 power of two (in excess of 10)

Range = [0,11] indicating [1K Bytes, 2M Bytes]

R0.2 31:24
Semaphore Index. This is a DWord index used in URB_ATOMIC commands if the thread is

using data pulled from input handles. This information is only required for pull-model vertex inputs

and InstanceCount > 1.

Format = U8

23 Reserved.

22
Hint. This is a copy of the corresponding 3DSTATE_GS bit.

Format: U1

21:16
Primitive Topology Type. This field identifies the Primitive Topology Type associated with the

primitive containing this object. It indirectly specifies the number of input vertices included in the

thread payload. Note that the GS unit may toggle this value between TRISTRIP and

TRISTRIP_REV. If the Discard Adjacency bit is set, the topology type passed in the payload

is UNDEFINED.

Format: See 3D Pipeline.

15:13 Reserved.

12:0
Semaphore Handle. This is the URB offset pointing to the first GS semaphore DWord in the

URB. Software is responsible for statically allocating the semaphore DWords in the URB. Refer to

Semaphore Handle field in 3DSTATE_GS for size of semaphore allocation.

Format:

U12 64B-aligned URB offset; bit 12 is reserved

R0:1 31:27 GS Instance ID 1. For each input object, the GS unit can spawn multiple threads (instances).

This field starts at zero for the first instance of an object and increments for subsequent instances.

If “dispatch mode” is DUAL_OBJECT this field is not valid. Format: U5

 26:16 Reserved

 15:0
URB Return Handle 1. This is the URB offset where the EU’s upper channels (DWords 7:4)

results are stored. If only one object/instance is processed (shaded) by the thread, this field is

effectively ignored (no results are stored for these channels, as controlled by the thread’s

Channel Mask).

Format: U12 64B-aligned URB offset; bit 12 is reserved

R0.0 31:27
GS Instance ID 0. For each input object, the GS unit can spawn multiple threads (instances).

This field starts at zero for the first instance of an object and increments for subsequent

instances.

If “dispatch mode” is DUAL_OBJECT, this field is not valid.

Format: U5

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 185

GRF
DWord Bits Description

26:16 Reserved.

15:0
URB Return Handle 0. This is the URB offset where the EU’s lower channels (DWords 3:0)

results are stored.

Format:

U12 64B-aligned URB offset; bit 12 is reserved

The following register is included only if Include PrimitiveID is enabled.

R1.7-R1.5 31:0 Reserved: MBZ.

R1.4 31:0
Primitive ID 1. This field contains the Primitive ID associated with (all instances) of input object

1. Only valid in DUAL_OBJECT mode.

Format: U32

R1.3-R1.1 31:0 Reserved: MBZ.

R1.0 31:0
Primitive ID 0. This field contains the Primitive ID associated with (all instances) of input object

0.

Format: U32

The following register is included only if SINGLE or DUAL_INSTANCE mode and Include Vertex Handles is enabled.

Rn.7 31:16 ICP 7 Handle ID

15:0 ICP 7 Handle

Rn.6 31:16 ICP 6 Handle ID

15:0 ICP 6 Handle

Rn.5 31:16 ICP 5 Handle ID

15:0 ICP 5 Handle

Rn.4 31:16 ICP 4 Handle ID

15:0 ICP 4 Handle

Rn.3 31:16 ICP 3 Handle ID

15:0 ICP 3 Handle

Rn.2 31:16 ICP 2 Handle ID

15:0 ICP 2 Handle

Rn.1 31:16 ICP 1 Handle ID

15:0 ICP 1 Handle

Rn.0 31:16 ICP 0 Handle ID

15:0 ICP 0 Handle

The following register is included only if SINGLE or DUAL_INSTANCE mode and Include Vertex Handles is enabled

and ICP Count > 7.

Rn+1.7 31:16 ICP 15 Handle ID

15:0 ICP 15 Handle

Rn+1.6 31:16 ICP 14 Handle ID

15:0 ICP 14 Handle

Rn+1.5 31:16 ICP 13 Handle ID

15:0 ICP 13 Handle

Rn+1.4 31:16 ICP 12 Handle ID

15:0 ICP 12 Handle

Rn+1.3 31:16 ICP 11 Handle ID

15:0 ICP 11 Handle

Rn+1.2 31:16 ICP 10 Handle ID

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 186

GRF
DWord Bits Description

15:0 ICP 10 Handle

Rn+1.1 31:16 ICP 9 Handle ID

15:0 ICP 9 Handle

Rn+1.0 31:16 ICP 8 Handle ID

15:0 ICP 8 Handle

The following register is included only if SINGLE or DUAL_INSTANCE mode and Include Vertex Handles is enabled

and ICP Count > 15.

Rn+2.7 31:16 ICP 23 Handle ID

15:0 ICP 23 Handle

Rn+2.6 31:16 ICP 22 Handle ID

15:0 ICP 22 Handle

Rn+2.5 31:16 ICP 21 Handle ID

15:0 ICP 21 Handle

Rn+2.4 31:16 ICP 20 Handle ID

15:0 ICP 20 Handle

Rn+2.3 31:16 ICP 19 Handle ID

15:0 ICP 19 Handle

Rn+2.2 31:16 ICP 18 Handle ID

15:0 ICP 18 Handle

Rn+2.1 31:16 ICP 17 Handle ID

15:0 ICP 17 Handle

Rn+2.0 31:16 ICP 16 Handle ID

15:0 ICP 16 Handle

The following register is included only if SINGLE or DUAL_INSTANCE mode and Include Vertex Handles is enabled

and ICP Count > 23.

Rn+3.7 31:16 ICP 31 Handle ID

15:0 ICP 31 Handle

Rn+3.6 31:16 ICP 30 Handle ID

15:0 ICP 30 Handle

Rn+3.5 31:16 ICP 29 Handle ID

15:0 ICP 29 Handle

Rn+3.4 31:16 ICP 28 Handle ID

15:0 ICP 28 Handle

Rn+3.3 31:16 ICP 27 Handle ID

15:0 ICP 27 Handle

Rn+3.2 31:16 ICP 26 Handle ID

15:0 ICP 26 Handle

Rn+3.1 31:16 ICP 25 Handle ID

15:0 ICP 25 Handle

Rn+3.0 31:16 ICP 24 Handle ID

15:0 ICP 24 Handle

The following register is included only if DUAL_OBJECT mode and Include Vertex Handles is enabled.

Rn.7 31:16 Object 1 ICP 3 Handle ID

15:0 Object 1 ICP 3 Handle

Rn.6 31:16 Object 1 ICP 2 Handle ID

15:0 Object 1 ICP 2 Handle

Rn.5 31:16 Object 1 ICP 1 Handle ID

15:0 Object 1 ICP 1 Handle

Rn.4 31:16 Object 1 ICP 0 Handle ID

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 187

GRF
DWord Bits Description

15:0 Object 1 ICP 0 Handle

Rn.3 31:16 Object 0 ICP 3 Handle ID

15:0 Object 0 ICP 3 Handle

Rn.2 31:16 Object 0 ICP 2 Handle ID

15:0 Object 0 ICP 2 Handle

Rn.1 31:16 Object 0 ICP 1 Handle ID

15:0 Object 0 ICP 1 Handle

Rn.0 31:16 Object 0 ICP 0 Handle ID

15:0 Object 0 ICP 0 Handle

The following register is included only if DUAL_OBJECT mode and Include Vertex Handles is enabled and ICP Count

> 3.

Rn+1.7 31:16 Object 1 ICP 7 Handle ID

15:0 Object 1 ICP 7 Handle

Rn+1.6 31:16 Object 1 ICP 6 Handle ID

15:0 Object 1 ICP 6 Handle

Rn+1.5 31:16 Object 1 ICP 5 Handle ID

15:0 Object 1 ICP 5 Handle

Rn+1.4 31:16 Object 1 ICP 4 Handle ID

15:0 Object 1 ICP 4 Handle

Rn+1.3 31:16 Object 0 ICP 7 Handle ID

15:0 Object 0 ICP 7 Handle

Rn+1.2 31:16 Object 0 ICP 6 Handle ID

15:0 Object 0 ICP 6 Handle

Rn+1.1 31:16 Object 0 ICP 5 Handle ID

15:0 Object 0 ICP 5 Handle

Rn+1.0 31:16 Object 0 ICP 4 Handle ID

15:0 Object 0 ICP 4 Handle

The following register is included only if DUAL_OBJECT mode and Include Vertex Handles is enabled and ICP Count

> 7.

Rn+2.7 31:16 Object 1 ICP 11 Handle ID

15:0 Object 1 ICP 11 Handle

Rn+2.6 31:16 Object 1 ICP 10 Handle ID

15:0 Object 1 ICP 10 Handle

Rn+2.5 31:16 Object 1 ICP 9 Handle ID

15:0 Object 1 ICP 9 Handle

Rn+2.4 31:16 Object 1 ICP 8 Handle ID

15:0 Object 1 ICP 8 Handle

Rn+2.3 31:16 Object 0 ICP 11 Handle ID

15:0 Object 0 ICP 11 Handle

Rn+2.2 31:16 Object 0 ICP 10 Handle ID

15:0 Object 0 ICP 10 Handle

Rn+2.1 31:16 Object 0 ICP 9 Handle ID

15:0 Object 0 ICP 9 Handle

Rn+2.0 31:16 Object 0 ICP 8 Handle ID

15:0 Object 0 ICP 8 Handle

The following register is included only if DUAL_OBJECT mode and Include Vertex Handles is enabled and ICP Count

> 11.

Rn+3.7 31:16 Object 1 ICP 15 Handle ID

15:0 Object 1 ICP 15 Handle

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 188

GRF
DWord Bits Description

Rn+3.6 31:16 Object 1 ICP 14 Handle ID

15:0 Object 1 ICP 14 Handle

Rn+3.5 31:16 Object 1 ICP 13 Handle ID

15:0 Object 1 ICP 13 Handle

Rn+3.4 31:16 Object 1 ICP 12 Handle ID

15:0 Object 1 ICP 12 Handle

Rn+3.3 31:16 Object 0 ICP 15 Handle ID

15:0 Object 0 ICP 15 Handle

Rn+3.2 31:16 Object 0 ICP 14 Handle ID

15:0 Object 0 ICP 14 Handle

Rn+3.1 31:16 Object 0 ICP 13 Handle ID

15:0 Object 0 ICP 13 Handle

Rn+3.0 31:16 Object 0 ICP 12 Handle ID

15:0 Object 0 ICP 12 Handle

Varies

(optional)

31:0
Constant Data (optional):

Some amount of constant data (possibly none) can be extracted from the push constant buffer

(PCB) and passed to the thread following the R0 Header. The amount of data provided is defined

by the sum of the read lengths in the last 3DSTATE_CONSTANT_GS command (taking the

buffer enables into account).

The Constant Data arrives in a non-interleaved format.

Varies 31:0
Pushed Vertex Data. There can be up to 32 vertices supplied, each with a size defined by the
Vertex URB Entry Read Length state. The amount of data provided for each vertex is

defined by the Vertex URB Entry Read Length state.

For SINGLE or DUAL_INSTANCE dispatch modes, the pushed data for Vertex 0 immediately

follows any pushed constant data. The pushed data for Vertex 1 immediately follows Vertex 0,

and so on. There is no upper/lower swizzling of data.

For DUAL_OBJECT dispatch mode, the pushed vertex data is split into upper and lower halves

with Object 0 input vertices in the lower half, and Object 1 input vertices in the upper half.

7.5 GS Thread Execution

A GS thread is capable of performing arbritrary algorithms given the thread payload (especially vertex)

data and associated data structures (binding tables, sampler state, etc.) as input. Output can take the

form of vertices output to the FF pipeline (at the GS unit) and/or data written to memory buffers via the

DataPort.

The primary usage models for GS threads include (possible combinations of):

 Compiled application-provided “GS shader” programs, specifying an algorithm to convert the vertices
of an input object into some output primitives. For example, a GS shader may convert lines of a line
strip into polygons representing a corresponding segment of a blade of grass centered on the line.
Or it could use adjacency information to detect silhouette edges of triangles and output polygons
extruding out from the those edges. Or it could output absolutely nothing, effectively terminating the
pipeline at the GS stage.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 189

 Driver-generated instructions used to write pre-clipped vertices into memory buffers (see Stream
Output below). This may be required whether or not an app-provided GS shader is enabled.

 Driver-generated instructions used to emulate API functions not supported by specialized
hardware. These functions might include (but are not limited to):

o Conversion of API-defined topologies into topologies that can be rendered (e.g.,
LINELOOPLINESTRIP, POLYGONTRIFAN, QUADsTRIFAN, etc.)

o Emulation of “Polygon Fill Mode”, where incoming polygons can be converted to
points, lines (wireframe), or solid objects.

o Emulation of wide/sprite points.

 Things best left to the imagination.

When rendering is required, concurrent GS threads must use the FF_SYNC message (URB shared

function) to request an initial VUE handle and synchronize output of VUEs to the

pipeline (see URB in Shared Functions). Only one GS thread can be outputting VUEs to

the pipeline at a time. In order to achieve parallelism, GS threads should perform the

GS shader algorithm (along with any other required functions) and buffer results

(either in the GRF or scratch memory) before issuing the FF_SYNC message. The issuing

GS thread will be stalled on the FF_SYNC writeback until it is that thread’s turn to

output VUEs. As only one GS thread at a time can output VUEs, the post-FF_SYNC output

portion of the kernel should be optimized as much as possible to maximize parallelism.

7.5.1 GS Thread Output

7.5.1.1 GS URB Entry

All outputs of a GS thread will be stored in the single GS thread output URB entry. Cut (1 bit/vertex) or

StreamID (2 bits/vertex) bits are packed into an optional 1-8 32B header. The Control Data Format and

Control Data Header Size states are used to specify the size and contents of the header data (if any).

Following the optional header is a variable number of 16B or 32B-aligned/granular vertices:

 When rendering is DISABLED, typically output vertices are 32B-aligned, with the exception of
16B-alignment for vertices <= 16B in length.

o The absolute worst case size comes from three DW scalars output per vertex. If these are,
say, three “.x” outputs, you need to store each DW in a 128b (16B) element, plus another pad
16B to keep the 32B alignment. So you require 4*16B = 64B/vertex. You have to have room
for 1024 scalars / 3 scalar/vtx = 341 vertices. 341*64B = 21,824B. Then add 96B to hold 2b/vtx
streamID and you get 21,920B entries.

 When rendering is ENABLED, each output vertex is 32B-aligned. Here the vertex header and
vertex ‘position’ is required and therefore the minimum size vertex is 32B.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 190

o Here the worst case size isn’t as bad as render-disabled, as you have to have a 4DW position
output, plus any additional output. So, say you output 5 DW per vertex. You need 64B/vertex
(16B vtx header, 16B position, 16B for the 2nd element, and 16B of pad). You have to have
room for 1024 scalars / 5 = 204 vertices. 204*64 = 13,056B. Then add 64B to hold 2b/vtx
streamID and you get 13,120B entries.

The size of the URB entry should be based on the declared maximum # of output vertices and the

declared output vertex size (the union of per-stream vertex structures, if required).

7.5.1.2 GS Output Topologies

The following table lists which primitive topology types are valid for output by a GS thread.

PrimTopologyType Supported for GS Thread Output?
LINELIST Yes

LINELIST_ADJ No

LINESTRIP Yes

LINESTRIP_ADJ No

LINESTRIP_BF Yes

LINESTRIP_CONT Yes

LINESTRIP_CONT_BF Yes

LINELOOP No

POINTLIST Yes

POINTLIST_BF Yes

POLYGON Yes

QUADLIST No

QUADSTRIP No

RECTLIST Yes

TRIFAN Yes

TRIFAN_NOSTIPPLE Yes

TRILIST Yes

TRILIST_ADJ No

TRISTRIP Yes

TRISTRIP_ADJ No

TRISTRIP_REV Yes

PATCHLIST_xxx Yes

7.5.1.3 GS Output StreamID

When the GS Enable is DISABLED, output vertices will be assigned a StreamID = 0;

When the GS Enable is ENABLED, output vertices will be assigned a StreamID = Default StreamID under

the following conditions:

 Control Data Format = 0, or

 Control Data Format > 0 and Control Data Format = GSCTL_CUT

When the GS is enabled, Control Data Format > 0 and Control Data Format = GSCTL_SID, output vertices

will be assigned a StreamID as programmed in the Control Data output by the thread.

7.5.2 Stream Output

The final contents of Stream Output buffers must follow the strict pipeline ordering of vertices. Given this

ordering requirement, it will be necessary to run the GS stage in a single-threaded fashion (Maximum

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 191

Number of Threads == 1). Otherwise concurrent GS threads might append vertices to the output buffer out

of order.

Hardware support for the Stream Output is limited to a special “Streamed Vertex Buffer Write” DataPort

message. (Refer to DataPort chapter). Through use of this message type, the GS thread can write from 1

to 4 DWords to specified ‘element’ (indexed entry) in a BUFFER surface. The DataPort will inhibit writes

past the end of the buffer.

Software will likely need to define separate surface states for each SEB, and separate surface states for

each element within the MEB structure. The surfaces are selected via the normal binding table

mechanisms.

The need for separate SEB surface states is obvious, as the SEBs are separate buffers in memory. The

MEB surface-per-element allows the GS kernel to address the MEB using an structure index. Here each

surface would be specified as having the same structure pitch, but with different starting addresses

corresponding to the different element offsets within the structure – in effect, defining a set of interleaved

surfaces. The GS kernel would output one write message per element.

(Note that software could, if it wished, treat the MEB as a single 1D array of DWords, though it would then

have to write the buffer one DWord at a time, performing the address calculations within the GS kernel.

This should not be necessary, and is certainly not recommended due to obvious performance and

complexity reasons.)

Programming Note: If the GS stage is enabled, software must always allocate at least one GS URB Entry.

This is true even if the GS thread never needs to output vertices to the pipeline, e.g., when only

performing stream output. This is an artifact of the need to pass the GS thread an initial destination URB

handle.

7.5.3 Thread Termination

GS threads must terminate by sending a URB_WRITE_xxx message with the EOT and Complete bits set.

The message header must contain correct values for the GS Number of Output Handles for Slot 0, Handle

ID 0, and URB Handle 0 fields. If in DUAL_INSTANCE or DUAL_OBJECT mode, the corresponding Object

1 fields must also be correct.

7.6 Primitive Output

(This section refers to output from the GS unit to the pipeline, not output from the GS thread)

The GS unit will output primitives (either passed-through or generated by a GS thread) in the proper

order. This includes the buffering of a concurrent GS thread’s output until the preceding GS thread

terminates. Note that the requirement to buffer subsequent GS thread output until the preceding GS

thread terminates has ramifications on determining the number of VUEs allocated to the GS unit and the

number of concurrent GS threads allowed.

7.7 Other Functionality

7.7.1 Statistics Gathering

There are a number of GS/StreamOutput pipeline statistics counters associated with the GS stage and

GS threads. This subsection describes these counters and controls depending on device, even in the

cases where functions outside of the GS stage (e.g., DataPort) are involved in the statistics gathering.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 192

Refer to the Statistics Gathering summary provided earlier in this specification. Refer to the Memory

Interface Registers chapter for details on these MMIO pipeline statistics counter registers, as well as the

chapters corresponding to the other functions involved (e.g., DataPort, URB shared functions).

7.7.1.1 GS Invocations

The GS_INVOCATIONS counter is incremented by the GSInvocations Increment Value state for

every input object, with the exception of DUAL_OBJECT dispatch where the counter is

incremented by twice that amount. This allows software to (for example) support

multiple instances in the GS kernel.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 193

8. 3D Pipeline - Stream Output Logic
(SOL) Stage

The Stream Output Logic (SOL) stage receives 3D topologies originating in the VF or GS stage. If

enabled, the SOL stage uses programmed state information to copy portions of the vertex data

associated with the incoming topologies across one or more Stream Output (SO) Buffers.

8.1 Input Buffering

For the purposes of stream output, the SOL stage breaks incoming topologies into independent objects

without adjacency information. In the process, any adjacent-only vertices are ignored. For example,

convert TRISTRIP_ADJ into independent 3-vertex triangles. However, if rendering is enabled, incoming

topologies are passed to the Clip stage unmodified and therefore the Clip unit must be enabled if there is

any possibility of “ADJ” topologies reaching it.

Note that the SOL unit should not see incomplete objects: the VF will remove incomplete input objects,

and the GS will remove GS-generated incomplete objects.

The OSB (Object Staging Buffer) reorders the vertices of odd-numbered triangles in TRISTRIP topologies

to match API requirements.

Incoming topologies are tagged with a 2-bit StreamID. The StreamID is 0 for topologies originating from

the VF stage (i.e., 3DPRIMITIVE_xxx). For topologies output from the GS stage, the StreamID is set by

the GS shader. A Stream n Vertex Length is associated with each stream, and defines how much data is

read from the URB for vertices in that stream.

The following table specifies how the SOL stage streams out object vertices for each incoming topology

type.

PrimTopologyType
Order of Vertices

Streamed Out Any SOL Notes

<PRIMITIVE_TOPOLOGY>

(N = # of vertices)

[<object#>] = (<vert#>,…);

POINTLIST

POINTLIST_BF

[0] = (0);

[1] = (1); …;

[N-2] = (N-2);

LINELIST

(N is multiple of 2)

[0] = (0,1);

[1] = (2,3); …;

[(N/2)-1] = (N-2,N-1)

LINELIST_ADJ

(N is multiple of 4)

[0] = (1,2);

[1] = (5,6); …;

[(N/4)-1)] = (N-3,N-2)

LINESTRIP

LINESTRIP_BF

LINESTRIP_CONT

LINESTRIP_CONT_BF

(N >= 2)

[0] = (0,1);

[1] = (1,2); …;

[N-2] = (N-2,N-1)

LINESTRIP_ADJ

(N >= 4)

[0] = (1,2);

[1] = (2,3); …;

[N-4] = (N-3,N-2)

LINELOOP N/A Not supported after VF.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 194

PrimTopologyType
Order of Vertices

Streamed Out Any SOL Notes

TRILIST

(N is multiple of 3)

[0] = (0,1,2);

[1] = (3,4,5); …;

[(N/3)-1] = (N-3,N-2,N-1)

RECTLIST Same as TRILIST Handled same as TRILIST.

TRILIST_ADJ

(N is multiple of 6)

[0] = (0,2,4);

[1] = (6,8,10); …;

[(N/6)-1] = (N-6,N-4,N-2)

TRISTRIP

(N >= 3)

REORDER_LEADING

[0] = (0,1,2);

[1] = (1,3,2);

[k even] = (k,k+1,k+2)

[k odd] = (k,k+2,k+1)

[N-3] = (see above)

“Odd” triangles have vertices reordered to yield increasing

leading vertices starting with v0.

TRISTRIP

(N >= 3)

REORDER_TRAILING

[0] = (0,1,2);

[1] = (2,1,3);

[k even] = (k,k+1,k+2)

[k odd] = (k+1,k,k+2)

[N-3] = (see above)

“Odd” triangles have vertices reordered to yield increasing

trailing vertices starting with v2.

TRISTRIP_REV

(N >= 3)

REORDER_LEADING

[0] = (0,2,1)

[1] = (1,2,3);…;

[k even] = (k,k+2,k+1)

[k odd] = (k,k+1,k+2)

[N-3] = (see above)

“Even” triangles have vertices reordered to yield

increasing leading vertices starting with v0.

TRISTRIP_REV

(N >= 3)

REORDER_TRAILING

[0] = (1,0,2)

[1] = (1,2,3);…;

[k even] = (k+1,k,k+2)

[k odd] = (k,k+1,k+2)

[N-3] = (see above)

“Even” triangles have vertices reordered to yield

increasing trailing vertices starting with v2.

TRISTRIP_ADJ

(N even, N >= 6)

REORDER_LEADING

N = 6 or 7:

[0] = (0,2,4)

N = 8 or 9:

[0] = (0,2,4);

[1] = (2,6,4); …;

N > 10:

[0] = (0,2,4);

[1] = (2,6,4); …;

[k>1, even] = (2k, 2k+2,

2k+4);

[k>2, odd] = (2k, 2k+4,

2k+2);…;

Trailing object:

[(N/2)-3, even] = (N-6,N-4,N-

2);

[(N/2)-3, odd] = (N-6,N-2,N-

4);

“Odd” objects have vertices reordered to yield increasing-

by-2 leading vertices starting with v0.

TRISTRIP_ADJ

(N even, N >= 6)

REORDER_TRAILING

N = 6 or 7:

[0] = (0,2,4)

N = 8 or 9:

[0] = (0,2,4);

[1] = (4,2,6); …;

N > 10:

[0] = (0,2,4);

[1] = (4,2,6); …;

[k>1, even] = (2k, 2k+2,

“Odd” objects have vertices reordered to yield increasing-

by-2 trailing vertices starting with v4.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 195

PrimTopologyType
Order of Vertices

Streamed Out Any SOL Notes

2k+4);

[k>2, odd] = (2k+2,2k,

2k+4,);…;

Trailing object:

[(N/2)-3, even] = (N-6,N-4,N-

2);

[(N/2)-3, odd] = (N-4,N-6,N-

2);

TRIFAN

(N > 2)

[0] = (0,1,2);

[1] = (0,2,3); …;

[N-3] = (0, N-2, N-1);

TRIFAN_NOSTIPPLE Same as TRIFAN

POLYGON Same as TRIFAN

QUADLIST

QUADSTRIP

N/A Not supported after VF.

:

PATCHLIST_1

[0] = (0);

[1] = (1); …;

[N-2] = (N-2);

:

PATCHLIST_2

[0] = (0,1);

[1] = (2,3); …;

[(N/2)-1] = (N-2,N-1)

:

PATCHLIST_3..32

similar to above

8.2 Stream Output Buffers

Up to four SO buffers are supported. The SO buffer parameters (start/end address, etc.) are specified by

the 3DSTATE_SO_BUFFER command.

The 3DSTATE_STREAMOUT command specifies an SO Buffer Enable bit for each of the buffers. If a

buffer is disabled, its state is ignored and no output will be attempted for that buffer. Any attempt to output

to that buffer will immediately signal an overflow condition.

The SOL stage maintains a current Write Offset register value for each SO buffer. These registers can be

written via MI_LOAD_REGISTER_MEM or MI_LOAD_REGISTER_IMM commands. The SOL stage will

increment the Write Offsets as a part of the SO function. Software can cause a Write Offset register to be

written to memory via an MI_STORE_REGISTER_MEM command, though a preceding flush operation

may be required to ensure that any previous SO functions have completed.

Project Surface Format Name Security

 R32G32B32A32_FLOAT

 R32G32B32A32_SINT

 R32G32B32A32_UINT

 R32G32B32_FLOAT

 R32G32B32_SINT

 R32G32B32_UINT

 R32G32_FLOAT

 R32G32_SINT

 R32G32_UINT

 R32_SINT

 R32_UINT

 R32_FLOAT

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 196

8.3 Stream Output Function

As previously mentioned, incoming 3D topologies are targeted at one of the four streams. The SOL stage

contains state information specific to each of the four streams.

A stream’s list of SO declarations (SO_DECL structures) is used to perform the SO function for objects

targeted to that particular stream. The 3DSTATE_SO_DECL_LIST command is used to specify the list of

SO_DECL structures for all four streams in parallel. Software is required to scan the SO_DECL lists of

streams to determine which SO buffers are targeted. The Stream To Buffer Selects bits in

3DSTATE_SO_DECL_LIST must be programmed accordingly (if the buffer is targeted, the select bit must

set, else it must be cleared).

If a stream has no SO_DECL state defined (NumEntries is 0), incoming objects targeting that stream are

effectively ignored. As there is no attempt to perform stream output, overflow detection is neither required

nor performed.

Otherwise, an overflow check is performed. First any attempt to output to a disabled buffer is detected.

This occurs when the stream has a Stream To Buffer Selects bit set but the corresponding SO Buffer

Enable is clear. Assuming all targeted buffers are enabled, an additional check is made to ensure that

there is enough room in each targeted buffer to hold the number of vertices which be output to it (for the

input object). Here the buffer’s current end address is compared to what the write offset would be if the

output was performed. The latter value is computed as (write_offset + vertex_count * buffer_pitch). If this

value is greater than the end address, an overflow is signalled. This check is performed for each buffer

included in Stream To Buffer Selects.

If an overflow is not signaled, the SO function is performed. The SO_DECL list for the targeted stream is

traversed independently for each object vertex, and the operation specified by the SO_DECL structure is

performed (typically causing data to be appended to an SO buffer). In the process, SO buffer Write

Offsets are incremented.

8.4 3DSTATE_STREAMOUT

The 3DSTATE_STREAMOUT command specifies control information for the SOL stage. Included are

enables and sizes for input streams and enables for output buffers.

Anytime the SOL unit MMIO registers or non-pipeline state are written, the SOL unit needs to receive a

pipeline state update with SOL unit dirty state for information programmed in MMIO/NP to get loaded into

the SOL unit.

The SOL unit incorrectly double buffers MMIO/NP registers and only moves them into the design for

usage when control topology is received with the SOL unit dirty state.

If the state does not change, need to resend the same state.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 197

Because of corruption, software must flush the whole fixed function pipeline when

3DSTATE_STREAMOUT changes state.

3DSTATE_STREAMOUT

Source: RenderCS

Length Bias: 2

This command contains pipelined state required by the SOL unit.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 1Eh 3DSTATE_STREAMOUT

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 1h

Format: =n

Total Length – 2

1 31 SO Function Enable

Project: All

Format: U1

If set, the SO function is enabled. Vertex data will be streamed out to memory (subject to overflow

detection) as controlled by the various SO-related state variables.

 If clear, the SO function is disabled, and therefore no vertex data will be streamed out to memory.

However, the Rendering Disable and Render Stream Select fields will still be used to determine which

vertices (if any) are forwarded down the pipeline for (possible) rendering.

30 Rendering Disable

Format: U1

If set, the SO stage will not forward any topologies down the pipeline.If clear, the SO stage will forward

topologies associated with Render Stream Select down the pipeline.This bit is used even if SO

Function Enable is DISABLED.

29 Reserved

Project: All

Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 198

3DSTATE_STREAMOUT

28:27 Render Stream Select

Project: All

Format: U2

Description Project

This field specifies which stream has been selected to be forwarded down the pipeline for

possible rendering. Topologies from other streams will not be passed down the pipeline. If

Rendering Disable is set, this field is ignored, as no topologies are sent down the pipeline.

This bit is used even if SO Function Enable is DISABLED.

26 Reorder Mode

Project: All

This bit controls how vertices of triangle objects in TRISTRIP[_ADJ] and TRISTRIP_REV are reordered

for the purposes of stream-out only (does not impact rendering). See table in Input Buffering.

Value Name Description Project

0h REORDER_LEADING Reorder the vertices of alternating triangles of a TRISTRIP[_ADJ]

such that the leading (first) vertices are in consecutive order

starting at v0. A similar reordering is performed on alternating

triangles in a TRISTRIP_REV.

All

1h REORDER_TRAILING Reorder the vertices of alternating triangles of a TRISTRIP[_ADJ]

such that the trailing (last) vertices are in consecutive order

starting at v2. A similar reordering is performed on alternating

triangles in a TRISTRIP_REV.

All

25 SO Statistics Enable

Project: All

Format: Enable

This bit controls whether StreamOutput statistics register(s) can be incremented.

Value Name Description Project

0h Disable SO_NUM_PRIMS_WRITTEN[0..3] and SO_PRIM_STORAGE_NEEDED[0..3]

registers cannot increment.

All

1h Enable SO_NUM_PRIMS_WRITTEN[0..3] and SO_PRIM_STORAGE_NEEDED[0..3]

registers can increment.

All

24:23 Reserved

Format: MBZ

22:12 Reserved

Project: All

Format: MBZ

11 SO Buffer Enable [3]

Format: U1

(See SO Buffer Enable [0])

10 SO Buffer Enable [2]

Format: U1

(See SO Buffer Enable [0])

9 SO Buffer Enable [1]

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 199

3DSTATE_STREAMOUT

Format: U1

(See SO Buffer Enable [0])

8 SO Buffer Enable [0]

Format: U1

If set, stream output to SO Buffer 0 is enabled. If clear, SO Buffer 0 is considered “not bound” and

effectively treated as a zero-length buffer for the purposes of SO output and overflow detection. If an

enabled stream’s Stream to Buffer Selects includes this buffer it is by definition an overflow condition.

That stream will cause no writes to occur, and only SO_PRIM_STORAGE_NEEDED[<stream>] will

increment. This bit is ignored if SO Function Enable is DISABLED.

7:0 Reserved

Project: All

Format: MBZ

2 31:30 Reserved

Project: All

Format: MBZ

29 Stream 3 Vertex Read Offset

Project: All

Format: U1 count of 256-bit units

Specifies amount of data to skip over before reading back Stream 3 vertex data.

 (See Stream 0 Vertex Read Offset)

28:24 Stream 3 Vertex Read Length

Project: All

Format: U5-1 count of 256-bit units

(See Stream 0 Vertex Read Length)

23:22 Reserved

Project: All

Format: MBZ

21 Stream 2 Vertex Read Offset

Project: All

Format: U1 count of 256-bit units

Specifies amount of data to skip over before reading back Stream 2 vertex data. (See Stream 0 Vertex

Read Offset)

20:16 Stream 2 Vertex Read Length

Project: All

Format: U5-1 count of 256-bit units

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 200

3DSTATE_STREAMOUT

15:14 Reserved

Project: All

Format: MBZ

13 Stream 1 Vertex Read Offset

Project: All

Format: U1 count of 256-bit units

Specifies amount of data to skip over before reading back Stream 1 vertex data. (See Stream 0 Vertex

Read Offset)

12:8 Stream 1 Vertex Read Length

Project: All

Format: U5-1 count of 256-bit units

(See Stream 0 Vertex Read Length)

7:6 Reserved

Project: All

Format: MBZ

5 Stream 0 Vertex Read Offset

Project: All

Format: U1 count of 256-bit units

Specifies amount of data to skip over before reading back Stream 0 vertex data. Must be zero if the GS

is enabled and the Output Vertex Size field in 3DSTATE_GS is programmed to 0 (i.e., one 16B unit).

4:0 Stream 0 Vertex Read Length

Project: All

Format: U5-1 count of 256-bit units

Specifies amount of vertex data to read back for Stream 0 vertices, starting at the Stream 0 Vertex

Read Offset location. Maximum readback is 17 256-bit units (34 128-bit vertex attributes). Read data

past the end of the valid vertex data has undefined contents, and therefore shouldn’t be used to source

stream out data.

 Must be zero (i.e., read length = 256b) if the GS is enabled and the Output Vertex Size field in

3DSTATE_GS is programmed to 0 (i.e., one 16B unit).

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 201

8.5 3DSTATE_SO_DECL_LIST Command

The 3DSTATE_SO_DECL_LIST instruction defines a list of Stream Output (SO) declaration entries

(SO_DECLs) and associated information for all specific SO streams in parallel.

Errata: All 128 decls for all four streams must be included whenever this command is issued. The “Num

Entries [n]” fields still contain the actual numbers of valid decls.

3DSTATE_SO_DECL_LIST

Source: RenderCS

Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 17h 3DSTATE_SO_DECL_LIST

Format: OpCode

15:9 Reserved

Project: All

Format: MBZ

8:0 DWord Length

Format: =n Total Length – 2

Format: Q1

Value Name Description

3h Excludes DWord (0,1) [Default] Default value = 2(N-1)+3 h

1 31:16 Reserved

Project: All

Format: MBZ

15:12 Stream to Buffer Selects [3]

Project: All

Format: U4 bitmask

Index of SO Stream

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 202

3DSTATE_SO_DECL_LIST

Identifies to which SO Buffers stream 3 outputs. See Stream To Buffer Selects [0] field description.

11:8 Stream to Buffer Selects [2]

Project: All

Format: U4 bitmask

Identifies to which SO Buffers stream 2 outputs. See Stream To Buffer Selects [0] field description.

7:4 Stream to Buffer Selects [1]

Project: All

Format: U4 bitmask

Identifies to which SO Buffers stream 1 outputs. See Stream To Buffer Selects [0] field description.

3:0 Stream to Buffer Selects [0]

Project: All

Format: U4 bitmask

Identifies to which SO Buffers stream 0 outputs (irrespective of whether those buffers are enabled via

3DSTATE_STREAMOUT). Software is required to scan the SO_DECL list in order to provide this

summary information.

 Note: For “inactive” streams, software must program this field to all zero (no buffers written to) and the

corresponding Num Entries field to zero (no valid SO_DECLs).

Value Name

1xxxb SO Buffer 3

x1xxb SO Buffer 2

xx1xb SO Buffer 1

xxx1b SO Buffer 0

2 31:24 Num Entries [3]

Project: All

Format: U8 #entries

Specifies the number of valid SO_DECL entries for Stream 3. (See notes in Num Entries [0] field

description).

Value Name

[0,128] entries

23:16 Num Entries [2]

Project: All

Format: U8 #entries

Specifies the number of valid SO_DECL entries for Stream 2. (See notes in Num Entries [0] field

description).

Value Name

[0,128] entries

15:8 Num Entries [1]

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 203

3DSTATE_SO_DECL_LIST

Project: All

Format: U8 #entries

Specifies the number of valid SO_DECL entries for Stream 1. (See notes in Num Entries [0] field

description).

Value Name

[0,128] entries

7:0 Num Entries [0]

Project: All

Format: U8 #entries

Specifies the number of valid SO_DECL entries for Stream 0.Note that the SO_DECLs are

programmed in groups of four (one SO_DECL for each of the four streams). Therefore the number of 2-

DWord groups of SO_DECLs supplied in this command is derived from the stream(s) with the most

valid SO_DECLs. The NumEntries value specific to each stream will indicate how many SO_DECLS

are valid for that particular stream. Any trailing invalid SO_DECLs supplied for streams with fewer valid

SO_DECLs will be ignored. It is legal to specify Num Entries = 0 for all four streams simultaneously. In

this case there will be no SO_DECLs included in the command (only DW 0-2). Note that all Stream to

Buffer Selects bits must be zero in this case (as no streams produce output).

Value Name

[0,128] entries

3..4 63:48 SO_DECL[3,1]

Project: All

Format: SO_DECL

This field contains Stream 3 SO_DECL 0

47:32 SO_DECL[2,1]

Project: All

Format: SO_DECL

This field contains Stream 2 SO_DECL 0

31:16 SO_DECL[1,1]

Project: All

Format: SO_DECL

This field contains Stream 1 SO_DECL 0

15:0 SO_DECL[0,1]

Project: All

Format: SO_DECL

This field contains Stream 0 SO_DECL 0

5..6 63:48 SO_DECL[3,1]

Project: All

Format: SO_DECL

This field contains Stream 3 SO_DECL 1

47:32 SO_DECL[2,1]

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 204

3DSTATE_SO_DECL_LIST

Project: All

Format: SO_DECL

This field contains Stream 2 SO_DECL 1

31:16 SO_DECL[1,1]

Project: All

Format: SO_DECL

This field contains Stream 1 SO_DECL 1

15:0 SO_DECL[0,1]

Project: All

Format: SO_DECL

This field contains Stream 0 SO_DECL 1

7..n 63:48 SO_DECL[3,n]

Project: All

Format: SO_DECL

This field contains Stream 3 SO_DECL n

47:32 SO_DECL[2,n]

Project: All

Format: SO_DECL

This field contains Stream 2 SO_DECL n

31:16 SO_DECL[1,n]

Project: All

Format: SO_DECL

This field contains Stream 1 SO_DECL n

15:0 SO_DECL[0,n]

Project: All

Format: SO_DECL

This field contains Stream 0 SO_DECL n

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 205

8.5.1 SO_DECL Structure Definition

SO_DECL

Source: RenderCS

Default Value: 0x00000000

A list of SO_DECL structures are passed in the 3DSTATE_SO_DECL_LIST command. Each structure specifies

either (a) the source and destination of an up-to-4-DWord appending write into an SO buffer, or (b) how many

DWords to skip over in the destination SO buffer (i.e., a “hole” where the previous buffer contents are maintained).

Workaround for IVBGT2:A0 (ends IVBGT2:B0): because of corruption in IVBGT2:A0, software needs to put a noop

decl (Hole flag is 0, Component Mask is 0) as the first decl in every decl list.

DWord Bit Description

0 15:14 Reserved

Project: All

Format: MBZ

13:12 Output Buffer Slot

Project: All

Format: U2 Buffer Index

This field selects the destination output buffer slot.

11 Hole Flag

Project: All

Format: Flag

If set, the Component Mask field indirectly specifies a number of 32-bit locations to skip over (leave

unmodified in memory) in the selected output buffer. The Register Index field is ignored. The only

permitted Component Mask values are as follows:

0x0 No Dwords are skipped over (SO_DECL performs no operation)

0x1 (X) Skip 1 DWord

0x3 (XY) Skip 2 DWords

0x7 (XYZ) Skip 3 DWords

0xF (XYZW) Skip 4 DWords

10 Reserved

Project: All

Format: MBZ

9:4 Register Index

Project: All

Format: U6 128-bit granular offset into the source vertex read data

If Hole Flag is clear, this field specifies the 128-bit offset into the source vertex data which supplies the

source data to be written to the destination buffer, where the individual 32-component destination

locations are selected by Component Mask. e.g., Register Index 0 corresponds with the first 128 bits of

the data read from the vertex URB entry (as per corresponding Vertex Read Offset state)

There is only enough internal storage for the 128-bit vertex header and 32 128-bit vertex attributes.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 206

SO_DECL

Value Name

[0,32]

0h [Default]

Programming Notes

It is the responsibility of software to map any API-visible source data specifications (e.g., vertex

register number) into 128-bit granular URB read offsets.

3:0 Component Mask

Project: All

Format: MASK 4-bit Mask

This field is a 4-bit bitmask that selects which contiguous 32-bit component(s) are either written or

skipped-over in the destination buffer.

 If this field is zero the SO_DECL operation is effectively a no-op. No data will be appended to the

destination and the destination buffer’s write pointer will not be advanced.

 If the Hole Flag is set, this field (if non-zero) indirectly specifies how much the destination buffer’s

write pointer should be advanced.See Hole Flag description above for restrictions on this field.

 If the Hole Flag is clear, this field (if non-zero) selects which source components are to be written to

the destination buffer. The components must be contiguous, e.g. YZW is legal, but XZW is not. The

selected source components are written to the destination buffer starting at the current write pointer,

and then the write pointer is advanced past the written data. E.g., if YZW is specified, the three (YZW)

components of the source register will be written to the destination buffer at the current write pointer,

and the write pointer will be advanced by 3 DWords.

Value Name Project

0h [Default]

xxx1b SO_DECL_COMPMASK_X All

xx1xb SO_DECL_COMPMASK_Y All

x1xxb SO_DECL_COMPMASK_Z All

1xxxb SO_DECL_COMPMASK_W All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 207

8.6 3DSTATE_SO_BUFFER

The 3DSTATE_SO_BUFFER command specifies the location and characteristics of an SO buffer in

memory.

3DSTATE_SO_BUFFER

Source: RenderCS

Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 18h 3DSTATE_SO_BUFFER

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 2h Excludes DWord (0,1)

Format: =n

Total Length - 2

1 31 Reserved

Project: All

Format: MBZ

30:29 SO Buffer Index

Project: All

Format: U2

Specifies which of the four SO Buffers is being defined.

28:25 SO Buffer Object Control State

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for the SO buffer.

24:22 Reserved

Format: MBZ

21:12 Reserved

Project: All

Format: MBZ

11:0 Surface Pitch

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 208

3DSTATE_SO_BUFFER

Project: All

Format: U12 Pitch in Bytes

This field specifies the pitch of the SO buffer in #Bytes.

Value Name

[0,2048] Must be 0 or a multiple of 4 Bytes.

Programming Notes

A Surface Pitch of 0 indicates an un-bound buffer. No writes are performed. Surface Base Address is

ignored.

2 31:2 Surface Base Address

Project: All

Format: GraphicsAddress[31:2]

This field specifies the starting DWord address LSBs of the buffer in Graphics Memory.

1:0 Reserved

Project: All

Format: MBZ

3 31:2 Surface End Address

Format: GraphicsAddress[31:2]

This field specifies the ending DWord address of the buffer in Graphics Memory.

1:0 Reserved

Project: All

Format: MBZ

8.7 Rendering Disable

Independent of SOL function enable, if rendering (i.e, 3D pipeline functions past the SOL stage) is

enabled (via clearing the Rendering Disable bit), the SOL stage will pass topologies for a specific input

stream (as selected by Render Stream Select) down the pipeline, with the exception of PATCHLIST_n

topologies which are never passed downstream. Software must ensure that the vertices exiting the SOL

stage include a vertex header and position value so that the topologies can be correctly processed by

subsequent pipeline stages. Specifically, rendering must be disabled whenever 128-bit vertices are output

from a GS thread.

If Rendering Disable is set, the SOL stage will prevent any topologies from exiting the SOL stage.

8.8 Statistics

The SOL stage controls the incrementing of two 64-bit statistics counter registers for each of the four

output buffer slots, SO_NUM_PRIMS_WRITTEN[] and SO_PRIM_STORAGE_NEEDED[].

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 209

9. 3D Pipeline – Clip Stage

9.1 3D Pipeline – CLIP Stage Overview

The CLIP stage of the 3D Pipeline is similar to the GS stage in that it can be used to perform general

processing on incoming 3D objects via spawned threads. However, the CLIP stage also includes

specialized logic to perform a ClipTest function on incoming objects. These two usage models of the CLIP

stage are outlined below.

Refer to the Common 3D FF Unit Functions subsection in the 3D Overview chapter for a general

description of a 3D Pipeline stage, as much of the CLIP stage operation and control falls under these

“common” functions. I.e., many of the CLIP stage state variables and CLIP thread payload parameters

are described in 3D Overview, and although they are listed here for completeness, that chapter provides

the detailed description of the associated functions.

Refer to this chapter for an overall description of the CLIP stage, details on the ClipTest function, and any

exceptions the CLIP stage exhibits with respect to common FF unit functions.

9.1.1 Clip Stage – General-Purpose Processing

Numerous state variable controls are provided to tailor the ClipTest function as required by the API or

primitive characteristics. These controls allow a mode where all objects are passed to CLIP threads, and

in this regard the CLIP stage can be used as a second GS stage. However, unlike the GS stage,

primitives output by CLIP threads will not be subject to 3D Clipping, and therefore any clip-testing/clipping

of these primitives (if required) would need to be performed by the CLIP thread itself.

9.1.2 Clip Stage – 3D Clipping

The ClipTest fixed function is provided to optimize the CLIP stage for support of generalized 3D Clipping.

The CLIP FF unit examines the position of incoming vertices, performs a fixed function VertexClipTest on

these positions, and then examines the results for the vertices of each independent object in

ClipDetermination.

The results of ClipDetermination indicate whether an object is to be processed by a thread (MustClip),

discarded (TrivialReject) or passed down the pipeline unmodified (TrivialAccept). In the MustClip case,

the spawned thread is responsible for performing the actual 3D Clipping algorithm. The CLIP thread is

passed the source object vertex data and is able to output a new, arbitrary 3D primitive (e.g., the clipped

primitive), or no output at all. Note that the output primitive is independent in that it is comprised of newly-

generated VUEs, and does not share vertices with the source primitive or other CLIP-generated

primitives.

New vertices produced by the CLIP threads are stored in the URB. Their Vertex Headers are then read

from the VUEs in order to insert the relevant information into the 3D pipeline. The CLIP unit maintains the

proper ordering of CLIP-generated primitives and any surrounding trivially-accepted primitives. The CLIP

unit also supports multiple concurrent CLIP threads and maintains the proper ordering of the thread

outputs as dictated by the order of the source objects.

The outgoing primitive stream is sent down the pipeline to the Strip/Fan (SF) FF stage (now including the

read-back VUE Vertex Header data such as Vertex Rosition (NDC or screen space), RTAIndex, VPIndex,

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 210

PointWidth) and control information (PrimType, PrimStart, PrimEnd) while the remainder of the vertex

data remains in the VUE in the URB.

9.1.3 Fixed Function Clipper

The GPU supports Fixed Function Clipping.

9.2 Concepts

This section provides an overview of 3D clip-testing and clipping concepts. It is provided as background

material: some of the concepts impact HW functionality while others impact CLIP kernel functionality.

9.2.1 The Clip Volume

3D objects are optionally clipped to the clip volume. The clip volume is defined as the intersection of a

set of clip half-spaces. Six of these half-spaces define the view volume, while additional, user-defined

half-spaces can be employed to perform clipping (or at least culling) within the view volume.

The CLIP stage design will permit the enable/disable of certain subsets of these clip half-spaces. This

capability can be used, for example, to disable viewport, guardband, and near and far clipping as required

by the API and other conditions.

9.2.1.1 View Volume

The intersection of the six view half-spaces defines the view volume. The view volume is defined in 4D

clip space coordinates as:

View Clip Plane

‘Outside’ Condition

 4D Clip Space NDC space, positive w

XMIN

(NDC Left)

clip.x < -clip.w ndc.x < -1

XMAX

(NDC Right)

clip.w < clip.x ndc.x > 1

YMIN

(NDC Bottom)

clip.y < -clip.w ndc.y < -1

YMAX

(NDC top)

clip.w < clip.y ndc.y > 1

ZMIN

(NDC Near)

OGL: clip.z < -clip.w OGL: ndc.z < -1.0

ZMAX

(NDC Far)

clip.w < clip.z ndc.z > 1.0

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 211

Note that, since the 2D (X,Y) extent of the projected view volume is subsequently mapped to the 2D pixel

space viewport, the terms “viewport” and “view volume” are used somewhat interchangeably in this

discussion.

The CLIP unit will perform view volume clip test using NDC coordinates (the results of the speculative

PerspectiveDivide). The treatment of negative ndc.w and invalid (NaN, +/-INF) coordinates is clarified

below.

Negative W Coordinates

Consider for a moment vertices with a negative clip.w coordinate. Examination of the API definitions for
“outside” shows that it is impossible for that vertex to be considered inside both the XMIN (NDC Left)

and XMAX (NDC Right) planes. The clip.x coordinate would need to be greater than or equal to some

positive value (-clip.w) to be considered inside the XMIN plane, while also being less than or equal to the

negative (clip.w) value to be considered inside the XMAX plane. Obviously both these conditions cannot

be met simultaneously, so a vertex with a negative clip.w coordinate will always appear outside.

Surprisingly, it is possible for a vertex to be outside both the XMIN and XMAX planes (and likewise for

the Y axis). This arises when clip.w is negative and clip.x falls between clip.w and -clip.w. Note, however,
that in NDC space (post perspective-divide), this same vertex would be considered inside. This

disparity arises from the loss of information from the perspective divide operation, specifically the signs of

the input operands. The CLIP stage will avoid this artifact by supporting an additional clip.w=0 clip plane –

a negative ndc.rhw value indicates the point is outside of the clip.w=0 plane.

The assumption made in the Clip stage is that only the w>0 portion of clip space is considered visible.

The VertexClipTest function tests each incoming 1/w value and, if negative, the vertex is tagged as being

outside the w=0 plane. These vertex outcodes are combined in ClipDetermination to determine

TA/TR/MC status.

A negative w coordinate poses an additional issue due to the fact that VertexClipTest is performed using

post-perspection-projection coordinates (NDC or screen space). This disparity arises from the loss of

information from the perspective divide operation, specifically the signs of the input operands. For

example, to test for (x>w) using NDC coordinates, (x/w>1) must be used when w>0, and (x/w<1) must be

used when w<0. The VertexClipTest function therefore uses the sign of the incoming 1/w coordinate to

select the appropriate comparison function for each of the VP and GB clip planes.

As the CLIP thread performs clipping in 4D clip space, only the truly visible portions of objects (i.e,

meeting the 4D clip space visibility criteria) will be considered. The CLIP thread should not output

negative w (clip or NDC) coordinates.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 212

9.2.2 User-Specified Clipping

The various APIs define mechanisms by which objects can be clipped or culled according to some user-

specified parameter(s) in addition to the implied viewport clipping. The HW support of these mechanisms

is restricted to use of the 8 UserClipFlags (UCFs) of the VUE Vertex Header. Software is required to

provide the remaining support (e.g., the JITTER including GEN4 instructions to cause a distance value to

be computed, tested for visibility, and generation of the appropriate UCF bit.)

9.2.3 Guard Band

Note: Refer to Vertex X,Y Clamping and Quantization in the SF stage section for device-specific

guardband size information.

3DClipping is time consuming. For cases where 2DClipping is sufficient, we are willing to forgo

3DClipping and instead apply 2DClipping during rendering. In the general case, this is possible only

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 213

when an object is totally within the ZMin and ZMax planes, and only clipping to the view volume X/Y

MIN/MAX clip planes is required, as 2DClipping is restricted to a screen-aligned 2D rectangle.

However, we must ensure that the 2D extent of these objects do not exceed the limitations of the

renderer’s coordinate space (see Vertex X,Y Clamping and Quantization in the SF section). Therefore we

define a 2D guardband region corresponding to (though likely somewhat smaller than) the maximum 2D

extent supported by the renderer. During VertexClipTest, vertices are (optionally) subjected to an

additional visibility test based on the 2D guardband region.

During ClipDetermination, if an object is not trivially-rejected from the 2D viewport, the XMIN_GB,

XMAX_GB, YMIN_GB and YMAX_GB guardband outcodes are used instead of the XMIN, XMAX, YMIN,

YMAX view volume outcodes to determine trivial-accept. This will allow objects that fall within the

guardband and possibly intersect the viewport to be trivially-accepted and passed down the pipeline.

The diagram below shows some examples of objects (triangles) in relation to the viewport and

guardband. The shaded triangles are examples of triangles that are not trivially accepted to the viewport

but trivially accepted to the guardband and therefore passed to down the pipeline. Without the guardband,

these triangles would have to be submitted to a CLIP thread.

Normal Guardband Operation

The CLIP stage needs to handle the case where the viewport XY is larger than the screen space

coordinate range supported by the SF and WM units. This condition may arise when the API defines an

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 214

implicit 2D clip between the viewport XY extent and the rendertarget. In the 3D pipeline, the guardband
must used to force explicit clipping in order to ensure legal coordinates are passed out of the CLIP stage.

Therefore the CLIP unit supports a guardband that can be larger or smaller than the viewport (in any

particular direction). The following diagram illustrates a case with a very large viewport, extending well

beyond the guardband. Note that the only trivial accept case is where objects are completely within the

guardband.

Very Large Viewport Case

9.2.3.1 NDC Guardband Parameters

Note: Refer to Vertex X,Y Clamping and Quantization in the SF stage section for device-specific

guardband size information.

When the CLIP unit performs VertexClipTest in NDC space, the guardband limits must be provided as

NDC coordinates. The diagram below shows how the guardband NDC coordinates are derived.

Specifically, the XMIN_GB NDC coordinate is simply the ratio of the (screen space) distance from the

screen space VP center to the screen space GB XMin boundary over the distance from the VP center to

the VP XMin (left) boundary. A similar computation yields the XMAX_GB (right), YMIN_GB (bottom) and

YMAX_GB (top) guardband NDC coordinates.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 215

As these guardband parameters are defined relative to the viewport, each of the up-to-16 sets of viewport

specifications supported in the 3D pipeline will require a corresponding set of guardband parameters.

These guardband parameters are provided as a separate memory-resident state structure

(CLIP_VIEWPORT), and referenced via the Clipper Viewport State Pointer contained in the

CLIP_STATE structure. Note that the CLIP_VIEWPORT structure has a different definition than the

SF_VIEWPORT structure used by the SF unit.

9.2.4 Vertex-Based Clip Testing & Considerations

The CLIP unit performs clip test and determines whether objects need to be clipped based solely on
information (position, UserClipFlags) provided at the vertices of the object as they arrive at the clip

stage. Issues arise if and when the corresponding rendered object is not constrained to the convex hull of

the object. Different APIs impose different treatment of these conditions.

In addition and in the more general case, a CLIP thread could be used to convert the object (as defined

by its vertices) into some arbitrary output primitive. In this case, the CLIP unit’s

ClipTest/ClipDetermination logic may not be suitable for determination of when to reject/accept/clip

objects. In this case the ClipMode can be used to route all (or all non-rejected) objects to CLIP threads,

where the proper clip-test and clipping can occur in the CLIP kernel.

One issue that arises is whether a trivial-reject to the VPXY is suitable. If this were allowed, an object

might be discarded even if it would have been partially visible in the viewport. A second issue is whether

a TA against the GB is suitable. If this were allowed, portions of the rendered object might be visible in

the VP even if the object should have been clipped out of the VP.

9.2.4.1 Triangle Objects

In the normal processing of triangle-based primitives (tristrip/trilist/polygon/etc.), the footprint of each

triangle is constrained to the 2D convex hull. I.e., the rendering of these triangles will not produce pixels

outside of the triangle. Therefore the normal operation of the CLIP unit functions will support the proper

clip testing and clip determination for triangle objects:

 Both the VPXY and GB clip boundaries can be utilized (as described above). If the triangle is TR
against the VP, it can be discarded. Otherwise, if the triangle is TA against the GB, it can be passed
down the pipeline (assuming it is TA against VPZ, UCFs, etc.) and properly handled by 2DClipping.

 The GB parameters can be programmed to coincide with the maximum allowable screen space
extent (though making the GB marginally smaller than this max extent is highly recommended).

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 216

9.2.4.2 Non-Wide Line Objects

In the normal processing of non-wide, line-based primitives (linestrip/linelist/etc.), the footprint of each line

is constrained to the 2D convex hull. I.e., the rendering of these lines will not produce pixels off of the line.

Therefore the normal operation of the CLIP unit functions will support the proper clip testing and clip

determination for non-wide line objects. (See Triangle Objects above).

9.2.4.3

9.2.4.4 Wide Line Objects

The rendering hardware supports wide lines (solid lines with a line width or anti-aliased lines). When

rendered, pixels outside of the convex hull will be generated.

The following diagram shows an example of a wide line that normally would be TA against the GB. If the

TA is allowed, the partially-visible region of the line would be rendered.

In general, OpenGL dictates that the partially-visible region must not be rendered. In this case the line

must be clipped-out against the VPXY (not TA against the GB). To accomplish this, SW could disable the

GB when drawing wide lines.

9.2.4.5 Wide Points

The GEN rendering hardware supports a width parameter for native line objects. When rendered, pixels

surrounding the point (center) vertex will be generated.

The following diagram shows an example wide point that normally would be TR against the VPXY. If the
TR is allowed, the partially-visible region of the point would not be rendered.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 217

In general, OpenGL dictates that the partially-visible region must not be rendered. In this case the point

must be TR against the VPXY (not TA against the GB). To accomplish this, SW could disable the GB

when drawing wide points.

9.2.4.6 RECTLIST

The CLIP unit treats RECTLIST exactly like TRILIST. No special consideration is made for the implied 4th

vertex of each rectangle (although ViewportXY and Guardband VertexClipTest theoretically should be

sufficient to drive ClipDetermination). Given this, and the fact that RECTLIST is primarily intended for

driver-generated “BLT” functions, there are number of restrictions on the use of RECTLIST, especially

regarding the CLIP unit. Refer to the RECTLIST definition in 3D Pipeline.

9.2.5 3D Clipping

If an object needs to be clipped, it will be passed to the CLIP thread. The CLIP thread will perform some

(arbitrary) algorithm to clip the primitive, and subsequently output “new” vertices as a primitive defining

the visible region of the input object (assuming there is a visible region). In the process of spawning the

CLIP thread, the input vertices may be considered “consumed” and therefore dereferenced. Therefore the

CLIP thread will need to copy (if required) any input VUE data to a new output VUE – there is no

mechanism to “output” input vertices other than copying.

supports only Fixed function Clipping

9.3 CLIP Stage Input

As a stage of the 3D pipeline, the CLIP stage receives inputs from the previous (GS) stage. Refer to 3D

Overview for an overview of the various types of input to a 3D Pipeline stage. The remainder of this

subsection describes the inputs specific to the CLIP stage.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 218

9.3.1 State

9.3.1.1 3DSTATE CLIP

The state used by the Clip Stage is defined by this inline state packet.

3DSTATE_CLIP

Source: RenderCS

Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINE

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 12h 3DSTATE_CLIP

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 02h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

1 31:21 Reserved

Project: All

Format: MBZ

20 Front Winding

Project: All

Determines whether a triangle object is considered “front facing” if the screen space vertex positions,

when traversed in the order, result in a clockwise (CW) or counter-clockwise (CCW) winding order.

Does not apply to points or lines.

Value Name Description Project

0h FRONTWINDING_CW All

1h FRONTWINDING_CCW All

19 Vertex Sub Pixel Precision Select

Project: All

Format: U1

Selects the number of fractional bits maintained in the vertex data

Value Name Description Project

0h 8 sub pixel precision bits maintained All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 219

3DSTATE_CLIP

1h 4 sub pixel precision bits maintained All

18 EarlyCull Enable

Project: All

Format: Enable

This field is used to enable/disable the EarlyCull function.

Programming Notes Project

Workaround : Due to Hardware issue "EarlyCull" needs to be enabled only for the cases where

the incoming primitive topology into the clipper guaranteed to be Trilist.

17:16 Cull Mode

Project: All

Format: 3D_CullMode

Controls removal (culling) of triangle objects based on orientation. The cull mode only applies to

triangle objects and does not apply to lines, points or rectangles.

Value Name Description Project

0h CULLMODE_BOTH All triangles are discarded (i.e., no triangle objects are drawn) All

1h CULLMODE_NONE No triangles are discarded due to orientation All

2h CULLMODE_FRONT Triangles with a front-facing orientation are discarded All

3h CULLMODE_BACK Triangles with a back-facing orientation are discarded All

Programming Notes

Orientation determination is based on the setting of the Front Winding state.

15:11 Reserved

Project: All

Format: MBZ

10 Clipper Statistics Enable

Project: All

Format: Enable

This bit controls whether Clip-unit-specific statistics register(s) can be incremented.

Value Name Description Project

0h Disable CL_INVOCATIONS_COUNT cannot increment All

1h Enable CL_INVOCATIONS_COUNT can increment All

9:8 Reserved

Project: All

Format: MBZ

7:0 User Clip Distance Cull Test Enable Bitmask

Project: All

Format: Enable[8]

This 8 bit mask field selects which of the 8 user clip distances against which trivial reject / trivial accept

determination needs to be made (does not cause a must clip).DX10 allows simultaneous use of

ClipDistance and Cull Distance test of up to 8 distances.

2 31 CLIP Enable

Project: All

Format: Enable

Specifies whether the CLIP function is enabled or disabled (pass-through).

30 API Mode

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 220

3DSTATE_CLIP

Project: All

Controls the definition of the NEAR clipping plane

Value Name Description Project

0h APIMODE_OGL NEAR VP boundary == 0.0 (NDC) All

29 Reserved

Project: All

Format: MBZ

28 Viewport XY ClipTest Enable

Project: All

Format: Enable

This field is used to control whether the Viewport X,Y extents are considered in VertexClipTest. See

Tristrip Clipping Errata subsection.

27 Viewport Z ClipTest Enable

Project: All

Format: Enable

This field is used to control whether the Viewport Z extents (near, far) are considered in VertexClipTest.

26 Guardband ClipTest Enable

Project: All

Format: Enable

This field is used to control whether the Guardband X,Y extents are considered in VertexClipTest for

non-point objects. If the Guardband ClipTest is DISABLED but the Viewport XY ClipTest is ENABLED,

ClipDetermination operates as if the Guardband were coincident with the Viewport. If both the

Guardband and Viewport XY ClipTest are DISABLED, all vertices are considered “visible” with respect

to the XY directions.

25:24 Reserved

Project: All

Format: MBZ

23:16 User Clip Distance Clip Test Enable Bitmask

Project: All

Format: Enable[8]

This 8 bit mask field selects which of the 8 user clip distances against which trivial reject / trivial accept

/ must clip determination needs to be made.DX10 allows simultaneous use of ClipDistance and Cull

Distance test of up to 8 distances.

15:13 Clip Mode

Project: All

This field specifies a general mode of the CLIP unit, when the CLIP unit is ENABLED.

Value Name Description Project

0h CLIPMODE_NORMAL TrivialAccept objects are passed down the pipeline, MustClip

objects Clipped in the Fixed Function Clipper HW,

TrivialReject and BAD objects are discarded

All

1h Reserved All

2h Reserved All

3h CLIPMODE_REJECT_ALL All objects are discarded All

4h CLIPMODE_ACCEPT_ALL All objects (except BAD objects) are trivially accepted. This

effectively disables the clip-test/clip-determination function.

All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 221

3DSTATE_CLIP

Note that the CLIP unit will still filter out adacency

information, which may be required since the SF unit does

not accept primitives with adjacency.

5h-7h Reserved All

12:10 Reserved

Project: All

Format: MBZ

9 Perspective Divide Disable

Project: All

Format: Disable

This field disables the Perspective Divide function performed on homogeneous position read from the

URB. This feature can be used by software to submit pre-transformed “screen-space” geometry for

rasterization. This likely requires the W component of positions to contain “rhw” (aka 1/w) in order to

support perspective-correct interpolation of vertex attributes. Likewise, the X,Y,Z components will likely

be required to be X/W, Y/W, Z/W. Note that the device does not support clipping when perspective

divide is disabled. Software must specify CLIPMODE_ACCEPT_ALL whenever it disables perspective

divide. This implies that software must ensure that object positions are completely contained within the

“guardband” screen-space limits imposed by the SF unit (e.g., by clipping in CPU SW before submitting

the objects).

8 Non-Perspective Barycentric Enable

Project: All

Format: Enable

This field enables computation of non-perspective barycentric parameters in the clipper, which are sent

to SF unit in the must clip case. This field must be enabled if any non-perspective barycentric

parameters are enabled in the Windower.

7:6 Reserved

Project: All

Format: MBZ

5:4 Triangle Strip/List Provoking Vertex Select

Project: All

Format: U2 enumerated type

This field selects which vertex of a triangle (in a triangle strip or list primitive) is considered the

“provoking vertex”.

Value Name Project

0h Vertex 0 All

1h Vertex 1 All

2h Vertex 2 All

3h Reserved All

3:2 Line Strip/List Provoking Vertex Select

Project: All

Format: U2 enumerated type

This field selects which vertex of a line (in a line strip or list primitive) is considered the “provoking

vertex”.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 222

3DSTATE_CLIP

Value Name Project

0h Vertex 0 All

1h Vertex 1 All

2h Reserved All

3h Reserved All

1:0 Triangle Fan Provoking Vertex Select

Project: All

Format: U32 enumerated type

This field selects which vertex of a triangle (in a triangle fan primitive) is considered the “provoking

vertex”.

Value Name Project

0h Vertex 0 All

1h Vertex 1 All

2h Vertex 2 All

3h Reserved All

3 31:28 Reserved

Project: All

Format: MBZ

27:17 Minimum Point Width

Project: All

Format: U8.3 pixels

This value is used to clamp read-back PointWidth values.

16:6 Maximum Point Width

Project: All

Format: U8.3 pixels

This value is used to clamp read-back PointWidth values.

5 Force Zero RTAIndex Enable

Project: All

Format: Enable

If set, the Clip unit will ignore the read-back RTAIndex and operate as if the value 0 was read-back. If

clear, the read-back value is used.

4 Reserved

Project: All

Format: MBZ

3:0 Maximum VPIndex

Project: All

Format: U4-1 index value (# of viewports)

This field specifies the maximum valid VPIndex value, corresponding to the number of active viewports.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 223

3DSTATE_CLIP

If the source of the VPIndex exceeds this maximum value, a VPIndex value of 0 is passed down the

pipeline. Note that this clamping does not affect a VPIndex value stored in the URB.

9.4 Object Staging

The CLIP unit’s Object Staging Buffer (OSB) accepts streams of input vertex information packets, along

with each vertex’s VertexClipTest result (outCode). This information is buffered until a complete object or

the last vertex of the primitive topology is received. The OSB then performs the ClipDetermination

function on the object vertices, and takes the actions required by the results of that function.

9.4.1 Partial Object Removal

The OSB is responsible for removing incomplete LINESTRIP and TRISTRIP objects that it may receive

from the preceding stage (GS). Partial object removal is not supported for other primitive types due to

either (a) the GS is not permitted to output those primitive types (e.g., primitives with adjacency info), and

the VF unit will have removed the partial objects as part of 3DPRIMITIVE processing, or (b) although the

GS thread is allowed to output the primitive type (e.g., LINELIST), it is assumed that the GS kernel will be

correctly implemented to avoid outputting partial objects (or pipeline behavior is UNDEFINED).

An object is considered ‘partial’ if the last vertex of the primitive topology is encountered (i.e., PrimEnd is

set) before a complete set of vertices for that object have been received. Given that only LINESTRIP and

TRISTRIP primitive types are subject to CLIP unit partial object removal, the only supported cases of

partial objects are 1-vertex LINESTRIPs and 1 or 2-vertex TRISTRIPs.

9.4.2 ClipDetermination Function

In ClipDetermination, the vertex outcodes of the primitive are combined in order to determine the clip

status of the object (TR: trivially reject; TA: trivial accept; MC: must clip; BAD: invalid coordinate). Only

those vertices included in the object are examined (3 vertices for a triangle, 2 for a line, and 1 for a point).

The outcode bit arrays for the vertices are separately ANDed (intersection) and ORed (union) together

(across vertices, not within the array) to yield objANDCode and objORCode bit arrays.

TR/TA against interesting boundary subsets are then computed. The TR status is computed as the logical

OR of the appropriate objANDCode bits, as the vertices need only be outside of one common boundary

to be trivially rejected. The TA status is computed as the logical NOR of the appropriate objORCode bits,

as any vertex being outside of any of the boundaries prevents the object from being trivially accepted.

If any vertex contains a BAD coordinate, the object is considered BAD and any computed TR/TA results

will effectively be ignored in the final action determination.

Next, the boundary subset TR/TA results are combined to determine an overall status of the object. If the

object is TR against any viewport or enabled UC plane, the object is considered TR. Note that, by

definition, being TR against a VPXY boundary implies that the vertices will be TR agains the

corresponding GB boundary, so computing TR_GB is unnecessary.

The treatment of the UCF outcodes is conditional on the UserClipFlags MustClip Enable state. If

DISABLED, an object that is not TR against the UCFs is considered TA against them. Put another way,

objects will only be culled (not clipped) with respect to the UCFs. If ENABLED, the UCF outcodes are

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 224

treated like the other outcodes, in that they are used to determine TR, TA or MC status, and an object can

be passed to a CLIP thread simply based on it straddling a UCF.

Finally, the object is considered MC if it is neither TR or TA.

The following logic is used to compute the final TR, TA, and MC status.

//

// ClipDetermination

//

//

// Compute objANDCode and objORCode

//

switch (object type) {

case POINT:

{

objANDCode[…] = v0.outCode[…]

objORCode[…] = v0.outCode[…]

} break

case LINE:

{

objANDCode[…] = v0.outCode[…] & v1.outCode[…]

objORCode[…] = v0.outCode[…] | v1.outCode[…]

} break

case TRIANGLE:

{

objANDCode[…] = v0.outCode[…] & v1.outCode[…] & v2.outCode[…]

objORCode[…] = v0.outCode[…] | v1.outCode[…] | v2.outCode[…]

} break

//

// Determine TR/TA against interesting boundary subsets

//

TR_VPXY = (objANDCode[VP_L] | objANDCode[VP_R] | objANDCode[VP_T] |

objANDCode[VP_B])

TR_GB = (objANDCode[GB_L] | objANDCode[GB_R] | objANDCode[GB_T] |

objANDCode[GB_B])

TA_GB = !(objORCode[GB_L] | objORCode[GB_R] | objORCode[GB_T] |

objORCode[GB_B])

TA_VPZ = !(objORCode[VP_N] | objORCode[VP_Z])

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 225

TR_VPZ = (objANDCode[VP_N] | objANDCode[VP_Z])

TA_UC = !(objORCode[UC0] | objORCode[UC1] | … | objORCode[UC7])

TR_UC = (objANDCode[UC0] | objANDCode[UC1] | … | objANDCode[UC7])

BAD = objORCode[BAD]

TA_NEGW = !objORCode[NEGW]

TR_NEGW = objANDCode[NEGW]

//

// Trivial Reject

//

// An object is considered TR if all vertices are TR against any common

boundary

// Note that this allows the case of the VPXY being outside the GB

//

TR = TR_GB || TR_VPXY || TR_VPZ || TR_UC || TR_NEGW

//

// Trivial Accept

//

// For an object to be TA, it must be TA against the VPZ and GB, not TR,

// and considered TA against the UC planes and NEGW

// If the UCMC mode is disabled, an object is considered TA against the UC

// as long as it isn’t TR against the UC.

// If the UCMC mode is enabled, then the object really has to be TA against

the UC

// to be considered TA

// In this way, enabling the UCMC mode will force clipping if the object is

neither

// TA or TR against the UC

//

TA = !TR && TA_GB && TA_VPZ && TA_NEGW

UCMC = CLIP_STATE.UserClipFlagsMustClipEnable

TA = TA && ((UCMC && TA_UC) || (!UCMC && !TR_UC))

//

// MustClip

// This is simply defined as not TA or TR

// Note that exactly one of TA, TR and MC will be set

//

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 226

MC = !(TA || TR)

9.4.3 ClipMode

The ClipMode state determines what action the CLIP unit takes given the results of ClipDetermination.

The possible actions are:

 PASSTHRU: Pass the object directly down the pipeline. A CLIP thread is not spawned.

 DISCARD: Remove the object from the pipeline and dereference object vertices as required (i.e.,
dereferencing will not occur if the vertices are shared with other objects).

 SPAWN: Pass the object to a CLIP thread. In the process of initiating the thread, the object vertices
may be dereferenced.

The following logic is used to determine what to do with the object (PASSTHRU or DISCARD or SPAWN).

//

// Use the ClipMode to determine the action to take

 //

switch (CLIP_STATE.ClipMode) {

 case NORMAL: {

PASSTHRU = TA && !BAD

DISCARD = TR || BAD

SPAWN = MC && !BAD

 }

 case CLIP_ALL: {

PASSTHRU = 0

DISCARD = 0

SPAWN = 1

 }

 case CLIP_NOT_REJECT: {

PASSTHRU = 0

DISCARD = TR || BAD

SPAWN = !(TR || BAD)

 }

 case REJECT_ALL: {

PASSTHRU = 0

DISCARD = 1

SPAWN = 0

 }

 case ACCEPT_ALL: {

PASSTHRU = !BAD

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 227

DISCARD = BAD

SPAWN = 0

 }

} endswitch

9.4.3.1 NORMAL ClipMode

In NORMAL mode, objects will be discarded if TR or BAD, passed through if TA, and passed to a CLIP

thread if MC. Those mode is typically used when the CLIP kernel is only used to perform 3D Clipping (the

expected usage model).

9.4.3.2 CLIP_ALL ClipMode

In CLIP_ALL mode, all objects (regardless of classification) will be passed to CLIP threads. Note that this

includes BAD objects. This mode can be used to perform arbritrary processing in the CLIP thread, or as a

backup if for some reason the CLIP unit fixed functions (VertexClipTest, ClipDetermination) are not

sufficient for controlling 3D Clipping.

9.4.3.3 CLIP_NON_REJECT ClipMode

This mode is similar to CLIP_ALL mode, but TR and BAD objects are discarded an all other (TA, MC)

objects are passed to CLIP threads. Usage of this mode assumes that the CLIP unit fixed functions

(VertexClipTest, ClipDetermination) are sufficient at least in respect to determining trivial reject.

9.4.3.4 REJECT_ALL ClipMode

In REJECT_ALL mode, all objects (regardless of classification) are discarded. This mode effectively clips

out all objects.

9.4.3.5 ACCEPT_ALL ClipMode

In ACCEPT_ALL mode, all non-BAD objects are passed directly down the pipeline. This mode partially

disables the CLIP stage. BAD objects will still be discarded, and incomplete primitives (generated by a

GS thread) will be discarded.

Primitive topologies with adjacency are also handled, in that the adjacent-only vertices are dereferenced

and only non-adjacent objects are passed down the pipeline. This condition can arise when primitive

topologies with adjacency are generated but the GS stage is disabled. If this condition is allowed, the

CLIP stage must not be completely disabled – as this would allow adjacent vertices to pass through the

CLIP stage and lead to UNPREDICATBLE results as the rest of the pipeline does not comprehend

adjacency.

9.5 Object Pass-Through

Depending on ClipMode, objects may be passed directly down the pipeline. The PrimTopologyType

associated with the output objects may differ from the input PrimTopologyType, as shown in the table

below.

Programming Note: The CLIP unit does not tolerate primitives with adjacency that have “dangling

vertices”. This should not be an issue under normal conditions, as the VF unit will not generate these

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 228

sorts of primitives and the GS thread is restricted (though by specification only) to not output these sorts

of primitives.

Input

PrimTopologyType

Pass-Through Output

PrimTopologyType
 Notes

POINTLIST POINTLIST

POINTLIST_BF POINTLIST_BF

LINELIST LINELIST

LINELIST_ADJ LINELIST
Adjacent vertices removed.

LINESTRIP LINESTRIP

LINESTRIP_ADJ LINESTRIP
Adjacent vertices removed.

LINESTRIP_BF LINESTRIP_BF

LINESTRIP_CONT LINESTRIP_CONT

LINESTRIP_CONT_BF LINESTRIP_CONT_BF

LINELOOP N/A
Not supported after GS.

TRILIST TRILIST

RECTLIST RECTLIST

TRILIST_ADJ TRILIST
Adjacent vertices removed.

TRISTRIP TRISTRIP or

TRISTRIP_REV
Depends on where the incoming strip is broken (if at all) by

discarded or clipped objects

See Tristrip Clipping Errata subsection.

TRISTRIP_REV TRISTRIP or

TRISTRIP_REV
Depends on where the incoming strip is broken (if at all) by

discarded or clipped objects

See Tristrip Clipping Errata subsection.

TRISTRIP_ADJ TRISTRIP or

TRISTRIP_REV
Depends on where the incoming strip is broken (if at all) by

discarded or clipped objects

Adjacent vertices removed.

See Tristrip Clipping Errata subsection.

TRIFAN TRIFAN

TRIFAN_NOSTIPPLE TRIFAN_NOSTIPPLE

POLYGON POLYGON

QUADLIST N/A
Not supported after GS.

QUADSTRIP N/A
Not supported after GS.

9.6 Primitive Output

(This section refers to output from the CLIP unit to the pipeline, not output from the CLIP thread)

The CLIP unit will output primitives (either passed-through or generated by a CLIP thread) in the proper

order. This includes the buffering of a concurrent CLIP thread’s output until the preceding CLIP thread

terminates. Note that the requirement to buffer subsequent CLIP thread output until the preceding CLIP

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 229

thread terminates has ramifications on determining the number of VUEs allocated to the CLIP unit and

the number of concurrent CLIP threads allowed.

9.7 Other Functionality

9.7.1 Statistics Gathering

The CLIP unit includes logic to assist in the gathering of certain pipeline statistics, primarily in support of

the Asynchronous Query function of the APIs. The statistics take the form of MI counter registers (see

Memory Interface Registers), where the CLIP unit provides signals causing those counters to increment.

Software is responsible for controlling (enabling) these counters in order to provide the required statistics

at the DDI level. For example, software might need to disable the statistics gathering before submitting

non-API-visible objects (e.g., RECTLISTs) for processing.

The CLIP unit must be ENABLED (via the CLIP Enable bit of PIPELINED_STATE_POINTERS) in order

to it to affect the statistics counters. This might lead to a pathological case where the CLIP unit needs to

be ENABLED simply to provide statistics gathering. If no clipping functionality is desired, Clip Mode can

be set to ACCEPT_ALL to effectively inhibit clipping while leaving the CLIP stage ENABLED.

The two statistics the CLIP unit affects (if enabled) are:

 CL_INVOCATION_COUNT:

 Incremented for every object received from the GS stage.

9.7.1.1 CL_INVOCATION_COUNT

If the Statistics Enable bit (CLIP_STATE) is set, the CLIP unit increments the

CL_INVOCATION_COUNT register for every complete object received from the GS stage.

In order to maintain a count of application-generated objects, software will need to clear the CLIP unit’s

Statistic Enable whenever driver-generated objects are rendered.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 230

10. 3D Pipeline - Strips and Fans (SF)
Stage

10.1 Overview

The Strips and Fan (SF) stage of the 3D pipeline is responsible for performing “setup” operations required

to rasterize 3D objects.

10.1.1 Inputs from CLIP

The following table describes the per-vertex inputs passed to the SF unit from the previous (CLIP) stage

of the pipeline.

SF’s Vertex Pipeline Inputs

Variable Type Description

primType enum
Type of primitive topology the vertex belongs to. Primitive Assembly for a list of

primitive types supported by the SF unit. See 3D Pipeline for descriptions of these

topologies.

Notes:

The CLIP unit will convert any primitive with adjacency (3DPRIMxxx_ADJ) it

receives from the pipeline into the corresponding primitive without adjacency

(3DPRIMxxx).

QUADLIST, QUADSTRIP, LINELOOP primitives are not supported by the SF unit.

Software must use a GS thread to convert these to some other (supported)

primitive type.

If an object is clipped by the hardware clipper, the CLunit would force this field to

“3DPRIM_POLYGON”. SFunit would process this incoming object just as it would

any other “3DPRIM_POLYGON”. SFunit selects vertex 0 as the provoking vertex.

primStart,primEnd boolean Indicate vertex’s position within the primitive topology

vInX[] float Vertex X position (screen space or NDC space)

vInY[] float Vertex Y position (screen space or NDC space)

vInZ[] float Vertex Z position (screen space or NDC space)

vInInvW[] float Reciprocal of Vertex homogeneous (clip space) W

hVUE[] URB

address

Points to the vertex’s data stored in the URB (one VUE handle per vertex)

renderTargetArrayIndex uint
Index of the render target (array element or 3D slice), clamped to 0 by the GS unit

if the max value was exceeded.

If this vertex is the leading vertex of an object within the primitive topology, this

value will be associated with that object in subsequent processing.

viewPortIndex uint
Index of a viewport transform matrix within the SF_VIEWPORT structure used to

perform Viewport Transformation on object vertices and scissor operations on an

object.

If this vertex is the leading vertex of an object within the primitive topology, this

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 231

Variable Type Description

value will be associated with that object in the Viewport Transform and Scissor

subfunctions, otherwise the value is ignored. Note that for primitive topologies with

vertices shared between objects, this means a shared vertex may be subject to

multiple Viewport Transformation operations if the viewPortIndex varies within the

topology.

pointSize uint If this vertex is within a POINTLIST[_BF] primitive topology, this value specifies the

screen space size (width,height) of the square point to be rasterized about the

vertex position. Otherwise the value is ignored.

10.1.2 Attribute Setup/Interpolation Process

The following sections describe the Attribute Setup/Interpolation Process.

10.1.2.1 Attribute Setup/Interpolation Process

Hardware computes all needed parameters, as there is no setup thread.

10.1.3 Outputs to WM

The outputs from the SF stage to the WM stage are mostly comprised of implementation-specific

information required for the rasterization of objects. The types of information is summarized below, but as

the interface is not exposed to software a detailed discussion is not relevant to this specification.

 PrimType of the object

 VPIndex, RTAIndex associated with the object

 Coefficients for Z, 1/W, perspective and non-perspective b1 and b2 per vertex, and attribute vertex
deltas a0, a1, and a2 per attribute.

 Information regarding the X,Y extent of the object (e.g., bounding box, etc.).

 Edge or line interpolation information (e.g., edge equation coefficients, etc.).

 Information on where the WM is to start rasterization of the object.

 Object orientation (front/back-facing).

 Last Pixel indication (for line drawing).

10.2 Primitive Assembly

The first subfunction within the SF unit is Primitive Assembly. Here 3D primitive vertex information is

buffered and, when a sufficient number of vertices are received, converted into basic 3D objects which

are then passed to the Viewport Transformation subfunction.

The number of vertices passed with each primitive is constrained by the primitive type. Primitive Assembly.

Passing any other number of vertices results in UNDEFINED behavior. Note that this restriction only

applies to primitive output by GS threads (which is under control of the GS kernel). See the Vertex Fetch

chapter for details on how the VF unit automatically removes incomplete objects resulting from

processing a 3DPRIMITIVE command.

SF-Supported Primitive Types & Vertex Count Restrictions

primType VertexCount Restriction

3DPRIM_TRILIST nonzero multiple of 3

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 232

primType VertexCount Restriction

3DPRIM_TRISTRIP

3DPRIM_TRISTRIP_REVERSE

>=3

3DPRIM_TRIFAN

3DPRIM_TRIFAN_NOSTIPPLE

3DPRIM_POLYGON

>=3

3DPRIM_LINELIST nonzero multiple of 2

3DPRIM_LINESTRIP

3DPRIM_LINESTRIP_CONT

3DPRIM_LINESTRIP_BF

3DPRIM_LINESTRIP_CONT_BF

>=2

3DPRIM_RECTLIST nonzero multiple of 3

3DPRIM_POINTLIST

3DPRIM_POINTLIST_BF

nonzero

Primitive Assembly for a list of the 3D object types.

3D Object Types

objectType generated by primType Vertices/Object

3DOBJ_POINT
3DPRIM_POINTLIST

3DPRIM_POINTLIST_BF

1

3DOBJ_LINE
3DPRIM_LINELIST

3DPRIM_LINESTRIP

3DPRIM_LINESTRIP_CONT

3DPRIM_LINESTRIP_BF

3DPRIM_LINESTRIP_CONT_BF

2

3DOBJ_TRIANGLE
3DPRIM_TRILIST

3DPRIM_TRISTRIP

3DPRIM_TRISTRIP_REVERSE

 3DPRIM_TRIFAN

3DPRIM_TRIFAN_NOSTIPPLE

3DPRIM_POLYGON

3

3DOBJ_RECTANGLE
3DPRIM_RECTLIST

3 (expanded to 4 in RectangleCompletion)

Primitive Assembly for the outputs of Primitive Decomposition.

Primitive Decomposition Outputs

Variable Type Description

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 233

Variable Type Description

objectType enum
Type of object. Primitive Assembly

nV uint
The number of object vertices passed to Object Setup. Primitive Assembly

v[0..nV-1]* various
Data arrays associated with object vertices. Data in the array consists of X, Y, Z, invW

and a pointer to the other vertex attributes. These additional attributes are not used by

directly by the 3D fixed functions but are made available to the SF thread. The number of

valid vertices depends on the object type. Primitive Assembly

invertOrientation enum Indicates whether the orientation (CW or CCW winding order) of the vertices of a triangle

object should be inverted. Ignored for non-triangle objects.

backFacing enum Valid only for points and line objects, indicates a back facing object. This is used later for

culling.

provokingVtx uint
Specifies the index (into the v[] arrays) of the vertex considered the “provoking” vertex

(for flat shading). The selection of the provoking vertex is programmable via SF_STATE

(xxx Provoking Vertex Select state variables.)

polyStippleEnable boolean TRUE if Polygon Stippling is enabled. FALSE for TRIFAN_NOSTIPPLE. Ignored for non-

triangle objects.

continueStipple boolean Only applies to line objects. TRUE if Line Stippling should be continued (i.e., not reset)

from where the previous line left off. If FALSE, Line Stippling is reset for each line object.

renderTargetIndex uint Index of the render target (array element or 3D slice), clamped to 0 by the GS unit if the

max value was exceeded. This value is simply passed in SF thread payloads and not

used within the SF unit.

viewPortIndex uint Index of a viewport transform matrix within the SF_VIEWPORT structure used to perform

Viewport Transformation on object vertices and scissor operations on an object.

pointSize unit For point objects, this value specifies the screen space size (width,height) of the square

point to be rasterized about the vertex position. Otherwise the value is ignored.

The following table defines, for each primitive topology type, which vertex’s VPIndex/RTAIndex applies to

the objects within the topology.

 VPIndex/RTAIndex Selection

PrimTopologyType Viewport Index Usage

POINTLIST

POINTLIST_BF

Each vertex supplies the VPIndex for the corresponding point object

LINELIST
The leading vertex of each line supplies the VPIndex for the corresponding line object.

V0.VPIndex Line(V0,V1)

V2.VPIndex Line(V2,V3)

…

LINESTRIP

LINESTRIP_BF

LINESTRIP_CONT

LINESTRIP_CONT_BF

The leading vertex of each line segment supplies the VPIndex for the corresponding line

object.

V0.VPIndex Line(V0,V1)

V1.VPIndex Line(V1,V2)

…

NOTE: If the VPIndex changes within the topology, shared vertices will be processed

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 234

(mapped) multiple times.

TRILIST

RECTLIST

The leading vertex of each triangle/rect supplies the VPIndex for the corresponding

triangle/rect objects.

V0.VPIndex Tri(V0,V1,V2)

V3.VPIndex Tri(V3,V4,V5)

…

TRISTRIP

TRISTRIP_REVERSE

The leading vertex of each triangle supplies the VPIndex for the corresponding triangle

object.

V0.VPIndex Tri(V0,V1,V2)

V1.VPIndex Tri(V1,V2,V3)

…

NOTE: If the VPIndex changes within the primitive, shared vertices will be processed

(mapped) multiple times.

TRIFAN

TRIFAN_NOSTIPPLE

POLYGON

The first vertex (V0) supplies the VPIndex for all triangle objects.

10.2.1 Point List Decomposition

The 3DPRIM_POINTLIST and 3DPRIM_POINTLIST_BACKFACING primitives specify a list of

independent points.

3DPRIM_POINTLIST Primitive

The decomposition process divides the list into a series of basic 3DOBJ_POINT objects that are then

passed individually and in order to the Object Setup subfunction. The provokingVertex of each object is, by

definition, v[0].

Points have no winding order, so the primitive command is used to explicitly state whether they are back-

facing or front-facing points. Primitives of type 3DPRIM_POINTLIST_BACKFACING are decomposed

exactly the same way as 3DPRIM_POINTLIST primitives, but the backFacing variable is set for resulting

point objects being passed on to object setup.

PointListDecomposition() {

objectType = 3DOBJ_POINT

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 235

nV = 1

provokingVtx = 0

if (primType == 3DPRIM_POINTLIST)

 backFacing = FALSE

else // primType == 3DPRIM_POINTLIST_BACKFACING

 backFacing = TRUE

for each (vertex I in [0..vertexCount-1]) {

v[0] vIn[i]// copy all arrays (e.g., v[]X, v[]Y, etc.)

ObjectSetup()

}

}

10.2.2 Line List Decomposition

The 3DPRIM_LINELIST primitive specifies a list of independent lines.

3DPRIM_LINELIST Primitive

The decomposition process divides the list into a series of basic 3DOBJ_LINE objects that are then

passed individually and in order to the Object Setup stage. The lines are generated with the following

object vertex order: v0, v1; v2, v3; and so on. The provokingVertex of each object is taken from the Line

List/Strip Provoking Vertex Select state variable, as programmed via SF_STATE.

LineListDecomposition() {

objectType = 3DOBJ_LINE

nV = 2

provokingVtx = Line List/Strip Provoking Vertex Select

continueStipple = FALSE

for each (vertex I in [0..vertexCount-2] by 2) {

v[0] arrays vIn[i] arrays

v[1] arrays vIn[i+1] arrays

ObjectSetup()

}

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 236

}

10.2.3 Line Strip Decomposition

The 3DPRIM_LINESTRIP, 3DPRIM_LINESTRIP_CONT, 3DPRIM_LINESTRIP_BF, and

3DPRIM_LINESTRIP_CONT_BF primitives specify a list of connected lines.

3DPRIM_LINESTRIP_xxx Primitive

The decomposition process divides the strip into a series of basic 3DOBJ_LINE objects that are then

passed individually and in order to the Object Setup stage. The lines are generated with the following

object vertex order: v0,v1; v1,v2; and so on. The provokingVertex of each object is taken from the Line

List/Strip Provoking Vertex Select state variable, as programmed via SF_STATE.

Lines have no winding order, so the primitive command is used to explicitly state whether they are back-

facing or front-facing lines. Primitives of type 3DPRIM_LINESTRIP[_CONT]_BF are decomposed exactly

the same way as 3DPRIM_LINESTRIP[_CONT] primitives, but the backFacing variable is set for the

resulting line objects being passed on to object setup. Likewise 3DPRIM_LINESTRIP_CONT[_BF]

primitives are decomposed identically to basic line strips, but the continueStipple variable is set to true so

that the line stipple pattern will pick up from where it left off with the last line primitive, rather than being

reset.

LineStripDecomposition() {

objectType = 3DOBJ_LINE

nV = 2

provokingVtx = Line List/Strip Provoking Vertex Select

if (primType == 3DPRIM_LINESTRIP) {

 backFacing = FALSE

 continueStipple = FALSE

} else if (primType == 3DPRIM_LINESTRIP_BF) {

 backFacing = TRUE

 continueStipple = FALSE

} else if (primType == 3DPRIM_LINESTRIP_CONT) {

 backFacing = FALSE

 continueStipple = TRUE

} else if (primType == 3DPRIM_LINESTRIP_CONT_BF) {

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 237

 backFacing = TRUE

 continueStipple = TRUE

}

for each (vertex I in [0..vertexCount-1]) {

v[0] arrays vIn[i] arrays

v[1] arrays vIn[i+1] arrays

ObjectSetup()

continueStipple = TRUE

}

}

10.2.4 Triangle List Decomposition

The 3DPRIM_TRILIST primitive specifies a list of independent triangles.

3DPRIM_TRILIST Primitive

The decomposition process divides the list into a series of basic 3DOBJ_TRIANGLE objects that are then

passed individually and in order to the Object Setup stage. The triangles are generated with the following

object vertex order: v0,v1,v2; v3,v4,v5; and so on. The provokingVertex of each object is taken from the

Triangle List/Strip Provoking Vertex Select state variable, as programmed via SF_STATE.

TriangleListDecomposition() {

objectType = 3DOBJ_TRIANGLE

nV = 3

invertOrientation = FALSE

provokingVtx = Triangle List/Strip Provoking Vertex Select

polyStippleEnable = TRUE

for each (vertex I in [0..vertexCount-3] by 3) {

v[0] arrays vIn[i] arrays

v[1] arrays vIn[i+1] arrays

v[2] arrays vIn[i+2] arrays

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 238

ObjectSetup()

}

}

10.2.5 Triangle Strip Decomposition

The 3DPRIM_TRISTRIP and 3DPRIM_TRISTRIP_REVERSE primitives specify a series of triangles

arranged in a strip, as illustrated below.

3DPRIM_TRISTRIP[_REVERSE] Primitive

The decomposition process divides the strip into a series of basic 3DOBJ_TRIANGLE objects that are

then passed individually and in order to the Object Setup stage. The triangles are generated with the

following object vertex order: v0,v1,v2; v1,v2,v3; v2,v3,v4; and so on. Note that the winding order of the

vertices alternates between CW (clockwise), CCW (counter-clockwise), CW, etc. The provokingVertex of

each object is taken from the Triangle List/Strip Provoking Vertex Select state variable, as

programmed via SF_STATE.

The 3D pipeline uses the winding order of the vertices to distinguish between front-facing and back-facing

triangles (Triangle Orientation Face Culling below). Therefore, the 3D pipeline must account for the

alternation of winding order in strip triangles. The invertOrientation variable is generated and used for this

purpose.

To accommodate the situation where the driver is forced to break an input strip primitive into multiple

tristrip primitive commands (e.g., due to ring or batch buffer size restrictions), two tristrip primitive types

are supported. 3DPRIM_TRISTRIP is used for the initial section of a strip, and wherever a continuation of

a strip starts with a triangle with a CW winding order. 3DPRIM_TRISTRIP_REVERSE is used for a

continuation of a strip that starts with a triangle with a CCW winding order.

TriangleStripDecomposition() {

objectType = 3DOBJ_TRIANGLE

nV = 3

provokingVtx = Triangle List/Strip Provoking Vertex Select

if (primType == 3DPRIM_TRISTRIP)

 invertOrientation = FALSE

else // primType == 3DPRIM_TRISTRIP_REVERSE

 invertOrientation = TRUE

polyStippleEnable = TRUE

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 239

for each (vertex I in [0..vertexCount-3]) {

v[0] arrays vIn[i] arrays

v[1] arrays vIn[i+1] arrays

v[2] arrays vIn[i+2] arrays

ObjectSetup()

invertOrientation = ! invertOrientation

}

}

10.2.6 Triangle Fan Decomposition

The 3DPRIM_TRIFAN and 3DPRIM_TRIFAN_NOSTIPPLE primitives specify a series of triangles

arranged in a fan, as illustrated below.

3DPRIM_TRIFAN Primitive

The decomposition process divides the fan into a series of basic 3DOBJ_TRIANGLE objects that are then

passed individually and in order to the Object Setup stage. The triangles are generated with the following

object vertex order: v0,v1,v2; v0,v2,v3; v0,v3,v4; and so on. As there is no alternation in the vertex

winding order, the invertOrientation variable is output as FALSE unconditionally. The provokingVertex of

each object is taken from the Triangle Fan Provoking Vertex state variable, as programmed via

SF_STATE.

Primitives of type 3DPRIM_TRIFAN_NOSTIPPLE are decomposed exactly the same way, except the

polyStippleEnable variable is FALSE for the resulting objects being passed on to object setup. This will

inhibit polygon stipple for these triangle objects.

TriangleFanDecomposition() {

objectType = 3DOBJ_TRIANGLE

nV = 3

invertOrientation = FALSE

provokingVtx = Triangle Fan Provoking Vertex Select

if (primType == 3DPRIM_TRIFAN)

 polyStippleEnable = TRUE

else // primType == 3DPRIM_TRIFAN_NOSTIPPLE

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 240

 polyStippleEnable = FALSE

v[0] arrays vIn[0] arrays// the 1st vertex is common

for each (vertex I in [1..vertexCount-2]) {

v[1] arrays vIn[i] arrays

v[2] arrays vIn[i+1] arrays

ObjectSetup()

}

}

10.2.7 Polygon Decomposition

The 3DPRIM_POLYGON primitive is identical to the 3DPRIM_TRIFAN primitive with the exception that

the provokingVtx is overridden with 0. This support has been added specifically for OpenGL support,

avoiding the need for the driver to change the provoking vertex selection when switching between trifan

and polygon primitives.

10.2.8 Rectangle List Decomposition

The 3DPRIM_RECTLIST primitive command specifies a list of independent, axis-aligned rectangles. Only

the lower right, lower left, and upper left vertices (in that order) are included in the command – the upper

right vertex is derived from the other vertices (in Object Setup).

3DPRIM_RECTLIST Primitive

The decomposition of the 3DPRIM_RECTLIST primitive is identical to the 3DPRIM_TRILIST

decomposition, with the exception of the objectType variable.

RectangleListDecomposition() {

objectType = 3DOBJ_RECTANGLE

nV = 3

invertOrientation = FALSE

provokingVtx = 0

for each (vertex I in [0..vertexCount-3] by 3) {

v[0] arrays vIn[i] arrays

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 241

v[1] arrays vIn[i+1] arrays

v[2] arrays vIn[i+2] arrays

ObjectSetup()

}

}

10.3 Object Setup

The Object Setup subfunction of the SF stage takes the post-viewport-transform data associated with

each vertex of a basic object and computes various parameters required for scan conversion. This

includes generation of implied vertices, translations and adjustments on vertex positions, and culling

(removal) of certain classes of objects. The final object information is passed to the Windower/Masker

(WM) stage where the object is rasterized into pixels.

10.3.1 Invalid Position Culling (Pre/Post-Transform)

At input the the SF stage, any objects containing a floating-point NaN value for Position X, Y, Z, or RHW

will be unconditionally discarded. Note that this occurs on an object (not primitive) basis.

If Viewport Transformation is enabled, any objects containing a floating-point NaN value for post-

transform Position X, Y or Z will be unconditionally discarded.

10.3.2 Viewport Transformation

If the Viewport Transform Enable bit of SF_STATE is ENABLED, a viewport transformation is applied to

each vertex of the object.

The VPIndex associated with the leading vertex of the object is used to obtain the Viewport Matrix

Element data from the corresponding element of the SF_VIEWPORT structure in memory. For each

object vertex, the following scale and translate transformation is applied to the position coordinates:

x’ = m00 * x + m30

y’ = m11 * y + m31

z’ = m22 * z + m32

Software is responsible for computing the matrix elements from the viewport information provided to it

from the API.

10.3.3 Destination Origin Bias

The positioning of the pixel sampling grid is programmable and is controlled by the Destination Origin

Horizontal/Vertical Bias state variables (set via SF_STATE). If these bias values are both 0, pixels are

sampled on an integer grid. Pixel (0,0) will be considered inside the object if the sample point at XY

coordinate (0,0) falls within the primitive.

If the bias values are both 0.5, pixels are sampled on a “half” integer grid (i.e., X.5, Y.5). Pixel (0,0) will be

considered inside the object if the sample point at XY coordinate (0.5,0.5) falls within the primitive. This

positioning of the sample grid corresponds with the OpenGL rasterization rules, where “fragment centers”

lay on a half-integer grid. It also corresponds with the Intel740 rasterizer (though that device did not

employ “top left” rules).

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 242

Note that subsequent descriptions of rasterization rules for the various objects will be with reference to

the pixel sampling grid.

Destination Origin Bias

10.3.4 Point Rasterization Rule Adjustment

POINT objects are rasterized as square RECTANGLEs, with one exception: The Point Rasterization

Rule state variable (in SF_STATE) controls the rendering of point object edges that fall directly on pixel

sample points, as the treatment of these edge pixels varies between APIs.

The following diagram shows the rasterization of a 2-pixel wide point centered at (2,2) given current DX

rasterization rules (where changed the rasterization of points to match the rasterization of an identical

(square) polygon). Here the pixel sample grid coincides with the integer pixel coordinates, and the Point

Rasterization Rule is set to RASTRULE_UPPER_LEFT. Note that the pixels which lie only on the upper

and/or left edges are lit.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 243

RASTRULE_UPPER_LEFT

10.3.5 Drawing Rectangle Offset Application

The Drawing Rectangle Offset subfunction offsets the object’s vertex X,Y positions by the pixel-exact,

unclipped drawing rectangle origin (as programmed via the Drawing Rectangle Origin X,Y values in the

3DSTATE_DRAWING_RECTANGLE command). The Drawing Rectangle Offset subfunction (at least with

respect to Color Buffer access) is , and therefore to (effectively) turn off the

offset function the origin would need to be set to (0,0). A non-zero offset is typically specified when

window-relative or viewport-relative screen coordinates are input to the device. Here the drawing

rectangle origin would be loaded with the absolute screen coordinates of the window’s or viewport’s

upper-left corner.

Clipping of objects which extend outside of the Drawing Rectangle occurs later in the pipeline. Note that

this clipping is based on the “clipped” draw rectangle (as programmed via the Clipped Drawing

Rectangle values in the 3DSTATE_DRAWING_RECTANGLE command), which must be clamped by

software to the rendertarget boundaries. The unclipped drawing rectangle origin, however, can extend

outside the screen limits in order to support windows whose origins are moved off-screen. This is

illustrated in the following diagrams.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 244

Onscreen Draw Rectangle

Partially-offscreen Draw Rectangle

10.3.5.1 3DSTATE_DRAWING_RECTANGLE

3DSTATE_DRAWING_RECTANGLE

Project: All

Source: RenderCS

Length Bias: 2

The 3DSTATE_DRAWING_RECTANGLE command is used to set the 3D drawing rectangle and related state.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 00h 3DSTATE_DRAWING_RECTANGLE

Format: OpCode

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 245

3DSTATE_DRAWING_RECTANGLE

15:14 Reserved

Format: MBZ

13:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 2h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

1 31:16 Clipped Drawing Rectangle Y Min

Project: All

Format: U16 in Pixels from Color Buffer origin (upper left corner)

Specifies Ymin value of (inclusive) intersection of Drawing rectangle with the Color (Destination) Buffer,

used for clipping. Pixels with Y coordinates less than Ymin will be clipped out.

Value Name Project

[0,16383] Device ignores bits 31:30

Programming Notes Project

This value can be larger than Clipped Drawing Rectangle Y Max. If Ymin>Ymax, the clipped

drawing rectangle is null, all polygons are discarded. If Ymin==Ymax, the clipped drawing

rectangle is 1 pixel wide in the Y direction.

15:0 Clipped Drawing Rectangle X Min

Project: All

Format: U16 in Pixels from Color Buffer origin (upper left corner)

Specifies Xmin value of (inclusive) intersection of Drawing rectangle with the Color (Destination) Buffer,

used for clipping. Pixels with X coordinates less than Xmin will be clipped out.

Value Name Project

[0,16383] Device ignores bits 15:14

Programming Notes Project

This value can be larger than Clipped Drawing Rectangle X Max. If Xmin>Xmax, the clipped

drawing rectangle is null, all polygons are discarded. If Xmin==Xmax, the clipped drawing

rectangle is 1 pixel wide in the X direction.

2 31:16 Clipped Drawing Rectangle Y Max

Project: All

Format: U16 in Pixels from Color Buffer origin (upper left corner)

Specifies Ymax value of (inclusive) intersection of Drawing rectangle with the Color (Destination)

Buffer, used for clipping. Pixels with coordinates greater than Ymax will be clipped out.

Value Name Project

[0,16383] Device ignores bits 31:30

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 246

3DSTATE_DRAWING_RECTANGLE

Programming Notes Project

This value can be less than Clipped Drawing Rectangle Y Min. If Ymax<Ymin, the clipped

drawing rectangle is null, all polygons are discarded. If Ymin==Ymax, the clipped drawing

rectangle is 1 pixel wide in the Y direction.

15:0 Clipped Drawing Rectangle X Max

Project: All

Format: U16 in Pixels from Color Buffer origin (upper left corner)

Specifies Xmax value of (inclusive) intersection of Drawing rectangle with the Color (Destination)

Buffer, used for clipping. Pixels with coordinates greater than Xmax will be clipped out.

Value Name Project

[0,16383] Device ignores bits 15:14

Programming Notes Project

This value can be less than Clipped Drawing Rectangle X Min. If Xmax<Xmin, the clipped

drawing rectangle is null, all polygons are discarded.If Xmin==Xmax, the clipped drawing

rectangle is 1 pixel wide in the X direction.

3 31:16 Drawing Rectangle Origin Y

Project: All

Format: S15 in Pixels from Color Buffer origin (upper left corner).

Description Project

Range: [-16384,16383] (Bit 31 should be a sign extension)

Specifies Y origin of Drawing Rectangle (in whole pixels) relative to origin of the Color Buffer,

used to map incoming (Draw Rectangle-relative) vertex positions to the Color Buffer space.

15:0 Drawing Rectangle Origin X

Project: All

Format: S15 in Pixels from Color Buffer origin (upper left corner).

Description Project

Range: [-16384,16383] (Bit 15 should be a sign extension)

Specifies X origin of Drawing Rectangle (in whole pixels) relative to origin of the Color Buffer,

used to map incoming (Draw Rectangle-relative) vertex positions to the Color Buffer space.

10.3.6 Point Width Application

This stage of the pipeline applies only to 3DOBJ_POINT objects. Here the point object is converted from

a single vertex to four vertices located at the corners of a square centered at the point’s X,Y position. The

width and height of the square are specified by a point width parameter. The Use Point Width State value

in SF_STATE determines the source of the point width parameter: the point width is either taken from the

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 247

Point Width value programmed in SF_STATE or the PointWidth specified with the vertex (as read back

from the vertex VUE earlier in the pipeline).

The corner vertices are computed by adding and subtracting one half of the point width. Point Width

Application.

Point Width Application

Z and W vertex attributes are copied from the single point center vertex to each of the four corner

vertices.

10.3.7 Rectangle Completion

This stage of the pipeline applies only to 3DOBJ_RECTANGLE objects. Here the X,Y coordinates of the

4th (upper right) vertex of the rectangle object is computed from the first 3 vertices as shown in the

following diagram. The other vertex attributes assigned to the implied vertex (v[3]) are UNDEFINED as

they are not used. The Object Setup subfunction will use the values at only the first 3 vertices to compute

attribute interpolants used across the entire rectangle.

Rectangle Completion

10.3.8 Vertex X,Y Clamping and Quantization

At this stage of the pipeline, vertex X and Y positions are in continuous screen (pixel) coordinates. These

positions are quantized to subpixel precision by rounding the incoming values to the nearest subpixel

(using round-to-nearest-or-even rules). The device supports rasterization with either 4 or 8 fractional

(subpixel) position bits, as specified by the Vertex SubPixel Precision Select bit of SF_STATE.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 248

The vertex X and Y screenspace coordinates are also clamped to the fixed-point “guardband” range

supported by the rasterization hardware, as listed in the following table:

Per-Device Guardband Extents

Supported X,Y ScreenSpace “Guardband” Extent Maximum Post-Clamp Delta (X or Y)

[-32K,32K-1] N/A

Note that this clamping occurs after the Drawing Rectangle Origin has been applied and objects have

been expanded (i.e., points have been expanded to squares, etc.). In almost all circumstances, if an

object’s vertices are actually modified by this clamping (i.e., had X or Y coordinates outside of the

guardband extent the rendered object will not match the intended result. Therefore software should take

steps to ensure that this does not happen – e.g., by clipping objects such that they do not exceed these

limits after the Drawing Rectangle is applied.

In addition, in order to be correctly rendered, objects must have a screenspace bounding box not

exceeding 8K in the X or Y direction. This additional restriction must also be comprehended by software,

i.e., enforced by use of clipping.

10.3.9 Degenerate Object Culling

At this stage of the pipeline, “degenerate” objects are discarded. This operation is automatic and cannot

be disabled. (The object rasterization rules would by definition cause these objects to be “invisible” – this

culling operation is mentioned here to reinforce that the device implementation optimizes these

degeneracies as early as possible).

Degenerate Object Culling for definitions of degenerate objects.

Degenerate Objects

objType Degenerate Object Definition

3DOBJ_POINT Two or more corner vertices are coincident (i.e., the radius quantized to zero)

3DOBJ_LINE The endpoints are coincident

3DOBJ_TRIANGLE All three vertices are collinear or any two vertices are coincident and SOLID fill mode applies to

the triangle

3DOBJ_RECTANGLE Two or more corner vertices are coincident

10.3.10 Triangle Orientation (Face) Culling

At this stage of the pipeline, 3DOBJ_TRIANGLE objects can be optionally discarded based on the “face

orientation” of the object. This culling operation does not apply to the other object types.

This operation is typically called “back face culling”, though front facing objects (or all 3DOBJ_TRIANGLE

objects) can be selected to be discarded as well. Face culling is typically used to eliminate triangles

facing away from the viewer, thus reducing rendering time.

The “winding order” of a triangle is defined by the the triangle vertex’s 2D (X,Y) screen space position

when traversed from v0 to v1 to v2. That traversal will proceed in either a clockwise (CW) or counter-

clockwise (CCW) direction. The “winding order” of a triangle is defined by the the triangle vertex’s 2D

(X,Y) screen space position when traversed from v0 to v1 to v2. That traversal will proceed in either a

clockwise (CW) or counter-clockwise (CCW) direction. (A degenerate triangle is considered “backfacing”,

regardless of the FrontWinding state.

(A degenerate triangle is considered “backfacing”, regardless of the FrontWinding state.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 249

Triangle Winding Order

The Front Winding state variable in SF_STATE controls whether CW or CCW triangles are considered

as having a “front-facing” orientation (at which point non-front-facing triangles are considered “back-

facing”). The internal variable invertOrientation associated with the triangle object is then used to determine

whether the orientation of a that triangle should be inverted. Recall that this variable is set in the Primitive

Decomposition stage to account for the alternating orientations of triangles in strip primitives resulting

form the ordering of the vertices used to process them.

The Cull Mode state variable in SF_STATE specifies how triangles are to be discarded according to their

resultant orientation.Degenerate Object Culling.

Cull Mode

CullMode Definition

CULLMODE_NONE The face culling operation is disabled

CULLMODE_FRONT Triangles with “front facing” orientation are discarded

CULLMODE_BACK Triangles with “back facing” orientation are discarded

CULLMODE_BOTH All triangles are discarded

10.3.11 Scissor Rectangle Clipping

A scissor operation can be used to restrict the extent of rendered pixels to a screen-space aligned

rectangle. If the scissor operation is enabled, portions of objects falling of the intersection of

the scissor rectangle and the clipped draw rectangle are clipped (pixels discarded).

The scissor operation is enabled by the Scissor Rectangle Enable state variable in SF_STATE. If

enabled, the VPIndex associated with the leading vertex of the object is used to select the corresponding

SF_VIEWPORT structure. Up to 16 structures are supported. The Scissor Rectangle X,Y Min,Max fields

of the SF_VIEWPORT structure defines a scissor rectangle as a rectangle in integer pixel coordinates

. The scissor rectangle is defined relative to the Drawing Rectangle to better support the

OpenGL API. (OpenGL specifies the “Scissor Box” in window-relative coordinates). This allows instruction

buffers with embedded Scissor Rectangle definitions to remain valid even after the destination window

(drawing rectangle) moves.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 250

Specifying either scissor rectangle xmin > xmax or ymin > ymax will cause all polygons to be discarded

for a given viewport (effectively a null scissor rectangle).

10.3.12 Line Rasterization

The device supports three styles of line rendering: zero-width (cosmetic) lines, non-antialiased lines, and

antialiased lines. (These rules also satisfy the OpenGL conformance requirements.) Non-antialiased lines

are rendered as a polygon having a specified width as measured parallel to the major axis of the line.

Antialiased lines are rendered as a rectangle having a specified width measured perpendicular to the line

connecting the vertices.

The functions required to render lines is split between the SF and WM units. The SF unit is responsible

for computing the overall geometry of the object to be rendered, including the pixel-exact bounding box,

edge equations, etc., and therefore is provided with the screen-geometry-related state variables. The WM

unit performs the actual scan conversion, determining the exact pixel included/excluded and coverage

value for anti-aliased lines.

10.3.12.1 Zero-Width (Cosmetic) Line Rasterization

(The specification of zero-width line rasterization would be more correctly included in the WM Unit

chapter, though is being included here to keep it with the rasterization details of the other line types).

When the Line Width is set to zero, the device will use special rules to rasterize zero-width (“cosmetic”)

lines. The Anti-Aliasing Enable state variable is ignored when Line Width is zero.

When the LineWidth is set to zero, the device will use special rules to rasterize “cosmetic” lines. The

rasterization rules also comply with the OpenGL conformance requirements (for 1-pixel wide non-smooth

lines). Refer to the appropriate API specifications for details on these requirements.

The GIQ rules basically intersect the directed, ideal line connecting two endpoints with an array of

diamond-shaped areas surrounding pixel sample points. Wherever the line a diamond

(including passing through a diamond), the corresponding pixel is lit. Special rules are used to define the

subpixel locations which are considered interior to the diamonds, as a function of the slope of the line.

When a line ends in a diamond (and therefore does not exit that diamond), the corresponding pixel is not

drawn. When a line starts in a diamond and exits that diamond, the corresponding pixel is drawn.

10.3.12.2 1GIQ (Diamond) Sampling Rules – Legacy Mode

When the Legacy Line Rasterization Enable bit in WM_STATE is , zero-width lines are

rasterized according to the algorithm presented in this subsection. Also note that the Last Pixel Enable

bit of SF_STATE controls whether the last pixel of the last line in a LINESTRIP_xxx primitive or the last

pixel of each line in a LINELIST_xxx primitive is rendered.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 251

Refer to the following figure, which shows the neighborhood of subpixels around a given pixel sample

point. Note that the device divides a pixel into a 16x16 array of subpixels, referenced by their upper left

corners.

The solid-colored subpixels are considered “interior” to the diamond centered on the pixel sample point.

Here the Manhattan distance to the pixel sample point (center) is less than ½.

The subpixels falling on the edges of the diamond (Manhattan distance = ½) are exclusive, with the

following exceptions:

1. The bottom corner subpixel is always inclusive. This is to ensure that lines with slopes in
the open range (-1,1) touch a diamond even when they cross exactly between pixel diamonds.

2. The right corner subpixel is inclusive as long as the line slope is not exactly one, in
which case the left corner subpixel is inclusive. Including the right corner subpixel ensures
that lines with slopes in the range (1, +infinity] or [-infinity, -1) touch a diamond even when they
cross exactly between pixel diamonds. Including the left corner on slope=1 lines is required for
proper handling of slope=1 lines (see (3) below) – where if the right corner was inclusive, a
slope=1 line falling exactly between pixel centers would wind up lighting pixel on both sides of
the line (not desired).

3. The subpixels along the bottom left edge are inclusive only if the line slope = 1. This is to
correctly handle the case where a slope=1 line falls enters the diamond through a left or bottom
corner and ends on the bottom left edge. One does not consider this “passing through” the
diamond (where the normal rules would have us light the pixel). This is to avoid the following
case: One slope=1 line segment enters through one corner and ends on the edge, and another
(continuation) line segments starts at that point on the edge and exits through the other corner.
If simply passing through a corner caused the pixel to be lit, this case would case the pixel to
be lit twice – breaking the rule that connected line segments should not cause double-hits or
missing pixels. So, by considering the entire bottom left edge as “inside” for slope=1 lines, we
will only light the pixel when a line passes through the entire edge, or starts on the edge (or the
left or bottom corner) and exits the diamond.

4. The subpixels along the bottom right edge are inclusive only if the line slope = -1. Similar
case as (3), except slope=-1 lines require the bottom right edge to be considered inclusive.

The following equation determines whether a point (point.x, point.y) is inside the diamond of the pixel

sample point (sample.x, sample.y), given additional information about the slope (slopePosOne,

slopeNegOne).

delta_x = point.x – sample.x

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 252

delta_y = point.y – sample.y

distance = abs(delta_x) + abs(delta_y)

interior = (distance < 0.5)

bottom_corner = (delta_x == 0.0) && (delta_y == 0.5)

left_corner = (delta_x == –0.5) && (delta_y == 0.0)

right_corner = (delta_x == 0.5) && (delta_y == 0.0)

bottom_left_edge = (distance == 0.5) && (delta_x < 0) && (delta_y > 0)

bottom_right_edge = (distance == 0.5) && (delta_x > 0) && (delta_y > 0)

inside = interior ||

bottom_corner ||

(slopePosOne ? left_corner : right_corner) ||

(slopePosOne && left_edge) ||

(slopeNegOne && right_edge)

10.3.12.3 GIQ (Diamond) Sampling Rules – DX10 Mode

When the Legacy Line Rasterization Enable bit in WM_STATE is , zero-width lines are

rasterized according to the algorithm presented in this subsection. Also note that the Last Pixel Enable

bit of SF_STATE controls whether the last pixel of the last line in a LINESTRIP_xxx primitive or the last

pixel of each line in a LINELIST_xxx primitive is rendered.

Refer to the following figure, which shows the neighborhood of subpixels around a given pixel sample

point. Note that the device divides a pixel into a 16x16 array of subpixels, referenced by their upper left

corners.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 253

The solid-colored subpixels are considered “interior” to the diamond centered on the pixel sample point.

Here the Manhattan distance to the pixel sample point (center) is less than ½.

The subpixels falling on the edges of the diamond (Manhattan distance = ½) are exclusive, with the

following exceptions:

1. The bottom corner subpixel is always inclusive. This is to ensure that lines with slopes in the

open range (-1,1) touch a diamond even when they cross exactly between pixel diamonds.

2. The right corner subpixel is inclusive as long as the line is not X Major (X Major is defined as

-1 <= slope <= 1). Including the right corner subpixel ensures that lines with slopes in the range (>1,

+infinity] or [-infinity, <-1) touch a diamond even when they cross exactly between pixel diamonds.

3. The left corner subpixel is never inclusive. For Y Major lines, having the right corner subpixel as

always inclusive requires that the left corner subpixel should never be inclusive, since a line falling exactly

between pixel centers would wind up lighting pixel on both sides of the line (not desired).

4. The subpixels along the bottom left edge are always inclusive. This is to correctly handle the

case where a line enters the diamond through a left or bottom corner and ends on the bottom left edge.

One does not consider this “passing through” the diamond (where the normal rules would have us light

the pixel). This is to avoid the following case: One line segment enters through one corner and ends on

the edge, and another (continuation) line segments starts at that point on the edge and exits through the

other corner. If simply passing through a corner caused the pixel to be lit, this case would case the pixel

to be lit twice – breaking the rule that connected line segments should not cause double-hits or missing

pixels. So, by considering the entire bottom left edge as “inside”, we will only light the pixel when a line

passes through the entire edge, or starts on the edge (or the left or bottom corner) and exits the diamond.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 254

5. The subpixels along the bottom right edge are always inclusive. Same as case as (4), except

slope=-1 lines require the bottom right edge to be considered inclusive.

The following equation determines whether a point (point.x, point.y) is inside the diamond of the pixel

sample point (sample.x, sample.y), given additional information about the slope (XMajor).

delta_x = point.x – sample.x

delta_y = point.y – sample.y

distance = abs(delta_x) + abs(delta_y)

interior = (distance < 0.5)

bottom_corner = (delta_x == 0.0) && (delta_y == 0.5)

left_corner = (delta_x == –0.5) && (delta_y == 0.0)

right_corner = (delta_x == 0.5) && (delta_y == 0.0)

bottom_left_edge = (distance == 0.5) && (delta_x < 0) && (delta_y > 0)

bottom_right_edge = (distance == 0.5) && (delta_x > 0) && (delta_y > 0)

inside = interior ||

bottom_corner ||

(!XMajor && right_corner) ||

(bottom_left_edge) ||

(bottom_right_edge)

10.3.12.4 Non-Antialiased Wide Line Rasterization

Non-anti-aliased, non-zero-width lines are rendered as parallelograms that are centered on, and aligned

to, the line joining the endpoint vertices. Pixels sampled interior to the parallelogram are rendered; pixels

sampled exactly on the parallelogram edges are rendered according to the polygon “top left” rules.

The parallelogram is formed by first determining the major axis of the line (diagonal lines are considered

x-major). The corners of the parallelogram are computed by translating the line endpoints by +/-(Line

Width / 2) in the direction of the minor axis, as shown in the following diagram.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 255

Non-Antialiased Line Rasterization

10.3.12.5 Anti-aliased Line Rasterization

Anti-aliased lines are rendered as rectangles that are centered on, and aligned to, the line joining the

endpoint vertices. For each pixel in the rectangle, a fractional coverage value (referred to as Antialias

Alpha) is computed – this coverage value will normally be used to attenuate the pixel’s alpha in the pixel

shader thread. The resultant alpha value is therefore available for use in those downstream pixel pipeline

stages in order to generate the desired effect (e.g., use the attenuated alpha value to modulate the pixel’s

color, and add the result to the destination color, etc.). Note that software is required to explicitly program

the pixel shader and pixel pipeline to obtain the desired anti-aliasing effect – the device will simply make

the coverage-attenuated pixel alpha values available for use in the pixel shader.

The dimensions of the rendered rectangle, and the parameters controlling the coverage value

computation, are programmed via the Line Width, Line AA Region, and Line Cap AA Region state

variables, as shown below. The edges parallel to the line are located at the distance (LineWidth/2) from

the line (measured in screen pixel units perpendicular to the line). The end-cap edges are perpendicular

to the line and located at the distance (LineCapAARegion) from the endpoints.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 256

Anti-aliased Line Rasterization

Along the parallel edges, the coverage values ramp from the value 0 at the very edges of the rectangle to

the value 1 at the perpendicular distance (LineAARegion/2) from a given edge (in the direction of the line).

A pixel’s coverage value is computed with respect to the closest edge. In the cases where

(LineAARegion/2) < (LineWidth/2), this results in a region of fractional coverage values near the edges of

the rectangle, and a region of “fully-covered” coverage values (i.e., the value 1) at the interior of the line.

When (LineAARegion/2) == (LineWidth/2), only pixel sample points falling exactly on the line can generate

fully-covered coverage values. If (LineAARegion/2) > (LineWidth/2), no pixels can be fully-covered (it is

expected that this case is not typically desired).

Along the end cap edges, the coverage values ramp from the value 1 at the line endpoint to the value 0 at

the cap edge – itself at a perpendicular distance (LineCapAARegion) from the endpoint. Note that, unlike

the line-parallel edges, there is only a single parameter (LineCapAARegion) controlling the extension of the

line at the end caps and the associated coverage ramp.

The regions near the corners of the rectangle have coverage values influenced by distances from both

the line-parallel and end cap edges – here the two coverage values are multiplied together to provide a

composite coverage value.

The computed coverage value for each pixel is passed through the Windower Thread Dispatch payload.

The Pixel Shader kernel should be passed (unmodified) by the shader to the Render Cache as part of it’s

output message.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 257

10.3.13 3DSTATE_SF

3DSTATE_SF

Source: RenderCS

Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 13h 3DSTATE_SF

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 5h Excludes DWord (0,1)

Project: All

Format: =n Total Length - 2

1 31:15 Reserved

Format: MBZ

14:12 Depth Buffer Surface Format

Project: All

Format: U3 Enumerated Type

Specifies the format of the depth buffer. This must exactly match the Surface Format programmed via

3DSTATE_DEPTH_BUFFER. The SF requires this information in order to compute Global Depth Bias.

Value Name Description Project

0h D32_FLOAT_S8X24_UINT D32_FLOAT_S8X24_UINT All

1h D32_FLOAT D32_FLOAT All

2h D24_UNORM_S8_UINT D24_UNORM_S8_UINT All

3h D24_UNORM_X8_UINT D24_UNORM_X8_UINT All

4h Reserved Reserved All

5h D16_UNORM D16_UNORM All

6h-7h Reserved Reserved All

11 Legacy Global Depth Bias Enable

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 258

3DSTATE_SF

Project: All

Format: Enable

Enables the SF to use the Global Depth Offset Constant state unmodified. If this bit is not set, the SF

will scale the Global Depth Offset Constant as described in section Error! Reference source not found.

of this document.

Programming Notes

This bit should be set whenever non zero depth bias (Slope, Bias) values are used. Setting this bit may

have some degradation of performance for some workloads.

10 Statistics Enable

Project: All

Format: Enable

If ENABLED, this FF unit will increment CL_PRIMITIVES_COUNT on behalf of the CLIP stage. If

DISABLED, CL_PRIMITIVES_COUNT will be left unchanged.

Programming Notes

This bit should be set whenever clipping is enabled and the Statistics Enable bit is set in CLIP_STATE.

It should be cleared if clipping is disabled or Statistics Enable in CLIP_STATE is clear.

9 Global Depth Offset Enable Solid

Project: All

Format: Enable

Enables computation and application of Global Depth Offset for SOLID objects.

Programming Notes Project

This bit should be set whenever non zero depth bias (Slope, Bias) values are used. Setting this

bit may have some degradation of performance for some workloads.

Due to an HW issue driver needs to send a pipe control with stall when ever there is state

change in depth bias related state

8 Global Depth Offset Enable Wireframe

Project: All

Format: Enable

Enables computation and application of Global Depth Offset when triangles are rendered in

WIREFRAME mode.

Programming Notes Project

This bit should be set whenever non zero depth bias (Slope, Bias) values are used. Setting this

bit may have some degradation of performance for some workloads.

Due to an HW issue driver needs to send a pipe control with stall when ever there is state

change in depth bias related state

7 Global Depth Offset Enable Point

Project: All

Format: Enable

Enables computation and application of Global Depth Offset when triangles are rendered in POINT

mode.

Programming Notes Project

This bit should be set whenever non zero depth bias (Slope, Bias) values are used. Setting this

bit may have some degradation of performance for some workloads.

 Due to an HW issue driver needs to send a pipe control with stall when ever there is state

change in depth bias related state

6:5 FrontFace Fill Mode

Project: All

Format: U2 enumerated type

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 259

3DSTATE_SF

This state controls how front-facing triangle and rectangle objects are rendered.

Value Name Description Project

0h SOLID Any triangle or rectangle object found to be front-facing is rendered as a

solid object. This setting is required when rendering rectangle (RECTLIST)

objects.

All

1h WIREFRAME Any triangle object found to be front-facing is rendered as a series of lines

along the triangle boundaries (as determined by the topology type and

controlled by the vertex EdgeFlags).

All

2h POINT Any triangle object found to be front-facing is rendered as a set of point

primitives at the triangle vertices (as determined by the topology type and

controlled by the vertex EdgeFlags).NOTE: If the triangle is clipped, points

will not be rendered at clip-inserted vertices. Point will only be rendered at

original vertices (if visible).

3h Reserved

4:3 BackFace Fill Mode

Project: All

Format: U2 enumerated type

This state controls how back-facing triangle and rectangle objects are rendered.

Value Name Description Project

0h SOLID Any triangle or rectangle object found to be back-facing is rendered as a

solid object. This setting is required when rendering rectangle (RECTLIST)

objects.

All

1h WIREFRAME Any triangle object found to be back-facing is rendered as a series of lines

along the triangle boundaries (as determined by the topology type and

controlled by the vertex EdgeFlags).

All

2h POINT Any triangle object found to be back-facing is rendered as a set of point

primitives at the triangle vertices (as determined by the topology type and

controlled by the vertex EdgeFlags).NOTE: If the triangle is clipped, points

will not be rendered at clip-inserted vertices. Point will only be rendered at

original vertices (if visible).

3h Reserved

2 Reserved

Project: All

Format: MBZ

1 View Transform Enable

Project: All

Format: Enable

This bit controls the Viewport Transform function.

0 Front Winding

Project: All

Determines whether a triangle object is considered “front facing” if the screen space vertex positions,

when traversed in the order, result in a clockwise (CW) or counter-clockwise (CCW) winding order.

Does not apply to points or lines.

2 31 Anti-Aliasing Enable

Project: All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 260

3DSTATE_SF

Format: Enable

This field enables “alpha-based” line anti-aliasing.

Programming Notes

This field must be disabled if any of the render targets have integer (UINT or SINT) surface format.

30:29 Cull Mode

Project: All

Format: 3D_CullMode

Controls removal (culling) of triangle objects based on orientation. The cull mode only applies to

triangle objects and does not apply to lines, points or rectangles.

Value Name Description Project

0h CULLMODE_BOTH All triangles are discarded (i.e., no triangle objects are drawn) All

1h CULLMODE_NONE No triangles are discarded due to orientation All

2h CULLMODE_FRONT Triangles with a front-facing orientation are discarded All

3h CULLMODE_BACK Triangles with a back-facing orientation are discarded All

Programming Notes

Orientation determination is based on the setting of the Front Winding state.

27:18 Line Width

Project: All

Format: U3.7

Range: [0.0, 7.9921875]

Controls width of line primitives.Setting a Line Width of 0.0 specifies the rasterization of the “thinnest”

(one-pixel-wide), non-antialiased lines. Note that this effectively overrides the effect of AAEnable

(though the AAEnable state variable is not modified). Lines rendered with zero Line Width are

rasterized using GIQ (Grid Intersection Quantization) rules as specified by the GDI APIs.

Programming Notes

Software must not program a value of 0.0 when running in MSRASTMODE_ON_xxx modes – zero-

width lines are not available when multisampling rasterization is enabled.

17:16 Line End Cap Antialiasing Region Width

Project: All

Format: U2

This field specifies the distances over which the coverage of anti-aliased line end caps are computed.

Value Name Description Project

0h 0.5 pixels All

1h 1.0 pixels All

2h 2.0 pixels All

3h 4.0 pixels All

15 Reserved

Project: All

Format: MBZ

14 Reserved

Format: MBZ

11 Scissor Rectangle Enable

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 261

3DSTATE_SF

Project: All

Format: Enable

Enables operation of Scissor Rectangle.

10 Reserved

Format: MBZ

9:8 Multisample Rasterization Mode

Project: All

Format: U2 enumerated type

This state is duplicated in 3DSTATE_WM and both must be set to the same value. See the field in

3DSTATE_WM for definition details.

7:0 Reserved

Project: All

Format: MBZ

3 31 Last Pixel Enable

Project: All

Format: Enable

If ENABLED, the last pixel of a diamond line will be lit. This state will only affect the rasterization of

Diamond lines (will not affect wide lines or anti-aliased lines).

Programming Notes

Last pixel is applied to all lines of a LINELIST, and only the last line of a LINESTRIP.

30:29 Triangle Strip/List Provoking Vertex Select

Project: All

Format: 0-based vertex index

Selects which vertex of a triangle (in a triangle strip or list primitive) is considered the “provoking

vertex”. Used for flat shading of primitives.Does current implementation send provoking vertex first?

Value Name Project

0h Vertex 0 All

1h Vertex 1 All

2h Vertex 2 All

3h Reserved All

28:27 Line Strip/List Provoking Vertex Select

Project: All

Format: 0-based vertex index

Selects which vertex of a line (in a line strip or list primitive) is considered the “provoking vertex”.

Value Name Description Project

0h Vertex 0 All

1h Vertex 1 All

2h Reserved All

3h Reserved All

26:25 Triangle Fan Provoking Vertex Select

Project: All

Format: 0-based vertex index

Selects which vertex of a triangle (in a triangle fan primitive) is considered the “provoking vertex”.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 262

3DSTATE_SF

Value Name Project

0h Vertex 0 All

1h Vertex 1 All

2h Vertex 2 All

3h Reserved All

24:15 Reserved

Project: All

Format: MBZ

14 AA Line Distance Mode

Project: All

Format: U1

This bit controls the distance computation for antialiased lines.

Value Name Description Project

1h AALINEDISTANCE_TRUE True distance computation. This is the normal setting which

should yield WHQL compliance.

All

13 Reserved

Project: All

Format: MBZ

12 Vertex Sub Pixel Precision Select

Project: All

Format: U1

Selects the number of fractional bits maintained in the vertex data

Value Name Description Project

0h Disable 8 sub pixel precision bits maintained All

1h Enable 4 sub pixel precision bits maintained All

11 Use Point Width State

Project: All

Format: U1

Controls whether the point width passed on the vertex or from state is used for rendering point

primitives.

Value Name Description Project

0h Use Point Width on Vertex All

1h Use Point Width from State All

10:0 Point Width

Project: All

Format: U8.3

Range: [0.125, 255.875] pixels

This field specifies the size (width) of point primitives in pixels. This field is overridden (though not

overwritten) whenever point width information is passed in the FVF

4 31:0 Global Depth Offset Constant

Project: All

Format: IEEE_FP

Specifies the constant term in the Global Depth Offset function.

5 31:0 Global Depth Offset Scale

Project: All

Format: IEEE_FP

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 263

3DSTATE_SF

Specifies the scale term used in the Global Depth Offset function.

6 31:0 Global Depth Offset Clamp

Project: All

Format: IEEE_FP

Specifies the clamp term used in the Global Depth Offset function.

10.3.14 3DSTATE_SBE

The state used by “setup backend” is defined by this inline state packet.

3DSTATE_SBE

Source: RenderCS

Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 1Fh 3DSTATE_SBE

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 0Ch Excludes DWord (0,1)

Project: All

Format: =n

Total Length - 2

1 31:29 Reserved

Project: All

Format: MBZ

28 Attribute Swizzle Control Mode

Format: U1 enumerated type

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 264

3DSTATE_SBE

When Attribute Swizzle Enable is ENABLED, this bit controls whether attributes 0-15 or 16-31

are subject to the following swizzle controls:

 Attribute n Component Override X/Y/Z/W

 Attribute n Constant Source

 Attribute n Swizzle Select

 Attribute n Source Attribute

 Attribute n Wrap Shortest Enables

Note that the Number of SF Output Attributes field specifies how many attributes are output.

Note: This field does not impact any functions which provide separate states for all 32 attributes

(e.g., Point sprite, Constant interpolation).

Value Name Description Project

0h SWIZ_0_15 Attributes 0-15 are subject to swizzling, and attributes 16-31 are not.

1h SWIZ_16_31 Attributes 16-31 are subject to swizzling, and attributes 0-15 are not. Only

valid when 16 or more attributes are output.

27:22 Number of SF Output Attributes

Format: U6 count of attributes

Specifies the number of vertex attributes passed from the SF stage to the WM stage (does not include

Position).

Value Name

[0,32]

21 Attribute Swizzle Enable

Project: All

Format: Enable

Enables the SF to perform swizzling on (up to the first 16) vertex attributes. If DISABLED, all vertex

attributes are passed through.

20 Point Sprite Texture Coordinate Origin

Project: All

Format: U1 enumerated type

This state controls how Point Sprite Texture Coordinates are generated (when enabled on a per-

attribute basis by Point Sprite Texture Coordinate Enable).

Value Name Description Project

0h UPPERLEFT Top Left = (0,0,0,1)Bottom Left = (0,1,0,1)Bottom Right = (1,1,0,1) All

1h LOWERLEFT Top Left = (0,1,0,1)Bottom Left = (0,0,0,1)Bottom Right = (1,0,0,1) All

19:16 Reserved

Project: All

Format: MBZ

15:11 Vertex URB Entry Read Length

Project: All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 265

3DSTATE_SBE

Format: U5 Specifies the amount of URB data read for each Vertex URB entry, in 256-bit register

increments.

Value Name

[1,16]

Programming Notes

It is UNDEFINED to set this field to 0 indicating no Vertex URB data to be read.This field should be set

to the minimum length required to read the maximum source attribute. The maximum source attribute

is indicated by the maximum value of the enabled Attribute # Source Attribute if Attribute Swizzle

Enable is set, Number of Output Attributes-1 if enable is not set. read_length =

ceiling((max_source_attr+1)/2)

10 Reserved

Project: All

9:4 Vertex URB Entry Read Offset

Project: All

Format: U6

Specifies the offset (in 256-bit units) at which Vertex URB data is to be read from the URB.

Value Name

[0,63]

3:0 Reserved

Project: All

Format: MBZ

2..9 31 Attribute [2n+1] Component Override W

Project: All

Format: Enable

If set, the W component of output Attribute 1 is overridden by the W component of the constant vector

specified by ConstantSource[1].

30 Attribute [2n+1] Component Override Z

Project: All

Format: Enable

If set, the Z component of output Attribute 1 is overridden by the Z component of the constant vector

specified by ConstantSource[1].

29 Attribute [2n+1] Component Override Y

Project: All

Format: Enable

If set, the Y component of output Attribute 1 is overridden by the Y component of the constant vector

specified by ConstantSource[1].

28 Attribute [2n+1] Component Override X

Project: All

Format: Enable

If set, the X component of output Attribute 1 is overridden by the X component of the constant vector

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 266

3DSTATE_SBE

specified by ConstantSource[1].

27 Reserved

Project: All

Format: MBZ

26:25 Attribute [2n+1] Constant Source

Project: All

Format: U2 enumerated type

This state selects a constant vector which can be used to override individual components of Attribute 1

Value Name Description Project

0h CONST_0000 Constant.xyzw = 0.0,0.0,0.0,0.0 All

1h CONST_0001_FLOAT Constant.xyzw = 0.0,0.0,0.0,1.0 All

2h CONST_1111_FLOAT Constant.xyzw = 1.0,1.0,1.0,1.0 All

3h PRIM_ID Constant.xyzw = PrimID (replicated) All

24 Reserved

Project: All

Format: MBZ

23:22 Attribute [2n+1] Swizzle Select

Project: All

Format: U2 enumerated type

This state, along with Attribute 1 Source Attribute, specifies the source for output Attribute 1.

Value Name Description Project

0h INPUTATTR This attribute is sourced from AttrInputReg[SourceAttribute] All

1h INPUTATTR_FACING If the object is front-facing, this attribute is sourced from

AttrInputReg[SourceAttribute].If the object is back-facing, this

attribute is sourced from AttrInputReg[SourceAttribute+1].

All

2h INPUTATTR_W This attribute is sourced from AttrInputReg[SourceAttribute].

The W component is copied to the X component.

All

3h INPUTATTR_FACING_W If the object is front-facing, this attribute is sourced from

AttrInputReg[SourceAttribute].If the object is back-facing, this

attribute is sourced from AttrInputReg[SourceAttribute+1]. The

W component is copied to the X component.

All

21 Reserved

Project: All

Format: MBZ

20:16 Attribute [2n+1] Source Attribute

Project: All

Format: U5

This field selects the source attribute for Attribute 1. Source attribute 0 corresponds to the first 128 bits

of data indicated by Vertex URB Entry Read Offset

15 Attribute [2n] Component Override W

Project: All

Format: Enable

If set, the W component of output Attribute 0 is overridden by the W component of the constant vector

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 267

3DSTATE_SBE

specified by ConstantSource[1].

14 Attribute [2n] Component Override Z

Project: All

Format: Enable

If set, the Z component of output Attribute 0 is overridden by the Z component of the constant vector

specified by ConstantSource[1].

13 Attribute [2n] Component Override Y

Project: All

Format: Enable

If set, the Y component of output Attribute 0 is overridden by the Y component of the constant vector

specified by ConstantSource[1].

12 Attribute [2n] Component Override X

Project: All

Format: Enable

If set, the X component of output Attribute 0 is overridden by the X component of the constant vector

specified by ConstantSource[1].

11 Reserved

Project: All

Format: MBZ

10:9 Attribute [2n] Constant Source

Project: All

Format: U2 enumerated type

This state selects a constant vector which can be used to override individual components of Attribute 0

Value Name Description Project

0h CONST_0000 Constant.xyzw = 0.0,0.0,0.0,0.0 All

1h CONST_0001_FLOAT Constant.xyzw = 0.0,0.0,0.0,1.0 All

2h CONST_1111_FLOAT Constant.xyzw = 1.0,1.0,1.0,1.0 All

3h PRIM_ID Constant.xyzw = PrimID (replicated) All

8 Reserved

Project: All

Format: MBZ

7:6 Attribute [2n] Swizzle Select

Project: All

Format: U2 enumerated type

This state, along with Attribute 0 Source Attribute, specifies the source for output Attribute 0.

Value Name Description Project

0h INPUTATTR This attribute is sourced from AttrInputReg[SourceAttribute] All

1h INPUTATTR_FACING If the object is front-facing, this attribute is sourced from

AttrInputReg[SourceAttribute].If the object is back-facing, this

attribute is sourced from AttrInputReg[SourceAttribute+1].

All

2h INPUTATTR_W This attribute is sourced from AttrInputReg[SourceAttribute]. All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 268

3DSTATE_SBE

The W component is copied to the X component.

3h INPUTATTR_FACING_W If the object is front-facing, this attribute is sourced from

AttrInputReg[SourceAttribute].If the object is back-facing, this

attribute is sourced from AttrInputReg[SourceAttribute+1]. The

W component is copied to the X component.

All

5 Reserved

Project: All

Format: MBZ

4:0 Attribute [2n] Source Attribute

Project: All

Format: U5

This field selects the source attribute for Attribute 0. Source attribute 0 corresponds to the first 128 bits

of data indicated by Vertex URB Entry Read Offset

10 31:0 Point Sprite Texture Coordinate Enable

Project: All

Format: 32-bit bitmask

When processing point primitives, the attributes from the incoming point vertex are typically copied to

the point object corner vertices. However, if a bit is set in this field, the corresponding Attribute is

selected as a Point Sprite Texture Coordinate, in which case each corner vertex is assigned a pre-

defined texture coordinate as defined by the Point Sprite Texture Coordinate Origin state bit. Bit 0

corresponds to output Attribute 0.

This field must be programmed to 0 when non-point primitives are rendered.

11 31:0 Constant Interpolation Enable[31:0]

Project: All

This field is a bitmask containing a Constant Interpolation Enable bit for each corresponding attribute. If

a bit is set, that attribute will undergo constant interpolation, and the corresponding WrapShortest

Enable bits (if defined) will be ignored. If a bit is clear, components which are not enabled for

WrapShortest interpolation (if defined) will be linearly interpolated.

12 31:28 Attribute 7 WrapShortest Enables

Project: All

Format: Enable[4]

This state selects which components (if any) of Attribute 7 are to be interpolated in a “wrap shortest”

fashion. Operation is UNDEFINED if any of these bits are set and the Constant Interpolation Enable bit

associated with this attribute is set. Note that wrap-shortest interpolation is only supported for Attributes

0-15.Bit 0: WrapShortest X ComponentBit 1: WrapShortest Y ComponentBit 2: WrapShortest Z

ComponentBit 3: WrapShortest W Component

27:24 Attribute 6 WrapShortest Enables

Project: All

(See above).

23:20 Attribute 5 WrapShortest Enables

Project: All

(See above).

19:16 Attribute 4 WrapShortest Enables

Project: All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 269

3DSTATE_SBE

(See above).

15:12 Attribute 3 WrapShortest Enables

Project: All

(See above).

11:8 Attribute 2 WrapShortest Enables

Project: All

(See above).

7:4 Attribute 1 WrapShortest Enables

Project: All

(See above).

3:0 Attribute 0 WrapShortest Enables

Project: All

(See above).

13 31:28 Attribute 15 WrapShortest Enables

Project: All

Format: Enable[4]

This state selects which components (if any) of Attribute 15 are to be interpolated in a “wrap shortest”

fashion. Operation is UNDEFINED if any of these bits are set and the Constant Interpolation Enable bit

associated with this attribute is set.Bit 0: WrapShortest X ComponentBit 1: WrapShortest Y

ComponentBit 2: WrapShortest Z ComponentBit 3: WrapShortest W Component

27:24 Attribute 14 WrapShortest Enables

Project: All

(See above).

23:20 Attribute 13 WrapShortest Enables

Project: All

(See above).

19:16 Attribute 12 WrapShortest Enables

Project: All

(See above).

15:12 Attribute 11 WrapShortest Enables

Project: All

(See above).

11:8 Attribute 10 WrapShortest Enables

Project: All

(See above).

7:4 Attribute 9 WrapShortest Enables

Project: All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 270

3DSTATE_SBE

(See above).

3:0 Attribute 8 WrapShortest Enables

Project: All

(See above).

10.3.15 SF_CLIP_VIEWPORT

The viewport-specific state used by both the SF and CL units (SF_CLIP_VIEWPORT) is stored as an

array of up to 16 elements, each of which contains the DWords described below. The start of each

element is spaced 16 DWords apart. The location of first element of the array, as specified by both

Pointer to SF_VIEWPORT and Pointer to CLIP_VIEWPORT, is aligned to a 64-byte boundary.

SF_CLIP_VIEWPORT

Source: RenderCS

Default

Value:

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000

DWord Bit Description

0 31:0 Viewport Matrix Element m00

Format: IEEE_Float

1 31:0 Viewport Matrix Element m11

Format: IEEE_Float

2 31:0 Viewport Matrix Element m22

Format: IEEE_Float Total Length - 2

3 31:0 Viewport Matrix Element m30

Format: IEEE_Float Total Length - 2

4 31:0 Viewport Matrix Element m31

Format: IEEE_Float

5 31:0 Viewport Matrix Element m32

Format: IEEE_Float

6 31:0 Reserved

7 31:0 Reserved

Project: All

Format: MBZ

8 31:0 X Min Clip Guardband

Default Value: 0h Excludes DWord (0,1)

Format: FLOAT32

. This 32-bit float represents the XMin guardband boundary (normalized to Viewport.XMin == -1.0f).

This corresponds to the left boundary of the NDC guardband.

9 31:0 X Max Clip Guardband

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 271

SF_CLIP_VIEWPORT

Default Value: 0h Excludes DWord (0,1)

Format: FLOAT32

This 32-bit float represents the XMax guardband boundary (normalized to Viewport..XMax == 1.0f).

This corresponds to the right boundary of the NDC guardband.

10 31:0 Y Min Clip Guardband

Format: FLOAT32

This 32-bit float represents the YMin guardband boundary (normalized to Viewport.YMin == -1.0f). This

corresponds to the bottom boundary of the NDC guardband.

11 31:0 Y Max Clip Guardband:

Format: FLOAT32

This 32-bit float represents the YMax guardband boundary (normalized to Viewport.YMax == 1.0f).

This corresponds to the top boundary of the NDC guardband.

12

12..15

31:0 Reserved

Format: MBZ

10.3.16 SCISSOR_RECT

SCISSOR_RECT

Source: RenderCS

Default Value: 0x00000000, 0x00000000

The viewport-specific state used by the SF unit (SCISSOR_RECT) is stored as an array of up to 16 elements, each

of which contains the DWords described below. The start of each element is spaced 2 DWords apart. The location of

first element of the array, as specified by Pointer to SCISSOR_RECT, is aligned to a 32-byte boundary.

DWord Bit Description

0 31:16 Scissor Rectangle Y Min

Project: All

Format: U16 Pixels from Drawing Rectangle origin (upper left corner)

Specifies Y Min coordinate of (inclusive) Scissor Rectangle used for scissor test. Pixels with (Draw

Rectangle-relative) Y coordinates less than Y Min will be clipped out if Scissor Rectangle is enabled.

NOTE: If Y Min is set to a value greater than Y Max, all primitives will be discarded for this viewport.

Value Name Project

[0,16383]

15:0 Scissor Rectangle X Min

Project: All

Format: U16 Pixels from Drawing Rectangle origin (upper left corner)

Specifies X Min coordinate of (inclusive) Scissor Rectangle used for scissor test. Pixels with (Draw

Rectangle-relative) X coordinates less than X Min will be clipped out if Scissor Rectangle is enabled.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 272

SCISSOR_RECT

NOTE: If X Min is set to a value greater than X Max, all primitives will be discarded for this viewport.

Value Name Project

[0,16383]

1 31:16 Scissor Rectangle Y Max

Project: All

Format: U16 Pixels from Drawing Rectangle origin (upper left corner)

Specifies Y Max coordinate of (inclusive) Scissor Rectangle used for scissor test. Pixels with (Draw

Rectangle-relative) Y coordinates greater than Y Max will be clipped out if Scissor Rectangle is

enabled.

Value Name Project

[0,16383]

15:0 Scissor Rectangle X Max

Project: All

Format: U16 Pixels from Drawing Rectangle origin (upper left corner)

Specifies X Max coordinate of (inclusive) Scissor Rectangle used for scissor test. Pixels with (Draw

Rectangle-relative) Y coordinates greater than X Max will be clipped out if Scissor Rectangle is

enabled.

Value Name Project

0-16383

10.4 Attribute Interpolation Setup

With the attribute interpolation setup function being implemented in hardware for, a number of state fields

in 3DSTATE_SF are utilized to control interpolation setup.

Number of SF Output Attributes sets the number of attributes that will be output from the SF stage, not

including position. This can be used to specify up to 32, and may differ from the number of input

attributes. The number of input attributes is derived from the Vertex URB Entry Read Length field. Note

that this field is also used to specify whether swizzling is to be performed on Attributes 0-15 or Attributes

16-32. See the state field definition for details.

10.4.1 Attribute Swizzling

The first or last set of 16 attributes can be swizzled according to certain state fields. Attribute Swizzle

Enable enables the swizzling for all 16 of these attributes, and each of the attributes has a 2-bit Swizzle

Select field that controls swizzling with the following settings:

 INPUTATTR – This attribute is sourced from AttrInputReg[SourceAttribute].

 INPUTATTR_FACING – This attribute is sourced from AttrInputReg[SourceAttribute] if the object
is front-facing, otherwise it is sourced from AttrInputReg[SourceAttribute+1].

 INPUTATTR_W – This attribute is sourced from AttrInputReg[SourceAttribute]. WYZW (the W
component of the source is copied to the X component of the destination).

 INPUTATTR_FACING – If the object is front-facing, this attribute is sourced from
AttrInputReg[SourceAttribute]. WYZW (the W component of the source is copied to the X

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 273

component of the destination). If the object is front-facing, this attribute is sourced from
AttrInputReg[SourceAttribute+1]. WYZW.

Each of the first or last set of 16 attributes also has a 5-bit Source Attribute field which specify, per

output attribute (not component), which input attribute sources the output attribute when INPUTATTR is

selected for Swizzle Select. A Source Attribute value of 0 corresponds to the 128-bit attribute

immediately following the vertex 4D position. If INPUTATTR_FACING is selected, this specifies the first of

two consecutive (front,back) input attributes, where the SourceAttribute value can be an odd or even

number (just not 31, as that would place the back-face input attribute past the end of the input max

complement of input attributes).

Constant overriding is also available for the first or last set of 16 attributes. Each attribute has a Constant

Source field which specifies the constant values per swizzled attribute, with the following settings

available:

 XYZW = 0000

 XYZW = 0001

 XYZW = 1111

Each channel of each attribute has a Component Override field to control whether the corresponding

channel is overridden with the constant value defined in Constant Source.

10.4.2 1Interpolation Modes

All 32 attributes have a Constant Interpolation Enable state field bit to specify whether all components

of the attribute are to be interpolated as constant values (not varying over the pixels of the object). If set,

the attribute at the provoking vertex is copied to a0, and a1 and a2 are set to zero – this results in a

constant interpolation of the provoking vertex value. If clear, the attribute is linearly interpolated. Attributes

0-15 are further subjected to Wrap Shortest processing on a per-component basis, via the Attribute

WrapShortest Enables state bitfields. WrapShortest processing modifies the a1 and/or a2 values

depending on attribute deltas. All

The table below indicates the output values of a0, a1, and a2 depending on interpolation mode settings.

 a0 a1 a2

Constant A0 0.0 0.0

Linear A0 A1-A0 A2-A0

Wrap Shortest

A0
(A1-A0)+1 (A1-A0) <= -0.5

(A1-A0)-1 (A1-A0) >= 0.5

(A1-A0) otherwise

(A2-A0)+1 (A2-A0) <= -0.5

(A2-A0)-1 (A2-A0) >= 0.5

(A2-A0) otherwise

10.4.3 Point Sprites

Normally all vertex attributes (including texture coordinates) other than position are simply replicated from

the incoming point center vertex to the generated point object (corner) vertices. However, both DX9 and

OGL support “sprite points”, where some/all texture coordinates are replaced with full-scale 2D texture

coordinates.

A 32-bit PointSprite TextureCoordinate Enable bit mask controls whether the corresponding vertex

attribute is to be replaced by a sprite point texture coordinate. The global (not per-attribute) Point Sprite

TextureCoordinate Origin field controls how the point object vertex (top/bottom, left/right) texture

coordinates are generated:

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 274

UPPERLEFT
Left Right

Top (0,0,0,1) (1,0,0,1)

Bottom (0,1,0,1) (1,1,0,1)

LOWERLEFT
Left Right

Top (0,1,0,1) (1,1,0,1)

Bottom (0,0,0,1) (1,0,0,1)

10.5 Depth Offset

The state for depth offset in 3DSTATE_SF controls the depth offset function. Since this function was

previously contained in the Windower stage, refer to the “Depth Offset” section in the Windower chapter

for more details on this function.

10.6 Other SF Functions

10.6.1 Statistics Gathering

The SF stage itself does not have any associated pipeline statistics; however, it counts the number of

objects being output by the clipper on the clipper’s behalf, since it less feasible to have the CLIP unit

figure out how many objects have been output by a clip thread. It is easy for the SF unit to count the

number of objects it receives from the CLIP stage since it is decomposing the output primitive topologies

into objects anyway.

If the Statistics Enable bit is set in SF_STATE, then SF will increment the CL_PRIMITIVES_COUNT

Register (see Memory Interface Registers in Volume Ia, GPU) once for each object in each primitive

topology it receives from the CLIP stage. This bit should always be set if clipping is enabled and pipeline

statistics are desired.

Software should always clear the Statistics Enable bit in SF_STATE if the clipper is disabled since

objects SF receives are not considered “primitives output by the clipper” unless the clipper is enabled.

Note that the clipper can be disabled either using bypass mode via a PIPELINE_STATE_POINTERS

command with Clip Enable clear or by setting Clip Mode in CLIP_STATE to CLIPMODE_ACCEPT_ALL.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 275

11. 3D Pipeline – Windower (WM) Stage

11.1 Overview

As mentioned in the SF Unit chapter, the SF stage prepares an object for scan conversion by the

Window/Masker (WM) unit Refer to the SF Unit chapter for details on the screen-space geometry of

objects to be rendered The WM unit uses the parameters provided by the SF unit in the object-specific

rasterization algorithms.

The WM stage of the 3D pipeline performs the following operations (at a high level)

 Pre-scan-conversion modification of some primitive attributes, including

o Application of Depth Offset to the position Z attribute

 Scan-conversion of the various primitive types, including

o 2D clipping to the scissor/draw rectangle intersection

 Spawning of Pixel Shader (PS) threads to process the pixels resulting from scan-conversion

The spawned Pixel Shader (PS) threads are responsible for the following (high-level) operations

 interpolation of vertex attributes (other than X,Y,Z) to the pixel location

 performing any “Pixel Shader” operations dictated by the API PS program

o Using the Sampler shared function to sample data from “texture” surfaces

o Using the DataPort to perform general memory I/O

 Submitting the shaded pixel results to the DataPort for any subsequent “blending” (aka Output
Merger) operation and write to the RenderCache.

The WM unit keeps a scoreboard of pixels being processed in outstanding PS threads in order to

guarantee in-order rasterization results This allows the WM unit to overlap processing of several objects.

11.1.1 Inputs from SF to WM

The outputs from the SF stage to the WM stage are mostly comprised of implementation-specific

information required for the rasterization of objects The types of information is summarized below, but as

the interface is not exposed to software a detailed discussion is not relevant to this specification.

 PrimType of the object

 VPIndex, RTAIndex associated with the object

 Handle of the Primitive URB Entry (PUE) that was written by the SF (Setup) thread This handle will
be passed to all WM (PS) threads spawned from the WM’s rasterization process.

 Information regarding the X,Y extent of the object (e.g., bounding box, etc.)

 Edge or line interpolation information (e.g., edge equation coefficients, etc.)

 Information on where the WM is to start rasterization of the object

 Object orientation (front/back-facing)

 Last Pixel indication (for line drawing)

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 276

11.2 Windower Pipelined State

{WA}: The driver must make sure a PIPE_CONTROL with the Depth Stall Enable bit set after all the

following states are programmed:

o 3DSTATE_PS

o 3DSTATE_VIEWPORT_STATE_POINTERS_CC

o 3DSTATE_CONSTANT_PS

o 3DSTATE_BINDING_TABLE_POINTERS_PS

o 3DSTATE_SAMPLER_STATE_POINTERS_PS

o 3DSTATE_CC_STATE_POINTERS

o 3DSTATE_BLEND_STATE_POINTERS

o 3DSTATE_DEPTH_STENCIL_STATE_POINTERS

11.2.1 3DSTATE_WM

3DSTATE_WM

Source: RenderCS

Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 14h 3DSTATE_WM

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 01h Excludes DWord (0,1)

Project: All

Format: =n

Total Length - 2

1 31 Statistics Enable

Project: All

Format: Enable

If ENABLED, the Windower and pixel pipeline will engage in statistics gathering. If DISABLED,

statistics information associated with this FF stage will be left unchanged. See Statistics Gathering.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 277

3DSTATE_WM

30 Depth Buffer Clear

Project: All

Format: Enable

When set, the depth buffer is initialized as a side-effect of rendering pixels.

Programming Notes

If this field is enabled,

2.
the Depth Test Enable field in DEPTH_STENCIL_STATE must be disabled.

3.
3DSTATE_DEPTH_BUFFER::Depth Write Enable must be set.

4.
3DSTATE_DEPTH_BUFFER::Stencil Write Enable must be set if
3DSTATE_STENCIL_BUFFER::Stencil buffer enable is set. Additionally the following must be set to
the correct values.

B.
DEPTH_STENCIL_STATE::Stencil Write Mask must be 0xFF

C.
DEPTH_STENCIL_STATE::Stencil Test Mask must be 0xFF

D.
DEPTH_STENCIL_STATE::Back Face Stencil Write Mask must be 0xFF

E.
DEPTH_STENCIL_STATE::Back Face Stencil Test Mask must be 0xFF

 Refer to section 0 "Depth Buffer Clear" for additional restrictions when this field is enabled. If this field

is enabled,Pixel Shader Kill Pixel must be disabled.

29 Thread Dispatch Enable

Project: All

Format: Enable

This bit, if set, indicates that it is possible for a PS thread to modify a render target, i.e.,at least one

render target is enabled (is not of type SURFTYPE_NULL and has at least one channel enabled for

writes) and the PS kernel contains a code path that may issue a write to that/those enabled RTs.

Programming Notes

This bit is used for performance optimizations and does not directly control writing to render targets. If

this bit is DISABLED, no pixel shader threads will be dispatched.For correct behavior, this bit must be

set consistently with the behavior of the PS kernel, i.e. if this bit is DISABLED the PS kernel must not

write color or depth to any render targets.If this field is disabled, Pixel Shader Kill Pixel must be

disabled.

28 Depth Buffer Resolve Enable

Project: All

Format: Enable

When set, the depth buffer is made to be consistent with the hierarchical depth buffer as a side-effect

of rendering pixels. This is intended to be used when the depth buffer is to be used as a surface

outside of the 3D rendering operation.

Programming Notes

If this field is enabled,

2.
the Depth Buffer Clear and Hierarchical Depth Buffer Resolve Enable fields must both be

disabled.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 278

3DSTATE_WM

3.
3DSTATE_DEPTH_BUFFER::Depth Write Enable must be set.

 Refer to section 11.5.4.2 "Depth Buffer Resolve" for additional restrictions when this field is enabled. If

Hierarchical Depth Buffer Enable is disabled, enabling this field will have no effect.

27 Hierarchical Depth Buffer Resolve Enable

Project: All

Format: Enable

When set, the hierarchical depth buffer is made to be consistent with the depth buffer as a side-effect

of rendering pixels. This is intended to be used when the depth buffer has been modified outside of the

3D rendering operation.

Programming Notes Project

If this field is enabled,

2.
the Depth Buffer Clear and Depth Buffer Resolve Enable fields must both be

disabled.

3.
3DSTATE_DEPTH_BUFFER::Depth Write Enable must be set.

 Refer to section 11.5.4.3 "Hierarchical Depth Buffer Resolve" for additional restrictions

when this field is enabled.

 If Hierarchical Depth Buffer Enable is disabled, enabling this field will have no effect.

Performance Note: expect the hierarchical depth buffer's impact on performance to be

reduced for some period of time after this operation is performed, as the hierarchical

depth buffer is initialized to a state that makes it ineffective. Further rendering will tend

to bring the hierarchical depth buffer back to a more effective state.

Software needs to do an ambiguate after allocating the surface for the first time if the

depth buffer width and height are NOT aligned to 8 and 4 respectively.

26 Legacy Diamond Line Rasterization

Project: All

Format: Enable

This bit, if ENABLED, indicates that the Windower will rasterize zero width lines using the DX9

rasterization rules. If DISABLED, the Windower will rasterize zero width lines using the DX10

rasterization rules (see Strips Fans chapter).

25 Pixel Shader Kill Pixel

Project: All

Format: Enable

This bit, if ENABLED, indicates that the PS kernel or color calculator has the ability to kill (discard)

pixels or samples, other than due to depth or stencil testing. This bit is required to be ENABLED in the

following situations:

The API pixel shader program contains “killpix” or “discard” instructions, or other code in the pixel
shader kernel that can cause the final pixel mask to differ from the pixel mask received on dispatch.

A sampler with chroma key enabled with kill pixel mode is used by the pixel shader.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 279

3DSTATE_WM

Any render target has Alpha Test Enable or AlphaToCoverage Enable enabled.

The pixel shader kernel generates and outputs oMask.

Note: As ClipDistance clipping is fully supported in hardware and therefore not via PS instructions,

there should be no need to ENABLE this bit due to ClipDistance clipping.

24:23 Pixel Shader Computed Depth Mode

Format: U2 Enumerated Type

This field specifies the computed depth mode for the pixel shader.

Value Name Description Project
0h PSCDEPTH_OFF Pixel shader does not compute depth All

1h PSCDEPTH_ON Pixel shader computes depth with no guarantee as to its

value

All

2h PSCDEPTH_ON_GE Pixel shader computes depth and guarantees that oDepth

>= SourceDepth

All

3h PSCDEPTH_ON_LE Pixel shader computes depth and guarantees that oDepth

<= SourceDepth

All

Programming Notes

When bit 5 is set in WM_STATE(i.e. RT independent rasterization is enabled), this field can not be

programmed to values: 2h or 3h.

22:21 Early Depth/Stencil Control

Format: U2 Enumerated Type

This field specifies the behavior of early depth/stencil test.

Value Name Description Project
0h EDSC_NORMAL Depth/Stencil Test/Write behaves as if it happens post-shader,

however the pixel shader is not necessarily executed if the pixel

fails depth or stencil test (this is the legacy behavior)

All

1h EDSC_PSEXEC Depth/Stencil Test/Write behaves as if it happens post-shader,

and the pixel shader is executed if the pixel fails depth or stencil

test (although pre-shader actions such as primitive inclusion,

stipple, etc. will still cause the shader not to execute)

All

2h EDSC_PREPS Depth/Stencil Test/Write behaves as if it happens pre-shader.

The pixel shader is not executed if the pixel fails depth or

stencil test. Depth and stencil writes occur even if the pixel is

killed by the shader or post-shader by alpha test, etc. Depth

output by the pixel shader is ignored.

All

3h Reserved All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 280

3DSTATE_WM

Programming Notes

If EDSC_PSEXEC mode is selected, Thread Dispatch Enable must be set.

Errata Description Project

 When value of “2h” is programmed, PS_INVOCATIONs_COUNT may not be accurate.

20 Pixel Shader Uses Source Depth

Project: All

Format: Enable

This bit, if ENABLED, indicates that the PS kernel requires the source depth value (vPos.z) to be

passed in the payload.The source depth value is interpolated according to the Position ZW

Interpolation Mode state.

19 Pixel Shader Uses Source W

Project: All

Format: Enable

This bit, if ENABLED, indicates that the PS kernel requires the interpolated source W value (vPos.w) to

be passed in the payload. The W value is interpolated according to the Position ZW Interpolation Mode

state.

18:17 Position ZW Interpolation Mode

Project: All

Format: U2 Enumerated Type

This field elects “interpolation mode” associated with the Position Z (source depth) and W coordinates

passed in the PS payload when the PS requires Position as input. This field does not determine

whether these coordinates are actually included in the payload (see Pixel Shader Requires Depth,

Pixel Shader Requires W).

Value Name Description Project
0h INTERP_PIXEL Evaluate Z & W at the pixel center or UL corner (as

specified by Pixel Location of 3DSTATE_MULTISAMPLE)

All

1h Reserved All

2h INTERP_CENTROID All

3h INTERP_SAMPLE All

Programming Notes

When bit 5 is set in WM_STATE, value of 3h is not defined for this field.

 Programming Note: When bit 5 in dword 1 (RT Independent Rasterization Enable) is set and bit 30 in

dword 2 (PS UAV-only) is not set in WM_STATE, value of 3h is not defined for this field.

16:11 Barycentric Interpolation Mode

Project: All

Format: Enable[6]

Controls which barycentric interpolation terms must be passed into the pixel shader kernel.

 Bit 0: Perspective Pixel Location barycentric is required

 Bit 1: Perspective Centroid barycentric is required

 Bit 2: Perspective Sample barycentric is required

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 281

3DSTATE_WM

 Bit 3: Non-perspective Pixel Location barycentric is required

 Bit 4: Non-perspective Centroid barycentric is required

 Bit 5: Non-perspective Sample barycentric is required

Programming Notes

If contiguous dispatch modes are enabled, only bit 3 (non-perspective pixel location) can be set, all

other bits in this field must be zero.Pixel Location below refers to either the upper left corner or pixel

center depending on the Pixel Location state of 3DSTATE_MULTISAMPLING).

MSDISPMODE_PERSAMPLE is required in order to select Perspective Sample or Non-perspective

Sample barycentric coordinates.

Errata: When Centroid Barycentric mode is required, HW may produce incorrect interpolation results

when a 2X2 pixels have unlit pixels.

10 Pixel Shader Uses Input Coverage Mask

Project: All

Format: Enable

This bit, if ENABLED, indicates that the PS kernel requires the input coverage mask to be passed in

the payload.

9:8 Line End Cap Antialiasing Region Width

Project: All

Format: U2

This field specifies the distances over which the coverage of anti-aliased line end caps are computed.

Value Name Description Project
0h 0.5 pixels All

1h 1.0 pixels All

2h 2.0 pixels All

3h 4.0 pixels All

7:6 Line Antialiasing Region Width

Project: All

Format: U2

This field specifies the distance over which the anti-aliased line coverage is computed.

Value Name Description Project
0h 0.5 pixels All

1h 1.0 pixels All

2h 2.0 pixels All

3h 4.0 pixels All

5 Reserved

Format: MBZ

4 Polygon Stipple Enable

Project: All

Format: Enable

Enables the Polygon Stipple function.

3 Line Stipple Enable

Project: All

Format: Enable

Enables the Line Stipple function.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 282

3DSTATE_WM

2 Point Rasterization Rule

Project: All

Format: 3D_RasterizationRule

This field specifies the rasterization rules to be applied whenever the edges of a point primitive fall

exactly on a pixel sampling point.

Value Name Description Project
0h RASTRULE_UPPER_LEFT To match “normal” upper left rules for surface

primitives

All

1h RASTRULE_UPPER_RIGHT To match OpenGL point rasterization rules (round

to + infinity, where this is the upper right direction

wrt OpenGL screen origin of lower left).

All

1:0 Multisample Rasterization Mode

Project: All

Format: U2 enumerated type

This field determines whether multisample rasterization is turned on/off, and how the pixel sample

point(s) are defined. Software sets this according to the API, the API's multisample enable state setting

(if any), and whether 1X or 4X MSRTs are bound. This state is duplicated in 3DSTATE_SF and both

must be set to the same value. Refer to the "Multisampling" section for details on the settings of this

field.

Value Name Project
0h MSRASTMODE_OFF_PIXEL All

1h MSRASTMODE_OFF_PATTERN All

2h MSRASTMODE_ON_PIXEL All

3h MSRASTMODE_ON_PATTERN All

2 31 Multisample Dispatch Mode

Project: All

Format: U1 Enumerated Type

This bit, along with Number of Multisamples, determines how PS threads are dispatched. Software

programs this bit depending on the per-pixel v.s per-sample PS execution requirement.

 When RT Independent Rasterization Enable = 1, value of 0h for this field is not allowed.

Value Name Description Project
0h MSDISPMODE_PERSAMPLE This is the high-quality DX10.1 multisample mode

where (over and above PERPIXEL mode) the PS

is run for each covered sample. This mode is also

used for “normal” non-multisample rendering (aka

1X), given Number of Multisamples is

programmed to NUMSAMPLES_1.

All

1h MSDISPMODE_PERPIXEL This is the classic multisample mode of operation,

typically used for both antialiasing and

transparency. Setup and rasterization operate in

full multisample mode, testing coverage and

depth/stencil test at the sample level but only

running the PS once per pixel.

All

30:0 Reserved

Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 283

11.2.2 3DSTATE_PS

This command is used to set state used by the pixel shader dispatch stage.

3DSTATE_PS

Source: RenderCS

Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 20h 3DSTATE_PS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Default Value: 06h Excludes DWord (0,1)

Project: All

Format: =n

Total Length - 2

1 31:6 Kernel Start Pointer[0]

Project: All

Format: InstructionBaseOffset[31:6]Kernel

Specifies the 64-byte aligned address offset of the first instruction in the kernel[0]. This pointer is

relative to the Instruction Base Address.

5:0 Reserved

Project: All

Format: MBZ

2 31 Single Program Flow (SPF)

Project: All

Specifies the initial condition of the kernel program as either a single program flow (SIMDnxm with m =

1) or as multiple program flows (SIMDnxm with m > 1). See CR0 description in ISA Execution

Environment.

Value Name Description Project
0h Multiple Multiple Program Flows All

1h Single Single Program Flows All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 284

3DSTATE_PS

30 Vector Mask Enable (VME)

Project: All

Format: U1 Enumerated Type

When SPF=0, VME specifies which mask to use to initialize the initial channel enables. When SPF=1,

VME specifies which mask to use to generate execution channel enables.

Value Name Description Project
0h Dmask Channels are enabled based on the dispatch mask All

1h Vmask Channels are enabled based on the vector mask All

29:27 Sampler Count

Project: All

Format: U3

Specifies how many samplers (in multiples of 4) the pixel shader 0 kernel uses. Used only for

prefetching the associated sampler state entries.

Value Name Description Project
[0,4]

0h no samplers used All

1h between 1 and 4 samplers used All

2h between 5 and 8 samplers used All

3h between 9 and 12 samplers used All

4h between 13 and 16 samplers used All

5h-7h Reserved All

26 Denormal Mode

Project: All

Specifies the denornal mode used by the dispatched thread.

Value Name Description Project
0h FTZ Denormals are flushed to zero All

1h RET Denormals are retained All

25:18 Binding Table Entry Count

Project: All

Format: U8

Specifies how many binding table entries the kernel uses. Used only for prefetching of the binding table

entries and associated surface state.Note: For kernels using a large number of binding table entries, it

may be advantageous to set this field to zero to avoid prefetching too many entries and thrashing the

state cache.

 This field is ignored if VS Function Enable is DISABLED.

Value Name
[0,255]

Programming Notes

When HW binding table bit is set, it is assumed that the Binding Table Entry Count field will be

generated at JIT time.

17 Reserved

Format: MBZ

16 Floating Point Mode

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 285

3DSTATE_PS

Project: All

Specifies the floating point mode used by the dispatched thread.

Value Name Description Project
0h IEEE-745 Use IEEE-754 rules All

1h Alt Use alternate rules All

15:14 Rounding Mode

Project: All

Specifies the rounding mode used by the dispatched thread.

Value Name Description Project
0h RTNE Round to Nearest Even All

1h RU Round toward +infinity All

2h RD Round toward –infinity All

3h RTZ Round toward zero All

13 Illegal Opcode Exception Enable

Project: All

Format: Enable

This bit gets loaded into EU CR0.1[12] (note the bit # difference). See Exceptions and ISA Execution

Environment.

12 Reserved

Project: All

Format: MBZ

11 MaskStack Exception Enable

Project: All

Format: Enable

This bit gets loaded into EU CR0.1[12] (note the bit # difference). See Exceptions and ISA Execution

Environment.

10:8 Reserved

Project: All

Format: MBZ

7 Software Exception Enable

Project: All

Format: Enable

This bit gets loaded into EU CR0.1[13] (note the bit # difference). See Exceptions and ISA Execution

Environment.

6:0 Reserved

Project: All

Format: MBZ

3 31:10 Scratch Space Base Pointer

Project: All

Format: GeneralStateOffset[31:10]ScratchSpace

Specifies the 1k-byte aligned address offset to scratch space for use by the kernel. This pointer is

relative to the General State Base Address.

9:4 Reserved

Project: All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 286

3DSTATE_PS

Format: MBZ

3:0 Per Thread Scratch Space

Project: All

Format: U4

Specifies the amount of scratch space allowed to be used by each thread. The driver must allocate

enough contiguous scratch space, pointed to by the Scratch Space Pointer, to ensure that the

Maximum Number of Threads each get Per Thread Scratch Space size without exceeding the driver-

allocated scratch space.

Value Name
[0,11] indicating [1k bytes, 2M bytes] in powers of two

4 31:24 Maximum Number of Threads

Format: U8-1 representing thread count

Description Project

Range:

 WIZ Hashing Disable in GT_MODE register enabled: Range = [7,171] --> [8,172] threads.

Only odd values are allowed (resulting in even max number of threads)

 WIZ Hashing Disable in GT_MODE register disabled: Range = [3,85] --> [4,86] threads. Only

odd values are allowed (resulting in even max number of threads)

Specifies the maximum number of simultaneous threads allowed to be active. Used to avoid

using up the scratch space, or to avoid potential deadlock.

Value Name Description Project
[3h,2fh] Range [4,48] threads

Programming Notes

If this field is changed between 3DPRIMITIVE commands, a PIPE_CONTROL command with Stall at

Pixel Scoreboard set is required to be issued. This field must have an odd value so that the max

number of PS threads is even.

23:12 Reserved

Format: MBZ

11 Push Constant Enable

Project: All

Format: Enable

This field must be enabled if the sum of the PS Constant Buffer [3:0] Read Length fields in

3DSTATE_CONSTANT_PS is nonzero, and must be disabled if the sum is zero.

10 Attribute Enable

Project: All

Format: Enable

This field must be enabled if the Number of SF Output Attributes field in 3DSTATE_SBE is nonzero,

and must be disabled if that field is zero.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 287

3DSTATE_PS

9 oMask Present to RenderTarget

Project: All

Format: Enable

This bit is inserted in the PS payload header and made available to the DataPort (either via the

message header or via header bypass) to indicate that oMask data (one or two phases) is included in

Render Target Write messages. If present, the oMask data is used to mask off samples.

8 Render Target Fast Clear Enable

Project: All

Format: Enable

This field is set to enable fast clear of the bound render targets. See “Render Target Fast Clear” for

restrictions on enabling this field.

7 Dual Source Blend Enable

Project: All

Format: Enable

This field is set if dual source blend is enabled. If this bit is disabled, the data port dual source message

reverts to a single source message using source 0.

6 Render Target Resolve Enable

Project: All

Format: Enable

This field is set to enable clear value resolve on non-multisampled render targets. See “Render Target

Resolve” for restrictions on enabling this field.

5 Reserved

Format: MBZ

4:3 Position XY Offset Select

Project: All

Format: U2 Enumerated Type

This field specifies if/what Position XY Offset values are passed in the PS payload. Note that these are

per-slot (pixel|sample) offsets, and therefore separate from the subspan XY coordinates passed in R1.

Value Name Description Project
0h POSOFFSET_NONE No Position XY Offsets are included in the PS

payload.

All

1h Reserved All

2h POSOFFSET_CENTROID Position XY Offsets will be passed in the PS payload,

and these will reflect the Centroid position(s).

All

3h POSOFFSET_SAMPLE Position XY Offsets will be passed in the PS payload,

and these will reflect the multisample position(s).

All

Programming Notes

SW Recommendation: If the PS kernel needs the Position Offsets to compute a Position XY value, this

field should match Position ZW Interpolation Mode to ensure a consistent position.xyzw computation

If the PS kernel does not need the Position XY Offsets to compute a Position Value, then this field

should be programmed to POSOFFSET_NONE, as the PS kernel should be using the various

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 288

3DSTATE_PS

barycentric inputs to evaluate other-than-position attributes. However, this field can be used to pass

Centroid or Sample offsets in the payload for special test modes (e.g., where barycentric coordinates

are computed in the PS vs. being HW-generated and passed in the payload).

MSDISPMODE_PERSAMPLE is required in order to select POSOFFSET_SAMPLE.

2 32 Pixel Dispatch Enable

Project: All

Format: Enable

Description Project

Enables the Windower to dispatch 8 subspans in one payload.

 Note: in the table below, the Valid column indicates which products that combination is

supported on. Combinations of dispatch enables not listed in the table are not available on any

product.

 A: Valid

 B: Valid

 D: Valid, except when in non-1x PERSAMPLE mode.

 E: Valid, except when in PERSAMPLE mode with number of multisamples >= 8.

 F: Valid.

Each of the three KSP values are separately specified.

In addition, each kernel has a separately-specified GRF register count.

Variable Pixel Dispatch Section: Pixel Grouping (Dispatch size) control for valid pixel dispatch

combinations.

1 16 Pixel Dispatch Enable

Project: All

Format: Enable

Description Project

Enables the Windower to dispatch 4 subspans in one payload.

 Note: in the table below, the Valid column indicates which products that combination is

supported on. Combinations of dispatch enables not listed in the table are not available on any

product.

 A: Valid

 B: Valid

 D: Valid, except when in non-1x PERSAMPLE mode.

 E: Valid, except when in PERSAMPLE mode with number of multisamples >= 8.

 F: Valid.

Each of the three KSP values are separately specified.

In addition, each kernel has a separately-specified GRF register count.

Variable Pixel Dispatch Section: Pixel Grouping (Dispatch size) control for valid pixel dispatch

combinations.

0 8 Pixel Dispatch Enable

Project: All

Format: Enable

Description Project

Enables the Windower to dispatch 2 subspans in one payload.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 289

3DSTATE_PS

Note: in the table below, the Valid column indicates which products that combination is

supported on. Combinations of dispatch enables not listed in the table are not available on any

product.

A: Valid

 B: Valid

 D: Valid, except when in non-1x PERSAMPLE mode.

 E: Valid, except when in PERSAMPLE mode with number of multisamples >= 8.

 F: Valid..

Each of the three KSP values are separately specified.

In addition, each kernel has a separately-specified GRF register count.

Variable Pixel Dispatch Section: Pixel Grouping (Dispatch size) control for valid pixel dispatch

combinations.

5 31:23 Reserved

Project: All

Format: MBZ

22:16 Dispatch GRF Start Register for Constant/Setup Data [0]

Project: All

Format: U7

Specifies the starting GRF register number for the Constant/Setup portion of the thread payload for

kernel[0].

Value Name
[0,127]

15 Reserved

Project: All

Format: MBZ

14:8 Dispatch GRF Start Register for Constant/Setup Data [1]

Project: All

Format: U7

Specifies the starting GRF register number for the Constant/Setup portion of the thread payload for

kernel[1].

Value Name
[0,127]

7 Reserved

Project: All

Format: MBZ

6:0 Dispatch GRF Start Register for Constant/Setup Data [2]

Project: All

Format: U7

Specifies the starting GRF register number for the Constant/Setup portion of the thread payload for

kernel[2].

Value Name
[0,127]

6 31:6 Kernel Start Pointer[1]

Project: All

Format: InstructionBaseOffset[31:6]Kernel

Specifies the 64-byte aligned address offset of the first instruction in kernel[1]. This pointer is relative to

the Instruction Base Address.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 290

3DSTATE_PS

5:0 Reserved

Project: All

Format: MBZ

7 31:6 Kernel Start Pointer[2]

Project: All

Format: InstructionBaseOffset[31:6]Kernel

Specifies the 64-byte aligned address offset of the first instruction in kernel[2]. This pointer is relative to

the Instruction Base Address.

5:0 Reserved

Project: All

Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 291

11.2.3 3DSTATE_CONSTANT_PS

3DSTATE_CONSTANT_PS

Source: RenderCS

Length Bias: 2

This command sets pointers to the push constants for the PS unit. The constant data pointed to by this command is

loaded into the PS unit’s push constant buffer (PCB).

Programming Notes Project

It is invalid to execute this command more than once between 3D_PRIMITIVE commands.

Constant buffers must be enabled in order from Constant Buffer 0 to Constant Buffer 3 within this command.

For example, it is not allowed to enable Constant Buffer 1 by programming a non-zero value in the PS

Constant Buffer 1 Read Length without a non-zero value in PS Constant Buffer 0 Read Length.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 17h 3DSTATE_CONSTANT_PS

Format: OpCode

15:8 Reserved

Format: MBZ

7:0 Dword Length

Project: All

Format: =n Total Length – 2

Value Name Project
5h Excludes DWord (0,1) [Default]

1..6

191:0 Constant Body

Format: 3DSTATE_CONSTANT(Body)

Following table is the shared portion of the 3DSTATE_CONSTANT command for VS, HS, DS,

and GS

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 292

11.2.4 3DSTATE_PUSH_CONSTANT_ALLOC_PS

3DSTATE_PUSH_CONSTANT_ALLOC_PS

Source: RenderCS

Length Bias: 2

Description Project

This command sets up the URB configuration for PS Push Constant Buffer.

A PIPE_CONTOL command with the CS Stall bit set must be programmed in the ring after this instruction.

Programming Notes

Restriction:

The sum of the Constant Buffer Offset and the Constant Buffer Size may not exceed the maximum value of the
Constant Buffer Size.

 The sum of the constant length programmed in 3DSTATE_CONSTANT_PS must be equal or smaller then the
size of the allocated space in the URB including the buffering for half cachelines. See Push Constant URB
Allocation section for more details.

The 3DSTATE_CONSTANT_PS must be reprogrammed prior to the next 3DPRIMITIVE command after
programming the 3DSTATE_PUSH_CONSTANT_ALLOC_PS.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 16h 3DSTATE_PUSH_CONSTANT_ALLOC_PS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 Dword Length

Default Value: 0h Excludes Dword (0,1)

Project: All

Format: =n Total Length – 2

1 31:20 Reserved

Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 293

3DSTATE_PUSH_CONSTANT_ALLOC_PS

19:16 Constant Buffer Offset

Format: U5

Specifies the offset of the PS constant buffer into the URB.

Value Name
[0,15] (0KB - 15KB)

0h 0KB [Default]

15:5 Reserved

Format: MBZ

4:0 Constant Buffer Size

Format: U5

Specifies the size of the PS constant buffer. This value will determine the amount of data the command

stream can pre-fetch before the buffer is full. Value of zero is only valid when constants are not

enabled for PS.

Value Name
[0,15] (0KB – 15KB) Increments of 1KB

0h 0KB [Default]

11.2.5 3DSTATE_SAMPLE_MASK

The sample mask state used by the windower stage is defined with this inline state packet.

3DSTATE_SAMPLE_MASK

Source: RenderCS

Length Bias: 2

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 18h 3DSTATE_SAMPLE_MASK

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 Dword Length

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 294

3DSTATE_SAMPLE_MASK

Default Value: 0h Excludes Dword (0,1)

Project: All

Format: =n Total Length – 2

1 31:8 Reserved

Format: MBZ

7:0 Sample Mask

Format: 8 bit mask Right-justified bitmask (Bit 0 = Sample0). Number of bits that are used is

determined by Num Multisamples (3DSTATE_MULTISAMPLE)

A per-multisample-position mask state variable that is immediately and unconditionally ANDed with the

sample coverage mask as part of the rasterization process. This mask is applied prior to centroid

selection.

Programming Notes

If Number of Multisamples is NUMSAMPLES_1, bits 7:1 of this field must be zero.

If Number of Multisamples is NUMSAMPLES_4, bits 7:4 of this field must be zero.

11.3 Rasterization

The WM unit uses the setup computations performed by the SF unit to rasterize objects into the

corresponding set of pixels Most of the controls regarding the screen-space geometry of rendered objects

are programmed via the SF unit.

The rasterization process generates pixels in 2x2 groups of pixels called subspans (see UNRESOLVED

CROSS REFERENCE, Pixels with a SubSpan) which, after being subjected to various inclusion/discard

tests, are grouped and passed to spawned Pixel Shader (PS) threads for subsequent processing Once

these PS threads are spawned, the WM unit provides only bookkeeping functions on the pixels Note that

the WM unit can proceed on to rasterize subsequent objects while PS threads from previous objects are

still executing.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 295

Pixels with a SubSpan

11.3.1 Drawing Rectangle Clipping

The Drawing Rectangle defines the maximum extent of pixels which can be rendered Portions of objects

falling outside the Drawing Rectangle will be clipped (pixels discarded) Implementations will typically

discard objects falling completely outside of the Drawing Rectangle as early in the pipeline as possible

There is no control to turn off Drawing Rectangle clipping – it is unconditional.

For the purposes of clipping, the Drawing Rectangle must itself be clipped to the destination buffer

extents (The Drawing Rectangle Origin, used to offset relative X,Y coordinates earlier in the pipeline, is

permitted to lie offscreen). The Clipped Drawing Rectangle X,Y Min,Max state variables (programmed

via 3DSTATE_DRAWING_RECTANGLE – See SF Unit) defines the intersection of the Drawing

Rectangle and the Color Buffer It is specified with non-negative integer pixel coordinates relative to the

Destination Buffer upper-left origin.

Pixels with coordinates outside of the Drawing Rectangle cannot be rendered (i.e., the rectangle is

inclusive) For example, to render to a full-screen 1280x1024 buffer, the following values would be

required: Xmin=0, Ymin=0, Xmax=1279 and Ymax=1023

For “full screen” rendering, the Drawing Rectangle coincides with the screen-sized buffer For “front-buffer

windowed” rendering it coincides with the destination “window”.

11.3.2 Line Rasterization

See SF Unit chapter for details on the screen-space geometry of the various line types.

11.3.2.1 Coverage Values for Anti-Aliased Lines

The WM unit is provided with both the Line Anti-Aliasing Region Width and Line End Cap Anti-

aliasing Region Width state variables (in WM_STATE) in order to compute the coverage values for anti-

aliased lines

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 296

11.3.2.2 3DSTATE_AA_LINE_PARAMS

3DSTATE_AA_LINE_PARAMETERS

Source: RenderCS

Length Bias: 2

The 3DSTATE_AA_LINE_PARAMS command is used to specify the slope and bias terms used in the improved

alpha coverage computation (specifically for DX WHQL compliance). Note that in these devices the coverage values

passed to PS threads are full U0.8 values.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 0Ah 3DSTATE_AA_LINE_PARAMS

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 Dword Length

Default Value: 1h Excludes Dword (0,1)

Project: All

Format: =n Total Length – 2

1 31:24 Reserved

Format: MBZ

23:16 AA Coverage Bias

Project: All

Format: U0.8

This field specifies the bias term to be used in the aa coverage computation for edges 0 and 3.

15:8 Reserved

Format: MBZ

7:0 AA Coverage Slope

Project: All

Format: U0.8

This field specifies the slope term to be used in the aa coverage computation for edges 0 and 3.If this

field is zero, the Windower will revert to legacy aa line coverarge computation (though still output

expanded U0.8 coverage values).

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 297

3DSTATE_AA_LINE_PARAMETERS

2 31:24 Reserved

Format: MBZ

23:16 AA Coverage EndCap Bias

Project: All

Format: U0.8

This field specifies the bias term to be used in the aa coverage computation for edges 1 and 2.

15:8 Reserved

Format: MBZ

7:0 AA Coverage EndCap Slope

Project: All

Format: U0.8

This field specifies the slope term to be used in the aa coverage computation for edges 1 and 2.

The slope and bias values should be computed to closely match the reference rasterizer results Based on

empirical data, the following recommendations are offered:

The final alpha for the center of the line needs to be 148 to match the reference rasterizer In this case,

the Lo to edge 0 and edge 3 will be the same Since the alpha for each edge is multiplied together, we get:

edge0alpha * edge1alpha = 148/255 = 0.580392157

Since edge0alpha = edge3alpha we get:

(edge0alpha)2 = 0.580392157

edge0alpha = sqrt(0.580392157) = 0.761834731 at the center pixel

The desired alpha for pixel 1 = 54/255 = 0.211764706

The slope is (0.761834731 – 0.211764706) = 0.550070025

Since we are using 8 bit precision, the slope becomes

AA Coverage [EndCap] Slope = 0.55078125

The alpha value for Lo = 0 (second pixel from center) determines the bias term and is equal to

(0.211764706 – 0.550070025) = -0.338305319

With 8 bits of precision the programmed bias value

AA Coverage [EndCap] Bias = 0.33984375

11.3.2.3 Line Stipple

Line stipple, controlled via the Line Stipple Enable state variable in WM_STATE, discards certain pixels

that are produced by non-AA line rasterization.

The line stipple rule is specified via the following state variables programmed via

3DSTATE_LINE_STIPPLE: the 16-bit Line Stipple Pattern (p), Line Stipple Repeat Count I, and Line

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 298

Stipple Inverse Repeat Count. Sofware must compute Line Stipple Inverse Repeat Count as 1.0f /

Line Stipple Repeat Count and then converted from float to the required fixed point encoding (see

3STATE_LINE_STIPPLE).

The WM unit maintains an internal Line Stipple Counter state variable (s) The initial value of s is zero; s is

incremented after production of each pixel of a line segment (pixels are produced in order, beginning at

the starting point and working towards the ending point). S is reset to 0 whenever a new primitive is

processed (unless the primitive type is LINESTRIP_CONT or LINESTRIP_CONT_BF), and before every

line segment in a group of independent segments (LINELIST primitive).

During the rasterization of lines, the WM unit computes:

A pixel is rendered if the bth bit of p is 1, otherwise it is discarded. The bits of p are numbered with 0

being the least significant and 15 being the most significant.

11.3.2.4 3DSTATE_LINE_STIPPLE

3DSTATE_LINE_STIPPLE

Source: RenderCS

Length Bias: 2

The 3DSTATE_LINE_STIPPLE command is used to specify state variables used in the Line Stipple function.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 08h 3DSTATE_LINE_STIPPLE

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 Dword Length

Default Value: 1h Excludes Dword (0,1)

Project: All

Format: =n Total Length – 2

1 31 Modify Enable (Current Repeat Counter, Current Stipple Index)

Project: All

Format: Enable

Modify enable for Current Repeat Counter and Current Stipple Index fields.

Programming Notes

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 299

3DSTATE_LINE_STIPPLE

Software should never set this field to enabled. It is provided only for HW-generated commands as part

of context save/restore.

30 Reserved

Project: All

Format: MBZ

29:21 Current Repeat Counter

Project: All

Format: U9

This field sets the HW-internal repeat counter state. Note: Software should never attempt to set this

value – this state is only provided for HW-generated commands as part of context save/restore.

20 Reserved

Project: All

Format: MBZ

19:16 Current Stipple Index

Project: All

Format: U4

This field sets the HW-internal stipple pattern index.

 Note: Software should never attempt to set this value – this state is only provided for HW-generated

commands as part of context save/restore.

15:0 Line Stipple Pattern

Project: All

Format: 16 bit mask Bit 15 = most significant bit, Bit 0 = least significant bit

Specifies a pattern used to mask out bit specific pixels while rendering lines.

2 31:15 Line Stipple Inverse Repeat Count

Project: All

Format: U1.16

Range: [0.00390625, 1.0]

Specifies the inverse (truncated) of the repeat count for the line stipple function.

14:9 Reserved

Project: All

Format: MBZ

8:0 Line Stipple Repeat Count

Project: All

Format: U9

Specifies the repeat count for the line stipple function.

Value Name
[1, 256]

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 300

11.3.3 Polygon (Triangle and Rectangle) Rasterization

The rasterization of LINE, TRIANGLE, and RECTANGLE objects into pixels requires a “pixel sampling

grid” to be defined This grid is defined as an axis-aligned array of pixel sample points spaced exactly 1

pixel unit apart If a sample point falls within one of these objects, the pixel associated with the sample

point is considered “inside” the object, and information for that pixel is generated and passed down the

pipeline

For TRIANGLE and RECTANGLE objects, if a sample point intersects an edge of the object, the

associated pixel is considered “inside” the object if the intersecting edge is a “left” or “top” edge (or, more

exactly, the intersected edge is not a “right” or “bottom” edge) Note that “top” and “bottom” edges are by

definition exactly horizontal. See UNRESOLVED CROSS REFERENCE, TRIANGLE and RECTANGLE

Edge Types, for the edge types for representative TRIANGLE and RECTANGLE objects (solid edges are

inclusive, dashed edges are exclusive).

TRIANGLE and RECTANGLE Edge Types

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 301

11.3.3.1 Polygon Stipple

The Polygon Stipple function, controlled via the Polygon Stipple Enable state variable in WM_STATE,

allows only selected pixels of a repeated 32x32 pixel pattern to be rendered Polygon stipple is applied

only to the following primitive types:

3DPRIM_POLYGON

3DPRIM_TRIFAN

3DPRIM_TRILIST

3DPRIM_TRISTRIP

3DPRIM_TRISTRIP_REVERSE

Note that the 3DPRIM_TRIFAN_NOSTIPPLE object is never subject to polygon stipple.

The stipple pattern is defined as a 32x32 bit pixel mask via the 3DSTATE_POLY_STIPPLE_PATTERN

command. This is a non-pipelined command which incurs an implicit pipeline flush when executed.

The origin of the pattern is specified via Polygon Stipple X,Y Offset state variables programmed via the

3DSTATE_POLY_STIPPLE_OFFSET command The offsets are pixel offsets from the Color Buffer origin

to the upper left corner of the stipple pattern. This is a non-pipelined command which incurs an implicit

pipeline flush when executed.

11.3.3.2 3DSTATE_POLY_STIPPLE_OFFSET

3DSTATE_POLY_STIPPLE_OFFSET

Project: All

Source: RenderCS

Length Bias: 2

The 3DSTATE_POLY_STIPPLE_OFFSET command is used to specify the origin of the repeated screen-space

Polygon Stipple Pattern as an X,Y offset from the Color Buffer origin.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 06h 3DSTATE_POLY_STIPPLE_OFFSET

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 Dword Length

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 302

3DSTATE_POLY_STIPPLE_OFFSET

Default Value: 0h Excludes Dword (0,1)

Project: All

Format: =n Total Length – 2

1 31:13 Reserved

Project: All

Format: MBZ

12:8 Polygon Stipple X Offset

Project: All

Format: U5

Specifies a 5 bit x address offset in the poly stipple pattern

Value Name
[0,31]

7:5 Reserved

Project: All

Format: MBZ

4:0 Polygon Stipple Y Offset

Project: All

Format: U5

Specifies a 5 bit y address offset in the poly stipple pattern

Value Name
[0,31]

11.3.3.3 3DSTATE_POLY_STIPPLE_PATTERN

3DSTATE_POLY_STIPPLE_PATTERN

Project: All

Source: RenderCS

Length Bias: 2

The 3DSTATE_POLY_STIPPLE_PATTERN command is used to specify the 32x32 Polygon Stipple Pattern used in

the Polygon Stipple function of the WM unit.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 07h 3DSTATE_POLY_STIPPLE_PATTERN

Format: OpCode

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 303

3DSTATE_POLY_STIPPLE_PATTERN

15:8 Reserved

Project: All

Format: MBZ

7:0 Dword Length

Default Value: 1Fh Excludes Dword (0,1)

Project: All

Format: =n Total Length – 2

1 31:0 Polygon Stipple Pattern Row 1 (top most)

Project: All

Format: 32 bit mask Bit 31 = upper left corner, Bit 0 = upper right corner of first row.

Specifies a pattern used by Polygon Stipple to mask out specific pixels of every 32x32 area

rendered.

2..32 31:0 Polygon Stipple Pattern Rows 2-32 (bottom most)

Project: All

Format: 32 bit mask Bit 31 = upper left corner, Bit 0 = upper right corner of first row.

Specifies a pattern used by Polygon Stipple to mask out specific pixels of every 32x32 area

rendered.

11.4 Multisampling

The multisampling function has two components:

 Multisample Rasterization: multisample rasterization occurs at a subpixel level, wherein each pixel
consists of a number of “samples” at state-defined positions within the pixel footprint Coverage of the
primitive as well as color calculator operations (stencil test, depth test, color buffer blending, etc.) are
done at the sample level In addition the pixel shader itself can optionally run at the sample level
depending on a separate state field.

 Multisample Render Targets (MSRT): The render targets, as well as the depth and stencil buffers,
now have the ability to store per-sample values When combined with multisample rasterization, color
calculator operations such as stencil test, depth test, and color buffer blending are done with the
destination surface containing potentially different values per sample.

11.4.1 Multisample Modes/State

A number of state variables control the operation of the multisampling function. The following list indicates

the state and their location. Refer to the state definition for more details.

 Multisample Rasterization Mode (3DSTATE_SF and 3DSTATE_WM): controls whether
rasterization of non-lines is performed on a pixel or sample basis (PIXEL vs. PATTERN), and
whether multisample rasterization of lines enabled (OFF vs. ON).

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 304

 Multisample Dispatch Mode (3DSTATE_WM): controls whether the pixel shader is executed per
pixel or per sample.

 Number of Multisamples (3DSTATE_MULTISAMPLE and SURFACE_STATE): indicates the
number of samples per pixel contained on the surface. This field in 3DSTATE_MULTISAMPLE must
match the corresponding field in SURFACE_STATE for each render target. The depth, hierarchical
depth, and stencil buffers inherit this field from 3DSTATE_MULTISAMPLE.

 Pixel Location (3DSTATE_MULTISAMPLE): indicates the subpixel location where values specified
as “pixel” are sampled. This is either the upper left corner or the center.

 MSAA Sample Offsets (3DSTATE_MULTISAMPLE]): for each of the N samples, specifies the
subpixel location of each sample.

11.4.2 3DSTATE_MULTISAMPLE

3DSTATE_MULTISAMPLE

Source: RenderCS

Length Bias: 2

The 3DSTATE_MULTISAMPLE command is used to specify multisample state associated with the current render

target/depth buffer. This is non-pipelined state.

Programming Restriction:

Driver must ierarchi that all the caches in the depth pipe are flushed before this command is parsed. This requires

driver to send a PIPE_CONTROL with a CS stall along with a Depth Flush prior to this command.

When this command is issued, the currently active depth buffer, hierarchical depth buffer, stencil buffer, and render

target(s) must be cleared (meaning that every pixel must be overwritten). Alternatively, other surfaces can be

activated before issuing the next 3DPRIMITIVE that were previously rendered with the same values of all state

fields in this command. In other words, it is illegal to render to these surfaces with multiple different values of the

state fields in this command.

Programming Notes

When programming the sample offsets (for NUMSAMPLES_4 or _8 and MSRASTMODE_xxx_PATTERN),

 the order of the samples 0 to 3 (or 7 for 8X) must have monotonically increasing distance

 from the pixel center. This is required to get the correct centroid computation in the

 device.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 1h 3DSTATE_NONPIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 0Dh 3DSTATE_MULTISAMPLE

Format: OpCode

15:8 Reserved

Project: All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 305

3DSTATE_MULTISAMPLE

Format: MBZ

7:0 Dword Length

Project: All

Format: =n Total Length – 2

Excludes Dword (0,1)

Value Name Project
2h [Default]

1 31:6 Reserved

Project: All

Format: MBZ

5 Reserved

Format: MBZ

4 Pixel Location

Project: All

Format: U1

This field specifies where the device evaluates “pixel” (vs. centroid or sample) values/attributes.

Value Name Description Project
0h PIXLOC_CENTER Use the pixel center (0.5, 0.5 offset) All

1h PIXLOC_UL_CORNER Use the pixel upper-left corner All

Programming Notes

The programming of this field is assumed to be a function of the API being supported. Specifically, it

is expected that OpenGL and DX10+ APIs require CENTER selection, while DX9- APIs require

UL_CORNER selection.

3:1 Number of Multisamples

Project: All

Format: U3 enumerated value

This field specifies how many samples/pixel exist in all RTs and the Depth Buffer, as log2(#samples).

This field is valid regardless of the setting of Multisample Rasterization Mode.

Value Name Description Project
0h NUMSAMPLES_1 1 sample/pixel All

1h Reserved All

2h NUMSAMPLES_4 4 samples/pixel All

3h NUMSAMPLES_8 8 samples/pixel All

[4h,7h] Reserved All

Programming Notes

Setting Multisample Rasterization Mode to MSRASTMODE_xxx_PATTERN when Number of

Multisamples == NUMSAMPLES_1 is UNDEFINED.

The setting of this field must match the Number of Multisamples field in SURFACE_STATE of all

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 306

3DSTATE_MULTISAMPLE

bound render targets.

0 Reserved

Project: All

Format: MBZ

2 31:28 Sample3 X Offset

Project: All

Format: U0.4

Description Project

Subpixel X offset of Sample 3 relative to the UL pixel origin. Valid only when

NUMSAMPLES_4 or _8. Setting ignored when not in MSRASTMODE_xxx_PATTERN mode.

Valid when NUMSAMPLES_1

Value Name
[0,15] [0,0.9375]

27:24 Sample3 Y Offset

Project: All

Format: U0.4

Description Project

Subpixel Y offset of Sample 3 relative to the UL pixel origin. Valid only when

NUMSAMPLES_4 or _8. Setting ignored when not in MSRASTMODE_xxx_PATTERN mode.

Valid when NUMSAMPLES_1

Value Name
[0,15] [0,0.9375]

23:20 Sample2 X Offset

Project: All

Format: U0.4

Description Project

Subpixel X offset of Sample 2 relative to the UL pixel origin. Valid only when

NUMSAMPLES_4 or _8. Setting ignored when not in MSRASTMODE_xxx_PATTERN mode.

Valid when NUMSAMPLES_1

Value Name
[0,15] [0,0.9375]

19:16 Sample2 Y Offset

Project: All

Format: U0.4

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 307

3DSTATE_MULTISAMPLE

Description Project

Subpixel Y offset of Sample 2 relative to the UL pixel origin. Valid only when

NUMSAMPLES_4 or _8. Setting ignored when not in MSRASTMODE_xxx_PATTERN mode.

Valid when NUMSAMPLES_1

Value Name
[0,15] [0,0.9375]

15:12 Sample1 X Offset

Project: All

Format: U0.4

Description Project

Subpixel X offset of Sample 1 relative to the UL pixel origin. Valid only when

NUMSAMPLES_4 or _8. Setting ignored when not in MSRASTMODE_xxx_PATTERN mode.

Valid when NUMSAMPLES_1

Value Name
[0,15] [0,0.9375]

11:8 Sample1 Y Offset

Project: All

Format: U0.4

Description Project

Subpixel Y offset of Sample 1 relative to the UL pixel origin. Valid only when

NUMSAMPLES_4 or _8. Setting ignored when not in MSRASTMODE_xxx_PATTERN mode.

Valid when NUMSAMPLES_1

Value Name
[0,15] [0,0.9375]

7:4 Sample0 X Offset

Project: All

Format: U0.4

Description Project

Subpixel X offset of Sample 0 relative to the UL pixel origin. Valid only when

NUMSAMPLES_4 or _8. Setting ignored when not in MSRASTMODE_xxx_PATTERN mode.

Valid when NUMSAMPLES_1

Value Name
[0,15] [0,0.9375]

3:0 Sample0 Y Offset

Project: All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 308

3DSTATE_MULTISAMPLE

Format: U0.4

Description Project

Subpixel Y offset of Sample 0 relative to the UL pixel origin. Valid only when

NUMSAMPLES_4 or _8. Setting ignored when not in MSRASTMODE_xxx_PATTERN mode.

Valid when NUMSAMPLES_1

Value Name
[0,15] [0,0.9375]

3 31:28 Sample7 X Offset

Format: U0.4

Subpixel X offset of Sample 7 relative to the UL pixel origin. Valid only when NUMSAMPLES_8.

Setting ignored when not in MSRASTMODE_xxx_PATTERN mode.

Value Name
[0,15] [0,0.9375]

27:24 Sample7 Y Offset

Format: U0.4

Subpixel Y offset of Sample 7 relative to the UL pixel origin. Valid only when NUMSAMPLES_8.

Setting ignored when not in MSRASTMODE_xxx_PATTERN mode.

Value Name
[0,15] [0,0.9375]

23:20 Sample6 X Offset

Format: U0.4

Subpixel X offset of Sample 6 relative to the UL pixel origin. Valid only when NUMSAMPLES_8.

Setting ignored when not in MSRASTMODE_xxx_PATTERN mode.

Value Name
[0,15] [0,0.9375]

19:16 Sample6 Y Offset

Format: U0.4

Subpixel Y offset of Sample 6 relative to the UL pixel origin. Valid only when NUMSAMPLES_8.

Setting ignored when not in MSRASTMODE_xxx_PATTERN mode.

Value Name
[0,15] [0,0.9375]

15:12 Sample5 X Offset

Format: U0.4

Subpixel X offset of Sample 5 relative to the UL pixel origin. Valid only when NUMSAMPLES_8.

Setting ignored when not in MSRASTMODE_xxx_PATTERN mode.

Value Name
[0,15] [0,0.9375]

11:8 Sample5 Y Offset

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 309

3DSTATE_MULTISAMPLE

Format: U0.4

Subpixel Y offset of Sample 5 relative to the UL pixel origin. Valid only when NUMSAMPLES_8.

Setting ignored when not in MSRASTMODE_xxx_PATTERN mode.

Value Name
[0,15] [0,0.9375]

7:4 Sample4 X Offset

Format: U0.4

Subpixel X offset of Sample 4 relative to the UL pixel origin. Valid only when NUMSAMPLES_8.

Setting ignored when not in MSRASTMODE_xxx_PATTERN mode.

Value Name
[0,15] [0,0.9375]

3:0 Sample4 Y Offset

Format: U0.4

Subpixel Y offset of Sample 4 relative to the UL pixel origin. Valid only when NUMSAMPLES_8.

Setting ignored when not in MSRASTMODE_xxx_PATTERN mode.

Value Name
[0,15] [0,0.9375]

11.5 Early Depth/Stencil Processing

The Windower/IZ unit provides the Early Depth Test function, a major performance-optimization feature

where an attempt is made to remove pixels that fail the Depth and Stencil Tests prior to pixel shading.

This requires the WM unit to perform the interpolation of pixel (“source”) depth values, read the current

(“destination”) depth values from the cached depth buffer, and perform the Depth and Stencil Tests As

the WM unit has per-pixel source and destination Z values, these values are passed in the PS thread

payload, if required.

11.5.1 Depth Offset

The depth offset function is contained in SF unit, thus the state to control it is also contained in SF unit.

There are occasions where the Z position of some objects need to be slightly offset in order to reduce

artifacts due to coplanar or near-coplanar primitives A typical example is drawing the edges of triangles

as wireframes – the lines need to be drawn slightly closer to the viewer to ensure they will not be

occluded by the underlying polygon Another example is drawing objects on a wall – without a bias on the

z positions, they might be fully or partially occluded by the wall.

The device supports global depth offset, applied only to triangles, that bases the offset on the object’s z

slope Note that there is no clamping applied at this stage after the Z position is offset – clamping to [0,1]

can be performed later after the Z position is interpolated to the pixel This is preferable to clamping prior

to interpolation, as the clamping would change the Z slope of the entire object.

The Global Depth Offset function is controlled by the Global Depth Offset Enable state variable in

WM_STATE Global Depth Offset is only applied to 3DOBJ_TRIANGLE objects.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 310

When Global Depth Offset Enable is ENABLED, the pipeline will compute:

MaxDepthSlope = max(abs(dZ/dX),abs(dz/dy)) // approximation of max depth slope for polygon

When UNORM Depth Buffer is at Output Merger (or no Depth Buffer):

Bias = GlobalDepthOffsetConstant * r + GlobalDepthOffsetScale * MaxDepthSlope

Where r is the minimum representable value > 0 in the depth buffer format, converted to float32 (note: If

state bit Legacy Global Depth Bias Enable is set, the r term will be forced to 1.0)

When Floating Point Depth Buffer at Output Merger:

Bias = GlobalDepthOffsetConstant * 2^(exponent(max z in primitive) – r) + GlobalDepthOffsetScale

* MaxDepthSlope

Where r is the # of mantissa bits in the floating point representation (excluding the hidden bit), e.g. 23 for

float32 (note: If state bit Legacy Global Depth Bias Enable is set, no scaling is applied to the

GobalDepthOffsetConstant).

Adding Bias to z:

 if (GlobalDepthOffsetClamp > 0)

Bias = min(DepthBiasClamp, Bias)

else if(GlobalDepthOffsetClamp < 0)

Bias = max(DepthBiasClamp, Bias)

// else if GlobalDepthOffsetClamp == 0, no clamping occurs

z = z + Bias

Biasing is constant for a given primitive The biasing formulas are performed with float32 arithmetic Global

Depth Bias is not applied to any point or line primitives

11.5.2 Early Depth Test/Stencil Test/Write

When Early Depth Test Enable is ENABLED, the WM unit will attempt to discard depth-occluded pixels

during scan conversion (before processing them in the Pixel Shader) Pixels are only discarded when the

WM unit can ensure that they would have no impact to the ColorBuffer or DepthBuffer This function is

therefore only a performance feature.

Note: The Early Depth Test Enable bit is no longer present. This function is always enabled.

If some pixels within a subspan are discarded, only the pixel mask is affected indicating that the

discarded pixels are not active If all pixels within a subspan are discarded, that subspan will not even be

dispatched.

11.5.2.1 Software-Provided PS Kernel Info

In order for the WM unit to properly perform Early Depth Test and supply the proper information in the PS

thread payload (and even determine if a PS thread needs to be dispatched), it requires information

regarding the PS kernel operation This information is provided by a number of state bits in WM_STATE,

as summarized in the following table.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 311

State Bit Description

Pixel Shader

Kill Pixel
This must be set when there is a chance that valid pixels passed to a PS thread may be discarded.

This includes the discard of pixels by the PS thread resulting from a “killpixel” or “alphatest” function

or as dictated by the results of the sampling of a “chroma-keyed” texture The WM unit needs this

information to prevent early depth/stencil writes for pixels which might be killed by the PS thread,

etc.

See WM_STATE/3DSTATE_WM for more information.

Pixel Shader

Computed

Depth

This must be set when the PS thread computes the “source” depth value (i.e., from the API POV,

writes to the “oDepth” output) In this case the WM unit can’t make any decisions based on the WM-

interpolated depth value.

See WM_STATE/3DSTATE_WM for more information.

Pixel Shader

Uses Source

Depth

Must be set if the PS thread requires the WM-interpolated source depth value This will force the

source depth to be passed in the thread payload where otherwise the WM unit would not have seen

it as required.

See WM_STATE/3DSTATE_WM for more information.

11.5.3 Hierarchical Depth Buffer

A hierarchical depth buffer is supported beginning with to reduce memory traffic due to depth buffer

accesses This buffer is supported only in Tile Y memory.

The Surface Type, Height, Width, Depth, Minimum Array Element, Render Target View Extent, and

Depth Coordinate Offset X/Y of the hierarchical depth buffer are inherited from the depth buffer The

height and width of the hierarchical depth buffer that must be allocated are computed by the following

formulas, where HZ is the hierarchical depth buffer and Z is the depth buffer The Z_Height, Z_Width, and

Z_Depth values given in these formulas are those present in 3DSTATE_DEPTH_BUFFER incremented

by one. : The value of Z_Height and Z_Width must each be multiplied by 2 before being applied to the

table below if Number of Multisamples is set to NUMSAMPLES_4. The value of Z_Height must be

multiplied by 2 and Z_Width must be multiplied by 4 before being applied to the table below if Number of

Multisamples is set to NUMSAMPLES_8..

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 312

Since Hierarchical Depth Buffer supports multiple LODs. The HZ_height is different as shown in the table

below:

Surface Type HZ_Width (bytes) HZ_Height (rows)

SURFTYPE_1D ceiling(Z_Width / 16) * 16
Ceiling ((Q_pitch * Z_depth/2) /8) * 8

SURFTYPE_2D ceiling(Z_Width / 16) * 16
Ceiling ((Q_pitch * Z_depth/2) /8) * 8

SURFTYPE_3D ceiling(Z_Width / 16) * 16 see below

SURFTYPE_CUBE ceiling(Z_Width / 16) * 16
Ceiling ((Q_pitch * Z_depth * 6/2) /8) * 8

where, Qpitch is computed using vertical alignment j=8, please refer to the GPU overview volume for

Qpitch definition.

The minimum HZ_Height required for a 3D surface must be computed based on hL parameters

documented in the GPU Overview volume, and the maximum LOD m:

In order to compute the minimum QPitch for the HZ surface, the height of each LOD in pixels is

determined using the equations for hL in the GPU Overview volume, using a vertical alignment j=8. The

following equation gives the minimum HZ_QPitch based on largest LOD m defined in the surface:

If m is less than 2, treat all hL with L > m as zero and use the above equation.

The minimum HZ_Height required for a 3D surface must be computed based on hL parameters

documented in the GPU Overview volume, and the maximum LOD m:

The format of the data in the hierarchical depth buffer is not documented here, as this surface needs only

to be allocated by software Hardware will read and write this surface during operation and its contents are

discarded once the last primitive is rendered that uses the hierarchical depth buffer.

The hierarchical depth buffer can be enabled whenever a depth buffer is defined, with its effect being

invisible other than generally higher performance The only exception is the hierarchical depth buffer must

be disabled when using software tiled rendering.

If HiZ is enabled, you must initialize the clear value by either

 a.Perform a depth clear pass to initialize the clear value.

 b.Send a 3dstate_clear_params packet with valid = 1

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 313

Without one of these events, context switching will fail, as it will try to save off a clear value even though

no valid clear value has been set When context restore happens, HW will restore an uninitialized clear

value.

11.5.3.1 Depth Buffer Clear

With the hierarchical depth buffer enabled, performance is generally improved by using the special clear

mechanism described here to clear the hierarchical depth buffer and the depth buffer This is enabled

though the Depth Buffer Clear field in WM_STATE or 3DSTATE_WM This bit can be used to clear the

depth buffer in the following situations:

 Complete depth buffer clear

 Partial depth buffer clear with the clear value the same as the one used on the previous clear

 Partial depth buffer clear with the clear value different than the one used on the previous clear can
use this mechanism if a depth buffer resolve is performed first.

The following is required when performing a depth buffer clear with this field:

 If other rendering operations have preceded this clear, a PIPE_CONTROL with depth cache flush
enabled, Depth Stall bit enabled must be issued before the rectangle primitive used for the depth
buffer clear operation.

 The fields in 3DSTATE_CLEAR_PARAMS are set to indicate the source of the clear value and (if
source is in this command) the clear value itself.

 A rectangle primitive representing the clear area is delivered. The primitive must adhere to the
following restrictions on size:

o If Number of Multisamples is NUMSAMPLES_1, the rectangle must be aligned to an
8x4 pixel block relative to the upper left corner of the depth buffer, and contain an
integer number of these pixel blocks, and all 8x4 pixels must be lit.

o If Number of Multisamples is NUMSAMPLES_4, the rectangle must be aligned to a
4x2 pixel block (8x4 sample block) relative to the upper left corner of the depth buffer,
and contain an integer number of these pixel blocks, and all samples of the 4x2 pixels
must be lit.

o If Number of Multisamples is NUMSAMPLES_8, the rectangle must be aligned to a
2x2 pixel block (8x4 sample block) relative to the upper left corner of the depth buffer,
and contain an integer number of these pixel blocks, and all samples of the 2x2 pixels
must be list.

 Depth Test Enable must be disabled and Depth Buffer Write Enable must be enabled (if depth is
being cleared).

 Stencil buffer clear can be performed at the same time by enabling Stencil Buffer Write Enable
Stencil Test Enable must be enabled and Stencil Pass Depth Pass Op set to REPLACE, and the
clear value that is placed in the stencil buffer is the Stencil Reference Value from
COLOR_CALC_STATE.

 Note also that stencil buffer clear can be performed without depth buffer clear For stencil only clear,
Depth Test Enable and Depth Buffer Write Enable must be disabled.

 Pixel Shader Dispatch, Alpha Test, Pixel Shader Kill Pixel and Pixel Shader Computed Depth
must all be disabled.

Several cases exist where Depth Buffer Clear cannot be enabled (the legacy method of clearing must be

performed):

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 314

 If the depth buffer format is D32_FLOAT_S8X24_UINT or D24_UNORM_S8_UINT.

 If stencil test is enabled but the separate stencil buffer is disabled.

11.5.3.2 Depth Buffer Resolve

If the hierarchical depth buffer is enabled, the depth buffer may contain incorrect results after rendering is

complete If the depth buffer is retained and used for another purpose (i.e as input to the sampling engine

as a shadow map), it must first be “resolved” This is done by setting the Depth Buffer Resolve Enable

field in WM_STATE or 3DSTATE_WM and rendering a full render target sized rectangle Once this is

complete, the depth buffer will contain the same contents as it would have had the rendering been

performed with the hierarchical depth buffer disabled. In a typical usage model, depth buffer needs to be

resolved after rendering on it and before using a depth buffer as a source for any consecutive operation.

Depth buffer can be used as a source in three different cases: using it as a texture for the nest rendering

sequence, honoring a lock on the depth buffer to the host OR using the depth buffer as a blit source.

The following is required when performing a depth buffer resolve:

 A rectangle primitive of the same size as the previous depth buffer clear operation must be
delivered, and depth buffer state cannot have changed since the previous depth buffer clear
operation.

 Depth Test Enable must be enabled with the Depth Test Function set to NEVER Depth Buffer
Write Enable must be enabled Stencil Test Enable and Stencil Buffer Write Enable must be
disabled.

 Pixel Shader Dispatch, Alpha Test, Pixel Shader Kill Pixel and Pixel Shader Computed Depth
must all be disabled.

11.5.3.3 Hierarchical Depth Buffer Resolve

If the hierarchical depth buffer is enabled, the hierarchical depth buffer may contain incorrect results if the

depth buffer is written to outside of the 3D rendering operation If this occurs, the hierarchical depth buffer

must be “resolved”to avoid incorrect device behavior This is done by setting the Hierarchical Depth Buffer

Resolve Enable field in WM_STATE or 3DSTATE_WM and rendering a full render target sized rectangle

Once this is complete, the hierarchical depth buffer will contain contents such that rendering will give the

same results as it would have had the rendering been performed with the hierarchical depth buffer

disabled.

The following is required when performing a hierarchical depth buffer resolve:

 A rectangle primitive covering the full render target must be delivered.

 Depth Test Enable must be disabled Depth Buffer Write Enable must be enabled Stencil Test
Enable and Stencil Buffer Write Enable must be disabled.

 Pixel Shader Dispatch, Alpha Test, Pixel Shader Kill Pixel and Pixel Shader Computed Depth
must all be disabled.

11.5.4 Separate Stencil Buffer

The separate stencil buffer is always enabled, thus the field in 3DSTATE_DEPTH_BUFFER to explicitly

enable the separate stencil buffer has been removed Surface formats with interleaved depth and stencil

are no longer supported

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 315

The stencil buffer has a format of S8_UINT, and shares Surface Type, Height, Width, and Depth,

Minimum Array Element, Render Target View Extent, Depth Coordinate Offset X/Y, LOD, and Depth

Buffer Object Control State fields of the depth buffer.

11.5.5 Depth/Stencil Buffer State

11.5.5.1 3DSTATE_DEPTH_BUFFER

3DSTATE_DEPTH_BUFFER

Source: RenderCS

Length Bias: 2

The depth buffer surface state is delivered as a pipelined state packet. However, the state change pipelining isn’t

completely transparent (see restriction below).

Programming Notes Project

Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any combination of

3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS, 3DSTATE_STENCIL_BUFFER,

3DSTATE_HIER_DEPTH_BUFFER) SW must first issue a pipelined depth stall (PIPE_CONTROL with

Depth Stall bit set), followed by a pipelined depth cache flush (PIPE_CONTROL with Depth Flush Bit set,

followed by another pipelined depth stall (PIPE_CONTROL with Depth Stall Bit set), unless SW can

otherwise guarantee that the pipeline from WM onwards is already flushed (e.g., via a preceding

MI_FLUSH).

3DSTATE_DEPTH_BUFFER must always be programmed along with the other Depth/Stencil state

commands(i.e. 3DSTATE_CLEAR_PARAMS, 3DSTATE_STENCIL_BUFFER, or

3DSTATE_HIER_DEPTH_BUFFER).

Driver must send a least one PIPE_CONTROL command with CS Stall and a post sync operation prior to the

group of depth commands(3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,

3DSTATE_STENCIL_BUFFER, and 3DSTATE_HIER_DEPTH_BUFFER).

The depth buffer is always Tile-Y

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 05h 3DSTATE_DEPTH_BUFFER

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 Dword Length

Default Value: 0h Excludes Dword (0,1)

Project: All

Format: =n Total Length – 2

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 316

3DSTATE_DEPTH_BUFFER

1 31:29 Surface Type

Project: All

This field defines the type of the surface.

Value Name Description Project
0h SURFTYPE_1D Defines a 1-dimensional map or array of maps All

1h SURFTYPE_2D Defines a 2-dimensional map or array of maps All

2h SURFTYPE_3D Defines a 3-dimensional (volumetric) map All

3h SURFTYPE_CUBE Defines a cube map All

4h-6h Reserved All

7h SURFTYPE_NULL Defines a null surface All

Programming Notes

The Surface Type of the depth buffer must be the same as the Surface Type of the render target(s)

(defined in SURFACE_STATE), unless either the depth buffer or render targets are SURFTYPE_NULL

28 Depth Write Enable

Project: All

Format: Enable

This field enables depth writes to the depth buffer surface. Both this field and the Depth Buffer Write

Enable field in DEPTH_STENCIL_STATE must be enabled in order for depth writes to occur.

27 Stencil Write Enable

Project: All

Format: Enable

This field enables stencil writes to the depth buffer or stencil buffer surface, depending on where stencil

is located. Both this field and the Stencil Buffer Write Enable field in DEPTH_STENCIL_STATE must

be enabled in order for stencil writes to occur.

26:23 Reserved

Project: All

Format: MBZ

22 Hierarchical Depth Buffer Enable

Project: All

Format: Enable

If enabled, indicates that a hierarchical depth buffer is defined.

Programming Notes

If this field is enabled, the Software Tiled Rendering Mode must be NORMAL.This field must be

disabled if Early Depth Test Enable is disabled.

21 Reserved

Project: All

Format: MBZ

20:18 Surface Format

Project: All

Specifies the format of the depth buffer. See Stencil Test Enable field in DEPTH_STENCIL_STATE

field for restrictions on the use of some of these formats.

Value Name Description Project

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 317

3DSTATE_DEPTH_BUFFER

0h Reserved Reserved All

1h D32_FLOAT D32_FLOAT All

2h Reserved Reserved All

3h D24_UNORM_X8_UINT D24_UNORM_X8_UINT All

4h Reserved Reserved All

5h D16_UNORM D16_UNORM All

6h-7h Reserved Reserved All

17:0 Surface Pitch

Project: All

Format: U18-1 Pitch in Bytes

This field specifies the pitch of the depth buffer in (#Bytes – 1).

Value Name Description
[127, 3FFFFh] corresponding to [128B, 256KB] also restricted to a multiple of 128B

Programming Notes

The pitch specified must be a multiple of the tile pitch, in the range [128B, 128KB].

2 31:0 Surface Base Address

Project: All

Format: GraphicsAddress[31:0]Depth_Buffer

This field specifies the starting Dword address of the buffer in mapped Graphics Memory.

Programming Notes

The Depth Buffer can only be mapped to Main Memory (uncached).If the surface is tiled, the base

address must conform to the Per-Surface Tiling Alignment Rules. If the buffer is linear, the surface

must be 64-byte aligned.

3 31:18 Height

Project: All

Format: U14

Range: SURFTYPE_1D: must be zeroSURFTYPE_2D: height of surface – 1 (y/v dimension)

[0,16383]SURFTYPE_3D: height of surface – 1 (y/v dimension) [0,2047]SURFTYPE_CUBE: height of

surface – 1 (y/v dimension) [0, 16383]

This field specifies the height of the surface. If the surface is MIP-mapped, this field contains the height

of the base MIP level.

Programming Notes

The Height of the depth buffer must be the same as the Height of the render target(s) (defined in

SURFACE_STATE), unless Surface Type is SURFTYPE_1D or SURFTYPE_2D with Depth = 0 (non-

array) and LOD = 0 (non-mip mapped).

17:4 Width

Project: All

Format: U14-1

Range: SURFTYPE_1D: width of surface – 1 (x/u dimension) [0, 16383]SURFTYPE_2D: width of

surface – 1 (x/u dimension) [0, 16383]SURFTYPE_3D: width of surface – 1 (x/u dimension)

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 318

3DSTATE_DEPTH_BUFFER

[0,2047]SURFTYPE_CUBE: width of surface – 1 (x/u dimension) [0, 16383]

This field specifies the width of the surface. If the surface is MIP-mapped, this field specifies the width

of the base MIP level. The width is specified in units of pixels.

Programming Notes

The Width specified by this field must be less than or equal to the surface pitch (specified in bytes via

the Surface Pitch field).For cube maps, Width must be set equal to Height.The Width of the depth

buffer must be the same as the Width of the render target(s) (defined in SURFACE_STATE), unless

Surface Type is SURFTYPE_1D or SURFTYPE_2D with Depth = 0 (non-array) and LOD = 0 (non-mip

mapped).

3:0 LOD

Project: All

Format: U4 in LOD units

This field defines the MIP level that is currently being rendered into.

Value Name
[0, 14]

Programming Notes

The LOD of the depth buffer must be the same as the LOD of the render target(s) (defined in

SURFACE_STATE)

4 31:21 Depth

Project: All

Format: U11-1

This field specifies the total number of levels for a volume texture or the number of array elements

allowed to be accessed starting at the Minimum Array Element for arrayed surfaces. If the volume

texture is MIP-mapped, this field specifies the depth of the base MIP level.

Value Name
[0, 2047] SURFTYPE_1D number of array elements – 1

[0, 2047] SURFTYPE_2D number of array elements – 1

[0, 2047] SURFTYPE_3D depth of surface – 1 (r/z dimension)

0 SURFTYPE_CUBE (must be zero)

Programming Notes

The Depth of the depth buffer must be the same as the Depth of the render target(s) (defined in

SURFACE_STATE).

20:10 Minimum Array Element

Project: All

Format: U11

For 1D and 2D Surfaces:

 This field indicates the minimum array element that can be accessed as part of this surface. The

delivered array index is added to this field before being used to address the surface.

For 3D Surfaces:

 This field indicates the minimum ‘R’ coordinate on the LOD currently being rendered to. This field is

added to the delivered array index before it is used to address the surface.

For Other Surfaces:

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 319

3DSTATE_DEPTH_BUFFER

 This field is ignored.

Value Name
[0, 2047] SURFTYPE_1D/2D

[0, 2047] SURFTYPE_3D

9:4 Reserved

Project: All

Format: MBZ

3:0 Depth Buffer Object Control State

Project: All

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for the depth buffer.

5 31:16 Depth Coordinate Offset Y

Format: S15 in Screen Space (pixels)(3 LSBs MBZ)

Range: [-8192,8191] Bits 31:30 should be a sign extension

Specifies a signed pixel offset to be added to the RenderTarget Y coordinate in order to generate a

DepthBuffer Y coordinate. (See Depth Coordinate in Windower).

Programming Notes

The 3 LSBs of both offsets must be zero to ensure correct alignmentSoftware must ensure that the

resulting (sum) coordinate value is non-negative

 This field must be zero when rendering to field-mode (interlaced) Color Buffers (i.e., when Surface

State’s VerticalLineStride==1).

 This field can only be nonzero when rendering to surfaces of type SURFTYPE_1D and

SURFTYPE_2D with Depth = 0 (non-array) and LOD = 0 (non-mip mapped).

 The offsets need to be aligned to the hashing mode set for WM in the GT_MODE register (0x7008)

bits[12:10].

 For eg if the hashing mode is set to 16x16, the Depth Coordinate Y offset needs to be aligned to the

16x16 pixel block.

15:0 Depth Coordinate Offset X

Format: S15 in Screen Space (pixels)(3 LSBs MBZ)

Range: [-8192,8191] Bits 15:14 should be a sign extension

Specifies a signed pixel offset to be added to the RenderTarget X coordinate in order to generate a

DepthBuffer X coordinate. (See Depth Coordinate in Windower).

Programming Notes

The 3 LSBs of both offsets must be zero to ensure correct alignmentSoftware must ensure that the

resulting (sum) coordinate value is non-negative.

 This field must be zero when rendering to field-mode (interlaced) Color Buffers (i.e., when Surface

State’s VerticalLineStride==1).

 This field can only be nonzero when rendering to surfaces of type SURFTYPE_1D and

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 320

3DSTATE_DEPTH_BUFFER

SURFTYPE_2D with Depth = 0 (non-array) and LOD = 0 (non-mip mapped).

 The offsets need to be aligned to the hashing mode set for WM in the GT_MODE register (0x7008)

bits[12:10].

 For eg if the hashing mode is set to 16x16, the Depth Coordinate X offset needs to be aligned to the

16x16 pixel block.

6 31:21 Render Target View Extent

Project: All

Format: U11

Range: SURFTYPE_1D/2D: same value as Depth field

Range: SURFTYPE_3D: [0, 2047] to indicate extent of [1, 2048]

For 3D Surfaces:

 This field indicates the extent of the accessible ‘R’ coordinates minus 1 on the LOD currently being

rendered to.

For 1D and 2D Surfaces:

 This field must be set to the same value as the Depth field.

For Other Surfaces:

 This field is ignored.

20:0 Reserved

Project: All

Format: MBZ

11.5.5.2 3DSTATE_STENCIL_BUFFER

3DSTATE_STENCIL_BUFFER

Source: RenderCS

Length Bias: 2

This command sets the surface state of the separate stencil buffer, delivered as a pipelined state command.

However, the state change pipelining isn’t completely transparent (see restriction below).

Programming Notes Project

Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any combination of

3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS, 3DSTATE_STENCIL_BUFFER,

3DSTATE_HIER_DEPTH_BUFFER) SW must first issue a pipelined depth stall (PIPE_CONTROL with

Depth Stall bit set, followed by a pipelined depth cache flush (PIPE_CONTROL with Depth Flush Bit set,

followed by another pipelined depth stall (PIPE_CONTROL with Depth Stall Bit set), unless SW can

otherwise guarantee that the pipeline from WM onwards is already flushed (e.g., via a preceding

MI_FLUSH).

3DSTATE_STENCIL_BUFFER must always be programmed in the along with the other Depth/Stencil state

commands(i.e. 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS, or

3DSTATE_HIER_DEPTH_BUFFER)

Driver must send a least one PIPE_CONTROL command with CS Stall and a post sync operation prior to the

group of depth commands(3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,

3DSTATE_STENCIL_BUFFER, and 3DSTATE_HIER_DEPTH_BUFFER).

The stencil buffer is always Tile-Y

DWord Bit Description

0 31:29 Command Type

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 321

3DSTATE_STENCIL_BUFFER

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 06h 3DSTATE_STENCIL_BUFFER

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 Dword Length

Project: All

Format: =n Total Length – 2

Value Name Project
1h Excludes Dword (0,1) [Default]

1 31 Reserved

Format: MBZ

30:29 Reserved

Project: All

Format: MBZ

28:25 Stencil Buffer Object Control State

Format: MEMORY_OBJECT_CONTROL_STATE

Description Project

Specifies the memory object control state for the stencil buffer.

 Stencil Buffer Object Control State [3:0]

This field is not context save and restored by hardware. If this field is programmed to any

value other than zero, it must be programmed after the following commands or events:

 MI_SET_CONTEXT

 MI_WAIT_FOR_EVENT (Specifically waits on vblank or display flip)

 Render engine goes IDLE due to head point equal to tail pointer

24:22 Reserved

Format: MBZ

21:17 Reserved

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 322

3DSTATE_STENCIL_BUFFER

Project: All

Format: MBZ

16:0 Surface Pitch

Project: All

Format: U17-1 Pitch in Bytes

This field specifies the pitch of the stencil buffer in (#Bytes – 1).

Value Name Description
[127, 3FFFFh] corresponding to [128B, 128KB]also restricted to a multiple of 128B

Programming Notes

Since this surface is tiled, the pitch specified must be a multiple of the tile pitch, in the range [128B,

128KB].

2 31:0 Surface Base Address_low

Project: All

Format: GraphicsAddress[31:0]Stencil_Buffer

This field specifies the starting Dword address of the buffer in mapped Graphics Memory.

Programming Notes

The Stencil Buffer can only be mapped to Main Memory (uncached).

Since this surface is tiled, the base address must conform to the Per-Surface Tiling Alignment Rules.

11.5.5.3 3DSTATE_HIER_DEPTH_BUFFER

3DSTATE_HIER_DEPTH_BUFFER

Source: RenderCS

Length Bias: 2

This command sets the surface state of the hierarchical depth buffer, delivered as a pipelined state command.

However, the state change pipelining isn’t completely transparent (see restriction below).

Programming Notes Project

Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any combination of

3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS, 3DSTATE_STENCIL_BUFFER,

3DSTATE_HIER_DEPTH_BUFFER) SW must first issue a pipelined depth stall (PIPE_CONTROL with

Depth Stall bit set, followed by a pipelined depth cache flush (PIPE_CONTROL with Depth Flush Bit

set, followed by another pipelined depth stall (PIPE_CONTROL with Depth Stall Bit set), unless SW

can otherwise guarantee that the pipeline from WM onwards is already flushed (e.g., via a preceding

MI_FLUSH).

3DSTATE_HIER_DEPTH_BUFFER must always be programmed in the along with the other Depth/Stencil

state commands(i.e. 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS, or

3DSTATE_STENCIL_BUFFER)

Driver must send a least one PIPE_CONTROL command with CS Stall and a post sync operation prior to the

group of depth commands(3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,

3DSTATE_STENCIL_BUFFER, and 3DSTATE_HIER_DEPTH_BUFFER).

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 323

3DSTATE_HIER_DEPTH_BUFFER

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 07h 3DSTATE_HIER_DEPTH_BUFFER

Format: OpCode

15:8 Reserved

Project: All

Format: MBZ

7:0 Dword Length

Project: All

Format: =n Total Length – 2

Value Name Project
1h Excludes Dword (0,1) [Default]

1 31:29 Reserved

Format: MBZ

28:25 Hierarchical Depth Buffer Object Control State

Format: MEMORY_OBJECT_CONTROL_STATE

Description Project

Specifies the memory object control state for the hierarchical depth buffer.

This field is not context save and restored by hardware. If this field is programmed to any

value other than zero, it must be programmed after the following commands or events:

 MI_SET_CONTEXT

 MI_WAIT_FOR_EVENT (Specifically waits on vblank or display flip)

 Render engine goes IDLE due to head point equal to tail pointer

24:17 Reserved

Project: All

Format: MBZ

16:0 Surface Pitch

Project: All

Format: U17-1 Pitch in Bytes

This field specifies the pitch of the hierarchical depth buffer in (#Bytes – 1).

Value Name

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 324

3DSTATE_HIER_DEPTH_BUFFER

[127, 3FFFFh] corresponding to [128B, 128KB] also restricted to a multiple of 128B

Programming Notes

Since this surface is tiled, the pitch specified must be a multiple of the tile pitch, in the range [128B,

128KB].

2 31:0 Surface Base Address [31:0]

Project: All

Format: GraphicsAddress[31:0]HierarchicalDepthBuffer

This field specifies the starting Dword address of the buffer in mapped Graphics Memory.

Programming Notes

The Hierarchical Depth Buffer can only be mapped to Main Memory (uncached).

Since this surface is tiled, the base address must conform to the Per-Surface Tiling Alignment Rules.

11.5.5.4 3DSTATE_CLEAR_PARAMS

3DSTATE_CLEAR_PARAMS

Source: RenderCS

Length Bias: 2

This command defines the depth clear value delivered as a pipelined state command. However, the state change

pipelining isn’t completely transparent (see restriction below).

Programming Notes Project

 Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any combination of

3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS, 3DSTATE_STENCIL_BUFFER,

3DSTATE_HIER_DEPTH_BUFFER) SW must first issue a pipelined depth stall (PIPE_CONTROL with

Depth Stall bit set), followed by a pipelined depth cache flush (PIPE_CONTROL with Depth Flush Bit set,

followed by another pipelined depth stall (PIPE_CONTROL with Depth Stall Bit set), unless SW can

otherwise guarantee that the pipeline from WM onwards is already flushed (e.g., via a preceding

MI_FLUSH).

3DSTATE_CLEAR_PARAMS must always be programmed in the along with the other Depth/Stencil state

commands(i.e. 3DSTATE_DEPTH_BUFFER, 3DSTATE_STENCIL_BUFFER, or

3DSTATE_HIER_DEPTH_BUFFER)

Driver must send a least one PIPE_CONTROL command with CS Stall and a post sync operation prior to the

group of depth commands(3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,

3DSTATE_STENCIL_BUFFER, and 3DSTATE_HIER_DEPTH_BUFFER).

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

Format: OpCode

28:27 Command SubType

Default Value: 3h GFXPIPE_3D

Format: OpCode

26:24 3D Command Opcode

Default Value: 0h 3DSTATE_PIPELINED

Format: OpCode

23:16 3D Command Sub Opcode

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 325

3DSTATE_CLEAR_PARAMS

Default Value: 04h 3DSTATE_CLEAR_PARAMS

Format: OpCode

15:8 Reserved

Format: MBZ

7:0 Dword Length

Default Value: 1h Excludes Dword (0,1)

Format: =n Total Length – 2

1 31:0 Depth Clear Value

Format: for Surface Format of depth buffer:D32_FLOAT_S8X24_UINT: IEEE_FloatD32_FLOAT:

IEEE_FloatD24_UNORM_S8_UINT: U24 UNORM in bits [23:0]D24_UNORM_X8_UINT: U24 UNORM

in bits [23:0]D16_UNORM: U16 UNORM in bits [15:0]

This field defines the clear value that will be applied to the depth buffer if the Depth Buffer Clear field

is enabled. It is valid only if Depth Buffer Clear Value Valid is set.

2 31:1 Reserved

Format: MBZ

0 Depth Clear Value Valid

Format: Boolean

This field enables the Depth Clear Value. If clear, the depth clear value is obtained from interpolated

depth of an arbitrary pixel of the primitive rendered with Depth Buffer Clear set in WM_STATE or

3DSTATE_WM. If set, the depth clear value is obtained from the Depth Clear Value field of this

command.

11.6 Barycentric Attribute Interpolation

Given hardware clipper and setup, some of the previous flexibility in the algorithm used to interpolate

attributes is no longer available Hardware uses barycentric parameters to aid in attribute interpolation,

and these parameters are computed in hardware per-pixel (or per-sample) and delivered in the thread

payload to the pixel shader Also delivered in the payload are a set of vertex deltas (a0, a1, and a2) per

channel of each attribute.

There are six different barycentric parameters that can be enabled for delivery in the pixel shader payload

These are enabled via the Barycentric Interpolation Mode bits in 3DSTATE_WM.

In the pixel shader kernel, the following computation is done for each attribute channel of each

pixel/sample given the corresponding attribute channel a0/a1/a2 and the pixel/sample’s b1/b2 barycentric

parameters, where A is the value of the attribute channel at that pixel/sample:

A = a0 + (a1 * b1) + (a2 * b2)

11.7 MCS Buffer for Render Target(s)

MCS buffer can be enabled for two purposes described below. MCS buffer can be controlled using two

mechanisms: 1) MMIO bit Cache Mode 1 (0x2124) register bit 5 and 2) RT surface state. Following table

summarizes modes of operation related to MCS buffer.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 326

Cache

Mode

MMIO Bit

(Please

refer to Vol

1c)

MSC

Enable

(Surface

State)

Operation

1 (feature disable) X Normal mode of operation i.e. no

MSAA compression and no color

clear

0 0 Normal mode of operation i.e. no

MSAA compression and no color

clear

0 1 Depending on the Number of multi-

samples, either MSAA compression

OR color clear is enabled

 MSAA Compression: Multi-sample render target is bound to the pipeline and MSAA compression
feature is enabled. In this case, MCS buffer stores the information required for MSAA compression
algorithm. The size and layout of the MCS buffer is based on per-pixel RT. For 4X and 8X MSAA,
MCS buffer element is 8bpp and 32bpp respectively. Height, width and layout of MCS buffer in this
case needs must match with Render Target height, width and layout. MCS buffer is tiledY. When
MCS buffer is enabled and bound to MSRT, it is required that it is cleared prior to any rendering. A
clear value can be specified optionally in the surface state of the corresponding RT. Clear pass for
this case requires that scaled down primitive is sent down with upper left co-ordinate to coincide with
actual rectangle being cleared. For MSAA, clear rectangle’s height and width need to as show in the
following table in terms of (width,height) of the RT.

MSAA
Width of Clear

Rect Height of Clear Rect
4X Ceil(1/8*width) Ceil(1/2*height)

8X Ceil(1/2*width) Ceil(1/2*height)

 Fast Color Clear: When non multi-sample render target is bond to the pipeline and MSC buffer is
enabled, MCS buffer is used as an intermediate (coarse granular) buffer per RT. Hence, MCS buffer
is used to improve render target clear. When MCS is buffer is used for color clear of non-
multisampler render target, the following restrictions apply.

 Support is limited to tiled render targets.

 Support is for non-mip-mapped and non-array surface types only.

 Clear is supported only on the full RT; i.e., no partial clear or overlapping clears.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 327

The following table describes the RT alignment

Pixels Lines

TiledY RT CL

bpp

32 8 4

64 4 4

128 2 4

TiledX RT CL

bpp

32 16 2

64 8 2

128 4 2

 MCS buffer for non-MSRT is supported only for RT formats 32bpp, 64bpp and 128bpp.

 Clear pass must have a clear rectangle that must follow alignment rules in terms of
pixels and lines as shown in the table below. Further, the clear-rectangle height and
width must be multiple of the following dimensions. If the height and width of the
render target being cleared do not meet these requirements, an MCS buffer can be
created such that it follows the requirement and covers the RT.

 Pixels Lines

TiledY RT

bpp

32 128 128

64 64 128

128 32 128

TiledX RT

bpp

32 256 64

64 128 64

128 64 64

In order to optimize the performance MCS buffer (when bound to 1X RT) clear similarly to

MCS buffer clear for MSRT case, clear rect is required to be scaled by the following factors in

the horizontal and vertical directions:

Horizontal scale

down factor

Vertical scale

down factor

MCS CL for TiledY

RCC

bpp

32 64 64

64 32 64

128 16 64

MCS CL for TiledX

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 328

RCC

bpp

32 128 32

64 64 32

128 32 32

Following are the SW requirements for MCS buffer clear functionality:

 At the time of Render Target creation, SW needs to create clear-buffer; i.e., MCS
buffer.

 At the clear time, clear value for that RT must be programmed and clear enable bit
must be set in the surface state of the corresponding RT.

 SW must clear the RT with setting a RT clear bit set in the PS state during the clear
pass as described in the following sub-section.

 Since only one RT is bound with a clear pass, only one RT can be cleared at a time. In
order to clear multiple RTs, multiple clear passes are required.

 Before binding the “cleared” RT to texture OR honoring a CPU lock OR submitting for
flip, SW must ensure a resolve pass. Such a resolve pass is described in the following
sub-section.

11.8 Render Target Fast Clear

Fast clear of the render target is performed by setting the Render Target Fast Clear Enable field in

3DSTATE_PS and rendering a rectangle The size of the rectangle is related to the size of the MCS.

The following is required when performing a render target fast clear:

 The render target(s) is/are bound as they normally would be, with the MCS surface defined in
SURFACE_STATE.

 A rectangle primitive of the same size as the MCS surface is delivered.

 The pixel shader kernel requires no attributes, and delivers a value of 0xFFFFFFFF in all channels
of the render target write message The replicated color message should be used.

 Depth Test Enable, Depth Buffer Write Enable, Stencil Test Enable, Stencil Buffer Write
Enable, and Alpha Test Enable must all be disabled.

 After Render target fast clear, pipe-control with color cache write-flush must be issued before
sending any DRAW commands on that render target.

11.9 Render Target Resolve

If the MCS is enabled on a non-multisampled render target, the render target must be resolved before

being used for other purposes (display, texture, CPU lock) The clear value from SURFACE_STATE is

written into pixels in the render target indicated as clear in the MCS. This is done by setting the Render

Target Resolve Enable field in 3DSTATE_PS and rendering a full render target sized rectangle. Once

this is complete, the render target will contain the same contents as it would have had the rendering been

performed with MCS surface disabled. In a typical usage model, the render target(s) need to be resolved

after rendering and before using it as a source for any consecutive operation.

The following is required when performing a render target resolve:

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 329

 PIPE_CONTROL with end of pipe sync must be delivered.

 A rectangle primitive must be scaled down by the following factors with respect to render target
being resolved.

Resolve rectangle scaling for TiledY RCC

 width scale down factor height scale down factor

bpp

32 4 2

64 2 2

128 1 2

Resolve rectangle scaling for TiledX RCC

bpp

32 8 1

64 4 1

128 2 1

 : The pixel shader kernel requires no attributes, but must deliver a render target write message
covering all pixels and all render targets desired to be resolved The color data in these messages is
ignored (the replicated color message is required).

 Depth Test Enable, Depth Buffer Write Enable, Stencil Test Enable, Stencil Buffer Write
Enable, and Alpha Test Enable must all be disabled.

Note that this render target resolve procedure is not supported on multisampled render targets.

Unresolved multisampled render targets are directly supported by the sampling engine, which resolves

clear values in addition to decompressing the surface This applies to both ld2dms and sample2dms

messages.

11.10 Pixel Shader Thread Generation

After a group of object pixels have been rasterized, the Pixel Shader function is invoked to further

compute pixel color/depth information and cause results to be written to rendertargets and/or depth

buffers For each pixel, the Pixel Shader calculates the values of the various vertex attributes that are to

be interpolated across the object using the interpolation coefficients It then executes an API-supplied

Pixel Shader Program Instructions in this program permit the accessing of texture map data, where

Texture Samplers are employed to sample and filter texture maps (see the Shared Functions chapter)

Arithmetic operations can be performed on the texture data, input pixel information and Pixel Shader

Constants in order to compute the resultant pixel color/depth The Pixel Shader program also allows the

pixel to be discarded from further processing For pixels that are not discarded, the pixel shader must

send messages to update one or more render targets with the pixel results.

11.10.1 Pixel Grouping (Dispatch Size) Control

The WM unit can pass a grouping of 2 subspans (8 pixels), 4 subspans (16 pixels) or 8 subspans (32

pixels) to a Pixel Shader thread Software should take into account the following considerations when

determining which groupings to support/enable during operation This determination involves a tradeoff of
these likely conflicting issues Note that the size of the dispatch has significant impact on

the kernel program (it is certainly not transparent to the kernel) Also note that there is no implied

spatial relationship between the subspans passed to a PS thread, other than the fact that they come from

the same object.

1. Thread Efficiency: In general, there is some amount of overhead involved with PS thread
dispatch, and if this can be amortized over a larger number of pixels, efficiency will likely

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 330

increase This is especially true for very short PS kernels, as may be used for desktop
composition, etc.

2. GRF Consumption: Processing more pixels per thread will require a larger thread payload
and likely more temporary register usage, both of which translate into a requirement for a
larger GRF register allocation for the threads. If this increased GRF usage could lead to
increased use of scratch space (for spill/fill, etc.) and possibly less efficient use of the Eus (as
it would be less likely to find an EU with enough free physical GRF registers to service the
thread).

3. Object Size: If the number of very small objects (e.g., covering 2 subspans or fewer) is
expected to comprise a significant portion of the workload, supporting the 8-pixel dispatch
mode may be advantageous Otherwise there could be a large number of 16-pixel dispatches
with only 1 or 2 valid subspans, resulting in low efficiency for those threads.

4. Intangibles: Kernel footprint & Instruction Cache impact; Complexity; ….

The groupings of subspans that the WM unit is allowed to include in a PS thread payload is controlled by

the 32,16,8 Pixel Dispatch Enable state variables programmed in WM_STATE. Using these state

variables, the WM unit will attempt to dispatch the largest allowed grouping of subspans The following

table lists the possible combinations of these state variables.

Please note that, the valid column in table indicates which products supports the combination dispatch.

Combinations that are not listed in the table are not available on any product.

A: Valid on all products

B: Valid only on Not valid on if 4x PERPIXEL mode with pixel shader computed depth.

D: Valid on all products, except when in non-1x PERSAMPLE mode (applies to only) .

F: Valid on all products.

Variable Pixel Dispatch

Contiguous
64 Pixel
Dispatch
Enable

Contiguous
32 Pixel
Dispatch
Enable

32 Pixel
Dispatch
Enable

16 Pixel
Dispatch
Enable

8 Pixel
Dispatch
Enable Valid

IP for n-pixel
Contiguous

Dispatch

IP for n-pixel Dispatch

(KSP offsets are in

128-bit instruction

units)

n=64 n=32 n=32 n=16 n=8
0 0 0 0 1 A KSP[0]

0 0 0 1 0 F KSP[0]

0 0 0 1 1 D KSP[2] KSP[0]

0 0 1 0 0 B KSP[0]

0 0 1 1 0 E KSP[1] KSP[2]

0 0 1 1 1 D KSP[1] KSP[2] KSP[0]

0 1 0 0 0 C KSP[0]

0 1 1 0 0 C KSP[1] KSP[0]

0 1 1 1 0 D KSP[2] KSP[1] KSP[0]

1 0 0 0 0 C KSP[0]

1 0 1 0 0 C KSP[1] KSP[0]

1 0 1 1 0 D KSP[2] KSP[1] KSP[0]

1 1 0 0 0 C KSP[1] KSP[0]

1 1 1 0 0 C KSP[2] KSP[1] KSP[0]

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 331

:

 Each of the four KSP values is separately specified (three for). In addition, each kernel has a separately-

specified GRF register count, whereas on , all kernels share the same GRF register count field, with the

one with the maximum register count required applying to all

Depending on the subspan grouping selected, the WM unit will modify the starting PS Instruction Pointer

(derived from the Kernel Start Pointer in WM_STATE) as a means to inform the PS kernel of the number

of subspans included in the payload. The modified IP is a function of the enabled modes and the dispatch

size, as shown in the table below.

The driver must ensure that the PS kernel begins with a corresponding jump table to properly handle the

number of subspans dispatched. The WM unit will “OR” in the two lsbs of the Kernel Pointer (bits 5:4) to

create an instruction level address (note that the pointer from WM_STATE is 64 byte aligned which

ierarchica to four instructions).

If only one dispatch mode is enabled, the Jitter should not include any jump table entries at the beginning

of the PS kernel If multiple dispatch modes are enabled, a two entry jump table should always be

inserted, regardless of which modes are enabled (jump table entry for 8 pixel dispatch, followed by jump

table entry for 32 pixel dispatch).

Note that for a 32 pixel dispatch, the Windower will ierarch the Dispatch GRF Start Register for URB

Data state by 2 to account for the extra payload data required. The Pixel Shader kernel needs to

comprehend this modification for the 32 pixel kernel code.

if (32PixelDispatchEnable && n>7)

Dispatch 32 Pixels

else if (16PixelDispatchEnable && (n>2 || !8PixelDispatchEnable))

Dispatch 16 Pixels

else

Dispatch 8 Pixels

11.10.1.1 Contiguous Dispatch Modes

There are three cases to consider depending on which dispatch modes are enabled based on the legal

combinations in the table above:

Only normal dispatch modes are enabled. This is the normal operating mode in which all features are

supported.

Only contiguous dispatch modes are enabled. In this case, software must ensure that the fast

composite restrictions are met.

Both normal and contiguous dispatch modes are enabled In this case, a combination of software and

the setup kernel must check all of the restrictions required by the contiguous dispatch pixel shader code

The result of the check in the setup kernel is indicated in the message descriptor of the URB write

message The windower then chooses a dispatch mode from either the normal category or the contiguous

category depending on whether the restriction check fails or passes, respectively.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 332

If both the 32- and 64-pixel contiguous dispatch modes are enabled together, the windower will choose

which one to use based on whether at least one pixel from the upper and lower 8x4 halves of the 8x8

block is active If one half has no pixel active, the half that does have pixels active will be dispatched as a

32-pixel thread.

The following logic describes how the windower chooses the dispatch mode based on which modes are

enabled:

d32 = normal 32-pixel dispatch mode enabled

d16 = normal 16-pixel dispatch mode enabled

d8 = normal 8-pixel dispatch mode enabled

c64 = contiguous 64-pixel dispatch mode enabled

c32 = contiguous 32-pixel dispatch mode enabled

ContiguousSelect = (c64 || c32) &&

[!(d32 || d16 || d8) || RestrictionCheckPass]

For ContiguousSelect true:

contiguous area available first priority second priority

both superspan halves c64 c32

one superspan half c32 c64

For ContiguousSelect false:

subspans available first priority second priority third priority

s >= 4 d32 d16 d8

4 > s >= 2 d16 d8 d32

2 > s >= 1 d8 d16 d32

11.10.2 Multisampling Effects on Pixel Shader Dispatch

The pixel shader payloads are defined in terms of subspans and pixels The slots in the pixel shader

thread previously mapped 1:1 with pixels With multisampling, a slot could contain a pixel or may just

contain a single sample, depending on the mode Payload definitions now refer to “slot” to make the

definition independent of multisampling mode.

11.10.2.1 MSDISPMODE_PERPIXEL Thread Dispatch

In PERPIXEL mode, the pixel shader kernel still works on 2/4/8 separate subspans, depending on

dispatch mode. The fact that rasterization and the depth/stencil tests are being performed on a per-

sample (not per-pixel) basis is transparent to the pixel shader kernel.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 333

11.10.2.2 MSDISPMODE_PERSAMPLE Thread Dispatch

In PERSAMPLE mode, the pixel shader needs to operate on a sample vs. pixel basis (although this
collapses in NUMSAMPLES_1 mode) Instead of processing strictly different subspans in parallel ,

the PS kernel processes different sample indices of one or more subspans in parallel For

example, a SIMD16 dispatch in PERSAMPLE/NUMSAMPLES_4 mode would operate on a single

subspan, with the usual “4 Subspan0 pixel slots” used for the “4 Sample0 locations of the (single)

subspan” Subspan1 slots would be used for the Sample1 locations, and so on This layout allows the pixel

shader to compute derivatives/LOD based on deltas between corresponding sample locations in the

subspan in the same fashion as LEGACY pixel shader execution, and as required by DX10.1.

Depending on the dispatch mode (8/16/32 pixels) and multisampling mode (1X/4X), there are different

mappings of subspans/samples onto dispatches and slots-within-dispatch In some cases, more than one

subspan may be included in a dispatch, while in other cases multiple dispatches are be required to

process all samples for a single subspan In the latter case, the StartingSamplePairIndex value is

included in the payload header so the Render Target Write message will access the correct samples with

each message.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 334

PERSAMPLE SIMD16 4X Dispatch

PERSAMPLE SIMD8 4X Dispatch

The following table provides the complete dispatch/slot mappings for all the MS/Dispatch combinations.

Dispatch Size Num Samples Slot Mapping

(SSPI = Starting Sample Pair Index)

SIMD32 1X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

Slot[11:8] = Subspan[2].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[3].Pixel[3:0].Sample[0]

Slot[19:16] = Subspan[4].Pixel[3:0].Sample[0]

Slot[23:20] = Subspan[5].Pixel[3:0].Sample[0]

Slot[27:24] = Subspan[6].Pixel[3:0].Sample[0]

Slot[31:28] = Subspan[7].Pixel[3:0].Sample[0]

2X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[1].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[1].Pixel[3:0].Sample[1]

Slot[19:16] = Subspan[2].Pixel[3:0].Sample[0]

Slot[23:20] = Subspan[2].Pixel[3:0].Sample[1]

Slot[27:24] = Subspan[3].Pixel[3:0].Sample[0]

Slot[31:28] = Subspan[3].Pixel[3:0].Sample[1]

4X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 335

Dispatch Size Num Samples Slot Mapping

(SSPI = Starting Sample Pair Index)

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]

Slot[19:16] = Subspan[1].Pixel[3:0].Sample[0]

Slot[23:20] = Subspan[1].Pixel[3:0].Sample[1]

Slot[27:24] = Subspan[1].Pixel[3:0].Sample[2]

Slot[31:28] = Subspan[1].Pixel[3:0].Sample[3]

8X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]

Slot[19:16] = Subspan[0].Pixel[3:0].Sample[4]

Slot[23:20] = Subspan[0].Pixel[3:0].Sample[5]

Slot[27:24] = Subspan[0].Pixel[3:0].Sample[6]

Slot[31:28] = Subspan[0].Pixel[3:0].Sample[7]

SIMD16 1X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

Slot[11:8] = Subspan[2].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[3].Pixel[3:0].Sample[0]

2X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[1].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[1].Pixel[3:0].Sample[1]

4X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[1].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[1].Pixel[3:0].Sample[1]

8X Dispatch[i]: (i=0, 2)

SSPI = i

Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[SSPI*2+2]

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 336

Dispatch Size Num Samples Slot Mapping

(SSPI = Starting Sample Pair Index)

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[SSPI*2+3]

16X Dispatch[i]: (i=0, 2, 4, 6)

SSPI = i

Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[SSPI*2+2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[SSPI*2+3]

SIMD8 1X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

2X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

4X Dispatch[i]: (i=0..1)

 SSPI = i

 Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]

 Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]

8X Dispatch[i]: (i=0, 1, 2, 3)

 SSPI = i

 Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]

 Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]

16X Dispatch[i]: (i=0, 1, 2, 3, 4, 5, 6, 7)

 SSPI = i

 Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]

 Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]

11.10.3 PS Thread Payload for Normal Dispatch

The following table lists all possible contents included in a PS thread payload, in the order they are

provided Certain portions of the payload are optional, in which case the corresponding phase is skipped.

This payload does not apply to the contiguous dispatch modes on The payload for these modes are

documented in the section titled PS Thread Payload for Contiguous Dispatch.

11.10.3.1 PS Thread Payload for Normal Dispatch

The following payload (UNRESOLVED CROSS REFERENCE, PS Thread Payload for Normal Dispatch)

applies to All registers are numbered starting at 0, but many registers are skipped depending on

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 337

configuration This causes all registers below to be renumbered to fill in the skipped locations The only

case where actual registers may be skipped is immediately before the constant data and again before the

setup data.

PS Thread Payload for Normal Dispatch

Dword Bit Description
R0.7 31

30:24

Reserved

 23:0
Primitive Thread ID: This field contains the primitive thread count passed to the Windower

from the Strips Fans Unit.

Format: Reserved for HW Implementation Use.

R0.6
31:24

Reserved

 23:0
Thread ID: This field contains the thread count which is incremented by the Windower for every

thread that is dispatched.

Format: Reserved for HW Implementation Use.

R0.5 31:10
Scratch Space Pointer: Specifies the 1K-byte aligned pointer to the scratch space available

for this PS thread This is specified as an offset to the General State Base Address.

Format = GeneralStateOffset[31:10]

9:8

Reserved

 7:0
FFTID: This ID is assigned by the WM unit and is a identifier for the thread It is used to free up

resources used by the thread upon thread completion.

Format: Reserved for HW Implementation Use.

R0.4 31:5
Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding Table It is

specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

4:0

Reserved

R0.3 31:5
Sampler State Pointer: Specifies the 32-byte aligned pointer to the Sampler State table It is

specified as an offset from the Dynamic State Base Address.

Format = DynamicStateOffset[31:5]

4

Reserved

 3:0
Per Thread Scratch Space: Specifies the amount of scratch space allowed to be used by this

thread.

Programming Notes:

 This amount is available to the kernel for information only It will be passed verbatim
(if not altered by the kernel) to the Data Port in any scratch space access

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 338

Dword Bit Description
messages, but the Data Port will ignore it

Format = U4

Range = [0,11] indicating [1k bytes, 2M bytes] in powers of two

R0.2
31:0

Reserved : delivered as zeros (reserved for message header fields)

R0.1 31:6
Color Calculator State Pointer:Specifies the 64-byte aligned pointer to the Color Calculator

state (COLOR_CALC_STATE structure in memory) It is specified as an offset from the

Dynamic State Base Address This value is eventually passed to the ColorCalc function in the

DataPort and is used to fetch the corresponding CC_STATE data.

Format = DynamicStateOffset[31:5]

5:0

Reserved

R0.0
31

Reserved

 30:27
Viewport Index Specifies the index of the viewport currently being used.

Format = U4

Range = [0,15]

 26:16
Render Target Array Index:Specifies the array index to be used for the following surface

types:

SURFTYPE_1D: specifies the array index Range = [0,2047]

SURFTYPE_2D: specifies the array index Range = [0,2047]

SURFTYPE_3D: specifies the “r” coordinate Range = [0,2047]

SURFTYPE_CUBE: specifies the face identifier Range = [0,5]

face Render Target Array Index

+x 0

-x 1

+y 2

-y 3

+z 4

-z 5

Format = U11

 15
Front/Back Facing Polygon: Determines whether the polygon is front or back facing Used by

the render cache to determine which stencil test state to use.

0: Front Facing

1: Back Facing

14

Reserved

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 339

Dword Bit Description
 13

Source Depth to Render Target: Indicates that source depth will be sent to the render target

 12
oMask to Render Target: Indicates that oMask will be sent to the render target

11:9

Reserved

8 Reserved for expansion of Starting Sample Pair Index

 7:6
Starting Sample Pair Index: indicates the index of the first sample pair of the dispatch

Format = U2

Range = [0,3]

5

Reserved

 4:0
Primitive Topology Type: This field identifies the Primitive Topology Type associated with the

primitive spawning this object The WM unit does not modify this value (e.g., objects within

POINTLIST topologies see POINTLIST).

Format: (See 3DPRIMITIVE command in 3D Pipeline)

R1.7 31:16
Pixel/Sample Mask (SubSpan[3:0]) : Indicates which pixels within the four subspans are lit If

32 pixel dispatch is enabled, this field contains the pixel mask for the first four subspans.

Note: This is not a duplicate of the Dispatch Mask that is delivered to the thread The dispatch

mask has all pixels within a subspan as active if any of them are lit to enable LOD calculations

to occur correctly.

This field must not be modified by the Pixel Shader kernel.

 15:0
Pixel/Sample Mask Copy (SubSpan[3:0]) : This is a duplicate copy of the pixel mask This

copy can be modified as the pixel shader thread executes in order to turn off pixels based on

kill instructions.

R1.6
31:0

Reserved

R1.5 31:16
Y3: Y coordinate (screen space) for upper-left pixel of subspan 3 (slot 12)

Format = U16

 15:0
X3: X coordinate (screen space) for upper-left pixel of subspan 3 (slot 12)

Format = U16

R1.4 31:16
Y2 : Y coordinate (screen space) for upper-left pixel of subspan 2 (slot 8)

Format = U16

 15:0
X2 : X coordinate (screen space) for upper-left pixel of subspan 2 (slot 8)

Format = U16

R1.3 31:16
Y1 : Y coordinate (screen space) for upper-left pixel of subspan 1 (slot 4)

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 340

Dword Bit Description

Format = U16

 15:0
X1 : X coordinate (screen space) for upper-left pixel of subspan 1 (slot 4)

Format = U16

R1.2 31:16
Y0 : Y coordinate (screen space) for upper-left pixel of subspan 0 (slot 0)

Format = U16

 15:0
X0 : X coordinate (screen space) for upper-left pixel of subspan 0 (slot 0)

Format = U16

R1.1
31:0

Reserved

R1.0
31:16

Reserved

15:12 Slot 3 SampleID

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

16X MSAA range [0..15]

11:8 Slot 2 SampleID

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

16X MSAA range [0..15]

7:4 Slot 1 SampleID

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 341

Dword Bit Description

8X MSAA range [0..7]

16X MSAA range [0..15]

3:0 Slot 0 SampleID

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

16X MSAA range [0..15]

R2: delivered only if this is a 32-pixel dispatch.

R2.7 31:16
Pixel/Sample Mask (SubSpan[7:4]) : Indicates which pixels within the upper four subspans

are lit This field is valid only when the 32 pixel dispatch state is enabled This field must not be

modified by the pixel shader thread.

Note: This is not a duplicate of the dispatch mask that is delivered to the thread The dispatch

mask has all pixels within a subspan as active if any of them are lit to enable LOD calculations

to occur correctly.

This field must not be modified by the Pixel Shader kernel.

 15:0
Pixel/Sample Mask Copy (SubSpan[7:4]) : This is a duplicate copy of pixel mask for the

upper 16 pixels This copy will be modified as the pixel shader thread executes to turn off pixels

based on kill instructions.

R2.6
31:0

Reserved

R2.5 31:16
Y7: Y coordinate (screen space) for upper-left pixel of subspan 7 (slot 28)

Format = U16

 15:0
X7: X coordinate (screen space) for upper-left pixel of subspan 7 (slot 28)

Format = U16

R2.4 31:16 Y6

 15:0 X6

R2.3 31:16 Y5

 15:0 X5

R2.2 31:16 Y4

 15:0 X4

R2.1
31:0

Reserved

R2.0
31:15

Reserved

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 342

Dword Bit Description

15:12 Slot 7 SampleID

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

16X MSAA range [0..15]

11:8 Slot 6 SampleID

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

16X MSAA range [0..15]

7:4 Slot 5 SampleID

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

16X MSAA range [0..15]

3:0 Slot 4 SampleID

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

16X MSAA range [0..15]

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 343

Dword Bit Description

R3-R26: delivered only if the corresponding Barycentric Interpolation Mode bit is set

Register phases containing Slot 8-15 data are not delivered in 8-pixel dispatch mode.

R3.7 31:0
Perspective Pixel Location Barycentric[1] for Slot 7

This and the next register phase is only included if the corresponding enable bit in Barycentric

Interpolation Mode is set.

Format = IEEE_Float

R3.6 31:0 Perspective Pixel Location Barycentric[1] for Slot 6

R3.5 31:0 Perspective Pixel Location Barycentric[1] for Slot 5

R3.4 31:0 Perspective Pixel Location Barycentric[1] for Slot 4

R3.3 31:0 Perspective Pixel Location Barycentric[1] for Slot 3

R3.2 31:0 Perspective Pixel Location Barycentric[1] for Slot 2

R3.1 31:0 Perspective Pixel Location Barycentric[1] for Slot 1

R3.0 31:0 Perspective Pixel Location Barycentric[1] for Slot 0

R4 Perspective Pixel Location Barycentric[2] for Slots 7:0

R5.7 31:0 Perspective Pixel Location Barycentric[1] for Slot 15

R5.6 31:0 Perspective Pixel Location Barycentric[1] for Slot 14

R5.5 31:0 Perspective Pixel Location Barycentric[1] for Slot 13

R5.4 31:0 Perspective Pixel Location Barycentric[1] for Slot 12

R5.3 31:0 Perspective Pixel Location Barycentric[1] for Slot 11

R5.2 31:0 Perspective Pixel Location Barycentric[1] for Slot 10

R5.1 31:0 Perspective Pixel Location Barycentric[1] for Slot 9

R5.0 31:0 Perspective Pixel Location Barycentric[1] for Slot 8

R6 Perspective Pixel Location Barycentric[2] for Slots 15:8

R7:10 Perspective Centroid Barycentric

R11:14 Perspective Sample Barycentric

R15:18 Linear Pixel Location Barycentric

R19:22 Linear Centroid Barycentric

R23:26 Linear Sample Barycentric

R27: delivered only if Pixel Shader Uses Source Depth is set.

R27.7 31:0
Interpolated Depth for Slot 7

Format = IEEE_Float

This and the next register phase is only included if Pixel Shader Uses Source Depth

(WM_STATE) is set.

R27.6 31:0 Interpolated Depth for Slot 6

R27.5 31:0 Interpolated Depth for Slot 5

R27.4 31:0 Interpolated Depth for Slot 4

R27.3 31:0 Interpolated Depth for Slot 3

R27.2 31:0 Interpolated Depth for Slot 2

R27.1 31:0 Interpolated Depth for Slot 1

R27.0 31:0 Interpolated Depth for Slot 0

R28: delivered only if Pixel Shader Uses Source Depth is set and this is not an 8-pixel

dispatch.

R28.7 31:0 Interpolated Depth for Slot 15

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 344

Dword Bit Description
R28.6 31:0 Interpolated Depth for Slot 14

R28.5 31:0 Interpolated Depth for Slot 13

R28.4 31:0 Interpolated Depth for Slot 12

R28.3 31:0 Interpolated Depth for Slot 11

R28.2 31:0 Interpolated Depth for Slot 10

R28.1 31:0 Interpolated Depth for Slot 9

R28.0 31:0 Interpolated Depth for Slot 8

R29: delivered only if Pixel Shader Uses Source W is set.

R29.7 31:0
Interpolated W for Slot 7

Format = IEEE_Float

This and the next register phase is only included if Pixel Shader Uses Source W

(WM_STATE) is set

R29.6 31:0 Interpolated W for Slot 6

R29.5 31:0 Interpolated W for Slot 5

R29.4 31:0 Interpolated W for Slot 4

R29.3 31:0 Interpolated W for Slot 3

R29.2 31:0 Interpolated W for Slot 2

R29.1 31:0 Interpolated W for Slot 1

R29.0 31:0 Interpolated W for Slot 0

R30: delivered only if Pixel Shader Uses Source W is set and this is not an 8-pixel dispatch.

R30.7 31:0 Interpolated W for Slot 15

R30.6 31:0 Interpolated W for Slot 14

R30.5 31:0 Interpolated W for Slot 13

R30.4 31:0 Interpolated W for Slot 12

R30.3 31:0 Interpolated W for Slot 11

R30.2 31:0 Interpolated W for Slot 10

R30.1 31:0 Interpolated W for Slot 9

R30.0 31:0 Interpolated W for Slot 8

R31: delivered only if Position XY Offset Select is either POSOFFSET_CENTROID or

POSOFFSET_SAMPLE

R31.7 31:24
Position Offset Y for Slot 15

This field contains either the CENTROID or SAMPLE position offset for Y, depending on the

state of Position XY Offset Select.

Format = U4.4

Range = [0.0,1.0)

 23:16
Position Offset X for Slot 15

This field contains either the CENTROID or SAMPLE position offset for X, depending on the

state of Position XY Offset Select.

Format = U4.4

Range = [0.0,1.0)

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 345

Dword Bit Description
 15:8 Position Offset Y for Slot 14

 7:0 Position Offset X for Slot 14

R31.6 31:24 Position Offset Y for Slot 13

 23:16 Position Offset X for Slot 13

 15:8 Position Offset Y for Slot 12

 7:0 Position Offset X for Slot 12

R31.5:4 Position Offset X/Y for Slot[11:8]

R31.3:2 Position Offset X/Y for Slot[7:4]

R31.1:0 Position Offset X/Y for Slot[3:0]

R32: delivered only if Pixel Shader Uses Input Coverage Mask is set.

R32.7 31:0
Input Coverage Mask for Slot 7

Format = U32

This and the next register phase is only included if Pixel Shader Uses Input Coverage Mask

(3DSTATE_PS) is set.

R32.6 31:0 Input Coverage Mask for Slot 6

R32.5 31:0 Input Coverage Mask for Slot 5

R32.4 31:0 Input Coverage Mask for Slot 4

R32.3 31:0 Input Coverage Mask for Slot 3

R32.2 31:0 Input Coverage Mask for Slot 2

R32.1 31:0 Input Coverage Mask for Slot 1

R32.0 31:0 Input Coverage Mask for Slot 0

R33: delivered only if Pixel Shader Uses Input Coverage Mask is set and this is not an 8-

pixel dispatch.

R33.7 31:0 Input Coverage Mask for Slot 15

R33.6 31:0 Input Coverage Mask for Slot 14

R33.5 31:0 Input Coverage Mask for Slot 13

R33.4 31:0 Input Coverage Mask for Slot 12

R33.3 31:0 Input Coverage Mask for Slot 11

R33.2 31:0 Input Coverage Mask for Slot 10

R33.1 31:0 Input Coverage Mask for Slot 9

R33.0 31:0 Input Coverage Mask for Slot 8

R34-R57: delivered only if the corresponding Barycentric Interpolation Mode bit is set and

this is a 32-pixel dispatch.

R34.7 31:0
Perspective Pixel Location Barycentric[1] for Slot 23

This and the next register phase is only included if the corresponding enable bit in Barycentric

Interpolation Mode is set.

Format = IEEE_Float

R34.6 31:0 Perspective Pixel Location Barycentric[1] for Slot 22

R34.5 31:0 Perspective Pixel Location Barycentric[1] for Slot 21

R34.4 31:0 Perspective Pixel Location Barycentric[1] for Slot 20

R34.3 31:0 Perspective Pixel Location Barycentric[1] for Slot 19

R34.2 31:0 Perspective Pixel Location Barycentric[1] for Slot 18

R34.1 31:0 Perspective Pixel Location Barycentric[1] for Slot 17

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 346

Dword Bit Description
R34.0 31:0 Perspective Pixel Location Barycentric[1] for Slot 16

R35 Perspective Pixel Location Barycentric[2] for Slots 23:16

R36.7 31:0 Perspective Pixel Location Barycentric[1] for Slot 31

R36.6 31:0 Perspective Pixel Location Barycentric[1] for Slot 30

R36.5 31:0 Perspective Pixel Location Barycentric[1] for Slot 29

R36.4 31:0 Perspective Pixel Location Barycentric[1] for Slot 28

R36.3 31:0 Perspective Pixel Location Barycentric[1] for Slot 27

R36.2 31:0 Perspective Pixel Location Barycentric[1] for Slot 26

R36.1 31:0 Perspective Pixel Location Barycentric[1] for Slot 25

R36.0 31:0 Perspective Pixel Location Barycentric[1] for Slot 24

R37 Perspective Pixel Location Barycentric[2] for Slots 31:24

R38:41 Perspective Centroid Barycentric

R42:45 Perspective Sample Barycentric

R46:49 Linear Pixel Location Barycentric

R50:53 Linear Centroid Barycentric

R54:57 Linear Sample Barycentric

R58-R59: delivered only if Pixel Shader Uses Source Depth is set and this is a 32-pixel

dispatch.

R58.7 31:0
Interpolated Depth for Slot 23

Format = IEEE_Float

This and the next register phase is only included if Pixel Shader Uses Source Depth

(WM_STATE) bit is set.

R58.6 31:0 Interpolated Depth for Slot 22

R58.5 31:0 Interpolated Depth for Slot 21

R58.4 31:0 Interpolated Depth for Slot 20

R58.3 31:0 Interpolated Depth for Slot 19

R58.2 31:0 Interpolated Depth for Slot 18

R58.1 31:0 Interpolated Depth for Slot 17

R58.0 31:0 Interpolated Depth for Slot 16

R59.7 31:0 Interpolated Depth for Slot 31

R59.6 31:0 Interpolated Depth for Slot 30

R59.5 31:0 Interpolated Depth for Slot 29

R59.4 31:0 Interpolated Depth for Slot 28

R59.3 31:0 Interpolated Depth for Slot 27

R59.2 31:0 Interpolated Depth for Slot 26

R59.1 31:0 Interpolated Depth for Slot 25

R59.0 31:0 Interpolated Depth for Slot 24

R60-R61: delivered only if Pixel Shader Uses Source W is set and this is a 32-pixel dispatch.

R60.7 31:0
Interpolated W for Slot 23

Format = IEEE_Float

This and the next register phase is only included if Pixel Shader Uses Source W

(WM_STATE) bit is set.

R60.6 31:0 Interpolated W for Slot 22

R60.5 31:0 Interpolated W for Slot 21

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 347

Dword Bit Description
R60.4 31:0 Interpolated W for Slot 20

R60.3 31:0 Interpolated W for Slot 19

R60.2 31:0 Interpolated W for Slot 18

R60.1 31:0 Interpolated W for Slot 17

R60.0 31:0 Interpolated W for Slot 16

R61.7 31:0 Interpolated W for Slot 31

R61.6 31:0 Interpolated W for Slot 30

R61.5 31:0 Interpolated W for Slot 29

R61.4 31:0 Interpolated W for Slot 28

R61.3 31:0 Interpolated W for Slot 27

R61.2 31:0 Interpolated W for Slot 26

R61.1 31:0 Interpolated W for Slot 25

R61.0 31:0 Interpolated W for Slot 24

R62: delivered only if Position XY Offset Select is either POSOFFSET_CENTROID or

POSOFFSET_SAMPLE and this is a 32-pixel dispatch.

R62.7 31:24
Position Offset Y for Slot 31

This field contains either the CENTROID or SAMPLE position offset for Y, depending on the

state of Position XY Offset Select.

Format = U4.4

Range = [0.0,1.0)

 23:16
Position Offset X for Slot 31

This field contains either the CENTROID or SAMPLE position offset for X, depending on the

state of Position XY Offset Select.

Format = U4.4

Range = [0.0,1.0)

 15:8 Position Offset Y for Slot 30

 7:0 Position Offset X for Slot 30

R62.6 31:24 Position Offset Y for Slot 29

 23:16 Position Offset X for Slot 29

 15:8 Position Offset Y for Slot 28

 7:0 Position Offset X for Slot 28

R62.5:4 Position Offset X/Y for Slot[27:24]

R62.3:2 Position Offset X/Y for Slot[23:20]

R62.1:0 Position Offset X/Y for Slot[19:16]

R63-R64: delivered only if Pixel Shader Uses Input Coverage Mask is set and this is a 32-

pixel dispatch.

R63.7 31:0
Input Coverage Mask for Slot 23

Format = U32

This and the next register phase is only included if Pixel Shader Uses Input Coverage Mask

(3DSTATE_PS) is set.

R63.6 31:0 Input Coverage Mask for Slot 22

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 348

Dword Bit Description
R63.5 31:0 Input Coverage Mask for Slot 21

R63.4 31:0 Input Coverage Mask for Slot 20

R63.3 31:0 Input Coverage Mask for Slot 19

R63.2 31:0 Input Coverage Mask for Slot 18

R63.1 31:0 Input Coverage Mask for Slot 17

R63.0 31:0 Input Coverage Mask for Slot 16

R64.7 31:0 Input Coverage Mask for Slot 31

R64.6 31:0 Input Coverage Mask for Slot 30

R64.5 31:0 Input Coverage Mask for Slot 29

R64.4 31:0 Input Coverage Mask for Slot 28

R64.3 31:0 Input Coverage Mask for Slot 27

R64.2 31:0 Input Coverage Mask for Slot 26

R64.1 31:0 Input Coverage Mask for Slot 25

R64.0 31:0 Input Coverage Mask for Slot 24

Optional Padding before the Start of Constant/Setup Data

The locations between the end of the Optional Payload Header and the location programmed

via Dispatch GRF Start Register for Constant/Setup Data are considered “padding” and

Reserved (see below)

optional,

multiple of 8

DWs

31:0
Reserved

The Dispatch GRF Start Register for Constant/Setup Data state variable in 3DSTATE_WM

is used to define the starting location of the constant and setup data within the PS thread

payload This control is provided to allow this data to be located at a fixed location within thread

payloads, regardless of the amount of data in the Optional Payload Header This permits the

kernel to use direct GRF addressing to access the constant/setup data, regardless of the

optional parameters being passed (as these are determined on-the-fly by the WM unit)

Constant Data (optional) :

Some amount of constant data (possible none) can be extracted from the push constant buffer

(PCB) and passed to the thread following the R0 Header The amount of data provided is

defined by the sum of the read lengths in the last 3DSTATE_CONSTANT_PS command (taking

the buffer enables into account).

The Constant Data arrives in a non-interleaved format.

Optional,

multiple of 8

DWs

31:0
Constant Data

Setup Data (Attribute Vertex Deltas)

Output data from the SF stage is delivered in the PS thread payload The amount of data is

determined by the Number of Output Attributes field Each register contains two channels of

one attribute Thus, the total number of registers sent is equal to 2 * Number of Output

Attributes.

Rp.7 31:0
a0[0].y – a0 vertex delta for Attribute0.y

Format = IEEE_Float

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 349

Dword Bit Description
Rp.6

31:0
Reserved

Rp.5 31:0
a2[0].y – a2 vertex delta for Attribute0.y

Format = IEEE_Float

Rp.4 31:0
a1[0].y – a1 vertex delta for Attribute0.y

Format = IEEE_Float

Rp.3 31:0
a0[0].x – a0 vertex delta for Attribute0.x

Rp.2
31:0

Reserved

Rp.1 31:0
a2[0].x – a2 vertex delta for Attribute0.x

Rp.0 31:0
a1[0].x – a1 vertex delta for Attribute0.x

R(p+1).7 31:0
a0[0].w – a0 vertex delta for Attribute0.w

R(p+1).6
31:0

Reserved

R(p+1).5 31:0
a2[0].w – a2 vertex delta for Attribute0.w

R(p+1).4 31:0
a1[0].w – a1 vertex delta for Attribute0.w

R(p+1).3 31:0
a0[0].z – a0 vertex delta for Attribute0.z

R(p+1).2
31:0

Reserved

R(p+1).1 31:0
a2[0].z – a2 vertex delta for Attribute0.z

R(p+1).0 31:0
a1[0].z – a1 vertex delta for Attribute0.z

R(p+2):Rq
Vertex deltas for additional attributes in numerical order

See definition of Rp and R(p+1) for formats.

11.11 Other WM Functions

11.11.1 Statistics Gathering

If Statistics Enable is set in WM_STATE or 3DSTATE_WM, the Windower increments the

PS_INVOCATIONS_COUNT register once for each unmasked pixel (or sample) that is dispatched to a

Pixel Shader thread.

PS_INVOCATIONS_COUNT register counts all the pixels/samples present in a 2X2 dispatched to Pixel

Shader.

If Early Depth Test Enable is set it is possible for pixels or samples to be discarded prior to reaching the

Pixel Shader due to failing the depth or stencil test PS_INVOCATIONS_COUNT will still be incremented

for these pixels or samples since the depth test occurs after the pixel shader from the point of view of SW.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 350

A0 Erratum BWT004 states that there is no way to indicate a true “null” pixel shader (in the sense that

the pixel shader dispatch will be skipped). The “dummy” PS thread required for a “null” pixel shader will

still cause PS_INVOCATIONS_COUNT to increment on pixel dispatches; if the “null” pixel dispatches are

not to be counted , Statistics Enable must be cleared when changing to a “null” pixel shader Clearing

Statistics Enable may also prevent PS_DEPTH_COUNT from incrementing properly Therefore, in

certain pipeline configurations, it may be impossible to maintain both PS_INVOCATIONS_COUNT and

PS_DEPTH_COUNT accurately.

When Early Depth Test is forced and when Statistics Enable is set, PS_INVOCATIONS_COUNT register

may not have the correct value.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 351

12. 3D Pipeline – Color Calculator
(Output Merger)

12.1 Overview

Note:The Color Calculator logic resides in the Render Cache backing Data Port (DAP) shared

function. It is described in this chapter as the Color Calc functions are naturally an extension of the 3D

pipeline past the WM stage. See the DataPort chapter for details on the messages used by the Pixel

Shader to invoke Color Calculator functionality.

The Color Calculator (referred to as “Output Merger in the DX Spec) function within the Data Port

shared function completes the processing of rasterized pixels after the pixel color and depth have been

computed by the Pixel Shader. This processing is initiated when the pixel shader thread sends a Render

Target Write message (see Shared Functions) to the Render Cache. (Note that a single pixel shader

thread may send multiple Render Target Write messages, with the result that multiple render targets get

updated). The pixel variables pass through a pipeline of fixed (yet programmable) functions, and the

results are conditionally written into the appropriate buffers.

The word “pixel” used in this section is effectively replaced with the word “sample” if multisample

rasterization is enabled.

Pipeline Stage Description

Alpha Coverage It generates coverage masks using AlphaToCoverage AND/OR AlphaToOne functions based on

src0.alpha.

Alpha Test Compare pixel alpha with reference alpha and conditionally discard pixel

Stencil Test Compare pixel stencil value with reference and forward result to Buffer Update stage

Depth Test Compare pix.Z with corresponding Z value in the Depth Buffer and forward result to Buffer Update

stage

Color Blending Combine pixel color with corresponding color in color buffer according to programmable function

Gamma

Correction

Adjust pixel’s color according to gamma function for SRGB destination surfaces.

Color

Quantization

Convert “full precision” pixel color values to fixed precision of the color buffer format

Logic Ops Combine pixel color logically with existing color buffer color (mutually exclusive with Color

Blending)

Buffer Update Write final pixel values to color and depth buffers or discard pixel without update

The following logic describes the high-level operation of the Pixel Processing pipeline:

PixelProcessing() {

AlphaCoverage()

AlphaTest()

DepthBufferCoordinateOffsetDisable

StencilTest()

DepthTest()

ColorBufferBlending()

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 352

GammaCorrection()

ColorQuantization()

LogicalOps()

BufferUpdate()

}

12.1.1 Alpha Coverage

Alpha coverage logic is supported and can be controlled using three state variables:

 AlphaToCoverage Enable, when enabled Color Calculator modifies the sample mask. This
function (along with AlphaToOne) come at the top of the pixel pipeline. The sample’s
Source0.Alpha value (possibly being replicated from the pixel’s Source0.Alpha) is used to
compute a (optionally dithered) 1/2/4-bit mask (depending on NumSamples).

 The AlphaToCoverage Dither Enable SV is used to control the dithering of the
AlphaToCoverage mask. The bit corresponding to the sample# is then ANDed with the sample’s
incoming mask bits – allowing the sample to be masked off depending on alpha.

 AlphaToOne Enable, when enabled, Color Calculator must replace Source0.Alpha (if present)
with 1.0f.

 If AlphaToCoverage is disabled, AlphaToCoverage Dither does not have any impact.

NOTE:

 Src0.alpha needs to be first multiplied with AA alpha before applying AlphaToCoverage and
AlphaToOne functions.

 An alpha value of NaN results in a no coverage (zero) mask.

 Alpha values from the pixel shader are treated as FLOAT32 format for computing the
AlphaToCoverage Mask.

12.1.2 Alpha Test

The Alpha Test function can be used to discard pixels based on a comparison between the incoming

pixel’s alpha value and the Alpha Test Reference state variable in COLOR_CALC_STATE. This

operation can be used to remove transparent or nearly-transparent pixels, though other uses for the alpha

channel and alpha test are certainly possible.

This function is enabled by the Alpha Test Enable state variable in COLOR_CALC_STATE. If

ENABLED, this function compares the incoming pixel’s alpha value (pixColor.Alpha) and the reference

alpha value specified by via the Alpha Test Reference state variable in COLOR_CALC_STATE. The

comparison performed is specified by the Alpha Test Function state variable in COLOR_CALC_STATE.

The Alpha Test Format state variable is used to specify whether Alpha Test is performed using fixed-

point (UNORM8) or FLOAT32 values. Accordingly, it determines whether the Alpha Reference Value is

passed in a UNORM8 or FLOAT32 format. If UNORM8 is selected, the pixel’s alpha value will be

converted from floating-point to UNORM8 before the comparison.

Pixels that pass the Alpha Test proceed for further processing. Those that fail are discarded at this point

in the pipeline.

If Alpha Test Enable is DISABLED, this pipeline stage has no effect.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 353

The Alpha Test function is supported in conjunction with Multiple Render Targets (MRTs). If delivered in

the incoming render target write message, source 0 alpha is used to perform the alpha test. If source 0

alpha is not delivered, the normal alpha value is used to perform the alpha test.

12.1.3 Depth Coordinate Offset

The Depth Coordinate Offset function applies a programmable constant offset to the RenderTarget X,Y

screen space coordinates in order to generate DepthBuffer coordinates.

The function has been specifically added to allow the OpenGL driver to deal with a RenderTarget and

DepthBuffer of differing sizes.

In contrast, OpenGL defines a lower-left screen coordinate origin. This requires the driver to incorporate a

“Y coordinate flipping” transformation into the viewport mapping function. The Y extent of the RT is used

in this flipping transformation. If the DepthBuffer extent is different, the wrong pixel Y locations within the

DepthBuffer will be accessed.

The least expensive solution is to provide a translation offset to be applied to the post-viewport-mapped

DepthBuffer Y pixel coordinate, effectively allowing the alignment of the lower-left origins of the RT and

DepthBuffer. [Note that the previous DBCOD feature performed an optional translation of post-viewport-

mapping RT pixel (screen) coordinates to generate DepthBuffer pixel (window) coordinates. Specifically,

the Draw Rect Origin X,Y state could be subtracted from the RT pixel coordinates.]

This function uses Depth Coordinate Offset X,Y state (signed 16-bit values in

3DSTATE_DEPTH_RECTANGLE) that is unconditionally added to the RT pixel coordinates to

generate DepthBuffer pixel coordinates.

The previous DBCOB feature can be supported by having the driver program Depth Coordinate X,Y

Offset to the two’s complement of the the Draw Rect Origin. By programming Depth Coordinate X,Y

Offset to zeros, the current “normal” operation (DBCOD disabled) can be achieved.

Programming Restrictions:

 Only simple 2D RTs are supported (no mipmaps)

 Software must ensure that the resultant DepthBuffer Coordinate X,Y values are non-negative.

 There are alignment restrictions – see 3DSTATE_DEPTH_BUFFER command.

12.1.4 Stencil Test

The Stencil Test function can be used to discard pixels based on a comparison between the [Backface]

Stencil Test Reference state variable and the pixel’s stencil value. This is a general purpose function

used for such effects as shadow volumes, per-pixel clipping, etc. The result of this comparison is used in

the Stencil Buffer Update function later in the pipeline.

This function is enabled by the Stencil Test Enable state variable. If ENABLED, the current stencil buffer

value for this pixel is read.

Programming Note:

 If the Depth Buffer is either undefined or does not have a surface format of
D32_FLOAT_S8X24_UINT or D24_UNORM_S8_UINT and separate stencil buffer is disabled,
Stencil Test Enable must be DISABLED.

A 2nd set of the stencil test state variables is provided so that pixels from back-facing objects, assuming

they are not culled, can have a stencil test performed on them separate from the test for normal front-

facing objects. The separate stencil test for back-facing objects can be enabled via the Double Sided

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 354

Stencil Enable state variable. Otherwise, non-culled back-facing objects will use the same test function,

mask and reference value as front-facing objects. The 2nd stencil state for back-facing objects is most

commonly used to improve the performance of rendering shadow volumes which require a different

stencil buffer operation depending on whether pixels rendered are from a front-facing or back-facing

object. The backface stencil state removes the requirement to render the shadow volumes in 2 passes or

sort the objects into front-facing and back-facing lists.

The remainder of this subsection describes the function in term of [Backface] <state variable name>.

The Backface set of state variables are only used if Double Sided Stencil Enable is ENABLED and the

object is considered back-facing. Otherwise the normal (front-facing) state variables are used.

This function then compares the [Backface] Stencil Test Reference value and the pixel’s stencil value

value after logically ANDing both values by [Backface] Stencil Test Mask. The comparison performed is

specified by the [Backface] Stencil Test Function state variable. The result of the comparison is passed

down the pipeline for use in the Stencil Buffer Update function. The Stencil Test function does not in itself

discard pixels.

If Stencil Test Enable is DISABLED, a result of “stencil test passed” is propagated down the pipeline.

12.1.5 Depth Test

The Depth Test function can be used to discard pixels based on a comparison between the incoming

pixel’s depth value and the current depth buffer value associated with the pixel. This function is typically

used to perform the “Z Buffer” hidden surface removal. The result of this pipeline function is used in the

Stencil Buffer Update function later in the pipeline.

This function is enabled by the Depth Test Enable state variable. If enabled, the pixel’s (“source”) depth

value is first computed. After computation the pixel’s depth value is clamped to the range defined by

Minimum Depth and Maximum Depth in the selected CC_VIEWPORT state. Then the current

(“destination”) depth buffer value for this pixel is read.

This function then compares the source and destination depth values. The comparison performed is

specified by the Depth Test Function state variable.

The result of the comparison is propogated down the pipeline for use in the subsequent Depth Buffer

Update function. The Depth Test function does not in itself discard pixels.

If Depth Test Enable is DISABLED, a result of “depth test passed” is propagated down the pipeline.

Programming Note:

 Enabling the Depth Test function without defining a Depth Buffer is UNDEFINED.

12.1.6 Pre-Blend Color Clamping

Pre-Blend Color Clamping, controlled via Pre-Blend Color Clamp Enable OR Pre-Blend Source Only

Clamp Enable and Color Clamp Range states in COLOR_CALC_STATE, is affected by the enabling of

Color Buffer Blend as described below.

The following table summarizes the requirements involved with Pre-/Post-Blend Color Clamping.

Blending RT Format Pre-Blend Color Clamp Post-Blend Color Clamp

Off UNORM,

UNORM_SRGB,YCRCB

Must be enabled with range = RT

range or [0,1] (same function)

n/a, state ignored

 SNORM Must be enabled with range = RT

range or [-1,1] (same function)

n/a, state ignored

 FLOAT (except for Must be enabled (with any desired n/a, state ignored

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 355

Blending RT Format Pre-Blend Color Clamp Post-Blend Color Clamp

R11G11B10_FLOAT) range)

 R11G11B10_FLOAT Must be enabled with either [0,1]

or RT range

n/a, state ignored

 UINT, SINT State ignored, implied clamp to

RT range

n/a, state ignored

On

(where

permitted)

UNORM, UNORM_SRGB Must be enabled with range = RT

range or [0,1] (same function)

Must be enabled with range = RT

range or [0,1] (same function)

 SNORM Must be enabled with range = RT

range or [-1,1] (same function)

Must be enabled with range = RT

range or [-1,1] (same function)

 FLOAT (except for

R11G11B10_FLOAT)

Can be disabled or enabled (with

any desired range)

Must be enabled (with any desired

range)

 R11G11B10_FLOAT Can be disabled or enabled (with

any desired range)

Must be enabled with either [0,1]

or RT range

12.1.6.1 Pre-Blend Color Clamping when Blending is Disabled

The clamping of source color components is controlled by Pre-Blend Color Clamp Enable. If ENABLED,

all source color components are clamped to the range specified by Color Clamp Range. If DISABLED,

no clamping is performed.

Programming Notes:

 Given the possibility of writing UNPREDICTABLE values to the Color Buffer, it is expected and
highly recommended that, when blending is disabled, software set Pre-Blend Color Clamp Enable
to ENABLED and select an appropriate Color Clamp Range.

 When using SINT or UINT rendertarget surface formats, Blending must be DISABLED. The Pre-
Blend Color Clamp Enable and Color Clamp Range fields are ignored, and an implied clamp to
the rendertarget surface format is performed.

12.1.6.2 Pre-Blend Color Clamping when Blending is Enabled

The clamping of source, destination and constant color components is controlled by Pre-Blend Color

Clamp Enable. If ENABLED, all these color components are clamped to the range specified by Color

Clamp Range. If DISABLED, no clamping is performed on these color components prior to blending.

12.1.7 Color Buffer Blending

The Color Buffer Blending function is used to combine one or two incoming “source” pixel color+alpha

values with the “destination” color+alpha read from the corresponding location in a RenderTarget.

Blending is enabled on a global basis by the Color Buffer Blend Enable state variable (in

COLOR_CALC_STATE). If DISABLED, Blending and Post-Blend Clamp functions are disabled for all

RenderTargets, and the pixel values (possibly subject to Pre-Blend Clamp) are passed through

unchanged.

.

The Color Buffer Blend Enable is in the per-render-target BLEND_STATE, and the field in

SURFACE_STATE is no longer supported.

Programming Notes:

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 356

 Color Buffer Blending and Logic Ops must not be enabled simultaneously, or behavior is
UNDEFINED.

 Dual source blending:

 Only certain surface formats support Color Buffer Blending. Refer to the Surface Format tables in
Sampling Engine. Blending must be disabled on a RenderTarget if blending is not supported.

The incoming “source” pixel values are modulated by a selected “source” blend factor, and the possibly

gamma-decorrected “destination” values are modulated by a “destination” blend factor. These terms are

then combined with a “blend function”. In general:

src_term = src_blend_factor * src_color

dst_term = dst_blend_factor * dst_color

color output = blend_function(src_term, dst_term)

If there is no alpha value contained in the Color Buffer, a default value of 1.0 is used and,

correspondingly, there is no alpha component computed by this function.

Dual Source Blending: When using “Dual Source” Render Target Write messages, the Source1 pixel

color+alpha passed in the message can be selected as a src/dst blend factor. See Color Buffer Blending.

In single-source mode, those blend factor selections are invalid. If SRC1 is included in a src/dst blend

factor and a DualSource RT Write message is not utilized, results are UNDEFINED. (This reflects the

same restriction in DX APIs, where undefined results are produced if “o1” is not written by a PS – there

are no default values defined). If SRC1 is not included in a src/dst blend factor, dual source blending must

be disabled.

The blending of the color and alpha components is controlled with two separate (color and alpha) sets of

state variables. However, if the Independent Alpha Blend Enable state variable in

COLOR_CALC_STATE is DISABLED, then the “color” (rather than “alpha”) set of state variables is used

for both color and alpha. Note that this is the only use of the Independent Alpha Blend Enable state – it

does not control whether Blending occurs, only how.

Per Render Target Blend State: Blend state is selected based on Render Target Index contained in the

message header, and appropriate blend state is applied to Render Target Write messages.

The following table describes the color source and destination blend factors controlled by the Source

[Alpha] Blend Factor and Destination [Alpha] Blend Factor state variables in COLOR_CALC_STATE.

Note that the blend factors applied to the R,G,B channels are always controlled by the

Source/Destination Blend Factor, while the blend factor applied to the alpha channel is controlled either

by Source/Destination Blend Factor or Source/Destination Alpha Blend Factor.

Color Buffer Blend Color Factors

Blend Factor Selection

Blend Factor Applied for R,G,B,A channels

(oN = output from PS to RT#N)

(o1 = 2nd output from PS in Dual-Souce mode only)

(rtN = destination color from RT#N)

(CC = Constant Color)

BLENDFACTOR_ZERO 0.0, 0.0, 0.0, 0.0

BLENDFACTOR_ONE 1.0, 1.0, 1.0, 1.0

BLENDFACTOR_SRC_COLOR oN.r, oN.g, oN.b, oN.a

BLENDFACTOR_INV_SRC_COLOR 1.0-oN.r, 1.0-oN.g, 1.0-oN.b, 1.0-oN.a

BLENDFACTOR_SRC_ALPHA oN.a, oN.a, oN.a, oN.a

BLENDFACTOR_INV_SRC_ALPHA 1.0-oN.a, 1.0-oN.a, 1.0-oN.a, 1.0-oN.a

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 357

Blend Factor Selection

Blend Factor Applied for R,G,B,A channels

(oN = output from PS to RT#N)

(o1 = 2nd output from PS in Dual-Souce mode only)

(rtN = destination color from RT#N)

(CC = Constant Color)

BLENDFACTOR_SRC1_COLOR o1.r, o1.g, o1.b, o1.a

BLENDFACTOR_INV_SRC1_COLOR 1.0-o1.r, 1.0-o1.g, 1.0-o1.b, 1.0-o1.a

BLENDFACTOR_SRC1_ALPHA o1.a, o1.a, o1.a, o1.a

BLENDFACTOR_INV_SRC1_ALPHA 1.0-o1.a, 1.0-o1.a, 1.0-o1.a, 1.0-o1.a

BLENDFACTOR_DST_COLOR rtN.r, rtN.g, rtN.b, rtN.a

BLENDFACTOR_INV_DST_COLOR 1.0-rtN.r, 1.0-rtN.g, 1.0-rtN.b, 1.0-rtN.a

BLENDFACTOR_DST_ALPHA rtN.a, rtN.a, rtN.a, rtN.a

BLENDFACTOR_INV_DST_ALPHA 1.0-rtN.a, 1.0-rtN.a, 1.0-rtN.a, 1.0-rtN.a

BLENDFACTOR_CONST_COLOR CC.r, CC.g, CC.b, CC.a

BLENDFACTOR_INV_CONST_COLOR 1.0-CC.r, 1.0-CC.g, 1.0-CC.b, 1.0-CC.a

BLENDFACTOR_CONST_ALPHA CC.a, CC.a, CC.a, CC.a

BLENDFACTOR_INV_CONST_ALPHA 1.0-CC.a, 1.0-CC.a, 1.0-CC.a, 1.0-CC.a

BLENDFACTOR_SRC_ALPHA_SATURATE f,f,f,1.0 where f = min(1.0 – rtN.a, oN.a)

The following table lists the supported blending operations defined by the Color Blend Function state

variable and the Alpha Blend Function state variable (when in independent alpha blend mode).

Color Buffer Blend Functions

Blend Function
Operation (for each color component)

BLENDFUNCTION_ADD SrcColor*SrcFactor + DstColor*DstFactor

BLENDFUNCTION_SUBTRACT SrcColor*SrcFactor - DstColor*DstFactor

BLENDFUNCTION_REVERSE_SUBTRACT DstColor*DstFactor - SrcColor*SrcFactor

BLENDFUNCTION_MIN
min (SrcColor*SrcFactor, DstColor*DstFactor)

Programming Note: This is a superset of the OpenGL “min” function.

BLENDFUNCTION_MAX
max (SrcColor*SrcFactor, DstColor*DstFactor) Programming Note:

This is a superset of the OpenGL “max” function.

12.1.8 Post-Blend Color Clamping

(See Pre-Blend Color Clamping above for a summary table regarding clamping)

Post-Blend Color clamping is available only if Blending is enabled.

If Blending is enabled, the clamping of blending output color components is controlled by Post-Blend

Color Clamp Enable. If ENABLED, the color components output from blending are clamped to the range

specified by Color Clamp Range. If DISABLED, no clamping is performed at this point.

Regardless of the setting of Post-Blend Color Clamp Enable, when Blending is enabled color

components will be automatically clamped to (at least) the rendertarget surface format range at this stage

of the pipeline.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 358

12.1.9 Dithering

Dithering is used to give the illusion of a higher resolution when using low-bpp channels in color buffers

(e.g., with 16bpp color buffer). By carefully choosing an arrangement of lower resolution colors, colors

otherwise not representable can be approximated, especially when seen at a distance where the viewer’s

eyes will average adjacent pixel colors. Color dithering tends to diffuse the sharp color bands seen on

smooth-shaded objects.

A four-bit dither value is obtained from a 4x4 Dither Constant matrix depending on the pixel’s X and Y

screen coordinate. The pixel’s X and Y screen coordinates are first offset by the Dither Offset X and

Dither Offset Y state variables (these offsets are used to provide window-relative dithering). Then the two

LSBs of the pixel's screen X coordinate are used to address a column in the dither matrix, and the two

LSBs of the pixel's screen Y coordinate are used to address a row. This way, the matrix repeats every

four pixels in both directions.

The value obtained is appropriately shifted to align with (what would be otherwise) truncated bits of the

component being dithered. It is then added with the component and the result is truncated to the bit depth

of the component given the color buffer format.

Dithering Process (5-Bit Example)

12.1.10 Logic Ops

The Logic Ops function is used to combine the incoming “source” pixel color/alpha values with the

corresponding “destination” color/alpha contained in the ColorBuffer, using a logic function.

The Logic Op function is enabled by the LogicOp Enable state variable. If DISABLED, this function is

ignored and the incoming pixel values are passed through unchanged.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 359

Programming Notes:

 Color Buffer Blending and Logic Ops must not be enabled simultaneously, or behavior is
UNDEFINED.

 Logic Ops are only supported on *_UNORM surfaces, otherwise Logic Ops must be DISABLED.

The following table lists the supported logic ops. The logic op is selected using the Logic Op Function

field in COLOR_CALC_STATE.

Logic Ops

LogicOp Function Definition (S=Source, D=Destination)

LOGICOP_CLEAR all 0’s

LOGICOP_NOR NOT (S OR D)

LOGICOP_AND_INVERTED (NOT S) AND D

LOGICOP_COPY_INVERTED NOT S

LOGICOP_AND_REVERSE S AND NOT D

LOGICOP_INVERT NOT D

LOGICOP_XOR S XOR D

LOGICOP_NAND NOT (S AND D)

LOGICOP_AND S AND D

LOGICOP_EQUIV NOT (S XOR D)

LOGICOP_NOOP D

LOGICOP_OR_INVERTED (NOT S) OR D

LOGICOP_COPY S

LOGICOP_OR_REVERSE S OR NOT D

LOGICOP_OR S OR D

LOGICOP_SET all 1’s

12.1.11 Buffer Update

The Buffer Update function is responsible for updating the pixel’s Stencil, Depth and Color Buffer contents

based upon the results of the Stencil and Depth Test functions. Note that Kill Pixel and/or Alpha Test

functions may have already discarded the pixel by this point.

12.1.11.1 Stencil Buffer Updates

If and only if stencil testing is enabled, the Stencil Buffer is updated according to the Stencil Fail Op,

Stencil Pass Depth Fail Op, and Stencil Pass Depth Pass Op state (or their backface counterparts if

Double Sided Stencil Enable is ENABLED and the pixel is from a back-facing object) and the results of

the Stencil Test and Depth Test functions.

Stencil Fail Op and Backface Stencil Fail Op specify how/if the stencil buffer is modified if the

stencil test fails. Stencil Pass Depth Fail Op and Backface Stencil Pass Depth Fail Op specify

how/if the stencil buffer is modified if the stencil test passes but the depth test fails.

Stencil Pass Depth Pass Op and Backface Stencil Pass Depth Pass Op specify how/if the stencil

buffer is modified if both the stencil and depth tests pass. The operations (on the stencil buffer)

that are to be performed under one of these (mutually exclusive) conditions is summarized in the

following table.

Stencil Buffer Operations

Stencil Operation Description

STENCILOP_KEEP Do not modify the stencil buffer

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 360

Stencil Operation Description

STENCILOP_ZERO Store a 0

STENCILOP_REPLACE
Store the StencilTestReference reference value

STENCILOP_INCRSAT Saturating increment (clamp to max value)

STENCILOP_DECRSAT Saturating decrement (clamp to 0)

STENCILOP_INCR Increment (possible wrap around to 0)

STENCILOP_DECR Decrement (possible wrap to max value)

STENCILOP_INVERT Logically invert the stencil value

Any and all writes to the stencil portion of the depth buffer are enabled by the Stencil Buffer Write

Enable state variable.

When writes are enabled, the Stencil Buffer Write Mask and Backface Stencil Buffer Write Mask state

variables provide an 8-bit mask that selects which bits of the stencil write value are modified. Masked-off

bits (i.e., mask bit == 0) are left unmodified in the Stencil Buffer.

Programming Notes:

 The Stencil Buffer can be written even if depth buffer writes are disabled via Depth Buffer Write

Enable.

12.1.11.2 Depth Buffer Updates

Any and all writes to the Depth Buffer are enabled by the Depth Buffer Write Enable state variable. If

there is no Depth Buffer, writes must be explicitly disabled with this state variable, or operation is

UNDEFINED.

If depth testing is disabled or the depth test passed, the incoming pixel’s depth value is written to the

Depth Buffer. If depth testing is enabled and the depth test failed, the pixel is discarded – with no

modification to the Depth or Color Buffers (though the Stencil Buffer may have been modified).

12.1.11.3 Color Gamma Correction

Computed RGB (not A) channels can be gamma-corrected prior to update of the Color Buffer.

This function is automatically invoked whenever the destination surface (render target) has an SRGB

format (see surface formats in Sampling Engine). For these surfaces, the computed RGB values are

converted from gamma=1.0 space to gamma=2.4 space by applying a ^(2.4) exponential function.

12.1.11.4 Color Buffer Updates

Finally, if the pixel has not been discarded by this point, the incoming pixel color is written into the Color

Buffer. The Surface Format of the color buffer indicates which channel(s) are written (e.g.,

R8G8_UNORM are written with the Red and Green channels only). The Color Buffer Component Write

Disables from the Color Buffer’s SURFACE_STATE provide an independent write disable for each

channel of the Color Buffer.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 361

12.2 Pixel Pipeline State Summary

12.2.1 COLOR_CALC_STATE

COLOR_CALC_STATE

Default Value: 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000

This register is pointed to by a field in 3DSTATE_CC_STATE_POINTERS, and stored at a 64-byte aligned boundary.

DWord Bit Description

0 31:24 Stencil Reference Value

Format: U8.0

This field specifies the stencil reference value to compare against in the (front face) StencilTest

function.

23:16 BackFace Stencil Reference Value

Format: U8.0

This field specifies the stencil reference value to compare against in the StencilTest function.

15 Round Disable Function Disable

Project: All

Format: U8.0

Disables the round-disable function of the color calculator. If this bit is zero, dithering is cancelled

based on the data used by blend to avoid drift. If this bit is one, this is not done.

14:1 Reserved

Project: All

Format: MBZ

0 Alpha Test Format

Project: All

This field selects the format for Alpha Reference Value and the format in which Alpha Test is

performed.

Value Name Description Project

0h ALPHATEST_UNORM8 UNorm8 All

1h ALPHATEST_FLOAT32 Float32 All

Programming Notes

Alpha-test format is independent of RT format. When PS outputs UNIT/SINT alpha-value, it will be

treated as IEEE 32bit float number for the purpose of alpha-test.

1 31:0 Alpha Reference Value

Project: All

Exists If: Alpha Test Format == ALPHATEST_ FLOAT32

Format: IEEE_Float

This field specifies the alpha reference value to compare against in the Alpha Test function.

31:0 Alpha Reference Value

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 362

COLOR_CALC_STATE

Project: All

Exists If: Alpha Test Format == ALPHATEST_UNORM8

Format: UNORM8 Upper 24 bits MBZ

This field specifies the alpha reference value to compare against in the Alpha Test function.

2 31:0 Blend Constant Color Red

Format: IEEE_Float

This field specifies the Red channel of the Constant Color used in Color Buffer Blending.

3 31:0 Blend Constant Color Green

Format: IEEE_Float

This field specifies the Green channel of the Constant Color used in Color Buffer Blending.

4 31:0 Blend Constant Color Blue

Format: IEEE_Float

This field specifies the Blue channel of the Constant Color used in Color Buffer Blending.

5 31:0 Blend Constant Color Alpha

Format: IEEE_Float

This field specifies the Alpha channel of the Constant Color used in Color Buffer Blending.

12.2.2 DEPTH_STENCIL_STATE

DEPTH_STENCIL_STATE

Default Value: 0x00000000, 0x00000000, 0x00000000

The DEPTH_STENCIL_STATE is pointed to by a field in 3DSTATE_CC_STATE_POINTERS. It is stored at a 64-

byte aligned boundary.

DWord Bit Description

0 31 Stencil Test Enable

Project: All

Format: Enable

Enables StencilTest function of the Pixel Processing pipeline.

Programming Notes

If any of the render targets are YUV format, this field must be disabled.

30:28 Stencil Test Function

Project: All

Format: 3D_CompareFunction

This field specifies the comparison function used in the (front face) StencilTest function.

Value Name Project

0h COMPAREFUNCTION_ALWAYS All

1h COMPAREFUNCTION_NEVER All

2h COMPAREFUNCTION_LESS All

3h COMPAREFUNCTION_EQUAL All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 363

DEPTH_STENCIL_STATE

4h COMPAREFUNCTION_LEQUAL All

5h COMPAREFUNCTION_GREATER All

6h COMPAREFUNCTION_NOTEQUAL All

7h COMPAREFUNCTION_GEQUAL All

27:25 Stencil Fail Op

Project: All

Format: 3D_StencilOperation

This field specifies the operation to perform on the Stencil Buffer when the (front face) stencil test fails.

Note: if all three stencil ops (Stencil Fail, Stencil Pass Depth Fail, and Stencil Pass Depth Pass) are

KEEP, ZERO, or REPLACE, the stencil buffer is not read.

Value Name Project

0 STENCILOP_KEEP All

1 STENCILOP_ZERO All

2 STENCILOP_REPLACE All

3 STENCILOP_INCRSAT All

4 STENCILOP_DECRSAT All

5 STENCILOP_INCR All

6 STENCILOP_DECR All

7 STENCILOP_INVERT All

24:22 Stencil Pass Depth Fail Op

Project: All

Format: 3D_StencilOperation see Stencil Fail Op

This field specifies the operation to perform on the Stencil Buffer when the (front face) stencil test

passes but the depth pass fails.

21:19 Stencil Pass Depth Pass Op

Project: All

Format: 3D_StencilOperation see Stencil Fail Op

This field specifies the operation to perform on the Stencil Buffer when the (front face) stencil test

passes and the depth pass passes (or is disabled).

18 Stencil Buffer Write Enable

Project: All

Format: Enable

Enables writes to the Stencil Buffer.

Programming Notes

If this field is enabled, Stencil Test Enable must also be enabled.

17:16 Reserved

Project: All

Format: MBZ

15 Double Sided Stencil Enable

Project: All

Format: Enable

Enable doubled sided stencil operations.

Value Name Description Project

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 364

DEPTH_STENCIL_STATE

1 Enable Double Sided Stencil Enabled All

0 Disable Double Sided Stencil Disabled All

Programming Notes

Back-facing primitives have a vertex winding order opposite to the currently selected Front Winding

state.Culling of primitives is not affected by the double sided stencil stateBack-facing primitives will be

rendered, honoring all current device state, as though it were a front-facing primitive with no implicitly

overloaded state.

14:12 BackFace Stencil Test Function

Project: All

Format: 3D_CompareFunction

This field specifies the comparison function used in the StencilTest function.

Value Name Project

0h COMPAREFUNCTION_ALWAYS All

1h COMPAREFUNCTION_NEVER All

2h COMPAREFUNCTION_LESS All

3h COMPAREFUNCTION_EQUAL All

4h COMPAREFUNCTION_LEQUAL All

5h COMPAREFUNCTION_GREATER All

6h COMPAREFUNCTION_NOTEQUAL All

7h COMPAREFUNCTION_GEQUAL All

11:9 Backface Stencil Fail Op

Project: All

Format: 3D_StencilOperation

This field specifies the operation to perform on the Stencil Buffer when the stencil test fails.

Value Name Description Project

0 STENCILOP_KEEP STENCILOP_KEEP All

1 STENCILOP_ZERO STENCILOP_ZERO All

2 STENCILOP_REPLACE STENCILOP_REPLACE All

3 STENCILOP_INCRSAT STENCILOP_INCRSAT All

4 STENCILOP_DECRSAT STENCILOP_DECRSAT All

5 STENCILOP_INCR STENCILOP_INCR All

6 STENCILOP_DECR STENCILOP_DECR All

7 STENCILOP_INVERT STENCILOP_INVERT All

8:6 Backface Stencil Pass Depth Fail Op

Project: All

Format: 3D_StencilOperation see Stencil Fail Op

This field specifies the operation to perform on the Stencil Buffer when the stencil test passes but the

depth pass fails.

5:3 Backface Stencil Pass Depth Pass Op

Project: All

Format: 3D_StencilOperation see Stencil Fail Op

This field specifies the operation to perform on the Stencil Buffer when the stencil test passes and the

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 365

DEPTH_STENCIL_STATE

depth pass passes (or is disabled).

2:0 Reserved

Project: All

Format: MBZ

1 31:24 Stencil Test Mask

Project: All

Format: U8

This field specifies a bit mask applied to stencil test values. Both the stencil reference value and value

read from the stencil buffer will be logically ANDed with this mask before the stencil comparison test is

performed.

23:16 Stencil Write Mask

Project: All

Format: U8

This field specifies a bit mask applied to stencil buffer writes. Only those stencil buffer bits

corresponding to bits set in this mask will be modified.

15:8 Backface Stencil Test Mask

Project: All

Format: U8

This field specifies a bit mask applied to backface stencil test values. Both the stencil reference value

and value read from the stencil buffer will be logically ANDed with this mask before the stencil

comparison test is performed.

7:0 Backface Stencil Write Mask

Project: All

Format: U8

This field specifies a bit mask applied to backface stencil buffer writes. Only those stencil buffer bits

corresponding to bits set in this mask will be modified.

2 31 Depth Test Enable

Project: All

Format: Enable

Enables the DepthTest function of the Pixel Processing pipeline.

Programming Notes

If any of the render targets are YUV format, this field must be disabled.

30 Reserved

Project: All

Format: MBZ

29:27 Depth Test Function

Project: All

Format: 3D_DepthTestFunction

Specifies the comparison function used in DepthTest function.

Value Name Project

0h COMPAREFUNCTION_ALWAYS All

1h COMPAREFUNCTION_NEVER All

2h COMPAREFUNCTION_LESS All

3h COMPAREFUNCTION_EQUAL All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 366

DEPTH_STENCIL_STATE

4h COMPAREFUNCTION_LEQUAL All

5h COMPAREFUNCTION_GREATER All

6h COMPAREFUNCTION_NOTEQUAL All

7h COMPAREFUNCTION_GEQUAL All

Programming Notes

if the Depth Test Function is ALWAYS or NEVER, the depth buffer is not read.

26 Depth Buffer Write Enable

Project: All

Format: Enable

Enables writes to the Depth Buffer.

Programming Notes

A Depth Buffer must be defined before enabling writes to it, or operation is UNDEFINED.

25:0 Reserved

Project: All

Format: MBZ

12.2.3 BLEND_STATE

BLEND_STATE

Default Value: 0x00000000, 0x00000000

The blend state is stored as an array of up to 8 elements, each of which contains the DWords described here. The

start of each element is spaced 2 DWords apart. The first element of the blend state array is aligned to a 64-byte

boundary, which is pointed to by a field in 3DSTATE_CC_STATE_POINTERS. The 3-bit Render Target Index field in

the Render Target Write data port message header is used to select which of the 8 elements from BLEND_STATE

that is used on the current message.

DWord Bit Description

0 31 Color Buffer Blend Enable

Project: All

Format: Enable

Enables the ColorBufferBlending (nee “alpha blending”) function of the Pixel Processing Pipeline for

this render target.

Programming Notes

Enabling LogicOp and ColorBufferBlending at the same time is UNDEFINED

30 Independent Alpha Blend Enable

Project: All

Format: Enable

When enabled, the other fields in this instruction control the combination of the alpha components in

the Color Buffer Blend stage. When disabled, the alpha components are combined in the same fashion

as the color components.

29 Reserved

Project: All

Format: MBZ

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 367

BLEND_STATE

28:26 Alpha Blend Function

Project: All

Format: 3D_ColorBufferBlendFunction

This field specifies the function used to combine the alpha components in the Color Buffer blend stage

of the Pixel Pipeline when the IndependentAlphaBlend state is enabled.

Value Name Project

0 BLENDFUNCTION_ADD All

1 BLENDFUNCTION_SUBTRACT All

2 BLENDFUNCTION_REVERSE_SUBTRACT All

3 BLENDFUNCTION_MIN All

4 BLENDFUNCTION_MAX All

5 - 7 Reserved All

25 Reserved

Project: All

Format: MBZ

24:20 Source Alpha Blend Factor

Project: All

Format: 3D_ColorBufferBlendFactor

Controls the “source factor” in alpha Color Buffer Blending stage.Note: For the source/destination alpha

blend factors, the encodings indicating “COLOR” are the same as the encodings indicating “ALPHA”,

as the alpha component of the color is selected.

Value Name Project

00h Reserved All

01h BLENDFACTOR_ONE All

02h BLENDFACTOR_SRC_COLOR All

03h BLENDFACTOR_SRC_ALPHA All

04h BLENDFACTOR_DST_ALPHA All

05h BLENDFACTOR_DST_COLOR All

06h BLENDFACTOR_SRC_ALPHA_SATURATE All

07h BLENDFACTOR_CONST_COLOR All

08h BLENDFACTOR_CONST_ALPHA All

09h BLENDFACTOR_SRC1_COLOR All

0Ah BLENDFACTOR_SRC1_ALPHA All

0Bh-10h Reserved All

11h BLENDFACTOR_ZERO All

12h BLENDFACTOR_INV_SRC_COLOR All

13h BLENDFACTOR_INV_SRC_ALPHA All

14h BLENDFACTOR_INV_DST_ALPHA All

15h BLENDFACTOR_INV_DST_COLOR All

16h Reserved All

17h BLENDFACTOR_INV_CONST_COLOR All

18h BLENDFACTOR_INV_CONST_ALPHA All

19h BLENDFACTOR_INV_SRC1_COLOR All

1Ah BLENDFACTOR_INV_SRC1_ALPHA All

19:15 Destination Alpha Blend Factor

Project: All

Format: 3D_ColorBufferBlendFactor

Controls the “destination factor” in alpha Color Buffer Blending stage. Refer to Source Alpha Blend

Factor for encodings.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 368

BLEND_STATE

14 Reserved

Project: All

Format: MBZ

13:11 Color Blend Function

Project: All

Format: 3D_ColorBufferBlendFunction

This field specifies the function used to combine the color components in the ColorBufferBlending

function of the Pixel Processing Pipeline. If Independent Alpha Blend Enable is disabled, this field will

also control the blending of the alpha components in the ColorBufferBlending function.

Value Name Project

0 BLENDFUNCTION_ADD All

1 BLENDFUNCTION_SUBTRACT All

2 BLENDFUNCTION_REVERSE_SUBTRACT All

3 BLENDFUNCTION_MIN All

4 BLENDFUNCTION_MAX All

10 Reserved

Project: All

Format: MBZ

9:5 Source Blend Factor

Project: All

Format: 3D_ColorBufferBlendFactor

Controls the “source factor” in the ColorBufferBlending function.Refer to Source Alpha Blend Factor for

encodings.

4:0 Destination Blend Factor

Project: All

Format: 3D_ColorBufferBlendFactor

Controls the “destination factor” in the ColorBufferBlending function. Refer to Source Alpha Blend

Factor for encodings.

1 31 AlphaToCoverage Enable

Project: All

Format: Enable

If set, Source0 Alpha is converted to a temporary 1/2/4-bit coverage mask and the mask bit

corresponding to the sample# ANDed with the sample mask bit. If set, sample coverage is computed

based on src0 alpha value. Value of 0 disables all samples and value of 1 enables all samples for that

pixel. The same coverage needs to apply to all the RTs in MRT case. Further, any value of src0 alpha

between 0 and 1 monotonically increases the number of enabled pixels.The same coverage needs to

be applied to all the RTs in MRT case.

30 AlphaToOne Enable

Project: All

Format: Enable

If set, Source0 Alpha is set to 1.0f after (possibly) being used to generate the AlphaToCoverage

coverage mask.The same coverage needs to be applied to all the RTs in MRT case.If Dual Source

Blending is enabled, this bit must be disabled.

Errata Description Project

 This bit must be disabled.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 369

BLEND_STATE

29 AlphaToCoverage Dither Enable

Project: All

Format: Enable

If set, sample coverage is computed based on src0 alpha value and it modulates the sample coverage

based on screen coordinates. Value of 0 disables all samples and value of 1 enables all samples for

that pixel. The same coverage needs to apply to all the RTs in MRT case. Further, any value of src0

alpha between 0 and 1 monotonically increases the number of enabled pixels. The same coverage

needs to be applied to all the RTs in MRT case.If AlphaToCoverage is disabled, AlphaToCoverage

Dither does not have any impact.

28 Reserved

Project: All

Format: MBZ

27 Write Disable Alpha

Project: All

Format: Disable

This field controls the writing of the alpha component into the Render Target.

Value Name Description Project

0b Enabled Alpha component can be overwritten All

1b Disabled Writes to the color buffer will not modify Alpha. All

Programming Notes

For YUV surfaces, this field must be set to 0B (enabled).

Errata Description Project

 This field should not be set to 0 if the alpha component is not present in the Render

Target surface format.

26 Write Disable Red

Project: All

Format: Disable

This field controls the writing of the red component into the Render Target.

Value Name Description Project

0b Enabled Red component can be overwritten All

1b Disabled Writes to the color buffer will not modify Red. All

Programming Notes

For YUV surfaces, this field must be set to 0B (enabled).

Errata Description Project

 This field should not be set to 0 if the Red component is not present in the Render

Target surface format.

25 Write Disable Green

Project: All

Format: Disable

This field controls the writing of the green component into the Render Target.

Value Name Description Project

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 370

BLEND_STATE

0b Enabled Green component can be overwritten All

1b Disabled Writes to the color buffer will not modify Green. All

Programming Notes

For YUV surfaces, this field must be set to 0B (enabled).

Errata Description Project

 This field should not be set to 0 if the Green component is not present in the Render

Target surface format

24 Write Disable Blue

Project: All

Format: Disable

This field controls the writing of the Blue component into the Render Target.

Value Name Description Project

0b Enabled Blue component can be overwritten All

1b Disabled Writes to the color buffer will not modify Blue. All

Programming Notes

For YUV surfaces, this field must be set to 0B (enabled).

Errata Description Project

 This field should not be set to 0 if the Red component is not present in the Render

Target surface format

23 Reserved

Project: All

Format: MBZ

22 Logic Op Enable

Project: All

Format: Enable

Enables the LogicOp function of the Pixel Processing pipeline.

Programming Notes

Enabling LogicOp and Color Buffer Blending at the same time is UNDEFINED

21:18 Logic Op Function

Project: All

Format: 3D_LogicOpFunction

This field specifies the function to be performed (when enabled) in the Logic Op stage of the Pixel

Processing pipeline. Note that the encoding of this field is one less than the corresponding “R2_” ROP

code defined in WINGDI.H, and is a rather contorted mapping of the OpenGL LogicOp encodings.

However, this field was defined such that, when the 4 bits are replicated to 8 bits, they coincide with the

ROP codes used in the Blter. Note: if the Logic Op Function does not depend on “D”, the dest buffer is

not read.

Value Name Description Project

0h LOGICOP_CLEAR BLACK; all 0’s All

1h LOGICOP_NOR NOTMERGEPEN; NOT (S OR D) All

2h LOGICOP_AND_INVERTED MASKNOTPEN; (NOT S) AND D All

3h LOGICOP_COPY_INVERTED NOTCOPYPEN; NOT S All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 371

BLEND_STATE

4h LOGICOP_AND_REVERSE MASKPENNOT; S AND NOT D All

5h LOGICOP_INVERT NOT; NOT D All

6h LOGICOP_XOR XORPEN; S XOR D All

7h LOGICOP_NAND NOTMASKPEN; NOT (S AND D) All

8h LOGICOP_AND MASKPEN; S AND D All

9h LOGICOP_EQUIV NOTXORPEN; NOT (S XOR D) All

Ah LOGICOP_NOOP NOP; D All

Bh LOGICOP_OR_INVERTED MERGENOTPEN; (NOT S) OR D All

Ch LOGICOP_COPY COPYPEN; S All

Dh LOGICOP_OR_REVERSE MERGEPENNOT; S OR NOT D All

Eh LOGICOP_OR MERGEPEN; S OR D All

Fh LOGICOP_SET WHITE; all 1’s All

17 Reserved

Project: All

Format: MBZ

16 Alpha Test Enable

Project: All

Format: Enable

Enables the AlphaTest function of the Pixel Processing pipeline.

Programming Notes Project

Alpha Test can only be enabled if Pixel Shader outputs a float alpha value. Alpha Test is

applied independently on each render target by comparing that render target’s alpha value

against the alpha reference value. If the alpha test fails, the corresponding pixel write will be

supressed only for that render target. The depth/stencil update will occur if alpha test passes

for any render target.

When Alpha Test is disabled, Alpha Test Function must be COMPAREFUNCTION_ALWAYS.

15:13 Alpha Test Function

Project: All

Format: 3D_CompareFunction

This field specifies the comparison function used in the AlphaTest function

Value Name Description Project

0h COMPAREFUNCTION_ALWAYS Always pass All

1h COMPAREFUNCTION_NEVER Never pass All

2h COMPAREFUNCTION_LESS Pass if the value is less than the reference All

3h COMPAREFUNCTION_EQUAL Pass if the value is equal to the reference All

4h COMPAREFUNCTION_LEQUAL Pass if the value is less than or equal to the

reference

All

5h COMPAREFUNCTION_GREATER Pass if the value is greater than the reference All

6h COMPAREFUNCTION_NOTEQUAL Pass if the value is not equal to the reference All

7h COMPAREFUNCTION_GEQUAL Pass if the value is greater than or equal to the

reference

All

12 Color Dither Enable

Project: All

Format: Enable

Enables dithering of colors (including any alpha component) before they are written to the Color Buffer.

11:10 X Dither Offset

Project: All

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 372

BLEND_STATE

Format: U2

Specifies offset to apply to pixel X coordinate LSBs when accessing dither table.

9:8 Y Dither Offset

Project: All

Format: U2

Specifies offset to apply to pixel Y coordinate LSBs when accessing dither table.

7:4 Reserved

Project: All

Format: MBZ

3:2 Color Clamp Range

Project: All

Specifies the clamped range used in Pre-Blend and Post-Blend Color Clamp functions if one or both of

those functions are enabled. Note that this range selection is shared between those functions. This

field is ignored if both of the Color Clamp Enables are disabled

Value Name Description Project

0 COLORCLAMP_UNORM Clamp Range [0,1] All

1 COLORCLAMP_SNORM Clamp Range [-1,1] All

2 COLORCLAMP_RTFORMAT Clamp to the range of the RT surface format (Note: The

Alpha component is clamped to FLOAT16 for

R11G11B10_FLOAT format).

All

3 Reserved Reserved All

1 Pre-Blend Color Clamp Enable

Project: All

Format: Enable

This field specifies whether the source, destination and constant color channels are clamped prior to

blending, regardless of whether blending is enabled.If DISABLED, no clamping is performed prior to

blending.If ENABLED, all inputs to the blend function are clamped prior to the blend to the range

specified by Color Clamp Range.

Value Name Description Project

0 Disabled No clamping is performed prior to blending. All

1 Enabled All inputs to the blend function are clamped prior to the blend to the range

specified by Color Clamp Range.

All

Programming Notes

See table in Pre-Blending Color Clamp subsection for programming restrictions as a function of RT

format. This field is ignored (treated as DISABLED) for UINT and SINT RT surface formats. Blending is

not supported for those RT surface formats. The device will automatically clamp source color channels

to the respective RT surface range.

0 Post-Blend Color Clamp Enable

Project: All

Format: Enable

If blending is enabled, this field specifies whether the blending output channels are first clamped to the

range specified by Color Clamp Range. Regardless of whether this clamping is enabled, the blending

output channels will be clamped to the RT surface format just prior to being written.

Programming Notes

See table in Pre-Blending Color Clamp subsection for programming restrictions as a function of RT

format. This field is ignored (treated as DISABLED) for UINT and SINT RT surface formats. Blending is

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 373

BLEND_STATE

not supported for those RT surface formats. The device will automatically clamp source color channels

to the respective RT surface range.

Programming Note: CC Unit also receives 3DSTATE_WM_HZ_OP and 3DSTATE_PS_EXTRA.

Description AlphaTestEnable

Formula
= BLEND_STATE::AlphaTestEnable &&

!3DSTATE_WM_HZ_OP::DepthBufferResolveEnable &&

!3DSTATE_WM_HZ_OP::DepthBufferClear &&

!3DSTATE_WM_HZ_OP::StencilBufferClear

Description AlphaToCoverageEnable

Formula
= BLEND_STATE::AlphaToCoverageEnable &&

!3DSTATE_PS_EXTRA::PixelShaderDisableAlphaToCoverage

12.2.4 CC_VIEWPORT

CC_VIEWPORT

Default Value: 0x00000000, 0x00000000

The viewport state is stored as an array of up to 16 elements, each of which contains the DWords described here.

The start of each element is spaced 2 DWords apart. The first element of the viewport state array is aligned to a 32-

byte boundary.The Minimum Depth field in CC_Viewport state must be be greater than or equal to zero on

D16_UNORM, D24_UNORM_X8_UINT, or D24_UNORM_S8_UINT depth formats

DWord Bit Description

0 31:0 Minimum Depth

Project: All

Format: IEEE_Float

Indicates the minimum depth. The interpolated or computed depth is clamped to this value prior to

the depth test.

1 31:0 Maximum Depth

Project: All

Format: IEEE_Float

Indicates the maximum depth. The interpolated or computed depth is clamped to this value prior to

the depth test.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 374

12.3 Other Pixel Pipeline Functions

12.3.1 Statistics Gathering

If Statistics Enable is set in 3DSTATE_WM, the PS_DEPTH_COUNT register (see Memory Interface

Registers in Volume Ia, GPU) will be incremented once for each pixel (or sample) that passes the depth,

stencil and alpha tests. Note that each of these tests is treated as passing if disabled. This count is

accurate regardless of whether Early Depth Test Enable is set. In order to obtain the value from this

register at a deterministic place in the primitive stream without flushing the pipeline, however, the

PIPE_CONTROL command must be used. See the 3D Pipeline chapter in this volume for details on

PIPE_CONTROL.

Doc Ref #: IHD-OS-V2 Pt 1 – 05 12 6/21/2012 375

Revision History

Revision Number Description Revision Date

1.0 First 2012 OpenSource edition May 2012

§§

